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Abstract

The simultaneous production of two J/psi mesons has been significantly observed in

proton-proton collisions at a center-of-mass energy of 7 TeV with the CMS detector.

The two J/psi mesons are fully reconstructed in their decay to muons. The signal yield

is extracted with an extended maximum likelihood fit based on four event variables.

A method was developed to correct for detector acceptances and efficiencies based

on the measured momenta of the J/psi and their decay muons to maintain the least

model dependence possible.

The measurement is performed in an acceptance region defined by the individual

J/psi transverse momentum and rapidity. From the measured signal yield of 446

events corresponding to an integrated luminosity of 4.7 inverse femtobarn. The

total cross section is found to be 1.49 nanobarn, with 0.07 statistical and 0.13 nb

systematic error, and unpolarizaed production was assumed. Most predictions for

particle production at the LHC assume dominance of single parton interaction for

proton-proton collisions, which can be tested with the final state measured in this

analysis. The differential cross section is measured in bins of the double J/psi invariant

mass, the double J/psi transverse momentum, and the absolute difference in rapidity

of the two J/psi.

The reconstruction of the four charged muon trajectories heavily relies on the

Pixel subdetector located close to the beampipe. Systematic studies with cosmic

muons and tracks from collision events are presented. The development of the Pixel

RawToDigi package, data quality monitoring packages, commissioning studies of Pixel
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data and tracks in first collisions, and realistic simulations of decay signals in the pixel

subdetector were all performed as a part of this dissertation work.
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Chapter 1

Motivations

Elementary particle physics is the study of fundamental particles and the forces that

govern their interactions in an effort to develop a complete description of natural

phenomena. The Standard Model (SM) is a quantum field theory that unifies

the electromagnetic, weak, and strong nuclear forces under a common theoretical

framework. It is based on a limited set of particles: fermions (the fundamental

building blocks) and bosons (the force carriers). Measurements performed over more

than 40 years agree with the SM to a very high precision within the accessible

energy regime. A candidate for the last particle predicted by the model to be

responsible for generating the mass of SM particles, the Higgs boson, has recently

been found Chatrchyan et al. (2012a); Aad et al. (2012). Furthermore, while the

mass of the Higgs candidate is compatible with the SM, it is not predicted by the

model and could have much larger values. The electromagnetic, weak, and strong

force are expected to converge at energies of about 10−15 GeV, but the SM does not

predict a common strength for the forces. Many models beyond the SM (eg, based on

Supersymmetry), predict new generations of particles that overcome the shortcomings

of the SM. The goal of the Large Hadron Collider (LHC) program is to find these new

particles at unprecedented high energies in the collision of protons. Once produced,
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they are identified from decay products detected with an array of several detector

technologies placed at collision points around the LHC storage ring.

The SM uses the analytic technique of perturbation theory to predict the

production and decay rates of particles due to the strong interaction at high energy

to a very high precision. However, it becomes impossible to analytically predict

the production and decay rates of particles due to the strong interaction beyond a

threshold energy because the strong force behaves asymptotically at that limit (as

opposed to the electromagnetic force, which behaves as a continuous function at all

energies and distances). Relatively precise calculations of cross sections are published

for many modes of particle production, and the dominant production process at the

LHC (including for Higgs and other new particle production) is due to interactions

between gluons. Gluon fusion is expected to account for most of the simultaneous

production of two J/ψ in proton-proton collisions, and the double J/ψ final state can

be cleanly reconstructed due to the muon detection and identification capabilities of

the CMS detector.

The goal of this analysis is to find the double J/ψ final state with the CMS

detector and measure the production cross section. This measurement can be used

to evaluate the predictions of different SM interaction models. The correlation

between the J/ψ particles is sensitive to multiple parton interations. If found to be

significant, predictions for other particle production (including the Higgs) may need

to take multiple parton interaction into account. Hence, the analysis also measures

differential cross sections as a function of several kinematic variables.

Models also predict that the two J/ψ can be the result of the decay of an

intermediate resonance state, such as an ηb particle (composed of a b-quark and anti-

b-quark, the groundstate of bottomonium) or a light psuedo-scalar Higgs particle

that is not part of the SM. The decay of the ηb particle into two J/ψ in the SM

is predicted to be at a rate too low to observe with current luminosity. Hence, any

significant resonance would be attributed to physics beyond the SM. Such a resonance
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search is performed through inspection of the reconstructed double J/ψ invariant mass

distribution, looking for an enhancement peak near 9 GeV/c2.
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Chapter 2

Physics Background

2.1 Introduction

This chapter explains the physics concepts relevant to study of double J/ψ production.

Section 2.2 gives an overview of the Standard Model, explaining the type of

mathematical model employed, the fundamental particles contained, the forces

covered, and the predictions the model is capable of making. Section 2.3 goes

into more detail about Quantum Chomodynamics (QCD), the theory within the

Standard Model that governs the strong nuclear force interactions most relevant to

J/ψ production from proton collisions. Section 2.4 discusses potential mass resonances

that may be found in the double J/ψ invariant mass distribution and the implications

of such a resonance for physics beyond the Standard Model.
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2.2 The Standard Model of Particle Physics

2.2.1 The Elementary Particles

All elementary particles can either be classified as fermions or bosons. Fermions

possess half-integer spin and follow Fermi-Dirac statistics, which means no two

fermions can simultaneously possess the same quantum numbers (location, charge,

spin, energy, etc) Griffiths (2005). Bosons possess integer spin and follow Bose-

Einstein statistics, which means there is no limit to how many bosons may possess

the same quantum numbers Griffiths (2005). Fermions are the basic building blocks of

matter, while the forces occur due to exchange of bosons between fermions. Bosons

are therefore considered force mediators, with different bosons responsible for the

action of each force.

Fermions are further divided into two categories: quarks and leptons. Quarks have

a fractional electric charge (+2
3
,−1

3
) and are color charged, making them subject to the

strong force. Quarks cannot exist in isolation due to the magnitude of the strong force,

but must rather be bound up in composite particles known as hadrons that are color-

neutral and have integer electric charge (a phenomenon known as color confinement.

Protons and neutrons are examples of hadrons, each composed of three quarks. Unlike

quarks, leptons have an integer electric charge and no color charge, so they are subject

only to the electromagnetic and weak forces and can exist as free particles. Fermions

can also be organized into three generations of matter, each generation containing

particles of identical electric charge but greater mass than the previous generation.

Particles always decay to lower mass states when possible, which makes second and

third generation particles exceedingly rare in nature. Particles acquire mass through

interaction with the Higgs field, mediated by the Higgs boson Chatrchyan et al.

(2012a); Aad et al. (2012). The full array of SM particles along with their classification

is given in Figure 2.1 wik (2008).

5



Figure 2.1: The elementary particles contained within the Standard Model. All
matter is composed of two types of fermions: quarks (purple) and leptons (green).
Fermions are further organized by column into three generations of matter, with
higher mass particles at higher generations. The actions of the fundamental forces are
due to exchange of bosons (red) between fermions. Particles acquire mass through
interaction with the Higgs field, mediated by the recently discovered Higgs boson
(yellow).
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The six types (flavors) of quarks grouped by generation are: up (u) and down

(d), charm (c) and strange (s), top (t) and bottom (b). The charm, bottom, and

top quarks are referred to as heavy quarks because they have more than an order of

magnitude greater mass than the lighter quarks (the top quark has approximately the

mass of a gold atom). There are three lepton flavors named for the charged lepton they

describe: electron, muon, and tau. For each charged lepton, there is a corresponding

uncharged neutrino of the same flavor (electron neutrino, muon neutrino, and tau

neutrino). For each fermion described in Fig. 2.1, there is also an oppositely charged

anti-particle denoted by a bar above the symbol (for example, c̄ indicates an anti-

charm quark, which has an electric charge of −2
3
). Hadrons composed of three quarks

or three anti-quarks are called baryons or anti-baryons respectively, while hadrons

composed of a quark/anti-quark pair are called mesons.

2.2.2 The Fundamental Forces

Scientists have identified four fundamental forces: gravity, electromagnetism, the

strong force, and the weak force. Although gravity is relevant at the macroscopic scale

because it is universally attractive, it is actually the weakest of the four forces at the

microscopic scale and its effects cannot be measured in elementary interactions. The

other three forces are described by the Standard Model and summarized in Table 2.1.

The effective range of the strong force is limited by color confinement to about the

size of a hadron. The effective range of the weak interaction is limited by the mass of

its boson mediators. The electromagnetic force has no limit to its effective range since

it is mediated by a massless boson (the photon) and electric charge is not subject to

confinement. In practice, opposite electric charges tend to cancel each other out at

the macroscopic scale, though photons (packets of light) can still travel interstellar

distances.

The SM is a Quantum Field Theory (QFT), which means it describes all

interactions as an exchange of particles and all particles as excited states of a quantum
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Table 2.1: The fundamental interactions described by the Standard Model.

Interaction Mediator Effective Range Example in Nature
Strong gluon 10−15 /m Binds hadrons and nuclei
Weak W,Z boson < 10−17 /m Enables beta decay of neutron
Electromagnetic photon ∞, 1

r2
Binds atoms and molecules

field (a field with values associated to points in space and time). Particles that exist

only to mediate an interaction are called virtual particles, and may briefly exist at

an energy below the mass described in Fig. 2.1. The brief existence of a particle at

a forbidden energy is due to the Heisenberg uncertainty principle ∆E · ∆t ≥ 1 (in

Natural Units), which implies large energy fluctuations at very short time scales. The

Standard Model is broken down into several QFTs describing different interactions

and following the requirements of gauge invariance and renormalizability. Gauge

invariance requires that the theory’s rules of interaction do not change under allowed

transformations, which means the forces operate in the same manner at any point in

space and time and are only determined by the fields and conserved quantities of the

theory. Renormalizability requires that the theory be able to scale its description of

interactions to different energies, allowing for finite predictions of interaction at real-

world energy scales. Heisenberg uncertainty also establishes the relationship between

energy, time, and distance: ∆E = 1
∆t

= 1
∆x

for forces operating at the speed of light,

so the renormalization scale that determines the strength of a force can be described

in terms of energy, time, or distance.

The strong force is responsible for binding quarks into hadrons and hadrons into

atomic nuclei, making it the basis for nuclear power and nuclear weapons. The QFT

describing the strong force is called Quantum Chromodynamics (QCD). The strong

force behaves differently at very short distances (less than 1 fm, the approximate

diameter of a hadron) compared to longer distances (1-3 fm, the distance between

neighboring hadrons in a nucleus). The strong interaction becomes weaker at very

short distances/high energies and allows quarks and gluons within a hadron to be
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treated as free particles, a phenomenon known as asymptotic freedom. The scale

at which asymptotic freedom dominates is called the QCD energy scale, ΛQCD, and

corresponds to interaction distances ≤ 1 fm and energies ≥ 200 MeV. At this scale,

a hadron may be modeled as a collection of several different kinds of partons: valence

quarks, gluons, and sea quarks. The valence quarks are the three quarks (in the case

of a baryon) or quark/anti-quark pair (in the case of a meson) needed to form the

hadron and determine its quantum numbers. Gluons carry the strong interaction

between the quarks and can split to form sea quarks, short-lived qq̄ pairs that can

interact in collisions but do not determine the quantum numbers of the hadron. An

example of the structure of a proton at this energy scale is illustrated in Fig. 2.2.

As energy scale increases, sea quarks and gluons are increasingly likely to dominate

interactions. In the 7 TeV collisions of the Large Hadron Collider, the majority

of interactions between colliding protons are predicted to be with gluons and the

majority of quark interactions are predicted to be with sea quarks.

Figure 2.2: Example of a proton’s internal structure at the QCD energy scale.

Protons have a uud valence quark structure, as Fig. 2.2 illustrates. But two u-

quarks with the same quantum numbers in the same location would violate the Pauli

Exclusion Principle. To avoid this, a new quantum number called color charge was

introduced Greenberg (1964). The three types of color charge are red, green, and

9



blue, and they each have a corresponding anti-charge (anti-red, anti-green, and anti-

blue). The strong force only operates between color charged objects, which include

quarks (possessing one color charge), anti-quarks (possessing an anti-color charge),

and gluons (possessing a color and an anti-color charge). As with electric charge,

color charge may be transferred in particle interactions but must be conserved. All

three colors combine to make a color-neutral state, as do all three anti-colors or a

color with its corresponding anti-color.

At distance scales higher than ΛQCD, only the valence quarks need to be considered

for strong interactions. At this scale the strong force is too powerful to allow any

but color-neutral objects to exist, resulting in color confinement. If two quarks are

separated beyond this scale, the strong interaction between them will have sufficient

energy to re-enter the ΛQCD regime and materialize quark/anti-quark pairs from the

vacuum (following energy and charge conservation). These free quarks will then

congeal into color-neutral hadrons, a process known as hadronization. Although

hadrons are color-neutral, the quarks within a hadron can still interact with the

quarks of nearby hadrons up to a distance of around 1-3 fm, similar to the manner

in which electric dipoles can align and attract nearby dipoles. The strong interaction

between nearby hadrons is known as the residual strong force or strong nuclear force

because it is responsible for binding together the nucleus of atoms.

The electromagnetic force binds electrons to the nucleus of an atom and binds

atoms together into molecules, making it responsible for most of the interactions

people perceive every day such as chemical reactions, electric current flow, and

light emission/absorption. The QFT that describes the electromagnetic force is

called Quantum Electrodynamics (QED), mediated by exchange of massless photons

between electrically-charged fermions. At distances greater than the femtometer scale,

the electromagnetic force is the only SM force relevant to particle interactions.

The weak force is the shortest range force in the Standard Model, but is important

for enabling several types of particle decays that would be impossible otherwise (the

most common example in nature is the beta decay of a neutron into a proton).
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The weak interaction is parameterized by Quantum Flavordynamics (QFD) theory

and was not described by a QFT until Glashow, Weinberg, and Salam Glashow

(1961); Salam (1968); Weinberg (1967) demonstrated that the electromagnetic and

weak interactions can be seen as consequences of the same force, now termed the

electroweak force and described by Electroweak Theory (EWT).

The range of weak interaction is so short because it is mediated by very massive

charged W± bosons and neutral Z0 bosons, unlike the other SM forces that have

massless boson mediators. Weak interactions are the only means for a particle to

decay in a way that changes flavor and charge. In addition, a hadron decaying via

the weak interaction does not have the same likelihood of decay if its quark content

are inverted in space (violating parity, also called P symmetry) or replaced with their

respective anti-particles (violating charge-parity, also called CP symmetry). Only the

weak interaction can violate P and CP symmetry. Because the weak interaction is

so weak, particles that can only decay via the weak interaction have a much longer

lifetime. For example, a neutral pion (π0, composed of a uū or dd̄ pair) can decay

electromagnetically, resulting in a lifetime on the order of 10−16s. But a charged pion

(π±, composed of a ud̄ or ūd pair) can only decay weakly, resulting in a lifetime on

the order of 10−8s (orders of magnitude longer than the neutral pion).

As with classical interactions, SM interactions require the sum electric charge,

color charge, energy, and momentum of final-state fermions to match that of initial-

state fermions. In addition, total baryon number and lepton number must be

conserved. Baryon number is a quantum number given to baryons; for baryons

composed of matter quarks it is +1 and for baryons composed of anti-matter quarks

it is −1. Lepton number is a quantum number given to leptons +1 for leptons and

−1 for anti-leptons, and different for each lepton flavor (ie, electron number must

be conserved in addition to muon number and tau number). Fig. 2.3 illustrates the

basic interactions of QCD and Fig. 2.4 and Fig. 2.5 illustrates the basic interactions of

Electroweak theory. Each diagram can be read with any one or two adjacent particles
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(a) A gluon can split
into a quark and cor-
responding anti-quark, a
quark and corresponding
anti-quark can annihilate
into a gluon, and a quark
can emit or absorb a gluon
(changing the color charge
and energy of the quark).

(b) An excited gluon can
emit another gluon. Con-
versely, two gluons can
combine into one.

(c) A pair of gluons can ex-
change quantum numbers.

Figure 2.3: Basic QCD interactions.

taken as the initial state, and all physical interpretations are described in the caption

below the diagram.

The diagrams in Fig. 2.3, Fig. 2.4 and Fig. 2.5 represent basic interactions that

are the building blocks of the larger processes at work in all SM interactions. Any

interaction is possible so long as the reactants and products couple to the appropriate

force and obey the conservation rules, and those interactions are more likely at

distance and energy scales where the force is very strong. A meson decay could

be described by 2.3a, with a qq̄ pair annihilating into a gluon and the gluon splitting

into a new qq̄ pair and hence new meson. A meson decay could similarly be described

by Fig. 2.4a, 2.5a, and 2.5b because the qq̄ pair couple to all three of the forces,

though a qq̄ pair of different flavor could only be decayed through Fig. 2.5b due to

conservation requirements (hence the relatively long lifetime of mesons composed of

different flavor quarks based on the weakness of the weak interaction). A pair of

sea quarks (also called a quark loop) are modeled from the interaction in Fig. 2.3a,
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(a) A photon can split
into any electrically
charged fermion and
corresponding anti-
fermion, any electrically
charged fermion and
corresponding anti-
fermion can annihilate
into a photon, and
any electrically charged
fermion can emit or absorb
a photon (changing the
energy of the fermion).

(b) A photon or Z bo-
son can split into a pair
of oppositely charged W
bosons, oppositely charged
W bosons can combine into
a photon or Z boson, a
charged W boson can emit
a or absorb a photon or
Z boson (changing its en-
ergy), and a photon or Z
boson can emit or absorb
a W boson (gaining charge
and changing its energy).

(c) A pair of neutral elec-
troweak bosons can com-
bine into an oppositely
charged pair of W bosons
(or vice-versa).

Figure 2.4: Basic EM interactions.
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(a) A Z boson can split
into any fermion and
corresponding anti-fermion
(including uncharged
fermions), any fermion and
corresponding anti-fermion
can annihilate into a Z
boson, and any fermion
can emit or absorb a Z
boson (changing the energy
of the fermion).

(b) A positively charged W
boson can split into any
up-type quark and down-
type anti-quark, a nega-
tively charged W boson can
split into any down-type
quark and up-type anti-
quark, these quarks can
combine into a W boson,
and a quark can emit or
absorb a charged W bo-
son (changing the electric
charge, flavor, T3, and
energy of the quark).

(c) A positively charged
W boson can split into
a neutrino and charged
anti-lepton, a negatively
charged W boson can split
into a charged lepton and
anti-neutrino, these leptons
can combine into a W
boson, and a lepton can
emit or absorb a charged
W boson (gaining or losing
electric charge and chang-
ing the lepton’s T3 and
energy).

Figure 2.5: Basic Weak interactions.
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with a gluon splitting into a qq̄ pair, then reconverging to a gluon final state. Other

fermion and boson loops can similarly be built up from the other interactions shown,

and these loops play a larger role in interactions as energy scale increases.

At the LHC, protons collide with a center-of-mass energy of 7 TeV. This energy

is distributed among their partons, and each parton has a chance to interact with the

partons of a colliding proton to produce new particles. A pair of J/ψ particles can

be produced from a single interaction in a Single Parton Scattering (SPS) event, as

depicted in Fig. 2.6. Alternately, two separate interactions between the protons could

each produce a J/ψ in a Double Parton Scattering (DPS) event, depicted in Fig. 2.7.

One of the goals of this analysis is to measure the simultaneous production of two

prompt J/ψ in a manner that discriminates between SPS and DPS production.
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Figure 2.6: Examples of prompt double J/ψ production through Single Parton
Scattering (SPS). In the cases illustrated, two gluons fuse to directly produce the
double J/ψ state.
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Figure 2.7: Examples of processes that lead to prompt single J/ψ production through
gluon fusion or quark annihilation. Any two of these interactions could occur more
than once between the partons of colliding protons.
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2.3 Quantum Chromodynamics and Particle Pro-

duction at the LHC

This section discusses important concepts behind the Quantum Chromodynamics

(QCD) approach used to describe particle interactions and predict prompt double

J/ψ production at the LHC.

2.3.1 QCD Interactions at High Energy

The strong coupling constant αs determines the strength of strong force interactions

and is called a running coupling constant because it is dependent on the energy

scale of the interaction. At energies high enough for asymptotic freedom, the strong

coupling can be approximated αs ≈ 1
β0 ln(E2/Λ2

QCD)
, where β0 is a constant and ΛQCD

is the QCD scale, measured to be ΛQCD = 217+25
−23 MeV Beringer et al. (2012). As

interaction energy drops to ΛQCD, the strong coupling blows up and color confinement

takes over. But at higher energies, the strong coupling can be approximated using a

perturbative expansion. Perturbative QCD is currently the most predictive analytic

solution to QCD equations at high energies.

When hadrons collide at high energy, their partons may interact via the strong

force to produce hard, semi-hard, and soft scattering processes. Hard scattering

processes are those with an interaction energy on the order of tens of GeVor

higher, semi-hard scattering processes are those with an interaction energy on the

order of a few GeV, and soft scattering processes are those with an interaction

energy on the order of tens of MeV. Semi-hard and soft scattering processes may

produce light hadrons with low momentum, the so-called underlying event (UE). But

hard scattering processes are the only interactions with enough energy to result in

double J/ψ production detectable by CMS and are the interactions best described by

Perturbative QCD.
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The process of hard scattering between hadrons is conceptually factorized into

three parts: each hadron is treated as a distribution of partons, each parton within a

hadron is considered an unbound particle with a chance to interact with any parton

in the other hadron, and every such parton-level interaction has a chance to result

in various end-state hadrons after hadronization. Mathematically, this conceptual

treatment translates to the cross section described in Eq. 2.1:

dσ

dX
=
∑
j,k

∫
X̂

fj(x1)fk(x2)
dσ̂jk

dX̂
F (X̂ → X) (2.1)

where:

• X is a hadronic final state kinematic variable of interest (examples below);

• the sum over i and j is over parton types inside the respective hadrons;

• the function fj(x) is a parton distribution function (PDF), representing the

number density of parton type j with momentum fraction x;

• X̂ is a parton-level kinematic variable corresponding to X (before hadroniza-

tion);

• σ̂jk is the parton-level cross section, differential in X̂;

• F (X̂ → X) is a transition function that weighs the probability that the partonic

state X̂ transitions to the final hadronic state X.

Factorizing the process in this manner allows different models to be developed and

interchanged to describe each step. For example, different PDFs can be developed

and paired with the same partonic interaction likelihoods and hadronization models

to provide different predictions of production.

QCD interactions are typically measured with respect to the following kinematic

variables (X) that describe the momentum and angular ranges of interaction products:

19



• transverse momentum (pT): the component of the momentum in the plane

perpendicular to the direction of the collisions,

• pseudorapidity (η): spatial coordinate that describes the angle of a particle

relative to the beam direction and defined by the equation

η = − ln

[
tan

(
θ

2

)]
, (2.2)

where θ is the angle between the particle momentum ~p and the beam direction.

• rapidity (y): defined as

y =
1

2
ln

(
E + pL

E − pL

)
(2.3)

where E is the energy of the particle and pLis the momentum along the colliding

hadron beam direction. If the particle is traveling close to the speed of light,

or the mass of the particle is negligible compared to the energies involved in

the process, the pseudorapidity will be numerically close to the rapidity of the

particle.

2.3.2 Color Singlet and Color Octet States

Real particles must exist in a color neutral state due to color confinement. Therefore,

mesons must possess rr̄, bb̄, or gḡ color charges. Since the exact color charge content

cannot be measured, it is described as a superposition of these possibilities, (rr̄ +

bb̄+ gḡ)/
√

3, known as a color singlet (CS). Gluons exist only as virtual particles and

are experimentally observed not to operate at long range, so gluons do not exist in

a CS state. Rather, gluons exist as a color octet (CO) described by the eight color

superpositions in Table 2.2.

Color singlets and octets are also useful in describing the transition function

F (X̂ → X) of Eq. 2.1. CS models assume the final hadronic state must be produced

as a color singlet. CO models require the hadronic state to be produced as a color
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Table 2.2: Eight color superpositions of the gluon.

(rb̄+ br̄)/
√

2 −ı(rb̄− br̄)/
√

2

(rḡ + gr̄)/
√

2 −ı(rḡ − gr̄)/
√

2

(bḡ + gb̄)/
√

2 −ı(bḡ − gb̄)/
√

2

(rr̄ − bb̄)/
√

2 (rr̄ + bb̄− 2gḡ)/
√

6

octet and then decay to a color singlet via soft gluon emission. CO models predict

greater production cross sections at high pT than CS models.
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2.4 Resonant Production

A resonance content is predicted for the double J/ψ final state. The bottomonium

ground-state meson ηb is expected to decay into two J/ψ mesons in analogy to the

ηc charmonium ground-state that decays into two φ-mesons Collaboration (2006).

However, explicit calculations based on Nonrelativistic QCD (NRQCD) Braaten et al.

(2001); Maltoni and Polosa (2004); Jia (2008) predict this decay mode to be highly

suppressed, so any observation could indicate the limitations of present NRQCD

approaches. Other predicted resonant states that could decay into two J/ψ mesons

are exotic tetra charm-quark states Berezhnoy et al. (2011). Furthermore, a CP -odd

Higgs e.g. in Next-to-Minimal Supersymmetric Standard Models (NMSSM) Dermisek

and Gunion (2005) is predicted with mass close to the ηb meson. The mixing between

those two states can alter the behavior of ηb with respect to QCD predictions Domingo

et al. (2009); Domingo (2011). No evidence for the CP -odd Higgs was found by CMS

in the µ+µ− invariant mass spectrum between 5.5 GeV/c2 and 14 GeV/c2 Chatrchyan

et al. (2012b). The ηb state has been observed in radiative transitions with the

BaBar experiment and observed to have a mass of about 9.4 GeV/c2 and an assumed

decay width, Γηb , of about 10 MeV/c2 Aubert et al. (2009). The ηb decay to two

J/ψ was probed with the CDF detector, which established an upper limit of 3 events

in 1.1 fb−1 of proton/anti-proton collisions at 1.96 GeV Collaboration (2006).
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Chapter 3

Experimental Setup

3.1 The Large Hadron Collider

The search outlined in the previous chapter requires parton interactions significantly

in excess of 6.2 GeV (the rest energy of two J/ψ mesons). The highest energy parton

within a proton has about one-third of the total kinetic energy of the proton. In order

to achieve TeV scale interactions between protons, the protons must be accelerated

to multiples of a TeV. In addition, high beam intensities and collision rates are

neeeded to compensate for the low double J/ψ cross section. The Large Hadron

Collider (LHC) Brning et al. (2004) Evans and Bryant (2008) is a proton-proton

collider located at the European Organization for Nuclear Research (CERN ∗) near

Geneva, Switzerland. The LHC was designed to:

• accelerate two parallel proton beams in opposite directions, each to a final design

energy of 7 TeV;

• maximize the chance of proton collisions every time the beams cross (measured

by cross section);

∗Originally Conseil Européen pour la Recherche Nucléaire, now, Organisation Européen pour la
Recherche Nucléaire
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• collide a large number of protons frequently, continuously, and over a long period

of time (measured by luminosity);

The LHC itself is a proton storage ring that recycles the protons in each beam to

allow it to operate persistently, with minimal downtime, and with minimal loss of

protons (only possible because most interactions are between the sea quarks and

gluons within a proton rather than the valence quarks, so the proton is usually not

destroyed by collisions). The beams are steered around their circular path by 1, 232

dipole magnets, while 392 quadropole magnets around the path serve to regularly

focus the beams (preventing proton loss and increasing chance of interaction). To

further increase the likelihood of collision, the protons are clustered in evenly spaced

bunches and timed so that a bunch from each beam passes through the beam crossing

points at the same time.

The LHC is housed deep underground in tunnels originally excavated for the

Large Electron-Positron Collider (LEP) and is able to repurpose much of the earlier

project’s infrastructure. Figure 3.1 depicts the accelerator complex at CERN, as well

as the locations of the four detectors located at the four points of beam crossing

along the LHC ring. The proton beams are built in steps, each step designed to

successively boost the energy of the protons. First, a linear proton accelerator (LINAC

2) generates 50 MeV protons. The protons are fed into a Proton Synchrotron Booster

(PSB), where they are accelerated to 1.4 GeV. A Proton Synchrotron (PS) then

boosts them to 26 GeV, followed by a Super Proton Synchrotron (SPS) that boosts

them to 450 GeV. In the final step, the protons are injected over a period of about 4.5

minutes into the LHC ring, where they are accelerated for about 20 minutes to reach

their final energy. The protons from a single injection cycle can sustain collisions

at the four intersection points for up to 24 hours. Each experiment is located at

an intersection point, with the Compact Muon Solenoid CMS Collaboration (2006a);

Chatrchyan et al. (2008) (CMS) detector located at Point 5 (P5). CMS is a general
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Figure 3.1: The accelerator chain at CERN. The arrows show the direction of proton
beams in the accelerators and the energy of the beam at these points. Filled circles
show the locations of the four major detectors on the LHC (utility insertions are not
shown).
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purpose experiment whose main goals are to explore a wide range of physics at the

TeV scale.

Table 3.1 shows the LHC operating conditions for most of the 2011 period of

operation as well as the original design values. The design energy is expected to be

reached in 2015.

Table 3.1: Summary of LHC operating conditions during the 2011 run period along
with the original design values.

Parameter 2011 Operation Design Value
Beam energy Ebeam (TeV): 3.5 7
Number of bunches per beam nb: 1380 2808
Number of protons per bunch Np: ∼ 1011 1.15× 1011

Time between collisions (ns): 50 25
Cross section σ ( cm2): ∼ 10−25 10−26

Peak luminosity L ( cm−2s−1): 1033 − 1034 1× 1034

The LHC is described in more detail here in three sections: Section 3.1.1 describes

proton acceleration, Section 3.1.2 describes the magnet systems that steer and focus

the beams, Section 3.1.3 describes the machine luminosity. The CMS experiment is

introduced in Section 3.2.

3.1.1 Acceleration

The LHC program makes use of accelerators already in place at CERN. The proton

beam is created from a bottle of compressed hydrogen gas, shown in Figure 3.2.

Hydrogen atoms from this gas cylinder are injected into the plasma source chamber

of the LINAC 2, shown earlier in Figure 3.1. A hydrogen atom consists of a single

electron orbiting a proton, so the electrons in the hydrogen source are stripped away

to leave proton ions suitable for acceleration.

A Radio-Frequency (RF) cavity is a metallic chamber supplied with a time-

dependent voltage to create an EM field that oscillates (changes direction) at a

resonant frequency. Charged particles (eg, the protons) moving through the RF

cavity are accelerated by the EM field. The RF cavities are separated from each
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Figure 3.2: The source of protons for the LHC.

other by a field-free zone to allow particles to freely drift while the EM field reverses

direction. The setup of RF cavities in the LHC is depicted in Fig. 3.3. The length of

the field-free zones and the timing of the voltage are chosen to accelerate particles to a

specific velocity. A particle moving below this velocity receives an overall boost from

the EM field, a particle moving above this velocity is slowed by the EM field, and a

particle traveling at exactly this velocity is not affected by the field. The spacing of

the RF cavities also serves to group the protons into bunches. Each stage of proton

acceleration utilizes RF cavities to bring the protons to a specified energy.

As the protons are initially non-relativistic, the lengths of the field-free regions in

LINAC 2 vary to account for the rapidly changing velocity. The length remains

constant for the relativistic protons in the later stages, a necessary condition in

order to circulate the protons multiple times around an accelerator ring. In the

ring accelerators, the frequency in the cavity is an integer multiple of the revolution

frequency (harmonic number). The virtual positions occupied along the LHC

circumference by the bunches of protons are called buckets. Each bunch can contain
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Figure 3.3: Illustrates the function of the eight RF cavities used per proton beam of
the LHC, which serve to accelerate protons to a specific energy and sort the protons
into bunches.

up to ∼ 1010 protons. For the LHC, 2808 bunches are positioned in the buckets to

provide a spacing of 25 ns.

The LINAC 2 generates 50 MeV protons and feeds them into the Super Proton

Synchrotron (PSB), the first of the ring accelerators. The PSB boosts the beam to

1.4 GeVand separates it into well-defined bunches of ∼ 1010 protons each spaced

a minimum of 300 ns apart. These bunches are then transferred to the Proton

Synchrotron (PS). Two batches, containing a total of seven bunches, are accelerated

for several revolutions to reduce the spacing between bunches by increasing the

number of harmonics in the ring. The protons are accelerated further to an energy

of 25 GeV, while the beam is split up in steps using the RF on higher harmonics

until 72 bunches of ∼ 1011 protons each are spaced by 25 ns. Those are transferred

into the Super Proton Synchrotron (SPS) that accelerates them to an energy of 450

GeV and, finally, injects them into the LHC, both in a clockwise and anti-clockwise

direction. The total filling time is about five minutes per LHC ring. The bunches of

protons are accumulated for up to 20 minutes in the LHC at the 450 GeV injection

energy. The RF cavities in the LHC ring are able to provide 55 GeV/s of power, and

the LHC ramps the beams to their final energy within 25 minutes of injection.
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3.1.2 Beam Steering and Focus

A charged particle moving through a magnetic field experiences a Lorentz force

perpendicular to its direction of motion and the direction of the field. If the magnetic

field is homogenous, the particle will follow a circular path. The path’s radius of

curvature (r) can be determined by setting the centripetal and Lorentz forces equal

to one another, resulting in Equation 3.1).

r = 0.3 · p

q ·B
(3.1)

Here p is the particle’s momentum (in GeV/c), q is the particle’s charge (in electrons),

and B the magnetic field (in Tesla). This principle is applied in the design of the

ring accelerators at CERN. Dipole magnets steer the beams into circular orbits while

quadropole magnets focus them, preventing dispersion and allowing the protons to

be re-used after collisions. The dipole magnets of the LHC have a very high field

strength of 8.3 T, necessary to fit the LHC into tunnels originally built for the lower

energy LEP. The magnetic field is generated by several blocks of superconducting

niobium-titanium coils running 11, 850 A of current and cooled to 1.9 K by superfluid

helium.

The LHC has two proton beams, each running in parallel but opposite directions

and separated by only 20 cm. In order to steer both beams along the same path, the

magnetic field of the dipole magnets must be inverted over one beam with respect to

the other. This 2-in-1 field configuration is achieved by reversing the direction that

the superconducting coils are wound around each beam, allowing the same current to

flow in opposite directions and create an inverted magnetic field. This configuration

is shown in Figure 3.4.

A quadrupole magnet can focus the beam along one axis, so groups of two

quadrupole magnets rotated 90 degrees relative to one another are used to focus

the beams in the plane normal to their direction. Higher order multipole magnets

are also used to provide higher order corrections to the beam. Table 3.2 gives the
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Figure 3.4: The image on the left shows a cross section of a dipole magnet around the
LHC beampipe, with a 2-in-1 magnetic field configuration. The image on the right
shows a quarter of a dipole aperture, with the 6 superconducting blocks and magnetic
field strength indicated.

number of dipoles, quadrupoles, and higher order multipole magnets installed along

the LHC ring.

Table 3.2: Magnets installed at the LHC.

Number of poles Number of magnets
Dipoles 1232

Quadrupoles 858
Higher order multipoles ∼ 7200

3.1.3 Luminosity

Luminosity (L) is a measure of how many particles an accelerator can throw into

collisions, given as a rate per unit area and per unit time. Cross section (σ) is a

measure of how likely it is for two particles to interact, given as an effective area. The

rate (R) at which colliding particles will interact is therefore a product of these two

values:

R = Lσ (3.2)
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The luminosity is determined by accelerator parameters following the relation:

L =
fN2

pnb

4πσxσy
·

√1 +

(
θcσz
2σ∗

)2
−1

(3.3)

where N1 and N2 are the number of protons in each bunch for beam 1 and beam 2,

nb is the number of colliding bunches in the beams, f is the bunch crossing frequency,

σx,y,z is the width of the beam in x, y, and z assuming a Gaussian density in those

directions, θc is the crossing angle of the beams, and σ∗ is the transverse beam size

at the point of crossing. For most of the 2011 running, the instantaneous luminosity

was L ∼ 1033 − 1034 cm−2s−1.

The time integral of the instantaneous luminosity (
∫
L) is used to describe the

total amount of data collected in an experiment. The total integrated luminosity

available for this analysis was 4.73± 0.12 fb−1. The total number of events observed

in a particular reaction is given by

N = σ

∫
Ldt (3.4)

The rate of particle production is too high for CMS to record all of the collision

events it detects. Thus, a trigger is employed to record only events with indications of

interesting physics. This analysis utilizes an unprescaled muon trigger path designed

to achieve the highest efficiency for J/ψ + muon searches during the 2011 campaign.

This trigger requires the presence of at least three muons, two of which must be

oppositely charged and within the dimuon invariant mass range.
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3.2 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) CMS Collaboration (2006a); Chatrchyan et al.

(2008) is one of two general-purpose particle detectors located at one of the four

interaction points of the LHC. It is designed to explore a wide range of physics

in proton-proton collisions at center-of-mass energies up to 14 TeV and interaction

rates of 40 MHz as bunches collide every 25 ns, with up to 20 proton-proton collisions

occurring simultaneously. The CMS detector is built to search for the Higgs boson in

a wide range of long-lived final state particles, which makes it suitable for the search

and study of a variety of heavy particles (expected or not). The CMS detector is built

from sub-detectors arranged in cylindrical layers around the beam-pipe, as illustrated

in Figure 3.5. From inside out these are: the pixel tracker (Pixel), the silicon strip

tracker, the electromagnetic calorimeter (ECAL), the hadronic calorimeter (HCAL),

and the muon stations. The solenoidal magnet that serves as the namesake of CMS

produces a magnetic field of 3.8 T within the cylinder of the solenoid to assist in

reconstructing charged particle tracks, whereas the iron yoke enhances the return

magnetic field to achieve a magnetic field of 2 T outside the confines of the solenoid.

A charged particle deposits charge in layers of the inner tracker as it passes

through them, and these charge deposits can be connected to form tracks representing

the path of the particle (uncharged particles leave behind no charge deposits). The

calorimeters serve to absorb and measure the energy of certain kinds of particles, and

the muon stations provide additional track measurements at high radii to assist in the

reconstruction of muon tracks. Thus, each subdetector layer serves to detect different

kinds of final state particle: electrons are found as tracks matched to an energy deposit

in the ECAL, photons are found as energy deposits in ECAL without corresponding

tracks, charged hadrons (π±, protons) are found as tracks matched up to deposits

in the HCAL, uncharged hadrons (π0, neutrons) are found as energy deposits in

HCAL not associated to a track, and muons are found as tracks in the tracker

matched to deposits in the muon stations (only muons are penetrating enough to
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Figure 3.5: A cut-away view of the CMS detector showing the sub-detector systems.
The coordinate system is defined to have its origin at the center of the detector, the
x-axis pointing to the center of the LHC, the y-axis pointing up from the ground
(perpendicular to the LHC plane), and the z-axis aligned with the counterclockwise
beam direction.
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reach the outer layers of CMS). This process is illustrated in Figure 3.6. Because CMS

cannot distinguish different kinds of hadrons from one another, all tracks through

HCAL not identified as muons are considered to be pions. The following sections

describe the different detector parts and sub-detector systems of CMS: Section 3.2.2

describes the silicon tracker, Section 3.2.3 describes the electromagnetic calorimeter,

Section 3.2.4 describes the hadronic calorimeter, and Section 3.2.5 describes the muon

stations. Finally, Section 3.3 describes the CMS trigger system and Section 3.4

describes the computing framework for charged particle track reconstruction and

muon identification.

Figure 3.6: A transverse slice of the CMS detector illustrating the manner in which
different subdetector layers of CMS serve to identify particles.

3.2.1 Momentum Measurement of Charged Particles

A particle of charge q and velocity ~v subjected to a uniform magnetic field ~B

experiences a Lorentz force ~F . The Lorentz force is always perpendicular to both

the velocity of the particle and the magnetic field that created it. In general, when

a charged particle moves in a static magnetic field, it will follow a helical path in

which the axis of the helix is parallel to the magnetic field and the speed of the
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particle will remain constant. Describing CMS in a Cartesian coordinate system, the

origin is defined at the center of the detector, the x-axis pointing to the center of

the LHC, the y-axis pointing up from the ground (perpendicular to the LHC plane),

and the z-axis aligned with the counterclockwise beam direction. Describing CMS

in a cylindrical coordinate system, the azimuthal angle ϕ is defined such that ϕ is

measured up from the cartesian x-axis, ρ is the radial distance from the beam, and

θ is measured from the Cartesian z-axis. The helical trajectory can be reconstructed

from measured positions along the particle path of length s as:

x(s) = x0 +
1

r0

[
cos

(
φ0 +

Hs

r0

cosλ

)
− cosφ0

]
y(s) = y0 +

1

r0

[
sin

(
φ0 +

Hs

r0

cosλ

)
− sinφ0

]
(3.5)

z(s) = z0 + s sinλ

where (x0, y0, z0) is the starting point at length s = 0, r0 is the radius, λ is the polar

(dip) angle, H = ±1 is the rotation of the projected helix in the transverse plane (the

product of the sign of the particle’s charge with the direction of the magnetic field

along z), and φ0 is the azimuthal angle of the starting point with respect to the helix

axis.

In the transverse plane (x,y), the particle follows a circular path with radius r0

given by Equation 3.1. For high momentum particles, only a slight curvature is

observed. A particle of transverse momentum pT passing through a region of length

L within a magnetic field B deviates from a straight line by s, the sagitta of the track

(see Figure 3.7 for the definition).

The sagitta s determines the momentum of the track, pT,

s = r − h =
L2

8r
(3.6)

35



!"

#"
$"

%&'"

Figure 3.7: Definition of the sagitta s for a particle of transverse momentum pT

passing through a region of length L with magnetic field B.

Replacing r with Equation 3.1 yields:

pT =
qL2B

8s
. (3.7)

The magnitude of the total momentum is given as

ptot = pT

√
1 + tan2 λ. (3.8)

The direction of the momentum is evaluated along the track (see Equation 3.6). The

uncertainty of the momentum measurement is related to the error of the measured

sagitta σ(s) as follows
σ(pT)

pT

=
8

qBL2
pT · σ(s). (3.9)

This is directly proportional to the sagitta error and to the transverse momentum

pT itself, but inversely proportional to the magnetic field strength and the square

of the distance L2. Hence, the measurement closest to the interaction point is most

important to the track, and this is the measurement provided by the silicon pixel

detector. The uncertainty also depends on the number of hits in the silicon layers
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(N) and their position resolution (σrϕ):

σ(s) =

√
720

N + 4

σrϕ
8
, (3.10)

The σrϕ component always has a contribution from the intrinsic position resolution

of the detector and from multiple scattering. The intrinsic resolution depends on the

production and collection of secondary charges and the readout electronics used to

measure them. Multiple scattering is caused by Coulomb scattering of the particle as

it passes through the detector material, essentially bouncing the particle around and

lowering its momenta. Multiple scattering depends on the distance the particle travels

through the material (l) and the radiation length of the material (X0 = 9.4 cm for

silicon). The uncertainty of the momentum measurement due to these two effects can

be parameterized as
σ(pT)

pT

∝ a · pT ⊕ b ·
√

l

X0

(3.11)

where a and b are constant terms. Figure 3.8 shows the resolution of muons with pT

of 1, 10, and 100 GeV/c as a function of the pseudorapidity (η).
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Figure 3.8: Relative transverse momentum resolution for muons with transverse
momenta of 1, 10, and 100 GeV/c as a function of the pseudorapidity.
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3.2.2 The Silicon Tracker

An average of 1, 000 particles would hit the innermost layers of the tracker at the

design luminosity of 1034 cm−2s−1 during each LHC bunch crossing. In addition,

low-pT tracks curl around the beampipe due to the strong magnetic field, leading to

repeated charged particle interactions at low radii. The particle flux in the innermost

pixel layer is dominated by pions created either by the main proton collisions or

by stray protons interacting with beampipe or detector material. The detector is

exposed to fluences of up to 1014 neq/cm2 per year (where 1 neq is a MeV neutron

equivalent particle), resulting in a sufficiently hostile radiation environment at low

radii to damage sensitive detector material in a short period of time. To provide high

precision charged particle tracking under these conditions, the detector must:

• maintain function in a hostile radiation environment,

• reconstruct charged particle tracks close to the collision region to precisely

determine the momentum of charged particles and the position of secondary

vertices from long-lived decays,

• provide many hits per track, with a single-hit position resulotion ∼ 20 µm for

tracks normal to a detector panel.

The material for such a detector was chosen to be silicon doped with donor impurity

atoms. Such silicon is a semi-conducting material with good intrinsic energy

resolution. An energy deposit of 3.6 eV is needed to create an electron-hole pair

in the detector material. Reverse biasing a p−n junction of the silicon sensor creates

an electric field strong enough to push liberated charge towards charge readouts.

The low ionization threshold leads to a large amount of liberated charge per deposit.

Unlike with gas detectors, the collected signal is only a function of the detector

thickness (there is no multiplication of primary charge). To minimize the multiple

scattering, the detector thickness is as small as possible, with a practical limit set

by the signal-to-noise ratio. An average of 3 × 104 electron-hole pairs are created
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with a silicon thickness of 300 µm (0.3% of a radiation length), a very detectable

signal with low noise electronics. Silicon-based sensors have a position resolution on

the order of tens of microns, a short signal collection time, and can be operated in

strong magnetic fields. The smallest radius at which a traditional silicon micro-strip

detector can function in the CMS radiation environment is limited by its occupancy

and radiation damage. Reducing the size of the sensor elements reduces the hit rate

per element and leads to a higher position resolution. This is why silicon pixels were

chosen for the innermost part of the CMS tracking detector. The number of pixel

channels needed (and hence the cost of the detector) is proportional to the area (r2),

while the particle flux is inversely proportional to this value (relaxing the necessary

single-hit resolution). Hence, for radii greater than 15 cm, silicon strip detectors were

chosen.

The pixel detector consists of three cylindrical layers (the barrel pixel detector,

or BPix) and two layers of endcap discs on either end of the cylinders (the forward

pixel detector, or FPix). The pixel detector is essential for forming seed tracks for

track reconstruction and for the reconstruction of secondary vertices from long-lived

decays. The 53 cm long BPix layers are located at mean radii of 4.4, 7.3, and 10.2 cm.

The FPix disks have a radius of 6 and 15 cmand are placed on at z = ±34.5 and

z = ±46.5 cm. BPix (FPix) contains 48 million (18 million) pixels, resulting in an

occupancy of 10−4 hits per pixel per bunch crossing at full luminosity. Figure 3.9

shows this geometric arrangement and coverage as a function of pseudorapidity. The

pixel detector covers the pseudorapidity range −2.5 < η < 2.5, matching the range

covered by the other layers of the tracker. In the high-η region, hits in the innermost

barrel layer are matched to hits in the two disks.

The dimensions of a pixel are 150 µm × 100 µm. The side 150 µm long is in

the direction of Lorentz drift in the barrel, taking advantage of the Lorentz force to

smear charge over multiple pixels. The side 100 µm long is parallel to the magnetic

field. The pixel system has an analog pulse readout. The position resolution for

each pixel due to charge sharing between neighboring pixels helps to separate signal
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Figure 3.9: Geometrical layout of the pixel detector and hit coverage as function of
pseudorapidity. IP refers to the interaction point.

hits from noise and identifies large charge deposits from overlapping tracks. Charge

interpolation of the analog pulse results in a spatial resolution of 10−12 µm for tracks

normal to the sensor. The endcap detectors are tilted 20◦ in a turbine geometry to

cause charge sharing given the lack of Lorentz drift in sensors where the electric field

is parallel to the magnetic field.

Radiation damage causes charge to become trapped in the silicon material,

reducing the effective depth of silicon sensitive to the passage of a charged particle and

decreasing the amount of charge sharing (and hence, position resolution). Increasing

bias voltage can compensate for the initial effects of radiation damage, but careful

monitoring of detector performance and the radiation environment is important and

the innermost pixel layers will need to be replaced after a few years. A more detailed

description of the pixel detector can be found in Chapter 4.

The CMS silicon strip detector is the next part of the inner tracker. This system is

5.8 m long and 2.5 m in diameter. The total active silicon region of 75 million readout

channels covers a surface area of 200 m2, making the CMS tracker the largest silicon

detector ever built. The silicon strip tracker is divided into the tracker inner barrel

(TIB) and tracker inner disks (TID) that cover 20 < r < 55 cm, and the tracker
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outer barrel (TOB) and tracker outer endcaps (TEC) that cover 55 < r < 120 cm.

Figure 3.10 demonstrates the coverage afforded by the silicon strip tracker.

Figure 3.10: Coverage provided by a quarter of the CMS silicon strip tracker.

The tracker coverage ends at |η| < 2.5, and as Figure 3.10 demonstrates, a track

of |η| < 2.4 crosses at least nine strip detector layers, from a radius of 20 cm to

1.2 m. The width, length, and pitch (distance between strips) are chosen to maintain

consistent resolution and occupancy, with an increasing pitch at higher radii. The TIB

consists of four barrel layers of strips, each strip 10 cm in length with a minimum pitch

of 80 µm. The TID consists of three endcap layers, each strip 10 cm in length and

with a pitch of 100 µm. This ensures an occupancy of up to 2−3% per bunch crossing

for single strip, with a single point resolution in r − ϕ of 23 to 35 µm (depending

on the r − ϕ pitch). The TOB consists of six barrel strip layers, each strip 25 cm in

length and with a pitch of 180 µm. The TEC consists of nine endcap strip layers,

each strip 25 cm in length and with a pitch of 184 µm. This ensures an occupancy

of up to 1% per bunch crossing for a single strip in the outer region, with a single

point resolution in r − ϕ of 35 to 53 µm (depending on the r − ϕ pitch). The

magnetic field deflects very low momentum particles back towards low radii, so the
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outer region (r > 55 cm) experiences a rapid decrease in charged particle rates (hence,

the increased strip length and pitch). However, electronic noise grows linearly with

strip length and decreases with thickness, so the strip thickness must be increased

to 500 µm in the outer regions to keep the signal to noise ratio above ten. The

resulting higher depletion voltage is offset by a higher initial resistivity, so the initial

depletion voltage of the thick and thin sensors are within the same range. Some

layers are equipped with stereo-modules, shown in blue in Figure 3.10. In that case,

two modules are mounted back-to-back at a stereo angle of 100 mrad to provide a

measurement in (r, z) as well as in (r, ϕ). They provide single point resolutions of

230 µm and 530 µm in z in the inner and outer barrel, respectively. The silicon

strip detector material budget, in units of radiation length, increases as function of

pseudorapidity from 0.4 X0 at η ≈ 0 to about 1.8 at η ≈ 1.4. Beyond this value, it

decreases to about 1 X0 as it approaches η ≈ 2.5. The relative transverse momentum

resolution for the full silicon tracker (pixel and strip technologies) was shown earlier

in Figure 3.8.
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3.2.3 The Electromagnetic Calorimeter

A brief discussion of the electromagnetic calorimeter (ECAL) is given here for

completeness even though this analysis does not make direct use of ECAL information.

For neutral Higgs bosons with masses below ∼ 140 GeV, the decay into two photons

offers a clean channel for discovery. Identification of the Higgs via a diphoton

resonance requires measurement of the total energy and direction of decay photons

with energies above 100 GeV. The CMS ECAL uses an array of lead tungstate

crystals (PbWO4) to measure the energy deposition of electrons and photons in that

regime. Lead tungstate is an ideal material for this purpose because of its stability

in high-radiation environments, its relatively fast scintillation response time (80% of

the light released within 25 ns), and its small radiation length (0.89 cm). The total

amount of secondary light collected from the crystals is proportional to the amount

of energy lost by the incident particle. If the particle is completely stopped, the

total energy of the particle is deposited and converted into light. The 61, 200 crystals

in the ECAL barrel region (EB) and the 7, 324 crystals in each of the two ECAL

endcaps (EE) provide a hermetic, homogeneous coverage up to |η| < 3. Groups of 25

crystals are arranged in geometric structures called towers. In front of each ECAL

Endcap is a preshower detector (ES) covering 1.65 < |η| < 2.6 and made from silicon

strip detectors in order to reject the π0 → γγ decays. The measurement of charged

particle tracks for muons and hadrons is not degraded by the calorimeter material

budget. The energy loss for muons traversing the crystal is negligible because of its

small radiation length. The problem does not exist for hadrons because the energy is

determined from the track reconstructed in the silicon tracker (positioned before the

calorimeters).

3.2.4 The Hadronic Calorimeter

A brief discussion of the hadronic calorimeter (HCAL) is also given for completeness

even though this analysis does not make direct use of HCAL information. The
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HCAL is a second calorimeter system located just after the ECAL CMS Collaboration

(1997a). It is used to

• measure the energy of hadronic collision products in CMS, whether as groups of

hadrons traveling in the same direction (jets) or individual hadrons and muons,

• generate energy segments for High Level Trigger (HLT) decisions, and

• measure the instantaneous luminosity of the LHC.

The HCAL is required to have as many interaction lengths of material as possible

because hadronic showers generally have a much longer interaction length than

electromagnetic showers. Each HCAL tower is placed behind a corresponding ECAL

tower (except in the endcap region) to produce a long structure capable of measuring

the total energy of hadrons in a well defined (η,ϕ) region with minimal leakage.

Figure 3.11 illustrates a section of CMS with the HCAL components labelled.

Figure 3.11: A view of the CMS detector in y-z projection with the components of
the HCAL labeled.

HCAL is composed of four sub detectors: the HCAL Barrel (HB) covering |η| <

1.4, the HCAL Endcaps (HE) covering 1.3 < |η| < 3, the HCAL Outer (HO)
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covering |η| < 1.3, and the HCAL Forward (HF) covering 2.8 < |η| < 5.2. The HB

and HE are located in between the ECAL and the magnet. The HO sits between the

magnet and the muon stations and serves to catch the tails hadronic showers. The

HF is essentially an iron cylinder that acts to absorber hadrons, with a total depth

of 165 cm (≈ 10 interaction lengths).

The barrel, the endcap, the outer hadronic calorimeters are all sampling calorime-

ters consisting of plastic scintillators sandwiched between brass absorbers. The

scintillators sample the showers of charged particles produced by the nuclear

interactions of hadrons with the nuclei of the absorber. Transverse to the beamline,

the absorber of the barrel calorimeter is 5.82 interaction lengths deep. The effective

depth increases with psuedorapidity, resulting in 10.6 interaction lengths at the edge

of the barrel. The endcaps are 10 interaction lengths deep (taking into account ECAL

as well as HCAL shielding). The HO is positioned outside of the magnet and adds

another 19.5 cm of iron shielding. Thus the total depth of the calorimeter system is at

least of 11.8 interaction lengths. Being very close to the beam-pipe, each HF detector

is exposed to roughly 380 GeV of energy per pp collision due to soft scattering,

compared to only 100 GeV of energy deposited in the rest of the detector. This high

particle flux environment must use a different type of detection system. The forward

calorimeter is also a sampling calorimeter, but uses scintillating quartz fibers oriented

in the direction of developing electromagnetic and hadronic showers (as opposed to

the scintillating plates perpendicular to showers in the central hadronic calorimeters).

Quartz fibers act as the active medium and signal is generated when charged particles

generate Cherenkov light, making the HF mostly sensitive to the EM component of

showers.
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3.2.5 The Muon System

The muon system has to: distinguish muons from hadrons, perform a fast muon

multiplicity count, and add to the muon track measurement. Identifying muons and

precisely measuring their momenta is of prime importance to CMS. The CMS muon

system provides important information to:

• measure the decays of J/ψ mesons into muons (the subject of this analysis),

• search for the Higgs Boson decay into ZZ or ZZ∗ (which in turn decay into a

four muon end state),

• search for new gauge bosons (such as Z ′ → µ+µ− with pµT > 1 TeV),

• determine lepton and photon isolation criteria, and

• identify jets from b-quark decays (exploiting the b→ µ decay essential to Higgs

studies, top studies, and SUSY searches).

Muons are unique among the products of high-energy collisions because they have a

long lifetime (2.2 µs in their rest frame), a large rest mass (105.7 MeV/c2) and do

not interact via the strong force. The long lifetime enables the muons to reach the

outer layers of the detector and beyond. Due to their greater mass, muons are not

deflected by electromagnetic fields so much as electrons and do not emit as much

bremsstrahlung radiation (the primary mechanism of energy loss for decelerating

charged particles). This allows a muon to penetrate much deeper into detector

material than an electron with the same energy. Relativistic muons are called

Minimum Ionizing Particles (MIPs) because the amount of energy lost by the muon

per unit of distance traveled in a medium is close to the minimum. The energy loss

rate of a muon only increases logarithmically between momenta of p = 1 and p = 100

GeV/c, so that all muons in this momentum range are effectively minimum-ionizing.

Finally, because the muons do not experience the strong nuclear force, they do not

lose energy due to inelastic nuclear collisions in the dense calorimeter material as
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hadrons do. Thus muons reach the outside of the solenoid magnet with relatively

little energy loss. The physics goals are

• muon identification: at least 16 radiation lengths of material are needed to

ensure absorption of other charged particles before (in the HCAL and ECAL)

and inside the muon system (in the iron yoke);

• muon trigger: the combination of muon chambers and fast muon counters

provide unambiguous collision event identification and trigger on single and

multi-muon events with well defined pT thresholds from a few GeV/c to

100 GeV/c for η ≤ 2.1;

• transverse momentum resolution: from 8− 15% δpT/pT (at 10 GeV/c) to 20−

40% (at 1 TeV) for muons reconstructed with the muon system, and from 1−2%

(at 10 GeV/c) to 6− 17% (at 1 TeV) after combining the reconstructed muon

in the muons system with a track from the CMS tracker;

• charge assignment: evaluated from the direction of charged track curvature in

the magnetic field (correct to 99% confidence up to the kinematic limit of 7

TeV);

• capability of withstanding the high radiation and interaction background

expected at the LHC.

Due to the shape of the solenoid magnet, the muon system has a cylindrical barrel

section and two planar endcap regions. The muon system uses three types of gaseous

particle detectors:

• Drift Tubes (DT) in the barrel region (|η| < 1.2) where the magnetic field is

confined to the iron yoke, the muon rate is low, and the background rates are

small;
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• Cathode Strip Chambers (CSC) in the the endcap discs (0.9 < |η| < 2.4) in

order to deal with the strong, non-uniform magnetic field and the high charged

particle rates in the forward region;

• Resistive Plate Chambers (RPC) over the barrel as well as endcaps (used

to supplement the other two technologies).

Figure 3.12 shows the muon system, which provides geometric coverage up to

|η| < 2.4 CMS Collaboration (1997b); Chatrchyan et al. (2008). DTs and CSCs

provide excellent position resolution and RPCs provide excellent time resolution, so

the technologies are used together to utilize each other’s strengths while offsetting

weaknesses.

Figure 3.12: A quarter section of the muon system.

A Drift Tube (DT) is a gas-filled cylindrical cathode tube with an anode wire

running through the center held at slightly above atmospheric pressure. A charged

particle passing through the tube will ionize atoms in the gas, causing liberated
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electrons to move toward the anode wire and cause secondary ionizations that produce

an electric current. Time measurements of the current pulses with respect to the the

known electron drift time allows reconstruction of the position of the charged particle

as it passed through the DT. This reconstruction requires precise control over the

pressure, temperature, current flow, and gas purity in the DT. The DT system is

made of three Super-Layers (SL), each consisting of four layers of drift tubes. The

two outer SLs (r−ϕ type) measure the track coordinates in the transverse plane while

the inner SL (z type) measures the track coordinate in the beam direction. Multiple

chambers are clustered in stations, for a total of four embedded in the gaps within

the flux return yoke. Each of the first three stations (MB1, MB2, MB3) contain eight

chambers (in two groups of four) that serve to measure the r − ϕ coordinate of the

muon track, as well as four chambers that serve to measure the z-position of the hit.

The fourth station (MB4) does not contain any measurements of z-position. The two

measurements are combined to build a three-dimensional segment in the chamber.

Figure 3.12 shows the configuration of the four stations in the barrel. DT chambers

in the four different MB stations are staggered so that a high-pT muon produced near

a sector boundary crosses at least 3 of the 4 stations. DT chambers are also installed

in an alternating fashion with RPCs (one or two at a time, depending on station).

In this way, a high-pT muon crosses up to six RPC and four DT sections, producing

up to 44 measured points in the DT system from which a muon track candidate

can be built. The resolution on the z position varies between 100 µm (for a track

reconstructed from eight points) to 250 µm (for a track reconstructed from a single

point). The resolution in the r − ϕ direction is about 0.5 mrad.

A Cathode Strip Chamber (CSC) is a trapezoidal multi-wire chamber that consists

of six gas gaps. Each gap has a plane of radial cathode strips and a plane of anode

wires that run almost perpendicular to the cathode strips. The gas ionization and

subsequent electron avalanche caused by a charged particle traversing each plane of

a CSC liberates charge that gets collected on the anode wire and image charge on a

group of cathode strips. In this way, the CSC measures a 3D hit position in each of
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the six layers. Closely spaced wires make the CSC a fast detector (response time of

∼ 4.5 ns), but with a relatively coarse position resolution. The position resolution

is improved by using the charge-weighted center of the charge distribution induced

on the cathode strips, resulting in a spatial resolution of ∼ 200 µm and an angular

resolution of ∼ 10 mrad. CSCs are used at very large radii because they can operate

in large and non-uniform magnetic fields without significant deterioration in their

performance (gas mixture composition, temperature, and pressure do not directly

affect CSC precision).

A Resistive Plate Cathodes (RPC) is a gaseous parallel-plate detector that

provides excellent time resolution (typically around 3 ns) but poor position resolution

(around 1 cm), and so are used in conjunction with DTs and CSCs. RPCs consist of

two resistive plates made of bakelite that are kept parallel to one another by insulating

spacers that define the size of the gas gap. A uniform electric field of a few kV/mm

causes an avalanche multiplication of the ionization electrons across the gap. The

readout is performed by one set of copper strips placed in the middle of the gaps and

requires a high signal amplification in the front-end electronics to compensate for the

low gas amplification (Avalanche-mode operation). The rate at which an RPC can

register hits primarily depends on its electrode resistivity, while the speed at which

it can register a hit primarily depends on the gap width. Due to their excellent time

resolution, RPCs guarantee a precise bunch crossing.

These three detectors operate within the Level-1 (hardware based) trigger system

described in detail in Section 3.3. The muon detection system is capable of identifying

single and multi-muon events to high resolution in a pT range of a few GeV/c to

TeV/c. The relative muon momentum resolution as a function of pT is illustrated in

Figure 3.13. The silicon tracker provides the best momentum resolution for muons

with a pT below 200 GeV/c, where the resolution in the muon chambers is dominated

by multiple scattering. Multiple scattering and energy losses become negligible at

higher momenta, so the momentum resolution benefits from high radii measurements

made in the muon stations.
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Figure 3.13: Relative muon pT resolution as a function of pT for measurements with
the muon system only, with the inner tracking only, and with both systems in the
barrel (left) and forward (right) regions.
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3.3 CMS Event Selection and Reconstruction

At full intensity, the LHC will generate collision events at a rate of 40 MHz, too

great a rate to be recorded with present computing technologies. The data must

therefore immediately be pared down to contain only events most likely to contain

interesting physics processes. To do this, CMS employs a two-tiered trigger system: a

hardware-based Level-1 trigger (L1) CMS Collaboration (2006b) and a software-based

High-Level Trigger (HLT) CMS Collaboration (2002). The L1 trigger is designed to

make decisions within 3.2 µs after a collision occurs, and reduces the event rate by a

factor of 10−3. The HLT reduces the rate by another factor of 10−2 to 100 Hz before

the events are shipped off to long term storage.

3.3.1 Level-1 Trigger

The CMS L1 trigger CMS Collaboration (2006b) is entirely hardware-based and uses

only the calorimeters and muon systems because information from the tracker is too

complex to be analyzed on the short timescale required for the L1. The architecture

of the L1 system is shown in Figure 3.14. The L1 trigger is divided into local,

regional, and global components. At the local level, the individual sub-detectors

use pattern-matching algorithms to find high-energy deposits in the calorimeters or

high-momentum charged tracks in the muon system. The highest-quality primitives

(defined as muon track segments or electron/photon energy towers) are assigned on

the basis of parameters such as energy deposited and reconstructed momentum from

the local levels and sent from each sub-system to one of two regional-level triggers:

the Regional Calorimeter Trigger (RCT) and the DT and CSC Muon system Track

Finders. The RCT is an algorithm that combines information from HCAL and ECAL

to find electron/photon candidates. The algorithm processes the input of each region

where energy deposits are found and creates two sets of information: the sum total

energy, and the highest-energy pair electron candidates. Here, an electron candidate

is defined as an energy deposit in a single crystal. The eight highest energy pairs and
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Figure 3.14: The L1 trigger system architecture.

regional sums are collected in an intermediate buffer area and then forwarded to the

Global Calorimeter Trigger (GCT). The second regional trigger uses two of the muon

sub-systems (the DTs and the CSCs) to convert detection information (chamber ID,

strip patterns, etc.) into r- and ϕ-coordinates. The reconstruction of a muon track

starts with each muon station generating a momentum hypothesis for the muon that

traversed it based on the pattern of deposits. If the hypothesis matches a template

for high momentum muons originating from the collision region, the dedicated muon

trigger hardware forwards the information to Track Finder (TF) algorithms that

combine the information from several stations to make an approximate measurement

of the muon pT. The four highest pT muons from the CSC and DT Track Finders are

forwarded to the Global Muon Trigger (GMT). The RPCs instead forward all of their

data to a regional trigger system that detects muons based on hits in adjacent RPC

chambers. The RPC Pattern Comparator Trigger (PaCT) then uses data from the

HCAL Outer (HO) detector to identify muons and measure their transverse momenta

in the barrel portion of CMS. The PaCT forwards the four highest pT muon candidates
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(in the barrel and endcaps) to the GMT. The CMS Global Trigger (GT) compiles

all the information from the GCT and GMT to make a trigger decision. A table of

selection criteria is encoded in Field-Programmable Gate Arrays (FPGA) that allow

fast decision-making and fast changes in the algorithms to adapt to changing run

conditions. If the collision event is considered interesting by the GT, it sends a Level-

1 Accept (L1A) message to each subdetector to begin Data Acquisition (DAQ). The

total time between a collision and a L1A decision is less than 3.2 µs.

3.3.2 High Level Trigger

The CMS High Level Trigger uses data from all subdetectors to reconstruct the

collision event and to make a decision CMS Collaboration (2002). The event

reconstruction software is similar to that used in offline reconstruction (but simplified

to speed up the process). CMS employs 720 computers with eight processing cores

apiece to do the HLT reconstruction, resulting in a mean decision time of 50 ms per

event. The HLT only reconstructs areas of the detector where the L1 algorithms

identified interesting physics objects. Tracks are reconstructed using the silicon pixel

and strip tracker to achieve better track resolution (the only stage in the trigger

to use tracker information). The HLT is configured to select events according to a

list of algorithms (trigger menu) corresponding to one or more physics objects, each

reconstructed from one or more subsystems. Triggers are split into single object type

(one or two leptons, one or two photons, one or multiple jets, etc) and cross-type

triggers (muon plus electron or photon or jet, etc). For studies of charmonium (cc̄)

and bottomomium (bb̄) states, such as J/ψ(nS) and Υ(nS), and B hadrons decaying

into a J/ψ (with subsequently J/ψ→µ+µ−), a dedicated set of unbiased triggers with

loose muon selection criteria are used. For these triggers (named as DoubleMu X), a

total bandwidth of ∼ 40 Hz was assigned from the total ∼ 100 Hz available. The

dominant fraction was allocated for fundamental perturbative QCD measurements

involving the b and the c quarks (prompt and non-prompt J/ψ, Υ, and B mesons
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production cross sections). Once an event is selected by one of the HLT algorithms,

it is shipped out of Point 5 for storage and further reconstruction.

3.3.3 Dataset Creation and Offline Reconstruction

Events selected by the HLT are transferred to several tiers of computing centers and

the events reconstructed again in more detail using newer alignment and calibration

information. Because this reconstruction does not need to occur at the event rate

of data acquisition, it is known as offline reconstruction. The first tier of computing

center to accept raw data from the HLT is known as Tier 0 (T0), located at CERN. T0

repacks the raw data into primary datasets based on trigger information (for example,

events passing a muon-based trigger are packed into a muon primary dataset), archives

the raw datasets, and sends a copy of each raw dataset to seven major computing

sites around the world (Tier 1, or T1 locations). Each dataset is then reconstructed

at T0 and the reconstucted datasets copied to the T1 locations. This process of offline

calibration, alignment, and reconstruction is summarized in Figure 3.15.

The first iteration of offline calibration, alignment, and reconstruction typically

occurs within 48 hours of data acquisition, and so is known as the Prompt

Reconstruction. Subsequent iterations of reconstruction on the original raw data

are performed every few months of data-taking at the T1 locations, as alignment

and calibration parameters are refined with increased statistics and improvements

are made to the reconstruction software.

3.4 CMS Analysis Software

To aid in processing the enormous amount of data that the CMS detector produces,

a framework of dedicated analysis software called CMSSoftware (CMSSW) was

developed by the CMS community CMS Collaboration (2005). It is designed around

the concept of an event (representing a collision), which can contain everything from
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Figure 3.15: The prompt calibration, alignment, and reconstruction loop.

raw detector information (RAW) to reconstructed physics objects representing the

particles produced in that collision. This information is stored as C++ objects

using the ROOT analysis framework Verkerke and Kirkby (2003). CMSSW employs

different categories of algorithms to perform reconstruction: producer modules build

upon event information to insert new objects into the event representing the next

layer of reconstruction (up to the final physics objects), filter modules remove objects

to ensure quality or remove duplications, and analysis modules use the products of

reconstruction to create summary information about the event. The analysis software

also allows access to information about the condition and configuration of the detector

held in database objects.

3.4.1 Event Reconstruction

The goal of reconstruction is to create representations of physics objects such as

electrons, muons, photons, and jets from raw digitized detector data. Once all physics
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objects in an event have been reconstructed (RECO objects), they can be stored away

from the raw detector data to use less physical storage space and network transfer

time. Many different producer modules are used to generate the different RECO

candidate objects, and sometimes multiple producers are used to reconstruct the same

candidate objects in different ways. This section will focus on those reconstruction

algorithms that pertain to this analysis: charged tracks and muons.

Track Reconstruction

The track reconstruction can be divided into five logical steps:

• Hit reconstruction

• Seed generation

• Pattern recognition (track building)

• Ambiguity resolution (track cleaning)

• Final track fit (track smoothing)

The digitized raw data from the sub-detectors are combined with detector

geometry and alignment information from a conditions database to build three-

dimensional Reconstructed Hits (RecHits). At least three RecHits reconstructed from

charge deposits in the Pixel subdetector or two Pixel RecHits compatible with the

beamspot are required to initiate a track search (seed generation). Seeding provides

the initial description of the five parameters of the helical track and is based on

the combinatorial Kalman filter method Fruhwirth (1987a). A Kalman filter fits

a parameterized function to data by iterating over the measurements and taking

advantage of known correlations between measurements and measurement resolutions.

A track is built from each seed and propagated to the next detector layer (taking into

account possible multiple scattering and energy losses). A separate track candidate

is formed for each hit that falls within a certain χ-square range. The procedure is
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repeated layer by layer until the outermost layer is reached and all possible unique

tracks are formed (or until a stopping condition is applied) †. This creates a large

number of tracks, many of which share the same hits. If the fraction of shared hits

between two trajectories is too large, the ambiguity is resolved by keeping only the

highest-quality track. To avoid biases during track building, all valid tracks are refit

with a Kalman filter and a smoother algorithm is applied, which moves in from the

outermost layer toward the beamline searching for hit positions to improve the quality

of the track.

Muon Reconstruction

In collision data, muons are tracks reconstructed using hits reconstructed in both the

inner tracker and the muon stations. Tracks are first independently built using only

hits in the tracker or muon stations. Then, the tracker-only tracks are propagated

outward to the muon stations and a test is performed to see if they match within a

search window of any muon-only tracks. If so, a new track is created by combining

the tracker-only and muon-only tracks and refitting to the full set of hits. Only tracks

passing an additional χ-square test are considered, and ECAL information is also used

to verify the compatibility of a track with the muon hypothesis (minimum ionizing

particle).

†e.g. to limit the CPU time in the HLT, where only a partial track reconstruction with less than
5− 6 hits is necessary to achieve the required accuracy.
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Chapter 4

The CMS Pixel Detector

4.1 Introduction

Tracking must reach as close as possible to the primary collision point in order to

identify tracks from a displaced origin (resulting from long-lived decays). The high

particle flux near the collision region makes it important to have not only good

position resolution, but also high granularity (ability to distinguish closely-spaced

particle tracks). The CMS silicon pixel tracker fulfills these requirements. Over the

full acceptance of the CMS detector, the silicon pixel tracker provides two or more

hits per charged particle track. These hits serve as the seeds for track-building and

will be the most important measurements when fitting tracks to a common vertex.

The position resolution of such a vertex depends on three attributes of the pixel

subdetector:

• single hit resolution,

• distance of the layers from the interaction region,

• the material budget.

The distance of the pixel layers is constrained by the size of the beampipe and

the particle flux (which decreases by the square of the radius). The resolution
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is inherently limited by multiple scattering in the beampipe and detector. The

multiple scattering angle depends directly on the distance traversed in the medium (in

radiation lengths), and is inversely proportional to the momentum and velocity of the

incident particle Beringer et al. (2012). This translates into a position uncertainty

on vertexing that depends on the thickness of the pixel sensors. To achieve the

desired vertex position resolution, the width of the sensor is chosen to correspond to

0.3% radiation lengths in silicon. In this chapter, the principles of the pixel detector

are described in Section 4.2. The pixel readout scheme is introduced in Section 4.3

and the software architecture for reconstruction is introduced in Section 3.3.3, with

emphasis on the reconstruction software used by the pixel detector.
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4.2 Pixel Sensors

When a charged particle passes through silicon, it interacts with the material via

the Coulomb force. The two most important processes taking place are elastic

scattering on nuclei (in which the particle essentially bounces off of atomic nuclei

in the material), and EM interactions (in which the particle loses energy due to

inelastic collisions with atomic electrons in the material). Excited electrons transit to

the conduction band of an atom and they behave as free carriers, leaving behind holes

(missing electrons) in the valence band. A Minimum Ionizing Particle (MIP) normal

to the sensor plane releases an ionization charge of approximately 23 ke− in a silicon

sensor with a thickness of 285 µm. The charge primarily moves through diffusion

and drift in semiconductors, and will move randomly in all directions in the absence

of an electric field (eventually losing all momentum to lattice collision). Pixel sensors

apply a voltage of 100 V to achieve a field strength of E . 300 kV/m. An electrode

on one side of the silicon substrate collects the electrons to read out the signal. The

typical mobility of electrons in silicon is µe = 0.14 m2/(Vs), quickly resulting in a

drift-velocity of vD = µeE = 2.1×106 m/s that remains constant over the time of the

drift. Hence, the collection time across the sensor thickness (d) is tD = d/vD ≈ 0.1

ns. The total drift force (F ) acting on a charged particle in the presence of constant

electric (E) and magnetic (B) fields is given by the Lorentz force (see Figure 4.1)

~F = q ·
(
~E + ~v × ~B

)
where ~v is the velocity of the charge carriers. If the magnetic field is perpendicular

to the electric field, the carriers drift at a Lorentz angle θL given by:

tan θL = µe · | ~B|.

For a 4 Tesla magnetic field the Lorentz angle is θL ≈ 30◦, causing the electrons to
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Figure 4.1: Graphic representation of the Lorentz angle (θL) for a charged particle
traversing the silicon substrate.

smear over more collection electrodes. The electron mobility is a factor higher than

for holes, leading to a larger Lorentz angle.

The sensor of the CMS silicon pixel detector is a p- and n-type semiconductor

joined together (p−n junction). p-type semiconductors are obtained by adding atoms

(through doping) with a deficit in valence electrons (acceptors) to the silicon. n-type

semiconductors are obtained by adding atoms that provide extra valence electrons

(donors) to the host material. Once the contact is established between p- and n-type

semiconductors, the excess electrons on the n-side diffuse into the p-side while the

excess holes in the p-side diffuse into the n-side. This process creates an excess of

positive charge on the n-side and negative charge on the p-side. While the holes

(electrons) are diffusing, some of the acceptor (donor) ions (NA(D)) near the p-side

(n-side) are left uncompensated since the number of acceptors (donors) is fixed in

the semiconductors. The result is an electric field, which causes a zone around

the junction to becomes free of mobile charges (depletion zone). The electric field

counteracts the diffusion and prevents further movement from the charge carriers.

Diffusion and drift currents are in opposite directions, which means the net electron

and hole currents will be zero on the borders of the depleted region (equilibrium

condition). The width of an intrinsic depletion region is on the order of 10 µm, which

63



corresponds to Vbi ≈ 0.5 V. A larger depletion zone is created by applying a reverse

bias voltage Vbias, with −Vbias across the p-side junction and +Vbias across the n-side,

shown in Figure 4.2. With a field strength of less than 100 V, the depletion zone is

effectively extended over the full sensor and liberated charge is quickly collected by

this strong external field. The width of the depletion zone is inversely proportional to

the density of acceptor NA and donor ND. Hence, the depletion zone can be extended

into one side of the semiconductor if the concentration of doping atoms of the other

side of the junction is much larger.

Figure 4.2: Diagram of a single silicon pixel. It is defined electrically by the readout
electrode on top that is bump bonded to a readout channel on the readout chip
(ROC). The backside is a continuous electrode.

The BPix layers and FPix disks are composed of modules, each of which consist of

segmented rectangular regions (pixels) of size 100 µm × 150 µm connected to highly

integrated readout chips (ROC) using a bump-bonding technique (see Figure 4.2).

The pixel is designed as a high concentration n-implant (n+) emmersed in a highly

resistive n-substrate that serves as the active volume. The p− n junction is created
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by a high concentration p-implant at the back in contact with the n-substrate, shown

in Figure 4.3. The bulk material will invert its type from n to p when irradiated,

Figure 4.3: Configuration of p−n junction before (left) and after (right) the irradiation
that causes the type-inversion of the active volume.

expected to occur primarily from pions produced by LHC collisions. A dose of order

1012 neqcm−2 was delivered within days during the startup of the LHC. Exposure to

the high particle flux has the adverse effect that it

• changes the effective carrier concentration requiring higher bias voltages to

achieve depletion over the full detector depth,

• increases the leakage current,

• reduces the charge collection as free charge carriers get trapped hence near

displaced atoms.

Furthermore, noise is introduced by the random release of trapped charges. The pixel

detector initially operates at a voltage of 150 V, but higher bias voltages (up to 600

V) will be needed to compensate for irradiation damage in the sensor after irradiation

with a fluence of about 1015 neq cm−2. After three years operating at the LHC design

conditions, the innermost layer of the detector will need to be replaced. The small

gap between the collecting electrodes (i.e. the n-implant) ensures a homogeneous
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drift field. The p − n junction is placed on the back of the sensor and surrounded

by a multi-guard ring structure that allows all sensor edges to be kept to a ground

potential (see Figure 4.2). To perform an on-wafer measurement of the current-voltage

characteristics, each pixel is connected to a bias grid through a high resistance punch

through connection (bias dot).

The pixel detector is arranged in three cylindrical (barrel) layers (BPix) of

pixel detector modules at radii of 4.4, 7.3 and 10.2 cm, illustrated in green in

Figure 4.4 CMS Collaboration (2006a). The forward pixel (FPix) detector consists

of two disks placed at either end of the barrel at z = ±34.5 and z = ±46.5 cm. The

disks have inner and outer radii of approximately 6 cm and 15 cm and are subdivided

in 24 trapezoidal blades, shown in orange in Figure 4.4.

Figure 4.4: Sketch of the CMS forward and barrel pixel detectors. The barrel pixel
detector consists of three central layers whereas the forward pixel detector consists of
two disks on each side.

When a particle traverses a sensor, the liberated electrons drift towards the

collection electrode (with the amount of charge collected proportional to the path

length of the particle within the silicon substrate). The hit position is estimated by

weighting the location of the pixel readouts by the amount of charge they collected.

x̄ =

∑
iQixi
Q

(4.1)
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where Q =
∑

iQi is the total charge collected. Interpolating positions between pixels

based on the amount of collected charge requires pulse-height information. Without

charge sharing, the position cannot be resolved within the pixel boundaries to better

than a pixel length/
√

12, which corresponds to a resolution of about 40 µm. With

charge sharing, an intrinsic hit resolutions of 10− 15 µmcan be obtained.

The shift due to the Lorentz force has to be taken into account when reconstructing

the hit position. Hence, the Lorentz angle needs to be known to a high precision.

The grazing angle method of measuring the Lorentz angle is shown in Figure 4.5.

This method uses well reconstructed tracks that have a shallow impact angle with

respect to the direction of the magnetic field. Ionizing particles traversing the detector

generate signals which can be seen on several successive pixels. Each pixel in the chain

collects charge from a given segment of the particle’s trajectory. The signal ends at

the pixel row under which the particle leaves the detector. Due to the Lorentz force,

the drifting charge carriers reach the surface with a displacement proportional to their

drift-length. Therefore, it is expected that pixels near the end of the chain will loose

some charge to the adjacent pixel rows. According to Figure 4.5, one can measure

the Lorentz-angle as

tan θL =
tan β

tanα
(4.2)

where α is the grazing angle and β is the angle of the charge deflection measured at

the surface.

For the characterization of the barrel pixel detector with the magnetic field of

3.8 T, the Lorentz angle has been measured in collision data (at center-of-mass energy

around 3.5 GeV) to be 21.72◦ ± 0.01◦ Ivova (2011).

Other corrections to charge smearing effects can be evaluated with the η

distribution. It is measured to find the position distribution of the electrons collected

by the electrodes. If the charge Q is deposited in two adjacent pixels, left (L) and

67



Figure 4.5: Measurement of the Lorentz angle θL with the grazing angle method.
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right (R), the fraction of charge deposited in the right pixel is

η =
Q(R)

Q(R) +Q(L)
. (4.3)

For a given passing particle the average impact point between the two pixels and its

resolution can be obtained by integrating the η distribution up to the measured η.

This method is limited by statistical fluctuations, mainly due to due to electronic

noise and electrons from secondary ionization.

The shape of pixels results in comparable resolution in both directions. In the

direction parallel to the magnetic field (z-direction), there is no Lorentz drift but

sufficiently inclined tracks are detected in more than one pixel, allowing interpolation

in both directions. At high rapidity, where tracks hit the barrel detector at low angles,

the small z-size is a disadvantage because increasing cluster size in the z-direction is

only beneficial for the z-resolution until it exceeds two pixels. Higher multiplicities

also overload the readout system. Therefore, the choice was made to complement

the barrel detector with pixel disks in forward and backward directions. Sufficient

charge sharing in the FPix is achieved with a tilt angle of 20◦ between the blades.

The Lorentz angle measured in the forward pixel detector is smaller and found to be

4.40◦ ± 0.55◦ Ivova (2011) in the 2010 cosmic rays data.

4.3 Pixel Readout System

The pixel barrel (BPix) layers and the forward/backward (FPix) disks are composed

of modules (and some half-modules) that contain the readout electronics and the

power supply. A module consists of:

• 16 ReadOut Chip (ROC): performs the signal readout,

• Token Bit Manager (TBM): controls the read-out of several ROCs,
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• High Density Interconnect (HDI): a circuit board that distributes the control

and power signals to the readout chips and the TBM,

• Base stripes: used for mechanical stability and as a contact between the module

and the cooling structure,

• Kapton cable: transfers the control and analog signals,

• Power cable: supplies the analog, digital, and bias voltages.

Figure 4.6 illustrates the components of a module as they are assembled. The modules

are attached to cooling frames, with the cooling tubes being an integral part of the

mechanical structure. The analog charge signal is read and digitized at faster using

Figure 4.6: View of a half-module (left) and a full module (right) fully assembled.
Middle: expanded view of a barrel pixel module showing the two silicon nitride
base strips, the 16 readout chips (ROCs), the pixel silicon sensors, the High Density
Interconnect (HDI) with the Token Bit Manager (TBM), and the power and Kapton
cables.

a Flash ADC. A schematic view of the pixel readout is shown in Figure 4.7. The
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Figure 4.7: A schematic view of the readout chip.

ionization charge of a CMS pixel sensor is read out by a corresponding channelled

Pixel Unit Cell (PUC) connected electrically via a bump bond. In a ROC, there are

26 double columns and 80 rows in the active area to read out 4160 pixels in total.

The ROC chip periphery contains:

• a serial programming interface to configure the pixels,

• digital-to-analog converters (DAC) to adjust offsets, gains, thresholds, supply

voltages, timings, etc.,

• control registers to set the trigger latency and readout speed,

• an analog event generator that collects the pixel hit information from the double

columns and generates the output data stream,

• a fast double-column hit counter that can be used in principle by the CMS first

level trigger or for self-triggering when no external trigger is available.

A sketch of the PUC is shown in Figure 4.7 on the right. It can be divided into

an analog part and the digital logic. The charge produced by an ionizing particle
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traversing the silicon sensor is collected at the electrode formed by the n-implant

and by a capacitor. The charge signal enters a two stage charge sensitive pre-

amplifier/shaper system. Alternatively, calibration signals can be injected through

an injection capacitor connected directly to the amplifier input node. This feature

is used to study pixel efficiencies. A global threshold can be programmed for the

whole chip using the DAC. Pixel cells within one double column are connected to

its periphery with a set of local bus lines, one of them being the column-OR, which

combines all pixel cells in a double column into a global OR. Only signals that are

above the threshold are allowed to trigger the digital part of the circuit. Once the

comparator is above threshold (zero suppression) the shaper output signal is stored

in a memory buffer and the double column periphery is notified immediately through

a fast hard-wired column OR. The pixel becomes insensitive and waits for a column

readout token (the pixel dead-time is short, ≥ 50 ns). The double column periphery

controls the transfer of hit information from the pixels to the storage buffers (column

drain mechanism) and performs trigger verification. The column drain cycle takes

place within each double-column and runs at 40 MHz. The readout starts with the

pixel closest to the periphery on the left side of a double-column and returns along the

right side (see Figure 4.7). The time information is stored (within 25 ns) in the time-

stamp buffer and the address and the analog signal of each pixel hit is transferred to

the column data buffer located in the column periphery. For the average of two pixel

hits per double column, about six clock cycles (at 40 MHz) are required to complete

the readout. This data has to be stored for 3.2 µswhile waiting for the Level-1 (L1)

trigger decision. For every clock, the bunch crossing counter (BC) stored in the time

stamp buffer is compared with the search counter (WBC). If both agree the time

stamp is considered for trigger confirmation. The data confirmed by the L1 are saved

for the second stage of the readout while the unconfirmed data are erased. In the

second readout stage, the triggered data are transmitted to the CMS data acquisition

(DAQ). They are drained from each double-column and sent via optical links to the

readout electronics (Front End Driver modules - FEDs) in a room 100 m away from
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the detector. Groups of 8 or 16 ROCs are connected to one readout link. In order

to synchronize the data transmission a token-bit manager chip (TBM) is used. The

TBM controls the readout of the ROCs by initiating a token pass for each incoming

L1 trigger. On each token pass, it writes a header and a trailer word to the data

stream to facilitate event recognition. The header contains an 8-bit event number

and the trailer contains 8-bits of error status. The token bit is passed on from ROC

to ROC and finally back to the TBM where the trailer is generated and the TBM

becomes ready to accept another trigger. A schematic view of the pixel readout and

the token bit mechanism is shown in Figure 4.8.

Readout chips (ROCs) 

26 double 
columns 

analog 
out 

analog 
out 

FED 

optical 
link 
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Figure 4.8: A schematic view of the pixel readout system.

The data stream containing all hit information belonging to a single trigger is sent

out by the TBM through the module Kapton cable. A single Kapton cable brings the

analog signals of one readout group to the printed circuit board on which the Analog

Optical Hybrids (AOHs) are placed. The electric analog signals are amplifed in an

Analog Level Translator (ALT) chip and converted into 40 MHz analog optical signals

in the AOHs. Each AOH is equipped with 6 lasers which drive the signal through
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optical fibers to the Front End Driver modules (FEDs) in the counting room 100 m

away from the detector. A FED has 36 optical inputs each equipped with an optical

receiver and an ADC. The FED receives the analog data, digitizes the signals, and

decodes the pixel address information. It builds event fragments by passing digitized

pixel information through three tiers of First In, First Out (FIFO) buffers as follows:

• the decoded output of each optical fiber is assembled into 32-bit data words

containing single pixel ADC and address information to be stored in FIFO I

buffers. If there is a problem in signal decoding or emptying of a FIFO I into

FIFO II, an error word is generated and stored in an Error FIFO.

• words from four or five FIFO I buffers and the Error FIFO responsible for them

are joined two at a time into 64-bit words and stored in FIFO II buffers.

• four FIFO II buffers empty into a single FIFO III buffer.

The FED then encapsulates the data stream with 64-bit header and trailer words

containing additional information (FED number, bunch crossing, L1 id, and size of

event fragment) before transmitting it to the central DAQ system. A single FED can

buffer up to 100 events.

The Front-End Control modules (FECs), also located in the counting room, send

the clock, trigger and all other control and reset signals to the detector. The ROC

chip programming (e.g. setting of the pixel thresholds) is also performed with the

FECs. The FED and FEC modules which service the same segment of the detector

are located in the same VME crate. This way both can communicate with the same

crate controller CPU, allowing for efficient system monitoring and fast resets in case of

error conditions. Each crate controller communicates with a monitoring workstation

where more global data diagnostics is performed. Other standard components of the

pixel readout system are:
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• Trigger Timing and Control (TTC): sends the L1 accept signal to the FED and

FEC, distributes the 40 MHz clock, and manages various synchronization and

calibration commands,

• Local Trigger Control (LTC): is used in combination with the TTC manages

the local trigger control,

• Tracker FEC (TKFEC): communicates with the Communication and Control

Unit (CCU) which performs slow controls of the pixel readout chips, such as

configuring them for data acquisition, calibration, or standby mode, setting

thresholds etc.

4.3.1 Detector Commissioning

Tests on modules are necessary to verify that all pixels function correctly, each ROC

can be programmed properly, and all modules are calibrated satisfactorily. A list

of configuration and calibrations have been performed before the 2011 data taking

campaign:

• noise measurements: the noise of a pixel is determined by measuring the

efficiency of the pixel as a function of the amplitude of the calibration signal.

Noisy pixels may flood the ROC with a high rate of fake hits and cause

significant dead time and data losses. Therefore, either the threshold of these

pixels has to be increased or the pixels have to be removed from the data taking

(masked),

• trimming: the aim of the trim calibration is to unify the thresholds of all pixels

on a ROC to the lowest possible value. A common threshold (Vpix) for all pixels

is set in the ROC. To account for pixel to pixel variations, four-bit trim values

(vtrim) are set in each PUC. The strength of the correction is determined by the

trim voltage (Vtrim), which is set per ROC. It is set with respect to the absolute
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threshold (Vthreshold) at which the response has to be unified. The relation is

approximately:

Vpix = Vthreshold + vtrim ∗ Vtrim,

• pulse height calibration: this calibration is performed by injecting signals

with various amplitudes to each pixel via the PUC calibration capacitor and

measuring the corresponding pulse heights. For each pixel, the height of the

generated pulse is recorded and an extensive offline analysis performed,

• other calibrations: they involve the testing of the module response to the charge

injected to the silicon sensor and the calibration of the internal signal of each

ROC.

The turn-around time for calibrating all 66M pixels is about one month. The studies

yield pixel response efficiencies of 98.8% and 96.4% (overall 98.2%) for BPix and

FPix, respectively.
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4.4 Offline Reconstruction

Events selected by the trigger undergo reconstruction in two steps: local recon-

struction, and global reconstruction. Local reconstruction involves the translation

of digitized raw subdetector data into charge or energy deposits with a 3-dimensional

position in the CMS coordinate frame. The global reconstruction processes then build

physics objects from the products of local reconstruction, as described in Sections 3.4.1

and 3.4.1. Local reconstruction of Pixel data plays a particularly important role in

the construction of physics objects in an event because charge deposits reconstructed

in the Pixel subdetector serve as the seeds for track-building. This section gives

an overview of the Pixel local reconstruction workflow and describes in detail the

development and testing of software necessary to perform the first step in the local

reconstruction of raw pixel data.

4.4.1 Overview of Pixel Local Reconstruction

The analog output of each pixel is digitized by the FEDs as a 32-bit raw word

that contains an Analog-to-Digital Conversion (ADC) charge value along with pixel

address (in terms of ROC and link number read out by the FED). The FED also

creates 32-bit words to encode information about errors that occur during processing.

The FED then joins together pairs of 32-bit words to form 64-bit words and inserts

64-bit header and trailer words at the beginning and end, respectively, of an event’s

content to demarcate the event and store additional event information. The formatted

raw data is then transmitted over the 64-bit serial link (S-link) to DAQ as input to

local reconstruction, which proceeds in three steps:

• Raw-to-Digi conversion: 64-bit raw words transmitted by the Pixel FEDs are

translated into 32-bit digital pixel measurements on a plaquette.

• Clusterization: single pixel measurements on a plaquette are combined with

neighbors to create charge clusters.
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• Hit reconstruction: charge cluster information is combined with templates to

reconstruct the location on the plaquette hit by a charged particle from the

collision region.

The raw-to-digi process takes in the 64-bit event information formatted for the

S-link and outputs a C++ container organized by plaquette number, each entry

containing the 32-bit digitized readouts of the pixels (digis) in that plaquette. In

addition to formatting event content as C++ objects suitable for use in CMSSW,

this step of reconstruction removes words that do not contain pixel information (eg,

headers, trailers, and error words) and stores information about errors that occured

during data acquisition and processing.

The clusterization process takes the output from the previous step to create

a collection of entries containing the charge deposit information collected by the

corresponding plaquette. First, the clusterizer algorithm uses pixel calibration

information to convert the ADC value of a digi into a charge in electrons. Next,

neighboring digis with non-zero charge are grouped together as the basis for a cluster.

If the total charge of such a group of digis exceeds a pre-defined minimum, a cluster

object is made that contains the total amount of charge (in electrons) of the group,

the location of the group’s charge-weighted center on the plaquette, and the location

and charge of the pixels in the cluster.

The hit reconstruction process takes in the collection of charge clusters in Pixel

in order to create a collection of positions on the plaquette (and associated position

error) where charged particles from the collision region traversed the Pixel sensor.

A hit is reconstructed by performing a χ2-fit of the charge and position measured

in the cluster’s pixels to templates of charge distributions left by tracks with similar

angles on plaquette in simulation. The hit position on plaquette is estimated from the

template with the lowest χ2-fit, and the χ2 value itself is used to determine the quality

of the hit reconstruction and the error associated with the position estimate Swartz

et al. (2007). The 2D hit position on plaquette can then be combined with knowledge
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of the plaquette position in the 3D CMS coordinate frame to reconstruct the 3D

position of pixel hits used as input to track-making.

The entire reconstruction sequence is run in reverse during detector simulation.

Once points have been identified at which a simulated charged particle track intersects

a plaquette, Pixel simulation goes through the following steps:

• Clusterization: the amount and shape of charge deposited in the plaquette is

determined based on templates.

• Digitization: the charge collected by individual pixels is estimated and the ADC

value is simulated based on calibration information.

• Digi-to-Raw: the digitized pixel readouts are converted into a raw data

collection with the same format as the raw data issued by the FEDs.

4.4.2 Pixel RawToDigi Conversion

The Pixel RawToDigi process is the first level of offline reconstruction of Pixel data,

translating raw data from the Pixel FEDs into digis (C++ objects formatted for

the CMSSW environment). The unpacker first iterates over the raw data indexed

to Pixel FEDs (FED numbers 0-39). The translation proceeds by stripping out the

64-bit S-link header words and checking that the FED number encoded in the header

word matches the index of the raw data; unpacking for that FED proceeds only if the

numbers match. Once the headers are processed, 64-bit words containing digitized

pixel readouts are split in half to form two 32-bit words, each representing the original

raw words digitized by the FED. The bit designation for these raw words is shown in

Table 4.1.

Table 4.1: The bit designation for 32-bit data and error words created by the FED.

Bit #: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Data word: Link # ROC # DCOL # Pixel # ADC Value
Error word: Error Code Additional Error Information
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Each data word contains the ADC charge reading and unique address of a pixel;

the basic job of converting raw words to digis is to translate the hardware-based

addressing of the raw words (identified by FED, link, ROC, and DCOL and Pixel

address on ROC) into the geometry-based addressing of the digi words (identified by

plaquette index, as well as row and column address within the plaquette). Address

translation is performed in two steps: determination of the plaquette index, and

transformation of the pixel row and column values from ROC-based to plaquette-

based coordinates. The plaquette index is determined by referencing a pre-compiled

association map (termed the cabling map) that contains the corresponding plaquette

index for every allowed FED, link, and ROC combination. Each ROC entry in the

cabling map also contains the offsets and reflections appropriate to transform from

the ROC to plaquette coordinate frame, so the cabling map is used to determine

the digi row and column address as well. Digis on the same plaquette are grouped

together and stored in a container class representing the plaquette. These containers

are organized by plaquette index and stored as a collection for further reconstruction.

If the raw word is an error word, it is stored in a separate collection containing error

information for monitoring in DQM (described in Sec. 4.4.3 and 4.4.4).

An additional function of the Pixel RawToDigi package is to create raw Pixel data

from digis during the last step of detector simulation. Each digi is translated into a

32-bit raw word using a reverse cabling map (created by iterating over all associations

in the cabling map) to determine the correct FED, link, and ROC number and pixel

address on ROC. Pairs of translated words are then joined into 64-bit words and

grouped according to FED index. Last, a 64-bit header and trailer are written to

encapsulate the raw collection for each FED following the format used for the S-link.

4.4.3 Error Handling in Pixel RawToDigi

The Pixel RawToDigi package records information about problems that occur during

online data acquisition or offline translation of raw words into digis. Problems
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during online data acquisition are identified from error words stored by the FED

in the raw data, as discussed in Sec. 4.3. Problems that could occur during offline

translation include online addresses that don’t correspond to an entry in the cabling

map, translated pixel row and column values that exceed the bounds of the plaquette,

disagreement between the FED index of the raw data buffer being read out compared

to the FED index encoded in the 64-bit header, or disagreement between the number

of raw data words received compared to the number of words encoded in the 64-

bit trailer. Information about each error is saved in a C++ container class to be

monitored in the first level of DQM.

4.4.4 Data Quality Monitoring

Data Quality Monitoring (DQM) refers to a group of computer processes and human

operators that monitor information produced at all levels of reconstruction in order

to identify problems with CMS data-taking. Data quality is monitored based on

a selection of events reconstructed at the HLT (Online DQM) and for all events

reconstructed offline at T0 or the T1 sites (Offline DQM). DQM processes devoted

to the local reconstruction of a subdetector are monitored by experts chosen by

that subdetector. This section describes the DQM software used to monitor Pixel

information during CMS operation.

DQM software must perform two basic functions: access the products of

reconstruction to histogram quantities important to data quality, and display these

histograms in a human-readable Graphical User Interface (GUI) so experts can utilize

them. The first function is accomplished by DQM processes dedicated to several levels

of Pixel local reconstruction:

• Error: The types of error, as well as FED and link addresses, are monitored.

Additional information is monitored for certain kinds of errors.

• Digi: The occupancy and charge of digis is monitored.
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• Cluster: The occupancy, charge, and size (in pixels) of clusters is monitored.

Separate information is shown for clusters used to make a track (on-track

clusters) and clusters not joined to a track (off-track clusters).

The DQM GUI is a web application that outputs DQM information to a web

address and can be run on any standard web browser. The GUI has a point-and-click

interface, shown in Fig. 4.9. Users can select the dataset, run number, and level of

detail to monitor by clicking on their respective entries in the GUI. The GUI has

several levels of information available for display. The top level for Pixel contains a

summary map of FED performance by lumi section with a green to red color code,

shown in figure Fig. 4.10. Green indicates all monitored quantities fall within limits

judged acceptable by subdetector experts, red indicates a quantity may fall outside

of those limits and require further investigation, and white indicates no data was

received from the FED. In the example shown, all FEDs display white until Pixel is

turned on at lumi section 50, at which point monitoring indicates a possible problem

with data from FED 20 beginning at lumi section 76.

Lower levels of the GUI display histograms of more detailed information down to

the resolution of a plaquette. Summary histograms are also made at the ladder and

layer level in the barrel, and the blade and disk level in the endcaps. Error information

is displayed at the FED level. Fig. 4.11 shows DQM displays of error information.

The picture on the left displays how many times each monitored error has occurred

in a given FED, while the picture on the right displays how many times any error

has occurred in a given link for each FED. Some errors are expected during normal

operation, but the appearance of thousands of errors in a matter of minutes or hours

notifies an expert to issue a resync command to the FED, clearing its memory buffers

before resuming data collection. Such incidents are reported to the Pixel group and

investigated further if they occur repeatedly.

Fig. 4.12 shows DQM displays of digi information. The picture on the left displays

the average sum ADC charge value collected on a barrel ladder per event, while the
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Figure 4.9: The interface for the DQM GUI.

Figure 4.10: An example of the summary map of Pixel FED status for a run. Green
indicates all monitored quantities fall within limits judged acceptable by subdetector
experts, red indicates a quantity may fall outside of those limits and require further
investigation, and white indicates no data was received from the FED.
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Figure 4.11: Example histograms of error information available in the DQM GUI.
The picture on the left displays how many times each monitored error has occurred
in a given FED, while the picture on the right displays how many times any error has
occurred in a given link for each FED.

picture on the right displays the average number of digis reconstructed per event for

a given ladder index. In each case, the blue lines in the display represent acceptable

bounds. New noisy pixels (pixels that register charge deposit with pathologically high

frequency) are identified from spikes in the ndigis plot and disabled. Poor threshold

settings used in ADC charge digitization can be identified from the display of mean

ADC charge value.

Figure 4.12: Example histograms of digi information available in the DQM GUI. The
picture on the left displays the average sum ADC charge value collected on a barrel
ladder per event, while the picture on the right displays the average number of digis
reconstructed per event for a given ladder index.

Fig. 4.13 shows DQM displays of charge cluster information. The picture on the

left displays the charge distribution for on-track clusters, while the picture on the

right displays the occupancy (in the CMS coordinate frame) of such clusters. The

charge distribution should display a Landau-like shape with a peak around 22 keV;
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any significant deviation from such a distribution would invalidate a run for use in

physics analysis and prompt investigation. The occupancy plot can be used to identify

dead sensors and flag them for possible repair.

Figure 4.13: Example histograms of cluster information available in the DQM GUI.
The picture on the left displays the charge distribution for on-track clusters, while
the picture on the right displays the occupancy (in the CMS coordinate frame) of
such clusters.
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Chapter 5

Measurement of the Production

Cross Section

5.1 Introduction

The measurement of the simultaneous production of two J/ψ mesons in the collision

of protons at
√
s = 7 TeV provides general insight into how particles are produced

during proton collisions in the LHC. With the high flux of incoming partons at the

LHC, there is a high probability that more than one pair of the microscopic dynamic

constituents of the proton, the gluons and quarks (commonly called partons), scatters

in the proton-proton collision Kom et al. (2011). These multi-parton scattering

contributions are difficult to address within the framework of perturbative Quantum

Chromodynamics (QCD) and experimental studies are needed (see e.g. Ref. Ko

et al. (2011) and references therein). The general assumption is that single parton

scattering (SPS) is the dominant process. Double parton scattering (DPS) and higher-

order multiple parton interactions are widely invoked to account for observations

that cannot be explained otherwise, such as the rates for multiple heavy flavor

production. New findings can have far reaching implications for LHC physics and will

allow creation of more realistic simulations of particle production. The decay of the
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J/ψ into muons provides a clean signal in a parton-parton interaction regime that is

complementary to studies that are based on hadron jets. Multiple parton interactions

can lead to distinct differences in event variables that probe pair-wise balancing, such

as the absolute rapidity difference |∆y| between the two J/ψ mesons Kom et al. (2011);

Gaunt et al. (2011). Two J/ψmesons produced via SPS interaction are strongly

correlated, resulting in small values of |∆y|. Large values of |∆y| are possible for

production due to DPS.

In contrast to earlier experiments where quark-anti-quark annihilation domi-

nated Badier et al. (1982, 1985), in the case of proton-proton collisions at the

LHC, the dominant production process is gluon-gluon fusion Humpert and Mery

(1983). At parton level the two J/ψmesons are either produced as color singlet

states or color octet states that turn into singlets after emitting gluons. Color

octet contributions at double J/ψtransverse momenta below 15 GeV/c and low

invariant masses are expected to be negligible, but play a greater role as transverse

momenta increase Berezhnoy et al. (2011); Qiao et al. (2010). According to next-

to-leading order Quantum Chromodynamics (QCD) calculations, contributions from

color singlet heavy-quark pair production can also be enhanced at higher transverse

momenta Campbell et al. (2007); Artoisenet et al. (2007); Gong and Wang (2008).

The CMS experiment provides access to transverse momentum measurements above

15 GeV/c. Theoretical calculations of double J/ψproduction via SPS, based on leading

order color singlet, states predict a cross section of 4 nb within the LHCb acceptance

region Berezhnoy et al. (2011, 2012), with an uncertainty of about 30% Novoselov

(2011). This prediction is just below the measured value of 5.1±1.0±1.1 nb recently

published by the LHCb experiment, though DPS contributions could potentially

account for the difference Aaij et al. (2012). The CMS experiment samples a

J/ψregime complementary to LHCb, with coverage of higher transverse momenta and

lower rapidity values. Hence, double J/ψcross section measurements by CMS provide

new information for model-builders.
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The bottomonium ground-state meson ηb is expected to decay into two J/ψ mesons

in analogy to the ηc charmonium ground-state that decays into two φ-mesons Col-

laboration (2006). However, explicit calculations based on Nonrelativistic QCD

(NRQCD) Braaten et al. (2001); Maltoni and Polosa (2004); Jia (2008) predict this

decay mode to be highly suppressed, so any observation could indicate the limitations

of present NRQCD approaches. Other predicted resonant states that could decay

into two J/ψmesons are exotic tetra charm-quark states Berezhnoy et al. (2011).

Furthermore, a CP -odd Higgs e.g. in Next-to-Minimal Supersymmetric Standard

Models (NMSSM) Dermisek and Gunion (2005) is predicted with mass close to the

ηb meson. The mixing between those two states can alter the behavior of ηb with

respect to QCD predictions Domingo et al. (2009); Domingo (2011). No evidence for

the CP -odd Higgs was found by CMS in the µ+µ− invariant mass spectrum between

5.5 GeV/c2and 14 GeV/c2 Chatrchyan et al. (2012b). The ηb state has been observed

in radiative transitions with the BaBar experiment Aubert et al. (2009); the double

J/ψ decay was probed with the CDF detector, but no significant resonant production

was identified Collaboration (2006).

5.1.1 Analysis Strategy

The goal of this analysis is to measure the cross section for prompt double

J/ψ production with data recorded by the CMS detector at a center-of-mass energy

of 7 TeV, independent of production models. Therefore, acceptance corrections

are calculated based on the measured J/ψ kinematics and efficiency corrections are

calculated based on the measured decay-muon kinematics of each event. Monte Carlo

(MC) samples for different production models with either strongly correlated J/ψ(SPS

model) or less correlated J/ψ(DPS model) in the event are used to estimate the

acceptance region and validate the correction method. They also provide guidance

for the parameterization of event variable distributions. The SPS generator is a color

singlet model Berezhnoy et al. (2011) implemented in Pythia 6 Sjostrand et al. (2006),
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the DPS generator is implemented in Pythia 8 Sjostrand et al. (2008) and uses a

color singlet and color octet production model. The dominant background processes

are non-prompt J/ψ (mostly from B-meson decays) and combinatorial background

from a prompt J/ψ combined with two unassociated muons. Background components

and their distributions are extracted from sideband regions in data or simulations

of J/ψfrom B-meson decays. Signal and background events are identified in data by

applying muon quality criteria to reconstructed muons, requiring the presence of at

least four muons in the event and two µ+µ− combinations with an invariant mass

within 250 MeVof the J/ψ mean mass value.

The cross section measurement is provided in a pre-defined region of the J/ψ ac-

ceptance that in turn is constrained by the muon identification and reconstruction

capabilities of CMS. The differential cross section of double J/ψ production in bins of

event variable x is calculated using the following equation:

dσ(pp→ J/ψ J/ψ +X)

dx
=
∑
i

nisig
ai · εi ·BF (J/ψ → µ+µ−) ·BF (J/ψ → µ+µ−) ·∆x · L

(5.1)

with:

• the sum over events i in the interval ∆x,

• nisig, measured signal yield per event extracted with a maximum likelihood fit,

• ai, acceptance, calculated on an event basis as the probability of the muons from

J/ψ that are within the J/ψ acceptance and lie within the muon acceptance,

• εi, CMS detector efficiency calculated on an event basis for triggering, recon-

structing, and identifying muons and J/ψ in the J/ψ acceptance,

• L, total integrated luminosity of the dataset.

The total cross section in the J/ψ acceptance is determined by summing over

all intervals ∆x on an event-by-event basis. This analysis measures differential
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production in ∆x bins of double J/ψ invariant mass (MJJ), absolute separation in

rapidity between the J/ψ(|∆y|), and the double J/ψ transverse momentum, pJJ
T .

A detailed description of the CMS detector can be found elsewhere Chatrchyan

et al. (2008). The primary components used in this analysis are the silicon tracker and

the muon systems. The tracker operates in a 3.8T axial magnetic field generated by a

superconducting solenoid having an internal diameter of 6 m. The tracker consists of

three cylindrical layers of pixel detectors complemented by two disks in the forward

and backward directions. The radial region between 20 cm and 116 cm is occupied

by several layers of silicon strip detectors in barrel and disk configurations, ensuring

at least nine hits in the pseudorapidity range |η| < 2.4, where η = − ln [tan (θ/2)]

and θ is the polar angle of the track measured from the positive z-axis of a right-

handed coordinate system, with the origin at the nominal interaction point, the x-

axis pointing to the centre of the LHC, the y-axis pointing up (perpendicular to the

LHC plane), and the z-axis along the counterclockwise-beam direction. An impact

parameter resolution around 15 µm and a pT resolution around 1.5 % are achieved for

charged particles with transverse momenta up to 100 GeV/c. Muons are identified in

the range |η| < 2.4, with detection planes made of drift tubes, cathode strip chambers,

and resistive plate chambers, embedded in the steel return yoke. The CMS detector

response is simulated with a GEANT4 based MC Agostinelli et al. (2003).
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5.2 Data and Monte Carlo Samples

5.2.1 Data Samples

The data considered in this analysis were obtained from proton-proton collisions with

a 7 TeV center of mass energy recorded by the CMS detector during the year 2011.

The only lumi sections considered are those certified for physics analysis in the JSON

file:

Cert 160404− 180252 7TeV PromptReco Collisions11 JSON.txt

with the exception of the Aug05 ReReco dataset, which used the following:

Cert 170249− 172619 7TeV ReReco5Aug Collisions11 JSON v3.txt

The exact datasets used for this analysis are given in Table 5.1, and correspond

to a total integrated luminosity of 4.73± 0.12 fb−1 recorded by CMS. All luminosity

estimates given for datasets are calculated using the pixelLumiCalc.py CMS (2013)

script with the specified JSON file as input, considering only lumi sections within the

run ranges and including the HLT path described in Table 5.1.

Table 5.1: Dataset name, run range, trigger version, and recorded integrated
luminosity.

Dataset Run Range Trigger Path L ( pb−∞)
/MuOnia/Run2011A-PromptReco-v4/AOD 160431-167913 HLT Dimuon0 Jpsi muon v1-4 1157
/MuOnia/Run2011A-05Aug2011-v1/AOD 170826-172619 HLT Dimuon0 Jpsi muon v6 390
/MuOnia/Run2011A-PromptReco-v6/AOD 172620-173692 HLT Dimuon0 Jpsi muon v7 707
/MuOnia/Run2011B-PromptReco-v1/AOD 175860-180252 HLT Dimuon0 Jpsi muon v7-11 2714

Only lumi sections that contain the HLT Dimuon0 Jpsi Muon trigger path are used

in this analysis. This trigger path is seeded by the presence of at least three separate

L1 muon segments, and requires the presence of at least three L3 muon candidates,

two of which have opposite charge and fit to a common vertex with a vertex fit
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probability > 0.5% and an invariant mass in the range 2.8-3.35 GeV/c2. This trigger

path was unprescaled over the data-taking period.

5.2.2 Monte Carlo Samples

This analysis utilizes simulated signal and expected background samples to identify

suitable variables for a Maximum Likelihood fit, as well as to characterize the shape

of signal and background events in the fit. These samples are described below,

and summarized in Table 5.2. Unless otherwise specified, all privately produced

samples were generated and reconstructed in CMSSW 4 2 7 hltpatch3 using global tag

START42 V17, and are publicly available and published in the CMS Data Aggregation

Service under the cms dbs ph analysis 01 server.

Table 5.2: Simulated samples used, along with the number of generated events,
assumed production cross section (where applicable), and number of events passing
HLT.

Process Ngen, (106) σprod(µb−1) NHLT

DPS Prompt double J/ψ (no PU) 5.3 * 13648
DPS Prompt double J/ψ (w/ PU) 20 * 44937
DPS Prompt double J/ψ (no filter) 0.35 * 348500
SPS Prompt double J/ψ (w/ PU) 16 * 39771
SPS Prompt double J/ψ (no filter) 10 * *
B0 → J/ψ 4 26.5 34274
B+ → J/ψ 5 29.8 42743
Bs → J/ψ 1.3 24.1 10681
λb → J/ψ 0.4 8.1 2814
J/ψ particle gun 100 * *
Muon particle gun 12 * *
Data substituted 4.4 * 2.2 · 106

DPS substituted 4.0 * 1.6 · 106

SPS substituted 4.0 * 1.9 · 106

ηb → J/ψJ/ψ 3.5 * 6073

• DPS Prompt double J/ψ without pileup:

At the generator level, Double Parton Scattering (DPS) prompt double
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J/ψ events are produced in Pythia8 using the CTEQ6L1 pdf set, with double

hard scattering and charmonium production enabled. Only J/ψ charmonium

states are allowed and J/ψ are forced to decay to two muons (resulting in a four

muon final state). A generator level filter was then applied to allow only events

containing at least one J/ψ with |η| < 3 and pT > 2 GeV/c and three muons with

|η| < 2.5 and pT > 1 GeV/c. This filter sped up reconstruction by eliminating

approximately two-thirds of generated events, targeting only events unlikely to

pass the HLT (finally selected events were compared with an unskimmed sample

to ensure final efficiencies and event shapes were unaffected). In addition, only

events passing the HLT Dimuon0 Jpsi muon trigger were reconstructed.

• DPS Prompt double J/ψ with pileup:

Produced as in the case without pileup, but simulated MinBias events are mixed

in after generation according to the guidelines intended to mimic Summer11

production.

• DPS Prompt double J/ψ with no filter:

This sample was produced in the same way as the prompt sample with pileup,

but no filter was applied at the generator level or HLT to remove events. Used

to determine acceptance.

• SPS Prompt double J/ψ with pileup:

The Single Parton Scattering (SPS) signal events were produced using the exact

same method employed in a like simulation by LHCb Berezhnoy et al. (2012),

wherein signal events are produced in standalone Pythia 6.426 interfaced to

LHAPDF to use CTEQ5L parton distribution functions (pdfs). The generated

collision event output and decay products were then put through standard full

detector simulation in CMSSW 4 2 9 HLT3 with global tag START42 V17, with

pileup added in as described earlier. To speed up production, this sample

employed a Pythia level filter requiring two J/ψ mesons in the event with pT > 2
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GeV/c and |y| < 2.5, as well as three muons in the event fulfilling pT > 2

GeV/c for |η| < 1.4, or pT > 1.5 GeV/c for 1.4 < |η| < 2.5.

• SPS Prompt double J/ψ with no filter:

SPS events were produced as above, but not filtered and not reconstructed past

the generator level. This sample was used for acceptance studies of SPS events.

• Non-prompt J/ψ with pileup:

Non-prompt J/ψ are simulated through B-hadron decay to J/ψ. Bottom

quark production is enabled in Pythia6, Pythia handles an initial round of

hadronization and EvtGen handles subsequent decays, where a specified B-

hadron type (B0, B+, Bs, or λb, as given in dataset name) is forced into a J/ψ to

muons decay. This follows the Fall11 production of non-prompt J/ψ. The same

generator level filter and mixing strategy for pileup as used in the DPS prompt

J/ψ case are applied, and only events passing the HLT Dimuon0 Jpsi Muon

trigger are reconstructed. These types of events always include a single displaced

J/ψ, but there is no explicit requirement on a second J/ψ, so prompt, non-

prompt, and misreconstructed J/ψ are all possible.

• J/ψ particle gun:

Produced in CMSSW 4 2 8 patch7 with global tag START42 V17, and only

reconstructed to the GENSIM stage. Single J/ψ were generated using a

Pythia6PtYDistGun with a flat pT distribution from 0-50 GeV/c, and a flat

rapidity distribution in |y| < 2.5. This sample is used in one method to

determine the muon acceptance, as described in Section 5.4.

• Muon particle gun:

Produced in CMSSW 4 2 9 HLT3 with global tag START42 V17, and reconstructed

to AODSIM but without selection on a trigger path. Single muons were

generated using a Pythia6PtGun with a flat pT distribution from 0-10 GeV/c,

and a flat psuedorapidity distribution in |η| < 2.4. This sample is used to
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determine the offline reconstruction efficiency for low pT muons, as described in

Section 5.5.

• Data substituted:

Events are simulated in Pythia 6 as described for SPS production, but the

J/ψ and muon kinematics of the event are replaced with the J/ψ and muon

kinematics of a data event passing the trigger, reconstruction, and selection

requirements. This is only done if the double J/ψ energy of the generated

event matches the data event to 1% difference, and the double J/ψ system

direction is within 1.57 radians of the data event (otherwise, the generated

event is skipped). The event is then input into CMSSW for full detector

simulation and reconstruction. This is done repeatedly for each input data

event, and the sample is used to determine the event’s efficiency. Produced in

CMSSW 4 2 9 HLT3 with global tag START42 V17.

• DPS substituted:

Following the same methodology as the data substituted case above, but using

as input DPS produced events that passed the full trigger, reconstruction, and

selection requirements.

• SPS substituted:

Following the same methodology as the data substituted case, but using as input

SPS produced events that passed the full trigger, reconstruction, and selection

requirements.

• ηb → J/ψJ/ψ:

Events are generated in CMSSW with Pythia6 using the CTEQ6L1 pdf set with

g + g → Υ + g production turned on and the Υ replaced with an ηb meson.

Pythia was interfaced to EvtGen to perform the decays, and a decay card was

tailored to force ηb → J/ψJ/ψ and J/ψ → µµ decays. A generator level filter was

then applied to allow only events containing at least one J/ψ with |η| < 3 and
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pT > 2 GeV/c and three muons with |η| < 2.5 and pT > 1 GeV/c. Only events

passing the HLT Dimuon0 Jpsi muon trigger were reconstructed.
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5.3 Event Reconstruction and Selection

This analysis utilizes the HLT Dimuon0 Jpsi Muon trigger path, designed by the BPH-

trigger group to provide a consistently unprescaled muon trigger to achieve the highest

efficiency for J/ψ+ muon searches during the 2011 campaign. This trigger requires the

presence of at least three muons, two of which must be oppositely charged and with

a dimuon invariant mass in the interval between 2.8 and 3.35 GeV/c2 and a vertex

fit probability greater than 0.5% (as determined by a Kalman vertex algorithm).

All four muons used in the final event selection are required to belong to the

tracker muon category, created using the arbitration algorithm described in James

et al. (2006). Reconstruction of muons proceeds by associating segments in the muon

chambers with tracks provided by the silicon tracker. A given muon segment can be

associated with more than one silicon track at the time of reconstruction, allowing

reconstructed muons to share segments in the muon system. An arbitration algorithm

then assigns each muon segment to a unique muon track. Muons are further required

to pass the following quality criteria: (i) the associated track segment must have hits

in at least two layers of the Pixel tracker and at least 11 total inner tracker hits (Pixel

and Strip detectors combined), and (ii) the inner track fit χ2 divided by degrees of

freedom has to be less than 1.8. Muons with a transverse impact parameter greater

than 3 cm or a longitudinal impact parameter greater than 30 cm are excluded.

To find J/ψ candidates, all muon candidates in an event passing the above quality

criteria are then combined into opposite-sign electric charge pairs. These dimuon

candidates are fit to a common vertex using a Kalman Vertex algorithm Fruhwirth

(1987b). The dimuon invariant mass after the vertex fit has to stay within 2.8-

3.35 GeV/c2 and the fit probability has to be greater than 0.5%. The final event

selection requires that two J/ψ candidates are created from four unique muon

candidates. If there is more than one double J/ψ combination in an event, the highest

vertex-fit probability candidate is chosen as the first J/ψ, and the second highest

vertex probability candidate is chosen as the second J/ψ. For signal MC samples in
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Table 5.3: The yield after implementing successive quality cuts in event selection for
double J/ψ candidates.

2011 Data
Requirement Nevt Fractionstep Fractiontotal

Trigger 1892853 1 1
>3 muons found 1155516 0.6105 0.6105
1 matched segment/ muon 504596 0.4367 0.2666
2 pixel layers / track 367954 0.7292 0.1944
11 tracker hits / track 312557 0.8494 0.1651
track d0 < 3 cm, dZ < 30 cm 312386 0.9995 0.1650
track χ2/ndof < 1.8 275801 0.8829 0.1457
muon acceptance 211457 0.7667 0.1117
two µ+µ− candidates 120168 0.5683 0.0635
J/ψ fit probability > 0.005 86732 0.7218 0.0458
J/ψ mass∈[2.8,3.35] GeV/c2 7951 0.0917 0.0042
J/ψ d0 < 2 cm 7934 0.9979 0.0042
J/ψ acceptance 4958 0.6249 0.0026
two J/ψ candidates 2755 0.5557 0.0015
3 µ L3 matching 2616 0.9495 0.0014
Event variable criteria 1043 0.3987 0.0006

which pileup is included, this selection process found the correct dimuon combinations

for 99.7% of the selected events.

In addition, a muon momentum and a geometrical acceptance are imposed. At

least three muons must pass the tag and probe Wöhri et al. (2011) acceptance criteria:

• |ηµ| < 1.2 and pµT > 3.5 GeV/c OR

• 1.2 < |ηµ| < 1.6 and pµT > 3.5 → 2.0 GeV/c (where pT scales linearly with |η|)

OR

• 1.6 < |ηµ| < 2.4 and pµT > 2.0 GeV/c

and be matched to muon candidates that fired the trigger. To match both, the offline

reconstructed muon and the muon reconstructed by the trigger have to agree within

an azimuthal angle and pseudorapidity range defined as:
√

∆φ2 + ∆η2 < 0.1, and
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have a pT difference no greater than 10 GeV/c. The acceptance regime for the fourth

muon that is not associated with the trigger is wider:

• |ηµ| < 1.2 and pµT > 3.0 GeV/c OR

• 1.2 < |ηµ| < 2.4 and |p|µ > 3.0 GeV/c

Each J/ψ must fulfill the acceptance requirement:

• |yJ/ψ| < 1.2 and p
J/ψ
T > 6.5 GeV/c OR

• 1.2 < |yJ/ψ| < 1.43 and p
J/ψ
T > 6.5 → 4.5 GeV/c (where pT scales linearly with

|y|) OR

• 1.43 < |yJ/ψ| < 2.2 and p
J/ψ
T > 4.5 GeV/c

The two J/ψ candidates in an event are categorized according to their transverse

momentum such that J/ψ1 refers to the higher-pT J/ψ and J/ψ2 refers to the lower-

pT J/ψ of the pair.

In addition to the two µ+µ− invariant masses close to the J/ψ resonance mass,

two event variables are used that are sensitive to the prompt double J/ψ topology:

• the proper decay length of the highest-pT J/ψ candidate, ctJ/ψ. The primary

vertex for an event is defined as the vertex created by charged particle tracks

with the the highest sum of transverse momentum squared that can be fit to

a common position without beam spot constraint. The J/ψ candidates are

considered secondary vertices. If the muons from the J/ψ candidates are also

joined to the primary vertex, they are removed from the primary vertex and

the primary vertex is refit. The left plot of Fig. 5.1 demonstrates that this

definition of primary vertex matches up well with the true generated event

origin in simulated events with pileup. The refit primary vertex information is

then used for the ctJ/ψ determination. The proper decay length is calculated

from the decay length in the laboratory frame L
J/ψ
xy = ( ~rT ~pT

J/ψ)/|pJ/ψ
T |, where ~rT
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is the vector pointing from the primary vertex to the J/ψ vertex in the transverse

plane: ctJ/ψ = (mJ/ψ/p
J/ψ
T ) · LJ/ψ

xy . The proper decay length is required to range

from −0.05 cm to 0.1 cm.

• the so-called separation significance, dJ/ψ. It is calculated from the difference in

position ∆~r between the two J/ψ candidate decay vertices and the uncertainty

of the distance, σ∆~r, which includes the uncertainty of the vertex given by

the Kalman fit and the uncertainty of the muon track fit: dJ/ψ = ∆~r/σ∆~r.

The requirement dJ/ψ < 8 is imposed. From simulations it is determined that

the variables are in agreement between SPS and DPS production, shown in

Fig. 5.1. Furthermore, from data samples it is established that the variables are

in agreement between low pileup (less than 6 primary vertices) and high-pileup

(more than 6 primary vertices) scenarios. The behavior is confirmed with signal

MC samples generated with and without pileup.

The event reduction due to these offline requirements is shown in Table 5.3. From

a sample of proton-proton collisions taken in 2011 corresponding to an integrated

luminosity of 4.73± 0.12 fb−1 CMS (2013), 1043 double J/ψ events are found.
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Figure 5.1: The left plot shows the difference between the reconstructed primary
vertex position and the generated event origin divided by the reconstruction
uncertainty (all in the Z-direction) based on SPS signal MC with pileup. The
right plot shows position uncertainty in data (in black, with statistical error shown)
overlayed with SPS (blue) and DPS (green) signal MC for selected events with
J/ψ separation less than 1 mm. The MC distributions have been scaled to the size of
the data distribution for the overlay.
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5.4 Acceptance

The muon acceptance requirements reflect the geometric coverage of the CMS

detector, as well as the muon momentum necessary to reach the muon chambers

in a 3.8T magnetic field. The muon acceptance region is defined based on studies of

simulated prompt double J/ψ events, and the J/ψ acceptance region is then defined

based on the muon acceptance requirements. Acceptance corrections are determined

on an event-by-event basis by repeatedly simulating the decay of both J/ψ in the

event into muons based on the measured J/ψ four-momenta.

5.4.1 Definition of the Acceptance Region

Figure 5.2 shows the kinematics of generated prompt J/ψ particles, as well as of their

muon decay products.

In order for a muon to be detected, it must fall within the pseudo-rapidity range

covered by the inner silicon tracker and muon stations. In addition, it must have

sufficient momentum to penetrate the detector material prior to the muon stations,

and sufficient transverse momentum if in the Barrel region to reach the muon stations

without being deflected back into the inner tracker by the 3.8T solenoidal magnetic

field. Figure 5.3 shows the kinematic distribution of reconstructed signal MC muons

that pass the muon quality requirements described in Section 5.3.

Previous studies Wöhri et al. (2011) have shown that a kinematic acceptance

region of

• |ηµ| < 1.2 and pµT > 3.5 GeV/c OR

• 1.2 < |ηµ| < 1.6 and pµT > 3.5→ 2.0 GeV/c OR

• 1.6 < |ηµ| < 2.4 and pµT > 2.0 GeV/c

does not depopulate the sample based on the transverse momentum (pT) and psudo-

rapidity (η) of the three highest pT muons in an event, as shown in Fig. 5.3. They
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Figure 5.2: Kinematic distribution of unfiltered prompt J/ψ particles in DPS MC, and
transverse momentum and pseudorapidity of their muon decay products distinguished
by their pT values (all at generator level).
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Figure 5.3: Kinematic distribution of pT-sorted reconstructed muons from unfiltered,
simulated DPS prompt J/ψ sample.

were designed to ensure that the offline muon reconstruction efficiency is always higher

than 50% with reasonable systematic uncertainty. However, the lowest pT muon per

signal event frequently falls outside of this acceptance region, as shown in Fig. 5.4

with signal MC events.

In order to avoid a 40% reduction in signal yield, a looser acceptance region for the

fourth muon was defined based on the kinematic distribution of the lowest pT muon

in signal MC events shown in Fig. 5.4. The final muon acceptance requirements are

defined as three muons in the region:

• |ηµ| < 1.2 and pµT > 3.5 GeV/c OR

• 1.2 < |ηµ| < 1.6 and pµT > 3.5→ 2.0 GeV/c OR

• 1.6 < |ηµ| < 2.4 and pµT > 2.0 GeV/c

and a fourth muon within a looser acceptance region of:

• |ηµ| < 1.2 and pµT > 3.0 GeV/c OR

• 1.2 < |ηµ| < 2.4 and |p|µ > 3.0 GeV/c
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Figure 5.4: Kinematic distribution of the lowest pT muon per event from unfiltered,
simulated DPS prompt J/ψ sample. The left plot displays pT vs |η|, while the right
plot displays total momentum vs |η|.

Because both of the muon decay products from at least one of the J/ψ will

need to pass the tighter muon criteria, the choice of J/ψ acceptance is driven by

this requirement. The muon acceptance is probed using the J/ψ particle gun MC

sample. The definition of the J/ψ acceptance region is based on the probability

for the muons from a J/ψ to fall within the muon acceptance requirements (defined

above). The probabilities (based on J/ψ pT and |y|) for both muons to pass the tight

muon acceptance or have one tight and one loose muon are shown in Fig. 5.5. The

acceptance region boundary in J/ψ pT and |y| for the two J/ψ mesons is indicated by

the red line in the figure. It is as inclusive as possible, while avoiding unpopulated

bins:

• |yJ/ψ| < 1.2 and p
J/ψ
T > 6.5 GeV/c OR

• 1.2 < |yJ/ψ| < 1.43 and p
J/ψ
T > 6.5→ 4.5 GeV/c (where pT scales linearly with

|y|) OR

• 1.43 < |yJ/ψ| < 2.2 and p
J/ψ
T > 4.5 GeV/c
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Figure 5.5: The probability for the decay muons from a J/ψ to fall within the tight
muon acceptance criteria (left) or have a single muon within the loose acceptance
criteria (right) based on a simulated J/ψ particle gun sample, with 25 bins in |y| and
300 bins in pT, and the chosen acceptance region delineated in red.

This definition covers a region that is mostly complementary to the one accessible

by the LHCb experiment Berezhnoy et al. (2012), as shown in Fig. 5.6.

5.4.2 Event-by-Event Acceptance Correction

For the evaluation of the muon acceptance on an event-by-event basis, the two

J/ψ mesons in the event are decayed repeatedly in simulation using their measured

four-momenta. The acceptance correction ai for a given event i is the number of times

the resulting decay muons pass the muon acceptance criteria, NPass
i , divided by the

total number of trials for the event, NTot
i : ai = NPass

i /NTot
i . It is assumed that the

angle of the decay muons with respect to the direction of flight of the parent J/ψ in

the J/ψ rest frame is isotropically distributed. Deviations from this assumption are

considered and discussed later. Ten thousand decays are simulated for each value ai.
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Figure 5.6: The single J/ψ acceptance region of CMS (red) and LHCb (green).
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Figure 5.7: Conceptual illustration of the procedure used to obtain the event
acceptance value ai. The blue boxes represent the CMS muon acceptance region;
any decay muon falling outside of that region causes the decay to fail. Each double
J/ψ event is repeatedly decayed NTot

i times, with the direction of the decay muons
assumed to be isotropically distributed in the J/ψcenter-of-mass frame. The muons
are then subjected to the muon acceptance criteria in the detector frame and the
value ai is calculated as the number of resulting events to pass the muon acceptance
criteria, NPass

i , divided by NTot
i .
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5.4.3 Closure Test

The event-by-event acceptance correction procedure is validated with signal SPS and

DPS MC samples. They are generated with unpolarized J/ψ. For each sample of NJ

events within the J/ψ acceptance region, the muon acceptance criteria is applied to

obtain a sample of Nµ survivors. This sample corresponds to events in data after

efficiency correction.

For each of the surviving Nµ events, the event-based acceptance corrections ai

are calculated as described above. The corrected number of signal events within the

J/ψ acceptance, N ′J, is then calculated as N ′J =
∑Nµ

i 1/ai. The matching between NJ

and N ′J represents the closure for this method of acceptance correction. Systematic

uncertainty is calculated as:

Error = ±|N
′
J −NJ|

N ′J +NJ

(5.2)

This is the deviation of the original yield within the J/ψacceptance region compared

to the corrected yield. The uncertainty is dominated by the sample size Nµ which

consequently limits the precision of N ′J. The values of NJ and N ′J determined in

bins of the double J/ψ invariant mass are shown in Table 5.4, in bins of the absolute

separation in rapidity in Table 5.5, and in bins of the double J/ψ transverse momentum

in Table 5.6.

Table 5.4: Values of NJ and N ′J in SPS and DPS MC in bins of double J/ψ invariant
mass, MJJ.

MJJ (GeV/c2) 6-8 8-13 13-22 22-35 35-80 Total
SPS NJ 380 4737 6971 736 32 12856
SPS N ′J 343 4621 6879 691 38 12571
DPS NJ 287 885 1159 958 821 4110
DPS N ′J 336 776 1200 935 871 4118
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Table 5.5: Values of NJ and N ′J in SPS and DPS MC in bins of absolute separation
in rapidity, |∆y|, between the J/ψ.

|∆y| 0-0.3 0.3-0.6 0.6-1 1-1.6 1.6-2.6 2.6-4.4 Total
SPS NJ 5009 3484 2495 1456 402 10 12856
SPS N ′J 4925 3294 2473 1521 343 16 12571
DPS NJ 665 498 382 527 711 1327 4110
DPS N ′J 592 537 295 494 784 1417 4118

Table 5.6: Values of NJ and N ′J in SPS and DPS MC in bins of double J/ψ transverse
momentum, pJJ

T .

pJJ
T (GeV/c) 0-5 5-10 10-14 14-18 18-23 23-40 Total

SPS NJ 6199 4988 1448 190 26 5 12856
SPS N ′J 6139 4735 1432 227 33 5 12571
DPS NJ 886 1385 1347 405 73 14 4110
DPS N ′J 625 1684 1307 422 68 12 4118
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5.5 Efficiency

5.5.1 Event-by-Event Correction

The efficiency correction is determined on a per-event basis by repeatedly substituting

an events measured decay muons into a generated event, which is then subjected

to the complete CMS detector simulation and reconstruction chain. The efficiency

correction εi for an event i is the rate at which the substitution events pass the trigger

and reconstruction requirements. As the simulation is therefore based on measured

muon kinematic quantities, model dependence is minimized. An SPS generator is used

to simulate the underlying event. To approximately fullfill energy and momentum

conservation in the complete event, a simulated candidate at the generator level has

to match the following double J/ψ kinematics: (i) the energy in the double J/ψ system

has to agree within 1% and (ii) the direction of flight of the double J/ψ system has to

agree within an opening angle of 1.5 rad with the reconstructed direction of flight in

the data event. Then the muons of the generated event are discarded and replaced

by the measured ones. For each of the reconstructed candidate events i in the data

sample, ngen,i = 4000 different substitution events are generated (ngen,i = 2000 for the

same procedure on SPS/DPS MC), resulting in a total sample of about 4.4 million

events. The events are then subjected to the trigger emulation and recontruction code.

The efficiency correction εi is the number of triggered and reconstructed substitution

events nreco,i divided by the number of generated substitution events, ngen,i, for event

i: εi = nreco,i/ngen,i. The substitution procedure is diagrammed in Fig. 5.8. Figure 5.9

displays the distribution of εi for the data sample as well as reconstructed SPS and

DPS simulation.

In order to ensure the statistical precision of the efficiency value, only recon-

structed events with an efficiency εi greater than half of a percent are considered in

both the data and MC samples.
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Figure 5.8: The substitution method to determine the trigger and detection efficiency
based on the measured kinematics. The double J/ψ system in the laboratory serves
as reference - its measured energy and direction of flight is compared to the system in
a generated SPS event. If they match within certain criteria (see text) the four-
momenta and charge assignment of the muons in the event are replaced by the
measured values. Then the event is subjected to the full GEANT detector simulation
and reconstruction chain. The procedure is repeated 4000 times for a given data
event; the efficiency for the event is defined by the amount of substitution events that
survive trigger, reconstruction, and selection criteria.
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Figure 5.9: εi distribution in 1043 selected data events (black), SPS simulation (blue),
and DPS simulation (green). Statistical error only is shown.
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5.5.2 Scaling Factor

The acceptance criteria in data are based on measured muon momenta. Smearing of

these quantities due to detector resolution causes a depopulation near the kinematic

boundary. As this concerns mostly low efficiency events, the substitution method

overestimates the efficiency. To account for this, an efficiency scaling factor is

calculated. Average efficiency for samples of SPS and DPS MC is obtained as

the sample size of events that survive the trigger and reconstruction requirements

divided by the sample size after applying efficiency corrections. For comparison, the

efficiency is also defined as the number of events in the sample surviving trigger

and reconstruction criteria divided by the original number of events in the sample

generated within the J/ψ and muon acceptance regions. The difference between these

average efficiencies is used to develop a scaling factor for the event based efficiency

correction method.

The average efficiency determined by generating events and stepping forward

through the normal detector simulation is designated the forward efficiency, defined

as:

εf =
NReco

NGen

(5.3)

for a given kinematic bin (MJJ, |∆y|, or pJJ
T ), where:

• NGen is the number of events generated in the J/ψ and muon acceptance region

in the bin,

• NReco is the number of events generated in the bin that also pass the trigger

and reconstruction selection criteria.

The comparable average efficiency determined by correcting back to the generated

population using the event-based efficiency values, εi, is designated the backward

efficiency, defined as:

εb =
NReco

NGen

(5.4)

for a given kinematic bin (MJJ, |∆y|, or pJJ
T ), where:
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• Nselected is the number of events that also pass the trigger and reconstruction

criteria in the bin,

• NGen is the size of the efficiency corrected population in the bin, calculated as

the sum over events in that bin N ′Gen =
∑NReco

i=1
1
εi

.

The backward efficiency from data events in bins of several double J/ψ kinematic

variables is shown in Fig. 5.10.
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Figure 5.10: εb in bins of the double J/ψ system’s transverse momentum, rapidity,
invariant mass, and the 3D opening angle between the two J/ψ mesons.
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The scaling factor S is calculated as the ratio of the forward and backward

efficiencies, S = εf
εb

, in bins of the kinematic variables x for the SPS and DPS MC

samples. Table 5.7 displays the calculated εf , εb, and S from SPS and DPS simulation

in bins of the double J/ψ invariant mass, MJJ. Table 5.8 shows the comparison

in bins of absolute separation in rapidity, |∆y|, between the J/ψ. Table 5.9 shows

the comparison in bins of double J/ψ transverse momentum, pJJ
T . The final event-

based efficiency values used to determine total or differential cross section in data are

calculated using the average scaling factor from SPS and DPS MC:

εDatai = S̄ · nreco,i

ngen,i

(5.5)

where S̄ = 0.5 · (SSPS + SDPS). The fluctuation between SSPS and SDPS is used to

calculate the uncertainty in the scaling factor:

Error = ±|S
SPS − SDPS|

SSPS + SDPS
(5.6)

Table 5.7: Average efficiency (as %) for events in the J/ψ and muon acceptance region
for signal events in SPS and DPS MC, determined using the fraction of generated
events within the acceptance that were reconstructed, εf , the average efficiency
calculated using repeated substitution of events that passed the selection criteria,
εb, and the scaling factor from the two values, S, in bins of double J/ψ invariant
mass, MJJ. Error shown is due to the number of generated events and, in the case
of εb, due to the statistical uncertainty of the number of events found back from the
substitution method, nreco,i.

MJJ (GeV/c2) 6-8 8-13 13-22 22-35 35-80 Total
SPS εf 2.2±0.7 4.7±0.2 14.0±0.3 32.9±1.1 47.5±4.9 13.2±0.2
SPS εb 2.5±0.3 8.5±0.3 17.8±0.3 39.6±0.4 59.0±0.5 18.1±0.3
SSPS 0.898 0.548 0.790 0.829 0.805 0.731
DPS εf 6.3±0.6 8.1±0.4 12.8±0.4 12.6±0.5 11.0±0.4 10.9±0.2
DPS εb 13.4±0.4 10.1±0.8 16.2±1.3 18.9±0.4 15.1±0.7 15.0±0.5
SDPS 0.469 0.801 0.787 0.670 0.726 0.728
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Table 5.8: Average efficiency (as %) for events in the J/ψ and muon acceptance region
for signal events in SPS and DPS MC, determined using the fraction of generated
events within the acceptance that were reconstructed, εf , the average efficiency
calculated using repeated substitution of events that passed the selection criteria,
εb, and the scaling factor from the two values, S, in bins of absolute separation in
rapidity, |∆y|, between the J/ψ. Error shown is due to the number of generated events
and, in the case of εb, due to the statistical uncertainty of the number of events found
back from the substitution method, nreco,i.

|∆y| 0-0.3 0.3-0.6 0.6-1 1-1.6 1.6-2.6 2.6-4.4 Total
SPS εf 10.9±0.3 12.2±0.4 15.4±0.6 19.4±0.8 20.3±1.7 23.1±9.4 13.2±0.2
SPS εb 14.5±0.5 18.2±0.4 20.4±0.5 27.9±0.7 24.9±1.2 31.5±0.7 18.1±0.3
SSPS 0.756 0.672 0.755 0.695 0.816 0.733 0.731
DPS εf 8.7±0.4 9.5±0.5 13.8±0.7 14.4±0.8 14.9±0.6 9.3±0.3 10.9±0.2
DPS εb 13.0±0.8 14.5±1.2 16.5±0.4 19.0±1.9 18.1±1.7 13.2±0.5 15.0±0.5
SDPS 0.665 0.657 0.837 0.760 0.824 0.707 0.728

Table 5.9: Average efficiency (as %) for events in the J/ψ and muon acceptance region
for signal events in SPS and DPS MC, determined using the fraction of generated
events within the acceptance that were reconstructed, εf , the average efficiency
calculated using repeated substitution of events that passed the selection criteria,
εb, and the scaling factor from the two values, S, in bins of double J/ψ transverse
momentum, pJJ

T . Error shown is due to the number of generated events and, in the
case of εb, due to the statistical uncertainty of the number of events found back from
the substitution method, nreco,i.

pJJ
T (GeV/c) 0-5 5-10 10-14 14-18 18-23 23-40 Total

SPS εf 11.8±0.3 12.3±0.3 16.3±0.7 27.3±1.9 38.7±5.6 45.5±14.4 13.2±0.2
SPS εb 17.4±0.3 16.1±0.5 21.3±0.5 35.3±0.4 50.1±0.4 57.2±1.0 18.1±0.3
SSPS 0.683 0.763 0.766 0.773 0.773 0.795 0.731
DPS εf 7.7±0.3 9.1±0.3 9.6±0.3 16.6±0.7 24.5±1.5 34.0±3.6 10.9±0.2
DPS εb 11.4±0.5 13.7±0.4 12.1±1.0 21.7±0.7 32.7±0.6 43.8±0.4 15.0±0.5
SDPS 0.675 0.672 0.803 0.770 0.750 0.776 0.728
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5.6 Fitting Procedure

An extended maximum likelihood fit to data is performed in order to extract signal

weights using the sPlot technique Pivk and Le Diberder (2005). Four kinematic

variables are selected to discriminate the double J/ψ signal from residual background

in our sample:

• µ+µ− invariant mass M1
µµ of the high-pT J/ψ;

• µ+µ− invariant mass M2
µµ of the low-pT J/ψ;

• proper decay length ctJ/ψ1 of the high-pT J/ψ;

• separation significance dJ/ψ between the two J/ψ candidates.

Four categories of events are defined: the double prompt J/ψ signal; non-prompt J/ψ;

prompt J/ψ plus unassociated muon tracks; pure combinatorial background.

The likelihood for event j is obtained by summing the product of yields ni

and probability density functions (PDFs) Pi(M
1
µµ), Qi(M

2
µµ), Ri(ct

J/ψ1), Si(d
J/ψ) with

shape parameters for each of the signal and background hypotheses i. The extended

likelihood function is the product of likelihoods for each event j:

Lj = nsig

[
P1(M1

µµ) ∗Q1(M2
µµ) ∗R1(ctJ/ψ1) ∗ S1(dJ/ψ)

]
(5.7)

+ nnon−prompt
[
P2(M1

µµ) ∗Q2(M2
µµ) ∗R2(ctJ/ψ1) ∗ S2(dJ/ψ)

]
(5.8)

+ nJ/ψ−bkg+bkg−J/ψ

[
f ∗ P3(M1

µµ) ∗Q3(M2
µµ) ∗R3(ctJ/ψ1)J/ψ−bkg ∗ S3(dJ/ψ)J/ψ−bkg

]
(5.9)

+ nJ/ψ−bkg+bkg−J/ψ

[
(1− f) ∗ P4(M2

µµ) ∗Q4(M1
µµ) ∗R4(ctJ/ψ1)bkg−J/ψ ∗ S4(dJ/ψ)bkg−J/ψ

]
(5.10)

+ nbkg−bkg
[
Q4(M1

µµ) ∗Q3(M2
µµ) ∗R5(ctJ/ψ1) ∗ S5(dJ/ψ)

]
(5.11)

(5.12)

The yields ni are determined by minimizing the quantity − lnL Verkerke and

Kirkby (2003). To maintain minimal model dependence, shapes and parameters of

probability density functions for combinatorial background categories are extracted
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from sidebands in data. MC is used to parameterize the prompt and non-prompt

J/ψ distributions. Both the DPS and SPS MC are used for the signal category; the

distributions of the four event variables agree between these samples, as Fig. 5.11

demonstrates.
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Figure 5.11: Fit variable distributions shown for SPS (in blue) and DPS (in green)
simulation. Only candidates passing the full event selection are shown, J/ψ are sorted
by pT, and error bars are based on statistics.

The linear correlation coefficients between the event variables are derived from

DPS MC in Table 5.10. With the exception of the mass and ct for the high-pT J/ψ,
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which has a correlation coefficient in MC of 13%, most variables were uncorrelated

and had coefficients below 5%.

Table 5.10: Correlation coefficients of the variables selected for the ML analysis
reconstructed in DPS signal MC.

Variable J/ψ1 Mass J/ψ2 Mass ctJ/ψ1 Distance Significance
J/ψ1 Mass 1.00
J/ψ2 Mass 0.01 1.00
ctJ/ψ1 0.13 0.03 1.00
Distance Significance 0.01 0.02 0.05 1.00

5.6.1 Probability Density Functions

Several parameterizations are tried for our variables. The guiding principle in

designing the PDFs is to use the simplest function with the least number of

parameters necessary to adequately describe the observed distribution of events. For

parameterizations that result in equally good descriptions of the data (as measured

by the χ2 in variable projections), the difference in yields is used as a measure of

systematic uncertainty. The DPS simulation was used to extract signal PDF shapes

for the primary fit, but PDFs extracted from SPS simulation were used in an alternate

fit for comparison, and the resulting difference in signal yield taken as uncertainty

due to model dependence of the fit. This uncertainty was found to be 0.1%.

Tables 5.11, 5.12, and 5.13 list the functional forms used to define the PDFs.

Systematic uncertainties on yields are determined due to our (potentially) incomplete

knowledge of the true distributions conservatively with alternative parameterizations

(see Section 5.9).
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Mass Distributions

The sum of two Gaussians with a common mean is used to parametrize the signal

J/ψ mass shapes (see Fig. 5.12); the same parameters are used to describe the non-

prompt component and the J/ψ part of the J/ψ-combinatorial and combinatorial-

J/ψ components. The widths of the double Gaussian are fixed to the best fit to DPS

simulation, but the mean is free to float in the fit to data. A Crystal Ball function

convolved with a single Gaussian was also tried and compared to a double Gaussian

to describe the J/ψ mass distribution, resulting in only a 0.2% difference in signal

yield and similar fit convergence. Insufficient statistics to characterize the tail of the

J/ψ mass distribution as well as similar fit results led to the selection of the double

Gaussian as the least parameterized PDF in the primary fit. Third-order Chebyshev

polynomial functions are used to describe the purely combinatorial components (see

Fig. 5.16). The extraction of the combinatorial PDFs is done with a data-driven

method described in detail in Section 5.6.2.

ct

A double Gaussian resolution function is used for the signal ct PDF shapes and shown

in Fig. 5.13. The non-prompt background component is fit by an exponential function

convolved with a single Gaussian resolution function, shown in Fig. 5.15). A different

double Gaussian resolution function is used to describe each of the combinatorial

background components and is extracted from the µ+µ− invariant mass sidebands

from data (see Figures 5.17, 5.18, and 5.19). The PDF parameters for each of the

components are determined from the best fit to their respective samples with the

exception of the lifetime parameter of the non-prompt component, which is left free

to float in the final fit to data.
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Table 5.11: Summary of the functional forms for the MJ/ψ distributions in the sample
components. The widths for the double Gaussians are fixed from signal MC, but the
mean is left free to float in the final fit. {µ,σ} are the {mean, standard deviation}
for a Gaussian, ai are constants.

Component PDF MJ/ψ1 PDF MJ/ψ2 Parameters
Signal 2G 2G µi, σi1, σ

i
2, f

i (i = 1, 2)
Non-prompt background 2G 2G µi, σi1, σ

i
2, f

i (i = 1, 2)
J/ψ-bkg 2G Pol3 µ1, σ1

1, σ
1
2, a

2
0, a

2
1, a

2
2, f

bkg-J/ψ Pol3 2G a1
0, a

1
1, a

1
2, µ

2, σ2
1, σ

2
2, (1− f)

bkg-bkg Pol3 Pol3 ai0, a
i
1, a

i
2 (i = 1, 2)

Significance of the Distance Between Two J/ψ Candidates

For signal and non-prompt samples, the significance of the distance, dJ/ψ, between

two J/ψ candidates has been parametrized with a single Gaussian resolution function

convolved with an exponential function for the signal and non-prompt components,

as shown by Fig. 5.13 and Fig. 5.18) respectively. The dJ/ψ for J/ψ-combinatorial

backgrounds is parameterized by a Landau function plus a first degree Chebyshev

polynomial, shown in Figures 5.17, 5.17, 5.18, 5.17, and 5.19. For estimating the

systematic uncertainty due to the incomplete knowledge of this variable distribution,

the effect of using a single Gaussian convolved with an exponential is also tested for

all components and finds only a 0.6% variation in resulting signal yield.
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Figure 5.12: Fits to determine PDF parameters for MJ/ψ1 (left) and MJ/ψ2 (right) in
DPS signal MC.
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Table 5.12: The ct PDFs used in the fit. The signal ct resolution function is defined as
the sum of two Gaussians, one for the core and one for the tail. For the non-prompt
background components, the ct resolution function is defined as a single Gaussian
function. For the combinatorial components, the resolution functions are defined as
the sum of two Gaussians. All the resolution functions are different and extracted
from MC (for signal and non-prompt components) and the J/ψ sidebands on data
(for the remaining). By definition λ = cτ .

Component PDF ct
J/ψ1
xy Parameters

Signal 2G µ1
1, σ

1
1, µ

1
2, σ

1
2, f

Non-prompt background G⊗ e−ct/λ1 µ1, σ1, λ1

J/ψ-bkg 2G µ1
1, σ

1
1, µ

1
2, σ

1
2, f

bkg-J/ψ 2G µ1
1, σ

1
1, µ

1
2, σ

1
2, f

bkg-bkg 2G µ1
1, σ

1
1, µ

1
2, σ

1
2, f

Table 5.13: Summary of the functional forms for the dJ/ψ distributions in the sample
components. Only the signal and non-prompt shapes have been fixed from MC. {µ,σ}
are the {mean, standard deviation} for a Gaussian, λi are the lifetime constants.

Component PDF dJ/ψ Parameters

Signal G⊗ e−ct/λ1 µ1, σ1, λ1

Non-prompt background G⊗ e−ct/λ2 µ2, σ2, λ2

J/ψ-bkg L⊕ Pol2 a0, a1, f, µ, σ
bkg-J/ψ L⊕ Pol2 a0, a1, f, µ, σ
bkg-bkg L⊕ Pol2 a0, a1, f, µ, σ
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Figure 5.13: Fits to determine PDF parameters for the ct
J/ψ1
xy (left) and significance

of the distance between the two J/ψ candidates (right) in DPS signal MC.
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Figure 5.14: Fits to determine PDF parameters for MJ/ψ1 (left) and MJ/ψ2 (right) in
the non-prompt sample (a cocktail of B-background MC). These shapes are assumed
to be signal-like and, therefore, obtained by DPS signal MC events.
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Figure 5.15: Fits to determine PDF parameters for the ct
J/ψ1
xy (left) and significance

of the distance between the two J/ψ candidates (right) in the non-prompt sample (a
cocktail of B-background MC).
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Figure 5.16: Fits to determine PDF parameters for the combinatorial components of
MJ/ψ1 (left) and MJ/ψ2 (right), shown by the green dotted line. The explanation of
the method is given in Section 5.6.2.
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Figure 5.17: Fits to determine PDF parameters for ct
J/ψ1
xy (left) and the significance

of the distance (right) between the two J/ψ candidates from the sidebands extracted
from data for the J/ψ-combinatorial component. The explanation of the method is
given in Section 5.6.2.
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Figure 5.18: Fits to determine PDF parameters for ct
J/ψ1
xy (left) and the significance

of the distance (right) between the two J/ψ candidates from the sidebands extracted
from data for the combinatorial-J/ψ component. The explanation of the method is
given in Section 5.6.2.
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Figure 5.19: Fits to determine PDF parameters for ct
J/ψ1
xy (left) and the significance of

the distance between the two J/ψ candidates (right) from both sidebands extracted
from data for the combinatorial-combinatorial component. The explanation of the
method is given in Section 5.6.2.
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5.6.2 Data-driven Procedure to Determine PDF Parameters

for the Combinatorial Background

Background shapes are obtained directly from data, relying on the assumption that

in the MJ/ψ sidebands there are only contributions from the combination of true

J/ψ candidates and combinatorial background. The two MJ/ψ sideband regions have

been defined between [2.85, 3.00] and [3.20, 3.35] GeV/c2, as shown in Fig. 5.20.

The µµ invariant mass parameters, resolution functions, and the significance of

the J/ψ distance parameters are extracted from the sidebands to describe the

combinatorial background components.
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Figure 5.20: Plot of the two µ+µ− invariant masses as obtained from data. The
sidebands are delimited by the two red dashed lines.

The fit proceeds in steps. Three distinct categories (J/ψ-combinatorial, combinatorial-

J/ψ, and combinatorial-combinatorial) are separated and parameterized with the

following criteria:

– The mass distributions in data are assumed to be fully described by a prompt

J/ψ shape (parameterized by a double Gaussian) added to a combinatorial

component (parameterized by a third order Chebyshev polynomial). The

parameters for the double Gaussian are fixed to the fit of signal MC while

the polynomial parameters are left free to float and extracted from a fit to the

J/ψ1 and J/ψ2 mass distributions from data. These polynomials are used to
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parameterize the respective combinatorial µ+µ− invariant mass in each of the

three combinatorial components.

– For the J/ψ-combinatorial component, events are selected that populate the

sidebands of the second µ+µ− invariant mass. For this region, the parameters

are obtained to describe the J/ψ1 proper decay length and the significance of

the distance between the two J/ψ mesons from the best fit to the distribution.

– The above procedure is repeated for the combinatorial-J/ψ component by

selecting events that populate the sidebands of the first J/ψ and fitting the

J/ψ1 proper decay length and dJ/ψ distributions. The relative ratio of J/ψ-

combinatorial to combinatorial-J/ψ cases is left free to float in the final fit.

– The parameters describing the J/ψ1 proper decay length and the significance

of the distance between the J/ψ for the combinatorial-combinatorial component

are extracted from a fit to events that populate the sidebands of both J/ψ at

the same time.
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5.7 The Maximum Likelihood Fit

5.7.1 The 4D Fit to Data

The fit to the full data sample is presented below. Table 5.14 lists the numerical

results while Figure 5.21 shows the breakdown within the fit variables. In the fits the

mean value of the central Gaussian functions of the two µ+µ− invariant masses are

left free to float. The fit converges with a negative log likelihood of -10781.1.

Table 5.14: Summary of signal and background yields determined by fitting
simultaneously MJ/ψ1 , MJ/ψ2 , ct

J/ψ1
xy , and dJ/ψ for 1043 selected candidate events.

Parameter Yield
Nsig 446± 23

Nnon−prompt 182± 18
NJ/ψ−bkg+bkg−J/ψ 321± 28

Nbkg−bkg 94± 16

The fit produces signal weights for each selected event using the sPlot tech-

nique Pivk and Le Diberder (2005).

5.7.2 Fit Validation

The fit is validated by repeatedly generating simulated samples from the probability

density functions for all components. 10,000 such toy experiments are performed to

reproduce the likelihood value; the signal yield pull distribution is consistent with

zero and the width consistent with 1. The distributions of these experiments for the

1043 candidate data events are listed in Fig. 5.22.

Potential bias due to residual correlation between the variables in signal events is

tested by embedding signal and background MC events in the data sample. Since this

would tend to magnify any correlations, the results are considered to be a conservative

upper limit on potential bias due to correlations between the fit variables. In the first

test, 103 non-prompt MC events are added to the dataset and the fit performed on the
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Figure 5.21: Projections of the fit results in MJ/ψ1 (top left), MJ/ψ2 (top right), ct
J/ψ1
xy

(bottom left), and distance significance (bottom right) for 1043 candidate events.
Individual contributions from the various components are shown in different colors:
signal (dashed red), B background (dashed purple), all combinatorial contributions
(dashed green), and the combinatorial-combinatorial only (dashed black).
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Figure 5.22: Top: The signal yield distribution (left) and statistical uncertainty
(right) on signal yield for 10,000 toy experiments simulating the 4D final fit. Bottom:
The corresponding pull distribution of the signal yield (left) and the likelihood
distribution (right) from the 10,000 experiments.
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new background-enhanced sample. In the second one, 400 SPS signal MC events are

added to the dataset and the sample refit. In the third one, 200 DPS signal MC events

are added to the dataset and the sample refit. For the fourth one, a combination of

both 400 SPS and 200 DPS signal MC events were added to the dataset and the

sample refit. For the last test, a mixed sample of 400 SPS signal MC events, 200 DPS

signal MC events, and 103 background MC events was added to data. The yields

from these fits are listed in Tables 5.15, 5.16, 5.17, 5.18, and 5.19. The fitted signal

yields are consistent with expectation from the input values and primary fit results

(described in Section 5.7.1). The signal yield is well reproduced, independent of the

yields in the background components.

Table 5.15: Summary of signal and background yields after adding 103 background
events from the non-prompt MC sample to the sample of 1043 events.

Parameter Yield
Nsig 443± 24

Nnon−prompt 250± 20
NJ/ψ−bkg+bkg−J/ψ 357± 29

Nbkg−bkg 96± 16

Table 5.16: Summary of signal and background yields determined after adding 400
SPS signal MC events to the sample of 1043 events.

Parameter Yield
Nsig 840± 31

Nnon−prompt 187± 18
NJ/ψ−bkg+bkg−J/ψ 321± 28

Nbkg−bkg 94± 31
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Table 5.17: Summary of signal and background yields determined after adding 200
DPS signal MC events to the sample of 1043 events.

Parameter Yield
Nsig 645± 28

Nnon−prompt 183± 18
NJ/ψ−bkg+bkg−J/ψ 320± 28

Nbkg−bkg 94± 16

Table 5.18: Summary of signal and background yields determined after adding 400
SPS and 200 DPS signal MC events to the sample of 1043 events.

Parameter Yield
Nsig 1039± 34

Nnon−prompt 188± 19
NJ/ψ−bkg+bkg−J/ψ 321± 28

Nbkg−bkg 94± 16

Table 5.19: Summary of signal and background yields determined after adding 400
SPS and 200 DPS signal MC events, as well as 103 non-prompt MC events to the
sample of 1043 events.

Parameter Yield
Nsig 1034± 34

Nnon−prompt 259± 29
NJ/ψ−bkg+bkg−J/ψ 358± 29

Nbkg−bkg 96± 16
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5.8 Results from Sub-Samples

To ensure that the cross section determination was insensitive to changing conditions,

the stability of the variables used in the likelihood fit are compared with different

amounts of pileup and for each of the two major 2011 run periods. Event variable

distributions in low pileup events (defined as containing six reconstructed primary

vertices or less) are compared to distributions in high pilup events (more than six

primary vertices). The distributions are also compared between the two major 2011

run periods. As a cross-check, the 1043 event sample is also split into three equal

sized consecutive samples and refit.

5.8.1 Effects of Run Conditions

The effect of run conditions on the shape of variables selected for the likelihood fit

is measured. Figure 5.23 shows selected variables in a low pileup event (defined as

containing six reconstructed primary vertices or less) compared to a high pileup event

(more than six primary vertices). The high pileup case (in blue) is scaled by statistics

relative to the low pileup case since only the shape is being compared. The high and

low pileup cases are in agreement within the limits of the statistical error.

Figure 5.24 shows selected variables based on events during the Run 2011A data-

taking period compared to the Run 2011B data-taking period. The Run 2011B case

(in blue) is scaled by statistics relative to the Run 2011A case since only the shape is

being compared. Run conditions such as collision rate and accrued radiation damage

changed during the run periods, but these effects did not significantly impact the

selected variables.

5.8.2 Results from Separate Fits in Mass Bins

As a cross-check, the 1043 event sample is refit after splitting it into three similarly

signal-populated bins of double J/ψ invariant mass. Figures 5.25, 5.26, and 5.27 show
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Figure 5.23: Key variables shown under different pileup conditions in the 2011 data-
taking. Only candidates passing the full event selection are shown, J/ψ are sorted by
pT, and error bars are based on statistics.
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Figure 5.24: Key variables shown based on events in the Run 2011A and Run 2011B
data-taking period. Only candidates passing the full event selection are shown, J/ψ are
sorted by pT, and error bars are based on statistics.
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the distributions for the fit in each of these mass bins. The signal yields of the three

new separate fits are compared to the signal-weighted yield of the primary fit in each

bin in Table 5.20. The largest difference in signal yield in a single bin is one event.
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Figure 5.25: Projections of the fit results in MJ/ψ1 (top left), MJ/ψ2 (top right),
ctJ/ψ1 (bottom left), and distance significance (bottom right) for the mass range
range 6 − 8.7 (GeV/c2). Individual contributions from the various components are
shown in different colors: signal (dashed red), B background (dashed purple), J/ψ-
combinatorial and viceversa (dashed green), and combinatorial-combinatorial (dashed
black).
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Figure 5.26: Projections of the fit results in MJ/ψ1 (top left), MJ/ψ2 (top right), ctJ/ψ1

(bottom left), and distance significance (bottom right) for the mass range range
8.7 − 17.8 (GeV/c2). Individual contributions from the various components are
shown in different colors: signal (dashed red), B background (dashed purple), J/ψ-
combinatorial and viceversa (dashed green), and combinatorial-combinatorial (dashed
black).

Table 5.20: Summary of signal yields after refitting sample in separate MJJ bins (left
column) compared to the yields from the primary fit with signal weights applied (right
column).

MJJ (GeV/c2) Refit Signal Yield Primary Fit w/ sw
6− 8.7 155± 13 154
8.7− 17.8 129± 13 129
17.8− 80 160± 14 160
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Figure 5.27: Projections of the fit results in MJ/ψ1 (top left), MJ/ψ2 (top right),
ctJ/ψ1 (bottom left), and distance significance (bottom right) for the mass range
range 17.8− 80 (GeV/c2). Individual contributions from the various components are
shown in different colors: signal (dashed red), B background (dashed purple), J/ψ-
combinatorial and viceversa (dashed green), and combinatorial-combinatorial (dashed
black).
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5.9 Systematic Uncertainties

Several sources of systematic uncertainty on the total cross section measurement are

considered and the main contributions described here.

• Branching Fractions – the uncertainty of the branching fractions for the

J/ψ decays are those reported by the Particle Data Group Beringer et al. (2012).

• Integrated Luminosity – The systematic uncertainty corresponding to the

luminosity normalization is estimated to be about 2.5% CMS (2013).

• Acceptance Correction – It is determined on an event-by-event basis. Using

simulations with two different production models, SPS and DPS, the closure

as described in Section 5.4 is used to estimate the uncertainty of the method:

a sample of (NJ) simulated events is subjected to the acceptance criteria and

then the acceptance correction is applied to arrive at a corrected yield (N ′J).

The uncertainty for a given production model is taken as half the fractional

difference between the two yields, NJ and N ′J. The relative uncertainty is 1.1%

for the SPS sample and 0.1% for the DPS sample. The worst value of the two

is quoted.

• Efficiency Calculation – The precision of the event-basd efficiency correction

is limited by the sample size of the reconstructed events, Nreco,i, for each event i

in data. The cross section is calculated for yields repeatedly generated according

to gaussian functions with width
√
nreco,i. The width of the resulting cross

section distribution is used as an estimate of the efficiency uncertainty, found

to be 4.4% for the data sample.

• Efficiency Scaling Factor – The relative scaling factor for the efficiency

is determined from SPS and DPS MC samples, representing very different

scenarios of double J/ψkinematics. The uncertainty due to model dependence

of the scaling factor is defined as the difference in the cross section between any
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model and their average. The resulting relative uncertainty is found to be 0.2%,

demonstrating little model dependence.

• Muon Tracking – The muon track reconstruction efficiency is derived from

simulated events. The uncertainty due to differences in data versus MC is

estimated from tag and probe tables. For each muon in an event the tracking

efficiency in data, εtrack
data , and simulation, εtrack

sim , is obtained from Table 1 of CMS

Collaboration (2010) based on the measured pseudo-rapidity. The relative

uncertainty is defined as: |εtrack
data − εtrack

sim |/εtrack
data . For the event, the individual

muon uncertainties are added linearly and signal-weighted. The uncertainty

averaged over the events in data is 3.0%.

• Detector Efficiency – The efficiency to trigger and reconstruct double

J/ψ events relies on detector simulations. The uncertainty due to differences

between data and MC simulation is estimated from tag and probe efficiency

tables Wöhri et al. (2011, 2012) that have been obtained from single J/ψ control

samples in data and simulation. Hence, correlations among the two J/ψ in the

event are neglected. Efficiencies from data and simulation tables are calculated

for the events in data, and the difference in the two corrected signal yields is

used as measure of the uncertainty.

The event-based efficiency correction εi is defined as

εi = εHLT,i · εOffline,i (5.13)

where εHLT,i is the event efficiency calculated for triggering the event (given

that all muons were found offline) and εOffline,i is the event efficiency for

reconstructing, identifying, and selecting offline all four muons in an event.

The Trigger Efficiency

The HLT Dimuon0 Jpsi muon trigger path requires at least three muons to be

found at the L3 stage, two of which must fit to a J/ψ vertex. The L1, L2, L3,
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Table 5.21: L1, L2, L3, and overall HLT tags used in the specified run ranges.

Scenario Run Range HLT version L1 Seed L2 L3
1 165088-167913 HLT Dimuon0 Jpsi Muon v1-4 L1 DoubleMu0 TripleMuonL2 JpsiMuonL3

2 170249-180252 HLT Dimuon0 Jpsi Muon v6-11 L1 TripleMu0 TripleMuonL2 JpsiMuonL3

and overall HLT tags used over the data-taking period are shown in their given

run ranges in Table 5.21.

It should be noted that although the name of the L1 seed changed from

L1 DoubleMu0 to L1 TripleMu0 between the two periods, the actual L1

definition and requirement for three L1 muons did not. An event’s HLT

efficiency εHLT,i is calculated from the single muon HLT efficiencies ε
µj
HLT,i

(j = 1, 2, 3, 4 muon index) and vertexing efficiency εvtx as follows:

εHLT,i = εµ1
HLT,i · ε

µ2
HLT,i · ε

µ3
HLT,i · ε

µ4
HLT,i · (2 · εvtx − εvtx · εvtx)

+ εµ1
HLT,i · ε

µ2
HLT,i · ε

µ3
HLT,i · (1− ε

µ4
HLT,i) · εvtx

+ εµ1
HLT,i · ε

µ2
HLT,i · (1− ε

µ3
HLT,i) · ε

µ4
HLT,i · εvtx

+ εµ1
HLT,i · (1− ε

µ2
HLT,i) · ε

µ3
HLT,i · ε

µ4
HLT,i · εvtx

+ (1− εµ1
HLT,i) · ε

µ2
HLT,i · ε

µ3
HLT,i · ε

µ4
HLT,i · εvtx .

(5.14)

The single muon HLT efficiency is determined as the product of the L1, L2,

and L3 efficiencies. The L1 DoubleMu0 and L1 TripleMu0 L1 seeds reference

the same quality requirements, as do the DoubleMuonL2 and TripleMuonL2

modules. Therefore, the official tag and probe L1×L2 efficiencies as calculated

for the L1 DoubleMu0 are used from lookup tables in terms of muon pT and η

for seagull and cowboy topologies Wöhri et al. (2011, 2012). Likewise, Dimuon0

lookup tables for the L3 trigger efficiency are used. Only muons that fullfill the

tight acceptance definition are matched to L3 information. The J/ψ vertexing
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efficiency of the HLT is adopted from the tag and probe study Wöhri et al.

(2011, 2012).

Offline Reconstruction Efficiency

The total offline reconstruction efficiency is the product of single muon

efficiencies. The offline reconstruction efficiency for a muon passing the tight

muon acceptance is given as

εµReco = εµTk · ε
µ
Id · ε

µ
Qual (5.15)

where Tk refers to tracking (εµTk = 98.8%), Id to identification, and Qual to

offline quality criteria. For muons that fail the tight muon acceptance but

pass the loose muon acceptance (at most one muon per event), the εµReco is

determined from a map in muon pT and η generated with the muon particle

gun (see Fig. 5.28). To arrive at an uncertainty in the comparison data versus
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Figure 5.28: Map of the muon reconstruction efficiency from the muon particle gun
simulation, with 25 bins in |η| and 300 bins in pT.

simulation the data-based loose muon efficiency is varied by an amount ∆i

that is estimated from previous studies The CMS Collaboration (2012). The

single muon efficiencies as function of muon transverse momentum from those

studies are shown in Fig. 5.29. The ∆i is calculated as relative variation ∆i =

|εdatai −εsimi |
εsimi

. The resulting loose muon efficiency is calculated as εµi = (1 ± ∆i) ·

εµReco. Both positive and negative variation due to ∆i are considered. The

142



greatest variation of the signal yield is chosen as a conservative measure of

the uncertainty. It should be noted that there is also an offline J/ψ vertex fit
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Figure 5.29: Single muon reconstruction efficiency in data (black) and simulation
(red), reprinted from The CMS Collaboration (2012).

requirement of fit probability greater than 0.5%. However, in both our SPS

and DPS signal samples the likelihood to successfully fit both vertices in an

event is greater than 99% (99.9% for SPS and 99.6% for DPS), so the offline

event reconstruction efficiency is considered to be entirely a product of the muon

reconstruction efficiencies.

The relative difference in the total corrected signal yield, |Ndata −N sim|/N sim,

is found to be 6.5%.

• Parameterization Uncertainties – All PDF parameters that are fixed for

the final fit are varied by their uncertainty as determined from the fits to data

sideband and MC samples. The resolution function used to describe the ct of the

prompt J/ψ has been parameterized as a double-Gaussian, but the outcome has

been compared with the fit using a triple-Gaussian resolution function. For the

background models, alternative fit shapes such as a third order polynomial or

an exponential function are used. For the parameterization of the distribution
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of the J/ψ invariant mass alternatively a Crystal Ball function is considered. For

the separation significance, a resolution function convolved with an exponential

function (instead of a Landau plus Chebyshev polynomial) is considered for

combinatorial background components. The largest difference of the signal

yields in the fits with the two signal shape parameterizations, 0.6%, is taken as

uncertainty to account for imperfect knowledge of the PDF. The alternate fits

are defined in Appendix B.

• Model Dependence of Signal Parameterization – A reconstructed DPS

and SPS sample is used to parameterize the signal. The difference in the signal

yields between those two fits is accounted for as systematic uncertainty.

Table 5.22: Summary of relative systematic uncertainties (%) for the total cross
section.

Source Relative Uncertainty [% ]
Branching Fractions ± 1.4
Luminosity ± 2.5
Acceptance Closure ± 1.1
Efficiency Calculation ± 4.4
Efficiency Scaling Factor ± 0.2
Muon Tracking ± 3.0
Detector Efficiency ± 6.5
Parameterization ± 0.6
Model for Signal ± 0.1
Systematic Total ± 9.0

Table 5.23: Summary of relative systematic uncertainties (%) for each MJJ bin.

MJJ (GeV/c2) 6-8 8-13 13-22 22-35 35-80
Acceptance Closure ±7.9 ±6.6 ±1.7 ±3.2 ±8.6
Efficiency Calculation ±4.2 ±7.5 ±2.9 ±6.0 ±12.5
Efficiency Scaling Factor ±31.4 ±18.8 ±0.2 ±10.6 ±5.1
Detector Efficiency ±5.2 ±9.8 ±4.4 ±9.8 ±9.8
Systematic Total ±33.3 ±23.8 ±7.0 ±16.5 ±19.2
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Table 5.24: Summary of relative systematic uncertainties (%) for each |∆y| bin.

|∆y| 0-0.3 0.3-0.6 0.6-1 1-1.6 1.6-2.6 2.6-4.4
Acceptance Closure ±5.8 ±3.8 ±12.8 ±3.3 ±8.0 ±23.6
Efficiency Calculation ±6.0 ±7.3 ±10.8 ±9.6 ±4.4 ±11.0
Efficiency Scaling Factor ±6.4 ±1.1 ±5.1 ±4.4 ±0.5 ±1.8
Detector Efficiency ±4.5 ±10.8 ±3.6 ±10.8 ±17.0 ±10.5
Systematic Total ±12.2 ±14.3 ±18.4 ±16.0 ±19.7 ±28.4

Table 5.25: Summary of relative systematic uncertainties (%) for each pJJ
T bin.

pJJ
T (GeV/c) 0-5 5-10 10-14 14-18 18-23 23-40

Acceptance Closure ±17.3 ±9.7 ±1.5 ±9.0 ±12.2 ±9.4
Efficiency Calculation ±12.5 ±15.1 ±7.8 ±5.3 ±3.1 ±3.6
Efficiency Scaling Factor ±0.6 ±6.3 ±2.3 ±0.2 ±1.5 ±1.2
Detector Efficiency ±4.2 ±9.0 ±5.4 ±8.3 ±11.0 ±8.1
Systematic Total ±22.1 ±21.5 ±10.8 ±14.0 ±17.3 ±13.6

The individual relative uncertainties for the total cross section are listed in

Table 5.22. The total systematic uncertainty is calculated as the sum in quadrature

of the individual uncertainties. The systematic uncertainty for the differential cross

sections is evaluated on a per-bin basis for the Acceptance Closure, Efficiency

Calculation, Efficiency Scaling Factor, and Detector Efficiency sources of uncertainty,

and their relative contribution for each kinematic bin are shown in Tables 5.23, 5.24,

and 5.25.

To study the effect of a non-isotropic muon decay on the measured cross section,

the event-based acceptance is determined using extreme scenarios. With θ+ defined

as the angle between the µ+ direction in the J/ψrest frame and the J/ψdirection in the

pp center-of-mass frame, the angular distribution of decay muons is parameterized as:

dN

d cos θ+

= 1 + λ cos2 θ+ (5.16)

where λ is a polarization observable; λ = 0 corresponds to an isotropic J/ψdecay,

while λ = +1 (λ = −1) corresponds to longitudinal (transverse) polarization of the
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J/ψin accordance with e.g. Chao et al. (2012). As compared to the λ = 0 case, the

total cross section is 30.6% lower for λ = −1 and 27.2% higher for λ = +1. Table 5.26

lists the change in total cross section in data for different assumptions of λθ relative

to the assumption of isotropic J/ψ decays. Figure 5.30 shows the differential cross

section in data as a function of the kinematic variables under the extreme scenarios

of λθ = ±1, scaled to the same total cross section as for λθ = 0. The differential cross

section measurements for λ = ±1 lie within the statistical uncertainties of the λ = 0

case when scaled to the same total cross section, indicating that different polarization

assumptions result in the same relative distribution.

Table 5.26: The percent change of total cross section calculated under the assumption
of decay distributions parameterized by different λθ values relative to the isotropic
assumption λθ = 0.

λθ used −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1
∆σ
σλ=0

(%) −30.6 −27.0 −23.9 −20.8 −17.7 −14.6 −12.0 −9.2 −5.2 −2.6

λθ used 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
∆σ
σλ=0

(%) +4.2 +5.7 +8.7 +11.0 +14.9 +16.4 +20.4 +23.3 +25.8 +27.2
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5.10 Results

5.10.1 Cross Section Evaluation

Signal weights nisig for each selected event in data are obtained from our maximum

likelihood fit using the sPlot technique Pivk and Le Diberder (2005) and the cross

section is obtained according to the sum of Eq. 5.1. For the calculation, L =

(4.73±0.12) fb−1 and BF (J/ψ → µ+µ−) = (5.93± 0.06) % are used. All cross

section results are determined within the J/ψ acceptance region.

The differential cross section as a function of MJJ is shown in Fig. 5.31, with

the corresponding numerical values summarized in Table 5.27. The differential cross

section as a function of |∆y| is shown in Fig. 5.32, with the corresponding numerical

values summarized in Table 5.28. The differential cross section as a function of pJJ
T is

shown in Fig. 5.33, with the corresponding numerical values summarized in Table 5.29.

Table 5.27: Summary of differential cross section dσ/dMJJ ( nb/(GeV/c2)) in bins of
MJJ. The uncertainties are statistical first, then systematic.

Mass Bin (GeV/c2) dσ/dMJJ ( nb/(GeV/c2))
6− 8 0.208± 0.018± 0.069
8− 13 0.107± 0.011± 0.025
13− 22 0.019± 0.002± 0.001
22− 35 0.008± 0.001± 0.001
35− 80 0.007± 0.001± 0.001

The total cross section is determined by summing over the sample on an event-

by-event basis as:

σ(pp→ J/ψ J/ψ +X) = 1.49± 0.07± 0.13 nb (5.17)

with statistical and systematic uncertainty shown, respectively.
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Figure 5.31: Summary of the measured differential cross section dσ/dMJJ for double
J/ψ production. The box represents statistical error, and the error bars represent
statistical and systematic error added in quadrature.

Table 5.28: Summary of differential cross section dσ/d|∆y| ( nb) in bins of |∆y|. The
uncertainties shown are statistical first, then systematic.

|∆y| Bin dσ/d|∆y| ( nb)
0− 0.3 2.06± 0.143± 0.251

0.3− 0.6 1.09± 0.125± 0.156
0.6− 1.0 0.421± 0.057± 0.077
1.0− 1.6 0.040± 0.006± 0.006
1.6− 2.6 0.025± 0.005± 0.005
2.6− 4.4 0.205± 0.033± 0.058

149



ψy | between J/∆| 
0 0.5 1 1.5 2 2.5 3 3.5 4

y|
 (

nb
)

∆
/d

|
σd

0

0.5

1

1.5

2

2.5 CMS Preliminary
-1L = 4.7 fb∫ = 7 TeV, s

Unpolarized

 Acceptance Region:ψJ/
>6.5 GeV/c for |y|<1.2

T
p

4.5 GeV/c for 1.2<|y|<1.43→>6.5
T

p

>4.5 GeV/c for 1.43<|y|<2.2
T

p
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Table 5.29: Summary of differential cross section dσ/dpJJ
T ( nb/(GeV/c)) in bins of

double J/ψ transverse momentum. The uncertainties shown are statistical first, then
systematic.

pJJ
T Bin (GeV/c) dσ/dpJJ

T ( nb/(GeV/c))
0− 5 0.056± 0.007± 0.012
5− 10 0.048± 0.006± 0.010
10− 14 0.108± 0.013± 0.012
14− 18 0.089± 0.009± 0.012
18− 23 0.019± 0.002± 0.003
23− 40 0.003± 0.0004± 0.0004
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5.10.2 Resonance Search

The reconstructed gaussian width of the ηb is 0.08 GeV/c2, as determined from

the ηb sample described in Section 5.2 with standard selection criteria applied. A

signal interval of 9.16 − 9.64 GeV/c2 is defined, corresponding to three standard

deviations on either side of the mean mass value. Two sideband regions with the

same width are defined in the intervals 8.68− 9.16 GeV/c2 and 9.64− 10.12 GeV/c2.

Fig. 5.34 shows the MJJ distribution for reconstructed ηb simulation. To understand

the manner in which the CMS acceptance coverage and efficiency can impact the

final MJJ distribution, the SPS and DPS MC samples are studied. For both types

of production, the MJJ distribution of events that pass the final reconstruction and

selection criteria is divided by the MJJ distribution for all generated events (before

the J/ψ or muon acceptance criteria have been applied), shown in Fig. 5.35. For

both the SPS and DPS events, the relative fraction of the MJJ events reconstructed

by CMS in the signal interval agrees (within the uncertainty) to the mean of the

sideband intervals. Figure 5.36 shows the double J/ψ invariant mass distribution

in data around the nominal ηb mass Beringer et al. (2012), before efficiency and

acceptance correction. The dashed bars in Fig. 5.36 delineate the signal interval

and the two sideband intervals. A first degree polynomial is fit to the yields in the

sideband regions. Integrating this function over the signal region predicts 15±4 non-

resonant events. The total double J/ψyield in data for this region is 15 ± 4 events

with statistical error. Hence, no significant resonant contribution is observed.
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Figure 5.34: MJJ distribution for simulated ηb events fit to a Gaussian distribution.
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Figure 5.35: The MJJ distribution of events that pass the final reconstruction and
selection criteria is divided by the MJJ distribution for all generated events (before
the J/ψ or muon acceptance criteria have been applied), shown for the SPS (left, blue)
and DPS (right, green) mass centered around the ηb mass region. Error bars represent
statistical error due to the population in the reconstructed distribution. The y-axis
is shown in arbitrary units as only the relative shape is being examined.
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Figure 5.36: Prompt double J/ψ events in bins of the JJ invariant mass centered
around the ηb mass region. The error bars represent statistical error.
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5.11 Conclusion

A signal yield of 446 ± 23 events for the production of two prompt J/ψ mesons

originating from a common vertex has been observed with the CMS detector in

proton-proton collisions at
√
s = 7 TeV at the LHC from a sample corresponding

to an integrated luminosity of 4.73 ± 0.12 fb−1. A data-based method was used to

correct for acceptance and efficiency minimizing the model dependence of the cross

section determination. The total cross section of double J/ψ production was measured

within an acceptance region defined by the individual J/ψtransverse momentum and

rapidity and was found to be σ = 1.49± 0.07± 0.13 nb, where the first uncertainty

is statistical and the second systematic. Differential cross sections were obtained

in bins of the double J/ψ invariant mass, the absolute rapidity difference between

the two J/ψ mesons, and the transverse momentum of the double J/ψ system.

These measurements probe a higher J/ψ transverse momenta region than previous

measurements, a region where double J/ψproduction via octet J/ψ states and higher

order corrections are important. The differential cross section in bins of |∆y| is

sensitive to DPS contributions to prompt double J/ψ production. The data show

evidence for excess at |∆y| > 2.6, a region that current models suggest is exclusively

populated via DPS production Kom et al. (2011); Gaunt et al. (2011); Novoselov

(2011). In the MJJ event distribution, no excess above the background expectation

derived from non-resonant sidebands was observed.
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Appendix A

Values Found for PDFs of Primary

Fit

Tables A.1, A.2, and A.3 display the PDF values determined by the primary fit based

on the signal prompt double J/ψ sample.

Table A.1: PDF parameters for MJ/ψ in signal prompt double J/ψ production.

Signal MJ/ψ Value Error
µ1

1 3.09313 1.23265 · 10−3

σ1
1 5.79266 · 10−2 5.18787 · 10−3

σ1
2 4.56886 · 10−1 2.88027 · 10−2

f 1 1.80473 · 10−1 5.52695 · 10−2

µ2
1 3.08933 1.59605 · 10−3

σ2
1 5.06183 · 10−2 5.49871 · 10−3

σ2
2 5.82996 · 10−1 5.04930 · 10−2

f 2 4.47328 · 10−1 2.30313 · 10−2

Tables A.4 and A.5 display the PDF values determined by the primary fit based

on a cocktail of B-background MC. The MJ/ψ parameters are taken from the signal

sample.
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Table A.2: PDF parameters for ctxy(J/ψ1) in signal prompt double J/ψ production.

Signal ctxy(J/ψ) Value Error
µ1

1 2.63860 · 10−5 8.04013 · 10−5

µ1
2 1.19874 · 10−3 5.18535 · 10−4

σ1
1 2.72201 · 10−3 1.09188 · 10−4

σ1
2 2.72258 1.59567 · 10−1

f 1 8.47797 · 10−1 3.27593 · 10−2

Table A.3: PDF parameters for dJ/ψ in signal prompt double J/ψ production.

Signal dJ/ψ Value Error
µ1 4.08278 · 10−1 1.56988 · 10−2

σ1 2.17748 · 10−1 1.64741 · 10−2

λ1 6.76288 · 10−1 2.17191 · 10−2

Table A.4: PDF parameters for ctxy(J/ψ1) in a cocktail of B-background MC.

B-bkg. ctxy(J/ψ) Value Error
µ1 6.51060 · 10−4 1.00314 · 10−3

σ1 3.77146 · 10−3 7.63876 · 10−4

λ1 1.59424 · 10−2 1.42585 · 10−3

Table A.5: PDF parameters for dJ/ψ in a cocktail of B-background MC.

B-bkg. dJ/ψ Value Error
µ1 1.18073 2.45563 · 10−1

σ1 5.15922 · 10−1 2.26415 · 10−1

λ1 1.0 · 102 9.90301 · 101
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Tables A.6, A.7, A.8, and A.9 display the PDF values determined by the

primary fit based on one sideband extracted from data for the J/ψ-combinatorial,

combinatorial-J/ψ, and combinatorial-combinatorial components.

Table A.6: PDF parameters for MJ/ψ from the sidebands extracted from data for the
combinatorial part of the J/ψ-combinatorial, combinatorial-J/ψ, and combinatorial-
combinatorial components. The explanation of the method is given in Section 5.6.2.

Comb.-J/ψ MJ/ψ Value Error
a1

0 −2.93132 · 10−1 1.03292 · 10−1

a1
1 −3.89092 · 10−1 1.32480 · 10−1

a1
2 1.94808 · 10−1 1.09782 · 10−1

a2
0 −2.10268 · 10−1 1.03007 · 10−1

a2
1 −1.95504 · 10−1 1.35851 · 10−1

a2
2 5.00755 · 10−2 9.96932 · 10−2

Table A.7: PDF parameters for ctxy(J/ψ1) and dJ/ψ from the first sideband extracted
from data for the J/ψ-combinatorial component. The explanation of the method is
given in Section 5.6.2.

J/ψ-Comb. ctxy, d
J/ψ Value Error

µ1
1 1.04093 · 10−2 1.40520 · 10−3

µ1
2 −2.51869 · 10−4 8.65756 · 10−4

σ1
1 1.24609 · 10−2 7.63379 · 10−4

σ1
2 2.63519 · 10−1 7.86723 · 10−2

f 1 7.07283 · 10−1 8.34261 · 10−2

a0 9.99840 · 10−1 1.74272
a1 2.00471 · 10−6 2.83604 · 10−1

fLandau 6.48517 · 10−1 5.61172 · 10−2

µLandau 1.00181 1.04945 · 10−1

σLandau 4.35740 · 10−1 7.23716 · 10−2
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Table A.8: PDF parameters for ctxy(J/ψ1) and dJ/ψ from the second sideband
extracted from data for the combinatorial-J/ψ component. The explanation of the
method is given in Section 5.6.2.

Comb.-J/ψ ctxy, d
J/ψ Value Error

µ1
1 3.60489 · 10−2 6.43472 · 10−2

µ1
2 4.32342 · 10−3 1.16219 · 10−3

σ1
1 2.89854 · 10−2 1.9 · 10−2

σ1
2 3.60637 · 10−1 3.7 · 10−1

f 1 6.27677 · 10−2 7.3 · 10−2

a0 6.58858 · 10−1 7.74664 · 10−1

a1 2.48596 · 10−5 3.98192 · 10−1

fLandau 5.33780 · 10−1 1.70924 · 10−1

µLandau 1.09999 1.17982 · 10−1

σLandau 4.64046 · 10−1 7.03453 · 10−3

Table A.9: PDF parameters for ctxy(J/ψ1) and dJ/ψ from the sample populating
the mass sidebands of both J/ψ in data and used to characterize the combinatorial-
combinatorial component. The explanation of the method is given in Section 5.6.2.

Comb.-Comb. ctxy, d
J/ψ Value Error

µ1
1 4.78646 · 10−3 2.25302 · 10−3

µ1
2 5.38739 · 10−3 4.58928 · 10−4

σ1
1 1.20037 · 10−2 1.63207 · 10−3

σ1
2 4.38348 · 10−2 2.77349 · 10−2

f 1 8.87066 · 10−1 7.59609 · 10−2

a0 3.86180 · 10−1 5.83845 · 10−1

a1 9.49975 · 10−1 9.19403 · 10−1

fLandau 7.28332 · 10−1 1.63095 · 10−1

µLandau 1.56581 3.50069 · 10−1

σLandau 5.51089 · 10−1 1.94083 · 10−1
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Appendix B

Results of Alternate Fits

Several variations of the central fit technique have been tried, described in Section 5.6.

• Variant 1: uses a Crystal Ball function to parameterize M1
µµ and M2

µµ for signal

case; other PDFs are identical to primary fit.

• Variant 2: dJ/ψ is parameterized by the product of a Gaussian and a decay

function in all cases (including the combinatorial cases); other PDFs are

identical to primary fit.

• Variant 3: uses a Crystal Ball function to parameterize M1
µµ and M2

µµ for

the signal case, dJ/ψ is parameterized by the product of a Gaussian and a

decay function in all cases (including the combinatorial cases); other PDFs are

identical to primary fit.

• Variant 4: uses SPS simulation to parameterize the signal PDFs, but is

otherwise identical to primary fit.

The resulting signal and background yields using these variations are shown in

Table B.1. The signal yield never changes by more than 0.6%, which is taken as an

estimate of uncertainty due to chosen method of parameterization.

Tables B.2 and B.3, as well as Fig. B.1 display the results of using a Crystal

Ball function to characterize the shape of the Mµµ. This parameterization was not
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Table B.1: Summary of signal and background yields determined by fitting
simultaneously MJ/ψ1 , MJ/ψ2 , ctxy(J/ψ

1), and dJ/ψ for 1043 selected candidate events
using variations on the central fitting method.

Parameter Variant 1 Variant 2 Variant 3 Variant 4
Nsig 445± 23 448± 23 447± 23 446± 24

Nnon−prompt 182± 18 169± 18 169± 18 171± 18
NJ/psi−comb.+comb.−J/psi 323± 28 323± 28 324± 28 326± 27

Ncomb.−comb. 94± 16 111± 16 111± 16 99± 16

selected for the central fit due to lack of statistics, particularly in the tail of the Mµµ

distributions.

Table B.2: PDF parameters for MJ/ψ1 using a Crystal Ball function in signal prompt
double J/ψ production.

Signal MJ/ψ1 Value Error
f 1 2.88426 · 10−1 9.56806 · 10−2

α1 2.88399 2.81005 · 10−1

n1 1.00040 6.95318 · 10−1

µ1 3.09325 1.21684 · 10−3

σ1
1 4.85614 · 10−2 4.67134 · 10−3

σ1
2 5.06440 · 10−1 2.92371 · 10−2

Tables B.5, B.4, and B.6 display the values in an alternate fit using the product

of a Gaussian and an exponential to characterize the shape of dJ/ψ in the cases with

a sideband extracted from data for the J/ψ-combinatorial, combinatorial-J/ψ, and

combinatorial-combinatorial components. The shape is displayed in Fig. B.2.
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Table B.3: PDF parameters for MJ/ψ2 using a Crystal Ball function in signal prompt
double J/ψ production.

Signal MJ/ψ2 Value Error
f 2 7.29412 · 10−1 1.13009 · 10−1

α2 2.09886 9.03353 · 10−1

n2 2.02744 2.51040
µ2 3.08964 1.60017 · 10−3

σ2
1 4.42237 · 10−2 1.71174 · 10−3

σ2
2 4.90595 · 10−1 9.17511 · 10−2
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Figure B.1: Fits to determine PDF parameters for MJ/ψ1 (left) and MJ/ψ2 (right)
using a Crystal Ball function.

Table B.4: PDF parameters for dJ/ψ from sidebands extracted from data for the J/ψ-
combinatorial component. The explanation of the method is given in Section 5.6.2.

J/ψ-Comb. dJ/ψ Value Error
µ1 2.28997 · 10−1 4.69367 · 10−2

σ1 7.22911 · 10−2 4.09109 · 10−2

λ1 4.94307 7.94631 · 10−1
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Figure B.2: Fits to determine PDF parameters for the significance of the distance
between the two J/ψ from the sidebands extracted from data for the J/ψ-
combinatorial (first), combinatorial-J/ψ (second), and combinatorial-combinatorial
(third) components. The explanation of the method is given in Section 5.6.2.
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Table B.5: PDF parameters for dJ/ψ from sidebands extracted from data for
the combinatorial-J/ψ component. The explanation of the method is given in
Section 5.6.2.

Comb.-J/ψ dJ/ψ Value Error
µ1 2.49205 · 10−1 8.29338 · 10−2

σ1 1.04013 · 10−1 7.63884 · 10−2

λ1 6.54912 1.68128

Table B.6: PDF parameters for dJ/ψ from sidebands extracted from data for the
combinatorial-combinatorial component. The explanation of the method is given in
Section 5.6.2.

Comb.-Comb. dJ/ψ Value Error
µ1 3.89967 · 10−1 2.61645 · 10−1

σ1 3.31232 · 10−1 2.46500 · 10−1

λ1 4.67109 1.98491
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