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Abstract

Individual-based models have been used to study the population dynamics of semel-
parous and iteroparous organisms. The first model, developed for sockeye salmon (On-
corhynchus nerka), was based on the physiology of the individual and incorporated into
a population model via a McKendrick-von Foerster type partial differential equation.
Cycles of population abundance historically found in the Fraser River system were recre-
ated through model simulations. Explanations for the appearance of the cycling were
investigated and tested. The results showed that density- and size-dependent mortal-
ity were not necessary for cycling to appear, however their inclusion or exclusion in
combination with the type of schooling could alter the character of the periodic cycling.

The use of sequential design of experiments as a method for sensitivity analysis of
the model allowed for a thorough investigation of the parameter space. The approach
combined standard and non-standard designs and used reverse methodology to screen for
insignificant factors. The resulting sequence of designs isolated the sensitive parameters
and allowed for realistic model output.

The second individual-based model was used to study iteroparous reproduction
strategies and population dynamics. Two population models were formulated, a set
of continuous partial differential equations of the McKendrick-von Foerster type and a
set of discrete matrix equations. The asymptotic relationship between the two types of
models was evaluated. It was found that a lack of convergence to the steady-state age

distribution can occur in discrete event reproduction models and that convergence de-
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pends on whether the ratio between the maximum age and the length of the reproductive

period is rational.
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Introduction

This dissertation consists of three parts. The first two consider the use of individual-
based models to study population dynamics while the last covers an aggregated popu-
lation model.

In Part I, the life history of the semelparous sockeye salmon ( Oncorhynchus nerka) is
reviewed and the model developed based on the physiology of the individual is explained.
Incorporation of the individual-based model into a population model is shown and the
method of characteristics is used to reduce the partial differential equation to a system
of ordinary differential equations which are solved numerically.

In order to produce realistic model output, a sensitivity analysis is conducted in
Chapter 2. Methods from design of experiments, a technique used in the field of statis-
tics, are reviewed and explained. Some of these techniques are then applied in sequential
experimentation. Standard methods, such as the fractional factorial and one-factor-
at-a-time, are combined with non-standard methods (saturated resolution V', Cotter,
Plackett-Burman, and robust design) and a response surface method (central composite

design) to achieve the desired result. The sensitive parameters are isolated, investigated,



and subsequently used to structure a population with different ecotypes and generate
values that are commensurate with a real population of salmon.

In the third chapter, simulation results demonstrate that the model produces cycles
that are qualitatively similar to cycles which are known to appear in natural populations
of sockeye salmon in some parts of the Fraser River system. The possible reasons for the
appearance of cyclic dominance are discussed and tested using the model. The results
show that mortalities associated with density-dependence and size are not responsible
for the appearance of the cycles. However, density- and size-dependent mortality in
combination with schooling in the freshwater environment can alter the character of the
periodic cycling that occurs.

In Part II, an individual-based model is used to study iteroparous reproduction
strategies and asymptotic dynamics of a population. It is assumed that reproductions
are discrete events and deaths occur on a continuous time scale. In the first part
of Section 3, a continuous-time model with state variables for the juvenile and adult
stages is formulated and the steady-state age distribution is found. Then, a discrete-time
nonlinear Leslie matrix model equivalent to the continuous-time model is derived. It is
found that the population dynamics depend on the ratio between the juvenile period
and the length of the periodic reproductions. If this ratio is rational, the total biomass
of the population can be cyclic when the initial distribution differs from the steady-
state density distribution. Additionally, the number of cohorts remains finite when

they are descendants of one founder cohort. In Section 5, the discrete- and continuous-



time models are compared. The case when the ratio between the juvenile period and
the periodic reproductions is irrational is considered. The final section addresses the
applicability of the matrix model to ecotoxicology and risk assessment.

An aggregated population model with applications to marine mesocosms is briefly

discussed in Part III.
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Sockeye Salmon Model,

Sensitivity Analysis, and Results



Chapter 1

Life History and Model

1.1 Life History

Sockeye salmon ( Oncorhynchus nerka) begin life as eggs deposited in the gravel of stream
beds, river outlets, or shallow lakes during the Fall [29, 63, 91]. The eggs hatch within
five months of deposition, depending primarily on water temperature [29, 65, 182]. The
sac-fry remain in the gravel for an additional three to five weeks living on the yolk-
sac [91]. Inch-long fry emerge from the spawning gravel and passively migrate to the
lake by mid to late spring [29, 63, 91], at which time feeding and moving about in schools
begins [91, 92, 101, 137]. The juvenile fish remain in the lake anywhere from one to four
years before migrating to better feeding grounds [29, 63, 68, 91, 176, 182]. Migration
from the lake is not triggered by any one factor alone, but has been speculated to
include both physical and biological factors. These may include, but are not limited to,

temperature, light intensity, wind intensity and direction, cloud cover, rainfall, water



level, lake wave action, river discharge, age structure of the smolt population, size
structure of the smolt population, and level of resource in the freshwater environment
(92, 109, 110]. When the trigger for migration does occur, the smolts migrate to coastal
feeding grounds in schools and then continue to the ocean [92]. The smolts mature in
the ocean for one to four years, feeding heavily as there are no food limiting conditions
present in this environment [57, 176, 182, 189]. Once mature, the smolts migrate back
to the spawning grounds. As the salmon near the freshwater, they stop feeding and
their digestive systems become nonfunctional and degenerate [35, 74, 91, 104]. Upon
returning to the lake, the female digs redds (depressions in the gravel made by powerful
strokes of the tail) and spawns with the male [91]. Each female spawns anywhere from
three to five times, constructing a new nest in the gravel and depositing between 500
and 1100 eggs each time [35, 91]. The spawning migration and spawning activities drain
90 to 96 percent of fat and 33 to 53 percent of protein reserves [74, 104]. The spawning
pair die several days after spawning has taken place.

Sockeye salmon residing in Cultus Lake, a part of the Fraser River system located
in British Columbia [35], are the focus of this model. Sockeye are believed to be the
principal pelagic fish of this lake [163]. The Cultus sockeye feed primarily on the fol-
lowing crustacean zooplankton: FEpischura nevadensis, Cyclops bicuspidatus, Daphnia
pulez, and Bosmina obtusirostris [61, 162]. Euphausiids are the primary food source for
sockeye once they have migrated from the lake [9, 28, 176]. The majority of sockeye in

Cultus Lake migrate to the ocean in April and May as year-old fish; however, a small



fraction migrate during their second or third year [63, 76, 92, 162]. Nearly 90 percent

of Cultus sockeye return from the sea during their fourth year of life [76].

1.2 Individual Model

The importance of individual-based models (IBMs) has been widely noted [23, 50, 53,
102, 103, 130, 138]. The primary reason for using an IBM to study population dynamics
is that populations are made up of individuals. It is the individual which has behavioral
characteristics and interacts with other members of its own population and those of other
populations; it is the individual which grows, reproduces, and dies, not the population.
Another reason for the IBM approach is that realistic parameter values for individuals
are more accessible due to the fact that individual properties and the mechanisms by
which individuals interact with the environment can be measured [103].

In order to analyze the dynamics of a realistic population, there must be some
variation among the individuals which compose the population. This variation can
come from any number of processes (e.g., demographic, genetic, environmental) and
should depend on the study organism and the problem being addressed.

Not only is the choice to use an IBM critical, but the inclusion of lipids as one of the
state variables for individual growth is also important. As stated in [82], lipid functions
as the major source of energy for most fish [177]. It also regulates certain metabolic
functions, is a threshold trigger and an essential component of reproduction [201], func-

tions as a thermoinsulator, is of major importance in hydrostatic and hydrodynamic



factors [177], plays an important role in overwinter starvation or survival, and assists
fish in coping with environmental stressors [1]. In addition, Kooijman (1993) found that
it is not possible to understand dynamics at the population level if a storage compart-
ment is not included at the individual level. Finally, among individuals which would
otherwise be considered similar, there can be substantial variation in the lipid compo-
nent due to variation in the density of the resource, the quality of the resource, and

other environmental stresses [84].

1.2.1 Model Overview

The model used here is a modification of the individual-based model for rainbow trout
developed by Hallam et al. (2000) including the effects of temperature on the individ-
ual’s physiological processes [131]. Hallam et al.’s model is based on the energetics of
an individual female fish (see Figure 4.3).! Each organism is composed of two major
components, lipid and structure (protein and carbohydrates), each of which consists of
a labile and a nonlabile portion. The labile portions of lipid and structure are available
for use in growth and reproduction; the nonlabile portions, referred to as protected, are
the lipid and protein bound in somatic tissue which are not available for use, even under
conditions of starvation. The mass of lipid and mass of structure are denoted by myp,
and mg [g].2 The mass of protected structure, mpg [g], is assumed to be non-decreasing

with age and is a constant fraction of mg, i.e., mpg = amg; nonlabile lipid is given by

L All Figures and Tables appear in the Appendices.
2All weights in the model are dry weights.



empgs [g] where € is a dimensionless parameter which gives the ratio of nonlabile lipid
to nonlabile structure.® Given these representations, the mass of labile lipid is given by
(my, — empg) and the mass of labile structure by (mg — mpg).

The dynamics of an individual fish are represented by two ordinary differential equa-
tions which give the rates of change of my and mg. These rates are determined by the
differences in the inputs and the outputs. The inputs are represented by the growth
of the lipid and structure compartments whereas the outputs are the losses from these
compartments. Growth of lipid and structure of a fish is obtained from feeding on a re-
source which also has lipid and structure components, the densities of which are denoted
by z1, and x5 [%5]. The amount of resource that can be converted into viable energy is
based on the assimilation efficiencies of the lipid and structure, represented by Ay;, and
Aps [dimensionless] in the model. The losses consist of lipid and structure allocation
for egg production and energy allocation for maintenance, apparent heat increment?,
activity, and reproduction. Maintenance, apparent heat increment, and activity losses
occur on a continuous time scale; reproductive losses are discrete and occur only once
for an individual given that sockeye salmon are semelparous.

The life history of a female fish is followed from the deposition and fertilization of
the eggs to when the fish eventually dies. Two sets of differential equations are used to

describe two different parts in the life of a fish, the yolk-sac stage and the period after

3See Tables 1-6 for a list of all parameter names, their values and references.

“Heat increment is also known as specific dynamic action (SDA). Beamish and Trippel (1990) suggest
replacing the term “heat increment” with the less-specific “apparent heat increment” due to the difficulty
in experimentally separating the energy requirements for grasping, chewing, and swallowing from those
of the postabsorptive processes associated with feeding.



the yolk-sac has been absorbed when external feeding commences.
The first set of equations discussed is for growth during the embryonic stage. At

age 0, an egg which has the initial component weights

ms(0) = ms,, mr(0) = mp, (1.1)

is deposited and fertilized. The egg will hatch and survive on the nutrients of the yolk-
sac until it is completely absorbed; however, since the fry are not actually feeding during
this period, they decrease in size. The differential equations which represent this change

in mass of lipid and structure are

dmp, —BL(mL—emPS) for Ep > Ey4 (1 2)
dt '
—BL(mL—empg)]g—g for ED SEA
dmg —Bg(mg—mps) for Ep > E4

—Bg(mg — mps)%—i for Ep < E4

where By, and Bg are the compartmental rate coefficients [5], Ep is the total energy
demand [%], and E4 is the available energy [%] The equations for the total energy
demand and the available energy will subsequently be described in detail.

The fry begin external feeding once the yolk-sac has been absorbed. The amount of

time that it takes for this process to take place, fi(T') [d], is assumed to be a function

10



of temperature, T [°C].5
The differential equations which describe the remainder of the organism’s life are
given by
dmp, Aorzr AL(mL - Emps) for Ep > E4

yr F — (1.4)
X
AL(mL—emPS)g—Z for ED SEA

dms  Apszs Ags(mr —mpg) for Ep > Eq
T F— (1.5)
X

AS(T)’LL — mps)g—l: for ED S EA

where the initial conditions are given by the terminal conditions from the embryonic
stage equations (1.1), (1.2), (1.3). In the above equations, z = z, +zs [%5], AL is the
labile lipid mobilization rate [4], Ag is the labile structure mobilization rate [1], and
F is the feeding rate [4], which will be described momentarily. In equations (1.4) and
(1.5), observe that %F and %F represent the gain of mass of lipid and mass of

structure via consumption per unit time.

Growth Terms

The feeding rate, F', can be described in terms of the characteristic time to encounter, Ty

[g], the characteristic time for pursuit, Tp [%], and the characteristic time for digestion,

®See Appendix II for all model functions which modify physiological processes due to temperature.
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Tp [%], all processes which must be completed sequentially:

1

F=f(T)———7——.
faf )TE +Tp+Tp

(1.6)

The extra term, f2(7") [dimensionless], modifies the feeding rate as a function of tem-
perature, T' [°C].
The time a non-schooling individual spends encountering one gram of food is given

by Tg = a%x' The encounter rate coefficient, ag [‘”33], represents the volume swept per

unit time by the foraging fish [72, 73] and is expressed as

2 Up? + 3up?

U

aqg = 86400 - wsy (1.7)

where 86400 is the conversion from seconds to days; sq [cm] is the reactive distance of

the fish given by sq = aL,+/Ly; Ly and L, [cm] represent the lengths of the fish and

prey and a [em™%5] is a constant; L is given by the allometric relationship L = 3/ mﬁf} s

where 87 [%5] is a constant; L, is given by the allometric relationship L, = { %
where 3, [-45] is a constant and M, [g] is the mass of the prey; v, [%"] is the prey

velocity given by v, = s, - L, where s, [%] denotes the body lengths per second of the
prey; vy, [%*] is the fish velocity while hunting for prey given by vj, = sj, - Ly where s,
[1] denotes body lengths per second of the fish while hunting.

If an individual is a part of a school, the encounter rate is not the same as it would

be for an individual feeding alone. While in a school, it is assumed that the encounter

12



rate, Ty, is modified by a schooling factor, f..,, which is a function of the density of

individuals within the school, ps.p:

Csch
fseh = ——"""— 1.8
° Psch + Csch ( )

where cgep, is a constant. For realistic values of pg.p, (i.e., non-negative), the schooling
factor, fscp, only takes on values between zero and one. Note that as the density of the
school approaches infinity, the value of f., approaches zero.

The time an individual spends pursuing and capturing one gram of food is given by

Sd
Tp = 1.9
P 786400 - M, (v, — vy) (1.9)

where v, [“2] is the velocity of the fish in pursuit and all other parameters were previ-
ously defined. v, is given by v. = s.- Ly where s, [%] denotes body lengths per second
of the fish while chasing a prey item.

The time an individual spends digesting one gram of food is given by

Tp = —. (1.10)

The gut clearance rate coefficient, k [5], depends on several factors. The most significant
of these are fish size and temperature [31, 79]. The rate at which the mass of food in

the gut empties is proportional to the mass of food in the gut, m, [g] at time ¢ [59] as

13



seen in the following equation:

dmy
—= = —kmy,. 1.11
Solving equation (1.11) results in m, = mgoe*k't which can be rearranged to yield
k= —%lnnT—gg. Observe that k is proportional to the inverse of gut clearance time. In
0

general, gut clearance time is proportional to (fish mass)*! where & is a nondimensional
constant. Thus, k = kom;? where kg is a constant with units [%]. However, we also
want to include the effect of temperature, T' [°C], on the gut clearance rate coefficient,
so k is modified by a function of temperature, f3(7') [dimensionless], resulting in k =
F3(T)komip

Referring back to equation (1.10), M, [g] is the mass capacity of the fish’s gut which
is calculated from the product of the volume of the fish’s gut, V, [cm?], and the body
density of the prey, p, [cmig], ie., My = p,-V,. The gut volume, V,, is proportional to

em®

the mass of the fish [79] and is given by Vj = ¢4 - mpg where ¢, [7=] is a constant.

Loss Terms

To calculate the loss terms for equations (1.2)-(1.5), we need formulations for the avail-
able energy, F4, and the total energy demand, Ep. Available energy is determined
by

E 4 = 38940 - BL(mL — emps) + 17170 - Bs(ms — mpg) (1.12)

14



prior to yolk-sac absorption, and by

E 4 = 38940 - AL(mL — emps) + 17170 - Ag(mg - mps) (1.13)

once external feeding has begun. In equations (1.12) and (1.13), 38940 [%] is the ener-
getic content of one gram of lipid and 17170 [é] is the energetic content of one gram of
structure [74, 104].

The total energy demand, Ep, is the sum of the energies required for maintenance,

apparent heat increment, and activity.

Maintenance Maintenance, also known as standard metabolism, is the minimum en-
ergy required to maintain an organism at rest [30]. The energy required for maintenance
[Z] is given by

32.9mp + 32.3mg. (1.14)

Brett (1976) estimated the standard metabolism of sockeye salmon to be 100 %ﬁﬂw

and Barton (1996) found the standard metabolism for salmonids to be between 80 and

100 ™9%2/k9  {jging respiratory energy equivalents of 13.69 255 for lipid and 13.44

m£‘7702 for protein [30] and a standard metabolism of 100 %ﬁ/kg, the values of 32.9
[%] and 32.3 [%] in equation (1.14) were obtained.
Experimental studies have shown that increasing the temperature of the environment

increases maintenance requirements of fish [5, 27, 34, 66, 67]. Therefore, equation (1.14)

is multiplied by f4(T") [dimensionless] to include temperature effects.

15



Apparent Heat Increment Apparent heat increment is defined as the metabolic
heat loss from the digestion and transformation of food into energy [30]. Beamish and
Trippel (1990) reported that fish fed natural diets have an apparent heat increment
value between 3 and 41%, while fish fed formulated diets have values between 11 and
29%. They also found that apparent heat increment increases with meal size and body
weight, as well as with temperature, but declines with body weight when food intake
is fixed. The value of apparent heat increment is generally lower for lipids than for
protein because lipids do not have to be deaminated to serve as an energy source [132].
Brett and Groves (1979) attributed 12-16% of ingested food energy to apparent heat
increment. Following the study for rainbow trout reported by Beamish and Trippel
(1990), the value for apparent heat increment is given as a function of temperature,

f5(T") [dimensionless].

Activity Cruising, the cost of pursuit and capture of food, and migration are all
activities which incur an energy loss. The energy utilized by a swimming fish [%] is

calculated using a formulation by Gerritsen (1984):

0.002376Sv2°

(1.15)
L(}'5q
where 0.002376 has units of C‘]Tfl—i'z; S [em?] is wetted surface area given by BoL;? where

f2 is a non-dimensional proportionality constant for wetted surface area; v [“*] is the

swimming velocity (part of the time spent on cruising and part on chasing food) which

16



is the product of fish length, L, and the number of body lengths per second spent on
either cruising or pursuing; and ¢ [dimensionless] is swimming efficiency.

Remember from equation (1.6) that time spent feeding is divided between encounter,
pursuit, and digestion. Of these, the “active” times are the times spent finding and cap-

turing prey items. Therefore, TpF = dimensionless] is the time in days per

TE’ [
Te+Tp+1p

daily ration encountered and TpF = dimensionless] is the time in days per

TP [
Te+Tp+1p

daily ration captured. Hence, the total active time per day is (T +7p)F. Incorporating
these formulations into equation (1.15), the new equation for the energy expense due to

swimming is:
0.002376B2 L ¢* (5,2 TpF + 3. 25TpF)
q

(1.16)

which is in terms of parameters that have all been defined previously.
While the model presented here is not spatially-explicit, migration is accounted for

by a loss of energy. The formula that represents this energy loss is:

1,/;m-CI(mL+m5) (1.17)

where 1), [i—g] is the migration cost per unit distance (if z = 1, the migration is from
the lake to the coastal feeding grounds; if £ = 2, the migration is from the ocean to the
river entrance; if x = 3, the migration is from the river entrance to the lake), and (,
[kTm] is the rate of travel when migrating. The value used for the distance from the lake

to the coastal feeding grounds and river mouth is 110 km [61, 76]; the distance from
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the ocean to the river entrance used is 3000 km [78].

Reproduction and Mortality

Reproduction is a loss term, however, it is not explicitly stated in equations (1.4) and
(1.5). Reproduction is not assessed on a continuous basis as are the terms associated
with maintenance, apparent heat increment, and activity. For sockeye salmon, repro-
duction occurs only once, and after reproduction occurs, the salmon dies. In the model,
an individual can die if one of two conditions is met. One, the mass of structure drops
below the mass of protected structure associated with starvation (this level is given by
aympg where «; is a constant), which occurs either due to losses associated with repro-
duction or due to a shortage of resource. Or two, the individual reaches the prescribed
maximum age, Gmag-

In order for reproduction to occur in the model, three conditions must be met. The
first is that the individual must have survived the first five life history stages (see the
discussion following on Migration) and be in the final stage in the lake. Next, the time
of year must be within the time window for reproduction, September 1 to December
31 [65, 166]. And, finally, the temperature must be between 3 and 20°C [78, 166, 175].

The losses associated with reproduction include allocation of lipid and structural
mass to egg formation and the energy necessary to complete this mass transfer. While
it is clear that these events occur on a continuous time scale, there is little specific
information on the time scales of these processes. Since the time scales are short relative

to the population time scales, they are treated as discrete events.
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Lipid and structural mass available for reproduction constrain the number of eggs
that an individual can produce. Although variation in egg size is most likely controlled
by a number of factors, the assumption is made that it is controlled solely by lipid.
The amount of structure per egg is assumed to be constant. The governing factors
for allocation of lipid to eggs are assumed to be total lipid (my) and a counteractive
coupling with total structure. If Eg [eggs] is the maximum number of eggs that can be
produced from the available structure, then the lipid allocated to each egg is given by
the hyperbolic function (in mp)

(ema:v - emin)mL
A1Es +mp,

+ emin (1.18)

where €4, and enin [e%g] are the maximum and minimum amounts of lipid contained
per egg. A [e%g] is a constant which in some sense determines the relative importance

the female places on lipid in the eggs, and hence, the size of the eggs at birth. While
this function gives values in the interval [ein, €maz), the maximum lipid contained in
an egg, emagz, 1S only attained asymptotically as lipid becomes large. Observe that the
maximum number of eggs constrained by available structure, Eg, regulates the egg lipid:
for fixed lipid, mp,, the amount of lipid per egg decreases as Eg increases. The maximum
number of eggs per available lipid is determined by dividing the total lipid, mp, by the
amount of lipid per egg.

A formulation to set Fg, the maximum number of eggs per available structure,

is also needed. Weatherley (1972), using data from [2], found that the number of
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eggs laid by trout in the Horokiwi stream can be determined, at least in a restricted
range, as a linear function of body length. Carlander (1969) also reported this type of
representation. Using this as a basis for our formulation, the maximum number of eggs

produced per available structure, Fg, by a female of length L; is given by

min{maX[O,U(Lf — ), ms}. (1.19)
€s
The term o (L f—n) gives the number of eggs per clutch as a linear function of fish length.

egqgs
cm

The slope, o [<222], is generally a function of resource availability, but is a constant here.
n [em] is a constant which determines the smallest length at which reproduction can
occur, resulting in a positive number of eggs when subtracted from the fish length. The

second expression is the structural material available for reproduction, where ey [-£] is

eg9
the amount of structure per egg. Weatherley (1972) argues, for trout, that the size at
reproduction is a governing factor for reproduction. This is taken into consideration by
composing a size constraint for reproduction and requiring that there be sufficient lipid
and structure to form the eggs.

Given the number of eggs that could possibly be produced based on available lipid
and the number of eggs that could possibly be produced based on available structure,
the number of eggs that are actually produced is the minimum of these two constraints.
The egg composition, assumed to be a fixed amount of structural material and a variable

amount of lipid, varies according to the lipid reserves of the adult female.

It is assumed that a fraction of the eggs produced do not survive due to the physical
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environment. The fraction of eggs that survive given as a function of temperature, 7'
[°C], is given by f¢(T') [dimensionless].

The energy required to support the mass transfer of lipid and structure to eggs is
modeled by AsL, + A3S.. Le and S, [g] are the total lipid and structure in the eggs;
Ay and Az [%] are rate constants for the energy to mobilize lipid and structure for eggs.

This formulation is similar to the one for allocation to maintenance.

Migration
In the model, there are six life history stages:

Stage 1: In the lake, as an egg or fry

Stage 2: Smolt migrating from the lake to the coastal feeding grounds/ocean
Stage 3: Juvenile in the ocean

Stage 4: Juvenile migrating from the ocean to the river entrance

Stage 5: Juvenile migrating from the river entrance to the lake

Stage 6: In the lake, as an adult.

The stage in which an individual is determines whether or not feeding and schooling
occur, which temperature function is used, which resource is seen, and which particular
losses take place (see Table 7). External feeding occurs in stages 1 (post yolk-sac), 3,
and 4; schooling occurs in stages 1 (post yolk-sac) and 2.

There are two temperature functions used in the model, one to simulate the tem-

perature in the lake and one for the temperature in the ocean. The basic formulation
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for the temperature function, T' [°C], is

Thigh;Tlow sin (t Jis t; + 3771-) + Tlow‘;Thigh for 0 <t; < tpeak
peak
T(ts) =

T’i _Tow . Tow+Ti
. th : S (36577;p8ak (tJ - tpeak) + %) + % for tpeﬂk < tr < 365

(1.20)
where ¢; is the Julian day of the year, T}y, [°C] is the low temperature which occurs
in the lake or ocean, and Th,g, [°C] is the high temperature which occurs in the lake
or ocean on Julian day tpeq;. The values used for the ocean environment are from [26]
and [28]; the values used for the lake are from these as well as [63].

The resource utilized by the salmon in the lake environment is different from that
seen in the ocean. In the lake, the prey item is parameterized to simulate the zooplank-
ton Cyclops bicuspidatus; Cyclops appear to be the sockeye’s primary food item and
are consumed in every season [61, 76, 162]. Euphausiids are the primary food source
for sockeye once they have migrated from the lake [9, 28, 176]. In the model, the ocean
resource is assumed to be Thysanoessa spinifera [176].

In the model, the cue to migrate from one environment to the next is governed by
three factors. The first criteria is that the individual must have at least a specified
threshold mass. For migration from the lake, an individual must weight at least 6 (wet)
or 1.55 (dry) grams [28, 35, 100, 108]; for the spawning migration, an individual must
weight at least 1400 (wet) or 434 (dry) grams [28]. The second and third criteria that
must be met are a combination of temperature and season. For the smolt migration to

occur, it must be the first six months of the year and the temperature must be between
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4 and 17.5°C [35, 63, 78, 90, 92]; this corresponds to the spring time. Due to a lack of
temperature information for the spawning migration, the final criteria for the migration

from the ocean is only the correct time of year, which is mid-June to mid-September [28].

Schooling

While it has been explained (in the section which discusses growth terms and in Ap-
pendix IIT) how schooling modifies the model equations through the encounter rate and
size-dependent mortality, the actual implementation of schooling in the code requires
further explanation.

The creation of schools in the freshwater environment is based upon the value of idiv,
the maximum possible number of schools, and the minimum and maximum lengths of all
fish in the freshwater environment at each time step. Once the minimum and maximum
lengths are known, this interval is subdivided into smaller intervals using the value of
idiv. Every fish in the freshwater environment then fits into one of these subintervals.
Naturally, it is possible for some subintervals to be empty, which is why idiv is the
maximum possible number of schools, and not the actual number of schools. The pur-
pose of implementing schooling in this manner is to group individuals of similar length
together, as this is how it has been suggested that fish school in their natural environ-
ment [3, 45]. Given that the size interval of all the fish in the freshwater environment
is recalculated at each time step, changes in the total number of schools, the number of
individuals within each school, and the association of an ecotype with a specific school

are all possible. This reorganization of schools at each time step is supported by [154]
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where it is noted that schools frequently undergo repeated organization.

1.3 Population Model

To study the dynamics of the population, the individual growth model is incorporated
into a system of hyperbolic partial differential equations of extended McKendrick-von

Foerster type:
dp  Op 3(p-gL)+3(p-gs)

ot Oa ompy, omg

=—ulp)-p (1.21)

where the population density function, p = p(t, a, mr,mg), is given in numbers per age
(a), per mass of lipid (mpr), per mass of structure (mg), per volume of environment.
The growth rates of the lipid and structure compartments, represented by g7, and gg [9]
respectively, are calculated from equations (1.2) and (1.3) or equations (1.4) and (1.5),
depending on the life history stage of the fish. The mortality rate is given by p [é] and
the birth process is specified by a boundary condition which can be represented in the

following manner:
,O(t, 07 MLy, mSO) =

o0 0 o0
/ / / B(t,a,mr,,ms,, mr,ms)p(t,a,mr,mg) dng, dms da. (1.22)
0 ms, Jmr,

The birth function, 3, represents the number of eggs with lipid content my, and struc-
ture content mg, born to an individual of age a with lipid content my and structure
content mg at time t.

The mortality rate is stated explicitly in equation (1.21) and consists of the sum of
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a few different types of mortality: age-dependent, size-dependent, density-dependent,
and young-of-the-year (when appropriate). See Appendix III for details on each type of
mortality.

The method of characteristics is used to reduce equation (1.21) to a system of ordi-

nary differential equations:

da _
a=1
f=1
d
mL — gy, (1.23)
d
o= 9s
d d, d,
K= (n i)

which are valid along the characteristic curves, where X is the characteristic parameter.
This system of equations is solved numerically in the simulation approach used here.
While any number of individual ecotypes can be used to represent the population,
here the initial population is composed of 243 different types of individuals. Each
ecotype is described by its own partial differential equation in the form of equation
(1.21), resulting initially in a population model consisting of 243 equations. The actual
parameters used to induce variability in the individuals, and hence the population, were

determined by the results of the sensitivity analysis and will be discussed in Section 2.2.
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1.4 Other Models

As stated in the article by Hallam et al. (2000), other authors have implemented
models which investigate energetics and growth in fish populations. Many of these
articles are based on the work by Kitchell et al. [112, 113]. The dynamics at the
population level are typically derived by multiplying single fish dynamics by estimates
of the population size and cohort mortality rates [87]. Some populations which have been
explored are the bluegill [112], yellow perch and walleye [113], largemouth bass [161], lake
trout [181], sockeye salmon [13], and kokanee [183]. Hewett and Johnson (1992) created
a generalized bioenergetics model and provided physiological parameters for twenty
species. Some authors have expanded these population models to include temporal and
spatially explicit relationships [17, 20, 157, 158]. For further applications of these types
of models, see [87, 97, 98]. See also [187] for a more detailed overview of some of the
models mentioned here.

Age-structured models for fish have also been developed [48, 51, 52]. In [49], the
authors used an individual-based approach to analyze the dynamics of smallmouth bass
populations.

As was mentioned previously, the model presented here is a modification of a rainbow
trout model [82], which was originally based on a model for Daphnia [85]. Other models
which have been developed also for Daphnia and which use a similar philosophy to
the one presented here can be found in [83, 118, 138]. The details of the models are,

however, dependent on the study organism, and therefore, will be different from the
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sockeye salmon individual and population models described here.
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Chapter 2

Sensitivity Analysis

Sensitivity analysis investigates the effect that small changes in input parameters have
on the model outputs of interest. By determining which parameters have a significant
effect on the model output and which parameters have comparatively little influence, we
are essentially determining which parameters control the model. While there are many
methods available to perform sensitivity analyses [86, 105, 173, 195], the technique used
here, known as design of experiments (DOE), is borrowed from the field of statistics.
Some advantages of using DOE are that interactions between parameters and the effect
of these interactions on the outputs of interest can be accounted for; the number of
simulations performed can be kept to a minimum while maximizing the information that
can be extracted from the results; polynomial-type behavior can be investigated; and,
sequential experimentation can be used. Using DOE also makes it possible to produce

a highly simplified approximation model to the computer model, which is analogous to
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regression analysis.

2.1 Methods from Design of Experiments

Different methods within the DOE setting have been used to perform sensitivity analyses
of simulation models. In this section, a description of various designs and examples of
where each has previously been used as a tool for sensitivity analysis of computer models
can be found.

Before presenting examples of the use of DOE as a sensitivity analysis tool, some
background information on the actual methods from DOE is given. There are a wide
variety of texts which explain DOE, some give a broad presentation [139], while others
are specific to a particular method. See [114] for an overview of some statistical methods
applied specifically to simulation models.

In the following subsections, the input parameters, or factors, will be represented by
capital letters. If there is interaction between any parameters, meaning that the effect
of one parameter on the output is dependent upon the level of another parameter, it
will be represented by combining the factors involved in the interaction. For example,
if a model has three input parameters, they will be represented by A, B, and C. If there
is interaction between, say, parameters B and C, this will be represented by BC. The
effect that a change in the level of an individual factor has on the output of interest is
typically called a main effect.

Finally, keep in mind that my outlook on the use of DOE as a tool for sensitivity
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analysis is on deterministic models, i.e., there is no random error component in the
models being considered. Therefore, we are not concerned with measures of statistical
significance, only the magnitude of the estimated effects and interaction effects of the
parameters on the model output. Furthermore, the order in which the simulations are
completed is not important. Note that the computer models from the literature given

as examples in the following sections are not necessarily deterministic.

2.1.1 Standard Methods

There are several types of designs which are commonly used in DOE. The reasons for
their predominant use range from ease of design and analysis to their balanced and
orthogonal properties. These will be referred to as standard designs and include full

and fractional factorials. One-factor-at-a-time designs are also discussed here.

One-factor-at-a-time Designs

The one-factor-at-a-time method can take on many forms, but is just as it sounds. Most
typically, each simulation is run with all factors held at their base level except for one.
If each factor is being varied by one level, the number of simulations performed will
be equal to the number of inputs to the model plus one extra simulation where all the
parameters are left at their base values. This approach does not allow for the estimation
of interaction among parameters.

This method was used in [185] as an example of a crude sensitivity analysis approach

of a model which investigated the net present value of a gas transmission system on the
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Indonesian island of Java. The author notes that the one-factor-at-a-time method is the
most popular one in applied problems and cites some examples. One-factor-at-a-time
sensitivity analysis, referred to as differential sensitivity analysis in Lomas and Eppel’s
(1992) paper, was also used to study three simulation programs which aided in the
design of passive solar buildings [129]. The authors compared this method to two other
non-DOE methods.

Note that the original model on which this dissertation is based was for a model
of Daphnia [85] which was subsequently modified to model rainbow trout [82]. The

sensitivity analysis used in [85] was a one-factor-at-a-time method.

Full Factorial Designs

A full factorial design takes every possible combination of every parameter with every
other parameter, at each level under consideration for each parameter. Full factorials
can be run at any number of levels (> 2) for each factor, however, the most common
use of the full factorial is with factors that vary across two levels. Thus, the two-level
full factorial is typically referred to as a full factorial. From this two-level full factorial,
it is possible to estimate both the main effects of the parameters and all the interaction
effects on the model output. It is not possible to estimate quadratic effects, i.e., terms
of the form A%, B?, etc. However, quadratic effects for individual parameters can be
estimated by utilizing more than two levels for a factor.

As an example, if we have three parameters, each with two levels to investigate, a

full factorial design will result in running 23 = 8 experiments. (In the computer model
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setting, each “experiment” is actually a single simulation of the model.) For this two-
level example, if we use “+” to represent running a parameter at its high level and
4

=7 for its low level, then the treatment combinations which would result in the eight

simulations would be:

A B C
o
oL
+ + - (2.1)
- -+
+ - +
-+ +
+ 4+ +

From these simulations, it is possible to understand the effect that A, B, and C each
have on the model output. Additionally, the interaction effects AB, AC, BC, and ABC
explain how the effects of A, B, and C change as the levels of other factors change. This
is just a small example of the full factorial design. Keep in mind that this design can
quickly result in a huge number of simulations, depending on how many parameters are
involved and at how many levels. If we had 30 parameters, each at two different levels of
interest, we would have to run 230 = 1,073, 741, 824 simulations. If we assume that each
run takes one second, it would take just over 34 years to complete all the simulations

and the amount of data created would probably take just as long to analyze!
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It is not possible to estimate quadratic effects using a full factorial design, however if
the model under consideration is deterministic, we can add one more simulation (at the
“center”) which will allow us to estimate the sum of the quadratic effects. From this,
we can at least determine if quadratic effects are significant. If necessary, this design
can be sequentially augmented to form a central composite design (discussed in Section
2.1.3) to estimate all quadratic terms.

Full factorial designs have been used to study the sensitivity of model outputs to the
input parameters in a number of models, but primarily when the number of parameters
was small. The following examples are for three inputs at two different levels. The
full factorial design was used to find the effect of model inputs on production cost for
a model of a system for ethanol production from woody biomass [77], on the output
of a coal transportation model [115], and on a model which illustrated the impact of
plating defects on the reliability of vias and Plated Through Holes [46]. The full factorial
design was also used for sensitivity analysis in a model for invasive plant spread with
five parameters [99] and in a model which was used to study the relationship between
landscape patterns and the spread of mistletoes [124]. Other examples may be found

in [89].

Fractional Factorial Designs

Fractional factorial designs are subsets of full factorial designs and are the most common
designs used. An often performed role of the fractional factorial design is parameter

screening. These designs can be as small as 2877 (> k), where k is the number of input
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parameters and p is an integer which will be further explained in the next paragraph. In
statistics, screening experiments are used prior to more detailed analyses to identify the
dominant factors among a large number of factors. When there are a large number of
parameters, it is typically assumed that the output is determined primarily by just a few
main effects and low-order interactions which implies that the higher-order interactions
are assumed to be negligible. This is known as the sparsity of effects principle.

Two-level fractional factorial designs are referred to either as 28~ fractional factorial
designs or as a 5 fraction of the 2% design. (See [18] for a full explanation of this design.)
k is the number of parameters and p is the number of dependent parameters. The
number of simulations performed is n = 2¥~? and the given Roman numerals explain
the confounding properties of the design, where confounding and aliasing mean that
effects are inseparable from each other during analysis. The number of simulations is
reduced from the full factorial case by aliasing p individual parameters with higher-order
interactions. This aliasing is explained by the resolution of the design.

Resolution I711, IV, and V designs are the most common and were the ones primarily
found in the literature. In general, a resolution 71 design has main effects aliased with
two-factor and higher-order interactions. A resolution I'V design has main effects aliased
with three-factor and higher-order interactions, and two-factor interactions aliased with
other two-factor and higher-order interactions. A resolution V' design has main effects
aliased with four-factor and higher-order interactions, and two-factor interactions aliased

with three-factor and higher-order interactions. The design used will depend on the
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number of parameters in the model as well as the lowest order interactions which can
be assumed to be negligible. For example, a ten parameter model with all interactions
assumed negligible can utilize a 2}?;6 design (n = 16) which allows for estimation of all
main effects. However, if it is only reasonable to assume three-factor and higher-order
interactions are negligible, but we want to estimate both the main effects and two-factor
interactions, a 2%/073 (n = 128) is required. In practice, with some prior knowledge as
to which interactions are important, a 2}[‘];5 design (n = 32) with a well planned alias
structure could possibly be used.

For clarity, an example of a resolution I/ design is given here. If we have a model
which has six parameters, each at two levels of interest, then we can generate a 2?;13

design by first generating a full factorial in 6 — 3 = 3 parameters (see (2.1)) and then

aliasing the remaining three parameters with interactions involving the first three pa-
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rameters. The treatment combinations would be:

- - - 4+ + +
+ - - - -+
oL 4
+ + -+ - - (2.2)
44
+ -+ - 4+ -
-+ + - - +

if we assumed that D=AB, E=AC, and F=BC.

A resolution 111 design can be increased to resolution IV by using the fold over
principle. Fold over is accomplished in this situation by executing the simulations that
would result if we reversed the sign of every treatment combination used to create the
resolution /11 design. This results in breaking the links between the main effects and
the two-factor interactions with which they are aliased, allowing the main effects to be
estimated clear of any other two-factor interactions. Fold over techniques may be used
to increase all odd resolution designs to the next highest even resolution design; see [139]
for more details.

Folding over the resolution 71T design given in (2.2) would result in the following
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sequential design:

+ + + - - -
-+ + + 4+ -
+ -+ + - +
- -+ - + + (2.3)
+ + - - 4+ +
-+ -+ - +
+ - -+ 4+ -

If we look, for example, at D which is supposed to be equal to AB from the aliasing
structure chosen previously, we see that this no longer holds true (D=-AB); therefore,
when this fold over is combined with the original 2?1_13 design, D is no longer aliased
with AB. We now have a resolution I'V design as a result of only 16 simulations.

Fractional factorial designs are considered orthogonal because effects are either per-
fectly correlated (via the alias structure) or perfectly uncorrelated with other effects.
Conversely, a non-orthogonal design can have some partially correlated effects, however,
they typically require fewer simulations.

Fractional factorial designs have been used as a tool for sensitivity analysis of a
number of models across a wide variety of fields, however, the authors in [96] noted that

full and fractional factorial designs have not been used to a great extent in environmental
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modeling. They proposed using these designs and gave examples from the fields of
numerical global climate modeling, air pollution management decision support systems,
and water quality modeling. Although not found to any great extent in the ecological
modeling literature, note that fractional factorial designs were brought to our attention
as a method for performing sensitivity analysis in [169]. The author compared different
sensitivity analysis methods and applied the fractional factorial design method to a
model of phytoplankton growth.

Kleijnen (1997) discussed designs of resolution 171, IV, and V in his paper and cited
some examples. A 2%;16 design was used to analyze the sensitivity of a model which
simulated the air flow and pollutant transport in a three-story building [69]. The authors
compared this method to the Monte-Carlo method and discussed a hybrid of the two.
Fractional factorial designs were also used as a sensitivity analysis method in a study
of an energy-system model for multi-family buildings [80], for a model of a wastewater
treatment system [184], for a model of environmental radionuclide movement, and for a
model of salt dissolution in bedded salt formations [105].

A 2?1_13 sensitivity analysis was conducted on a model of a residential desuperheater
[125]. This article is actually an example of the misuse of DOE. While there is nothing
wrong with using this as a screening design to estimate the main effects, the conclusions
drawn for the designed experiment reported were incorrect. The authors found that

some two- and three-factor interactions were significant; this cannot be determined

from the design that was presented because these higher-order interactions were aliased
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with the main effects. A correct analysis of the results and an explanation of the misuse

is given in [120] (see Appendix IV).

2.1.2 Non-standard Methods

Non-standard designs are typically non-orthogonal, and, therefore are useful when ran-
dom error is minimal. In the case of deterministic models, where there is no random
error, non-standard designs become a viable option as a tool for sensitivity analysis.
The designs discussed in this section, Group Screening, Plackett-Burman, Cotter,
Saturated Resolution V', Taguchi Designs, and Robust Parameter Design, are among the
countless number of non-standard designs available. Another set of non-standard de-
signs, not discussed in detail here, are the optimal designs (e.g., D-Optimal, A-Optimal,
G-Optimal), which are computer generated using an algorithm with criteria specific to

the type of optimality.

Group Screening Designs

Group screening designs were first introduced by Watson (1961). In this type of design,
factors are assigned to groups and sequential experiments are required. Although group
screening designs can be performed in different ways, the basic methodology is as follows:
multiple factors are grouped together to form a smaller number of “new factors” on
which experiments are performed. This design is in essence a resolution I design,
where follow-up experimentation can focus on factors involved in groups identified as

significant in previous experiments. It is possible to incorporate a group screening
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procedure into the other types of designs described in this chapter by treating a group
of factors as an individual factor and running the design with the new groups as the
factors.

An overview of group screening is given in [40] and [179]. The use of group screening
in combination with factorial designs and central composite designs was discussed and
then applied to a simulation of a flight simulator in [40]. The Plackett-Burman design
and group screening were used in [155]. In an endnote, Kleijnen (1987) cited a variety

of examples of group screening designs.

Sequential Bifurcation A modification of Jacoby and Harrison’s (1962) group screen-
ing method, sequential bifurcation, was introduced in [15] and applied to a model for
the assessment of the greenhouse effect [16]. In [15], the author compared the modi-
fied sequential bifurcation method to two-stage group screening [135, 136, 196], multi-
stage group screening [127, 148], and briefly to a group screening method by Morris
(1987). The sequential bifurcation method was compared to Morris’ factorial sampling

method [141] and used in the sensitivity analysis of a building thermal model in [47].

Iterated Fractional Factorial Design A new group screening method which is a
variation on fractional factorial design is the iterated fractional factorial design (IFFD)
[4]. IFFD can be used to estimate main effects and two-factor interactions of the im-
portant parameters and can also be expanded to estimate quadratic effects. It has been

demonstrated that the success of this method depends strongly on the number of influ-
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ential parameters there are to find and weakly on the total number of parameters; the
best results were found when the model output was dominated by a small number of
highly influential parameters. IFFD has difficulty dealing with higher than quadratic
order effects [172] and tends to give incorrect results in situations where there are many
equally important parameters [171]. The IFFD method has been used to find the in-
fluential parameters in a probabilistic assessment model of environmental impacts from

the disposal of used nuclear fuel [4].

Plackett-Burman Designs

Plackett-Burman designs are actually a subset of the two-level fractional factorial de-
signs. They are used for analyzing up to n — 1 parameters in n simulations where n is
a multiple of four. However, if n is a power of two, the designs are the same as that of
the two-level fractional factorial case. Plackett-Burman designs which do not reduce to
two-level fractional factorial designs are generated in an unusual manner and have com-
plex aliasing structures where factors are partially aliased with a number of interactions
(see [139] and [151] for details). Interpretation of these designs can be complicated and
the probability of both false positives and false negatives with respect to the significant
factors is much higher than with standard designs.

The Plackett-Burman design with fold over was used to find the sensitivity of a model
which estimated economic risk [185, 186]. In [186], the authors discussed fractional fac-
torial design, the Plackett-Burman design and compared these methods to Monte-Carlo

analysis. The one-factor-at-a-time approach was compared to the Plackett-Burman
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design in a case-study of a model which investigated the net present value of a gas
transmission system on the Indonesian island of Java in [185]. A sensitivity analysis us-
ing the Plackett-Burman design was also used in a model for the Ground water Loading
Effects of Agricultural Management Systems (GLEAMS) [44], in a model which simu-
lated the transport of chemicals in soil [93], and in combination with a group screening

technique in a building thermal model [155].

Cotter Design

The Cotter design was introduced in [43] and was originally called the systematic frac-
tional replicate design. The purpose of this design is only to identify the parameters
which are highly influential or are involved in interaction effects which are highly influ-
ential, not to model their effects. These parameters can then be further explored with
other designs. The primary advantage of the Cotter design is that no prior assumptions
about interactions are made and there are no alias chains to untangle, as with other
designs. The Cotter design is a modification of the one-factor-at-a-time approach. For
a model with k£ parameters which vary across two levels, 2k 4 2 simulations are needed.
The first simulation is run with all parameters at their low level. The following k£ runs
maintain the form of the first simulation with the exception that one factor in turn is
chosen to be run at its high level. The next k£ simulations are run with every factor
at its high level except for one which is, in turn, at its low level. The last simulation
is run with all factors at their high level. The last k£ 4+ 1 runs are in effect the same

as folding over the first £ 4+ 1 runs. The Cotter design estimates the sums of all odd
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order effects involving each factor and all even order effects involving each factor. This
means that for each factor, there is an estimate which is composed of the sum of the
main effect and all odd-order interactions in which it is involved. The second estimate
for each factor is the sum of the estimates of all even-order interactions in which the
factor is involved. It is cautioned, however, that false negatives with respect to factor
significance are possible due to cancelling of effects.

In the current literature, I have been unable to find any simulation models which
implement the Cotter design as a method for sensitivity analysis. It is mentioned here
because it is one of the methods I use in the sensitivity analysis of the individual model

in Section 2.2.

Saturated Resolution V' Designs

Saturated designs generate only enough information to estimate effects, with no infor-
mation left to estimate error. Using saturated designs to analyze the sensitivity of a
deterministic model, where random error should be zero, does not pose a problem. Sat-
urated resolution V' designs were introduced in [160]. The estimation of the main effects
and two-factor interactions is possible in a design of resolution V.

As with the Cotter design, I did not find the saturated resolution V design used
anywhere in the literature as a tool for sensitivity analysis. I include it here because it

is used in the sensitivity analysis of Section 2.2.
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Taguchi Designs

Taguchi methods are used to overcome the limitations that come with running a full
or fractional factorial on a model which has a large number of parameters. Taguchi
designs are a set of carefully chosen orthogonal arrays taken from the full factorial
design. In setting up a Taguchi design, one must select the most suitable orthogonal
array and assign the parameters to the appropriate columns based on prior knowledge of
the system. The orthogonal arrays for two-level parameters are denoted by L4, Lg, Lig,
L3s, ... where the subscript indicates the number of simulations to be performed for up
to four parameters (noninclusive) for the Ly design, between four and seven parameters
for the Lg design, etc. For tables of orthogonal arrays and more details on setting up a
Taguchi design, see [170].

Taguchi designs work well when interactions among factors are minimal, however, if
an interaction is thought to be important, it can be included by assigning the interaction
to its own column. The Taguchi design makes the assumption that the relationship
between the parameter values and the output values is linear; when this assumption
is violated, the Taguchi method may produce meaningless results [39]. Note that this
assumption does not imply that the Taguchi method assumes that the actual model is
linear. See [39] for a discussion of other benefits and limitations of this type of design.

Clemson et al. (1995) compared Latin hypercube sampling and the Taguchi de-
sign and applied the latter to a model of a conventional activated biosolids wastewater

treatment plan. Raju and Pillai (1999) used an L3s Taguchi design for their sensitiv-
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ity analysis of a multicriterion decision making tool for the performance evaluation of
an irrigation project in India. A mixed-level Taguchi design was used in [55], where
the authors investigated the sensitivity of a behavioral model of microelectromechanical

systems.

Robust Design Methodology

Robust design methodology, often referred to as robust parameter design, is typically
used in an industrial manufacturing capacity. Its purpose is to divide a set of parameters
into two groups, a control group and a noise group, and determine which settings of
the control parameters are optimal for minimizing response variation over the changing
levels of the noise parameters. This is accomplished primarily through the investigation
of control by noise interactions. The designs used in this methodology are termed cross
arrays and are composed of two separate designed experiments. Most often, standard
designs, such as fractional factorial, make up the cross array by creating a design for the
control factors and running it for each experiment of the design from the noise factors.
This requires N runs where N = Nconirol X Mnoise- Analysis of this design consists of
exploring the changing effects of the control parameters over the domain of the noise
parameters. Additionally, changes in response variation are quantified and attributed
to individual control parameters'. For an introduction to this method, see [202].

This type of experimental design was not found in the review of the literature as a

method for sensitivity analysis of computer simulation models, however, similar method-

!These are actually control by noise interactions.

45



ologies have been used in [141]. The robust design methodology is introduced here

because it is used later in the sensitivity analysis of the individual model.

2.1.3 Response Surface Methods

In using DOE for sensitivity analysis on a computer model, approximating least squares
linear models can be created. Many times, a linear model may prove to be an inadequate
representation of the computer model. In these cases, quadratic effects for factors may
need to be quantified. Response surface methodology is used to create designs for this
purpose. For more information on response surface methodology, see [111].

Although not discussed in this section, note that full and fractional factorial designs
with factors varied across more than two levels can be used as response surface designs.
Some other response surface methods, which have not been found in the current litera-
ture as tools for sensitivity analysis of computer models and are not discussed here, are

the Box-Behnken, non-central composite (sliding cube), and uniform shell designs.

Central Composite Designs

Central composite designs can be used as a next step in sequential experimentation once
a resolution V or higher design has been utilized. These designs are easily constructed by
adding 2k + 1 simulations to the original design, where k is the number of parameters.
This is accomplished by adding the center and axial points to the full or fractional
factorial design and results in each parameter being varied across five levels. See [139]

for details.
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Central composite designs are discussed in [116]. In a study of a model of air
scattered neutron dose from particle accelerators, the authors compared the use of a
central composite design to a full factorial design at two levels for six factors [159].
Third-order orthogonal central composite designs were used to study the sensitivity of
input parameters in plant growth simulation models [7]. A model of supply response
of Australian broadacre farmers to four different input prices, each varying across five

levels, was investigated using central composite design in [81].

2.2 Sensitivity Analysis of the Individual Model

Initially, Monte Carlo simulations with Latin hypercube sampling were used for the
sensitivity analysis. Distributions of parameter values which were assumed to be normal
were constructed. It was not known if parameters were correlated with one another,
therefore, all pairwise correlations were assumed to be zero?. The measure that was
used to detect a relationship between the model outputs of interest and each parameter
was simple pairwise correlation. However, the results of this method did not prove
to be useful. Accurate and consistent measures of relationships between individual
parameters and the responses proved to be difficult to attain. Thus, a new sensitivity
analysis technique which considered the possibility of parameter interaction was desired.

The technique chosen to perform a sensitivity analysis depends on the characteristics

of the model being investigated: How many parameters are being considered in the

2See [60, 178] for a discussion on why assuming zero correlation between parameters may not be a
good assumption.
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sensitivity analysis? How long does it take to run one simulation? Is it costly to run
a simulation? Could interaction between effects be important? Does the possibility of

quadratic or higher order effects need to be considered?

2.2.1 Isolation of Potential Sensitive Parameters

Ninety-five parameters were included in the initial screening sensitivity analysis of the
individual model; twenty-two of these were known to be population level parameters
(those associated with mortality), but were included in the sensitivity analysis of the
individual model to verify that parameters which were known to not affect the individual
model did not show up as sensitive. Note that all of the factors in the model considered
here are continuous, not categorical. The initial values used for each parameter were
either found in the literature or created, as noted in Tables 1-6. These nominal values
are referred to as the “mean” level for each parameter. Associated with each parameter
value is also a standard deviation, taken from the literature when available and otherwise
set to ten percent of the mean value. One exception to this rule was the standard
deviation for parameters that had dimensions of [days]; these parameters had standard
deviations set to values of either 1.0 or 10.0. The standard deviation is the base value
that is added or subtracted from the mean value in order to run an experiment at either
its high (+) or low (-) level, respectively.

There were a few exceptions to this set-up. Some parameters were already set at

either their lowest (aa, spwnl, rmfec, aal, migll, aao®) or highest (bb, spwn2, bbl, bbo)

3The names of the parameters given here are the names used in the code.
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possible levels, and, therefore, were not allowed to go beyond the values set as either
a minimum or a maximum. In order to induce changes across low and high levels for
the sensitivity analysis, the means were readjusted such that the extreme values would
not be exceeded. Parameters ab and a6 were handled in a similar manner to satisfy the
condition ab < ab.

The final exception to the mean values and standard deviations used included the
parameters related to temperature modification (see Table 4), which were found, in
most cases, by fitting a non-linear function to data from the literature (see Appendix II).
Instead of associating a standard deviation to each of the parameters which made up the
function, a surrogate parameter was created to allow the function value to change across
low and high levels. The surrogate parameter had a mean value of 1 (when the function
was evaluated at the base case, the multiplier was 1 so the value of the function did not
change) and a standard deviation of 0.1. For example, instead of varying the parameters
(fkopt, falpha, ftopt, fthigh) in the function which describes how temperature affects
feeding, fo(7T), a new parameter, say Y, was created which modified the value of fo(T")
such that the new value was x - fo(T'). The functions associated with the temperatures
in the lake and ocean environments which were determined by the time of the year were
also modified in this fashion.

The preliminary sensitivity analysis demonstrated that interaction between effects
existed and the extent to which they could be considered negligible was questionable.

The decision about the importance of higher order effects were made during sequential
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experimentation. Depending on how the parameters were varied, one simulation of the
individual model with only one ecotype took approximately three to five seconds. There
were no costs associated with running the model, other than the time invested. Taking
this into consideration, if the time it took to run one designed experiment versus another
was only a difference of a few hours, the experiment which would yield more conclusive
results was chosen because the simulations were usually run overnight. Therefore, if
the costs associated with running a model were greater than those here, the number of
simulations could easily be reduced?.

To try to eliminate the possibility of failing to identify a parameter that had an
effect on the output variable over a small part of its domain, as well as to identify any
nonlinearities and/or thresholds in the effects of the parameters, varying levels of high
(+) and low (-) were implemented. The levels used were obtained by multiplying the
standard deviation of the particular parameter by 4+ 0.01, 0.05, 0.10, 0.25, 0.50, and
1.0.

The model outputs used as forecast variables were the total mass of an individual,
my, + mg, at the beginning of Stages 2, 4, and 6 (see the discussion on Migration in
Section 1.2.1), the number of eggs produced, and the age at reproduction. Hereafter,
the forecast variables will be referred to as Mass 1, Mass 2, Mass 3, Eggs, and
Age, respectively. The idea behind the sensitivity analysis was to not only find to

which parameters the forecast variables were sensitive, but also to be able to adjust the

“The number of simulations could have been further reduced by excluding the additional population
parameters which were included for reasons previously stated.
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parameter values within their ranges such that the forecast variables would be within
realistic ranges of values. The following ranges of values from the literature were used

as goal values:

Mass 1: 0.70-1.74 grams (dry)® [64]

Mass 2: 600-1200 grams (dry) [88]

Mass 3: 410-830 grams (dry) [62]
Eggs: 1500-5500 [62]

Age: 1095-1460 days (3-4 years)® [28]

Once the sensitive parameters were known, they were then used to construct a popula-
tion of different individuals, all with reasonable forecast values.

The statistical package JMP® [107] was used to create some of the designs that were
implemented in the sensitivity analysis. JMP® is able to generate screening designs,
Cotter designs, response surface designs, Plackett-Burman designs, and many others
that were not utilized here. The response surface design is limited to eight factors.
JMP® is not able to create the saturated resolution V design, however, this design can
easily be generated by hand (see [160]). The Fit Model platform was used to analyze

the model output associated with the designed experiments.

®The value for the mass given here is for smolt migration taking place in the first year.
6The possibility of non-fourth year migrants was not excluded, however, it is accepted that Fraser
River sockeye typically migrate in their fourth year.

51



Resolution /1] and IV Designs

The sensitivity analysis was begun with a resolution /11 screening design. For a com-
plete picture of the sequential experimentation implemented, see Figure 2. The intent
was to estimate main effects in a general screening procedure, however, higher resolu-
tion designs were sequentially performed in an effort to identify main effects clear of
interaction terms. Models of the main effects from the resolution 777 design which was
folded over into a resolution IV design had high coefficients of determination (r? > 0.8),
however, validation of these models was completely unacceptable. Similarly, residual
plots showed groupings of data not explained by any estimable effects. These poor

model qualities were attributed to possible interaction effects.

Saturated Resolution V' Design

Following the initial screening designs, a saturated resolution V' design was run on all
95 factors in 4,561 runs. These models become extremely inefficient with respect to
estimating precision with so many factors, however, due to the deterministic nature of
the responses, this was not an issue. The results of this design were again confusing, as
models of main effects could not be validated. Significant main effects were judged not
through statistical tests but subjectively through the magnitude of the estimates. One
reason for this was because the estimate of error, o, measures not random error, but
variation due to missing terms in the model. When judging for significant main effects,

there was not a clear cutoff in the magnitude of effects. Since this design had higher

52



order interaction effects confounded with the main effects, it began to be hypothesized
that estimates for main effects may in many cases be caused by the additive effects of
several small higher order interactions. This design was folded over to create a resolution
VI design in an effort to clear additional higher order interactions (four-factor) from
the main effect estimates. Results did not change significantly and no final conclusions

could be drawn”.

Cotter Design

The next design implemented in this series of sequential experiments was a Cotter
design, which required 192 runs. The Cotter design is not used to build models, but to
estimate the sums of odd order effects and the sums of even order effects for which each
factor is involved. Included in the estimate of odd order effects is the main effect for
each factor. In analyzing this design, it was found that the sums of even order effects
were, for many factors, just as large or even larger than the sums of odd order effects.
These results further backed the emerging hypothesis that there were many somewhat

significant interactions between the parameters.

Results of Screening

As an approach to factor screening, reverse methodology was used in that, instead

of screening for significant factors, screening for insignificant factors was employed.

"Future references to the saturated resolution V' design actually refer to the results of the folded over
design.
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To accomplish this, the results of the saturated resolution V' design and the Cotter
design were combined. The estimates of main effects from the resolution V' design were
compared to the sums of odd order effects from the Cotter design. It is reasonable to
assume that, since these designs have different alias structures, if a factor showed very
little effect in the resolution V' design and also showed a low sum of effects in the Cotter
design, then the main effect for that factor was most likely small. On the other hand,
if a factor estimate was large in either or both designs, then it was cause for further
investigation.

This type of analysis is demonstrated in Figure 3 where the resolution V' and odd
Cotter estimates for Mass 2 and Eggs are plotted against one another®. Note that
the circled points showed little or no effect, having estimates close to zero, in both
the Cotter and resolution V' designs. Therefore, the parameters associated with these
points were assumed to have little or no effect on the forecast variables, Mass 2, Mass
3, and Fggs. Thus, by eliminating the insignificant factors, the possible significant
factors remained: a0l, a3, a4, oplx, aOp, ab, k1, cg, oppz, obdensp, and the surrogate
parameters associated with temperature in the lake and ocean environments, which will
be respectively referred to as templ and tempo.

The Mass 1 output, the mass at time of migration from the lake environment, was
found to be most sensitive to the parameter mmsigl, which is the minimum mass that

must be reached in order for migration from the lake to take place.

8The plot for Mass 2 is only given here due to the strong correlation between Mass 2 and Mass 3
with both plots appearing very similar.
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The parameters to which the Age output was sensitive were difficult to determine.
The results of the screening analysis indicated that Age was most sensitive to eight
parameters (a0l, a3, a4, oplz, zjmgl, blsp, bdensp, ppx), however, these parameters,
their interactions with each other, and their interactions with other parameters also
appeared to be important. In trying to validate the effects of these parameters on
Age, consistent measures of the relationship were not found. Since Age was within
the realistic range of values and appeared to be determined by the physiology of the

individual, further sensitivity analyses on this output were not conducted.

2.2.2 Investigation of Potential Sensitive Parameters

Once the possible sensitive parameters were identified, the next step was to look at
the effects of these parameters on the forecast variables in more detail. Sequential

experimentation was again utilized to achieve this goal.

Central Composite Design

A 2%/21_1% fractional factorial design combined with the center and axial points resulted
in an orthogonal central composite design which was implemented in n = 1049 runs.
All non-sensitive parameters were kept at their mean levels.

It was found that across the responses, only eight of the parameters had large effects
(see Table 8). The same seven parameters were influential for each of the responses,
with Fggs having the additional important parameter templ. Despite eight parameters

being listed as highly sensitive for Fggs, it should be noted that templ is extremely
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influential compared to the other parameters shown for this response. Also listed in
Table 8 are the parameters for which the responses were somewhat less sensitive than
those previously mentioned?. These “slightly significant” parameters influenced the
forecast variables, but were not capable of causing extreme changes as were the highly
significant parameters.

The analysis showed that there were small interaction effects and slight curvature
in several of the parameters. As previously stated, an advantage of using DOE for
sensitivity analysis is the ability to create parsimonious approximation models for the
responses. In this case, good approximation models were created over parts of the
domain, however, due to nonlinearities and thresholds, these models could not be used
as global approximations. This further supports the need for the complex individual-

based model implemented here based on the physiology of the individual.

Robust Design Methodology

Having identified the parameters to which the responses were most sensitive, it was also
important to determine whether the interaction effects of other non-sensitive parameters
with the important eight were large enough to be of practical concern. To accomplish
this, robust design methodology was employed. A cross array was created using an
orthogonal 28~* fractional factorial (plus one center point) for the eight important pa-

rameters and, an 88-run, Plackett-Burman design for the remaining 87 parameters. The

°Some parameters appearing in Table 8 have not been indicated as sensitive thus far, but will be
discussed in the following subsection.
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total number of simulations was n = 1496. Through this design, insight into the chang-
ing effects of the eight parameters was gained by running the 28~% 4 1 simulations at 88
different locations within the design space. The standard deviations of the runs in each
Plackett-Burman (i.e., at each point in the 28=% + 1 design) were modeled to determine
if any of the eight important parameters were involved in significant interactions with
any of the other 87 parameters.

In the analysis of this cross array, it was found that parameters oppz, obdensp, k1,
and templ were all involved in interaction effects with other parameters with respect to
Mass 2 and Mass 3. It was also found that five other parameters, zjmgl, zjmgp, blsp,
bdensp, and resvar, also had slightly significant effects or were involved in interaction
effects with significant parameters. However, the extent of these interaction effects was

not large enough to cause concern.

Results of Sensitive Factor Analysis

Through the use of sequential and combined experimental designs, it has been deter-
mined that there were eight parameters to which the responses were extremely sensitive
and nine more to which the responses were less sensitive. Given the extreme sensitivity
of the parameters listed in the first column under each response in Table 8, all of the
highly sensitive parameters, with the exception of templ which was not adjusted, were
set to appropriate values (see Tables 1-6). Four of the slightly sensitive parameters (a0l,
a3, a4, oplz), in combination with the level of resource, were chosen to add variability to

the individuals in the population. For easy reference, each ecotype is assigned a number
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in Table 9.

Although more sequential experimentation was used than was originally thought
to be needed, the total number of simulations performed was still small considering
the resulting thoroughness of the sensitivity analysis. In comparison to the one-factor-
at-a-time method, the DOE approach is more systematic, efficient and thorough. The
potential problem of changing relationships over the domain as previously discussed can
lead to erroneous results with one-factor-at-a-time methods whereas the DOE methods
employed here safeguard against this problem. The use of sequential experimentation
allows the result of each experiment to guide succeeding experiments to achieve a con-
clusive result. While DOE methods have been used as methods for sensitivity analyses
as noted in the literature, the sequence and combination of designed experiments and

the use of reverse methodology here was a new and innovative approach.

2.3 Sensitivity Analysis of the Population Model

Twenty-five parameters were included in the sensitivity analysis of the population model.
All of these parameters were associated with mortality, with the exception of idiv, and
are listed in Table 6. Starting with a population of 243 different ecotypes resulted in
one simulation of the population model taking approximately ten to fifteen minutes.
Again, the only cost associated with running the model was the time invested. Given
no reason to assume otherwise, the assumption that interactions between main effects

were negligible was made.
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A 225718 yegolution I'V design was implemented in 64 simulations. The output that
was analyzed was the average number of individuals over forty years or the lifetime of
the whole population, whichever occurred first, for values sampled the 30th day of each
month. There was no predetermined range of values in which this forecast variable was
supposed to fall; the idea was to find the sensitive parameters and be able to adjust
them by a small amount such that extinction of the population was in general avoided
allowing for the population dynamics to be studied.

The results of this designed experiment were much more clear than the individual
model results. The following parameters, listed in order from most to least, were found
to be sensitive: zmuw, zmuv0, zmuvf, yoymort, and zmua. The first four of these
parameters were adjusted by two standard deviations in the negative direction to achieve
the desired result.

The sequential experimentation used for the individual-based model together with
the fractional factorial design implemented for the population model illustrates the flexi-
bility of the DOE method. Both started out with the same type of screening experiment;
the desired result was immediately achieved for the population model, whereas in the

case of the individual-based model, further sequential experiments were required.

99



Chapter 3

Simulation Results

3.1 Diversity

In general, diversity is a measure which represents how many different types of organisms
are present (richness) and how different the relative abundances of those organisms are
(evenness) [150, 152]. Specific to the sockeye salmon model studied here, diversity of
the population (i.e., number and type of ecotypes remaining) after a steady state was
reached was an output of interest.

Combinations of simulations which varied across different levels of lake resource
(resource) and maximum possible number of schools (idiv) were carried out. The
starting point for each simulation, other than the variation in the resource levels, was
the population consisting of 243 ecotypes described in Section 2.3 (see also Table 9).
Each simulation was run for 2000 years, which allowed for a limit cycle to be reached

in all but two cases.
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As is evidenced by Table 10, varying the maximum possible number of schools under
different resource conditions had an effect on how many ecotypes survived as well as
which specific ecotypes survived. The number of ecotypes remaining as a result of these
simulations, which were run until a steady state was reached, unless specified other-
wise, varied between zero (extinction) and six, however, the most prevalent number of
ecotypes remaining was between one and four. The specific surviving ecotypes, charac-
terized by the values of oplz, a0Ol, a3, a4, and resource, can be cross referenced with

Table 9.

3.2 Cycles and Cyclic Dominance

Cycles and cyclic dominance in salmon populations are phenomena which have been
widely noted in the literature [54, 134, 165, 167, 192]. As defined in [167], a cycle
is a sequence of x lines in successive calendar years, where z is the principal age at
maturity of the population under consideration. (For Fraser River sockeye, z = 4.)
Cyclic dominance means that within the z-year cycle, there is one year in which the
number of returning spawners greatly exceeds the numbers in the other years. This year
is referred to as “dominant” and the other years are called “off” cycles. When the year
following the dominant one is “close”! to the dominant year in terms of abundance, it
is referred to as “subdominant”. The dominant year is placed in the first position of

the cycle and is denoted Cycle I. The subdominant and off years, for a four-year cycle,

110-25% of the value in the dominant year, as per [167].
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are then Cycles II, III, and IV, respectively.

It has been suggested that the sharp decline in the abundance of Pacific salmon pop-
ulations since the early 1990s has been due to a combination of factors which primarily
include climate change, overfishing, and freshwater habitat destruction [119, 146]. Prior
to this decline, it was an important challenge to be able to explain the cycles which ap-
peared, but even more so now that population numbers are dwindling. If the resulting
explanation involves factors which can be controlled, it may be possible to manipulate

the factors to boost the abundance of the salmon populations in all cycle years.

3.2.1 Proposed Cycle Mechanisms

Many explanations, arrived at through examining data and using simple population
models, have been proposed to explain the occurrence of the cycles seen in some salmon
populations. (Reviews can be found in [126, 167, 192].) In the discussion that follows,
the terms “compensatory”, “depensatory”, and “extrapensatory” are used. These three
classifications of the mortalities that affect salmon populations were introduced in [145]
and respectively mean mortalities that are directly density-dependent, mortalities that
are inversely density-dependent, and mortalities that are independent of the population
density?.

First note that it is widely accepted that Pacific salmon cycles and cyclic dominance

are a result of some mechanism which occurs in the freshwater environment [37, 126,

2In the literature reviewed, extrapensatory mortalities were typically associated with environmental
factors.
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134, 145, 165, 192]. The possibility that the cycles came about due to interactions in
the marine environment was not considered specifically due to a study of salmon in the
Fraser River system in [165, 192]. Ricker found that marine influences could not have
generated the asynchronous cycles observed for different races within the Fraser River
system, and, therefore, the cycles must be a result of some mechanism occurring in the
freshwater environment.

Additionally, it was suggested in [192] that cyclic dominance is occurring due to
some type of depensatory mortality acting on Cycles 11, III, and IV in comparison to
Cycle 1. If the mortality was not depensatory, the abundances of the off years would
likely be the same level as the dominant population. However, there is no empirical
evidence which supports this claim [58, 164, 165].

Some authors tried to demonstrate that delayed density-dependent mortality® was
the cause of the Pacific salmon cycles [37, 42, 121, 122, 126, 165, 167, 191, 192]. Ex-
amples of mechanisms which could induce delayed density-dependent mortality were
competition (the large abundance of smolts in the dominant year having an effect on
the abundance or composition of the resource available to juveniles in subsequent years)
and predation (disease, parasites, or predators are built up during the dominant year
and result in a higher mortality rate for the off years). While delayed density-dependent
mortality can reinforce cycling, it has not been demonstrated that it is actually needed

to generate the cycles [143, 144], and in some cases, has not been supported by field sam-

3Examples of both compensatory and depensatory mortality were found.
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pling [165, 192, 200]. Cycles were recreated in the absence of delayed density-dependent
mortality, where depensatory mortality was used instead, in [144]. The results of the
studies in [143, 144] imply that a reduction in fishing mortality in the non-dominant
years could bring about an increase in abundance.

A genetic factor was suggested as being partially responsible for the existence of the
salmon population cycles in [190]. The genetic factor referred to is the age at maturity
for the different lines in the population, which is determined in part by heredity and
in part by environmental conditions. The authors hypothesized that the cycles could
be explained by this genetic factor in combination with high fishing mortality rates.
To prove their hypothesis, the authors incorporated age four and five spawners into a
population model with density-dependent effects and demonstrated that the number of
age five spawners in the population adversely affected the off-cycle lines in the four-year
cycle. This explanation for the appearance of the cycles was refuted in [167] where it
was shown that the occurrence of age five fish in the population tends to increase the
population numbers in the off years. While the authors in [122] recognized that age
at maturity is in most cases the same for parents and their progeny, they believe that
this factor alone cannot explain cyclic dominance. Genetic factors, in general, were
suggested and then dismissed as a possible reason for cyclic dominance in [192] where
the authors sought to find an explanation for cyclic dominance in some other factor,
such as predation, competition, or fluctuations in resource availability.

Another reason for the appearance of the cycles that has been posed is depensatory
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fishing, or fishing mortality that is inversely related to abundance [41, 58, 126, 149].
Depensatory fishing may enhance the natural tendency of the population to cycle at a
period equal to the age at maturity, but the cycles still existed in its absence [37, 126,
144, 167]. The authors in [37, 192] also pointed out that it is unlikely that the aboriginal
and early commercial fisheries were intensive enough to sustain the cycles that existed

prior to 1860.

3.2.2 Cycles in the Model

As the simulations for analyzing the diversity of the population were carried out, a
pattern in the total number of individuals returning to the lake to spawn each year
was discovered. The pattern identified was a cycling of the total number of returning
individuals with a period of 4, 12, 16, or 20 years. The period of the cycle was determined
by whether or not reproduction (by any number of ecotypes) took place in each year of
a four year time span: if reproductions only occurred during one of the four years, then
the periodic cycle was four years long; if reproductions occurred during two of the four
years, the periodic cycle was 12 years; if reproductions occurred during three of the four
years, the periodic cycle was 16 years; and finally, if reproductions occurred every year
in the four year period, the periodic cycle was 20 years.

These different length cycles (4, 12, 16, and 20) encompass all the possibilities for
reproductions which can take place in a four year period, i.e., there are (411) + (;) + (g)

4

+ (4) = 15 possible ways that reproductions can occur each year in a four year period

and each is represented in one of the cycles described. Within a four year period (— —
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— —), if reproductions are denoted by “+”, each of these possibilities can be illustrated.

Reproductions in a single year within a four year period would be one of

If we look at each of these four year periods as a repeating pattern, then each set has
the same basic form, but the year in which reproductions take place is translated. All
of these reproduction patterns result in a four-year periodic cycle.

Reproductions occurring in two out of four years would have one of the following

patterns:
+ + - -
- 4+ + —
- - + +
+ - - +
+ - + -
-+ - +

The first four of these patterns all have the same basic form with reproductions trans-
lated to a different set of consecutive years; similarly, the last two patterns have the

same form with reproductions translated. Each of these patterns results in a 12-year
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periodic cycle.

Reproductions occurring in three out of four years result in four possible patterns:

+ + + -
+ + - +
+ - + +
-+ + +

All of these are of the same form, with the one year in which reproductions do not occur
being translated. A 16-year periodic cycle results here.
There is only one possible pattern for reproductions occurring in all four of four

years:

+ + + +

This pattern results in a 20-year periodic cycle.

Although each of these patterns demonstrated a distinct cycling, each could also
be regarded as a four-year cycle. The values which appeared every fourth year in each
of the 12, 16, and 20 cycles could be considered essentially the same number because
the coefficient of variation (CV') ranged from as little as 0.1% to at most 4%, with an
average of 0.15%.

Given that the population model resulted in periodic four-year cycles and that the
Fraser River system sockeye populations tend to have cycles of four years, a qualitative

comparison of the model output and data from Cultus Lake for the number of returning
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spawners was conducted. Yearly data for the number of returning spawners at Cultus
Lake were available for the years 1956 through 1988 in [54], however, data from 1956,
1957, and 1958 were not included since the four-year dominant cycle value (1955) was not
available. Considering that the number of returning spawners for this lake was positive
for all years reported, the data were compared to the 20-year cycle model output, which
had individuals returning in every year of the four year period. In Figure 4, every year
of the data extracted from [54] was normalized by the first value in the time series and
plotted against the model output, which was also normalized by the value of the first year
in the 20-year cycle. As demonstrated by Figure 4, the qualitative comparison of the
data to the model output was lacking. However, taking into account that the historical
data have been interpreted as a series of four-year cycles, an adaptive fitting scheme
in which the data were renormalized every four years by the value associated with the
dominant cycle was used and yielded much better results*. See Figure 5. Although the
model output did not have as dramatic changes as the historical data, the qualitative
behavior was essentially the same: starting with a dominant year, both graphs show a
sharp decrease, another decrease, and then two increases (DDII) returning back to the
dominant year.

While the four-year cycles which resulted from the model may seem to be an ob-
vious outcome, one must realize that a value of four for the age at maturity was not

programmed into the model. The resulting age at maturity was a consequence of the

“All years in the 20-year cycle from the model were still normalized by the first value given the
previous discussion on the C'V's associated with every fourth year.
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physiology of the individual. It is possible to have individuals which mature at ages
other than four.

Other systems, such as the Kvichak River in Bristol Bay, Alaska and the Skeena
River in British Columbia, have sockeye populations which grow slower and hence mi-
grate and mature at different ages than those of the Fraser River system. For example,
in the Kvichak River system, individuals migrate from the freshwater environment in
their third year and mature primarily at age five [58, 134]. Simulations using a slower
growth rate were executed by adjusting some parameter values associated with indi-
vidual growth. Different cycles appeared as the size-based mortality value, zmuw, was
varied, however, the primary age at maturity in all the simulations was five years with
an age at maturity of six years appearing sporadically.

In all of the simulations executed in which there were only ecotypes maturing at an
age of five years, the resulting cycles had periods of five, 15, 20, 25, and 30 years. When
reproductions took place in only one of these five years, the result was a five-year cycle.
When reproductions occurred in two of five years, a cycle with a period of 15 years
resulted. When reproductions occurred in three of the five years, cycles of 20, 25, and
30 years were all found. There were no cases in which reproductions took place in four
and five out of the five years, however, this does not imply that they do not exist. The
simulations in which an age at maturity of six years appeared even once, in combination
with the number of reproductions taking place each year in the five year period under

a particular schooling condition, potentially caused the cycles to have a longer period.
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Mortality Effects

The models used to describe the effect of mortality mentioned at the beginning of this
section were population-level models, not individual-based models incorporated into
a population model. These models, by necessity, only assessed mortality as a form
of density dependence. In this setting, it was not possible to independently impose a
density-dependent mortality and a size-dependent mortality because all of the organisms
being modeled were exactly the same; in other words, size-dependent mortality would
have been equivalent to density-dependent mortality.

In the model framework used here, both density- and size-dependent mortality can
be imposed separately, as illustrated in Appendix III. Since the form of the density-
dependent mortality was not of a delayed nature and it was demonstrated in the previous
section that cycles do exist, the model is in agreement with the results found in [144] in
that delayed density-dependent mortality was not necessary to generate the cycles. The
hypothesis that the cycles were a result of some other type of mortality is considered in

the text that follows.

Density-dependent Mortality To ascertain if density-dependent mortality was the
cause of the cycles which appeared, the effect of removing this type of mortality from
the model was examined. Once removed, it was found that cycles still occurred. Under
the original resource level conditions (those listed in Table 1), both 16 (idiv = 6, 12)
and 20-cycles emerged (idiv = 3-5, 7-11). Extinction occurred for idiv values of one

and two. The C'V across all the simulations for the values occurring every four years
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was, however, much greater than when density-dependent mortality was included; the
average was 4%, with a minimum of 0.25% and a maximum of 14%. This result indicated
that under some schooling conditions, the emerging pattern could not be interpreted as
a four-year cycle as before. While the age at maturity for all of the surviving ecotypes
for each of the simulations was still four years, the maximum possible number of schools
chosen and the absence of the density-dependent mortality did affect the length of the
period of the resulting cycle.

When the maximum possible number of schools was three, i.e., idiv = 3, the same
type of pattern as when density-dependent mortality was present arose (see Figure
6). The cycles which emerged in the absence of density-dependent mortality followed
the same DDII pattern within a four year period, having an average CV of 0.28%.
However, the cycles produced in the absence of density-dependent mortality were not
as pronounced as those when it was included. The reoccurring DDII pattern previously
found within the 20-cycle was not generated under other schooling conditions. For
the rest of the 20-cycles produced, there were four surviving ecotypes, each reaching
maturity at an age of four years, never in the same year as another ecotype. Based on
their C'V values, the resulting 20-year periodic cycles could not be considered four-year
cycles. However, for the simulations associated with a maximum possible number of
schools of three, five, seven, and eleven, every year could be considered a dominant year
given that the maximum CV for these four simulations for all the years in the 20-year

cycle was 1.9%.
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While the same pattern of the four-year periodic cycle found previously was only
recreated under one schooling condition here, the fact remains that cycles did appear
when there was no density-dependent mortality. The overall effect of including density-
dependent mortality caused the magnitude of the cycling pattern to be more dramatic.
Excluding density-dependent mortality did not eliminate the cycles, but had the poten-

tial to change their character.

Size-based Mortality An alternate hypothesis was that size-based mortality caused
cycling to occur. If this type of mortality was taken out of the model, and density-
dependent mortality was left at its original value of 0.002, extinction occurred under
the range of allowed values for the maximum possible number of schools (idiv). The
reason for this extinction was, in effect, that the other mortalities, in particular the
density-dependent mortality, did not eliminate enough individuals in the freshwater en-
vironment to allow migration to take place. Due to the greater number of individuals in
this setting, the resource was partitioned to a greater extent, which, in turn, caused each
individual to grow much slower. This slow growth caused the threshold for the mini-
mum mass to migrate not to be attained within the specified time period. Essentially,
the individuals were not getting sufficiently large to leave the freshwater environment,
causing them to die when the prescribed maximum age was reached. No conclusions
about whether or not size-based mortality was causing the cycles to occur could be made
under these conditions, therefore, density dependent mortality was increased, while ex-

cluding size-based mortality, to reduce the population in the freshwater environment,
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allowing migration from the lake to occur.

Once the density-dependent mortality values were increased, it became clear that
cycles could also exist in the absence of size-based mortality. Simulations under the
original resource levels were conducted for zmudm values of 0.006 and 0.007 across the
plausible range of idiv values.

For a zmudm value of 0.006, two different cycles emerged. The first pattern which
presented itself, a six-year cycle which had reproductions occurring in only one year
of the six-year period, was for idiv values of one and four. The age at maturity for
all individuals in this cycle was six years. The second pattern which arose was a 64-
year cycle when the maximum possible number of schools was two. When the steady
state was reached, there was only one ecotype left. This ecotype and its offspring both
reached maturity after six years; the third generation matured at seven years, the fourth
at six years, the fifth at seven years, and then the pattern repeated. This cycle could
be interpreted as a 32-year cycle given an average C'V of 0.0023% for the values being
produced every 32 years at the different maturity ages. Extinction occurred for idiv
values of three and five through twelve.

When the value for the density-dependent mortality was increased to 0.007, extinc-
tion again occurred for the majority of idiv values (2-5, 7, 8, 10-12). For one school, a
7T4-year cycle was generated with two ecotypes surviving. All generations of spawners
included both ecotypes. The first generation returned to the lake after seven years,

the next generation after six years, then seven years, four years, six years, and seven
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years, after which time, the pattern repeated. The average CV of 0.44% for the values
appearing every 37 years indicated that this cycle could be interpreted as a 37-year
cycle. A 108-year cycle emerged when idiv was set to six. Two ecotypes survived, each
reaching maturity at an age of six, with reappearance in the lake offset by an interval
of two years. This cycle could be interpreted as two six-year cycles with a delay of
two years between each. One ecotype survived when the maximum possible number of
schools was nine, resulting in a 120-year cycle. This ecotype returned to spawn every
six years. The cycle produced could be interpreted as a six-year cycle given that the
CV was 0.58%.

The conclusion drawn from taking a closer look at these two types of mortality,
density-dependent and size-dependent, was that their inclusion was not necessary for
periodic cycles to appear. However, in combination with the value chosen for the max-
imum possible number of schools, both of these mortalities did have an effect on the
character of the periodic cycles. In analyzing all of the simulations executed, it be-
came clear that the long term behavior of the population was extremely sensitive to the

dynamic nature of the schools and their effect on the initial population.
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Chapter 4

Future Directions

The sockeye salmon model implemented here was used in a number of different ways, the
most obvious application being the study of the dynamics of the population. In addition,
the validity of some hypotheses regarding the cycling of the populations which appear
were examined, and, a new sensitivity analysis method was tested and found to be an
efficient and thorough tool. Some possible future directions for the work completed here

are discussed in this chapter.

4.1 Schooling Mechanisms

The creation of schools in the freshwater environment used in this model was discussed in
the schooling section of Section 1.2.1. It was found that the maximum possible number
of schools allowed in each simulation, given by the value of idiv, had a significant effect

on the type of cycling which resulted. Since the mechanism behind how many schools
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any given group of fish will form and how many fish will be contained within a school
is not known, other ways of creating schools in the model are certainly possible and
should be explored. For example, perhaps a limit to the number of fish that form a
school exists. If this is the case, once a school has reached its capacity, a new school with
individuals of the same length as the school which is “full” could then form, resulting
in an increase in the total number of schools as well as a change in the density of the
individual schools. The maximum number of individuals associated with a school might
also vary between schools containing individuals of different lengths. Likewise, some
minimum number of individuals above one might also be necessary for a school to form

at all.

4.2 Dynamic Resource

The resource that was used in both the freshwater and ocean environments in the
implementation of the model was set at a constant density such that it was not possible
for the organisms to deplete the resource. While conditions which did not limit feeding
were reasonable for the ocean environment [57, 176, 182, 189], making this assumption
in the freshwater environment is questionable. The inclusion of a dynamic lake resource
which can grow and be reduced when consumed is a logical next step for improvement
of the model. Given a resource which fluctuates in response to its environment, the
hypothesis presented in [110] in which it is suggested that smolt migration is in part a

response to low resource levels could be investigated.
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4.3 Toxicological Problems

One of the problems that some populations of salmon encounter is pollution in the
environments in which they live [119]. The inclusion of lipid as one of the state variables
allows for problems associated with many toxic chemicals to be studied. The model
implemented here, with a few minor modifications, is equipped to examine scenarios
in which toxicological problems could be addressed. The effects of toxic chemicals on

other species using the same type of model formulation were investigated in [83, 128].
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Figure 1. Flow diagram for energetics of an individual female fish.
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Screening
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Figure 2: Sequential experimentation implemented for the sensitivity analysis of the
individual model.
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Figure 3: Saturated resolution V estimates plotted against the sums of the odd Cotter
estimates for Mass 2 and Eggs.
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Table 8: Parameters to which the outputs, Mass 2, Mass 3, and
Eggs, were found to be sensitive. Parameters are listed from most
to least influence.

Mass 2 Mass 3 Eggs
Highly Slightly | Highly Slightly Highly Slightly
Sensitive | Sensitive | Sensitive | Sensitive | Sensitive | Sensitive

k1 templ k1 templ templ zjmgp
tempo a0l ab a0l oppx resvar
oppxT zjmgp oppzx oplz ab oplz
a0p bdensp tempo zjmgp cg ad
ab a4 alOp bdensp | obdensp a4
obdensp ad obdensp a4 a0p a0l
cg oplz cg a3 tempo
zjmgl zjmgl k1
blsp blsp
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Table 9:

Ecotypes which compose the population.

oplx a0l a3 a4 Resource | Assigned
Level Number
0.173 0.85 0.12 0.37 Middle 1
0.173 0.85 0.12 0.40367 Middle 2
0.173 0.85 0.12 0.43734 Middle 3
0.173 0.85 0.10908 0.37 Middle 4
0.173 0.85 0.10908 | 0.40367 Middle 5
0.173 0.85 0.10908 | 0.43734 Middle 6
0.173 0.85 0.09816 0.37 Middle 7
0.173 0.85 0.09816 | 0.40367 Middle 8
0.173 0.85 0.09816 | 0.43734 Middle 9
0.173 0.8045 0.12 0.37 Middle 10
0.173 0.8045 0.12 0.40367 Middle 11
0.173 0.8045 0.12 0.43734 Middle 12
0.173 0.8045 | 0.10908 0.37 Middle 13
0.173 0.8045 | 0.10908 | 0.40367 Middle 14
0.173 0.8045 | 0.10908 | 0.43734 Middle 15
0.173 0.8045 | 0.09816 0.37 Middle 16
0.173 0.8045 | 0.09816 | 0.40367 Middle 17
0.173 0.8045 | 0.09816 | 0.43734 Middle 18
0.173 0.759 0.12 0.37 Middle 19
0.173 0.759 0.12 0.40367 Middle 20
0.173 0.759 0.12 0.43734 Middle 21
0.173 0.759 | 0.10908 0.37 Middle 22
0.173 0.759 | 0.10908 | 0.40367 Middle 23
0.173 0.759 | 0.10908 | 0.43734 Middle 24
0.173 0.759 | 0.09816 0.37 Middle 25
0.173 0.759 | 0.09816 | 0.40367 Middle 26
0.173 0.759 | 0.09816 | 0.43734 Middle 27
0.157257 0.85 0.12 0.37 Middle 28
0.157257 0.85 0.12 0.40367 Middle 29
0.157257 0.85 0.12 0.43734 Middle 30
0.157257 0.85 0.10908 0.37 Middle 31
0.157257 0.85 0.10908 | 0.40367 Middle 32
0.157257 0.85 0.10908 | 0.43734 Middle 33
0.157257 0.85 0.09816 0.37 Middle 34
0.157257 0.85 0.09816 | 0.40367 Middle 35
0.157257 0.85 0.09816 | 0.43734 Middle 36
0.157257 | 0.8045 0.12 0.37 Middle 37
0.157257 | 0.8045 0.12 0.40367 Middle 38
0.157257 | 0.8045 0.12 0.43734 Middle 39
0.157257 | 0.8045 | 0.10908 0.37 Middle 40
0.157257 | 0.8045 | 0.10908 | 0.40367 Middle 41
0.157257 | 0.8045 | 0.10908 | 0.43734 Middle 42
0.157257 | 0.8045 | 0.09816 0.37 Middle 43
0.157257 | 0.8045 | 0.09816 | 0.40367 Middle 44
0.157257 | 0.8045 | 0.09816 | 0.43734 Middle 45
0.157257 | 0.759 0.12 0.37 Middle 46
0.157257 | 0.759 0.12 0.40367 Middle 47
0.157257 | 0.759 0.12 0.43734 Middle 48
0.157257 | 0.759 | 0.10908 0.37 Middle 49
0.157257 | 0.759 | 0.10908 | 0.40367 Middle 50
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Table 9 (continued).

oplx a0l a3 a4 Resource | Assigned
Level Number
0.157257 | 0.759 | 0.10908 | 0.43734 Middle 51
0.157257 | 0.759 | 0.09816 0.37 Middle 52
0.157257 | 0.759 | 0.09816 | 0.40367 Middle 53
0.157257 | 0.759 | 0.09816 | 0.43734 Middle 54
0.141514 0.85 0.12 0.37 Middle 55
0.141514 0.85 0.12 0.40367 Middle 56
0.141514 0.85 0.12 0.43734 Middle 57
0.141514 0.85 0.10908 0.37 Middle 58
0.141514 0.85 0.10908 | 0.40367 Middle 59
0.141514 0.85 0.10908 | 0.43734 Middle 60
0.141514 0.85 0.09816 0.37 Middle 61
0.141514 0.85 0.09816 | 0.40367 Middle 62
0.141514 0.85 0.09816 | 0.43734 Middle 63
0.141514 | 0.8045 0.12 0.37 Middle 64
0.141514 | 0.8045 0.12 0.40367 Middle 65
0.141514 | 0.8045 0.12 0.43734 Middle 66
0.141514 | 0.8045 | 0.10908 0.37 Middle 67
0.141514 | 0.8045 | 0.10908 | 0.40367 Middle 68
0.141514 | 0.8045 | 0.10908 | 0.43734 Middle 69
0.141514 | 0.8045 | 0.09816 0.37 Middle 70
0.141514 | 0.8045 | 0.09816 | 0.40367 Middle 71
0.141514 | 0.8045 | 0.09816 | 0.43734 Middle 72
0.141514 | 0.759 0.12 0.37 Middle 73
0.141514 | 0.759 0.12 0.40367 Middle 74
0.141514 | 0.759 0.12 0.43734 Middle 75
0.141514 | 0.759 | 0.10908 0.37 Middle 76
0.141514 | 0.759 | 0.10908 | 0.40367 Middle 7
0.141514 | 0.759 | 0.10908 | 0.43734 Middle 78
0.141514 | 0.759 | 0.09816 0.37 Middle 79
0.141514 | 0.759 | 0.09816 | 0.40367 Middle 80
0.141514 | 0.759 | 0.09816 | 0.43734 Middle 81
0.173 0.85 0.12 0.37 Low 82
0.173 0.85 0.12 0.40367 Low 83
0.173 0.85 0.12 0.43734 Low 84
0.173 0.85 0.10908 0.37 Low 85
0.173 0.85 0.10908 | 0.40367 Low 86
0.173 0.85 0.10908 | 0.43734 Low 87
0.173 0.85 0.09816 0.37 Low 88
0.173 0.85 0.09816 | 0.40367 Low 89
0.173 0.85 0.09816 | 0.43734 Low 90
0.173 0.8045 0.12 0.37 Low 91
0.173 0.8045 0.12 0.40367 Low 92
0.173 0.8045 0.12 0.43734 Low 93
0.173 0.8045 | 0.10908 0.37 Low 94
0.173 0.8045 | 0.10908 | 0.40367 Low 95
0.173 0.8045 | 0.10908 | 0.43734 Low 96
0.173 0.8045 | 0.09816 0.37 Low 97
0.173 0.8045 | 0.09816 | 0.40367 Low 98
0.173 0.8045 | 0.09816 | 0.43734 Low 99
0.173 0.759 0.12 0.37 Low 100
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Table 9 (continued).

oplx a0l a3 a4 Resource | Assigned
Level Number
0.173 0.759 0.12 0.40367 Low 101
0.173 0.759 0.12 0.43734 Low 102
0.173 0.759 | 0.10908 0.37 Low 103
0.173 0.759 | 0.10908 | 0.40367 Low 104
0.173 0.759 | 0.10908 | 0.43734 Low 105
0.173 0.759 | 0.09816 0.37 Low 106
0.173 0.759 | 0.09816 | 0.40367 Low 107
0.173 0.759 | 0.09816 | 0.43734 Low 108
0.157257 0.85 0.12 0.37 Low 109
0.157257 0.85 0.12 0.40367 Low 110
0.157257 0.85 0.12 0.43734 Low 111
0.157257 0.85 0.10908 0.37 Low 112
0.157257 0.85 0.10908 | 0.40367 Low 113
0.157257 0.85 0.10908 | 0.43734 Low 114
0.157257 0.85 0.09816 0.37 Low 115
0.157257 0.85 0.09816 | 0.40367 Low 116
0.157257 0.85 0.09816 | 0.43734 Low 117
0.157257 | 0.8045 0.12 0.37 Low 118
0.157257 | 0.8045 0.12 0.40367 Low 119
0.157257 | 0.8045 0.12 0.43734 Low 120
0.157257 | 0.8045 | 0.10908 0.37 Low 121
0.157257 | 0.8045 | 0.10908 | 0.40367 Low 122
0.157257 | 0.8045 | 0.10908 | 0.43734 Low 123
0.157257 | 0.8045 | 0.09816 0.37 Low 124
0.157257 | 0.8045 | 0.09816 | 0.40367 Low 125
0.157257 | 0.8045 | 0.09816 | 0.43734 Low 126
0.157257 | 0.759 0.12 0.37 Low 127
0.157257 | 0.759 0.12 0.40367 Low 128
0.157257 | 0.759 0.12 0.43734 Low 129
0.157257 | 0.759 | 0.10908 0.37 Low 130
0.157257 | 0.759 | 0.10908 | 0.40367 Low 131
0.157257 | 0.759 | 0.10908 | 0.43734 Low 132
0.157257 | 0.759 | 0.09816 0.37 Low 133
0.157257 | 0.759 | 0.09816 | 0.40367 Low 134
0.157257 | 0.759 | 0.09816 | 0.43734 Low 135
0.141514 0.85 0.12 0.37 Low 136
0.141514 0.85 0.12 0.40367 Low 137
0.141514 0.85 0.12 0.43734 Low 138
0.141514 0.85 0.10908 0.37 Low 139
0.141514 0.85 0.10908 | 0.40367 Low 140
0.141514 0.85 0.10908 | 0.43734 Low 141
0.141514 0.85 0.09816 0.37 Low 142
0.141514 0.85 0.09816 | 0.40367 Low 143
0.141514 0.85 0.09816 | 0.43734 Low 144
0.141514 | 0.8045 0.12 0.37 Low 145
0.141514 | 0.8045 0.12 0.40367 Low 146
0.141514 | 0.8045 0.12 0.43734 Low 147
0.141514 | 0.8045 | 0.10908 0.37 Low 148
0.141514 | 0.8045 | 0.10908 | 0.40367 Low 149
0.141514 | 0.8045 | 0.10908 | 0.43734 Low 150
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Table 9 (continued).

oplx a0l a3 a4 Resource | Assigned
Level Number
0.141514 | 0.8045 | 0.09816 0.37 Low 151
0.141514 | 0.8045 | 0.09816 | 0.40367 Low 152
0.141514 | 0.8045 | 0.09816 | 0.43734 Low 153
0.141514 | 0.759 0.12 0.37 Low 154
0.141514 | 0.759 0.12 0.40367 Low 155
0.141514 | 0.759 0.12 0.43734 Low 156
0.141514 | 0.759 | 0.10908 0.37 Low 157
0.141514 | 0.759 | 0.10908 | 0.40367 Low 158
0.141514 | 0.759 | 0.10908 | 0.43734 Low 159
0.141514 | 0.759 | 0.09816 0.37 Low 160
0.141514 | 0.759 | 0.09816 | 0.40367 Low 161
0.141514 | 0.759 | 0.09816 | 0.43734 Low 162
0.173 0.85 0.12 0.37 High 163
0.173 0.85 0.12 0.40367 High 164
0.173 0.85 0.12 0.43734 High 165
0.173 0.85 0.10908 0.37 High 166
0.173 0.85 0.10908 | 0.40367 High 167
0.173 0.85 0.10908 | 0.43734 High 168
0.173 0.85 0.09816 0.37 High 169
0.173 0.85 0.09816 | 0.40367 High 170
0.173 0.85 0.09816 | 0.43734 High 171
0.173 0.8045 0.12 0.37 High 172
0.173 0.8045 0.12 0.40367 High 173
0.173 0.8045 0.12 0.43734 High 174
0.173 0.8045 | 0.10908 0.37 High 175
0.173 0.8045 | 0.10908 | 0.40367 High 176
0.173 0.8045 | 0.10908 | 0.43734 High 177
0.173 0.8045 | 0.09816 0.37 High 178
0.173 0.8045 | 0.09816 | 0.40367 High 179
0.173 0.8045 | 0.09816 | 0.43734 High 180
0.173 0.759 0.12 0.37 High 181
0.173 0.759 0.12 0.40367 High 182
0.173 0.759 0.12 0.43734 High 183
0.173 0.759 | 0.10908 0.37 High 184
0.173 0.759 | 0.10908 | 0.40367 High 185
0.173 0.759 | 0.10908 | 0.43734 High 186
0.173 0.759 | 0.09816 0.37 High 187
0.173 0.759 | 0.09816 | 0.40367 High 188
0.173 0.759 | 0.09816 | 0.43734 High 189
0.157257 0.85 0.12 0.37 High 190
0.157257 0.85 0.12 0.40367 High 191
0.157257 0.85 0.12 0.43734 High 192
0.157257 0.85 0.10908 0.37 High 193
0.157257 0.85 0.10908 | 0.40367 High 194
0.157257 0.85 0.10908 | 0.43734 High 195
0.157257 0.85 0.09816 0.37 High 196
0.157257 0.85 0.09816 | 0.40367 High 197
0.157257 0.85 0.09816 | 0.43734 High 198
0.157257 | 0.8045 0.12 0.37 High 199
0.157257 | 0.8045 0.12 0.40367 High 200
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Table 9 (continued).

oplx a0l a3 a4 Resource | Assigned
Level Number
0.157257 | 0.8045 0.12 0.43734 High 201
0.157257 | 0.8045 | 0.10908 0.37 High 202
0.157257 | 0.8045 | 0.10908 | 0.40367 High 203
0.157257 | 0.8045 | 0.10908 | 0.43734 High 204
0.157257 | 0.8045 | 0.09816 0.37 High 205
0.157257 | 0.8045 | 0.09816 | 0.40367 High 206
0.157257 | 0.8045 | 0.09816 | 0.43734 High 207
0.157257 | 0.759 0.12 0.37 High 208
0.157257 | 0.759 0.12 0.40367 High 209
0.157257 | 0.759 0.12 0.43734 High 210
0.157257 | 0.759 | 0.10908 0.37 High 211
0.157257 | 0.759 | 0.10908 | 0.40367 High 212
0.157257 | 0.759 | 0.10908 | 0.43734 High 213
0.157257 | 0.759 | 0.09816 0.37 High 214
0.157257 | 0.759 | 0.09816 | 0.40367 High 215
0.157257 | 0.759 | 0.09816 | 0.43734 High 216
0.141514 0.85 0.12 0.37 High 217
0.141514 0.85 0.12 0.40367 High 218
0.141514 0.85 0.12 0.43734 High 219
0.141514 0.85 0.10908 0.37 High 220
0.141514 0.85 0.10908 | 0.40367 High 221
0.141514 0.85 0.10908 | 0.43734 High 222
0.141514 0.85 0.09816 0.37 High 223
0.141514 0.85 0.09816 | 0.40367 High 224
0.141514 0.85 0.09816 | 0.43734 High 225
0.141514 | 0.8045 0.12 0.37 High 226
0.141514 | 0.8045 0.12 0.40367 High 227
0.141514 | 0.8045 0.12 0.43734 High 228
0.141514 | 0.8045 | 0.10908 0.37 High 229
0.141514 | 0.8045 | 0.10908 | 0.40367 High 230
0.141514 | 0.8045 | 0.10908 | 0.43734 High 231
0.141514 | 0.8045 | 0.09816 0.37 High 232
0.141514 | 0.8045 | 0.09816 | 0.40367 High 233
0.141514 | 0.8045 | 0.09816 | 0.43734 High 234
0.141514 | 0.759 0.12 0.37 High 235
0.141514 | 0.759 0.12 0.40367 High 236
0.141514 | 0.759 0.12 0.43734 High 237
0.141514 | 0.759 | 0.10908 0.37 High 238
0.141514 | 0.759 | 0.10908 | 0.40367 High 239
0.141514 | 0.759 | 0.10908 | 0.43734 High 240
0.141514 | 0.759 | 0.09816 0.37 High 241
0.141514 | 0.759 | 0.09816 | 0.40367 High 242
0.141514 | 0.759 | 0.09816 | 0.43734 High 243

113




Table 10: Ecotypes surviving under different resource and schooling

conditions.
Maximum Resource Level [g/cm? - 107°]

Possible Low = 0.03 Low = 0.06 Low = 0.12
Number of | Middle = 0.06 | Middle = 0.12 | Middle = 0.18
Schools High = 0.09 High = 0.18 High = 0.24
1 0 28, 109, 190 55, 78, 136,

159, 217, 240?
2 72, 88 34, 159* 34, 81
3 28, 81, 238 190, 242, 243 81
4 79, 243 1, 235, 241, 243 | 1, 155, 163, 242
5 80, 162 78, 81 80, 144, 163
6 162 7, 80 162
7 64, 238 73 162, 242
8 78, 80, 153 220, 224 80, 149
9 80, 81 1, 73, 82, 240 162, 241
10 83, 129, 217 27, 160 1, 163, 241, 242
11 156, 235 223 1, 144, 163
12 134, 141, 162 167, 242 1, 145, 163, 242

& Simulation had not reached steady state after 10000 years.
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Figure 4: Model/data comparison for returning number of spawners at Cultus Lake.
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The amount of time that it takes for the yolk-sac to be absorbed and external feeding
to begin is given by f1(T) [d]. Following the representation developed by Lassiter (1975)
describing the effect of temperature on the biological response of an individual organism,

f1(T) is given by

_ Oél(Tma:c —Topt )
koptl eal(T*TOPtl) <—Tma$1 T ) ' o (H.l)

Trmazy — Topty
where kop, is the optimal value for f; evaluated at the temperature, T,,;, [°C], which
results in the smallest number of days for the length of the embryonic stage, and Tjy44,
[°C] is the upper lethal temperature for sockeye. The parameters k,,;, and «; are both
fitted using values from [142].

The function of temperature which modifies the feeding rate is given by fo(T) [ ].

Again, following the representation developed by [123], fo(T") is represented by

_ 052(Tma:c —Topt )
koptz eaQ(T*TOPtQ) <—Tma$2 T ) ’ ” (H.Q)

Tmamz - Toptg

where kops, is the optimal value for f, evaluated at the optimal temperature for feeding,
Topt, [°Cl, and Ty4s, [°C] is the minimum temperature above T, at which feeding
ceases to occur. kops, and ag are both fitted parameters using values from Hewett and
Johnson’s (1992) model parameterized for sockeye salmon. f5(T') is set up to give values

between 0 and 1; when equation (I1.2) becomes negative, a value of 0 is assumed.
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The gut clearance rate is modified by a function of temperature, f35(7') [ |, which is
given by
for T' > 0°C

_T
ag—BsT

f3(T) = (IL.3)

0 otherwise

The parameters, ag and (3, are fitted using sockeye salmon data from [31] which ac-
counts for both size and temperature.

The maintenance requirements of an individual are modified by the temperature
function, f4(7T) []. The function f4(7) has an exponential relationship represented by
asePT where ay and B4 are fitted parameters using data from [27].

The value for apparent heat increment given as a function of temperature is f5(7T") =
a5e5T where a5 and (5 are fitted parameters. The same apparent heat increment value
is used for both lipids and protein.

The fraction of eggs that survive given as a function of temperature is

2 2
—agT? + BT + v¢ for ﬂG_V/6226+4a676 <T< Bs+V ,5;;64-46%676

fo(T) = (IL.4)
0 otherwise

where ag, g, and g are fitted parameters using sockeye salmon data from [142] and
rescaling to give 79% survival at a temperature of 8°C. Note that 100% survival of eggs

is not allowed because there are always nonviable eggs in nature.
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Age-dependent mortality is assessed uniformly across cohorts (individuals of the
same ecotype that are the same age) and is represented by

Vav1ae 10 < a < aman
Yo = (I11.1)

o0 if a > amaz
where a [d] is age and v, [+] and 11, [5] are constants.

Size-dependent mortality is assessed in the model for schooling and non-schooling
individuals. For non-schooling individuals, size-dependent mortality is determined by
the weight of the individual and is viewed as the mortality due to predation. Size
mortality is a function of my +mg and is given by p, = vy - fliw = Vo * p1w(mr +mg).

Uy [%] is a constant and pu1, [5] is determined by

o ifmp+mg=0
Ve if wy <mp+mg < wy
Pl = 4 (I11.2)
vf if mp +mg > ws
continuous and linear elsewhere

\

where vg, v, vy [é] and wy, we, ws [g] are all constant parameters.
For schooling individuals, the new size-dependent mortality, referred to as psen [5], is
a combination of the mortality associated with the size of the individual (from equation

(IT1.2)) and the size of the school which contains the individual under consideration.
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The equation for pgep is given by

fisch = g(psch)sﬂ (I11.3)

sch

where p1,, is taken from equation (III1.2) and mge, is the total number of schools. g is
a function of psqp, the density of the school which contains the individual fish, and is

calculated from the following:

dsch
= 111.4
g(pSCh) Psch + dsch ( )

where d., [#] is a constant. Notice that as the density of the school becomes large,
the value of g(pscn) becomes smaller and, hence, the mortality for this particular fish
also becomes smaller. The maximum possible number of schools is chosen to be 12
based on the difference between the minimum and maximum lengths of individuals in
the lake environment such that the smallest difference perceived by an individual is
approximately 0.25 inches.

Density-dependent mortality is assessed uniformly across the population, causing p
to be a nonlinear function of p. The total biomass, p, [#], of the population is calculated

by summing (my, + mg); - p; for each characteristic i. The density-dependent mortality
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is then given by

.
0.5d,y, if0<py, <p
0 if Db = Po
i = 4 (11L.5)
dm if Do Z Pe
| continuous and linear elsewhere

where d, [5] and p¢, po, Pe 9] are all constant parameters. Density-dependent mortality
is assessed separately for the lake and ocean populations, however, in both environments
it is represented by the same form given in equation (IIL.5).

Young-of-the-year mortality is also assessed based on the total density, pyoy [#], of
the young-of-the-year population. To qualify for young-of- the-year status, the age of the
individual must fall between ayoymin [d] and ayoymas [d]. Young-of-the-year mortality is

calculated using

.
0 if 0 < Pyoy < Pyoy,
Pyoy = Ym if Pyoy > Pyoy. (HI'G)
continuous and linear elsewhere

where Y, [3], Pyoy, [#], and pyoy, [#] are constant parameters.
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C.M. Krohn and C.G. Krohn. Letter to the Editor. Applied Energy

69(3): 239-241, 2001.

It came to our attention while reviewing the article “Analytical Model of a Residential
Desuperheater” by Lee and Jones [125] that the statistical analysis of the designed
experiment was fundamentally incorrect. While the use of design of experiments as
a tool for sensitivity analysis is a proven and efficient approach, the techniques which
afford this efficiency must be understood to draw correct conclusions. The authors use
of experimental design is a sound approach to the problem, yet the results point to a
much simpler conclusion than the authors recognized.

Lee and Jones use a standard fractional factorial design to analyze the sensitiv-
ity of their model to five input parameters, hyir, hArefrig, F, Tri, and Ty;. From
this analysis, they conclude that two main effects (7}; and Ty;), three two-factor in-
teractions (Towi*hrefrigs refrig*F, and Tri*hyefrig), and one three-factor interaction
(hwt,«*h,ﬂef,ﬂig*F) all have significant effects on the model output, desuperheater rate.
For simplicity, we refer to the factors hyir, Arefrig, ¥, Tri, and T, respectively as A, B,
C, D, and E. Table 11 shows the ordering of the high and low levels for each effect in
relation to the ordering of other effects. Note that effects which are aliased with each
other have identical columns. The alias structure for Lee and Jones’ design is given
in Table 12. For further explanation on alias structure and fractional factorial designs,

see [139].
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For each effect to be estimated independently of others, a full factorial is required.
While the number of simulations for a two-level, full factorial with five factors is 2° = 32,
Lee and Jones’ design is a i fraction of the full factorial involving eight simulations. Due
to the reduction in number of simulations, this design is of resolution 71, which, in this
case, means that each main effect is confounded with at least one two-factor interaction,
as well as with other higher-order interactions. This design is commonly referred to as
a screening design and can be used only to estimate main effects and possibly one or
two specific interactions assuming all other interactions are negligible. A resolution 17
fractional factorial can also be used as the first step in sequential experimentation. The
general methodology behind sequential experimentation is such that a low resolution
design is run and analyzed with the results dictating if and which additional fractional
factorials are to follow.

In a correct analysis of the output from Lee and Jones’ screening design (Lee and
Jones’ Table 1), it is apparent that no further experimentation is required as the desu-
perheater model is completely dominated by only two effects, T;.; and T,,;. This can be

most simply shown with a least squares model including only these effects:

Y = 5.6375 + 9.5375(T};) — 6.3125(T}y;) (IV.1)

where Y represents the predicted response, % error Qgesuper- Note that these coefficients
are in coded units (see p. 283 of [125]) since the actual values for T;; and Ty,; were not

given. The coefficient of determination, R? = 0.999937, indicates that approximately
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99.9937 percent of the variability observed in % error Qgesuper is caused by the main
effects T}; and T,,;. Statistically, there is no evidence of any other effect on the response.
Notice that three of the interaction effects found to be significant by Lee and Jones are
aliased with these two main effects. That is, 9.5375 in (IV.1) actually estimates the
sum of the four coefficients for Tys, hyir™F', hyefrig*Twi, and the five factor interaction.
The same idea follows for 6.3125. Our conclusion that the true effects are T}; and T,
as opposed to any of their aliased interactions, is based on the fact that all other main
effects are highly insignificant. It is often the case that if interactions are truly signifi-
cant, the factors that make them up will also show some level of statistical significance
as main effects. We make the same assumption with the interaction hyepig*F, which
can be shown as statistically insignificant.

In summary, while Lee and Jones have used an appropriate method for performing
a sensitivity analysis, the conclusions drawn cannot be attributed to the statistical
experiment used. Their chosen design proved to be the correct one for their problem,
with no further experimentation required. However, it has been shown above that
Lee and Jones overestimated the number and significance of effects. Had the authors
anticipated the importance of several interactions, the 16-run resolution V' design, which
permits estimation of all main effects and two-factor interactions, would have been useful

to avoid having to untangle chains of aliased effects [139].

128



Table 11: Design matrix for main effects and interactions noted as significant in [125] and
reported responses. Note that the levels of the interaction terms are found by taking the
product of the factors from which they are composed.

A B C D E BC BD BE ABC % error Qesuper
- - - + - ¥ - + - 215

+ - - -+ o+ o+ - + -10.1
-+ - + o+ - + o+ o+ 8.7

+ + - - - . ; ; ; 2.4

- - + - + - + - + -10.3

+ - + o+ - - - + - 21.5

- + o+ - - + - - - 2.4

+  +  +  + o+ o+ o+ o+ 4+ 9.0

Table 12: Alias structure for Lee and Jones’ fractional factorial. Main effects and interac-
tions found to be significant in [125] are in bold.

CD
DE
AD
BE
BD
AE
CE
ACD

BCE
ACE
ABE
AC
ABC
CDE
ADE
BDE

ABDE
ABCD
BCDE
ABCDE
ACDE
ABD
BCD
ABCE
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1 Abstract

Asymptotic relationships between a class of continuous partial differential equation pop-
ulation models and a class of discrete matrix equations are derived for iteroparous pop-
ulations. First, the governing equations are presented for the dynamics of an individual
with juvenile and adult life stages. The organisms reproduce after maturation, as deter-
mined by the juvenile period, and at specific equidistant ages, which are determined by
the iteroparous reproductive period. A discrete population matrix model is constructed
that utilizes the reproductive information and a density-dependent mortality function.
Mortality in the period between two reproductive events is assumed to be a continuous
process where the death rate for the adults is a function of the number of adults and
environmental conditions. The asymptotic dynamic behaviour of the discrete popula-
tion model is related to the steady-state solution of the continuous-time formulation.
Conclusions include that there can be lack of convergence to the steady-state age dis-
tribution in discrete event reproduction models. The iteroparous vital ratio (the ratio
between the maximal age and the reproductive period) is fundamental to determining
this convergence. When the vital ratio is rational, an equivalent discrete-time model for
the population can be derived whose asymptotic dynamics are periodic and when there
are a finite number of founder cohorts, the number of cohorts remains finite. When the
ratio is an irrational number, effectively there is convergence to the steady-state age
distribution. With a finite number of founder cohorts, the number of cohorts becomes

countably infinite. The matrix model is useful to clarify numerical results for population
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models with continuous densities as well as delta measure age distribution. The appli-
cability in ecotoxicology of the population matrix model formulation for iteroparous

populations is discussed.!

2 Introduction

In the derivation of structured population dynamic models, a natural and advantageous
starting point is the individual level, where physiological processes such as feeding,
growth, survival and reproduction are integrated [19]. The aggregate of individuals
coupled with representations for the interaction of the individuals with the environment
(for example, through food availability, immigration and emigration) form the basis
for structured population models. The foundation for the physiologically structured
modelling approach is often the McKendrick-von Foerster partial differential equation
where a single set of parameters describes the physiological characteristics and the age
describes the state of the individuals. The focus here is on the asymptotic dynamics of
populations where reproduction occurs as discrete events while death occurs continu-
ously.

Individuals are assumed generally to have three stages, the egg (no feeding or re-
production), the juvenile (feeding but no reproduction) and an adult (feeding and re-
production) stage; however, in this study the egg stage will be dealt with implicitly.

Reproduction is assessed in the individual model at discrete ages as proposed by Hal-

'In press with Bulletin of Mathematical Biology as “Iteroparous reproduction strategies and popula-
tion dynamics” by B.W. Kooi, T.G. Hallam, F.D.L. Kelpin, C.M. Krohn, and S.A.L.M. Kooijman.
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lam et al. (1990) and is assumed to occur multiple times. All individuals are born with
a species specific biovolume and are clones of the parent. In the fixed period between
consecutive reproductive events, mortality (also due to harvesting or emigration) is a
continuous process. Natural death occurs when an adult reaches the species specific
maximum age immediately after their last reproductive event.

Funasaki (1997) performed a simulation study with parameter values realistic for the
waterflea Daphnia magna. The McKendrick-von Foerster partial differential equation
was solved using standard method of characteristics integration techniques with a fixed
numerical time-step. The initial population was taken to be one cohort. Depending
on the time-step sometimes regular asymptotic dynamics occurred. These simulation
results were analysed as time-series where the sampling interval is the numerical time-
step. Two methods were considered, namely the Frequency Analysis method by Jenkins
and Watts (1968) and the Phase Portrait Reconstruction method developed in [20, 23].

In the frequency analysis method the power spectrum of the time-series was calcu-
lated. For some parameter settings, the power spectra showed a dominant frequency
corresponding to the length of time between two birth events in the population.

In the phase portrait reconstruction method the basic idea is that lagging one-
dimensional time-series data from a dynamical system with itself an appropriate number
of times results in the reconstruction of the higher dimensional phase portrait of that
system. Total population size time-series data was lagged with itself by the lag equal

to the computational time-step and another lag to produce a phase portrait in three
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dimensions. These three dimensional plots showed a scatter plot at some times and,
in other cases, a periodic attractor. The computational time-step played an important
role in determining the attractor.

In order to clarify this asymptotic behaviour we investigate a discrete-time nonlin-
ear nonnegative Leslie-matrix equation [17]. Because reproduction occurs as discrete
events, there is a discrete-time formalism equivalent to the continuous representation,
see [2] (pp. 11) and [3]. Liu and Cohen (1987) obtained a density-dependent matrix by
discretizing the continuous time McKendrick-von Foerster model.

Calow et al. (1997) deal with risk assessment on the basis of simplified two-stage
life-history model where the individual, if it survives, can potentially breed forever.
They develop an approach where they use that model to make explicit and ecologically
relevant links between test results at the individual and their implications for population
dynamics. The survivorship and the duration of the stages are estimated parameters
from individual organism tests. The Euler-Lotka equation gives the impact on the
population growth rate, where no density-dependent effects are taken into account.

We employ a technique proposed by Kooi and Boer (1995) who study the dynamics
of a worm Nais elinguis population consisting of organisms which propagate by binary
fission. This population matrix model formulation differs from those proposed in the
literature by the choice of the time step and the survivalships in the two stages are de-
rived from continuous time McKendrick-von Foerster model. The exact correspondence

between the individual-based population model and the matrix model is possible be-
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cause of the individual reproductive schedule of iteroparous species where reproduction
is pulsed and synchronised.

The paper is organized as follows. An age-dependent density formulation for the
dynamics of the physiologically structured population is presented in Section 3.1. In this
age-structured formulation, the mathematical model consists of two partial differential
equations for the density functions associated with the individual state variables for the
two stages: the juvenile and adult stage. The formulation for reproduction provides
the boundary condition for the density functions. In Section 3.2, the steady-state age-
distribution of the population is derived.

In Section 4, a set of naturally induced age classes, called cohorts, is constructed
with the number of individuals in the classes taken as the state variables of the discrete-
time model. With these cohorts, the dynamical behavior of the population depends on
the ratio between the juvenile period and the reproductive period of the individuals.
When this ratio is a rational number, the total biomass of the population can be cyclic
when the initial distribution differs from the steady-state density distribution. In this
situation, periodic solutions have period equal to the reproductive period divided by the
number of cohorts in that period. Furthermore, the number of cohorts with descendants
from one founder cohort remains finite.

This natural discrete-time model is compared with the continuous-time model in
Section 5. If the ratio is irrational then the dimension of the population projection

matrix becomes infinite and the length of the age classes converges to zero, yielding
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convergence to the steady-state continuous age density distribution. In Section 6 we
discuss the applicability of the matrix model formulation in ecotoxicology and risk

assessment analysis.

3 The Continuous-time Model Formulation

The physiologically structured population model is formulated with a continuous density
function describing the number of individuals as it depends on both age and time. The

dynamic behavior is described by hyperbolic partial differential equations.

3.1 Structured Population Model

In this section we formulate a model to represent a rudimentary life history of an
iteroparous species such as Daphnia. The life history consists of two stages: the egg and
the juvenile stages form the pre-adult stage; the second is the adult stage. The notation
used is given in Table 1. Let m(¢,a) denote the age-dependent density as a function of
time ¢ and age a.

At age aj, the individual deposits freshly laid eggs into the brood-pouch for the
first time. (Thus, formation of eggs started already at a; — aa). These eggs hatch
at age ay + a4 and are released in the environment when the mother molts for the
second time. The adults molt in a series of instars with a fixed intermolt period. They
reproduce by laying eggs in clutches with the development time for the eggs equal to the

intermolt period, a4. Thus, offspring are produced at distinct ages from initiation of
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adulthood, at ¢ = aj, namely at the ages ajy + sa4, s =1,--- ,q where ¢ is the number
of reproductive events which is assumed to be an integer greater than 1.

With each reproductive event, a fixed number of offspring, the brood-size r, is pro-
duced. The last reproductive event occurs at the moment the individual attains maxi-
mum age aps, thus ayr = a5 + qgas. We assume a density-independent mortality rate,
wy, for the juvenile individuals and density-dependent mortality rate for the adults,
uA(N4), where Ny is the number of adult individuals in the population per unit of

volume Ny(t) = f “M m(t,a) da. The equations for the density function m(t,a) are

om  Om

oy < 1
8t+8a pm, 0<a<ay, (1a)
a_m+a_m:_MA(NA)m(t,a), ay <a<ap, (lb)
ot da

m(t,0) —’)”Z/ (a— aJ+saA))m(t,a)da:er(t,aJ—i-saA), (Lc)
s=1

where § is the Dirac §-function. The boundary value for the density function m(t,0)
is the population birth rate. Natural death is assessed in the model by the maximum
age apr. Continuity conditions for the density function m(¢,a) with the transition from

juvenile to adult at ay are imposed.

3.2 Steady-state Age Distribution

We assume a constant environment and denote by a superscripted asterisk, *, a steady-

state value. An expression for the number of adults in steady-state is N3 = [ m*(a) da,

aj

where m*(a) is the steady state age distribution. N7 is derived using the notion of
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the net reproductive value, that is the average reproductive output by an individual
throughout its entire life span, Ry, of the population. Denote the constant death rate
for the adults by p* = pa(N%). The survival probability for each individual can be
characterized by the survival function S(a), defined as the probability that an individual

survives and reaches age a [4]. The survival function is given by

)
—usS(a) , 0<a<ay,

ds
da —p4S(a), ay<a<apy, (2)

\ —d(a —ap)S(anr), a=ap,

where S(0) = 1. The total number of offspring produced by each individual equals

q

an q
[ expipita—any S rila(as +san) da= Y rexp{-spsas) . ©)

@y s=1 s=1

This number of offspring yields a number of new adults given by

B exp{_qluj&a’A} (4)
exp{pfhaat —1

q
* * 1
Ro(ph) = exp{—psas} Y rexp{—spias} = rexp{—psas}
s=1

Necessary for steady-state is Ry = 1, that is, each individual just replaces itself. Ry is a
monotonically decreasing function of p%. For pa = 0 we have Ry(0) = rqexp{—pjas}.
We assume that rq > exp{—psas} and this implies Ry(0) > 1. For large values of the
mortality rate, pu4, this expression gives limy« o Ro = 0. Hence, there is one real root,

py, of the condition Ry =1 in (4).
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For this steady-state we obtain

rexp{—psas}(1 —exp{—quias}) = exp{phas} — 1. (5)

This equation fixes first the steady-state mortality rate of the adults, p%, and subse-
quently the total number of adults in steady-state, N7. We assume that the function
pA(N4) has an inverse.

The steady-state age distribution m*(a) for the juvenile individuals 0 < a < ay, is

given by

m* (a) = m"(0) exp{~psa} , (6)

and for the adults, where a satisfies ay < a < apr, it is described by

m*(a) = m*(0) exp{ —pusay — uiyla —as)} - ()

The last equation of (2) implies that m*(a) = 0 for a > ap;. The proportionality
constant m*(0) is explicitly given by
rpaNA

O = et =1

(8)

where % is given by (5) and thereafter N by p* = pa(N}). Substitution of (8)

in (6) and (7) and subsequently the obtained result in (1c) when (5) is used, shows
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that this distribution m*(a) is indeed the steady-state age distribution. The asymptotic
distribution for the density need not converge to the derived age distribution m*(a). To
develop this important issue, we now derive a discrete-time formalism equivalent to the

continuous model.

4 The Discrete-time Model Formulation

We demonstrate that, with a single founder cohort, the dynamics of the continuous
model population can be described by a discrete-time nonlinear Leslie-matrix equation.
This is a consequence of the fact that the population density may also be described by a
sum of delta functions on the space of individual state variable (age) where the dynamic
behavior is described by ordinary differential equations.

We define a set of natural age classes for the population as follows. Suppose that
as = (I/k)ap for some k,I = 1,--- 00 where the vital ratio &/l is in lowest terms
and a4 < ay. The age interval [0,aps] is divided into k subintervals each representing
an age class. Each reproductive period a4 is divided into [ subintervals such that the
age at maturation as well as all ages where reproductive events take place, occur at
transitions from one class to an adjacent class. When the juvenile period is a multiple
of the reproductive period we have | = 1. The adults are in classes determined by

intervals k —ql+1,--- , k. Now we aggregate the individuals into the classes introduced
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above. The discrete time-step length will be taken equal to

T=apn/k=aa]l, 9)

the duration of the age-classes, and, without loss of generality, time is zero at an instant
of reproduction. The number of individuals at time 77" in class j with age (j — 1)T <

a < jT is denoted as n; = n;(iT) and is given by

;:/( m(iT,a)da, i=1,---,00, j=1,---,k. (10)

With a single founder cohort all individuals are lumped at the left end point of the age
interval associated with the cohort. The number of adults at time ¢7", denoted by Nf;l,
equals Nf] = Z?:quzﬂ n;

The life cycle graph is shown in Figure 1 for/ = 2 and £ = 11. At age a = ay = 10 the
individual deposits eggs into the brood pouch. These eggs hatch at age a = aj+a4 = 14.
This shows that the survival probability in this age class equals that of the adults, p4.
Thus, the fertility at that instant, and at the equidistant ages aj + saaq, s = 1,--+ ,q
equals rp 4.

Let n € R¥ denote the vector with elements given in (10). The autonomous matrix

equation for the k x k population projection matrix, P(ni1), reads n' = P(ni"1)ni~?
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or

i
T—ql+1

i
N ql4i+1

pr 0

by

| < aq — |

Pa

| < a4 — |

1

if
T—qi+1

if
N gl+i+1

The fraction of the individuals expected to survive and move to the next class after the
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time step T differs for the juvenile and adult classes

ps =exp{-usT}, (12)

Pl = lim _Nal) g, Na®)
AT Na((i—1)T) bt N1

(13)

where

dN 4

= —paNa)Na, (i =T <t <iT. (14)

We used the fact that (by choice of the time step) no adult reaches the maximum age
aps and no juvenile individual matures within each projection interval of length 7', and
that the mortality rate is age-independent.

Reproduction of r > 0 offspring occurs in the classes k — (s — 1)[, with s =1,--- ,q.
So, there are ¢ nonzero elements in the first row of the k x k matrix at positions (1, k—sl),
s =0,---,g — 1 and the fertility is rp4. Because the survival probability p4 depends

on the total number of adults, the matrix equation (11) is nonlinear.

4.1 Linear Model

Suppose that the mortality rate of the adults u4 is independent of N4. Then, equa-

tion (11) is a linear autonomous nonnegative matrix with constant pil_l = p4 Where

pa = exp{—paT} . (15)
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The resulting nonnegative population matrix will be denoted by P. The characteris-
tic equation, det(al — P) = 0, often called the Euler-Lotka equation for the matrix

equation (11), is

q—1 q
rexp{ — (py — NA)GJ} Za*(kfsl) exp{ — (k- sl)uAT} _ rpﬁ_ql Za*(’“’(q*s)”pﬁ =1,
s=0 s=1

(16)

where « is a characteristic value (eigenvalue) of P. The column eigenvector equals

k-1 k1
o 2p; oF 2 exp{—p T}
n=| qo-tph=i | = a?~texp{—(k — q)p,T} - (17
aql—2p§_qlpA a2exp{ — (s — pa)ay — (k —ql + L)paT}
k—ql ql—
phalyd 1 exp { — (us — pa)as — (k — D)paT}

When ¢ = 1, semelparous species [12] are represented and individuals die imme-
diately after they reproduce. We assume in the sequel that ¢ > 1. The case ¢ = 2 is
considered in Kooi and Boer (1995) who develop a discrete-time model for species which
proliferate by binary fission into two unequal sized new-borns.

The right top element of the matrix is rp4 > 0 since post-reproductive classes are

excluded, and this implies that the population matrix is irreducible. The life cycle
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graph, Figure 1, is strongly connected as there is a path in the graph from every node
to every other node [2] (pp. 58).

The population matrix is also primitive. The greatest common divisor of the integers
(k—(k=10),k=1)—(k—=20),--- ,(k—(¢g—1I) = (k—ql),k—ql) = (I,1,--- , I,k —ql)
equals 1 and therefore the matrix is primitive, using the Euler-Lotka equation (16),
the definition of [ and k by ap/k = T and [7] (Vol. 2). (It should be mentioned that
in [3] the last term k — ¢l is missing.) Primitiveness can also be derived from the life
cycle graph. For example in Figure 1, the lengths of its loops in the life cycle graph
are (k,k —1,---  k — (q — 1)l); the greatest common divisor of these lengths is 1 and,
therefore, the population matrix P where pi(l = p4 given in (15) is primitive [2].

Thus, the nonnegative population matrix P is irreducible and primitive and therefore
the Perron-Frobenius theorem applies [2]. Hence, there is a dominant real eigenvalue
denoted by a* > 0 and there is convergence to the strictly positive eigenvector (17)
associated with this dominant positive real eigenvalue whether the projection matrix is

diagonalizable or nondiagonalizable [3].

Steady-state

When the dominant eigenvalue is equal to one, o = 1, with ay = (k/l — ¢)as and
as = [T, the characteristic equation (16) is the condition Ry = 1 in equation (4) for

the continuous-time formalism. Consequently a real pa = p% exists and is again given
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by (5). The Euler-Lotka equation (16) can be rewritten with o =1

q q
Ro(pa) =rexp{ —psas} Y exp{—siTpa} = rp’ "> p. (18)
s=1 s=1

The column eigenvector (17) associated with the dominant eigenvalue a* =1 is just

the survival function for a single individual

exp{—pn T}

n* = exp{—psas} : (19)

exp{—pja; — pyT}

exp{—psas — (¢l — D3 T}

This vector is proportional to the continuous-time age distributions (6) and (7) where
the distinct ages a = jT', j =0,--- ,k — 1 are substituted.

Depending on whether the mortality rate of individuals is greater, smaller or equal
to p%, the population increases infinitely (Ry > 1), goes to extinction (Ry < 1) or
remains constant (Ry = 1). There is, however, always convergence of the discrete-time
distribution to the eigenvector (19) when there is a single founder cohort. With 14 = p%

(Ro = 1) the discrete-time steady-state is neutral stable.
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Cyclic Continuous-time Behaviour

Now we assume that the discrete-time distribution converges to the eigenvector (19),
the discrete-time steady-state distribution, and derive the time-dependency between
two reproductive events. Let 7 € [0,T") denote the time since a reproductive event. For
7 = 0, the total number of adults in the discrete-time model is given by N4(0) = N}
(recall that for the linear case this number is not fixed, but depends on the initial
number). Since there is no reproduction within each time interval, the time-variation

of the number of adults in the time interval 7 € [0,7") is given by the ODE

—— =—palNa, (20)

with initial condition for 7 =0, N4(0) = N} = Z?Zk_qu n’;. Between two reproduc-

tive events for the discrete-time steady-state, the solution of this ODE reads

Na(7r) = Nyexp{—py} . (21)

Hence, the continuous-time solution for the total number of adults, compatible with the

discrete-time steady-state, is periodic with period equal to T'.

4.2 Nonlinear Model

In this section we analyse the local stability of the steady-state of the nonlinear pro-

jection matrix for the density-dependent population. We follow the technique proposed
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in [2, 21, 22].

For purposes of analysis, the per capita mortality rate, u4(N4), is assumed to be
N N
pa(Na) = py +va(l - W—) ; (22)

where p% is given by (5), v4 is a constant, positive or negative such that v4 = 0 is the
linear case. The parameter N 4 is determined by environmental conditions.

For a fixed value of v4, there is a one-to-one correspondence between the mortality
rate and the number of adults. Since the mortality rate is age-independent, the time-
dependency of the total number of adults, N4 (%), in each time interval (i —1)T < ¢t < iT

is described by the ordinary differential equation

dN 4 Ny
o palNa —va( NA) A (23)

with initial condition for t = (i — 1)T, Na((i — 1)T) = N’ ..

Equation (23) is the logistic equation

dN 4 Ny
9 _ g1 - 24N 24
however, the growth rate can be negative in our formulation, namely 8 = —(u% + va).

The carrying capacity is now interpreted as the asymptotic value for N4 () when t — co.
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If there is no reproduction, then

y N
K = lim NA(t):M.

t—o00 VA

(25)

In the linear case, where v4 = 0, that the asymptotic value is zero follows from solving
(23).

We consider again the one founder cohort case. Because there is no reproduction
within each time interval, the number of adults in the time interval ¢ € [(¢ — 1)T,4T) is

obtained by integration of the equation (23) and equals

(w5 +va) exp{—(ui +va)(t—(i-DT)}Ny

: i—1 /7 ) VA ?é _/1'* )
Na(t) = wyHvatva (éj){—(ujﬁl+VA)(t—(z—1)T)}—1) NiTL/N 4 A (26)
.NA I vy = _/1'* )
1+pk (t—(G=1)T)NY ' /N4 J A

Thus the survival probability pfq_l = limy_,;7 Na(t) /Nil_l is given by

(Nj4+VA)eXP{*(“r4+VA)T} . VA ?é —MZ
P Vit = matvatva(ew{=(utva) T -1 N R (27)

1 *
. — VA = — .
1+u53 TN, /N 4 VA= THA

Hence, the density-dependent function is of the compensatory or Beverton-Holt type,
see [21], [2] (pp. 232). For a fixed value of vy4, the survival probability is a function of

N4 and decreases monotonically toward zero from a maximum at N4 = 0.
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Extinction Steady-state

In the extinction steady-state the number of organisms is zero. This trivial steady-state
is denoted by . In this steady-state, the Jacobian equals the population projection
matrix, called the inherent projection matriz, see (1la). At the extinction steady state,
the density effects are unimportant and therefore the population projection matrix
governs the dynamics at low population levels, see also [3]. The mortality rate is given

by

fia =y +va, (28)

and the survival probability p4 = limy_,;7 N (%) /Ni(l is given by

pa(va) = exp{—(uy +va)T}, va#—py - (29)

Because the function Ry(u4) defined in (18) is monotonically decreasing and Ry = 1 for
v4 = 0, we conclude that for v4 > 0, we have Ry < 1 and the extinction steady-state
is stable. For v4 < 0 we have Ry > 1 which implies instability and invasibility because
the number of individuals increases when rare. When v4 < —p%, the mortality rate is
negative and loses its biological interpretation. Instability of the extinction steady-state

for this case is immediate.
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Positive Steady-state

We denote by ~ the nontrivial, positive steady-state. The reproductive output by an

average individual throughout its entire lifespan, with density-dependent mortality as

in (22), is
P 1-py
a(pa) = 1ol 358 = rexpl-wsan)p Lk (30)
s=1 T PA

where Ry = 1 gives the steady-state. In the previous section we showed that for rq >
exp{—psas}, p¥ > 0 exists. In a similar way we show that for r¢ > exp{—psas}, 0 <
pa < 1 exists and is unique. As a result, the survival probability in the positive steady-
state equals the survival probability for the linear steady-state (p4 = exp{—p*T}) and,
consequently, it does not depend on v4.

By substitution in the population projection matrix equation (11), it can be shown

that the discrete-time positive steady-state distribution is proportional to

exp{—u;T}

=)
Il

exp{—pyas} ; (31)

exp{—psas}pa

g1
exp{—psas}p4
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where py = pA(]/\}A). The proportionality constant is such that Ny = Z?:quzﬂ nyj.
This property is a result of the fact that the density-dependence affects the fertilities
and survival probabilities for the adults equally, since pil_l given in (27) is equal for all
adult age-classes. This positive steady-state distribution is again the survival probability
function for a single individual.

Thus, the discrete-time positive steady-state distribution 1 in (31) equals n* in (19).

Substitution of p4 in (27) gives an explicit expression for Na

J— * X —(* TY—p %
[ memmetnean g
NA — pAvA eXP{*(ﬂA‘FVA) 31 (32)
— 1_5 "
Nagaper v VAT Thy -

The stability properties of this positive steady-state are determined by the eigenval-

ues of the linear approximation matrix

k
oP
Pla +. Z a—m‘ﬁHJ ; (33)
where Hy has n in column j and zeros elsewhere. The partial derivative % is only

nonzero for the elements of P~ equal or proportional to p’;l; see (11). The partial
derivative of p’;l (27), with respect to each element of the population vector evaluated

in steady-state given by (31), equals zero for ¢ > 0,5 = 1,--- ,k — gl. For vy # —p’
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and 1 > 0,7 =k —ql+1,--- ,k we have

Py = (1 + va) exp{— () + va)Tiva(exp{—(u}s +va)T} - 1) (34)
On; = N (i +va+ valexp{—(u} +va)T} — 1)Na/N4)?
A similar expression holds for v4 = —p%. When the magnitude of the eigenvalues of

the resulting approximation matrix is less than 1, the steady-state is stable.

Bifurcation Analysis

Bifurcation analysis is used to study the stability of the trivial and non-trivial steady-
states of the nonlinear model. Figure 2 shows the one-dimensional bifurcation diagram
with the bifurcation parameter v4. The steady-state ratio of the number of adults
N4 /N 4 is depicted as a function of the bifurcation parameter v4 calculated with (32)
where the parameter values are listed in Table 1.

For v4 = 0, the positive steady state ]\AfA depends on the initial value N4(0) and
is neutral stable. For v4 < 0, the positive steady-state n € R,.* is stable and the
extinction steady-state solution n = 0 is unstable. For v4 > 0, the positive steady-state
is unstable and the extinction steady-state solution is stable. Equation (32) implies that
N 4 > N 4, and therefore, the mortality rate 1A becomes negative for large values of v 4.
This yields that the positive steady-state is unstable. Computer simulations suggest
that the population goes extinct starting with positive values n(0) € R *.

Generally, the asymptotic rate of convergence is the largest magnitude of the eigen-

values of the Jacobian evaluated in the steady-state. In Figure 3, these eigenvalues are
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shown in the complex plane for two values: v4 =0 and vy = —4. For vy = 0, we have
the linear case and the Jacobian equals the population projection matrix. The domi-
nant eigenvalue o* = 1 and all the other eigenvalues lie inside the unit circle. There is
no convergence to the steady-state in that the number of adults does not converge and
the steady-state is neutrally stable. However, the distribution converges to the steady-
state distribution and the rate of convergence is the ratio of magnitudes of the second
largest absolute magnitude and the largest magnitude, a* = 1, of the eigenvalues of the
population projection matrix [2].

The calculated values for v4 = —4 show that the real eigenvalue is almost zero but
the complex conjugate pairs do not differ much from the linear case. This shows that
the rate of convergence is fast only starting from a perturbation along the eigenvector
belonging to the real eigenvalue, but from other perturbations of the steady-state, the

rate of convergence is low.

Cyclic Continuous-time Behaviour

Similar to the linear model case, the asymptotic continuous-time solution for the number
of adults N(¢) is periodic with period T'. Figure 4 shows the periodic behaviour for
v4 = 0 (the linear case) and v4 = —4 (the nonlinear case) with the parameter values
listed in Table 1. In the discrete-time steady-state situation, during the projection
interval, T', the number of adults starts at N 4 and diminishes to p. A]/\\f 4 at the end of the
period. It is then increased step-wise to N 4 again because of the pulsed reproduction,

indicating the periodic solution.
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In the nonlinear case, the vector (31) is not proportional to the continuous-time
age distributions m*(a) (6) and (7) where the distinct ages 57, j = 0,--- ,k — 1 are
substituted as was the case in the linear model. This is a result of the fact that the
density-dependent mortality rate is periodic as is the solution. With the continuous-time
steady-state, the number of adults is constant. This forces equivalence for the linear case
where the survival probability function is an exponential decay function. Consequently,
within the time intervals, the total number of adults also decays exponentially. For
the nonlinear density-dependent case, the survival function is no longer an exponential

decay function, but is given in (26) and shown in Figure 4.

Finally, we consider the following formulation of the mortality rate

pa(N) = i+ Ioal(1 = 4. (35)

This density-dependent mortality rate is similar to the one used in [6]. The one-
dimensional bifurcation diagram for v4 > 0 is the mirror image of that for v4 < 0
since (32) implies N 4 > N 4 for the positive steady-state. Hence, the positive steady-
state is stable, except for v4 = 0, where it is neutrally stable. The limiting value for
vy =0 with py = exp{—p*T'} using (32) is

S, pal
Noi=N :
AT —exp{— T

(36)
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5 Comparison of the Natural Discrete-time and the

Continuous-time Models

Generally, the population density distribution can be taken to be any distribution, in-
cluding the steady-state continuous-time age distribution, a uniform distribution within
each age class, and the measure distribution with a finite number of cohorts. In the
latter case, the dynamics of the whole system is described by a set of ordinary differen-
tial equations; namely, for each cohort, one differential equation is formulated with the
number of individuals as a dependent variable.

The results obtained for the one founder cohort case in the previous section for a
single founder cohort can be elucidated using the notion of the torus T2. The length of
the centre-line of the torus in the long direction is aps and along the torus in the short
direction is a4. Suppose aq4 = 4, ay = 10, and the number of reproductive events is
q = 3; thus, apy = ay + 3a4 = 22. Then ag/ap = 2/11, thus k = 11 and [ = 2. After
[ = 2 revolutions along the centre-line of the torus in the long direction accompanied
by k = 11 revolutions along the torus in the short direction, the orbit continues along
the path travelled the time 2ajp; = 1las ago, showing periodicity. In Figure 5, the
trajectory of an individual is followed for this simple case.

In general, when the ratio of the reproductive period, a4, and the juvenile period,
ayj, is rational, as/ay € Q, after [ revolutions along the centre-line of the torus in the
long direction accompanied by k revolutions along the torus in the short direction, the

orbit continues along the path travelled the time lajy; = kaa ago. This shows that when
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all individuals have one common ancestor, only a finite number of cohorts exist, namely
k. Offspring from different generations of the founder cohort are produced at the same
time and combine into a single cohort leading to the finite number of cohorts.

If there are a finite number of founder cohorts, then the total number of individuals
is obtained by superposition of the solutions for each founder cohort, all are of the same
period, but are out of phase. For [ =2 and k = 12, T'= a4 /2 = 2, the life cycle graph
is shown in Figure 6. There are two founder cohorts one starting with a = 0 and the
second with a = 2 at £ = 0. The reproductive events occur at a = 16,20, 24 for both
cohorts.

In Figure 7, the eigenvalues are shown in the complex plane for v4 = 0 (linear case)
and the eigenvalues of the linear approximation matrix for v4 = —4 (nonlinear case).
For v4 = 0, the population projection matrix is cyclic with index of imprimitivity [ = 2.
There is an eigenvalue which is in steady-state equal to one, a* = 1 with the eigenvector
given in (31). However, there is also an eigenvalue a = —1. All other eigenvalues are
inside the unit circle.

The eigenvector belonging to —1 equals that eigenvector belonging to 1 of the matrix
P2. This matrix is built up with 2 uncoupled graphs, see Figure 6. After re-ordering, the
full population projection matrix is built up with 2 projection matrices on the diagonal.
Both have the same structure as the projection matrix with [ = 1 and k£ = 6, where
T = a4 = 4 and the same Euler-Lotka equation (16) holds as for the projection matrix P

itself. This can be explained as follows. Let the time between two observations be equal
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to the period between two reproductive events a 4. The life cycle graph separates now

into two independent sub-graphs. These are the life cycle graphs for the two founder

cohorts with ages at ¢ = 0 equal to ¢ = 0 and ¢ = 2 while aging and the reproduction

strategy is the same. The survival probabilities and fertilities of the two corresponding

matrices are indicated in Figure 6. As a consequence, steady-state occurs under the same

conditions. Hence, the eigenvector evaluated at this steady-state belonging to eigenvalue
*

o = —1 is the vector formed by merging the eigenvectors belonging to eigenvalue 1 of

these two matrices evaluated in this steady state, however, with different signs

—exp{—u,T}

Nor=-1= exp{—psas} ' (37)

—exp{—psa; — piT}

—exp{—usa; — (gl — )p;T}

In general, the index of imprimitivity is [ and there are [ — 1 complex eigenvalues with
magnitude 1, whose values are given by exp{u/l 27}, u =1,2,--- ,[—1, Caswell (1989)
indicating that there is no convergence.

With multiple founder cohorts there is no direct interaction between descendants

of different founder cohorts. As a result, there is no convergence to the discrete-time
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age distribution (31), when aas/a; € Q. The cyclic behaviour depends on the initial
conditions, that is, the positive steady-state is neutrally stable.

For the density-dependent mortality case, a similar approach is impossible because
the mortality rate depends on the number of adults which changes at every time step.
However, the life cycle graphs shown in Figure 6 remain valid. Thus, also for density-
dependent mortality case, with multiple founder cohorts there is no direct interaction
between descendants of different founder cohorts. The calculated values for v4 = —4,
also shown in Figure 7, reveal that one real eigenvalue of the Jacobian evaluated in the
steady-state equals —1, indicating that there is no convergence. The Jacobian given
in (33) is the sum of two matrices of which the first term is just the population ma-
trix itself and is therefore imprimitive. The second term gives the interaction between
descendants of different founder cohorts via the density-dependent mortality rate. How-
ever, the descendants of different founder cohorts are still born at different times. Thus,
the individuals in one age class have one common ancestor.

With a continuous age distribution and a4/a; € Q, there is no convergence within a
class, and only the distribution of the total number of individuals in the classes converges
to an asymptotic distribution. As an example, when the continuous age distribution in a
class is uniform, it is uniform after each reproductive period a4, and does not converge
to the steady-state age distribution, m*(a). The values of the uniform distribution
within the classes change and converge to values so that the total number of individuals

in the classes converge to the discrete-time age distribution values. This is a result of
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the fact that offspring are produced at the same time by multiple adult classes which
gives a mixing among the age classes with respect to total numbers. Within the age
classes, there is no mixing, and, therefore, there is no convergence.

When the ratio is irrational so that a4 /a; € Q, the orbit is not periodic on the torus;
hence, the map never closes on itself. The origin is never intersected again, however, it
is an accumulation point for the set of intersections, see [8, 16]. The intersection points
are dense in the horizontal axis [0, aps] as in the Poincare section of the torus. As time
goes to infinity, the orbit on the torus will eventually come arbitrarily close to every
point on the toroidal surface. This gives a countable infinite number of cohorts as time
goes to infinity.

With a4/a; ¢ Q, the dimension of the population projection matrix is infinite.
Therefore we consider a series [, /k,, with [, k, — oo for n — oo such that this series of
rational numbers converges to the irrational ratio. Then, the length of the age interval

of the classes converges to zero, since T' = a4/l. Equations (30) and (5) yield

pa =exp{—phaa/l} =1 —pyT, (38)

where we retained the first order approximation with respect to small 7. Substitution

of this result in (32) gives the following approximating expression for Na

s N
Nym —2 .
1 —piT
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Therefore we effectively have convergence to a infinite number of cohorts dense with
respect to the continuous-time age distribution and the number of adults is close to

N 4.

6 Discussion and Conclusions

In [9], populations with both continuous (death) and discrete (reproduction) elements
are investigated as we do here. The dynamics of the population with pulsed reproduction
are formulated by a difference equation for one state variable, namely the population
size. The influence of the environment is taken into account as a density-dependent
within-season mortality. This formulation is appropriate for simple ecological systems
of seasonally breeding populations with non-overlapping generations.

Huyer (1997) studies the asymptotic behavior (existence and stability) of a similar
type of model, also incorporating discrete event reproduction, where growth is again
limited by resource availability. The population consists of a finite number of cohorts.
Here the individuals die immediately after they reproduce as do semelparous species
such as Oikopleura, salmon, eel and most cephalopods.

The work here differs from Gyllenberg’s and Huyer’s in that the population is
iteroparous, that is the individuals reproduce more than once, and die immediately
after the last reproductive event. There is a juvenile period in which there is no re-
production and there are overlapping generations. The waterflea Daphnia has this type

of life history. Furthermore, we consider continuous densities as well as delta measures
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(spikes, each spike representing a cohort) for the age distributions for the population.

When the individuals do not die immediately after the last reproductive event,
introduction of a post-reproductive class affects only the density-dependent mortality
rate defined in (22) while all other parameters and the analysis of the model remain
unchanged. Notice that the analysis would be much easier when the density affects all
the vital rates equally [2] (pp. 243), that is, when the mortality depends on the total
number of individuals and not only the number of adults.

In the literature, see for instance [9, 14], a relationship between the period of popu-
lation cycles and the type of density-dependence is made. Here the period depends just
on two life-history parameters.

Due to the discrete reproduction events in the physiologically structured populations
studied in this paper, there is not always convergence to the steady-state continuous-
time age distribution. When the iteroparous vital ratio of the juvenile period and
reproduction period is rational, there is no convergence to the steady-state continuous-
time age distribution. In this situation, the results obtained with the discrete-time
formalisms can be used to clarify results for the continuous-time representation. With
one founder cohort, the number of cohorts remains finite and there is convergence to
a stable discrete-time age distribution when the mortality rate is density-dependent.
Reproduction at the same moment by multiple adult age classes yields a mixing among
the age classes with respect to the total number of individuals in the classes. There

is no mixing within an age class and, therefore, there is no convergence. This implies
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periodicity for the continuous-time age distribution and number of adults. With multiple
founder cohorts, again there is no convergence to the steady-state age distribution but
there is periodicity.

When the ratio between the juvenile period and reproduction period is irrational,
effectively there is convergence to the steady-state continuous-time age distribution.
With a finite number of founder cohorts, there are asymptotically a countable infinite
number of cohorts and the length of the age classes goes to zero. For a similar case in [16]
it was shown that the convergence rate can be small. This resembles the continuous
reproduction case (often used in the literature) with complete mixing, where at each
time, all adults contribute to the formation of offspring, giving convergence to the
steady-state age distribution.

With the continuous-time steady-state age distribution the number of adults is time-
invariant and equals the value N 4. Only when a4/a; ¢ Q for the density distributions
as well as measure distributions there is effectively convergence to the steady-state age
distribution and the same applies.

In [5], the relationships between the various discrete- and continuous-time models
for the dynamics of physiologically structured populations are elucidated. A numerical
scheme for the solution of physiologically structured populations is derived from the
Leslie matrix model. In that formulation, no juvenile period was assumed and therefore
the time step was equal to the fixed time period between two consecutive reproduc-

tion events. In this paper there is a juvenile period and its length together with the
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reproductive period determine the projection time interval in the Leslie matrix.

To solve the age structured McKendrick-von Foerster equation (1) Funasaki (1997)
used integration along the characteristics with a fixed time step. When the reproductive
period is a multiple of the time step chosen, an equivalent Leslie matrix model formu-
lation is possible. It was found that in those cases the solution is periodic as predicted
by the discrete-time model developed here. As a result of the juvenile period, the pro-
jection interval is, however, not the time period between two consecutive reproduction
events. The period of the cyclic behaviour generally is not the generation time, but is
equal to the reproductive period divided by the number of cohorts in that period. This
agrees with the results obtained in [6] based on time-series analyses.

Often the solution of the governing equations have to be approximated using nu-
merical techniques. Roundoff errors on digital computers imply working with rational
numbers. The dimension of the population matrix will be large and hence the corre-
sponding fluctuations are of the order of the roundoff error and therefore imperceptible.
More important are truncation errors generally made with the finite discretisation of
differential equations whereby often “nice” equidistant grid meshes are chosen in or-
der to facilitate the study of convergence of the numerical scheme. Furthermore, due to
large experimental errors or the biological stochasticity, measured vital parameter values
are often truncated to numbers with a few significant digits. As a result, this involves
lumping of individuals into finite cohorts yielding no convergence to the steady-state

age-distribution. The presented discrete-time model can be used to clarify obtained
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numerical results.

In nature, the juvenile period as well as the reproduction period are subject to bi-
ological stochasticity, and as a consequence, so is their ratio. Then, mixing among the
age classes is expected, yielding convergence to the steady-state age distribution. There-
fore, the steady-state age distribution based on estimated values for the juvenile period,
reproduction period, number of reproductive events during lifetime and the brood size
gives a good approximation for the long-term behaviour for a population when there
are initially a large number of individuals not belonging to a small number of distinct
cohorts. The steady-state distribution, then often called “stable age distribution”, as-
sumption is made with the derivation of stage-classified matrix models [2] (pp. 45) used
for risk assessment analyses. Each life-history stage (juvenile, adult) is described by
the number of individuals in that stage. The elements on the diagonal of the popula-
tion projection matrix are the proportions of individuals that remain in the same stage
during a time step and the sub-diagonal elements the proportions that go to the next
stage.

In ecotoxicology, predictions from ecotoxicity tests on individual organisms are made
about the effects of environmental stress from both biological (predators) or anthro-
pogenic sources (chemical concentrations) on population dynamics. In many ecological
studies, see for instance [1], a negative growth rate of the population leads to extinc-
tion. This is in agreement with the result for density-independent (linear) mortality

rate where the discrete-time steady-state is neutral stable. In [10, 15] the change of the
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juvenile period and the reproduction period of the waterflea Daphnia due to an envi-
ronmental stress perturbation is dealt with. The population matrix model formulation
for iteroparous species (such as Daphnia), proposed here can be used to investigate the
effects of the changes in these two life-history parameters on the population dynam-
ics. In a subsequent risk assessment this and other stress effects can be translated into

consequences for population extinction.
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Table 1: List of symbols. The symbols in the column labelled ‘dimension’ stand for: # number
of individuals, t time, v volume of environment. We took py = p*% where p* is the root of (5).
The parameter values in the last but one column are for analysis purpose. More biologically
realistic values are given in the last column.

Symbol Dimension Interpretation Values Values
a t Age

ay t Juvenile period 10 8.3
aa t Reproductive period 4 4
apr t Maximum age 22 48.3
m(t,a) #t'v-!  Population density

Ny #yvl Number of juveniles per unit volume

Ny #Hv ! Number of adults per unit volume

q +# Number of reproductive events 3 10
r +# Brood size 1 11

t t Time

« - Characteristic value

7% t~! Mortality rate for juveniles

A t1 Mortality rate for adults

VA t~! Density-dependent mortality rate
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Pre-adults Adults

Figure 1: The life cycle graph for the population projection matrices P. In this example
asa =4 and ay = 10, s0 !l = 2 and k = 11. The number of reproductive events is ¢ = 3, thus
apy = ay+ 3as = 22. The reproductive event occur at a = 14, 18,22. The survival probabilities
pJ, P4, and the fertilities rp4 are indicated. The numbers are the age in the different stages.
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Figure 2: One-dimensional bifurcation diagram with respect to the bifurcation parameter v4.
The ratio NA/NA is plotted as function of the bifurcation parameter v4 defined in (22). For
va < 0 the positive steady-state is stable (solid curve) and for v4 > 0 it is unstable (dashed
curve). The extinction steady-state, NA = 0, is unstable for v4 < 0 and stable for v4 > 0.
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Figure 3: The eigenvalues of the linearized nonlinear system in positive steady-state for v4 =0
(circles) and v4 = —4 (bullets) in the complex plane. The parameter settings are given in
Table 1. For v4 = 0 the dominant eigenvalue is a* = 1. This is a bifurcation point. For
v4 > 0 this dominant eigenvalue is larger than one, a* > 1 and this gives an unstable positive
steady-state. For v4 < 0 all eigenvalues are inside the unit circle and there is stability. Notice
that the real eigenvalue diminishes to almost zero for v4 = —4 but that the complex conjugate
pairs change little as a function of the bifurcation parameter v4.
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Figure 4: The number of adults N (t)/N 4 as a function of time t for v4 = 0 (dashed curve)

and v4 = —4 (solid curve) for two cycles with period T' = 2. The parameter settings are given in

Table 1. With no reproduction, the asymptotic value reaches zero for v4 = 0 and for v4 = —4

(¥ +va)Na)/va, see (25). For the continuous-time formulation we have the time-invariant
Na

. __ Ny _
solution o=y =1 see (22).
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Figure 5: Cyclic solution when the ratio of a4 and a; is rational. In this example a4 = 4
and ay = 10, so !l = 2 and k = 11. The number of reproductive events is ¢ = 3, thus a) =
aj + 3a4 = 22. The reproductive events occur at a = 14,18,22. When there is one common
ancestor cohort starting with a = 0 and ¢ = 0, the graph shows that offspring from different
generations of the founder cohort is produced at the same time (circles) and they are combined
into a single cohort (solid circles) leading to a finite number of cohorts. There can be only
k = 11 different cohorts with one founder cohort.
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Figure 6: The life cycle graphs for the population projection matrix P. In this example a4 = 4
and ay = 12, but we take [ = 2 and k = 12. We did not take [ = 1 and k£ = 6 in order to have the
two founder cohort case. The number of reproductive events is ¢ = 3, thus ay; = ay+3a4 = 24.
The reproductive events occur at a = 16,20,24. There can be only k£ = 12 different cohorts
with two founder cohorts, six cohorts are descendants from one founder and six cohorts are
descendants from the second founder. The two sub-graphs are disjoint, showing no mixing
between the offspring of the two founder cohorts.
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Figure 7: The eigenvalues of the linearized nonlinear system in positive steady-state for v4 =0
(circles) and v4 = —4 (solid circles) in the complex plane, as in Figure 3. The parameters are
given in Table 1 except a; = 12 instead of ay = 10. We took [ = 2 and k =12 and not [ = 1
and k = 6 in order to have the two founder cohort case.
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PART III

Aggregated Population Models
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1 Introduction

Another type of model which can be used to study populations is the aggregated pop-
ulation model, in which all organisms grouped into one state variable are assumed to
have the same defining characteristics. When studying a more complex system, i.e.,
one which contains a number of different species with many interactions resulting due
to the structure of the food web, this approach may be a more viable option. The
abstracts discussed here are extracted from manuscripts which are to be submitted for

publication.

2 Application to Mesocosms

The aggregated model approach has been used to study the dynamics of a system, a ma-
rine mesocosm, which included phytoplankton, microzooplankton, macrozooplankton,
and some higher-order consumers, such as fish, oysters, clams, and anemones [1]. The
model was fine-tuned to reproduce the dynamics of the mesocosms as best as possible
and then manipulated to study the effects of various scenarios on the model system.

The abstract from [1] is included here:

An energetic-based carbon flow model was developed to simulate the eco-
logical production dynamics of 1-m? experimental marine mesocosms. The
model is used to simulate mesocosm experiments that vary in ecological com-

plexity and to investigate the effects of model structural aggregation (i.e.,
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levels of ecological detail) on predicting ecosystem response to multiple stres-
sors. In its most detailed form, the model food web structure consists of 22
state variables that represent the primary producers and 17 that represent
the consumers. The model also addresses the ecological effects of multiple
stressors in the form of toxic metals and excessive nutrient levels. Primary
producer biomass values are modified daily in relation to surface irradiance,
water temperature, dissolved inorganic phosphorus, dissolved inorganic ni-
trogen, and dissolved inorganic silica values as well as through consumption
by modeled grazers. Consumer biomass values change daily as a function of
consumption minus energetic-based losses to respiration, excretion, locomo-
tion, and predation. The complete model has been developed as a predictive

tool for estimating ecological risks as probabilities.

The first scenario examined was the effect that three toxic metals had on the system.
The following is the abstract for “Considerations of Ecological Complexity in Modeling
the Impacts of Multiple Stressors on Plankton” and was work done in collaboration

with S.M. Bartell, K.R. Campbell, J. Hurlebaus, J.G. Sanders and D.L. Breitburg.

An energetics-based carbon flow model was developed to simulate the eco-
logical impacts of arsenic (As), cadmium (Cd), and copper (Cu) on the pro-
duction dynamics of a 1-m? experimental marine mesocosm. The sensitivity
of predicted impacts of metals was examined in relation to three structural

representations of the mesocosm food web. The most detailed model de-
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scribed the primary producers and consumers using 23 state variables. The
second model used 12 and the third model used 7 state variables to represent
the same mesocosm trophic structure. All three models were used to sim-
ulate the exposure of mesocosm populations to the combined metals. The
results of the modeling study demonstrated that the magnitude and pattern
of predicted metal impacts on plankton production depended on assump-
tions concerning basic model structure. The effects of model aggregation on
the predicted impacts on phytoplankton production were greater than those
for total microzooplankton. The results also suggested that more highly ag-
gregated models appear to underestimate the potential impacts of metals on

the plankton production.

Another study, “The Implications of Structural and Functional Food Web Hetero-
geneity on Modeled Marine Mesocosm Responses to Multiple Stressors” was developed
in collaboration with S.M. Bartell, D.L. Breitburg and C. Richmond. The abstract

follows.

This modeling study examines the implications of imposing different degrees
of structural and functional food web heterogeneity on simulated ecological
impacts of nutrient enrichment and metal contamination in experimental
marine mesocosms. Structural heterogeneity is defined as the number of
populations used to represent different trophic guilds in food webs that de-

scribe the mesocosm. The model begins with a detailed (i.e., 39 populations
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of producers and consumers) food web used to simulate the probable im-
pacts of multiple stressors. Successive simulations are performed with model
structures that are systematically reduced in populations per trophic guild to
provide simpler descriptions of the mesocosm food web (e.g., 7 populations).
For each level of food web simplification, functional heterogeneity is defined
by the variances assigned to the distributions of the bioenergetics parameter
values that determine the production dynamics of each model population.
Realistic ranges of model parameter values are developed using methods of
“Monte Carlo filtering” in calibration of the models to results of mesocosm
experiments. Combinations of model structural and functional food web het-
erogeneity are used to simulate ecological impacts and risk posed by varying
exposures to nutrients (e.g., N and P) and toxic metals (As, Cd, Cu). Monte
Carlo methods are implemented to develop distributions of impacts on the
biomass of modeled food web populations and to identify the key model
parameters that contribute to impacts and risk. The simulated impacts are
compared with results measured in corresponding mesocosm experiments.
The combined modeling and experimental results can be explored to de-
velop theoretical relationships between food web complexity and food web

variability on ecological responses to multiple stressors.

These are only two examples of the possibilities that can be explored with an aggre-

gation model.
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