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ABSTRACT 

 This dissertation estimates the degree of market power and strategic-price 

responses among brands in the canned tuna industry in a local market.  Weekly scanner 

data on the purchases of canned-tuna in Knoxville, Tennessee collected by Information 

Resources, Incorporated (IRI) were used for the estimation of the degree of market power 

and strategic-price responses.  Four canned tuna brands were investigated including the 

three leading brands, Starkist, Chicken of the Sea, and Bumble Bee, and the competitive 

small-market share brands aggregated into Allother.    

  There are two empirical parts.  The first part focuses on estimation of the degrees 

of market power and strategic-price responses among canned tuna brands in the market 

based on a static approach.  The second part investigates strategic-price responses based 

on a dynamic approach. 

 In the first part, the market is assumed to be operated under Bertrand competition 

such that price is a strategic variable, and brands make their choices simultaneously.  

Measures of the degree of market power include the Rothschild index (RI), the O index 

(OI) and the Chamberlin quotient (CQ).  In order to calculate these measures, each firm’s 

own-and cross-price elasticities and price-response elasticities are needed.  These 

elasticities are estimated by using simultaneous equations, including the linear 

approximate almost ideal demand system (LA/AIDS) with the corrected Stone price 

index and price-reaction equations.  The static analysis finds evidence of market power in 

the canned tuna market.  Starkist and Chicken of the Sea have high market power derived 

from both unilateral and coordinated market power, whereas Bumble Bee maintains its 

market power without coordination.  The strategic-price responses among brands are 
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investigated through the estimated price-reaction equations.  The results show that 

Bumble Bee conducts warfare against Starkist and Chicken of the Sea.  Starkist and 

Chicken of the Sea positively respond to each other’s price; however, they do not respond 

to Bumble Bee’s price.   

In the second part, the Bertrand-competition assumption is replaced by an 

assumption that a firm in the market sets its price depending on its own past prices and 

those of rivals.  A vector autoregressive (VAR) model is employed and its applications, 

including the Granger-causality test, the impulse response function (IRF) analysis, and 

the forecast error variance decomposition (FEVD) analysis, are used to investigate the 

dynamic price relationships.  This study finds that although Starkist and Chicken of the 

Sea do not respond Bumble Bee’s price strategy during the same time period, they do 

over time.  The findings of the second part offer valuable insights in that the study of 

strategic-price responses based on both static and dynamic approaches provide 

significantly better understanding in firms’ pricing behaviors.    
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Motivations 

One of the most important issues in industrial organization concerns market 

structure.   The elements that indicate the market structure in industrial organization 

generally include concentration, product differentiation, and entry barriers.  Industrial 

organization economists have tried to analyze the degree of competitiveness of industrial 

markets in several directions based on these elements.  Appelbaum (1982) and Schroeter 

(1988) used the concept of market concentration to study the degree of market power in 

industrial markets by estimating the Lerner index, the difference between price and 

marginal cost as a proportion of price.  To estimate such an index, the studies had to 

assume that products are homogeneous.   Therefore, the estimated Lerner index for each 

industry represented the degree of market power of that industry as a whole, but the 

degree of market power among firms in the industry was not estimated.   Although 

economists consider some industrial products to be homogeneous, product differentiation 

does occur in industrial markets.  Unlike competitive markets, firms in oligopolies or 

monopolistically competitive markets are able to set their prices differently from one 

another and higher than their marginal costs because their products are differentiated.   

Several researchers have investigated the degree of market power among firms in 

product-differentiated oligopolies using different methods.  Liang (1989) estimated the 

degree of market power in the ready-to-eat breakfast cereal industry by estimating price-

conjectural variations and price-response elasticities.  The degree of market power in 

Liang’s research is based on the ability of pairs of firms to engage in collusion.  Nevo 

(2001) examined the nearly collusive-pricing behavior and intense non-price competition 

in the ready-to-eat cereal industry by the estimation of price-cost margins.   Cotterill 
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(1994) and Vickner and Davies (1999) estimated the degree of market power in the 

carbonated-soft drink industry and the spaghetti sauce industry, respectively.  The degree 

of market power in both studies is derived from two sources, unilateral market power and 

coordinated market power, and is estimated by three measures; the Rothschild Index (RI), 

the O Index (OI) and the Chamberlain Quotient (CQ).  This dissertation is motivated by 

the work of Cotterill, and Vickner and Davies. 

   

Research Objectives 

There are two main objectives of this dissertation.  The first objective is to 

estimate the degree of market power in a product-differentiated oligopoly, the canned 

tuna industry in a local market.  The second objective is to investigate price-response 

relationships among firms in the industry based on the static and dynamic approaches.   

This study chooses the domestic canned tuna industry as a representative 

processed agricultural product in a product-differentiated oligopoly to estimate the degree 

of market power and strategic price response for various reasons.  It is a structural 

oligopoly in which products are manufactured mainly by the big three companies, 

Starkist, Bumble Bee, and Chicken of the Sea, with their combined market share in 2000 

approximately 82 percent of the $2.1 billion canned tuna industry in the U.S. (Fulmer, 

2001).   Tuna has been the largest selling seafood in the U.S. in the past several years 

(Maclean Hunter Media Inc., 1997).  Canned tuna is a durable good because its shelf life 

exceeds the period of time between price changes (Tirole, 1988).  Since canned tuna can 

be stored over time, consumers can store the product when its price is decreased.  

Therefore, it turns out to be an inter-temporal substitute for itself.   Several canned-tuna 
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brands are sold in the same stores, and consumers are able to compare prices across the 

brands.  As a result, each brand faces not only its inter-temporal substitute, but also the 

inter-brand competition.   Moreover, canned tuna products are differentiated by brand, 

flavor, package, size, and advertising.  Since there is product differentiation, firms 

potentially are able to set prices above marginal costs.  In addition, firms’ pricing 

behaviors are interdependent because they operate in an oligopoly market.  For these 

reasons, it is of interest to study the degree of market power along with the price-response 

strategies among firms. 

The scanner data used in this research are primary data that represent a readily 

current and timely source of precise product-specific information including price, 

quantity, expenditure, and marketing activities for a large number of products available 

on a daily basis.  Nayga (1992) argued that “scanner data may become the most detailed 

and definitive source of retail food industry statistics available to researchers and 

marketing executives”.  This study uses the weekly scanner data of canned-tuna prices, 

quantity purchased, and promotional information in a local market, Knoxville, Tennessee.  

The scanner data in this study were collected weekly for 157 weeks over the period of 

January 4, 1998 to December 31, 2000 from 134 supermarkets in Knoxville, Tennessee 

by Information Resources, Incorporated (IRI), a market-research company that processes 

scanner data into a usable format for researchers.1 

 

 

                                                 
1 This research was funded by a grant from the Scholarly Research Grant Program of the College of 
Business Administration at The University of Tennessee. 

 4 



Estimating Degree of Market Power 

With respect to the first objective, this study estimates the degree of market power 

based on the three measures: the RI, OI and CQ.  In order to calculate these measures, 

each firm’s own-and cross-price elasticities and price-response elasticities are needed.  

These elasticities are estimated by simultaneous demand-supply equations based on the 

Bertrand competition assumption such that price is the strategic choice variable and firms 

make their choices simultaneously.  Following Cotterill (1994), this study employs the 

linear approximate almost ideal demand system (LA/AIDS) proposed by Deaton and 

Muellbauer (1980) to estimate the demand for canned tuna in the market and the price-

reaction functions to investigate strategic-price response among firms.  The LA/AIDS is a 

modification by Deaton and Muellbauer from their almost ideal demand system (AIDS) 

to replace the non-linear price index with the Stone price index.  Cotterill (1994) and 

Vickner and Davies (1999) used the LA/AIDS in estimating the degree of market power. 

Use of the Stone index in the LA/AIDS causes estimated parameters to be biased 

and inconsistent (Pashardes, 1993 and Moschini, 1995).  This dissertation uses the 

corrected Stone index suggested by Moschini (1995) in the LA/AIDS estimation.  The 

results of the measures of market power found in this dissertation are consistent with 

those of Cotterill (1994) and Vickner and Davies (1999) in that the leading firms which 

are able to maintain high prices and market shares have high degrees of market power.  In 

addition, this dissertation re-estimates the simultaneous equations with the use of the 

traditional Stone index in the LA/AIDS and the parameter estimates are compared to 

those of the corrected version.  The results from both versions are found to be very close 

giving the interpretation of market power in the same fashion.  This study found that 
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Starkist, the highest-market share brand, has the highest degree of market power.  The 

market power of Starkist and Chicken of the Sea is derived from both unilateral and 

coordinated market power, whereas that of Bumble Bee is derived from its own unilateral 

market power, not from coordinated market power.   

   

Investigating Price-Response Strategies 

The investigation is divided into two parts because the second objective in this 

dissertation is to investigate the strategic price-response relationships among firms in the 

canned tuna industry based on both static and dynamic approaches.  In part one, the price 

response relationships are investigated through the price-reaction functions from the 

estimated simultaneous equations.  This investigation is based on the static approach 

because Bertrand-competition assumes that the price strategies are made simultaneously 

by each firm.  Starkist and Chicken of the Sea are found to respond positively to each 

other.  Bumble Bee seems to conduct price war against its rivals since it responds 

negatively to Starkist’s and Chicken of the Sea’s price strategies.  On the other hand, both 

Starkist and Chicken of the Sea do not respond to Bumble Bee’s price strategy during the 

same time period.  However, Bumble Bee is one of the leading brands in the market; 

therefore, the results in the first part raise the interesting question of whether Bumble 

Bee’s price strategy in past periods may affect Starkist’s and Chicken of the Sea’s price 

strategies in the current period.   

The second part of this dissertation investigates further the price-response 

relationships among firms based on a dynamic approach.  The Bertrand-competition 

assumption is replaced by an assumption that a firm in the market sets its price depending 
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on its own past prices and those of rivals.  A vector autoregressive (VAR) model is 

employed.  The strategic-price responses are investigated using the VAR’s applications 

including the Granger-causality test, the impulse response function (IRF) analysis, and 

the forecast error variance decomposition (FEVD) analysis.  The Granger-causality test 

examines whether the dynamic price-response relationships exist.  The IRF analysis 

graphically reveals the direction of the effect of a one-time shock to one of the 

innovations on future values of the endogenous variables, whereas the FEVD analysis 

measures proportions of a brand’s price variations that can be explained by shocks to its 

own price and it rivals’ prices for each forecast horizon.  Although the results from part 

one indicate that Starkist and Chicken of the Sea do not respond Bumble Bee’s price 

strategy during the same time period, the Granger-causality results show that both 

Starkist and Chicken of the Sea respond negatively to Bumble Bee’s past price.  The 

results from the IRF and FEVD analyses also support the Granger-causality test results 

for the three-leading canned-tuna brands’ relationships.   

In summary, this dissertation estimates the degree of market power and 

investigates strategic-price responses among firms in the canned tuna industry in the 

Knoxville, Tennessee market.  The strategic-price responses are investigated using both 

static and dynamic approaches.  Part one estimates the degree of market power and price-

response relationships based on a static approach.  Part two investigates the dynamic 

price-response relationships.  Overall, the results from both parts of this dissertation 

provide helpful insights on the degree of market power and strategic-price responses 

among firms in the canned tuna market.   
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Contributions of this Dissertation 

 The first contribution of this dissertation is to improve the model specification in 

estimating the degree of market power as developed by Cotterill (1994) and followed by 

Vickner and Davies (1999).   In their studies, Cotterill (1994), and Vickner and Davies 

(1999) measured the degree of market power in the carbonated soft drink industry 

(Cotterill) and the spaghetti sauce industry (Vickner and Davies) by estimating the 

LA/AIDS model and price reaction functions simultaneously.  In this study, the corrected 

Stone index suggested by Moschini (1995) is used in the LA/AIDS model.    

Second, this study is the first to examine the degree of competitiveness of brands 

of a manufactured food product at the local level.  Work to date on food manufacture 

degree of market power and pricing strategies has been conducted at the aggregate 

national level (Appelbaum, 1982; Schroeter, 1988; Baker and Breshnahan, 1985; Liang, 

1989; Cotterill, 1994; and Vickner and Davies, 1999).  These studies have not captured 

local market effects on pricing conduct and local demand.  Only the studies of Cotterill 

(1994), and Vickner and Davies (1999) have used scanner data in investigating the degree 

of market power.   Nayga (1992) suggested that due to the enormous information and the 

high cost of acquisition involved with scanner data, an individual researcher may not be 

able to efficiently collect or organize the volume of information.  Individual researchers 

might have to form a team and combine their efforts when conducting research in a 

national or regional level to become cost effective.  Otherwise, “individual researchers 

should just focus on a local retail firm with multiple stores” (Nayga, 1992).    Nayga 

(1992) suggested that scanner data from supermarkets in a particular location present a 

controlled situation.  Therefore, the community specific results may not contribute to 
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broad regional or national inferences.  This dissertation estimates the degree of market 

power and strategic price response in canned tuna industry in a specific local market, 

Knoxville, Tennessee.  Although demographic information is not available, the study 

should provide information regarding the degree of competitiveness and price strategies 

among firms in a local market.  

Third, this dissertation not only refines Cotterill’s, and Vickner and Davies’ work, 

but also extends their research to dynamic analysis.  Due to the previous work (Cotterill, 

1994; and Vickner and Davies, 1999), the Bertrand price reaction model yields 

information of strategic price response through the price-response elasticities.   These 

results show pricing behaviors among firms in a static way.  In other words, a firm sets its 

price responding to its rivals’ prices in the present time.  In fact, firms’ strategies may 

respond to one another depending not only on today’s information, but also on past 

information.   This study employs a vector autoregressive (VAR) model to investigate 

dynamic price relationships among firms in the canned tuna market.   

Regarding previous industrial-organization research in this area, Vickner and 

Davies (2000) estimated strategic-price response between two leading brands in the 

canned pineapple industry using the VAR and vector error correction model.  The 

Granger causality test and the IRF analysis were applied to investigate the price 

relationships.  With respect to the IRF analysis, confidence intervals are used to evaluate 

the statistical reliability of the estimated results.  However, confidence intervals were not 

included in Vickner and Davies’ IRF analysis.  This may affect the interpretation of their 

empirical results.  This dissertation improves the price-response study by including 

confidence intervals in the IRF results to determine whether the estimated price-response 
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relationships are asymptotically and statistically significant.  In addition, the FEVD 

analysis, one of the useful VAR applications which measures proportions of a brand’s 

price variations that can be explained by shocks to its own price and it rivals’ prices for 

each forecast horizon, was not employed in the Vickner and Davies study.  The FEVD 

results can give additional information to the IRF and Granger-causality results in 

estimating price-response effects.  Therefore, this dissertation includes the FEVD 

analysis to rigorously investigate pricing relationships.  

 

Limitations and Extensions 

Limitations of this dissertation mainly involve the data.  First, demographic and 

brands’ cost data are not included.  Second, this study was not able to take into account 

the effects of the use of brands’ coupons because IRI does not report the extent of their 

use.  Third, the time period of observations is short.  Therefore, strategic-price responses 

among firms in the long run may not be captured.   Finally, the price-response analysis in 

the second part investigates only whether the price relationships exist.  The VAR’s 

applications do not provide statistical magnitudes concerning the price relationships. 

 This dissertation can be extended in several ways.  In a local market, store brands 

such as Kroger and BI-LO may have some effects on the national brands’ demand and 

price strategies.  One extension is to include store brands as key variables in the 

estimation of the degree of market power and price-response strategies among the canned 

tuna brands in a local market.  Another extension is to find a way to include both static 

and dynamic information in the estimation of the degree of market power.  Measures of 

the degree of market power need information of demand and price-response elasticities 
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based on a static approach.  Since this dissertation has shown that firms’ price strategies 

are both static and dynamic, future studies might find a method to measure the degree of 

market power that is able to take into account both static and dynamic information in 

their investigations.   
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Chapter One 

Introduction 

 

 A firm is said to have market power if the firm is able to raise price profitably 

above its marginal cost without losing its market share.  One reason this can occur is 

because the products are differentiated.  Consumers perceive that brands in a market are 

imperfect substitutes.  As a result, a firm may raise its price above that of its rivals 

without losing its market share.  In this case, the competitive tactics of firms in the 

market may use advertising to emphasize product features.  However, in a product-

differentiated oligopoly, although products differ, they can be substituted.  Firms are 

interdependent in the way that if a firm’s price is too high compared to that of its rivals, 

consumers may switch to competitors.  Therefore, price is also a strategic variable in the 

product-differentiated oligopoly market.    

 

Objectives 

 The main objectives of this first part are to estimate the degree of market power 

and to investigate strategic-price responses among firms in the canned tuna market at the 

local level.  The $2.1 billion canned tuna market is selected as a representative product-

differentiated oligopoly (Casamar Group, Inc., 2001).  This dissertation focuses the 

estimation on the local level with Knoxville, Tennessee as a representative local market.  

The data are scanner data which have been actively used in food marketing and economic 

research since the 1980s (Nayga, 1992).  The scanner-data set in this study were collected 
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weekly by Information Resources, Incorporated (IRI) for 157 weeks over the period of 

January 4, 1998 to December 31, 2000 from 134 supermarkets in Knoxville, Tennessee. 

 In an oligopolistic market, when a firm’s product is differentiated from the others, 

a demand curve facing the firm is downward-sloping.  Carlton and Perloff (2000) stated 

“that if a firm faces a downward-sloping demand curve, it has market power.”  The firm’s 

downward-sloping demand curve becomes less elastic if the firm has high market power; 

however due to the presence of substitution it is more elastic than that of a monopolist, 

which is a market-wide demand curve.  If the firm increases price and can influence all of 

its rivals to follow its strategy, the demand curve facing the firm becomes a close 

reflection of the market-wide demand curve, and the firm is said to have extremely high 

market power with full collusion.   

 Rothschild (1942) introduced a theoretical measure of the degree of market power 

called the Rothschild Index (RI).  Later, Cotterill (1994) modified the RI to be more 

applicable with the use of elasticities.   The main idea of the RI is that it compares a 

firm’s own-price elasticity of demand when none of its rivals are collusive, which is 

called the non-followship demand elasticity, with the fully collusive demand elasticity.  

The closer to one the RI is, the greater the degree of market power.  However, the RI 

measures only unilateral market power, ignoring the effects of partial collusion among 

firms.  Basically, firms in a product-differentiated oligopoly are interdependent.  

Therefore, partial collusion exists.  Cotterill introduced two more measures of market 

power called the O Index (OI) and the Chamberlin Quotient (CQ) in order to take into 

account market power from partial collusion of which Cotterill called coordinated market 

power.   
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In order to calculate the RI, OI, and CQ, own-price and cross-price elasticities of 

demand and price-response elasticities of each firm are needed.  Following Cotterill 

(1994), this dissertation employs the demand-supply simultaneous equations to estimate 

such elasticities assuming that the canned tuna market is operated under Bertrand 

competition such that price is strategic variable and firms make their decisions 

simultatneousely.  On the demand side, the Linear Approximate Almost Ideal Demand 

System (LA/AIDS) developed by Deaton and Muellbauer (1980) is used.  Price-reaction 

equations represent the supply-side of the system.  In their research, Cotterill (1994) and 

Vickner and Davies (1999) used the Stone index in the LA/AIDS in estimating the degree 

of market power.  However, some studies found that the use of the Stone index in the 

LA/AIDS causes estimated parameters to be biased and inconsistent (Pashardes, 1993 

and Moschini, 1995).  This dissertation uses a corrected Stone index suggested by 

Moschini (1995) in the LA/AIDS estimation to estimate the degree of market power 

among brands in the canned tuna market.  In addition, the estimated price-reaction 

functions are used to investigate strategic-price responses among brands in the market. 

Four canned tuna brands are estimated: Starkist, Chicken of the Sea, Bumble Bee, 

and Allother.   The study finds consistency between firms’ market shares and their market 

power in a positive way. Starkist, the brand with the highest market share, has the highest 

degree of market power.  Its market power is derived from both unilateral and 

coordinated market power.  Interestingly, Bumble Bee is able to maintain its market 

power without collusion from its rivals.  With respect to the price relationships, Starkist 

and Chicken of the Sea respond positively to each other strategy, but they do not respond 
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to the Bumble Bee strategy.  In addition, the study finds an evidence of price war on 

Bumble Bee against Starkist and Chicken of the the Sea.   

The remainder of this first part is organized as follows.  The theoretical 

framework and literature review are presented in Chapter Two.  Chapter Three discusses 

the scanner data followed by a presentation of the econometric method used in this 

research.  Chapter Four reports the estimated results and Chapter Five presents a 

conclusion.   
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Chapter Two  

Theoretical framework and Literature Review  

 

 The degree of market power in this study was measured in three ways: the 

Rothschild and O indices, and the Chamberlin Quotient.  In order to calculate these 

measures, we have to estimate partial own- and cross-price elasticities, and price-

response elasticities for each brand.   In this study, the partial own- and cross-price 

elasticities were estimated using the Linear Approximate Almost Ideal Demand System 

(LA/AIDS), whereas the price-response elasticities were estimated using price reactions 

functions.    This chapter reviews the relevant theoretical and empirical literature 

associated with LA/AIDS and price-reaction functions.   It provides a structure for 

extensions of the models and associated empirical work described in subsequent chapters.  

 

The Market Power Analysis 

One of the main objectives of this dissertation is to estimate the degree of market 

power in the canned tuna industry.  Greer (1992) states that “market power is the ability 

to influence market price and/or subdue rivals”.  Greer indicates that it is market structure 

that determines ability.  Variations in the features of market structure cause variations in 

demand and supply.  Perfect competition and monopoly are the two polar cases of market 

structure.  In a perfectly competitive market, the demand curve facing a firm is horizontal 

because each firm has no control over price.  On the other hand, a monopolist’s demand 
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curve represents the market-wide demand curve because the monopolist has no 

competition.  

Between these two polar cases, an oligopoly market is an intermediate situation of 

“rivalry” among a small number of firms.  An oligopolistic firm potentially faces two 

kinds of downward-sloping demand curves; a followship demand curve and a non-

followship demand curve, “neither of which is the market-wide demand curve.  The firm 

might face either one or both or portions of both of these demand curves, depending on 

what assumptions it makes concerning its rivals’ behavior.” (Greer, 1992)  

1. The followship demand curve (FD). 

The FD curve facing a firm occurs if firms try to maintain their market shares.  For 

example, a price increase by one firm is matched by its competitors such that their market 

shares are unchanged.  Hence, the followship demand curve could be called a “constant 

share” demand curve.  Greer mentions that the followship demand curve is “a close 

reflection of the market-wide demand curve” (Greer, 1992).  If the firm has an ability to 

influence the market price and then its rivals follow, this indicates the firm has some 

market power.  In economic applications with an oligopoly market, the followship 

demand curve facing a firm can be viewed as the firm’s demand curve with perfectly tacit 

collusion.   

2. The non-followship demand curve (NFD). 

The NFD curve facing a firm occurs if the firm has no power to influence the market 

price.  Therefore, an increase in its price is not matched by its rivals and that firms’ 

market share changes.  The NFD curve could be called a “changing market share curve.”   

The elasticity of the NFD curve is much higher than the elasticity of the FD curve in 
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absolute value because a firm will get a substantial increase in quantity sold in the market 

if it cuts its price, and a considerable decrease in customers if it raises its price since its 

rivals do not match the price change.  The NFD curve varies in elasticity across firms 

within a given market.  In economic applications with an oligopoly market, the non-

followship demand curve reflects a non-collusive situation. 

Figure 2.1 shows these demand relationships for a representative brand, namely 

brand 1.  Assume that demand curves are linear and the market is in equilibrium at P0 Q0.  

In addition, assume that the brand 1 firm decides to raise price to P1.  An increase in price 

yields a decline in quantity sold to Q1.   

 

 

 

    Price            Followship Demand 

                    Observed Demand 

   

     P1 

 

    P0         Non-followship Demand 

 

 

 0        QNF          Q1        QF      Q0   Quantity 

Figure 2.1  Followship, Non-Followship, and Observed Demand Curves 
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If there is perfectly tacit collusion among firms, the output will decline only to QF 

because the firm has market power to influence the market price and its rivals follow, and 

if there is no tacit collusion, the quantity demanded will decline to QNF implying that the 

firm does not have enough market power to affect the market price and no one follows.   

Rothschild (1942) introduced a theoretical measure of the degree of market power 

called the Rothschild Index (RI).  It is the slope of the non-followship demand curve 

divided by the slope of the followship demand curve. 

   RI     =  slope of NFD curve/slope of FD curve 

                                       and       0 ≤ RI ≤ 1. 

Under perfect competition the slope of NFD curve would be zero implying that a 

competitive firm has no control over price and no effect on its rivals.   If the NFD curve 

is identical to the FD curve, the RI will be equal to 1 implying that the demand curve is 

the market-wide demand curve of a monopolist.  From these two extreme cases using the 

measure of RI, we would be able to measure a degree of market power from an observed 

demand with the RI ranging from zero to one. 

Cotterill (1994) has modified the Rothschild Index (RI) to be more applicable by 

converting the slope of the NFD curve and FD curve into elasticities.   This approach 

leads to the use of econometric methods to measure the degree of market power in 

empirical research.  With respect to Figure 2.1, let ∆P be the change in price ( P1 – P0), 

∆QNFD equals the change in quantity sold (Q0 – QNF) on the NFD curve, and ∆QFD is the 

change in quantity sold (Q0 – QF) on the FD curve.   
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where NFDη  represents the non-followship demand elasticity and FDη  represents the 

followship demand elasticity.  This measure of RI using elasticities retains the same 

interpretation of market power as the RI did in terms of slopes.   If the market is perfectly 

competitive, NFDη  will be infinitely negative, and the RI will be equal to zero.   If NFDη is 

equal to FDη , the RI will be equal to one, meaning that the market has monopoly power. 

Baker and Breshnahan (1985) were the first to estimate the degree of market 

power in a differentiated oligopoly by combining demand analysis with industrial 

organization concepts.   Cotterill (1994) has extended the approach by developing a brand 
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level analysis of demand and market power based upon a more general theory.  He 

assumed that an industry is differentiated and that Bertrand competition occurs such that 

price is the strategic variable.  Then the demand for brand 1 in the n-brand industry is a 

function of its price and its rival’s prices, that is: 

            q1 = q1( p1, p2  . . . pn, D)      (2.1) 

where: 

q1 = the quantity of brand 1, 

pi = the price of brand i, i = 1,…, n, and 

D = a vector of demand shift variables. 

If we take the total derivative of this equation, with respect to p1, we will obtain 

1

1

1
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1 ...
dp
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dp
dp
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Assuming that demand shift variables are constant, the last term in equation (2.2) is equal 

to zero.   Multiply equation (2.2) by 
1

1

q
p and use the chain rule to account for oligopolistic 

price interdependence (for example, the second term of the right hand side would be 

1

2

1

1

2

2

2

1

dp
dp

q
p

p
p
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×××
∂
∂ ).  Some algebraic manipulation results in the following formula 

for the observable price elasticity of demand: 

1
2
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n

i
iεηηη ∑

=

+= ,        (2.3) 

where: 

 = observable price elasticity for brand 1, 0
1η
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 11η = partial-own price elasticity of demand, 

 i1η = firm 1’s cross-price elasticity with respect to pi (i≠1), and  

 = rivals’ price response elasticity or the conjectural price response of firm i with 

respect to firm 1’s price (i≠1).  

1iε

Equation (2.3) is interpreted as follows.  Brand 1’s observable price elasticity is 

composed of two elements, its partial own-price elasticity and its coordinated market 

power component.  The partial own-price elasticity of demand for brand 1 ( 11η ) 

represents the percentage change in quantity of brand 1 demanded in response to a 

percentage change in its own price when its competitors’ prices are held constant.  

Therefore, the partial own price elasticity of demand can be interpreted as the non-

followship demand elasticity, which measures the unilateral market power of the brand 

(Cotterill, 1994).  The coordinated market power component is the summation of 

products between brand 1’s cross price elasticities and its rivals’ price-response 

elasticities.  If there is tacit collusion among firms in a way that other brands follow a 

change in brand 1’s price, will be positive.  Assuming that all brands are substitutes, 

though not perfect, the cross price elasticities, 

1iε

i1η , are also positive.  If the price-response 

elasticities and the cross-price elasticities are not zero, yielding coordinated market 

power, the observable price elasticity in equation (2.3) will be less elastic than the partial 

own price elasticity.   The followship demand elasticity ( ) can be obtained by adding 

up the partial own-price elasticity and all cross-price elasticities assuming that all the 

are equal to one (full collusion), .  According to the fully collusive 

F
1η

1iε
n

i
i

F

2
1111

=
∑= ηηη +
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assumption, the followship demand elasticity is also called the fully collusive elasticity, 

which is used for the rest of this dissertation.  The RI measures a degree of unilateral 

market power because it compares the fully collusive elasticity ( ) and the non-

followship elasticity(

F
1η

11η ).  

0
1

F
1

η
η

11η

Cotterill (1994) introduced a second measure of observed market power called the 

O Index (OI).  The OI can be obtained by dividing the slope of the observed demand by 

the slope of the followship demand.  Developed the same way as the RI Index, the OI is 

         OI =    ,  and  0 ≤ RI ≤ OI ≤ 1. 

In perfect competition, the OI is zero because the partial own price elasticity or the non-

followship elasticity ( ) is infinitely negative (and so is the observable price elasticity), 

and there is no coordinated market power.  If the market is perfectly collusive, the 

observed demand elasticity will be equal to the fully collusive elasticity resulting in the 

OI equal to one.  Unlike the RI, the OI measures a degree of bilateral market power 

because the observed demand elasticity ( ) in the OI accounts for both unilateral and 

coordinated market power.  Moreover, since the observable price elasticity is less elastic 

than the partial own price elasticity, the OI of the observed demand is always greater than 

or equal to the RI.   The closer to one the OI is, the greater the degree of market power.   

0
1η

In addition, Cotterill (1994) presented a new measure of market power called the 

Chamberlin Quotient (CQ).   

CQ  = 1 –
OI
RI  = 1 – 

11

0
1

η
η  
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and   0 ≤ CQ ≤ 1. 

The CQ measures the fraction of market power of the observed demand due to tacit 

collusion.   The higher are levels of tacit collusion in a market, the lower is the observed 

demand elasticity ( ) than the partial own-price elasticity (0
1η 11η ), and, therefore, the 

higher the CQ.   

 

The Demand System 

In order to measure the degree of market power in any industry using the RI, OI, 

and CQ, the partial own- and cross-price elasticities, and price-response elasticities of 

each brand in the industry must be estimated.   In this study, the partial own- and cross-

price elasticities were estimated using the Linear Approximate Almost Ideal Demand 

System (LA/AIDS) developed by Deaton and Muellbauer (1980), and the price-response 

elasticities were estimated using the Bertrand price reactions functions.   

Deaton and Muellbauer (1980) first developed the Almost Ideal Demand System 

(AIDS).  They listed the advantages of their system as follows: it gives an arbitrary first-

order approximation to any demand system; it satisfies the axioms of choice exactly; it 

aggregates perfectly over consumers; it has a functional form which is consistent with 

previous household budget data; it is simple to estimate in its linear approximate form; 

and it can be used to test the restrictions of homogeneity and symmetry.  Deaton and 

Muellbauer (1980) noted that “although many of these desirable properties are possessed 

by one or other of the Rotterdam or translog models, neither possesses all of them 

simultaneously”.   Blanciforti and Green (1983) noted an additional desirable property 

 25 



that “the AIDS is indirectly nonadditive, allowing consumption of one good to affect the 

marginal utility of another good; whereas the linear expenditure system (LES) is directly 

additive, implying independent marginal utilities”.  Therefore, the AIDS does not require 

the strict substitution limitations implied by the additive demand models such as LES 

(Blanciforti and Green, 1983).   While the AIDS has several desirable properties, it may 

be difficult to estimate.  This is because the AIDS is non-linear.   To simplify this 

problem, Deaton and Muellbauer suggested using a linear approximation.  Several studies 

have shown that the AIDS and LA/AIDS models are equivalent or superior to other 

common demand specifications, e.g., translog (Lewbel, 1989); Rotterdam (Gao, Wailes, 

and Cramer, 1994); and LES (Green, Hassan, and Johnson, 1995).   Because of their 

advantages, the AIDS and LA/AIDS models have been employed in both macro- and 

micro-demand analysis.  A list of studies that have used either the AIDS or the LA/AIDS 

or both to investigate consumer behavior in various food markets is presented in Table 

2.1.   

Deaton and Muellbauer start their approach by setting a specific class of 

preferences, which represents exact aggregation over consumers (Muellbauer, 1975), 

known as the price-independent, generalized-logarithmic (PIGLOG) consumer 

preferences.  The PIGLOG is represented through the consumer cost or expenditure 

function, which is defined as the minimum expenditure necessary to attain a specific 

utility level at given prices.  The PIGLOG class is defined as: 

log c(u, p) = (1 – u)log[a(p)] + u log[b(p)],    (2.4) 

where u denotes utility ranging from 0 to 1, p is a price vector, and a(p) and b(p) are 

linearly homogeneous functions of prices to be specified.  The expenditure function in  
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Table 2.1   Listing of Research on Food Product using the AIDS or LA/AIDS 
 
Auther 

(Published year) 

Research 

Time period 

System Objective 

Deaton and 
Muellbauer 
(1980) 

1954 – 1974  AIDS and 
LA/AIDS 

Estimation of demand for eight 
commodities in UK, and comparison 
between AIDS and LA/AIDS 

Blanciforti and 
Green (1982) 

1948 – 1978  AIDS and 
LA/AIDS 

Incorporation of habit effects in the 
system to estimate demand system 

Blanciforti and 
Green (1983) 

1948 – 1978  LES1 and 
LA/AIDS 

Estimation of demand for food groups 
and comparison between LES and 
LA/AIDS  

Chalfant (1987) 1947 – 1978  LA/AIDS Investigation of the demand for meat 
and fish products 

Lewbel (1989) 1955 – 1984  Translog and 
LA/AIDS 

Testing and comparison between the 
Translog and AIDS models  

Green, Carman, 
and McManus 
(1991) 

1957 – 1986  AIDS Estimation of advertising effects in 
demand for dried fruits 

Cotterill (1994) 1988 – 1990  LA/AIDS Estimation of market power in 
carbonated soft drink industry 

Gao, Wailes, and 
Cramer (1994) 

1987 – 1988  Rotterdam, 
CBS2, and 
LA/AIDS 

Estimation of demand for rice and its 
substitutes using several models 

Song, Liu, and 
Romilly (1997) 

1960 – 1988  WLS3, 
cointegration, 

error 
correction, 
AIDS, and 

TVP4 

Analysis on demand for food in the 
U.S. and the Netherlands, and 
comparison of various econometric 
methods 

Richards, Kagan, 
and Gao (1997)  

1970 – 1991  LA/AIDS Investigation of the demand for 
complex-carbohydrate products 

Henneberry, 
Piewthongngam, 
and Qiang (1999) 

1970 – 1992  LA/AIDS Estimation of demand functions for 
fresh fruits and vegeTables  

Vickner and 
Davies (1999) 

1994-1996 LA/AIDS Estimation of market power in 
spaghetti sauce industry 

Cotterill, Putsis, 
and Dhar (2000) 

1991 – 1992  LA/AIDS Analysis the competitive interaction 
between private labels and national 
brands on six individual categories 

Teisl, Roe, and 
Hicks (2000) 

1988 – 1995  AIDS Investigation of the dolphin-safe-label 
effect on the tuna demand  

1LES-Linear Expenditure System, 2 CBS- the Central Bureau of Statistics model, 3 WLS-
Weighted Least Squares, and 4 TVP-Time-Varying Parameter Technique 
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equation (2.4) includes two components.  The expenditure log a(p) is interpreted as 

necessary expenditure, whereas the expenditure log b(p) is interpreted as luxury 

expenditure.   It can be shown that the expenditure function is increasing in utility and 

nondecreasing in prices.   

Deaton and Muellbauer (1980) suggest the specific functional forms of log a(p) and log 

b(p) as: 
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ji
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2
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where ai, βi, and are parameters.   The cost function c(u, p) is linearly homogeneous in 

p given that .   
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By differentiating equation (2.4) with respect to prices and using Shepard’s Lemma, they 

obtain the compensated or Hicksian demand functions. 
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By multiplying both sides by pi/c(u, p) equation (2.8) becomes: 
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where w  is the market share of good i.  ),( pui

According to the cost function from equation (2.7), equation (2.9) becomes 

iw = ,     (2.10) k
k
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1

jiijij γγγ += .       (2.11) 

Since total expenditure, Y , is equal to c  in equilibrium for a utility-maximizing 

consumer, by solving for u  (indirect utility) in terms of  and Y from equation (2.7), 

and substituting the result into equation (2.10), we obtain the AIDS in budget share form 

as: 
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where P  is a price index defined by  

Plog  = a  + 0 jiij
ji
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pppa loglog
2
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The translog price index in equation (2.13) causes some empirical problems.  First, its 

specification makes the AIDS a non-linear econometric model, and therefore, it is 

complicated to estimate the model (Deaton and Muellbauer, 1980).  Second, the prices in 

equation (2.13) are likely to be highly correlated, and the high correlation among prices 

can cause collinearity problems.   However, Buse (1996) used the AIDS model to 

estimate meat consumption in the U.S. and concluded that the collinearity among prices 

in the AIDS model was not a serious problem as was presumed in the literature.  

Nevertheless, several studies have replaced the translog price index, log , by the Stone 

index, , where , and  is assumed to be approximately 

P

*log P ii pwP log*log ∑= *P
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proportional to P , such that , and w is the ith firm’s market share 

(Deaton and Muellbauer, 1980; Chalfant, 1987; Cotterill, 1994; and Vickner and Davies, 

1999).  Therefore, by using the Stone index the AIDS has been termed the “linear 

approximate almost ideal demand system” (LA/AIDS).  Thus equation (2.12) becomes   

ePaP += 0* i
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where .  Using the Stone index makes the LA/AIDS in equation (2.14) a 

much simpler estimation problem.  This can be done by calculating the Stone index 

directly and then treating the total expenditure, 

0aii φα +=




*P
Y  in equation (2.14), as a 

predetermined variable before estimating equation (2.14) using OLS regressions (Deaton 

and Muellbauer, 1980).  Deaton and Muellbauer (1980) suggest that by using the Stone 

index, the model becomes linear in the parameters, and the estimation can be done 

equation by equation by OLS, which is equivalent to maximum likelihood estimation for 

the system as a whole.  Moreover, treating the Stone index as exogenous can reduce the 

collinearity problem (Chen, 1998).  Deaton and Muellbauer estimated an eight-

commodity demand system using aggregate annual UK data from 1954 to 1974 and 

concluded that there was no significant difference between the parameters obtained from 

the AIDS and the LA/AIDS.  Alston, Foster, and Green (1994) conducted Monte Carlo 

experiments to investigate whether the Stone index is a good approximation.  They 

concluded that “demand analysts can consequently have a certain degree of confidence 

when estimating the LA/AIDS”.   Therefore, the LA/AIDS model has been a popular tool 

for researchers in the analysis of both macro- and micro-demand system (Deaton and 
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Muellbauer, 1980; Blanciforti and Green, 1983; Chalfant, 1987; Cotterill, 1994; Asche, 

Bjorndal, and Salvanes, 1998; Henneberry, Piewthongngam, and Qiang, 1998; Vickner 

and Davies, 1999).   

Chalfant (1987) and Green and Alston (1990) suggested elasticity formulas that 

can be used with the parameters obtained from the LA/AIDS and the Stone index.  The 

formula of the partial own- and cross price elasticities of demand ( ijη ) suggested by 

Chalfant (1987), and Green and Alston (1990) is: 
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where is the Kronecker delta ( = 1 for i = j; =  0 for i ≠ j), and are 

average market shares of brand i and j, and and  are parameters estimated from the 

LA/AIDS.   Several studies used this elasticity formula in their work (Cotterill, 1994; 

Richards, Kagan, and Gao, 1997; Asche, Bjorndal, and salvanes, 1998; Henneberry, 

Piewthongngam, and Qiang, 1999, Vickner and Davies, 1999).  Alston, Foster, and Green 

(1994) conducted Monte Carlo experiments to investigate the appropriate formula to 

compute elasticities.  They found that equation (2.15) is quite accurate relative to 

alternatives because it is a reasonably good approximation to the true AIDS.  

k
ijδ k

ijδ k
ijδ iw jw
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     The studies of Cotterill (1994), Vickner and Davies (1999), and Cotterill, Putsis, 

and Dhar (2000) are related to the first part of this dissertation.  They estimated the 

demand system using the LA/AIDS simultaneously with the supply system using price-

reaction functions.  In addition, they estimated the LA/AIDS using the Stone index.   
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It has been found that the Stone index can cause econometric problems.   

Pashardes (1993) examined the effect of using the Stone index by comparing analytical 

expressions and empirical findings obtained from the AIDS model with and without the 

Stone index approximation.  Pashardes found that the Stone index causes the parameter 

estimates to be biased.   Buse (1994) investigated the LA/AIDS using the Stone index and 

concluded that the seemingly unrelated estimator of the LA/AIDS was inconsistent.   

Another problem of using the Stone index is the units-of-measurement problem.   

According to the study of Cotterill, Putsis, and Dhar (2000), one assumption made in 

their price-reaction functions was that, in order to observe a manufacturer’s wholesale 

price (wi), the retailer’s price (Pi) is used as a proxy and assumed to be proportional to its 

wholesale price.  In other words, the wholesale price (wi) is scaled up by a constant 

number (m) to represent a proportional mark up rule of the retailer’s price decision, that 

is, Pi = mwi.   Moschini (1995) suggested caution in using the Stone price index in the 

LA/AIDS due to the units-of-measurement problem, such as when prices are scaled up.  

Due to Moschini’s work, the LA/AIDS model with scaled prices could be shown to be 

different from the original AIDS model, and thus the estimated parameters would 

generally be biased.  Moschini concluded that for the purpose of estimating the LA/AIDS 

model, “the standard Stone index should be avoided” (Moschini, 1995).  Moschini 

suggested that a price index should meet a desirable property in which an appropriate 

price index should be invariant to the units of measurement of prices.  This desirable 

property is called the commensurability property (Diewert, 1987; and Moschini, 1995).  

However, Moschini suggested that the units-of-measurement problem may be solved by 

using a price index that satisfies this property.  Moschini recommended several price 
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indices that may be used to maintain the specification of the AIDS linear and that satisfy 

the commensurability property.  The indices recommended by Moschini were the 

Tornqvist index, the corrected Stone index, and the Laspeyres price index. 

The Tornqvist index is written as: 
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The corrected Stone index is written as: 
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The Laspeyres price index is written as: 
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where the zero superscript denotes base period values, such as mean values. 

In a Monte Carlo experiment, Moschini found that the LA/AIDS could 

approximate the AIDS well when the recommended price indices were used. 

 

The Price-Reaction Functions 

The LA/AIDS gives only own- and cross-price elasticities.  In order to measure a 

firm’s market power using the indices mentioned above, the conjectural price responses 

or the price-response elasticities are needed.  The price-response elasticities can be 

obtained from the estimation of price-reaction functions.  A firm’s price reaction function 

is derived from the first order condition of the maximizing profit function of the firm, 

assuming that the market is characterized as Bertrand competition with differentiated 
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products and that price is the strategic choice variable.  Liang (1989) estimated demand 

functions and price-reaction functions simultaneously to measure the degree of market 

power in the ready-to-eat breakfast cereal industry.  The demand and supply functions in 

Liang’s work are linear.  Cotterill (1994) studied the degree of market power in the 

carbonated-soft drink industry.  He extended Liang’s linear price-reaction functions to the 

double-log specification, that is     

iij

n

jji
ijii Cpp νλφµ +++= ∑

=≠

loglog
1,

0 ,     (2.19) 

where 

ip and = the prices of brand i and j,  jp

iC = the vector of shift variables of brand i, and  

ijφ  = the price-elasticity parameters to be estimated, for i, j = 1, 2, …, n.  

 

Previous Empirical Findings 

The empirical findings of Cotterill (1994), and Vickner and Davies (1999) are 

closely related to the first part of this study.  Cotterill (1994) applied Baker and 

Breshnahan’s (1985) demand approach and Liang’s price-reaction functions to his work.  

He analyzed the degree of market power in the carbonated soft drink industry using 

quarterly time-series scanner data from 1988 to 1990.  To investigate the demand-side of 

the market, he employed the LA/AIDS model in order to obtain the partial own and cross 

price elasticities of demand for each brand.  On the supply-side of the market, Cotterill 

used the first-order conditions derived from an oligopolist's profit-maximizing function, 
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assuming that the market is characterized by Bertrand competition, to estimate the price-

response elasticities or the conjectural price response.  He used error-components and 

three-stage least squares estimation methods to estimate both the LA/AIDS and price-

reaction functions simultaneously.  Cotterill used the RI, OI, and CQ to measure a 

brand’s degree of market power using the estimated partial own-price, cross-price and 

price-response elasticities.  Cotterill found that indices of Coke, Pepsi, Seven-Up and 

private labels behaved as expected.  As the RI and OI are close to one, the estimated 

brand is interpreted to have a high degree of market power.   The CQ measures the 

fraction of market power of the observed demand due to tacit collusion.  Coke, for 

example, was estimated to have the RI equal to .71 indicating a high level of unilateral 

market power.  Its OI was estimated to be equal to .84 showing a substantial amount of 

unilateral and coordinated market power, whereas its CQ was estimated to be equal to 

14.7 percent meaning that 14.7 percent of Coke’s market power is due to tacit collusion. 

Following Cotterill’s approach, Vickner and Davies (1999) estimated market 

power and pricing conduct in the domestic spaghetti sauce industry, a product-

differentiated oligopoly.   Vickner and Davies employed the simultaneous equations of 

the LA/AIDS model and the price-reaction functions to estimate the partial own- price 

and cross-price elasticities, and the price-response elasticities.  The estimates led to 

inferences that the own-price elasticities were statistically significant and negative, and 

that demand for each brand was elastic.  Their explanation for the elastic demands was 

that because the spaghetti sauce product was a durable good, consumers could stockpile 

the products when they were on sale.  On the supply side, the results supported Bertrand 

competition in that the estimated price-response elasticities were generally upward 
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sloping.  Following Cotterill’s study, Vickner and Davies measured the degree of market 

power by using the RI, OI, and CQ.  They found some evidence of market power in the 

spaghetti sauce industry even though the extent was not as high as in the carbonated soft 

drink industry estimated by Cotterill.   They also found that brands within a specific 

product category had high degree of tacit collusion.  They pointed out in their study that 

one firm in the industry was capable of maintaining its market power without tacit 

collusion due to an advantage on its niche in the market. 

The degree of market power is one of the crucial issues in industrial organization.   

Cotterill’s and Vickner and Davies’ work is one of several ways in which industrial 

organization economists have studied the degree of market power.  Other studies of the 

degree of market power, which used different approaches from this dissertation, include 

those of Appelbaum (1982), Schroeter (1988), Liang (1989) and Nevo (2001). 

  One alternative is to estimate the mark-up, the difference between price and 

marginal cost as a proportion of price, and is called the Lerner index.  To analyze the 

Lerner index, conjectural elasticity and price elasticity of demand have to be estimated 

because the Lerner index is positively related to the conjectural elasticity and inversely 

related to the elasticity of market demand.   Appelbaum (1982) investigated four U.S. 

manufacturing industries: textiles, rubber, electrical machinery, and tobacco.  Schroeter 

(1988) studied the beef packing industry.  A disadvantage of the Lerner index is the 

assumption of homogeneous products.  Therefore, the degree of market power among 

brands in an industry was not estimated.  The estimated Lerner index for each industry 

represented the degree of market power of that industry as a whole.    
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Liang (1989) estimated the degree of market power in a product-differentiated 

oligopoly, the ready-to-eat breakfast cereal industry on the national level.  Specifically, 

he examined price competition between pairs of ready-to-eat breakfast cereal products.  

The two brand demand functions and the two price-reaction functions were estimated 

simultaneously for each of the observed supermarkets using a nonlinear three stage least 

squares procedure.  Price reaction elasticities were obtained from the estimated price-

reaction functions, and the price conjectural variations were obtained from the estimated 

own- and cross-price elasticities of demand.  Liang’s findings suggested that prices in the 

ready-to-eat breakfast industry were highly non-competitive and the degree of pricing 

interdependence varied across the brand pairs.  The hypothesis of collusive pricing could 

not be rejected if a brand had close substitutes.  Conversely, a manufacturer was able to 

set price independently if its brand was found to be sufficiently differentiated from close 

substitutes.  The major advantage of his approach was that it showed the difference 

between market power ascribed to demand elasticities and market power ascribed to 

collusive pricing conduct.  A disadvantage of his study was that it estimated price 

competition between pairs of products.  In fact, strategic price interaction among all 

brands in the industry should be taken into account in the analysis. 

Nevo (2001) examined the nearly collusive-pricing behavior and intense non-

price competition in the ready-to-eat cereal industry by the estimation of price-cost 

margins.  Nevo used discrete choice models to estimate demand elasticities, which were 

used to compute price-cost margins.  Nevo concluded that observed high degrees of 

price-cost margins were due to product differentiation.  In addition, prices in the industry 

were consistent with non-collusive pricing behavior. 
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Chapter Three 

Data and Econometric Methodology  

  

An objective of this dissertation is to estimate the degree of market power in the 

canned tuna industry in a local market.   The data used in this dissertation are scanner 

data for the canned tuna industry collected from supermarkets in Knoxville, Tennessee.  

The model specification in this dissertation is different from previous studies (Cotterill, 

1994; and Vickner and Davies, 1999).  It uses the corrected Stone index in the estimation 

of LA/AIDS.  Estimates using the traditional Stone index are also generated and 

compared to those associated with the corrected Stone index.   This chapter starts with a 

discussion of the data and then outlines the empirical approach.   

 

Data 

The Use of Scanner Data 

This study uses weekly scanner data from the canned tuna industry to estimate 

firms’ market power.   Scanning systems were introduced during the mid-1970s, and they 

have become the industry standard.  Scanner data are primary data that represent a readily 

current and timely source of product-specific information including price, quantity, 

expenditure, and marketing activities such as coupons, retail advertising and shelf-space 

location for a large number of products available on a daily basis (Nayga, 1992).  

Eastwood (1993) mentioned that the retailer’s motivation for the introduction of scanners 

was primarily for time saving and more precision in the checkout process.  Eastwood 
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(1993) argued that scanner data have desirable properties.  First, the level of detail in 

scanner data allows researchers to examine relationships among close substitutes and 

complements.  Second, the time period is more consistent than traditional data sets.  

Third, the data can be obtained much more quickly than traditional data sets. Finally, they 

can be used to test various merchandising hypotheses under market conditions.   Thus, 

the scanner data are a non-traditional data source, which can be used in empirical 

research to investigate a product in terms of both demand and market structure.   

There are some weaknesses associated with the use of scanner data.  Capps and 

Nayga (1991) indicated that limitations of scanner data include the sheer volume of 

information, the lack of consumer socio-demographics, and the provision of information 

only for food eaten at home.  Eastwood (1993) addressed two problems in constructing 

scanner data sets for marketing and demand research.  The first problem involved 

classifying scanner data for variable-weight items into consumer demand categories.  The 

second problem focused on the creation of an advertising data set that can be combined 

with scanner data to evaluate market strategies.  Scanner data have been actively used in 

food marketing and economic research since the 1980s (Nayga, 1992).  A list of research 

in food demand using scanner data is presented in Table 3.1.  

There are some market research companies that process scanner data into a usable 

format for researchers, such as Information Resources, Incorporated (IRI), A.C. Nielsen, 

and Efficient Market Services.   The scanner data set used in this study is from IRI.  The 

company collects weekly scanner data from more than 32,000 supermarket, drug and 

mass merchandiser outlets across the United States.   Included in their data are sales, 

share, prices, and marketing variables for thousands of consumer brands sold.   
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Table 3.1  Listing of Research on Food Demand using Scanner Data 

Author 

(Published year)  

Research  

Time Period 

Objective 

Jensen and Schroeter 
(1992) 

1985 – 1987  Investigation of the TV advertising’s effects on 
beef demand 

Capps (1989) 1986 – 1987  Estimation of retail demand relationships for 
meat products 

Capps and Nayga 
(1990) 

1986 – 1988  Evaluation of effect of length of time on 
measured demand elasticities 

Capps and 
Lambregts (1991) 

1987 – 1988  Estimation of demand functions for finfish and 
shellfish products 

Eastwood, Brooker, 
and Gray (1994) 

1988 – 1991  Evaluation of effects of supermarket 
advertising on product sales 

Cotterill (1994) 1988 – 1990  Estimation of market power in carbonated soft 
drink industry 

Haller (1994) 1988 – 1992  Estimation of price strategies in the catsup and 
cottage cheese industries 

Wessells and 
Wallstrom (1999) 

1988 – 1992 
 

Testing the stability of canned salmon demand 

Jones (1997) 1990 – 1991 
 

Estimation of demand functions for breakfast 
cereal and carbohydrate products, and 
comparison on different income and location 

Seo and Capps 
(1997) 

1991 – 1992 
 

Estimation of regional variability of price and 
expenditure elasticities on spaghetti sauce 
products 

Cotterill, Putsis, and 
Dhar (2000) 

1991 – 1992 Analysis the competitive interaction between 
private labels and national brands on six 
individual categories 

Park and Senauer 
(1996) 

1994 Estimation of household brand-size choice 
models for spaghetti products 

Vickner and Davies 
(1999) 

1994 – 1996  Estimation of market power and pricing 
conduct in spaghetti sauce industry 

Vickner and Davies 
(2000) 

1994 – 1996  Estimation of strategic price-response on 
canned fruit industry 

Teisl, Roe, and 
Hicks (2000) 

1988 – 1995  Investigation of the dolphin-safe-label effect 
on the tuna demand 
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Several studies have used scanner data relying on the IRI data (Haller, 1994; 

Cotterill, 1994; Seo and Capps, 1997; Wessells and Wallstrom, 1999; and Vickner and 

Davies, 1999).   Cotterill (1994) suggested that scanner data were the most appropriate 

source of data to analyze both demand and strategic interactions.    

 Previous studies (Cotterill, 1994; and Vickner and Davies, 1999) estimated the 

degree of market power in oligopoly markets at the national level.  These studies have not 

captured market structure, pricing conduct, and demand at the local level.   Nayga (1992) 

suggested that scanner data from supermarkets in a particular location present a 

controlled situation.  The study of local market behavior would represent actual strategic 

interaction among firms precisely based on the actual local demand.  This dissertation has 

chosen Knoxville, Tennessee as a representative local market.   

The scanner data in this study were collected weekly by IRI for 157 weeks over 

the period of January 4, 1998 to December 31, 2000 from 134 supermarkets in Knoxville, 

Tennessee.   Supermarkets from which IRI collected the data in this city have annual 

sales of $2 million and above.  There is no information from IRI about individual 

supermarkets.  Therefore, each variable in the data set represents time series data 

aggregated from the 134 supermarkets, including Kroger, Food City and BI-LO.  Neither 

media advertising nor information about shoppers were available.  This study assumes 

that there was no change in the marketing of canned tuna by the store chains or the 

processors or in the socioeconomic characteristics of shoppers over the three year period.   

For each of the 157 weeks, the sales and price information for canned tuna are 

standardized to account for differences in size.   Package sizes and prices are converted 

into standardized 16-oz. equivalent units.   The data set from IRI indicates that there are 
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120 barcodes for canned tuna.   Aggregating sales by brand indicator, there are three 

leading brands that have total market shares that average over 80 percent of the market.  

These three leading brands are Starkist, Chicken of the Sea, and Bumble Bee.   Besides 

the three leaders, there are other canned tuna brands, each of which possesses a small 

fraction of market share.  Therefore, all other canned tuna brands are aggregated into a 

brand labeled Allother.   All variables are listed in Table 3.2, and their descriptions 

follow. 

 

Endogenous Variables 

There are two endogenous variables; the market share of brand i, , and the 

average price per unit of brand i, .  Brand i’s market share represents the percent of the 

brand’s total dollar sales of all brands in the market.   According to the LA/AIDS, this  

itw

ip

 

Table 3.2  Variables Used in the Estimation 

Variable Definition 

iw  Dollar share of brand i 

itp  Average price per 16-oz equivalent of brand i paid by the 
consumers at time t 

tY  Total expenditure spent on all brands of canned tuna in the 
market area at time t 

FEATUREit Percent of incremental volume sales for brand i sold in the 
presence of feature advertising only and no display at time t 

DISPLAYit Percent of incremental volume sales for brand i sold in the 
presence of display only and no feature advertising at time t 

FEATURE&DISPLAYit Percent of incremental volume sales for brand i sold in the 
presence of feature and display at time t 

REDUCTIONit Percent of incremental volume sales for brand i sold in the 
presence of price reduction only during at time t 

 i = Starkist, Bumble Bee, Chicken of the Sea, and Allother 
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variable is endogenous because it is determined by prices and total expenditure.  Prices of 

all package sizes and types of canned tuna (such as tuna in water and tuna in oil) of brand 

i are aggregated and weighted into the average price per 16-oz. equivalent of brand i. 

 

Explanatory variables 

 The total expenditure (Y ) is the total dollar expenditure spent on all brands of 

canned tuna in the market area during time t.  According to the LA/AIDS, the total 

expenditure in equilibrium is equal to a cost function (budget) of a utility-maximizing 

consumer.  The utility function associated with the LA/AIDS is weakly separable.  Weak 

separability allows for partitioning individual items into groups, which is consistent with 

two-stage budgeting.  That is, given weak separability, the consumers allocate income to 

various groups and given the allocation to subgroups, choices are made among the 

elements of the subgroups.  With respect to canned tuna, the consumer is envisioned as 

allocating expenditure to canned tuna and given the allocation, decides how much of the 

various brands to buy.  Therefore, the total expenditure on the canned tuna in the market 

is predetermined and set as exogenous variable.  The other exogenous variables are 

promotion-activity variables including the percent of incremental volume sales with the 

presence of feature only (FEATURE), the percent of incremental volume sales with the 

presence of display only (DISPLAY), the percent of incremental volume sales with feature 

and display (FEATURE&DISPLAY), and the percent of incremental volume sales with the 

presence of price reduction (PREDUCTION).    

t
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IRI collected and calculated each brand’s total volume sales, which are comprised 

of base sales and incremental sales.  Base sales are calculated by IRI using a proprietary 

model, which factors out promotional effects primarily by projecting volumes during 

non-promotional periods versus promotional periods.  Incremental sales are those sales 

which actually represent the effects of promotional activities.  Each brand’s promotional 

activities are assumed exogenous for the relatively short time period considered here.  

However, incremental sales from promotional activities of a brand are also included in 

the brand market share, which is an endogenous variable.  As a result, promotion-activity 

variables may have an endogeneity problem.  One remedy is to create dummy variables 

that indicate whether promotional activities are conducted or not.  However, this is not 

possible here because some canned tuna brands such as Starkist and Allother have 

promotional activities in at least one supermarket every week of the sample period.  

Another alternative is to drop the variables that cause the problem.  But this can cause 

another problem of omitted variable bias and model identification for the simultaneous 

equations and, therefore, should not be used here.  Several studies have used promotion-

activity variables collected by IRI as exogenous variables in their estimations (Cotterill, 

1994; Haller, 1994; Vickner and Davies, 1999, and Cotterill et al, 2000).  Because of the 

limitations of the available data and practically empirical difficulties, the promotion-

activity variables are treated as exogenous variables.  

A Feature is a retailer print advertisement that is used to promote a specific 

product or group of products.  Field auditors (supermarkets) record features appearing in 

newspapers, circulars and flyers.  The percent of incremental volume sales for brand i 
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sold in the presence of feature advertising only and no display during time t is calculated 

as:  

FEATUREit, = (Incremental volume sales of brand i in stores with feature only / Total 

volume sales of brand i) x 100.   

 A display is a temporary secondary location for a product in a store (i.e., in 

addition to its normal stocking location).  Displays are recorded by field auditors 

(supermarkets) who identify each display by its location and the UPCs that are in the 

display.  Field auditors monitor and record display activity in sample stores on a weekly 

basis. The general rule is that a secondary stocking unit must have at least 18 units of 

product in order to be considered a display.  The percent of incremental volume sales for 

brand i sold in the presence of display only and no feature advertising during time t is 

calculated as: 

DISPLAYit = (Incremental volume sales of brand i in stores with display only / Total 

volume sales of brand i) x 100.  

The percent of incremental volume sales for brand i sold in the presence of feature 

and display during time t is recorded by field auditors when features appearing in 

newspapers, circulars, flyers, and display activity are both conducted in the same week.  

This variable is calculated as: 

 FEATURE&DISPLAYit, = (Incremental volume sales of brand i in stores with feature and 

display / Total volume sales of brand i) x 100. 
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 Price reduction is a retailer promotional activity that is used to promote a specific 

product or group of products.  Prices of the products promoted are reduced below their 

regular prices and that it is monitored and recorded by field auditors on a weekly basis.  

The percent of incremental volume sales for brand i sold in the presence of price 

reduction only during time t is calculated as: 

REDUCTIONit = (Incremental volume sales of brand i in stores with price reduction only / 

Total volume sales of brand i) x 100.    

 

Econometric Methodology 

This section starts with the estimation of the simultaneous equations that contain 

the LA/AIDS and price reaction functions.  Next, partial own- and cross-price elasticities 

are calculated using the estimated parameters from the LA/AIDS.  Then, followship 

demand elasticities and observed price elasticities of demand for each brand are 

calculated.  Finally, the RI, OI, and CQ are estimated to measure the degree of market 

power of the canned tuna industry in Knoxville.   

 

Estimating Simultaneous Equations 

To estimate the LA/AIDS model, the Stone index and the Corrected Stone index 

time series must be generated.  This study first uses the corrected Stone index in the 

process of estimating the degree of market power.  Then, the traditional Stone index is 

used later with the same process for comparison.  The corrected Stone index suggested by 

Moschini (1995) is specified as: 
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and the traditional Stone index is specified as: 
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where  

itp = the price of the ith brand at time t, 

0
ip = the average price of the ith brand over the time period, 

itw = the share of the ith brand at time t, and 

subscript i = Starkist, Chicken of the Sea, Bumble Bee, and Allother. 

Next, the expenditure (Y ) on all brands at time t weighted by the corrected Stone index 

at time t is calculated.   In the estimation of the LA/AIDS, the weighted expenditure (Y ) 

is treated as a predetermined variable.  Blanciforti and Green (1983) noted the use of the 

price index considerably simplifies the estimation procedure but not without some cost.  

If the Stone index is not treated as exogenous, the dependent variable,w , will appear on 

both sides of the LA/AIDS and the resulting estimators will not necessarily possess 

desirable sampling properties.  However, if the Stone index was not treated exogenously, 

the possible bias would be small because the term w  was weighted by
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is a fraction.  Following Deaton and Muellbauer (1980), all previous studies that used the 

Stone index in their LA/AIDS estimations ignored this econometric problem and treated 

the Stone index exogenously in obtaining parameter estimates.   In addition, each price 
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variable is normalized by its mean.   Asche and Wessells (1997) noted that if prices are 

normalized to one, the use of the elasticity formula suggested by Chalfant (1987), and 

Green and Alston (1990) is valid in both the AIDS and LA/AIDS.  

In equation (2.12), demand shift variables (Dit), such as promotional effects, can 

be incorporated into the model (Heien and Pompelli, 1988; and Asche, Bjorndal, and 

Salvanes, 1998) by allowing the intercept ( ) to be a function of them, that is 
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and the price reaction function is specified as: 
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where  

,,, ijkii γδα ,, miij λφ ,  and = parameters to be estimated,  iβ

jtp = the price of brand  j at time t,  

itC = a vector of supply shift variables of brand i at time t,  

0
jp  = the mean value of the jth  price series,  

tY = the total expenditure on canned tuna in the market weighted by the corrected stone 

index at time t, and 

i and j = Starkist, Chicken of the Sea, Bumble Bee, and Allother. 
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There are three sets of restrictions implied by economic theory imposed on the 

parameters of the system (in the LA/AIDS): 

Adding up: ,  , and          (3.5) 1*4
1 =∑ = ii α 04

1 =∑ = iji γ 04
1 =∑ = ii β

Homogeneity:     j     (3.6) 0=∑ ijj γ ∀

Symmetry:    ∀   i ≠ .    (3.7) jiij γγ = j

The adding up condition of the LA/AIDS model is satisfied by the data since 

 (Asche, Bjorndal, and Salvanes, 1997).  Therefore, for four demand equations 

only three demand equations of the leading firms (Starkist, Chicken of the Sea, and 

Bumble Bee) are estimated, and then the parameter estimates for the fourth equation 

(Allother) are generated from them.   Thus, in this study the simultaneous equations 

include three demand equations and four price reaction functions with seven endogenous 

variables.    

1=∑ iw

The LA/AIDS and the price reaction functions are estimated simultaneously with 

brand market shares (w ) and prices ( ) as endogenous variables.  The demand shift 

vector D

i ip

i captures brand i retail promotion activities.   These activities include the percent 

of incremental volume sales with the presence of display only (DISPLAY), the percent of 

incremental volume with feature only (FEATURE), the percent of incremental volume sales 

with the presence of both feature and display (FEATURE&DISPLAY), and the percent of 

incremental volume with the presence of price reduction (REDUCTION).  That is Di 

{FEATURE≡ i, DISPLAYi, FEATURE&DISPLAYi, REDUCTIONi}. 

Several assumptions are made in order to estimate the price reaction functions.   

No change in the cost structure of both manufacturers and retailers is assumed to have 
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occurred over the three year period.  No change in production technology among canned 

tuna processors is assumed to have taken place.  In addition, changes in the prices of 

inputs for the production of canned tuna affect firms similarly.  Finally, no principal-

agent problem between the food producers and the retailers is assumed to exist, implying 

that the manufacture-retail price margin was constant for each firm. Consequently, all 

variations in price were attributed to brands’ pricing strategies.  The shift variables (C ) 

in the price reaction functions include total expenditure (Y ), brand i’s market share (w ) 

and its promotional activities (D

i

i

i). 

The simultaneous system contains three demand equations and four price reaction 

equations.   The simultaneous system is identified by both order and rank conditions.   

Since the demand and price equations are assumed to take place simultaneously based on 

the Bertrand competition assumption, correlations of the disturbances across equations 

could be present; therefore the three-stage least squares method (3SLS) is selected to 

estimate the simultaneous equations.  

With respect to 3SLS, the first stage starts with the regression of each endogenous 

variable on the right hand side of each equation on all predetermined variables in the 

model and obtains the estimated values of the endogenous variables.  For the second 

stage, the structural model is estimated using ordinary least squares method and the 

endogenous variables on the right hand side of the model are replaced by the estimated 

values obtained from the first stage.    The third stage takes into account the correlation of 

the disturbances across equations.  A variance-covariance matrix is obtained by using the 

two-stage least squares residuals from the second stage.  Then, the Aitken generalized 
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least squares (GLS) estimation is applied to the structural equations using the variance-

covariance matrix.    

The simultaneous equations are able to be estimated using 3SLS based on the 

assumption that the structural error terms are homoskedastic and not autocorrelated.  

However, when the observations are collected over time, the error terms are likely to be 

autocorrelated.  Blanciforti, Green and King (1986) found evidence of serial correlation 

in the AIDS models of aggregate food groups.  Yen and Chern (1992) estimated a 

flexible demand system with correction for autocorrelation and compared results with 

those obtained from the Translog and AIDS models.  They concluded that correcting 

serial correlation in demand system modeling was important.  Heteroskedasticity is 

normally encountered when dealing with micro economic data “but not when dealing 

with aggregates observed over time unless the time period covered is very long” 

(Kmenta, 1986).  Because the scanner data used in this study were collected in the same 

geographical area and for the same supermarkets over the three-year period, 

heteroskedasticity might be encountered.  Residuals that violate the assumption of no 

autocorrelation and homoskedasticity are called nonspherical.  Estimation of models with 

nonsperical residuals yields estimated variances that are inconsistent.  As a result, the 

standard tests of significance and confidence intervals are not valid.  Therefore, it is 

important to test the autocorrelation and heteroskedasticity problems for each equation in 

the system.   

The Breusch-Pagan test is employed to test heteroskedasticity, and the sample 

correlogram and Ljung-Box statistics (L-B statistics) are used to test for autocorrelation.  
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Specifically, the L-B statistics tests whether autocorrelation exists, and the sample 

correlogram approximately indicates the order of autocorrelation.   

If heteroskedasticity and/or autocorrelation are found, the simultaneous equations 

are estimated using an improved estimation method called weighted three-stage least 

squares (W3SLS).  The W3SLS method can remedy the autocorrelation and 

heteroskedasticity problems.  The method is asymptotically efficient and gives consistent 

estimates of both estimated parameters and their variance-covariance matrix (Kmenta, 

1986).    The procedures of the W3SLS are as follows. 

Step 1: Each regression equation is estimated using the two-stage least squares method in 

order to obtain the regression residuals.  All explanatory variables are used as 

instrumental variables. 

Step 2: The regression residuals are tested for autocorrelation using sample correlogram 

and Ljung-Box statistics (L-B statistics) and for heteroskedasticity using the Breusch-

Pagan test.   

Step 3: If autocorrelation and/or heteroskedasticity are found, each equation is weighted 

by a transformation matrix.  Each equation’s transformation matrix is constructed based 

on the Aitken generalized least squares (GLS) method.  In other words, if a variance-

covariance matrix (Ω ) of an equation is not equal to , that is E(e ) , i and j = 

1, 2,…, n, a transformation matrix (P) can be constructed such thatP or 

. 

I2σ jie ijσ=

′P 1−Ω=

IPP =′Ω

Step 4:  Each regression equation is pre-multiplied (i.e., weighted) by its transformation 

matrix in order to get a transformed equation.   

 52 



Step 5: All transformed equations are then estimated simultaneously using 3SLS. 

 

Calculating Demand Elasticities 

The parameter estimates obtained from the LA/AIDS are used to calculate partial 

own- and cross-price elasticities, whereas price-response elasticities are obtained directly 

from the parameter estimates from the price-reaction functions.  The formula of the 

partial own- and cross-price elasticities of demand ( ijη ) suggested by Chalfant (1987), 

and Green and Alston (1990) is: 

j
i

i

i

ijk
ij

j

i
ij w

wwPd
Qd βγ

δη −+−==
ln
ln ,      (3.11) 

where is the Kronecker delta ( = 1 for i = j; = 0 for i ≠ j), w and w are average 

market shares of brand i and j, and and  are parameters estimated from the 

LA/AIDS (i, j = Starkist, Chicken of the Sea, Bumble Bee, and Allother).   Alston, Foster, 

and Green (1994) conducted Monte Carlo experiments to investigate the appropriate 

formula to compute elasticities from the LA/AIDS.  They found that the formula in 

equation (3.11) is quite accurate relative to alternatives since it is a reasonably good 

approximation to the true AIDS.  

k
ijδ k

ijδ k
ijδ

iβ

i j

ijγ

 Following Chalfant (1987) and Cotterill (1994), standard errors of the partial 

own- and cross-price elasticities, SE( ijη ), are computed based on the standard errors of 

the estimated parameters and the average budget shares  that are treated as nonstochastic.  

The standard errors are computed as: 
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 SE( ijη ) = j
i

i

i
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w
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w

SE )()( βγ
− ,    (3.12) 

where and are standard errors of the estimated parameters from the 

LA/AIDS, and w and w are average market shares of brand i and j. 

)( ijSE γ iSE β(

j

)
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Calculating Followship Demand Elasticities and Observed Demand Elasticities 

After obtaining partial own- and cross-price elasticities, the fully collusive 

elasticity and the observed demand elasticity of each brand are calculated.  The fully 

collusive elasticity of brand i, , can be obtained by adding up its partial own-price 

elasticity (

F
iη

iiη ) and all cross-price elasticities ( ijji ≠,η ) assuming that all price-response 

elasticities are equal to one (full collusion), .  The observed demand 

elasticity of brand i, , is defined as , where  represents rivals’ 

price-response elasticity or the conjectural price-response of firm j with respect to firm i’s 

price (i≠j).  The non-followship demand elasticity of brand i is its partial own-price 

elasticity (

n

ji
ij

≠
∑+ η

jiijεηη

ii
F
i = ηη

n

ji
ii ∑

≠

+0
iη iη =0

jiε

iiη ).   

 

Calculating Measures of the Degree of Market Power 

 The degree of market power of brands in the canned tuna industry is measured by 

the Rothschild and O indices, and the Chamberlin Quotient.  Fully collusive elasticities 

and observable demand elasticities are used to calculate these measures. 
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The Rothschild Index (RI) is specified as:  RIi =  
ii

F
i

η
η   (3.13) 

where  represents the fully collusive elasticity of brand i, and F
iη iiη  represents the non-

followship demand elasticity of brand i or its own-price elasticity. 

The O Index is specified (OI) as:  OIi  =    0
i

F
i

η
η ,    (3.14) 

where represents the observable elasticity of demand for brand i. 0
iη

The Chamberlin Quotient (CQ) is specified as: CQi = 1 –
i

i

OI
RI .  (3.15) 

 

Re-estimating Using the Stone Index 

In order to see the empirical magnitude of the corrected version of the Stone 

index, this study re-estimates the simultaneous equations using the Stone index in the 

LA/AIDS, and then calculates the RI, OI, and CQ to compare the differences. 
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Chapter Four 

Estimation and Results 

 

 This chapter starts with a statistical description of the scanner data for the canned 

tuna industry used in the estimation.  Building on the empirical model developed in the 

previous chapters, it presents the estimation of the simultaneous equations with the 

corrected Stone index in the LA/AIDS and remedies autocorrelation.  Weighted three-

stage least squares are used for the final estimates of the model.  The estimated 

parameters obtained from the LA/AIDS are used to calculate partial own- and cross-price 

elasticities.  Next, the RI, OI, and CQ are calculated to measure the degree of market 

power of each brand using the partial own-price and cross-price elasticities, and price-

response elasticities obtained from the estimation.  The estimated price-reaction functions 

are analyzed for strategic price responses among brands in the industry.  Finally, the 

process of estimating the degree of market power is repeated with the use of the 

traditional Stone index in the LA/AIDS, and the results are compared.    

 

Data Description 

Weekly scanner data for canned tuna industry were collected by IRI for 157 

weeks over the period of January 4, 1998 to December 31, 2000 from 134 supermarkets 

in Knoxville, Tennessee.  There are four brands, Starkist, Chicken of the Sea, Bumble 

Bee, and Allother.  Descriptive statistics for all variables and brands are presented in 

Table 4.1.   
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Table 4.1  Descriptive Statistics for Canned Tuna: 1998 – 2000 (157 weekly observations) 
 
Variable   Mean        Standard Deviation   Min  Max 
Share (wi): 
  Starkist    0.666      0.059   0.415  0.823 

  Chicken of the Sea  0.146      0.036   0.071  0.316 

  Bumble Bee   0.048      0.015   0.023  0.144 

  Allother   0.139      0.048   0.061  0.343 

Price (Pi): 

  Starkist    0.915      0.081   0.633  1.126 

  Chicken of the Sea  0.987      0.146   0.487  1.248 

  Bumble Bee   0.963      0.167   0.428  1.288 

  Allother   0.686      0.060   0.450  0.798 

% Volume in Feature Ads only (Featurei): 

  Starkist    8.533      10.712  0.067  48.046 

  Chicken of the Sea  3.526      10.258  0.037  73.875 

  Bumble Bee   5.012      13.183  4.018  64.099 

  Allother   8.723      17.107  0.864  70.108 

% Volume on Display only (Displayi): 

  Starkist    15.242      9.980   0.499  50.009 

  Chicken of the Sea  2.350      4.826   0.727  32.264 

  Bumble Bee   6.137      9.432   0.100  49.273 

  Allother   14.959     14.082   0.666  63.366 

% Volume on Feature and Display (Feature and Displayi): 

  Starkist    10.291     12.127   1.347  62.497 

  Chicken of the Sea  3.614     10.222   2.089  54.276 

  Bumble Bee   3.922     14.191   7.107  80.696 

  Allother   7.413     15.193   0.880  65.874 

% volume on Price Reduction (Reductioni): 

  Starkist    7.635      5.807   0.809  33.629 

  Chicken of the Sea  13.464      11.606  0.185  54.854 

  Bumble Bee   17.347      15.808  0.012  63.536 

  Allother   11.154      12.401  0.053  49.954 

Total Expenditure (Y )  28845.11     4372.3           15973.69               50266.57 t
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Starkist, Chicken of the Sea, and Bumble Bee are the three leading brands, which 

had average combined market shares of about 86 percent of the canned tuna sales in 

Knoxville area.   Starkist’s average market share was 66.6%, the highest in the industry.  

For Chicken of the sea, Bumble Bee and Allother, their market average shares were 

14.6%, 4.8%, and 13.9% respectively.  Chicken of the Sea had the highest average price 

per unit ($0.99/unit), whereas the average price of Allother was the lowest ($0.69/unit).   

Table 4.2 compares the canned tuna market shares between Knoxville market and 

the U.S. market in 2000.  The three leading brands’ market share (CR3) at the national 

level was 82 percent lower than those in Knoxville market (85%).  Starkist seemed to be 

a popular brand in Knoxville market since its market share was 64 percent compared to 

only 40% at the national level; however it was the leader in both market levels.  

Interestingly, Bumble Bee had higher market share (22%) than Chicken of the Sea (20%) 

at the national level, whereas its market share in Knoxville (5%) was lower than those of 

Chicken of the Sea (16%).  The market share of Allother in Knoxville (15%) was very 

close to those for the whole country (16%). 

 

Table 4.2  Comparing Market Shares between Knoxville and U.S. markets in 2000 

Brand         Knoxville Market          U.S. Market* 

Starkist       64         40 
Chicken of the Sea      16         20 
Bumble Bee         5             22 
Allother       15         16 
*Source: US Business Reporter, available at http://www.activemedia-guide.com/mrksh_profile.htm    
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With respect to promotional activities, Starkist was the most successful brand in 

the presence of feature advertising and display.  It had the highest average percentage of 

total volume sales in the presence of display (15.24%), and display and feature together 

(10.29%).  Starkist was the only brand that offered price reductions every week during 

the observation period in at least one supermarket.  However, its average percentage of 

total sales in the price reduction category was only 7.64%.  Bumble Bee had the highest 

average percentage of total sales (17.35%) when it reduced its price.   However, to 

analyze how successful a brand was when it had a price reduction, the brand’s price 

elasticity of demand should be taken into account.  Finally, the average total expenditure 

spent on all canned tuna brands within a week in Knoxville market was $28845.11.  

 

  

Estimation Results 

Simultaneous Equations  
 
 The simultaneous equations in this dissertation contain the LA/AIDS and price-

reaction functions. The LA/AIDS is specified as: 
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and the price reaction function is: 
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where  

itw  = the market share of good i at time t,  
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itp and = the price of brand i and j at time t,  jtp

0
jp  =  the mean value of the jth  price series,  
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pwP  =  the corrected Stone index, 

tY   =   the total expenditure on the canned tuna in the market weighted by the corrected 

stone index at time t, 

itD  =  a vector of demand shift variables of brand I at time t {FEATURE≡ i, DISPLAYi, 

FEATURE&DISPLAYi, REDUCTIONi}, 

itC =  a vector of supply shift variables of brand i at time t {w , Y , and D≡ i i}, 

,,, ijkii γδα ,, kiij λφ , and = parameters to be estimated, and iβ

i = Starkist, Chicken of the Sea, Bumble Bee, and Allother. 

The LA/AIDS contains three equations (the demand equations of Starkist, Chicken of the 

Sea, and Bumble Bee with the demand equation of Allother being dropped) and four price 

reaction equations. 

 

Testing for Heteroskedasticity 

 The Breusch-Pagan test is employed to detect heteroskedasticity for each 

equation.  The test is based on the assumption that the variance ( ) of each disturbance 

term, , is a linear function of some explanatory variable.  Therefore, it is not constant 

over time depending on the variation of the related explanatory variable.  The explanatory 

variables in this dissertation include total expenditure, and promotional activities, which 

2σ

iε
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are collected from 134 supermarkets.  Although there are differences in size of 

supermarkets, the data are aggregated and collected from the same supermarkets during 

the time period.  The data are treated like a representative supermarket.  Thus, the 

regression variances seem to be constant over the time period.  Nonetheless, tests for 

heteroskedasticity are conducted to be sure that there is no such problem involved in the 

estimation.  According to the Breusch-Pagan test, explanatory variables that are 

suspected to cause heteroskedasticity are selected.  In this study, the total expenditure 

variable (Yt), which represents consumers’ total budgets spent on all canned tuna brands, 

is selected.  The test is done as follows. 

1. Regress each equation using 2SLS in order to obtain its regression residuals (e ). t

2. Calculate a maximum likelihood estimator of , , where 2σ
∧
2σ net

22 Σ=
∧

σ .  

3. Construct a variable such that .    tf
∧

= 22 /σtt ef

4. Estimate equation f  to obtain the sum square of regression (SSR). tt Ybb 21 +=

5. The null hypothesis of homoskedasticity is tested based on the Chi-square 

statistic.  That is QBP = SSR/2 ~   (degree of freedom = 1).   2
1χ

The test results are shown in Table 4.3.   The null hypotheses of homoskedasticity 

for all equations in the system cannot be rejected at the 1% level of significance.  The test 

results imply that heteroskedasticity is not likely to occur in the estimation. 
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Table 4.3  Heteroskedasticity Test  Results  

Equation        QBP             [Prob ( 6.64) = 0.01] >2
1χ

Demand Starkist                  1.68    

Demand Chicken of the Sea        3.60 

Demand Bumble Bee                0.01 

Price reaction Starkist        6.25 

Price reaction Chicken of the Sea               3.02 

Price reaction Bumble Bee               2.89 

Price reaction Allother               3.95 

 

 

Testing for Autocorrelation 

 Since the observations comprise a time series, the residuals of each equation in 

the model are potentially autocorrelated.  The process of testing for autocorrelation is 

started by regressing each equation using the 2SLS method in order to obtain regression 

residuals.  Each equation’s residuals are tested for autocorrelation by using a sample 

correlogram and Ljung-Box statistic (L-B statistic).  The L-B statistic tests whether 

autocorrelation exists and the sample correlogram approximately indicates the order of 

autocorrelation.  The results from the L-B test indicate that all seven equations have 

autocorrelation.  According to sample correlograms, six out of seven equations are 

suspected to be first-order autoregressive (AR1), whereas one equation (Chicken of the 

Sea’s price reaction function) is likely to be second-order auto regressive (AR2).     

The regression residuals of each equation are then regressed on their lagged 

values.  The residuals of Chicken of the Sea’s price reaction function are regressed on 

their two period lags, whereas those of the other equations are regressed on their one 
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period lag.  Mathematically, e , where e  is the residual of equation i 

at time t, t = 2,…, n , s = number of time lagged, s = 1 and 2, and u are interdependent 

and identically distributed with zero mean and variance .  The estimated coefficients 

(ρ

itsit
s

isit ue += −
=

∑
2

1

ρ it

2
uσ

it

is) are presented in Table 4.4.  All the estimated coefficients are statistically significant. 

Therefore, it can be concluded that all equations are AR1 except for the price reaction 

function of Chicken of the Sea that is AR2.  The estimated autoregressive coefficients 

shown in Table 4.4 are used to form a transformation matrix for use in W3SLS. 

 

Estimation of W3SLS 

According to Table 4.4, each equation in the simultaneous model is found to have 

autocorrelation.   This study uses W3SLS to correct the problem.  The estimated  

 

Table 4.4  Estimated Autoregressive Coefficients 

Equation        ρ1              ρ2    

Demand S            0.263***        -    

Demand C            0.507***   -    

Demand B            0.306***   -    

Price reaction S           0.282***   -    

Price reaction C           0.419***          0.1936**    

Price reaction B           0.282***   -    

Price reaction A           0.308***   -    

*** Significance at the 1% level, *** significance at the 5% level. 
Subscript: S = Starkist, C = Chicken of the Sea, B = Bumble Bee, and A = Allother. 
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coefficients ( ) in Table 4.4 are used to form a transformation matrix for each 

regression equation.  After pre-multiplying each equation by its transformation matrix, 

the transformed equations are estimated simultaneously using 3SLS.  The estimated 

parameters of the LA/AIDS are reported in Table 4.5.   Significant estimated parameters 

in Table 4.5 are used to calculate own- and cross-price elasticities of demand for each 

brand.   

isρ

According to the adding up condition, only three demand equations of Starkist, 

Chicken of the Sea, and Bumble Bee are estimated, and then the parameter estimates for 

the Allother demand equation ( and ) are generated from them.  The effect of each 

brand’s price on its share is negative and statistically significant.  Prices of Chicken of the 

Sea and Allother have positive effects on Starkist’s market share.   Prices of Starkist and 

Allother also have positive effects on Chicken of the Sea’s market share, but only the 

price of Allother has positive effects on Bumble Bee’s market share.  The positive effect 

of a brand’s price on another brand’s market share is reasonable.  When a brand increases 

its price and the other brands do not follow, consumers may switch to buy a substitute, 

resulting in an increase in the substitute brand’s market share.  Bumble Bee’s price in 

both Chicken of the Sea’s and Starkist’s equations is not statistically significant implying 

that a change in Bumble Bee’s price has no effect on those two brands’ shares.  Total 

expenditure weighted by the corrected Stone index is statistically significant and has 

negative effects on Starkist’ and Bumble Bee’s market shares.  With respect to Starkist’s 

promotional activities, DISPLAY, FEATURE, and DISPLAY&FEATURE are statistically 

significant and have positive effects on Starkist’s share, even though the magnitudes are 

AAγ Aβ
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Table 4.5  Estimation of the LA/AIDS model  

        ShareStarkist   ShareChicken of the Sea  ShareBumble Bee 

Intercept           1.526    0.015    0.284 
  (0.307)**   (0.163)    (0.064)** 

 
PStarkist    -0.503    0.196    0.010 
  (0.072) **   (0.025)**   (0.013) 
 
PChicken of the Sea 0.196    -0.261    -0.001 
  (0.025)**   (0.024)**   (0.007) 
 
PBumble Bee 0.010    -0.001    -0.035 
  (0.013)    (0.007)    (0.014)** 
 
PAllother  0.297    0.065    0.026 
  (0.064)**   (0.030)*   (0.014)* 
 
Y/P*  -0.088    0.015    -0.023 
  (0.030)**   (0.016)    (0.006)** 
 
DISPLAY 0.002    -0.002    0.000 
  (0.000)**   (0.000)**   (0.000) 
 
FEATURE 0.001    0.000    0.000 
  (0.000)**   (0.000)    (0.000) 
 
DISPLAY& 
FEATURE 0.001    -0.001    0.001 
  (0.000)*   (0.000)**   (0.000)** 

 
PRICE 
REDUCTION -0.001    -0.001    -0.000 
  (0.000)    (0.000)**   (0.000) 
 
 
Adjusted R2 = 0.6684, Standard errors in parentheses,   
* = Significance at 5% level, and   * * = significance at 1% level  
According to the adding up condition,  = -0.388 and = 0.096. AAγ Aβ
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not high.  DISPLAY&FEATURE and PRICE REDUCTION have significant negative effects 

on Chicken of the Sea’s market share.   

The homogeneity and symmetry restrictions are imposed in the estimation: 

Homogeneity:     j, and    (4.3) 0=∑ ijj γ ∀

Symmetry:    ∀   i ≠ .    (4.4)  jiij γγ = j

The restrictions of homogeneity and symmetry are tested using an F test.   This 

test is based on the null hypothesis that the sample information is consistent with the 

imposed restrictions.  In other words, if the null hypothesis cannot be rejected, it implies 

that the error structure of the respective unrestricted model do not differ from that of the 

restricted model.  If the null hypothesis is rejected, it implies that the imposed restrictions 

are not supported by sample information.  The computed F statistic of the imposed 

restrictions are presented in Table 4.6 

 The computed F in Table 4.6 shows that the null hypotheses of the homogeneity 

restrictions on Starkist and Chicken of the Sea demand equations cannot be rejected at 

1%.   The null hypothesis of symmetry restriction between Starkist and Bumble Bee 

demand equations cannot be rejected at 1% level of significance.   For the other two 

symmetry restrictions, the null hypotheses are rejected.   The results imply that the data 

used in this dissertation seem to be consistent with the homogeneity restrictions; however 

the data support only one symmetry restriction.  Several studies of food demand have 

also rejected the symmetry restriction.  A list of studies in food demand that imposed 

homogeneity and symmetry restrictions in the LA/AIDS is shown in Table 4.7.   Deaton 

and Muellbauer (1980) estimated the LA/AIDS on eight nondurable goods using annual  
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Table 4.6    Test Results for Imposed Restrictions 

Property          Restriction         Computed F statistic  
    

Homogeneity                0.02 ∑
=

4

1j
Sjγ

Homogeneity                0.01 ∑
=

4

1j
Cjγ

Homogeneity                22.39∑
=

4

1j
Bjγ ** 

Symmetry       27.11CSSC γγ = ** 

Symmetry       4.90BSSB γγ =  

Symmetry       26.94CBBC γγ = ** 

**Significance at the 1% level,  subscript: S = Starkist, C = Chicken of the Sea, B = Bumble Bee, 
and A = Allother.  j = Starkist, Chicken of the Sea, Bumble Bee, and Allother. 
 

 

 
Table 4.7   Listing of Research on Food Product That Imposed Restrictions on the 

      LA/AIDS 
Auther     (Published year) Homogeneity Symmetry 

Deaton and Muellbauer (1980) Rejected Rejected 

Blanciforti and Green (1982) Rejected - 

Blanciforti and Green (1983) Rejected - 

Chalfant (1987) Not reported Not reported 

Green, Carman, and McManus (1991) Rejected Rejected 

Cotterill (1994) Not reported Not reported 

Richards, Kagan, and Gao (1997) Not rejected Not rejected 

Vickner and Davies (1999) Rejecteda Rejecteda 

Cotterill, Putsis, and Dhar (2000) Not reported Not reported 

- means the restriction was not imposed.  a partially rejected in the EC3SLS 
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British data and found that symmetry restriction was rejected.   Green, Carman, and 

McManus (1991) found that homogeneity and symmetry conditions were strongly 

rejected in the estimation of demand on dried fruits.  Satyanarayana et al (1999) found 

rejection of symmetry in the estimation of demand for malt using the LA/AIDS.   Vickner 

and Davies (1999) estimated the degree of market power in the spaghetti sauce industry 

and found that in their error-components 3SLS (EC3SLS) estimation six of the ten 

symmetry restrictions on the LA/AIDS were rejected.  However, they used the parameter 

estimates from model with the imposed restrictions.   Since the results from testing the 

restrictions are consistent with those found in previous studies, the estimated results from 

the LA/AIDS in this study are reported with the restrictions imposed.  

 

Partial Own- and Cross- Price Elasticities   

Before calculating the RI, OI, and CQ, partial own- and cross-price elasticities, 

and price-response elasticities are needed.  The parameter estimates obtained from the 

LA/AIDS shown in Table 4.5 are used to calculate partial own- and cross-price 

elasticities of demand for each brand, and price-response elasticities are obtained directly 

from the parameter estimates from the price-reaction functions of the simultaneous 

model.    

The partial own- and cross-price elasticities of demand are shown in Table 4.8.  

The partial own- and cross-price elasticities of demand for brand Allother in Table 4.8 are 

calculated using parameter estimates derived from the adding up restrictions.  Therefore, 

the tests of significance for these elasticities are not shown in the Table.  The own-price 

elasticity of demand for each brand is found along the diagonal of the Table.  All brands’  
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Table 4.8   Partial Own- and Cross-Price Elasticities 

 
                % ∆ Price 

                                    Starkist Chicken of the Sea  Bumble Bee Allother 

 
Starkist  -1.67***               0.31***      0.02   0.46*** 
 
Chicken of the Sea 1.27***                    -2.80***    -0.01  0.43** 
 
Bumble Bee  0.51**           0.06    -1.71*** 0.61** 
 
Allother  1.68           0.37    0.15  -3.89 
 
Elasticities are read from left to right;  
*** Significance at the 1% level, ** significance at the 5% level. 
 

own-price elasticities are negative and elastic.  The partial own-price elasticity of demand 

for Starkist is -1.67, meaning that a 1% increase in the price of Starkist causes a 1.67% 

decrease in its quantity sold.  Allother’s partial own-price elasticity is the most elastic.   A 

brand’s elastic demand implies that if the brand raises its price and no other brands 

follow, its revenue will decline.  However, the brand is able to maintain or increase its 

revenue and market share when it increases price, even though it faces an elastic demand, 

if it has enough market power that can influence its rivals to follow. 

The elastic demand of the canned tuna industry can be explained two ways.   

First, although the products are differentiated by brand, they are substitutes.  Consumers 

can switch and buy an alternative brand if they consider an increase in price of a brand 

too high.   Second, canned tuna is a durable good.  Consumers can stockpile their favorite 

brands when prices are low.  In this case each brand is an inter-temporal substitute for 

itself (Tirole, 1988).    
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The cross-price elasticities are found off the diagonal of Table 4.8.  Six out of 

nine cross-price elasticities are statistically significant (not including those derived from 

the adding up restriction).   The significant cross-price elasticities of demand for all other 

brands are positive, meaning that they are substitutes.  The cross-price elasticity of 

demand for Chicken of the Sea with respect to Starkist’s price is 1.27, which is elastic and 

statistically significant, meaning that a 1% increase in the price of Starkist leads to a 

1.27% increase in Chicken of the Sea’ s quantity sold.   Chicken of the Sea and Allother 

seem to be good substitutes for Starkist because their cross-price elasticities with respect 

to Starkist’s price are high and elastic.   On the other hand, the cross-price significant 

elasticities of demand for Starkist with respect to the Chicken of the Sea and Allother’s 

prices are inelastic.  This suggests that consumers consider Starkist less substituTable 

than those brands in the market.  The cross-price elasticity of demand for Bumble Bee 

with respect to Starkist’s price is 0.51 and statistically significant implying that Bumble 

Bee can be a substitute for Starkist, even though it is not as good as Chicken of the Sea 

and Allother. 

 

Price-response Strategies 

To calculate the RI, OI, and CQ, price-response elasticities of firms in the canned 

tuna market are required.  The parameter estimates from price reaction functions are 

shown in Table 4.9.  Due to the double-log specification, the estimated ijφ parameter in 

equation (3.4) represents the price-response elasticities of firm i with respect to firm j’s 

price. According to the existence of a Bertrand-Nash equilibrium, firms’ prices are 

supposed to have a positive relationship.  However, price-response elasticities in this  
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Table 4.9   Estimated Price Reaction Functions  

        PSK           PCS               PBB   PAO 

Intercept           2.652        0.138   2.975          -0.680 
  (0.548)***              (0.881)  (1.043)***         (0.763) 
 
PSK     -        0.667   -0.363          0.190 
         (0.174)***  (0.198) *         (0.205) 
 
PCS  0.319           -   -0.261          -0.066 
  (0.046)***     (0.078)***         (0.057) 
 
PBB  0.010   -0.002   -          0.032 
  (0.025)   (0.041)             (0.038) 
 
PAO  0.382   0.252   0.040   - 
  (0.102)***  (0.136) *  (0.160)     
 
Y/P  -0.163   0.048   -0.253          0.069 
  (0.051)***  (0.084)          (0.097)***         (0.074) 
 
SHARE  -1.531   -3.622   -6.219          0.450 
  (0.167)***  (0.348)***  (-3.60)**         (0.356) 
 
DISPLAY 0.002   -0.007   -0.001         -0.002 
  (0.001)***  (0.001)***  (0.001)        (0.000)*** 
 
FEATURE 0.002   -0.000   -0.004          -0.002 
  (0.001)**  (0.001)   (0.001)***       (0.000)*** 
   
DISPLAY& 0.001   -0.004   -0.004          -0.004 
FEATURE (0.001)   (0.001)***  (0.001)***       (0.001)*** 
 
REDUCTION   -0.001   -0.006   -0.003          -0.002 
  (0.001)   (0.001)***  (0.001)***        (0.000)*** 
           
Parameter estimates for each equation are read by column. 
Adjusted R2 = 0.654, standard errors in parentheses,   
* = Significance at 10% level,   * * = significance at 5% level, *** = significance at 1% level 
Subscript: SK = Starkist, CS = Chicken of the Sea, BB = Bumble Bee, and AO = Allother. 
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study are found to have both positive and negative relationships.  An interpretation is that 

positive price-response elasticities imply tacit collusion among brands, and negative 

price-response elasticities imply price war.   The price-response elasticity of Starkist with 

respect to Chicken of the Sea’s price is 0.32 and statistically significant, meaning that if 

Chicken of the Sea raises price by 1%, Starkist will raise its price by 0.32%.   The price-

response elasticity of Chicken of the Sea with respect to Starkist’s price is 0.67 and 

statistically significant.  This asymmetry leads to an inference that a change in price of 

Starkist has high influence on the price of Chicken of the Sea, but a change in price of  

Chicken of the Sea has less influence on the price of Starkist.  The price-response 

elasticities of Bumble Bee with respect to prices of both Starkist and Chicken of the Sea 

are negative and statistically significant.  This implies that instead of tacitly colluding in 

price with its rivals, Bumble Bee conducts a price war.  For example, when Starkist 

increases price by 1%, Bumble Bee decreases its price by 0.36%.  According to the cross-

price elasticity of demand for Bumble Bee with respect to Starkist’s price (0.51) in Table 

4.8, Bumble Bee seems to be a substitute for Starkist, but the degree of substitution is not 

as close as for Chicken of the Sea and Allother (1.27 and 1.68, respectively).  Therefore, 

Bumble Bee’s strategy is to cut its price, in order to gain more sales in the market.  The 

price-response elasticities of Chicken of the Sea and Starkist with respect to Bumble 

Bee’s price are not statistically significant.  It implies that the two leading brands do not 

respond to Bumble Bee’s price strategy.  On the other hand, they positively respond to 

the price set by Allother because their price-response elasticities with respect to 

Allother’s price are statistically significant.  Since the results lead to the inference that 

none of the canned tuna brands in the market follow Bumble Bee’s price strategy, while 
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Bumble Bee can maintain its market share with a high price in the market, its market 

power is not derived from coordinated market power or tacit collusion.  These results can 

be confirmed by considering the measures of market power in the next section.  Twelve 

of the 16 promotion-activity variables are statistically significant.  Ten of the twelve 

promotion activities of Chicken of the Sea, Bumble Bee and Allother have negative 

effects on their respective prices and they are statistically significant.  This implies that 

when a promotional campaign is conducted, a brand tends to decrease its price.  These 

results are reasonable and easily explained.  Since one of the objectives for conducting 

promotional activities is to increase a brand’s revenue, and because those brand’s own-

price elasticities are elastic (Table 4.8), a decrease in price results in an increase in their 

revenues.   Interestingly, Starkist’s DISPLAY and FEATURE variables have positive 

impacts on its price (Table 4.9) and share (Table 4.5) and they are statistically significant.  

This leads to an inference that Starkist may have market power because it is able to 

increase both price and market share when it uses such promotional activities.  This 

inference is supported by considering the measures of market power in the next section. 

 

Measures of the Degree of Market Power 

The degree of market power of brands in the canned tuna industry is measured by 

the RI, OI, and CQ.   Estimated non-followship, fully collusive, and observed demand 

elasticities are used to calculate these measures.  Brand i’s partial own-price elasticity 

( iiη ) represents the brand’s non-followship demand elasticity.  The fully collusive 

elasticities and the observed demand elasticities of brand i are calculated using the partial 
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own- and cross-price elasticities, and price-response elasticities shown in Table 4.8 and 

4.9.   

The fully collusive elasticity of brand i , , is defined as .  The 

observed demand elasticity of brand i, , is defined as  , where 

F
iη

n

ji
ijii

F
i

≠
∑+= ηηη

ji

n

ji
ijεη∑

≠
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iη iii ηη =0

ijη  is 

the cross-price elasticity of demand for firm i with respect to a change in price of firm j,  

and  represents rivals’ price-response elasticity or the conjectural price-response of 

firm j with respect to a change in price of firm i (i≠j).

jiε

2    

The estimated elasticities and measures of market power are shown in Table 4.10.  

The first row in Table 4.10 contains each brand’s non-followship demand elasticity (from 

Table 4.8).  The non-followship demand elasticity can be interpreted as a unilateral 

measure of market power because it measures the responsiveness in quantity purchased a 

brand experiences when it raises price but no rivals follow.  Starkist, the largest brand in 

the market, has the highest unilateral market power since its non-followship demand 

elasticity is the lowest elasticity in absolute value.   It means that when Starkist raises its 

price, consumers change their quantities demanded less than they do when the other 

brands change their prices.  The aggregated small brands, Allother, seem to have the least 

ability to maintain their unilateral market power because they have the highest elastic 

demand in absolute value.  This is reasonable since each brand in Allother possesses 

small market share and has no power in the market.   If it raised its price, its quantity 

                                                 
2 This dissertation uses all significant and insignificant parameter estimates to calculate the fully collusive 
and observed demand elasticities.  This is consistent with the way other research in this area has been done. 
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Table 4.10  Elasticities and Measures of Market Power 

   Starkist Chicken of the Sea Bumble Bee    Allother 

Non-followship 
Elasticity ( iiη )  -1.667           -2.802     -1.706       -3.887 
 
Observed 
Elasticity ( )  -1.377           -2.423     -1.682       -3.148 0

iη
 
Fully Collusive 
Elasticity ( ) -0.869          -1.106     -0.532       -1.690 F

iη
 

RIi  = 
ii

F
i

η
η   0.522               0.395       0.312         0.435 

 

OIi = 0
i

F
i

η
η   0.631            0.457       0.316         0.537 

 

CQi  = 1 –
i

i

OI
RI  0.174            0.137       0.014         0.190 

 

demanded would considerably decrease.   

 The observed demand elasticities are shown in the second row of Table 4.10.   

These elasticities take into account the effect of coordinated market power, which is the 

sum of the product between cross price elasticities and price-response elasticities among 

brands in the market.  Each brand’s observed demand elasticity is less elastic than its 

non-followship demand elasticity in absolute value because of the positive effect from 

coordinated market power.    

Each brand’s fully collusive elasticity shown in the third row of Table 4.10 is 

calculated based on the assumption that the brand’s price-response elasticities equal one, 

meaning that if the brand increases its price, all rivals will raise their prices at the same 
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rate.  The fully collusive elasticities are useful in measuring the degree of market power 

of each brand.  The higher the market power a brand has, the farther is the brand’s 

observed elasticity from its non-followship elasticity, and the closer to its fully collusive 

elasticity.    

The degree of market power of a brand in this study means that the brand is able 

to set a high price without losing its market share.   (According to Table 4.1, the average 

price per unit (16 oz. equivalent) for the three leading canned tuna brands was 0.95 cents, 

whereas the average price per unit for Allother was only 0.68 cents.)  A brand’s market 

power is derived from two sources.  First, it arises from the brand characteristics such as 

image and product differentiation including promotional activities such as display and 

features.  These factors construct the brand’s unilateral market power, and the RI 

represents such power.  Second, the brand’s market power is derived from tacit collusion.  

Because firms in oligopoly are interdependent, they take into account their rivals’ 

strategies and try to respond in order to maximize their profits.  A brand’s market power 

due to tacit collusion means that the brand can influence its rivals to follow its strategy 

(e.g., a price increase).  The OI and CQ typically represent this kind of market power. 

 The RI shown in the fourth row of Table 4.10 measures a unilateral degree of 

market power of each brand.  It compares a brand’s fully collusive elasticity with non-

followship elasticity.   The value of RI ranges from zero to one.   The closer the RI is to 

one, the greater the degree of market power.  The results show that Starkist has the 

highest unilateral degree of market power with the RI equal to 0.522.   The RI of Chicken 

of the Sea, Bumble Bee and Allother is 0.395, 0.312 and 0.435, respectively.    
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Since the observed elasticity takes into account both unilateral market power and 

coordinated market power, it is crucial to investigate the results of the OI.  The fifth row 

in Table 4.10 presents the values of this index.   Not surprisingly, Starkist, the biggest 

brand in the market, has the highest degree of market power with its OI equal to 0.631.  

According to the results, the degree of market power seems to be consistent with market 

shares.   A firm with high market share has a high degree of market power.   The OI of 

Allother, Chicken of the Sea, and Bumble Bee’s OI are 0.537,  0.457, and 0.316, 

respectively.   The RI and OI of Allother are slightly higher than those of Chicken of the 

Sea and Bumble Bee.    Note that the Allother’s market share (13.90 %) is aggregated 

from many small competitive firms and the estimated coefficients from the aggregated 

market-share equation are used to calculate the own-price and cross-price elasticities.  

Therefore, it is possible that the high value of RI and OI of Allother is affected by the 

aggregated market share.   For this reason, it might not be appropriate to compare 

Allother’s degree of market power with those of the three leading brands. 

 The last row in Table 4.10 shows the values of the CQ.  The CQ measures the 

fraction of market power of the observed demand due to tacit collusion.    Basically, the 

CQ of brand i is defined as CQi 
i

i

OI
RI

−=1  =
ii

i

η
η0

−1 .  By simplifying the term on the 

right hand side, CQi becomes
ii

ij
jiij

η

εη∑
≠− .   It can be seen that the CQ of brand i measures 

the portion of its coordinated market power (∑ ) with respect to its non-followship 

elasticity.   The higher coordinated market power due to tacit collusion a brand has, the 

≠ ji
jiijεη
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higher the brand’s CQ.  The results from Table 4.10 show that Starkist derives 

approximately 17.4% of its market power from tacit price collusion.   Chicken of the Sea 

obtains about 13.6% of its market power from tacit collusion.3   Interestingly, although 

Bumble Bee can maintain its market power at third place (among the three leading 

brands), its market power is derived less from the coordinated market power due to tacit 

collusion because its CQ is only 1.4%.   Bumble Bee’s CQ has confirmed the results of 

price-response elasticities in Table 4.9 such that none of the canned tuna brands in the 

market follows Bumble Bee’s price strategy.    The CQ of Allother is 19.0% meaning that 

Allother derives about 19% of its market power from tacit collusion.  The coordinated 

market power exists when a firm can influence its rivals to follow its strategy.  Because 

the average price per unit of Allother is the lowest in the market, when Allother increases 

its price, the other brands are willing to cooperate by increasing their prices slightly in 

order to gain more revenue from substitution.   

 Table 4.11 presents the findings from previous studies comparing with those 

found in this study.  Cotterill (1994) estimated the degree of market power in the 

domestic carbonated soft drink industry.  Vickner and Davies (1999) analyzed market 

power in the domestic spaghetti sauce industry.  Elasticities, RI, OI, and CQ are shown in 

average values.  The carbonated soft drink industry in the Cotterill study has the lowest 

non-followship and observed elasticities on average compared to those obtained in this 

study and in the Vickner and Davies study.  Brands in the carbonated soft drink industry 

in the Cotterill study seem to have high unilateral and coordinated market power since the  
                                                 
3 When only significant parameter estimates are used to calculate the measures of market power, 
qualitatively, the results are unaltered with the exception of the CQ.  Chicken of the Sea’s CQ (0.145) is 
higher than Starkist’s CQ (0.125), meaning that Chicken of the Sea’s market power derived from tacit 
collusion is higher than that of Starkist. 
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Table 4.11   Comparing Average Elasticities and Measures of Market Power 

   Canned Tuna          Carbonated Soft Drink        Spaghetti Sauce 

Non-followship       
Elasticity ( iiη )       -2.52   -1.53      -4.97 
Observed 
Elasticity ( )       -2.16   -1.45      -4.03   0

iη
Fully Collusive 
Elasticity ( )      -1.05   -0.94      -1.43 F

iη
 

RIi  = 
ii

F
i

η
η        0.42   0.67       0.28 

 

OIi = 0
i

F
i

η
η        0.49   0.72       0.34 

 

CQi  = 1 –
i

i

OI
RI       0.11a   0.15b       0.32b 

aAverage value for the three leading brands in the market 
bAverage value for the two leading brands in the market 
 

industry’s RI and OI on averages are very high (0.67 and 0.72 respectively).  The average 

RI and OI found in this study are less than those found in the Cotterill study but more 

than those found in the Vickner and Davies study.  The average fully collusive elasticity 

obtained in this study (-1.05) is close to that found in the Cotterill study (-0.94).    The 

average CQs shown in Table 4.11 are comparable to those obtained from the two leading 

brands in carbonated soft drink market (Cotterill, 1994) and in the spaghetti sauce market 

(Vickner and Davies, 1999), and from the three leading brands in this study.  The average 

CQ found in the Vickner and Davies study is the highest (0.32).  This leads to the 

inference that market power of the two leading brands in the spaghetti sauce market was 

derived more from tacit price collusion. 
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Summary of Results 

This part estimates the degrees of market power and price-response strategies of 

four canned tuna brands: Starkist, Chicken of the Sea, and Bumble Bee, and Allother.  The 

LA/AIDS and price reaction functions are estimated simultaneously using W3SLS.  The 

corrected Stone index is used in the LA/AIDS.  The results can be summarized as 

follows. 

 
• According to the test of restrictions imposed in the LA/AIDS, one of the three 

homogeneity restrictions and two of the three symmetry restrictions are 
rejected.   The estimated results are reported with restrictions imposed. 

 
• There is a significant negative relationship between market share and price in 

the canned tuna industry.  
   

• The significant partial own-price elasticities of demand for all brands are 
negative and elastic.  Starkist has the lowest own-price elasticity in absolute 
value, and Allother has the highest own-price elasticity in absolute value. 

 
• Chicken of the Sea and Allother are better substitutes for Starkist than Bumble 

Bee.   
 

• Starkist, Chicken of the Sea, and Allother are cooperative in their price 
strategies, whereas Bumble Bee conducts price war against Starkist and 
Chicken of the Sea. 

 
•  Starkist, the highest market-share brand, has the highest market power both 

unilateral and coordinated market power due to the lowest own-price elasticity 
and highest RI, OI and CQ. 

 
• Starkist and Chicken of the Sea can maintain their market power derived from 

both unilateral and coordinated market power, whereas Bumble Bee can 
maintain its market power without tacit collusion. 
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Estimating Results Using the Stone Index 

 This dissertation uses the corrected Stone index as was suggested by Moschini 

(1995) to improve the estimation of the LA/AIDS in the simultaneous equations.  In order 

to estimate the effects of differences between the two indices, the LA/AIDS was also 

estimated along with the price-reaction functions.  The results are used to calculate the 

RI, OI, and CQ.  Two changes have been made in the simultaneous equations.  First, the 

total expenditure variable is weighted by the calculated traditional Stone index.  Second, 

all price series estimated in the simultaneous equations are not normalized by their 

means.  The latter is made in order to allow the use of the elasticity formula suggested by 

Chalfant (1987), and Green and Alston (1990).   

The simultaneous equations with the Stone index in the LA/AIDS are estimated 

using the W3SLS method with correction for autocorrelation.  The estimated parameters 

from the LA/AIDS using the traditional Stone index and corrected Stone index are shown 

in Table 4.12.  The results show that parameter estimates from the two versions of indices 

have the same sign and the differences are very small.  Moreover, the standard errors of 

each pair of estimated coefficients are very close.  For example, the estimated coefficient 

of Starkist’s price  on its market share ( ) from the use of the corrected Stone Index is 

equal to -0.503, whereas the estimated coefficient obtained from the use of Stone index is 

SSγ

-0.475 and both coefficients have very close standard errors (0.072 and 0.070, 

respectively).     

Table 4.13 displays the partial own- and cross-price elasticities of demand 

calculated from estimated coefficients, which are obtained from the LA/AIDS using the  
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Table 4.12   Comparing Estimated Parameters from the LA/AIDS  

        Parameter            Estimate using            Estimate using 

                                                    Corrected Stone Index            Stone Index 

γSS    -0.503***      -0.475*** 

(0.072)       (0.070) 

γSC     0.196***       0.191***  
(0.025)        (0.024) 

γSB     0.010        0.010 
    (0.013)        (0.012) 

γSA     0.297***                                        0.273*** 

                                                         (0.064)        (0.062) 

γCC    -0.261***      -0.255*** 

(0.024)                                             (0.023) 

γCB    -0.001       -0.001 

     (0.007)        (0.007) 

γCA     0.065**       0.064** 

 (0.030)        (0.029) 

γBB    -0.035**                                                    -0.033** 

 (0.014)        ((0.014) 

γBA     0.026*        0.023 

(0.014)        (0.014) 

γAA    -0.388       -0.360 
  ( - )         ( - ) 

βS    -0.088***         -0.097*** 

 (0.030)        (0.029) 

βC     0.015         0.008 
(0.016)        (0.015) 

βB    -0.023***       -0.024*** 

 (0.006)        (0.006) 

βA     0.096         0.113      
                                                              ( - )            ( - ) 
*** Significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. 
Subscript: S = Starkist, C = Chicken of the Sea, B = Bumble Bee, and A = Allother. 
(-) indicates that the parameters were derived using the adding up restrictions. 
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corrected Stone index and the traditional Stone index.  Table 4.14 shows the price-

response elasticities for the two indices.  Vuong (1989) proposed some new tests for 

model selection and non-nested hypotheses based on likelihood-ratio statistics.  However, 

the tests were more suitable for cross-section than time series data.  Since this study uses 

time series data, the tests suggested by Voung are impropriate.  However, the results from 

both versions in Table 4.13 and 4.14 are calculated in ratios for relative comparisons and 

are shown in Table 4.15 and 4.16.   All ratios comparing between the two versions for the 

partial own- and cross-price elasticities of demand shown in Table 4.15 are very close to 

1 with the difference no more than 0.2.  The ratios of the two versions for the price-

response elasticities are shown in Table 4.16.  The ratios calculated from the significant 

 
 
Table 4.13   Comparing Partial Own- and Cross-Price Elasticities 

 
                             Index Starkist Chicken of 

the Sea 
Bumble 

Bee 
Allother 

                      Corrected Stone Index  
Starkist   
                          Stone Index 
 

-1.67*** 

 
-1.62***     

0.31*** 

 

0.31*** 

0.02 
 

0.02 

0.46*** 

 

0.43*** 

                     Corrected Stone Index 
Chicken 
of the Sea          Stone Index 
 

1.27*** 
 

1.27*** 

-2.80*** 

 

-2.75*** 

-0.01 
 

-0.01 

0.43** 

 

0.43** 

                     Corrected Stone Index 
Bumble  
Bee                    Stone Index 
 

0.51** 
 

0.54** 

0.06 
 

0.06 

-1.71*** 

 

-1.66*** 

0.61** 
 

0.55** 

                     Corrected Stone Index 
Allother 
                          Stone Index 
 

1.68 
 

1.42 

0.37 
 

0.34 

0.15 
 

0.13 

-3.89 
 

-3.70 

Elasticities are read from left to right;  
*** Significance at the 1% level, ** significance at the 5% level 
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Table 4.14   Comparing Price-response elasticities1 

 
                             Index Starkist Chicken of 

the Sea 
Bumble 

Bee 
Allother 

                      Corrected Stone Index  
Starkist   
                          Stone Index 
 

- 

 
-          

0.32*** 

 

0.32*** 

0.01 
 

0.02 

0.38*** 

 

0.35*** 

                     Corrected Stone Index 
Chicken 
of the Sea          Stone Index 
 

0.67*** 
 

0.66*** 

- 

 

- 

-0.002 
 

-0.004 

0.25* 

 

0.25* 

                     Corrected Stone Index 
Bumble  
Bee                    Stone Index 
 

-0.36* 
 

-0.35* 

-0.26*** 

 
-0.27*** 

- 

 

- 

0.04 
 

0.01 

                     Corrected Stone Index 
Allother 
                          Stone Index 
 

0.19 
 

0.18 

-0.07 
 

-0.07 

0.03 
 

0.03 

- 
 
- 

1Elasticities are read from left to right;  
*** Significance at the 1% level, * significance at the 10% level 
 

 

 

Table 4.15   Ratios Comparing Partial Own- and Cross-Price Elasticities  

 Starkist Chicken of the 
Sea 

Bumble Bee Allother 

Starkist 0.95* 1.00* 1.00 1.07* 

Chicken of the Sea 1.00* 1.02* 1.00 1.00* 

Bumble Bee 0.94* 1.00 1.06* 1.20* 

Allother 1.18* 1.08 1.15 1.05 

Each ratio = result from the use of the corrected Stone index / result from the use of the 
traditional Stone index.         
* Calculated from significant parameter estimates 
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Table 4.16   Ratios Comparing Price-Response Elasticities  
                  
 Starkist Chicken of the 

Sea 
Bumble Bee Allother 

Starkist - 1.00* 0.50 1.08* 

Chicken of the Sea 1.01* - 0.50 1.00* 

Bumble Bee 1.03* 0.96* - 4.00 

Allother 1.05 1.00 1.00 - 

Each ratio = result from the use of the corrected Stone index / result from the use of the 
traditional Stone index.        
* Calculated from significant parameter estimates 
 

coefficients are close to one, indicating a small difference between the two versions.   

The RI, OI, and CQ calculated from both versions are shown in Table 4.17.  The 

ratios of the measures are shown in Table 4.18.  The scanner data used in this study seem 

to be consistent with both price indices because their results are similar.   For example, 

the RI of Starkist estimated from the use of the corrected Stone index is 0.522, whereas 

those estimated from the use of the Stone index is 0.530 with the ratio of 0.98.    

Starkist’s OI estimated from the use of the corrected Stone index is 0.631, whereas those 

estimated from the use of the corrected Stone index is 0.638 and the ratio is 0.99.     

The empirical results in this dissertation lead to a conclusion that there only is a slight 

difference from the use of the corrected Stone index and the traditional Stone index in the 

LA/AIDS.  However, these results are estimated from time- series scanner data in a single 

local market covering a short time period.  Moreover, the only product analyzed is 

canned tuna.  Therefore, it cannot be generalized that there is no difference between the 
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use of the two versions of the Stone index applied to other products or to other data.  

Further studies will be needed to clarify this issue. 

 
 
Table 4.17   Comparing Measures of Market Power 
 
 RI 

Corrected         Stone 
Stone Index     Index 

OI 

Corrected           Stone 
Stone Index        Index 

CQ 

Corrected         Stone 
Stone Index     Index 

Starkist 
 

    0.522           0.530    0.631             0.638           0.174          0.169 

Chicken of 
the Sea 

    0.395           0.385    0.457             0.447     0.137          0.139 

Bumble Bee 
 

    0.312           0.305    0.316             0.309     0.014          0.012 

Allother 
 

    0.435           0.489    0.537             0.582           0.190          0.159 

Average     0.416           0.426    0.485             0.494     0.128          0.120 
 

 
 
 
 
Table 4.18   Ratios Comparing Measures of Market Power 
 

 RI OI CQ 

Starkist 
 

0.98 0.99 1.03 

Chicken of the Sea 
 

1.02 1.02 0.98 

Bumble Bee 
 

1.02 1.02 1.16 

Allother 
 

0.89 0.92 1.18 

Average 
 

0.98 0.98 1.06 
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Chapter Five 

Conclusions 

 

The first part of this dissertation estimated the degree of market power of brands 

in the $2.1 billion canned tuna industry.  The study investigated brands’ behaviors at the 

local level and Knoxville, Tennessee was chosen as a representative local market.  

Scanner data of prices, quantity sold, and promotional activities were collected weekly by 

the IRI for 157 weeks over the period of January 4, 1998 to December 31, 2000 from 134 

supermarkets in Knoxville.  The canned tuna market was highly concentrated because the 

highest three-firm market shares over the study period were more than 80 percent of the 

total sales.  There are four canned-tuna brands in this study; Starkist, Chicken of the Sea, 

and Bumble Bee, and Allother.  

A brand’s market power is derived from two sources.  First, it comes from the 

brand’s product differentiation such as advertising, packages, and image.  These factors 

construct the brand’s unilateral market power.  Second, the brand’s market power is 

derived from tacit collusion (coordinated market power) meaning that the brand can 

influence its rivals to follow its price strategy.  Three measures of market power are 

employed in this study, the Rothschild and O Indices, and the Chamberlin Quotient.   

In order to calculate a brand’s RI, OI, and CQ, the brand’s partial own- and cross-

price elasticities, and price-response elasticities are needed.  Therefore, simultaneous 

equations including both demand and supply equations are constructed.  On the demand 

side, the LA/AIDS is employed, whereas price-reaction functions are applied on the 
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supply side.  The assumption of Bertrand competition with differentiated products is set 

such that price is the strategic variable and that brands make their decisions at the same 

time period.   

 Previous empirical studies (Cotterill, 1994 and Vickner and Davies, 1999) 

estimated the degree of market power in carbonated soft drink and spaghetti sauce 

markets using the Stone index in the LA/AIDS.  However, some studies found that the 

use of the Stone index in the LA/AIDS causes estimated parameters to be biased and 

inconsistent (Pashardes, 1993 and Moschini, 1995).  This dissertation uses the corrected 

Stone index suggested by Moschini (1995) in the LA/AIDS estimation in order to 

disentangle the problems.   

 The simultaneous equations with three demand equations and four price reaction 

functions are estimated using W3SLS with a correction of autocorrelation.  The 

parameter estimates obtained from the LA/AIDS are used to calculate partial own- and 

cross-price elasticities of demand for each brand, whereas price-response elasticities are 

obtained directly from the parameter estimates from the price reaction functions.  All 

brands’ partial own-price elasticities are consistent with the law of demand, and found 

elastic.  The own-price elasticity of demand for Starkist is the least elastic.  All canned 

tuna brands in the market are substitutes since their cross-price elasticities are positive.  

The estimated price-response elasticities represent strategic-price responses among 

brands in the market.  The results show that Starkist and Chicken of the Sea are 

cooperative, whereas Bumble Bee conducts price war.  When Starkist or Chicken of the 

Sea raises their prices, Bumble Bee responds by cutting its price. 
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 The degree of market power of a canned tuna brand is measured by the RI, OI, 

and CQ.  A brand with high degree of market power can not only set a high price and 

maintain its level of market share, but also influence its rivals to follow its price strategy.  

The RI measures the degree of unilateral market power of a brand.  The OI measures both 

the degree of unilateral and coordinated market power.  The CQ measures percentage of 

market power derived from tacit collusion.  The results show that Starkist, the biggest 

brand in the market, can maintain its market power at the highest level with the highest 

RI, OI and CQ.  Both Starkist’ and Chicken of the Sea’s market power is derived from 

both unilateral and coordinated market power.  Bumble Bee, the third leading firm in the 

market, however, can maintain its unilateral market power without tacit collusion.  

 Finally, this study re-estimates the simultaneous equations with the use of the 

traditional Stone index in the LA/AIDS.  The parameter estimates from the estimation 

using the Stone index are compared to those of the first version.  The results from both 

versions are found very close giving the interpretation of market power in the same 

fashion.   
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Chapter One 

Introduction 
 

In the first part of this study, strategic-price responses among firms were 

investigated using the price-response elasticities obtained from the estimated price-

reaction functions.  It was assumed that the canned tuna market was characterized by 

Bertrand competition with differentiated products such that price was the strategic choice 

variable, and firms made their decisions during the same time period.  The findings 

indicated that Bumble Bee conducted a price war against Starkist and Chicken of the Sea.  

However, both Starkist and Chicken of the Sea did not respond to the Bumble Bee price 

strategy during the same time period.   The price-response results obtained from the first 

part provide evidence only on static price behavior and do not describe any dynamic price 

behavior.  Vickner and Davies (2000) commented that current studies are not sufficient to 

supply firms in the food industry “with practical, empirical procedures for estimating 

strategic price response.”    

A dynamic or supergame theory is able to explain strategic price response (Tirole, 

1988).  The supergame theory characterizes multiple outcomes.  Cartwright et al. (1989) 

examined the advantages and disadvantages of the static and dynamic price-correlation 

tests and concluded that an application of a dynamic model such as a Granger-causality 

test is a useful supplement to test price correlations.  Multivariate-time series modeling 

techniques, mainly as applied in macroeconomic analyses, support statistical concepts 

that improve the study of dynamic price-response criteria.  
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This part extends the static model of part one to a dynamic approach.  The 

Bertrand-competition assumption is dropped in this part, and a firm is assumed to set its 

price depending on its own past prices and those of rivals.  A vector autoregressive 

(VAR) model is employed and its applications are used to investigate the price 

relationships.  The Granger-causality test, the impulse response function (IRF) analysis, 

and the forecast error variance decomposition (FEVD) analysis are applied to the VAR.  

The Granger-causality test examines not only whether dynamic price-response 

relationships exist, but also for types of strategic-price relationships such as price 

leadership or price war.  The IRF analysis graphically reveals the direction of the effect 

of a one-time shock to one of the innovations on future values of the endogenous 

variables, whereas the FEVD analysis measures proportions of a brand’s price variation 

that can be explained by shocks to its own price and it rivals’ prices for each forecast 

horizon.   

The results obtained from this part disentangle a problem encountered from the 

first part.  Although Starkist and Chicken of the Sea do not respond Bumble Bee’s price 

strategy during the same time period, the Granger-causality results show that both 

Starkist and Chicken of the Sea respond negatively to Bumble Bee’s past price.  This 

means that both Starkist and Chicken of the Sea also conduct price war but in a dynamic 

way.  The results from the IRF and FEVD analyses also support the Granger-causality 

test results for the three-leading canned-tuna brands’ relationships.   

With respect to previous research in strategic-price relationships, Vickner and 

Davies (2000) estimated strategic-price response between two leading brands in the 

canned pineapple industry using the VAR and vector error correction model.  The 
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Granger causality test and the IRF analysis were applied to investigate the price 

relationships.  However, confidence intervals were not included in the Vickner and 

Davies IRF results.  Confidence intervals are useful in determining the statistically 

significant regions of the IRFs.  Failing to include confidence intervals may affect the 

interpretation of their estimated results.  This dissertation improves on the analysis by 

including the confidence intervals in the IRF analysis.   Moreover, this dissertation 

includes the FEVD analysis, which was not used in Vickner and Davies’ work, to 

investigate firms’ price variations affected by their rivals’ price innovations. 

The remainder of this part is structured as follows.  Chapter Two presents the 

econometric modeling approach and literature review. Chapter Three introduces the 

econometric methodology used for the estimation.  Chapter Four reports the findings, and 

Chapter Five presents a conclusion.  Further information on the data can be found in part 

one.   
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Chapter Two 

Econometric Modeling Approach and Literature Review 

 

 This chapter presents a framework for analysis of the strategic price responses 

among brands in the canned tuna industry based on a dynamic system of equations.  A 

vector autoregressive (VAR) model is developed to investigate dynamic-strategic price 

responses.  The chapter begins with the empirical model and then provides a review of 

the relevant literature.  The empirical tools are presented first to facilitate an 

understanding of the applied literature. 

 

Econometric Modeling Approach 

Bertrand competition assumes each firm simultaneously sets its profit-maximizing 

price given the current prices other firms charge.  The price-reaction functions in 

equation (3.4) presented in the first part used only static information on price behaviors 

among firms.  They did not allow for the possibility of dynamic price behavior.   In 

practice, it is not necessary that firms’ decisions be based on prices during the same time 

period.  A firm’s price strategy can possibly depend on its past prices or its rivals’ past 

prices.  To investigate the potential for a dynamic strategic-price response, the Bertrand-

competition assumption used in the first part is dropped.  A firm is assumed to set its 

price depending on its own past prices and those of rivals.  A dynamic, or supergame, 

theory is able to explain strategic price response (Tirole, 1988).  The supergame theory 

characterizes multiple outcomes.  Multivariate-time series modeling techniques provide 
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statistical concepts for the study of competitive price responses as a dynamic adjustment 

process.   

The modeling approach starts with the formulation of a general vector 

autoregressive (VAR) model (Sims, 1980).  The VAR model is specified as: 

titi

k

i
t uPAP +∑= −

=1
,       (2.1) 

where is a column vector of n variables at time t, ,  is an (n x 

n) matrix of parameters with no zero elements, i represents a time lag, for i = 1, 2,.., k, 

and is a column vector of random errors which are assumed to be contemporaneously 

correlated but not auto-correlated.  Equation (2.1) is different from the structural-

equations approach, such as the price-reaction functions used in the first part, because no 

zero restrictions are imposed on the model, meaning that there is no price variable 

excluded from any equation of the model, and only endogenous variables are included 

(Charemza and Deadman, 1997).  Therefore, the model in equation (2.1) is called an 

unrestricted VAR model.   A firm in the canned tuna market is assumed to set its price 

depending on its own past prices and those of rivals so the unrestricted VAR model in 

equation (2.1) can be used to investigate firms’ pricing behaviors.  

tP
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Gujarati (1995) summarized advantages and disadvantages of using VAR models.  

The advantages of VAR are as follows. 

(1) The method is simple to use.  Because all variables in VAR are endogenous, 

one does not have to worry about determining which variables are endogenous 

and which variables are exogenous. 
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(2) Estimation is simple.  The OLS methods can be used to each equation 

separately. 

(3) In many cases, the forecasts obtained from VAR are better than those obtained 

from the more complex simultaneous equation models. 

Problems with VAR models are noted below. 

(1) A VAR model is said to be a-theoretic, because it is not based on formal theory, 

unlike the model of part one.  

(2) VAR models are less suited for policy analysis, since policy parameters do not 

explicitly appear. 

(3) If the order of appropriate lag length is high, there will be many parameter 

estimates.  This may limit the degrees of freedom for hypothesis testing. 

(4) All variables in the VAR model must be stationary.  If the model contains a mix 

of stationary and non-stationary variables, transforming the data will not be easy. 

 

When dealing with dynamic time series data, the majority of recent empirical 

studies found that the data are non-stationary because the means, variances, and 

covariances of the variables are not constant over time (Charemza and Deadman, 1992).  

Often, differencing a time series can lead to stationarity.  For example, suppose that a 

time series variable for brand 1,  , is non-stationary and is generated by 1
tp

 ,        (2.2) 11
1

1
ttt epp += −

 where e represents an error term series of identically distributed stationary variables and 1
t
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is iid ~ (0, ).  By differencing  by  from both sides of the equation, the series 

becomes stationary.  That is 

I2σ 1
tp

1
1−tp

11
1

1
ttt epp =− − ,        (2.3) 

In this case,  is said to be integrated of order 1, I(1).  A non-stationary series is said to 

be integrated of order d, I(d), if it can be transformed to a stationary series by 

differencing d times (Charemza and Deadman, 1992).   

1
tp

Dickey and Fuller (1979) have proposed a simple test for the order of integration 

of in equation (2.2), called the DF test.  The objective of the DF test is to test  in 

the autoregressive equation: 

tp 1=ρ

11
1

1
ttt epp += −ρ ,        (2.4) 

The DF test, also known as the unit root test, is a test of the null hypothesis that in 

equation (2.4)  from the equivalent regression equation to (2.4), that is: 01 =−ρ

11
1

1
ttt epp +=∆ −δ ,       (2.5) 

where , and .   1−= ρδ 1
1

11
−−=∆ ttt ppp

If the null hypothesis is rejected, and the alternative can be accepted, the series  

is stationary and  ~ I(0).  But if the null hypothesis cannot be rejected, it implies that 

the series might be integrated of order 1 or higher or might not be integrated at all.  

Therefore, the next step would be to test whether the order of integration is one.  If  ~ 

I(1), then ~ I(0).  Hence we can repeat the test replacing with .  In practice, 

we can continue the process until we found an order of integration for  (Charemza and 
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1
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Deadman, 1992).   The DF test can also be used with drift and/or a linear deterministic 

trend.  The DF equation with drift and a linear deterministic trend is specified as: 

11
1

1
tt

d
t eptp +++=∆ −δθµ ,      (2.6) 

where is a constant or intercept representing drift and tµ d is a linear deterministic trend. 

 The DF test can be used only if there is no autocorrelation.  In the case that the 

error term e is autocorrelated, the DF test can be modified to include enough lagged 

difference terms so that the error terms are serially independent.  The modified DF test is 

called augmented Dickey-Fuller (ADF) test.  The ADF equation with drift can be 

specified as 
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where  

1
itp −∆  = ,  1

1
1

−−− − itit pp

i represents a time lag, for i = 1, 2,.., j, and 

vt represents an error term series of identically distributed stationary variables and is iid ~ 

(0, ).   I2σ

The null hypothesis is still that  = 0 or , that is, there exists a unit root in  

series.  Note that the ADF test can also be used with an inclusion of a linear deterministic 

trend.  The ADF test is extensively used in empirical research (e.g., Charemza and 

Deadman, 1992; Benson et al.., 1995; Masih and Masih, 2000; Vickner and Davies, 

2000).  However, it is necessary to use the ADF test with care.  Charemza and Deadman 

(1992) commented that the choice of augmentation terms (the lagged difference terms) in 

δ 1=ρ tp

 98 



the ADF equation was important, but it was neglected in the literature.  Too many 

augmentations may cause a decrease in the power of the test, resulting in not rejecting the 

null hypothesis too often.  On the other hand, too few augmentations may affect the size 

of the test, resulting in rejecting the null hypothesis of unit root too often.   

 An alternative test for a unit root is developed by Phillips and Perron (1988), 

called The Phillips-Perron test or the PP test.  The PP test generalizes the DF test to 

situations that allow for fairly mild assumptions concerning the distribution of the errors.  

That is, it is possible to test a unit root even though the error terms are not iid ~ (0, ).   

The PP test starts with the following regression equations: 

I2σ

11
1

1
ttt pp ερα ++= − ,       (2.8) 

where the error term has zero mean. 1
tε

There is no requirement that the error term is serially uncorrelated or homogeneous.  

Unlike the DF assumptions of non-autocorrelation and homogeneity, the PP test allows 

the disturbances to be weakly dependent and heterogeneously distributed (Enders, 1995).  

Phillips and Perron (1988) characterized the distribution and derived test statistics that 

can be used to test the coefficients  under the null hypothesis that a unit root in the 

series exists.   Critical values for the PP statistics are the same as those given for the ADF 

tests.    

ρ

Choi (1992) conducted Monte Carlo experiments to study how the ADF and PP 

tests for a unit root perform.  They used data generated by aggregating-subinterval data 

rather than the subinterval data themselves.  The study concluded that for the aggregated 

subinterval data the PP test was more powerful than the ADF test in finite sample.  
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Specifically, for the aggregate data the PP test has greater power to reject a false null 

hypothesis of a unit root.  However, Choi and Chung (1995) found in their Monte Carlo 

experiments that for data with high sampling frequency, the PP test appears to be less 

powerful than the Dickey-Fuller test in finite samples.  Enders (1995) notes that, when 

the true model has negative moving average terms, the ADF test is preferable; however, 

when the true model has positive moving average terms, the PP test is more appropriate.   

In practice, it is difficult to choose the most appropriate test because the true data-

generating process is never known.  Therefore, both types of unit-root tests should be 

used.   If they support each other, one can have confidence in the results.  If they do not 

support each other, one of the two results has to be chosen.  Additional analysis of the 

type of data, the sample time period, or economic theory might be useful in considering 

the most appropriate test (Enders, 1995).   

If the variables in the vector P  in equation (2.1) are found to be non-stationary, 

the estimation of the VAR will give spurious results (Gujarati, 1995).  There are two 

ways to solve the problem.  One way is to regress the unrestricted VAR on first 

differences of all variables (if all variables are found to be I(1)).  This process can 

eliminate the non-stationarity from the variables; however it is not the best solution 

(Patterson, 2000) and may involve a misspecification (Enders, 1995).    The reason is that 

valuable information about long-run relationships among variables would be lost from 

taking the first differences.      

t

Another way arises when the non-stationary variables are co-integrated.  It is 

possible that some linear combination of a set of non-stationary time series is stationary, 

i.e., the set of series is co-integrated.   If two or more variables have long-run equilibrium 
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relationship(s) or share common trend(s) or give a stationary linear combination, they are 

said to be co-integrated (Masih and Masih, 2000).   The presence of a co-integrating 

relation forms the basis of a restricted VAR or a vector error correction (VEC) model.   

The VAR model of k-th order in equation (2.1) can be re-parameterized in a VEC form 

as: 
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where 

iΓ = – (Ai+1 + Ai+2 +…+ Ak), i = 1, …, k-1, 

Π = –(I – A1 – A2 – …– Ak), 

I is an identity matrix of order n,  

and denotes first differences. ∆

A VEC model is a restricted VAR model designed for use with non-stationary 

time series that are found to be co-integrated.  The VEC model has co-integrating 

relations constructed into the specification so that it restricts the long-run behavior of the 

endogenous variables to converge to their co-integrating relationships, while allowing for 

dynamic adjustment.  According to the VEC model in equation (2.8), the co-integration 

effects are represented by .  The  matrix (n× n) can be written as two (n× r) 

matrices α and β, (1≤ r ≤ n – 1 = the number of co-integrated vectors), such that Π = 

.  The matrix β contains r co-integrating vectors representing long-run relationships 

among P

1−Π tP Π

βα ′

t-1.  The matrix α consists of the parameters measuring the speed of adjustment 
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of each stationary co-integrating combination.  The short-run dynamic responses are 

explained by the elements in .   iΓ

 

Applications of the VAR Analysis 

Sims (1980) and Enders (1995) recommended that the goal of VAR analysis be to 

investigate the interrelationships among the variables, not the parameter estimates.  There 

are (n + kn2) terms to be estimated in a VAR model, where n is the number of variables 

and k is the number of lags.  Because the models are over-parameterized, it is difficult 

and not useful to interpret the relationships between variables from the coefficients in the 

estimated VAR models.  For this reason, researchers in this area have used the VAR 

applications to study interrelationships among variables instead.  Several applications of 

the VAR analysis are used in this study.  First, the VAR model allows the use of the 

Granger causality test to clarify the relevant information.  One may want to know 

whether an increase of a brand’s price results in an increase in other brands’ prices when 

they would not have changed otherwise, or whether the relationship works in the opposite 

direction.  Charemza and Deadman (1992) addressed the definition of Granger causality 

in a simplified way that “x is a Granger cause of y, if present values of y can be predicted 

with better accuracy by using past values of x rather than by not doing so, other 

information being identical.”  Assume that a firm in the canned tuna market sets its price 

depending on its own past prices and those of rivals.  Granger causality can be applied to 

test such dynamic price reactions.  Specifically, the Granger-causality test gives 

information about strategic-price responses between a pair of firms.  If firm i’s pricing 

strategy depends on firm j’s past price, but it is not true in the opposite direction, 
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theoretically, firm j will be defined as a price leader, and firm i will be defined as a price 

follower.   If both firms’ price strategies depend on each other’s past prices, it can be 

interpreted that they conduct warfare (Vickner and Davies, 2000).    

The VAR model can be used to forecast the signs of the short-run responses of 

variables by means of an impulse response function (IRF) when there is an exogenous 

shock on one of the variables.  Gujarati (1995) noted that the individual coefficients in 

the estimated VAR models were often difficult to interpret so the researchers often used 

IRF analysis instead.  In the literature, a unitary change in a variable or an error term is 

called a variable shock or innovation.  An IRF allows a graphical representation of the 

effect of a one-time shock to one of the innovations on future values of the endogenous 

variables. If the innovations between equations are contemporaneously uncorrelated, 

interpretation of the impulse response function is simple.  A change in innovation of a 

firm by one unit at time t is simply a shock to its own future price.  With respect to 

equation (2.1), a change in innovation of a firm by one unit at time t is equivalent to a 

change in the firm’s price by one unit at time t (because all lag variables on the right hand 

side of the VAR are predetermined), and because the error terms are contemporaneously 

correlated, it not only can affect the firm’s price in the future, but can also be transmitted 

to the other firms’ prices over time.  IRFs can be derived by mathematically transforming 

a VAR model into a vector-moving average (VMA) model.  IRFs are matrices of 

coefficients in a VMA model, in which its error terms are orthogonal, i.e., they are not 

contemporaneously correlated (Charemza and Deadman, 1992, p. 161-164).  In empirical 

work, the process that transforms error terms to be orthogonal in order to identify impulse 

responses is called a Choleski decomposition.   
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It is helpful to understand the properties of the forecast errors to reveal 

interrelationships among variables in the system.  Enders (1995) suggested that it is 

convenient to describe the properties of the forecast errors from the VAR in terms of the 

error sequence.  It is possible to decompose the t-step (period) ahead forecast error 

variance due to each one of the shocks.  The forecast error variance decomposition 

(FEVD) measures the proportion of the variation in a variable that is explained by its own 

innovation as well as by the innovations in the other variables.  Each step or time period 

is called forecast horizon.  If all variables of interest are endogenous, the forecast errors 

variance of each error sequence will be explained by shocks at all forecast horizons 

(Enders, 1995).   In empirical research, it is normal for a variable to explain almost all of 

its forecast error variance at short horizons, and smaller proportions at longer horizons.  

Like IRF analysis, the Choleski decomposition is a necessary tool to identify FEVD.  

Both IRFs and FEVDs are computed by most econometric packages which incorporate 

VAR and VEC analysis.  Therefore, the study of strategic-price response can be 

characterized by the use of IRFs and FEVDs.  

 In sum, the VAR and VEC models can be applied to investigate the dynamic 

interrelationships among price series in two ways.  The first way is to use the Granger 

causality test for firms’ price-response relationships such as leader-follower relationship 

or warfare.  The second way is to see when there is a unitary exogenous shock on a 

brand’s price, how the other brands respond over time after the shock occurred.  The IRF 

analysis tells us about the direction in which a price series responds to shocks.  The 

FEVD analysis examines the proportions of the movements in a series due to its own 

shocks and shocks from the other variables. 
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Literature Review 

 An econometric technique based on dynamic time-series methodology has been 

emphasized in macroeconomic and monetary research since the early 1980s (Sims, 1980; 

Litterman and Weiss, 1985; Friedman and Kuttner, 1993; and Thoma, 1994).   Later, 

dynamic time-series techniques, such as VAR and VEC models, were widely used in 

applied microeconomic fields, e.g., energy economics, agricultural economics analysis  

and industrial organization.  A list of some of the studies that have used the time series 

analysis in applied microeconomic fields is shown in Table 2.1.   

Dynamic time series models, such as VAR and VEC, have been used to analyze 

markets and pricing conduct.  The VAR model proved to have high performance in 

forecasting a price movement in agricultural-marketing products (Park, 1990, and 

Gjolberg and Bengtsson, 1997).    

The VAR applications such as the Granger-causality test, the IRF analysis, and 

the FEVD analysis are used in this part.  The Granger-causality test is employed to 

investigate the price-response relationships among canned tuna brands in the market.  

Several studies used the Granger-causality test to estimate relationships among variables 

of interest.  Cartwright et al. (1989) suggested that a dynamic time-series application, 

such as the Granger-causality test, was a useful supplement to the price-correlation 

analysis.  Giot et al. (1999) investigated market leadership in European markets for 

imported off-season fresh apples and grapes.  With the use of the Granger-causality test, 

they found that the major import market of Rotterdam significantly led the wholesale 

markets in France and Germany for apples.  Tiffin and Dawson (2000) examined the  
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Table 2.1   Listing of Research in Applied Microeconomics using Time Series Methods 
 

Auther 

(Published year) 

 

Objective 

Cartwright et al. (1989) Examining price correlation to determine the relevant 
product and geographic market 

Park (1990) Comparing the VAR performance to alternatives 
Vogelvang (1992) Investigating long-run relationships of coffee prices 
Vany and Walls (1993) Investigating long-run relationships of natural gas spot 

prices in the U.S. 
Benson et al. (1995) Examining long-run relationships for market delineation  
Gjolberg and Bengtsson 
(1997) 

Comparing the VAR performance to alternatives 

Urga (1999) Estimating inter-fuel substitution in U.S. 
Ramanathan (1999) Estimating short- and long-run price and income 

elasticities of gasoline demand in India 
Giot et al. (1999) Testing market leadership in the European fresh fruit 

market 
Vany and Walls (1999) Investigating long-run relationships of electricity spot 

prices in the U.S. 
Tiffin and Dawson (2000) Investigating producer-retail price relationship in the UK 

lamb market 
Vickner and Davies 
(2000) 

Estimating strategic price-response in the canned 
pineapple industry in the U.S. 

Pagan et al. (2001) Investigating the impact of advertising expenditures on 
citrus sales from the Texas Rio Grande Valley 

Kaufmann and Cleveland 
(2001) 

Investigating oil production in the U.S. 

 

relationships between the retail price and the producer price of lamb in England.  They 

found that lamb prices in the retail market significantly affected the producer prices but 

not in the opposite direction.  Pagan et al. (2001) analyzed the impact of advertising 

expenditures on citrus sales from the Texas Rio Grande Valley. They found that 

advertising expenditures Granger-caused increases in citrus sales, but it was not true in 

the opposite direction. 
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The other useful applications of the VAR model are the IRF and FEVD analyses.  

Benson et al. (1995) suggested that the multivariate time series techniques offer new 

insights regarding antitrust market delineation.   IRF and FEVD analyses were employed 

in their research to analyze the speed and strength with which a price series responds to 

shocks occurring in other series.    Pagan et al. (2001) used the IRF and FEVD analyses 

as additional tools to support the results obtained from the Granger-causality test.   They 

found that the IRF and FEVD findings were consistent with those obtained from the 

Granger-causality test. 

The previous research which is closely related to this part is that of Vickner and 

Davies (2000).  They estimated strategic price response in a product-differentiated 

oligopoly, the canned pineapple industry, using national-level weekly scanner data from 

June 1994 to October 1996.   Two canned pineapple firms in the U.S., Del Monte and 

Dole, were investigated.  The study started with the ADF test to examine stationarity of 

each firm’s price series and found that the price series of both Dole and Del Monte were 

stationary with the deterministic time trend included without controlling for seasonality, 

but only one of the two was stationary with the deterministic time trend included after 

controlling for seasonality.  However, without controlling for the time trend, a unit root 

was found in the price series of both firms, and the study concluded that each price series, 

without a time trend, was an integrated process of order 1 or I(1).   The stationary price 

series with the deterministic trend included was estimated using the VAR model.  The 

non-stationary price series without controlling the time trend was tested for co-integration 

and estimated using the VEC model.  They found that a linear combination between price 

series of Dole and Del Monte existed that was stationary.  The results from the 
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unrestricted VAR and VEC models were compared and found to be supported by each 

other.  The hypothesis of price leadership was tested using Granger causality.  In 

addition, the pricing relationships were analyzed by the IRF analysis.  The results from 

the Granger causality test showed that Dole was the leader in determining price in the 

market, whereas Del Monte followed Dole’s pricing decisions.  The results, in fact, 

confirmed the price leadership hypothesis.  The IRF analysis also supported the price 

leadership hypothesis.  Finally, the study suggested that an empirical time series analysis 

may be used to support industrial organization theorists when studying dynamic games.   

This part is different from the Vickner and Davies study in two ways.  First, it 

improves the price-response study by including confidence intervals in the IRF results, 

which were not included in Vickner and Davies’ IRF analysis.   Second, it includes the 

FEVD analysis, which was not used in the Vickner and Davies study, to rigorously 

investigate pricing relationships.   The FEVD results can give additional information to 

the IRF and Granger-causality results in estimating price-response effects.   

 In sum, the strategic-price responses among canned tuna brands can be 

investigated using the VAR applications, including the Granger-causality test, the IRF 

analysis, and the FEVD analysis.  The Granger-causality test examines whether the 

dynamic price-response relationships exist.  The IRF analysis graphically reveals the 

direction of the effect of a one-time shock to one of the innovations on future values of 

the endogenous variables, whereas the FEVD analysis measures proportions of a brand’s 

price variations that can be explained by shocks to its own price and it rivals’ prices for 

each forecast horizon.   
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Chapter Three 

Econometric Methodology  
 
 

An objective in this part is to estimate strategic price responses among canned 

tuna brands based on a dynamic approach. The Bertrand-competition assumption is 

dropped and replaced by the assumption that a firm in the market sets its price depending 

on its own past prices and those of rivals.  This chapter starts with testing for unit roots 

and the order of integration for each price series using the ADF and PP test.  Several lag 

length criteria are presented within the estimation of the VAR model.  Presented next are 

applications of the VAR model including pairwise Granger-causaltity tests and the 

analysis of IRFs and FEVDs to investigate the dynamic price-response relationships.  

Finally, the four price series are used.  Further information on the data can be found in 

part one.   

 

Testing for Unit Root and Order of Integration 

 The four price series (Starkist, Chicken of the Sea, Bumble Bee, and Allother) 

used in the first part are tested for unit roots and the order of integration.  Empirical 

research that uses a structural model based on a static approach typically ignores non-

stationarity and assumes that the time series are stationary (Gujarati, 1995).   However, 

the use of non-stationary variables in a dynamic time series regression gives spurious 

results (Gujarati, 1995); therefore, testing for stationarity is a necessary process in 

estimating dynamic time series models.  The most efficient test, which is extensively 
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used in empirical research, is the ADF test.  The ADF test can be used by including drift 

and/or a linear deterministic trend.  The ADF test for a price series used in this study 

is specified as: 

tp

∑
=

−− +∆++=∆
j

i
tititt ppp

1
1 νφδµ      ,                               (3.1)        

where  

tp  represents the observed price series, 

tp∆ = ,  1−− tt pp

itp −∆  = ,  1−−− − itit pp

i represents a time lag, for i = 1, 2,.., j,  

µ is a constant or intercept representing drift , and 

vt represents an error term series of identically distributed stationary variables and is iid ~ 

(0, ).   I2σ

 The ADF t-statistics is based on 

 ,      (3.2) δσδ ˆˆ/)1ˆ( −=tADF

where is the usual least squares estimated error of .   δσ ˆˆ δ̂

The null hypothesis is that  = 0, that is, there exists a unit root in  meaning that the 

series is non-stationary.  The ADF test includes enough lagged difference terms so that 

the error term is serially independent, and that can be checked during the process.   

δ tp

 The PP test is also a powerful test for a unit root and, therefore, is employed.  The 

PP test is based on an initial least squares fit of the regression  
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 .       (3.3) ttt pp ερα ++= −1

Equation (3.3) is non-parametric because there is no assumption that the error term  is 

white noise.   Let be generated by , where 

tε

tp ttt Lp εψε )(==∆ )(Lψ is a power series in 

the lag operator L and , the residual from equation (3.3), is zero-mean white noise with 

variance .   

tε

2
εσ

The PP t-statistic is specified as 
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where  and  are consistent estimators of the short- and long-run variances defined as 0γ̂ 2̂λ

)( 2
0 tE εγ = ; , and 222 )}1({ψσλ ε= )1/(

21 −Σ=
=− Tpp t

T

t
(Leybourne and Newbold, 1999). 

The coefficient  is tested under the null hypothesis that there exists a unit root in the 

series.    

ρ

Both the ADF and PP test are done using the EView software package.  If all 

price series are stationary, the dynamic-price reactions will be estimated using the VAR 

model.  If all price series are non-stationary, the dynamic-price reactions will be 

estimated using the VECM and co-integration analysis. 

 

Selecting for Lag Length 

 A proper lag length must be selected before the VAR model is utilized so that the 

error terms of each equation in the model are not serially correlated.  The VAR model 

used in this study is specified as: 
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θ ,       (3.5) 

where 

Pt is a column vector of price series of Starkist, Bumble Bee, Chicken of the Sea and 

Allother, 

θ and are unknown parameters to be estimated,  A

i represents a time lagged, for i = 1, 2,.., k, and 

tu is a column vector of random errors which are assumed to be contemporaneously 

correlated but not auto-correlated at an appropriate lag length k.   

The selection process uses a general-to-specific method.  The maximum lag is 

assumed and tested, and then the number of lags is decreased and tested until the 

appropriate lag length is found.  There are several criteria used to select the lag length.  

These criteria are described as follows: 

i) The Likelihood ratio test (LR) 

Starting from the maximum lag, the LR tests the null hypothesis that the coefficients on 

lag k are jointly zero using the statistic, and the number of lags is decreased one at a 

time until the null hypothesis is rejected.   The distribution has degrees of freedom 

equal to k-1.   The Likelihood ratio test is specified as: 

2χ

2χ

}log){log( 1 kkcTLR Ω−Ω−= − ,   (3.6) 

where T = number of observations,   k = lag length, 

c = the number of parameters per equation under the alternative, and  
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kΩ = determinant of the estimated residual variance-covariance matrix obtained from the 

VAR(k) model.  

ii) The Akaike Information Criterion (AIC) 

The AIC is calculated to select the model which has the minimal loss of information or 

the smallest AIC.  The AIC is specified as: 

 AIC (k) = Nk 2log +ΩT ,      (3.7) 

where N = total number of parameters estimated in all equations. 

iii) The Schwarz Bayesian Criterion (SC) 

 SC (k) = )log(TNk +Ωlog .                (3.8) 

The SC is derived for the case of normally and independently distributed residuals and is 

the result of a Bayesian procedure of seeking the most appropriate model.  The order k of 

lag length is chosen so that AIC or SC criterion is minimized. 

 In this study, all three criteria are used to select the appropriate lag length for the 

VECM estimation.  To be sure that the selected lag length is appropriate and there is no 

autocorrelation in the model, a test for autocorrelation based on the Lagrange multiplier 

statistics (LM test) is performed.  The LM test for k-th order autocorrelation requires two-

step estimation under the null hypothesis that there is no autocorrelation.  The first step is 

to estimate each equation in the VAR model in equation (3.5) and obtain the regression 

residuals (u ) for t = 1, … , T.  In the second step, an auxiliary regression is estimated 

with the tth residual, u , regressed on the original set of regressors and u .  

The test is the joint significance of in the auxiliary regression.  The LM test 

t

tˆ ktt u −− ˆ,...,ˆ 1

ktt uu −− ˆ,...,ˆ 1
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statistic is   LM (k) = ( , where R is the R))( 2
aRkT − 2

a
2 obtained from the auxiliary 

regression and k is the order of lag length.  The LM test is asymptotically distributed as 

(k) distribution. 2χ

 

The VAR Estimation 

 With the appropriate lag length (k), the VAR model in equation (3.5) can be 

estimated if all price series are stationary [I(0)].   Since the right hand side of equation 

(3.5) contains only predetermined variables and the error terms are assumed to be serially 

correlated with constant variance (asssuming the appropriate lag length is chosen),   each 

equation can be estimated using ordinary least squares (OLS).  Moreover, OLS estimates 

are consistent and asymptotically efficient.   The estimation of the VAR model in 

equation (3.5) is done using the EView software package.  There are three applications of 

the VAR analysis employed in this study in order to investigate the price-response 

relationships among canned tuna brands.  They are the Granger-causality test, impulse 

response function (IRF) analysis, and forecast error variance decomposition (FEVD) 

analysis. 

 

Testing for Granger-Causality  

The VAR model is employed in this study to test the assumption that a firm in the 

market sets its price depending on its prices and rivals’ prices from the past periods.   

Such an assumption can be tested using Granger-causality tests.  According to the price-

response elasticities obtained from the price-reaction functions in the first part (Table 
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4.9), Bumble Bee’s price does not affect price strategies of Starkist and Chicken of the 

Sea during the same time period.  Since Bumble Bee is one of the three leading brands in 

the market, it is interesting to test whether its past strategy affects the other two brands’ 

strategies.  In other words, it can be tested that Bumble Bee’s price Granger-causes 

Starkist’s and Chicken of the Sea’s price, and vice versa.     

It is difficult and not useful to interpret the relationships between variables from 

the coefficients in the estimated VAR models because the VAR models are over-

parameterized.  Therefore, Granger-causality test results obtained from the estimated 

VAR are the key solutions here.  For each equation in the VAR, the joint significance of 

each of the other lagged endogenous variables in that equation is tested based on the Chi-

square (Wald test) statistics.  The Wald test calculates the test statistic by estimating the 

unrestricted regression without imposing the coefficient restrictions specified by the null 

hypothesis. The null hypothesis is that Pj does not Granger-cause Ph, where Pj is the lag 

of an endogenous variable j on the right hand side of an equation and Ph is the 

endogenous variable h on the left hand side of that equation (j and h are Starkist, Chicken 

of the Sea, Bumble Bee, and Allother).  The Wald statistic measures how close the 

unrestricted estimates come to the restrictions under the null hypothesis.  If the 

restrictions are true, then the unrestricted estimates should not be different from those 

without restrictions. A dynamic relationship between two brands can be classified into 

three types.  For example, a pair of price series between Starkist and Bumble Bee is 

tested.  If the null hypothesis that the lags of Starkist’s price do not Granger-cause 

Bumble Bee’s price is rejected, whereas the null hypothesis that the lags of Bumble Bee’s 

price do not Granger-cause Starkist’s price cannot be rejected, it can be interpreted that 
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Starkist is a price leader and Bumble Bee is a price follower.  If both null hypotheses are 

rejected, it can be interpreted that the two firms conduct warfare (Vickner and Davies, 

2000).  However, if both null hypotheses cannot be rejected, it can be concluded that they 

are not interdependent in a dynamic way, i.e. they do not take into account each other’s 

past price strategies.      

 

Impulse Response Function and Forecast Error Variance Decomposition Analyses 

 To investigate pricing relationships rigorously, the IRF and FEVD analysis are 

employed.   If there is a unitary change in a brand’s price at time t, the IRFs will give 

information about whether the brand’s price and its rivals’ prices respond to the shock in 

a positive or negative direction at time t+1, t+2, etc.  The IRF analysis reveals the 

direction of the relationships graphically between variables from a shock of one variable, 

whereas the FEVDs measure proportions of the forecast error variance of a brand’s price 

that can be explained by shocks to its own price and its rivals’ prices.  Theoretically, if 

none of the forecast error variances in a brand’s price at all forecast horizons can be 

explained by innovations on the other brands’ prices, the inference is the brand’s price 

series is exogenous.  If all price series are endogenous, the forecast error variance in a 

brand’s price can be explained by shocks on its price and the other brands’ prices at all 

forecast horizons.  The effects from shocks are reported as percentages.  For example, if 

50 percent of the three-period-ahead error variance in Bumble Bee’s price can be 

explained by innovations to Starkist’s price, then Starkist’s price has a large influence on 

the progress of Bumble Bee’s price.   The results from the IRF and FEVD analyses can 

serve as a way to confirm the dynamic price-relationship results obtained from the 
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Granger-causality tests.  Both IRFs and FEVDs are constructed from the VAR model 

with orthogonal residuals using the Choleski decomposition.    
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Chapter Four 

Estimation and Results 

 

 The strategic price-response relationships among canned tuna brands in the 

Knoxville market are analyzed using a VAR model.  The analysis starts with unit root 

tests for all price series using the ADF and PP tests.  Next, the lag length in the VAR 

model is selected using the LR, AIC and SC criteria.  Then, the VAR model with the 

appropriate lag length chosen is estimated.  Brands’ price-response relationships are 

examined by applications of the VAR analysis including Granger causality, IRF, and 

FEVD analyses. 

 

Testing for Unit Root and Order of Integration 

 The observed canned-tuna price series for Starkist, Chicken of the Sea, Bumble 

Bee, and Allother for 157 consecutive weeks are depicted in Figure 4.1.  The data 

descriptions are shown in Table 4.1 (chapter 4) of the first part.  All the prices seem to 

fluctuate around no trend (horizontal) lines.  However, more than a plot is needed to 

confirm stationarity.  Therefore, all price series are tested for unit roots and order of 

integration using the ADF test (equation (3.1)) and the PP test (equation (3.3)).  First, 

each price series is tested for a unit root using the original data.  If the estimated ADF or 

PP test statistic is greater than its respective critical value, it can be concluded that the 

price series is stationary.  If the null hypothesis that there exists a unit root in the series 

cannot be rejected, the series will be tested again with its first differences.  The tests are  
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 Figure 4.1 Observed Price Series of Canned Tuna Brands 

 

continued until a stationary series is found.  The results from the ADF and PP tests are 

shown in Table 4.1.  The ADF test results indicate that the price series of Starkist, 

Bumble Bee and Allother are stationary at their level [I(0)], whereas the price series of 

Chicken of the Sea has a unit root and becomes stationary for the first differences [I(1)].  

Charemza and Deadman (1992) suggested that the choice of number of augmentation 

terms (the lagged difference terms) included in an ADF equation was important and 

should be such that error terms in the equation are not auto-correlated.  The test results 

shown in Table 4.1 are based on the ADF equations that include 4 lagged differences. 

The ADF tests with 2, 3, and 5 lagged differences in each ADF equation are also tested  

 

 119 



Table 4.1  The ADF and PP Test Results on Price Series 

Price Series ADF Test Result 
[Level] 

ADF Test Result 
[First Difference] 
 

PP test Result 
[Level] 

Starkist Stationary (-3.56) _ Stationary (-9.52) 

Chicken of the Sea   Non-stationary (-1.37) Stationary (-8.69) Stationary (-4.35) 

Bumble Bee Stationary (-4.30) _ Stationary (-7.82) 

Allother Stationary (-3.37) _ Stationary (-8.77) 

All test equations include 4 lagged differences.  (ADF and PP t-statistics are in parentheses) 
The tests are based on the 5% level of significance with MacKinnon Critical Values = – 2.88. 
 

for a unit root, and the results are not different from those in Table 4.1.  On the contrary, 

when 6 lagged differences or more are used, the results are changed in favor to accepting 

the null hypothesis in all price series.  However, the coefficients of the 5th and 6th lagged-

difference variables in the ADF equation with 6 lagged-difference terms are not 

statistically significant.  Moreover, Charemza and Deadman (1992) suggested that too 

many augmentation terms may cause a decrease in power of the test, too often resulting 

in the failure to reject the null hypothesis.  Therefore, the ADF equations with more than 

4 lagged differences included may not be appropriate.   

The ADF test results from Table 4.1 cause a problem here.  If all variables are 

stationary, a VAR model can be used to estimate the dynamic-price responses.  A VEC 

model can be used when all variables are not stationary but are co-integrated.  It may not 

be appropriate to estimate a VAR model with three stationary variables and one non-

stationary variable because the estimated results will be spurious (Gujarati, 1995).  In 

addition, the VEC model with the use of co-integration cannot be used in this situation.  
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However, the results obtained from the ADF test are not the only ones that can be used, 

since there is the PP test, which can also be used to test for a unit root of a time series.  

The PP test results are also shown in Table 4.1.  All price series are found 

stationary at the 5% level of significant.  In addition, the PP tests with 2, 6, and 8 lagged 

differences included are also tested and inferences for the test results are the same as 

those shown in Table 4.1.  Choi (1992) conducted Monte Carlo experiments to study the 

effects of data aggregation on the power of the ADF and PP tests for a unit root.  Choi 

concluded that for the aggregate data the PP test was more powerful than the ADF test in 

finite samples.   Since the scanner data used in this study were aggregated and collected 

for a short time period, all price series are considered to be stationary based on the PP test 

results. 

 

Selecting for Lag Length 

Since all price series are stationary, the unrestricted VAR model specified in 

equation (3.5) can be used.  However, the appropriate lag length of the VAR must still be 

selected.  The appropriate lag length is chosen using the LR, AIC and SC tests and 

autocorrelation is also detected based on the Lagrange multiplier statistics (LM test).  

Table 4.2 summarizes the lag length selection from the LR, AIC, and SC, and the test 

results for autocorrelation from the LM test (at the 5 % level of significance).  The results 

from the LR and AIC indicate that k = 5 is appropriate, whereas the SC selects k = 2 as a 

proper lag length.  Vickner and Davies (2000) noted that AIC and SC may be biased 

toward shorter lag structures.  Therefore, the test for autocorrelation can be an additional  
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Table 4.2  Lag Length Criteria and Autocorrelation Test Results 

 
Criteria 

Number of lag length (k) 
selected 

LM Test for Autocorrelation 
[H0: No Autocorrelation] 

The Likelihood ratio test (LR) 5 Not rejected 

The Akaike Information 
Criterion (AIC) 

5 Not rejected 

The Schwarz Bayesian 
Criterion (SC) 

2a Rejected 

aWhen k = 3 and 4 are selected, the null hypothesis of no auto-correlation was also rejected. 
 

indicator for the lag length selection.  The LM test results in Table 4.2 show that 

autocorrelation exists when k = 2 is selected.  In addition, auto-correlation is tested and 

found when k = 3 and k = 4, but there is no autocorrelation found when k = 5.   Therefore, 

this study chooses k = 5 as an appropriate lag length. 

 

The VAR Estimation 

 The four price series are estimated using the VAR model in equation (3.5) with 5 

lags for each series.   The estimated results are shown in Table 4.3.  The correlogram for 

60 weeks of lags indicated that none of the estimated-residual series has autocorrelation.  

For example, p-values for the Q-statistics in weeks 26 and 52 reported in Table 4.3 

surpass the 10% threshold, meaning that there is no autocorrelation up to these weeks.   

The model seems to be over-parameterized since there are 84 terms estimated and many 

of the non-significant coefficients should be excluded from the model.  Note that the 

objective here is to investigate dynamic strategic-price responses or interrelationships 

among the canned tuna brands.   Enders (1995) suggested that “improperly imposing zero 

restrictions may waste important information.”  Sims (1980) and Enders (1995)  
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Table 4.3   Parameter Estimates from the Vector Autoregressive Model  

      Dependent Variable: P 

Variable         SK  CS      BB        AO                                     
C      0.538**          0.278         0.955**              0.190                                     
     (2.741)         (1.179)  (2.737)       (1.329) 
 
PSKt-1       0.187*                 -0.052                  -0.303*         -0.024                                 
                                       (2.200)                 (-0.514)  (-2.009)     (-0.392)                                
 
PSKt-2      0.075             -0.029                 0.200                   0.066                                   
      (0.922)          (-0.289)   (1.308)      (1.058) 
 
PSKt-3      0.111           0.151              0.170                  -0.017                                 
      (1.279)          (1.451)   (1.100)     (-0.273) 
 
PSKt-4      0.107           0.127   -0.600**              0.005                                    
      (1.225)          (1.208)   (-3.865)     (0.081) 
 
PSKt-5      0.042                    -0.134                  0.402*         0.141*                                 
      (0.474)          (-1.242)   (2.522)               (2.165) 
 
PCSt-1      0.046         0.435**         -0.048      0.002                                    
      (0.627)         (5.071)   (-0.384)     (0.041) 
 
PCSt-2     -0.004         0.067         0.016      -0.127*                                 
     (-0.053)         (0.747)   (0.123)     (-2.328) 
 
PCSt-3      0.071         0.136                   -0.329 *      0.081                                   
      (0.956)         (1.514)  (-2.474)      (1.492) 
 
PCSt-4      -0.150         0.273**         0.167                  -0.044                                  
      (-1.953)         (2.959)   (1.224)     (-0.787) 
 
PCSt-5      -0.070         -0.009         -0.086       0.050                                   
      (-0.230)         (-0.098)   (-0.657)     (0.933) 
 
PBBt-1      -0.032        -0.103                   0.566**               0.048                                     
      (-0.687)         (-1.796)                (6.665)     (1.382) 
 
PBBt-2      -0.032        0.163**     -0.265**      -0.081*                                
      (-0.689)        (2.664)   (-2.943)     (-2.212) 
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Table 4.3   Parameter Estimates from the Vector Autoregressive Model (Continued) 

      Dependent Variable: P 

Variable         SK  CS      BB        AO                                     
PBBt-3       0.022        -0.095    0.176       0.035   
      (0.427)        (-1.561)    (1.957)     (0.944) 
 
PBBt-4      0.061          0.070         -0.260**     0.013                                    
      (1.215)         (1.151)   (-2.906)    (0.357) 
 
PBBt-5      -0.123**                -0.037                  0.159                -0.011                              
      (-2.673)          (-0.684)              (1.954)     (-0.339) 
 
PAOt-1      0.126          0.067         -0.026      0.307**                                 
      (1.069)         (0.485)   (-0.128)     (3.667) 
 
PAOt-2      0.130          0.143   -0.307         0.164                                    
      (1.077)          (0.985)   (-1.434)    (1.869) 
 
PAOt-3      0.003          -0.183   0.254        -0.059                                  
      (0.023)          (-1.238)              (1.162)     (-0.658) 
 
PAOt-4      0.044          -0.140    0.158                -0.050                          
      (0.369)          (-0.978)    (0.748)     (-0.579) 
 
PAOt-5      -0.220          -0.241    -0.013     0.182* 
     (-1.895)                  (-1.724)                (-0.062)             (2.153) 
 
Model Diagnostics 
Adj. R2                            0.13                      0.61     0.40                  0.18 
AIC      -2.17           -1.81                -1.03                -2.81 
SC      -1.76           -1.39      -0.61                 -2.39 
p-value of 
Q Statistic (Week 26)     0.96            0.85     0.27      0.64 
p-value of 
Q Statistic (Week 52)     0.92            0.95                      0.66      0.21 
 
(-) t-statistics are in parentheses 
*Significance at 5%level, **significance at 1% level 
Subscript: SK = Starkist,  CS = Chicken of the Sea, BB = Bumble Bee, AO = Allother 
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recommended that the goal of VAR analysis is to investigate the interrelationships among  

the variables, not the parameter estimates.   Moreover, the lags of each variable are likely 

to be highly collinear, so that the t-statistics on estimated coefficients may not be reliable 

guides to determine the relationships.  Therefore, Granger-causality test results obtained 

from the VAR analysis are more reliable for the investigation.    

 

Granger-Causality test Results 

The Granger-causality test results in terms of p-values based on the Chi-square 

statistics are reported in Table 4.4.  The test results can be summarized as follows.  All 

price series Granger-cause themselves implying that each brand considers its past prices 

in determining its present price strategy.  Starkist Granger-causes Bumble Bee, and 

Bumble Bee also Granger-causes Starkist.  This implies that the strategic-price response 

between Starkist and Bumble Bee represents a price war.  Chicken of the Sea and Bumble 

Bee also Granger-cause each other indicating that these two brands conduct warfare.  

Starkist, and Chicken of the Sea do not Granger-cause each other, meaning that they are 

not inter-dependent with respect to dynamic-pricing behavior.  In other words, they do 

not consider the past prices of one another in their price strategies.  Interestingly, Allother 

Granger-causes Chicken of the Sea, but it is not true in the opposite direction.  Vickner 

and Davies (2000) suggested the evidence of price leadership when there was 

unidirectional Granger causality.  However, their conclusion about price leadership was 

also based on the IRF-analysis results, which showed a positive relationship between the 

leader and the follower.  Therefore, the price-response relationship between Chicken of 

the Sea and Allother is analyzed with the results from IRF analysis. 
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Table 4.4 Granger-Causality Test Results 
     p-value of Chi-square statistics 

Equation   PSK  PCS  PBB  PAO 
PSK             0.010***           0.428            0.083*            0.202 

PCS             0.407           0.000***            0.061*            0.095* 

PBB             0.000***           0.031**            0.000***           0.603             

PAO             0.263           0.193                0.265            0.000*** 

*Significance at the 10% level, **significance at 5% level, and ***significance at 1% level 
The null hypothesis is that the column variables do not Granger-cause the row variables.  

 

The Granger-causality test results give additional information on the results 

obtained from (static) simultaneous equations in the first part.  Starkist’s and Chicken of 

the Sea’s prices significantly affect Bumble Bee’s price strategy both in static and 

dynamic approaches.   Bumble Bee’s price does not affect Starkist’s and Chicken of the 

Sea’s price strategies during the same time period, but its past price does. 

 

Impulse Response Function Analysis 

IRF analysis is an application of VAR analysis to characterize dynamic price-

response strategies among canned tuna brands in the market.  When there is a one-unit 

increase of a brand’s price due to an exogenous shock (such as sudden changes in input 

prices or tuna quantity) during period t, it may affect the brand’s future prices and those 

of rivals.  An IRF of a brand reveals the direction of the brand’s price response in the 

future periods due to a shock of a variable during period t.  The cumulative IRFs for 20 

periods are computed and graphically presented in Figures 4.2 to 4.5, shown on the 

following pages.  Figure 4.2 depicts the time path of Starkist’s price series response to a  
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unit change in the innovations of itself and the other brands’ prices.  A price-series time 

path line is between its standard errors (the confidence interval) presented as dash lines.   

According to Figure 4.2, Starkist positively reacts to its own price shocks, and the 

response dies out rapidly in two weeks.  Starkist does not react to the innovations of 

Chicken of the Sea’s and Allother’s prices.  However, a unit shock on Bumble Bee’s price 

has a negative effect on Starkist’s price since its response during week 7 is statistically 

significant.   

Chicken of the Sea’s price responses are shown in Figure 4.3.  Chicken of the Sea 

also positively reacts to its own shock.  It takes approximately 16 weeks for Chicken of 

the Sea’s price shock to dissipate from its own shocks.  Chicken of the Sea does not 

respond to innovations of Starkist.  However, it responds negatively to shocks on Bumble 

Bee’s price for the first two weeks before adjusting to equilibrium.  In addition, Chicken 

of the Sea responds negatively to shocks on Allother’s price because the cumulative IRF 

during week 6 is statistically significant.   

According to Figure 4.4, Bumble Bee responds negatively to a unit shock on 

Chicken of the Sea’s price because its response during week 4 is statistically significant.  

These IRF results support the Granger-causality test results that Bumble Bee and Chicken 

of the Sea conduct warfare.  With respect to a unit shock to Starkist’s price, Bumble Bee 

also responds negatively since the IRFs of week 2 and 5 are statistically significant.  This 

interaction result also supports the results found from the Granger-causality test that 

Starkist and Bumble Bee conduct warfare because they respond to each other negatively.   

Bumble Bee reacts positively to its own shocks and adjusts quickly to equilibrium in 

about three weeks.   
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Figure 4.5 depicts Allother’s price which positively reacts to its own shocks and 

the price response decreases rapidly in two weeks.  There is only a unit shock on Chicken 

of the Sea’s price to which Allother negatively responds.    

The Granger-causality test results show a unidirectional causality between 

Chicken of the Sea and Allother such that Allother’s prices Granger-cause Chicken of the 

Sea’s prices.  Vickner and Davies (2000) suggested the evidence of price leadership when 

there was unidirectional Granger causality.  Vickner and Davies investigated the price-

response relationship between two leading canned pineapple brands, Dole and Del 

Monte.  They found that Del Monte followed Dole’s pricing decisions.  Their Granger-

causality results were unidirectional.  Their conclusion about price leadership was also 

based on the IRF-analysis results, which showed a positive relationship between the 

leader and the follower.   In contrast, the IRF results shown in Figure 4.3 indicate that 

Chicken of the Sea responds negatively to a unit shock on Allother’s price.  Therefore, it 

cannot be concluded that Allother is the price leader and Chicken of the Sea is the price 

follower.  In addition, the IRF results from Figure 4.5 show that Allother responds 

negatively to a unit shock on Chicken of the Sea’s price.  Therefore, the evidence of price 

war between the two brands is a more reasonable conclusion.   

The IRF results reported in this part are different from those of Vickner and 

Davies.  Confidence intervals in the Vickner and Davies IRF graphs were not shown.  In 

other words, the level of significance was not considered in their IRF analysis.  The 

confidence intervals in the IRF analysis are necessary to determine whether a shock on 

one variable significantly affects the other variable.  For example, this part concludes that 

there is no dynamic price response between Starkist and Chicken of the Sea because 
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Starkist’s IRF responding to Chicken of the Sea’s innovation (Figure 4.2) and Chicken of 

the Sea’s IRF responding to Starkist’s innovation (Figure 4.3) are not statistically 

significant.   Their confidence intervals (represented as dash lines) cover zero levels for 

all time periods.  Failing to take into account the confidence intervals, especially 

estimating VAR in levels, may lead to inaccurate conclusions.   

 

Forecast Error Variance Decomposition Analysis 

 At each horizon (period), the FEVDs measure the percentage of the forecast error 

in a brand’s price that is explained by its own innovation as well as by the innovations 

that have occurred from competitors’ prices.  The FEVD analysis is performed for 157 

periods ahead in order to see the forecast effects from innovations during the observation 

period; however, only 1 to 4 (one month), 9 (two months), 26 (six months), 52 (one year), 

and 157 (three years) periods ahead are reported here.  The FEVD results are shown in 

Table 4.5.  Overall, the error variances in Starkist’s prices are generally accounted for by  

innovations to its own prices.  The one-period-ahead error variance in Starkist’s price 

responds entirely to its own shock.  After 9 periods ahead, innovations to Starkist’s price 

can be explained by its own shock (about 87.7%) and by shocks to Bumble Bee’s and 

Allother’s prices (about 4.9% and 5.1%, respectively).  The shocks on the other brands’ 

prices have small effects on Starkist’s price, and the proportions of error variances in the 

9 periods ahead approximately represent the long-run FEVDs because the percentages of 

error variances are quite stable after that.    
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Table 4.5  Forecast Error Variance Decomposition Results  
            
     Period S.E. SK CS BB AO 
SK           

1 0.076 100.00 0.00 0.00 0.00 
2 0.078 98.60 0.26 0.35 0.80 
3 0.080 95.82 0.33 1.24 2.61 
4 0.082 94.26 1.10 1.21 3.42 
9 0.088 87.65 2.30 4.97 5.08 
26 0.089 86.89 2.66 5.33 5.11 
52 0.090 86.76 2.76 5.32 5.15 
157 0.090 86.72 2.80 5.32 5.16 

CS           
1 0.092 0.03 99.97 0.00 0.00 
2 0.101 0.06 97.87 1.93 0.14 
3 0.105 0.10 96.34 2.43 1.13 
4 0.108 0.39 96.19 2.35 1.07 
9 0.136 1.87 92.07 1.58 4.49 
26 0.176 1.79 84.09 1.04 13.08 
52 0.196 2.44 81.04 0.93 15.59 
157 0.202 2.62 80.23 0.90 16.25 

BB           
1 0.136 0.64 0.36 99.00 0.00 
2 0.159 3.91 0.26 95.81 0.01 
3 0.160 3.89 0.34 94.10 1.67 
4 0.165 4.81 3.95 89.56 1.68 
9 0.175 9.82 6.84 81.02 2.31 
26 0.185 9.64 12.63 73.27 4.47 
52 0.190 9.42 15.36 69.67 5.55 
157 0.191 9.35 16.27 68.47 5.90 

 AO           
1 0.056 0.35 0.19 0.06 99.40 
2 0.059 0.37 0.22 1.13 98.27 
3 0.062 0.78 3.71 1.85 93.66 
4 0.062 0.94 3.71 1.85 93.51 
9 0.066 4.80 5.13 1.74 88.32 
26 0.069 7.22 7.16 2.00 83.62 
52 0.069 7.20 8.22 1.98 82.60 
157 0.069 7.19 8.58 1.97 82.26 

            
FEVDs are read from left to right.   For each horizon, the error variance of a brand’s price is 
explained in percentage by shocks on column variables.  
SK = Starkist, CS = Chicken of the Sea, BB = Bumble Bee, and AO = Allother 
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Chicken of the Sea’s price response is different from that of Starkist.  During the 

first month ahead, about 96% of innovations to Chicken of the Sea’s price can be 

explained by shocks from its own price.   In a longer time period (after 6 months ahead), 

approximately 13.1% of the forecast error variance of Chicken of the Sea’s price can be 

explained by shocks to Allother’s price, whereas shocks to Starkist’s and Bumble Bee’s 

prices have small effect to Chicken of the Sea’s price innovations.   This result supports 

the IRF results in that Allother has a negative influence on Chicken of the Sea’s price. 

Ninety-eight percent of the one-period-ahead error variance in Bumble Bee’s price 

can be explained shocks from its own prices.  However, after about six months ahead 

shocks to the other brands’ prices account for more than 26% of innovations to Bumble 

Bee’s price.  Specifically, Starkist and Chicken of the Sea account for approximately 10% 

and 13%, respectively.  These results support the IRF results in that the variability of 

Bumble Bee’s prices is affected by shocks to Starkist’s and Chicken of the Sea’s prices.    

Allother price innovations are affected almost entirely by shocks to its prices in 

the short periods ahead (one month).  After 6 months ahead shocks to Starkist’s and 

Chicken of the Sea’s prices account for approximately 7% of Allother’s price innovations.  

Chicken of the Sea’s price shocks have the highest influence on Allother price 

innovations in the long period.  This also supports the IRF results in that Chicken of the 

Sea and Allother have negative effect to each other.   

 Overall, the IRF results are consistent with the Granger-causality test results in 

that Starkist’s and Chicken of the Sea’s price strategies negatively respond to Bumble 

Bee’s price strategy in a dynamic way.  Moreover, the FEVD results support the IRF and 

Granger-causality test results in that both Starkist’s and Chicken of the Sea’s past prices 
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have high influence on Bumble Bee’s present price.  Finally, there is no dynamic 

relationship between Starkist’s and Chicken of the Sea’s price strategies.   

 

Summary of Results 

The four price series of Starkist, Chicken of the Sea, Bumble Bee, and Allother are 

used to estimate strategic price-response relationships based on a dynamic approach 

using VAR analysis.  The results are as follows. 

 
• The ADF and PP tests are used to test for a unit root in each series.  The 

results suggest all four price series are stationary. 
 

• The LR, AIC and SC tests are employed to select the appropriate lag length 
and autocorrelation is tested for each equation in the VAR with the lag length 
selected by these criteria.  The test results indicate that five lags are 
appropriate in the VAR estimation. 

 
• A VAR model of order five with four price variables is estimated using OLS 

for each equation.   
 

• Price-response relationships are analyzed by applications of VAR including 
Granger-causality, IRF, and FEVD analyses. 

 
• The results from Granger-causality tests indicate that the price-response 

relationships between Starkist and Bumble Bee and between Chicken of the 
Sea and Bumble Bee are bidirectional meaning that both pairs of brands 
conduct warfare.  The price-response relationship between Chicken of the Sea 
and Allother is unidirectional implying that the lags of Allother’s price affect 
Chicken of the Sea’s price decision.  In addition, the Granger-causality results 
show that no dynamic relationships occur among Starkist, Chicken of the Sea, 
and Allother. 

 
• With respect to the IRF results, Starkist’s price responds negatively to a unit 

shock from the Bumble Bee price and the reverse is also true.  Chicken of the 
Sea’s and Bumble Bee’s prices respond negatively to a unit shock of price of 
each other, and so does the price relationship between Chicken of the Sea and 
Allother.   The IRF results support the Granger-causality results (with the 
exception of the Chicken of the Sea-Allother relationship) in that all pairs of 
brands conduct price war.  All brands’ prices react to their own shock and 

 136 



revert to equilibrium in about three weeks with the exception of Chicken of 
the Sea’s price series that takes approximately 16 weeks to die out.   

 
• The FEVD analysis is conducted for 157 periods ahead.  Overall, all price 

series’ forecast error variances are explained mainly by shocks to their own 
prices. However, 20% of forecast error variance in Bumble Bee’s price after 
26-periods ahead is explained by shocks on Starkist’s and Chicken of the 
Sea’s price.  The portion of error variance in Bumble Bee’s price from outside 
shocks is relatively high compared to those of the other brands. 

 
• The IRF and FEVD results are consistent with the Granger-causality test 

results in that Starkist’s and Chicken of the Sea’s price strategies negatively 
respond to Bumble Bee’s price strategy in a dynamic way.  In addition, both 
Starkist’s and Chicken of the Sea’s past prices have high influence on Bumble 
Bee’s present price.   
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Chapter Five 

Conclusions 

 

The second part of this dissertation estimates strategic price-response among 

canned tuna brands in the Knoxville, Tennessee market.  Unlike the first part, the 

Bertrand-competition assumption is dropped and replaced by the assumption that a firm 

in the market sets its price depending on its own past prices and those of rivals.   A vector 

autoregressive (VAR) model is employed to investigate the dynamic-price relationships 

among the four price series of Starkist, Chicken of the Sea, and Bumble Bee, and Allother.  

The first step of the analysis is to test whether each price series is stationary.  The 

augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test are employed to 

test for stationary.  The ADF test results show that Chicken of the Sea’s price series is not 

stationary, while the other price series are stationary.  On the other hand, the PP test 

results indicate that all price series are stationary.   This study concluded that all price 

series are stationary based on the PP test results because of the finding of Choi (1992) 

that the PP test was more powerful than the ADF test for the aggregate data in finite 

samples.   

Since all price series are stationary, the unrestricted VAR model can be used for 

estimation.   However, a proper lag length must be selected before the VAR model is 

estimated so that the error terms of each equation in the model are not serially correlated.  

The appropriate lag length is selected using the likelihood ratio (LR) test, the Akaike 

Information Criterion (AIC), and the Schwarz Bayesian Criterion (SC).  To be sure that 
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autocorrelation does not exist in each equation in the VAR of the order of the selected lag 

length, the Lagrange multiplier (LM) test is also performed.   The test results conclude 

that the appropriate lag length is five.   

The VAR model of order 5 is estimated.  The interrelationships among the price 

series are analyzed by applications of VAR including the Granger-causality test, impulse 

response function (IRF) analysis, and forecast error variance decomposition (FEVD) 

analysis.  Granger-causality tests examine pairs of brands’ prices and tests whether a 

brand’s past prices Granger-cause the other brand’s price strategy.  If both brands 

Granger-cause each other, it means that they conduct warfare.  IRF analyses reveals 

graphically the direction of the relationships between price series from a shock of a 

brand’s price, whereas the FEVD analysis measures proportions of error variance of a 

brand’s price that can be explained by shocks to its own price and it rivals’ prices for 

each forecast horizon.   

The Granger-causality test results indicate that there are interrelationships 

between price strategies of Starkist and Bumble Bee, and between price strategies of 

Chicken of the Sea and Bumble Bee.  Both of them conduct price war.   There are no 

dynamic interrelationships between Starkist and Chicken of the Sea.  Allother Granger-

causes Chicken of the Sea, but it is not true in the opposite direction.  All price-response 

relationships are investigated further using the IRF results.  The price-response 

relationships found from Granger-causality tests are supported by the IRF analysis.  The 

IRF results show graphically that when there is a unit shock on Bumble Bee’s price, at 

some point of the time, both Starkist’s and Chicken of the Sea’s prices respond 

negatively.  Similarly, Bumble Bee’s price also responds negatively to a unit shock on 
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either Starkist’s or Chicken of the Sea’s prices.  The IRF results also show that Chicken of 

the Sea and Allother respond negatively to a unit shock of each other’s price.  The FEVD 

results also support these two brands’ price relationships. This leads to the inference that 

they conduct price war.  The FEVDs are estimated for 157 horizons ahead.  Shocks on 

each brand’s price mainly explain the error variance of the brand’s price, especially up to 

the first-4-periods ahead.  When the forecast time period is longer, the portion of error 

variance of each price series that can be explained by shocks on its own price is 

decreased gradually and the portions of error variance explained by shocks on the other 

brands’ prices typically increase.    After 26 periods ahead, the forecast error variance in 

Bumble Bee’s price has a relatively high portion (20%) attributed by shocks on Starkist’s 

and Chicken of the Sea’s prices.    

Although the results from the first part indicate that Starkist and Chicken of the 

Sea do not respond to Bumble Bee’s price strategy during the same time period, the 

results from the Granger-causality test, the IRF and FEVD analyses show that both 

Starkist and Chicken of the Sea negatively respond to Bumble Bee’s past price.  

Moreover, both Starkist’s and Chicken of the Sea’s past prices have high influence on 

Bumble Bee’s present price.  Finally, there is no dynamic relationship between Starkist’s 

and Chicken of the Sea’s price strategies.   
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General Conclusions 

 

There are two main objectives of this dissertation.  The first objective is to 

estimate the degree of market power in a product-differentiated oligopoly, in this instance 

the canned tuna industry at the local level.  The second objective is to investigate 

strategic-price responses among firms in the industry based on the static and dynamic 

approaches.  The weekly scanner data on the purchases of canned-tuna in Knoxville, 

Tennessee collected by Information Resources, Incorporated (IRI) from January 4, 1998 

to December 31, 2000 were used for the estimation of the degree of market power and 

strategic-price responses.  Four canned tuna brands are investigated including the three 

leading brands, Starkist, Chicken of the Sea, and Bumble Bee, and an aggregate of small-

market share brands, Allother.    

This study is composed of two parts.  The first part is based on a static approach, 

and the second part is based on a dynamic approach.  One of the main assumptions made 

in the first part is that the canned tuna market is operated as Bertrand competition such 

that price is a strategic variable, and firms make their price decisions during the same 

time period.  The degrees of market power and strategic-price responses among firms are 

estimated in the first part.  Measures of the degree of market power include the 

Rothschild index (RI), the O index (OI) and the Chamberlin quotient (CQ).  In order to 

calculate these measures, each firm’s own-and cross-price elasticities and price-response 

elasticities are needed.  These elasticities are estimated by the simultaneous demand-

supply equations.  Following Cotterill (1994), this study employs the linear approximate 

almost ideal demand system (LA/AIDS) proposed by Deaton and Muellbauer (1980) to 
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estimate the demand for canned tuna in the market, and price-reaction functions are used 

to investigate strategic-price response among firms.  The LA/AIDS uses the Stone price 

index.  Previous studies employed the LA/AIDS to estimate the degree of market power 

in oligopoly markets (Cotterill, 1994, and Vickner and Davies, 1999).  However, use of 

the Stone index in the LA/AIDS causes estimated parameters to be biased and 

inconsistent (Pashardes, 1993 and Moschini, 1995).  One of the contributions in this 

dissertation is to use the corrected Stone index suggested by Moschini (1995) in the 

LA/AIDS estimation.   

The degree of market power of a brand in this study means that the brand is able 

to set a high price without losing its market share.  A brand’s market power is derived 

from two sources.  First, it arises from the brand’s unilateral market power due to brand 

characteristics and product differentiation, and the RI represents such power.  Second, the 

brand’s market power is derived from tacit collusion meaning that the brand can 

influence its rivals to follow its strategy, such as a price increase.  The OI and CQ 

typically represent this kind of market power. 

The results of the measures of market power found in this dissertation are 

consistent with those of Cotterill (1994) and Vickner and Davies (1999) in that the 

leading firms which are able to maintain high price and market shares have high degrees 

of market power.  Starkist, the highest-market share brand, has the highest degree of 

market power.  The market power of Starkist and Chicken of the Sea is derived from both 

unilateral and coordinated market power, whereas that of Bumble Bee is derived from its 

own unilateral market power, not from coordinated market power.  In addition, this 

dissertation re-estimates the simultaneous equations with the use of the traditional Stone 
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index in the LA/AIDS, and the parameter estimates are compared to those of the 

corrected version.  The results from both versions are found to be very close giving the 

interpretation of market power in the same fashion.   

The strategic-price responses among brands are investigated through price-

response elasticities obtained from the estimated price-reaction functions.  Starkist and 

Chicken of the Sea have a positive effect on each other’s price strategy.  This positive 

relationship serves as a reason why the two leading firms have coordinated market power.   

Starkist and Chicken of the Sea have negative effects on Bumble Bee’s price strategy 

leading to an inference that Bumble Bee conducts price war against the two leading 

brands.  On the other hand, Bumble Bee has no influence on Starkist’s and Chicken of the 

Sea’s price strategies.  This also supports the findings of Bumble Bee’s degree of market 

power in that its degree of market power is mainly derived from unilateral market power 

without coordination from the other brands.   However, Bumble Bee is one of the three 

leading brands in the canned tuna oligopoly market.  Therefore, price strategies should be 

expected to be interdependent.  Although Starkist and Chicken of the Sea do not respond 

to Bumble Bee’s price strategy during the same time period, they may consider Bumble 

Bee’s past price in their present decisions.  This leads to an extension to the second part 

of this dissertation which is based on a dynamic approach.    

With respect to the second part, the Bertrand-competition assumption is replaced 

by an assumption that a firm in the market sets its price depending on its own past prices 

and those of rivals.  A vector autoregressive (VAR) model is employed, and its 

applications are used to investigate the dynamic price relationships.  The VAR’s 

applications are the Granger-causality test, the impulse response function (IRF) analysis, 
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and the forecast error variance decomposition (FEVD) analysis.  The Granger-causality 

test examines whether dynamic price-response relationships exist.  The IRF analysis 

graphically reveals the direction of the effect of a one-time shock to one of the 

innovations on future values of the endogenous variables, whereas the FEVD analysis 

measures proportions of a brand’s price variations that can be explained by shocks to its 

own price and it rivals’ prices for each forecast horizon.  Although the results from the 

first part indicate that Starkist and Chicken of the Sea do not respond Bumble Bee’s price 

strategy during the same time period, the Granger-causality results show that both 

Starkist and Chicken of the Sea respond negatively to Bumble Bee’s past price.  Both 

leading brands conduct price war in a dynamic way.  The findings from the second part 

actually clarify a question about why the two leading brands do not respond to Bumble 

Bee during the same time period.  In addition, the second part finds that Starkist and 

Chicken of the Sea have no dynamic price relationships.  The results from the IRF and 

FEVD analyses also support the Granger-causality test results for the three-leading 

canned-tuna brands’ relationships.   

Overall, the results from both parts of this dissertation provide helpful insights on 

the degree of market power and strategic-price responses among brands in the canned 

tuna market.  This dissertation finds evidence of market power in the canned tuna market 

in Knoxville, Tennessee.  The extent of the average RI and OI found in this study is less 

than those found in the carbonated soft drink industry (Cotterill, 1994), but higher than 

those found in the spaghetti sauce industry (Vickner and Davies, 1999).  However, the 

average degree of market power derived from tacit collusion found in this study is the 
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lowest compared to those found in the carbonated soft drink and the spaghetti sauce 

industries.   

The results from the second part give additional information about firms’ price 

strategies such that a short-run dynamic equilibrium exists.  This can be explained by two 

reasons.  First, there exists a price adjustment lag among firms.  The time between when 

a firm desires to change price and when it can change price is longer than one observation 

period.  The second reason occurs when firms switch their price strategies in different 

weeks.  This strategy allows firms to avoid rigorous competition during the same time 

period.  The long-run equilibrium is not discussed in this study because the observation 

period is short (three years), and firms’ strategies can be changed in the longer period.  

Nonetheless, the study of strategic-price responses based on both static and dynamic 

approaches provides a significantly better understanding of firms’ pricing behaviors.    

 

Contributions, Limitations, and Extensions of this Research 

Contributions of this research 

This dissertation contributes to the empirical research in industrial organization in 

three ways.  First, it improves the model specification in estimating the degree of market 

power developed by Cotterill (1994) and followed by Vickner and Davies (1999).   In 

their studies, Cotterill (1994), and Vickner and Davies (1999) measured the degree of 

market power in the carbonated soft drink industry (Cotterill) and the spaghetti sauce 

industry (Vickner and Davies) by estimating the LA/AIDS model and price reaction 

functions simultaneously.   In the LA/AIDS, they used the Stone price index suggested by 
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Deaton and Muellbauer (1980).  In this study, the corrected Stone index suggested by 

Moschini (1995) was used in the LA/AIDS model.    

Second, this study is the first to examine the degree of competitiveness of brands 

of a manufactured food product at the local level where competition may be most intense.  

Work to date on food manufacturers’ degree of market power and pricing strategies has 

been conducted at the aggregate national level (Appelbaum, 1982; Schroeter, 1988; 

Baker and Breshnahan, 1985; Liang, 1989; Cotterill, 1994; and Vickner and Davies, 

1999).  These studies have not captured local market effects of pricing conduct and local 

demand.  This dissertation provides information regarding the degree of competitiveness 

and price-response strategies among firms in a local market.  

Third, this dissertation extends the analysis of brands’ price-response strategies to 

a dynamic approach.  A vector autoregressive (VAR) model and its applications are 

employed to investigate such relationships.  The results obtained from the first part give 

information about price-response relationships in a static way.  No price responses are 

found on Starkist’s and Chicken of the Sea’s price decisions against that of Bumble Bee 

during the same time period.  However, the second part finds that both Starkist and 

Chicken of the Sea responded to Bumble Bee in a dynamic way.   The second part 

contributes to the literature in that the study of firms’ strategic-price responses based on 

both static and dynamic approaches is more representative of the real world.  

 

Limitations of This Research 

There are several limitations of this dissertation.  The first limitation is due to the 

lack of brand-specific cost data.   If these data are developed, better demand and price 
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equations can be estimated.  Second, there was a limitation in promotional-activity data.  

This study was not able to take into account the effects of the use of brands’ coupons 

because IRI does not report the extent of their use.  Third, the observation period is short.  

This may be a reason why there was no difference between the use of the Stone index and 

the corrected Stone index.  The small number of observations may also affect the 

estimation of the dynamic price-response relationships in the second part.  Generally, a 

price series is not stationary over time.  The small sample size might be a reason why the 

four price series in this dissertation were found to be stationary.   Finally, the price-

response analysis in the second part investigates only whether the price relationships 

exist.  The VAR’s applications do not provide statistical magnitudes concerning the price 

relationships. 

  

Extensions of This Research 

This dissertation can be extended in several ways.  The first way is to include 

store brands as key variables in the estimation of degree of market power and price-

response strategies among the canned tuna brands in a local market.  In this dissertation, 

store brands were included in Allother.  However, store brands such as Kroger and BI-LO 

may have some effects on the national brands’ demand and price strategies.   Including 

store brands as key variables in the estimation should give better information about firms’ 

pricing behaviors in a local market.  The second extension is to apply this empirical 

method based on both static and dynamic approaches to the other markets or products.  

Another extension of this research is to find a way to include both static and dynamic 

information in the estimation of the degree of market power.  Measures of the degree of 
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market power need information of demand and price-response elasticities based on a 

static approach.  Since this dissertation has shown that firms’ price strategies are both 

static and dynamic, future studies might find a method to measure the degree of market 

power that is able to take into account both static and dynamic information in their 

investigations.   
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