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Abstract

The existence of an additional electron or hole in the presence of an electric monopole is a

well understood physical system, but this ideality is far from the true physical properties of

many molecules. Examples of such irregular electronic states include the attachment of an

excess charge to a molecule’s dipole moment, electronic correlation spanning a molecule, or

attachment of multiple excess charges. Current theoretical and experimental interpretations

widely vary for these states and further elucidation of the nature of extraordinary electronic

structure may provide solutions to unexplained observations and the impetus for industrial

application. For example, in the case of dipole-bound electrons, it has been proposed that

high-dipole moment molecules will attach electrons through the dipole moment which is

then captured in to a valence state. In order to test this hypothesis, dipolar electron

attachment to para-Nitroaniline is investigated. In addition, electron correlation within

highly symmetric molecules may play a role in silenced photoionization and provide insight

in to so called “super-excited” states or “collective excitations”. In pursuit of this electronic

character, we use the complex multi-photon ionization of tetrakis(dimethylamino)ethylene

to study the possibility of collective electronic excitations. For this purpose, a hemispherical

energy analyzer was adapted to acquire photoelectron spectra. Also, the presence of multiple

excess charge stabilized on a molecule demands the presence of a stabilizing factor such as

the repulsive coulomb barrier. In order to ascertain evidence for such stabilizing factors,

we use collisional charge transfer between 7,7,8,8-tetracyanoquinodimethane and sodium

for which a threshold would provide a metric of stability (electron affinity). Finally, we
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introduce Bayesian methods in the context of non-linear regression of collisional cross-

sections (dissociative and charge-transfer) to address stability issues involved in the numerical

estimations of partial derivatives. With this series of experiments we hope to shed new light

on several types of extraordinary electronic states as well as to introduce the use of novel

statistical methods.
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Chapter 1

Introduction

The presence of ions in a solution or compound play a major role in nearly every dynamic

process, bridging nearly all length scales. The logarithm of the concentration of protons, or

hydrogen cations, is so pervasive that it has been given its own term (pH). To this end, the

reaction of molecules to form new materials is driven by the presence of ions.

In all matter, electrons are used as a currency between atoms. The energy associated

with attachment of an electron is called the electron affinity (EA). Mathematically put, for

a molecule M, this is given by

EA = EM − EM− . (1.1)

Because the attachment of an electron can cause a geometric change in the molecule, the

electron affinity is further characterized as either adiabatic (AEA) or vertical (VEA). The

former of these refers to the energy difference given that M and M− are optimized at their

respective geometries. The vertical electron affinity, or vertical attachment energy refers to

the energy difference only in the geometry of the neutral (Figure 1.1).

On the other hand, the detachment energy is a measure of the amount of energy required

to detach an electron. Note that the adiabatic detachment energy is equal to the adiabatic

electron affinity. This has been proven in the case of a neutral and a cation as Koopman’s

Theorem. The vertical detachment energy (VDE) then refers to the amount of energy
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Figure 1.1: Morse potentials describing electronic energies.
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required to remove the electron and leave the neutral in the same geometry as the anion

(Figure 1.1).

The minimum energy input required to transition from the ground state of a particle to

the continuous set of states describing the cation and free electron is called the Ionization

Potential (IP). Thus, a single photon may ionize an atom or molecule if the energy of the

photon is larger than the ionization potential. The most celebrated ionization potential is

that of hydrogen (13.6 eV, non-relativistically) given that it is one of the only quantum

systems that is analytically solvable. Atomic ionization potentials range from 3.89 eV for

cesium to more than 23 eV for neon.

For atoms and Rydberg molecules, interpretation of the binding energy is relatively

simple: This binding energy relates directly to the Coulomb interaction between a positive

monopole and an orbiting negative electron. But, in the majority of molecules the spatial

separation and complexity of multi-atom orbitals provide a experimental challenge for

scientists. By focusing our sights on electron binding energy, we implement a variety of

ionization methods to study these extraordinary electronic states in three particular examples

detailed below.

Several ionization techniques exist which produce gas phase anions; typically these ions

start as neutral molecules in the solid or liquid phase and the process of changing phase

produces anions. Examples of such instruments include laser desorption ionization (LDI),

matrix-assisted laser desorption ionization (MALDI), direct access in real time (DART), and

electrospray ionization (ESI). LDI and MALDI utilize a sample in the solid phase placed as

a thin film on a metallic plate. A laser is then used to ablate some of the material off of

the plate which in turn produces ions. MALDI is distinguished from LDI in the fact that an

additional component (the matrix) such as sinapinic acid is added to the sample in order to

facilitate the ionization process.

In addition to LDI and MALDI which produce ions in a vacuum, DART is a commonly

used ionization source. In this case the ions are created in a collision process upon entering

the instrument in a fast beam of carrier gas molecules. Typically, collisions with vibrationally

excited gas molecules will transfer enough energy to an analyte which results in electron
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detachment and thus the production of cations. This process can be used with solids, liquids,

and gasses, but is generally limited by the ionization process to cation detection of small,

volatile molecules.

One innovation in particular, typically used in conjunction with time-of-flight mass

spectrometry (TOFMS), advanced the study of gas phase molecules more than any other:

Electrospray ionization. This ionization technique involves the ejection of an analyte solution

with a volatile solvent through a syringe needle tip with an inner diameter on the order of

microns. A large voltage is applied to this syringe tip to aid the ionization process. Thus,

the presence of a large electric field in conjunction with the rapid vaporization of the solvent

results in the soft-ionization of an enormous number of molecules. Prior to the advent of

ESI, ionization sources such as the Niel source utilized filaments or free electrons to produce

ions. Other methods include surface plasmon assisted laser desorption ionization (SPALDI),

electron impact, photoionization, etc.

In order to experimentally investigate some of the more exquisite electronic properties

of molecules, several of these ionization techniques may be taken in series. For example,

one irregular bound state involves the binding of an electron to the electric dipole of a

molecule (Chapter 3). Because the electron affinity associated with the dipole of a molecule

is typically on the order of meV, soft ionization techniques must be implemented. Electron

transfer between atoms in high Rydberg states and polar molecules is the main method of

producing dipole-bound anions.

In the case of Rydberg electron transfer, an alkali atom is accelerated down the first of two

flight tubes. While traveling down the tube, the atom is then intercepted with a laser which

excites the outer most electron from an s-state to a high Rydberg level. At the end of the

trajectory, the electron transfer target is put in to place via super sonic pulsed valve. Upon

collision, the electron will be transferred from the Rydberg atom to the molecule which can

then be further mass analyzed with a tandem TOFMS. The dipole-bound electron affinity

can then be ascertained from the Rydberg state which results in maximal dipole-bound

intensity. This technique has been extensively employed by the Compton group (Hammer

et al., 2003, 1999) and the French group of Defrançois and Scherman (Defrançois et al., 1994).
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From this work, a relationship between dipole-bound electron affinity and dipole moment

can be drawn (3.10).

Slow electron attachment has been of limited value in the formation of dipole-bound

anions. Nevertheless, electrons which attach to molecular dipole moments must have a low

kinetic energy which makes this technique valuable. Typically a molecular anion is created

with a convential technique, stripped of its electron during a collision process, and then

passed over a heated filament. Based on the heat of the filament, the Fermi-Dirac distribution

of electrons on the surface of the metal boil off with low energy. While this process is generally

easier to implement, the attachment process does not contain any information about the

dipole-bound EA. Instead, the ion source must then be tied to a photoelectron spectrometer

to assess binding energies (Smith et al., 2013).

This technique was implemented to study dipole-bound electron attachment to para-

Nitroaniline (Chapter 3). This molecule consists of a nitro group opposite an amino group on

a conjugated six-member ring. Due to the electronegativity of the oxygens on the nitro group,

para-Nitroaniline possess a large dipole moment which allows us to consider the relationship

between dipole-bound electron affinity and dipole moment for larger dipole moments as well

as the possibility of “doorway states” which have been shown in nitromethane, nitroethane,

and nitrobenzene (Stokes et al., 2008; Compton et al., 1996; Desfrançois et al., 1999). We

outline calculations which would suggest that two dipole-bound electronic states exist in

this molecule and therefore we expect photoionization to provide information about binding

energies and excited states of dipole-bound electrons.

In addition, we supplement detachment with collisional experiments and subsequent

modeling. These collisional experiments are pretinent to the study of intra-molecular

bonding and can be used to identify transition states based on the fragmentation pattern.

The modeling of such experiments has been extensively detailed by the Armentrout group,

though the algorithm for fitting is suspect due to instabilities in numerical approximations

(Armentrout et al., 2008; Ervin and Armentrout, 1985; Webe et al., 1986; Schultz et al.,

1991; Dalleska et al., 1994; Rodgers et al., 1997; DeTuri and Ervin, 1998; Iceman and

Armentrout, 2003; Su, 1994; Ervin, 1999; Koizumi and Armentrout, 2003; Koizumi et al.,
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2004; Amicangelo and Armentrout, 2001; Armentrout, 2007). For the purpose of robust

modeling we introduce Bayesian techniques to circumvent numerical approximations.

The lack of photoionization from a dipole-bound state may be indicative of a “doorway

state” in which electrons bind through the dipole moment and relax in to the valence state,

but this is not only stabilizing feature of molecules versus photodetachment. The presence

of a collective excitation of electrons under the influence of photons may be the cause of

a lack of photoionization in highly symmetric molecules such as hexafluorides (Armstrong

et al., 1994). Although never explicitly identified in an experiment, theoretical treatments of

such states in molecules began in the 1960’s (Nicolaides and Beck, 1976). In pursuit of such

experimental evidence we consider the photoionization of tetrakis(dimethylamino)ethylene.

This molecule is symmetric with respect to the nitrogen atoms whose lone-pair electrons

provide degenerate locations for photodetachment. Furthermore, it has been shown that a

large absorption maximum lies about 1 eV above the ionization limit (Hori et al., 1968).

Below we use a modified Comstock hemispherical energy analyzer to take photoelectron

spectra at a variety of wavelengths in order to explore the possibility of collective excitations

on small, symmetric molecules.

Another challenging problem in the world of electron binding involves multiply charged

anions (MCAs) (Chapter 5). Only with advances of ionization techniques over the last

forty years, have studies of multiply charged anions (MCAs) been performed (Dreuw and

Cederbaum, 2002; Schroder and Schwarz, 1999). The investigation of the electric properties

of gas phase MCAs has been championed by Wang et al.. Their instrument employs an ESI

source in conjunction with a magnetic bottle photoelectron spectrometer. This setup allows

for a large degree of flexibility as it can measure both positive and negative EDEs; as stated

above, ejected electrons from molecules with negative EDEs are measured with larger kinetic

energies than the incident photons. While the existence of several negative energy bound

states has been predicted, empirical evidence for negative energy states was first observed in

phthalocyanine tetrasulfonate tetraanions (Wang et al., 1998).

The existence of negative energy bound states implies that there must be a stabilizing

feature that would allow for an electron to remain attached to a molecule. One example of
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such a stabilizing mechanism is the Repulsive Coulomb Barrier (RCB). In many molecules

the presence of several atomic nuclei provides enough Coulomb attraction to bind an electron

directly. If this is not the case, it may be possible that a superposition of an attractive

(monotonically increasing) Coulomb potential attributed to the series of nuclei on to a

repulsive (monotonically decreasing) Coulomb potential attributed to the electrons results

in a local minima. Depending on the particular orientation of nuclei and the form of the

electron wavefunctions, this minima may lie above or below zero energy (Figure 1.2).

Although this is the only mechanism which results in negative bound electronic states,

resonance states provide stability where there would otherwise not be enough to attach an

electron. A Feshbach Resonance refers to the situation in which motion of multiple bodies

can create a bound state. Take for example an electron scattering off of an atomic cation:

The scattering may transfer energy to one of the cation’s electrons raising it to an excited

state. In turn, the projectile electron may then be captured in to a resonant state thus

forming a doubly-excited neutral atom. Often these resonances are described in the context

of ultracold, colliding atoms (Donley et al., 2002, 2001; Roberts et al., 2001). Experimentally,

these resonances can be observed by “tuning” the coupling of two colliding atoms with their

bound, molecular counterpart.

In order to further explore the stabilizing mechanisms we chose to study dianions of

7,7,8,8-Tetracyanoquinodimethane (TCNQ). This molecule contains two sets of cyano group

pairs spaced symmetrically across a quinone moiety. Given the electronegativity of each

cyano group, and the possible isolation of excess charge to opposite ends of the molecule,

TCNQ provides a prime example of stable molecular dianions. For this reason, we utilize

charge-transfer methods to make a measurement the second electron affinity. Unfortunately

this molecule also reacts with many solvents which makes solution based for the production

of the dianion difficult. Nevertheless, previous data taken at high colloision energies can be

used to predict low-energy threshold for charge-transfer. Again, Bayesian and Frequentist

techniques are juxtaposed to assess the utility of novel statistical techniques in the field of

Chemical Physics.
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Figure 1.2: The repulsive coulomb barrier resulting positive and negative energy bound
states.
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By the use of these three specific experiments, we seek to elucidate complexities in the

study of extraordinary electronic properties of molecules. Further analyses of these states

may provide insight in to the interpretation of currently unexplained phenomena such as

the Diffuse Interstellar Band (Sarre, 2000; Cordiner and Sarre, 2007) or the lack of direct

photoionization signal in symmetric molecules (Armstrong et al., 1994).

1.1 Statistical Modeling

Modeling of experimental data can be broken into two very general perspectives: Exploratory

data analysis and predictive data analysis. In the former, the researcher seeks to understand

the full character of the data. This might include grouping data (i.e. cluster analysis and

support vector machines), differentiating groups (i.e. discriminate analysis and analysis of

variance), or characterizing groups (i.e. principal component analysis and factor analysis).

Predictive analysis is more concerned with the prediction of future or unobserved data points;

thus, model fitting is more often utilized to estimate where values should lie. Despite this

contraction, both of these analysis paradigms use regression techniques to ascertain useful

information about a data set. Here we consider the latter set of techniques in order to garner

threshold values during collision processes.

All regression techniques follow a simple recipe: Begin with an objective function which

characterizes the relationship between the independent and dependent variables and then

minimize or maximize this function to solve for parameter estimates or other related

quantities. When working with continuous data this function is typically the sum squares

error (SSE):

SSE =
N∑
i=1

[yi − ŷi(x)]
2 (1.2)

where N is the number of data points. I will also introduce alternative functions which are

used in the field of statistics for non-traditional modeling.
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Analysis of collisional data requires non-linear modeling of two-dimensional data

comprised of an independent variable (collision energy) and a dependent variable (cross-

section). From a statistical perspective, non-linearity refers to the relationship between the

fit parameters. For example, taking a, b, and c as fit parameters,

y = ae−x
2

+ b
1

1− x
+ c

is still a linear model as it is linear in the parameters, whereas

y =
a

b
x+ c

is not. Linear modeling is preferred to non-linear modeling in all instances because it is more

computationally efficient and the minimum error solutions are always analytic. For these

reasons, whenever possible, we try to linearize the model by re-parameterizing. This may

be done for the second model by replacing a
b
with a new parameter a′. When this method is

not possible, non-linear regression algorithms must be implemented.

1.1.1 Linear Regression

Linear regression arises from three important assumptions:

1. The true relationship between the dependent variable and the independent variable is

linear, i.e.

yi = a0 +
m∑
j=1

ajfj(xi) + εi

where the εi are the errors or residuals.

2. The residuals are independent.

3. The residuals are normally distributed with mean zero, i.e. εi ∼ N(0, σ2).
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In linear regression we start with the model

y = a0 +
m∑
j=1

ajfj(x) (1.3)

where the fit parameters are given by each of the ai’s. The hat is used to indicate that this

is an estimator of the true dependent variable observations. Note that the functions fi(x)

need not be linear in x, but must not include any of the fit parameters.

It is often easier to write this in terms of a matrix equation. To do so we first form the

design matrix, X. This matrix has as its first column a unity vector to represent a0 while

each subsequent column is comprised of the vector Xi,(j+1) = fj(xi). The fit parameters are

then written as a column vector. We can then write equation 1.3 as

y = aTX

and the objective is to minimize the sum squares error given by

SSE = |ε|2 = |y − ŷ|2 = (y − aTX)T(y − aTX).

To minimize we simply take the derivative and set it equal to zero. Solving for this minimizing

condition we are left with

â = (XTX)−1(XTy) (1.4)

The application of the second and third assumptions are subtle, but can be highlighted

when considering the likelihood as the objective function rather than the sum squares error.

The likelihood is the joint probability distribution of all of the observations. This function

is interpreted as the probability that given the independent variable, the dependent variable

should arise. Given this interpretation it is clear that this function should be maximized

rather than minimized. In this derivation the residuals are all independent, identically
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distributed (i.i.d.) as Normal random variables:

L (ε) =
n∏

i=1

1√
2πσ2

exp (− ε2i
2σ2

)

= (2πσ2)−n/2 exp [− 1

2σ2

n∑
i=1

(yi − ŷi)
2] (1.5)

Notice from this formalism that maximizing the likelihood is equivalent to minimizing the

sum squares error regardless of the value of σ2. Using the likelihood instead of the sum

squares error allows for another level of generality: We can now violate the normality of the

residuals because the likelihood function can be chosen to be based on other distributions

such as Gamma, Exponential, etc.

1.1.2 Non-linear Regression

Non-linear regression techniques are used to fit data when the model cannot be expressed

in an equation which is linear in the fit parameters. This can be seen by attempting to

apply the same techniques used above. As a demonstration I will consider the dependence

of photo-electron signal (V ) on laser intensity (I):

V = aIn (1.6)

where a is a constant of proportionality and n is the order of the photo-ionization process.

Note than any observed value will have some associated error, Vi = aIni + εi.

The sum squares error is then given by

N∑
i=1

(Vi − aIni )
2 (1.7)
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Taking the derivative of 1.7 with respect to a and n and setting them equal to zero results

in two equations:

N∑
i=1

−2Ini (Vi − aIni ) = 0 (1.8)

N∑
i=1

−2Ini ln(Ii)(Vi − aIni ) = 0. (1.9)

Except for the trivial solution n = −∞, one can see immediately that these equations are

not simultaneously solvable.

An easy solution to this problem would be utilizing a transformation in order to linearize

the regression equation. In this case one would simply redefine some of the variables as

V ′i = ln(Vi), I
′
i = ln(Ii), and a′ = ln(a):

Vi = aIni → V ′i = nI ′i + a′. (1.10)

After this transformation it is easily seen that the regression techniques used above can be

applied.

If a simple transformation is not possible, as is often the case, the previous optimization

techniques are not useable and the problem must be tackled with less straightforward

approaches. Conventional regression analysis can be viewed from two paradigms: A

frequentist approach where the data are a representation of a population that was sampled

from and a Bayesian approach where the data were observed and are therefore fixed so we

seek to fit a population to it. The nuance between these interpretations is not immediately

apparent, but the difference in the theory speaks much louder. I first begin with the

frequentist approach as it is the most traditional.

Note that all approaches to non-linear regression are numerical optimization techniques

and thus much more computationally expensive than linear regression. The first and most

widely used non-linear regression strategy is to linearize the predictive function by the use

of Taylor expansions in the parameters (Seber and Wild, 1989). Suppose the function is
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written as y = f(x|θ) for observation values xi and parameter values θj for j = 1, 2, 3, ...,m.

A first order linear expansion of this function in the parameters is then written as

f(x|θ) ≈ f(x|θ∗) +
m∑
j=1

∂f

∂θj
|θj=θ∗j (θj − θ∗j )

or in vector notation,

f(x|θ) ≈ f(x|θ∗) + (∇f)|θ=θ∗ · (θ − θ∗)

where θ∗ is the true value of the parameter. The notation can be simplified by writing

F = ∇f |θ=θ∗ where Fij =
∂
∂θj

f(xi|θ)|θ=θ∗ . The sum squares error is then given by

SSE = [y − f(x|θ∗) + FT(θ − θ∗)]2.

Rewriting this equation with z = y− f(x|θ∗) and β = (θ− θ∗) we return to the normal least

squares regression form

SSE = |z− FTβ|2.

Once again, this error is minimized when

β = (FTF)−1FTz.

Clearly this solution cannot be directly implemented because θ∗ is unknown; nevertheless

it provides a recipe to arrive at the solution using numerical methods. The following

regression method is called the Gauss-Newton algorithm.

1. Begin with an initial estimate of the parameter values, θ(0).

2. Calculate the vector of the residuals as r = y − f(θ(0)).

3. The parameter estimation step is then given by δ(1) = θ(0) − θ(1) = (FTF)−1FTr.

4. Update the parameter estimation as θ(1) = θ(0) + δ(1).

5. Repeat steps 2 through 4 until a chosen level of convergence is reached.
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Note that this updating process is driven by the residuals. A modified version of the

Gauss-Newton algorithm called the Marquardt-Levenburg Algorithm is used when the square

of the derivative matrix, FTF, is not well-behaved(invertible) (Seber and Wild, 1989).

Consider first using the derivatives of the estimate residuals instead:

J =
∂r

∂θj
=

∂[y − f(θ)]

∂θj
= −F.

In order to produce a step in the iterative process of error minimization, the value

δ(i) = −(J(i)TJ(i) + η(i)D(i))−1J(i)Tr(i)

where η(i) is a parameter which ”directs” the Gauss-Newton stepping with a steepest decent

search and D(i) is a diagonal matrix. Often, for simplicity, D(i) is taken to be the identity

matrix. Note that if η(a) = 0 this formalism is identical to the Gauss-Newton Algorithm.

With this in mind, the choice of η(i+1) = η(i)/10 is frequently used so that the influence of

the steepest decent step is decreased throughout the iterative process.

The Marquardt-levenburg Algorithm is quite robust to initial conditions, but there are a

plethora of η(i) constraints that can be implemented and any specific choice is generally

subjective. By far the biggest challenge in implementing these algorithms comes from

analytically evaluating the derivatives of the non-linear function. A clear example of these

shortcomings is presented in the context of collision induced dissociation (Chapter 3).

1.2 Bayesian Modeling

In the Bayesian paradigm, a posterior probability distribution, or posterior, of the parameters

is used as the objective function. At the heart of this thought process is the notion that the

parameters are not fixed, but are distributed in some probability space. This is constructed

by modifying the likelihood using Bayes’ Rule: Given a parameter space dimensionality of
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M , we begin with Bayes’ Rule.

P (θ|X) =
P (X|θ)P (θ)∫
P (X|θ)P (θ)dMθ

(1.11)

where the P (θ) are called priors or prior probability distributions and they represent a

priori knowledge about the distribution of the parameters. The choice of these distributions

presents a similar problem to the choice of the η(i) from the Marquardt-Levenburg Algorithm

but with one catch - they are distributions rather than constants. Thus, they may be chosen

to be diffuse so that they do not strongly influence the sampling procedure. In this case they

are said to be non-informative in that there is no prior information about the parameters.

In the limit that each prior is extremely diffuse and does not constrain the parameter space,

the sampling procedure can be shown to be equivalent to randomly sampling the likelihood.

Typical choices for the prior distributions are those which result in a posterior of the

same functional form; these are titled conjugate priors. The advantage to conjugate priors

is that they leave the posterior in an analytical form so that random sampling is simplified.

A few examples are listed in Table 1.1. When no conjugate is available typical choices

include the Normal distribution or the Uniform distribution as they are symmetric and

easily parameterized.

Table 1.1: Bayesian conjugate prior distributions.

Sampling Distribution Conjugate Prior Posterior

xi ∼ Pois(λ) λ ∼ Γ(α, β) λ|xi ∼ Γ(α +
∑n

i=1 xi, β + n)

xi ∼ N(μ, σ) μ ∼ N(μ0, σ0) μ|xi ∼ N((μ0

σ2
0
+

∑n
i=1 xi

σ2 )/( 1
σ2
0
+ n

σ2 ))

xi ∼ N(μ, τ) τ ∼ Γ(a, b) τ |xi ∼ Γ(a+ N
2
, b+ 1

2

∑N
i=1(xi − μ)2

Furthermore, prior probability distributions can be selected to constrain the parameter

space. For example, if each of the model parameters must take a positive value (a
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frequent requirement for physical interpretation), a convenient prior distribution would be

the truncated Normal distribution, the Gamma distribution, the Log-Normal dsitribution,

etc.

Distributions of regression parameter estimates then result from a sampling procedure

called a Markov Chain Monte Carlo Simulation (MCMC). The ultimate goal of a Markov

Chain Monte Carlo Simulation is to utilize a sampling procedure based off of Markov Chains

in order to create a Monte Carlo sample which approximates the a sample from the posterior

distribution of the parameters. Suppose that the set of all possible states forms a space, Sθ.

Point-estimates of the parameters will then be given by the mean of the posterior distribution:

θ̂ = ESθ
[θ] ≈ 1

N

N∑
i=1

θ
(i)
MC (1.12)

where N is the number of Monte Carlo samples, θ
(i)
MC . Monte Carlo samples asymptotically

approach the true distribution of the states in Sθ. In a continuous state space the probability

that any state is sampled more than once is zero and thus this asymptotic convergence can

be visualized easiest via binning to form a histogram. Therefore, this mean represents

the parameter estimates because each value (or value’s neighborhood) will only be sampled

asymptotically as often as the posterior distribution dictates. It is then necessary to produce

a method of sampling from a distribution which is unknown.

A Markov Chain is a transition process which maps a state space to itself. The transition

probability from any particular state i to another state j is labeled as Pij. In a discrete state

space the transition probabilities may form a matrix P. In a continuous space this transition

probability will take the form of some probability distribution, Pij = f(j|i). Thus, if the full
conditional distribution of each parameter can be specified one can use the Gibbs Sampler :

1. Begin with an initial estimate of the parameters, θ(0) = {θ(0)1 , θ
(0)
2 , ..., θ

(0)
M } and some

user chosen value N .

2. Sample the first parameter value θ
(1)
1 ∼ P (θ1|x, θ(0)).

3. Sample the second parameter value θ
(1)
2 ∼ P (θ2|x, {θ(1)1 , θ

(0)
2 , ..., θ

(0)
M }).
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4. Continue this sampling method for θi for i = 3 to M as

θ
(1)
i ∼ P (θ2|x, {θ(1)1 , θ

(1)
2 , ..., θ

(0)
i−1, ..., θ

(0)
M }).

5. Repeat this procedure N times. If the chain converges to a steady-state approximation

of the posterior, the parameter estimates are then given by 1.12.

In most cases the full conditional probabilities are not available and so another method

must be used to create the Monte Carlo sample. This is done using theMetropolis Algorithm:

1. Begin with an initial estimate of the parameters, θ(0).

For each parameter θi,

2. Sample a candidate parameter value, θ∗i , using a symmetric random walk distribution

(Normal, Uniform, etc.), θ∗i ∼ f(θi).

3. Sample a random uniform number between 0 and 1, u ∼ Unif(0, 1).

4. If u ≤ P ({θ(0)1 ,θ
(0)
2 ,...,θ∗i ,...,θ

(0)
M })

P ({θ(0)1 ,θ
(0)
2 ,...,θ

(0)
i ,...,θ

(0)
M }) then accept the value such that θ

(1)
i = θ∗i otherwise reject

the value, θ
(1)
i = θ

(0)
i .

5. Repeat this procedure N times in order to get a sample of size N for each parameter.

The parameter estimates are then given by 1.12.

In addition to the point estimates of the parameters we can use the Monte Carlo samples

to directly calculate estimates of the correlation between the model parameters, confidence

intervals at any level of confidence, prediction intervals, etc. This is particularly useful

because in non-linear regression, the Frequentist interval estimates require the analytical

derivatives. Approximations to these derivatives require similar computational techniques

in addition to those used to arrive at the point estimates.

There are many alternatives to the non-linear regression techniques presented here. All of

these techniques follow the same basic strategy: Identify an objective function and optimize

it. A grid search for an optimized objective function can be implemented in order to find the

prarmeter values of a non-linear regression. Ordering these values by the log-likelihood may

18



present some information on the confidence bands of the estimates as well. In this case the

estimates are limited to the grid points; thus, more advanced searching algorithms can be

utilized such as the genetic algorithm or simulated annealing. The objective function is not

limited to the error, likelihood, or posterior either. Several other objective functions have

been proposed such as Akaike’s Information Criterion (AIC), Schwarz’s Bayesian Criterion

(SBC or BIC), or Information Complexity (ICOMP).

1.2.1 Bayesian Linear Regression

In order to contrast Bayesian and Frequentist methods of regression, simple (one independent

variable) linear regression is presented within the Bayesian paradigm below. The regression

model is then given by

yi = β1xi + β0 + εi = βTX+ ε. (1.13)

Based on the assumptions that were listed previously, each εi is Normally distributed with

mean 0 and variance σ2. Note again that the observed variables, xi are fixed and thus have

zero variance while the model parameters are random variables. It is easy to see then that

the distribution of the dependent variable is Normal with mean β1xi + β0 and the likelihood

is the product of each of these distributions:

L (ε) = (2πσ2)−n/2 exp [− 1

2σ2
(y − βTx)2] (1.14)

The following analysis is simplified greatly through the use of conjugate prior probability

distributions for each of the model parameters:

f(β0) =
1√
2πσ2

0

exp[−(β0 − μ0)
2

2σ2
0

] (1.15)

f(β1) =
1√
2πσ2

1

exp[−(β1 − μ1)
2

2σ2
1

] (1.16)

19



The posterior distribution is the normalized product of the likelihood with the priors:

π(β0, β1|y,x, σ2, μ0, σ
2
0, μ1, σ

2
1) = N

1√
4π2σ2

0σ
2
1

(2πσ2)−
N
2

× exp[− 1

2σ2

N∑
i=1

(yi − β1xi − β0)
2 − (β0 − μ0)

2

2σ2
0

− (β1 − μ1)
2

2σ2
1

] (1.17)

Note that the form of the likelihood lacks separability of the model parameters. In this

case the posterior is then a joint probability distribution given by a Multivariate Normal

Distribution. Parameter estimates are then generated by using either the Gibbs Sampling

Algorithm or the Metropolis Algorithm. In order to implement the Gibbs Sampling

Algorithm, one must solve for the full conditional distributions:

π(β0|y,x, σ2, μ0, σ
2
0, μ1, σ

2
1, β1) (1.18)

π(β1|y,x, σ2, μ0, σ
2
0, μ1, σ

2
1, β0). (1.19)

In many circumstances this is not possible as the form of the conditional distributions

are often not analytic. For this reason, I will demonstrate only the Metropolis Algorithm

here. Let F (β1, β2) = π(β0, β1|y,x, σ2, μ0, σ
2
0, μ1, σ

2
1).

• Begin with an initial set of parameter values β
(0)
0 and β

(0)
1 . For j = 1...S iterations,

• Sample a candidate β∗0 from the Normal distribution.

• Sample a random uniform number u ∼ U(0, 1).

• If u <
F (β∗0 ,β

(j−1)
1 )

F (β
(j)
0 ,β

(j−1)
1 )

, accept the point as a new sample of the posterior: β
(j)
0 = β∗0

otherwise β
(j)
0 = β

(j−1)
0 .

• Sample β∗1 from the Normal distribution.

• Sample a random uniform number u ∼ U(0, 1).

• If u <
F (β

(j)
0 ,β∗1 )

F (β
(j)
0 ,β

(j−1)
1 )

accept the point as a new sample of the posterior.

Example code is included in Appendix A.
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1.2.2 Advantages and Disadvantages of Bayesian Analysis

Throughout this dissertation, the largest advantage of Bayesian statistics that we exploit

comes from the lack of a need to evaluate the partial derivatives of a model. In frequentist

techniques, partial derivatives also enter the algorithm through constraint equations via

the Implicit Function Theorem. Therefore, issues involved in numerical approximations

of derivatives used to constrain the parameter space as well as the modeling itself can be

circumvented using Bayesian analysis. But, these are not the only advantages in using

Bayesian tools.

By far the biggest accomplishment of the Bayesian school of thought comes from

hierarchical modeling in which level upon level of complexity can be introduced in to the

model. This has been shown to be useful in many fields, such as ecology (Clark, 2005)

and may find some relevence in more complex processes in Chemical Physics. Additionally,

imputation and agglomeration of modeled data can be performed simply with Bayesian tools

by use of priors formed from previous posterior distributions.

These advantages come with a cost though, specifically a computational cost. Each

simulation requires a large number of iterations to assure that convergence to a posterior

probability distribution is achieved. Once there is an acceptable convergence, the primary

iterations should be truncated. The number of iterations to be truncated is called the burn-in

and can generally be assessed graphically. An example of this convergence is given in Figure

1.3 where convergence occurs roughly around 5000 iterations.

While a typical Marquardt-Levenburg optimization will run for less than 100 steps, a

Bayesian analysis should run for more than 100,000 iterations. This is due to the large

auto-correlation between sequentially sampled points which violates a random sampling

assumption used to form the Monte Carlo estimate. An estimate of the true number of

randomly sampled points can be drawn from the effective sample size, given by the number

of iterations times one minus the auto-correlation in the sample. All modeling performed in

this dissertation use effective sample sizes larger than 1000 for each of the parameters in the

model.
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Figure 1.3: A graphical assessment of convergence to the posterior probability distribution
during a Bayesian MCMC.
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In both examples, inherent correlation between the model parameters may drive the

estimation process. This can be seen clearly in Figure 1.3 between the second and third

parameters as an increase in one of the parameters can be matched with a decrease in the

other parameter. In a Marquardt-Levenburg optimization process, the partial derivatives

of the model are functions of the other parameters which in turn drives each step of the

optimization as well. One benefit of Bayesian computations allows a variety of tuning

parameters that can be modulated while the inter-parameter correlation may be monitored

so as to choose a particular value in order to minimize the effects of this situation throughout

the simulation.
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Chapter 2

Experimental Apparatus

Ion and electron energy analysis has been largely developed in the context of photoelectron

spectroscopy (PES). Some current electron energy analyzers include time-of-flight mass

spectrometers, Faraday cups, magnetic bottle mass spectrometers, and hemispherical or

cylindrical shell energy analyzers. The predominant method of energy analysis follows from

the first of these instruments, the time-of-flight mass spectrometer (TOF-MS).

The first type of detector that was used in photoelectron spectroscopy was a simple

retarding grid set up. This used an applied voltage to gather electrons and recorded the

resultant current. Because the signal monotonically increases, the final spectrum is then

constructed from the derivative of the current vs. retarding voltage. Although this setup is

straightforward and simple, the data recorded were of poor resolution and typically unstable.

In cases where data clarity is not as important, a similar instrument design has been

implemented; this is the Faraday Cup. Instead of a simple plate, a conductive “cup” is used

to gather incident ions. Again, this instrument style suffers from poor resolution. Examples

where this may still be used are during preliminary analysis or cases in which simple detection

is more important than measurement.

The TOF-MS has been the archetypical energy analyzer over the past few decades. Due

to the ease of use and construction, this instrument provides a powerful tool. In addition, the
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collection efficieny at low energies is excpetional provided proper focusing. Also, TOF-MS

instruments can pass charged particles of all energies simultaneously.

In order to investigate product energy using a TOF-MS, a mass is assumed to be fixed

so that only one product is being analyzed whether it is electrons or ions; typically this may

be done with mass gating. After an initial charged particle packet is created, the packet is

accelerated down a flight tube. The initial energy of each electron or ion is then expressed

as a time-of-flight:

E =
1

2
mv2 ⇒ t =

√
mL2

2E
(2.1)

for mass m, flight tube length L, and kinetic energy E. One pitfall of this kind of analysis is

that the time resolution is limited by the initial energy of the electron or ion. This is easily

seen by simply considering the absolute value of the time differential:

dt =
1

2

√
mL2

2E3
dE. (2.2)

Thus, the resolution of the instrument decreases significantly with higer energies.

Addtionally, the acceleration and focusing along the time-of-flight axis can convolute the

initial energies in the direction of propagation. In order to utilize TOF-MS and preserve

resolution at higher energies, one can adapt the detector to use ion imaging. This method

utilizes the intial transverse motion or the charged particles in order to create an image. The

axis of propagation for the ion packet is no longer measured, rather the transverse distance

that the ions or electrons have travelled contains the information about the initial energy.

Because the locus of ion creation is relative small, we can approximate all charged

particles as being created from a point. The initial motion of electrons or ions is then radially

outward, with particles of the same energy forming spherical shells. The ion packet is then

accelerated down a flight tube and collides with a detector, most often microchannel plates.

The electron cascade from the channel plates is then accelerated on to a phosphorescent

screen which illuminates a CCD detector. A landmark advancement in this field came from

a focusing condition called Velocity Map Imagaing (VMI). In this case, the charged particle
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packet is then distorted along the propagation axis in order to focus particles of like velocity

(and therefore kinetic energy) to the same point.

Resulting images give blurred, concentric rings whose radii reflect the ion energies. In

order to acquire all of the information from the images an inverse Abel transformation is

applied to the resulting data. This transformation is applied because the incident ion packet

is essentially a three-dimension sphere being projected onto the microchannel plate detector.

This is then transformed to “unfold” the sphere into a cylindrical shell. This method is

particularly powerful because it allows one to acquire information on the initial energy and

the photoangular distributions (under the condition or a polarized light source). A down

side is that the focusing required to attain high transverse resolution comes at the cost of

reducing the resolution along the axis of propagation.

The magnetic bottle spectrometer is similar to the TOF-MS, except that magnetic fields

are used in order to corral electrons or ions toward the dift tube prior to analysis. While

this increases the capture efficiency, the introduction of magnetic fields around the ionization

region effects the initial energy distribution of the charged particle packet. This in turn is

reflected in the spectrum. Also, the strong magnetic field can often be a part of the physics

being studied.

In contrast to each of these, a cylindrical or hemispherical energy analyzer provides

good resolution at low and high electron energies. In most cases a hemispherical energy

analyzer is preferable to a cylindrical shell due to the flexibility of the sample insertion. In

a hemispherical shell, electrons or ions which enter the energy analyzer at an angle may still

reach the detector by following a path with a different azimuthal angle. For this reason,

this type of electron energy analyzer has become widely used in commercial and home-built

instruments for the purpose of low-energy photo-electron spectroscopy, x-ray photoelectron

spectroscopy, and collisional-charge transfer experiments.
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2.1 Energy Analyzer

In order to measure electronic binding energies throughout this dissertation, an ES-101

(Comstock) hemispherical sector energy analyzer was used. The instrument shell was

transferred from the Oak Ridge National Laboratory to the University of Tennessee,

after which we modified the electronics, detection system, and installed a computer-based

acquisition system. Outlined below are each of these modifications in the context of the

principles behind its usage.

The instrument used to record the data in this dissertation is depicted in Figure 2.1.

Ionization and focusing occurs in a stainless-steel ante-chamber. This ionization processes

studied here involve either multi-photon ionization, resonantly enhanced or otherwise, or

collisional charge transfer. Following ionization, the charged particle of interest (electrons

or ions) enter an electrostatic lens system. While being focused by the lens, the ions pass

through a voltage difference dictated by the top of the lens system and a plate which the

energy analyzer is mounted to. The hemispherical sector energy analyzer used here consists

of two concentric, conducting hemispheres of radii equal to 3 inches for the inner hemisphere

and 5 inches for the outer hemisphere. As stated previously, the energy analyzer works by

establishing spherical equipotential surfaces over which charged particles of specific energies

may travel. Once the path is complete, the impact of each charged particle with the detector

prompts a voltage spike.

The first theory concerning the feasibility of hemispherical energy analyzers was presented

by Purcell (Purcell, 1953). Given a conducting hemisphere with an applied voltage Φ0,

solving Poisson’s Equation (∇2Φ = 0) results in a voltage around the hemisphere of the

form

Φ(r) = Φ(r) =
a

r
+ b for r ≤ r0 .

where r = |r|. Under boundary conditions given by the constant surface at any two radii r1

and r2

Φ(r1) = Φ1 and Φ(r2) = Φ2
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Figure 2.1: A 3-dimensional schematic of the hemispherical sector energy analyzer. The
charged particle trajectory is shown in red.
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one can solve for the constants as

a =
r1r2(Φ1 − Φ2)

r2 − r1
(2.3)

b =
r1Φ1 − r2Φ2

r1 − r2
. (2.4)

Thus, given two target constants one could solve for the potentials necessary to transmit

electrons through the hemispherical energy analyzer.

These two target constants come from matching the radial force on the electron with the

centripetal force associated with the circular motion. The centrifugal force on an electron

traveling through the energy analyzer is given by

F(r) =
mv2

r
r̂ =

2TE

r
r̂

for transmission energy TE = 1
2
mv2. The electric field in the energy analyzer is given by

the gradient of the potential:

F(r) = −∂Φ

∂r
r̂ =

a

r2
r̂. (2.5)

Equating the corresponding electrostatic force to the centrifugal force gives

e
a

r2
=

2TE

r
⇒ a = 2r

TE

e
. (2.6)

Basic operation of the energy analyzer insists that an electron will have a given energy

when ionization occurs which is subsequently accelerated or retarded to a select energy.

Thus, any electron entering the analyzer will have some initial energy, KE. The voltage

required to accelerate the electron is then given by TE−KE
e

. The potential isosurface at the

entrance of the energy analyzer must match this, i.e.

a

r
+ b =

TE −KE

e
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Plugging in the solutions to the constants from 2.3 and 2.4 we arrive at the equation

r1r2(Φ1 − Φ2)

r(r2 − r1)
+

r1Φ1 − r2Φ2

r1 − r2
=

TE −KE

e
. (2.7)

Combining Equations 2.6 and 2.7 and simplifying gives that

Φ1 =
1

e
[TE(2

r

r1
− 1)−KE] (2.8)

Φ2 =
1

e
[TE(2

r

r2
− 1)−KE]. (2.9)

Taking the difference of equations 2.8 and 2.9 gives

ΔΦ =
2TE

e
(
r

r1
− r

r2
). (2.10)

It is readily apparent that the transmission energy of the energy analyzer is thus fully

specified by the difference in potentials between the inner and outer hemispheres and the

choice of radial pass surface, r. This pass surface is then given by the radial plane which

intersects the position of the electron detector in the analyzer.

In many applications the pass surface is defined by the detector as the mean radius of

the instrument

r =
r1 + r2

2
⇒ ΔΦ =

TE

e
(
r2
r1

− r1
r2
).

Two methods can then be implemented in order to measure the energy of incident electrons:

Scanning one of the hemispheres or scanning an accelerating/retarding potential prior to

entrance. The former method utilizes the relationship given above by scanning over ΔΦ.

Practically, this can be done by holding either the inner or outer hemispheres at a constant

voltage and scanning the other hemisphere over a range of voltages. This method modulates

TE until the matching condition on TE−KE
e

is met. Notice that this can be done only because

the pass energy is independent of the initial charged particle kinetic energy KE.

The second method is the one used to perform energy analysis throughout this

dissertation. The transmission energy remains constant and a voltage is applied to the plate
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just prior to entrance into the analyzer. This voltage then accelerates or decelerates the

incident electron/ion so that the matching condition is once again met. This is equivalent to

fixing TE and scanning the plate voltage until Φplate =
TE−KE

e
. Note that implementation

of this method fixes the voltages of the hemispheres relative to the plate voltage so that

the equipotential surface does not change while scanning. In addition, this is prefered to

scanning one of the hemispheres because the systematic error is a function of the pass energy;

by changing the pass energy, the experimental error will scale as the energy of the molecule

rather than being fixed.

As an example, suppose that we want to pass electrons with an energy of 1 electron-volt

and the pass surface is defined by the mean radius. The voltages on the hemispheres are

then given by

Φ1 =
TE

e

r1
r2

+ Φplate (2.11)

Φ2 =
TE

e

r2
r1

+ Φplate (2.12)

One can see that during any scan, the plate voltage is modulated directly and the hemispheres

are scanned linearly with an offset. For an electron of energy 2 eV, Φplate = −1V and

Φ1 =
1eV

e

5

3
− 1 (2.13)

Φ2 =
1eV

e

3

5
− 1. (2.14)

2.1.1 Analysis of Performance

For a photoelectron spectrometer, the theoretical transmission is given by

ΔE1/2

E
=

w

2r
+ α2 (2.15)

where ΔE1/2 is the full-width half-maximum, w is the average entrance slit width, r is the

pass radius, and α is the angular velocity spread as they enter the energy analyzer (Kuyatt
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and Simpson, 1967). Thus, the larger the pass radius of the instrument, the smaller the

full-width half-maximum, and ultimately the better the resolution.

Ideally the size of the instrument can be increased indefinitely for perfect resolution.

Practically, the size is limited by several factors, the most important being the presence

of magnetic fields. In this case the effect of external magnetic fields such as Earth’s are

mitigated by mu-metal shielding. This may not be effective at much larger sizes though.

In general there are two quantities with which one can evaluate the performance of a

hemispherical energy analyzer: The dispersion and the trace width. The former of these

refers to the ability of the instrument to spatially separate ions of different kinetic energies.

In other words, for a given pass energy E0, the dispersion is given by

D = Δx
E0

ΔE
(2.16)

For a 180 degree hemispherical sector energy analyzer this has been shown to be 2R0

(Wannberg et al., 1974).

The trace width is a measure of the size of the electron impact spot given that the

electrons have some angular spread, Δα upon entering. Given in terms of a spread in pass

radius, this is then given by

R0(1 + δ) = R0
cos2(Δα)

1 + sin2(Δα)
(2.17)

where the radial displacement caused by Δα is given by R0δ (Hafner et al., 1968). It has

been shown that this can be reduced to

δ = −2(Δα)2 ⇒ R0(1 + δ) = 2(Δα)2R0. (2.18)

A figure of merit that is often used to assess the resolving power of a hemispherical energy

analyzer is the ratio of the dispersion to the trace width, i.e. (Δα)2.
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2.2 Electrostatic Lens

Electrostatic lenses are used in order to focus charged particles based off of radial electric

fields. Often times this lens is a three element Einzel Lens with alternating polarity of

voltages. The first and third element will have the same voltage so as to not incur a change

of charged particle energy. The voltage differences between each lens element causes focusing

by first spreading any charged particle beam and then focusing. The initial broadening of

the charged particle beam is differential; in other words, those charged particles which are

least centric are spread the most initially. The subsequent focusing is differential as well.

In many applications one wishes to accelerate charged particles while focusing. If this

is the case, the potential topography must be changed to incorporate a voltage difference

between the first and last lens element. The lens system can then be though of as a series of

drift tubes similar to those used in particle accelerators. The electrostatic lens used in this

instrument is a tiered, three element lens with each segment larger than the last (Figure 2.2)

(Wannberg and Skollermo, 1977).

The ideal voltages applied to each of the lens are given by

V1 = 0 (2.19)

V2 =
0.22

e
Ei + Vr

V3 =
15.1

e
Ei + Vr

V4 = Vr

where Ei is the energy of the incident electron and Vr is the accelerating or retarding potential

provided by the plate. Again, due to the existence of contact potentials the optimum

coefficients of Ei must be arrived at empirically. In the case of photoelectron spectroscopy
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Figure 2.2: SIMION simulation of electrostatic lens using 1 eV electrons dispersed about
the entrance aperture.
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(Chapter 4), signal was sufficient to use cosntant potentials given by

V1 = 0 (2.20)

V2 = 4.15V

V3 = 49.50V

V4 = Vr.

2.3 Signal Detection and Processing

In order to detect the charged particles which traverse the experiment, a series of chevron

stacked channel plates are placed on the other side of the entrance hole (Del Mar Photonics).

Each plate consists of a mesh of micron sized glass holes bored through at an angle between 5

and 15 degrees relative to the facial plane and coated with a metal (often a nickel-chromium

alloy). A chip from the border indicated the channel slant direction on each plate so that

plates in series may be positioned to maximize the amplification. A manufacturer suggested

voltage of 900 V is applied across each channel plate in order to bias the electron flow direction

towards a collection plate (2.1). Throughout the experiment this value is modulated to allow

for an appropriate signal to noise ratio.

The channel plates are mounted between thin cylindrical shell, stainless steel plates with

an inner diameter appropriate for the active area of the channel plates. In front of the

channel plate stack a gold mesh grid is used to homogenize the electric field at the exit of

the energy analyzer. Finally, collection of the electrons leaving the second channel plate

are collected on a stainless steel plate, directed by a bias voltage. Signal was then collected

through a capacitor which acted to set a time constant of the outgoing signal as well as

zeroing the voltage offset. All voltages were applied via resistive voltage dividers (2.3).

Given that each channel plate has a resistance of approximately 100 MΩ, proper voltage

division is attained by using the following resistances: R1 = 1230Ω, R2 = 9.97MΩ, and

R3 = 9.95MΩ. The capacitor has a capacitance of 1.067 nF and thus the voltage spike time

scale is set to be C ×R3 ≈ 1.2μs.
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The post-production signal was amplified by a factor of approximately 45 using an Ortec

474 Timing Filter Amplifier. The amplified signal was then integrated using an SRS Gated

Boxcar Integrator with between 30 and 300 averages. The specific number of averages was

chosen to balance the signal-to-noise ratio and the acquisition time which directly relates to

the drift of laser power.

One of the main advantages of the modifications made to this instrument was the

dramatic increase in acquisition speed due to computer integration. While previous scans

would take on the order to hours to run, these improvements reduced scan time to about

15 minutes. In order to acquire the data, the National Instruments Labview v8.1.0

programming suite was used in accord with a National Instruments Data Acquisition Board

(DAQPad6020E). A sample image of the front panel and block diagram are shown in figures

2.4 and 2.5. Through the program, four of the BNC connections were used to (1) Output

a scanning voltage, (2) Trigger data acquisition concomitant with laser pulses, (3) measure

the output scanning voltage, and (4) measure the signal voltage. The third BNC connection

used here was deemed necessary because the output precision used in the scanning voltage

was not precise enough. For example, if the output voltage target was 1.010 Volts, the

DAQPad may output 1.010 ± 0.007. For target Full-Width Half-Maximums (FWHMs) on

the order of 10 meV, this inaccuracy must be accounted for.

A number of data points (25 to 250) were recorded from each of the two input channels

at a rate of 10 kHz. The final recorded value was taken to be the average of these points

as a method of minimizing the noise produced from errant signals in the DAQPad. A delay

of approximately 5 seconds between each acquisition was used to let the boxcar integrator

complete the averaging process. Given a smaller delay, the averaging can be seen prominently

within each peak as an exponential relaxation to the baseline.
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Figure 2.3: Circuit schematic for channel plates.
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Figure 2.4: Labview front panel used to scane energies with the energy analyzer.
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Figure 2.5: Labview block diagram used to scan energies with the energy analyzer.
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Chapter 3

Collision-Induced Dissociation of

p-Nitroaniline

The minimum dipole moment required to bind an electron has been a historical problem,

beginning to take form in the late 1960s when a series of calculations resulted in a minimum

dipole moment of 0.693a0 where a0 is the Bohr radius. Unbeknownst to these scientists,

Teller and Fermi had arrived at an identical value in 1947 (Fermi and Teller, 1947). During

the 1970’s, Garrett and Crawford identified the fact that a real, rotating dipole moment

depends on the moment of inertia and initial length (Garrett, 1970, 1971; Crawford, 1971;

Garrett, 1972; Carwford and Garrett, 1977; Garrett, 1978, 1979a,b, 1980, 1982). With this

fact, they find that the minimum dipole moment will increase with rotational quantum

number. Therefore, they conclude that the minimum dipole moment for binding an electron

is about 2.5 Debye.

In order to elucidate the relationship between electric dipole moment and electron binding

energy for state bound to that moment, we chose to explore para-Nitroaniline (pNA). The

structure of pNA is a benzene ring with an amine group (NH2) and a nitro group (NO2) in

the para- position (Figure 3.1). This allows for a “push-pull” electronic structure in which

the electron accepting nitro group will pull electron density from the electron donating amine

group. The separation of an electron donating group and electron accepting group across a
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Figure 3.1: Molecular structure of pNA.
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benzene ring also implies that the molecule has a large dipole moment. This dipole moment

has been measured as 6.2 Debye (Cheng et al., 1991) in acetone and has been calculated

to be between 7.0 and 8.1 Debye (Soscún et al., 2006). Further, the dipole moment of an

excited state of the molecule has been measured to be as large as 13.35 Debye (Kawski et al.,

2006).

3.1 Computational Analysis

Because the dipole moment of pNA is much larger than the critical value, it would seem

that the molecule should form a dipole bound anion. In order to explore this concept more

the electronic states were computationally explored using a variety of basis sets and levels of

theory. Vibrational motion in pNA causes a wagging motion of the amino group which causes

any optimized geometry to be a superposition of a planar geometry with C2v symmetry and a

“bent” geometry with Cs symmetry. This is also responsible for instabilities in the geometric

optimization procedure using second order Møller-Plesset perturbation theory. In order to

rectify this problem, the TPSS density functional was used to validate any optimization

(Tao et al., 2003). The basis set used in each of these calculations was Ahlrich’s redefined

triple-ζ set augmented with a minimal set of diffuse functions (ma-Def2-TZVP) (Weigend

and Ahlrichs, 2005; Papajak and Truhlar, 2010).

Electronic states were then calculated using the equation-of-motion coupled-cluster

method with single and double excitations for electron affinities (EA-EOM-CCSD). Due to

spin contamination in Hartree-Fock calculations for the anion, coupled-cluster calculations

were performed using the orbitals of the neutral (QRHF coupled-cluster calculations). The

basis sets used were Dunning’s correlation consistent double-ζ (Aug-cc-pVDZ) and triple-ζ

(Aug-cc-pVTZ) sets. Based on the geometry used, the results show that there are 3 predicted

dipole-bound states (Table 3.1).
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Table 3.1: Vertical Detachment Energies (in eV) for dipole bound states in pNA

C2v symmetry

1st 2A1 2nd 2A1 1st 2B1

Aug-cc-pVDZ+ 104 2.0 47

Aug-cc-pVTZ+ 107 2.0 208

Cs symmetry

1st 2A′ 2nd 2A′ 3rd 2A′

Aug-cc-pVDZ+ 110 80 1.5

Aug-cc-pVTZ+ 261 96 1.5

3.2 Photoelectron Spectroscopy

In order to generate the photoelectron spectrum, ions were first created using slow electron

attachment. The sample of pNA entered the instrument via supersonic expansion through

a pulsed valve with a carrier gas of argon. Electrons are then produced from a hot thoriated

iridium filament and freely attach to pNA. A beam of the negative ions is then crossed

perpendiculary with a 488 nm Ar-ion laser for photodetachment. After passing through a

series of ion optics, electron energy is then evaluated in a hemispherical energy analyzer.

Dipole-bound electrons manifest themselves as very low energy electrons in the photo-

electron spectrum. It can be seen that no dipole bound character is seen in this spectrum

(Figure 3.2) The lack of dipole-bound signal is somewhat expected due to the unusually large

dipole moment resulting in electronic states which show a superposition of dipole-bound and

valence characters. The case may be that those electrons which are captured in to dipole-

bound states quickly stabilize by transitioning into a valence bound anionic state, similar

to what has been seen in nitroethane (Stokes et al., 2008), nitromethane (Compton et al.,

1996), and nitrobenzene (Desfrançois et al., 1999).

Photoionization occurs on very fast time scales implying that any photoelectron spectrum

will be peaked at vertical ionization. Most experiments assume that the initial anion
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Figure 3.2: Photoelectron spectrum of pNA.
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or neutral state is a ground state implying that the low energy onset of photoionization

represents ionization from the groud state of the target to the ground state of the electron-

detached target species. For this reason, inference on adiabatic electron affinities and

ionization potentials can be supplemented charge-transfer processes which show a threshold

at the difference between the adiabatic ionization potential of a target and the adiabatic

electron affinity of the projectile. For this reason, tandem mass spectrometry techniques

were used to look for charge-transfer signal. Unfortunately no such signal could be seen due

to a preference for dissociation. Nevertheless, information about collision-induced thresholds

hold important information about molecular stability and bond strengths. Furthermore,

the modeling process of such thresholds provide the impetus for more robust statistical

techniques such as the Bayesian modeling described below.

3.3 Collision Induced Dissociation

All collision-induced dissociation experiments were carried out with a QStar Elite triple-

quadrupole system (ABSciex) using argon as the collision target. Ions are produced in

solution (methanol) and enter the instrument through an electrospray ionization (ESI) source

in a curtain gas of nitrogen. After passing through a series of electronstatic elements, the ions

are spatially separated from any contaminant in the first of three quadrupoles. The second

quadrupole is then used to mass select the parent ions to be collided. Prior to collisions, the

ions are then accelerated or decelerated through a potential difference to a target collision

energy. Collisions then occur in the final quadrupole (Figure 3.3).

The pressure of the collision target was held at approximately 3.5× 10−5 torr, consistent

with previous experiments (Lynden-Bell et al., 1998; Khan et al., 1993; Muntean and

Armentrout, 2001; Amicangelo and Armentrout, 2001; Armentrout et al., 2008; Dalleska

et al., 1994; Rodgers et al., 1997). The collision cell in the QStar Elite system is 21.2 cm

long, slightly longer than other CID experiments.

Calibration of the energy scale was first carried out using a retardation analysis in which

the collision energy was reduced to the point of vanishing signal. The signal dropped below
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Figure 3.3: Fragmentation of pNA under a collision energies of 9 eV, 12 eV, and 17 eV in
the lab frame.
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the noise level at a setting of 0± 0.5 eV in the lab frame as expected. A stronger calibration

was also included in which ions of tri-iodide were dissociated:

I−3 → I2 + I− (3.1)

which has been shown to occur at an energy of 1.31± 0.06 eV (Do et al., 1997; Hoops et al.,

2004; Lynden-Bell et al., 1998). Collisional dissociation and subsequent fitting detailed below

result in a value of 1.32± 0.069 eV validating the energy scale.

Suppose that an N -atom molecule, M, is colliding with a target. The target is usually

atomic, but the formalism here relates only to the molecule of interest. The molecule will have

3N associated degrees of freedom corresponding to three translational modes, 3 rotational

modes, and 3N − 6 (assuming that the molecule of interest is non-linear). In phase space

each degree of freedom will have two affiliated dimensions - one for the “position” and

one for the “momentum”. Thus, the total system can be described classically using a 6N

dimensional phase space. Within this phase space energy is conserved and thus a constant

energy hyper-surface of 6N − 1 dimensions. The transition will typically follow

M → M∗ → Products

so that an intermediate excited state has been passed through which will then dissociate

into the products. This dissociation will occur only if the excited state is of a particular

(threshold) energy or larger. Then, the threshold energy surface defines another 6N − 1

dimensional hyper-surface. Thus, the intersection of these two hyper-planes assures the

existence of the process of interest and will itself form a hyper-plane of 6N − 2 dimensions.

The unimolecular reaction rate is then given by the ratio of the number of states available

to incur dissociation divided by the total number of states:

kuni =
N t(E − E0)

hρ(E)
(3.2)
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where N t(E−E0) is the number or degeneracy of states with energy E−E0 in the transition

state and ρ(E) is the density of states of the colliding molecule and atom. From this reaction

rate the cross-section of any reaction is then given by

σ(E) =

∫ E−E0

0

fd(E
′)(1− e−kuniτ )dE ′ (3.3)

where fd(E) is an empirical amplitude function and τ is the time scale over which the

unimolecular reaction could take place (for time of flight mass spectrometry this is on the

order of 10−4 seconds). The empirical function used in the fitting procedure was conceptually

derived from step function threshold of dissociation by Armentrout et al. and is given by

fd(E) = σ0

M∑
i=1

gi(E + Ei − E0)
n/E (3.4)

where the sum is evaluated over ro-vibrational energies, Ei, E0 is the threshold energy, σ0

is a scaling parameter, and n is a smoothing parameter (Armentrout et al., 2008; Ervin and

Armentrout, 1985; Webe et al., 1986; Schultz et al., 1991; Dalleska et al., 1994; Rodgers et al.,

1997; DeTuri and Ervin, 1998; Iceman and Armentrout, 2003; Su, 1994; Ervin, 1999; Koizumi

and Armentrout, 2003; Koizumi et al., 2004; Amicangelo and Armentrout, 2001; Armentrout,

2007). The fitting procedure should then maximize likelihood over the parameter space

spanned by values of E0, σ0, and n.

The unimolecular reaction rate is not only highly non-linear, but it usually does not

have a functional form and is often discretely defined. This is because the density and

sum of states is often calculated with a direct counting. Given the modern advances in

computational power and the incredibly efficient Beyer-Swinehart Algorithm, the process

of counting simply requires a discretization of the energy scale called graining (Beyer and

Swinehart, 1971). Approximate methods of arriving at the density and sum of states such

as a thermally motivated steepest decent approach or semi-empirical modeling have been

suggested by some (Klots, 1996). Nevertheless, these fail to simplify the fitting procedure
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which often require numerical methods of approximating the derivatives which have been

shown to be unstable (Narancic et al., 2007).

Before fitting began, the collision energy must be corrected for thermal motion in the

collision target. Ostensibly this correction can be taken through a transformation to the

center of mass frame in which motion of the center of mass is not considered because it is

separable from the relative motion responsible in the collision. If the projectile ion has an

intial momentum pp = mpvp and energy Ep = 1
2
mp|vp|2 and the target has a momentum

pt = mtvt and energy Et =
1
2
mt|vt|2 then it is simple to show that the collision energy is

given by

Ec =
mt

mp +mt

Ep +
mp

mp +mt

Et − 1

2

mpmt

mp +mt

vp · vt. (3.5)

Often it is assumed that vp >> vt implying that Ec ≈ mt

mt+mp
Ep. In the case that there is

a distribution of projectiles and targets, this transformation takes the form of a convolution

over the two distributions (Lifshitz et al., 1977). If the target distribution is taken to be a

Boltzmann distribution in three dimensions, the resulting cross-section will take the form:

σobs =
1√
π

∫ ∞

0

(
1

S2 + 4E ′/a
) exp[

−(Ep − E ′)
S2 + 4E ′/a

]σ(E ′)dE ′ (3.6)

where a = mt

mpkBT
and S is the FWHM of the projectile distribution.

Alternatively, the velocity transformation to the center of mass frame can be expressed

as an expected value of a convoluted distribution Nalley et al. (1973). This results in the

transformation:

vc → v′c =
∫ ∞

0

vRFR(vR)dvR

for

FR(vR) =

∫ ∞

−∞

vR√
πvvc

{exp[−(vR − vc)
2

v2c
]− exp[−(vR + vc)

2

v2c
]}F (v)dv (3.7)

where vc is the mean of the projectile velocity distribution, F (v), interpreted as the user set

lab-frame collision energy.
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3.4 Modeling

A group out of Switzerland has provided an alternative fitting procedure to the non-

linear regression techniques described above. They term the entire modeling procedure

Ligand Collision Induced Dissociation (LCID) (Narancic et al., 2007). As stated previously,

almost all regression techniques require the provision of an objective function which is then

minimized or maximized. In addition to the Gauss-Newton and Marquardt-Levenburg linear

stepping approaches, quadratic stepping has been implemented. LCID utilizes a very robust

genetic algorithm search to minimize the sum squares error. While this method is very

successful, it fails to provide an approach to models with highly correlated parameters. A

simplistic strategy can be implemented by forming a grid over the parameter space and

evaluating the objective function at each grid point. Then, simply take the maximum or

minimum value to be the best estimate. This overcomes the correlation problem when

random stepping is used to search for the maximum, but the estimates are limited to the

precision of the grid. Another alternative is provided below which arises from the Bayesian

school of statistics.

The model by Armentrout et al. showed unusually high parameter estimate correlation

between the parameters σ0 and E0. Given that E0 is the threshold energy which is the

parameter of interest, this is a most unsatisfactory result. This can be seen clearly by

constructing a three dimensional contour plot of the negative log-likelihood versus each of

these two parameters (Figure 3.4).

A “ridge” in this figure would demonstrate that there is high correlation between the

two parameters given that there are a variety of different values which result in similar

log-likelihoods. The point estimate of the fit parameters given by the frequentist fitting

procedure results in only the highest likelihood point. The ridge in this case has some depth

to it and thus there is a subset of parameters which forms a “plateau” of similar likelihood.

While there is no single solution to every problem which involves highly correlated models,

a more complete strategy is to form a large sample of the parameter space which follows

the likelihood or posterior distribution. In this way the average of the Monte Carlo sample
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Figure 3.4: A plot of the log-likelihood versus the σ0 and E0 parameters. Notice the plateau
of high likelihood formed due to parameter correlation.
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will result in a posterior-weighted mean estimate of the parameters. A similar likelihood

weighting technique has been demonstrated in simple linear regression which shows inherent

correlation between the parameter estimates (Myers, 1986).

Once the collision energies were transformed through their velocities, the data could be

fit according to the model

σj = σ̂j + εj = σ0

M∑
i=1

gi(E + Ei − E0)
n/E + εj (3.8)

where it is assumed that the errors, εj, are identically and independently Normally

distributed with a mean of zero and a precision of τ . The likelihood then takes the form

L (σ|E, σ0, E0, n) = (
τ

2π
)N/2 exp(−τ

2

N∑
j=1

(σj − σ̂j)
2). (3.9)

Because each of the parameters loses physical interpretation if they are negative, the

priors that were used in the analysis were given as

τ ∼ Γ(a, b) (3.10)

σ0 ∼ Exp(c) (3.11)

E0 ∼ truncN(d1, e1) (3.12)

n ∼ truncN(d2, e2) (3.13)

where the parameters are chosen to reflect values given by a preliminary grid search for

maximum likelihood. For example, the parameters d1 and d2 were chosen to be equal to

the maximum likelihood point estimates for E0 and n, respectively, as derived from the grid

search. For the precision, the mean of a gamma distribution is given by ab which was set

to equal the point estimate of the SSE at this grid search point estimate. The subjective

parameter choices such as e1 and e2 were chosen so as to minimize the auto-correlation and

inter-parameter correlation throughout the Markov Chain Monte Carlo simulation.
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Figure 3.5: Fragments and transition states used in the the modeling of CID cross-sections.
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Initially all values were drawn using the Metropolis-Hastings Algorithm utilizing a

truncated Normal distribution as the random walking proposal distribution. This resulted in

an unusually large correlation between the parameters (> 0.9 for each). In order to overcome

this correlation, the precision hyperparameter, τ , and scaling factor, σ0, were Gibbs sampled.

This reduced the interparameter correlation to below 0.7 for each parameter pair. Finally,

each Bayesian simulation was run with enough iterations (typically 150,000) to assure that

the effective sample size for each parameter was over 1000 (Figures 3.6 and 3.7).

The assumption of Normally distributed residuals can be assessed graphically by

superimposing a scaled Normal distribution on a histogram of the residuals. An example is

given in the case of the collision induced dissociation of the tri-iodide molecule (Figure 3.8).

It can be seen that there is a skew to the left side and that the centroid is over sampled.

Furthermore, the assumption of independence can be examined graphically as well (Figure

3.9). Note that the residuals are not randomly distributed about a horizontal line, but rather

oscillating with a large tail at higher energy.

Although the assumptions are violated in the strictest sense, the curve can be well-

explained by the model. In this case, model misspecification likely drives the violation of

the i.i.d. Normal assumptions. One source of error may lie in an underestimate of the

collision cell pressure; higher cell pressures would result in multiple collisions. Furthermore,

the Armentrout model asymptotically approaches infinity as energy increases which does not

follow a real situation - at some point the collision energy will be so large that the parent is

completely depleted and the first-order approximation to the Beer-Lambert Law.

In order to compare frequentist and Bayesian methodologies, the CRUNCH program

developed by the Armentrout group was used (Armentrout et al., 2008; Ervin and

Armentrout, 1985; Webe et al., 1986; Schultz et al., 1991; Dalleska et al., 1994; Rodgers

et al., 1997; DeTuri and Ervin, 1998; Iceman and Armentrout, 2003; Su, 1994; Ervin, 1999;

Koizumi and Armentrout, 2003; Koizumi et al., 2004; Amicangelo and Armentrout, 2001;

Armentrout, 2007). It should be noted that the CRUNCH sofware includes weighting options

during the fitting procedure. The default option is a “statistical” weighting scheme which
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Figure 3.6: Non-linear fit of the first fragmentation peak. The fit given by CRUNCH is
given as a dashed line.
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Figure 3.7: Non-linear fit of the second fragmentation peak. The fit given by CRUNCH is
given as a dashed line.
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Figure 3.8: A histogram of the residuals of the fit with a superimposed Normal distribution.

57



Figure 3.9: Residuals of the fit versus collision energy.
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applies Gaussian weights to each term in the sum squares error, i.e.

N∑
i=1

(σi − σ̂(xi))
2 →

N∑
i=1

(σi − σ̂(xi))
2e−x

2
i . (3.14)

Any weighting scheme can be adapted for use in Bayesian analysis by making a similar

transformation in the likelihood function. The motivation to weight the errors in the

modeling of collision induced dissociation comes partly from a desire to have a tight fit at

low energy values so as to characterize the threshold completely. Nevertheless, this weighting

is statistical only in name and does not seem to have any mathematical validity. Therefore

these weights were not used in the modeling presented here.

Table 3.2: Comparison between CRUNCH and Bayesian fits

Dissociation Channel Fit Method σ0 E0 n SSE

Bayesian MCMC 17.30 2.36 1.91 4.74
NO Loss

CRUNCH 9.71 2.16 2.40 7.68

Bayesian MCMC 11.41 3.82 2.14 0.44
NO−2 Loss

CRUNCH 10.99 3.87 2.15 1.14

The error bars were easily accessible here by the 2.5% and 97.5% percentiles of the Monte

Carlo sample. In addition, the correlation between σ0 and E0 may be estimated from the

Markov Chain as 1.12. Despite the plethora of information that can be ascertained from a

Markov Chain Monte Carlo simulation, several downsides exist; the most prevalent being

the number of degrees of freedom available during the analysis.
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3.5 Conclusion

In order to investigate the possibility of dipole-bound anions of pNA, we have used photo-

electron spectroscopy of anions. Although no dipole-bound signal was seen, dipole-bound

electronic states of pNA may act as “doorway” states which enable the molecule to attach

slow electrons first through the dipole moment. The electrons would then cross potential

energy surfaces in to a valence state.

Previous experiments (Desfrançois et al., 1999; Hammer et al., 2003, 1999; Gutsev and

Adamowicz, 1995; Jr. et al., 1967; Lide, 1994; Defrançois et al., 1994) concerning the

relationship between the dipole moment of organic molecules and the dipole-bound electron

affinity result in the curve

EAdipole = 0.0074μ5.3799
dip . (3.15)

A visual compairson of dipole moment versus electron affinity for several organic molecules

is given in Figure 3.10. Because pNA lies on the high end of this chart, it is likely to be an

indicator of electron attachment to high dipole moments.

Additionally, we used the collision induced dissociation of the deprotonated pNA anions

to investigate bonding within the molecule as well as introduce Bayesian methods to overcome

inconsistencies in current modeling techniques. We find that with a complex model such as

that given by the Armentrout group, instabilities in partial derivatives and inter-parameter

correlation can be accounted for, at least partially, by a thorough Bayesian modeling.
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Figure 3.10: Dipole moment vs. electron affinity for several organic molecules.
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Chapter 4

Multi-photon Ionization of TDAE

Although equations 2.11 and 2.12 provide a method to scan pass energies using an

applied voltage on a plate to accelerate or decelerate charged particles, the radius of the

pass surface must be empirically measured before the exact hemisphere voltages can be

known. Furthermore, the existence of contact potentials between each of the analyzer

components may affect the pass on each run. Initially the instrument was calibrated by using

photoelectrons produced from the resonantly enhanced multi-photon ionization (REMPI) of

Xenon. A basic introduction to multi-photon ionization (MPI) and REMPI is provided

below.

4.1 Multi-photon Ionization and Resonantly Enhanced

Multi-photon Ionization

A photoionization process can be defined by the excitation of an electron from a bound state

of an atom or molecule into an unbounded continuum of states through the absorption of

a photon. Quantum theory dictates that bound states of electrons take discrete energies;

this can be shown mathematically through the solution of the Schrödinger Equation with

the application of appropriate boundary conditions. In contrast, unbounded states exist in

a continuum.
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The formalism for multi-photon ionization developed here utilizes the interaction between

light and atoms (rather than molecules) as a simple starting point; note that generalization

to a molecule simply requires an expansion of the atomic Hamiltonian to include other nuclei.

On the scale of atomic physics, a nucleus is treated as a stationary, central charge surrounded

by N electrons. The Hamiltonian is then given by the sum of the electron kinetic energies,

electrostatic attractive potentials between the electrons and the nucleus, and the repulsive

potentials from the interaction between electrons:

ĤA =
N∑
i=1

(
p̂2
i

2μ
+

e2

|ri|)− 2
N∑
i=1

∑
j>i

e2

|ri − rj| (4.1)

where μ is the reduced mass and ri and pi are the position and momentum of the ith electron

respectively.

Light is often described classically with a continuous plane wave, but a complete

description of an electromagnetic wave interacting with an atom or molecule requires the

field to be discretized. This is done by first noting that energy in an electromagnetic field

is quantized as photons. Instead of focusing on the total energy stored in the field, focus

is given to the number of photons nλ of a given mode, λ. This paradigm is referred to as

Second Quantization. To do so, first consider how the presence of an electromagnetic field

affects states of an atom. Light is typically treated as an instantaneous constant field defined

by the magnetic vector potential A and the electric scalar potential Φ:

E = −∇Φ− 1

c

∂A

∂t
(4.2)

B = ∇×A (4.3)

where c is the speed of light in vacuum, c = 2.9979× 108 m/s. Given any three-dimensional

space, a plane electromagnetic wave can be defined with a polarization (direction of the

electric field) πλ perpendicular propagation direction kλ such that πλ · kλ = 0.

63



The vector potential can then be expanded as a superposition of plane waves

A(r, t) =
∑
λ

(qλAλe
−iωt + q∗λA

∗
λe

iωt). (4.4)

Plugging this into equations 4.2 and 4.3 give that

E =
i

c

∑
λ

ωλ(qλAλe
−iωt + q∗λA

∗
λe

iωt) (4.5)

B = i
∑
λ

kλ × qλAλe
−iωt + q∗λA

∗
λe

iωt).

The total energy in the field is then given by

ε =
1

8π

∫
L3

d3r(E2 +B2) =
1

2πc3

∑
λ

ω2
λq
∗
λqλ (4.6)

In order to describe the interaction of an atom with light, a total Hamiltonian which

contains information about the atom and the light is used. Incorporating these fields into

the Hamiltonian changes the kinetic and potential energies as:

T̂ → T̂ ′ =
N∑
i=1

(p̂i +
e
c
A(ri, t))

2

2μ
(4.7)

V̂ → V̂ ′ =
N∑
i=1

−eΦ(ri, t) + V̂ (4.8)

It is easily seen that the eigenstates of the total Hamiltonian may not be the same as those

of the atom-only Hamiltonian, ĤA. Expanding the resulting Hamiltonian results in two

identifiable parts: One Hamiltonian which consists of the independent components associated

with the target atom and the field Ĥ0 and one Hamiltonian associated with the interaction
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between the atom and the field Ŵ given by

Ĥ0 =
N∑
i=1

p̂2
i

2μ
+

e2

2μc2

N∑
i=1

A(ri, t)
2 − e

N∑
i=1

Φ(ri, t) + V̂ (4.9)

Ŵ =
e

2μc

N∑
i=1

[p̂i ·A(ri, t) +A(r,t) · p̂i]. (4.10)

such that Ĥ = Ĥ0 + Ŵ .

This can then be treated with perturbation theory where Ŵ is taken to be a perturbation.

Doing so will result in a photoionization cross-section of

σph(E) = 4π2 e
2

c
ωλ|πλ · rfi|2 (4.11)

where πλ is the light polarization (Friedrich, 2006). In the case of multiphoton absorption

from a laser, one can again use perturbation theory to arrive at a ionization probability

proportional to the intensity of the light source to the power of the ionization order. In

other words, the ionization for an n photon process is given by

P (n) ∝ In. (4.12)

In practice, a photoelectron spectrum (or in this case the spectrum of a cation) will

often show three prominent features: A peak corresponding to vertical ionization, a peak

corresponding to adiabatic ionization, and several peaks in between corresponding to Franck-

Condon overlap of vibrationally excited states of the out-going cation. Thus, in a series of

peaks plotted as the intensity of an electron or ion signal versus the energy of the electron or

ion, the location of the highest energy peak is interpreted as the adiabatic IP. The position

of the maximum peak is interpreted as the vertical ionization potential because vertical

ionization has the largest Franck-Condon overlap and is therefore the most probable event.

Any additional peaks in a PES may be attributed to ionization from an excited state of

the neutral or ionization of the ground state of the neutral resulting in an excited state of
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the cation. These are so called “hot-bands.” The amplitude of hot-band peaks are variable

and depend directly on the Franck-Condon overlap of the intial and final states.

Supplementary information can be gained from photoelectron spectroscopy if the

polarization of incident light is controlled. In a hemispherical energy analyzer the relatively

small acceptance solid angle located directly below the ionization region defines an axis.

Light incident perpendicularly then defines a plane of interaction. The polarization can then

be parallel to this plane (vertical), perpendicular (horizontal), or some linear combintation

of the two (at some angle θ relative to the plane of interaction).

The amplitude of a photoelectron peak will change with the polarization. This change

can then be used to directly measure the order of the ionization N (that is, the number of

photons used to ionize) (Cooper and Zare, 1968):

I =
σtot

4π

N∑
n=0

ancos
2nθ. (4.13)

Also, if the ionization is of first order, the Anisotropy Parameter, β, may be defined as

I =
σtot

4π
[1 + βP2(cos θ)] (4.14)

where σtot is the total ionization cross-section and P2(cos θ) = 3
2
cos2 θ − 1

2
is the second

order Legendre Polynomial. The distribution formed by the rotation of light’s polarization

is called the Photoangular Distribution (PAD).

4.2 REMPI of Xenon

In order to calibrate the instrument, photoelectrons resulting from the resonantly enhanced

multi-photon ionization of Xenon were used. In contrast to direct multi-photon ionization

(MPI), REMPI allows for an effective reduction in the order of the ionization process due

to a coupling of a portion of the photons involved in the process to a well-defined excited
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state. This process has been thoroughly outlined in Xenon (Compton et al., 1980; Miller

and Compton, 1982).

In this instance a 3+2 ionization process was used to produce photoelectrons. In atomic

states, the energy spacing between spin states allows for the resolution of the fine structure.

Utilizing 440.88 nm allows for the probing of the 6s state of Xenon with three photons.

Subsequent ionization occurs through two different 2p states (2p3/2 and 2p1/2) of the xenon

cation. These states are separated by 1.306 eV with energies of 0.66 eV and 1.966 eV

for the 2p3/2 and 2p1/2 states respectively. Given this well documented energy spread, the

photoelectron spectrum may then be used to calibrate the instrument for electrons which

may lie between these two values.

4.3 Multi-Photon Ionization of TDAE

The study of low ionization potential (IP) molecules has grown in recent decades due to the

discovery of a series of different applications in research and industry. Because the energy

required to strip an electron from a molecule is low, an abundance of charge can be loacalized

efficiently through the application of relatively low laser intensities to such molecules. This

is seen no more clearly than in the field of plasmonics in which the creation of high charge

densities (between 1011 and 1013 charges per cm3) is directly utilized. Low IP molecules can

be used to generate such plasmas when illuminated with UV (laser) light (Woodwort et al.,

1985; Anderson, 1981; Zhang and Scharer, 1993; Kelly et al., 2002).

Low IP molecules have also been implemented in ultraviolet photomultiplier tubes.

Again, the UV light will directly ionize such molecules, creating a free charge which can

then be used to create a measurable signal. This technique is used widely in medical fields

(x-rays, etc.). Additionally, low IP molecules can be utilized in organic electronics due to

their ability to lower the work function of metals (Linderr et al., 2008).

The IP of most organic compounds is in the range of 7 to 12 eV (Mirsaleh-Kohan et al.,

2011). On the contrary, a few organic molecules have been shown to violate this; of particular
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Figure 4.1: Photoelectron spectrum of Xenon resulting in peaks at 0.66 eV and 1.966 eV.
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interest is tetrakis(dimethylamino)ethylene which has one of the lowest gas-phase adiabatic

IPs for a molecule between 5.2 eV and 5.4 eV 4.2.

The first measurement of the ionization potential of TDAE was performed in 1971

by Cetinkaya et al. (Centinkaya et al., 1971). This was done using a single-photon

ionization with a far UV, He(I) lamp. The resultant photoionization showed several peaks

corresponding to further ionization processes (excitation and ionization). Because high

energy photons were implemented in this study, this value is taken to be the vertical

ionization potential.

Less than a year after this measurement, Nakato et al. measured the appearance spectrum

of TDAE+ cations under different photon energies (Nakato et al., 1972). In the case of

appearance spectroscopy, the onset of cation signal is interpreted as the adiabatic IP. In

addition, the vertical IP can be garnered from the data as a maximum of the derivative

of the interaction cross-section with respect to photon energy. In this way a measurement

of 5.36 eV and 6.11 eV for the adiabatic and vertical IP of TDAE were recorded. The

quantum defect (difference between the two IPs) is then given approximately by 0.7 eV

which is indicative of a large geometry change during the ionization process. This notion is

seconded by the slow onset of the cation signal which would suggest poor Franck-Condon

overlap between the ground state of the neutral molecule and the ground state of the cation.

A slow onset may also be due to ionization of excited neutral molecules whose states are

poorly populated, creating an underestimate of the adiabatic IP. In TDAE this was ruled

out later through the use of a variety of seed gasses in the sample introduction process as

each separate gas would give rise to a different appearance spectrum (Mirsaleh-Kohan et al.,

2011).

Another interesting characteristic of TDAE is the production of chemilumiscence when

reacted with oxygen. This was first shown by Pruett et al. who recorded the first synthesis

of the molecule (Pruett et al., 1950). This reaction results in the production of excited

states of tetramethyloxamide and tetramethylurea which subsequently fluoresce (Wiberg

and Bulcher, 1964). This particular reaction is not typical of many ethylene derivatives, but

may be attributed to the strong electron-donor characteristic of TDAE (Wiberg and Bulcher,
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Figure 4.2: Molecular structure of tetrakis(dimethylamino)ethylene.
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1962). Following this observation, the absorption spectrum of TDAE was investigated using

light between 170 nm and 300 nm (Hori et al., 1968). This absorption spectrum showed an

unusually large and broad absorption spectrum, peaked at 190 nm. In addition, the emission

spectrum was recorded which was peaked at 480 nm. The large energy difference between the

peak of the absorption spectrum (6.53 eV) and the emission spectrum (2.58 eV) is unusual

for any molecule. Nevertheless, the authors attributed this emission to fluorescence due to

a time scale on the order of 20 to 30 ns. Typically this derives from the existence of an

intermediate state with a charge-transfer (CT) characteristic. Given that the geometry of

the CT state is greatly distorted in comparison to the ground state of the molecule, the

energy deficit goes in to the severing and rearrangement of bonds.

A femtosecond pump-probe study of TDAE has shown that there is a more complicated

dynamic than just the excistence of a CT state, a dark zwitterionic (Z) state also exists

within the molecule (Soep et al., 2001). This state is a doubly excited intermediate which lies

slightly above the CT state in energy. The potential energy surfaces of these two states are

joined via conical intersection which in turn leads to very short state occupation lifetimes (∼
300 fs). Such intersetctions have been implemented succesfully in the study of non-adiabatic

coupling of excited state wave functions (Jortner et al., 1969). An electron “traveling” on

such an intersection will relax by geometry change and is thus radiationless.

The origin of these two states lies in the degenerate positions of the free electrons bound to

the four nitrogen atoms. The combination of which produces a superposition of two resonant

structures. The energy degeneracy is then broken by considering the resonant structures in

phase (Z state) and out of phase (CT state). The CT state is strongly distorted in comparison

to the ground state of TDAE due to the disruption of the ethylene bond. Free rotation of

the two sides of the molecule result in a twisted excited state.

Photoexcitation of the TDAE molecule can then be described on three time scales: An

initial excitation to a excited state which is a super position of the molecule’s Rydberg series

and the ππ∗ valence band. This decays to the Z state rapidly (∼ 300 fs). The Z state then

degrades to the CT state within picoseconds via the aforementioned conical intersections.

The molecule then fluoresces on the nanosecond time scale to return to the ground state.
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Figure 4.3: Absorption curve of TDAE with several photon wavelengths superimposed on
the curve.

72



In order to explore transient states in tetrakis, laser light at 355 nm (3.49 eV), 440.88

nm (2.81 eV), 532 nm (2.33 eV), 570 nm (2.18 eV), and 609 nm (2.04 eV). Each of

these wavelengths were generated either as a harmonic of an Nd:YAG laser (Continuum

Powerlite Precision 9000), or as the output of a pumped dye laser (Quantaray PDL-1E).

These wavelengths were chosen to comprehensively explore the absorption curve as well as

characterize each of the transient states (Figure 4.3).

Ionization was carried out with 440.88 nm light immediately following the intrument

calibration with xenon. Ionization was also carried out with 355 nm laser light, generated

as the third harmonic of the Nd:YAG laser as well as 570 nm and 609 nm light produced

from pumping a dye laser with the second harmonic of the Nd:YAG laser (532 nm). These

wavelengths were chosen in order to comprehensively characterize the absorption curve given

multiple photon absorption. In the case of the ionization of TDAE with 355 nm and 440.88

nm light, the molecule is ionized in a 1+1 photon process with an initial one photon excitation

to a mixed transient state prior to a relaxation through the Z state to the CT state. Electrons

are then ejected from this charge transfer fluorescent state.

Utilizing 440.88 nm light results in two peaks; one peak arises as auto-ionization while

the other peak is due to adiabatic ionization from the CT state (Figure 4.4). The first of

these peaks is centered at 0 eV while the latter is centered at 0.3 eV. Ionization with 355 nm

light produces two peaks as well. Again, one is attributed to auto-ionization, centered at 0

eV while the other peak is centered at 1.0 eV (Figure 4.5). Although a direct two photon

ionization from the ground state using 440.88 nm light should result in electrons produced

with 0.3 eV kinetic energy, a difference of 0.7 eV between the ionizing peaks gives strong

evidence for the 1+1 ionizing scheme. Further evidence is presented in the PADs under each

ionizing wavelength.

The PADs of TDAE under illumination with both wavelengths were recorded using a

double Fresnel rhomb to rotate the polarization of light in steps of 10 degrees. Because the

collected data was noisy, each PAD is an average over four scans from 0 to 180 degrees. Both

the ionizing peak and the thermal peak were investigated here under ionization with each

wavelength. The ionizaing peak PAD of TDAE using both wavelengths give strong evidence
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Figure 4.4: Photoelectron spectrum of TDAE using 441 nm light. Signal is peaked at ∼ 0
eV and 0.3 eV.
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Figure 4.5: Photoelectron spectrum of TDAE using 355 nm light. Signal is peaked at ∼ 0
eV and 1.0 eV.
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Figure 4.6: Energy level diagram with transient state lifetimes.
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for one-photon ionization. In order to asses the order of ionizaition, each PAD was fit using

simple linear regression (Table 4.1).

Note that in each case there is a very slight drift in amplitude through the angle (the

signal should be precisely the same at 0 degrees and 180 degrees). This is likely due to

imperfections in the optics and alignment. For example, if the laser light is not normally

incident on the Fresnel rhomb, the laser power at 0 degrees and 180 degrees will be different.

The effect of such a drift can be quantified by including a linear term in the regression, that

is,

I =
σtot

4π
(bθ +

N∑
n=1

an cos
n θ).

In each case this parameter is slightly significant and does not change the conclusion. One

noticeable effect upon inclusion of this linear term is an increase of the significance of the

sinusoidal terms. The coefficient of the second order ionization (a4) is slightly significant in

each case but does not change the fit visibly (Tables 4.2 and 4.3).

Table 4.1: Photo-angular distributions at different laser wavelengths.

Wavelength (nm) Peak Location (eV) β R2

∼ 0 0.11 0.948
441

0.3 eV 0.61 0.988

∼ 0 0.03 0.899
355

1.0 0.24 0.993

609 ∼ 0 0.49 0.975
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(a) PAD of ionizing peak

(b) PAD of thermal peak

Figure 4.7: Photo-angular distributions using 355 nm light.
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(a) PAD of ionizing peak

(b) PAD of thermal peak

Figure 4.8: Photo-angular distributions using 441 nm light.
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Table 4.2: Different fits to photo-angular distributions of the ionizing peak using 441 nm
laser light.

Model SSE p-value

1 Photon Model 12.69 + 16.59 cos2 θ 0.7483 < 2e− 16

With Linear Addition 13.37− 0.46θ + 16.75 cos2 θ 0.6045 < 2e− 16

2 Photon Model 11.89 + 22.8476 cos2 θ − 6.13 cos4 θ 0.4880 8.35e− 12

Table 4.3: Different fits to photo-angular distributions of the ionizing peak using 335 nm
laser light.

Model SSE p-value

1 Photon Model 37.62 + 15.30 cos2 θ 0.4895 < 2e− 16

With Linear Addition 37.53 + 0.06θ + 15.32 cos2 θ 0.5012 < 2e− 16

2 Photon Model 31.17 + 18.89 cos2 θ − 3.51 cos4 θ 0.3704 2.22e− 12

Photoionization with 609 nm (2.04 eV) light produced a single peak at approximately 0

eV. In the case of the two previous wavelengths, one would be led to believe that this peak

is attributed only to an auto-ionizing state. Upon closer inspection there is a reproducible

dip in the spectrum which would suggest that there are likely two ionization channels which

largely overlap at this energy. This ascertion may be exemplified by the PAD which shows

an unusually strong anisotropy (β = 0.49) again with only a one photon character.

Located approximately 2 eV below the ionization limit of TDAE is the zwitterionic state;

the energy surplus would then result in 40 meV electrons. Because the typical FWHM of

the photoelectron peaks is above 100 meV, these peaks cannot be distinguished. Another

likely candidate for this peak arises from a three photon vertical ionization of TDAE which

has a measured vertical IP between 5.95 eV and 6.11 eV (Centinkaya et al., 1971; Nakato

et al., 1972). In this case the electrons would have kinetic energies between 0.01 eV and
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Figure 4.9: Photoelectron spectrum of TDAE using 609 nm light.
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Figure 4.10: PAD of TDAE using 609 nm light.
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0.17 eV. The former of these two cases is more likely due to the doubly excited nature of the

zwitterionic state (thus, there is a two-photon requirement to reach the state).

570 nm light was used to ionize tetrakis(dimethylamino)ethylene because a three photon

excitation would match the 190 nm absorption maximum. This wavelength provided a

substantial increase in the photoelectron signal as well as the appearance of an additional

peak in comparison to the other wavelengths used to study the molecule. The apparent

peak positions are located at 0.2 eV and 0.7 eV. In addition, the low energy (0.2 eV) peak is

skewed towards zero kinetic energy which would suggest an overlap with the thermal peak.

In all other cases the thermal peak is the larger (even if only slightly) of the two available

channels. Thus, ionization with 570 nm provides a unique situation in which one of the other

channels of ionization are overwhelmingly stronger.

Due to the significant increase in photoelectron signal, a 1 mm aperture had to be used

to reduce the incident photon flux. The laser power was reduced by incrasing the q-switch

delay time as well. Only with both of these adjustments was the signal lowered enough

to prevent a saturation of the DAQ board. In reducing the power, two additional peaks

vanished from the spectrum located at 1.13 eV and 1.70 eV. It is assumed that these peaks

may be due to a coupling electronic and vibrationally excited states of the molecule given

the equal energy spacing.

The location of the Z state and the CT state are 3.2 and 2.7 eV above the ground state,

respectively. Therefore initial excitation using 570 nm would require two photons to reach

an excited state which could then decay to one of these states. In this case the excited state

quickly degrades to the zwitterionic state which can then intercept a third photon and ionize.

This is the perceived path resulting in the first of the photoelectron peaks, 0.175 eV.

The second of the two peaks is likely due to the three photon vertical ionization of the

TDAE molecule. Given an electron energy of 0.7 eV, this would place the vertical IP at

5.89± 0.1 eV in good agreement with theory and previously measured vertical IPs of TDAE

(Centinkaya et al., 1971; Nakato et al., 1972).
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Figure 4.11: Photoelectron spectrum of TDAE using 570 nm light.
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Figure 4.12: Photoelectron spectrum of TDAE using 532 nm light.
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4.4 Conclusion

From this data it is apparent that the CT state lies approximately 2.5 eV below the ionization

potential, just below the doubly excited Z state which is approximately 2 eV below the

ionization potential. Thus, the Z state is 3.2 eV above the ground state while the CT state

is 2.7 eV above the ground state. The fluorescence spectrum is peaked at 480 nm (2.58 eV)

which corresponds directly to the CT state as expected.

It is important to note that all of the wavelengths used in this study except 570 nm

produced peaks at ∼0 eV which must be attributed to an auto-ionizing state. Although the

presence of this peak is expected due to the skew of the low energy peak, its presence is

severely muted. In sharp contrast to these results, it has been shown that the auto-ionizing

peak can be attenuated through the use of femtosecond lasers (Gloaguen et al., 2005). The

authors use a pump-probe technique to produce photoelectron spectra. By using a single

266 nm (4.10 eV) pump photon and two 800 nm (1.55 eV) probe photons, the auto-ionizing

peak is the largest of all of the peaks recorded. Furthermore, modulation of the time between

pump and probe show that this low energy peak vanishes after about 300 fs. If, on the other

hand, a pump of a single 266 nm photon is used in turn with a probe of a single 400 nm

photon, the auto-ionizing peak drops dramatically in intensity.

One cause is particularly intuitive: The loss of an electron during a predissociation

process, i.e.

M + hν → M∗ → N+ (M− N) + e− (4.15)

in which case either the N or (M-N) fragment is positively charged. TDAE is known to

fragment under photoillumination (Mirsaleh-Kohan et al., 2011). Yatsuhashi et al. have

shown that photo-fragmentation of TDAE can be prevented in the case of femtosecond

laser illumination with 800 nm light (Yatsuhashi et al., 2006). This is due in part to two

mechanisms: The choice of wavelength should be off resonant with a particular fragmentation

and the laser pulses are suitably short so as to not introduce the molecule of interest to long-

lived electromagnetic fields. Therefore, it may be possible that the energy input of a 266 nm
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photon and a 400 nm photon simultaneously then mutes the dissociation process which in

turn reduces the intensity of the low energy photoelectron signal.

Here, a less intuitive cause is presented: Photoexcitation of the four lone pair electrons of

Nitrogen results in a quadruply degenerate electronic state. By using Rydberg Fingerprint

Spectroscopy, photoelectron signal from TDAE indicates that ionization occurs from these

lone pairs (Gosselin and Weber, 2005). This may be characterized in turn through the use

of a superposition of two resonance structures. As described above, the degeneracy of these

states is broken rapidly (∼ 300 fs) and quickly decays to the Z state. Prior to this decay, the

absorption of photons results in a collective excitation of the Nitrogen lone pair electrons

and the ππ∗ system of the ethylene bond. The result of this absorption channel is a near-

continuity of states which auto-ionize as well as the strong resonance structure peaked at

190 nm (Figure 4.3).

Theoretical predictions of collective excitations were made throughout the twentieth

century, but were met with considerable skepticism until the 1960’s. Although such

excitations were widely considered a theoretical tool, Nicolaides and Beck provided an

empirical test of their existence: “transitions at a particular energy (which) seem to have

an unusually large probability” (Nicolaides and Beck, 1976). While the authors use this

markedly reserved language, the mathematics provide a simple explanation to the unusually

large transition probability. A similar phenomenon has been widely observed in Nuclear

Physics in which ‘giant resonances’ may be measured due to a collective oscillation of the

protons in a nucleus against the neutrons in the presence of a strong electromagnetic field.

A simple example of collective excitations due to correlated electron systems has been

demonstrated in super-cooled Rubidium systems (Gaetan et al., 2009). In this case two

Rubidium atoms are pumped to Rydberg states before being placed at specific proximities

using optical tweezers. The atoms are then subjected to a specific wavelength which results in

independent ionization. At internuclear distances of 10 μm the system shows no correlation

while an internuclear separation of 4 μm provides an apparent signal difference. The

change in signal may be explained directly by Pauli’s Exclusion Principle: If the atoms

are spaced closely enough to ‘communicate,’ the fermionic nature of the electrons prevents
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the occupation of the same state. The result then is a splitting of the states which prevents

ionization at a particular photon energy. This has been called the Rydberg Blockade of

Excitation. It is easily seen that electrons bound to a molecule will be much closer in

proximity than this example.

Tetrakis(dimethylamino)ethylene provides a good example of a molecule which could

show a collective excitation. The correlated eletron system of the Nitrogen long pairs allows

for a strong electronic wavefunction overlap. This then provides a matching condition on

which an excitation would provide an unusually large transition probability. Furthermore

the photoexcitation of this correlated electron system results in a giant resonance which lies

above the ionization potential. Given this energy input, the energy of any exciting photon

may be spread to more than one electronic state. Also, the signal enhancement at these

photon wavelengths is largely contained within the electronic excitation, i.e. there is no

indication of increased dissociation.

In addition to collective excitations within TDAE, a similar phenomenon may be

responsible for the lack of photoelectron signal in other highly symmetric molecules such

as hexafluorides. The most apparent of these is Uranium Hexafluoride (UF6) which shows

no direct electron loss for input energies far exceeding the theoretical ionization limit of the

molecule (Armstrong et al., 1994). In this case photodissociation of the molecule results in

the fragments UF+
i for i = 0 to 5, but not UF+

6 .

88



Chapter 5

Methanolisis and the Second Electron

Affinity of TCNQ

7,7,8,8-Tetracyanoquinodimethane (TCNQ) has played a major role in the study of isolated,

multiply charged anions. This molecule was first popularized as an organic metal when

combined with tetrathiafulvalene (TTF) to form a charge-transfer salt (Ferraris et al., 1973).

Given this classification, significant interest arose in utilizing TCNQ and its compounds in the

field of high-temperature superconductivity (Coleman et al., 1973). Although solutions and

charge transfer salts containing TCNQ proved to be insufficient in this field, the molecule

had gained its place as a good electron acceptor. This characteristic is attributed to the

exceptionally large electron affinity (3.3± 0.3 eV) (Jin et al., 1994).

The first empirical electron affinity measurements of TCNQ were published through the

Transactions of the Faraday Society as 2.83 eV (Farragher and Page, 2967). The listed value

arises from a measurement of a current on a target plate resulting from negative ions passing

through a conductive grid in the presence of a magnetic field. The logarithm of the ratio

of the incident current of the negative ion beam to the resultant current on the plate is

described by a linear relationship. The slope of this line then corresponds to the electron

affinity of the molecule. Calculated electron affinities using the magnetron method have been

shown to be underestimates due to the lack of accounting for excited states (Collins et al.,
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1969). Despite this, Compton et al. reported a similar value of 2.8± 0.1 eV nine years later

(Compton and Cooper, 1976).

The EA was further updated 20 years later to be 3.3 ± 0.3 eV using a “bracketing”

technique (Jin et al., 1994). This method utilizes a competitive electron attachment to

TCNQ in the presence of other compounds with known electron affinities. In this case

TCNQ was bracketed between iodine (EA = 3.06 eV) and chlorine (EA = 3.66 eV). The

AEA has been calculated to be between 2.14 and 4.37 eV using a plethora of levels of theory

(Nielsen and Nielsen, 2003; Miĺıan et al., 2004; Zakrewski et al., 1996).

Shortly after the first empirical measurements of the AEA, formation of TCNQ dianion

states began to pique interest. In 1972 a polargraphic method method was used to

infuse a surplus of electrons into a TCNQ solution after which the dianion was observed

(Jonkman and Kommandeur, 1972). A year later, Ferraris et al. explained a drop in the

Madelung energies of a TTF-TCNQ charge-transfer salt with the presence of a dianion. This

explanation also accounts for an observed transition from insulator to metal (Ferraris et al.,

1973).

Preliminary calculations of the second electron affinity began with an energy measure-

ment in the “disproportionation reaction,” i.e. the energy difference in the reaction

2TCNQ− → TCNQ+ TCNQ2−. (5.1)

In this case the energy deficit (ED) is measured during the charge rearrangement. The

second EA is then given by:

EATCNQ− = EATCNQ − ED. (5.2)

Several techniques exist to measure this energy deficit, but typically data is ascertained

through cyclic voltammetry which relies on a hysteresis loop formed during a cycling of

voltage differences. Values from these measurements span the range of 3.5 eV to 5.54 eV

(Jonkman and Kommandeur, 1972; Jonkman et al., 1974; Johnasen, 1975). The relatively
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large range reported here is likely a result of solution effects. The dianion was not studied in

vacuo until three decades later following several experimental advances in gas phase analysis.

Nielsen and Nielsen hypothesized that the radical anion of TCNQ that is produced in

ESI could be collided with an alkali beam at high energies in order to produce the dianion

(Nielsen and Nielsen, 2003). This experiment was carried out by accelerating TCNQ anions

to energies on the order of 50 keV. A bending magnetic was then used in order to mass select

the anions prior to passing the beam through a differentially pumped chamber of neon gas

or sodium vapor. Mass analyses were then carried out using a 15 cm, 180◦ energy analyzer.

Naturally, collisions with neon resulted in a much smaller dianion signal than did collisions

with sodium. This is a direct result of the availability of sodium’s single 3s electron by the

TCNQ monoanion. Due to the even mass, symmetric cleavage of the TCNQ monoanion

would result in a mass peak of 102 amu; thus, the dianion signal is indistinguishable from

the symmetric cleavage of the monoanion. In order to provide conclusive evidence of the

existence of the dianion, isotopic TCNQ including one 13C was mass selected for the charge

transfer process. This resulted in a mass peak of 102.5 amu proving the existence of a stable

TCNQ dianion in the gas phase.

Due to the fact that TCNQ has been shown to form long-lived dianion states in vacuo,

experiments involving the measurement of the cross-section and the lifetime of the metastable

are possible. Panja et al. have carried out a thorough investigation of the lifetime of dianion

states using the Electrostatic Storage Ring in Aarhus (ELISA) (Panja et al., 2007). TCNQ

dianions were again created by passing monoanions through a target vapor before entering

an electrostatic storage ring. In contrast to direct mass analysis using a hemispherical energy

analyzer, dianion products were studied by analyzing molecules within a fractional leakage

from the ring. Lifetimes were then modeled using the decay rate of the relative dianion

population resulting from collisional detachment caused by ambient air molecules (at about

10−11 torr). In the same experiment, excited state energy measurements were taken only for

perfluorinated TCNQ (TCNQF4) by photodetachment using an (Nd:YAG) laser.

The authors found that the rate of decay for TCNQ2− and TCNQF2−
4 were sufficiently

described by three exponential terms indicating “...that in the electron transfer process, two
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different electronically excited states are populated to account for the two short lifetimes”

(Panja et al., 2007). Juxtaposing the unfluorinated and the perfluorinated dianions of

TCNQ shows that the molecules have remarkably different decay lifetimes as well as state

populations. The majority of the TCNQ dianions populate the state with the shortest decay

lifetime, interpreted as an excited state. This is likely due to vibrational excitation during

the collisional charge transfer process. The imparted vibrational energy may result in more

dissociation in TCNQ2− than it does in TCNQF2−
4 .

Given this strong evidence for the existence and stability of TCNQF2−
4 dianions, further

measurements of the collisional charge exchange cross-section were performed (Ovchinnikov

et al., 2006). Xenon and sodium were used as the collision target resulting in very different

function forms of the cross section. Collisions with xenon generated an unstable cross section

due to Rosenthal-Bobashev oscillations produced by the fine structure mixing of the adiabatic

curves of xenon (Xe1/2 and Xe3/2). Thus, the threshold of charge transfer is delayed in

xenon collisions due to preferential excitation over ionization. In sharp contrast, collisions

with Sodium show an ever increasing cross section as the impact energy is decreased. By

conservation of energy, the cross section must vanish at an energy equal to difference of the

ionization potential of sodium and the second electron affinity of TCNQF4. Because no low

energy measurements were made, this threshold was not observed.

In order to produce negative ions of 7,7,8,8-tetracyanoquinodimethane (TCNQ), the laser

desorption ionization (LDI) technique was used. This technique utilizes incident laser light

to eject molecules resting on a surface. In addition, the stability of the anion was assessed

by electro-spray ionization (ESI) mass spectrometry.

5.1 Methanolisis of TCNQ

It was proposed in 1999 that TCNQ undergoes a charge-transfer reaction reulting in the

addition of a methoxide group to one of the dimethylamino branches of TCNQ (Figure 5.1)

(Tanemura et al., 1999). This follows from the simultaneous addition of hydrogen to one

dimethylamino branch and the addition of the methoxide group to the opposite branch. This
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in turn breaks the double bonded carbon atoms in the para-positions reulting in a benzene

ring. Upon the loss of a hydrogen atom, the (TCNQ + methoxide) molecule is then a free

radical. This reaction is completely reversible.

This reaction pathway is similar to a Michael reaction in which a stable anion “undergoes

conjugate addition with to α, β-unsaturated carbonyl compounds” (Carey, 2003). In this

case the ethylene bond is broken in order to form a tetrahedral end with two cyano-groups

and a methoxide group. These reactions are generally base catalyzed.

This reaction was proposed as a result of a shift over time of the absorption spectrum

(Rabie, 2012) in addition to NMR and elemental analysis (Tanemura et al., 1999). There are

two bands associated with this spectrum at 373 nm and 394 nm in ethylene and methylene

chloride. The difference between these two solvents was solely intensity of signal. A solution

of pure methanol produced a similar spectrum, but the peak at 373 nm began to vanish

while a peak at 336 nm began to appear. As demonstrated in the absorption spectrum, the

reaction reaches approximate equilibrium after 33 minutes using a solution of 4.0×10−6 mol

per dm3.

Methanol was first used to spot a metal plate for use in laser desorption ionization. Over

the course of a week, the solution turned from a translucent yellow hue in to a dark green

solution. Over the next month, the solution continued to darken and transition to blue.

Thus, the reaction rate is slow and further investigation requires accelerating the reaction.

In order to do so, two methanol/TCNQ solutions were prepared, each at a concentration of

0.5 mg/ml.

In order to test the theory that the replacement is a Michael reaction, a 0.5 M solution of

potassium hydroxide was used to base catalyze the reaction. The final color of the solution

was red. The second solution that was prepared was refluxed for 8 days in a hot sand bath

at the boiling point of methanol. The solution changed color from a pale yellow to a dark

green.
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Figure 5.1: Reaction steps towards the addition of a methoxy group to TCNQ.
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After the first solution reflux was finished, the solution was neutralized using 12 M

hydrochloric acid. This caused potassium chloride to percipitate out as

KOH +HCl → H2O +KCl.

Unfortunately, use of a rotary evaporator resulted in no product. We propose that the base

catalysis resulted in a different product which perciptated out with the potassium chloride.

This prevented acquisition of the target product for further analysis.

The second reflux produced a green solution which needed to be further purified prior

to analysis. TCNQ is a yellow-orange crystal and the addition a methanol produces a blue

product. In order to isolate this product, the solution was run through a meter long silica

gel column over the course of three days. The active phase used in the separation was chosen

to be chloroform due to TCNQ’s solubility. The first band that was extracted was a yellow

band corresponding to pure TCNQ.

The blue product preferentially attached to the acid washed sand at the top of the

column. Therefore, the product was run through the column using a mixture of methanol

and chloroform. In order to prevent the formation of bubbles in the silica gel which would

hinder solution movement, the concentration of methanol was increased in steps of 0.5%

by volume. It should be noted that the product only moved through the column with the

addition of methanol, but this movement left streaks of yellow and green indicating the

reversibility and the potential existence impurities in the sample.

5.1.1 Instrumental Analysis of Product

In order to mass analyze the sample, ESI-TOF-MS were implemented. First, the sample

produced from the yellow band was analyzed using ESI-TOFMS to assure that the sample

was pure TCNQ (204 AMU, Figure 5.2). It is important to note that any methanol that

the TCNQ comes in contact with will react with the molecule. This is especially important

when cleaning the instrument prior to analysis of the blue sample. If pure methanol is used
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to clean the sample line to the instrument, that solvent will react with the residual TCNQ

in the line and give a false positive for the presence of methoxide-TCNQ (235 AMU).

After the initial introduction of methanol, the simple methoxide addition can be seen

in the mass spectrum (Figure 5.3). It is believed that this indicates the presence of a free

radical anion which must be highly reactive. The presence of a dominant 242 AMU peak

would seem to indicate that (TCNQ + MeO) is not the final stage of the reaction, but simply

an intermediate. Mass analysis of the methanol solution produces a dominant peak at 242

AMU with residual TCNQ as an impurity. The collision-induced dissociation of the 242

AMU product resulted in peaks at 215, 190, and 166 AMU in addition to any parent which

was not fully dissociated.

The exact identity of the 242 AMU molecule remains a mystery, although the CID may

give some hints. The lack of a parent 204 AMU peak in the collision-induced dissociation

demonstrates that the final product is likely not a simple functional group addition. The

215 AMU fragment indicates a loss of 27 AMU which is most likely HCN. Given these two

pieces of information, it would seem that the final product would involve the attachment of

more than one methoxide group while also losing one or more of the cyano groups.

5.2 Theory of Collisional Charge Transfer

The theory of collisional charge transfer begins with a series of approximations concerning the

quantum states and kinetics of the charge transfer partners; this paradigm is called Landau-

Zener Theory. The charge transfer process involving molecules A and B are modeled as

a transition between two states: The first state is given by the agglomeration of the wave

functions of A− and B while the second state is composed of the wavefunctions A2− and

B+. No entanglement is assumed and therefore the total wavefunctions are simple sums of

the two independent wavefunctions. The Hamiltonian describing the motion of each of these

states includes an interaction potential which depends solely on the internuclear distance

between the two species, RC .
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Figure 5.2: Mass spectrum of TCNQ in acetonitrile, purified through column
chromatography.
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Figure 5.3: Mass spectrum of TCNQ in methanol after ∼30 minutes.
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Figure 5.4: Collision induced dissociation of TCNQ+MeO 242 mass peak.
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The first of these states is described by an essentially flat potential curve due to the lack

of a Coulomb force. A more detailed estimation of the interaction potential involves a dipole

interaction (V ∝ r−3) arising from an induced molecular polarization of the collision target

within the electric field of the A− monoanion. As the internuclear separation approaches

zero, the interaction of the two species will be dominated by the strong repulsion of the

nuclei. The second of these states will have a strong repulsion at very small internuclear

distance as before, but the majority of the interaction curve is described by the Coulomb

attraction between the positive target and negative projectile.

Given these two states as the starting point, two important approximations must

be implemented in order to drastically simplify the following formalism. These two

approximations are labeled the Born-Oppenheimer Approximation and the Adiabatic

Approximation. Under the former approximation, the motion of the electrons is assumed to

be independent of the motion of the nueclons (protons and neutrons). This arises from the

large mass difference between the electrons and the nucleons which means that the respective

motion will occur on different time scales. Thus, the electrons will move in the electric field

of the nuclei and the nuclei will move in the electric field of the electrons. This gives rise to

separability of the electronic and nuclear motion in one Schrödinger equation. The Adiabatic

Approximation on the other hand simplifies the nuclear motion by assuming that there is

no nuclear coupling, i.e. the nuclei are at an optimal geometry and therefore their geometry

do not affect each other. This approximation is tangible to the problem at hand because the

concern lies with the electronic motion which is much faster than the motion of the nuclei.

Thus, the electromagnetic field generated by the electrons is an average force field over the

electron trajectory when considering the nuclei.

The wave functions of the first state are given by

Ψ(�r) = φ(�r)ψ(�r) (5.3)

where there φ describe the nuclear motion in the electric field of each electron and the ψ

are the electronic wave functions. The electronic wave functions are also known as adiabatic
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functions with corresponding adiabatic potentials as eigenvalues. This term refers to the fact

that the eigenvalues correspond to potentials of the nuclear motion.

In a charge exchange process we consider only the electronic wave functions as the

molecular symmetry does not change between the neutral and monoanion (or the monoanion

and the dianion). As will be shown, the symmetry of the electronic orbitals dictates that

no two electronic wavefunctions may overlap. The two adiabatic potential curves will then

approach each other without crossing; the point of closest proximity is called the avoided

crossing. Our interest therefore lies in the behavior of the wave function about the avoided

crossing. At this point the eigenvalues are nearly degenerate and are solutions of the

Schrödinger Equation given by

(
�
2

2μ
∇2 + V )|φ >= E|φ > . (5.4)

Spatially perturbing the Hamiltonian results in

H(R) ≈ H(RC) +W (R) (5.5)

for W (R) = (R − RC)
∂
∂R

H|R=RC
. Any wavefunction in the electron’s Hilbert Space may

be expanded by a linear combination of the individual wavefunctions on either side of the

avoided crossing:

Φ = aφ1 + bφ2. (5.6)

Plugging this into the Schrödinger Equation yields two equations:

< φ1|H(RC) +W (R)− E|Φ > = a(U1 + V11 − E) + b(V12) = 0

< φ2|H(RC) +W (R)− E|Φ > = a(V21) + b(U2 + V22 − E) = 0 (5.7)

A non-trivial solution will only exist in the case of a vanishing determinant. Applying

this constraint leads to two energies which must be degenerate; this in turn leads to the
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implication that

(U1 − U2 + U11 − U22) = V12 = 0. (5.8)

The degeneracy condition hinges on the fact that both of these equations may be satisfied

simultaneously. Because there is only one degree of freedom to vary, namely r, only one of

these equations may be solved. If the two wavefunctions are of different symmetries, the

cross-term will vanish at the crossing. On the other hand, if the symmetries are the same,

crossing is no longer degenerate and it is therefore ”avoided.” This is generally the case for

charge transfer.

In order to describe the transition, one must use the previous wave functions to solve the

time-dependent Schrödinger Equation:

i

�

∂

∂t
|Φ >= (H(RC) +W (R))|Φ > (5.9)

resulting in

i
∂a

∂t
= a(U1 − V11) + bV (5.10)

i
∂b

∂t
= b(U2 − V22) + aV (5.11)

for V = V12 = V ∗21. Applying the spatial perturbation to the eigenvalues gives

U1 − V11 ≈ UC + F1(RC −R) (5.12)

U2 − V22 ≈ UC + F2(RC −R) (5.13)

where Fi(RC − R) is the gradient of the adiabatic curve evaluated at the avoided crossing,

namely Fi(RC − R) = ∂(Ui−Vii)
∂R

. The constant term associated with UC is dealt with by

including a complex exponential phase:

a′(t) = a(t) exp(−iUCt) (5.14)

b′(t) = b(t) exp(−iUCt). (5.15)
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Finally we make use of the semi-classical approximation that the nuclei will folllow a

classical trajectory thus implying that the velocity can be written as the time derivative

of the internuclear separation ( ∂
∂t

= v ∂
∂ξ
). This results in the following system of partial

differential equations:

iv
∂a′(t)
∂ξ

= F1(RC −R)a′ + b′V (5.16)

iv
∂b′(t)
∂ξ

= a′V + F2(RC −R)b′. (5.17)

Solving these equations and taking the magnitude gives the result

|b′|2 = exp(
−2πV 2

v|F1 − F2|) = 1− |a′|2. (5.18)

The term |b′|2 is associated with the probability that the collision will result in a nonadiabaitc

trasition. In order for charge transfer to occur, the system must go through one nonadiabatic

transition and on adiabatic transition. Because the system does not discriminate between

the order of these transitions, the total probability of transition is given by

P = 2|b′|2|a′|2 (5.19)

thus giving the cross-section in its familiar form as

σ = πR2
CP = 2πR2

C exp(−Q/v)(1− exp(−Q/v)) (5.20)

where

Q =
2πV 2

|F1 − F2| = π(
δ

ΔE
)2 (5.21)

for the adiabatic splitting δ and energy deficit ΔE = IPtarget − EAprojectile.
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5.3 Analysis of the Charge-Transfer Cross-Section

The collisional charge transfer cross-section can be modeled through the Beer-Lambert Law

as

I = I0e
−nlσ (5.22)

for initial intensity I0, transmitted intensity I, number density n, path length l, and cross-

section σ. The number of dianions formed via collisional chrage transfer is then given by

I0 − I = I0(1− e−nlσ) ≈ I0nlσ (5.23)

where a first order Taylor expansion has been used under the assumption that the charge

transfer process occurs in a small percentage of cases.

Cross-sections for higher energy collisions have been acquired for TCNQ and perfluori-

nated TCNQ (TCNQF4) using xenon and sodium. Collisions of TCNQ and TCNQF4 with

xenon were shown to preferentially excite electronic states in either molecule resulting in a

delayed threshold for ionization. As stated above, it has been shown that collisions with

xenon result in a deviation from the ideal Landau-Zener cross-section due to the Xe1/2 and

Xe3/2 fine structure states. Due to the close proximity in energy of these two states, the

cross-section will reflect contributions from both states.

The cross-section model that was fit is given by the Landau-Zener formula with an

additive errors,

σj = 2πR2
ce
−Q/vj(1− e−Q/vj) + εj (5.24)

where the εj are assumed to be identically, independentally Normally distributed with mean

0 and precision τ , Q = π(δ/ΔE)2, v is the impact velocity, and Rc and δ are the interatomic

and potential curve separations at the avoided crossing, respectively. Note that this sees a

maximum at vm = Q/ ln(2). The cross-section for charge transfer in the case of TCNQF4

collisions with sodium result in an exponentially decreasing tail. There is a lack of data

points in the low energy region to resolve a maximum. The expected threshold for charge

transfer is given by the ionization potential of sodium (5.14 eV) minus the electron affinity
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of TCNQF4 (∼ 0.6 eV) which is larger than the maximum energy extrapolated from this

data, Em = 1
2
Mv2m ≈ 2.2 eV. Thus, low energy data is needed to properly model the electron

affinity of the perfluorinated TCNQ.

For the parent ion, the maximum energy data point can be resolved around a kinetic

energy of about 8 keV in the lab frame (Figure 5.5). In atomic units this corresponds to

a velocity of 3.972 × 10−4 a.u. or δ
ΔE

= 9.36 × 10−3. For TCNQF4 the potential surface

separation is given through the WKB approximation as δ ≈ 0.057 eV (Ovchinnikov et al.,

2006). Utilizing this separation for TCNQ results in a point estimate of ΔE = 6.088 eV

which is larger than the IP of sodium; thus, the electron affinity of TCNQ− is predicted to

be negative. Because the dianion has been shown to be stable, either this separation does

not apply to TCNQ or there is a resonance which provides stability in the dianion.

For a more in-depth analysis of the cross-section non-linear modeling was implemented.

In this case fitting was carried out using four different methods: A maximum likelihood

grid search, the Discrete Approximation, Marquardt-Levenburg non-linear regression, and

Bayesian non-linear modeling using a Markov Chain Monte Carlo simulation. Results are

summarized in Table 5.1.

Table 5.1: Different fits to collisional charge-transfer cross-section.

Method R2
C Q Sum Squares Error

Grid Search 0.0156 0.8780 0.0470

Discrete Approximation 0.0102 1.0605 0.1316

Marquardt-Levenburg 0.0157 0.8740 0.0470

Bayesian MCMC 0.0156 0.8755 0.0471

The maximum likelihood grid search was performed over a grid with boundaries given

by 0.00001 ≤ Q ≤ 0.2 and 0.2 ≤ R2
C ≤ 2.0. The grid points were spaced by 0.002 for Q

and 0.04 for R2
C . Although the solution gave an excellent fit to the data, the grid’s discrete
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Figure 5.5: Modeling the collision-charge transfer cross-section. The grid-search minimum
error curve is given in black, the Marquardt-Levenburg curve is given in blue, the Bayesian
MCMC curve is given in green, and the red curve is the Discrete Approximation to the
posterior distribution.
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values do not allow for an absolute maximum; the solutions are only as precise as the grid.

Therefore, continuing with the Frequentist methods, the Marquardt-Levenburg was utilized.

This result is a maximum likelihood solution resulting from a constrained, iterative stepping

procedure. Note that the parameter values obtained using this technique are very close to

those values given by the grid search indicating that the grid was sufficiently fine.

To supplement these fits the Discrete Approximation was utilized as a Bayesian equivalent

to a grid search. This method calculates the posterior probability distribution at each of

the grid points. The final value is then the posterior-weighted average over the grid. The

downside to this technique is that it is often more sensitive to the boundary size and step size

than the Frequentist grid search. Therefore, this solution is supplemented with a Bayesian

MCMC. In order to do so a Metropolis-Hastings sampling is used for the Q parameter while

R2
C and precision are Gibbs sampled.

In the Landau-Zener theory Q and R2
C must be positive, thus the prior probability

distributions used in the fitting procedure are

Q ∼ Γ(0.05, 1.00) (5.25)

R2
C ∼ Exp(0.80)

where the parameter values for the priors are arbitrarily chosen from the grid search. The

choice of an exponential distribution for the R2
C is partially motivated by the ability to then

use Gibbs sampling. This can be seen in the resultant posterior distribution

Q|σ, v, R2
C , τ ∼ A

Γ(1.05)

Γ(0.05)Γ(1.00)
×

N∏
i=1

√
τ

2π
exp[

−τ

2
(σi − σ̂i)

2] (5.26)

R2
C |σ, v,Q, τ ∼ truncN(− 1

0.8
+ τ

N∑
i=1

(σiσ̂i), τSSE)

where A is a normalization constant τ is the precision, and SSE is the sum squares error,

SSE =
∑N

i=1(σi− σ̂i)
2. Just as in the case of pNA, the prior probability distribution for the
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precision is chosen to be a conjugate prior, namely a gamma distribution:

τ ∼ Γ(10, 2) (5.27)

where the parameters are chosen arbitrarily. The posterior is then given by

τ |σ, v,Q,R2
C ∼ Γ(10 +

N

2
, 2 +

SSE

2
). (5.28)

Using these posterior distributions we find that the fit is almost identical to that found

by the Marquardt-Levenburg. On the surface then, the Bayesian technique was overkill.

That is to say, the computational complexity rendered this method unecessarily difficult to

implement. Nevertheless, more information can be garnered from the Bayesian fit than from

a Frequentist fit because the posterior distrubions have been established. This means that

in addition to the parameter estimates given by the mean, the median, variance, and 95%

confidence intervals may be ascertained from this information.

Again, in this model we see that there is some inter-parameter correlation (Figure 5.6).

For the purpose of comparison, a similar plot of the SSE versus the parameters is included for

the simple linear regression model y = mx+ b (Figure 5.7). In this case data were simulated

using

y = 23x+ 5 + ε

for normally distributed errors, ε ∼ N(0, 25). Note that a similar ridge line can be observed

in the case of linear regression. The inter-parameter correlations for linear regression have

been studied in detail (Myers, 1986).

5.4 Conclusion

The analysis of 7,7,8,8-Tetracyanoquinodimethane was carried out to illuminate character-

istics of MCAs, specifically to identify stabilizing characters involved in the attachment of

multiple excess charges. Solution-based techniques to study the TCNQ molecule proved
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Figure 5.6: The model SSE versus each of the two parameters. Notice how a ridge forms
indicating some inter-parameter correlation.
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Figure 5.7: The logarithm of the model SSE versus each of the two parameters for linear
regression. Notice how a ridge forms indicating some inter-parameter correlation.

110



to be complicated by it’s reaction with many solvents. Although methanolisis of TCNQ

was demonstrated here, similar reactions are expected in other solvents such as ethanol and

tetrahydrofuran.

At high collisional energy, TCNQ has been shown to contain some information about

the second electron affinity. While a point estimate of the energy seems consistent with

calculation, Bayesian and Frequentist modeling of the collisional charge transfer cross section

are expected to give an overestimate. For this reason, low-energy collisional data is highly

anticipated; this would provide a more direct observation of the threshold for charge transfer

as well as more evidence for a robust modeling. In the case of the modeling outlined above,

although Bayesian methods give the same result as other techniques, the utility of this new

technique is not futile. The posterior probability distribution obtained in this analysis can

be used as a prior in a further analysis. Additionally, the parameter standard error may be

reduced as a result of using estimators biased by the prior.
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Chapter 6

Conclusion

While experimental investigations of molecular electronic states remains a technical chal-

lenge, this work outlines several techniques designed to acquire and subsequently process such

information. Herein we present the experimental investigation of extraordinary electronic

states of molecules through three specific examples: Photoionization and collision induced

dissociation of pNA, photoionization of TDAE, and collisional charge transfer of TCNQ

with sodium. In the case of pNA, photoelectron spectrscopy was used to investigate the

possibility of dipole-bound negative ion states. We speculate that the lack of dipole-bound

negative ion signal at low binding energy may be indicative of a “doorway state” in which

the electron may bind first to the dipole moment and then fall into a valence-bound state.

Similar observations were shown in other large dipole moment molecules such as nitroethane,

nitromethane, and nitrobenzene (Stokes et al., 2008; Compton et al., 1996; Desfrançois et al.,

1999). As more data are taken and other molecules investigated with dipole moments on the

order of pNA (6.2 Debye), we hope to see a functional relationship between dipole moment

and dipole-bound electron affinity.

Collisional data of pNA with argon were acquired with the intention to explore charge-

transfer. Due to a preference for dissociation, collision induced dissociation experiments

were carried out to examine intra-molecular bonding and transition states. Molecules of

pNA fragment through the loss of NO via a transition state and NO−2 as a result of direct
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cleavage. We find that current modeling techniques are inadequate to accurately describe

the cross-section curve due in a large part to the instability of numerical estimates to the

partial derivatives. In order to address these issues, we implement a Bayesian algorithm to

perform a non-linear regression which results in a smaller sum of squares error in comparison

to the more traditional Marquardt-Levenburg stepping algorithm.

The photoelectron spectra of TDAE presented in this thesis gives strong evidence for

the existence of collective excitations on a small, symmetric molecule. These excitations

are conceptually similar to those seen in nuclear physics as well as collective oscillations

in the plasma of metals (surface plamsons). Experimentally, the presence of a collective

excitation in small molecules is indicated by the presence of multiple transition channels

whose overlap results in an unually large probability of transition. TDAE was viewed as a

potential source for collective excitations due to a strong absorption maximum about 1.0 eV

above the adiabatic IP. An ES-101 hemispherical energy analyzer was modified for injection

of target gas-phase molecules perpendicularly to a focused laser for the purpose of performing

multiphoton ionization of TDAE.

Photon wavelengths of 441 nm and 355 nm were used to probe a charge-transfer states

believed to be responsible for fluoresence in TDAE. 609 nm photons were then used to probe

the doubly-excited zwitterionic state. These two states have been named the CT and Z

state, respectively. Finally, photons of 570 nm (for which three photons are resonant with

the absorption spectrum maximum) and 532 nm produce intense MP photoelectron signal

which indicate ionization from a variety of different states. Additionally, approximately

zero-energy electrons are ejected at all wavelengths. Due the presence of multiple ionization

peaks in the 570 nm spectrum, an absorption maximum above the adiabatic IP, and the

presence of an auto-ionizing state we propose that a collective excitation may bepartially

responsible for MPI in TDAE.

In addition to investigating electron stability versus photodetachment, it is possible to

elucidate stability in the presence of additional charges. To do so, we attempted to measure

the second electron affinity of TCNQ. It has been shown that dianions of TCNQ are stable

and possess excited states. In order to acquire the binding energy, we first used solution
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based techniques to form the TCNQ dianion. Through this we find that charge-transfer

salts preferentially form dication-(anion)2 salts and interpretation of solution based methods

are often convoluted by analyte molecules reacting with the solution, as in the case of

methanolisis.

Modifications to the hemispherical electron energy analyzer were made to produce and

analyze dianions. Although laser desorption ionization of TCNQ samples were shown to

produce TCNQ anion signal with sufficient intensity, the signal remained below detectable

levels within the energy analyzer. Nevertheless, high-energy collisional charge-transfer data

were analyzed theoretically using Landau-Zener theory. A point estimate of -0.95 eV was

provided from the maximum of charge-transfer. Further non-linear modeling was carried out

with Bayesian and frequentist methods.

Given the acquisition of low-energy collisional data, an improved estimate of the second

electron affinity may be attainable. Rather than purge the data taken at higher energy, we

propose that the use of Bayesian methods would provide a robust analysis due to the use of

previous information to form an informative prior on the model parameters.

Through these three experiments we hope to expand the field of Chemical Physics

and enhance future analyses of extraordinary electronic states. In the case of dipole-

bound anions, further comprehension of electronic binding may elucidate electron mobility

characteristics in solids given the transfer of an electron from one molecule to the next

through dipole-bound states. Collective excitations, which are familiar to other fields of

physics, may be responsible for lack of direct photoionization and the formation of super-

excited states in highly symmetric molecules. Measurement of second electron affinities may

contain information about universal stability mechanisms in molecules. Finally, we find that

Bayesian methods provide a novel statistical method for the analysis of Chemical Physics

data although computational expense reserves these methods for more complex models.
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Appendix

R Code

Collision Induced Dissociation Cross-Section

library(msm)

library(scatterplot3d)

library(rgl)

## The function being fit is a typical line-of-centers cross-section

## where a fudge factor exponent is used to model empirical data.

## This is a piecewise function with three fit parameters, a scaling

## coefficient, a threshold energy, and the aforementioned exponent.

## Then, the cross-section is convoluted over

## a Normal distribution.

#f_expr <- function(x, params){

#

# y <- ((x-params[2]) > 0) * (x-params[2])

# params[1]/x*y^params[3]

#

#}
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## This f_expr is used to fit the convoluted data. Note that

## Tiernan’s convolution integral is actually done in the lab frame

## and so I had to transform the integral to do the fit in the Center

## of Mass frame.

## Calculations are slow.

f_expr <- function(x2, params){

vals <- rep(0, length(x2))

S <- 0.3

a <- 39.944/(380.7*8.6173*10^(-5)*298.15)

m <- 39.944/(39.944+380.7)

for(i in 1:length(x2)){

integrand <- function(x){dnorm(x2[i], x,

m*sqrt(S^2+4*x/(m*a))/sqrt(2))*params[1]/x*(x-params[2])^params[3]}

vals[i] <- integrate(integrand, lower=params[2], upper=Inf)$value

}

vals

}

## This calculates the log-posterior which is then sampled through

## the MCMC. I’ve chosen to use the log of the posterior because it

## will take exceptionally small values, below the limits of R. Note

## that the ’Weighted’ fitting appears to give the results which

## are most consistent with CRUNCH or nls when including the weights

## exp(-x^2).
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log_post <- function(data, params, priors){

N <- length(data[,1])

## -N/2*log(2*pi*0.5^2) -

1/(2*0.5^2)*sum((data[,2]-f_expr(data[,1], params))^2) +

## log(dnorm(params[1], priors[1,1], priors[1,2])) +

## log(dnorm(params[2], priors[2,1], priors[2,2])) +

## log(dnorm(params[3], priors[3,1], priors[3,2]))

##Weighted

## -N/2*log(2*pi*0.25^2) - 1/(2*0.25^2)*sum((data[,2]-f_expr(data[,1],

params))^2*exp(-data[,1]^2)) +

## log(dnorm(params[1], priors[1,1], priors[1,2])) +

## log(dnorm(params[2], priors[2,1], priors[2,2])) +

## log(dnorm(params[3], priors[3,1], priors[3,2]))

##Weighted 2

## sigmasq <- 0.5^2/exp(-(data[,1]^2)

## -1/2*sum(log(2*pi*sigmasq)) - 1/2*sum((data[,2]-f_expr(data[,1],

params))^2/sigmasq) +

## log(dnorm(params[1], priors[1,1], priors[1,2])) +

## log(dnorm(params[2], priors[2,1], priors[2,2])) +

## log(dnorm(params[3], priors[3,1], priors[3,2]))

##Weighted 3

## -N/2*log(2*pi*0.25^2) -

1/(2*0.25^2)*sum((data[,2]-f_expr(data[,1],params))^2*exp(-data[,1]^2)) +
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## log(dgamma(params[1], priors[1,1]*0.1, 0.1)) +

## log(dgamma(params[2], priors[2,1]*0.1, 0.1)) +

## log(dgamma(params[3], priors[3,1]*0.1, 0.1))

##Weighted 4

## sigmasq <- 0.25^2/exp(-data[,1]^2)

## -1/2*sum(log(2*pi*sigmasq)) -

1/2*sum((data[,2]-f_expr(data[,1],params))^2/sigmasq) +

## log(dgamma(params[1], priors[1,1]*0.1, 0.1)) +

## log(dgamma(params[2], priors[2,1]*0.1, 0.1)) +

## log(dgamma(params[3], priors[3,1]*0.1, 0.1))

##Weighted 5

-1/2*sum(log(2*pi*exp(-data[,1]^2)/params[4])) -

params[4]/2*sum((data[,2]-f_expr(data[,1], params))^2*exp(-data[,1]^2)) +

# dgamma(params[1], shape=0.1, scale=100, log=TRUE) +

dgamma(params[2], shape=0.1, scale=100, log=TRUE) +

dgamma(params[3], shape=0.1, scale=100, log=TRUE)

}

## This function simply runs the iterative MCMC to sample the posterior.

## The final fit parameters are then the average over the sample less

## the burn.in period.
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fitter <- function(data, priors, num.iter){

burn.in <- round(num.iter/25)

samps <- matrix(0, num.iter, 5)

samps[1,] <- c(priors[, 1], 0.5, -1E7)

tuning <- c(1, 0.05, 0.25)

for(i in 2:num.iter){

samps[i,] <- samps[i-1,]

beans <- f_expr(data[,1], samps[i,])/samps[i,1]

mean1 <- (-0.1/samps[i,4]+sum(data[,2]*beans*exp(-data[,1]^2)))

/(sum(beans^2*exp(-data[,1]^2)))

var1 <- 1/(samps[i,4]*sum(beans*exp(-data[,1]^2)))

samps[i,1] <- rnorm(1, mean1, sqrt(var1))

for(j in 2:3){

if(j==2){samps[i,5] <- log_post(data, samps[i,], priors)}

new <- samps[i, ]

new[j] <- rtnorm(1, samps[i,j], tuning[j], lower=0, upper=Inf)

new[5] <- log_post(data, new[1:4], priors)

u <- runif(1)

rat <- dtnorm(samps[i,j], new[j], 1.0)/dtnorm(new[j], samps[i,j], 1.0)

if(log(u) < new[5] - samps[i,5] + log(rat)){samps[i,] <- new}
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}

shapesigma=length(data[,1])/2

scalesigma=.5*sum((data[,2]-f_expr(data[,1], samps[i,1:3]))^2

*exp(-data[,1]^2))

sigma=rgamma(1,shape= shapesigma,scale=1/scalesigma)

samps[i,4]=sigma

}

## apply(samps[-(1:burn.in),], 2, mean)[1:3]

N <- num.iter-burn.in

apply(samps[seq(burn.in, N, 30),], 2, mean)[1:4]

# Attempting to deal with auto-correlation

}

grids <- function(data, priors){

sigma_vals <- seq(7.0, 20.0, 0.5)

E_vals <- seq(0.6, 1.5, 0.05)

n_vals <- seq(1.0, 2.3, 0.05)

N <- length(sigma_vals)*length(E_vals)*length(n_vals)

beans <- 1

samps <- matrix(0, length(sigma_vals)*length(E_vals)*length(n_vals), 4)

for(i in sigma_vals){
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for(j in E_vals){

for(k in n_vals){samps[beans, 1:3] <- c(sigma_vals[i], E_vals[j], n_vals[k])

beans <- beans+1}

}

}

for(loops in 1:N){samps[loops, 4] <- log_post(data, samps[loops, 1:3], priors)}

samps

}

## These are the prior means and standard deviations

## (dnorm uses sd’s isntead of variances).

priors <- cbind(c(10, 1.1, 1.5), c(300, 300, 300))

##Unadjusted Energy

energy <-

c(0.284877474,0.332357053,0.379836631,0.42731621,0.474795789,0.522275368,

0.569754947,0.617234526,0.664714105,0.712193684,0.759673263,0.807152842,

0.854632421,0.902112,0.949591579,0.997071158,1.044550736,1.092030315,

1.139509894,1.186989473,1.234469052,1.281948631,1.32942821,1.376907789,

1.424387368,1.471866947,1.519346526,1.566826105,1.614305684,1.661785263,

1.709264842,1.75674442,1.804223999,1.851703578,1.899183157,1.946662736,

1.994142315,2.041621894,2.089101473,2.136581052,2.184060631,2.23154021,

2.279019789,2.326499368,2.373978947,2.421458525,2.468938104,2.516417683)

##Adujusted Energy (for later thermal corrections)
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energy2 <- c(0.5594277176,0.6039832981,0.6488856692,0.6940873403,0.7395464501,

0.7852269208,0.8310968300,0.8771357529,0.9233229764,0.9696356190,1.016059988,

1.062584146,1.109191764,1.155881385,1.202633171,1.249446933,1.296313252,

1.343230286,1.390188620,1.437184889,1.484216512,1.531281237,1.578375811,

1.625489138,1.672626699,1.719784802,1.766974796,1.814172429,1.861375599,

1.908615016,1.955856536,2.003106397,2.050378220,2.097659678,2.144935994,

2.192246522,2.239548654,2.286862327,2.334175591,2.381512707,2.428841436,

2.476175278,2.523527446,2.570879397,2.618241975,2.665601160,2.712961974,

2.760326198)

XSectionR <-

c(0,0,0,0.222691341,0.312847818,0.372806444,0.477835645,0.654118536,

0.844084713,1.181251625,1.534837567,1.866143092,2.431945881,3.052661403,

4.095970308,5.517380082,6.676102028,8.611373188,10.48470445,12.58106413,

15.76682783,18.1784481,21.27782955,25.07699535,28.53801593,32.48988813,

37.4040081,40.20908419,45.25825336,49.12880167,54.40134261,57.67218474,

62.20306329,65.05774414,67.71377623,70.98478852,73.41890941,76.55278113,

80.03012161,81.61782573,83.37123148,85.03681695,86.80709099,88.36848933,

89.66486775,90.57093919,91.8175225,92.98162025)

data <- cbind(energy, XSectionR)

data[,2] <- data[,2]/10 # I rescale the data to make fitting work better.

data <- data[-c(44, 45, 46, 47, 48),] # Cleaving some of the data to make

the fitting work more like CRUNCH.

vals <- fitter(data, priors, 10000)

plot(data)

curve(f_expr(x, vals), add=T)
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## As a comparison I fit and plot using the nls non-linear regression function.

x <- data[,1]

y <- data[,2]

vals2 <- nls(y ~ f_expr(x, c(a,b,c)), start=list(a=vals[1], b=vals[2],

c=vals[3]), weights=exp(-data[,1]^2))

curve(f_expr(x, coef(vals2)), add=T)

XSection3 <-

c(0.0,0.0,0.0,0.05875360499,0.09580206163,0.1293376514,0.1843123905,

0.2763686183,0.3859607317,0.5788088453,0.7993334501,1.025864469,1.402937483,

1.838771771,2.565041954,3.578728605,4.470453200,5.935813941,7.420539809,

9.121880934,11.68750610,13.75180037,16.40022640,19.66445631,22.73732369,

26.26950226,30.65746703,33.37531718,38.00915649,41.71147064,46.65815465,

49.93208309,54.33022057,57.29123389,60.08812763,63.44252371,66.05780013,

69.30916291,72.88242666,74.73649251,76.73480461,78.64521696,80.64547298,

82.44435339,83.98696983,85.15292503,86.62820963,88.01615231)

data2 <- cbind(energy, XSection3)

data2[,2] <- data2[,2]/10

data2 <- data2[-c(44, 45, 46, 47, 48),]

##The ’unconvoluted cross-section’ given by CRUNCH

XSection4 <-

c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0056017351,0.15918793,0.40009210,

0.68847316,1.0073350,1.3466953,1.7000045,2.0627029,2.4315021,2.8039724,

3.1782917,3.5530750,3.9272634,4.3000440,4.6707909,5.0390262,5.4043831,

5.7665849,6.1254258,6.4807550,6.8324693,7.1804987,7.5248029,7.8653647,

8.2021824,8.5352798,8.8646774)
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data3 <- cbind(energy[1:length(XSection4)], XSection4)

plot(data)

points(data3)

Landau-Zener Cross-Section

library(Hmisc)

library(msm)

m <- 204.19/(6.022*10^(23)*9.11*10^(-28)) #Mass of TCNQ per molecule

x <- (5.2377,6.5056,7.1396,7.9396,9.0521,10.1434,15.1094,25.2226,35.4112,

40.6188,50.8678,60.8451,70.8979,81.0866,91.0941)*1000/27.2107

y <- c(1.1598, 1.2747, 1.2699, 1.3283, 1.1853, 1.2003, 1.0012, 0.8429, 0.8324,

0.7382, 0.6438, 0.6036, 0.5799, 0.5703, 0.5199)

v <- sqrt(2*x/m) #Corresponding velocity in the Lab frame

vars <- c(0.1035, 0.0895, 0.0876, 0.0195, 0.1931, 0.0873, 0.0458, 0.0192,

0.0146, 0.0192, 0.1692, 0.0873, 0.0327, 0.1340, 0.0911)/2

#var <- 0.03

## The Landau-Zener model for the collisional charge transfer cross-section.

#f_expr <- function(Q, R, v){2*pi*R^2*exp(-Q/v)*(1-exp(-Q/v))}

f_expr <- function(Q, R, v){2*pi*R*exp(-Q/v)*(1-exp(-Q/v))}

## A function which calculates the log-likelihood
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log_likes <- function(x, y, params){

N <- length(x)

-N/2*log(2*pi/params[3]) - params[3]/2

*sum((y-f_expr(params[1], params[2], x))^2)

}

## A function which evaluates the posterior. The prior distributions that are

## are gamma(1,beta) for R and a truncated normal distribution for the Q

## parameter. This allows us to constrain the parameters to positive values

## through the distributions.

log_post <- function(x, y, params){

beta <- 0.9

return(log_likes(x, y, params)

+ log(dgamma(params[2], 1, 1/beta))

+ log(dtnorm(params[1], mean=1.6, sd = 1, lower=0))

+ log(dgamma(params[3], 1, 1/0.17)))

}

## The first fit is simply a grid-search for the parameters.

Qvals <- seq(0.00001, 0.01, by=0.0002)

Rvals <- seq(0.01, 2.0, by=0.002)
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sols <- matrix(0, length(Qvals)*length(Rvals), 3)

looper <- 1

for(i in Qvals){

for(j in Rvals){ sols[looper,] <- c(i, j, sum((y-f_expr(i, j, v))^2))

looper <- looper+1}

}

best_sol <- which(sols[,3] == min(sols[,3]))

sols[best_sol,]

curve(f_expr(sols[best_sol,1], sols[best_sol,2], x), add=TRUE)

## The second fit uses the Discrete Approximation. This is simply

## a posterior-weighted grid search.

Qvals <- seq(0.00001, 0.01, by=0.0002)

Rvals <- seq(0.01, 2.0, by=0.002)

sols2 <- matrix(0, length(Qvals)*length(Rvals), 3)

looper <- 1

for(i in Qvals){

for(j in Rvals){sols2[looper,] <- c(i, j, exp(log_likes(v, y, c(i,j,0.25))))

looper <- looper+1}

}

best_sol2 <- c(sum(sols2[,3]*sols2[,1])/sum(sols2[,3]),
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sum(sols2[,3]*sols2[,2])/sum(sols2[,3]))

best_sol2

curve(f_expr(best_sol2[1], best_sol2[2], x), add=TRUE, col="red")

## Finally We have a fully Bayesian fit using the Gibbs sampler for the R

## parameter and the Metropolis-Hastings algorithm for the Q parameter.

## This is done using the truncated normal distribution to take

## the random steps in order to keep the parameter positive.

n.iter <- 10000

burn.in <- 250

sols3 <- matrix(0, n.iter, 4)

sols3[1,-4] <- sols[best_sol,-4]

sols3[1,4] <- log_post(x, y, sols[best_sol,])

R_prior <- sols[best_sol,2]

Chi_prior <- 1/sum((y-f_expr(sols[best_sol,1], sols[best_sol,2], v))^2)

sols3[1,3] <- Chi_prior

for(i in 2:n.iter){

sols3[i,] <- sols3[i-1,]

prop <- sols3[i,]

prop[1] <- rtnorm(1, sols3[i,1], 0.5, lower=0, upper=Inf)

prop[4] <- log_post(v, y, prop[-4])
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u <- log(runif(1))

if(u < (prop[4] - sols3[i,4] - dtnorm(prop[1], sols3[i,1], 0.5) +

dtnorm(sols3[i, 1], prop[1], 0.5))){sols3[i,] <- prop}

R_b <- sols3[i,3]*sum(f_expr(sols3[i,1], 1, v)^2)

R_a <- (-1/R_prior + sols3[i,3]*sum(y*f_expr(sols3[i,1], 1, v)))/(R_b)

R_b <- 1/sqrt(R_b)

sols3[i,2] <- rtnorm(1, R_a, R_b, lower=0, upper=Inf)

# sols3[i,2] <- rnorm(1, R_a, R_b)

SSE <- sum((y-f_expr(sols3[i,1], sols3[i,2], v))^2)

N <- length(y)

sols3[i,3] <- rgamma(1, N/2 + Chi_prior, 1+1/2*SSE)

}

best_sol3 <- apply(sols3[-(1:burn.in),], 2, mean)

best_sol3[4] <- sum((y-f_expr(best_sol3[1], best_sol3[2], v))^2)

best_sol3

curve(f_expr(best_sol3[1], best_sol3[2], x), add=TRUE, col="blue")
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##Plotting the function

jpeg(filename = "CrossSection.jpg", height=6.9, width=6.9, units="cm",

pointsize=8, res=600)

plot(v, y, xlab="Lab Frame Energy (eV)", ylab="Cross-section (Mb)")

curve(f_expr(sols[best_sol,1], sols[best_sol,2], x), add=TRUE)

curve(f_expr(best_sol2[1], best_sol2[2], x), add=TRUE, col="red")

curve(f_expr(best_sol3[1], best_sol3[2], x), add=TRUE, col="blue")

dev.off()

Gaussian Code for Optimized Energy and Vibrational

Frequencies

p-Nitroaniline
B3LYP/6-311+G*

Deprotonated p-Nitroaniline Neutral
B3LYP/6-311+G*

C
C 1 B1
C 2 B2 1 A2
C 3 B3 2 A3 1 D3
C 4 B4 3 A4 2 D4
C 1 B5 2 A5 3 D5
N 3 B6 2 A6 1 D6
N 6 B7 1 A7 2 D7
O 7 B8 3 A8 2 D8
O 7 B9 3 A9 2 D9
H 1 B10 2 A10 3 D10
H 2 B11 1 A11 3 D11
H 4 B12 3 A12 2 D12
H 5 B13 4 A13 3 D13
H 8 B14 6 A14 1 D14
Variables:
B1 1.37645
B2 1.40150

A2 118.91674
B3 1.40226
A3 122.22483
D3 359.97438
B4 1.37614
A4 118.93480
D4 0.02562
B5 1.43498
A5 121.18939
D5 359.97438
B6 1.47196
A6 118.98826
D6 180.02562
B7 1.33185
A7 117.73701
D7 179.97438
B8 1.22584
A8 117.63025
D8 359.97438
B9 1.22642
A9 117.63099
D9 180.02562
B10 1.08359
A10 121.28897
D10 180.02562
B11 1.08176
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A11 121.67989
D11 179.97438
B12 1.08191
A12 119.34890
D12 179.97438
B13 1.08574
A13 120.02063
D13 180.02562
B14 1.02422
A14 110.07314
D14 180.02562

Deprotonated p-Nitroaniline Anion
B3LYP/6-311+G*

C
C 1 B1
C 2 B2 1 A2
C 3 B3 2 A3 1 D3
C 4 B4 3 A4 2 D4
C 1 B5 2 A5 3 D5
N 3 B6 2 A6 1 D6
N 6 B7 1 A7 2 D7
O 7 B8 3 A8 2 D8
O 7 B9 3 A9 2 D9
H 1 B10 2 A10 3 D10
H 2 B11 1 A11 3 D11
H 4 B12 3 A12 2 D12
H 5 B13 4 A13 3 D13
H 8 B14 6 A14 1 D14
Variables:
B1 1.36553
B2 1.42112
A2 120.90638
B3 1.41709
A3 118.59203
D3 359.97438
B4 1.36776
A4 120.76604
D4 0.02562
B5 1.45309
A5 122.58247
D5 0.02562
B6 1.40170
A6 120.80997
D6 180.02562
B7 1.31466
A7 119.83420
D7 180.02562
B8 1.25591
A8 119.35982
D8 0.02562
B9 1.25661

A9 119.43183
D9 179.97438
B10 1.08597
A10 120.62203
D10 179.97438
B11 1.08338
A11 120.88698
D11 180.02562
B12 1.08358
A12 118.29039
D12 180.02562
B13 1.08901
A13 119.59261
D13 179.97438
B14 1.02379
A14 109.17844
D14 179.97438

p-Nitroaniline Anion without HNO
B3LYP/6-311+G*

H
C 1 B1
C 2 B2 1 A2
H 3 B3 2 A3 1 D3
C 3 B4 2 A4 1 D4
C 5 B5 3 A5 2 D5
H 6 B6 5 A6 3 D6
C 6 B7 5 A7 3 D7
H 8 B8 6 A8 5 D8
C 8 B9 6 A9 5 D9
N 10 B10 8 A10 6 D10
H 11 B11 10 A11 8 D11
O 5 B12 3 A12 2 D12
Variables:
B1 1.08988
B2 1.37375
A2 119.78193
B3 1.08714
A3 120.69770
D3 0.02562
B4 1.44784
A4 122.63416
D4 180.02562
B5 1.44986
A5 114.31246
D5 359.97438
B6 1.08709
A6 116.53505
D6 180.02562
B7 1.37093
A7 122.85378
D7 0.02562
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B8 1.08681
A8 120.76114
D8 179.97438
B9 1.44082
A9 122.60143
D9 359.97438
B10 1.33749
A10 119.72300
D10 179.97438
B11 1.02346
A11 108.45707
D11 179.97438
B12 1.26741
A12 122.81756
D12 180.02562

p-Nitroaniline NO loss Rearrangement
B3LYP/6-311+G*

C
C 1 B1
C 2 B2 1 A2
C 3 B3 2 A3 1 D3
C 4 B4 3 A4 2 D4
C 5 B5 4 A5 3 D5
O 3 B6 2 A6 1 D6
N 6 B7 5 A7 4 D7
N 7 B8 3 A8 2 D8
O 9 B9 7 A9 3 D9
H 1 B10 2 A10 3 D10
H 2 B11 1 A11 3 D11
H 4 B12 3 A12 2 D12
H 5 B13 4 A13 3 D13
H 8 B14 6 A14 5 D14
Variables:
B1 1.37921
B2 1.40580
A2 120.12303
B3 1.39972
A3 119.22477
D3 0.02562
B4 1.38243
A4 120.88611
D4 359.97438
B5 1.44670
A5 122.53810
D5 359.97438
B6 1.39258
A6 125.02062
D6 180.02562
B7 1.32771
A7 126.40483
D7 180.02562

B8 1.40015
A8 118.34457
D8 0.25523
B9 1.20616
A9 110.32086
D9 180.02562
B10 1.08642
A10 119.89463
D10 180.02562
B11 1.08397
A11 119.92080
D11 179.97438
B12 1.08747
A12 118.62491
D12 179.97438
B13 1.08909
A13 119.24139
D13 179.97438
B14 1.02388
A14 108.90553
D14 0.02562

p-Nitroaniline Neutral with HNO2
B3LYP/6-311+G*

C
C 1 B1
C 2 B2 1 A2
C 3 B3 2 A3 1 D3
C 4 B4 3 A4 2 D4
C 5 B5 4 A5 3 D5
N 6 B6 5 A6 4 D6
H 1 B7 2 A7 3 D7
H 2 B8 1 A8 3 D8
H 4 B9 3 A9 2 D9
H 7 B10 6 A10 5 D10
H 7 B11 6 A11 5 D11
Variables:
B1 1.40226
B2 1.36902
A2 113.54144
B3 1.34755
A3 148.10091
D3 0.65063
B4 1.35135
A4 85.42620
D4 0.02562
B5 1.37951
A5 147.58443
D5 359.32852
B6 1.41236
A6 123.27075
D6 183.84493
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B7 1.08942
A7 124.03537
D7 178.67917
B8 1.08413
A8 123.70510
D8 180.61515
B9 1.08378
A9 137.61454
D9 180.44743
B10 1.01014
A10 113.14345
D10 341.10968
B11 1.01127
A11 113.86389
D11 214.07736

TDAE Neutral
B3LYP/6-311+G*

C
C 1 B1
N 1 B2 2 A2
N 2 B3 1 A3 3 D3
N 2 B4 1 A4 3 D4
N 1 B5 2 A5 3 D5
C 5 B6 2 A6 1 D6
C 5 B7 2 A7 1 D7
C 4 B8 2 A8 1 D8
C 4 B9 2 A9 1 D9
C 6 B10 1 A10 2 D10
C 6 B11 1 A11 2 D11
C 3 B12 1 A12 2 D12
C 3 B13 1 A13 2 D13
H 7 B14 5 A14 2 D14
H 7 B15 5 A15 2 D15
H 7 B16 5 A16 2 D16
H 8 B17 5 A17 2 D17
H 8 B18 5 A18 2 D18
H 8 B19 5 A19 2 D19
H 9 B20 4 A20 2 D20
H 9 B21 4 A21 2 D21
H 9 B22 4 A22 2 D22
H 10 B23 4 A23 2 D23
H 10 B24 4 A24 2 D24
H 10 B25 4 A25 2 D25
H 11 B26 6 A26 1 D26
H 11 B27 6 A27 1 D27
H 11 B28 6 A28 1 D28
H 12 B29 6 A29 1 D29
H 12 B30 6 A30 1 D30
H 12 B31 6 A31 1 D31
H 13 B32 3 A32 1 D32
H 13 B33 3 A33 1 D33

H 13 B34 3 A34 1 D34
H 14 B35 3 A35 1 D35
H 14 B36 3 A36 1 D36
H 14 B37 3 A37 1 D37
Variables:
B1 1.36745
B2 1.41347
A2 123.66701
B3 1.41347
A3 123.66701
D3 328.54321
B4 1.41347
A4 123.66701
D4 148.54321
B5 1.41347
A5 123.66701
D5 179.97438
B6 1.45367
A6 119.88817
D6 122.64704
B7 1.44702
A7 120.67733
D7 323.91192
B8 1.45367
A8 119.88817
D8 122.64704
B9 1.44702
A9 120.67733
D9 323.91192
B10 1.44702
A10 120.67733
D10 323.91192
B11 1.45367
A11 119.88817
D11 122.64704
B12 1.45367
A12 119.88817
D12 122.64704
B13 1.44702
A13 120.67733
D13 323.91192
B14 1.09043
A14 109.01522
D14 28.09252
B15 1.10189
A15 113.13330
D15 267.36043
B16 1.09598
A16 110.14664
D16 146.75372
B17 1.09176
A17 109.43810
D17 329.14782
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B18 1.10022
A18 114.30042
D18 90.29289
B19 1.09717
A19 109.35960
D19 210.51180
B20 1.09043
A20 109.01522
D20 28.09252
B21 1.10189
A21 113.13330
D21 267.36043
B22 1.09598
A22 110.14664
D22 146.75372
B23 1.09176
A23 109.43810
D23 329.14782
B24 1.10022
A24 114.30042
D24 90.29289
B25 1.09717
A25 109.35960
D25 210.51180
B26 1.09176
A26 109.43810
D26 329.14782
B27 1.09717
A27 109.35960
D27 210.51180
B28 1.10022
A28 114.30042
D28 90.29289
B29 1.09043
A29 109.01522
D29 28.09252
B30 1.09598
A30 110.14664
D30 146.75372
B31 1.10189
A31 113.13330
D31 267.36043
B32 1.09043
A32 109.01522
D32 28.09252
B33 1.10189
A33 113.13330
D33 267.36043
B34 1.09598
A34 110.14664
D34 146.75372
B35 1.09176
A35 109.43810

D35 329.14782
B36 1.10022
A36 114.30042
D36 90.29289
B37 1.09717
A37 109.35960
D37 210.51180

TDAE Cation
B3LYP/6-311+G*

C
C 1 B1
N 1 B2 2 A2
N 2 B3 1 A3 3 D3
N 2 B4 1 A4 3 D4
N 1 B5 2 A5 3 D5
C 5 B6 2 A6 1 D6
C 5 B7 2 A7 1 D7
C 4 B8 2 A8 1 D8
C 4 B9 2 A9 1 D9
C 6 B10 1 A10 2 D10
C 6 B11 1 A11 2 D11
C 3 B12 1 A12 2 D12
C 3 B13 1 A13 2 D13
H 7 B14 5 A14 2 D14
H 7 B15 5 A15 2 D15
H 7 B16 5 A16 2 D16
H 8 B17 5 A17 2 D17
H 8 B18 5 A18 2 D18
H 8 B19 5 A19 2 D19
H 9 B20 4 A20 2 D20
H 9 B21 4 A21 2 D21
H 9 B22 4 A22 2 D22
H 10 B23 4 A23 2 D23
H 10 B24 4 A24 2 D24
H 10 B25 4 A25 2 D25
H 11 B26 6 A26 1 D26
H 11 B27 6 A27 1 D27
H 11 B28 6 A28 1 D28
H 12 B29 6 A29 1 D29
H 12 B30 6 A30 1 D30
H 12 B31 6 A31 1 D31
H 13 B32 3 A32 1 D32
H 13 B33 3 A33 1 D33
H 13 B34 3 A34 1 D34
H 14 B35 3 A35 1 D35
H 14 B36 3 A36 1 D36
H 14 B37 3 A37 1 D37
Variables:
B1 1.42885
B2 1.37100
A2 120.83216
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B3 1.37101
A3 120.83290
D3 143.09565
B4 1.37101
A4 120.83246
D4 323.09406
B5 1.37100
A5 120.83161
D5 179.97438
B6 1.46066
A6 122.44700
D6 324.46557
B7 1.46298
A7 122.22829
D7 143.34459
B8 1.46066
A8 122.44737
D8 324.46204
B9 1.46298
A9 122.22813
D9 143.34124
B10 1.46081
A10 122.44184
D10 324.43570
B11 1.46292
A11 122.23073
D11 143.35110
B12 1.46292
A12 122.23057
D12 143.34855
B13 1.46082
A13 122.44220
D13 324.43241
B14 1.08780
A14 110.39198
D14 350.64167
B15 1.09461
A15 109.42445
D15 231.51223
B16 1.09482
A16 111.49841
D16 112.24059
B17 1.08815
A17 110.17880
D17 349.05461
B18 1.09473
A18 111.93496
D18 110.48868
B19 1.09424
A19 109.10892
D19 229.95247
B20 1.08780
A20 110.39207

D20 350.64096
B21 1.09461
A21 109.42432
D21 231.51165
B22 1.09482
A22 111.49855
D22 112.24012
B23 1.08815
A23 110.17867
D23 349.05450
B24 1.09473
A24 111.93484
D24 110.48853
B25 1.09423
A25 109.10895
D25 229.95243
B26 1.08780
A26 110.38638
D26 350.65207
B27 1.09459
A27 109.41718
D27 231.52655
B28 1.09479
A28 111.49564
D28 112.25522
B29 1.08817
A29 110.18024
D29 349.03965
B30 1.09473
A30 111.93693
D30 110.46861
B31 1.09423
A31 109.11188
D31 229.94398
B32 1.08817
A32 110.18016
D32 349.03922
B33 1.09423
A33 109.11192
D33 229.94356
B34 1.09473
A34 111.93689
D34 110.46822
B35 1.08780
A35 110.38662
D35 350.65202
B36 1.09479
A36 111.49560
D36 112.25533
B37 1.09459
A37 109.41699
D37 231.52648
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TDAE Dication
B3LYP/6-311+G*

C
C 1 B1
N 1 B2 2 A2
N 2 B3 1 A3 3 D3
N 2 B4 1 A4 3 D4
N 1 B5 2 A5 3 D5
C 5 B6 2 A6 1 D6
C 5 B7 2 A7 1 D7
C 4 B8 2 A8 1 D8
C 4 B9 2 A9 1 D9
C 6 B10 1 A10 2 D10
C 6 B11 1 A11 2 D11
C 3 B12 1 A12 2 D12
C 3 B13 1 A13 2 D13
H 7 B14 5 A14 2 D14
H 7 B15 5 A15 2 D15
H 7 B16 5 A16 2 D16
H 8 B17 5 A17 2 D17
H 8 B18 5 A18 2 D18
H 8 B19 5 A19 2 D19
H 9 B20 4 A20 2 D20
H 9 B21 4 A21 2 D21
H 9 B22 4 A22 2 D22
H 10 B23 4 A23 2 D23
H 10 B24 4 A24 2 D24
H 10 B25 4 A25 2 D25
H 11 B26 6 A26 1 D26
H 11 B27 6 A27 1 D27
H 11 B28 6 A28 1 D28
H 12 B29 6 A29 1 D29
H 12 B30 6 A30 1 D30
H 12 B31 6 A31 1 D31
H 13 B32 3 A32 1 D32
H 13 B33 3 A33 1 D33
H 13 B34 3 A34 1 D34
H 14 B35 3 A35 1 D35
H 14 B36 3 A36 1 D36
H 14 B37 3 A37 1 D37
Variables:
B1 1.53406
B2 1.32933
A2 117.11791
B3 1.32933
A3 117.11776
D3 112.06474
B4 1.32933
A4 117.11769
D4 292.06471
B5 1.32933
A5 117.11785

D5 179.97438
B6 1.47992
A6 122.52523
D6 340.13719
B7 1.48156
A7 124.31352
D7 157.29159
B8 1.47992
A8 122.52528
D8 340.13724
B9 1.48156
A9 124.31353
D9 157.29159
B10 1.47992
A10 122.52524
D10 340.13737
B11 1.48156
A11 124.31345
D11 157.29218
B12 1.48156
A12 124.31331
D12 157.29204
B13 1.47992
A13 122.52534
D13 340.13723
B14 1.08702
A14 111.68415
D14 350.57329
B15 1.09176
A15 108.32808
D15 231.53379
B16 1.09160
A16 109.90152
D16 112.96237
B17 1.08590
A17 110.80049
D17 340.63238
B18 1.09095
A18 111.58741
D18 104.10513
B19 1.09097
A19 106.97729
D19 222.48059
B20 1.08702
A20 111.68410
D20 350.57317
B21 1.09176
A21 108.32803
D21 231.53370
B22 1.09160
A22 109.90153
D22 112.96232
B23 1.08590
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A23 110.80041
D23 340.63236
B24 1.09095
A24 111.58745
D24 104.10510
B25 1.09097
A25 106.97736
D25 222.48061
B26 1.08702
A26 111.68403
D26 350.57391
B27 1.09176
A27 108.32801
D27 231.53446
B28 1.09160
A28 109.90160
D28 112.96308
B29 1.08590
A29 110.80047
D29 340.63282
B30 1.09095
A30 111.58735
D30 104.10540
B31 1.09097
A31 106.97742

D31 222.48094
B32 1.08590
A32 110.80051
D32 340.63271
B33 1.09097
A33 106.97733
D33 222.48086
B34 1.09095
A34 111.58725
D34 104.10531
B35 1.08702
A35 111.68406
D35 350.57380
B36 1.09160
A36 109.90163
D36 112.96301
B37 1.09176
A37 108.32801
D37 231.53434
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