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ABSTRACT 

 

The purpose of this study is to investigate statistical procedures to qualify uncertainty, 

and explicitly evaluate its impact on wastewater treatment plants (WWTPs). The goal is 

to develop a statistical-based procedure to design WWTPs that provide reliable protection 

of water quality, instead of making overly conservative assumptions and adopting 

empirical safety factors. An innovative Monte Carlo based procedure was developed to 

quantify the risk of violating effluent as a function of various design decisions. A 

simulation program called StatASPS was developed to conduct Monte Carlo simulations 

combined with the ASM1 model.  

 

A random influent generator was developed to describe the statistical characteristics of 

the influent components of WWTPs. Prior to modeling, a two-directional exponential 

smoothing (TES) method was developed to replace those non-randomly missing data 

during weekends and holidays. The best models were selected based on various statistics 

and the ability to forecast future values. The time series models were then used to 

generate random influent variables with the same statistical characteristics as the original 

data.  

 

The best Monte Carlo simulations were conducted using historical influent data and site-

specific parameter distributions, according to the applications to both the Oak Ridge and 

Seneca WWTPs. This indicates that parameter uncertainty was more effective in 

predicting uncertainty in plant performance than influent variability. The ultimate 
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simulations were conducted using one-month’s influent data, considering limitations of 

computing technologies. Application of the method to the two plants demonstrated that 

this method provided a reliable and reasonable estimate of the uncertainty of plant 

performance. The best predictions of plant uncertainty were obtained by determining the 

distribution for the most sensitive parameter and holding all other model parameters 

constant. 

 

The StatASPS procedure proved to be a reliable and reasonable method to design cost-

effective WWTPs. With further development, this procedure could provide engineers and 

regulators with a high degree of confidence that the plant will perform as required, 

without resorting to overly conservative assumptions or large safety factors.  
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CHAPTER I. INTRODUCTION 
 

 

1.1 Purposes of the Study 

 

The performance of wastewater treatment plants (WWTPs) is subject to uncertainties, 

including influent loads, design and operational parameters, and receiving water 

conditions, etc. Environmental engineers and regulators have to deal with this uncertainty 

at every stage of the design and permitting processes. Typically, when engineers and 

regulators lack enough information to deal with the uncertainty, they make overly-

conservative assumptions and adopt large safety factors to ensure that water quality 

standards are met. This often leads to the WWTP being rated below its actual capacity. 

This conclusion is supported by the opinions of several consultants and practitioners, the 

frequent practice in recent years of re-rating activated sludge plants for greater capacity 

without significant facility improvement, and WERF (Water Environment Research 

Foundation) requests for project proposals in this area. Over-conservative designs and 

permitting requirements can be ill afforded in the wastewater treatment industry. Rather, 

cost effective plants that provide reliable protection of water quality are in high demand. 

 

In this dissertation, the Activated Sludge Model No.1 (ASM1) and the Monte Carlo (MC) 

method are combined to assess and analyze the design and operation of WWTPs.  The 

general goal of this dissertation is to develop design procedures that explicitly consider 

statistical uncertainty and variability, thereby minimizing the need for empirical safety 
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factors and providing quantitative statistical estimates of the plant performance. Our 

hypothesis is that statistical-based simulation methods can be used to describe the 

uncertainties in the plant performance of WWTPs. The developed methodology will offer 

the opportunity for the designer and regulators to meet and discuss the trade-off of risk 

and cost. 

 

 

1.2 Objectives of the Study 

 

Engineers continually face uncertainty in process model parameters and variability of 

plant influent during the design of wastewater treatment plants. Uncertainty means that 

the factors affecting the design and performance of the plant are not known precisely to 

the engineers. A common example of uncertainty is that usually only typical values or 

ranges of the various kinetic parameters used in the design models for activated sludge 

plants are known. Variability means that a factor influencing the design and performance 

varies over time. Examples of variability include the time-dependent nature of the 

influent load and receiving water conditions. Thus, environmental engineers and 

regulators must deal with this uncertainty at every stage of the design and permitting 

processes, most often by making conservative assumptions and adopting large safety 

factors to ensure adequate protection of water quality. Potentially, these design practices 

can result in a treatment plant that has a capacity far in excess of that required. 
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The development of more sophisticated means of dealing with uncertainty and variability 

is facilitated by the current availability of sophisticated models and large amounts of data 

that describe the performance of wastewater plants. In this dissertation, we explore the 

uncertainty in activated sludge plant performance that results from both uncertainty in the 

model parameters and variability in the plant influent that describe the process. Our goal 

is to develop a statistical-based design procedure to design more cost-effective WWTPs 

and more efficiently protect the water environment and quality. 

 

Monte Carlo simulations combined with process models will be applied to quantify and 

analyze the uncertainty in WWTPs in this dissertation. The uncertainty of process model 

parameters will be described with two possible options: fixed calibrated parameter and 

parameter distributions (universal or site-specific). The variability of plant influent will 

be described with three options: historical data, predicted data from time series models, 

and randomly generated influent data. Base on the simulation results, we then can 

develop a statistical-based procedure to design more cost-effective WWTPs.  

 

 

There are five specific objectives in this study: 

 

• To determine the critical process model parameters that have the largest 

influence on the design and operation of wastewater treatment plants 

(WWTPs) using Monte Carlo simulation and sensitivity analysis.  
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• To generate the fixed calibrated parameters of WWTPs using a calibration 

procedure that leverages the previous sensitivity analysis results, and then 

generate the site-specific parameter distributions from the calibrated model 

parameters.  

• To develop random influent generators for the influent of WWTPs based on 

the fitted time series models. The randomly generated influent data will have 

similar statistical characteristics as historical data but give different time 

histories. Those influent components include flow rate, five-day biological 

oxygen demand (BOD5), suspended solids (SS) and ammonia nitrogen (NH4-

N). A missing data replacement method will also be developed to replace non-

randomly missing values in time series data. 

• To conduct Monte Carlo simulations combined with process models with 

uncertainty in process model parameters and variability in plant influent to 

determine the statistical characteristics  (for example, mean, standard 

deviation, and percentiles) of the simulated effluents. A comparison of the 

simulated and measured effluent distributions will be used to validate the 

statistical-based design proposal. 

• To determine design factors that result in high-reliability and low-cost plant 

performance. These main design factors, such as sludge residence time (SRT), 

bioreactor volume and oxygen supply, needed to maintain a certain percent 

(for example, 99.50 percent) of the effluent (or several days average effluent) 

of WWTPs below the effluent standards, will be determined. Those factors 

will be compared with those values commonly used in the traditional design 
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procedure. These determined design factors will be applied to assist 

environmental regulators in evaluating the ability of various plant designs to 

meet specific treatment requirements and the trade-offs between cost and risk. 
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CHAPTER II. REVIEW OF LITERATURE 
 

 

2.1 Resources of the Literature Review 

 

The literature review for this study has focused on four key areas: 

• Applications of Activated Sludge Models (ASMs) 

• Measurement and calibration of ASMs parameters 

• Historical perspectives of Monte Carlo simulation of wastewater treatment 

processes 

• Reviews of related statistical methods (Bayesian method, Time Series Models, 

Monte Carlo Method, Sensitivity Analysis, and Uncertainty Analysis)  

 

 

2.2 Activated Sludge Process Models 

 

2.2.1 Introduction 

 

Wastewater treatment processes are commonly divided into two categories:  suspended 

growth systems (for example, activated sludge systems) and attached growth systems (for 

example, biofilm systems) (Grady et al., 1999). The characteristic of the activated sludge 

process is that the biomass is suspended in the wastewater, consuming and degrading the 

organic pollutants. The activated sludge process has been developed over a period of 

- 6 - 



almost 90 years, both in theory and practice. Most large WWTPs are using activated 

sludge processes. It is also the predominant biological treatment featured in current 

research applications. Basically, the activated sludge process includes an aeration tank, 

clarifier, biomass return, and waste biomass disposal (Grady et al., 1999).  In general, the 

activated sludge process is a continuous or semi-continuous aerobic and/or anoxic 

method for biological wastewater treatment, including carbonaceous oxidation, 

nitrification, denitrification and/or phosphate removal.  Usually, the separation of the 

active biomass from the treated wastewater is performed by settling in clarifiers but may 

also be done by other methods, including flotation and membrane filtration.  

 

Initially, the design and operation of WWTPs were mostly based on the empirical rules of 

thumb. Since the 1950’s, many researchers and engineers have applied theories of reactor 

design and microorganism growth to wastewater treatment systems, making it possible to 

describe substrate degradation, microorganism growth, and plant performance in terms of 

mathematical models. In particular, the Eckenfelder (1955) and Lawrence-McCarty 

(1971) activated sludge models gained widespread practical application due to their 

ability to predict the plant performance. The Eckenfelder model, which was created by 

Professor Eckenfelder in 1955, is an experimental model that considers the relationship 

of WWTP loading and effluent quality based on research on the microorganism growth in 

a Sequencing Batch Reactor.  A.W. Lawrence and P.L. McCarty (1971) developed the 

Lawrence-McCarty model, introducing Monod’s formulation to the wastewater treatment 

field.  The model shows that the effluent concentration is independent of the influent 

concentration. Furthermore, Solid Residence Time (SRT) is independent of Hydraulic 
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Residence Time (HRT) and is the most important parameter to the design and operation 

of WWTPs. SRT is the residence time of biomass that significantly affects the 

characteristics of the biomass in biological wastewater treatment systems.  

 

Based on the models above, many other advanced models have been created. Among 

these models, the Activated Sludge Model No.1 (ASM1) is one of the most important 

models, created by the International Water Association (IWA, former IAWPRC and 

IAWQ) in 1986.  It took many international experts in wastewater treatment more than 

three years to develop the matrix-format based Activated Sludge Model No.1 (ASM1) 

(Henze et al., 1986). Since it was developed, it has been well and widely applied by 

practicing engineers (Spanjers et al., 1995; Huo, 2001). The Activated Sludge Model 

No.2 (ASM2) was introduced to include the phosphorus and nitrogen removal (Henze et 

al., 1995). In 1999, the Activated Sludge Model No.3 (ASM3) revised some processes 

according to the new finds in the field of activated sludge processes (IWA, 2000). The 

ASM3 models 13 wastewater components and 12 biological processes. Compared with 

ASM1, ASM3 adds a new process: the storage of organic substrates and the lysis (decay) 

process is renamed as an endogenous respiration process. Furthermore, ASM3 can 

predict oxygen consumption, sludge production, nitrification and denitrification of 

activated sludge systems. However, considering the complexity of ASM2 and scarcity of 

applications of ASM3, only ASM1 is used in this project to evaluate the statistical 

characteristics of activated sludge WWTPs. Software that implements various Activated 

Sludge Models (ASMs) is shown in Table 2-1. 
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Table 2-1. Simulation software packages of activated sludge processes. 

 

Package 
Name 

Features Company or University 

GPS-X ASM1, ASM2d, ASM3 
including other unit 
process models. 

Hydromantis, Inc., 
1685 Main St. West, Suite 302, Hamilton, 
Ontario L8S 1G5 Canada 

SSSP ASM No.1 only. C.P. Leslie Grady Jr., Environmental 
System Engineering, Rich Environmental 
Research Lab, Clemson University, 
Clemson, SC 29634-0919 USA 

EFFOR ASM No.1 and clarifier 
simulation. 

Jan Peterson, 
I. Kruger AS, Gadsaxevej 363, DK-2860, 
Soborg, Denmark 

BioWin Include the ASM1, 
ASM2d, ASM3, and 
other unit operations. 

EnviroSim Associates LTD. 
7 Innovation Drive Suite 205 
Flamborough, Ontario 
L9H 7H9, Canada 
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From Table 2-1, we can see there are many available implementations of the various 

ASMs. Among them, GPS-X and BioWin are most commonly used by practitioners. For 

example, the Hydromantis website (http://www.hydromantis.com/expertise02.html) 

discusses the application of GPS-X to the upgrade, design and assessment of four 

different treatment plants: 1) Queenston WPCP upgrade stage I (Regional Municipality 

of Niagara), 2) Niagara Falls WPCP upgrade – phase II detailed design, 3) Wheatly 

WPCP capacity assessment, and 4) Facility assessment of the Port Weller WPCP.   

 

Daigger and Nolasco (1995) applied the steady-state ASM1 with and without Dold’s 

excess biological phosphorus removal module to thirteen full-scale WWTPs. ASM1 

proved to accurately predict full-scale plants performance and trends in performance even 

with the default model parameters. However, they also demonstrated that ASM1 cannot 

accurately describe the effects of the oxygen transfer system on the plant performance. In 

this paper, adjustments of half-saturation coefficients for oxygen and nitrate utilization 

were applied to obtain good simulation results. Kolisch and Londong (1998) also 

investigated the possibility of calculating the operational behavior of the WWTPs online 

by coupling the dynamic simulation with the online measurement of the process. The 

ASM1 based standard model SIMBA was developed in MATLAB® and SIMULINK®. 

This study showed that the dynamic simulation could be connected to the process system 

of WWTPs based on the continuously produced online data with average values in 15-

minute cycles. According to the work performed, they found that the on-site practical 

problems were as important as the establishment and calibration of the model. Daigger 

and Barker (2000) studied methods to reduce the HRT and SRT, and corresponding 
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facility costs and space requirement. This study was based on ASMs simulations of 

biological wastewater treatment processes. Two important wastewater characteristics that 

significantly affect nitrification processes were identified: biological inert suspended 

solids and nitrifier maximum specific growth rate. The maximum specific growth rate, 

for a fixed temperature, varied by a factor of ±2. This variability was caused by several 

factors including the composition of the wastewater.  Due to this variation of maximum 

specific growth rates, some commercial models (for example, BioWin) used the lower 

rates as default values, which results in overdesign of the processes. The ASMs 

simulation also showed that the use of an aerobic bioreactor with significant plug flow 

character could significantly reduce the required SRT. The plug flow character means 

either tanks with high length to width ratios, or tanks in series.  

 

Cinar et al. (1998) evaluated the application of ASM2 using steady state data from four 

full-scale WWTPs. The model was calibrated with the plant data from the Mauldin Road 

WWTP. Only six model parameters were changed from the suggested default values. The 

determined model parameters of the Mauldin Road WWTP were also successfully 

confirmed with the data set from the Lower Reedy WWTP. However, the other two 

plants, the Durbin Creek and Gilder Creek WWTPs, could not be fully simulated by 

ASM2 because both are oxidation ditch processes. The researchers concluded that the 

inability of the model to describe the data was related to inaccuracies in describing the 

flow pattern in the oxidation ditch processes. Furthermore, this paper illustrated that 

precise ASM2 simulations required accurate DO concentrations because the simulations 

were very sensitive to the DO concentrations. Nolasco et al. (1998) combined process 
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modeling (ASM2) and pilot-plant techniques to identify and quantify the factors affecting 

the performance of the Step Bio-P process. Both on-line and off-line data were used to 

recalibrate the model ASM2, which was used as an experimental design and process 

optimization tool. The pilot plant performance data matched and verified the initial 

mathematical model results, which proved that ASM2 was an excellent tool for initially 

evaluating unique biological nutrient removal (BNR) processes and for designing more 

effective pilot testing programs.   

 

Some important drawbacks observed after almost two decade’s application experience of 

ASM1 (Gujer et al. 1999) are summarized as follows: 

• ASM1 cannot deal with nitrogen and alkalinity limitations of heterotrophic 

biomass. This limitation can cause the computer code to predict negative 

concentrations (for example, ammonium) under some situations.  

 ASM1 does not include the storage of poly-hydroxy-alkanoates and glycogen. 

This storage has been observed under aerobic and anoxic conditions in activated 

sludge processes in cases in which elevated readily biodegradable organic 

substrates are available.  

 The hydrolysis process significantly affects the oxygen consumption and 

denitrification by heterotrophic biomass. Furthermore, the kinetic parameter for 

the hydrolysis process is difficult to measure.  

 ASM1 distinguishes inert particulate organic matter based on their sources, i.e., 

influent or biomass decay. However, in reality, it is impossible to differentiate 

those two fractions via measurement.  
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To address these limitations, the IWA task group proposed activated sludge model No.3 

(ASM3). ASM3, which is related to ASM1, can predict oxygen consumption, sludge 

production, nitrification and denitrification of activated sludge systems. However, ASM3 

has not yet been widely tested against experimental or plant data. Thus, future 

improvement of the model structure might still be needed. The authors expected that 

ASM1 and ASM3 might well prove to be equivalent after improvements of both models 

(Gujer et al., 1999).  

 

Mussati et al. (2002) compared ASM1 and ASM3 based on the simulations of the COST 

benchmark WWTP. The analysis of the process behavior to pulse and step disturbances 

showed that the ASM3 usually required a longer time to reach steady state than the 

ASM1 model. However, ASM3 simulation results are easier to interpret because of its 

more transparent model structure.  Koch et al. (2000) illustrated that the ASM3 model 

better represents experimental data than ASM1 in certain situations.  These situations 

include 1) the cases in which most of the incoming readily biodegradable substrate is 

being stored, 2) high COD loads in WWTPs caused by diurnal influent flow rate and 

COD variations, or 3) substantial non-aerated zones in WWTPs.  

 

There are three important reasons why ASM1 is chosen instead of ASM3. Firstly, ASM1 

has been widely applied in activated sludge systems for almost two decades. There are 

also paramount publications related to the application of ASM1, for example, 

developments of software packages (GPS-X and BioWin), experimental measurements of 
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model parameters, and calibration and application of ASM1 to the pilot-scale or full-scale 

WWTPs. Secondly, ASM1 and ASM3 are expected to be equivalent. In fact, the 

beginning experience of ASM3 might be highly based on the comparison to ASM1 and 

real plant data. Thirdly, because this dissertation mostly focuses on the uncertainty of 

activated sludge systems, it requires numerous published data to support our analysis of 

the simulated results. Thus, ASM1 was chosen as the primary model in this study.  

 

 

2.2.2 Activated Sludge Model No.1 (ASM1) 

 

With almost twenty years of practical application and further progress, ASM1 has 

become a very important reference model for further research work and is also the basis 

for many software packages (GPS-X, BioWin, etc.) applied in the design and operation of 

WWTPs (Gujer et al., 1995).  In this section, the presentation of ASM1 and parameters in 

ASM1 are reviewed.  

 

 

2.2.3 Presentation of ASM1 

 

An important feature of ASM1 is introducing the matrix format to present the 8 processes 

and 13 components. As can be seen in Table 2-2 shown below, it is relatively easier to 

read and understand the processes and related components in the biological wastewater 
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Table 2-2. Activated sludge model No.1 (ASM1) in matrix format.  
(After IAWPRC ASM1 report, 1986 and Grady et al., 1999) 
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Note: 

1. All organic components (1-7) and oxygen (8) are expressed as COD; all nitrogenous components (9-12) are expected as nitrogen. 
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Example: the reaction rate of the second component XS is expressed as:  

2. Coefficients must be multiplied by –1 to express them as oxygen. 
 



treatment system. Furthermore, it is simple and direct to identify the rate of each 

component and calculate the overall reaction rate of each component.  

 

It should be noted that there are three different units in Table 2-2, that is, components 1-8 

are expressed in chemical oxygen demand (COD) units, whereas components 9-12 are 

given as nitrogen, and component 13, alkalinity, is in molar units. The 13 components 

can be classified into five categories: biomass, substrates, inert components, debris, and 

dissolved oxygen, which are listed across the top of Table 2-2 by symbol. In conformity 

with IAWPRC nomenclature (Grau et al., 1982), soluble components are characterized by 

S and particulate components by X. Subscripts are used to specify individual 

components: B for biomass, S for substrate, I for inert component, D for debris, and O for 

oxygen. Furthermore, the subscripts after the comma denote the different forms of 

biomass. For example, H represents heterotrophic biomass, while A represents 

autotrophic biomass. The index i is assigned to each component, and index j is assigned 

to each process. The particulate components are assumed to be associated with the 

activated sludge (flocculated onto the activated sludge or contained within the active 

biomass) within the activated sludge systems. The thirteen components listed in Table 2-

2 are defined in detail in Table 2-3. 

 

As shown in Table 2-2, the leftmost column lists the 8 fundamental processes, which can 

be basically classified as four categories: growth of biomass, decay of biomass, 

ammonification of organic nitrogen, and ‘hydrolysis’ of particulate organic, and the 

rightmost column lists their process reaction rate expressions.  
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Table 2-3.  Definitions of component symbols in Table 2-2 of the ASM1 model. 

Component 
No. 

Component 
Symbol 

Definition and Units 

1 XI Inert particulate organic matter, mg/L as COD. This 
material cannot be degraded in ASM1; instead, it is 
always flocculated onto the activated sludge. 

2 XS Slowly biodegradable substrate, mg/L as COD. 
Slowly biodegradable substrates are high molecular 
weight, soluble, colloidal and particulate organic 
substrates that must be transformed to readily 
degradable substrate by external hydrolysis (details in 
lysis:regrowth approach) before they are available to 
biomass. In the lysis:regrowth approach, the 
hydrolysis product of XS is assumed to be readily 
biodegradable substrate (SS) only.  

3 XBH Active heterotrophic biomass, mg/L as COD. These 
organisms may be subjected to either aerobic or 
anoxic condition depending on what oxidatants are 
available. In the later case, readily biodegradable 
substrate serves as the terminal electron acceptor and 
the nitrate nitrogen serves as terminal electron 
acceptor. 

4 XBA Active autotrophic biomass, mg/L as COD. These 
organisms are obligate aerobic and chemo-litho-
autotrophic biomass, which are responsible for 
nitrification. Nitrite is treated as an intermediate 
compound of nitrification; therefore, it is assumed 
that ammonia nitrogen (SNH) is directly nitrified to 
nitrate nitrogen (SNO) by nitrifiers.   

5 XD Debris from biomass death and lysis, mg/L as COD. 
This material has similar properties with XI. The only 
difference is their origin: XD is from biomass death 
and lysis, while XI is directly from the influent. 

6 SI Inert soluble organic matter, mg/L as COD. The main 
feature of SI is that it cannot be further degraded in 
the WWTP. This material can readily be estimated 
from the residual soluble COD in the effluent of 
activated sludge systems under low organic load 
conditions (ASM1 report, 1987). 

7 SS Readily biodegradable substrate, mg/L as COD. This 
fraction of substrate can be directly consumed by 
heterotrophic biomass. In practice, SS is determined 
by respiration test (bioassay).  
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Table 2-3. Continued. 

Component 
No. 

Component 
Symbol 

Definition and Units 

8 SO Oxygen, mg/L as COD. SO is the dissolved oxygen 
concentration, which can be directly measured in 
CSTRs. This value is taken as a constant to represent 
the aerobic or anoxic condition if we assume the 
oxygen input rate and oxygen consumption rate are 
equal. The rate of oxygen demand during biomass 
growth can be calculated from Table 2-2. 

9 SNO Nitrate Nitrogen, mg/L as N. Since nitrite is not 
included in ASM1, SNO represents both nitrate and 
nitrite nitrogen. However, SNO is considered to be NO-

3-N only for all stoichiometric computations (ThOD 
conservation), where SNO is introduced as negative 
ThOD.  

10 SNH Ammonia nitrogen, mg/L as N. SNH includes 
ammonium plus ammonia nitrogen (NH+

4-N + NH3-
N). However, SNH is assumed to be all NH+

4 for the 
balance of ionic charges. It should also be noted that 
SNH does not have ThOD. 

11 SNS Soluble biodegradable organic nitrogen, mg/L as N. 
This material is generated through the hydrolysis of 
particulate organic nitrogen and converted to 
ammonia nitrogen through ammonification.  

12 XNS Particulate biodegradable organic nitrogen, mg/L as 
N. This material is formed from the death and lysis of 
both heterotrophic and autotrophic biomass and 
consumed by ammonification. It should be noted that 
XNS should not be added to obtain the total 
concentration of the particulate components because it 
is a subset of these materials and has already been 
included in their concentrations.  

13 SALK Alkalinity, mM/L. In ASM1, the pH is constant and 
near neutrality. As we know, the pH influences many 
parameters in the model. However, little information 
is available to express the influences. Thus, in order 
to provide early detection of the possible changes in 
the pH that might greatly affect some biological 
processes, alkalinity is introduced to approximate the 
conservation of ionic charge in biological reactions. 
For all stoichiometric computation, SALK is assumed 
to be bicarbonate, HCO-

3, only.  
 

 - 18 - 



Process 1: Aerobic growth of heterotrophs:  This process shows that the soluble substrate 

is degraded, resulting in the growth of heterotrophic biomass (XBH). Furthermore, 

ammonia nitrogen will also be removed and incorporated into cell mass. In this case, 

reactant 1 is readily biodegradable substrate (SS) and reactant 2 is dissolved oxygen (SO). 

Note aerobic growth of heterotrophs reverts to the Monod equation if we removed the 

reactant 2. The primary purpose of the oxygen term is to work as a switch function that 

turns off aerobic growth at low DO concentration to allow anoxic growth to begin if 

nitrate is present, as shown in rate term of processes 1 and 2 in Table 2-2.  

 

Process 2: Anoxic growth of heterotrophs: Compared with aerobic growth, where readily 

biodegradable substrate serves as the terminal electron acceptor, the nitrate nitrogen 

serves as terminal electron acceptor under anoxic conditions. The process rate item of 

process 2 only adds two new items; one is a switch function of SNO, which presents the 

effect of nitrate nitrogen; the other is the empirical coefficient, ηg, which represents the 

difference between anoxic growth and aerobic growth. It should be noted that both 

heterotrophic rates should be zero under absolutely anaerobic conditions, that is, without 

both oxygen and nitrate.  

 

Process 3: Aerobic growths of autotrophs: In this process, the growth of autotrophs 

(nitrifiers) occurs with ammonia nitrogen as the energy source and nitrate nitrogen as the 

end product. In addition, some ammonia is incorporated into the biomass. In the rate 

expression, there are two reactants: ammonia-N, and dissolved oxygen. There are two 

important things about the way the process is modeled that should be noted (Grady, C.P., 
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Daigger, G.T., and Lim H.C., 1999). The first is that nitrification is considered a one-step 

reaction, that is, from ammonia-N to nitrate-N directly, without nitrite as an intermediate. 

This simplification is reasonable because the kinetic parameters for Nitrosomonas and 

Nitrobacter are similar and nitrite is consumed as fast as it is formed under balanced 

growth conditions, with the result that its concentration is usually very low and of little 

importance. However, it should be noted that the simplification is only good for 

bioreactors at steady state or those with relatively mild variations in dynamic load. The 

second important thing is that substrate and product inhibition is not considered because 

adequate kinetic relationships are not available. Thus, ASM No.1 is not appropriate to 

situations with excess high nitrogen concentration.  

 

Figure 2-1 illustrates three important aspects of biomass decay: 1) there is no COD loss  

 

 

Hydrolysis 
No loss of COD 

Growth 
Loss of COD 

Debris 
DX  

Death and Lysis 
No loss of COD 

Particulate 
Substrate  SX

Biomass 
BX  

Soluble 
Substrate

 SS

 

Figure 2-1. Schematic representation of the lysis:regrowth approach to modeling biomass 

decay. (After Grady et al., 1999) 
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and no electron acceptor utilization; 2) decay occurs at a constant rate regardless of the 

environmental conditions  (i.e., bH is not a function of the type of electron acceptor or its 

concentration); 3) the conversion from XS to SS can only occur under aerobic or anoxic 

condition; however under anaerobic conditions, it results in the accumulation of slowly 

biodegradable substrate (Grady, C.P.L., Jr.; Daigger, G.T.; Lim, H.C., 1999).  

 

Process 4: Death and lysis of heterotrophs: This process characterizes the reaction of the 

loss of heterotrophs, which is also modeled by the lysis:regrowth approach in Figure 2-1. 

The loss rate of heterotrophs is assumed to be same regardless of the types of electron 

acceptor (Dold and Marais, 1986). However, the utilization rates of specific constituents 

will be influenced as shown in Table 2-2. The products of this process are biomass 

debris, slowly biodegradable substrate, and particulate biodegradable organic nitrogen. 

 

Process 5: Death and lysis of autotrophs: The loss of autotrophs from the system is also 

modeled by the lysis:regrowth approach in a similar way as applied to heterotrophs. The 

only difference is that the values of the decay coefficient for autotrophic bacteria will be 

less than that for heterotrophs.  

 

Process 6: Ammonification of soluble nitrogen: This process releases ammonia from 

nitrogen containing organic compounds. The expression is empirical but has proved to be 

useful for modeling the conversion (Dold and Marais, 1986).  
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Process 7: ‘Hydrolysis’ of particulate organics: This process converts slowly-

biodegradable substrate to readily-biodegradable substrate. The correction factor ηh 

reflects decrease of the hydrolysis rate under anoxic conditions. Also, the rate of 

hydrolysis is assumed to be zero under absolutely anaerobic conditions, although 

hydrolysis is known to occur in anaerobic bioreactors (Haandel, 1981). 

 

Process 8: ‘Hydrolysis’ of particulate organic nitrogen: The final process describes the 

conversion of particulate biodegradable organic nitrogen, XNS into soluble, biodegradable 

organic nitrogen, SNS. This rate is assumed proportional to the rate of hydrolysis of 

slowly biodegradable organic matter.  

 

 

2.2.4 Parameters in ASM1  

 

The symbols, units and typical values of parameters presented in the ASM1 are listed in 

detail in Table 2-4.  

 

There are two ways to find the values of the model parameters. One way is to measure 

the parameters directly through experiments. There are many papers discussing the 

possible procedures to design the experiments (Ekama, G.A., Dold, P.L, and Maais, 

G.v.R., 1986; Kappeler, J. and Gujerr, W., 1992; Kabouris, J.C. and Geogakakos, A.P., 

1996; Grady, C.P.L., Jr., Daigger, G.T., Lim, H.C., 1999). The other way is to calibrate 

the ASM1 parameters so that the model accurately mimics the performance of a 
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 Table 2-4. Typical parameter values at 10°C and 20°C for domestic wastewater at 

neutral pH. (Henze et al., 1986; Grady et al., 1999) 

 

Symbol Definition Units Typical values in 
ASM1 

 Stoichiometric coefficients  20 °C 10 °C 

HY  Yield for heterotrophs mg biomass COD formed / mg 
COD removed 

0.67 0.67 

Df ′  Fraction of biomass leading to 
debris 

mg debris COD / mg biomass 
COD  

0.08 0.08 

XBNi /  Mass of nitrogen per mass of COD 
in biomass 

mg N / mg COD in active biomass 0.086 0.086 

XDNi /  Mass of nitrogen per mass of COD 
in debris 

mg N/mg COD in biomass debris 0.06 0.06 

AY  Yield for autotrophs mg biomass COD formed /mg N 
oxidized 

0.24 0.24 

 Kinetic parameters    

Hµ̂  Maximum specific growth rate for 
heterotrophs 

hr-1 0.25 0.125 

SK  Half-saturation coefficient for 
heterotrophs 

mg / L as COD 20.0 20.0 

OHK  Oxygen half-saturation coefficient 
for heterotrophs 

mg / L as O2 0.20 0.20 

NOK  Nitrate half-saturation coefficient 
for denitrifiers 

mg/L as N 0.50 0.50 

HLb ,  Decay coefficient for heterotrophs hr-1 0.026 0.0083 

gη  Correction factor for µH under 
anoxic biomass growth 

Dimensionless 0.8 0.8 

hη  Correction factor for anoxic 
hydrolysis 

Dimensionless 0.4 0.4 

ak  Ammonification rate L/(mg biomass COD.hr) 0.0033 0.0017 

hk  Maximum specific hydrolysis rate mg COD/(mg biomass COD.hr) 0.125 0.042 

XK  Half-saturation coefficient for 
hydrolysis of slowing 
biodegradable substrate 

mg COD/ mg biomass COD 0.03 0.01 

Aµ̂  Maximum specific growth rate for 
autotrophs 

hr-1 0.033 0.013 

NHK  Ammonia-N half-Saturation 
coefficient for autotrophs 

mg/L as N 1.0 1.0 

OAK  Oxygen half-saturation for 
autotrophs 

mg/L as O2 0.4 0.4 

ALb ,  Decay coefficient for autotrophs hr-1 0.005 0.005 
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particular WWTP. Given the influent, effluent, design and operation parameters of a 

specific WWTP, the best available model parameters are identified based on the 

comparison of the simulated and measured plant performance (Wanner, O., Kappeler, J., 

and Gujer, W., 1992; Daigger, G.T. and Nolasco, D., 1995; Melcer, H., 1999).  

 

The calibrated model parameters are from different calibration methods, for example 

genetic algorithms (Holland, et al., 1975). They are adaptive search algorithms based on 

the evolutionary ideas of natural selection and genetic. The concept behind this method is 

the representation of solutions a problem in an encoded format. The strength of genetic 

algorithms is that the certain patterns in the genes will be built after the operations are 

repeated and solutions become more and more fit (determined by a fitness function). 

Compared with other traditional methods, genetic algorithms are more robust to avoid 

getting stuck at local optimum.  In practice, genetic algorithms work very well in both 

continuous and discrete problems and represent a powerful search tool in parameter 

optimization field (Goldberg, 1989). Gentry et al. (2001) applied genetic algorithms to 

determine both the spatial distribution and the flux represented by the accretion 

components of groundwater flow equation. They found the genetic algorithm could find 

an area or areas of accretion to a semiconfined aquifer given a relatively small set of 

observation data. This technique is less sensitive to the discontinuities in the accretion 

functions, compared with other traditional methods.  

 

However, in this dissertation, the model parameters are treated as distributions, i.e., a 

range of numbers, instead of one specific group of values. In order to find the parameter 
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distributions, Cox (2004) applied Bayesian statistics to infer the universal distributions of 

19 model parameters from published values reported for real WWTPs all over the world. 

The details of the model parameter distributions are shown in Table 2-5. Most of the 

parameters except ηg are assumed to be lognormal distributions in order to generate only 

positive values. The parameter distributions prove to be reasonable by the Kolmogorov- 

Smirnov Goodness-of-Fit test (Cox, 2004). Independence between these parameter 

distributions is also assumed due to the lack of published correlations. Significant 

correlations between model parameter distributions may exist in some situations.  

 

The StatASPS (Statistical Activated Sludge Process Simulator) program is designed to 

introduce the uncertainty of the model parameters. That is, the 19 model parameters are 

represented by distributions instead of single values. In Cox’s paper (2004), 15 parameter 

distributions are generated from the published parameter values from over the world 

through the Bayesian method. Most parameters are lognormal distributed except ηg, 

which is assumed to be a uniform distribution. Beyond the 15 parameters for which Cox 

(2004) specified distributions, there are four additional ASM1 parameters (f’D, iNXB, iNXD, 

and ka) which were not considered due to a lack of published values.  In order to maintain 

consistency, these four parameters are also assumed to be represented as uniform 

distributions. The distributional model parameters are shown in Table 2-5, which is used 

in the Monte Carlo simulation of ASM1 in this dissertation. The parameter values in 

Table 2-5 are universal rather than site-specific. A goal of this research is to apply the 

Bayesian method developed by Cox (2004) to obtain site-specific parameter values of the 

parameters from plant operating data.  
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Table 2-5.The universal distributions of ASM1 parameters. (after Cox, 2004) 

 

 
Universal distribution Parameter-Unit 

µ (mean ± SD) σ (mean ± SD) 

µH,max– days-1 
1.14 ± 0.11 0.60 ± 0.066

Ks – mg COD/L 
1.44 ± 0.16 0.76 ± 0.067

YH  – mg COD biomass/mg COD substrate 
-0.45 ± 0.035 0.12 ± 0.033

bLH – day-1 
-1.06 ± 0.16 0.81 ± 0.15

µA,max – days-1 
-0.51 ± 0.096 0.44 ± 0.085

KNH – mg N/ L 
-0.675 ± 0.22 1.00± 0.11

YA – mg COD biomass/mg N substrate 
-1.52 ± 0.18 0.55 ± 0.19

bLA – days-1 
-1.97 ± 0.085 0.28 ± 0.081

kh – day-1 
0.83 ± 0.12 0.36 ± 0.13

Kx –mg COD particulate substrate/mg COD 
biomass 

-2.82 ± 0.46 1.34 ± 0.19

ηh – dimensionless 
-0.86 ± 0.17 0.62 ± 0.17

ΚΟΗ – mg O2/L 
-1.46±0.323 0.83±0.21

ΚΟΑ – mg O2/L 
-0.82±0.25 0.96±0.11

ΚΝΟ – mg N/L 
-1.55±0.34 1.01±0.20

ηg – dimensionless 
U(0.10,0.90) 

f’D – mg debris / mg biomass COD U(0.04,0.12)* 

iNXB – mg N / mg COD in active biomass U(0.043,0.129)* 

iNXD – mg N/mg COD in biomass debris U(0.03,0.09)* 

ka – L/(mg biomass COD.hr) U(0.0034,0.0101)* 

 

Note: All distributions are assumed as lognormal distribution except ηg, f’D, iNXB, iNXD, 

and ka as uniform distribution. The symbol * denotes the added parameter distributions 

based on the experience and information available (Huo, 2004). 
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Rousseau et al. (2001) also gave their parameter distributions to describe the variability 

and uncertainty of the parameters. Most of the model parameters were assumed to be 

triangular distributions. These parameter distributions were determined by the 

mean/median values and uncertainty ranges. The remaining six parameters were 

considered temperature-dependent parameters. These parameters are the heterotrophic 

and autotrophic growth rates µH and µA, the heterotrophic and autotrophic decay 

constants bH and bA, the hydrolysis rate kh and the half saturation coefficient for 

hydrolysis of slowly biodegradable substrate KX.  These six parameters were assumed to 

be truncated normal distributions in order to avoid negative values. However, this paper 

also recommended further research on how to choose parameter distributions (normal, 

triangular, etc.) and how this choice affects the effluent distributions.  

 

 

2.3 Statistical Theories and Methods 

 

2.3.1 Monte Carlo Method 

 

The Monte Carlo (MC) method is a statistical simulation method that estimates possible 

outcomes from a group of random/pseudo-random variables by simulating a process a 

large number of times and analyzing the outcomes 

(http://csep1.phy.ornl.gov/mc/nodel1.html). In this dissertation, Monte Carlo analysis is 

used to evaluate the ASM1 model and characterize the uncertainty in WWTPs. Their 

uncertainty is obtained through performing multiple evaluations with randomly selected 
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model inputs, and then determining both the uncertainty in model predictions and the 

contribution of the input factors to this uncertainty. Compared to other methods of 

uncertainty analysis, such as first-order variance propagation, the accuracy of the Monte 

Carlo process is not affected by non-linear equations (Schuhmacher et al., 2001). 

Furthermore, it is also conceptually much simpler to understand and apply from a 

pragmatic viewpoint.  

 

The Monte Carlo method is widely used to complete the uncertainty analysis of the 

system outputs and the sensitivity analysis of the system inputs, model parameters, and 

design/operation parameters. There are several examples in the literature of application of 

the Monte Carlo method to assess the performance of wastewater treatment systems. Von 

Sperling (1993) used simple uniform parameter distributions to run Monte-Carlo 

simulations of an activated sludge model with 11 parameters and 4 states (this was not 

the ASM series by IWA). According to Von Sperling, the Monte Carlo simulation was a 

simple, useful and robust method to estimate model parameters and complete the 

sensitivity analysis of the chosen model. He also mentioned certain subjectivities existing 

in the Monte Carlo simulation: selection of the range of parameter values and selection of 

the criteria in determining whether parameters were important or not. Vasquez et al. 

(1999) applied the Monte Carlo method to study the effects of uncertainty in 

thermodynamic data on chemical process design and simulation. The effects represented 

systematic errors as rectangular probability distributions and random errors as normal 

probability distributions. Potential applications of the Monte Carlo procedure include 

safety factor determination, process modeling optimization, and experimental design.  
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Abusam et al. (2002) applied the Monte Carlo method to a full-scale oxidation ditch 

WWTP. The uncertainties considered in their study include parameter values, influent 

loads, values of the initial states, simulation model, and seasonal changes in water 

temperature. The ranges of the model parameters were obtained from the calibrated 

values and reported values in the literature. This study showed how those uncertainty 

sources affected the plant performance. As discussed in the paper, uncertainties in 

influent loads and parameter values are the most important sources for the large deviation 

of the plant performance. The uncertainty in the model structure is negligible. Rousseau 

et al. (2001) also applied Monte Carlo simulation to the ASM1 model. The parameters 

were assumed to be triangular or truncated normal distributions. The results from the 300 

Monte Carlo runs were shown in a histogram graph. However, authors still recommended 

further research on how to determine to appropriate number of Monte Carlo runs. 

Generally, 300 Monte Carlo runs were too few to be acceptable. Furthermore, Bixio et al. 

(2002) proposed that conventional design approaches employ larger-than-need safety 

factors to deal with the uncertainty in variations in plant loading. Thus, they proposed an 

alternative design approach coupled with the probabilistic Monte Carlo engine. Then, this 

approach was applied to the upgrade of a conventional WWTP. The results showed this 

approach could help the decision-making process that ensure the effluent standards are 

met without introducing above-normal capital investments. A risk-cost benefit concept 

was present because the acceptability of risk cannot be defined in isolation. For the 

WWTP Hove, the dimensions of the biological reactors were reduced by 21 percent. This 

large risk (5% or more) was accepted because about 43 percent of investment cost was 
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saved. Notice that all process parameters were assumed to be either triangular and 

truncated normal distributions.  The truncation was set at 0.00001 to avoid negative 

meaningless values. The similar assumption of the process parameters was also applied in 

another Monte Carlo application of the ASM1 model within the GPS-X (Magbanua, 

2004). The simulation results indicated that process uncertainty could be reduced with 

increasing of SRT and the value of HRT did not appear to be an important factor 

affecting the uncertainty of the plant performance.   

 

The Monte Carlo method has also been applied in ASM3. Koch et al. (2001) calibrated 

the model with measured data from long-term full-scale and pilot-plant experiments for 

Swiss municipal wastewater. Furthermore, the uncertainty analysis and sensitivity 

analysis were completed through the Monte Carlo simulations. This study found that the 

confidence interval and the uncertainty of the predicted denitrification rate decrease 

significantly with increasing ration of COD to nitrogen.   

 

In this dissertation, we will consider the variability in plant influent using historical 

influent data and/or randomly generated influent data, and the uncertainty in process 

parameters using the universal and/or parameter distributions. The randomly generated 

influent is an innovative idea to create an influent time series that has similar statistical 

characteristics but difference from the actual historical influent data. Another significant 

improvement is the determination of the uncertainty in process parameters. In this 

dissertation, the Bayesian method and published values all over the world were used to 

create universal parameter distributions (Cox, 2004). Most of the distributions are 
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lognormal distributions except for a few parameters with uniform distributions due to 

lack of information. The parameter distributions proved to be reasonable by the 

Kolmogorov-Smirnov Goodness-of-Fit test (Cox, 2004). The site-specific parameter 

distributions will be generated from the monthly-calibrated process parameters at a site-

specific WWTP. These two parameter distributions are strongly backed by the statistical 

theories and tests, which provide the better confidence to be applied in Monte Carlo 

simulations.   

 

 

2.3.2 Bayesian Method 

 

The Bayesian method is used to generate a posterior distribution of the unknown 

parameters based on a known prior distribution and available measurements of those 

parameters (Meeker, W.Q. and Escobar, L.A., 1998).  It is commonly expressed as 

follows: 

Posterior Information = Prior Information + Sampling Information                 (2-1)  

Using the Bayes’ theorem, the following equation is obtained: 

 
∫ ×

×
=

θθπθ
θπθθπ

dxL
xLx

)]()|([
)()|()|(                                                                          (2-2)                         

where π(θ|x) is the posterior distribution of parameter θ given the sample observations x; 

L(θ|x) is the likelihood function; π(θ) is the prior probability density function; and 

 is the normalizing factor or constant. ∫ × θθπθ dxL )]()|([
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One difficulty in the Bayesian method is to choose the appropriate prior distribution for 

the concerned parameter. Three prior distributions are commonly used at present 

(Bozdogan, 2002, Class notes).  

• Natural conjugate priors are those whose prior and posterior distributions both 

belong to a standard family of distributions for any sample size and any values of 

the observations. They include convenience priors, reference priors, and 

informative priors.  

• Vague priors are those for which little or no knowledge of the parameter is 

available. In this case, we also use the term vague, improper, or noninformative 

priors. 

• The last option is data-based or data-adaptive priors. These are obtained from the 

available published or measured data.  

 

The Bayesian method is commonly applied in many research fields to generate and 

regenerate more accurate parameter distribution from the prior distribution and available 

observations. Compared to point estimators (means, variances), the Bayesian method is 

used to find one better distribution from the several potential distributions instead of 

simply assuming a normal distribution. In Cox’s paper (2004), he assumed the prior 

distributions of the parameters are lognormal or uniform distributions, and then used the 

available published data and Bayesian method to generate the posterior distributions. 

These generated distributions will be applied in the Monte Carlo simulation in this 

dissertation. For more details, please refer to Chapters III and V. 
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2.3.3 Time Series Models  

 

A time series is a set of observations of a variable made at successive times. The goal of 

the time series analysis is to find a proper way (a “model”) to present the time-structured 

relationship between several variables (Pankratz, 1991). In DeLurgio’s book Forecasting 

Principles and Applications (1998), the author discusses the two main categories of time 

series models. The first is the univariate time series model, which assumes that the 

variable is only a function of time, receiving no effects from other variables. The second 

is the multivariate time series model, which introduces the correlation between variables 

(time series). The univariate time series models include Exponential Smooth (ES), 

AutoRegressive Integrated Moving Average (ARIMA), and others. The multivariate time 

series model includes the multiple regression of time series and Dynamic Regression 

(DR). The former is the simple regression of multiple variables. Its only difference from 

normal multivariate regression is that those multiple variables are time series. The 

dynamic regression model is usually chosen to explain the potential correlations between 

the related time series (Pankratz, 1991). If one or more independent variables (called 

input variables) are correlated to a dependent variable (called an output variable), the 

MARIMA (Multivariate ARIMA) model or DR model is preferred. Note that MARIMA 

is included in the DR model. It describes the attributes of both regression and ARIMA 

models, while DR model can describe the attributes of both regression and any other time 

series models. A dynamic regression (DR) model states how an output is linearly related 

to current and past values of one or more inputs. Basically, the DR model considers (1) 
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the possible time-lagged relationship between output and input, that is, the time structure 

of the input-output relationship; and (2) the possible time structure (autocorrelation 

pattern) of the time series (Pankratz, 1991). 

 

The Exponential Smoothing (ES) method deals with the time series that is related to 

exponentially weighted moving averages. It includes simple ES, Holt’s two-parameter 

ES, and Winters’ three-parameter ES method  (DeLurgio, 1998). The simple ES has the 

following equation. 

11 )1( −− −+= ttt FAF αα                                                                                        (2-3) 

where Ft is the exponentially smoothed forecast for period t, At-1 is the actual in the prior  

period, Ft-1 is the exponentially smoothed forecast of the prior period, and α is the 

smoothing constant.  

 

The Winters’ smoothing model is an extension of the Holt ES by adding a third 

smoothing operation to present seasonality. Thus it is also called the Holt-Winters 

method (DeLurgio, 1998). The equation of the Winters’ model is listed below: 

111 )( ++−+ ++= tLtttt eIbSY                                                                                   (2-4) 

where Yt+1 is the forecast for period t+1, St is the smoothed nonseasonal level of the 

series at the end of t, bt is the smoothed trend in period t, It-L+1 is the smoothed seasonal 

index for period t+1, and et+1 is the error of period t+1.  
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Ellis et al. (1993) applied the univariate and uncorrelated ARMA (autoregressive moving 

average) processes to the influent BOD5 (5-day biological oxygen demand) mass loading, 

effluent BOD5, and three water-quality additional variables. They found the ARMA 

models more accurately calculated design curves than the traditional design procedures 

that do not consider the time structure of the data.  

 

Time series models have been used for forecasting wastewater treatment performance. 

Berthouex and Box (1996) describe a time series modeling procedure to calculate 

predictions of plant effluent quality with confidence intervals 1-5 days ahead. The plant 

effluent quality includes Biological Oxygen Demand (BOD) and Suspended Solids (SS). 

The time series model, which has the form of an exponentially weighted moving average 

(EWMA), is based on first differences of the dependent and independent log-transformed 

variables. This modeling procedure interprets that the change of the plant effluent (BOD 

or SS) is related to the current level of the moving average, and this change is a linear 

function of differences between the current levels and the moving averages of the 

independent variables.  

 

 

2.3.4 Missing Data and Outliers Replacement  

 

Missing values are almost inevitable in data recording necessitating procedures to 

account for them in the statistical modeling approach. For example, unexpected events 

and routine holidays may cause the measurements not to be taken. There are several 
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methods commonly used to deal with missing numeric values. However, most of those 

methods depend on the MCAR (missing completely at random) assumption, which means 

the probability that the observation is missing does not depend on the data set. 

Unfortunately, MCAR observations are less likely in time series data because 

observations are usually correlated with time series (for example, there are virtually no 

data available for Fridays, Saturdays, and other holidays for the Oak Ridge WWTP).   

 

Various strategies are available for imputing missing values. 1) The simplest way is to 

replace all missing values for a given variable with the mean, median, or other location 

statistics (e.g., percentiles) of the non-missing values of the variable. 2) The second 

easiest way is to replace missing values with the average of the nearest observation in the 

future and/or in the past. 3) SAS® software deals with the situation in a more 

complicated but more valid way: 

(1) Replace all missing values with a simple imputed value, like the series mean. 

(2) With the updated estimates, forecast the missing values from the current time 

series model. Then update the original data set with the new forecasts of missing 

values. 

(3) Repeat step 2 until the convergence occurs. 

 

Just like missing data, outliers are very common in the data set. Outliers are defined as 

unusual data that are significantly different from the rest of the data set. The reasons 

leading to outliers might be recording errors or special events (also called 

“interventions”). The obvious examples of the potential interventions are variable 
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redefinition, regulation or law change, natural or artificial disasters, and unexpected 

system breakdown. It is very important to study the effects of the outliers, which 

sometimes can uncover the causes of changes (Pankratz, 1991). However, it might be 

difficult to determine whether the extreme low/high values are true outliers or legitimate 

random effects. Generally, there are three methods to deal with outliers, which are listed 

below:  

1) Replace the outliers based on the original data. We can use the mean of 

two or more adjacent values. For example, or 2/)( 11, +− += ttnewt YYY
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= , where wt+i is the weight of Yt+i that affects the Yt, s 

is half range of the adjacent values. 

2) Replace the outliers based on the forecast data. This method works well if 

a reliable forecast method exists. The core of this method is to find the 

simple and effective time series models. Thus, the characteristics of the 

time structure of the time series might be reviewed and applied in the 

forecast models. After the proper models are found, the replacement is 

straightforward. First remove the outliers and treat them as missing data. 

Then substitute the forecasted values for the deleted outliers.  

3) Preserve the outlier with the unusually high or low value by subtracting or 

adding some additional quantity to its original value. Normally, the 

adjusted value derived from this process would still preserve some of its 

extreme value. This can be valuable when it is believed that future values 
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will also be extreme but not quite as high or low as the outlier. For 

example, the maximum or minimum of the data set after excluding the 

outlier is commonly taken to replace the extremely high or low value, 

respectively. 

 

Robinson et al. (2005) developed a multivariate outlier detection method to evaluate 

water quality data for outliers. Compared with commonly used univariate methods, this 

new method considers the correlation between variables. This method is believed to 

significantly decrease the number of possible outliers that have extreme ratios between 

correlated variables.  For example, this paper indicates CBOD has some correlation with 

NH4-N. If both CBOD and NH4-N at the same time have extremely large values, the 

univariate methods may regard both of two points to be outliers. However, with this 

multivariate method, those two points might be OK considering those two variables are 

highly correlated.  

 

In this dissertation, the outlier problem can be solved using a new univariate method: 

Two-directional Exponential Smoothing (TES) method, which will be discussed in 

details in Chapter IV.  
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CHAPTER III 
 

 MATHEMATICAL MODELING AND STATISTICAL 

APPLICATION 

 

 

In this chapter, one program called StatASPS (written in both Visual Basic® and 

MATLAB®) is developed to apply the ASM1 model to wastewater treatment plants. 

Detailed numerical methods are applied to solve the steady and dynamic simulation of 

activated sludge processes. Time series models are also developed for use as random 

influent generators. Time series models for influent flow, temperature, BOD5, SS, and 

ammonia-N are developed and used to simulate the influent to the plant. These models 

capture the statistical characteristics (trend, correlation, and seasonality, etc.) of the 

influent variables. The Monte Carlo procedure for this case is illustrated in Figure 3-1.  

 

 

 

Influent 
Variables 

Process Model 
(ASM1) 

Effluent 

Process 
Parameters 

 
 
 
 
 
 
 
 
Figure 3-1.  Monte Carlo simulation of ASM1 to evaluate uncertainty in activated sludge 

processes. 
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We have assumed that the values of the various process parameters have no correlations, 

because we were unable to find in the literature any reported relationships between the 

various ASM1 process parameters. As shown in Figure 3-1, there are two kinds of 

uncertainty of the ASM1 inputs. One is the variability of the influent variables, such as 

flow rate, temperature, BOD5, SS, and Ammonia-N. This uncertainty is described by 

generated random influent data using suitable time series models, which capture the 

potential uncertainties in plant influent. The other is the uncertainty of the process 

parameters, which is mainly determined by the design and operation of WWTPs.   

Correspondingly, the uncertainty of the model inputs leads to the uncertainty of the 

model output, i.e., the plant effluent that defines the plant performance.  

 

 

3.1 Application of Activated Sludge Model No.1 (ASM1)  

 

The 8 processes, 13 components and 19 model parameters in the ASM1 are presented and 

explained in detail in Chapter II. In this chapter, we are going to focus on how to apply 

the ASM1 in a real WWTP. Specifically, the Monte Carlo method is introduced into 

ASM1 simulations to search the statistical characteristics in the plant performance. The 

universal parameter distributions and site-specific parameter distributions are applied in 

the following and future simulations.  
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3.1.1 Mass Balance Equations in ASM1  

 

Integration of the ASM equations and mass balance equations is described in this section.  

The basic mass balance equation is given by equation (3-1): 

  Accumulation = input – output + generation                                                     (3-1)   

Note that the unit of each term above is mass/time.  

 

Initial development of the material balance equations is for a single CSTR; the case of 

multiple CSTRs in series will be developed subsequently. The following equation 

describes the mass balance of component i within a control volume V. For notation, 

please refer to Figure 3-2.   

VrCFFCFCFFCV
dt

dC
iiEWiWWiRRiO

i +−+−+= ])([)(                   (3-2) 

where, F, FR and FW are influent flow rate, recycle flow rate and wastage flow rate 

(Volume/Time), respectively; CiO, Ci, CiR, CiE, and CiW are the concentrations of  
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Figure 3-2. Basic flow diagram of activated sludge process in ASM1. 
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component i in the influent, CSTR, recycle flow, effluent, and wastage flow 

(Mass/Volume); V is the control volume of the system, which may be part of the total 

volume of the bioreactor if we consider multiple CSTRs; each of the rsi terms represents 

the reaction rate for that particular component as defined in ASM1 (Henze et al., 1986). 

From Figure 3-2, we can easily find that CiW = CiR. Separate material balances are needed 

for soluble and particulate components, denoted by S and X, respectively. 

 

For each soluble component i, effluent, waste and recycle concentrations of each 

component are equal to the concentration in the aeration tank. Thus, the mass balance 

equation is:  

VrSFSFSFFSFFS
dt

dS
V SiiRRiWWiEWiRRiO

i +++−−+= ])[()(                       (3-3) 

For each particulate component j, a similar material balance applies:  

VrXFXFXFFXFFX
dt

dX
V XjjRRjWWjEWjRRjO

j +++−−+= ])[()(              (3-4) 

For particulate components the relationship between the effluent concentration and the 

component concentration in the aeration tank is given by Xj,E = βXj, where β = 1-α and α 

is the efficiency of the clarifier. In this study we have assumed a constant clarifier 

efficiency of 99.75%, which represents relatively good clarifier performance. 

 

The definition of SRT is  

TEWTWW

T
C XFFXF

VX
)( −+

=Θ                                                                            (3-5) 
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where XT = ΣXj  and the mass balance equation of the secondary clarifier is  

 0])[()( =++−−+ TRRTWWTEWTR XFXFXFFXFF                                       (3-6) 

From the above three equations, we can derive the following mass balance equation for 

the particular components. 

V
VrXFXFFFX

dt
dX XjjWjWjOj +−−−

=
γβ )(

                                                 (3-7) 
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====γ ,                                                       (3-8) 

and  

βγ

β

−

−
Θ

=
FV

F C

W
                                                                                                 (3-9) 

As mentioned above in simple ideal CSTR model, the components and transformation 

processes included in the ASM1 are described with indices i and j, respectively. 

Stoichiometric coefficients are presented as  in the middle of the matrix, and the rate 

of process j is presented as , as listed in Table 2-2. Thus, the overall production rate of 

component i is calculated as: 

ijc

pjr

∑
=

=
J

j
pjiji rcr

1
                                                        (3-10) 

where j is the total number of the processes.  

 

For example, the mass balance equation of the readily degradable substrate (SS) is shown 

as follows: 
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VrCFFCFCFFCV
dt

dC
EWWWRRO 77777

7 ])([)( +−+−+=  

VrCFFCFCFFC EWWWRRO 77777 ])([)( +−+−+=                            (3-11) 

 

Figure 3-3 shows the basic structure of tanks-in-series in wastewater treatment. In fact, 

the influent here refers to the effluent from the primary clarifier. Basically, there are only 

two physical parts. One is the CSTRs in series (i.e., bioreactors), where the degradation 

of substrate and growth of biomass occur; the other is the secondary clarifier, where the 

solids and liquid are separated. There are also four important flows: influent, effluent, 

recycle flow, and wastage flow, which are shown as specific symbols in Figure 3-3. It 

should be noted that a complicated clarifier model is not considered in order to simplify 

the modeling process. Various models have their own advantages and disadvantages, and 

a consensus on the best model has not been achieved. Thus, the efficiency of the 
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FT*Ratio(n) 
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Clarifier 
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n-th Balance Body 

Figure 3-3. Basic flow diagram of activated sludge process tanks-in-series. 
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secondary clarifier is simply assumed to be a constant because the site-specific 

information is inadequate.  Based on the plant data from Kuwahee WWTP, Ojai Valley 

WWTP, Oak Ridge WWTP, and Seneca WWTP, we assume that the efficiency of the 

secondary clarifier is 99.75 percent. Note that the value of the secondary clarifier 

efficiency might be changed if a specific WWTP is applied and related information is 

available.  

 

 

3.1.2 Numerical Algorithms for the Simulation 

 

3.1.2.1 Steady state solutions 

 

For the steady state simulation, the differential terms are all equal to zero. The classic 

Newton-Raphson method for solving nonlinear equations is chosen, which is thought to 

be the most efficient multidimensional root finding method for reasonable close initial 

guesses (Sprott, 1998).  The matrix format of the Newton-Raphson method in multiple 

dimensions is shown as follows:  

 Given 0)],...,,(),...,,...,,(),,...,,([)( 21212211

rrr
== nnnn xxxfxxxfxxxfXF ,      (3-12) 

Newton-Raphson method uses an iterative procedure to converge to the solutions. Each 

iteration solves the linear system of equations:  

  )()( XFXXJ
rrrrr

−=∆⋅                                                                                         (3-13) 
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where X
r

∆ =correction to X
r

, for example, jjiji xxx ∆+= − ,1, ; i = ith iteration; j = jth 

variable; and )(XJ
rr

= Jacobian matrix of )(XF
rr

= 

                                                                 (3-14) 
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3.1.2.2 Dynamic solutions 

 

The main difference between dynamic and steady state simulations is that the first-order 

differential terms are no longer equal to zero. The fourth-order Runge-Kutta method is 

consequently used in the StatASPS package because it has proved to be an adequate 

method for most problems (Sprott, 1998). The Runge-Kutta method numerically 

integrates ordinary differential equations by using a trial step at the midpoint of an 

interval to cancel out lower-order error terms. The classical fourth-order Runge-Kutta 

formulas are shown below.  

 

K1 = h × f(tn,yn) 

K2 = h × f(tn + h/2, yn + K1/2) 

K3 = h × f(tn + h/2, yn + K2/2) 

K4 = h × f(tn + h, yn + K3) 

yn+1 = yn + K1/6 + K2/3 + K3/3 + K4/6 +o(h5)                                                  (3-15) 
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As shown above, the fourth-order Runge-Kutta method requires four evaluations of the 

right-hand side per step h. However, it should be noticed that higher order does not 

always mean higher accuracy, although fourth-order Runge-Kutta is generally superior to 

second-order.  

 

Figure 3-4 shows the flow diagram of the Monte Carlo simulation of the ASM1 in the 

StatASPS package. The comparison of simulated results between the StatASPS and the 

GPS-X® shows that the simulations from the StatASPS software both in Visual Basic® 

and MATLAB® are very close to those from the GPS-X® software. The advantages of 

Visual Basic StatASPS program are its flexibility and faster speed, which can be 

complied to an executable file and run under other environment besides Windows®. 

However, the advantages of MATLAB® StatASPS program are its powerful built-in 

algorithms and stronger graphic functions. Considering the advantages and disadvantages 

of both programs, we decided to use both according to different requirements. For 

example, for the single CSTR’s Monte Carlo simulations, we use the StatASPS program 

in Visual Basic® due to its faster calculating speed. As for calibration purposes and 

multiple CSTRs’ Monte Carlo simulations, we use the StatASPS program in MATLAB® 

because we can take advantage of the built-in statistical functions and powerful graphic 

functions.  
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Dynamic simulation of multiple CSTRs 
with previous output as starting values  

Output of dynamic simulation of  
multiple CSTRs  

Data analysis

Loop until finish MC runs

Loop until finish dynamic 
simulations of plant daily data

Output of steady-state simulation of 
single CSTR with V=∑Vk 

Input of historical or random daily 
influent

Initial guess for single steady CSTR 

Steady-state simulation of single CSTR 
with V=∑Vk 

Input of distributed parameters  

System initial 

End

Figure 3-4. The overall flow diagram of Monte Carlo simulations of the ASM1 in the 

StatASPS package. 
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For dynamic simulations, the assumed initial conditions may have undue influence on the 

simulation predictions for early time points in the simulations. It is well known (Grady et 

al., 1999) that it takes some time (3-4 SRTs) for the plant to respond to a step change in 

input conditions. However, in this dissertation, we take the steady-state operation values 

as the starting values for the dynamic simulation. This significantly decreases the 

influence of the initial condition and allows realistic operating conditions to be reached 

after a much shorter time. A test simulation was conducted for 99 days with repeating 

diurnal influent pattern. Under conditions of SRT = 5 days and HRT = 5 hours, 5 days 

(i.e., 120 hours) were required for the system to reach quasi-steady state. Thus, the valid 

data for analysis only include those data after 5 days dynamic simulation. Figure 3-5 also 

shows how dynamic simulations of BOD5, SS, and NH3-N reach quasi-steady state 

rapidly after taking steady state simulated results as a starting point.  
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Figure 3-5. Approach to quasi-steady state from the initial conditions. 
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3.1.3. ASM1 Influent and Effluent Conversion Methods 

 

3.1.3.1. Influent conversion method 

 

The inputs of the ASM1 include the influent flow rate and 13 components.  However, the 

model inputs of 13 components are not normally measured during routine operation of 

activated sludge plants. Thus, a method for conversion of the traditional measurement 

(BOD5, COD, SS, TKN, Ammonia-N, etc.) to the 13 model input components is need. 

Grady et al. (1999) recommended one conversion method that we have adapted in 

slightly modified form here. The method allows computations of the 13 influent 

components from measured values of TSS, BOD5, and Ammonia-N (SNH). The Total 

COD (TCOD) consists of four components: (1) particulate biodegradable COD (XSO), (2) 

soluble biodegradable COD (SSO), (3) particulate inert COD (XIO), and (4) soluble inert 

COD (SIO). The subscript O indicates the influent. The conversion method is summarized 

as follows: 

 

TCOD=2.1*BOD5 

CODBO=1.71*BOD5 

VSS=0.75*SS 

TKN=1.74* SNHO 

CODIO=TCOD-CODBO 

XIO=0.56*VSS 

SIO=CODIO-XIO 
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SSO=0.35*CODBO (The value shown in Grady et al.’s book is 0.43) 

XSO=CODBO-SSO 

ONTO=TKN-SNHO 

ONTO=SNSO+SNIO+XNSO+XNIO 

XNIO≈iN/XD*XIO= 0.06*XIO 

SNIO = 1.5 mg/L (Suggested) 

SNSO=(SNSO+XNSO)*[(SSO)/(SSO+XSO)]                                                            (3-16) 

where SS is suspended solids, VSS is volatile suspended solids, ONTO is total organic 

nitrogen, and TKN is total Kjeldahl nitrogen.  

 

This method has proved to be useful in some cases (Grady et al., 1999). However, when 

we applied this method to the Oak Ridge WWTP, some unexpected negative values are 

produced, which have no meaning. There are two methods to deal with the negative 

values. Firstly, the negative value indicates that the component is very small and is 

therefore negligible. Thus, we might replace it with a very small positive number, for 

example 0.001 or even 0. Secondly, the other method is to change the ratio of the 

components, which directly results in the negative values. We adopted the former case in 

this work. 
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3.1.3.2 Effluent conversion method 

 

We are interested in evaluating plant performance in terms of several conventionally 

defined effluent variables such as BOD5, TCOD, SS, TKN, and ammonia nitrogen.  The 

relationships between the 13 state variables and the conventional effluent variables are 

given by the following formulas:  

TKN=SNHE + SNSE + XNSE 

BOD5 = fbod×(SSE + XSE + XBHE +XBAE) 

TCOD (Total COD) = SIE + SSE +XSE + XBHE + XBAE + XIE + XDE 

VSS=XCOD/icv = (XSE + XBHE + XBAE + XIE + XDE)/icv 

SS=VSS/ivt                                                                                                      (3-17) 

where fbod=BOD5/BODu, icv = XCOD/VSS, and ivt = VSS/SS. Those values are defined 

based on experience according to Table 3-1 (Hydromantis, Inc). The subscript E indicates 

the component concentration in the effluent. 

 

 

Table 3-1. Typical coefficients of the influent, CSTRs, and effluent. (Hydromantis, Inc.) 

 
Items icv[mg COD/ mg VSS] ivt [mg VSS/mg TSS] fbod [BOD5/BODu]

Influent 2.2 0.6 0.66

CSTRs 1.48 0.75 0.66

Effluent 1.48 0.75 0.66
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3.2 ASM1 Parameters 

 

As shown in Table 2-4, the ASM1 model has 19 parameters including 5 stoichiometric 

coefficients and 14 kinetic parameters. The parameters are traditionally treated as fixed. 

Experiments can also be conducted to measure site-specific values of a few of the most 

critical process parameters. If resources for the measurement of these parameters are not 

available, default (fixed) values recommended in the literature will be assumed to be 

sufficiently accurate. For the calibration procedure, in order to better simulate the plant 

performance, Daigger (1997) and Huo (2001) calibrated the process parameters that were 

divided into 3-4 fixed seasonal groups. The research work also proved that the parameters 

were changing through a year. There were also a few studies in which values of process 

parameters were measured repeatedly over a period of a few months. The results clearly 

showed time-dependent variability in the site-specific parameters (Drtil et al., 1993; 

Fillos et al., 2000; Orhon et al., 1999; Sözen et al., 1996 and 1998). Therefore, there is 

uncertainty in process parameters that cannot be described by simply making a single 

measurement and/or calibration. The causes of parameter variability are the changing 

characteristics of the biomass, changing seasonal wastewater temperature, changing 

influent organic and hydraulic loadings, and changing DO concentrations, etc. This 

uncertainty in process parameters can be quantitatively described by a statistical 

distribution of the parameter values that occur in wastewater treatment plants all over the 

world (universal distribution). Seemingly, parameter uncertainty can be greatly reduced 

by making site-specific measurements of the parameter value. With the introduction of 
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uncertainty in process parameters, we expect that this method can capture the uncertainty 

in DO concentration, configuration, clarifier performance, and process upsets. 

 

As is expected, in this dissertation, the model parameters are not considered to be 

constant but are sampled from distributions. That is, there are uncertainties in those 

parameters. Cox (2004) generated a group of parameter distributions using Bayesian 

method. Because the values used in the Bayesian method were from the measured and/or 

simulated data all over the world, we call these distributed parameters the universal 

parameter distributions (UPD) (or non-site-specific parameter distributions). Besides the 

fixed calibrated parameters and the universal parameter distributions, there is still another 

choice of the model parameters: the site-specific parameter distributions (SPD). The site-

specific parameter distributions are generated using the same Bayesian method and same 

prior distributions. The only difference is that the measured data are from 12-month 

calibrated parameters. These three kinds of model parameters will be discussed in the 

following three sections.  

 

 

3.2.1 Universal Parameter Distributions 

 

The UPD parameters, as shown in Table 2-5, were generated by Cox (2004) using 

Bayesian method. The data used were from the published values all over the world. Thus, 

they are also called non-specific parameter distributions.  
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Most UPD parameters are generated from a lognormal distribution (µ,σ), 

, where  is the inverse CDF function for the standardized 

normal distribution and p is a uniform random number sampled over the range 0 to 1. A 

few parameters are generated using a uniform distribution [a,b], , where 

p is a uniform random number sampled over the range 0 to 1.  

])(exp[ 1 σµ px norp
−Φ+= 1−Φ nor

pabax p )( −+=

 

In the simulations in this chapter, we have used a temperature of 20oC, a value of ΘC of 

10 days, a recycle ratio of 0.5, and a dissolved oxygen level of 2.0 mg/L.  The daily 

influent is represented as a constant 24-hour mean condition with a superimposed re-

occurring diurnal pattern (GPS-X® and Grady et al., 1999), as shown in Figure 3-6. The  
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Figure 3-6. The diurnal factors for influent flow and components. 
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typical diurnal pattern of wastewater flow and concentration are similar and the 

concentration pattern is always about three hours delay than the flow rate pattern (Dold 

and Marais, 1996). In this section, we only focused on the study on how the uncertainty 

in process parameters affects the uncertainty of the plant performance. In Chapter V, we 

will conduct dynamic simulations with the effect from influent variability added. The 

influent concentrations in Table 3-2 were used. The results are based on 2000 Monte 

Carlo trials.  

 

The statistical characteristics of TKN, TCOD, SS, BOD5 and Ammonia nitrogen from the 

steady-state simulations are reported in Table 3-3 and Figure 3-7. The variability reported  

 

 

Table 3-2. The typical characteristics of the domestic wastewater that has undergone 

primary sedimentation. (Henze et al.,1986; Grady et al., 1999) 

 
Symbol Unit Influent Values
XI – Inert particulate organic matter  mg/L as COD  40
XS – Slowly biodegradable substrate  mg/L as COD  160
XBH – Heterotrophic biomass mg/L as COD  96
XBA – Autotrophic biomass mg/L as COD  10
XD – Biomass debris mg/L as COD 0
SI – Inert soluble organic matter mg/L as COD 40
SS – Readily biodegradable substrate mg/L as COD 64
SNO – Nitrate nitrogen mg/L as N 1
SNH – Ammonia nitrogen mg/L as N 12.5
SNS  – Soluble biodegradable organic nitrogen mg/L as N 10.1
XNS  – Particulate biodegradable organic nitrogen mg/L as N 18.28
SALK – Alkalinity mM/L 6
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Table 3-3. Statistical characteristics of effluent components of Monte Carlo simulation. 

Percentiles Items Mean Std Dev 
Max 97.5% 50.0% 2.5% Min 

TKN 0.9406 1.6827 31.651 3.041 0.617 0.209 0.114
TCOD 52.2272 4.6339 160.82 59.93 51.52 48.00 46.47
SS 9.5270 2.0132 17.727 13.955 9.268 6.242 4.976
BOD5 5.5817 3.0763 77.515 10.487 5.130 2.627 1.797
Ammonia-N 0.4643 1.6455 31.342 2.255 0.150 0.015 0.005
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Figure 3-7. The histograms of TKN, TCOD, SS, BOD5 and ammonia-N of Monte Carlo 

simulations (X-Axis: Frequency). 

 - 57 - 



is due exclusively to uncertainty in the process parameters that characterize the plant 

performance. Variability in influent load would cause additional variability in the 

predicted effluent concentrations. The effluent variables are approximately lognormal in 

distribution. The mean value of each conventional pollutant is relatively low, indicating 

good removal of pollutants. However, the effluent distributions are also characterized by 

numerous extremely large values that may be of concern depending on the contaminant 

concentrations allowed in the permit.  For example, if the discharge permit allowed an 

effluent ammonia concentration of 5 mg/L, there would be several combinations of 

process parameters that could result in an average plant performance that violates the 

permit, even though the mean predicted value is less than 5 mg/L. In order to be more 

certain of meeting the effluent permit, the engineer would need to either increase the 

SRT, use a reactor configuration that resulted in better treatment efficiency, or make site-

specific measurements of the process parameters to better define their values. 

 

The experimental determination of all 15 process parameters would be time consuming 

and expensive. We will now demonstrate how sensitivity analysis can be used to 

determine which variables contribute most to the uncertainty in the effluent. Only the 

relatively few variables contributing most to uncertainty would need to be determined 

experimentally.  

 

We use the Spearman rank correlation method to determine the relationship between 

uncertainty in the process parameters and uncertainty in the effluent variables. The 

Spearman rank correlation has the advantage that it is not affected by non-linearities in 
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the process model. The Spearman rank correlation coefficient ranges from –1.0 to 1.0. 

The larger the absolute value of the correlation coefficient is, the stronger the relationship 

is. Positive coefficients indicate that an increase in the process variable is associated with 

an increase in the forecast, whereas negative coefficients imply the reverse situation. The 

sensitivity analysis considers both the uncertainty of the input parameter and how that 

uncertainty is propagated through the design model.  The results of the sensitivity 

analysis, calculated in NCSS®, are shown in Table 3-4. 

 

For the component ammonia-N, the significant parameters are, in order, KNH, µA,max and 

YA. The analysis indicates that ammonia-N increases with increases in KNH and YA and 

with decreases in µA,max. The process rate for aerobic growth of autotrophs is 

BA
OAO

O

NHNH

NH
A X

SK
S

SK
S

r ))((
,

max,3 ++
= µ , as shown in the Table 2-2.  Thus, larger KNH 

values lead to lower autotroph concentrations, which decrease the consumption of 

ammonia-N. The parameter µA,max has a similar effect except that larger µA,max values 

lead to higher autotroph concentrations, thereby  increasing the consumption of 

ammonia-N. The parameter YA is the yield for autotrophs with the unit of mg biomass 

COD formed/ mg N oxidized. Thus, more yield of autotrophs will lead to more 

consumption of ammonia-N.  

 
 

For the component TKN (Total Kjeldahl Nitrogen: organic + ammonia nitrogen), the 

most significant parameters are, in order, bLH,  KNH, µA,max, and YA. These results suggest 
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Table 3-4. Sensitivity analysis between plant effluent and model parameters. 

 
 SNH TKN TCOD SS BOD5 

YH -0.014 -0.089 0.531 0.540 0.392
YA 0.271 0.186 0.097 0.088 0.079

µH,max -0.015 0.008 -0.330 -0.005 -0.332
bLH -0.003 0.651 -0.340 -0.686 -0.473
ηg 0.000 -0.006 -0.009 0.008 -0.011
ηh -0.006 0.003 -0.021 -0.020 -0.030
ka 0.000 0.000 0.000 0.000 0.000
kh -0.032 -0.050 -0.075 -0.086 -0.084

µA,max -0.439 -0.292 -0.035 -0.040 -0.036
bLA 0.124 0.074 0.005 -0.028 0.003
KS 0.008 0.028 0.319 -0.018 0.316
KOH -0.073 -0.028 0.062 0.041 0.058
KNO -0.011 0.008 0.027 -0.018 0.028
KX 0.010 0.065 0.096 0.093 0.102
KNH 0.760 0.447 0.001 0.001 0.008
KOA 0.200 0.145 -0.005 -0.017 -0.004
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that TKN increases significantly with increases in bLH , KNH and YA and with decreases in 

µA,max. Since ammonia-N is a component of TKN, it is not surprising that the parameters 

KNH, µA,max and YA also significantly affect the effluent levels of TKN although they 

have different order of importance. An additional parameter bLH, the decay coefficient for 

heterotrophs, is also important. In the lysis:regrowth approach, the decay of biomass 

produces particulate biodegradable organic nitrogen. Thus, the parameter bLH becomes 

significant, because heterotrophic biomass is dominant in the bioreactor and its decay 

coefficient is much larger than autotrophic biomass.  

 

For the component TCOD, the most significant parameters are, in order YH, bLH, µH,max, 

and KS. These results suggest that the TCOD increases significantly with increases in YH 

and KS and with decreases in bLH and µH,max. The process rate for aerobic growth of 

heterotrophs is BH
OHO

O

SS

S
H X

SK
S

SK
S

r ))((
,

max,1 ++
= µ , as shown in the Table 2-2.  Thus, 

larger KS values lead to lower heterotrophic biomass concentrations, which decrease the 

consumption of TCOD. In contrast, increases in the value of the parameter µH,max result in 

increased consumption of TCOD. The parameter YH is the yield for heterotrophs with the 

unit of mg biomass COD formed/ mg COD removed. Thus, more yields of heterotrophs 

will lead to more consumption of TCOD. The parameter bLH is the decay coefficient for 

heterotrophs. In the lysis:regrowth approach, the decay of biomass produces slowly 

biodegradable substrate, which is a main part of effluent TCOD.  
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For the component SS, the most significant parameters are, in order, bLH, and YH.  The 

analysis shows that SS tends to increase significantly with increases in YH and decreases 

in bLH.  The explanations for parameters bLH, and YH are the same for effluent TCOD.  

 

For the component BOD5, the most significant parameters are, in order, bLH, YH, µH,max 

and KS. The analysis indicates that BOD5 tends to increase significantly with the 

increases in YH and KS, and decreases in bLH and µH,max. The explanations for parameters 

bLH, YH, µH,max and KS are the same for effluent TCOD.  

 

Table 3-5 summarizes the effect of model parameters on plant effluent components, 

which can be used in calibration procedures. For example, suppose we want to calibrate 

effluent ammonia-N. The order of calibrated parameters is KNH (ammonia substrate half- 

 

 

Table 3-5. The revised sensitivity table for calibration purposes. 

 

         Parameter 
Effluent 

No.1 No.2 No.3 No.4 

Ammonia-N KNH(+) µA,max(-) YA(+) N/A 

BOD5 bLH(-) YH(+) µH,max(-) KS(+) 

SS bLH(-) YH(+) N/A N/A 

TKN bLH(+) KNH(+) µA,max(-) N/A 

TCOD YH(+) bLH(-) µH,max(-) KS(+) 
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saturation constant, mg/L), µA,max (maximum specific growth rate of autotrophic biomass, 

hr-1), and YA (autotrophic yield, mg COD biomass/mg N substrate). The plus sign means 

the positive correlation between effluent components and process parameters. That is, the 

effluent components would increase with increasing of process parameters. If our 

calibrated plant effluent data are less than the measured plant effluent data, the first 

parameter we need to concern is KNH. In this case, we need increase the value of KNH. 

The second parameter is µA,max and we need decrease the value of µA,max. The last 

parameter is YA and we need increase the value of YA. This procedure can then determine 

the calibrated parameters for certain effluent components.  The detailed application will 

be discussed in next section.  

 

From the simulation and analysis above, we can make the following conclusions: 

 

• The uncertainty in the process performance due to model parameter uncertainty is 

significant, and would only increase as variable plant loading is also considered.  

• Model parameters contributing most to the uncertainty of the plant performance 

were identified using sensitivity analysis based on Spearman rank correlation. 

Several parameters contributing the most to the uncertainty in specific effluent 

variables include: for TKN,  bLH,  KNH, µA,max, and YA; for TCOD, YH, bLH, µH,max, 

and KS; for SS, bLH, and YH; for BOD5, bLH, YH, µH,max and KS; and for ammonia-

N, KNH, µA,max, and YA. These results reflect both the uncertainty of the input 

parameter and the way in which this uncertainty is propagated through the model. 
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• Model parameters identified by the sensitivity analysis as contributing 

significantly to uncertainty in plant performance can be determined 

experimentally, thereby decreasing the uncertainty in predicted performance and 

increasing the confidence of engineers and regulators that the plant will perform 

as required by the permit. 

 

 

3.2.2 Calibration Procedure and Calibrated Parameters 

 

As discussed, the previous Monte Carlo simulation used the universal parameter 

distributions, which are based on the published values all over the world. In order to 

better describe the plant performance for a specific WWTP, we need to find out the 

specific group of model parameters for this WWTP. The calibration procedure is needed 

to find the site-specific calibrated parameters. This procedure highly depends on the 

sensitivity analysis in Table 3-5. First, we need to figure out which effluent components 

will be the main concern in the calibration. For examples, if we consider the ammonia 

nitrogen, BOD5, and SS to be the major effluent components, only 6 of total 19 

parameters are needed to be included in this calibration procedure: KNH, µA,max, YA, bLH, 

YH, and µH,max. This will significantly decrease the workload of either calibration or 

measurement.  

 

In this dissertation, only effluent ammonia nitrogen is considered due to the limitation of 

the secondary clarifier model. So far, there is no well-recognized clarifier model 
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available. Thus, instead of choosing one unreliable clarifier model, in this study we have 

assumed a constant clarifier efficiency of 99.75 percent, which represents relatively good 

clarifier performance. The clarifier efficiency is a ratio of the removal particulate 

concentration to the particulate concentration in the last CSTR. The historical plant data 

from both the Oak Ridge and Seneca WWTPs have proved that this clarifier efficiency is 

very reasonable. The effluent ammonia nitrogen approach has been used in the WERF 

research project (00-CTS-3). For details, please refer to the project report by Cox et al. 

(2003). 

 

The ammonia nitrogen concentration in the Oak Ridge WWTP was measured by the 

Standard Method 4500-NH3-G: ammonia selective electrode method. According to the 

manufacturer of the Orion Ammonia Electrode, the detection limit is 0.01 mg/L ammonia 

nitrogen. As for the Seneca WWTP, the ammonia nitrogen concentration was measured 

by the automated phenate method, which is equivalent to the EPA method 350.1 or 

Standard Method 4500-NH3-G. This method is applicable over the range of 0.02 to 2.0 

mg/L (American Public Health Association, American Water Works Association, and 

Water Environment Federation, 1998). However, the historical effluent ammonia 

nitrogen data of both Oak Ridge and Seneca WWTPs have the minimum value of 0.01 

mg/L. Thus, the detection limit of the ammonia nitrogen method is considered to be 0.01 

mg/L. Its effect on the calibration results will be discussed in Chapter V. 

 

Because the effluent ammonia nitrogen is the only component used to our calibration 

procedure, Table 3-6 shows the simplified the calibration strategy. Only three model  
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Table 3-6. The revised sensitivity table for calibration purposes (NH4-N only). 

 

Parameter
Effluent 

No.1 No.2 No.3 

Ammonia-N KNH(+) µA,Max(-) YA(+) 

 

 

parameters will be calibrated: KNH, µA,max, and YA. The plant data used are from the one 

full year’s historical data. The calibration is completed month by month. That is, finally 

we will obtain 12 groups of model parameters corresponding to each of the 12 months. 

The traditional way to consider the changing values of model parameters is based on the 

season differences. Huo (2001) divided the model parameters of Tianjin Ji-Zhuang-Zi 

WWTP into three categories: one is for Winter, another is for Summer, and the last one is 

for Spring and Fall. In our dissertation, we believe that the model parameters change 

more significantly than seasonal changes. Thus, we shorten the period to one month. The 

target function is the RMSE (root mean square error), which is calculated as the square of 

the difference between the predicted and historical effluent ammonia nitrogen data.  

 

The enumerative search method is chosen in this calibration procedure. Compared with 

other searching methods, for example, genetic algorithm (GA), the enumerative search 

method finds the targeted values by searching a grid parameters with predefined 

intervals. In our case, the range for each parameter is [0.1 × Default Value, 1.9 × Default 

Value] with an interval of 15 percent of the default value. This search will require 133 = 
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2197 evaluations. Enumerative search methods are a global optimization method because 

they avoid getting stuck in local minima as can happen for gradient-based search 

methods. However, there are also limitations of this enumerative (exhaustive) search 

method: the searching range and searching intervals. There are two ways to solve this 

problem if needed. Firstly, we might use a larger range and smaller interval to ensure that 

reasonably accurate optima may be identified. Secondly, we can also use the regression 

methods and/or graphic information to find the best group of model parameters using the 

fitted function. Notice that the main purpose of the calibrated parameter is to generate the 

site-specific parameter distributions. In this case, we treat parameters as distributions 

instead of fixed values. That is, we are more interested in the right range of model 

parameters instead of the exact values.  

 

 

3.2.3 Bayesian Method and Site-specific Parameter Distributions 

 

Given a specific prior probability density function (PDF) and relative likelihood 

functions, it is reasonably easy to numerically calculate the posterior distribution by using 

numerical integration. However, it might be more difficult to those problems with two or 

more distributed parameters. In order to guarantee accurate and stable results by using 

numerical integration, it is generally necessary to understand the PDF and relative 

likelihood functions and then ensure that the integration is calculated under certain 

requirements (for example, integration intervals). This checking procedure of certain 

requirements is more complicated for two or more variables. For example, the most 
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commonly applied distribution in this dissertation is the lognormal distribution, whose 

PDF function is shown as follows: 
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Where the median )exp(5.0 µ=t is a scale parameter and 0>σ is a shape parameter.  

 

Simulation-based methods can be used to compute the posterior distributed parameters. 

To do this, we need to generate a sample from the posterior distributional parameter and 

then estimate the parameters. A large simulated sample theoretically provides a better 

estimation of the posterior parameter distributions. However, the number of samples is 

also highly dependent on current computing technologies and acceptable running time. 

Obviously, the first one is very objective, which is limited to current available technology 

development. This includes two aspects: computing hardware (faster computers, etc), and 

computing methods (better computing algorithms). The later one is really subjective 

although it is also related to the computing technologies. In this dissertation, we 

commonly take 24 hours (one full day) as a reasonable and acceptable running time 

constraint.  

 

The general procedure is shown as follows, which requires only computable expressions 

of the relative likelihood and the inverse cumulative distribution function (CDF) of the 

independent marginal prior distributions. 

 

 - 68 - 



• Step 1: Generate a random sample (θi), I=1,…, M, from the prior 

distribution f(θ). 

• Step 2: Keep the ith sample point, θi with probability R(θi). 

• Step 3: Repeat Step 2 until a random sample from the posterior PDF 

f(θ|DATA) is generated with a sample size M*. 

 

In this case, the parameter θ is the concerned parameter. In our case it is either µ or σ for 

a lognormal distribution (KNH, µA,max, or YA). R(θ) is the relative likelihood function, as 

shown below. 
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M is the number of original available data. Sample size M* can be calculated by 

. Generally, 2000-4000 sample sizes from the posterior 

distribution can give sufficient accuracy to get a smooth estimation of posterior 

distributed parameters (Meeker and Escobar, 1998; Cox 2004).  The comparison and 

application of both the UPD and SPD parameters will be conducted in Chapter V.  

∫= θθθ dRfMME )()(*)(
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3.3 ASM1 Influent Inputs and Time Series Models 

 

3.3.1 Introduction 

 

In this section, we will discuss variability (uncertainty) in the plant influent data. There 

are three options for the influent data. First, we can directly use the historical data. The 

advantage of this option is that the historical data are normally the easiest data to obtain. 

Even if the historical data are not available (especially for the new plant design), we can 

use similar historical data in this region as a reference. As a second option, we can use 

the predicted data from time series models, which are based on the historical data. The 

predicted data has advantage of better description of the trends of the historical influent 

data. However, the disadvantage of this method is that a long period of historical data (for 

example, three years) are needed to fit a valid time series model with correct trend, 

seasonality, and so on. Thirdly, we can use the randomly generated influent data. These 

random influent data are generated from the revised time series model. The advantage of 

this method is that the generated random influent data are different from either historical 

or predicted influent; while they have the same/similar statistical features with the 

historical influent data. This is the most important feature that we expect, especially for 

Monte Carlo simulations. Using this method, we can generate different random influent 

data for every Monte Carlo run. The discussion of these three methods will be conducted 

in details in this section.  
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As discussed above, this random influent variables generator is used to generate the 

random plant influent. The generating procedure is described as follows. First, fit the 

best-available time series model from the historical influent data. Then, modify the 

parameters of the fitted model based on preceding predicted values and error terms. Thus, 

the generated random plant influent component will be a random time series with the 

same statistical patterns with the original plant influent data. 

  

The input data are from one existing plant, Oak Ridge WWTP. The Oak Ridge plant is 

designed for an average wastewater treatment flow of 735,000 L/h (17,604 m3/day) and a 

peak flow of 1,577,255 L/h (37,854 m3/day). We analyzed the primary clarifier effluent 

data, because our long-term goal is to study performance of the activated sludge 

treatment process under varying loads. Almost three-year’s of daily data (from November 

1, 1999 to July 31, 2002) for five influent variables (temperature, flow rate, BOD5, 

suspended solids, and NH4-N) were used to build the models. The data records for three 

of the variables (BOD5, SS, and NH4-N) are characterized by missing data points on 

Friday, Saturday, and other holidays, while the records for temperature and flow rate are 

virtually complete. 

 

Several time series models, such as Exponential Smooth (ES), Autoregressive integrated 

moving average (ARIMA), and Dynamic Regression (DR) model, were applied to 

describe possible trends and seasonality (monthly and/or daily). An advantage of the DR 

model is its ability to consider potential correlations between the time series of the five 

variables.  
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3.3.2 Time Series Analysis 

 

3.3.2.1 Missing values 

 

Missing data points on Friday, Saturday, and holidays characterized the data records for 

BOD5, SS, and NH4-N. This situation is not uncommon at wastewater treatment plants, 

but must be accounted for in the statistical modeling approach, by replacing the missing 

values with appropriate estimates. There are several methods commonly used to estimate 

missing values. However, most methods depend on the MCAR (missing completely at 

random) assumption, which means the probability that a given observation is missing 

does not depend on the data set. Unfortunately, MCAR observations are less likely in 

time series data because observations are usually correlated with time series. The regular 

pattern of the missing data (Fridays, Saturdays, and holidays) at the Oak Ridge WWTP 

violates the MCAR assumption and renders many data replacement schemes invalid.   

 

One potential solution is to replace all missing values for a given variable with the mean, 

median, or other location statistic (e.g., percentile) determined from the non-missing 

values of the variable (DeLurgio, 1998). However, this method can falsely introduce 

rapid temporal changes in variables in the data record. The second easiest method is to 

replace missing values with the average of the nearest observation in the future and/or the 

past. However, in this paper we have used a two-directional exponential smoothing (TES) 

record to replace the missing values. To apply the method, an exponential smoothing 

algorithm, provided in most commercial statistical software, is applied to the data in both 
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the forward and reverse directions. Estimates of missing values are determined by taking 

the mean of the forward- and reverse-direction exponential smoothing forecasts.  The 

detailed instruction of the TES method will be elaborated in the section 3.4. Figure 3-8 

shows a sample time series of the original data and the values after application of the TES 

method for estimating missing values. For other two variables (SS and NH4-H), please 

refer to Chapter IV.  

 

For influent flow rate and temperature, there are few missing data. No missing 

replacement method is needed. Figure 3-9 shows the daily data of the influent flow rate.  

From the plot of plant influent flow rate, it is hard to tell whether there is trend and/or  
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Figure 3-8. The scatter plots of the original and updated BOD5 series for two months. 
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Figure 3-9. The scatter plot of the flow rate series. 

 

seasonality. To find out the uncovered truth, ACF and PACF plots are introduced in the 

section 3.3.2.2.  

 

 

3.3.2.2 Correlations 

 

In order to investigate the possible trend and seasonality (daily or monthly), 

autocorrelation and partial autocorrelation functions (abbreviated as ACF and PACF) are 

introduced in this section. In the system identification procedure, ACF and PACF plots 

are used to suggest a tentative form of the model equations. Figures 3-10, 3-11, 3-12 and 

3-13 are ACF and PACF plots of flow rate, BOD5, SS, and NH4-N. All four figures 
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Figure 3-10. The autocorrelation plots of ACFs and PACFs of the daily Flow rate series. 
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Figure 3-11. The autocorrelation plots of ACFs and PACFs of the daily BOD5 series. 
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Figure 3-12. The autocorrelation plots of ACFs and PACFs of the daily SS series. 
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Figure 3-13. The autocorrelation plots of ACFs and PACFs of the daily NH4-N series. 

 

 

indicate that there is strong autocorrelation at lag 1 [AR (1)]. Neither daily nor monthly 

seasonality is significant. Those plots also show that there are no significant trends 

existing in those series. Notice that the ACF and PACF plots are very helpful to estimate 

which time series model might be good for the selected time series data. However, the 

final best-fitted model might be a little different from what we expected from ACF and 

PACF plots. For example, as shown in the section 3.3.3, the flow rate model is best fitted 

with a daily seasonality (i.e., the days of a week effect). 

 

The models were designed to include cross correlation between variables, as well as 

autocorrelation within each variable. The Spearman correlation coefficients (Table 3-7) 

indicate that flow rate and temperature, BOD5 and flow rate, NH4-N and flow rate, and 

NH4-N and BOD5 are significantly correlated (r>0.30).   
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Table 3-7. Spearman correlations of the five time series. 

 

  Temperature Flow rate BOD5 SS NH4-N 

Temperature 1.0000 -0.4557 0.0809 -0.0652 0.2836

Flow rate -0.4557 1.0000 -0.3958 -0.0192 -0.5911

BOD5 0.0809 -0.3958 1.0000 0.1527 0.3974

SS -0.0652 -0.0192 0.1527 1.0000 0.1399

NH4-N 0.2836 -0.5911 0.3974 0.1399 1.0000

 

 

 

The cross-correlation coefficients (Table 3-8) indicate that there is a lag 1 pattern existing 

in correlated groups: flow rate/temperature, BOD5/flow rate and NH4/flow rate. In reality, 

the typical diurnal pattern of wastewater flow and concentration are similar and the 

concentration pattern is about three hours delay than the flow rate pattern (Dold and 

Marais, 1986). However, the plant data are daily not hourly time series so that the hourly 

delay pattern is not expected in this research. Notice that flow rate, BOD5, and NH4 are 

correlated in a circled. Thus, only BOD5/flow rate and NH4/flow rate are considered in 

this research. Notice that the cross-correlation coefficients of Lag (0) (absolute values) 

are consistently smaller than Spearman correlation coefficients, as shown in Tables 3-6 

and 3-7. This is due to the some outliers in the data series. 
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Table 3-8. Cross-correlation results of the possible correlated series. 

 

Items Lag(0) Lag(1) Lag(2) Lag(3) 

Flow rate/Temperature -0.4117 -0.3943 -0.3943 -0.3957

BOD5/Flow rate -0.3575 -0.3944 -0.3770 -0.3474

NH4-N/Flow rate -0.5004 -0.5095 -0.4771 -0.4445

NH4-N/BOD5 0.3375 0.2824 0.2189 0.1475

 

 

Furthermore, temperature and flow rate are easily measured data, which can be recorded 

timely and sometimes automatically. However, as for SS, NH4-N, and BOD5 data, they 

are relatively more complicated and commonly their values are not available 

immediately. For example, the traditional method of BOD5 takes five days to measure 

wastewater samples. As a result, temperature and flow rate are regarded as priory 

absolute inputs (independent variables).  Notice that flow rate may be an output with 

temperature as an input, and be an input for both BOD5 and NH4-N, which depends how 

much the model is improved to decide whether we need this correlation. 

 

 

3.3.3 Time Series Models 

 

Once the forms of the model equations were known, the parameters were estimated using 

least-squares regression. Models were evaluated by employing statistics such as R2, Root 
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Mean Square Error (RMSE), and Mean Absolute Percent Error (MAPE) to determine 

how well the model fit the data. In addition, the white noise and normality tests of the 

residuals were used to detect outliers and determine forecasting confidence intervals. 

Parameter estimation and model evaluation were conducted using two different 

procedures. In the first procedure, the full data record from November 1999 through July 

2002 was used for both parameter estimation and performance diagnosis. In the second 

procedure, to verify the forecasting ability of the models, data were then split into a 

calibration data set spanning the period November 1999 through April 2002 and a 

holdout data set spanning the period May 2002 through July 2002. The calibration data 

set was used for parameter estimation and the holdout set was used to verify the ability of 

the models to forecast. The best models were selected on the basis of these evaluations. 

Additional details of the procedures used to build time series models can be found in 

standard textbooks (Prankratz, 1991; DeLurgio, 1998). 

 

Table 3-9 shows the time series models of the five variables with November 1, 1999 to 

June 31, 2002 as both fit and evaluation range, which focus on the model fit. And Table 

3-10 shows the time series models of the five variables with November 1, 1999 to April 

30, 2002 as fit range and May 1, 2002 to July 31, 2002 as evaluation range, which 

focuses on the forecasting. Note that the variable temperature is well fitted without trend 

and seasonality, which is probably due to the slow-changing pattern in this series. The 

models of flow rate and NH4 are also reasonable with R2>0.60. BOD5 and SS will be the 

key problems to be addressed. 



Table 3-9. Time series models of the five time series with fit range November 1, 1999 to July 31, 2002 and evaluation range 

November 1, 1999 to July 31, 2002. 

 
Series Name Model Label RMSE MAPE R2 

Temperature *Damped Trend Exponential Smoothing 0.9511 3.6253 0.934
Flow rate *Log ARIMA (2,0,0) (1,0,0)7 

 
 

  
  

  

102839.4 8.7492 0.620
 Log [Temperature +ARIMA(2,0,0) (1,0,0)7] 101691.3 8.7174 0.628
 #Log [Temperature +ARIMA(1,0,0) (1,0,0)7] 101873.2 8.7841 0.627

Log {Temperature[N(1)/D(1)]+ARIMA(1,0,0)(1,0,0)7} 101928.1 8.7978 0.627
Log {Temperature[N(1)/D(1)]+ARIMA(2,0,0)(1,0,0)7} 102261.6 8.8322 0.624

BOD5 *Simple Exponential Smoothing 16.6540 18.3341 0.395
# Flowrate[N(1)/D(1)]+AR(1) 15.3611 18.2972 0.486

 Flowrate[N(1)/D(1)]+AR(1) + Linear Trend 15.2139 17.6496 0.495
SS Log Simple Exponential Smoothing 24.0172 19.0722 0.353
 *Simple Exponential Smoothing (M1) 24.2204 18.6755 0.342
 #Linear Trend + AR(1) +Point:31JAN2002 (M2) 20.5594 18.2940 0.526
 Combination: [0.12 M1 +0.88 M2] 20.5112 18.0015 0.529
NH4 *Simple Exponential Smoothing (M1) 2.4940 15.4878 0.625
 # Flowrate[/D(1)]+AR(1) (M2) 2.3094 14.6447 0.678
 Flowrate[/D(1)] + AR(1) + Points: 02JUN & 03JUN2002[M3] 2.1848 14.7128 0.712
 Combination: [ 0.5 M1+0.5 M2] 2.3592 14.6556 0.665
  Combination: [ 0.5 M1+0.5 M3] 2.2565 14.5720 0.693
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Table 3-10. Time series models of the five time series with fit range November 1, 1999 to April 30, 2002 and evaluation range 

May 1, 2002 to July 31, 2002. 

 
Series Name Model Label RMSE MAPE R2 

Temperature *Damped Trend Exponential Smoothing 1.2998 4.5511 0.772
Flow rate *Log ARIMA (2,0,0) (1,0,0)7 

 
 

  
  

  
 

138175 9.6536 0.471
 Log [Temperature +ARIMA(2,0,0) (1,0,0)7] 136309 9.6009 0.485
 #Log [Temperature +ARIMA(1,0,0) (1,0,0)7] 135899 9.5680 0.488

Log Temperature[N(1)/D(1)]+ARIMA(1,0,0)(1,0,0)7 136536 9.7577 0.484
Log Temperature[N(1)/D(1)]+ARIMA(2,0,0)(1,0,0)7 137024 9.7757 0.480

BOD5 *Simple Exponential Smoothing 12.2102 17.8990 0.529
Flowrate[N(1)/D(1)]+AR(1) 12.7544 24.2151 0.486
#Flowrate[N(1)/D(1)]+AR(1) + Linear Trend 12.4147 21.1794 0.513

SS Log Simple Exponential Smoothing 29.6683 16.4552 0.420
 *Simple Exponential Smoothing (M1) 29.6079 16.0206 0.422
 # Linear Trend + AR(1) +Point:31JAN2002 (M2) 29.3667 13.8298 0.432
 Combination: [0.12 M1 +0.88 M2] 20.6017 18.0876 0.525
NH4 *Simple Exponential Smoothing (M1) 3.8863 11.4872 0.682
 #Flowrate[/D(1)]+AR(1)  (M2) 3.7713 10.5442 0.701
  Combination: [ 0.5 M1+0.5 M2] 2.3540 14.7499 0.666

 



After evaluating several potential models for each variable, recommended models were 

selected and are summarized in Table 3-11. Recommendations for simple univariate 

models and more complicated multivariate models are indicated in the table with by * 

and # symbols, respectively.  In section 3.3.4, we will use the best model (complicated 

model with symbol #) to derive the equations needed for the random influent generator. 

 

Predicted time series based on the simple models for flow rate, BOD5, SS, and NH4-N are 

compared to the actual data in Figures 3-14, 3-15, 3-16, and 3-17. The models are seen to 

track the data very well with great accuracy. However, there is a lag 1 problem between 

the predicted and real data. That is, it seems that the predicted data are one day delayed.  

 

 

Table 3-11. Recommended time series models for the five variables. (Evaluation statistics 

are for the period November 1, 1999 to July 31, 2002) 

 
Series Name Model Label RMSE MAPE R2 W/N 
Temperature *#Damped Trend Exponential Smoothing 0.9511 3.63 0.934Yes/No
Flow rate *Log ARIMA (2,0,0) (1,0,0)7 102839.4 8.75 0.620Yes/No
 #Log[Temperature+ARIMA(1,0,0)(1,0,0)7] 101873.2 8.78 0.627Yes/No
BOD5 *Simple Exponential Smoothing 16.6540 18.33 0.395 No/No
 #Flow rate[N(1)/D(1)]+AR(1) 15.3611 18.30 0.486 No/No
SS *Simple Exponential Smoothing (M1) 24.2204 18.68 0.342 No/No
 #Linear Trend+AR(1)+Point:1/31/02 (M2) 20.5594 18.29 0.526 No/No
 Combination: [0.12 M1 +0.88 M2] 20.5112 18.00 0.529 No/No
NH4 *Simple Exponential Smoothing 2.4940 15.49 0.625 No/No
 #Flow rate[/D(1)]+AR(1) 2.3094 14.64 0.678 No/No
Note:  
1) * simple univariate model;  # more accurate and more complicated multivariate model 
2) W/N indicates the White Noise/ Normality tests of the residuals.  
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Figure 3-14. Flow rates forecasts (simple model) compared to the actual values. 
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Figure 3-15. BOD5 forecasts (complicated model) compared to the actual values. 
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Figure 3-16. SS forecasts (complicated model) compared to the actual values. 
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Figure 3-17. NH4-N forecasts (complicated model) compared to the actual values. 

 

 - 84 - 



 - 85 - 

This can be explained with the equations of the fitted time series models. All time series 

models are related with the values in the past, either its own past values, or past values of 

their correlated variables. This error-driven time series models determine that our 

predicted values forecast the values in the future based on the past values, thus making a 

strong lag 1 pattern as shown in Figures 3-14 to 3-17.  

 

 

3.3.4 Random Generator of Wastewater Influent Conditions 

 

We will now demonstrate how time series models, such as those described above can be 

used to generate random influent time series that have the same statistical characteristics 

as the historical influent data. We believe that these simulated time series can be in 

conjunction with dynamic wastewater simulation software to test plant performance 

under a wider variety of realistic operating conditions than possible using the historical 

data alone. In this example we will demonstrate the method for predicting realistic 

influent flow rate, BOD5, SS, and NH4-N concentrations. We are interested in capturing 

the correlations between flow and BOD5 and between flow and NH4-N, according to 

Table 3-7 and 3-8. Under these conditions, the univariate SS, and multivariate flow rate, 

BOD5 and NH4-N models are appropriate. 

 

Table 3-12 shows the fitted parameters of appropriate time series models. The 

corresponding equations will be derived in the following sections.  

 



Variable Model Parameter name Parameter value 

Flow rate Log [Temperature + ARIMA(1,0,0)(1,0,0)7] Intercept (µ) 
Autoregressive, Lag 1 (φ1) 

Seasonal Autoregressive, Lag 7 (φ7) 
Temperature (β) 

13.7573
0.7429
0.1352

-0.01646
BOD5  Flow rate[N(1)/D(1)]+AR(1) Intercept (µ) 

Autoregressive, Lag 1 (φ1) 
Flow rate[N(1) / D(1)] (ω0) 

Flow rate [N(1) / D(1)] Num1 (ω1) 
Flow rate [N(1) / D(1)] Den1 (δ1) 

102.2267
0.6120

-1.2732E-05
1.4875E-05

0.5618
SS Linear Trend +AR(1)+Point:1/31/02 Intercept (µ) 

Autoregressive, Lag 1 (φ1) 
Point:31JAN2002 (γ) 

Linear Trend (β) 

58.9363
0.6182

304.9423
0.02916

NH4-N Flow rate [/D(1)]+AR(1) Intercept (µ) 
Autoregressive, Lag 1 (φ1) 

Flow rate [/ D(1)] (ω0) 
Flow rate [/ D(1)] Den1 (δ1) 

23.5297
0.7292

-3.8771E-06
0.7590

Table 3-12. Parameter values for the fitted time series models. 
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3.3.4.1 Random flow simulation 

 

The Log [Temperature + ARIMA (1,0,0) (1,0,0)7 ] notation (SAS, 1999) in Table 3-12 

indicates that the natural-log of the flow rate is characterized by one significant auto-

regression lags in flow rate, as well as a 7-day seasonality resulting from the daily pattern 

of sewage flow.  The number 1 shown in the first bracket indicates the order of the 

autoregression is 1. And the number 1 in the second bracket means that the order of the 

seasonality autoregression is 1. Furthermore, this model is also a linear relationship with 

variable Temperature, which counts the seasonal pattern in the data set. The time series 

model of flow rate is: 

tt TempQ α
φφ

βµ
)B1)(B1(

1ln 7
7

1
1 −−

+×+=                                               (3-20) 

where Qt is the flow,  β is the coefficient for variable Temperature, αt is the error,  B is 

the backshift operator ( for example, BnQt = Qt-n) and the subscript indicates the time t at 

which the variable is evaluated. Equation (3-20) can be expanded to yield: 

ttt TempQQ αβφφφφµφφφφµ ++−−+−−+=− )BBB1())(lnBBB(ln 8
71

7
7

1
1

8
71

7
7

1
1  

(3-21) 

 

Parameter values for the model are given in Table 3-12. The predicted values of flow rate 

in Figure 3-14 were obtained by substituting the actual flow data for the lagged variables

Qt-1, Qt-2, Qt-7, Qt-8, and Qt-9 in equation (3-21) and assuming that the error term is 

negligible.  
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We introduce two modifications of the application of equation (3-21) in order to generate 

a new random time series for Qt that possesses the same statistical characteristics as the 

original time series: 1) we substitute past predictions, instead of actual data for the 

lagged values of Qt and 2) we do not assume that the error αt is negligible; rather we 

substitute a random value of the error sampled from an appropriate distribution. Without 

the latter modification, the errors will accumulate to the extent that the predicted values 

of Qt will either increase unbounded or decrease to zero. An accurate estimate of the 

distribution of αt is needed. In this work, we calculated αt as the difference between the 

actual and predicted values in Figure 3-14. We then sampled randomly from this 

population of error estimates without replacement (i.e., each value of αt is only used 

once). An example random time series generated by this procedure is compared to the 

actual time series in Figure 3-18. Recall that the goal is to produce a random time series  
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Figure 3-18. Comparison of randomly simulated and actual flow rates. 
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that is different from the original time series, but possesses the same statistical 

characteristics. We will evaluate the extent to which the goal has been achieved after 

developing a similar model for BOD5, SS, and NH4-N. 

 

 

3.3.4.2 Random BOD5 simulation 

 

The multivariate model for BOD5, summarized in Table 3-12 with the notation Flow rate 

[N(1)/D(1)]+AR(1), is a dynamic regression model with a flow rate transfer function 

characterized by single-lag numerator and denominator terms and a single-lag 

autoregressive term.  The parameterized dynamic regression model is: 

( ) ttt QBOD α
φδ

ωω
µ 1

1
1

1

1
10

B1
1

B1
B

−
+

−
−

+=                                                (3-22) 

where BODt is the BOD5 evaluated at time t. Equation (3-22) can be expanded to yield: 

( )[ ]( )
( )[ ] ( ) tt

tt

Q

BODBOD

αδωφωφωω

µδφδφµ
1

1
2

11
1

0110

2
11

1
11

B1BB

BB

−+++−+

−−+=−
                            (3-23) 

 

Equation (3-23), with the parameter values in Table 3-12, is the basis for generating 

random time series of BOD5 with similar statistical characteristics as the actual data. A 

procedure similar to that used for the flow model was used for BOD5. Furthermore, 

values of Qt obtained from the random flow model are used in equation (3-23). An 

example random time series for BOD5 generated by this procedure is compared to the 

actual time series in Figure 3-19. The occasional negative and other exceeding low values  
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Figure 3-19. Comparison of randomly simulated and actual BOD5 concentrations. 

 

 

of BOD5 in the randomly simulated time series could easily be replaced by some 

minimum value.  

 

 

3.3.4.3 Random SS simulation 

 

The univariate model for SS, summarized in Table 3-12 with notation: Linear Trend 

+AR(1) + Point: 1/31/2002. This model includes one linear trend term, one 

autoregressive term, and one intervention term. The intervention term is a point one, 

which means this intervention happened only at the date of January 31st, 2002. The rest 

pattern of the time series would not be affected. The parameterized regression model is: 
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ttt a
B

SSSS 1
1

1 1
1
φ

βµ
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++= −                                                                          (3-24) 

where SSt is the SS evaluated at time t. Equation (3-24) can be expanded to yield: 

dummyaSSBSSBSS tttt ×++−+−=− − γβφµφµ 1
1

1
1

1 )1()(                         (3-25) 
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γ

 

Equation (3-25), with the parameter values in Table 3-12, is the basis for generating 

random time series of SS with similar statistical characteristics as the actual data. A 

procedure similar to that used for the flow model was used for SS. An example random 

time series for SS generated by this procedure is compared to the actual time series in 

Figure 3-20. The occasional negative and other exceeding low values of SS in the 

randomly simulated time series could easily be replaced by some minimum value.  
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Figure 3-20. Comparison of randomly simulated and actual SS concentrations. 
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3.3.4.4 Random NH4-N simulation 

 

The multivariate model for NH4-N, summarized in Table 3-12 with the notation Flow rate 

[/D(1)]+AR(1), is a dynamic regression model with a flow rate transfer function 

characterized by single-lag denominator term and a single-lag autoregressive term. The 

parameterized dynamic regression model is: 

( ) ttt QNH α
φδ

ω
µ 1

1
1

1

0

B1
1

B1 −
+

−
+=                                                             (3-26) 

where NHt is the NH4-N evaluated at time t. Equation (3-26) can be expanded to yield: 

tttt QNHNH αδωφωµδφδφµ )B1()B()](BB)[( 1
1

1
010

2
11

1
11 −+−+−−+=−         (3-27) 

 

Equation (3-27), with the parameter values in Table 3-12, is the basis for generating 

random time series of NH4-N with similar statistical characteristics as the actual data. A 

procedure similar to that used for the flow model was used for NH4-N. Furthermore, 

values of Qt obtained from the random flow model are used in equation (3-27). An 

example random time series for NH4-N generated by this procedure is compared to the 

actual time series in Figure 3-21. The occasional negative and other exceeding low values 

of NH4-N in the randomly simulated time series could easily be replaced by some 

minimum value.  
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Figure 3-21. Comparison of randomly simulated and actual NH4-N concentrations. 

 

 

3.3.5 Model Evaluation and Discussion 

 

Statistical characteristics of the randomly simulated time series for all four variables are 

compared in Table 3-13.  The mean, standard deviation, and correlation coefficient 

between flow rate and BOD5 and between flow rate and NH4-N are in excellent 

agreement with the original data for all four variables. Auto-correlation functions for the 

randomly simulated and actual data are compared for all four variables (Figures 3-22, 3-

23, 3-24 and 3-25). The agreement is quite good through the first several lags. Based on 

the similarity of the statistical characteristics, it can be concluded that the random influent 

generator models provide a realistic simulation of the influent to the Oak Ridge treatment 

plant.  
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Table 3-13. Comparison of descriptive statistics of actual, predicted, and randomly 

simulated data. 

Variables Statistics ACTUAL PREDICT RANDOM

Flow rate  

(L/h) 

Mean 

Standard deviation 

707051.26

167584.84

705966.36 

130783.11 

702999.07

147636.78

BOD5  

(mg/L) 

Mean 

Standard deviation 

Correlation (with flow rate)

57.701

21.550

-0.3553

57.715 

14.993 

-0.5113 

57.704

19.964

-0.2837

SS  

(mg/L) 

Mean 

Standard deviation 

73.668

29.861

68.879 

19.0126 

73.928

30.2191

NH4-N  

(mg/L) 

Mean 

Standard deviation 

Correlation (with flow rate)

12.148

4.086

-0.4985

12.153 

3.368 

-0.6064 

12.148

3.762

-0.3830
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Figure 3-22. Comparison of autocorrelation function for randomly simulated and actual 

values of flow rate. 
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Figure 3-23. Comparison of autocorrelation function for randomly simulated and actual 

values of BOD5. 
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Figure 3-24. Comparison of autocorrelation function for randomly simulated and actual 

values of SS. 
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Figure 3-25. Comparison of autocorrelation function for randomly simulated and actual 

values of NH4-N. 

 

 

The random influent generator models would be used as simulators of plant influent in 

Chapter V. Models should also be developed for other treatment plants to validate their 

general applicability. Additional research is also needed to properly specify the error 

distribution. In this dissertation, a distribution consisting of the actual error values is 

used. This method is limited to fairly extensive data sets. A parametric distribution would 

have the advantage of allowing error values not present in the original data set. The errors 

from the time series models for the Oak Ridge WWTP were not normally distributed, but 

no other parametric distributions were investigated. Further research is also needed to 

define the minimum size data set needed to identify and calibrate the model. We also 

want to investigate how manipulations of the model parameters and the error term can be 
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used to simulate future influent conditions for which data may not yet exist (e.g., greater 

mean or greater variance).  

 

As mentioned above, there are three methods to introduce the plant data to the simulation 

model. The first one is that we use the original data directly. The second one is that we 

use forecast values from the time series models. And the third one is that we use 

generated random influent based on the time series models. In this dissertation, only first 

and third methods are actually applied in the StatASPS package. This is because the 

second influent is virtually identical to the historical influent data. If we want our influent 

data as close to real data as possible, the real plant would be the first choice. In other 

words, there is no need taking this more complicated model without any significant 

benefits. In fact, randomly generated influent may be desired in some cases because it can 

generate influent data different from the historical data, yet still possessing similar 

statistical characteristics. The second method, time series model, provides the best 

estimate of real plant influent data, which can be used in one specific year’s influent data. 

This estimate smoothes out possible outliers, and provides a relatively accurate base line 

for the third method: random influent generator. It is not uncommon that the original 

plant data have outliers (sudden extremely high or low values). The causes for outliers 

are probably from either recording mistakes or unexpected events (for example, storms, 

sudden operating failures, etc.). However, it is hard to tell the outlier sources unless more 

information is available. In order to bring back the uncertain information (for example, 

possible outliers) in the real plant influent data, the random influent generator is applied 

to generate one time series influent with reasonable white noise added. The goal of this 
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dissertation is to create a method to analyze the uncertainty of the plant performance. 

Thus, uncertainty (also called variability) in the plant influents should be quantified and 

included in the analysis. Time series model offers a method to well describe the time 

series characteristics of the plant influents.  
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CHAPTER IV 

 MISSING DATA AND OUTLIERS REPLACEMENT METHODS 

 

 

4.1 Introduction 

 

Missing values commonly exist in the operational records of wastewater treatment plants. 

For example, unexpected events cause the failure of measurements of plant data, or 

routinely holidays make the measurements unavailable. Missing values of wastewater 

treatment influent variables and effluent variables (BOD5, SS, NH4-N, etc.) are very 

common. These variables are also defined as time series variables because they are 

recorded at successive times (most of them are daily data).  As discussed in previous 

chapters, time series data are used to describe the variability of plant influent data, which 

is one of two most important uncertainty sources in wastewater treatment systems. 

Furthermore, predicted influent data from time series models and randomly generated 

influent data are both based on the historical time series data. Thus, a reasonable and 

reliable missing data replacement method is highly needed to determine the correct 

variability of plant influent. 

 

Three methods are commonly used to deal with missing values in time series. First, the 

simplest method is to replace all missing values for a given variable with the mean, 

median, or other location statistics (e.g., percentiles) determined from the non-missing 
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values of the variable (DeLurgio, 1998). The second easiest method is to replace missing 

values with the average of the nearest future and/or past observation, also called as the 

ANO (Average Nearest Observation) method in this dissertation. This method is 

employed as the default method for missing data replacement in the NCSS® software 

system. The third method, employed in the SAS® system, relies on fitting a satisfied time 

series model to the data to predict missing values. Applications of the later two methods 

are discussed below.  

 

In the ANO method, missing values are replaced by the average of the nearest 

observation in the future and in the past.  For example, for the time series [96, 88, 

missing1, missing2, 140, 148], the following steps in replacing the missing values would 

be made: [96, 88, missing1, missing2, 140, 148]⇒ [96, 88, missing1= (88+140)/2=114, 

missing2, 140, 148] ⇒ [96, 88, 114, missing2=(114+140)/2=127, 140, 148] ⇒ [96, 88, 

114, 127, 140, 148]. Obviously, this method will give different replacements values if the 

time series occurs in the opposite order. For example, the new time series [148, 140, 

missing1, missing2, 88,96] becomes  [148, 140, 114, 101, 88,96]. Notice that this missing 

value replacement method might be particularly poor for time series data with weak 

autocorrelation and/or strong daily seasonality. If this happens, manually entering a more 

reasonable estimate before using the algorithm is strongly recommended. 

 

The application procedure of the third method is as follows: (1) replace all missing values 

with a simple imputed value, such as the series mean; (2) with the updated estimates 

added, forecast the missing values from the current time series model; (3) then update the 
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original data set with the new forecasts of missing values; (4) repeat step 2 until the 

convergence occurs. 

 

However, the methods described so far depend on the MCAR (missing completely at 

random) assumption, which means that the probability that an observation is missing 

does not depend on the data set. Unfortunately, MCAR observations are less likely in 

time series data because observations are usually correlated with time series. For 

example, there are virtually no data available for Fridays, Saturdays, and other holidays 

of the influent data from the Oak Ridge wastewater treatment plant (Oak Ridge WWTP).  

This situation commonly exists in wastewater treatment systems, and is common in other 

data collection and recording systems as well. Thus, a new method to deal with those 

routinely missing data is badly needed.  

 

Based on the information we have, these three methods are not suitable for use in those 

three series (BOD5, SS and NH4-N). The first two simple methods are too simple to be 

chosen for the procedure, and the last one is also not a good choice in this case because 

the missing values in these three variables routinely happen on Fridays, Saturdays, and 

other holidays. Thus, in order to find the suitable estimates of missing values, we use the 

simple exponential smoothing method, an automatic fitting model available in most of 

commonly used commercial software (SAS®, NCSS®, JMP®, etc.).  Furthermore, in 

order to remove the effect of time order, a Two-directional Exponential Smoothing 

method (TES method) is used in which, forward ES and backward ES are applied 

independently and the mean values of those two forecasts are used to replace the missing 
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values. A TESWN (Two-directional Exponential Smoothing with White Noise added) 

method is also developed in which a random white noise term is added after the TES 

prediction is obtained. The goals upon which the various methods are evaluated are:  1) 

the original existing data should remain unchanged; and 2) the replaced values for the 

missing data should conform to the overall pattern of the time series. In order to evaluate 

the second goal, we will conduct the scatterplot of both original and updated (replaced) 

data to determine whether the updated data visually follows the pattern of original data. 

Furthermore, we will compare the statistical characteristics (for example, mean, standard 

deviation, and percentiles, etc.) of both original and updated data. Finally, we will also 

apply the updated influent data to the ASM model to determine how different the updated 

(replaced) data will make to ASM model predictions compared to the original influent 

data. The histogram plot, mean, standard deviation and percentiles will be the major 

concerns to evaluate missing data replacement methods.  

 

Two plant influent data are used in this dissertation. The first plant data are from the 

Seneca WWTP, Germantown, MD. It is chosen because this plant has an almost complete 

record of daily data for a period of three years (1993-1995).  We will create a test data set 

by intentionally removing data points for Fridays and Saturdays. This method can be 

tested by comparing the generated replacement points with the original data points. The 

influent component SS (suspended solid, mg/L) is discussed in details as a sample in this 

section. Other variables are performed following the same procedure.  
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The second plant is the Oak Ridge WWTP. Because the critical concern is the activated 

sludge system, the effluent from the secondary clarifier is considered as the influent to 

the activated sludge process. Almost three-year’s daily data (from November 1, 1999 to 

July 31, 2002) were collected to analyze the statistical characteristics of five influent 

variables: Temperature (wastewater temperature in the bioreactor, °C), Flow rate 

(influent, L/h), BOD5 (5-day biological oxygen demand, mg/L), SS (suspended solids, 

mg/L), and NH4-N (ammonia nitrogen, mg/L). As mentioned above, this data set was the 

motivation for developing methods to replace missing data points. This data set has 

routinely missing values for Fridays, Saturdays, and other holidays. The TES data are 

expected to predict the influent characteristics on days with missing influent data in a 

manner consistent with the overall statistical characteristics of the data record.   

 

In short, the Seneca influent data are a test data set applied in this section to prove how 

well our TES and TESWN methods perform. In practice, the Oak Ridge plant influent 

data with real missing values will be replaced using the TES and/or TESWN methods. 

This generated TES influent data will then be either directly used as a plant influent or 

used to generate random influent for the StatASPS package.   
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4.2 Methods 

 

4.2.1 Flow Diagram of TES and TESWN Methods 

 

In this dissertation, the Two-directional Exponential Smoothing (TES) and TES with 

White Noise (TESWN) methods are developed to replace routinely missing values from 

the data of wastewater treatment plants (WWTPs). Figure 4-1 describes the TES and 

TESWN procedures. Step 0-1 is applied to the Seneca data set in order to generate a data 

set with missing values for the purpose of evaluating the method. Normally, when the 

data set already has missing values, the procedure begins with step 0-2. The applications 

of TES and TESWN methods will be discussed in the following sections. 

 

 

4.2.2 Introduction to Exponential Smoothing Methods 

 

TES and TESWN methods both depend on exponential smoothing methods. In order to 

explain how these two methods can be applied to replace missing data, Holt’s Linear 

Trend exponential smoothing algorithm is explained in detail.  Holt’s Linear Trend 

algorithm computes a local trend equation through the data using a weighting function 

that places the greatest emphasis on the most recent time periods. Both the trend and 

forecasting equations change from period to period. The formulas used in this algorithm 

are as follows: 

                                                                                         (4-1) kbaF ttkt +=+
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Figure 4-1. The flow diagram of the assessment and testing of the TES and TESWN 

missing data replacement methods. 
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where, 

))(1( 11 −− +−+= tttt baYa δδ                                                                   (4-2) 

  11 )1()( −− −+−= tttt baab γγ                                                     .             (4-3) 

and  is the forecast value at time t+k; is the actual value at time t; and  are 

y-intercepts at time t and t-1, respectively; and  are slopes at time t and t-1, 

respectively; and 

ktF + tY ta 1−ta

tb 1−tb

δ and γ  are smoothing constants that are both between 0 and 1. 

 

As shown in the equations above, initial values of and  are needed since the 

forecast at time 1 requires the values at period 0. The backcasting method, which is 

currently known as one of the best methods, is adopted to generate initial values. This 

backcasting method simply reverses the direction of the series and forecasts it into the 

past. Thus, it gives the initial values for the intercept ( ) and slope ( ).  

1−ta 1−tb

1−ta 1−tb

 

The smoothing constants δ  andγ  determine the weight given to the most recent past 

observations and therefore control the rate of smoothing or averaging. Values near 1 give 

virtually all the weight to the most recent data, while values near 0 distribute the weights 

to consider data from the more distant past data. The values of δ  and γ can be 

determined either subjectively or objectively. If reliable experience with this or a similar 

time series is available, we can choose the values of the smoothing constants subjectively 

to tune the forecast to our own beliefs about the future of the series. There are several 

criteria to objectively determine the values of smoothing constants, such as the mean 

square error (MSE), the mean absolute error (MAE), and the mean absolute percent error 

 - 106 - 



 (MAPE). The criterion used in this dissertation is the mean square error (MSE) defined 

as: 

  ∑∑ −== )(11 2
ttt FY

n
e

n
MSE                                                              (4-4) 

where is the error at time t, is the actual value at time t, and  is the forecast value 

(TES’) at time t. Equation 4-4 is applied only to forecast values for which the actual data 

values have been measured (e.g. Sunday – Thursday for the Oak Ridge data). 

te tY tF

 

The goal is to find values of the smoothing constants that minimize MSE of the time 

series. A search for the proper values using an efficient grid-searching algorithm is 

accomplished in this dissertation. 

 

 

4.2.3 TES Method 

 

The TES method estimates of missing data points based on the autocorrelations of the 

time series to account for the fact that the missing values occur at non-random times. As 

the ANO method described above, exponential smoothing yields different values 

depending on the direction of the time series; while the TES method can minimize this 

directional bias. This TES method, which is designed to represent both forward and 

backward autocorrelation in the time series, can also decrease the difference above 

caused by different directions. To execute the method, firstly, generate a putative full data 

set using the ANO method. Secondly, forecast the missing values using the exponential 
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smoothing (ES) algorithm (in this case, Holt’s Linear Trend exponential smoothing) in 

the forward direction (Forward ES). Next, the missing values are forecasted using Holt’s 

Linear Trend exponential smoothing algorithm in the backward direction (Backward ES). 

The final replacement values for the missing data points are determined by averaging the 

forward and backward ES estimates.  In fact, the TES method is a combination time 

series method. 

 

The TES data are generated from the TES (Two-directional Exponential Smoothing) 

method. The equation is shown as follows: 

⎪⎩

⎪
⎨
⎧ +

==
available.isdataif,

,missingisdataif,
2

)(
' ,,

t

tbackwardtforward
t

t

valueOriginal

ESES
TESTES                   (4-5) 

 

Notice that the TES’ data are the average of the forward ES data and the backward ES 

data for the whole data set. However, the TES data are the average of the forward ES data 

and the backward ES data for those missing values only. 

 

 

4.2.4 TESWN Method 

 

The TESWN method is known as the TES method with white noise added. It begins by 

applying the TES method and then adding to it a white noise term to account for random 

effects observed in the data but not captured by the autocorrelation function.  
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The TESWN data are generated from the TESWN method, that is, the TES data with 

white noise added for missing values only. The equation is shown as follows: 

⎩
⎨
⎧ +

=
available.isdataif,

,missingisdataif,

t

tt
t valueOriginal

WhiteNoiseTES
TESWN                                  (4-6) 

 

The white noise is randomly sampled from a normal distribution. The standard deviation 

of the normal distribution is calculated from the standard deviations of both the forward 

ES and backward ES forecast data. The characteristics of the white noise and the 

selection of the standard deviation will be discussed in Section 4.3.  

 

 

4.3 Application of TES and TESWN Methods 

 

TES and TESWN methods will be applied to the influent data from the Seneca WWTP. 

As mentioned above, the Seneca data are used to test these two methods following the 

step 0-1 in Figure 4-1. A test data set is generated by removing data points for Fridays 

and Saturdays of the Seneca data. The those two missing data replacement methods can 

be tested by comparing the generated replacement points with the original data points 
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4.3.1 TES Method 

 

The TES method was assessed by comparing replacement values for the missing data to 

the actual data from the Seneca WWTP. A comparison of the original values and the 

replaced values using the TES method is shown in Figures 4-2 to 4-4. These three plots 

only show a short portion of the total Seneca WWTP time series to facilitate readability.  

 

The replacement SS values for Fridays and Saturdays determined by the TES method are 

relatively close to the original values. It should be noted that the missing values 

determined by the algorithm are not necessarily bounded by the range between the known  
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Figure 4-2. The partial scatter plot of the original and updated SS from the Seneca 

WWTP in October 1995. 
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Figure 4-3. The partial scatter plot of the original and updated BOD5 from the Seneca 

WWTP in October 1995. 
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Figure 4-4. The partial scatter plot of the original and updated NH4-N from the Seneca 

WWTP in October 1995. 
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data points preceding and following the section of missing data. For example, the updated 

values of October 6th and October 7th 2004 are 144.45 mg/L and 143.89 mg/L, 

respectively.  These two values fall outside the range of the October 5th and 8th data 

points: 140 mg/L and 112 mg/L, respectively. Despite the relatively good estimates of the 

missing values, the TES method poorly represents the variability of the original data. For 

example, the missing data of November 10th, 1995 is 144.47 mg/L, instead of the original 

value of 100 mg/L.  If such unexpected changes are common in the plant data, further 

corrections might be required (for example, seasonality). Overall, however, the 

comparison between the original values and the updated values appears adequate with no 

obvious evidences to deny our TES method. More rigorous evaluation of the TES method 

will be conducted in comparison with the TESWN method. 

 

 

4.3.2 TESWN Method 

 

As we discussed above, the TES method is only a combined forecast method to replace 

the missing values. In order to capture variability not represented in the overall trend, the 

TESWN method will be applied in the section.  

 

The error between the TES’ predictions and the actual data can be considered a source of 

white noise in the time series. It may be possible to characterize this white noise, then add 

it to the TES’ predictions to obtain predictions of missing data that include the variability 

in the data that is not described by the local trend. We first determined the distribution of 
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the white noise for the Friday and Saturday missing values by calculating the error of the 

TES’ predictions, which is shown in Figure 4-5 a). It can be seen that the white noise 

distribution for Friday and Saturday is different from the white noise distribution of the 

whole data set by comparison to Figure 4-5 f). Normally, the actual values will not be 

available for missing data points, so an alternative method of estimating the white noise 

distribution must be established. We will use the standard deviation of the distribution in 

Figure 4.5 a) as the target to evaluate various estimates of the white noise.   

 

The best estimate of the white noise was obtained by estimating the error as the 

difference between the TES’ predictions and the ANO predictions for the whole data set, 

shown in Figure 4-5 c). Both terms in the error estimate are available for each day of the 

week. The standard deviation of this error estimate (49.27) compares favorably with the 

target standard deviation of 46.68. The second best estimate of the white noise was 

obtained by estimating the error as the difference between the TES’ predictions and the 

actual data points for the days on which they are available (Sunday through Thursday), 

shown in Figure 4-5 b). The standard deviation (53.17) of this error estimates was not 

quite as close to the target value, but this method has the advantage that actual data 

values, rather than a forecast, are used to predict the error. Other methods of predicting 

the error shown in Figure 4-5 d) and e) were less accurate.  

  

An implicit assumption of characterizing white noise as the error from the days in which 

measurements are made is that the standard deviations of each days of the week are not 

significantly different. Figure 4-6 is a statistical test of equal variance. From these tables  
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TES’ – Actual for Friday and 
Saturday 
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Figure 4-5. The histogram plots of error items with Fridays and Saturdays all missing. 
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Note: the p-values of “Prob>F” column show the probability of no significant difference. 

 

Figure 4-6. The equal variance test for every 7 day in a week. 
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and plots, we can conclude that there is no significant difference among these 7-day 

standard deviations of error. This test gives the TESWN method strong support to use the 

standard deviation of error of the whole data set except missing values to estimate the 

standard deviation of error of missing values (in this case, all Fridays and Saturdays). 

 

Based on the above analysis, we decided to estimate the error as the difference between 

the TES’ predictions and the actual data for the days which measurements were taken. 

The white noise term for each prediction was then obtained by sampling from a normal 

distribution with mean zero and the standard deviation of this error estimate.  

 

Statistical characteristics of TES and TESWN predictions for the Friday and Saturday 

suspended solids data from the Seneca plant are compared to the original data in Table 4-

1 and Figure 4-7. For the TESWN, three different realizations are shown based on 

different random samplings of the white noise terms. In cases where the TESWN 

predictions were negative, this value was replaced by the minimum value in the data 

record. The TESWN method describes the statistical uncertainty (standard deviation) of 

original influent SS data better than the TES method. However, upper percentile values 

of the distribution of original data are much greater than those predicted by either the 

TES or TESWN methods. Apparently, the assumed normal distribution of the white noise 

term cannot fully capture the variability in the original data. The test of normal 

distribution is conducted with the error from the original data, as shown in Figure 4-8. 

From the plot, we can see the error term is not normally distributed. However, due to lack 

of information, it is the best available assumption we can make. Thus, in this paper, we  
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Table 4-1. The statistical characteristics of influent SS data: original, TES and three 

randomly generated TESWN data. 

 

 
Items SSOriginal TES TESWN1 TESWN2 TESWN3

Number 310 310 310 310 310

Mean 147.69 146.52 148.89 143.42 145.88

Std Dev 48.56 17.55 50.43 54.90 54.45

100.0% 516.00 194.65 287.04 294.47 285.96

99.5% 433.86 194.28 282.34 292.38 282.76

97.5% 271.60 190.71 250.40 263.94 247.36

90.0% 199.60 172.56 211.17 213.73 215.62

75.0% 169.00 156.77 183.39 176.22 185.03

50.0% 140.00 144.46 151.80 144.81 147.20

25.0% 116.00 133.42 117.16 108.63 109.61

10.0% 100.00 125.91 81.55 71.03 73.13

2.5% 84.00 116.47 39.76 36.67 31.96

0.5% 70.22 110.58 9.67 6.51 12.79

0.0% 68.00 110.36 9.66 5.97 8.81
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Figure 4-7. The histogram graphs of influent SS data: original data, TES data, three 

randomly generated TESWN data, and error from the original data (missing values only). 
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Figure 4-8. The histogram and normal quantile plot of the error between the TES’ data 

and the original data. 

 

 

assume that the distribution of the error is a normal distribution, with the mean value (μ) 

equals zero and the standard deviation (σ) equals the standard deviation of error of the 

whole data expect for those missing values. It is shown in the following equation.  

  Distribution of error = Normal Distribution (0, σ2
whole_non-missing)          (4-7) 

 

4.4 Assessment of TES and TESWN Methods 

 

4.4.1 Assessment of Error Terms 

 

Figure 4-9 shows the comparison of the error term among three methods (ANO, TES, 

TESWN1). The near zero mean and smallest standard deviation indicate the ANO might 
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2.5%  -116.9 
0.5%  -211.6 
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Quantiles 
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75.0% quartile 22.8
50.0% median -4.4
25.0% quartile -27.9
10.0%  -44.4
2.5%  -65.5
0.5%  -87.8
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Quantiles 
    
100.0% maximum 317.0
99.5%  281.3
97.5%  130.2
90.0%  75.9
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50.0% median -1.0
25.0% quartile -45.2
10.0%  -80.5
2.5%  -131.0
0.5%  -178.6
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Moments 
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Moments 
  
Mean 1.1635
Std Dev 46.6811
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Moments 
  
Mean -1.2072
Std Dev 65.4503
N  310

 

Figure 4-9. The comparison of errors of the ANO, TES, and TESWN data. 
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be the best method to fill in the missing data if accurate estimates of each individual point 

is the goal. However, the TESWN method appears to be best if the goal is to capture the 

overall variability in the distribution, as described above. As for the TES and TESWN 

data, they have much higher absolute value of the maximum error than that of the 

minimum error. This might be caused by the possible outliers in the original SS data (the 

whole scatter plot shows there are some values higher than 400 mg/L, and even 

500mg/L). 

 

 

4.4.2 Assessment of Simulated Results 

 

The comparison and testing above have demonstrated that the TES and TESWN methods 

are feasible alternatives to replace missing data. However, our goal is to introduce this 

plant influent data as the input data for the ASM1 model. In this case, we are most 

concerned with how the effluent predicted by the model is affected by the various 

estimates of missing data. Since ammonia-N is the main concern all through this 

dissertation, the TES and TESWN data of ammonia-N were generated using the similar 

procedure with SS data. The simulation conditions were set as: SRT = 5 days and HRT = 

5 hours. Under these conditions, relatively frequent violations of effluent are expected. 

The influent components are from the Seneca WWTP. However, this time, the influent 

components are kept unchanged expect for ammonia-N. Five cases of influent data were 

simulated in this section: original, AVE, ANO, TES, and TESWN data. The AVE data 

was generated by replacing the missing values with the average values of the remained 
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The statistical analysis and comparison of the simulated data from those five cases are 

shown in Figure 4-11 (Missing data only, hourly data). The mean effluent ammonia 

predicted by ASM1 when the original data are used as the influent is 1.755 mg/L. 

Obviously the AVE data provides the best estimates (1.736 mg/L) because the missing 

values are replaced by the mean value of the whole data set. The second and third best 

 

The influent ammonia-N data are plotted in Figure 4-10. From the plot, we can see there 

were some variations in early 1994 and early 1995 as expected.   

 

data set. January-May 1994 and January-May 1995’s data are chose as the input of the 

ASM1 model. Because we are most concerned about the effect of the missing data, the 

following analysis only consider those missing data for Fridays and Saturdays although 

the analyses for all available data are also completed. 
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Figure 4-10. The scatter plot of the influent ammonia nitrogen data in the Seneca WWTP. 
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Quantiles 
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Figure 4-11. The Statistical analysis and comparison of the ASPS simulation data. (1994 + 1995 hourly data, missing only)



would be TES and ANO data that have mean values of 1.714 and 1.933 mg/L, 

respectively. The standard deviation of original data are 1.693. The best estimate of 1.574 

is still from the AVE data. The second and third best estimates are TESWN and TES data 

with values of 1.896 and 1.417. Till now, it seems that the best method would be the 

AVE method followed by the TES method. However, recall the motivation of introducing 

the missing data replacement method is to generate a plant influent data for the StatASPS 

model. The goal is to study on the uncertain characteristics of the plant performance. 

Thus, the greatest estimates of effluent ammonia nitrogen (e.g., 00, 99.5, 97.5, 

percentiles) should be considered in additional to the mean and standard deviation will be 

the most important factors to be considered besides the mean and standard deviation. For 

example, the 100, 99.5 and 97.5 percentile values of ammonia nitrogen predicted from 

the original data are 13.725, 11.019, and 6.633 mg/L. The closed estimates from the data 

replacement methods came from the TES data with values of 13.494, 10.404, and 4.940 

mg/L, respectively. The second best is from AVE data, which has the values of 16.436, 

12.753, and 5.135 mg/L, respectively.  

 

The correlation table and scatter plot matrix are shown in Table 4-2. It shows the 

predicted effluents from the TES data had the largest correlation coefficient (0.8538) 

when compared with predicted effluents using the original data, followed by the AVE 

data (0.8288). In short, the simulated results indicate the best two methods are the TES 

and AVE methods. It is a surprise that the AVE data performs so well for the simulation 

results. Furthermore, the TES data replace the missing values very well, as shown 

visually in Figures 4-2 to 4-4 and provide a stronger theoretical support. The AVE  
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Table 4-2. The correlations between the five simulated effluent Ammonia-N. 

 

 Original Data AVE Data ANO Data TES Data TESWN Data

Original Data 1.0000  

AVE Data 0.8288 1.0000  

ANO Data 0.6612 0.7422 1.0000  

TES Data 0.8538 0.9545 0.8484 1.0000 

TESWN Data 0.7481 0.8459 0.7221 0.8417 1.0000

 

 

method may be selected in cases where the influent is to be used for plant simulation and 

a simple-to-apply method is desired. Otherwise, we would strongly recommend the TES 

method as the best choice to replace the missing values.  

 

 

4.5 Discussions and Conclusions 

 

In this chapter, the TES and TESWN methods, compared with ANO and AVE methods, 

were conducted to replace the missing data (including those routinely missing values, like 

all Fridays and Saturdays and other holidays). The following conclusions are made based 

on application and evaluation of the methods using influent data from the Seneca 

WWTP: 
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• The TES method proves to be the best of the methods tested  to replace missing 

values when the influent data are to be used for simulating plant performance. The 

generated TES data has better scatter plot, better correlation, and better mean and 

standard deviation. More important, it generates the best estimates of the three 

highest percentiles of the simulated effluent data using the StatASPS package.  

• The AVE method is acceptable if simplicity of application is a high priority.  

• The TESWN method describes the statistical characteristics of original influent 

SS data better than the TES method.  
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CHAPTER V  

 
CASE STUDIES AND RESULT ANALYSIS 

  

 
In this chapter, we develop and test methods to quantify uncertainty at two existing 

wastewater treatment plants: Oak Ridge WWTP, Oak Ridge, Tennessee, and Seneca 

WWTP, Germantown, Maryland. The purpose of this chapter is to how to best capture 

the plant performance using the ASM1 model and Monte Carlo method together with 

appropriate descriptions of the variability of the model parameters and plant influent.  

 

As discussed in Chapter III, two sources of uncertainty in WWTPs are considered in this 

dissertation: process parameters and plant influent. For process parameters, we have three 

options: fixed calibrated parameters, universal parameter distributions, and site-specific 

parameter distributions. The calibrated parameters are obtained by fitting models to 

historical performance data. In the procedure, the RMSE (root mean square error) is 

minimized using the enumerative search method. The RMSE is calculated from the 

squared difference between the historical and simulated effluent data. Universal 

parameter distributions (UPD) are taken from Cox (2004). He generated the UPD from 

published parameter values representing WWTPs from all over the world using the 

Bayesian method. With calibrated parameters for one specific WWTP, we can also use 

the Bayesian method to obtain the site-specific parameter distributions (SPD). The 

difference between UPD and SPD is measured/calibrated data: UPD uses the values all 
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over the world; while SPD uses the site-specific calibrated values only. Generally, the 

SPD will have a narrower PDF (probability density function) plot than UPD. As for the 

plant influent, we have only two options: one is historical influent data, the other is 

randomly generated influent data, as discussed in Chapter III. The predicted influent data 

from time series models are not used because they are too close to the historical data.  

 

The secondary clarifier model is simplified to a constant performance with a removal 

efficiency ratio of 99.75 percent for particulate components, which has proved by the 

plant data from Oak Ridge and Seneca WWTPs. Due to the limitation of the secondary 

clarifier model, only effluent ammonia nitrogen is considered as an example in this 

dissertation. If more reliable and effective clarifier model is available in the future, we 

can easily add it to our StatASPS program.  

 

After the tests of the combination of model parameters and plant influent, we can find 

which combination of parameters and influent best describes the real plant performance 

with comparison to the historical effluent data. Then we can conduct the Monte Carlo 

simulations with different operational conditions (for example, different SRT).  

 

A question that must be answered at the outset of the work is: how many Monte Carlo 

runs are needed to guarantee a valid simulation? According to the references (Meeker and 

Escober, 1998; Robert and Casella, 2004; Schuhmacher et al., 2001; Huo et al., 2004), 

the commonly used numbers of Monte Carlo runs are 1000-2000. If more accurate results 

are needed, we can conduct 5000, 10000 or even more Monte Carlo runs. In this 
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dissertation, we determined the number of Monte Carlo runs using the Monte Carlo 

simulations of the Oak Ridge WWTP with one-year influent data and parameter 

distributions (either universal or site-specific). The results of effluent ammonia nitrogen 

concentration are shown in Figure 5-1. Obviously, the simulation results of 1000 Monte 

Carlo runs have more uncertainty than 360 Monte Carlo runs. The maximum value 

increases from 16.838 to 38.343 mg/L. The standard deviation increases from 0.50 to 

0.76. This is what we expected: the more Monte Carlo runs, the more uncertainty, and the 

more accuracy of the simulation results. Notice that the mean values and several highest 

percentiles (99.5, 97.5, and 90.0) are very close for both simulation results. These values 

are also the most important standards to determine whether the Monte Carlo simulation 

performs well. Thus, from the comparison results in Figure 5-1, we can conclude that 

1000 Monte Carlo runs are sufficient to conduct a valid Monte Carlo simulation.  

 

Another concern is reasonable program running times for the Monte Carlo simulations 

given current computing technologies. In this dissertation, we seek to limit the duration 

of Monte Carlo simulations to 48 hours (2 days) or better 24 hours (1 day). The Monte 

Carlo simulations in this dissertation generally follow this rule, although we expect much 

faster computing technologies in the near future to reduce the magnitude of this concern. 

Considering both accuracy and present computing speed, we decided to choose 1000 

Monte Carlo runs due to the following three reasons. Firstly, it has a good histogram plot 

and much better performance than the one with 360 Monte Carlo runs. Secondly, it will 

save a lot of running time compared with the one with 2000 Monte Carlo runs. 
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Figure 5-1. The simulated effluent NH4-N (mg/L) with one-year influent data and 

parameter distributions for the Oak Ridge WWTP. 
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Finally, our previous Monte Carlo simulation experience also indicates it is a reasonable 

number to choose. 

 

Then, the question becomes how many days should we simulate for each Monte Carlo 

run? The dynamic simulation of the ASM No.1 model is chosen in this dissertation 

because it most accurately describes the real operational conditions in wastewater 

treatment systems. The main basis for this claim is the varied plant influent and plant 

operational conditions. It is obvious that a dynamic simulation takes much more 

simulation time than a steady state simulation. Table 5-1 shows simulation time as a 

function of the number of CSTR reactor and the length of the simulation. Based on Table 

5-1, we selected dynamic simulations with 2 CSTRs and 36 days data. Notice that the 

simulation data of the first five days will be ignored because there is a time delay for the  

 

 

Table 5-1. Monte Carlo performance analysis for dynamic simulations of a WWTP. 

 

Case 

No. 

Number of 

MC runs 

Number of 

CSTR 

Number of 

days 

Running 

time (s) 

Running time per 

MC run (s) 

1 2 1 36 165 82.5

2 2 2 36 199 99.5

3 2 3 36 265 132.5

4 1 1 366 618 618

5 1 2 366 918 918
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system to reach a realistic dynamic operation point. In other words, the valid data are 

only 31 days. The selection of a 5-day approach to quasi-steady state has been discussed 

in Chapter III. Initially, we planned for the duration of our Monte Carlo simulations to be 

one year. Unfortunately, this proved to be impractical given our desire to complete the 

simulations with 24 hours. In order to increase our confidence in the validity of 

simulations one-month in duration, we recommend using at least two months: each in the 

Winter and Summer. For comparison purpose, we will also run a limited number of 

Monte Carlo simulations with one-year data. The number of CSTRs actually could be 

determined using appropriate experiments or previous experiences. According to 

previous experience (Grady et al., 1999), 3-4 CSTRs are commonly used in practice. 

However, it is only an empirical number. For a specific plant, the number of CSTRs 

might change. In this dissertation, we only take two CSTRs due to lack of information. 

For further research, corresponding experiments might be needed to better describe the 

WWTPs.   

 

So far, we have discussed the purposes of this chapter and planned steps to achieve the 

goals. In order to evaluate the plant performance, we also need to know the effluent 

requirements in environmental regulations. The comparison with the historical effluent 

data can be used to evaluate how well the Monte Carlo simulations do; while the 

comparison with required effluent standards will be used to evaluate how well the 

WWTPs perform. Table 5-2 presents the secondary treatment requirements for BOD5 and 

SS. For effluent NH4-N, effluent requirements are determined on a case-by-case basis 

depending on water quality requirement of the receiving stream.  
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Table 5-2. Secondary treatment requirements. (After Metcalf and Eddy, 2003) 

Component Effluent Limitation* Memo 

BOD5 30 (45) mg/L

45 (65) mg/L

85% (65) removal

Maximum 30-day average 

Maximum 7-day average 

Maximum 30-day average 

Suspended Solids (SS) 30 (45) mg/L

45 (65) mg/L

85% (65) removal

Maximum 30-day average 

Maximum 7-day average 

Maximum 30-day average 

pH 6.0-9.0 Range 

*( ) denotes values applicable to treatment equivalent to secondary treatment. Adjustment 
available for effluents from trickling filter and waste stabilization pond facilities.  
 

In some plants, for example, Oak Ridge WWTP, different requirements apply for 

“Summer’ (May-October) and ‘Winter’ (November-April) conditions. The effluent 

requirements for the Oak Ridge WWTP are shown in Table 5-3. This table clearly 

indicates the effluent requirements in ‘Winter’ are significantly less stringent than the 

requirements in ‘Summer’. For example, in ‘Winter’, the acceptable daily maximum 

ammonia-N concentration is 6.6 mg/L, compared to the value of 3.6 mg/L in ‘Summer’. 

The values of monthly average and weekly average are 3.3 mg/L and 4.95 mg/L, 

respectively, in ‘Winter’; while the corresponding values in ‘Summer’ are 1.8 mg/L and 

2.7 mg/L, respectively. The required effluent data for BOD5 and SS are more stringent 

than those shown in Table 5-2. The effluent ammonia nitrogen (mg/L) in Table 5-3 will 

be used in this dissertation. The daily maximum standard of Summer would be the key 

standard used in this dissertation because it is more stringent daily standard same as the 

simulation data. The analyses of 7- and 30-day average effluent will also be conducted.   
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Table 5-3. Effluent requirements of BOD5, NH4-N, and SS for the Oak Ridge WWTP. 

 
 

Component  Monthly Average Weekly Average Daily Max 

BOD5 (May-October) 8 12 16

BOD5 (November-April) 15 20 25

NH4-N (May-October) 1.8 2.7 3.6

NH4-N (November-April) 3.3 4.95 6.6

SS (suspended solids) 30 40 45

 
Note: Effluent limits under the NPDES Permit for the Biological Train (concentration 
reported in mg/L). 
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5.1 Oak Ridge Wastewater Treatment Plant 

 

5.1.1 Description of the Oak Ridge WWTP 

 

The Oak Ridge Wastewater Treatment Plant (Oak Ridge WWTP) is located in the city of 

Oak Ridge, Tennessee. Its primary purpose is to remove organics, solids and pathogenic 

organisms from the water or biodegrade them to stable minerals or organics that are 

compatible with the environment. The Oak Ridge WWTP operates 24 hours a day, 365 

days a year and is designed for an average wastewater treatment flow of 735,000 L/h 

(17,604 m3/day) and a peak flow of 1,577,255 L/h (37,854 m3/day). The layout of the 

Oak Ridge WWTP is shown in Figure 5-2. 

 

The process used in the Oak Ridge WWTP is a conventional activated sludge (CAS) 

process. This process generally applies a rectangular bioreactor with influent and return 

activated sludge (RAS) being added at one end and mixed liquor exiting at the opposite 

end. The flow pattern is quasi-plug-flow. The residence time distribution depends on the 

length-to-width ratio of the bioreactor, mixing provided by the oxygen transfer 

equipment, and the inlet and outlet configuration. This flow pattern can be modeled as 

series of continuous stirred tank reactors (CSTRs). Due to lack of information, the 

number of CSTRs is chosen as two. The calibration results in Section 5.1.2 prove that 

two CSTRs model can provide reliable and valid simulations. The HRT (hydraulic 

retention time) typically ranges from 4 to 8 hours, while the SRT ranges from 3 to 8 days,  
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Figure 5-2. The layout of the Oak Ridge WWTP. 
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but seldom exceeds 15 days. The MLSS concentration and composition vary little 

through the bioreactor because the SRT (solid retention time) is long relative to the HRT 

and the mixed liquor is recycled many times before it wasted. The benefits of CAS 

processes are that 1) its performance is well characterized and predictable, 2) the process 

and facility design well known, 3) operational parameters are well characterized, and 4) it 

is useful in a wide range of applications. However, the drawbacks are moderate capital 

and operating costs and moderate sludge settleability. 

 

The operational conditions of the Oak Ridge WWTP are shown in Table 5-4. Those 

numbers are obtained from either historical plant data or operational information from  

 

 

Table 5-4. The operational conditions of the Oak Ridge WWTP. 

 

Items Values 

Q, influent flow rate 5.8 MGD

V, bioreactor volume 1.57MG

X, biomass concentration in bioreactors (average SS) 2,500 mg/L

XW, biomass concentration in waste flow 26,000 mg/L

FW, waste flow rate  15,000 gallon/day

HRT =V/Q 6 hours

SRT=(V×X)/(FW×XW) 10 days
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practitioner (designer or operator) working at plants.   The bioreactor volume is 1.57 MG, 

and the SRT is 10 days. The operational information will be used in the ASM1 model to 

conduct Monte Carlo simulations.  

 

 

5.1.2 Calibration Procedure and Simulation Analysis 

 

In order to better describe the plant performance for a specific WWTP, site-specific 

calibrated parameters for this WWTP are needed. The calibration procedure selected was 

elaborated in detail in Chapter III. As discussed, only effluent ammonia nitrogen is 

considered due to limitations of the chosen secondary clarifier model. According to the 

sensitivity analysis results, only 3 out of the 19 parameters are considered in the 

calibration parameters. These three parameters are: KNH (half saturation coefficient for 

nitrifiers, mg/L), µA,max (specific growth rate of autotrophs, hr-1), and YA (yield of 

autotrophs, mg/mg). The enumerative search method is applied to this calibration 

procedure to capture the group of calibrated parameters with the minimum RMSE (root 

mean square error) of the simulated and historical effluent data. The enumerative search 

range for each parameter is [0.1 × Default Value, 1.9 × Default Value] with an interval of 

15 percent of the default value, yielding a total of 133 = 2197 runs evaluations in the 

search space. According to our experience, it takes approximately 12 hours to complete 

one calibration of one month. Thus, in this dissertation, the calibration for each of 12 

months will be conducted to determine a group of calibrated model parameters for one 

specific plant. Thus, this enumerative search method will not be limited to local optimum 
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values, which is not uncommon for traditional optimum methods. However, there are also 

limitations of this enumerative (exhaustive) search method: searching range and 

searching intervals. There are two ways to solve this problem if needed. Firstly, we might 

use a larger range and smaller interval to ensure that the optimum values will not be out 

of range. Secondly, we can also use the regression methods and/or graphic information to 

find the best group of model parameter using the fitted function. Notice that the main 

purpose of the calibrated parameter is to generate the site-specific parameter 

distributions. In that case, we treat parameters as distributions instead of fixed values. 

That is, we are more interested in the right range of model parameters instead of the exact 

values.  

 

Figures 5-3 and 5-4 indicate that the calibrated parameters for the Oak Ridge plant data 

are well fitted. The missing measured data points are not plotted in these two figures. 

Figure 5-3 indicates the calibration for the 2001 full year data from the Oak Ridge 

WWTP. It clearly shows the simulated data from the calibrated parameters fit the 

measured plant effluent relatively well, capturing the overall trend at any particular time, 

even though some of the most extreme values of effluent ammonia are not well 

represented. In order to see the details, Figure 5-4 indicates the calibration for the August 

data in 2001 from the Oak Ridge WWTP. The calibrated data well captures the overall 

trend of real data. However, the outlier problem is obvious on the 221st day. The 

measured value is around 0.09 mg/L; while the simulated value is only around 0.06 

mg/L. This might be caused by sudden increasing of plant influent loading (for example, 

the flow rate and/or ammonia-N concentration). That is, some of extremely variability of  
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Figure 5-3.  The comparison between calibrated and measured data in year 2001 from the 

Oak Ridge WWTP. 
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Figure 5-4.  The comparison between calibrated and measured data in August from the 

Oak Ridge WWTP. 
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influent cannot be captured by the fixed calibrated parameters. In this case, outlier 

detection and replacement method might be preferred. As for the short-term variations in 

plant performance that cannot be captured by fixed-parameter models, they are not 

necessarily caused by easily observable deterministic causes.  

 

Notice that the RMSE criteria might be affected by the detection limit of the ammonia 

nitrogen methods. As discussed in Chapter III, the ammonia nitrogen concentration is 

measured by the phenate method. This method is applicable over the range of 0.02 to 2.0 

mg/L. Because the historical data have the minimum values of 0.01 mg/L, the calibration 

results above were obtained with the detection limit of 0.01 mg/L. In order to investigate 

how the detection limit affects the calibration results, we will consider all simulated 

effluent ammonia nitrogen concentrations that are lower than 0.01 mg/L to be 0.01 mg/L. 

That is, the minimum value of the simulated results will be equal to or larger than the 

detection limit of the selected method. The conducted calibration indicates that the 

calibrated values of the parameters KNH, µA,max, and YA, are still 0.5500 mg/L, 0.0464 

hour-1, and 0.4560 mg/mg, respectively, with the minimum RMSE of 0.0646. This result 

shows that the calibration standard of RMSE is not significantly affected by the low value 

of detection limit (0.01 mg/L). In fact, the more sensitive values would be the large 

effluent concentrations, which can also be explained in the equation of RMSE.  

 

The calibrated parameters are shown in Table 5-5. The data shows that the third 

important parameter YA (yield of autotrophs) does not change as much on a month-to 

month as the other two parameters. Also, the minimum RMSEs for different months are  
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Table 5-5. The calibrated parameters for 12-month of the Oak Ridge WWTP. 

 

Month/Year KNH (mg/L) µA,max (hr-1) YA (mg/mg)* RMSE 

1/2001 1.3000 0.0608 0.4560 0.2790

2/2001 1.7500 0.0608 0.4560 0.3710

3/2001 1.7500 0.0416 0.4560 0.4293

4/2001 1.9000 0.0416 0.4560 0.9286

5/2001 1.7500 0.0320 0.4560 0.6221

6/2001 0.7000 0.0560 0.0240 0.0446

7/2001 0.7000 0.0320 0.0240 0.2924

8/2001 0.5500 0.0464 0.4560 0.0646

9/2001 1.4500 0.0608 0.4560 0.8013

10/2001 0.5500 0.0560 0.3480 0.0049

11/2001 0.4000 0.0512 0.4560 0.0078

12/2001 0.5500 0.0224 0.0240 0.3108

 

Note: * indicates the nearly constant parameter, which would prove to be an insignificant 

parameter through correlation analysis and scatter plots. 
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significantly different. Large RMSEs are associated with the occurrences of some 

unusual high or low data points (or potential outliers).  The following correlation analysis 

and scatter plots will explain why this happened.  

 

As discussed above, Figures 5-3 and 5-4 demonstrate that our calibrated parameters are 

well fitted to the plant effluent data. However, the relationships between the RMSE and 

other three parameters should be examined to find/confirm the order of the importance of 

these three parameters. We also want to prove that calibrated parameters are sufficiently 

accurate to be used in the next Monte Carlo simulations. Before we go further, there is 

also another thing to consider. As shown in Table 5-5, some values of YA (June, July, and 

December) are 0.0240, which is much smaller than any published values to data (Cox 

(2004) reports that the minimum published values of YA is 0.24 mg/mg). As the results 

below will demonstrate, RMSE was very insensitive to YA. A peculiarity of the 

calibration program caused it to retain the lowest value of the parameter that resulted in 

the minimum RMSE. Therefore, the lowest values of YA should not be considered as 

representative of the actual values of this parameter.  

 

Table 5-6 shows correlations between RMSE and the three calibrated parameters.  

Surprisingly, the most important parameter is µA,max instead of KNH. The negative 

correlation between RMSE and µA,max is very strong with a coefficient of -0.7844. 

Parameter YA is the least important parameter. With an insignificant correlation 

coefficient of -0.0003. This also explains why the parameter YA has very small mistaken 

calibrated values as shown in Table 5-5. 
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Table 5-6. The correlations between RMSE and the three parameters. (April 2001, Oak 

Ridge WWTP) 

 

Items KNH (mg/L) µA,max (hr-1) YA(mg/mg) 

RMSE 0.0612 -0.7844 -0.0003

 

 

The following three plots (Figures 5-5, 5-6, and 5-7) also indicate the relationships 

between RMSE and these three parameters. Figure 5-5 confirms there are no 

relationships between RMSE and parameter YA at all. Thus, this parameter will be fixed 

at a default value of 0.24 mg/L (listed in Table 2-4) for all Monte Carlo simulations. The 

relationship between RMSE and KNH is a little complicated. It has three different 

patterns: one is flat, another is linearly rapidly increasing, the last one is exponentially (or 

linearly) but slowly increasing. It indicates the parameter KNH is not the only factor 

strongly affecting RMSE. In fact, Figure 5-6 clearly shows that KNH is strongly affected 

by the interaction from µA,max. For µA,max less than 0.01 hr-1, which is extremely small 

value, there is almost no effect from KNH. In the range 0.01 hr-1 <  µA,max < 0.03 hr-1, the 

optimum value of KNH decreases with increasing value of µA,max. For µA,max > 0.03 hr-1, 

the value of KNH has very little effect on RMSE. The whole plot also shows that the 

RMSE decreases with increase of µA,max, although the tail part actually increases a little 

bit. The best calibrated parameters in this case is: µA,max = 0.0416 hr-1, and KNH = 1.9 

mg/L. Notice that the tail part is almost flat, with little changes when  µA,max > 0.03 hr-1.  
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Figure 5-5. The scatter plot of RMSE against YA (Oak Ridge WWTP). 
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Figure 5-6. The scatter plot of RMSE against KNH (Oak Ridge WWTP). 
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Figure 5-7. The scatter plot of RMSE against µA,max (Oak Ridge WWTP). 
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 This demonstrates that the RMSE is relatively insensitive over a wide range of parameter 

values. This observation supports our approach in which parameters are represented as 

distributions instead of as fixed well-defined values.  

 

Notice that there is a relationship between µA,max and YA.  When the substrate is being 

used at its maximum rate, the autotrophic biomass is also growing at their maximum rate. 

The maximum specific growth rate of the autotrophic biomass is thus related to the 

maximum specific substrate utilization rate as follows.  

µA,max = k×YA                                                                                         (5-1)  

where, µA,max is the maximum specific growth rate of autotrophic biomass (hour-1); k is 

the maximum specific substrate utilization rate [mg/(mg.hour)]; and YA is the yield of 

autotrophic biomass (mg/mg). Just like µA,max, YA is affected both by the substrate and 

the microorganism in the bioreactors. However, YA represents the energy available in a 

substrate, while µA,max represents how fast a microorganism can process that energy and 

grow. Because they represent different features, there is no correlation between these two 

parameters (Grady, et al., 1999). For example, some slowly biodegradable substrates (low 

µA,max) can still provide more energy to the degrading culture (i.e., higher YA) than 

rapidly biodegradable substrates do (Grady, et al., 1975) . This suggests that there is 

variability in parameter k that cannot be determined from data on µA,max alone, and vice 

versa. It is also important to determine the feature of the true growth yield: YA. 

Furthermore, in the ASM1 model, the process parameters do not include the parameter k: 

the maximum specific substrate utilization rate [mg/(mg.hour)], as shown in equation (5-
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1). As shown in Table 2-4, the values of YA are different at two temperature: 20 and 10 

°C, while the values of µA,max are same. This indicates that the wastewater system might 

have different k at different temperature. However, there is little information of the 

uncertainty in k available. Thus, even we have the determined equation (5-1), we still 

cannot conclude that these two parameters are certainly correlated. As a result of previous 

analyses, we only consider the parameters of KNH and µA,max. 

 

The statistical characteristics of both historical and simulated results are shown in Figure 

5-8. From the plot, the statistical characteristics of the simulated effluent ammonia 

nitrogen effluent data do not closely match those of the historical data. The mean value 

and standard deviation of the historical data are 0.206 mg/L and 0.481 mg/L compared to 

0.184 mg/L and 0.239 mg/L for the simulated data. Furthermore, the highest percentiles 

of 100.0, 99.5, 97.5 and 90.0 for the historical data (3.300, 3.270, 1.800, and 0.667 mg/L, 

respectively) are much larger than those in the simulated data (2.403, 1.885, 0.781, and 

0.467 mg/L, respectively). In general, we can conclude that the historical data are 

characterized by greater variability than the simulated data obtained with month-by-

month calibrated parameters. Obviously, if we design a plant using the simulation from 

calibrated parameters, we fail to capture the true variability in plant performance. In other 

words, the traditional method using simulation results from calibrated parameter cannot 

provide a reliable design procedure without an extra safety factor added.  
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Figure 5-8. The comparison of one-year historical and simulated effluent NH4-N (mg/L) 

of the Oak Ridge WWTP. 
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5.1.3 Simulations with Parameter Uncertainty 

 

The previous section discussed the calibration procedure and calibrated parameters for 

the Oak Ridge WWTP. The comparison between historical and simulated effluent data 

indicates that the design methods that better represent the variability in the plant are 

needed. Thus, in this section, we will investigate the use of distributed parameters in 

conjunction with Monte Carlo simulations to assess the variability. As mentioned in 

Chapter III, there are two options for distributed parameters. One is the universal (or non-

site-specific) distributed parameters generated by Cox (2004) based on published 

parameter values from all over the world; the other is the site-specific distributed 

parameter that will be generated using the Bayesian method and site-specific calibrated 

parameter.  

 

Results of the Monte Carlo simulation with the universal parameter distributions is 

conducted are shown in Figure 5-9. The results are based on August 2001 historical 

influent data. Obviously, the Monte Carlo simulation results with the universal parameter 

distributions overestimate both the magnitude and the variability of the historical effluent. 

The mean value and standard deviation of the simulation results are 3.982 mg/L and 

7.499 mg/L, respectively, compared to 0.206 mg/L and 0.481 mg/L for the historical 

data. As for the highest percentiles, they are unreasonably higher than the historical data 

with a maximum value of 40 mg/L and 90.0 percentile of 19.211 mg/L. In short, the 

universal parameter distributions introduce too much unrealistic uncertainty into 

wastewater treatment systems.  

 - 150 - 



  

Historical data  Simulated data  

-0.25

0.25

0.75

1.25

1.75

2.25

2.75

3.25

NH4-N (mg/L) vs. Frequency 
 

0

10

20

30

40

 
NH4-N (mg/L) vs. Frequency 

Quantiles 
100.0% maximum 3.300
99.5%  3.271
97.5%  1.800
90.0%  0.686
75.0% quartile 0.090
50.0% median 0.030
25.0% quartile 0.030
10.0%  0.030
2.5%  0.020
0.5%  0.010
0.0% minimum 0.010
Moments 
Mean 0.206
Std Dev 0.481
N  257

Quantiles 
100.0% maximum 40.000 
99.5%  26.764 
97.5%  25.123 
90.0%  19.211 
75.0% quartile 2.507 
50.0% median 0.299 
25.0% quartile 0.070 
10.0%  0.025 
2.5%  0.009 
0.5%  0.004 
0.0% minimum 0.0003 
Moments 
Mean 3.982 
Std Dev 7.499 
N  26000 

 

 

Figure 5-9. Monte Carlo simulations of effluent NH4-N (mg/L) with the universal 

parameter distributions and August historical influent from the Oak Ridge WWTP. 
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The two previous simulations indicate that neither the fixed calibrated parameters nor 

universal parameter distributions accurately capture the variability observed in the actual 

plant. The fixed calibrated parameters can predict the average effluent well. However, the 

simulated results underestimate the variability observed in the historical effluent. The 

universal parameter distributions simply introduce too much unrealistic uncertainty, thus 

leading to inaccurate simulation results. Two key reasons are 1) too much uncertainty in 

the model parameters is considered; 2) and the likelihood of sampling extreme 

parameters from multiple distributions simultaneously. To reduce the uncertainty in the 

parameters, we will consider site-specific parameter distributions. These site-specific 

parameters can better describe the plant performance because they are generated from 

calibrated parameters while preserving the consideration of uncertainty. 

 

The site-specific parameter distributions for KNH and µA,max are generated from the 

monthly calibrated parameters using the Bayesian method detailed in Chapter III. The 

results are summarized in Table 5-7.  

 

The detailed Bayesian procedure was discussed in Chapter III. The standard deviation of 

the prior distribution is calculated using the equation µσ ×= 25.0  instead of 

µσ ××= 25.02  in order to narrow down the posterior distribution, especially for the 

site-specific parameter distributions. For details, please refer to Cox (2004).   
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Table 5-7. The universal and site-specific parameter distributions for the Oak Ridge 

WWTP. 

 

Items KNH (mg/L) µA,max (hr-1) 

UPD: µ -0.675 -3.688 

UPD: σ 1 0.44 

SPD: µ -0.0844 -3.1791 

SPD: σ 0.6531 0.3774 

Percentiles (%) KNH (mg/L) µA,max (hr-1) 

1 0.2012 0.0173 

5 0.3139 0.0224 

10 0.3980 0.0257 

25 0.5916 0.0323 

50 0.9190 0.0416 

75 1.4277 0.0537 

90 2.1223 0.0675 

95 2.6906 0.0774 

99 4.1989 0.1001 
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 Figure 5-10 shows the universal (UPD) and site-specific (SPD) parameter distributions 

of the parameter KNH. It seems like the UPD is “narrower” than the SPD, however, it is 

actually not. Because all values of a lognormal distribution are larger than zero, the PDF 

curve of a lognormal distribution is not symmetric. We will discuss this together with the 

percentile and probability tables later. Figure 5-11 shows the comparison of the UPD and 

SPD for the parameter µA,max. Both figures indicate that the curves of two SPD both move 

to right a little bit. In other words, the mean and median values of two SPD are both 

larger than those of the UPD.  

 

Table 5-8 shows the percentile comparison between two kinds of SPD. Distributions 

labeled SPD calculate the prior standard deviation using formula: µσ ×= 25.0 , while 

parameters SPD’ calculate the prior standard deviation using formula: µσ ××= 25.02  

as originally recommended by Cox (2004). Obviously, SPD’ will have a wider prior 

distribution and generate a wider posterior distribution with more uncertainty.  

 

Until now, we obtained the two kinds of SPDs (SPD and SPD’) for KNH and µA,max. 

However, we need to determine which one is better to conduct following Monte Carlo 

simulations. Table 5-9 compares the range of the monthly calibrated values to percentiles 

of SPD and SPD’. For example, for the parameter µA,max, the minimum and maximum 

calibrated values are 0.0224 and 0.0608 day-1, respectively. The minimum value falls at 

the lowest 5 percent of SPD’ while the maximum value falls at the lowest 79 percent. 

Therefore, the probability of a random sample from SPD’ to fall in the range of the  
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Figure 5-10. PDF plots of KNH (mg/L) for the UPD and SPD for the Oak Ridge WWTP. 

 

 

Figure 5-11. PDF plots of µAmax (hour-1) for the UPD and SPD for the Oak Ridge WWTP. 
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Table 5-8. The percentile comparison between UPD and two SPDs. 

 

KNH (mg/L) µA,max (hr-1) Items 

0.05 0.95 0.05 0.95 

UPD 0.0983 2.6376 0.0121 0.0516 

SPD’ 0.3299 2.8541 0.0235 0.0841 

SPD 0.3139 2.6908 0.0224 0.0774 

 

 

 

Table 5-9. The probabilities of the data range between minimum and maximum 

calibrated parameters. 

 

Items KNH (mg/L) µA,max (hr-1) 

Range of calibrated values Minimum

0.4 

Maximum

1.9 

Minimum 

0.0224 

Maximum

0.0608 

PDF (SPD’) 0.0883 0.8472 0.0387 0.7906

Probability (SPD’) 0.7589 0.7519

PDF (SPD) 0.1014 0.8669 0.0503 0.8423

Probability (SPD) 0.7656 0.7920
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calibrated value is approximately 75 percent. We believe that this probability is a little 

too low and adds too much uncertainty to the distributions; therefore, we used the SPD 

estimates to obtain slightly more narrow site-specific distributions. 

 

As listed in Table 5-6, the correlation coefficient of µA,max and KNH is 0.087847. That is, 

there are no strong correlations between those two parameters. Thus, in the following 

simulations, those two parameters are randomly and independently sampled. Notice that 

three kinds of parameters are considered: SPD#1-AP: all parameters are sampled from 

the UPD expect for µA,max and KNH, which are sampled from their SPD; SPD#2-2P: all 

parameters are fixed except for µA,max and KNH, which are sampled from their SPD; and 

SPD#3-1P: all parameters are fixed except for µA,max, which is sampled from its SPD. 

 

Figure 5-12 shows the comparison of Monte Carlo simulations to the historical data using 

the three different SPDs. Clearly, the simulation results with SPD#2-2P and SPD#3-1P 

are much better than the results with SPD#1-AP. Variability in fewer parameters yielded 

better simulation results. In fact, the SPD#3-1P best described the effluent ammonia-N 

when considering the mean, standard deviation and 99.5 percentile values. However, the 

simulation results with SPD#2-2P better represent the 97.5 and 90.0 percentiles. 

Nevertheless, we recommend SPD#3-1P, after considering the overall distribution of 

effluent of ammonia-N concentration. As for the maximum values, all three distributions 

predict much greater values than observed in the historical record; however, undue 

weight should not be given to these extreme points.  
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0.0% minimum 0.0055
Moments 
Mean 0.229
Std Dev 0.761
N 26000 

Figure 5-12. Monte Carlo simulations of effluent NH4-N (mg/L) with SPDs and August historical influent for the Oak Ridge 

WWTP.
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5.1.4 Simulations with Influent Variability 

 

In last section, we discussed the effect of the parameter uncertainty on the Monte Carlo 

simulations. In this section, we will elaborate the effect of variability in the plant influent. 

Two options are available: (1) historical influent data, or (2) randomly generated influent 

data.  

 

The previous simulation results in last section are the simulations from the August 

historical influent data with different parameter distributions. Since Winter and Summer 

may have different effects on plant performance, we would like to consider both in this 

dissertation to ensure a reasonable and reliable simulation. We take August and January 

typical months of Summer and Winter, respectively. Since August was already 

considered in the previous section, we will now conduct a similar simulation based on 

January historical influent data. The simulated results are shown in Figure 5-13. The 

mean value and standard deviation of the SPD#3-1P simulated data are smaller than the 

results from the August influent data. This leads to a slightly overestimation of the 

effluent ammonia nitrogen as compared to the historical data. However, the highest 

percentiles of 100, 99.5 and 97.5 are very similar. Thus, for the purpose of Monte Carlo 

simulations, we conclude that the SPD is adequate from both Summer and Winter 

conditions. Figure 5-13 also indicates that the performance in Winter is worse than the 

performance in Summer, which also explains why effluent requirement in Winter is less 

stringent than in Summer. We strongly recommend conducting simulations over at least  
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Figure 5-13. Monte Carlo simulations of effluent NH4-N (mg/L) with the SPD#3-1P 

parameters, and January historical influent for the Oak Ridge WWTP. 
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Two months (for example, January and August) to indicate two extreme cases in the plant 

performance. However, in this dissertation, we would like to take August influent data as 

an example to study the further uncertainty in the plant performance in the following 

simulations.  

 

In order to confirm whether the one months’ influent data (either January or August) can 

provide reliable and reasonable simulations, we conduct 1000 Monte Carlo runs with 

one-year influent data. Figure 5-14 shows the Monte Carlo simulation with the SPD#3-1P 

parameters and one-year historical influent data from the Oak Ridge WWTP. The mean 

and standard deviation of 1000 Monte Carlo runs are 0.239 mg/L and 0.763. The mean 

and standard deviation of the historical plant effluent data are 0.206 mg/L and 0.481. 

More important, the percentiles of 99.50 and 97.50 of Monte Carlo simulation results are 

both very close to real plant effluent data. Overall Monte Carlo simulations using August 

and full-year data yield very similar results, thus justifying the use of the one month 

influent history. 

 

Till now, Monte Carlo simulations have been conducted with distributed parameters and 

historical influent data. Next, we will discuss the simulations with randomly generated 

influent data. In Chapter III, we created a time series model of the Oak Ridge influent 

capable of generating random influent time series. We will now use this model to test the 

effects of influent variability on simulation performance. We consider three cases. First, 

we use randomly generated influent data for August with fixed calibrated parameters. 

Next, we use the randomly generated influent data for August with the SPD#3-1P 
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Figure 5-14. Monte Carlo simulation of effluent NH4-N (mg/L) with the SPD#3-1P 

parameters and one-year historical influent for the Oak Ridge WWTP. 
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Parameters. Finally, we use randomly generated influent data for one-year with SPD#3-

1P. Notice that for randomly generated influent, we will have different influent data for 

each Monte Carlo run. These random influent data are different from the historical data, 

while they have the same/similar statistical characteristics as the historical data. Figure 5-

15 shows the statistical characteristics of simulated effluent Ammonia-N with random 

influent data for August and the fixed parameters. It clearly indicates that the simulated 

effluent data notably underestimate the variability in the real plant full year data. Thus, it 

is not acceptable to be applied in the future Monte Carlo runs. The simulation results with 

one-year random influent data and fixed calibrated parameters are shown in Figure 5-16. 

Obviously, this simulation is also bad because it underestimates the uncertainty of plant 

effluent, specifically in mean, standard deviation, and highest percentiles (99.5, 97.5, 

etc.).  However, the simulation results are much better than the results with only one 

month influent, indicating that the one-year random influent data did introduce more 

variability into WWTPs.  

 

Figure 5-17 shows the statistical characteristics of simulated effluent Ammonia-N with 

the SPD#3-1P parameters and random August influent data. The simulated results are not 

too bad. However, it predicts much higher mean value, standard deviation, and the 

highest percentiles (99.5, 97.5, etc.). That is, the simulation results overestimate the 

variability this time. Furthermore, compared with Figures 5-15 and 5-16, it suggests that 

the uncertainty in plant performance is better represented with uncertainty in model 

parameters rather than variability of the plant influent. Thus, it makes sense to use 

historical plant data instead of time-consuming randomly generated influent data. 
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Figure 5-15. Monte Carlo simulation of effluent NH4-N (mg/L) with all fixed calibrated 

parameters and randomly generated influent for August for the Oak Ridge WWTP. 
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Figure 5-16. Monte Carlo simulations of effluent NH4-N (mg/L) with the fixed calibrated 

parameters and one-year randomly generated influent for the Oak Ridge WWTP. 
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Figure 5-17. Monte Carlo simulations of effluent NH4-N (mg/L) with the SPD#3-1P 

parameters and randomly generated influent for August for the Oak Ridge WWTP. 
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 In order to confirm whether the one months’ random influent data (either January or 

August) can provide reliable and reasonable simulations, we also conduct 1000 Monte 

Carlo runs with the SPD#3-1P parameters and one year randomly generated influent data, 

as shown in Figure 5-18. As expected, the longer simulation introduces more uncertainty 

into the plant effluent data. However, for 99.5, 97.5, and 90.0 percentiles, the new 

simulation results (1000 Monte Carlo runs) have the values of 4.097, 1.173, and 0.421 

mg/L, respectively. The corresponding values of the results with real plant influent data 

are 3.523, 1.139, and 0.409 mg/L, respectively. In fact, this might introduce too much 

uncertainty into our simulated results. Compared the results from the real plant effluent 

data, we can conclude that the random influent with the SPD#3-1P parameters introduce 

too much uncertainty that might leads to overly stringent design standards. This can also 

cause the overdesign problem of WWTPs.  It is still difficult to make decision which 

simulation provides the best results. As we know, we expect the simulated results as close 

as possible to real plant effluent. However, on the safe side, we also want to make sure 

that our designed plant based on the simulated results can perform well with a certain 

probability (for example, 99.5 or 97.5 percent). Thus, it is normally acceptable if our 

simulated results are a little bit higher than the real plant effluent data. Considering these 

standards, we can conclude that the Monte Carlo simulation with randomly generated 

influent offers the safer plant effluent estimates and will be the one of the best choices to 

describe the uncertainty in the wastewater treatment system. However, it is clearly more 

time-consuming and expensive to conduct Monte Carlo simulations using the randomly 

generated influent data.  
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Figure 5-18. Monte Carlo simulations of effluent NH4-N (mg/L) with the SPD#3-1P 

parameters and the one-year randomly generated influent for the Oak Ridge WWTP. 
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5.1.5 Discussions 

 

Table 5-10 summarizes the simulation completed in the previous sections. Obviously, the 

best simulation is conducted with one full year historical influent and the SPD#3-1P 

parameters. This best simulation has the best grade score: A+, considering the mean, 

standard deviation, the highest percentiles, and histogram plot. There are two simulations 

with the second best grade: A. One is the simulation with one month historical influent 

data and the SPD#3-1P parameters. The other is the simulation with one year randomly 

generated influent and the SPD#3-1P parameters.  

 

 

Table 5-10. Summary table of Monte Carlo simulations of the Oak Ridge WWTP. 

 

Influent Month/year Fixed  UPD SPD#1-AP SPD#2-2P SPD#3-1P 

Historical 8/2001 

1/2001 

2001 

 

 

B+(*) 

C 

 

 

C+ 

 

 

A- 

 

 

A (No.2) 

A- 

A+ (No.1) 

Random 8/2001 

2001 

C (*) 

 

   A-  

A (No.3) 

 

Note: * = Underestimate. 
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As expected, this simulation with the SPD#3-1P parameters and randomly generated 

influent would introduce more uncertainty into the Monte Carlo simulations of 

wastewater systems. Considering the simplicity, we recommend the simulation with the 

SPD#3-1P parameters and one-month historical data, which is the second best choice. 

 

The best parameter distributions are the SPD#3-1P parameters, that is, all fixed calibrated 

parameters except the SPD µA,max. It is an important finding that reliable Monte Carlo 

simulation can be achieved by considering only the most important parameter: µA,max. 

Future investigations may seek to determine if alternative methods of determining the 

distribution of the key parameter might result in better representations of plant variability.  

 

Furthermore, Table 5-10 also indicates that the randomly generated influent data do not 

have a major impact on the uncertainty of the plant effluent. The random influent data 

combined with the fixed parameters usually remarkably underestimated the variability. 

The random influent data combined with the parameter distributions, however, introduce 

too much uncertainty, that is, at extreme conditions the effluent concentration was 

overestimated. This case is not favored either, because it might leads to the over-design 

of wastewater treatment plants. In short, from the Monte Carlo simulations of the Oak 

Ridge WWTP, we conclude that the best choice is the simulation with one year historical 

influent data and the SPD#3-1P; and the second best choice is the simulation with one 

month historical data and the SPD#3-1P.  
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In order to quantify the standard of evaluating simulated results, goodness-of-fit (GoF) 

tests are conducted. A goodness-of-fit test is a statistical test in which the validity of one 

hypothesis is tested without specification of an alternative hypothesis. The most common 

tests for goodness-of-fit tests are the chi-square test, Kolmogorov-Smirnov test, and 

Cramer-von Mises test. According to Conover (1999), the Cramer-von Mises test is one 

of the most powerful methods.  This test can be applied in any case (either binned or 

unbinned data). The goal of the Cramer-von Mises test is to investigate the significance 

of the difference between two population distributions, based on two sample 

distributions.  

 

The test statistic T2 is calculated as follows:  
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mnT                              (5-2) 

where S1(x) and S2(x) are the empirical distribution functions of two samples; m and n 

are the sample sizes. 

 

The hypotheses are:  

)()(:0 xGxFH = , for all x;  

)()(:1 xGxFH ≠ , for at least one value of x.                                                 (5-3) 

Reject H0 at the approximate level α if T2 exceeds the 1-α quantile αω −1 (for example, 

99.0ω =0.743 at α=0.05). These quantiles are obtained based on the asymptotic 
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distribution, valid for large m and n (Anderson and Darling, 1952). However, they are 

considered fairly accurate even if the sample sizes are small (Burr, 1964).   

 

The quantified results of Table 5-10 are shown in Table 5-11, using the Cramer-von 

Mises goodness of fit test.  Table 5-11 indicates that the best two options are still from 

the simulations with the SPD#3-1P parameters and one-year historical/random influent, 

with T2 values of 0.6194 and 0.6035, respectively. Because both T2 values are less than 

99.0ω =0.743, we conclude the null hypothesis of identical distribution functions is 

accepted at α=0.01. Surprisingly, the simulation with the SPD#3-1P parameters and 

August historical influent are not well presented as a result of the T2 statistics. This 

method is ranked as the No.3 choice in Table 5-10. However, in Table 5-11, the  

 

Table 5-11. GoF tests of Monte Carlo simulations of the Oak Ridge WWTP. 

 

Influent Month/year Fixed  UPD SPD#1-AP SPD#2-2P SPD#3-1P 

Historical 8/2001 

1/2001 

2001 2.2957

3.4185 1.3686 1.0620 

 

 

1.7392

1.8216

0.6194

Random 8/2001 

2001 

1.5148  1.6770

0.6035
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simulation with the SPD#2-2P parameters and August historical influent is much better 

and well deserves the No.3 choice, instead.  Notice that the goodness-of-fit test is only 

based on a statistical standard. This standard might be inappropriate for the applications 

in practice. For example, the simulation results in Figure 5-12 indicate that the simulation 

with the SPD#2-2P parameters is only slightly different from the simulation with the 

SPD#3-1P parameters. However, the goodness-of-fit tests in Table 5-11 show that the 

simulation with the SPD#2-2P parameters is obviously much better than the simulation 

with the SPD#3-1P parameters. Thus, we believe that this Cramer-von Mises goodness-

of-fit test cannot work for all the cases. In this dissertation, the evaluation of the 

simulation results mostly focuses on the highest percentiles (99.50 and 97.50 percent), 

mean and standard deviation, which are considered the most important factors affecting 

the plant performance. Further research is needed to find a better goodness-of-fit test 

emphasizing more on the highest percentiles, mean, and standard deviation.  

 

Table 5-12 shows the approximate required time to conduct a simulation with 1000 

Monte Carlo runs. The required time includes data preparation, program running, and  

 

Table 5-12. The required time for 1000 Monte Carlo runs. 

 

Influent Time with SPD#3-1P

One-month data 1-3 days 

One-year data  5-7 days 
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data analysis. As discussed, the second best choice with the one-month influent data can 

also provide a reasonable and reliable simulated results, compared with the real plant 

effluent and simulated results from one year influent data.  From Table 5-12, one-month 

simulation only needs 1-3 days, which is much less than the simulation with one-year 

simulation (3-7 days). Thus, unless the best accuracy is needed, we can use the Monte 

Carlo simulation with one-month influent data (either Winter January or Summer August 

data) and the SPD#3-1P parameters. The following simulations will consider how 

changing SRT affects the plant effluent NH4-N concentration. These simulations of 

effluent NH4-N for different SRT = 6, 8, 10 and 12 days are conducted with the SPD#3-

1P parameters and the August historical influent data, as shown in Figure 5-19. It 

obviously indicates that the mean values and the highest percentiles  (99.50, 97.50, and 

90.00) decrease with increasing SRT. 

 

Figures 5-20 and 5-21 show the relationship between the percentiles of the effluent NH4-

N and SRT. The maximum effluent ammonia nitrogen is observed to increase with SRT 

over the range of 6 to 10 days; however, too much emphasis should not be placed on the 

most extreme values. The 99.50, 97.50 and 90.00 percentile ammonia nitrogen 

concentrations all decrease with increasing SRT. For example, for the case of SRT = 10 

days, the 97.5 percent of data are under 1.054 mg/L, which is much less than the 

requirement (daily maximum concentration: 3.6 mg/L). Normally, regulatory limitations 

on plant effluent employ moving average methods to allow occasional short-term palnt 

upsets. Some extremely high effluent values will be smoothed out by 7-day or 30-day 

averages.  



Figure 5-19. Monte Carlo simulations of effluent NH4-N (mg/L) with the SPD#3-1P parameters and the August historical influent 

for the Oak Ridge WWTP.
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Figure 5-20. The percentile plot (100.00 and 99.50) against SRTs (Oak Ridge WWTP). 
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Figure 5-21. The percentile plot (97.50 and 90.00) against SRTs (Oak Ridge WWTP). 
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Effluent standards are based on daily max, 7-day average, and 30-day average are 

commonly employed. For example, these effluent ammonia-N standards of the Oak 

Ridge WWTP are 3.6, 2.7, and 1.8 mg/L, respectively. Figure 5-22 shows the comparison 

between the daily data, 7 and 30-day average data.  As expected, the mean and standard 

deviation have no significant difference. Even for the percentiles, there is no significant 

difference either. However, there is something different on the histogram plots. It clearly 

indicates the average method smoothes out some largest values. This is also the reason 

why 30-day average has the most stringent standard, followed by the 7-day average. 

Because only one month data are considered, the 30-day average data for 1000 Monte 

Carlo runs have only 1000 data, which is too few to make reliable decision. Thus, we 

decide to take 7-day average data to make the decision chart. For comparison purposes, 

Figure 5-23 shows the similar plots of real plant effluent. It clearly indicates that the 

average method successfully smoothed out those large values, thus making the three 

highest percentiles decrease significantly from daily, to 7-day, to 30-day average. 

Compared with Figure 5-23, the big difference is that Figure 5-22 still has a few effluent 

data with extremely high values even for those 7-day and 30-day averages. Some of those 

values are likely caused by extremely low values of the parameter µA,max. In this case, 

there would be continuous 30 days large values, which are impossible to be smoothed out 

by 7-day and 30-day average methods. 

 

Figure 5-24 shows statistical characteristics of the same simulated results as obtained in 

Figure 5-19. The only difference is that Figure 5-19 uses daily effluent ammonia-N; 

while Figure 5-24 uses the 7-day average of effluent ammonia-N. Compared with Figure
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Figure 5-22. The comparison of daily, 7 and 30-day averages of simulated effluent NH4-

N of the Oak Ridge WWTP. (August, 2001) 
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Figure 5-23. The comparison of daily, 7 and 30-day averages of historical effluent NH4-N 

(mg/L) of the Oak Ridge WWTP.  
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Figure 5-24. Monte Carlo simulations of 7-day average NH4-N (mg/L) with the SPD#3-1P parameters and August historical plant 

influent from the Oak Ridge WWTP. 
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5-19, the mean and standard deviation are very similar, although the 7-day average data 

provide slightly smaller values for all four SRTs. The maximum values for all four SRTs 

significantly decrease thanks to the 7-day moving average.  However, for 97.5 

percentiles, there are no significant differences. The values of SRTs = 6, 8, 10, and 12 

days are 2.766, 1.254, 1.102, and 0.590 mg/L, compared with values of 2.741, 1.266, 

1.054, and 0.591 mg/L in Figure 5-19.  

 

The similar plots of percentiles against SRTs are shown in Figures 5-25 and 5-26. 

Compared with Figures 5-20 and 5-21, there are no significant differences in the values 

and patterns of percentiles between the daily data and 7-day average data. The reason is 

that extreme model parameters result in a full month’s worth of extreme values, as 

discussed above. In order to deal with this unrealistic uncertainty, more research on the 

distributional parameter is needed in the future. Due to equipment and time limitation, we 

will continue to use the daily effluent data with either 99.50 or 97.50 percentiles, which 

has proved to be a trustable and reliable method to study the uncertainty of WWTPs.  
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Figure 5-25. The percentile plots (100.00 and 99.50) against SRTs  (Oak Ridge WWTP, 

7-day average). 
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Figure 5-26. The percentile plots (97.50 and 90.00) against SRTs (Oak Ridge WWTP, 7-

day average). 
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5.2 Seneca Wastewater Treatment Plant 

 

5.2.1 Description of the Seneca WWTP 

 

The Seneca Wastewater Treatment Plant is located in Germantown, Maryland. The 

design capacity is 5 MGD (1 million gallon per day = 3785.4 m3/day). The influent flows 

directly into five parallel extended-aeration activated sludge tanks, each designed for 1 

MGD. The plant layout is shown in Figure 5-27. There are also other processes, for 

example, sand filtration, following the activated sludge treatment process. However, 

because the key topic in this dissertation is the activated sludge system, we only consider 

the plant influent, the bioreactors, and the effluent from the secondary clarifiers. 

Furthermore, since we have five bioreactors, which are operated independently, we will 

take the average values of those five effluent components. It is reasonable because the 

effluent flow rates for those five bioreactors are all close to 1 MGD; therefore, no 

weighted average values are needed.  

 

The Seneca WWTP applies an Extended aeration activated sludge (EAAS) process. 

EAAS processes utilize long SRTs to stabilize the biosolids resulting from the removal of 

biodegradable organic matter. SRTs of 20 to 30 days are typical, which means that HRTs 

around 24 hours are required to maintain reasonable MLSS concentrations. Long SRTs 

offer two benefits: reduced quantities of solids to be disposed of, and greater process 

stability. Furthermore, high quality, well-nitrified effluent can also be achieved. These 

benefits are obtained at the expense of the large bioreactors required to achieve the long  
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Figure 5-27. The layout of the Seneca WWTP. 
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SRTs, but for many small installations the benefits out-weight the drawbacks.  

 

Table 5-13 shows the operational conditions of the Seneca WWTP. Those numbers are 

obtained from either historical plant data or operational information from practitioner 

(designer or operator) working at plants. From the table below, the SRT is chosen as 20 

days, and total volume of the bioreactors is 5 MG (1.8927×107 Liters) for the Seneca 

WWTP. In order to consider the effect of SRT on the plant effluent, we also conducted 

Monte Carlo simulations for other three different SRTs: 5, 10, and 30 days, respectively.  

 

 

Table 5-13. The operational conditions of the Seneca WWTP. 

 

Items Values 

Q, influent flow rate 5×1MGD=5MGD

V, bioreactor volume 5×1MG=5MG

X, biomass concentration in bioreactors (average SS) 3,526 mg/L

XW, biomass concentration in waste flow 2,7000 mg/L

FW, waste flow rate  32,250 gallon/day

HRT =V/Q 24 hours

SRT=(V×X)/(FW×XW) 20 days
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5.2.2 Calibration Procedure and Simulation Analysis 

 

In order to better describe the plant performance for the Seneca WWTP, the site-specific 

calibrated model parameters are needed. The calibration procedure is the same as used for 

the Oak Ridge WWTP. For the Seneca WWTP, we also only consider the effluent NH4-N 

concentration due to the limitation of the secondary clarifier model. The one-year plant 

historical data are used and the corresponding calibrated parameters for each of 12 

months are determined, as shown in Table 5-14. The calibrated parameters for each of the 

12 months are listed with minimum RMSE, which varies significantly from month to 

month. Large RMSEs are associated with the occurrences of some unusual high or low 

data points (or potential outliers). The following correlation analysis and scatter plots will 

explain why this happened.  

 

Figures 5-28 and 5-29 demonstrate that the calibrated parameters for January and March 

plant data are well fitted to the plant effluent data. The missing measured data points are 

not plotted in the two figures. Figure 5-28 indicates the calibration for the January data 

from the Seneca WWTP. It clearly shows the simulated data from the calibrated 

parameters fit the measure plant effluent relatively well, capturing the overall trend at any 

particular time, even though some of the most extremely values of effluent ammonia are 

not well represented. The period between 24th and 28th day shows the simulated data are 

much higher than the measured data although they still following the same decreasing 

trend. There might be some unexpected sudden changes in plant influent or plant 

operational conditions. Figure 5-29 demonstrates the calibration for the March data from  
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Table 5-14. The calibrated parameters for 12-month of the Seneca WWTP. 

 

Month/Year KNH (mg/L) µA,max (hr-1) YA (mg/mg)* RMSE 

1/1996 0.55 0.0176 0.3480 0.1052 

2/1996 1.75 0.0416 0.4560 0.0870 

3/1996 1.90 0.0512 0.4560 0.1176 

4/1996 1.60 0.0608 0.4560 0.0468 

5/1996 1.60 0.0608 0.4560 0.0774 

6/1996 1.75 0.0368 0.4560 0.1078 

7/1996 1.90 0.0464 0.4560 0.1130 

8/1996 1.75 0.0608 0.4560 0.0385 

9/1996 1.15 0.0560 0.4560 0.0863  

10/1996 1.15 0.0608 0.4560 0.0884 

11/1996 1.45 0.0608 0.4560 0.1160  

12/1996 1.75 0.0480 0.4200 0.1756  

 

Note: * indicates the nearly constant parameter, which would prove to be an insignificant 

parameter through correlation analysis and scatter plots. 
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Figure 5-28.  The comparison between calibrated and measured data in January from the 

Seneca WWTP. 

 

Figure 5-29.  The comparison between calibrated and measured data in March from the 

Seneca WWTP. 
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the Seneca WWTP. Similar to the January calibrations, the calibrated model captures the 

trend of historical effluent data relatively well. However, the outlier problem is obvious 

on the 71th day. The measured data point is around 0.6 mg/L; while the simulated data 

point is only around 0.16 mg/L. This might be caused by sudden increasing of plant 

influent loading (for example, the flow rate and/or ammonia-N concentration). That is, 

some of extremely variability of influent cannot be captured by the fixed calibrated 

parameters. In this case, outlier detection and replacement method might be preferred. As 

for the short-term variations in plant performance that cannot be captured by fixed-

parameter models, they are not necessarily caused by easily observable deterministic 

causes.  

 

Table 5-15 shows the correlations between RMSE and the three calibrated parameters. 

Similar with the table of the Oak Ridge WWTP, the most important parameter is µA,max 

instead of KNH. The negative correlation between RMSE and µA,max is very strong with a  

a value of –0.6446. Similar to the Oak Ridge plant, the correlation coefficient for YA is 

extremely small with a value of –0.00005. The plots of RMSEs against three parameters 

 

Table 5-15. The correlations between RMSE and the three calibration parameters. 

(Seneca WWTP) 

Items KNH (mg/L) µA,max (hr-1) YA(mg/mg) 

RMSE 0.0096 -0.6446  -0.00005
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are also conducted to explain their relationships, as shown in Figures 5-30, 5-31, and 5-

32. 

 

Figure 5-30 confirms that there are no significant relationships between RMSE and the 

parameter YA. Thus, the parameter YA will fixed at the default value of 0.24 mg/mg 

(listed in Table 2-5) for all Monte Carlo simulations. The relationship between RMSE 

and KNH is a little complicated, as shown in Figure 5-31. Compared to the same plot of 

the Oak Ridge WWTP, it only has two different patterns: one is flat, the other is linearly 

but slowly increasing. This plot indicates that the parameter KNH is not the only factor 

strongly affecting RMSE. Instead, it is strongly affected by the interaction from µA,max. 

This interaction can clearly be seen on Figure 5-32. For µA,max less than 0.01 hr-1, which  

 

 

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5

Y_A

R
M

SE
_N

H
4

 

Figure 5-30. The scatterplot of RMSE against YA (Seneca WWTP). 
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Figure 5-31. The scatterplot of RMSE against KNH (Seneca WWTP). 
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Figure 5-32. The scatterplot of RMSE against µA,max (Seneca WWTP). 
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is extremely small value, there is almost no effect from KNH. For µA,max > 0.01 hr-1, the 

effect of KNH keeps decreasing with increasing value of µA,max and tends to be no effect at 

all. The whole plot also shows that the RMSE decreases with increase of µA,max, although 

the tailed part increases a little bit. The best calibrated parameters in this case is: µA,max = 

0.0176 hr-1, and KNH = 0.55 mg/L. Notice that the tail part is almost flat, with little 

changes when  µA,max > 0.02 hr-1. It is actually not very important to go further and search 

the best RMSE. This demonstrates that the RMSE is relatively insensitive over a wide 

range of parameter values. This observation supports our approach in which parameters 

are represented as distributions instead of as fixed well-defined values.  

 

The statistical characteristics of both historical and simulation results are shown in Figure 

5-33. From the plot, the statistical characteristics of the simulated effluent ammonia 

nitrogen effluent data do not closely match those of the historical data. The mean value 

and standard deviation of historical data are 0.144 mg/L and 0.114 mg/L compared to 

0.131 mg/L and 0.056 mg/L for the simulated data. Furthermore, the highest percentiles 

of 100.0, 99.5, 97.5 and 90.0 for the historical data (0.750, 0.725, 0.428, and 0.286 mg/L, 

respectively) are much larger than those in the simulated data (0.381, 0.366, 0.257, and 

0.205 mg/L, respectively). In general, we can conclude that the historical data are 

characterized by greater variability than the simulated data obtained with month-by-

month calibrated parameters. Obviously, if we design a plant using the simulation from 

calibrated parameters, we fail to capture the true variability in plant performance. In other  
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Figure 5-33. The comparison of one-year historical and simulated effluent NH4-N (mg/L) 

of the Seneca WWTP. 
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Words, the traditional method using simulation results from calibrated parameter cannot 

provide a reliable design procedure without an extra safety factor added.  

 

 

5.2.3 Simulations with Parameter Uncertainty 

 

The previous section discussed the calibration procedure and calibrated parameters for 

the Seneca WWTP. The comparison between historical and simulated effluent data 

indicates that the design methods that better represent the variability in the plant are 

needed. Thus, we will investigate the use of distributed parameters in conjunction with 

Monte Carlo simulations to assess the variability.  Similar with the procedure used in the 

Oak Ridge WWTP, there are also two options for parameter distributions. One is the 

universal (or non-site-specific) distributed parameter generated by Cox (2004) based on 

the published values all over the world; the other is the site-specific distributed parameter 

that will be generated as follows using the Bayesian method and site-specific calibrated 

parameter.  

 

Results of the Monte Carlo simulation with the universal parameter distributions is 

conducted are shown in Figure 5-34. One month historical influent data (January) are 

used for this simulation. Obviously, the Monte Carlo simulation results with the universal 

parameter distributions overestimate both the magnitude and the variability of the 

historical effluent. The mean value and standard deviation of the simulation results are 
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Figure 5-34. Monte Carlo simulations of effluent NH4-N (mg/L) with the universal 

parameter distributions and January historical influent from the Oak Ridge WWTP. 
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2.144 mg/L and 6.408 mg/L, respectively, compared to 0.144 mg/L and 0.114 mg/L for 

the historical data. As for the highest percentiles, they are ridiculously higher than the 

historical data with a maximum value of 44.113 mg/L and 90.0 percentile of 4.069 mg/L. 

In short, the universal parameter distributions introduce too much unrealistic uncertainty 

into wastewater treatment systems.  

 

The two previous simulations indicate that neither the fixed calibrated parameters nor 

universal parameter distributions accurately capture the variability observed in the actual 

plant. We have made the same conclusions for the Oak Ridge WWTP. The fixed 

calibrated parameters can predict the average effluent well. However, the simulated 

results notably underestimate the variability observed in historical effluent mostly 

because the ASM1 model with the calibrated parameters cannot capture all the sharp 

peaks due to sudden changes of the plant influent. The universal parameter distributions 

simply introduce too much unrealistic uncertainty, thus leading to inaccurate simulation 

results. Two key reasons are 1) too much uncertainty in the model parameters is 

considered; 2) and the likelihood of sampling extreme parameters from multiple 

distributions simultaneously. To reduce the uncertainty in the parameters, we will 

consider site-specific parameter distributions. These site-specific parameters can better 

describe the plant performance because they are generated from calibrated parameters 

while preserving the consideration of uncertainty. 
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The site-specific parameter distributions for KNH and µA,max are generated from the 

monthly calibrated parameters using the Bayesian method. The results are summarized in  

Table 5-16. The detailed Bayesian procedure was discussed in Chapter III, which has 

been used in the Oak Ridge WWTP section. The standard deviation of the prior 

distribution is also calculated using the equation µσ ×= 25.0  instead of µσ ××= 25.02  

in order to narrow down the posterior distribution, especially for the site-specific 

parameter distributions. For details, please refer to Cox (2004) and previous section for 

the Oak Ridge WWTP.   

 

Figure 5-35 shows the universal (UPD) and site-specific (SPD) parameter distributions of 

the parameter KNH. It seems like the UPD is “narrower” than the SPD, however, it is 

actually not. Because all values of a lognormal distribution are larger than zero, the PDF 

curve of a lognormal distribution is not symmetric. We will discuss this together with the 

percentile and probability tables later. From there, we will see how site-specific 

parameters narrow down. Figure 5-36 shows the comparison of the UPD and SPD for the 

parameter µA,max. Both figures indicate the curves of two SPD both move to right a little 

bit. In other words, the mean and median values of two SPD are both larger than those of 

UPD.  
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Table 5-16. The universal and site-specific parameter distributions for the Seneca 

WWTP. 

 

Items KNH (mg/L) µA,max (hr-1) 

UPD: µ -0.675 -3.688 

UPD: σ 1 0.44 

SPD: µ 0.2678 -3.1621 

SPD: σ 0.4092 0.4203 

Percentiles (%) KNH (mg/L) µA,max (hr-1) 

1 0.5045 0.0159 

5 0.6668 0.0212 

10 0.7736 0.0247 

25 0.9918 0.0319 

50 1.3071 0.0423 

75 1.7225 0.0562 

90 2.2082 0.0725 

95 2.5622 0.0845 

99 3.3863 0.1125 
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Figure 5-35. PDF plots of KNH (mg/L) for the UPD and SPD for the Seneca WWTP. 

 

Figure 5-36. PDF plots of µAmax (hour-1) for the UPD and SPD for the Seneca WWTP. 
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Table 5-17 shows the percentile comparison between two kinds of SDP. Distributions 

labeled SPD calculate the prior standard deviation using formula: µσ ×= 25.0 , while 

parameters SPD’ calculate the prior standard deviation using formula: µσ ××= 25.02  

as originally recommended by Cox 2005. Obviously, SPD’ will have a wider prior 

distribution and generate a wider posterior distribution. That is, SPD’ will generate a 

posterior distribution with more uncertainty.  

 

For the parameter KNH, the SPD parameter actually gets the narrowest range between 5 

and 95 percentiles compared to either UPD or SPD’ parameters. However, as for the 

parameter µA,max, it seems that the SPD parameter is narrower than SPD’ parameter 

although both of them are wider than the UPD parameter.  

 

 

Table 5-17. The percentile comparison between UPD and two SPDs. 

 

KNH (mg/L) µA,max (hr-1) Items 

0.05 0.95 0.05 0.95 

UPD 0.0983 2.6376 0.0121 0.0516 

SPD’ 0.7227 2.8332 0.0231 0.0940 

SPD 0.6668 2.5622 0.0212 0.0845 
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Until now, we obtained the two kinds of SPDs (SPD and SPD’) for KNH and µA,max. 

However, we need to determine which one is better to conduct following Monte Carlo 

simulations Table 5-18 compares the range of the monthly calibrated values to percentiles 

of SPD and SPD’. For example, for the parameter µA,max, the minimum and maximum 

calibrated values are 0.0176 and 0.0608 day-1, respectively. The minimum value falls at 

the lowest 2 percent of SPD’ while the maximum value falls at the lowest 74 percent. 

Therefore, the probability of a random sample from SPD’ to fall in the range of the 

calibrated value is approximately 72 percent. We believe that this probability is a little 

too low and adds too much uncertainty to the distributions; therefore, we used the SPD 

estimates to obtain slightly more narrow site-specific distributions. 

 

 

Table 5-18. The probabilities of the data range between minimum and maximum 

calibrated parameters. 

 

Items KNH (mg/L) µA,max (hr-1) 

Range of calibrated values Min 

0.5500 

Max 

1.9000 

Min 

0.0176 

Max 

0.0608 

PDF (SPD’) 0.0107 0.7526 0.0111 0.7329

Probability (SPD’) 0.7420 0.7218

PDF (SPD) 0.0172 0.8197 0.0184 0.8054

Probability (SPD) 0.8025 0.7870
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From the listed values in Table 5-14, the correlation coefficient of µA,max and KNH is 

calculated to be 0.3858. That is, there are some but not significant correlations between 

those two parameters. Thus, in the following simulations, those two parameters are 

randomly and independently sampled. In fact, the following simulation results 

demonstrate that the Monte Carlo simulations are still very good even if no correlations 

are considered. The correlated random samples will continue in the future research if 

adequate information is available. Similar with the Oak Ridge WWTP, three kinds of 

parameters are considered: SPD#1-AP: all parameters are sampled from the UPD expect 

for µA,max and KNH, which are sampled from their SPD; SPD#2-2P: all parameters are 

fixed except for µA,max and KNH, which are sampled from their SPD; and SPD#3-1P: all 

parameters are fixed except for µA,max, which is sampled from its SPD. 

 

Figure 5-37 shows the comparison of Monte Carlo simulations to the historical data using 

three different SPDs for the Seneca WWTP.  Clearly, the simulation results with SPD#2-

2P and SPD#3-1P are much better than the results with SPD#1-AP Variability in fewer 

parameters yielded better simulation results. In fact, the SPD#3-1P best describes the 

effluent ammonia-N when considering the mean, standard deviation and 99.5 percentile 

values. However, the simulation results with SPD#2-2P better represent the 97.5 and 90.0 

percentiles. Nevertheless, we recommend SPD#3-1P, after considering the overall 

distribution of effluent of ammonia-N concentration. As for the maximum values, all 

three distributions predict much greater values than observed in the historical record; 

however, undue weight should not be given to these extreme points.   
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Figure 5-37. Monte Carlo simulations of effluent NH4-N (mg/L) with SPD parameters and January historical influent from the 

Seneca WWTP.
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5.2.4 Simulations with Influent Variability 

 

In last section, we discussed the effect of the parameter uncertainty on the Monte Carlo 

simulations. In this section, we will elaborate the effect of variability in the plant influent. 

In the Oak Ridge WWTP section, the randomly generated influent option has proved to 

be one of best choices to conduct the Monte Carlo simulations. However, compared to 

the simulations with historical influent, there are no significant differences. This also 

proved that the major uncertainty in the plant performance is from the uncertainty in 

model parameters but the variability in the plant influent. Therefore, we only considered 

the historical influent data in the Seneca WWTP section. 

 

The previous simulation results in last section are the simulations from the January 

historical influent data with different parameter distributions. Since Winter and Summer 

may have different effects on plant performance, we would like to consider both in this 

dissertation to ensure a reasonable and reliable simulation. We take August and January 

typical months of Summer and Winter, respectively. Since January was already 

considered in the previous section, we will now conduct a similar simulation based on 

August historical influent data. The simulated results are shown in Figure 5-38. 

Surprisingly, the mean values and standard deviations of the SPD#3-1P simulated data 

are slightly larger than the results from the January influent data. The highest percentiles 

of 100, 99.5 and 97.5 are also slightly larger than the simulations with January data. The 

simulated data then are closer to the historical effluent data. Thus, for the purpose of 

Monte Carlo simulations, we conclude that the August data are the best choice if only one  

 - 204 - 



 

Historical data SPD#3-1P 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 
NH4-N (mg/L) vs. Frequency 

 

0

1

2

3

4

5

6

7

8

9

 
NH4-N (mg/L) vs. Frequency 

Quantiles 
    
100.0% maximum 0.7500
99.5%  0.725
97.5%  0.428
90.0%  0.286
75.0% quartile 0.183
50.0% median 0.115
25.0% quartile 0.070
10.0%  0.040
2.5%  0.023
0.5%  0.010
0.0% minimum 0.010
 
Moments 
  
Mean 0.144
Std Dev 0.114
N 247 

Quantiles 
     
100.0% maximum 9.240 
99.5%  1.061 
97.5%  0.462 
90.0%  0.250 
75.0% quartile 0.161 
50.0% median 0.106 
25.0% quartile 0.0725 
10.0%  0.0519 
2.5%  0.0338 
0.5%  0.0219 
0.0% minimum 0.0081 
 
Moments 
   
Mean 0.148 
Std Dev 0.244 
N 26000  

 

Figure 5-38. Monte Carlo simulations of effluent NH4-N (mg/L) with the SPD#3-1P 

parameters and August historical influent for the Seneca WWTP. 
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Month influent data are required. We strongly recommend conducting simulations over at 

least two months (for examples, January and August) to indicate two extreme cases in the 

plant performance. However, in this dissertation, we would like to take August influent 

data as an example to study the further uncertainty in the plant performance in the 

following simulations.  

 

In order to confirm whether the one months’ influent data (either January or August) can 

provide reliable and reasonable simulations, we conduct 1000 Monte Carlo runs with 

one-year influent data. Figure 5-39 shows the Monte Carlo simulation with the SPD#3-1P 

parameters and one-year historical influent data from the Seneca WWTP. The mean and 

standard deviation of 1000 Monte Carlo runs are 0.124 mg/L and 0.248. The mean and 

standard deviation of the historical plant effluent data are 0.144 mg/L and 0.114. More 

important, the percentiles of 99.50 and 97.50 of Monte Carlo simulation results are both 

very close to real plant effluent data. Overall Monte Carlo simulations using August and 

full-year data yield very similar results, thus justifying the use of the one-month influent 

history. 
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Figure 5-39. Monte Carlo simulation of effluent NH4-N (mg/L) with the SPD#3-1P 

parameters and one-year historical influent for the Seneca WWTP. 
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5.2.5 Discussions 

 

Table 5-19 summarizes the simulations completed in the previous sections. Obviously, 

the best simulation is conducted with one full year historical influent and the SPD#3-1P 

parameters. This best simulation has the best grade score: A+, considering the mean, 

standard deviation, the highest percentiles, and histogram plot. The second best grade: A 

is given to the simulation with one-month historical influent data and the SPD#3-1P 

parameters. The best parameter distributions are the SPD#3-1P parameters, that is, all 

fixed calibrated parameters except the SPD parameter µA,max. It is an important finding 

that reliable Monte Carlo simulation can be achieved by considering only the most 

important parameter: µA,max. Future investigations may seek to determine if alternative 

 

 

Table 5-19. Summary table of Monte Carlo simulations of the Seneca WWTP. 

 

Influent Month/year Fixed  UPD SPD#1-AP SPD#2-2P SPD#3-1P 

Historical 1/1996 

8/1996 

1996 

 

 

B(*) 

C 

 

 

C+ 

 

 

A- 

 

 

A  

A (No.2) 

A+ (No.1) 

 

Note: * = Underestimate. 
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Methods of determining the distribution of the key parameter might result in better 

representations of plant variability.  

 

Furthermore, Table 5-19 also indicates that the variability of the influent data are not the 

major effect on the uncertainty features of the plant effluent, similar with the results in 

the Oak Ridge WWTP section. In short, from the Monte Carlo simulations of historical 

influent data and the SPD#3-1P; and the second best choice is the simulation with one 

month historical data and the SPD#3-1P.  

 

The Cramer-von Mises goodness-of-fit tests are also conducted to quantify the evaluation 

of the simulation results in Table 5-19. The T2 statistic values are shown in Table 5-20. 

Surprisingly, Table 5-20 indicates that the best choice is the simulation with the SPD#2-

2P parameters and January’s historical influent, with the smallest T2 value of 0.0292. The 

No.1 choice in Table 5-19, i.e., the simulation with SPD#3-1P parameters and one-year 

 

 

Table 5-20. GoF tests of Monte Carlo simulations of the Seneca WWTP. 

 

Influent Month/year Fixed  UPD SPD#1-AP SPD#2-2P SPD#3-1P 

Historical 1/1996 

8/1996 

1996 0.3385

2.6072 0.4671 0.0292 

 

 

0.7595

0.4142

0.1699
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historical influent, is ranked as No.2 choice here, instead. Because both T2 values are less 

than 99.0ω =0.743, we conclude the null hypothesis of identical distribution functions is 

accepted at α=0.01. Surprisingly, the simulation with the SPD#3-1P parameters and 

August historical influent are not well presented as a result of the T2 statistics. This 

method is ranked as the No.3 choice in Table 5-19. However, in Table 5-20, the 

simulation with the SPD#2-2P parameters and January historical influent is much better 

and well deserves the No.1 choice, instead.  The tests also indicate that the simulation 

with August historical influent (T2=0.4142) is slightly better than the simulation with 

January historical influent (T2=0.7595). As discussed in the Oak Ridge WWTP section, 

the goodness-of-fit test is only based on a statistical standard. This standard might be 

inappropriate for the applications in practice. For example, the simulation with the 

SPD#1-AP parameters is obviously much worse than the simulation with the SPD#3-1P 

parameters as shown in Figure 5-37. However, in Table 5-20, the goodness-of-fit tests 

indicate that this simulation (T2=0.4671) is even better than the simulation with the 

SPD#3-1P parameters (T2=0.7595). Thus, we believe that this Cramer-von Mises 

goodness-of-fit test cannot work for all the cases. In this dissertation, the evaluation of 

the simulation results mostly focuses on the highest percentiles (99.50 and 97.50 

percent), mean and standard deviations, which are considered the most important factors 

affecting the plant performance. Further research is needed to find a better goodness-of-

fit test emphasizing more on the highest percentiles, mean, and standard deviation.  
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Same with the decision for the Oak Ridge WWTP, the second best choice with the one-

month influent data will be chosen as the best options for Monte Carlo simulations 

because it proved to provide a reasonable and reliable simulated results.  From Table 5-

12, one-month simulation only needs 1-3 days, which is much less than the simulation 

with one year simulation (3-7 days). Thus, unless the best accuracy is needed, we can use 

the Monte Carlo simulation with one-month influent data (either Winter January or 

Summer August data) and the SPD#3-1P parameters. The following simulations will 

consider how changing SRT affects the plant effluent NH4-N concentration. These 

simulations of effluent NH4-N for different SRT = 5, 10, 20 and 30 days are conducted 

with the SPD#3-1P parameters and the August historical influent data, as shown in Figure 

5-40. It obviously indicates that the mean values and the highest percentiles (99.50, 

97.50, and 90.00) decrease with increasing SRT. 

 

Figures 5-41 and 5-42 show the relationship between the percentiles of the effluent NH4-

N and SRT. The maximum effluent ammonia nitrogen is observed to increase with SRT 

over the range of 10 to 30 days; however, too much emphasis should not be placed on the 

most extreme values. The 99.50, 97.50 and 90.00 percentiles provide a constant decrease 

with increasing SRT. For example, for the case of SRT = 10 days, the 97.5 percent of 

data are under 1.199 mg/L, which is much less than the requirement (Daily maximum: 

3.6 mg/L). Normally, regulatory limitations on plant effluent employ moving average 

methods to allow occasional short-term plant upsets. Some extremely high effluent values 

will be smoothed out by 7-day or 30-day averages. Thus, a new statistical-based effluent 
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Figure 5-40. Monte Carlo simulations of effluent NH4-N (mg/L) with the SPD#3-1P parameters and the August historical influent 

for the Seneca WWTP.
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Figure 5-41. The percentile plot (100.00 and 99.50) against SRTs (Seneca WWTP). 
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Figure 5-42. The percentile plot (90.00 and 97.50) against SRTs  (Seneca WWTP). 
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regulation and corresponding statistical-based design procedure are needed to improve 

our design and operation of WWTPs in a more cost-effective way. In Chapter VI, we will 

elaborately discuss how to apply the StatASPS design procedure in practice based on the 

Monte Carlo simulations of WWTPs.   

 

 

 

 - 214 - 



CHAPTER VI  

CONCLUSIONS AND FUTURE WORK 

 

 

In Chapter V, we conducted Monte Carlo simulations of two existing WWTPs: the Oak 

Ridge and Seneca WWTPs in the StatASPS program. In this chapter, we continue to 

discuss how we will apply the Monte Carlo simulated results to improve the design of 

WWTPs in practice.  

 

Figure 6-1 shows the Monte Carlo based design procedure. As shown in the figure, we 

considered two kinds of uncertainty in the system: 1) influent data, and 2) model 

parameters. Furthermore, we considered two options for each kind of uncertainty. For 

influent data, we could choose either historical influent data or randomly generated 

influent data. Historical influent data (either one year or one month), marked as No.1 in 

Figure 6-1, has proved to be the best choice to be introduced into the Monte Carlo 

simulations based on the results of the previous chapter. If conditions permit, simulations 

based on one year’s historical influent data are strongly recommended. However, due to 

limitations of current computing technologies, we may also choose one month’s data 

instead. In this case, simulations based on both Winter and Summer influent conditions 

are strongly recommended, considering most of effluent standards are regulated based on 

these two cases. As for the randomly generated influent data, it has two obvious 

advantages: 1) it captures similar statistical features but is not limited to the historical   
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Figure 6-1. The Monte Carlo based design procedure.
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data; and 2) it has slightly more uncertainty than the historical data, which provides an 

additional margin of safety. 

 

For model parameters, we could choose either SPD (site-specific parameter distributions) 

or UPD (universal parameter distributions). SPD parameters, marked as the No.1 choice 

in Figure 6-1, are strongly recommended, which have proved to be the best choice, 

according to the simulations of both Oak Ridge and Seneca WWTPs. Even for SPD 

parameters, there are at least three types: SPD#1-AP: all universal parameter distributions 

except for the site-specific parameter distributions μA,max and KNH; SPD#2-2P: all fixed 

parameters except for the site-specific parameter distributions μA,max and KNH; and 

SPD#3-1P: all fixed parameters except for the site-specific parameter distribution μA,max. 

The simulations of both Oak Ridge and Seneca WWTPs prove that the SPD#3-1P is the 

best choice choice of distributional model parameters to conduct reliable and relatively 

accurate Monte Carlo simulations.  Notice that the SPD parameters are generated from 

the month-by-month calibrated parameters using the Bayesian method. It is very possible 

that calibrated or measured parameters are not available for the plant of interest. In this 

case, we might conduct experiments to determine them or perform the calibration 

procedure for some other WWTPs having similar processes and loading conditions. For 

the worst case, i.e., the similar WWTPs are also not available; we have no choice but 

choose the UPD parameters. 
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After conducting Monte Carlo simulations, we may analyze the simulated plant effluent 

data, which is in and of itself a distribution. If measured effluent data are available, we 

may compare the simulated results with real plant effluent. With the correct feedback, we 

can improve either the distributions of model parameters or the methods of 

generating/choosing influent data. This provides another chance to improve our design 

procedure. Traditional design approaches employ empirical safety factors that commonly 

lead to the over-design of WWTPs. If further developed, the Monte Carlo based 

procedure has potential to be a more robust design method. 

  

Based on the simulated results from the StatASPS program, we can generate two kinds of 

plots for decision-making purposes. One is a plot of 99.50 and 97.50 percentiles ammonia 

nitrogen concentration against SRTs, also called percentile control chart. The other is a 

plot of plant effluent concentration against the violation percentage with different SRT 

values, also called decision-making chart. For the Oak Ridge WWTP, the percentile 

control chart is shown in Figure 6-2. The green line is the effluent standard, daily 

maximum concentration: 3.6 mg/L for effluent ammonia nitrogen. This standard is the 

most stringent value set for the Winter standard. Because we desire the system to be as 

reliable as possible, we would rather take this most stringent standard for decision-

making purposes. From Figure 6-2, if our target is to control the 97.50 percent of the 

daily effluent data to be under the required standard (i.e., the green line), all four SRTs 

easily meet the  
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Figure 6-2. The percentile control chart of the Oak Ridge WWTP. 

 

 

requirement. In other words, we may take SRT = 6 days as our design parameter if more 

cost-effective plant design is needed. However, if more reliable system is preferred, we 

may choose higher percent, for example 99.50 percent. With this design standard, we are 

99.50 percent sure that the design plant will perform under the required effluent standard. 

From Figure 6-2, we can conclude that only simulations with SRT ≥ 8 days meet the 

requirement. The 99.50 percentile of the simulation with SRT = 6 days is 7.9 mg/L, 

which is above the green line (i.e., daily maximum concentration: 3.6 mg/L). In this case, 

we can only decrease the design SRT from current 10 days to 8 days if a more cost 

effective plant design is needed.  
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The decision-making chart of the Oak Ridge WWTP is shown in Figure 6-3. The x-axis 

is the percentage of effluent ammonia concentrations that exceed the effluent standard. 

The Y-axis is the effluent ammonia nitrogen concentration. To apply this decision-

making chart, we need first to determine what the acceptable violation percentage. For 

example, suppose 0.5 violation percent (i.e., refer to the 99.50 percentile) is chosen, it 

clearly indicates that only simulations with SRT ≥ 8 days meet the requirement. Notice 

that the determination of acceptable violation percentage is very subjective. That is, it 

actually is a judgmental call. Different people may have different opinions. In this 

dissertation, we suggest that 99.50 or 97.50 percent compliance may be reasonable 

standards to design WWTPs.  The corresponding violation percentages are 0.50 and 2.50 

percent, respectively, which is believed to be safe enough for a well-performing system. 
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Figure 6-3. The decision-making chart of the Oak Ridge WWTP. 
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Two similar plots are constructed for the Seneca WWTP, as shown in Figures 6-4 and 6-

5. Suppose the acceptable violation percentage is 2.50 percent, the simulations with SRT 

≥ 10 days all meet the requirement. That is, we might decrease SRT from 20 days to 10 

days for design purposes. In this case, we are 97.50 percent sure that this designed plant 

would perform under the required standard. However, if more stringent standard is 

required, we may choose the 99.50 percent as a design standard. From two previous 

figures, we can conclude that only simulations with SRT ≥ 20 days meet the requirement. 

In this case, we are 99.50 percent sure that this designed plant would perform under the 

required standard, that is, only 0.50 percent of effluent data would violate the required 

standard. 
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Figure 6-4. The percentile control chart of the Seneca WWTP. 
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Figure 6-5. The decision-making chart of the Seneca WWTP. 

 

 

As discussed above, we need get engineers, regulators, and communities together to have 

a roundtable discussion of the new regulations of plant performance. Based on the 

simulated results and corresponding percentile control and decision-making plots, we 

may create a more cost-effective design procedure to better protect our water 

environment.  

 

The recommended the six steps of the StatASPS procedure can be summarized as 

follows: 

Step 1: Replace missing influent data if needed; 
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Step 2: Search and replace outliers using the multivariate outlier detection 

method (Robinson et al., 2005); 

Step 3: Calibrate the model parameters for the specific WWTP; 

Step 4: Generate site-specific parameter distributions for the most sensitive 

parameters; 

Step 5: Run Monte Carlo simulations with different operation conditions (for 

example, SRT); 

Step 6: Make design charts (percentile control chart and decision-making 

chart).  

 

 

To sum up, these following contributions were made in this dissertation:  

 

• An innovative TES method was created to replace non-randomly missing values 

in time series data. The replaced TES data has similar statistical patterns of the 

real data.  

• An innovative random influent generator was developed. Generated influent data 

have similar statistical characteristics as the historical influent data. The generator 

was based on a time series model fitted to the historical influent data. 

• A Monte Carlo based simulation procedure called StatASPS was developed based 

on the ASM1 model. The procedure employs random influent generation, random 

model parameter generator, dynamic calibration procedure, and steady state and 

dynamic simulation of activated sludge processes.   
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Based on the Monte Carlo simulations of both Oak Ridge and Seneca WWTPs, we can 

make the following conclusions. 

 

• The Monte Carlo based design procedure appears to more accurately capture the 

variability in activated sludge plant performance. With additional development, it 

may prove to be more robust design procedure than currently employed empirical 

safety factors.  

• The best Monte Carlo simulations of both Oak Ridge and Seneca WWTPs use the 

one-year historical influent data and SPD#3-1P parameters. Parameter uncertainty 

was found to be more useful than influent variability in reproducing plant 

performance uncertainty. This also explains why we choose historical data instead 

of randomly generated influent data. In fact, the simulations conducted in Chapter 

V only used one-month’s influent data, which has proved to be good enough. In 

this case, we strongly recommend conducting simulations representing both 

Summer and Winter conditions. As for the model parameters, the SPD#3-1P (i.e., 

all fixed parameters excepted for the site-specific parameter distribution μA,max) 

proved to be the best parameter distributions, compared to other parameter 

distributions tested. The universal parameter distributions introduce too much 

uncertainty to wastewater treatment systems. Thus, if available, we only consider 

the most important parameters and keep other parameters constant with default 

values.  

• For effluent ammonia nitrogen concentrations, sensitivity analysis determined the 

most important parameters to KNH (half-saturation coefficient for nitrifiers), μA,max 
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(specific growth rate of autotrophs), and YA (yield of autotrophs). However, the 

order of importance might change in practice. In the calibrations of both Oak 

Ridge and Seneca WWTP, we conclude that the most important parameter is 

μA,max and there is no significant relationship between the calibration standard 

RMSE and the parameter YA. KNH has some interaction effects with the parameter 

μA,max on the calculated RMSE. 

• The percentile control and decision-making charts demonstrate how changing 

SRT affects the plant performance. However, selection of acceptable risk is still a 

subjective decision. Thus, we strongly recommend that engineers, regulators and 

communities get together and discuss statistical- and risk- based effluent 

standards.  

 

 

There are some recommendations for the future research work of the statistical-based 

design procedure using Monte Carlo simulations.  

 

• Model parameters: the Monte Carlo simulations conducted in this dissertation 

demonstrated that uncertainty in model parameters is more important than variability 

in the plant influent, at least for effluent ammonia nitrogen concentration. Thus, 

additional work on defining model parameter distributions, especially correlations 

between parameters, may be considered the most important topic for future 

improvement of this design procedure.  
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• Design parameters: In this dissertation, we only considered the effect of changing 

SRT, which is the most important design and control parameter available to the 

engineer. In further research, other design parameters, for example, the oxygen 

concentration in CSTRs, bioreactor volume, number of CSTRs, etc. will be 

considered in StatASPS program.  

• Process models: The models used in this dissertation are only for activated sludge 

processes. However, the Monte Carlo based design procedure can be applied to other 

water and wastewater treatment processes if appropriate process models are employed 

in the future. Furthermore, research on the clarifier models is also needed to better 

describe the performance of secondary clarifiers.   
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APPENDIX-A 
 

Equations of time series models 
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APPENDIX-B 
 

Statistical characteristics of parameter μA,max: lognormal(-3.16214, 0.4203) 
 

 

 
 

Figure A-1. Lognormal(-3.16214, 0.4203) with 10000 random numbers. 

 

 
 

Figure A-2. Lognormal(-3.16214, 0.4203) with 1000 random numbers. 
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Figure A-3. The statistical characteristics of a Lognormal(-3.16214, 0.4203) with 1000 

random numbers. 
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