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ABSTRACT 

 
Evaluation of potential cooling, heating and power (CHP) applications requires an 

assessment of the operations and economics of a particular system in meeting the electric and 

thermal demands of a specific end-use facility.  Given the electrical and thermal load behavior of 

a facility, the tariff structure for grid-supplied electricity, the price of primary fuel (e.g., natural 

gas), the operating strategy and characteristics of the CHP system, and an assumed set of installed 

CHP system capacities (e.g., installed capacity of prime mover and absorption chiller), one can 

determine the cost of such a system as compared to reliance solely on traditional, grid-supplied 

electricity and on-site boilers.   

It has been shown previously in the literature that net present value cost savings of CHP 

systems exhibit a concave behavior with respect to installed capacity, and thus, an optimum size 

exists for a given application.  To date, current capacity selection techniques either utilize simple 

enumeration of candidate choices, heuristic multipliers of the base or peak demand, or apply 

optimization algorithms on aggregated or averaged demand data.  None of these approaches are 

likely to result in economic optimality.  This research utilizes hour-by-hour operation simulation 

of CHP systems to calculate life-cycle net present value (NPV) savings.  Based on maximizing an 

NPV cost savings objective function, a nonlinear optimization algorithm is used to determine 

economically optimal CHP system equipment capacities.  This research contributes an improved 

mechanism that will identify economic optimum capacities for CHP system equipment, thereby 

producing optimal cost benefits and potentially avoiding economic losses. 
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CHAPTER 1  
INTRODUCTION 

 

This document describes the research and findings in the development of a methodology 

and software tool that can be applied to the problem of appropriate equipment capacity selection 

in distributed energy cooling, heating, and power applications. 

1.1  Background 
 

Distributed energy is the provision of energy services at or near the point of use.  It can 

take many forms, but a central element is the existence of a prime mover for generating 

electricity.  Typical prime movers for current distributed energy applications are gas or light oil-

fired turbines, fuel cells, or reciprocating engines fired with natural gas or diesel fuel.  Such prime 

movers are only able to utilize roughly 30 percent of the input fuel energy in the production of 

electricity.  The remaining energy can either be utilized as a thermal resource stream or must be 

exhausted to the atmosphere.  When the waste heat is used to satisfy heating needs, the system is 

typically termed a cogeneration or combined heat and power system.  Through the use of an 

absorption chiller, waste heat can also be utilized to provide useful cooling, in which case the 

system is considered a “cooling, heating and power” (CHP) application.   

Systems such as these are not new.  According to a history provided by The Center for 

Energy Efficiency and Renewable Energy, initial electric generation in the early twentieth 

century was steam powered and so inefficient that large amounts of waste steam was available for 

process use or building heat [CEERE (2005)].  As electric generation became more efficient and 

larger central station power plants were sited at greater distances from the loads, productive 

utilization of the waste heat decreased.  In the 1980s, the Public Utility Regulatory Policy Act 

(PURPA) gave industrial energy users a financial incentive to adopt cogeneration by requiring 
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that utilities purchase electricity from qualifying facilities at the marginal cost of electricity 

production by the utility.  Advances in technologies (e.g., introduction of microturbines and 

double effect absorption chillers) and the introduction of utility interconnection standards have 

produced new markets for CHP systems in the commercial as well as industrial sectors. 

Generally, CHP systems are not the sole source of electricity and thermal resource for a 

facility.  In most cases, these systems are merely alternatives to utility grid-supplied electricity, 

electric chillers, and electric or gas-fired on-site water heating.  As a result, CHP systems are 

characteristic of the classic “make-or-buy” decision, and economic viability is relative to grid-

based electricity and on-site boiler heating.  An assessment of the economic viability of a 

particular CHP system requires an assumption regarding the installed equipment capacities of the 

system.  As costs are a direct function of the installed capacities of these systems, the challenge is 

to determine the most economically optimal capacities of the equipment. 

An important consideration in assessing the potential for CHP systems is recognition of 

the non-coincident behavior of the electric and thermal (i.e., heating and cooling) loads of a 

facility.  That is, the load patterns for the three load streams are not perfectly correlated with each 

other through time.  As a result, the peak of electrical demand will most likely not occur at the 

same point in time as either the heating or cooling demand peak.  Absent a means to store 

electrical or thermal energy on-site, producing electricity with a distributed generator to track 

electrical demand (i.e., electric load following) may produce recovered thermal energy that 

cannot be used due to lack of thermal demand at that moment.  Similarly, operating a CHP 

system in a thermal load following mode (i.e, tracking thermal demand), combined with limits on 

the sale of electricity into the grid, may also impact the degree to which the three demand streams 

can be satisfied by distributed energy. 
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1.2  Problem Statement and Research Objective 
 

Economic evaluations of CHP systems typically utilize some analytical computational 

tool.  These tools can vary from simple spreadsheet calculations to detailed hourly simulations of 

the system in its application environment (i.e., specific building type, location, and use).  A 

review of existing tools has determined that all currently available tools have certain 

shortcomings that can impact the validity of their results and, potentially, the appropriateness of a 

project decision.  Earlier research by this author [Hudson and Badiru (2004)] and others has 

shown that tools that utilize time-aggregated data (e.g., the averaging of electric and thermal 

loads) can produce an overly optimistic result, which, if taken by itself, can lead to erroneous 

project decisions.  Thus, analytical tools that evaluate demand and supply on an hourly basis are 

considered necessary, but not sufficient, for determining the economic optimality/viability of 

CHP systems.  The insufficiency of current hourly computational tools is that the model input for 

system installed capacity is either a heuristic input assumption or a manual enumeration of 

capacities provided by the user.  This research will demonstrate that size selections based on 

specific heuristics (e.g., capacity selection as a fixed percent of electrical or thermal demands) do 

not necessarily produce economically optimal configurations.  The research objective, therefore, 

is to develop and apply appropriate optimization algorithms in conjunction with detailed hourly 

simulation tools in order to allow for the automated determination of the most economic installed 

capacities for a given CHP system and application. 

1.3 Research Organization 
 

Following the present introductory chapter, a review of the literature on prior CHP 

system analytical tools and relevant optimization techniques is presented in Chapter 2.  In 

Chapter 3, the detailed methodology for operation simulation and capacity optimization is 

presented.  A computational model that incorporates these methods is presented in Chapter 4.  
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Results from example case studies utilizing the model and observations made during the 

development of the model are also presented in Chapter 4.  The concluding chapter provides a 

summary of the research and findings and makes recommendations regarding future research.   
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CHAPTER 2  
LITERATURE REVIEW 

 

This chapter is divided into two sections.  The first section addresses previous work in 

simulation and optimization modeling of CHP systems, particularly focused on determining the 

appropriate installed capacities of the prime mover and ancillary thermal systems.  The second 

section reviews optimization methods that are relevant to the determination of an economically 

optimum CHP system. 

2.1  Modeling of CHP Systems 
 

Computer modeling of cogeneration applications (i.e., the simultaneous production of 

electricity and useful thermal energy) is certainly not a new concept.  Schweizer and Sieck (1978) 

proposed the use of computer simulation modeling of cogeneration systems to provide a 

quantitative assessment of the potential market for industrial cogeneration equipment.  Having the 

capability to model systems by computer simulation, the concept of seeking the most optimal size 

was not far behind.  In an early modeling of industrial steam cogeneration, Duann (1984) stated 

the economic tenet that "at the optimal capacity, the marginal cost of an additional unit of 

cogeneration capacity is equal to the marginal value of such capacity increase".  While such an 

optimum was shown to exist, no automated means of determining the value was offered.   

An important distinction in the literature is the research related to optimization of a 

system's operation as compared to the optimization of the system’s installed capacity.  A number 

of early works address the optimization of the operation of a given system.  Baughman, Eisner 

and Merrill (1989) developed a cogeneration simulation model in Microsoft Excel which sought 

optimal operation of industrial cogeneration systems over a 15 year planning horizon using the 

minimization of net present value of operating costs as the objective function.   Consonni, Lozza 
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and Macchi (1989) developed an operations optimization simulator based on 36 separate sample 

day patterns to represent annual operations.  Using a binary representation of equipment being 

either on or off, the model was a mixed integer linear program with an objective function of 

maximizing hourly profits from operation.  

 Regarding the optimization of installed system capacity, Yokoyama, Ito and Matsumoto 

(1991) introduced a coupled, "hierarchical" modeling concept, whereby the optimization of a 

system's installed capacity was an outer shell or layer serving to drive a separate inner operations 

optimization model based on mixed integer linear programming.  Similar to Consonni, Yokoyama 

used 36 sample day patterns to describe annual load behavior.  Utilizing the hierarchical 

optimization process described by Yokoyama, Asano et al. (1992) considered the impact of time-

of-use rates on optimal sizing and operations of cogeneration systems.  Using 14 sample day 

patterns to represent the load behavior, Asano evaluated three commercial applications (hotel, 

hospital, and office building) and calculated optimal capacities ranging from 50 to 70 percent of 

peak electricity demand.  Contemporaneously, a set of closed form equations for calculating the 

optimal generation capacity of an industrial cogeneration plant with stochastic input data was 

developed by Wong-Kcomt (1992).  Wong-Kcomt’s approach relied upon single unit prices for 

electricity (i.e., no separate demand charges) and assumed independent Guassian distributions to 

describe aggregate thermal and electrical demand.  The effects of hourly non-coincidence of loads 

were not addressed.  Wong-Kcomt showed, however, that the solution space of the objective 

function (cost minimization) was convex in nature. 

As an extension of the hierarchical model proposed by Yokoyama in 1991, Gamou, 

Yokoyama and Ito (2002) investigated the impact that variation in end-use energy demands had 

on optimization results.  Modeling demand (i.e., load) variation as a continuous random variable, 

probability distributions of electrical and thermal demands were developed.  Dividing the 

problem into discrete elements, a piecewise linear programming approach was used to find the 
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minimum cost objective function. It was observed that the capacity deemed as optimal using 

average data was, in fact, suboptimal when load variations were introduced.  In characterizing the 

variability of electrical and thermal demands, the non-coincident behavior of the electrical and 

thermal loads lead to the determination of a lower optimal capacity value when variability was 

recognized, relative to the value obtained when considering only average demands.  A key 

finding from this work was that use of average demand data (e.g., sample day patterns) may not 

accurately determine the true optimal system capacity.  Orlando (1996) states a similar conclusion 

in that “any averaging technique, even multiple load-duration curves, by definition, cannot fully 

model the interaction between thermal and electrical loads”. 

Within the last 10 years, cogeneration technology has evolved to include systems with 

smaller electric generation unit capacities in uses other than large, industrial applications.  

Termed "distributed energy" or “distributed generation”, these systems are now being applied in 

commercial markets such as hospitals, hotels, schools, and retail stores.  In addition, traditional 

cogeneration (i.e., the production of electricity and useful heat) has been expanded to include 

trigeneration, that is, the use of waste heat from electrical production to produce both useful heat 

and cooling.  A number of works are focused on this recent development.  Marantan (2002) 

developed procedures to evaluate a predefined list of candidate system capacities for an office 

building application, selecting the CHP system with the minimum net annual cost.  Campanari, 

Boncompagni and Macchi (2002) used a simulation model with 21 sample day patterns and a 

predefined list of operating scenarios to select the least cost operating strategy for a CHP system 

in commercial buildings.  They did a somewhat reverse-approach in investigating capacity-related 

optimization by varying the building size for a CHP system of fixed capacity.  An important 

conclusion of their manual, trial and error optimization was that "due to the inherent large 

variability of heating, cooling, and electric demand typical of commercial buildings, the optimum 

size of a cogeneration plant is significantly lower than peak demand."  A similar conclusion was 
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found by Czachorski, Ryan and Kelly (2002) while investigating the energy cost savings resulting 

from the use of CHP systems in hospitals, hotels, offices, retail, and educational facilities in the 

Chicago area. Through manual capacity enumeration, they found that, based on maximum annual 

energy cost savings, "the corresponding size of the power generator was between 60% and 80% 

of the maximum electric demand for CHP systems" in the applications considered.  The study by 

Czachorski et al. also showed that annual energy cost savings exhibit a concave behavior with 

respect to generator capacity.  While their work did not reflect life-cycle cost savings by 

including investment cost as a function of generator capacity, the inclusion of generation 

equipment capital cost should not eliminate the general concave behavior produced by the annual 

energy economics. 

Additional relevant literature in this area includes work by Li et al. (2003) to evaluate a 

discrete, predetermined set of candidate CHP system capacities using genetic algorithms with 

maximization of net present value as the objective function.  Czachorski, Kelly and Olsen (2003) 

expanded their previous study to include desiccant dehumidification equipment as well as 

absorption cooling for five specific building types in four different geographical locations.  As in 

the previous study, a manual enumeration of various candidate capacities indicated the existence 

of an optimum installed capacity based on annual energy cost savings.  

Two important distinctions between the previous works and this research are that 

previous efforts have used either aggregated or averaged load data with attendant loss of non-

coincident behavior effects or have not provided an automated means to determine optimal 

installed capacities for CHP equipment.    

2.2 Optimization Methods 
 

Based on the modeling efforts described in the previous section, consideration is now 

given to the question of an appropriate method to apply in seeking an optimum of an economic 
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objective function.  A discussion of relevant optimization techniques cannot be made without 

some knowledge of the structure of the model in which the optimization will be conducted.  

Therefore, rather than providing a pedagogic recitation of the wide variety of optimization 

methods and algorithms that exist, this section will focus on the specific methods that are 

applicable to the problem at hand, which will then be further developed in the following chapter.  

There are, however, a number of good texts on optimization methods.  Two examples are 

Bazaraa, Sherali and Shetty (1993) and Gill, Murray and Wright (1986) . 

As mentioned above, in order to determine an appropriate optimization method (i.e., to 

select the correct tool for the job), one must have some understanding of the system or model 

upon which the optimization will be applied.  One approach to this selection is to consider the 

attributes of the system or model and proceed through somewhat of a classification process.  A 

good initial step in the classification is to determine if the system or model is linear or nonlinear 

in either its objective function or in its constraints.  If the objective function and all constraints are 

linear, then linear optimization methods (e.g., linear programming) should be applied.  If either 

the objective function or any constraint is nonlinear, then the nonlinear class of methods may be 

required.  A further distinction is whether the independent variables are constrained.  If the 

feasible region is defined by constraints, constrained optimization methods generally should be 

applied.  In addition, if one or more of the independent variables can only take on integer values, 

specialized integer programming methods may be required.   

With respect to the economic modeling of CHP systems, life-cycle cost, or alternatively, 

the life-cycle savings relative to some non-CHP alternative, as a function of installed equipment 

capacity, has been shown to be convex and concave, respectively. [Wong-Kcomt (1992); 

Czachorski, Ryan and Kelly (2002)]  Therefore, using either life-cycle cost or savings as the 

objective function necessitates a nonlinear optimization approach.  Beyond this, consideration 

must be given as to whether the current problem has independent variables that are constrained to 
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certain sets of values (i.e., equality constraints) or somehow bounded (i.e., inequality constraints).  

In either case, constrained nonlinear optimization is generally performed by converting the 

problem in such a way that it can be solved using unconstrained methods (e.g., via Lagrangian 

multipliers or penalty methods). [Bazaraa, Sherali and Shetty (1993)]  In this study, the 

independent variables are installed equipment capacities, which are assumed to be continuous and 

non-negative.  Thus, the only constraints are simple bounds, defined as xi ≥0.  Fletcher (1987) 

suggests a number of ways to handle such constraints including variable transformation (e.g., x = 

y2) and introduction of slack variables.   With slack variables, a problem of the type Maximize 

F(x) subject to 0≥ix  can be rewritten using slack variables as Maximize F(x) subject to 

02 =− ii wx , where 2
iw is a squared slack variable.  Solution can then follow through the 

development of the Karush-Kuhn-Tucker (KKT) conditions and the Lagrangian function.  It has 

been shown that for linear constraints and a concave objective function, as in this study, the 

global optimum will be at a point satisfying the KKT conditions [Bazaraa, Sherali and Shetty 

(1993); Winston (1994)].   

Another method to extend equality-constraint methods to inequalities is through the use 

of a generalized reduced gradient (GRG) approach.  The reduced gradient method seeks to reduce 

the number of degrees of freedom, and therefore, free variables, that a problem has by 

recognizing the constraints that are active (i.e., at their bounds) during each iteration.  If a 

variable is at an active bound, it is excluded from calculations related to the determination of the 

incremental solution step.  If no variables are at active constraints, the GRG method is very 

similar to the standard quasi-Newton method for unconstrained variables.  A GRG interactive 

optimization tool is included as a bundled add-in to Microsoft Excel [Fylstra et al. (1998)].  

Although applicable to the optimization requirements of this study, it was felt that development 

of an internal algorithm that relied on simpler, unconstrained methods with explicit checks on 
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bounds would be a useful element of interesting research.  The Excel GRG add-in tool could then 

be used as a check on the accuracy and results of the unconstrained approach. 

There are a number of methods available to perform unconstrained nonlinear 

optimization.  A central distinction is whether the method relies on derivatives of the objective 

function.  If derivatives are not available or are computationally difficult to obtain, non-derivative 

methods can be employed.  Such methods are also needed when the objective function or gradient 

vector is not continuous.  Methods that rely solely on function comparison are considered direct 

search methods [Gill, Murray et al. (1986)].  A common direct search method is the polytope or 

Nelder-Mead method in which prior functional evaluations are ordered such that the next iteration 

is a step in the direction away from the worst point in the current set of points.  Another non-

derivative method is the Hook and Jeeves method which performs exploratory searches along 

each of the coordinate directions followed by pattern searches defined by the two most recent 

input vectors.  The main disadvantage of these direct search methods is that they can be very slow 

to converge. 

The two direct search methods mentioned above are considered sequential methods in 

that new trial inputs are the product of the previous result. Another class of the direct search 

method is the simultaneous direct search in which the trial points are defined a priori [Bazaraa, 

Sherali and Shetty (1993)].  For variables in two dimensions, an example of this method would be 

a grid-pattern search, which will be one technique employed in this research. 

If objective function derivatives are available, other, more efficient, methods can be 

brought to bear.  One of the most fundamental procedures for optimizing a differentiable function 

is the method of steepest descent, also called the gradient method.  In this method, the search 

direction is always the negative gradient, and the step size is calculated to minimize the objective 

function (assuming the function is convex).  This is repeated until a stopping criterion, such as the 

gradient norm, is sufficiently small.  However, it has been shown that following the direction of 
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steepest descent does not necessarily produce rapid convergence, particularly near a stationary 

point, and that other derivative methods perform better [Bazaraa, Sherali and Shetty (1993); 

Bartholomew-Biggs (2005)].  For large problems (i.e., those with more than 100 decision 

variables), the conjugate gradient method is useful as it does not require storage of large matrices 

[Bazaraa, Sherali and Shetty (1993)].  As this method is typically less efficient and less robust 

than other methods, and as the current problem concerns a small number of independent 

variables, the conjugate gradient method will not be considered for this application. 

The remaining methods of interest are the Newton method and the related quasi-Newton 

method.  The Newton method has been shown to be very efficient at unconstrained nonlinear 

optimization if the objective function has continuous first and second derivatives.  If first and 

second derivatives are available, a Taylor-series expansion in the first three terms of the objective 

function yields a quadratic model of objective function that can subsequently be used to define a 

Newton direction for function minimization.  As long as the Hessian is positive definite and the 

initial input values are in the neighborhood of the optimum, Newton’s method converges to the 

optimum quadratically [Gill, Murray and Wright (1986)].   

Due to the discrete form of the model in this study, analytical expressions for first and 

second derivatives are not available.  In these situations, derivatives can be approximated using 

finite difference techniques.  The lack of an exact expression for second derivatives means that 

curvature information, typically provided by calculating the Hessian matrix, is not directly 

available for use in a Newton method.  The solution to this problem is to utilize the well-known 

quasi-Newton method, in which an approximation to the inverse Hessian is successively built-up 

during the iteration process.  While typically expecting the first derivative to be analytically 

available in a quasi-Newton method, the additional lack of explicit first derivatives to form the 

gradient does not appear to be a fatal impediment.  Van der Lee, Terlaky and Woudstra (2001) 

successfully used this approach in studying the optimization of thermodynamic efficiency in 
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power plant steam cycles.   As Gill (1986) states, “when properly implemented, finite-difference 

quasi-Newton methods are extremely efficient, and display the same robustness and rapid 

convergence as their counterparts with exact gradients.” 

With respect to the iterative update of the Hessian matrix, a number of Hessian update 

methods have been proposed over the years, including the Davidson-Fletcher-Powell (DFP) 

method, the Powell-Symmetic-Broyden (PSB) update, and the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method.  The literature indicates that the BFGS method is clearly accepted as the 

most effective update method currently available.  [Gill, Murray and Wright (1986); Nocedal 

(1992); Zhang and Xu (2001); Bertsekas (2004);Yongyou, Hongye and Jian (2004)]  Details of 

the BFGS algorithm will be provided in the following chapter. 

A final element related to the quasi-Newton method is the use of line search methods 

when the full quasi-Newton step produces an objective function response that does not make 

satisfactory progress relative to the previous iteration, thus, possibly indicating the passing of a 

local optimum.  In that case, a “backtracking” process along the step direction is needed.  As 

discussed by Dennis and Schnabel (1983), the backtracking approach should conform to the 

Armijo and Goldstein (AG) conditions to ensure satisfactory convergence.  Dennis and Schnabel 

provide the classic quadratic fit using three previously calculated function values to solve for the 

optimum quasi-Newton step multiplier, followed by the cubic spline fit, should the new quadratic 

step not meet AG conditions.   

It should be noted that the quadratic/cubic fit method is but one method to determine an 

appropriate step value.  While less efficient in terms of computational requirements, line search 

methods that do not rely on the gradient, or in this case, an approximation to the gradient, can 

also be used.  Sequential search methods such as the Fibonacci and related Golden section 

methods can be utilized to determine an acceptable step multiplier [Bazaraa, Sherali and Shetty 

(1993)].   
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Other more detailed aspects of the optimization process and related literature references 

to these specific points will be brought out in the chapters that follow. 
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CHAPTER 3  
METHODOLOGY 

3.1 Overview 
 

This chapter provides a detailed explanation of the simulation model as well as the 

approach used to determine an optimum set of equipment capacities for the CHP system.  Similar 

to the approach used by Edirisinghe, Patterson and Saadouli (2000) and Yokoyama, Ito and 

Matsumoto (1991), the model consists of two nested sections: an outer, controlling optimization 

algorithm and an inner operation simulation routine.  The overall flow of the optimization model 

is shown in Figure 3-1.  Starting with an initial “guess” for the installed electrical generator and 

absorption chiller capacities, an hour-by-hour operation simulation is performed to develop a 

value of the objective function for the given generator and chiller capacities.  Within the 

optimization algorithm, a stopping criterion is used to control the updating of the optimization 

routine and subsequent iterative looping back to the operation simulation with a new set of 

candidate installed capacities.  The optimization algorithm seeks to maximize the net present 

value (NPV) savings produced by using the CHP system relative to a non-CHP scenario (where 

electricity is obtained solely from the grid and heating loads are met by an on-site boiler).  The 

maximization of NPV savings (i.e., maximization of overall profitability) is an appropriate 

method for evaluating mutually exclusive alternatives [Sullivan, Wicks and Luxhoj (2006)]. 

3.2 Operation Simulation 
 

As stated in Chapter 1, the purpose of this research is to develop an effective mechanism 

by which optimal sizes of CHP equipment may be determined.  In recognition of the problems 

identified in the literature regarding the use of average or aggregated demand data [Gamou, 

Yokoyama and Ito (2002); Hudson and Badiru (2004)] , this approach utilizes demand data  
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Figure 3-1.  Overview Flow Chart for Optimization Model 
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expressed on an hourly basis, spanning a one year period.  Use of hourly data has the advantage 

of explicitly capturing the seasonal and diurnal variations, as well as non-coincident behaviors, of 

electrical and thermal loads for a given application.  In many cases, actual hourly demand data for 

an entire year may not be available for a specific site.  In these situations, building energy 

simulation programs are available that can develop projected hourly loads for electricity, heating, 

and cooling on the basis of building application, size, location, and building design attributes 

(e.g., dimensions, insulation amounts, glazing treatments) [InterEnergy/GTI (2005); Oak Ridge 

National Laboratory (2005)]. 

The data needed to simulate the operation of a CHP system are shown in Table 3-1.  The 

input for the hourly facility electrical demand should include all facility electrical demand except 

for cooling-related demand.  As cooling may be provided by an absorption chiller under CHP 

operation, electrical demand related to cooling is calculated explicitly within the simulation 

model.  For the hourly heating and cooling demands, the input values are expressed on an end-

use, as-consumed thermal basis.  

The prices for utility-supplied electricity typically have a price component related to the 

amount of energy consumed (i.e., an energy charge) as well as a component proportional to the 

monthly peak rate of energy consumed (i.e., a demand charge).  Some utilities will price their 

electricity at different rates to those who self-generate a portion of their electrical needs.  In 

addition, some electric utilities charge a monthly standby fee for the availability of power that 

may be called upon should the distributed generation not be available.  As discussed later, utility 

tariff structures can have unit prices that vary both seasonally and/or diurnally.  Similar to 

electricity rates, the unit price for on-site fuel may be different for those who operate a CHP 

system. 
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Table 3-1.  Input Variables Used in Operation Simulation Model 
 

Variable Typical units 
Facility loads  
 Hourly electrical demand (non-cooling related) kW 
 Hourly heating demand Btu/hour 
 Hourly cooling demand Btu/hour 
Electric utility prices  
 Demand charge $/kW-month 
 Energy charge $/kWh 
 Standby charge $/kW-month 
On-site fuel price (LHV basis) $/MMBtu 
Equipment parameters  
 Boiler efficiency (LHV) Percent 
 Conventional chiller COP Without units 
 Absorption chiller (AC) COP Without units 
 Absorption chiller (AC) capacity RT 
 AC minimum output level Percent 
 AC system parasitic electrical load kW/RT 
 Distributed generation (DG) capacity, net kW 
 DG electric efficiency (LHV) at full output Percent 
 DG minimum output level Percent 
 DG power/heat ratio Without units 
 Operating and maintenance (O&M) cost $/kWh 
 Number of DG units Units 
 DG capital cost $/kW installed 
 AC capital cost $/RT installed 
General economic parameters  
 Planning horizon  Years 
 Discount rate Percent/year 
 Effective income tax rate Percent 
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The fuel assumed for on-site distributed generation and on-site water/steam heating in 

this study is natural gas, expressed on a $/MMBtu lower heating value (LHV) basis.  The heating 

value of natural gas refers to the thermal energy content in the fuel, which can be expressed on a 

higher heating value (HHV) or lower heating value basis.  The difference in the two heating 

values relates to the water formed as a product of combustion.  The higher heating or gross value 

includes the latent heat of vaporization of the water vapor.  The lower heating or net value 

excludes the heat that would be released if the water vapor in the combustion products was 

condensed to a liquid.  As DG/CHP systems try to limit exhaust vapor condensation due to 

corrosion effects, the usable heat from natural gas is typically the LHV.  In the United States, 

natural gas is typically priced on a HHV basis, so care should be used in entering the proper 

value.  For natural gas, the conversion between HHV and LHV is  

heat contentHHV = heat contentLHV x 1.11 [Petchers (2003)]. 

The definitions for the equipment and economic parameters listed in Table 3-1 are as 

follows: 

Boiler efficiency – The thermal efficiency of the assumed on-site source of thermal hot 

water/steam (e.g., boiler) for the baseline (non-CHP) scenario, expressed on a LHV basis. 

Conventional chiller COP – The coefficient of performance for a conventional electricity-driven 

chiller.  It is determined by dividing the useful cooling output by the electrical energy required to 

produce the cooling, adjusted to consistent units.   

Absorption chiller COP – The coefficient of performance for the CHP system absorption chiller.  

It is determined by dividing the useful cooling output by the thermal energy required to produce 

the cooling, adjusted to consistent units.   Parasitic electrical support loads (e.g., pump and fan 

loads) are addressed separately. 

Absorption chiller capacity – The installed capacity of the absorption chiller in refrigeration tons 

(RT).  This is an independent variable in the model.   



 20

AC minimum output level – The minimum percent operating level, relative to full output, for the 

absorption chiller.  This is also known as the minimum turndown value.  

AC system parasitic electrical load – The electrical load required to support the absorption chiller.  

The chiller load should include the chiller solution pump, the AC cooling water pump, and any 

cooling tower or induced draft fan loads related to the AC. 

Distributed generation (DG) capacity - The installed capacity of the distributed electrical 

generator (i.e., prime mover), expressed in net kilowatts.  This is an independent variable in the 

model.   

DG electric efficiency (LHV) at full output – The electricity production efficiency of the DG 

prime mover at full output.  This efficiency can be determined by dividing the electricity 

produced at full output by the fuel used on a LHV basis, adjusted to consistent units. 

DG minimum output level - The minimum percent operating level, relative to full output, for the 

DG unit.  Also known as the minimum economic turndown value.  

DG power/heat ratio – The ratio of net electrical power produced to useful thermal energy 

available from waste heat, adjusted to consistent units. 

O&M cost – The operating and maintenance cost of the total cooling, heating and power system, 

expressed on a $/kWh of electricity generated basis. 

Number of DG units – The number of prime mover units comprising the system.  Currently, the 

model is limited to no more than two units, each identical in size and performance.  The optimum 

capacity determined by the model is the total capacity of the CHP system, and for a two-unit 

system, that capacity is split equally between the units. 

DG capital cost – The fully installed capital cost of the distributed generation system, expressed 

on a $/net kW basis. 

AC capital cost – The fully installed capital cost of the absorption chiller system, expressed on a 

$/RT basis. 
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Planning horizon – The assumed economic operating life of the CHP system.  The default value 

is 16 years to be consistent with U.S. tax depreciation schedules for 15 year property.  Currently, 

16 years is the maximum allowed planning horizon in the model. 

Discount rate – The rate used to discount cash flows with respect to the time-value of money. 

Effective income tax rate – The income tax rate used in income tax-related calculations such as 

depreciation and expense deductions.  The effective rate reflects any relevant state income tax 

and its deductibility from federal taxes.  More discussion on this is provided in Section 3.2.2. 

The general flow of calculations within the operation simulation is shown in Figure 3-2.  

Once the electrical and thermal loads and general equipment/economic parameters are defined, 

for each iteration of the optimization routine, a trial set of distributed generator and absorption 

chiller capacities are provided to the operations simulator.  Two separate simulations must be 

performed.  First, the hour-by-hour costs for satisfying the thermal and electric loads solely by a 

traditional utility grid/on-site boiler arrangement must be calculated.  This is referred to as the 

non-CHP or grid-only scenario.  A second, separate calculation develops the hour-by-hour costs 

of meeting at least some part of the specified loads with a CHP system.  The degree of 

contribution of the CHP system will be discussed in greater detail in material that follows.  Two 

sets of annual operating costs are then determined by summing the relevant hourly costs of 

meeting thermal and electric demands from either the grid and on-site boiler solely (i.e., the non-

CHP scenario) or from CHP operations.  A differential annual operating cost (or net annual 

savings, if the CHP scenario is less costly than the non-CHP scenario) is determined based on the 

annual cost difference between the non-CHP scenario and the CHP-available scenario.  A net 

present value is then determined by calculating the present worth of the net annual savings over 

the number of years defined by the planning horizon at the defined discount rate and adding the 

installed capital costs of the CHP system, adjusted for income tax effects (e.g., depreciation). 
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Figure 3-2.  Operation Simulation Flow Chart 
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3.2.1 Escalation of Unit Prices and Loads 
 

Before the detailed computations of the annual operations are discussed, the treatment of 

escalation must be addressed.  As stated above, the planning horizon for this model can be up to 

16 years.  Unit prices for electricity and gas, as well as O&M unit costs, are not likely to remain 

constant over such a long period.  Similarly, it is possible that electrical and/or thermal loads may 

change over such a period.  As a result, the ability to reflect escalating unit prices and possible 

load changes is needed. 

As annual operations are calculated on an hourly basis, performing an explicit calculation 

for every hour within a 16 year duration would require 140,160 hourly calculations.  While 

computationally feasible using high-level programming languages (e.g., FORTRAN, C++), this 

research utilizes a Microsoft Excel spreadsheet platform.  One of the main reasons for developing 

this research on a spreadsheet platform is the transparency that the spreadsheet provides for 

reviewing the actual calculations as opposed to a “black-box” compiled program that must be 

trusted by users to be computationally correct.  The current version of Excel (Microsoft Office 

Excel 2003 SP2) is limited to 65,536 rows on a single spreadsheet, which is insufficient to 

perform all 16 years of hourly calculations on one sheet.  Of course, one could have 16 separate 

worksheets, one for each year, but an additional consideration is the operational performance of 

the model.  Based on processing times for an 8,760 hour optimization, which will be discussed in 

the following chapter, it was felt that explicitly performing 140,160 hourly calculations would be 

intractable with the current platform.  

A solution to this dilemma is to express the variables that are subject to escalation as 

levelized values.  A common method used in public utility economic analysis, a levelized value is 

determined by calculating the present value of the escalating annual stream and then applying an 

annual capital recovery factor to produce the levelized annual equivalent value [Park and Sharp-
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Bette (1990)].  The levelized values are then used in the operation simulation calculations.  In 

order to confirm that such an approach would be a viable alternative to explicit hourly 

calculations, an explicit 6-year hourly model was created having 52,560 hourly computational 

rows.  The results from the explicit model were compared against the results from a 6-year 

levelized model for various combinations of escalation rates for unit prices and thermal and 

electric loads.  Benchmarking of the two models using the same capacity inputs gave very good 

agreement (i.e., average difference in NPV savings between the two models was 0.04% in six 

trials).   Thus, in the material that follows, unless explicitly stated, values for electricity and gas 

unit prices, thermal and electric loads, unit O&M costs, and the resulting annual costs should be 

considered annual levelized values, spanning the duration of the planning horizon. 

3.2.2 Non-CHP System Costs 
 

As mentioned above, the non-CHP scenario assumes that there is no distributed 

generation system, that all electrical loads are met by the grid-based utility, and that all heating 

loads are met by an on-site boiler. Costs related to the non-CHP system scenario for a given hour 

are determined on the basis of satisfying the specified non-cooling electrical demand, deºi, the 

heating demand, dhi, and the cooling demand, dci.  It is important to note that each of these 

demands is expressed as an end-use consumption value.  As cooling in the non-CHP scenario is 

assumed to be provided by electricity-based chillers, the electrical consumption related to this 

cooling demand must be determined and added to the non-cooling electrical demand.  This is 

done by recognizing the COP of the electric chiller, such that total non-CHP electrical demand for 

hour i can be expressed as  

ECciieei ddd o η/+= . 

The pricing of electricity from the utility grid has become much more complicated since 

electric utilities began to be deregulated and electricity supply competition was introduced.  It is 
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outside the scope of this work to address the regulation and economics of electric utilities and the 

various business and pricing arrangements that have been explored in the last decade.  Despite the 

“unbundling” of the traditional vertically-integrated utility, in which generation, transmission, 

and distribution costs are now priced separately, most electric utilities in the United States still 

offer some form of regulated tariff pricing.  The regulated tariff pricing structure will be used in 

this study as it remains an accessible, common form of pricing electricity to various classes of 

customers (e.g., industrial, commercial, residential).  If interested in the underlying economic 

theory of costing public services such as utility rates, Bonbright, Danielsen and Kamerschen 

(1988) provides a detailed development of the theory and structure of public utility rates. 

In the typical utility tariff, the pricing of electricity provided by a utility to an industrial 

or commercial customer consists of an energy charge, related to the actual amount of electrical 

energy consumed, and a demand charge, related to the rate of energy consumption (i.e., power 

level).  The actual terms and structure of pricing tariffs vary widely from utility to utility.  For 

some tariffs, the energy unit price, rei, may vary by hour of the day (known as a time-of-use tariff) 

and also by season.  The demand charge rate, expressed on a $/kW-month basis, may also vary by 

season and hour of the day.  If there are multiple demand charge rates, varying by time of day, it 

is considered a block pricing arrangement.  Typically, utilities will have a two- or three-block 

structure related to the peak and off-peak times, or the peak, shoulder, and off-peak times of day, 

respectively.  The demand charge, assessed at the rate rdjk applicable for month j and block k of 

time, is then based on the highest power demand placed on the utility within that block interval 

during the course of a month.  The total demand-related charge is then the sum of the demand 

charges incurred across all the time blocks.   

Mathematically, the hourly energy charge for hour i can be expressed as  

eieiiU dr ⋅=ε .   
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The demand charge for a given month j with n distinct demand blocks can be expressed as 
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where [ ]jkeidmax is the maximum hourly electrical demand in the daily time period defined by 

block k experienced during month j .  Over the period of a year, the total annual cost of utility-

supplied electricity is  
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In the non-CHP scenario, it is assumed that heating demands will be met by a natural-gas 

fired boiler.  The cost of the natural gas consumed in a given hour i with a unit price for natural 

gas of rg and a boiler efficiency of bη is  

bhiggbi drC η/⋅= . 

The cost of natural gas over a one year period is the sum over all i hours,  

∑
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Finally, the total annual operating cost for the non-CHP system is  

gbUU CEC += . 

3.2.3 CHP System Costs 
 

Relative to the non-CHP scenario, developing the annual cost for a CHP-based system is 

substantially more complicated.  There can be utility surcharges (e.g., standby fees) which are 

imposed as a result of operating self-generation equipment.  In addition, the unit pricing for 

electricity, rei and rdjk, may be different for customers using a CHP system than for those buying 

all their supply solely from the utility.  The operational considerations related to the CHP system 

are of considerable influence as well.  As an example, the fuel efficiency of electrical generation 
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equipment is directly proportional to relative output level.  Typically, the highest efficiency (i.e., 

most electricity produced for the least fuel consumed) is at or near full rated output.  Depending 

upon the type of prime mover, electrical efficiencies at low part-load can be 65 to 75 percent of 

full-load efficiency.  As a result, there is a general lower limit on part-load operations.  A typical 

minimum operating value is 50% of rated unit capacity.  The limit becomes influential when the 

electrical demand is less than 50% of the rated unit capacity, requiring that electricity be 

purchased from the grid.  Thus, there is an economic trade-off related to the size of the CHP 

generation capacity.  A CHP system sized to meet peak electrical or thermal loads will incur 

higher utility standby charges and will have less ability to operate during periods of low demand.  

Conversely, a smaller sized system may be able to operate a larger fraction of time, but may 

result in a higher fraction of unmet load for the facility (resulting in higher utility purchases, 

typically at peak pricing).  The economics are further influenced by the direct relationship of CHP 

electrical generation capacity and useful thermal energy available.  Smaller electrical capacity 

means less useful thermal byproduct, which might then require additional gas-boiler or electric 

chiller operation. 

In the detailed modeling of operations in the CHP scenario, an initial consideration is the 

determination of the best use of the available thermal energy.  Depending on the relative prices of 

grid-based electricity and natural gas and the efficiencies of the various equipment items, it may 

be more economical to preferentially satisfy heating demands rather than cooling demands (via an 

absorption chiller) with the available thermal energy from the CHP prime mover.  A binary 

variable, kAC, is set to a value of 1 to indicate a preference of using the thermal energy for 

meeting cooling demand if 1) an absorption chiller is present in the system, 2) the cooling 

demand is greater than or equal to the minimum operating level for the absorption chiller, that is,  

ACACci Gfd ⋅≥  
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and 3) if  the substitution cost of one unit of thermal energy displacing electric cooling is greater 

than the substitution cost of that unit of thermal energy displacing on-site boiler heating,  

bgECeiAC rr ηηη // >⋅ . 

If the variable kAC is set to 1, then available thermal energy from the prime mover is first used to 

drive the absorption chiller.  Any excess thermal energy available from the prime mover is used 

to satisfy heating demands.  Conversely, if kAC = 0, then available thermal energy from the prime 

mover is first used to satisfy heating demands, with any excess going to drive the absorption 

chiller, as long as the potential output of the chiller is greater than its minimum operating level. 

Another consideration for the absorption chiller is its minimum operating duration.  

Absorption chillers take some time to start-up and reach equilibrium temperatures and are not 

designed to cycle on and off quickly.  Based on discussions with technical experts on absorption 

chiller operations, a 4 hour minimum continuous operating duration is imposed on any absorption 

chiller operation [Zaltash (2005)].  For any given hour, this is accomplished in the model by 

evaluating the chiller operation in the previous three hours and the potential operation in the 

following three hours.  If the current hour could accommodate chiller operation based on the 

minimum operating level of the chiller, and if any contiguous combination of operation during 

this ±3 hour window, including the hour under consideration, yields 4 or more hours of 

continuous operations, operation of the chiller is allowed in the current hour.  Otherwise, the 

absorption chiller does not operate in the current hour. 

In order to determine the generation output of the DG system for a given hour, the 

maximum potential electrical demand for that hour must be determined.  First, if there is no 

absorption chiller or if the cooling demand for the current hour is below the absorption chiller 

minimum operating level, the maximum electrical demand, Mei, is the same as the electrical 

demand in the non-CHP scenario, since all cooling for that hour must come from electric chillers.  

Thus, from the prior section,  
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Mei = ECciieei ddd o η/+= . 

If an absorption chiller is available to run in a given hour and if the DG electricity 

production in meeting the non-cooling demand, deºi,, plus the parasitic electrical load of the 

absorption chiller, dpAC, produces sufficient thermal energy to satisfy both heating and cooling 

demands, then  

Mei = pACie dd +° . 

Otherwise, Mei depends on the thermal preference, kAC.  If kAC = 1, indicating a preference to use 

the thermal energy for absorption cooling, then if  

( )( ) 0// ≥−+° ACcipACie ddd ηθ and ciAC dG ≥ , 

then Mei = pACie dd +° . 

Otherwise, when there is insufficient thermal energy to satisfy all the cooling demand via the 

absorption chiller, additional CHP system electrical demand is added to the non-cooling demand 

base value to supply electric chillers, such that 

( )( )
( )( )ECACEC

ACpACieci
pACieei

ddd
ddM

ηθηη
ηθ

⋅+
⋅

⋅+−
++= °

° /1
1/

. 

The latter term is included in order to recognize that as more electricity is produced to meet the 

shortfall, more thermal energy is available for cooling via the absorption chiller. 

If the thermal preference is to satisfy heating demand first, 0=ACk , then if  

( ) ACACAChiei fGdd ηθ // ⋅≤− , 

such that there is insufficient thermal energy available for cooling purposes, then Mei = eid , 

which includes the additional electrical load for electric chillers to satisfy cooling demands.  

However, should there be sufficient thermal energy remaining after meeting the heating demand,  

( )( )( )
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With respect to determining the maximum potential thermal demand, for any hour i, the 

maximum thermal demand of the CHP system, iM Τ , is hid  if ACACci fGd ⋅<  or  

( ) ACACcihi Gdd η/,min+  otherwise. 

Once the maximum potential thermal and electric demands are calculated for each hour, 

the operation of the CHP system for each hour can be determined.  It should be noted that 

calculations for CHP operations are performed for each hour of the year, irrespective of whether 

the CHP system will actually run in that hour.  The determination of whether the CHP system 

runs in a given hour is dependent on the operating strategy chosen.  In some cases, the operation 

of a CHP system may be specified explicitly by the owner/operator, irrespective of hourly costs 

(e.g., to coincide with daily shift schedules).  In other cases, the decision to operate the CHP 

system may be based solely on an energy cost make-or-buy decision for a given hour (i.e., in an 

economic dispatch mode).  Thus, the costs of potentially operating the CHP system must be 

known to allow for cost comparisons. 

For any hour i, the potential electric generation is based on the maximum CHP electric 

demand, Mei.  If Mei is less than the minimum operating level of the distributed generator, 

DGDG fG ⋅ , then the electric generation, gei, is zero.  Otherwise, gei = minimum(Mei, GDG), where 

GDG is the net electrical generating capacity of the distributed generation CHP system.  The 

corresponding potential thermal energy available, gTi = minimum(MTi, θ/eig ).   

To provide that all thermal and electrical demand is satisfied, any electrical, heating, or 

cooling demand not provided by the CHP system must be supplemented by the utility grid/on-site 

boiler.  To determine the amount of supplemental heating needed, the heating demand, dhi , is 

compared to the thermal energy generated, gTi , taking into account any thermal energy utilized 

by the absorption chiller.  Mathematically, 

)/( ACciTihihi ggds η−−= . 
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The corresponding gas required for the on-site boiler will be bhigi ss η/= .  Similarly, the 

amount of grid-supplied electricity needed to provide supplemental cooling (i.e., cooling beyond 

that provided by the CHP system) can be expressed as  

)(/)( pACieeiECcicici ddggds o −−−−= η  if ieei odg > . 

Otherwise,  

pACECcicici dgds +−= η/)( . 

In addition to grid electricity used for any supplemental cooling, if ieDG dG °< , the 

difference will also be obtained from the grid, such that  

)( eiieciei gdss o −+= . 

Costs for the CHP system for each hour are determined as the sum of the operating costs 

of the distributed generation system, the cost of any fuel used in boiler firing for supplemental 

heating, and any grid-supplied electricity purchased to cover supplemental electrical loads.  The 

operating costs of the DG system include natural gas fuel and system O&M costs.  The hourly 

cost for the DG system is calculated as  

OMeigDGeiDGi CgrgC ⋅+⋅= η/ . 

Costs for supplemental gas and electricity are ggigsi rsC ⋅=  and eieiesi rsC ⋅= , respectively.  The 

total hourly cost for the CHP system can be expressed as  

esigsiDGiiCHP CCCC ++= . 

It should be noted that the electrical efficiency of the distributed generator is not a 

constant value, but, as mentioned at the beginning of this section, is a function of the output level 

of the generator.  Part-load efficiencies also differ by type of prime mover (e.g., gas turbine, 

reciprocating engine).  The efficiency relationships used in the model are based on an assessment 

of part-load efficiency data from Fischer (2005), Goldstein et al. (2001), Orlando (1996), and 
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Petchers (2003).  This study uses polynomial functions of the electric output fraction (i.e., part-

load fraction) to generate DG part-load efficiency values.  The polynomial equations and 

resulting part-load efficiency curves are shown in Figure 3-3 for fuel cells, reciprocating engines, 

and gas turbines. 

As mentioned above, the determination of whether the CHP system operates in a given 

hour is based on the operational strategy selected.  If an explicit, a priori operations schedule is 

not defined, hourly CHP system operation is determined on the basis of least cost when compared 

to the cost of the non-CHP scenario.  If, for a given hour, the operation of the CHP system 

satisfies the electrical and thermal demands for less cost (on an energy-cost basis) than the non-

CHP scenario, then the CHP system operates in that hour.  Otherwise, consideration must be 

given to running the CHP system anyway at an energy-cost loss, so as to avoid being the hour 

that sets the demand charge for the month.  Recall that the demand charge for a given demand 

block in a month is determined by the highest power demand occurring during that block of time 

for the entire month.  Typically, the amount of economic loss related to a given hourly energy 

cost differential is very small compared to setting the demand charge for the month by not 

running the CHP system in that hour.  Therefore, if UiCHPidjkeiei CCrsd −>⋅− )( , then the CHP 

system will be scheduled to operate in that hour.  Otherwise, the CHP system will not run in that 

hour, and all energy will be provided by the electric grid and on-site boiler. 

Once the operating decision is made, hourly costs can be summed over the entire annual 

period to obtain the annual operating cost for providing electricity, heating, and cooling to the 

facility.  Recalling that two separate scenarios are determined simultaneously, the amount of 

annual cost savings (if any) from operating a CHP system, relative to relying on grid-based 

electricity and on-site boiler heating, can be defined as  

∑
=

−=
8760

1i
CHPiUS CCC , 
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y = -0.508x2 + 1.0214x + 0.4866
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Figure 3-3.  Part-Load DG Electrical Efficiency Factors 
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where UC  is the annual cost of the non-CHP scenario, as defined in the previous section.  If CS is 

positive, then the CHP system has a lower annual operating cost, and the value represents a 

savings relative to the non-CHP scenario. 

Operating costs such as electricity and gas are considered expense items and are tax-

deductible with respect to determination of income tax.  Therefore, total annual operating savings 

CS is multiplied by ( )t−1 , where t is the effective income tax rate applicable to the facility under 

study, to determine an after-tax annual cost.  If state income tax is a relevant consideration, the 

effective income tax rate can be determined as  

t = state rate + federal rate * (1 – state rate), 

to reflect the deductibility of state taxes on federal taxes [Sullivan, Wicks and Luxhoj (2006)].  

In order to equitably determine the economic viability of a CHP system, the capital or 

investment costs of the CHP system, and related income tax effects, must be included.  The total 

capital investment cost of the CHP system is 

ACACDGDGCHP IGIGI ⋅+⋅=  

and includes all equipment, labor, and materials to fully install the CHP system.  As capital assets 

may be depreciated for income tax purposes, the income tax benefits of CHP asset depreciation 

are determined using a 15-year recovery period as defined by the Internal Revenue Service 

MACRS depreciation schedules [Internal Revenue Service (2004)].   

Finally, the capital and operating cost elements are combined to create the net present 

value (NPV) of the cost savings of the CHP system.  The cost savings NPV, which serves as the 

objective function for optimization, is expressed as  

)())1(( nCHPSCHP DPWItCPWNPV +−−⋅= , 

where PW is the present worth of a series of cash flows and Dn are the annual tax benefits 

resulting from depreciation of the CHP system capital investment.    
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3.3 Capacity Optimization 
 

As mentioned at the outset of this chapter, the optimization goal is to maximize NPV cost 

savings by determining the optimum installed capacities for the electricity generation system and 

the absorption chiller.  Given that only objective function values are directly available in this 

computational model (i.e., no analytical expressions for first or second derivatives), it is felt that, 

based on the review of the literature as noted in Chapter 2, the use of a quasi-Newton method 

with Broyden-Fletcher-Goldfarb-Shannon (BFGS) updates of the inverse Hessian is the most 

appropriate approach.  

The quasi-Newton method is a variant of the Newton method and can be found in any 

good nonlinear optimization textbook [Gill, Murray and Wright (1986); Fletcher (1987); Bazaraa, 

Sherali and Shetty (1993); Bertsekas (2004); Bartholomew-Biggs (2005)].  The Newton method 

relies on a three term Taylor approximation of an assumed quadratic behavior of the objective 

function.  As such, the quadratic model of the objective function, F, can be expressed as  

pGppgFpxF k
TT

kkk 2
1)( ++≈+ , 

where g, p, and G are the gradient (Jacobian) in x, step direction, and Hessian in x, respectively.  

As we seek to find a stationary point of the function with respect to the step direction p, the 

objective function can be rewritten in p as  

pGppgpF k
TT

k 2
1)( += . 

A necessary condition for a stationary point is that the gradient vector vanish at that point.  Thus, 

0)( =+=∇ pGgpF kk or kk gGp 1−−= . 

If G is positive definite, then conditions are sufficient to state that p can be a minimum stationary 

point [Gill, Murray and Wright (1986)].  In the case of maximization, G should be negative 

definite.  The Newton method requires, however, that the Hessian of the objective function be 
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known or determinable.  In the current problem, the Hessian can not be determined analytically. 

Thus, we rely on a sequential approximation to the Hessian as defined by the quasi-Newton 

method.   

The typical quasi-Newton method assumes that the gradient of the objective function is 

available.  As discussed in Chapter 2, the model used in this research has no analytic 

representation of either first or second derivatives.  In this situation, a forward-difference 

approximation must be used to estimate the gradient vector.  For the ith independent variable, xi, 

the gradient is estimated by 

))()((1
iii xFhxF

h
g −+= , 

where h is the finite-difference interval. For this study, a finite-difference interval of 10-4 was 

selected after evaluating choices ranging from 10-2 to 10-6. 

The general outline of the quasi-Newton method for maximization is as follows: 
 

• Choose some xo as an initial estimate of the maximum of F(x) 
 
• Set the initial inverse Hessian, H0, equal to the negative identity matrix (an arbitrary 

symmetric negative definite matrix) 
 

• Repeat for k = 0, 1, 2, … 
– Determine )( kk xFg ∇= by forward-difference approximation 
– Set the step length scalar, λ, equal to 1 
– Calculate the full step direction kkk gHp −=  
– Evaluate whether the full step is appropriate by comparing F(xk+λpk) to 

F(xk).  If k
T
kkkk pgxFpxF ρλλ +<+ )()( , solve for the step length λ that 

produces a univariate maximum F(λ) for 10 ≤≤ λ . 
– Set xk+1 = xk+ λpk, kkk ggy −= +1 , dk = xk+1 - xk 
– Evaluate stopping criteria, and if not achieved, 
– Update the approximate inverse Hessian such that kkk dyH =+1  
– Increment k 
 
 

The stopping criteria used in this model is consistent with prior work by Edirisinghe, 

Patterson and Saadouli (2000) and Kao, Song and Chen (1997) in which the algorithm is 
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terminated when either the change (i.e., improvement) in the objective function is less than a 

prescribed threshold amount or when the gradients of the objective function at a particular input 

vector are zero.  The setting of the termination threshold value is a matter of engineering 

judgment.  If a value is chosen that requires very small changes in the objective function before 

termination, the algorithm can cycle for a large number of iterations with very little overall 

improvement in the objective function.   Conversely, a more relaxed threshold value can 

terminate the optimization algorithm prematurely, producing a suboptimal solution.  A balance 

must therefore be struck between long execution times and less than total maximization of the 

objective function.  As the objective function in this study is NPV cost savings over a multiyear 

period, one must select a value at which iterative improvements in NPV cost savings are 

considered negligible.  There are two approaches used in setting this termination threshold.  First, 

on an absolute basis, if the iterative improvement of the NPV cost savings is less than $50.00, it is 

considered reasonable to terminate the algorithm.  In some cases, however, this absolute value 

can be a very small percentage of the overall savings, thus leading to long execution times with 

little relative gain.  The second termination approach is based upon a relative measure on the 

objective function.  If the change in NPV cost savings between iterations is greater than $50.00, 

but less than 0.00001 times the objective function value, then the algorithm terminates under the 

assumption that a change of less than 0.001 percent is insignificant.   

As will be discussed further in Chapter 4, the objective function in this study can exhibit 

multiple local optima of low magnitude relative to the average value within a neighborhood 

around the stationary point (i.e., low-level noise of the objective function).  In such situations, a 

means to help avoid getting “trapped” in a near optimum response space, particularly when the 

response surface is relatively flat, is to require two or three consecutive iterative achievements of 

the stopping criterion [Kim (2005)].  For this study, two consecutive achievements of the 
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stopping criterion detailed in the previous paragraph were required to end the optimization 

process. 

In some cases with multiple local optima, the model may find a local optimum rather than 

the global optimum.  A useful technique to improve the solution is to try different starting points 

for the optimization [Fylstra et al. (1998)].  As discussed in Chapter 4, this alternative is available 

in the model. 

The updating of the matrix H, representing a sequential approximation of the inverse 

Hessian, is done using the BFGS method.  As discussed in the previous chapter, the BFGS update 

method is clearly considered to be the most efficient and robust approach available at this time.  

The BFGS formula for Hk+1, as presented by Zhang and Xu (2001) and Bartholomew-Biggs 

(2005), is: 
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As discussed in Chapter 2, there are a number of methods that can be employed in the 

back-tracking search for the Newton step length λ that produces a maximum in the objective 

function.  In this study, a quadratic and cubic spline fit was evaluated, but the method was not 

stable under some input conditions or required a large number of iterations before reaching the 

stopping criterion.  This appears to be due to the lack of strict concavity of the objective function.  

As a result, the Golden sequential line search method was selected for its accuracy and stability.  

The Golden search was terminated when the Interval of Uncertainty (IOU) for the step length λ 

became less than 0.025.  It should be noted that the step length can be unique to each variable 

rather than being a single scalar value.  Such an approach was explored, but the additional 

computations did not seem to produce sufficiently improved results (i.e., faster optimization) to 

merit incorporating the approach in the final model. 
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In order to provide visual guidance regarding the surface behavior of the objective 

function within the overall solution space, a simultaneous uniform line search method was 

utilized as well.  Using a 21 x 7 (DG x AC) grid, grid step sizes were selected to evaluate the 

complete range of possible CHP equipment capacities (i.e., 0 ≤ size ≤ max load) for both the 

distributed generator and the absorption chiller.  For each of the 147 cells, the DG/AC capacity 

combination was used as input to determine the corresponding NPV cost savings.  A contour plot 

of the NPV cost savings was produced to graphically display the overall solution space. 

As mentioned earlier, there are simple lower bound constraints that require the capacities 

of the distributed generator and absorption chiller to be greater than or equal to zero.  In an 

unconstrained method, it is possible that the direction vector could propose a solution that would 

violate the lower bound.  This model checks for this condition, and if present, sets the capacity 

value to zero.  As an added element to improving the efficiency of the algorithm, if the capacity 

of the distributed generation is set to zero, the capacity of the absorption chiller is also set to zero, 

as DG capacity is the energy source to operate the absorption chiller.  This approach does not 

violate the quasi-Newton method as the effect of zeroing the capacity when a negative capacity is 

suggested is equivalent to reducing the Newton step size for that iteration. In this situation, the 

new xk+1 point is set to zero, and gradients are calculated at the new input vector for use in the 

quasi-Newton algorithm. Should the economic conditions of the problem be such that the 

maximum objective function (given the lower bound constraints) is truly at zero capacity for the 

distributed generator, the next iteration will yield the same adjusted input vector (owing to a 

direction vector pointing into the negative capacity space) and same NPV cost savings, which 

will appropriately terminate the optimization on the basis of similar NPV results, as discussed 

above. 
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CHAPTER 4  
MODEL DEVELOPMENT AND APPLICATION 

 

This chapter focuses on implementation of the methodologies defined in the previous 

chapter onto a computational platform.  The sections that follow will discuss the development of 

the computer model, as well as the observations and adjustments made during the development of 

the model.  Sample case studies using the model will also be provided.  

4.1  Development of the Computer Model 
 

In order to provide useful transparency of the calculations, the methods defined in the 

subsequent chapter were implemented using Microsoft Excel.  Excel spreadsheets allow others to 

view the computational formulae, which enhances understanding and confidence in the modeling 

approach.  In addition, Microsoft Excel is a ubiquitous platform found on most personal computer 

(PC) systems.  The model in this research, named the CHP Capacity Optimizer, was developed 

using Microsoft Office Excel 2003 on a PC running the Microsoft Windows XP Professional 

operating system (version 2002).  The computer model is available upon request of the author. 

One of the goals of the model was to provide a user interface that was clean and 

uncluttered.  A main screen, shown in Figure 4-1, was designed to serve as the means to provide 

input to the model and to view summary results from the computations.  The model makes use of 

Excel’s Visual Basic for Applications (VBA) macro language to control movement to various 

sheets within the overall spreadsheet file and to initiate the optimization procedure.  As shown in 

Figure 4-1, input to the model can be found in the upper left corner of the main sheet.  As 

discussed previously, the data needed to run the optimizer consist of heating, cooling, and 

electrical hourly loads for a one year period, utility prices, various equipment efficiencies, 

equipment cost, and economic parameters.   
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Figure 4-1 .  Main Screen of the CHP Capacity Optimizer 
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4.1.1  Input Areas 
 

In order to focus on the input navigation of the model, the input section of the main 

screen has been enlarged in Figure 4-2.  The various input requirements will now be discussed.  

Demand data 
 

The hourly thermal and electric load data are accessed through the “Demand data” button 

shown in Figure 4-2.  By clicking on the button, the hourly loads data sheet is shown.  On that 

sheet hourly heating, cooling, and electric loads for the base year (i.e., the first year of operation) 

of the facility under consideration are stored.  Although the complete demand data sheet consists 

of 8,760 hourly entries, Figure 4-3 provides a sample listing of the layout for the first 24 hours of 

the base year.  It should be noted that the heating and cooling loads are expressed on an end-use, 

as-delivered basis.  The “reported cooling electric kW” load is the corresponding electricity 

consumed to satisfy the cooling load if the cooling is provided by electric chillers.  It is not a 

required input, but does serve to determine an average COP for conventional chillers.  The final 

column of data, the “non-cooling electric load” is a required input describing all of the electrical 

load of the facility, exclusive of any cooling load. 

The source of hourly load data can be actual hourly metering for existing facilities, if 

available, or the output of a building simulation program.  There are at least two existing building 

simulation tools available to develop the hourly loads needed for input to the CHP Capacity 

Optimizer.  One tool is the BCHP Screening Tool, available at no charge from Oak Ridge 

National Laboratory.  The other known tool is Building Energy Analyzer offered by InterEnergy 

Software [InterEnergy/GTI (2005)].  Both tools utilize the DOE-2 computational engine [Birdsall 

et al. (1994)] to simulate any of 15 predefined structures (e.g., hospital, hotel, retail store) at any 

of 233 geographic locations.  Both building simulation tools have an output option of saving 

hourly loads to a data file.  The process to save the raw hourly load data and prepare it for use 

with the CHP Capacity Optimizer is described in Appendix A.
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CHP Capacity Optimizer

Input data

General data
On-site boiler efficiency 80.0%
Conventional chiller COP 4.00
DG electric efficiency (full output) 30.0%
DG unit minimum output 40% cost
Absorption chiller COP 0.70
Absorption chiller min. output 25%
Abs chiller sys elec req (kW/RT) 0.20
CHP O&M cost ($/kWh) 0.011
DG power/heat ratio 0.65
Number of DG units 1
Type of prime mover Recip
Discount rate 8.0%
Effective income tax rate 38.0%
DG capital cost ($/net kW installed) 1500
AC capital cost ($/RT installed) 1000
Planning horizon (years) 16

10/12/2005 16:54

Scenario:  Hospital in California

   CHP Operations

Demand dataDemand data

Determine 
optimum capacity

Determine 
optimum capacity

Include absorption chillerInclude absorption chiller

Exclude absorption chillerExclude absorption chiller

Operation based on hourly costOperation based on hourly cost

User defined operationsUser defined operations

Elec & fuel rate dataElec & fuel rate data Escalation rate dataEscalation rate data

Produce output contour plotProduce output contour plot

 

Figure 4-2.  Input Section of Main Screen 
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Figure 4-3.  Sample Demand Data 
 



 45

Electric and fuel rate data 
 

Electric utility rates are defined in a separate sheet, accessed by clicking the "Elec & fuel 

rate data" button on the main sheet.  Utility tariffs can be very complex and vary widely from 

utility to utility.  The current input structure, shown in Figure 4-4, tries to accommodate the most 

common forms of tariffs, which can have different prices by time-of-day and by season.  The 

current model is limited to two seasonal patterns.  As is common in most utility tariffs, the cost of 

electricity consists of an energy component and a demand component.  The energy cost 

component is the number of kilowatt-hours consumed in a given hour times the unit price charged 

per kilowatt-hour.  As shown, the unit price can change by time-of-day.  Similarly, demand 

charges can be divided into blocks by time-of-day.  Up to three demand blocks (i.e., peak, 

shoulder, and off-peak) can be modeled.  For each demand block, the monthly demand charge is 

based on the highest weekday kilowatt demand level in each month for that block multiplied by 

the unit demand price.  A tariff used in the sample calculations is provided in Appendix B. 

As some utilities require customers who self-generate to be assigned to a tariff different 

from those who purchase all their electricity from the utility, a second complete set of tariffs data 

is used for the CHP scenario.  In addition, a separate capacity standby charge should be entered, if 

applicable.  If there is no separate tariff for self-generating customers, the tariff data should 

simply be copied from the non-CHP section.  Both tariffs must have data entries. 

Unit fuel prices are also entered on this sheet.   Similar to electricity, there can be 

different prices offered to facilities having a CHP system, so two prices (one for each scenario) 

must be entered.  The price of natural gas is typically quoted on a HHV basis.  However, it is 

typical that fuel usage calculations are performed on a LHV basis.  For consistency, the prices 

entered should be on a LHV basis.  (See Section 3.2 for further details.)   

Finally, all unit prices should be current to the first year of operation.  Escalation of 

prices through time will be discussed in subsequent paragraphs. 
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Electric rates Pattern 1 Pattern 2 Non-CHP Pattern 1 Pattern 2
Non-CHP Energy Energy $/kWh Energy $/kWh Demand Demand Demand

month pattern # hour rate hour rate month pattern # hour peak shoulder off-peak hour peak shoulder off-peak
1 1 1 0.07781 1 0.078 1 1 1 1
2 1 2 0.07781 2 0.078 2 1 2 2 NOTE: All data to be 
3 1 3 0.07781 3 0.078 3 1 3 3 expressed in year 1 rates
4 1 4 0.07781 4 0.078 4 1 4 4
5 2 5 0.07781 5 0.078 5 2 5 5
6 2 6 0.07781 6 0.078 6 2 6 6
7 2 7 0.07781 7 0.078 7 2 7 7 Non-CHP Fuel Price
8 2 8 0.09653 8 0.09114 8 2 8 6.58 8 3.64 Fuel price on LHV basis
9 2 9 0.09653 9 0.09114 9 2 9 6.58 9 3.64 $9.00 $/MMBtu

10 2 10 0.09653 10 0.09114 10 2 10 6.58 10 3.64
11 1 11 0.09653 11 0.09114 11 1 11 6.58 11 3.64
12 1 12 0.09653 12 0.14913 12 1 12 6.58 12 16.12

13 0.09653 13 0.14913 13 6.58 13 16.12
14 0.09653 14 0.14913 14 6.58 14 16.12
15 0.09653 15 0.14913 15 6.58 15 16.12
16 0.09653 16 0.14913 16 6.58 16 16.12
17 0.09653 17 0.14913 17 6.58 17 16.12
18 0.09653 18 0.09114 18 6.58 18 3.64
19 0.09653 19 0.09114 19 6.58 19 3.64
20 0.09653 20 0.09114 20 6.58 20 3.64
21 0.07781 21 0.078 21 21
22 0.07781 22 0.078 22 22
23 0.07781 23 0.078 23 23
24 0.07781 24 0.078 24 24

Electric rates Pattern 1 Pattern 2 CHP Pattern 1 Pattern 2
CHP Energy Energy $/kWh Energy $/kWh Demand Demand Demand

month pattern # hour rate hour rate month pattern # hour peak shoulder off-peak hour peak shoulder off-peak
1 1 1 0.07781 1 0.078 1 1 1 1
2 1 2 0.07781 2 0.078 2 1 2 2
3 1 3 0.07781 3 0.078 3 1 3 3
4 1 4 0.07781 4 0.078 4 1 4 4
5 2 5 0.07781 5 0.078 5 2 5 5
6 2 6 0.07781 6 0.078 6 2 6 6
7 2 7 0.07781 7 0.078 7 2 7 7 CHP Fuel Price
8 2 8 0.09653 8 0.09114 8 2 8 6.58 8 3.64 Fuel price on LHV basis
9 2 9 0.09653 9 0.09114 9 2 9 6.58 9 3.64 $9.00 $/MMBtu

10 2 10 0.09653 10 0.09114 10 2 10 6.58 10 3.64
11 1 11 0.09653 11 0.09114 11 1 11 6.58 11 3.64
12 1 12 0.09653 12 0.14913 12 1 12 6.58 12 16.12

13 0.09653 13 0.14913 13 6.58 13 16.12
14 0.09653 14 0.14913 14 6.58 14 16.12
15 0.09653 15 0.14913 15 6.58 15 16.12
16 0.09653 16 0.14913 16 6.58 16 16.12
17 0.09653 17 0.14913 17 6.58 17 16.12
18 0.09653 18 0.09114 18 6.58 18 3.64
19 0.09653 19 0.09114 19 6.58 19 3.64
20 0.09653 20 0.09114 20 6.58 20 3.64
21 0.07781 21 0.078 21 21
22 0.07781 22 0.078 22 22
23 0.07781 23 0.078 23 23
24 0.07781 24 0.078 24 24

CHP Standby Charge

0 $/kw-mo

$/kw-mo $/kw-mo

$/kw-mo $/kw-mo
Return to MainReturn to Main

 

Figure 4-4.  Electric and Fuel Rate Data 
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Escalation rate data 
 

As it is unlikely that prices will remain steady over the economic study period, unit prices 

for electricity, fuel, and operating and maintenance (O&M) can be escalated through time.  In 

addition, heating, cooling, and electrical loads can be escalated as well to reflect changes in loads 

as a function of time.  Escalation input is accessed via the "Escalation rate data" button on the 

main sheet.  For each cost or load category, the annual percent change from the previous year for 

up to a maximum of 16 years can be entered.  As shown in Figure 4-5, the escalation rate does not 

have to be constant during the study period, but rather can vary from year to year.  Values can be 

positive for escalation or negative for de-escalation.  As discussed in Section 3.2.1, the model 

levelizes the various escalation components to produce a multiplier to the base-year values.  

When escalation is present, the values used in the hour-by-hour calculation are levelized values, 

which produce equivalent results to an explicit year-by-year price/load adjustment. 

 

Escalation data Expressed in percent change from previous year

Year Fuel price Elec price O&M cost Heat load Cool load Elec load
2 -0.5% 0.5% 0.5% 0.0% 0.0% 0.0%
3 0.0% 1.0% 0.5% 0.0% 0.0% 0.0%
4 0.0% 1.0% 0.5% 0.0% 0.0% 0.0%
5 0.0% 1.0% 0.5% 0.0% 0.0% 0.0%
6 0.0% 1.0% 0.5% 0.0% 0.0% 0.0%
7 0.5% 0.5% 0.5% 0.0% 0.0% 0.0%
8 0.5% 0.5% 1.0% 0.0% 0.0% 0.0%
9 0.5% 0.5% 1.0% 0.0% 0.0% 0.0%
10 0.5% 0.5% 1.0% 0.0% 0.0% 0.0%
11 0.5% 0.5% 1.0% 0.0% 0.0% 0.0%
12 1.0% 1.0% 1.0% 0.0% 0.0% 0.0%
13 1.0% 1.0% 1.0% 0.0% 0.0% 0.0%
14 1.0% 1.0% 2.0% 0.0% 0.0% 0.0%
15 1.0% 1.0% 2.0% 0.0% 0.0% 0.0%
16 1.0% 1.0% 2.0% 0.0% 0.0% 0.0%

Levelized 1.010125 1.047144 1.042355 1.000000 1.000000 1.000000  

Figure 4-5.  Sample Escalation Input Data 
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General data 
 

The remaining input data and simulation options are entered from the main sheet.  As 

shown in Figure 4-6, data related to the existing and proposed systems must be entered.  The 

individual items needed were defined in Section 3.2.  In addition, there are three input switches 

available on the main sheet to allow the user to explicitly define when the CHP system operates, 

whether the system should include an absorption chiller, and whether a contour plot should be 

produced. 

Although typical analyses will use hourly cost as a determinate for running the CHP 

system as described in Section 3.2, if it is desired to explicitly define the hours of CHP system 

operation (e.g., weekdays between 8 a.m. and 6 p.m.), then upon selecting "User defined 

operations", a new button, "Define op schedule", will appear, which takes the user to an hour-by-

hour table, shown in Figure 4-7.  Hours indicated with a binary value of 1 specify that the CHP 

system must run, irrespective of cost. 

With respect to the absorption chiller option, if the user wishes to explicitly exclude 

consideration of an absorption chiller, for example, when the benefit of having an absorption 

chiller in the system is economically marginal, the user can simply click the "Exclude absorption 

chiller" button to force chiller exclusion. 

Finally, the production of the contour plot using a simultaneous line search as described 

in Section 3.3 consumes slightly more than half of the computational time required for an 

optimization analysis.  For parametric studies that evaluate various input values, it may be 

desirable to exclude the production of the contour plot for each scenario.  A check box option is 

available on the main sheet to limit the production of the contour plot. 
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General data
On-site boiler efficiency 80.0%
Conventional chiller COP 4.00
DG electric efficiency (full output) 30.0%
DG unit minimum output 40% cost
Absorption chiller COP 0.70
Absorption chiller min. output 25%
Abs chiller sys elec req (kW/RT) 0.20
CHP O&M cost ($/kWh) 0.011
DG power/heat ratio 0.65
Number of DG units 1
Type of prime mover Recip
Discount rate 8.0%
Effective income tax rate 38.0%
DG capital cost ($/net kW installed) 1500
AC capital cost ($/RT installed) 1000
Planning horizon (years) 16

   CHP Operations

Include absorption chillerInclude absorption chiller

Exclude absorption chillerExclude absorption chiller

Operation based on hourly costOperation based on hourly cost

User defined operationsUser defined operations

Produce output contour plotProduce output contour plot

 

Figure 4-6.  General Data and Simulation Controls 
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Figure 4-7.  User Defined Operating Schedule 
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Determining optimum capacity 
 

After all input has been made, the economic optimum capacity is determined by pressing 

the "Determine optimum capacity" button.  The initiation of this optimization starts a VBA macro 

that contains the optimization algorithm described in Section 3.3.  A listing of the algorithm is 

provided in Appendix C.  The optimization routine is computationally intensive.  Depending 

upon the clock speed of the PC, the optimization may take from 3 to 7 minutes. 

4.1.2  Results Areas 
 

Summary results are provided in the upper right portion of the main sheet.  As shown in 

Figure 4-8, this area restates the electrical and thermal loads, identifies the optimum installed 

capacities, summarizes CHP system operation, and provides cost data related to both the non-

CHP and CHP systems.  As mentioned earlier in Section 3.2.1, the cost and/or load escalation is 

computationally handled by a levelization method, and therefore, the annual performance and 

cost data represent levelized values over the period of time defined by the planning horizon.  

The optimum capacities are further highlighted in a green box.  While this may seem 

redundant, it allows the user to explore other capacity values while keeping the calculated 

optimum in view.  Specific capacity values can be entered manually using the two manual input 

buttons shown in Figure 4-8.  All operation and cost parameters are recalculated with any 

manually entered capacity inputs.  The results can then be compared to the calculated optimum 

values shown in the green inset. 

Two graphs are also part of the main screen.  On the lower right of the main screen, a 

summary of the operation of the CHP system is provided by showing the number of days per year 

that the system operates for each hour of the day.  (See Figure 4-9.)  As mentioned above, these 

values are levelized across the planning horizon if escalation is present.   
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Figure 4-8.  Summary Results Area of Model 
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Figure 4-9.  Hourly Operating Frequency 
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In the lower left of the main sheet, a contour plot of the entire solution space is provided 

in order to give the user a better insight into the economic impact of alternative (i.e., less than 

optimal) capacity decisions.  As shown in Figure 4-10, it provides a color-coded, topographic 

representation of the NPV savings from the CHP system for various combinations of installed 

prime mover and absorption chiller capacities. 

Detailed, hour-by-hour results can be reviewed by clicking on the "View detailed calcs" 

button, located to the left of the contour plot.  The hourly computation sheet is the heart of the 

operation simulation.  There is a row of calculations for each hour of the year.  Most of the 

calculations described in Section 3.2 can be found in this detailed sheet.  The return to the main 

sheet can be found at the top of column AQ. 

As mentioned in Chapter 3, under certain input conditions, the model may conclude the 

optimization at a local optimum that is not the global optimum.  If that appears to be the case 

(e.g., from inspection of the contour plot), there is an “Optimization Settings” button beneath the 

Case notes area on the main screen which allows a different optimization starting point to be 

tried.  In some instances, several different starting point values and subsequent optimization runs 

may need to be tried in order to find the global optimum set of capacities.   In addition, the 

optimization stopping criterion of $50.00 change in NPV savings per iteration (as discussed in 

Section 3.3) can be modified in this area also.  

4.2  Application of the Computer Model 
 

This section addresses the results obtained from the model during two phases of the 

research.  The first relates to results observed during the development of the model.  

Modifications to the optimization algorithm and explicit benchmark runs will be discussed in the 

first section.  The second section provides the results of the completed model for a number of 

different cases, demonstrating the flexibility and robustness of the model under differing inputs. 
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Figure 4-10.  Contour Plot of Objective Function 
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4.2.1  Results During Development 
 
Escalation methodology 
 

As discussed in Section 3.2.1, escalation of unit prices and/or loads through time is 

addressed by the use of levelizing factors.  In order to assure that this approach would yield the 

same results as explicit year-by-year calculations, a test model explicitly modeling every hour of 

a six year planning horizon was developed.  This model required 52,560 rows for the hourly 

calculations, resulting in a 147 MB Excel file.  Such a large model would not be tractable for 

standard use, but it is useful for benchmark comparison to the results from a levelized model.  

Several different escalation patterns were explored during this test.  The various escalation rates 

and the resulting NPV savings values from the two models are provided in Table 4-1.  The first 

case, shown in the first column of results, evaluated the models with no escalation to ensure exact 

agreement between the models when escalation was not a factor.  The remaining columns reflect 

differing rates of escalation for gas and electricity unit prices as well as for thermal and electric 

loads.  As shown, there is very little difference in the results between the two models, which led 

to the acceptance of a levelized modeling approach for reflecting escalation of unit prices and 

loads. 

Objective function surface features 
 

As mentioned in Section 3.3, there are various influences acting on the objective function 

which cause it to exhibit a low-magnitude “bumpiness” when moving around the solution space 

in very small increments.  The bumpiness is due in part to single hour operating decisions in the 

operation simulation in which a small change in capacity during a particular iteration will cause 

either the prime mover or absorption chiller to hit against its minimum operating level constraint, 

such that the resource is not available for that hour.  Such step changes in equipment availability 

cause slight perturbations in the objective function surface.   The perturbations produce both 
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Table 4-1.  Escalation Rate Evaluation 
 

Case number 0 1 2 3 4 5 6 

Gas unit price 
escalation (%) 0 2 3 3 1 1 0.5 

Electricity unit 
price 

escalation (%) 
0 2 2 3 2 1 1 

Thermal load 
escalation (%) 0 1 0 0 -0.5 -1 0.5 

Electrical load 
escalation (%) 0 1 0 2 -0.5 -2 0.5 

DG capacity 
(kW) 421.2 654.4 487.7 633.7 658.1 532.5 533.7 

AC capacity 
(RT) 0 89.6 25.8 67.0 75.7 42.0 38.2 

Levelized 
model NPV 

savings 
$90,317 $134,296 $108,804 $155,497 $155,473 $108,629 $121,014 

Explicit model 
NPV savings $90,317 $134,273 $108,824 $155,481 $155,587 $108,251 $121,039 

Percent 
difference 0 0.02 -0.02 0.01 -0.07 0.35 -0.02 
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small, local optima as well as localized gradients that can be inconsistent with the overall shape 

of the objective function with respect to capacity changes.  Figure 4-11 provides an example of 

the objective function surface which shows a slight rolling behavior of the maximum NPV 

savings in small increments of the independent variables. 

 To assist in avoiding the selection of a local optimum that was not the global optimum, a 

technique of requiring the stopping criterion to be met in successive iterations of the optimization 

algorithm was employed.   Two or more successive iterations can be used to terminate a solution.  

The logic of this approach is that subsequent BFGS updates to the inverse Hessian may produce a 

direction vector that will step out of a small local optimum and ultimately find a better solution.  

In this study, two successive achievements of the stopping criterion were required to terminate 

the algorithm.    

 

 

52
4

52
8

53
2

53
6

54
0

54
4

54
8

55
2

55
6

56
0

56
4

4

8
12

16$297,500

$298,000

$298,500

$299,000

$299,500

$300,000

$300,500

$301,000

Generation (kW)

A
bs

 C
hi

lle
r (

R
T)

NPV Savings Optimization

 

Figure 4-11.  Example of Objective Function Surface Features 
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Optimization algorithm benchmarking 
 

As mentioned in Section 2.2, Microsoft provides an add-in tool in Excel for solving linear 

and nonlinear optimization problems.  The interactive tool, Solver, uses the generalized reduced 

gradient method in a pop-up window to help determine minimum or maximum values of an 

identified objective function cell.  The add-in tool was used as a benchmarking check of the 

quasi-Newton method used in this research.  As shown in Table 4-2, the results of the two 

optimizers are very close for the application cases that will be discussed in the next section.   

4.2.2  Use of the Model in CHP Application Assessments 
 

It is appropriate to consider whether the model substantiates a claim made at the outset of 

this research – that fixed heuristics (i.e., rules-of-thumb) for determining installed CHP capacity 

do not necessarily yield economically viable projects.  To explore this question, the model will be 

used to determine the most economic installed equipment capacities for several different CHP 

systems across two dimensions: location and type of application.  Two different locations will be 

considered, Boston and San Francisco.  These locations were selected because the electric utility 

companies that serve those locations (Boston Edison and Pacific Gas and Electric) apply tariffs 

that embody most of the complex pricing structures, previously mentioned, that are found in 

typical utility tariffs for large urban markets (e.g., time of use pricing, separate energy and 

demand prices).  The procedure necessary to utilize the information presented in a tariff to form 

the electric rate input data is provided in Appendix B, using a Pacific Gas and Electric tariff as an 

example.  Natural gas unit price information was obtained from the Energy Information 

Administration website [Energy Information Administration (2005)].  The assumed price of 

natural gas for the assessments was $11.00 and 9.00 per MMBtu for Boston and San Francisco, 

respectively. 
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Table 4-2.  Optimization Benchmarking Results 
 

Case

Optimal DG 
capacity (kW)

Optimal AC 
capacity (kW)

NPV Savings 
($)

Optimal DG 
capacity (kW)

Optimal AC 
capacity (kW)

NPV Savings 
($)

Boston Hospital 1142.0 215.4 $954,012 1123.5 209.8 $954,037
Boston Hotel 417.2 88.3 $341,877 417.9 87.8 $341,891
Boston Nursing Home 74.8 16.4 $48,861 74.8 16.5 $48,874
Boston Retail 118.3 35.9 $57,945 123.1 37.4 $58,025
Boston Supermarket 117.7 6.9 $67,611 117.7 6.9 $67,611

San Francisco Hospital 513.8 30.9 $431,123 514.3 31.4 $431,117
San Francisco Hotel 257.2 36.2 $212,726 257.2 36.2 $212,726
San Francisco Nursing Home 25.1 3.5 $26,313 25.1 3.5 $26,313
San Francisco Retail 63.9 19.1 $15,954 62.8 18.8 $15,990
San Francisco Supermarket 54.6 5.0 $42,666 54.7 4.9 $42,673

Quasi-Newton method Excel Solver add-in
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In addition to location differences, the model will be used to evaluate CHP projects 

across five different commercial applications: hospital, hotel, nursing home, supermarket, and 

retail store.  These applications were selected for their differing load profiles and magnitude of 

absolute loads.  The hourly electrical and thermal load data for all of these cases were developed 

using an existing building simulation program, the Building Energy Analyzer [InterEnergy/GTI 

(2005)].  The procedure to obtain hourly load data in the form necessary for this model is 

described in Appendix A. Unit electricity and natural gas prices, although varying by location, are 

assumed to be the same across the five applications. 

Most of the data required for the model is either obtained from other models (e.g., load 

data), from published data (e.g., electric utility tariffs), or from values typical of the trade (e.g., 

equipment performance data, minimum output levels, equipment unit costs).  One input element 

that is subject to expert judgment and, to some extent, outright guessing is the escalation behavior 

of unit costs over a period of time up to 16 years into the future.  At the time of this writing, fossil 

fuel prices are highly unstable as a result of tight production capacity (due to hurricanes 

impacting Gulf coast production facilities) and high demand.  Guessing where fossil fuel prices 

will be five or ten years out is very difficult.  A reasonably safe assumption is that prices will not 

likely decrease to any large extent.  As a result, the escalation values used for all cases in this 

section and shown in Table 4-3 represent just one possible scenario for future prices.  Users of the 

model have the flexibility to explore alternative pricing scenarios.  As shown in Table 4-3, fuel 

prices are assumed to only decrease slightly in the second year of operation from their current 

high values.  Overall, demand for fossil fuel will keep prices rising slightly through time with out-

years experiencing higher price escalation.   

The impact of fossil fuel prices affects electric utilities as well.  Owing to the regulated 

structure of electric utility companies, electricity prices are generally not as volatile, and it is felt 

that a lag exists in electricity price escalation relative to prices the utilities experience for fuel.  
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Table 4-3.  Escalation Assumptions for Example Applications 
 
Escalation data Expressed in percent change from previous year

Year Fuel price Elec price O&M cost Heat load Cool load Elec load
2 -0.5% 0.5% 0.5% 0.0% 0.0% 0.0%
3 0.0% 1.0% 0.5% 0.0% 0.0% 0.0%
4 0.0% 1.0% 0.5% 0.0% 0.0% 0.0%
5 0.0% 1.0% 0.5% 0.0% 0.0% 0.0%
6 0.0% 1.0% 0.5% 0.0% 0.0% 0.0%
7 0.5% 0.5% 0.5% 0.0% 0.0% 0.0%
8 0.5% 0.5% 1.0% 0.0% 0.0% 0.0%
9 0.5% 0.5% 1.0% 0.0% 0.0% 0.0%

10 0.5% 0.5% 1.0% 0.0% 0.0% 0.0%
11 0.5% 0.5% 1.0% 0.0% 0.0% 0.0%
12 1.0% 1.0% 1.0% 0.0% 0.0% 0.0%
13 1.0% 1.0% 1.0% 0.0% 0.0% 0.0%
14 1.0% 1.0% 2.0% 0.0% 0.0% 0.0%
15 1.0% 1.0% 2.0% 0.0% 0.0% 0.0%
16 1.0% 1.0% 2.0% 0.0% 0.0% 0.0%

Levelized 1.010125 1.047144 1.042355 1.000000 1.000000 1.000000  
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This lag is reflected in the escalation during years 2 – 6 where electricity rates increase 

faster than the current high fuel prices.  Beyond year 6, it is assumed that fossil and utility prices 

will undergo similar escalation pressures.  Unit O&M costs for CHP systems are assumed to 

increase as the plants age, so an upward trend on unit cost seems appropriate.  Finally, although 

loads can also be increased or decreased in the model, such changes are not being included in 

these sample cases.  As discussed in Section 4.1.1, the equivalent levelization factor for each item 

is shown at the bottom of the table. 

Boston hospital scenario 
 

The remaining data needed to calculate the optimum capacity relates to equipment cost 

and performance and general modeling behavior (e.g., discount rate, planning horizon).  The data 

used for the hospital in Boston is shown in Table 4-4.   These values represent typical values for 

the parameters shown. 

The numeric results of the optimization for a hospital in Boston are shown in Figure 4-12.  

At the top of the figure is a summary of the electric and thermal loads, as estimated by the 

building simulation program mentioned above.   The optimal capacities for a reciprocating engine 

prime mover and an absorption chiller are 1142 kW and 215.4 RT, respectively.  As shown, the 

CHP system operates for 6,712 hours each year, producing 60% of the total electricity and over 

75% of the total heating required by the facility.  Owing to the relative economics of gas and 

electricity, it is preferable that waste heat first go to satisfying heating demands before 

contributing to cooling demands. (Refer to Section 3.2.3.)  As a result, only one third of the total 

cooling demand is provided by the CHP system.  The levelized total annual operating cost 

savings from the CHP system is $277,661/year.  The resulting NPV cost savings, including 

capital investment, over the 16 year planning horizon is $954,012. 

A summary of the operating frequency by hour of the day is provided in Figure 4-13.  It 

can be observed from the figure that the frequency of CHP system operation is influenced heavily   
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Table 4-4.  General Data for Boston Hospital Case 
 

On-site boiler efficiency 82.0%
Conventional chiller COP 3.54
DG electric efficiency (full output) 29.0%
DG unit minimum output 50%
Absorption chiller COP 0.70
Absorption chiller min. output 25%
Abs chiller sys elec req (kW/RT) 0.20
CHP O&M cost ($/kWh) 0.011
DG power/heat ratio 0.65
Number of DG units 1
Type of prime mover Recip
Discount rate 8.0%
Effective income tax rate 38.0%
DG capital cost ($/net kW installed) 1500
AC capital cost ($/RT installed) 1000
Planning horizon (years) 16  
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Demands
Annual 12,406,742 kWh 37,074 MMBtu 1,617,306 RT-hr
Maximum 2275 kW 17.0 MMBtu/hr 808 RT
Minimum 934 kW 0.51 MMBtu/hr 0 RT

Installed DG capacity: 1142.0 kW (net)
Installed AC capacity: 215.4 RT

Hours of DG operation 6,712 hours/year
DG generated electricity 7,478,194 kWh/year
DG supplied heating 27,921 MMBtu/year
AC supplied cooling 546,886 RT-hr/year

With CHP No CHP
CHP system $1,065,024 $0
Utility elec $651,031 $1,785,547
Non-CHP fuel $124,018 $502,367
Total $1,840,073 $2,287,913

Annual operating savings (after tax): $277,661
$954,012

Optimum DG capacity: 1142.0 kW
Optimum AC capacity: 215.4 RT
NPV savings:

Cooling

NPV savings:

Annual costs (before tax)

$954,012

Electricity Heating

 
 

Figure 4-12.  Optimization Results for a Boston Hospital 
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Figure 4-13.  Operation Frequency by Time of Day 
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by the time-of-use electricity rates, which are higher during the normal workday hours.  Higher 

grid-based electricity rates increases the likelihood that the CHP system will be the less expensive 

alternative, and therefore selected, during those hours. 

A contour plot of the objective function surface for the hospital in Boston is shown in 

Figure 4-14.   Each iso-savings line represents a $50,000 increment.  As shown, the surface 

behavior near the optimum is relatively flat.  From a practical standpoint, this is a serendipitous 

result.  Equipment capacities are offered in discrete sizes, and having a flat objective function 

surface in the neighborhood of the optimum gives a degree of flexibility in matching the 

calculated optimum set of capacities to near-values consistent with manufactured equipment 

sizes.    As an example, vendors currently offer a reciprocating engine prime mover at 1,100 kW 

and an absorption chiller at 210 RT.  Manually substituting these capacities into the model 

produces a NPV cost savings of $951,861, which is a negligible difference relative to the value 

determined for the optimum capacity.  Not all cases may have such a close match, but the flat 

gradient of the objective function near the optimum provides a reasonably wide range for 

matching actual equipment. 

Other scenarios 
 

Similar optimization runs were made for the hotel, nursing home, retail store, and 

supermarket applications in Boston as well as in San Francisco.  Summary output from each of 

the scenarios is provided in Appendix D.   It is instructive to consider the results of these ten 

cases together, looking in particular at the percent of peak load that the DG and AC optimum 

capacities represent.  As shown in Table 4-5, the percent of peak load represented by the optimum 

capacities varies tremendously both by application and location.  Clearly, a static heuristic such as 

60 percent of peak load would not be appropriate guidance for any of these applications.  As an 

example, applying the 60% rule to the San Francisco hotel case would result in a NPV loss of 

$76,411 as compared to a NPV savings of $212,726 for the optimum capacities.  
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Figure 4-14.  Optimization Contour Plot for a Boston Hospital 
 
 

 

 



 69

 

 
 
 
 
 
 
 

Table 4-5.  Summary Results   
 

City Parameter Hospital Hotel Nursing Home Retail Store Supermarket
Peak elec load (kW) 2275 1185 172 337 260
Peak chiller load (RT) 808 492 68 147 40
Optimal DG capacity (kW) 1142.0 417.2 74.8 118.3 117.7
Optimal AC capacity (RT) 215.4 88.3 16.5 35.9 6.9
NPV savings $954,012 $341,877 $48,861 $57,945 $67,611
DG capacity % of peak load 50 35 43 35 45
AC capacity % of peak load 27 18 24 24 17

Peak elec load (kW) 1949 1004 154 433 248
Peak chiller load (RT) 452 334 49 131 17
Optimal DG capacity (kW) 513.8 257.2 25.1 63.9 54.6
Optimal AC capacity (RT) 30.9 36.2 3.5 19.1 5.0
NPV savings $431,123 $212,726 $26,313 $15,954 $42,666
DG capacity % of peak load 26 26 16 15 22
AC capacity % of peak load 7 11 7 15 29

Boston

San Francisco
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In trying to interpret the general trends of the results, it is noted that in this study 

applications within the same city are assumed to experience the same electric and fuel rates and 

weather conditions.  Variation within a location is therefore influenced heavily by the hourly 

electric and thermal load behaviors (e.g., relative electric and thermal magnitudes and 

coincidences) for each type of application.  Between cities, climate and relative prices for 

electricity and fuel become an influence.  To understand which input parameters have a strong 

influence in the overall outcome, a study of the sensitivity of the figure of merit (i.e., NPV 

savings) to changes in individual input parameters can be performed.  When several input 

parameters are influential, a useful technique is to develop a sensitivity graph, or spiderplot 

[Sullivan, Wicks and Luxhoj (2006)].  Figure 4-15 presents the impact on NPV savings for 

several important variables.  As shown, electricity price and DG electric efficiency are the most 

influential directly proportional variables.  Similarly, on-site fuel price is the most influential 

inversely proportional variable. 

A final consideration is the behavior of the model when input parameters are such that 

the optimum capacities are zero (i.e., CHP is not economically viable).  To simulate such a 

condition, the Boston hospital scenario was modified by reducing the DG efficiency from 29% to 

26%, the discount rate was increased from 8% to 12%, and the fuel price was increased from 

$11/MMBtu to $13/MMBtu.  It is of interest to note that none of these changes introduce values 

that are unrealistic, given current price pressures on natural gas and petroleum.  The results of the 

optimization calculation are shown in Figures 4-16 and 4-17.  Under this scenario, there is no 

combination of prime mover and absorption chiller capacities that produces a maximum NPV, 

except at the boundary conditions of zero capacity for both prime mover and absorption chiller.  

Figure 4-17 provides a contour plot of the scenario that clearly shows the economic losses for any 

non-zero set of capacities.  
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Figure 4-15.  Spiderplot Sensitivity Evaluation 
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Results

Demands
Annual 12,406,742 kWh 37,074 MMBtu 1,617,306 RT-hr
Maximum 2275 kW 17.0 MMBtu/hr 808 RT
Minimum 934 kW 0.51 MMBtu/hr 0 RT

Installed DG capacity: 0.0 kW (net)
Installed AC capacity: 0.0 RT

Hours of DG operation 0 hours/year
DG generated electricity 0 kWh/year
DG supplied heating 0 MMBtu/year
AC supplied cooling 0 RT-hr/year

With CHP No CHP
CHP system $0 $0
Utility elec $1,776,164 $1,776,164
Non-CHP fuel $592,028 $592,028
Total $2,368,191 $2,368,191

Annual operating savings (after tax): $0
$0

Optimum DG capacity: 0.0 kW
Optimum AC capacity: 0.0 RT
NPV savings:

Cooling

NPV savings:

Annual costs (before tax)

$0

Electricity Heating

 
 

Figure 4-16.  Results of Zero CHP Capacity Optimum Solution 
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Figure 4-17.  Contour Plot of Zero CHP Capacity Optimum Solution 
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CHAPTER 5  
CONCLUSIONS AND RECOMMENDATIONS 

 

5.1  Conclusions 
 

From prior work, it has been established that accurate operation simulation of CHP 

systems must be performed on an hourly basis.  A review of current literature and available 

computational tools indicated that an automated mechanism, using hourly simulation, to 

determine the most economically appropriate capacities for cooling, heating and power projects 

did not exist.  This report documents the research and development of an adaptive methodology 

to fill that gap.  Using a nested, hierarchical modeling approach, an outer optimization model 

controls the installed capacity values provided to an inner hourly operation simulation model.  

Using a quasi-Newton optimization algorithm, the optimization model iterates to produce 

improved estimates of the optimal installed capacities until a stopping criterion based on 

objective function maximization has been achieved. 

The operation simulation model utilizes hourly thermal and electric load data, unit prices 

for electricity and fuel, and cost and performance factors for distributed energy equipment to 

calculate, on an hour-by-hour basis, the cost of satisfying the loads by either use of a CHP system 

or solely by utility-supplied electricity and on-site heating.  By utilizing levelization factors to 

capture annual changes in unit prices and/or electric and thermal loads, the 8,760-hour simulation 

effectively simulates operating durations up to 16 years.  With respect to the optimization 

algorithm, the operations model considers the installed capacity of the prime mover and the 

absorption chiller as independent variables.  Taking the potential electrical and thermal energy 

available from the CHP system, while recognizing operating limitations (e.g., turn-down levels 

shutdown/startup frequencies), the operations model determines the operating costs for both CHP 
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and non-CHP scenarios.  Including capital investment costs and income tax considerations, the 

operations model develops a single figure of merit to serve as the optimization objective function 

– the net present value of the savings produced by the existence of the CHP system. 

The methodology and associated model have demonstrated the ability to find prime 

mover and absorption chiller capacities that maximize the net present value of savings produced 

by a CHP system, relative to the electric utility/on-site boiler arrangement traditionally used to 

provide electric and thermal energy to commercial facilities.  In doing so, this research has shown 

that fixed, heuristic rules (e.g., percent of peak load) for selecting the amount of installed capacity 

are not economically viable methods to obtain maximum economic benefit.  In contrast, this 

study has shown that economically optimal installed capacities vary substantially across both 

application and location.  The model in this research has also demonstrated that sub-optimal 

choices of installed capacities can result in project financial losses, despite, in many cases, the 

opportunity for net savings at the optimal installed capacities. It is therefore critical that each 

potential CHP system application be evaluated on its own merits.  This research has developed a 

tool that will assist in those evaluations.    

5.2  Recommendations for Future Work 
 

As research and model development proceed, there are always a number of 

improvements and expansions that are identified along the way.  This effort is no exception.  

Some of the improvements were incorporated during the initial development phase.  Comments 

provided by the beta version reviewers of the CHP Capacity Optimizer were invaluable to 

improve the model and its user interface.  Other items have been determined to be more 

appropriate for follow-on work in this area. 

The following items, not in ranked order, are subjects that should be considered for future 

efforts in this area:  
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• Thermal storage could be added to the model as an additional independent variable.  

Some CHP systems can benefit from storing either cold or hot thermal resources 

during low-demand or low-cost periods for subsequent use at peak times.  

Determining the proper capacity of such storage would be a logical extension of this 

work. 

• Multiple, distinct prime movers could be modeled.  Currently, the model is limited to 

a maximum of two identical prime mover units.  Separate prime movers, even of 

different technologies (e.g., a combination of reciprocating engine and gas turbine 

units), could be modeled, the installed capacity of each as an independent variable.  

Consideration would need to be given as to how the waste heat would be utilized, 

however.  For example, would the waste heat from all units flow to a common 

manifold?  Would each unit have its own dedicated thermal utilization equipment 

(e.g., absorption chiller), thus, creating the possibility of additional independent 

variables? 

• As the number of independent variables grows, it might be useful to consider other 

optimization methods.  This would be particularly true if additional constraints 

beyond simple lower bounds were introduced. 

• The transporting of this methodology to a high-level language platform (Visual 

Basic, C++, FORTRAN) may be necessary, particularly if additional model 

complexities are introduced.  The use of the Microsoft Excel spreadsheet platform 

has been valuable at this stage to permit detailed inspection of the computations and 

enhanced understanding of the system behavior.  However, the current model uses 

over 700,000 cells for its computations, and the resulting file size is 25 MB.  

Expanding the model’s capability further in Excel may not be the best approach.  By 

transporting to a high-level language platform, greater array space and input/output 
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storage capabilities could allow for explicit hour-by-hour modeling of multiple year 

operations.   

• By design, this effort has not forced the independent variables to conform to a 

discrete set of manufacturer-available capacities.  As a result, the equipment cost and 

operating parameters must be provided as user input.  However, the inclusion of a 

database containing available equipment sizes as well as specific cost and operating 

data which could link to this model might be a useful resource to the computations. 

No doubt there may be additional suggestions that other readers may have.  The author 

would appreciate knowing of them. 
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As mentioned in the body of this report, there are at least two existing building simulation 

tools available to develop the hourly loads needed for input to the CHP Capacity Optimizer.  One 

such tool is the BCHP Screening Tool available at no charge from Oak Ridge National 

Laboratory (email: fischersk@ornl.gov).  The other known tool is Building Energy Analyzer 

(PRO version) offered by InterEnergy Software 

(http://www.interenergysoftware.com/BEA/BEA.htm).  The steps needed to obtain hourly load 

data from each software and to prepare the data for input to the CHP Capacity Optimizer are 

described in this appendix.  This appendix does not, however, provide user instructions for 

running either of these simulation programs, as such instruction is provided by each of the 

software providers. 

Utilizing data from BCHP Screening Tool 

When preparing a simulation using the BCHP Screening Tool, there is a switch that must 

be set in order to produce hourly load files.  The switch must be set before running the simulation.  

As shown in Figure A-1, the switch is located on the software menu bar under the File heading.  

Once set, when a simulation is performed, two .csv (comma separated value) files will be 

produced, one for case “A” (i.e., typically baseline case) and another for case “B” (i.e., CHP 

scenario).  The CHP Capacity Optimizer needs to have input from the case “A”, traditional utility 

scenario (i.e., a non-CHP scenario).  The baseline .csv file (initially named “untitled-A.csv”) can 

be opened directly by Microsoft Excel.  The file contains heating, cooling, and total electrical 

load data by hour for an entire year in units of Btu for heating and cooling and kW for electrical 

load.   

Because a portion of the total electrical load included in the baseline, non-CHP case is for 

electricity-supplied cooling, of which CHP systems will reduce, the electrical load values 

produced by the BCHP Screening Tool must be split into two categories: electrical load related to  
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Figure A-1.  BCHP Screening Tool Hourly Load Data Switch 
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cooling and all other electrical loads (i.e., non-cooling related electrical loads).  The cooling-

related electrical load can be approximated by dividing each of the hourly cooling loads provided 

by the BCHP Screening Tool by 3412.8 to convert from Btu units to kWh units and then by 

dividing by an assumed coefficient of performance (COP) for the electrical chiller.  Typically, 

electrical chillers have a COP within the range of 4 to 6.  This hourly cooling-related electrical 

load must then be subtracted from the hourly total electrical load reported by the BCHP 

Screening Tool to calculate the non-cooling electrical load.  In order to facilitate moving the 

hourly data into the CHP Capacity Optimizer, it is suggested that the column containing the total 

electric load in the untitled-A.csv spreadsheet be moved to the right by two columns, such that the 

calculated electric cooling load and non-electric cooling load columns, as described above, are 

adjacent to the cooling thermal column.  In this manner, the data order will be consistent with the 

format of the CHP Capacity Optimizer, as shown in Figure 4-3. 

Utilizing data from the Building Energy Analyzer 

The option to save hourly data within Building Energy Analyzer PRO (BEA) is provided 

after the simulation has been performed.  After the simulation, a “Save Hourly Data” button will 

be available as shown in Figure A-2 to save the hourly data in an .mdb (Microsoft Access) 

formatted file.  This file must be converted to an Excel file by using the File, Export, Save As 

type command within Microsoft Access.  Once in Excel format, the data must be combined, as 

discussed below, to the level needed by the CHP Capacity Optimizer.  Also, only the baseline 

data (for the non-CHP system) is needed, so the load data provided for the alternative case can be 

deleted from the loads spreadsheet file (rows 8762 – 17521). 

The Building Energy Analyzer segregates energy loads into heating load, cooling load, 

domestic hot water (DHW) load, and five different electric meter loads.  As the CHP Capacity 

Optimizer needs only a heating load, cooling load, cooling-related electrical load, and non-

cooling related electrical load, some of the raw outputs from BEA must be combined.  In  
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Figure A-2.  BEA Save Hourly Data Option Screen 
(Used with permission) 
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particular, the heating and DHW loads are combined to form a single heating load, expressed in 

Btu units. The cooling-related electrical load is given in the BEA output as Electric Meter 5.  The 

non-cooling loads are formed as the sum of Electric Meters 1 through 4 in the BEA output.  All 

electric loads are expressed in kWh units.  As with the BCHP Screening Tool, manipulation of 

the columns of raw data in the spreadsheet created by Microsoft Access into a format consistent 

with Figure 4-3 will allow a simple cut and paste operation to import the loads data into the CHP 

Capacity Optimizer.  To avoid file linkages between the CHP Capacity Optimizer and the raw 

data spreadsheet, the transfer of the load data should be done using the Paste Special, Values 

option within Excel. 

The following macro can be helpful in automating the data manipulations of the raw data 

Excel spreadsheet created in MS Access when using BEA Pro. 

Sub Datapreparation() 
' 
' Datapreparation Macro for creating input needed for CHP optimization 
' from a raw Excel sheet created using BEA Pro 
' Apply this macro to the raw data spreadsheet created by MS Access, Export operation 
' 
    Rows("8762:8769").Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Selection.ClearContents 
    Range("A8761").Select 
    Selection.End(xlUp).Select 
    Range("I1").Select 
    Selection.EntireColumn.Insert 
    Selection.EntireColumn.Insert 
    Selection.EntireColumn.Insert 
    Range("I1").Select 
    Selection.NumberFormat = "General" 
    ActiveCell.FormulaR1C1 = "Heat Load" 
    Range("J1").Select 
    Selection.NumberFormat = "General" 
    ActiveCell.FormulaR1C1 = "Cool load" 
    Range("K1").Select 
    Selection.NumberFormat = "General" 
    ActiveCell.FormulaR1C1 = "Cool elec" 
    Range("L1").Select 
    ActiveCell.FormulaR1C1 = "Noncool elec" 
    Columns("I:L").Select 



 89

    Selection.Columns.AutoFit 
    Range("I2").Select 
    ActiveCell.FormulaR1C1 = "=RC[-3]+RC[-1]" 
    Range("J2").Select 
    ActiveCell.FormulaR1C1 = "=RC[-3]" 
    Range("K2").Select 
    ActiveCell.FormulaR1C1 = "=RC[6]" 
    Range("L2").Select 
    ActiveCell.FormulaR1C1 = "=SUM(RC[1]:RC[4])" 
    Range("I2:L2").Select 
    Selection.NumberFormat = "0" 
    Selection.NumberFormat = "0.0" 
    Selection.Copy 
    Range("I3:I8761").Select 
    ActiveSheet.Paste 
    Application.CutCopyMode = False 
    'ActiveWorkbook.Save 
End Sub 
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Pacific Gas and Electric Utility Tariff T-2 
 

(Selected pages) 
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The electricity utility price data shown in Figure 4-4 are generally obtained from utility 

tariffs or other schedules that define how end-user electricity consumption will be charged.  

Tariffs are a ready source of utility electricity price information, as most utilities publish them on 

their Internet web sites.  Tariffs are prepared by the utility and submitted for approval to the 

relevant state office with utility oversight (e.g., a public utilities commission).  Unfortunately, 

tariffs are not necessarily easy to interpret and extract the appropriate data.  There are generally 

several tariffs offered by a utility company.  The appropriate tariff is typically determined by the 

type of service (e.g., residential, commercial, industrial) and by the magnitude of power 

consumption.  Tariffs can also be voluminous and legalistic.  In order to understand how to 

extract the relevant data from a utility tariff, the tariff for Pacific Gas and Electric medium 

commercial time-of-use service, Schedule E-19, will be used as an example [Pacific Gas and 

Electric Company (2005)].  The complete E-19 tariff is currently 29 pages in length, but not all 

pages are necessary to provide the input needed for CHP evaluations.  Therefore, this appendix 

will address only the sections of the E-19 tariff that are needed to model the unit electricity 

pricing in the optimization model.  Sections of the tariff that are highly relevant to this study are 

indicated with highlighting. 

The first section of the tariff, as shown in Figure A-3, defines the applicability of the 

tariff to the particular customer.  Generally, this applicability relates to a minimum or maximum 

power consumption (i.e., billing demand) during a period of time.  Various subdivisions of rates 

or treatments are also defined in the initial section, as shown in Figure A-4.  An important 

element in Figure A-4 is the definition of maximum demand.  Some utilities have a demand 

charge that is set by the highest level of demand during a month, irrespective of what day or time 

the demand occurs.  As the CHP Capacity Optimizer uses a demand charge avoidance strategy in 

deciding whether to operate the CHP system, discussed in Section 3.2.3, the maximum demand  
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Figure A-3.  Schedule E-19 Initial Page 
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Figure A-4.  Maximum Demand Definition 
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charge rate should be included with (i.e., added to) the demand charge block with the highest 

time-of-use demand charge (e.g., added to the peak block demand charge).  While the absolute 

monthly peak load could occur at an off-peak time of day, the discrepancy introduced is 

considered minimal.  

Further categorization of the applicable rate is shown in Figure A-5, where pre-existing 

conditions define a rate structure.  Once the applicable rate structure is identified using 

information on the previous figures, the appropriate quantitative unit prices can be found.  As 

shown in Figure A-6, the rates used in this study are the demand and energy rates under the 

assumption of delivery at secondary voltage.  As customer/meter charges are flat rates which will 

be incurred with or without a CHP system, they are not needed as input to the CHP Capacity 

Optimizer.   The section below the total rate table, unbundling of total rates, is merely a 

restatement of the above rate, subdivided by each contributing cost element.  It is interesting 

information, but not needed for the model.  Figure A-7 provides the definitions of the demand 

charge and the energy charge.  The treatment of time-of-use rates is clarified in this section.  The 

actual times that constitute the time-of-use periods are defined in Figure A-8.  It is noted that the 

time boundaries for partial-peak and off-peak are defined on the half hour.  As the minimum time 

division for the optimizer model is hourly, the rates in the model are applied to the beginning of 

the hour with equivalent total duration.  It should also be noted that, as is typical of most utilities, 

weekends and holidays are considered off-peak times.   

An important exemption for distributed energy resources is shown in Figure A-9.  As 

mentioned in Section 3.2, electric utilities can charge a fee for having power available if the CHP 

system can not operate.  In this particular tariff, the utility waives the standby fee, subject to the 

requirement of participating in real-time pricing, when it is offered by the utility in the future. 

The resulting combination of all these elements into the data necessary for the CHP 

Capacity Optimizer is shown in Figure A-10.    
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Figure A-5.  Further Rate Category Distinctions 
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Figure A-6.  Time-of-Use Demand and Energy Rates 
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Figure A-7.  Definition of Demand and Energy Charges 
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Figure A-8.  Definition of Time Periods 
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Figure A-9.  Standby Charge Exemption 
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Electric rates Pattern 1 Pattern 2 Non-CHP Pattern 1 Pattern 2
Non-CHP Energy Energy $/kWh Energy $/kWh Demand Demand Demand

month pattern # hour rate hour rate month pattern # hour peak shoulder off-peak hour peak shoulder off-peak
1 1 1 0.07781 1 0.078 1 1 1 1
2 1 2 0.07781 2 0.078 2 1 2 2
3 1 3 0.07781 3 0.078 3 1 3 3
4 1 4 0.07781 4 0.078 4 1 4 4
5 2 5 0.07781 5 0.078 5 2 5 5
6 2 6 0.07781 6 0.078 6 2 6 6
7 2 7 0.07781 7 0.078 7 2 7 7
8 2 8 0.09653 8 0.09114 8 2 8 6.58 8 3.64
9 2 9 0.09653 9 0.09114 9 2 9 6.58 9 3.64

10 2 10 0.09653 10 0.09114 10 2 10 6.58 10 3.64
11 1 11 0.09653 11 0.09114 11 1 11 6.58 11 3.64
12 1 12 0.09653 12 0.14913 12 1 12 6.58 12 16.12

13 0.09653 13 0.14913 13 6.58 13 16.12
14 0.09653 14 0.14913 14 6.58 14 16.12
15 0.09653 15 0.14913 15 6.58 15 16.12
16 0.09653 16 0.14913 16 6.58 16 16.12
17 0.09653 17 0.14913 17 6.58 17 16.12
18 0.09653 18 0.09114 18 6.58 18 3.64
19 0.09653 19 0.09114 19 6.58 19 3.64
20 0.09653 20 0.09114 20 6.58 20 3.64
21 0.07781 21 0.078 21 21
22 0.07781 22 0.078 22 22
23 0.07781 23 0.078 23 23
24 0.07781 24 0.078 24 24

Electric rates Pattern 1 Pattern 2 CHP Pattern 1 Pattern 2
CHP Energy Energy $/kWh Energy $/kWh Demand Demand Demand

month pattern # hour rate hour rate month pattern # hour peak shoulder off-peak hour peak shoulder off-peak
1 1 1 0.07781 1 0.078 1 1 1 1
2 1 2 0.07781 2 0.078 2 1 2 2
3 1 3 0.07781 3 0.078 3 1 3 3
4 1 4 0.07781 4 0.078 4 1 4 4
5 2 5 0.07781 5 0.078 5 2 5 5
6 2 6 0.07781 6 0.078 6 2 6 6
7 2 7 0.07781 7 0.078 7 2 7 7
8 2 8 0.09653 8 0.09114 8 2 8 6.58 8 3.64
9 2 9 0.09653 9 0.09114 9 2 9 6.58 9 3.64

10 2 10 0.09653 10 0.09114 10 2 10 6.58 10 3.64
11 1 11 0.09653 11 0.09114 11 1 11 6.58 11 3.64
12 1 12 0.09653 12 0.14913 12 1 12 6.58 12 16.12

13 0.09653 13 0.14913 13 6.58 13 16.12
14 0.09653 14 0.14913 14 6.58 14 16.12
15 0.09653 15 0.14913 15 6.58 15 16.12
16 0.09653 16 0.14913 16 6.58 16 16.12
17 0.09653 17 0.14913 17 6.58 17 16.12
18 0.09653 18 0.09114 18 6.58 18 3.64
19 0.09653 19 0.09114 19 6.58 19 3.64
20 0.09653 20 0.09114 20 6.58 20 3.64
21 0.07781 21 0.078 21 21
22 0.07781 22 0.078 22 22
23 0.07781 23 0.078 23 23
24 0.07781 24 0.078 24 24

CHP Standby Charge

0 $/kw-mo

$/kw-mo $/kw-mo

$/kw-mo $/kw-mo

 
 

Figure A-10.  Electricity Rate Input Data Sheet 
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Private Sub btnOptimize_Click() 
    ' this performs a multivariate optimization using the quasi-Newton method 
' 
    Dim H(1 To 2, 1 To 2) As Double 
    Dim B(1 To 2, 1 To 2) As Double 
    Dim C(1 To 2, 1 To 2) As Double 
    Dim C2(1 To 2, 1 To 2) As Double 
    Dim C3(1 To 2, 1 To 2) As Double 
    Dim C4(1 To 2, 1 To 2) As Double 
    Dim g(1 To 2) As Double 
    Dim gnew(1 To 2) As Double 
    Dim p(1 To 2) As Double 
    Dim s(1 To 2) As Double 
    Dim y(1 To 2) As Double 
    Dim x(1 To 2) As Double 
    Dim xnew(1 To 2) As Double 
    Dim F(26) As Double 
    Dim t1 As Double 
    Dim t2 As Double 
    Dim denom As Double 
    Dim A As Double 
     
    Worksheets("main").Range("c4").Value = "Updating! Requires 2 - 6 minutes. " 
    Application.ScreenUpdating = False 
    Worksheets("optimum").Activate 
    Call cleancontour 
    Call cleanoptrack 
    Worksheets("main").Activate 
    Application.ScreenUpdating = True 
    Application.ScreenUpdating = False 
     
' first set the starting point at mid-way in the possible size range 
' force xmax to be largest by assuming no abs chiller 
    x(2) = 0 
    Worksheets("optimum").Activate 
    Worksheets("baseloads").Range("al2").Value = x(2) 
    x(1) = Worksheets("baseloads").Range("al1").Value 
    xmax = x(1) 
    phratio = Worksheets("baseloads").Range("ai4").Value 
    accop = Worksheets("baseloads").Range("ag3").Value 
    startfrac = Worksheets("OptiSet").Range("b5").Value 
    absstop = Worksheets("OptiSet").Range("b6").Value 
    x(1) = x(1) * startfrac 
    x(2) = x(1) / phratio * accop 
    RTconv = 3412.8 / 12000 
    ymax = xmax / phratio * accop * RTconv 
    ' inital Hessian matrix 
    H(1, 1) = -1: H(1, 2) = 0: H(2, 1) = 0: H(2, 2) = -1 
    p(1) = 0: p(2) = 0 
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    'get initial obj function 
    Worksheets("baseloads").Range("al2").Value = x(2) * RTconv 
    Worksheets("baseloads").Range("ai1").Value = x(1) 
    F(0) = Worksheets("baseloads").Range("ap8777").Value 
    Fsav = F(0) 
    dgbest = x(1) 
    acbest = x(2) * RTconv 
    difstop = 0.00001 
    gradstep = 0.0001 
    GScnt = 0 
    'find initial gradient vector 
    x1tmp = x(1) + gradstep 
    x2tmp = x(2) + gradstep 
    Worksheets("baseloads").Range("al2").Value = x(2) * RTconv 
    Worksheets("baseloads").Range("ai1").Value = x1tmp 
    g(1) = (Worksheets("baseloads").Range("ap8777").Value - F(0)) / gradstep 
    Worksheets("baseloads").Range("al2").Value = x2tmp * RTconv 
    Worksheets("baseloads").Range("ai1").Value = x(1) 
    g(2) = (Worksheets("baseloads").Range("ap8777").Value - F(0)) / gradstep 
    ' write interim data values 
    Worksheets("optimum").Range("a96").Activate 
    ActiveCell.Offset(0, 0) = 0 
    ActiveCell.Offset(0, 1) = x(1) 
    ActiveCell.Offset(0, 2) = x(2) 
    ActiveCell.Offset(0, 3) = g(1) 
    ActiveCell.Offset(0, 4) = g(2) 
    ActiveCell.Offset(0, 5) = H(1, 1) 
    ActiveCell.Offset(0, 6) = H(1, 2) 
    ActiveCell.Offset(0, 7) = H(2, 1) 
    ActiveCell.Offset(0, 8) = H(2, 2) 
    ActiveCell.Offset(0, 11) = F(0) 
    ' ================================================================ 
    ' start major iterative loop 
    ' failsafe quit after 25 iterations 
    For k = 1 To 25 
    step = 1 
    'MsgBox "top of loop" 
    'find direction 
    For i = 1 To 2 
    p(i) = 0 
    For j = 1 To 2 
    p(i) = H(i, j) * g(j) + p(i) 
    Next j 
    p(i) = -p(i) 
    Next i 
    Worksheets("optimum").Range("a96").Activate 
    ActiveCell.Offset(k - 1, 9) = p(1) 
    ActiveCell.Offset(k - 1, 10) = p(2) 
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    ' start with full step 
    For i = 1 To 2 
    xnew(i) = x(i) + p(i) 
    If xnew(i) <= 0 Then 
    xnew(i) = 0# 
    p(i) = xnew(i) - x(i) 
    End If 
    Next i 
    If xnew(1) <= 0 Then 
    xnew(2) = 0 
    p(2) = xnew(2) - x(2) 
    End If 
    Worksheets("baseloads").Range("al2").Value = xnew(2) * RTconv 
    Worksheets("baseloads").Range("ai1").Value = xnew(1) 
    F(k) = Worksheets("baseloads").Range("ap8777").Value 
    ' check for progress 
    If F(k) < F(k - 1) Then 
    ' ================================= 
    ' reduce step size by Golden search 
    GScnt = GScnt + 1 
    Worksheets("optimum").Range("f61").Value = x(1) 
    Worksheets("optimum").Range("g61").Value = x(2) 
    Worksheets("optimum").Range("f62").Value = p(1) 
    Worksheets("optimum").Range("g62").Value = p(2) 
    Call cmdGoldStep_Click 
    ' pick best step fraction 
    v1 = Worksheets("optimum").Range("d65").Value 
    v2 = Worksheets("optimum").Range("d66").Value 
    If v1 > v2 Then 
    step = Worksheets("optimum").Range("c65").Value 
    Else 
    step = Worksheets("optimum").Range("c66").Value 
    End If 
     
    For i = 1 To 2 
    xnew(i) = x(i) + step * p(i) 
    If xnew(i) <= 0 Then xnew(i) = 0 
    Next i 
    If xnew(1) <= 0 Then xnew(2) = 0 
    Worksheets("baseloads").Range("al2").Value = xnew(2) * RTconv 
    Worksheets("baseloads").Range("ai1").Value = xnew(1) 
    F(k) = Worksheets("baseloads").Range("ap8777").Value 
    ' exit Golden search area 
    'MsgBox "finished golden search" 
    End If 
    ' acceptable to proceed 
    For i = 1 To 2 
    s(i) = xnew(i) - x(i) 
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    x(i) = xnew(i) 
    Next i 
    Fsav = F(k) 
    dgbest = x(1) 
    acbest = x(2) * RTconv 
    ' test for optimization termination on function value change 
    stopcrit = absstop 
    If difstop * Abs(Fsav) > stopcrit Then stopcrit = difstop * Abs(Fsav) 
    'MsgBox "check stop criteria" 
     'the following three lines represent a 2-sequential achievement requirement 
    If k > 1 Then 
    If Abs(Fsav - F(k - 1)) <= stopcrit And Abs(F(k - 1) - F(k - 2)) <= stopcrit Then Exit For 
    End If 
    'the next line is for a single achievement requirement 
    'If Abs(Fsav - F(k - 1)) <= stopcrit Then Exit For 
         
    ' don't stop yet, so find new gradient vector 
    x1tmp = x(1) + gradstep 
    x2tmp = x(2) + gradstep 
    Worksheets("baseloads").Range("al2").Value = x(2) * RTconv 
    Worksheets("baseloads").Range("ai1").Value = x1tmp 
    gnew(1) = (Worksheets("baseloads").Range("ap8777").Value - F(k)) / gradstep 
    Worksheets("baseloads").Range("al2").Value = x2tmp * RTconv 
    Worksheets("baseloads").Range("ai1").Value = x(1) 
    gnew(2) = (Worksheets("baseloads").Range("ap8777").Value - F(k)) / gradstep 
    For i = 1 To 2 
    y(i) = gnew(i) - g(i) 
    g(i) = gnew(i) 
    Next i 
    ' test whether both gradient changes are zero 
    ' if so, skip Hessian update 
    ztst = 0 
    If y(1) = 0 And y(2) = 0 Then ztst = 1 
    If ztst < 1 Then 
    ' update Hessian via BFGS method 
    denom = s(1) * y(1) + s(2) * y(2) 
    t1 = y(1) * H(1, 1) + y(2) * H(2, 1) 
    t2 = y(1) * H(1, 2) + y(2) * H(2, 2) 
    A = t1 * y(1) + t2 * y(2) 
    A = A / denom + 1 
    For i = 1 To 2 
    For j = 1 To 2 
    B(i, j) = s(i) * s(j) / denom * A 
    C(i, j) = s(i) * y(j) 
    C2(i, j) = y(i) * s(j) 
    Next j 
    Next i 
    For i = 1 To 2 
    For j = 1 To 2 
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    C3(i, j) = 0 
    C4(i, j) = 0 
    For m = 1 To 2 
    C3(i, j) = C3(i, j) + C(i, m) * H(m, j) 
    C4(i, j) = C4(i, j) + H(i, m) * C2(m, j) 
    Next m 
    Next j 
    Next i 
    For i = 1 To 2 
    For j = 1 To 2 
    C(i, j) = (C3(i, j) + C4(i, j)) / denom 
    H(i, j) = H(i, j) + B(i, j) - C(i, j) 
    Next j 
    Next i 
    ' next end if for when gradients are the same and the Hessian is not updated 
    End If 
     ' write interim data values 
    Worksheets("optimum").Range("g70").Value = GScnt 
    Worksheets("optimum").Range("g71").Value = k 
    Worksheets("optimum").Range("a96").Activate 
    ActiveCell.Offset(k, 0) = k 
    ActiveCell.Offset(k, 1) = x(1) 
    ActiveCell.Offset(k, 2) = x(2) 
    ActiveCell.Offset(k, 3) = g(1) 
    ActiveCell.Offset(k, 4) = g(2) 
    ActiveCell.Offset(k, 5) = H(1, 1) 
    ActiveCell.Offset(k, 6) = H(1, 2) 
    ActiveCell.Offset(k, 7) = H(2, 1) 
    ActiveCell.Offset(k, 8) = H(2, 2) 
    ActiveCell.Offset(k, 11) = F(k) 
    ActiveCell.Offset(k - 1, 12) = step 
         
    Next k 
      ' write interim data values 
    Worksheets("optimum").Range("g70").Value = GScnt 
    Worksheets("optimum").Range("g71").Value = k 
    Worksheets("optimum").Range("a96").Activate 
    ActiveCell.Offset(k, 0) = k 
    ActiveCell.Offset(k, 1) = x(1) 
    ActiveCell.Offset(k, 2) = x(2) 
    ActiveCell.Offset(k, 3) = g(1) 
    ActiveCell.Offset(k, 4) = g(2) 
    ActiveCell.Offset(k, 5) = H(1, 1) 
    ActiveCell.Offset(k, 6) = H(1, 2) 
    ActiveCell.Offset(k, 7) = H(2, 1) 
    ActiveCell.Offset(k, 8) = H(2, 2) 
    ActiveCell.Offset(k, 11) = F(k) 
    ActiveCell.Offset(k - 1, 12) = step 
    ' check for exit reason 
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    If k > 25 Then 
    z = MsgBox("No optimal solution to termination specs was found within 25 iterations.  Best 
solution shown.", vbExclamation + vbOKOnly, "Termination Notice!") 
    'Else 
    'MsgBox "Finished" 
    End If 
    ' ================================================================== 
    ' start contour plot routine 
    dgbest = Worksheets("optimum").Range("l124").Value 
    acbest = Worksheets("optimum").Range("l125").Value 
    Worksheets("baseloads").Range("ai1").Value = dgbest 
    Worksheets("baseloads").Range("al2").Value = acbest * RTconv 
    Worksheets("main").Activate 
    Application.ScreenUpdating = True 
    Worksheets("main").Range("b27").Value = "Optimum found! Creating contour plot" 
    Application.ScreenUpdating = False 
    Worksheets("optimum").Activate 
    ' option for producing contour plot 
    'z = MsgBox("Update Contour Plot?", vbQuestion + vbYesNo, "Chart Update") 
    z = 0 
    If Worksheets("main").chkboxContour.Value = True Then z = 6 
     
    If z = 6 Then 
    ' set DG cap range 
    scfac = 0 
    mf = 0 
    delta = xmax / 20 
    Call bestscale(delta, mf, scfac) 
    xmin = 0.5 
    Worksheets("optimum").Range("m29").Activate 
    Worksheets("optimum").Range("m29").Value = xmin 
    xmin = 0 
    delta = scfac * 10 ^ mf 
    For i = 1 To 20 
    xnext = xmin + i * delta 
    ActiveCell.Offset(i, 0) = xnext 
    Next i 
     ' set AC cap range 
    scfac = 0 
    mf = 0 
    delta = ymax / 6 
    Call bestscale(delta, mf, scfac) 
    ymin = 0.5 
    Worksheets("optimum").Range("n27").Activate 
    Worksheets("optimum").Range("n27").Value = ymin 
    ymin = 0 
    delta = scfac * 10 ^ mf 
    For i = 1 To 6 
    ynext = ymin + i * delta 
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    ActiveCell.Offset(0, i) = ynext 
    Next i 
         
    ' start calculation pass 
    'get initial capacity value 
    Worksheets("optimum").Range("n27").Activate 
    acap = ActiveCell.Value 
    Worksheets("baseloads").Range("al2").Value = acap 
    T = 1 
    Worksheets("optimum").Range("m29").Activate 
     
    ' start outer loop of AC capacities 
    Do While acap > 0 
    cap = ActiveCell.Value 
    R = 0 
    ' go through DG capacities 
    Do While cap > 0 
    Worksheets("baseloads").Range("ai1").Value = cap 
    crntval = Worksheets("baseloads").Range("ap8777").Value 
    ActiveCell.Offset(R, T) = crntval 
    R = R + 1 
    cap = ActiveCell.Offset(R, 0).Value 
    Loop 
    T = T + 1 
    acap = ActiveCell.Offset(-2, T).Value 
    Worksheets("baseloads").Range("al2").Value = acap 
     
    Loop 
     
    ' end of contour plotting 
    End If 
    Worksheets("optimum").Range("m29").Value = xmin 
    Worksheets("optimum").Range("n27").Value = ymin 
    ' recall best obj function 
    Worksheets("baseloads").Range("ai1").Value = dgbest 
    Worksheets("baseloads").Range("al2").Value = acbest * RTconv 
             
    'end calculations 
    Worksheets("Main").Activate 
    Application.ScreenUpdating = True 
    Worksheets("main").Range("c4").Value = " " 
    Worksheets("main").Range("b27").Value = " " 
    'MsgBox "finished" 
     
End Sub 
 
 
 
 



 109

Private Sub cmdGoldStep_Click() 
' this performs Golden Search for the step 
' that produces the max savings 
    'set initial range values 
    IOUstop = 0.025 
    cntr = 0 
    xlow = 0 
    xhigh = 1 
    Worksheets("optimum").Activate 
    Worksheets("optimum").Range("c61").Activate 
    Worksheets("optimum").Range("c61").Value = cntr 
    Worksheets("optimum").Range("c62").Value = xlow 
    Worksheets("optimum").Range("c63").Value = xhigh 
     
    ' start iteration loop, stopping when IOU <= IOU stop 
    c1 = Worksheets("optimum").Range("f61").Value 
    C2 = Worksheets("optimum").Range("g61").Value 
    p1 = Worksheets("optimum").Range("f62").Value 
    p2 = Worksheets("optimum").Range("g62").Value 
    IOU = Worksheets("optimum").Range("c64").Value 
    Do While IOU >= IOUstop 
    cntr = cntr + 1 
    Worksheets("optimum").Range("c61").Value = cntr 
    Worksheets("optimum").Range("c65").Activate 
    'select low end step and calc inputs 
    s = ActiveCell.Value 
    R = 0 
 
    ' two-step calc loop 
    Do While s > 0 
    'enter capacities into baseload spreadsheet 
    cap = c1 + s * p1 
    acap = (C2 + s * p2) * 3412.8 / 12000 
    Worksheets("baseloads").Range("ai1").Value = cap 
    Worksheets("baseloads").Range("al2").Value = acap 
    ActiveCell.Offset(R, 1) = Worksheets("baseloads").Range("ap8777").Value 
    R = R + 1 
    s = ActiveCell.Offset(R, 0).Value 
    Loop 
 
    ' next step logic 
    x1 = Worksheets("optimum").Range("c65").Value 
    x2 = Worksheets("optimum").Range("c66").Value 
    y1 = Worksheets("optimum").Range("d65").Value 
    y2 = Worksheets("optimum").Range("d66").Value 
    If y1 < y2 Then 
        Worksheets("optimum").Range("c62").Value = x1 
    Else 
        Worksheets("optimum").Range("c63").Value = x2 
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    End If 
    IOU = Worksheets("optimum").Range("c64").Value 
     
    Loop 
    'MsgBox "finished" 
     
End Sub 
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APPENDIX D 
 

Results from Application Scenarios 
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Results

Demands
Annual 12,406,742 kWh 37,074 MMBtu 1,617,306 RT-hr
Maximum 2275 kW 17.0 MMBtu/hr 808 RT
Minimum 934 kW 0.51 MMBtu/hr 0 RT

Installed DG capacity: 1142.0 kW (net)
Installed AC capacity: 215.4 RT

Hours of DG operation 6,712 hours/year
DG generated electricity 7,478,194 kWh/year
DG supplied heating 27,921 MMBtu/year
AC supplied cooling 546,886 RT-hr/year

With CHP No CHP
CHP system $1,065,024 $0
Utility elec $651,031 $1,785,547
Non-CHP fuel $124,018 $502,367
Total $1,840,073 $2,287,913

Annual operating savings (after tax): $277,661
$954,012

Optimum DG capacity: 1142.0 kW
Optimum AC capacity: 215.4 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$954,012
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$750,000 -$800,000 $800,000 -$850,000 $850,000 -$900,000 $900,000 -$950,000 $950,000 -$1,000,000 

 
 

Figure A-11.  Summary Results for Boston Hospital 
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Results

Demands
Annual 4,778,146 kWh 15,645 MMBtu 799,048 RT-hr
Maximum 1185 kW 7.1 MMBtu/hr 492 RT
Minimum 254 kW 0.12 MMBtu/hr 0 RT

Installed DG capacity: 417.2 kW (net)
Installed AC capacity: 88.3 RT

Hours of DG operation 6,695 hours/year
DG generated electricity 2,683,205 kWh/year
DG supplied heating 10,544 MMBtu/year
AC supplied cooling 171,531 RT-hr/year

With CHP No CHP
CHP system $382,962 $0
Utility elec $312,031 $715,878
Non-CHP fuel $69,114 $211,994
Total $764,107 $927,872

Annual operating savings (after tax): $101,534
$341,877

Optimum DG capacity: 417.2 kW
Optimum AC capacity: 88.3 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$341,877
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Figure A-12.  Summary Results for Boston Hotel 
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Results

Demands
Annual 601,572 kWh 2,662 MMBtu 87,007 RT-hr
Maximum 172 kW 1.4 MMBtu/hr 68 RT
Minimum 16 kW 0.00 MMBtu/hr 0 RT

Installed DG capacity: 74.8 kW (net)
Installed AC capacity: 16.4 RT

Hours of DG operation 5,067 hours/year
DG generated electricity 378,124 kWh/year
DG supplied heating 1,240 MMBtu/year
AC supplied cooling 33,631 RT-hr/year

With CHP No CHP
CHP system $53,786 $0
Utility elec $31,445 $95,603
Non-CHP fuel $19,267 $36,068
Total $104,498 $131,671

Annual operating savings (after tax): $16,847
$48,861

Optimum DG capacity: 74.8 kW
Optimum AC capacity: 16.4 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$48,861
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Figure A-13.  Summary Results for Boston Nursing Home 
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Results

Demands
Annual 1,228,619 kWh 2,924 MMBtu 147,391 RT-hr
Maximum 337 kW 2.7 MMBtu/hr 147 RT
Minimum 0 kW 0.00 MMBtu/hr 0 RT

Installed DG capacity: 118.3 kW (net)
Installed AC capacity: 35.9 RT

Hours of DG operation 4,641 hours/year
DG generated electricity 526,416 kWh/year
DG supplied heating 1,665 MMBtu/year
AC supplied cooling 35,673 RT-hr/year

With CHP No CHP
CHP system $75,258 $0
Utility elec $100,280 $193,285
Non-CHP fuel $17,491 $40,618
Total $193,029 $233,903

Annual operating savings (after tax): $25,342
$57,945

Optimum DG capacity: 118.3 kW
Optimum AC capacity: 35.9 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$57,945
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Figure A-14.  Summary Results for Boston Retail 
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Results

Demands
Annual 1,625,584 kWh 3,640 MMBtu 27,517 RT-hr
Maximum 260 kW 2.1 MMBtu/hr 40 RT
Minimum 158 kW 0.00 MMBtu/hr 0 RT

Installed DG capacity: 117.7 kW (net)
Installed AC capacity: 6.9 RT

Hours of DG operation 6,037 hours/year
DG generated electricity 710,551 kWh/year
DG supplied heating 2,613 MMBtu/year
AC supplied cooling 5,101 RT-hr/year

With CHP No CHP
CHP system $101,060 $0
Utility elec $119,757 $223,794
Non-CHP fuel $13,915 $49,319
Total $234,732 $273,113

Annual operating savings (after tax): $23,796
$67,611

Optimum DG capacity: 117.7 kW
Optimum AC capacity: 6.9 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$67,611
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Figure A-15.  Summary Results for Boston Supermarket 
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Results

Demands
Annual 11,812,862 kWh 18,760 MMBtu 1,403,216 RT-hr
Maximum 1949 kW 7.5 MMBtu/hr 452 RT
Minimum 943 kW 0.53 MMBtu/hr 8 RT

Installed DG capacity: 513.8 kW (net)
Installed AC capacity: 30.9 RT

Hours of DG operation 6,521 hours/year
DG generated electricity 3,350,640 kWh/year
DG supplied heating 14,922 MMBtu/year
AC supplied cooling 103,406 RT-hr/year

With CHP No CHP
CHP system $396,892 $0
Utility elec $1,021,074 $1,440,860
Non-CHP fuel $43,619 $213,185
Total $1,461,585 $1,654,045

Annual operating savings (after tax): $119,326
$431,123

Optimum DG capacity: 513.8 kW
Optimum AC capacity: 30.9 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$431,123
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Figure A-16.  Summary Results for San Francisco Hospital 
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Results

Demands
Annual 4,522,398 kWh 9,992 MMBtu 680,125 RT-hr
Maximum 1004 kW 3.4 MMBtu/hr 334 RT
Minimum 249 kW 0.12 MMBtu/hr 0 RT

Installed DG capacity: 257.2 kW (net)
Installed AC capacity: 36.2 RT

Hours of DG operation 7,987 hours/year
DG generated electricity 2,054,605 kWh/year
DG supplied heating 8,465 MMBtu/year
AC supplied cooling 110,024 RT-hr/year

With CHP No CHP
CHP system $243,374 $0
Utility elec $295,930 $541,841
Non-CHP fuel $17,357 $113,550
Total $556,660 $655,391

Annual operating savings (after tax): $61,213
$212,726

Optimum DG capacity: 257.2 kW
Optimum AC capacity: 36.2 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$212,726
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Figure A-17.  Summary Results for San Francisco Hotel 
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Results

Demands
Annual 555,117 kWh 1,284 MMBtu 52,632 RT-hr
Maximum 154 kW 0.6 MMBtu/hr 49 RT
Minimum 15 kW 0.00 MMBtu/hr 0 RT

Installed DG capacity: 25.1 kW (net)
Installed AC capacity: 3.5 RT

Hours of DG operation 7,611 hours/year
DG generated electricity 174,829 kWh/year
DG supplied heating 985 MMBtu/year
AC supplied cooling 11,617 RT-hr/year

With CHP No CHP
CHP system $23,386 $0
Utility elec $52,898 $75,742
Non-CHP fuel $3,399 $14,588
Total $79,683 $90,330

Annual operating savings (after tax): $6,601
$26,313

Optimum DG capacity: 25.1 kW
Optimum AC capacity: 3.5 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$26,313
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Figure A-18.  Summary Results for San Francisco Nursing Home 
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Results

Demands
Annual 1,791,947 kWh 1,038 MMBtu 90,878 RT-hr
Maximum 433 kW 1.8 MMBtu/hr 131 RT
Minimum 0 kW 0.00 MMBtu/hr 0 RT

Installed DG capacity: 63.9 kW (net)
Installed AC capacity: 19.1 RT

Hours of DG operation 4,538 hours/year
DG generated electricity 286,371 kWh/year
DG supplied heating 560 MMBtu/year
AC supplied cooling 29,802 RT-hr/year

With CHP No CHP
CHP system $33,959 $0
Utility elec $194,112 $241,086
Non-CHP fuel $5,296 $11,510
Total $233,368 $252,596

Annual operating savings (after tax): $11,922
$15,954

Optimum DG capacity: 63.9 kW
Optimum AC capacity: 19.1 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$15,954
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Figure A-19.  Summary Results for San Francisco Retail 
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Results

Demands
Annual 1,615,892 kWh 2,282 MMBtu 4,283 RT-hr
Maximum 248 kW 0.7 MMBtu/hr 17 RT
Minimum 163 kW 0.00 MMBtu/hr 0 RT

Installed DG capacity: 54.6 kW (net)
Installed AC capacity: 5.0 RT

Hours of DG operation 7,663 hours/year
DG generated electricity 418,245 kWh/year
DG supplied heating 1,741 MMBtu/year
AC supplied cooling 1,415 RT-hr/year

With CHP No CHP
CHP system $49,542 $0
Utility elec $136,702 $186,582
Non-CHP fuel $6,153 $25,937
Total $192,397 $212,519

Annual operating savings (after tax): $12,476
$42,666

Optimum DG capacity: 54.6 kW
Optimum AC capacity: 5.0 RT
NPV savings:

Fuel cell
Recip
Turbine

Cooling

NPV savings:

Annual costs (before tax)

$42,666
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Figure A-20.  Summary Results for San Francisco Supermarket 
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