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Abstract

Individual-based models have been used to study the population dynamics of semel-

parous and iteroparous organisms. The �rst model, developed for sockeye salmon (On-

corhynchus nerka), was based on the physiology of the individual and incorporated into

a population model via a McKendrick-von Foerster type partial di�erential equation.

Cycles of population abundance historically found in the Fraser River system were recre-

ated through model simulations. Explanations for the appearance of the cycling were

investigated and tested. The results showed that density- and size-dependent mortal-

ity were not necessary for cycling to appear, however their inclusion or exclusion in

combination with the type of schooling could alter the character of the periodic cycling.

The use of sequential design of experiments as a method for sensitivity analysis of

the model allowed for a thorough investigation of the parameter space. The approach

combined standard and non-standard designs and used reverse methodology to screen for

insigni�cant factors. The resulting sequence of designs isolated the sensitive parameters

and allowed for realistic model output.

The second individual-based model was used to study iteroparous reproduction

strategies and population dynamics. Two population models were formulated, a set

of continuous partial di�erential equations of the McKendrick-von Foerster type and a

set of discrete matrix equations. The asymptotic relationship between the two types of

models was evaluated. It was found that a lack of convergence to the steady-state age

distribution can occur in discrete event reproduction models and that convergence de-
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pends on whether the ratio between the maximum age and the length of the reproductive

period is rational.
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Introduction

This dissertation consists of three parts. The �rst two consider the use of individual-

based models to study population dynamics while the last covers an aggregated popu-

lation model.

In Part I, the life history of the semelparous sockeye salmon (Oncorhynchus nerka) is

reviewed and the model developed based on the physiology of the individual is explained.

Incorporation of the individual-based model into a population model is shown and the

method of characteristics is used to reduce the partial di�erential equation to a system

of ordinary di�erential equations which are solved numerically.

In order to produce realistic model output, a sensitivity analysis is conducted in

Chapter 2. Methods from design of experiments, a technique used in the �eld of statis-

tics, are reviewed and explained. Some of these techniques are then applied in sequential

experimentation. Standard methods, such as the fractional factorial and one-factor-

at-a-time, are combined with non-standard methods (saturated resolution V , Cotter,

Plackett-Burman, and robust design) and a response surface method (central composite

design) to achieve the desired result. The sensitive parameters are isolated, investigated,
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and subsequently used to structure a population with di�erent ecotypes and generate

values that are commensurate with a real population of salmon.

In the third chapter, simulation results demonstrate that the model produces cycles

that are qualitatively similar to cycles which are known to appear in natural populations

of sockeye salmon in some parts of the Fraser River system. The possible reasons for the

appearance of cyclic dominance are discussed and tested using the model. The results

show that mortalities associated with density-dependence and size are not responsible

for the appearance of the cycles. However, density- and size-dependent mortality in

combination with schooling in the freshwater environment can alter the character of the

periodic cycling that occurs.

In Part II, an individual-based model is used to study iteroparous reproduction

strategies and asymptotic dynamics of a population. It is assumed that reproductions

are discrete events and deaths occur on a continuous time scale. In the �rst part

of Section 3, a continuous-time model with state variables for the juvenile and adult

stages is formulated and the steady-state age distribution is found. Then, a discrete-time

nonlinear Leslie matrix model equivalent to the continuous-time model is derived. It is

found that the population dynamics depend on the ratio between the juvenile period

and the length of the periodic reproductions. If this ratio is rational, the total biomass

of the population can be cyclic when the initial distribution di�ers from the steady-

state density distribution. Additionally, the number of cohorts remains �nite when

they are descendants of one founder cohort. In Section 5, the discrete- and continuous-

2



time models are compared. The case when the ratio between the juvenile period and

the periodic reproductions is irrational is considered. The �nal section addresses the

applicability of the matrix model to ecotoxicology and risk assessment.

An aggregated population model with applications to marine mesocosms is briey

discussed in Part III.

3



PART I

Sockeye Salmon Model,

Sensitivity Analysis, and Results
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Chapter 1

Life History and Model

1.1 Life History

Sockeye salmon (Oncorhynchus nerka) begin life as eggs deposited in the gravel of stream

beds, river outlets, or shallow lakes during the Fall [29, 63, 91]. The eggs hatch within

�ve months of deposition, depending primarily on water temperature [29, 65, 182]. The

sac-fry remain in the gravel for an additional three to �ve weeks living on the yolk-

sac [91]. Inch-long fry emerge from the spawning gravel and passively migrate to the

lake by mid to late spring [29, 63, 91], at which time feeding and moving about in schools

begins [91, 92, 101, 137]. The juvenile �sh remain in the lake anywhere from one to four

years before migrating to better feeding grounds [29, 63, 68, 91, 176, 182]. Migration

from the lake is not triggered by any one factor alone, but has been speculated to

include both physical and biological factors. These may include, but are not limited to,

temperature, light intensity, wind intensity and direction, cloud cover, rainfall, water
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level, lake wave action, river discharge, age structure of the smolt population, size

structure of the smolt population, and level of resource in the freshwater environment

[92, 109, 110]. When the trigger for migration does occur, the smolts migrate to coastal

feeding grounds in schools and then continue to the ocean [92]. The smolts mature in

the ocean for one to four years, feeding heavily as there are no food limiting conditions

present in this environment [57, 176, 182, 189]. Once mature, the smolts migrate back

to the spawning grounds. As the salmon near the freshwater, they stop feeding and

their digestive systems become nonfunctional and degenerate [35, 74, 91, 104]. Upon

returning to the lake, the female digs redds (depressions in the gravel made by powerful

strokes of the tail) and spawns with the male [91]. Each female spawns anywhere from

three to �ve times, constructing a new nest in the gravel and depositing between 500

and 1100 eggs each time [35, 91]. The spawning migration and spawning activities drain

90 to 96 percent of fat and 33 to 53 percent of protein reserves [74, 104]. The spawning

pair die several days after spawning has taken place.

Sockeye salmon residing in Cultus Lake, a part of the Fraser River system located

in British Columbia [35], are the focus of this model. Sockeye are believed to be the

principal pelagic �sh of this lake [163]. The Cultus sockeye feed primarily on the fol-

lowing crustacean zooplankton: Epischura nevadensis, Cyclops bicuspidatus, Daphnia

pulex, and Bosmina obtusirostris [61, 162]. Euphausiids are the primary food source for

sockeye once they have migrated from the lake [9, 28, 176]. The majority of sockeye in

Cultus Lake migrate to the ocean in April and May as year-old �sh; however, a small

6



fraction migrate during their second or third year [63, 76, 92, 162]. Nearly 90 percent

of Cultus sockeye return from the sea during their fourth year of life [76].

1.2 Individual Model

The importance of individual-based models (IBMs) has been widely noted [23, 50, 53,

102, 103, 130, 138]. The primary reason for using an IBM to study population dynamics

is that populations are made up of individuals. It is the individual which has behavioral

characteristics and interacts with other members of its own population and those of other

populations; it is the individual which grows, reproduces, and dies, not the population.

Another reason for the IBM approach is that realistic parameter values for individuals

are more accessible due to the fact that individual properties and the mechanisms by

which individuals interact with the environment can be measured [103].

In order to analyze the dynamics of a realistic population, there must be some

variation among the individuals which compose the population. This variation can

come from any number of processes (e.g., demographic, genetic, environmental) and

should depend on the study organism and the problem being addressed.

Not only is the choice to use an IBM critical, but the inclusion of lipids as one of the

state variables for individual growth is also important. As stated in [82], lipid functions

as the major source of energy for most �sh [177]. It also regulates certain metabolic

functions, is a threshold trigger and an essential component of reproduction [201], func-

tions as a thermoinsulator, is of major importance in hydrostatic and hydrodynamic

7



factors [177], plays an important role in overwinter starvation or survival, and assists

�sh in coping with environmental stressors [1]. In addition, Kooijman (1993) found that

it is not possible to understand dynamics at the population level if a storage compart-

ment is not included at the individual level. Finally, among individuals which would

otherwise be considered similar, there can be substantial variation in the lipid compo-

nent due to variation in the density of the resource, the quality of the resource, and

other environmental stresses [84].

1.2.1 Model Overview

The model used here is a modi�cation of the individual-based model for rainbow trout

developed by Hallam et al. (2000) including the e�ects of temperature on the individ-

ual's physiological processes [131]. Hallam et al.'s model is based on the energetics of

an individual female �sh (see Figure 4.3).1 Each organism is composed of two major

components, lipid and structure (protein and carbohydrates), each of which consists of

a labile and a nonlabile portion. The labile portions of lipid and structure are available

for use in growth and reproduction; the nonlabile portions, referred to as protected, are

the lipid and protein bound in somatic tissue which are not available for use, even under

conditions of starvation. The mass of lipid and mass of structure are denoted by mL

and mS [g].2 The mass of protected structure, mPS [g], is assumed to be non-decreasing

with age and is a constant fraction of mS, i.e., mPS = �mS ; nonlabile lipid is given by

1All Figures and Tables appear in the Appendices.
2All weights in the model are dry weights.
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�mPS [g] where � is a dimensionless parameter which gives the ratio of nonlabile lipid

to nonlabile structure.3 Given these representations, the mass of labile lipid is given by

(mL � �mPS) and the mass of labile structure by (mS �mPS).

The dynamics of an individual �sh are represented by two ordinary di�erential equa-

tions which give the rates of change of mL and mS . These rates are determined by the

di�erences in the inputs and the outputs. The inputs are represented by the growth

of the lipid and structure compartments whereas the outputs are the losses from these

compartments. Growth of lipid and structure of a �sh is obtained from feeding on a re-

source which also has lipid and structure components, the densities of which are denoted

by xL and xS [ g
cm3 ]. The amount of resource that can be converted into viable energy is

based on the assimilation eÆciencies of the lipid and structure, represented by A0L and

A0S [dimensionless] in the model. The losses consist of lipid and structure allocation

for egg production and energy allocation for maintenance, apparent heat increment4,

activity, and reproduction. Maintenance, apparent heat increment, and activity losses

occur on a continuous time scale; reproductive losses are discrete and occur only once

for an individual given that sockeye salmon are semelparous.

The life history of a female �sh is followed from the deposition and fertilization of

the eggs to when the �sh eventually dies. Two sets of di�erential equations are used to

describe two di�erent parts in the life of a �sh, the yolk-sac stage and the period after

3See Tables 1-6 for a list of all parameter names, their values and references.
4Heat increment is also known as speci�c dynamic action (SDA). Beamish and Trippel (1990) suggest

replacing the term \heat increment" with the less-speci�c \apparent heat increment" due to the diÆculty
in experimentally separating the energy requirements for grasping, chewing, and swallowing from those
of the postabsorptive processes associated with feeding.

9



the yolk-sac has been absorbed when external feeding commences.

The �rst set of equations discussed is for growth during the embryonic stage. At

age 0, an egg which has the initial component weights

mS(0) = mS0 , mL(0) = mL0 (1.1)

is deposited and fertilized. The egg will hatch and survive on the nutrients of the yolk-

sac until it is completely absorbed; however, since the fry are not actually feeding during

this period, they decrease in size. The di�erential equations which represent this change

in mass of lipid and structure are

dmL

dt
=

8>><
>>:

�BL(mL � �mPS) for ED > EA

�BL(mL � �mPS)EDEA for ED � EA
(1.2)

dmS

dt
=

8>><
>>:

�BS(mS �mPS) for ED > EA

�BS(mS �mPS)EDEA for ED � EA
(1.3)

where BL and BS are the compartmental rate coeÆcients [1d ], ED is the total energy

demand [Jd ], and EA is the available energy [Jd ]. The equations for the total energy

demand and the available energy will subsequently be described in detail.

The fry begin external feeding once the yolk-sac has been absorbed. The amount of

time that it takes for this process to take place, f1(T ) [d], is assumed to be a function

10



of temperature, T [ÆC].5

The di�erential equations which describe the remainder of the organism's life are

given by

dmL

dt
=
A0LxL
x

F �

8>><
>>:

AL(mL � �mPS) for ED > EA

AL(mL � �mPS)EDEA for ED � EA
(1.4)

dmS

dt
=
A0SxS
x

F �

8>><
>>:

AS(mL �mPS) for ED > EA

AS(mL �mPS)EDEA for ED � EA
(1.5)

where the initial conditions are given by the terminal conditions from the embryonic

stage equations (1.1), (1.2), (1.3). In the above equations, x = xL + xS [ g
cm3 ], AL is the

labile lipid mobilization rate [1d ], AS is the labile structure mobilization rate [1d ], and

F is the feeding rate [gd ], which will be described momentarily. In equations (1.4) and

(1.5), observe that A0LxL
x F and A0SxS

x F represent the gain of mass of lipid and mass of

structure via consumption per unit time.

Growth Terms

The feeding rate, F , can be described in terms of the characteristic time to encounter, TE

[dg ], the characteristic time for pursuit, TP [dg ], and the characteristic time for digestion,

5See Appendix II for all model functions which modify physiological processes due to temperature.
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TD [dg ], all processes which must be completed sequentially:

F = f2(T )
1

TE + TP + TD
: (1.6)

The extra term, f2(T ) [dimensionless], modi�es the feeding rate as a function of tem-

perature, T [ÆC].

The time a non-schooling individual spends encountering one gram of food is given

by TE = 1
adx

. The encounter rate coeÆcient, ad [ cm
3

d ], represents the volume swept per

unit time by the foraging �sh [72, 73] and is expressed as

ad = 86400 � �sd2 vp
2 + 3vh

2

3vh
(1.7)

where 86400 is the conversion from seconds to days; sd [cm] is the reactive distance of

the �sh given by sd = aLp
p
Lf ; Lf and Lp [cm] represent the lengths of the �sh and

prey and a [cm�0:5] is a constant; Lf is given by the allometric relationship Lf = 3

q
mPS
�f

where �f [ g
cm3 ] is a constant; Lp is given by the allometric relationship Lp = 3

q
(xS=x)Mp

�p

where �p [ g
cm3 ] is a constant and Mp [g] is the mass of the prey; vp [ cms ] is the prey

velocity given by vp = sp � Lp where sp [1s ] denotes the body lengths per second of the

prey; vh [ cms ] is the �sh velocity while hunting for prey given by vh = sh � Lf where sh

[1s ] denotes body lengths per second of the �sh while hunting.

If an individual is a part of a school, the encounter rate is not the same as it would

be for an individual feeding alone. While in a school, it is assumed that the encounter
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rate, TE, is modi�ed by a schooling factor, fsch, which is a function of the density of

individuals within the school, �sch:

fsch =
csch

�sch + csch
(1.8)

where csch is a constant. For realistic values of �sch (i.e., non-negative), the schooling

factor, fsch, only takes on values between zero and one. Note that as the density of the

school approaches in�nity, the value of fsch approaches zero.

The time an individual spends pursuing and capturing one gram of food is given by

TP =
sd

86400 �Mp(vc � vp) (1.9)

where vc [ cms ] is the velocity of the �sh in pursuit and all other parameters were previ-

ously de�ned. vc is given by vc = sc � Lf where sc [1s ] denotes body lengths per second

of the �sh while chasing a prey item.

The time an individual spends digesting one gram of food is given by

TD =
1

kMg
: (1.10)

The gut clearance rate coeÆcient, k [1d ], depends on several factors. The most signi�cant

of these are �sh size and temperature [31, 79]. The rate at which the mass of food in

the gut empties is proportional to the mass of food in the gut, mg [g] at time t [59] as
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seen in the following equation:

dmg

dt
= �kmg: (1.11)

Solving equation (1.11) results in mg = mg0e
�kt which can be rearranged to yield

k = �1
t ln

mg

mg0
. Observe that k is proportional to the inverse of gut clearance time. In

general, gut clearance time is proportional to (�sh mass)k1 where k1 is a nondimensional

constant. Thus, k = k0m
�k1
PS where k0 is a constant with units [g

k1

d ]. However, we also

want to include the e�ect of temperature, T [ÆC], on the gut clearance rate coeÆcient,

so k is modi�ed by a function of temperature, f3(T ) [dimensionless], resulting in k =

f3(T )k0m
�k1
PS .

Referring back to equation (1.10), Mg [g] is the mass capacity of the �sh's gut which

is calculated from the product of the volume of the �sh's gut, Vg [cm3], and the body

density of the prey, �p [ g
cm3 ], i.e., Mg = �p � Vg. The gut volume, Vg, is proportional to

the mass of the �sh [79] and is given by Vg = cg �mPS where cg [ cm
3

g ] is a constant.

Loss Terms

To calculate the loss terms for equations (1.2)-(1.5), we need formulations for the avail-

able energy, EA, and the total energy demand, ED. Available energy is determined

by

EA = 38940 �BL(mL � �mPS) + 17170 �BS(mS �mPS) (1.12)
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prior to yolk-sac absorption, and by

EA = 38940 � AL(mL � �mPS) + 17170 �AS(mS �mPS) (1.13)

once external feeding has begun. In equations (1.12) and (1.13), 38940 [Jg ] is the ener-

getic content of one gram of lipid and 17170 [Jg ] is the energetic content of one gram of

structure [74, 104].

The total energy demand, ED, is the sum of the energies required for maintenance,

apparent heat increment, and activity.

Maintenance Maintenance, also known as standard metabolism, is the minimum en-

ergy required to maintain an organism at rest [30]. The energy required for maintenance

[Jd ] is given by

32:9mL + 32:3mS : (1.14)

Brett (1976) estimated the standard metabolism of sockeye salmon to be 100 mgO2=kg
hr

and Barton (1996) found the standard metabolism for salmonids to be between 80 and

100 mgO2=kg
hr . Using respiratory energy equivalents of 13.69 J

mgO2
for lipid and 13.44

J
mgO2

for protein [30] and a standard metabolism of 100 mgO2=kg
hr , the values of 32.9

[J=gd ] and 32.3 [J=gd ] in equation (1.14) were obtained.

Experimental studies have shown that increasing the temperature of the environment

increases maintenance requirements of �sh [5, 27, 34, 66, 67]. Therefore, equation (1.14)

is multiplied by f4(T ) [dimensionless] to include temperature e�ects.
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Apparent Heat Increment Apparent heat increment is de�ned as the metabolic

heat loss from the digestion and transformation of food into energy [30]. Beamish and

Trippel (1990) reported that �sh fed natural diets have an apparent heat increment

value between 3 and 41%, while �sh fed formulated diets have values between 11 and

29%. They also found that apparent heat increment increases with meal size and body

weight, as well as with temperature, but declines with body weight when food intake

is �xed. The value of apparent heat increment is generally lower for lipids than for

protein because lipids do not have to be deaminated to serve as an energy source [132].

Brett and Groves (1979) attributed 12-16% of ingested food energy to apparent heat

increment. Following the study for rainbow trout reported by Beamish and Trippel

(1990), the value for apparent heat increment is given as a function of temperature,

f5(T ) [dimensionless].

Activity Cruising, the cost of pursuit and capture of food, and migration are all

activities which incur an energy loss. The energy utilized by a swimming �sh [Jd ] is

calculated using a formulation by Gerritsen (1984):

0:002376Sv2:5

L0:5f q
(1.15)

where 0.002376 has units of Js2:5

cm4d
; S [cm2] is wetted surface area given by �2Lf

2 where

�2 is a non-dimensional proportionality constant for wetted surface area; v [ cms ] is the

swimming velocity (part of the time spent on cruising and part on chasing food) which
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is the product of �sh length, Lf , and the number of body lengths per second spent on

either cruising or pursuing; and q [dimensionless] is swimming eÆciency.

Remember from equation (1.6) that time spent feeding is divided between encounter,

pursuit, and digestion. Of these, the \active" times are the times spent �nding and cap-

turing prey items. Therefore, TEF = TE
TE+TP+TD

[dimensionless] is the time in days per

daily ration encountered and TPF = TP
TE+TP+TD

[dimensionless] is the time in days per

daily ration captured. Hence, the total active time per day is (TE+TP )F . Incorporating

these formulations into equation (1.15), the new equation for the energy expense due to

swimming is:

0:002376�2Lf
4(sh

2:5TEF + sc
2:5TPF )

q
(1.16)

which is in terms of parameters that have all been de�ned previously.

While the model presented here is not spatially-explicit, migration is accounted for

by a loss of energy. The formula that represents this energy loss is:

 x � �x(mL +mS) (1.17)

where  x [J=gkm ] is the migration cost per unit distance (if x = 1, the migration is from

the lake to the coastal feeding grounds; if x = 2, the migration is from the ocean to the

river entrance; if x = 3, the migration is from the river entrance to the lake), and �x

[kmd ] is the rate of travel when migrating. The value used for the distance from the lake

to the coastal feeding grounds and river mouth is 110 km [61, 76]; the distance from
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the ocean to the river entrance used is 3000 km [78].

Reproduction and Mortality

Reproduction is a loss term, however, it is not explicitly stated in equations (1.4) and

(1.5). Reproduction is not assessed on a continuous basis as are the terms associated

with maintenance, apparent heat increment, and activity. For sockeye salmon, repro-

duction occurs only once, and after reproduction occurs, the salmon dies. In the model,

an individual can die if one of two conditions is met. One, the mass of structure drops

below the mass of protected structure associated with starvation (this level is given by

�1mPS where �1 is a constant), which occurs either due to losses associated with repro-

duction or due to a shortage of resource. Or two, the individual reaches the prescribed

maximum age, amax.

In order for reproduction to occur in the model, three conditions must be met. The

�rst is that the individual must have survived the �rst �ve life history stages (see the

discussion following on Migration) and be in the �nal stage in the lake. Next, the time

of year must be within the time window for reproduction, September 1 to December

31 [65, 166]. And, �nally, the temperature must be between 3 and 20ÆC [78, 166, 175].

The losses associated with reproduction include allocation of lipid and structural

mass to egg formation and the energy necessary to complete this mass transfer. While

it is clear that these events occur on a continuous time scale, there is little speci�c

information on the time scales of these processes. Since the time scales are short relative

to the population time scales, they are treated as discrete events.
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Lipid and structural mass available for reproduction constrain the number of eggs

that an individual can produce. Although variation in egg size is most likely controlled

by a number of factors, the assumption is made that it is controlled solely by lipid.

The amount of structure per egg is assumed to be constant. The governing factors

for allocation of lipid to eggs are assumed to be total lipid (mL) and a counteractive

coupling with total structure. If ES [eggs] is the maximum number of eggs that can be

produced from the available structure, then the lipid allocated to each egg is given by

the hyperbolic function (in mL)

(emax � emin)mL

A1ES +mL
+ emin (1.18)

where emax and emin [ g
egg ] are the maximum and minimum amounts of lipid contained

per egg. A1 [ g
egg ] is a constant which in some sense determines the relative importance

the female places on lipid in the eggs, and hence, the size of the eggs at birth. While

this function gives values in the interval [emin; emax), the maximum lipid contained in

an egg, emax, is only attained asymptotically as lipid becomes large. Observe that the

maximum number of eggs constrained by available structure, ES , regulates the egg lipid:

for �xed lipid, mL, the amount of lipid per egg decreases as ES increases. The maximum

number of eggs per available lipid is determined by dividing the total lipid, mL, by the

amount of lipid per egg.

A formulation to set ES , the maximum number of eggs per available structure,

is also needed. Weatherley (1972), using data from [2], found that the number of
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eggs laid by trout in the Horokiwi stream can be determined, at least in a restricted

range, as a linear function of body length. Carlander (1969) also reported this type of

representation. Using this as a basis for our formulation, the maximum number of eggs

produced per available structure, ES , by a female of length Lf is given by

min

�
max[0; �(Lf � �)];

mS

es

�
: (1.19)

The term �(Lf��) gives the number of eggs per clutch as a linear function of �sh length.

The slope, � [ eggscm ], is generally a function of resource availability, but is a constant here.

� [cm] is a constant which determines the smallest length at which reproduction can

occur, resulting in a positive number of eggs when subtracted from the �sh length. The

second expression is the structural material available for reproduction, where es [ g
egg ] is

the amount of structure per egg. Weatherley (1972) argues, for trout, that the size at

reproduction is a governing factor for reproduction. This is taken into consideration by

composing a size constraint for reproduction and requiring that there be suÆcient lipid

and structure to form the eggs.

Given the number of eggs that could possibly be produced based on available lipid

and the number of eggs that could possibly be produced based on available structure,

the number of eggs that are actually produced is the minimum of these two constraints.

The egg composition, assumed to be a �xed amount of structural material and a variable

amount of lipid, varies according to the lipid reserves of the adult female.

It is assumed that a fraction of the eggs produced do not survive due to the physical
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environment. The fraction of eggs that survive given as a function of temperature, T

[ÆC], is given by f6(T ) [dimensionless].

The energy required to support the mass transfer of lipid and structure to eggs is

modeled by A2Le + A3Se. Le and Se [g] are the total lipid and structure in the eggs;

A2 and A3 [Jg ] are rate constants for the energy to mobilize lipid and structure for eggs.

This formulation is similar to the one for allocation to maintenance.

Migration

In the model, there are six life history stages:

Stage 1: In the lake, as an egg or fry

Stage 2: Smolt migrating from the lake to the coastal feeding grounds/ocean

Stage 3: Juvenile in the ocean

Stage 4: Juvenile migrating from the ocean to the river entrance

Stage 5: Juvenile migrating from the river entrance to the lake

Stage 6: In the lake, as an adult.

The stage in which an individual is determines whether or not feeding and schooling

occur, which temperature function is used, which resource is seen, and which particular

losses take place (see Table 7). External feeding occurs in stages 1 (post yolk-sac), 3,

and 4; schooling occurs in stages 1 (post yolk-sac) and 2.

There are two temperature functions used in the model, one to simulate the tem-

perature in the lake and one for the temperature in the ocean. The basic formulation
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for the temperature function, T [ÆC], is

T (tJ) =

8>><
>>:

Thigh�Tlow
2 sin

�
�

tpeak
tJ + 3�

2

�
+

Tlow+Thigh
2 for 0 � tJ � tpeak

Thigh�Tlow
2 sin

�
�

365�tpeak
(tJ � tpeak) + �

2

�
+

Tlow+Thigh
2 for tpeak � tJ � 365

(1.20)

where tJ is the Julian day of the year, Tlow [ÆC] is the low temperature which occurs

in the lake or ocean, and Thigh [ÆC] is the high temperature which occurs in the lake

or ocean on Julian day tpeak. The values used for the ocean environment are from [26]

and [28]; the values used for the lake are from these as well as [63].

The resource utilized by the salmon in the lake environment is di�erent from that

seen in the ocean. In the lake, the prey item is parameterized to simulate the zooplank-

ton Cyclops bicuspidatus; Cyclops appear to be the sockeye's primary food item and

are consumed in every season [61, 76, 162]. Euphausiids are the primary food source

for sockeye once they have migrated from the lake [9, 28, 176]. In the model, the ocean

resource is assumed to be Thysanoessa spinifera [176].

In the model, the cue to migrate from one environment to the next is governed by

three factors. The �rst criteria is that the individual must have at least a speci�ed

threshold mass. For migration from the lake, an individual must weight at least 6 (wet)

or 1.55 (dry) grams [28, 35, 100, 108]; for the spawning migration, an individual must

weight at least 1400 (wet) or 434 (dry) grams [28]. The second and third criteria that

must be met are a combination of temperature and season. For the smolt migration to

occur, it must be the �rst six months of the year and the temperature must be between
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4 and 17.5ÆC [35, 63, 78, 90, 92]; this corresponds to the spring time. Due to a lack of

temperature information for the spawning migration, the �nal criteria for the migration

from the ocean is only the correct time of year, which is mid-June to mid-September [28].

Schooling

While it has been explained (in the section which discusses growth terms and in Ap-

pendix III) how schooling modi�es the model equations through the encounter rate and

size-dependent mortality, the actual implementation of schooling in the code requires

further explanation.

The creation of schools in the freshwater environment is based upon the value of idiv,

the maximum possible number of schools, and the minimum and maximum lengths of all

�sh in the freshwater environment at each time step. Once the minimum and maximum

lengths are known, this interval is subdivided into smaller intervals using the value of

idiv. Every �sh in the freshwater environment then �ts into one of these subintervals.

Naturally, it is possible for some subintervals to be empty, which is why idiv is the

maximum possible number of schools, and not the actual number of schools. The pur-

pose of implementing schooling in this manner is to group individuals of similar length

together, as this is how it has been suggested that �sh school in their natural environ-

ment [3, 45]. Given that the size interval of all the �sh in the freshwater environment

is recalculated at each time step, changes in the total number of schools, the number of

individuals within each school, and the association of an ecotype with a speci�c school

are all possible. This reorganization of schools at each time step is supported by [154]
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where it is noted that schools frequently undergo repeated organization.

1.3 Population Model

To study the dynamics of the population, the individual growth model is incorporated

into a system of hyperbolic partial di�erential equations of extended McKendrick-von

Foerster type:

@�

@t
+
@�

@a
+
@(� � gL)

@mL
+
@(� � gS)

@mS
= ��(�) � � (1.21)

where the population density function, � = �(t; a;mL;mS), is given in numbers per age

(a), per mass of lipid (mL), per mass of structure (mS), per volume of environment.

The growth rates of the lipid and structure compartments, represented by gL and gS [gd ]

respectively, are calculated from equations (1.2) and (1.3) or equations (1.4) and (1.5),

depending on the life history stage of the �sh. The mortality rate is given by � [1d ] and

the birth process is speci�ed by a boundary condition which can be represented in the

following manner:

�(t; 0;mL0 ;mS0) =

Z 1

0

Z 1

mS0

Z 1

mL0

�(t; a;mL0 ;mS0 ;mL;mS)�(t; a;mL;mS) dmL dmS da: (1.22)

The birth function, �, represents the number of eggs with lipid content mL0 and struc-

ture content mS0 born to an individual of age a with lipid content mL and structure

content mS at time t.

The mortality rate is stated explicitly in equation (1.21) and consists of the sum of
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a few di�erent types of mortality: age-dependent, size-dependent, density-dependent,

and young-of-the-year (when appropriate). See Appendix III for details on each type of

mortality.

The method of characteristics is used to reduce equation (1.21) to a system of ordi-

nary di�erential equations:

da
d� = 1

dt
d� = 1

dmL
d� = gL

dmS
d� = gS

d�
d� = �

�
�+ dgL

dmL
+ dgS

dmS

�
�

(1.23)

which are valid along the characteristic curves, where � is the characteristic parameter.

This system of equations is solved numerically in the simulation approach used here.

While any number of individual ecotypes can be used to represent the population,

here the initial population is composed of 243 di�erent types of individuals. Each

ecotype is described by its own partial di�erential equation in the form of equation

(1.21), resulting initially in a population model consisting of 243 equations. The actual

parameters used to induce variability in the individuals, and hence the population, were

determined by the results of the sensitivity analysis and will be discussed in Section 2.2.
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1.4 Other Models

As stated in the article by Hallam et al. (2000), other authors have implemented

models which investigate energetics and growth in �sh populations. Many of these

articles are based on the work by Kitchell et al. [112, 113]. The dynamics at the

population level are typically derived by multiplying single �sh dynamics by estimates

of the population size and cohort mortality rates [87]. Some populations which have been

explored are the bluegill [112], yellow perch and walleye [113], largemouth bass [161], lake

trout [181], sockeye salmon [13], and kokanee [183]. Hewett and Johnson (1992) created

a generalized bioenergetics model and provided physiological parameters for twenty

species. Some authors have expanded these population models to include temporal and

spatially explicit relationships [17, 20, 157, 158]. For further applications of these types

of models, see [87, 97, 98]. See also [187] for a more detailed overview of some of the

models mentioned here.

Age-structured models for �sh have also been developed [48, 51, 52]. In [49], the

authors used an individual-based approach to analyze the dynamics of smallmouth bass

populations.

As was mentioned previously, the model presented here is a modi�cation of a rainbow

trout model [82], which was originally based on a model for Daphnia [85]. Other models

which have been developed also for Daphnia and which use a similar philosophy to

the one presented here can be found in [83, 118, 138]. The details of the models are,

however, dependent on the study organism, and therefore, will be di�erent from the
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sockeye salmon individual and population models described here.
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Chapter 2

Sensitivity Analysis

Sensitivity analysis investigates the e�ect that small changes in input parameters have

on the model outputs of interest. By determining which parameters have a signi�cant

e�ect on the model output and which parameters have comparatively little inuence, we

are essentially determining which parameters control the model. While there are many

methods available to perform sensitivity analyses [86, 105, 173, 195], the technique used

here, known as design of experiments (DOE), is borrowed from the �eld of statistics.

Some advantages of using DOE are that interactions between parameters and the e�ect

of these interactions on the outputs of interest can be accounted for; the number of

simulations performed can be kept to a minimum while maximizing the information that

can be extracted from the results; polynomial-type behavior can be investigated; and,

sequential experimentation can be used. Using DOE also makes it possible to produce

a highly simpli�ed approximation model to the computer model, which is analogous to
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regression analysis.

2.1 Methods from Design of Experiments

Di�erent methods within the DOE setting have been used to perform sensitivity analyses

of simulation models. In this section, a description of various designs and examples of

where each has previously been used as a tool for sensitivity analysis of computer models

can be found.

Before presenting examples of the use of DOE as a sensitivity analysis tool, some

background information on the actual methods from DOE is given. There are a wide

variety of texts which explain DOE, some give a broad presentation [139], while others

are speci�c to a particular method. See [114] for an overview of some statistical methods

applied speci�cally to simulation models.

In the following subsections, the input parameters, or factors, will be represented by

capital letters. If there is interaction between any parameters, meaning that the e�ect

of one parameter on the output is dependent upon the level of another parameter, it

will be represented by combining the factors involved in the interaction. For example,

if a model has three input parameters, they will be represented by A, B, and C. If there

is interaction between, say, parameters B and C, this will be represented by BC. The

e�ect that a change in the level of an individual factor has on the output of interest is

typically called a main e�ect.

Finally, keep in mind that my outlook on the use of DOE as a tool for sensitivity
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analysis is on deterministic models, i.e., there is no random error component in the

models being considered. Therefore, we are not concerned with measures of statistical

signi�cance, only the magnitude of the estimated e�ects and interaction e�ects of the

parameters on the model output. Furthermore, the order in which the simulations are

completed is not important. Note that the computer models from the literature given

as examples in the following sections are not necessarily deterministic.

2.1.1 Standard Methods

There are several types of designs which are commonly used in DOE. The reasons for

their predominant use range from ease of design and analysis to their balanced and

orthogonal properties. These will be referred to as standard designs and include full

and fractional factorials. One-factor-at-a-time designs are also discussed here.

One-factor-at-a-time Designs

The one-factor-at-a-time method can take on many forms, but is just as it sounds. Most

typically, each simulation is run with all factors held at their base level except for one.

If each factor is being varied by one level, the number of simulations performed will

be equal to the number of inputs to the model plus one extra simulation where all the

parameters are left at their base values. This approach does not allow for the estimation

of interaction among parameters.

This method was used in [185] as an example of a crude sensitivity analysis approach

of a model which investigated the net present value of a gas transmission system on the

30



Indonesian island of Java. The author notes that the one-factor-at-a-time method is the

most popular one in applied problems and cites some examples. One-factor-at-a-time

sensitivity analysis, referred to as di�erential sensitivity analysis in Lomas and Eppel's

(1992) paper, was also used to study three simulation programs which aided in the

design of passive solar buildings [129]. The authors compared this method to two other

non-DOE methods.

Note that the original model on which this dissertation is based was for a model

of Daphnia [85] which was subsequently modi�ed to model rainbow trout [82]. The

sensitivity analysis used in [85] was a one-factor-at-a-time method.

Full Factorial Designs

A full factorial design takes every possible combination of every parameter with every

other parameter, at each level under consideration for each parameter. Full factorials

can be run at any number of levels (� 2) for each factor, however, the most common

use of the full factorial is with factors that vary across two levels. Thus, the two-level

full factorial is typically referred to as a full factorial. From this two-level full factorial,

it is possible to estimate both the main e�ects of the parameters and all the interaction

e�ects on the model output. It is not possible to estimate quadratic e�ects, i.e., terms

of the form A2, B2, etc. However, quadratic e�ects for individual parameters can be

estimated by utilizing more than two levels for a factor.

As an example, if we have three parameters, each with two levels to investigate, a

full factorial design will result in running 23 = 8 experiments. (In the computer model
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setting, each \experiment" is actually a single simulation of the model.) For this two-

level example, if we use \+" to represent running a parameter at its high level and

\�" for its low level, then the treatment combinations which would result in the eight

simulations would be:

A B C

� � �

+ � �

� + �

+ + �

� � +

+ � +

� + +

+ + +:

(2.1)

From these simulations, it is possible to understand the e�ect that A, B, and C each

have on the model output. Additionally, the interaction e�ects AB, AC, BC, and ABC

explain how the e�ects of A, B, and C change as the levels of other factors change. This

is just a small example of the full factorial design. Keep in mind that this design can

quickly result in a huge number of simulations, depending on how many parameters are

involved and at how many levels. If we had 30 parameters, each at two di�erent levels of

interest, we would have to run 230 = 1; 073; 741; 824 simulations. If we assume that each

run takes one second, it would take just over 34 years to complete all the simulations

and the amount of data created would probably take just as long to analyze!
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It is not possible to estimate quadratic e�ects using a full factorial design, however if

the model under consideration is deterministic, we can add one more simulation (at the

\center") which will allow us to estimate the sum of the quadratic e�ects. From this,

we can at least determine if quadratic e�ects are signi�cant. If necessary, this design

can be sequentially augmented to form a central composite design (discussed in Section

2.1.3) to estimate all quadratic terms.

Full factorial designs have been used to study the sensitivity of model outputs to the

input parameters in a number of models, but primarily when the number of parameters

was small. The following examples are for three inputs at two di�erent levels. The

full factorial design was used to �nd the e�ect of model inputs on production cost for

a model of a system for ethanol production from woody biomass [77], on the output

of a coal transportation model [115], and on a model which illustrated the impact of

plating defects on the reliability of vias and Plated Through Holes [46]. The full factorial

design was also used for sensitivity analysis in a model for invasive plant spread with

�ve parameters [99] and in a model which was used to study the relationship between

landscape patterns and the spread of mistletoes [124]. Other examples may be found

in [89].

Fractional Factorial Designs

Fractional factorial designs are subsets of full factorial designs and are the most common

designs used. An often performed role of the fractional factorial design is parameter

screening. These designs can be as small as 2k�p (> k), where k is the number of input
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parameters and p is an integer which will be further explained in the next paragraph. In

statistics, screening experiments are used prior to more detailed analyses to identify the

dominant factors among a large number of factors. When there are a large number of

parameters, it is typically assumed that the output is determined primarily by just a few

main e�ects and low-order interactions which implies that the higher-order interactions

are assumed to be negligible. This is known as the sparsity of e�ects principle.

Two-level fractional factorial designs are referred to either as 2k�p fractional factorial

designs or as a 1
2p fraction of the 2k design. (See [18] for a full explanation of this design.)

k is the number of parameters and p is the number of dependent parameters. The

number of simulations performed is n = 2k�p and the given Roman numerals explain

the confounding properties of the design, where confounding and aliasing mean that

e�ects are inseparable from each other during analysis. The number of simulations is

reduced from the full factorial case by aliasing p individual parameters with higher-order

interactions. This aliasing is explained by the resolution of the design.

Resolution III, IV , and V designs are the most common and were the ones primarily

found in the literature. In general, a resolution III design has main e�ects aliased with

two-factor and higher-order interactions. A resolution IV design has main e�ects aliased

with three-factor and higher-order interactions, and two-factor interactions aliased with

other two-factor and higher-order interactions. A resolution V design has main e�ects

aliased with four-factor and higher-order interactions, and two-factor interactions aliased

with three-factor and higher-order interactions. The design used will depend on the
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number of parameters in the model as well as the lowest order interactions which can

be assumed to be negligible. For example, a ten parameter model with all interactions

assumed negligible can utilize a 210�6III design (n = 16) which allows for estimation of all

main e�ects. However, if it is only reasonable to assume three-factor and higher-order

interactions are negligible, but we want to estimate both the main e�ects and two-factor

interactions, a 210�3V (n = 128) is required. In practice, with some prior knowledge as

to which interactions are important, a 210�5IV design (n = 32) with a well planned alias

structure could possibly be used.

For clarity, an example of a resolution III design is given here. If we have a model

which has six parameters, each at two levels of interest, then we can generate a 26�3III

design by �rst generating a full factorial in 6 � 3 = 3 parameters (see (2.1)) and then

aliasing the remaining three parameters with interactions involving the �rst three pa-
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rameters. The treatment combinations would be:

A B C D E F

� � � + + +

+ � � � � +

� + � � + �

+ + � + � �

� � + + � �

+ � + � + �

� + + � � +

+ + + + + +

(2.2)

if we assumed that D=AB, E=AC, and F=BC.

A resolution III design can be increased to resolution IV by using the fold over

principle. Fold over is accomplished in this situation by executing the simulations that

would result if we reversed the sign of every treatment combination used to create the

resolution III design. This results in breaking the links between the main e�ects and

the two-factor interactions with which they are aliased, allowing the main e�ects to be

estimated clear of any other two-factor interactions. Fold over techniques may be used

to increase all odd resolution designs to the next highest even resolution design; see [139]

for more details.

Folding over the resolution III design given in (2.2) would result in the following
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sequential design:

A B C D E F

+ + + � � �

� + + + + �

+ � + + � +

� � + � + +

+ + � � + +

� + � + � +

+ � � + + �

� � � � � �:

(2.3)

If we look, for example, at D which is supposed to be equal to AB from the aliasing

structure chosen previously, we see that this no longer holds true (D=-AB); therefore,

when this fold over is combined with the original 26�3III design, D is no longer aliased

with AB. We now have a resolution IV design as a result of only 16 simulations.

Fractional factorial designs are considered orthogonal because e�ects are either per-

fectly correlated (via the alias structure) or perfectly uncorrelated with other e�ects.

Conversely, a non-orthogonal design can have some partially correlated e�ects, however,

they typically require fewer simulations.

Fractional factorial designs have been used as a tool for sensitivity analysis of a

number of models across a wide variety of �elds, however, the authors in [96] noted that

full and fractional factorial designs have not been used to a great extent in environmental
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modeling. They proposed using these designs and gave examples from the �elds of

numerical global climate modeling, air pollution management decision support systems,

and water quality modeling. Although not found to any great extent in the ecological

modeling literature, note that fractional factorial designs were brought to our attention

as a method for performing sensitivity analysis in [169]. The author compared di�erent

sensitivity analysis methods and applied the fractional factorial design method to a

model of phytoplankton growth.

Kleijnen (1997) discussed designs of resolution III, IV , and V in his paper and cited

some examples. A 224�16IV design was used to analyze the sensitivity of a model which

simulated the air ow and pollutant transport in a three-story building [69]. The authors

compared this method to the Monte-Carlo method and discussed a hybrid of the two.

Fractional factorial designs were also used as a sensitivity analysis method in a study

of an energy-system model for multi-family buildings [80], for a model of a wastewater

treatment system [184], for a model of environmental radionuclide movement, and for a

model of salt dissolution in bedded salt formations [105].

A 25�3III sensitivity analysis was conducted on a model of a residential desuperheater

[125]. This article is actually an example of the misuse of DOE. While there is nothing

wrong with using this as a screening design to estimate the main e�ects, the conclusions

drawn for the designed experiment reported were incorrect. The authors found that

some two- and three-factor interactions were signi�cant; this cannot be determined

from the design that was presented because these higher-order interactions were aliased
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with the main e�ects. A correct analysis of the results and an explanation of the misuse

is given in [120] (see Appendix IV).

2.1.2 Non-standard Methods

Non-standard designs are typically non-orthogonal, and, therefore are useful when ran-

dom error is minimal. In the case of deterministic models, where there is no random

error, non-standard designs become a viable option as a tool for sensitivity analysis.

The designs discussed in this section, Group Screening, Plackett-Burman, Cotter,

Saturated Resolution V , Taguchi Designs, and Robust Parameter Design, are among the

countless number of non-standard designs available. Another set of non-standard de-

signs, not discussed in detail here, are the optimal designs (e.g., D-Optimal, A-Optimal,

G-Optimal), which are computer generated using an algorithm with criteria speci�c to

the type of optimality.

Group Screening Designs

Group screening designs were �rst introduced by Watson (1961). In this type of design,

factors are assigned to groups and sequential experiments are required. Although group

screening designs can be performed in di�erent ways, the basic methodology is as follows:

multiple factors are grouped together to form a smaller number of \new factors" on

which experiments are performed. This design is in essence a resolution II design,

where follow-up experimentation can focus on factors involved in groups identi�ed as

signi�cant in previous experiments. It is possible to incorporate a group screening
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procedure into the other types of designs described in this chapter by treating a group

of factors as an individual factor and running the design with the new groups as the

factors.

An overview of group screening is given in [40] and [179]. The use of group screening

in combination with factorial designs and central composite designs was discussed and

then applied to a simulation of a ight simulator in [40]. The Plackett-Burman design

and group screening were used in [155]. In an endnote, Kleijnen (1987) cited a variety

of examples of group screening designs.

Sequential Bifurcation A modi�cation of Jacoby and Harrison's (1962) group screen-

ing method, sequential bifurcation, was introduced in [15] and applied to a model for

the assessment of the greenhouse e�ect [16]. In [15], the author compared the modi-

�ed sequential bifurcation method to two-stage group screening [135, 136, 196], multi-

stage group screening [127, 148], and briey to a group screening method by Morris

(1987). The sequential bifurcation method was compared to Morris' factorial sampling

method [141] and used in the sensitivity analysis of a building thermal model in [47].

Iterated Fractional Factorial Design A new group screening method which is a

variation on fractional factorial design is the iterated fractional factorial design (IFFD)

[4]. IFFD can be used to estimate main e�ects and two-factor interactions of the im-

portant parameters and can also be expanded to estimate quadratic e�ects. It has been

demonstrated that the success of this method depends strongly on the number of inu-
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ential parameters there are to �nd and weakly on the total number of parameters; the

best results were found when the model output was dominated by a small number of

highly inuential parameters. IFFD has diÆculty dealing with higher than quadratic

order e�ects [172] and tends to give incorrect results in situations where there are many

equally important parameters [171]. The IFFD method has been used to �nd the in-

uential parameters in a probabilistic assessment model of environmental impacts from

the disposal of used nuclear fuel [4].

Plackett-Burman Designs

Plackett-Burman designs are actually a subset of the two-level fractional factorial de-

signs. They are used for analyzing up to n� 1 parameters in n simulations where n is

a multiple of four. However, if n is a power of two, the designs are the same as that of

the two-level fractional factorial case. Plackett-Burman designs which do not reduce to

two-level fractional factorial designs are generated in an unusual manner and have com-

plex aliasing structures where factors are partially aliased with a number of interactions

(see [139] and [151] for details). Interpretation of these designs can be complicated and

the probability of both false positives and false negatives with respect to the signi�cant

factors is much higher than with standard designs.

The Plackett-Burman design with fold over was used to �nd the sensitivity of a model

which estimated economic risk [185, 186]. In [186], the authors discussed fractional fac-

torial design, the Plackett-Burman design and compared these methods to Monte-Carlo

analysis. The one-factor-at-a-time approach was compared to the Plackett-Burman
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design in a case-study of a model which investigated the net present value of a gas

transmission system on the Indonesian island of Java in [185]. A sensitivity analysis us-

ing the Plackett-Burman design was also used in a model for the Ground water Loading

E�ects of Agricultural Management Systems (GLEAMS) [44], in a model which simu-

lated the transport of chemicals in soil [93], and in combination with a group screening

technique in a building thermal model [155].

Cotter Design

The Cotter design was introduced in [43] and was originally called the systematic frac-

tional replicate design. The purpose of this design is only to identify the parameters

which are highly inuential or are involved in interaction e�ects which are highly inu-

ential, not to model their e�ects. These parameters can then be further explored with

other designs. The primary advantage of the Cotter design is that no prior assumptions

about interactions are made and there are no alias chains to untangle, as with other

designs. The Cotter design is a modi�cation of the one-factor-at-a-time approach. For

a model with k parameters which vary across two levels, 2k+ 2 simulations are needed.

The �rst simulation is run with all parameters at their low level. The following k runs

maintain the form of the �rst simulation with the exception that one factor in turn is

chosen to be run at its high level. The next k simulations are run with every factor

at its high level except for one which is, in turn, at its low level. The last simulation

is run with all factors at their high level. The last k + 1 runs are in e�ect the same

as folding over the �rst k + 1 runs. The Cotter design estimates the sums of all odd
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order e�ects involving each factor and all even order e�ects involving each factor. This

means that for each factor, there is an estimate which is composed of the sum of the

main e�ect and all odd-order interactions in which it is involved. The second estimate

for each factor is the sum of the estimates of all even-order interactions in which the

factor is involved. It is cautioned, however, that false negatives with respect to factor

signi�cance are possible due to cancelling of e�ects.

In the current literature, I have been unable to �nd any simulation models which

implement the Cotter design as a method for sensitivity analysis. It is mentioned here

because it is one of the methods I use in the sensitivity analysis of the individual model

in Section 2.2.

Saturated Resolution V Designs

Saturated designs generate only enough information to estimate e�ects, with no infor-

mation left to estimate error. Using saturated designs to analyze the sensitivity of a

deterministic model, where random error should be zero, does not pose a problem. Sat-

urated resolution V designs were introduced in [160]. The estimation of the main e�ects

and two-factor interactions is possible in a design of resolution V .

As with the Cotter design, I did not �nd the saturated resolution V design used

anywhere in the literature as a tool for sensitivity analysis. I include it here because it

is used in the sensitivity analysis of Section 2.2.
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Taguchi Designs

Taguchi methods are used to overcome the limitations that come with running a full

or fractional factorial on a model which has a large number of parameters. Taguchi

designs are a set of carefully chosen orthogonal arrays taken from the full factorial

design. In setting up a Taguchi design, one must select the most suitable orthogonal

array and assign the parameters to the appropriate columns based on prior knowledge of

the system. The orthogonal arrays for two-level parameters are denoted by L4, L8, L16,

L32, . . . where the subscript indicates the number of simulations to be performed for up

to four parameters (noninclusive) for the L4 design, between four and seven parameters

for the L8 design, etc. For tables of orthogonal arrays and more details on setting up a

Taguchi design, see [170].

Taguchi designs work well when interactions among factors are minimal, however, if

an interaction is thought to be important, it can be included by assigning the interaction

to its own column. The Taguchi design makes the assumption that the relationship

between the parameter values and the output values is linear; when this assumption

is violated, the Taguchi method may produce meaningless results [39]. Note that this

assumption does not imply that the Taguchi method assumes that the actual model is

linear. See [39] for a discussion of other bene�ts and limitations of this type of design.

Clemson et al. (1995) compared Latin hypercube sampling and the Taguchi de-

sign and applied the latter to a model of a conventional activated biosolids wastewater

treatment plan. Raju and Pillai (1999) used an L32 Taguchi design for their sensitiv-
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ity analysis of a multicriterion decision making tool for the performance evaluation of

an irrigation project in India. A mixed-level Taguchi design was used in [55], where

the authors investigated the sensitivity of a behavioral model of microelectromechanical

systems.

Robust Design Methodology

Robust design methodology, often referred to as robust parameter design, is typically

used in an industrial manufacturing capacity. Its purpose is to divide a set of parameters

into two groups, a control group and a noise group, and determine which settings of

the control parameters are optimal for minimizing response variation over the changing

levels of the noise parameters. This is accomplished primarily through the investigation

of control by noise interactions. The designs used in this methodology are termed cross

arrays and are composed of two separate designed experiments. Most often, standard

designs, such as fractional factorial, make up the cross array by creating a design for the

control factors and running it for each experiment of the design from the noise factors.

This requires N runs where N = ncontrol x nnoise. Analysis of this design consists of

exploring the changing e�ects of the control parameters over the domain of the noise

parameters. Additionally, changes in response variation are quanti�ed and attributed

to individual control parameters1. For an introduction to this method, see [202].

This type of experimental design was not found in the review of the literature as a

method for sensitivity analysis of computer simulation models, however, similar method-

1These are actually control by noise interactions.
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ologies have been used in [141]. The robust design methodology is introduced here

because it is used later in the sensitivity analysis of the individual model.

2.1.3 Response Surface Methods

In using DOE for sensitivity analysis on a computer model, approximating least squares

linear models can be created. Many times, a linear model may prove to be an inadequate

representation of the computer model. In these cases, quadratic e�ects for factors may

need to be quanti�ed. Response surface methodology is used to create designs for this

purpose. For more information on response surface methodology, see [111].

Although not discussed in this section, note that full and fractional factorial designs

with factors varied across more than two levels can be used as response surface designs.

Some other response surface methods, which have not been found in the current litera-

ture as tools for sensitivity analysis of computer models and are not discussed here, are

the Box-Behnken, non-central composite (sliding cube), and uniform shell designs.

Central Composite Designs

Central composite designs can be used as a next step in sequential experimentation once

a resolution V or higher design has been utilized. These designs are easily constructed by

adding 2k + 1 simulations to the original design, where k is the number of parameters.

This is accomplished by adding the center and axial points to the full or fractional

factorial design and results in each parameter being varied across �ve levels. See [139]

for details.

46



Central composite designs are discussed in [116]. In a study of a model of air

scattered neutron dose from particle accelerators, the authors compared the use of a

central composite design to a full factorial design at two levels for six factors [159].

Third-order orthogonal central composite designs were used to study the sensitivity of

input parameters in plant growth simulation models [7]. A model of supply response

of Australian broadacre farmers to four di�erent input prices, each varying across �ve

levels, was investigated using central composite design in [81].

2.2 Sensitivity Analysis of the Individual Model

Initially, Monte Carlo simulations with Latin hypercube sampling were used for the

sensitivity analysis. Distributions of parameter values which were assumed to be normal

were constructed. It was not known if parameters were correlated with one another,

therefore, all pairwise correlations were assumed to be zero2. The measure that was

used to detect a relationship between the model outputs of interest and each parameter

was simple pairwise correlation. However, the results of this method did not prove

to be useful. Accurate and consistent measures of relationships between individual

parameters and the responses proved to be diÆcult to attain. Thus, a new sensitivity

analysis technique which considered the possibility of parameter interaction was desired.

The technique chosen to perform a sensitivity analysis depends on the characteristics

of the model being investigated: How many parameters are being considered in the

2See [60, 178] for a discussion on why assuming zero correlation between parameters may not be a
good assumption.
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sensitivity analysis? How long does it take to run one simulation? Is it costly to run

a simulation? Could interaction between e�ects be important? Does the possibility of

quadratic or higher order e�ects need to be considered?

2.2.1 Isolation of Potential Sensitive Parameters

Ninety-�ve parameters were included in the initial screening sensitivity analysis of the

individual model; twenty-two of these were known to be population level parameters

(those associated with mortality), but were included in the sensitivity analysis of the

individual model to verify that parameters which were known to not a�ect the individual

model did not show up as sensitive. Note that all of the factors in the model considered

here are continuous, not categorical. The initial values used for each parameter were

either found in the literature or created, as noted in Tables 1-6. These nominal values

are referred to as the \mean" level for each parameter. Associated with each parameter

value is also a standard deviation, taken from the literature when available and otherwise

set to ten percent of the mean value. One exception to this rule was the standard

deviation for parameters that had dimensions of [days]; these parameters had standard

deviations set to values of either 1.0 or 10.0. The standard deviation is the base value

that is added or subtracted from the mean value in order to run an experiment at either

its high (+) or low (-) level, respectively.

There were a few exceptions to this set-up. Some parameters were already set at

either their lowest (aa, spwn1, rmfec, aal, migl1, aao3) or highest (bb, spwn2, bbl, bbo)

3The names of the parameters given here are the names used in the code.
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possible levels, and, therefore, were not allowed to go beyond the values set as either

a minimum or a maximum. In order to induce changes across low and high levels for

the sensitivity analysis, the means were readjusted such that the extreme values would

not be exceeded. Parameters a5 and a6 were handled in a similar manner to satisfy the

condition a5 � a6.

The �nal exception to the mean values and standard deviations used included the

parameters related to temperature modi�cation (see Table 4), which were found, in

most cases, by �tting a non-linear function to data from the literature (see Appendix II).

Instead of associating a standard deviation to each of the parameters which made up the

function, a surrogate parameter was created to allow the function value to change across

low and high levels. The surrogate parameter had a mean value of 1 (when the function

was evaluated at the base case, the multiplier was 1 so the value of the function did not

change) and a standard deviation of 0.1. For example, instead of varying the parameters

(fkopt, falpha, ftopt, fthigh) in the function which describes how temperature a�ects

feeding, f2(T ), a new parameter, say �, was created which modi�ed the value of f2(T )

such that the new value was � � f2(T ). The functions associated with the temperatures

in the lake and ocean environments which were determined by the time of the year were

also modi�ed in this fashion.

The preliminary sensitivity analysis demonstrated that interaction between e�ects

existed and the extent to which they could be considered negligible was questionable.

The decision about the importance of higher order e�ects were made during sequential
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experimentation. Depending on how the parameters were varied, one simulation of the

individual model with only one ecotype took approximately three to �ve seconds. There

were no costs associated with running the model, other than the time invested. Taking

this into consideration, if the time it took to run one designed experiment versus another

was only a di�erence of a few hours, the experiment which would yield more conclusive

results was chosen because the simulations were usually run overnight. Therefore, if

the costs associated with running a model were greater than those here, the number of

simulations could easily be reduced4.

To try to eliminate the possibility of failing to identify a parameter that had an

e�ect on the output variable over a small part of its domain, as well as to identify any

nonlinearities and/or thresholds in the e�ects of the parameters, varying levels of high

(+) and low (-) were implemented. The levels used were obtained by multiplying the

standard deviation of the particular parameter by � 0.01, 0.05, 0.10, 0.25, 0.50, and

1.0.

The model outputs used as forecast variables were the total mass of an individual,

mL + mS , at the beginning of Stages 2, 4, and 6 (see the discussion on Migration in

Section 1.2.1), the number of eggs produced, and the age at reproduction. Hereafter,

the forecast variables will be referred to as Mass 1, Mass 2, Mass 3, Eggs, and

Age, respectively. The idea behind the sensitivity analysis was to not only �nd to

which parameters the forecast variables were sensitive, but also to be able to adjust the

4The number of simulations could have been further reduced by excluding the additional population
parameters which were included for reasons previously stated.
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parameter values within their ranges such that the forecast variables would be within

realistic ranges of values. The following ranges of values from the literature were used

as goal values:

Mass 1: 0.70-1.74 grams (dry)5 [64]

Mass 2: 600-1200 grams (dry) [88]

Mass 3: 410-830 grams (dry) [62]

Eggs: 1500-5500 [62]

Age: 1095-1460 days (3-4 years)6 [28]

Once the sensitive parameters were known, they were then used to construct a popula-

tion of di�erent individuals, all with reasonable forecast values.

The statistical package JMP r [107] was used to create some of the designs that were

implemented in the sensitivity analysis. JMP r is able to generate screening designs,

Cotter designs, response surface designs, Plackett-Burman designs, and many others

that were not utilized here. The response surface design is limited to eight factors.

JMP r is not able to create the saturated resolution V design, however, this design can

easily be generated by hand (see [160]). The Fit Model platform was used to analyze

the model output associated with the designed experiments.

5The value for the mass given here is for smolt migration taking place in the �rst year.
6The possibility of non-fourth year migrants was not excluded, however, it is accepted that Fraser

River sockeye typically migrate in their fourth year.
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Resolution III and IV Designs

The sensitivity analysis was begun with a resolution III screening design. For a com-

plete picture of the sequential experimentation implemented, see Figure 2. The intent

was to estimate main e�ects in a general screening procedure, however, higher resolu-

tion designs were sequentially performed in an e�ort to identify main e�ects clear of

interaction terms. Models of the main e�ects from the resolution III design which was

folded over into a resolution IV design had high coeÆcients of determination (r2 > 0:8),

however, validation of these models was completely unacceptable. Similarly, residual

plots showed groupings of data not explained by any estimable e�ects. These poor

model qualities were attributed to possible interaction e�ects.

Saturated Resolution V Design

Following the initial screening designs, a saturated resolution V design was run on all

95 factors in 4,561 runs. These models become extremely ineÆcient with respect to

estimating precision with so many factors, however, due to the deterministic nature of

the responses, this was not an issue. The results of this design were again confusing, as

models of main e�ects could not be validated. Signi�cant main e�ects were judged not

through statistical tests but subjectively through the magnitude of the estimates. One

reason for this was because the estimate of error, �, measures not random error, but

variation due to missing terms in the model. When judging for signi�cant main e�ects,

there was not a clear cuto� in the magnitude of e�ects. Since this design had higher
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order interaction e�ects confounded with the main e�ects, it began to be hypothesized

that estimates for main e�ects may in many cases be caused by the additive e�ects of

several small higher order interactions. This design was folded over to create a resolution

V I design in an e�ort to clear additional higher order interactions (four-factor) from

the main e�ect estimates. Results did not change signi�cantly and no �nal conclusions

could be drawn7.

Cotter Design

The next design implemented in this series of sequential experiments was a Cotter

design, which required 192 runs. The Cotter design is not used to build models, but to

estimate the sums of odd order e�ects and the sums of even order e�ects for which each

factor is involved. Included in the estimate of odd order e�ects is the main e�ect for

each factor. In analyzing this design, it was found that the sums of even order e�ects

were, for many factors, just as large or even larger than the sums of odd order e�ects.

These results further backed the emerging hypothesis that there were many somewhat

signi�cant interactions between the parameters.

Results of Screening

As an approach to factor screening, reverse methodology was used in that, instead

of screening for signi�cant factors, screening for insigni�cant factors was employed.

7Future references to the saturated resolution V design actually refer to the results of the folded over
design.
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To accomplish this, the results of the saturated resolution V design and the Cotter

design were combined. The estimates of main e�ects from the resolution V design were

compared to the sums of odd order e�ects from the Cotter design. It is reasonable to

assume that, since these designs have di�erent alias structures, if a factor showed very

little e�ect in the resolution V design and also showed a low sum of e�ects in the Cotter

design, then the main e�ect for that factor was most likely small. On the other hand,

if a factor estimate was large in either or both designs, then it was cause for further

investigation.

This type of analysis is demonstrated in Figure 3 where the resolution V and odd

Cotter estimates for Mass 2 and Eggs are plotted against one another8. Note that

the circled points showed little or no e�ect, having estimates close to zero, in both

the Cotter and resolution V designs. Therefore, the parameters associated with these

points were assumed to have little or no e�ect on the forecast variables, Mass 2, Mass

3, and Eggs. Thus, by eliminating the insigni�cant factors, the possible signi�cant

factors remained: a0l, a3, a4, oplx, a0p, a6, k1, cg, oppx, obdensp, and the surrogate

parameters associated with temperature in the lake and ocean environments, which will

be respectively referred to as templ and tempo.

The Mass 1 output, the mass at time of migration from the lake environment, was

found to be most sensitive to the parameter mmigl, which is the minimum mass that

must be reached in order for migration from the lake to take place.

8The plot for Mass 2 is only given here due to the strong correlation between Mass 2 and Mass 3
with both plots appearing very similar.
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The parameters to which the Age output was sensitive were diÆcult to determine.

The results of the screening analysis indicated that Age was most sensitive to eight

parameters (a0l, a3, a4, oplx, zjmgl, blsp, bdensp, ppx), however, these parameters,

their interactions with each other, and their interactions with other parameters also

appeared to be important. In trying to validate the e�ects of these parameters on

Age, consistent measures of the relationship were not found. Since Age was within

the realistic range of values and appeared to be determined by the physiology of the

individual, further sensitivity analyses on this output were not conducted.

2.2.2 Investigation of Potential Sensitive Parameters

Once the possible sensitive parameters were identi�ed, the next step was to look at

the e�ects of these parameters on the forecast variables in more detail. Sequential

experimentation was again utilized to achieve this goal.

Central Composite Design

A 212�2V III fractional factorial design combined with the center and axial points resulted

in an orthogonal central composite design which was implemented in n = 1049 runs.

All non-sensitive parameters were kept at their mean levels.

It was found that across the responses, only eight of the parameters had large e�ects

(see Table 8). The same seven parameters were inuential for each of the responses,

with Eggs having the additional important parameter templ. Despite eight parameters

being listed as highly sensitive for Eggs, it should be noted that templ is extremely
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inuential compared to the other parameters shown for this response. Also listed in

Table 8 are the parameters for which the responses were somewhat less sensitive than

those previously mentioned9. These \slightly signi�cant" parameters inuenced the

forecast variables, but were not capable of causing extreme changes as were the highly

signi�cant parameters.

The analysis showed that there were small interaction e�ects and slight curvature

in several of the parameters. As previously stated, an advantage of using DOE for

sensitivity analysis is the ability to create parsimonious approximation models for the

responses. In this case, good approximation models were created over parts of the

domain, however, due to nonlinearities and thresholds, these models could not be used

as global approximations. This further supports the need for the complex individual-

based model implemented here based on the physiology of the individual.

Robust Design Methodology

Having identi�ed the parameters to which the responses were most sensitive, it was also

important to determine whether the interaction e�ects of other non-sensitive parameters

with the important eight were large enough to be of practical concern. To accomplish

this, robust design methodology was employed. A cross array was created using an

orthogonal 28�4 fractional factorial (plus one center point) for the eight important pa-

rameters and, an 88-run, Plackett-Burman design for the remaining 87 parameters. The

9Some parameters appearing in Table 8 have not been indicated as sensitive thus far, but will be
discussed in the following subsection.
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total number of simulations was n = 1496. Through this design, insight into the chang-

ing e�ects of the eight parameters was gained by running the 28�4 + 1 simulations at 88

di�erent locations within the design space. The standard deviations of the runs in each

Plackett-Burman (i.e., at each point in the 28�4 + 1 design) were modeled to determine

if any of the eight important parameters were involved in signi�cant interactions with

any of the other 87 parameters.

In the analysis of this cross array, it was found that parameters oppx, obdensp, k1,

and templ were all involved in interaction e�ects with other parameters with respect to

Mass 2 and Mass 3. It was also found that �ve other parameters, zjmgl, zjmgp, blsp,

bdensp, and resvar, also had slightly signi�cant e�ects or were involved in interaction

e�ects with signi�cant parameters. However, the extent of these interaction e�ects was

not large enough to cause concern.

Results of Sensitive Factor Analysis

Through the use of sequential and combined experimental designs, it has been deter-

mined that there were eight parameters to which the responses were extremely sensitive

and nine more to which the responses were less sensitive. Given the extreme sensitivity

of the parameters listed in the �rst column under each response in Table 8, all of the

highly sensitive parameters, with the exception of templ which was not adjusted, were

set to appropriate values (see Tables 1-6). Four of the slightly sensitive parameters (a0l,

a3, a4, oplx), in combination with the level of resource, were chosen to add variability to

the individuals in the population. For easy reference, each ecotype is assigned a number
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in Table 9.

Although more sequential experimentation was used than was originally thought

to be needed, the total number of simulations performed was still small considering

the resulting thoroughness of the sensitivity analysis. In comparison to the one-factor-

at-a-time method, the DOE approach is more systematic, eÆcient and thorough. The

potential problem of changing relationships over the domain as previously discussed can

lead to erroneous results with one-factor-at-a-time methods whereas the DOE methods

employed here safeguard against this problem. The use of sequential experimentation

allows the result of each experiment to guide succeeding experiments to achieve a con-

clusive result. While DOE methods have been used as methods for sensitivity analyses

as noted in the literature, the sequence and combination of designed experiments and

the use of reverse methodology here was a new and innovative approach.

2.3 Sensitivity Analysis of the Population Model

Twenty-�ve parameters were included in the sensitivity analysis of the population model.

All of these parameters were associated with mortality, with the exception of idiv, and

are listed in Table 6. Starting with a population of 243 di�erent ecotypes resulted in

one simulation of the population model taking approximately ten to �fteen minutes.

Again, the only cost associated with running the model was the time invested. Given

no reason to assume otherwise, the assumption that interactions between main e�ects

were negligible was made.
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A 225�18 resolution IV design was implemented in 64 simulations. The output that

was analyzed was the average number of individuals over forty years or the lifetime of

the whole population, whichever occurred �rst, for values sampled the 30th day of each

month. There was no predetermined range of values in which this forecast variable was

supposed to fall; the idea was to �nd the sensitive parameters and be able to adjust

them by a small amount such that extinction of the population was in general avoided

allowing for the population dynamics to be studied.

The results of this designed experiment were much more clear than the individual

model results. The following parameters, listed in order from most to least, were found

to be sensitive: zmuw, zmuv0, zmuvf , yoymort, and zmua. The �rst four of these

parameters were adjusted by two standard deviations in the negative direction to achieve

the desired result.

The sequential experimentation used for the individual-based model together with

the fractional factorial design implemented for the population model illustrates the exi-

bility of the DOE method. Both started out with the same type of screening experiment;

the desired result was immediately achieved for the population model, whereas in the

case of the individual-based model, further sequential experiments were required.
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Chapter 3

Simulation Results

3.1 Diversity

In general, diversity is a measure which represents how many di�erent types of organisms

are present (richness) and how di�erent the relative abundances of those organisms are

(evenness) [150, 152]. Speci�c to the sockeye salmon model studied here, diversity of

the population (i.e., number and type of ecotypes remaining) after a steady state was

reached was an output of interest.

Combinations of simulations which varied across di�erent levels of lake resource

(resource) and maximum possible number of schools (idiv) were carried out. The

starting point for each simulation, other than the variation in the resource levels, was

the population consisting of 243 ecotypes described in Section 2.3 (see also Table 9).

Each simulation was run for 2000 years, which allowed for a limit cycle to be reached

in all but two cases.
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As is evidenced by Table 10, varying the maximum possible number of schools under

di�erent resource conditions had an e�ect on how many ecotypes survived as well as

which speci�c ecotypes survived. The number of ecotypes remaining as a result of these

simulations, which were run until a steady state was reached, unless speci�ed other-

wise, varied between zero (extinction) and six, however, the most prevalent number of

ecotypes remaining was between one and four. The speci�c surviving ecotypes, charac-

terized by the values of oplx, a0l, a3, a4, and resource, can be cross referenced with

Table 9.

3.2 Cycles and Cyclic Dominance

Cycles and cyclic dominance in salmon populations are phenomena which have been

widely noted in the literature [54, 134, 165, 167, 192]. As de�ned in [167], a cycle

is a sequence of x lines in successive calendar years, where x is the principal age at

maturity of the population under consideration. (For Fraser River sockeye, x = 4.)

Cyclic dominance means that within the x-year cycle, there is one year in which the

number of returning spawners greatly exceeds the numbers in the other years. This year

is referred to as \dominant" and the other years are called \o�" cycles. When the year

following the dominant one is \close"1 to the dominant year in terms of abundance, it

is referred to as \subdominant". The dominant year is placed in the �rst position of

the cycle and is denoted Cycle I. The subdominant and o� years, for a four-year cycle,

110-25% of the value in the dominant year, as per [167].
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are then Cycles II, III, and IV, respectively.

It has been suggested that the sharp decline in the abundance of Paci�c salmon pop-

ulations since the early 1990s has been due to a combination of factors which primarily

include climate change, over�shing, and freshwater habitat destruction [119, 146]. Prior

to this decline, it was an important challenge to be able to explain the cycles which ap-

peared, but even more so now that population numbers are dwindling. If the resulting

explanation involves factors which can be controlled, it may be possible to manipulate

the factors to boost the abundance of the salmon populations in all cycle years.

3.2.1 Proposed Cycle Mechanisms

Many explanations, arrived at through examining data and using simple population

models, have been proposed to explain the occurrence of the cycles seen in some salmon

populations. (Reviews can be found in [126, 167, 192].) In the discussion that follows,

the terms \compensatory", \depensatory", and \extrapensatory" are used. These three

classi�cations of the mortalities that a�ect salmon populations were introduced in [145]

and respectively mean mortalities that are directly density-dependent, mortalities that

are inversely density-dependent, and mortalities that are independent of the population

density2.

First note that it is widely accepted that Paci�c salmon cycles and cyclic dominance

are a result of some mechanism which occurs in the freshwater environment [37, 126,

2In the literature reviewed, extrapensatory mortalities were typically associated with environmental
factors.

62



134, 145, 165, 192]. The possibility that the cycles came about due to interactions in

the marine environment was not considered speci�cally due to a study of salmon in the

Fraser River system in [165, 192]. Ricker found that marine inuences could not have

generated the asynchronous cycles observed for di�erent races within the Fraser River

system, and, therefore, the cycles must be a result of some mechanism occurring in the

freshwater environment.

Additionally, it was suggested in [192] that cyclic dominance is occurring due to

some type of depensatory mortality acting on Cycles II, III, and IV in comparison to

Cycle I. If the mortality was not depensatory, the abundances of the o� years would

likely be the same level as the dominant population. However, there is no empirical

evidence which supports this claim [58, 164, 165].

Some authors tried to demonstrate that delayed density-dependent mortality3 was

the cause of the Paci�c salmon cycles [37, 42, 121, 122, 126, 165, 167, 191, 192]. Ex-

amples of mechanisms which could induce delayed density-dependent mortality were

competition (the large abundance of smolts in the dominant year having an e�ect on

the abundance or composition of the resource available to juveniles in subsequent years)

and predation (disease, parasites, or predators are built up during the dominant year

and result in a higher mortality rate for the o� years). While delayed density-dependent

mortality can reinforce cycling, it has not been demonstrated that it is actually needed

to generate the cycles [143, 144], and in some cases, has not been supported by �eld sam-

3Examples of both compensatory and depensatory mortality were found.
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pling [165, 192, 200]. Cycles were recreated in the absence of delayed density-dependent

mortality, where depensatory mortality was used instead, in [144]. The results of the

studies in [143, 144] imply that a reduction in �shing mortality in the non-dominant

years could bring about an increase in abundance.

A genetic factor was suggested as being partially responsible for the existence of the

salmon population cycles in [190]. The genetic factor referred to is the age at maturity

for the di�erent lines in the population, which is determined in part by heredity and

in part by environmental conditions. The authors hypothesized that the cycles could

be explained by this genetic factor in combination with high �shing mortality rates.

To prove their hypothesis, the authors incorporated age four and �ve spawners into a

population model with density-dependent e�ects and demonstrated that the number of

age �ve spawners in the population adversely a�ected the o�-cycle lines in the four-year

cycle. This explanation for the appearance of the cycles was refuted in [167] where it

was shown that the occurrence of age �ve �sh in the population tends to increase the

population numbers in the o� years. While the authors in [122] recognized that age

at maturity is in most cases the same for parents and their progeny, they believe that

this factor alone cannot explain cyclic dominance. Genetic factors, in general, were

suggested and then dismissed as a possible reason for cyclic dominance in [192] where

the authors sought to �nd an explanation for cyclic dominance in some other factor,

such as predation, competition, or uctuations in resource availability.

Another reason for the appearance of the cycles that has been posed is depensatory
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�shing, or �shing mortality that is inversely related to abundance [41, 58, 126, 149].

Depensatory �shing may enhance the natural tendency of the population to cycle at a

period equal to the age at maturity, but the cycles still existed in its absence [37, 126,

144, 167]. The authors in [37, 192] also pointed out that it is unlikely that the aboriginal

and early commercial �sheries were intensive enough to sustain the cycles that existed

prior to 1860.

3.2.2 Cycles in the Model

As the simulations for analyzing the diversity of the population were carried out, a

pattern in the total number of individuals returning to the lake to spawn each year

was discovered. The pattern identi�ed was a cycling of the total number of returning

individuals with a period of 4, 12, 16, or 20 years. The period of the cycle was determined

by whether or not reproduction (by any number of ecotypes) took place in each year of

a four year time span: if reproductions only occurred during one of the four years, then

the periodic cycle was four years long; if reproductions occurred during two of the four

years, the periodic cycle was 12 years; if reproductions occurred during three of the four

years, the periodic cycle was 16 years; and �nally, if reproductions occurred every year

in the four year period, the periodic cycle was 20 years.

These di�erent length cycles (4, 12, 16, and 20) encompass all the possibilities for

reproductions which can take place in a four year period, i.e., there are
�4
1

�
+
�4
2

�
+
�4
3

�
+
�4
4

�
= 15 possible ways that reproductions can occur each year in a four year period

and each is represented in one of the cycles described. Within a four year period (� �
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� �), if reproductions are denoted by \+", each of these possibilities can be illustrated.

Reproductions in a single year within a four year period would be one of

+ � � �

� + � �

� � + �

� � � +:

If we look at each of these four year periods as a repeating pattern, then each set has

the same basic form, but the year in which reproductions take place is translated. All

of these reproduction patterns result in a four-year periodic cycle.

Reproductions occurring in two out of four years would have one of the following

patterns:

+ + � �

� + + �

� � + +

+ � � +

+ � + �

� + � +:

The �rst four of these patterns all have the same basic form with reproductions trans-

lated to a di�erent set of consecutive years; similarly, the last two patterns have the

same form with reproductions translated. Each of these patterns results in a 12-year
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periodic cycle.

Reproductions occurring in three out of four years result in four possible patterns:

+ + + �

+ + � +

+ � + +

� + + +:

All of these are of the same form, with the one year in which reproductions do not occur

being translated. A 16-year periodic cycle results here.

There is only one possible pattern for reproductions occurring in all four of four

years:

+ + + +:

This pattern results in a 20-year periodic cycle.

Although each of these patterns demonstrated a distinct cycling, each could also

be regarded as a four-year cycle. The values which appeared every fourth year in each

of the 12, 16, and 20 cycles could be considered essentially the same number because

the coeÆcient of variation (CV ) ranged from as little as 0.1% to at most 4%, with an

average of 0.15%.

Given that the population model resulted in periodic four-year cycles and that the

Fraser River system sockeye populations tend to have cycles of four years, a qualitative

comparison of the model output and data from Cultus Lake for the number of returning
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spawners was conducted. Yearly data for the number of returning spawners at Cultus

Lake were available for the years 1956 through 1988 in [54], however, data from 1956,

1957, and 1958 were not included since the four-year dominant cycle value (1955) was not

available. Considering that the number of returning spawners for this lake was positive

for all years reported, the data were compared to the 20-year cycle model output, which

had individuals returning in every year of the four year period. In Figure 4, every year

of the data extracted from [54] was normalized by the �rst value in the time series and

plotted against the model output, which was also normalized by the value of the �rst year

in the 20-year cycle. As demonstrated by Figure 4, the qualitative comparison of the

data to the model output was lacking. However, taking into account that the historical

data have been interpreted as a series of four-year cycles, an adaptive �tting scheme

in which the data were renormalized every four years by the value associated with the

dominant cycle was used and yielded much better results4. See Figure 5. Although the

model output did not have as dramatic changes as the historical data, the qualitative

behavior was essentially the same: starting with a dominant year, both graphs show a

sharp decrease, another decrease, and then two increases (DDII) returning back to the

dominant year.

While the four-year cycles which resulted from the model may seem to be an ob-

vious outcome, one must realize that a value of four for the age at maturity was not

programmed into the model. The resulting age at maturity was a consequence of the

4All years in the 20-year cycle from the model were still normalized by the �rst value given the
previous discussion on the CV s associated with every fourth year.
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physiology of the individual. It is possible to have individuals which mature at ages

other than four.

Other systems, such as the Kvichak River in Bristol Bay, Alaska and the Skeena

River in British Columbia, have sockeye populations which grow slower and hence mi-

grate and mature at di�erent ages than those of the Fraser River system. For example,

in the Kvichak River system, individuals migrate from the freshwater environment in

their third year and mature primarily at age �ve [58, 134]. Simulations using a slower

growth rate were executed by adjusting some parameter values associated with indi-

vidual growth. Di�erent cycles appeared as the size-based mortality value, zmuw, was

varied, however, the primary age at maturity in all the simulations was �ve years with

an age at maturity of six years appearing sporadically.

In all of the simulations executed in which there were only ecotypes maturing at an

age of �ve years, the resulting cycles had periods of �ve, 15, 20, 25, and 30 years. When

reproductions took place in only one of these �ve years, the result was a �ve-year cycle.

When reproductions occurred in two of �ve years, a cycle with a period of 15 years

resulted. When reproductions occurred in three of the �ve years, cycles of 20, 25, and

30 years were all found. There were no cases in which reproductions took place in four

and �ve out of the �ve years, however, this does not imply that they do not exist. The

simulations in which an age at maturity of six years appeared even once, in combination

with the number of reproductions taking place each year in the �ve year period under

a particular schooling condition, potentially caused the cycles to have a longer period.
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Mortality E�ects

The models used to describe the e�ect of mortality mentioned at the beginning of this

section were population-level models, not individual-based models incorporated into

a population model. These models, by necessity, only assessed mortality as a form

of density dependence. In this setting, it was not possible to independently impose a

density-dependent mortality and a size-dependent mortality because all of the organisms

being modeled were exactly the same; in other words, size-dependent mortality would

have been equivalent to density-dependent mortality.

In the model framework used here, both density- and size-dependent mortality can

be imposed separately, as illustrated in Appendix III. Since the form of the density-

dependent mortality was not of a delayed nature and it was demonstrated in the previous

section that cycles do exist, the model is in agreement with the results found in [144] in

that delayed density-dependent mortality was not necessary to generate the cycles. The

hypothesis that the cycles were a result of some other type of mortality is considered in

the text that follows.

Density-dependent Mortality To ascertain if density-dependent mortality was the

cause of the cycles which appeared, the e�ect of removing this type of mortality from

the model was examined. Once removed, it was found that cycles still occurred. Under

the original resource level conditions (those listed in Table 1), both 16 (idiv = 6, 12)

and 20-cycles emerged (idiv = 3-5, 7-11). Extinction occurred for idiv values of one

and two. The CV across all the simulations for the values occurring every four years
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was, however, much greater than when density-dependent mortality was included; the

average was 4%, with a minimum of 0.25% and a maximum of 14%. This result indicated

that under some schooling conditions, the emerging pattern could not be interpreted as

a four-year cycle as before. While the age at maturity for all of the surviving ecotypes

for each of the simulations was still four years, the maximum possible number of schools

chosen and the absence of the density-dependent mortality did a�ect the length of the

period of the resulting cycle.

When the maximum possible number of schools was three, i.e., idiv = 3, the same

type of pattern as when density-dependent mortality was present arose (see Figure

6). The cycles which emerged in the absence of density-dependent mortality followed

the same DDII pattern within a four year period, having an average CV of 0.28%.

However, the cycles produced in the absence of density-dependent mortality were not

as pronounced as those when it was included. The reoccurring DDII pattern previously

found within the 20-cycle was not generated under other schooling conditions. For

the rest of the 20-cycles produced, there were four surviving ecotypes, each reaching

maturity at an age of four years, never in the same year as another ecotype. Based on

their CV values, the resulting 20-year periodic cycles could not be considered four-year

cycles. However, for the simulations associated with a maximum possible number of

schools of three, �ve, seven, and eleven, every year could be considered a dominant year

given that the maximum CV for these four simulations for all the years in the 20-year

cycle was 1.9%.
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While the same pattern of the four-year periodic cycle found previously was only

recreated under one schooling condition here, the fact remains that cycles did appear

when there was no density-dependent mortality. The overall e�ect of including density-

dependent mortality caused the magnitude of the cycling pattern to be more dramatic.

Excluding density-dependent mortality did not eliminate the cycles, but had the poten-

tial to change their character.

Size-based Mortality An alternate hypothesis was that size-based mortality caused

cycling to occur. If this type of mortality was taken out of the model, and density-

dependent mortality was left at its original value of 0.002, extinction occurred under

the range of allowed values for the maximum possible number of schools (idiv). The

reason for this extinction was, in e�ect, that the other mortalities, in particular the

density-dependent mortality, did not eliminate enough individuals in the freshwater en-

vironment to allow migration to take place. Due to the greater number of individuals in

this setting, the resource was partitioned to a greater extent, which, in turn, caused each

individual to grow much slower. This slow growth caused the threshold for the mini-

mum mass to migrate not to be attained within the speci�ed time period. Essentially,

the individuals were not getting suÆciently large to leave the freshwater environment,

causing them to die when the prescribed maximum age was reached. No conclusions

about whether or not size-based mortality was causing the cycles to occur could be made

under these conditions, therefore, density dependent mortality was increased, while ex-

cluding size-based mortality, to reduce the population in the freshwater environment,
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allowing migration from the lake to occur.

Once the density-dependent mortality values were increased, it became clear that

cycles could also exist in the absence of size-based mortality. Simulations under the

original resource levels were conducted for zmudm values of 0.006 and 0.007 across the

plausible range of idiv values.

For a zmudm value of 0.006, two di�erent cycles emerged. The �rst pattern which

presented itself, a six-year cycle which had reproductions occurring in only one year

of the six-year period, was for idiv values of one and four. The age at maturity for

all individuals in this cycle was six years. The second pattern which arose was a 64-

year cycle when the maximum possible number of schools was two. When the steady

state was reached, there was only one ecotype left. This ecotype and its o�spring both

reached maturity after six years; the third generation matured at seven years, the fourth

at six years, the �fth at seven years, and then the pattern repeated. This cycle could

be interpreted as a 32-year cycle given an average CV of 0.0023% for the values being

produced every 32 years at the di�erent maturity ages. Extinction occurred for idiv

values of three and �ve through twelve.

When the value for the density-dependent mortality was increased to 0.007, extinc-

tion again occurred for the majority of idiv values (2-5, 7, 8, 10-12). For one school, a

74-year cycle was generated with two ecotypes surviving. All generations of spawners

included both ecotypes. The �rst generation returned to the lake after seven years,

the next generation after six years, then seven years, four years, six years, and seven
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years, after which time, the pattern repeated. The average CV of 0.44% for the values

appearing every 37 years indicated that this cycle could be interpreted as a 37-year

cycle. A 108-year cycle emerged when idiv was set to six. Two ecotypes survived, each

reaching maturity at an age of six, with reappearance in the lake o�set by an interval

of two years. This cycle could be interpreted as two six-year cycles with a delay of

two years between each. One ecotype survived when the maximum possible number of

schools was nine, resulting in a 120-year cycle. This ecotype returned to spawn every

six years. The cycle produced could be interpreted as a six-year cycle given that the

CV was 0.58%.

The conclusion drawn from taking a closer look at these two types of mortality,

density-dependent and size-dependent, was that their inclusion was not necessary for

periodic cycles to appear. However, in combination with the value chosen for the max-

imum possible number of schools, both of these mortalities did have an e�ect on the

character of the periodic cycles. In analyzing all of the simulations executed, it be-

came clear that the long term behavior of the population was extremely sensitive to the

dynamic nature of the schools and their e�ect on the initial population.
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Chapter 4

Future Directions

The sockeye salmon model implemented here was used in a number of di�erent ways, the

most obvious application being the study of the dynamics of the population. In addition,

the validity of some hypotheses regarding the cycling of the populations which appear

were examined, and, a new sensitivity analysis method was tested and found to be an

eÆcient and thorough tool. Some possible future directions for the work completed here

are discussed in this chapter.

4.1 Schooling Mechanisms

The creation of schools in the freshwater environment used in this model was discussed in

the schooling section of Section 1.2.1. It was found that the maximum possible number

of schools allowed in each simulation, given by the value of idiv, had a signi�cant e�ect

on the type of cycling which resulted. Since the mechanism behind how many schools
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any given group of �sh will form and how many �sh will be contained within a school

is not known, other ways of creating schools in the model are certainly possible and

should be explored. For example, perhaps a limit to the number of �sh that form a

school exists. If this is the case, once a school has reached its capacity, a new school with

individuals of the same length as the school which is \full" could then form, resulting

in an increase in the total number of schools as well as a change in the density of the

individual schools. The maximum number of individuals associated with a school might

also vary between schools containing individuals of di�erent lengths. Likewise, some

minimum number of individuals above one might also be necessary for a school to form

at all.

4.2 Dynamic Resource

The resource that was used in both the freshwater and ocean environments in the

implementation of the model was set at a constant density such that it was not possible

for the organisms to deplete the resource. While conditions which did not limit feeding

were reasonable for the ocean environment [57, 176, 182, 189], making this assumption

in the freshwater environment is questionable. The inclusion of a dynamic lake resource

which can grow and be reduced when consumed is a logical next step for improvement

of the model. Given a resource which uctuates in response to its environment, the

hypothesis presented in [110] in which it is suggested that smolt migration is in part a

response to low resource levels could be investigated.
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4.3 Toxicological Problems

One of the problems that some populations of salmon encounter is pollution in the

environments in which they live [119]. The inclusion of lipid as one of the state variables

allows for problems associated with many toxic chemicals to be studied. The model

implemented here, with a few minor modi�cations, is equipped to examine scenarios

in which toxicological problems could be addressed. The e�ects of toxic chemicals on

other species using the same type of model formulation were investigated in [83, 128].
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Resolution III Design

Resolution IV Design

Saturated Resolution V Design

Resolution VI Design

Cotter Design

Central Composite Design

Robust Design Methodology

Foldover

Foldover

Screening

Potential Sensitive Parameters Identified

Sensitive Parameters
           Isolated

    Interaction Effects
    with Non-sensitive
Parameters Insignificant

Figure 2: Sequential experimentation implemented for the sensitivity analysis of the
individual model.
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Figure 3: Saturated resolution V estimates plotted against the sums of the odd Cotter
estimates for Mass 2 and Eggs.
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Table 8: Parameters to which the outputs, Mass 2, Mass 3, and
Eggs, were found to be sensitive. Parameters are listed from most
to least inuence.

Mass 2 Mass 3 Eggs

Highly Slightly Highly Slightly Highly Slightly
Sensitive Sensitive Sensitive Sensitive Sensitive Sensitive

k1 templ k1 templ templ zjmgp
tempo a0l a6 a0l oppx resvar
oppx zjmgp oppx oplx a6 oplx
a0p bdensp tempo zjmgp cg a3
a6 a4 a0p bdensp obdensp a4

obdensp a3 obdensp a4 a0p a0l
cg oplx cg a3 tempo

zjmgl zjmgl k1
blsp blsp
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Table 9: Ecotypes which compose the population.
oplx a0l a3 a4 Resource Assigned

Level Number

0.173 0.85 0.12 0.37 Middle 1

0.173 0.85 0.12 0.40367 Middle 2

0.173 0.85 0.12 0.43734 Middle 3

0.173 0.85 0.10908 0.37 Middle 4

0.173 0.85 0.10908 0.40367 Middle 5

0.173 0.85 0.10908 0.43734 Middle 6

0.173 0.85 0.09816 0.37 Middle 7

0.173 0.85 0.09816 0.40367 Middle 8

0.173 0.85 0.09816 0.43734 Middle 9

0.173 0.8045 0.12 0.37 Middle 10

0.173 0.8045 0.12 0.40367 Middle 11

0.173 0.8045 0.12 0.43734 Middle 12

0.173 0.8045 0.10908 0.37 Middle 13

0.173 0.8045 0.10908 0.40367 Middle 14

0.173 0.8045 0.10908 0.43734 Middle 15

0.173 0.8045 0.09816 0.37 Middle 16

0.173 0.8045 0.09816 0.40367 Middle 17

0.173 0.8045 0.09816 0.43734 Middle 18

0.173 0.759 0.12 0.37 Middle 19

0.173 0.759 0.12 0.40367 Middle 20

0.173 0.759 0.12 0.43734 Middle 21

0.173 0.759 0.10908 0.37 Middle 22

0.173 0.759 0.10908 0.40367 Middle 23

0.173 0.759 0.10908 0.43734 Middle 24

0.173 0.759 0.09816 0.37 Middle 25

0.173 0.759 0.09816 0.40367 Middle 26

0.173 0.759 0.09816 0.43734 Middle 27

0.157257 0.85 0.12 0.37 Middle 28

0.157257 0.85 0.12 0.40367 Middle 29

0.157257 0.85 0.12 0.43734 Middle 30

0.157257 0.85 0.10908 0.37 Middle 31

0.157257 0.85 0.10908 0.40367 Middle 32

0.157257 0.85 0.10908 0.43734 Middle 33

0.157257 0.85 0.09816 0.37 Middle 34

0.157257 0.85 0.09816 0.40367 Middle 35

0.157257 0.85 0.09816 0.43734 Middle 36

0.157257 0.8045 0.12 0.37 Middle 37

0.157257 0.8045 0.12 0.40367 Middle 38

0.157257 0.8045 0.12 0.43734 Middle 39

0.157257 0.8045 0.10908 0.37 Middle 40

0.157257 0.8045 0.10908 0.40367 Middle 41

0.157257 0.8045 0.10908 0.43734 Middle 42

0.157257 0.8045 0.09816 0.37 Middle 43

0.157257 0.8045 0.09816 0.40367 Middle 44

0.157257 0.8045 0.09816 0.43734 Middle 45

0.157257 0.759 0.12 0.37 Middle 46

0.157257 0.759 0.12 0.40367 Middle 47

0.157257 0.759 0.12 0.43734 Middle 48

0.157257 0.759 0.10908 0.37 Middle 49

0.157257 0.759 0.10908 0.40367 Middle 50
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Table 9 (continued).

oplx a0l a3 a4 Resource Assigned

Level Number

0.157257 0.759 0.10908 0.43734 Middle 51

0.157257 0.759 0.09816 0.37 Middle 52

0.157257 0.759 0.09816 0.40367 Middle 53

0.157257 0.759 0.09816 0.43734 Middle 54

0.141514 0.85 0.12 0.37 Middle 55

0.141514 0.85 0.12 0.40367 Middle 56

0.141514 0.85 0.12 0.43734 Middle 57

0.141514 0.85 0.10908 0.37 Middle 58

0.141514 0.85 0.10908 0.40367 Middle 59

0.141514 0.85 0.10908 0.43734 Middle 60

0.141514 0.85 0.09816 0.37 Middle 61

0.141514 0.85 0.09816 0.40367 Middle 62

0.141514 0.85 0.09816 0.43734 Middle 63

0.141514 0.8045 0.12 0.37 Middle 64

0.141514 0.8045 0.12 0.40367 Middle 65

0.141514 0.8045 0.12 0.43734 Middle 66

0.141514 0.8045 0.10908 0.37 Middle 67

0.141514 0.8045 0.10908 0.40367 Middle 68

0.141514 0.8045 0.10908 0.43734 Middle 69

0.141514 0.8045 0.09816 0.37 Middle 70

0.141514 0.8045 0.09816 0.40367 Middle 71

0.141514 0.8045 0.09816 0.43734 Middle 72

0.141514 0.759 0.12 0.37 Middle 73

0.141514 0.759 0.12 0.40367 Middle 74

0.141514 0.759 0.12 0.43734 Middle 75

0.141514 0.759 0.10908 0.37 Middle 76

0.141514 0.759 0.10908 0.40367 Middle 77

0.141514 0.759 0.10908 0.43734 Middle 78

0.141514 0.759 0.09816 0.37 Middle 79

0.141514 0.759 0.09816 0.40367 Middle 80

0.141514 0.759 0.09816 0.43734 Middle 81

0.173 0.85 0.12 0.37 Low 82

0.173 0.85 0.12 0.40367 Low 83

0.173 0.85 0.12 0.43734 Low 84

0.173 0.85 0.10908 0.37 Low 85

0.173 0.85 0.10908 0.40367 Low 86

0.173 0.85 0.10908 0.43734 Low 87

0.173 0.85 0.09816 0.37 Low 88

0.173 0.85 0.09816 0.40367 Low 89

0.173 0.85 0.09816 0.43734 Low 90

0.173 0.8045 0.12 0.37 Low 91

0.173 0.8045 0.12 0.40367 Low 92

0.173 0.8045 0.12 0.43734 Low 93

0.173 0.8045 0.10908 0.37 Low 94

0.173 0.8045 0.10908 0.40367 Low 95

0.173 0.8045 0.10908 0.43734 Low 96

0.173 0.8045 0.09816 0.37 Low 97

0.173 0.8045 0.09816 0.40367 Low 98

0.173 0.8045 0.09816 0.43734 Low 99

0.173 0.759 0.12 0.37 Low 100
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Table 9 (continued).

oplx a0l a3 a4 Resource Assigned

Level Number

0.173 0.759 0.12 0.40367 Low 101

0.173 0.759 0.12 0.43734 Low 102

0.173 0.759 0.10908 0.37 Low 103

0.173 0.759 0.10908 0.40367 Low 104

0.173 0.759 0.10908 0.43734 Low 105

0.173 0.759 0.09816 0.37 Low 106

0.173 0.759 0.09816 0.40367 Low 107

0.173 0.759 0.09816 0.43734 Low 108

0.157257 0.85 0.12 0.37 Low 109

0.157257 0.85 0.12 0.40367 Low 110

0.157257 0.85 0.12 0.43734 Low 111

0.157257 0.85 0.10908 0.37 Low 112

0.157257 0.85 0.10908 0.40367 Low 113

0.157257 0.85 0.10908 0.43734 Low 114

0.157257 0.85 0.09816 0.37 Low 115

0.157257 0.85 0.09816 0.40367 Low 116

0.157257 0.85 0.09816 0.43734 Low 117

0.157257 0.8045 0.12 0.37 Low 118

0.157257 0.8045 0.12 0.40367 Low 119

0.157257 0.8045 0.12 0.43734 Low 120

0.157257 0.8045 0.10908 0.37 Low 121

0.157257 0.8045 0.10908 0.40367 Low 122

0.157257 0.8045 0.10908 0.43734 Low 123

0.157257 0.8045 0.09816 0.37 Low 124

0.157257 0.8045 0.09816 0.40367 Low 125

0.157257 0.8045 0.09816 0.43734 Low 126

0.157257 0.759 0.12 0.37 Low 127

0.157257 0.759 0.12 0.40367 Low 128

0.157257 0.759 0.12 0.43734 Low 129

0.157257 0.759 0.10908 0.37 Low 130

0.157257 0.759 0.10908 0.40367 Low 131

0.157257 0.759 0.10908 0.43734 Low 132

0.157257 0.759 0.09816 0.37 Low 133

0.157257 0.759 0.09816 0.40367 Low 134

0.157257 0.759 0.09816 0.43734 Low 135

0.141514 0.85 0.12 0.37 Low 136

0.141514 0.85 0.12 0.40367 Low 137

0.141514 0.85 0.12 0.43734 Low 138

0.141514 0.85 0.10908 0.37 Low 139

0.141514 0.85 0.10908 0.40367 Low 140

0.141514 0.85 0.10908 0.43734 Low 141

0.141514 0.85 0.09816 0.37 Low 142

0.141514 0.85 0.09816 0.40367 Low 143

0.141514 0.85 0.09816 0.43734 Low 144

0.141514 0.8045 0.12 0.37 Low 145

0.141514 0.8045 0.12 0.40367 Low 146

0.141514 0.8045 0.12 0.43734 Low 147

0.141514 0.8045 0.10908 0.37 Low 148

0.141514 0.8045 0.10908 0.40367 Low 149

0.141514 0.8045 0.10908 0.43734 Low 150
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Table 9 (continued).

oplx a0l a3 a4 Resource Assigned

Level Number

0.141514 0.8045 0.09816 0.37 Low 151

0.141514 0.8045 0.09816 0.40367 Low 152

0.141514 0.8045 0.09816 0.43734 Low 153

0.141514 0.759 0.12 0.37 Low 154

0.141514 0.759 0.12 0.40367 Low 155

0.141514 0.759 0.12 0.43734 Low 156

0.141514 0.759 0.10908 0.37 Low 157

0.141514 0.759 0.10908 0.40367 Low 158

0.141514 0.759 0.10908 0.43734 Low 159

0.141514 0.759 0.09816 0.37 Low 160

0.141514 0.759 0.09816 0.40367 Low 161

0.141514 0.759 0.09816 0.43734 Low 162

0.173 0.85 0.12 0.37 High 163

0.173 0.85 0.12 0.40367 High 164

0.173 0.85 0.12 0.43734 High 165

0.173 0.85 0.10908 0.37 High 166

0.173 0.85 0.10908 0.40367 High 167

0.173 0.85 0.10908 0.43734 High 168

0.173 0.85 0.09816 0.37 High 169

0.173 0.85 0.09816 0.40367 High 170

0.173 0.85 0.09816 0.43734 High 171

0.173 0.8045 0.12 0.37 High 172

0.173 0.8045 0.12 0.40367 High 173

0.173 0.8045 0.12 0.43734 High 174

0.173 0.8045 0.10908 0.37 High 175

0.173 0.8045 0.10908 0.40367 High 176

0.173 0.8045 0.10908 0.43734 High 177

0.173 0.8045 0.09816 0.37 High 178

0.173 0.8045 0.09816 0.40367 High 179

0.173 0.8045 0.09816 0.43734 High 180

0.173 0.759 0.12 0.37 High 181

0.173 0.759 0.12 0.40367 High 182

0.173 0.759 0.12 0.43734 High 183

0.173 0.759 0.10908 0.37 High 184

0.173 0.759 0.10908 0.40367 High 185

0.173 0.759 0.10908 0.43734 High 186

0.173 0.759 0.09816 0.37 High 187

0.173 0.759 0.09816 0.40367 High 188

0.173 0.759 0.09816 0.43734 High 189

0.157257 0.85 0.12 0.37 High 190

0.157257 0.85 0.12 0.40367 High 191

0.157257 0.85 0.12 0.43734 High 192

0.157257 0.85 0.10908 0.37 High 193

0.157257 0.85 0.10908 0.40367 High 194

0.157257 0.85 0.10908 0.43734 High 195

0.157257 0.85 0.09816 0.37 High 196

0.157257 0.85 0.09816 0.40367 High 197

0.157257 0.85 0.09816 0.43734 High 198

0.157257 0.8045 0.12 0.37 High 199

0.157257 0.8045 0.12 0.40367 High 200
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Table 9 (continued).

oplx a0l a3 a4 Resource Assigned

Level Number

0.157257 0.8045 0.12 0.43734 High 201

0.157257 0.8045 0.10908 0.37 High 202

0.157257 0.8045 0.10908 0.40367 High 203

0.157257 0.8045 0.10908 0.43734 High 204

0.157257 0.8045 0.09816 0.37 High 205

0.157257 0.8045 0.09816 0.40367 High 206

0.157257 0.8045 0.09816 0.43734 High 207

0.157257 0.759 0.12 0.37 High 208

0.157257 0.759 0.12 0.40367 High 209

0.157257 0.759 0.12 0.43734 High 210

0.157257 0.759 0.10908 0.37 High 211

0.157257 0.759 0.10908 0.40367 High 212

0.157257 0.759 0.10908 0.43734 High 213

0.157257 0.759 0.09816 0.37 High 214

0.157257 0.759 0.09816 0.40367 High 215

0.157257 0.759 0.09816 0.43734 High 216

0.141514 0.85 0.12 0.37 High 217

0.141514 0.85 0.12 0.40367 High 218

0.141514 0.85 0.12 0.43734 High 219

0.141514 0.85 0.10908 0.37 High 220

0.141514 0.85 0.10908 0.40367 High 221

0.141514 0.85 0.10908 0.43734 High 222

0.141514 0.85 0.09816 0.37 High 223

0.141514 0.85 0.09816 0.40367 High 224

0.141514 0.85 0.09816 0.43734 High 225

0.141514 0.8045 0.12 0.37 High 226

0.141514 0.8045 0.12 0.40367 High 227

0.141514 0.8045 0.12 0.43734 High 228

0.141514 0.8045 0.10908 0.37 High 229

0.141514 0.8045 0.10908 0.40367 High 230

0.141514 0.8045 0.10908 0.43734 High 231

0.141514 0.8045 0.09816 0.37 High 232

0.141514 0.8045 0.09816 0.40367 High 233

0.141514 0.8045 0.09816 0.43734 High 234

0.141514 0.759 0.12 0.37 High 235

0.141514 0.759 0.12 0.40367 High 236

0.141514 0.759 0.12 0.43734 High 237

0.141514 0.759 0.10908 0.37 High 238

0.141514 0.759 0.10908 0.40367 High 239

0.141514 0.759 0.10908 0.43734 High 240

0.141514 0.759 0.09816 0.37 High 241

0.141514 0.759 0.09816 0.40367 High 242

0.141514 0.759 0.09816 0.43734 High 243
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Table 10: Ecotypes surviving under di�erent resource and schooling
conditions.
Maximum Resource Level [g/cm3

� 10�6]
Possible Low = 0.03 Low = 0.06 Low = 0.12

Number of Middle = 0.06 Middle = 0.12 Middle = 0.18

Schools High = 0.09 High = 0.18 High = 0.24

1 0 28, 109, 190 55, 78, 136,
159, 217, 240a

2 72, 88 34, 159a 34, 81

3 28, 81, 238 190, 242, 243 81

4 79, 243 1, 235, 241, 243 1, 155, 163, 242

5 80, 162 78, 81 80, 144, 163

6 162 7, 80 162

7 64, 238 73 162, 242

8 78, 80, 153 220, 224 80, 149

9 80, 81 1, 73, 82, 240 162, 241

10 83, 129, 217 27, 160 1, 163, 241, 242

11 156, 235 223 1, 144, 163

12 134, 141, 162 167, 242 1, 145, 163, 242

a Simulation had not reached steady state after 10000 years.
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Figure 4: Model/data comparison for returning number of spawners at Cultus Lake.
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Figure 5: Model/data comparison for returning number of spawners at Cultus Lake
using adaptive �tting.
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The amount of time that it takes for the yolk-sac to be absorbed and external feeding

to begin is given by f1(T ) [d]. Following the representation developed by Lassiter (1975)

describing the e�ect of temperature on the biological response of an individual organism,

f1(T ) is given by

kopt1e
�1(T�Topt1 )

�
Tmax1 � T

Tmax1 � Topt1

��1(Tmax1�Topt1)

(II.1)

where kopt1 is the optimal value for f1 evaluated at the temperature, Topt1 [ÆC], which

results in the smallest number of days for the length of the embryonic stage, and Tmax1

[ÆC] is the upper lethal temperature for sockeye. The parameters kopt1 and �1 are both

�tted using values from [142].

The function of temperature which modi�es the feeding rate is given by f2(T ) [ ].

Again, following the representation developed by [123], f2(T ) is represented by

kopt2e
�2(T�Topt2 )

�
Tmax2 � T

Tmax2 � Topt2

��2(Tmax2�Topt2)

(II.2)

where kopt2 is the optimal value for f2 evaluated at the optimal temperature for feeding,

Topt2 [ÆC], and Tmax2 [ÆC] is the minimum temperature above Topt2 at which feeding

ceases to occur. kopt2 and �2 are both �tted parameters using values from Hewett and

Johnson's (1992) model parameterized for sockeye salmon. f2(T ) is set up to give values

between 0 and 1; when equation (II.2) becomes negative, a value of 0 is assumed.
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The gut clearance rate is modi�ed by a function of temperature, f3(T ) [ ], which is

given by

f3(T ) =

8>><
>>:

T
�3��3T

for T � 0ÆC

0 otherwise

(II.3)

The parameters, �3 and �3, are �tted using sockeye salmon data from [31] which ac-

counts for both size and temperature.

The maintenance requirements of an individual are modi�ed by the temperature

function, f4(T ) [ ]. The function f4(T ) has an exponential relationship represented by

�4e
�4T where �4 and �4 are �tted parameters using data from [27].

The value for apparent heat increment given as a function of temperature is f5(T ) =

�5e
�5T where �5 and �5 are �tted parameters. The same apparent heat increment value

is used for both lipids and protein.

The fraction of eggs that survive given as a function of temperature is

f6(T ) =

8>><
>>:
��6T 2 + �6T + 6 for

�6�
p
�6

2+4�66
2�6

� T � �6+
p
�6

2+4�66
2�6

0 otherwise

(II.4)

where �6, �6, and 6 are �tted parameters using sockeye salmon data from [142] and

rescaling to give 79% survival at a temperature of 8ÆC. Note that 100% survival of eggs

is not allowed because there are always nonviable eggs in nature.
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Age-dependent mortality is assessed uniformly across cohorts (individuals of the

same ecotype that are the same age) and is represented by

�a =

8>><
>>:

�a�1aa if 0 � a � amax

1 if a > amax

(III.1)

where a [d] is age and �a [1d ] and �1a [1d ] are constants.

Size-dependent mortality is assessed in the model for schooling and non-schooling

individuals. For non-schooling individuals, size-dependent mortality is determined by

the weight of the individual and is viewed as the mortality due to predation. Size

mortality is a function of mL +mS and is given by �w = �w ��1w = �w ��1w(mL +mS).

�w [1g ] is a constant and �1w [1d ] is determined by

�1w =

8>>>>>>>>>><
>>>>>>>>>>:

v0 if mL +mS = 0

vc if w1 � mL +mS � w2

vf if mL +mS � w3

continuous and linear elsewhere

(III.2)

where v0, vc, vf [1d ] and w1, w2, w3 [g] are all constant parameters.

For schooling individuals, the new size-dependent mortality, referred to as �sch [1d ], is

a combination of the mortality associated with the size of the individual (from equation

(III.2)) and the size of the school which contains the individual under consideration.
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The equation for �sch is given by

�sch = g(�sch)
�1w
nsch

(III.3)

where �1w is taken from equation (III.2) and nsch is the total number of schools. g is

a function of �sch, the density of the school which contains the individual �sh, and is

calculated from the following:

g(�sch) =
dsch

�sch + dsch
(III.4)

where dsch [#] is a constant. Notice that as the density of the school becomes large,

the value of g(�sch) becomes smaller and, hence, the mortality for this particular �sh

also becomes smaller. The maximum possible number of schools is chosen to be 12

based on the di�erence between the minimum and maximum lengths of individuals in

the lake environment such that the smallest di�erence perceived by an individual is

approximately 0.25 inches.

Density-dependent mortality is assessed uniformly across the population, causing �

to be a nonlinear function of �. The total biomass, pb [#], of the population is calculated

by summing (mL +mS)i � �i for each characteristic i. The density-dependent mortality
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is then given by

�d =

8>>>>>>>>>><
>>>>>>>>>>:

0:5dm if 0 � pb � pt

0 if pb = po

dm if pb � pc

continuous and linear elsewhere

(III.5)

where dm [1d ] and pt, po, pc [g] are all constant parameters. Density-dependent mortality

is assessed separately for the lake and ocean populations, however, in both environments

it is represented by the same form given in equation (III.5).

Young-of-the-year mortality is also assessed based on the total density, pyoy [#], of

the young-of-the-year population. To qualify for young-of- the-year status, the age of the

individual must fall between ayoymin [d] and ayoymax [d]. Young-of-the-year mortality is

calculated using

�yoy =

8>>>>>><
>>>>>>:

0 if 0 � pyoy � pyoyo

ym if pyoy � pyoyc

continuous and linear elsewhere

(III.6)

where ym [1d ], pyoyo [#], and pyoyc [#] are constant parameters.
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C.M. Krohn and C.G. Krohn. Letter to the Editor. Applied Energy

69(3): 239-241, 2001.

It came to our attention while reviewing the article \Analytical Model of a Residential

Desuperheater" by Lee and Jones [125] that the statistical analysis of the designed

experiment was fundamentally incorrect. While the use of design of experiments as

a tool for sensitivity analysis is a proven and eÆcient approach, the techniques which

a�ord this eÆciency must be understood to draw correct conclusions. The authors use

of experimental design is a sound approach to the problem, yet the results point to a

much simpler conclusion than the authors recognized.

Lee and Jones use a standard fractional factorial design to analyze the sensitiv-

ity of their model to �ve input parameters, hwtr, hrefrig, F , Tri, and Twi. From

this analysis, they conclude that two main e�ects (Tri and Twi), three two-factor in-

teractions (Twi*hrefrig, hrefrig*F , and Tri*hrefrig), and one three-factor interaction

(hwtr*hrefrig*F ) all have signi�cant e�ects on the model output, desuperheater rate.

For simplicity, we refer to the factors hwtr, hrefrig, F , Tri, and Twi respectively as A, B,

C, D, and E. Table 11 shows the ordering of the high and low levels for each e�ect in

relation to the ordering of other e�ects. Note that e�ects which are aliased with each

other have identical columns. The alias structure for Lee and Jones' design is given

in Table 12. For further explanation on alias structure and fractional factorial designs,

see [139].
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For each e�ect to be estimated independently of others, a full factorial is required.

While the number of simulations for a two-level, full factorial with �ve factors is 25 = 32,

Lee and Jones' design is a 1
4 fraction of the full factorial involving eight simulations. Due

to the reduction in number of simulations, this design is of resolution III, which, in this

case, means that each main e�ect is confounded with at least one two-factor interaction,

as well as with other higher-order interactions. This design is commonly referred to as

a screening design and can be used only to estimate main e�ects and possibly one or

two speci�c interactions assuming all other interactions are negligible. A resolution III

fractional factorial can also be used as the �rst step in sequential experimentation. The

general methodology behind sequential experimentation is such that a low resolution

design is run and analyzed with the results dictating if and which additional fractional

factorials are to follow.

In a correct analysis of the output from Lee and Jones' screening design (Lee and

Jones' Table 1), it is apparent that no further experimentation is required as the desu-

perheater model is completely dominated by only two e�ects, Tri and Twi. This can be

most simply shown with a least squares model including only these e�ects:

Ŷ = 5:6375 + 9:5375(Tri)� 6:3125(Twi) (IV.1)

where Ŷ represents the predicted response, % error Qdesuper. Note that these coeÆcients

are in coded units (see p. 283 of [125]) since the actual values for Tri and Twi were not

given. The coeÆcient of determination, R2 = 0:999937, indicates that approximately
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99.9937 percent of the variability observed in % error Qdesuper is caused by the main

e�ects Tri and Twi. Statistically, there is no evidence of any other e�ect on the response.

Notice that three of the interaction e�ects found to be signi�cant by Lee and Jones are

aliased with these two main e�ects. That is, 9.5375 in (IV.1) actually estimates the

sum of the four coeÆcients for Tri, hwtr*F , hrefrig*Twi, and the �ve factor interaction.

The same idea follows for 6.3125. Our conclusion that the true e�ects are Tri and Twi,

as opposed to any of their aliased interactions, is based on the fact that all other main

e�ects are highly insigni�cant. It is often the case that if interactions are truly signi�-

cant, the factors that make them up will also show some level of statistical signi�cance

as main e�ects. We make the same assumption with the interaction hrefrig*F , which

can be shown as statistically insigni�cant.

In summary, while Lee and Jones have used an appropriate method for performing

a sensitivity analysis, the conclusions drawn cannot be attributed to the statistical

experiment used. Their chosen design proved to be the correct one for their problem,

with no further experimentation required. However, it has been shown above that

Lee and Jones overestimated the number and signi�cance of e�ects. Had the authors

anticipated the importance of several interactions, the 16-run resolution V design, which

permits estimation of all main e�ects and two-factor interactions, would have been useful

to avoid having to untangle chains of aliased e�ects [139].

128



Table 11: Design matrix for main e�ects and interactions noted as signi�cant in [125] and
reported responses. Note that the levels of the interaction terms are found by taking the
product of the factors from which they are composed.

A B C D E BC BD BE ABC % error Qdesuper
- - - + - + - + - 21.5
+ - - - + + + - + -10.1
- + - + + - + + + 8.7
+ + - - - - - - - 2.4
- - + - + - + - + -10.3
+ - + + - - - + - 21.5
- + + - - + - - - 2.4
+ + + + + + + + + 9.0

Table 12: Alias structure for Lee and Jones' fractional factorial. Main e�ects and interac-
tions found to be signi�cant in [125] are in bold.

A = CD = BCE = ABDE
B = DE = ACE = ABCD
C = AD = ABE = BCDE
D = BE = AC = ABCDE
E = BD = ABC = ACDE
BC = AE = CDE = ABD
AB = CE = ADE = BCD
Int = ACD = BDE = ABCE
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Iteroparous Reproduction
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Dynamics
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1 Abstract

Asymptotic relationships between a class of continuous partial di�erential equation pop-

ulation models and a class of discrete matrix equations are derived for iteroparous pop-

ulations. First, the governing equations are presented for the dynamics of an individual

with juvenile and adult life stages. The organisms reproduce after maturation, as deter-

mined by the juvenile period, and at speci�c equidistant ages, which are determined by

the iteroparous reproductive period. A discrete population matrix model is constructed

that utilizes the reproductive information and a density-dependent mortality function.

Mortality in the period between two reproductive events is assumed to be a continuous

process where the death rate for the adults is a function of the number of adults and

environmental conditions. The asymptotic dynamic behaviour of the discrete popula-

tion model is related to the steady-state solution of the continuous-time formulation.

Conclusions include that there can be lack of convergence to the steady-state age dis-

tribution in discrete event reproduction models. The iteroparous vital ratio (the ratio

between the maximal age and the reproductive period) is fundamental to determining

this convergence. When the vital ratio is rational, an equivalent discrete-time model for

the population can be derived whose asymptotic dynamics are periodic and when there

are a �nite number of founder cohorts, the number of cohorts remains �nite. When the

ratio is an irrational number, e�ectively there is convergence to the steady-state age

distribution. With a �nite number of founder cohorts, the number of cohorts becomes

countably in�nite. The matrix model is useful to clarify numerical results for population
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models with continuous densities as well as delta measure age distribution. The appli-

cability in ecotoxicology of the population matrix model formulation for iteroparous

populations is discussed.1

2 Introduction

In the derivation of structured population dynamic models, a natural and advantageous

starting point is the individual level, where physiological processes such as feeding,

growth, survival and reproduction are integrated [19]. The aggregate of individuals

coupled with representations for the interaction of the individuals with the environment

(for example, through food availability, immigration and emigration) form the basis

for structured population models. The foundation for the physiologically structured

modelling approach is often the McKendrick-von Foerster partial di�erential equation

where a single set of parameters describes the physiological characteristics and the age

describes the state of the individuals. The focus here is on the asymptotic dynamics of

populations where reproduction occurs as discrete events while death occurs continu-

ously.

Individuals are assumed generally to have three stages, the egg (no feeding or re-

production), the juvenile (feeding but no reproduction) and an adult (feeding and re-

production) stage; however, in this study the egg stage will be dealt with implicitly.

Reproduction is assessed in the individual model at discrete ages as proposed by Hal-

1In press with Bulletin of Mathematical Biology as \Iteroparous reproduction strategies and popula-
tion dynamics" by B.W. Kooi, T.G. Hallam, F.D.L. Kelpin, C.M. Krohn, and S.A.L.M. Kooijman.
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lam et al. (1990) and is assumed to occur multiple times. All individuals are born with

a species speci�c biovolume and are clones of the parent. In the �xed period between

consecutive reproductive events, mortality (also due to harvesting or emigration) is a

continuous process. Natural death occurs when an adult reaches the species speci�c

maximum age immediately after their last reproductive event.

Funasaki (1997) performed a simulation study with parameter values realistic for the

waterea Daphnia magna. The McKendrick-von Foerster partial di�erential equation

was solved using standard method of characteristics integration techniques with a �xed

numerical time-step. The initial population was taken to be one cohort. Depending

on the time-step sometimes regular asymptotic dynamics occurred. These simulation

results were analysed as time-series where the sampling interval is the numerical time-

step. Two methods were considered, namely the Frequency Analysis method by Jenkins

and Watts (1968) and the Phase Portrait Reconstruction method developed in [20, 23].

In the frequency analysis method the power spectrum of the time-series was calcu-

lated. For some parameter settings, the power spectra showed a dominant frequency

corresponding to the length of time between two birth events in the population.

In the phase portrait reconstruction method the basic idea is that lagging one-

dimensional time-series data from a dynamical system with itself an appropriate number

of times results in the reconstruction of the higher dimensional phase portrait of that

system. Total population size time-series data was lagged with itself by the lag equal

to the computational time-step and another lag to produce a phase portrait in three
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dimensions. These three dimensional plots showed a scatter plot at some times and,

in other cases, a periodic attractor. The computational time-step played an important

role in determining the attractor.

In order to clarify this asymptotic behaviour we investigate a discrete-time nonlin-

ear nonnegative Leslie-matrix equation [17]. Because reproduction occurs as discrete

events, there is a discrete-time formalism equivalent to the continuous representation,

see [2] (pp. 11) and [3]. Liu and Cohen (1987) obtained a density-dependent matrix by

discretizing the continuous time McKendrick-von Foerster model.

Calow et al. (1997) deal with risk assessment on the basis of simpli�ed two-stage

life-history model where the individual, if it survives, can potentially breed forever.

They develop an approach where they use that model to make explicit and ecologically

relevant links between test results at the individual and their implications for population

dynamics. The survivorship and the duration of the stages are estimated parameters

from individual organism tests. The Euler-Lotka equation gives the impact on the

population growth rate, where no density-dependent e�ects are taken into account.

We employ a technique proposed by Kooi and Boer (1995) who study the dynamics

of a worm Nais elinguis population consisting of organisms which propagate by binary

�ssion. This population matrix model formulation di�ers from those proposed in the

literature by the choice of the time step and the survivalships in the two stages are de-

rived from continuous time McKendrick-von Foerster model. The exact correspondence

between the individual-based population model and the matrix model is possible be-
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cause of the individual reproductive schedule of iteroparous species where reproduction

is pulsed and synchronised.

The paper is organized as follows. An age-dependent density formulation for the

dynamics of the physiologically structured population is presented in Section 3.1. In this

age-structured formulation, the mathematical model consists of two partial di�erential

equations for the density functions associated with the individual state variables for the

two stages: the juvenile and adult stage. The formulation for reproduction provides

the boundary condition for the density functions. In Section 3.2, the steady-state age-

distribution of the population is derived.

In Section 4, a set of naturally induced age classes, called cohorts, is constructed

with the number of individuals in the classes taken as the state variables of the discrete-

time model. With these cohorts, the dynamical behavior of the population depends on

the ratio between the juvenile period and the reproductive period of the individuals.

When this ratio is a rational number, the total biomass of the population can be cyclic

when the initial distribution di�ers from the steady-state density distribution. In this

situation, periodic solutions have period equal to the reproductive period divided by the

number of cohorts in that period. Furthermore, the number of cohorts with descendants

from one founder cohort remains �nite.

This natural discrete-time model is compared with the continuous-time model in

Section 5. If the ratio is irrational then the dimension of the population projection

matrix becomes in�nite and the length of the age classes converges to zero, yielding
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convergence to the steady-state continuous age density distribution. In Section 6 we

discuss the applicability of the matrix model formulation in ecotoxicology and risk

assessment analysis.

3 The Continuous-time Model Formulation

The physiologically structured population model is formulated with a continuous density

function describing the number of individuals as it depends on both age and time. The

dynamic behavior is described by hyperbolic partial di�erential equations.

3.1 Structured Population Model

In this section we formulate a model to represent a rudimentary life history of an

iteroparous species such as Daphnia. The life history consists of two stages: the egg and

the juvenile stages form the pre-adult stage; the second is the adult stage. The notation

used is given in Table 1. Let m(t; a) denote the age-dependent density as a function of

time t and age a.

At age aJ , the individual deposits freshly laid eggs into the brood-pouch for the

�rst time. (Thus, formation of eggs started already at aJ � aA). These eggs hatch

at age aJ + aA and are released in the environment when the mother molts for the

second time. The adults molt in a series of instars with a �xed intermolt period. They

reproduce by laying eggs in clutches with the development time for the eggs equal to the

intermolt period, aA. Thus, o�spring are produced at distinct ages from initiation of
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adulthood, at a = aJ , namely at the ages aJ + saA, s = 1; � � � ; q where q is the number

of reproductive events which is assumed to be an integer greater than 1.

With each reproductive event, a �xed number of o�spring, the brood-size r, is pro-

duced. The last reproductive event occurs at the moment the individual attains maxi-

mum age aM , thus aM = aJ + q aA. We assume a density-independent mortality rate,

�J , for the juvenile individuals and density-dependent mortality rate for the adults,

�A(NA), where NA is the number of adult individuals in the population per unit of

volume NA(t) =
R aM
aJ

m(t; a) da. The equations for the density function m(t; a) are

@m

@t
+
@m

@a
= ��Jm ; 0 � a < aJ ; (1a)

@m

@t
+
@m

@a
= ��A(NA)m(t; a) ; aJ � a < aM ; (1b)

m(t; 0) = r

qX
s=1

Z aM

aJ

Æ
�
a� (aJ + s aA)

�
m(t; a) da = r

qX
s=1

m(t; aJ + s aA) ; (1c)

where Æ is the Dirac Æ-function. The boundary value for the density function m(t; 0)

is the population birth rate. Natural death is assessed in the model by the maximum

age aM . Continuity conditions for the density function m(t; a) with the transition from

juvenile to adult at aJ are imposed.

3.2 Steady-state Age Distribution

We assume a constant environment and denote by a superscripted asterisk, �, a steady-

state value. An expression for the number of adults in steady-state isN�
A =

R aM
aJ

m�(a) da,

where m�(a) is the steady state age distribution. N�
A is derived using the notion of
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the net reproductive value, that is the average reproductive output by an individual

throughout its entire life span, R0, of the population. Denote the constant death rate

for the adults by ��A = �A(N�
A). The survival probability for each individual can be

characterized by the survival function S(a), de�ned as the probability that an individual

survives and reaches age a [4]. The survival function is given by

dS

da
=

8>>>>>><
>>>>>>:

��JS(a) ; 0 � a < aJ ;

���AS(a) ; aJ � a < aM ;

�Æ(a� aM )S(aM ) ; a = aM ;

(2)

where S(0) = 1. The total number of o�spring produced by each individual equals

Z aM

aJ

expf���A(a� aJ)g
qX
s=1

rÆ
�
a� (aJ + s aA)

�
da =

qX
s=1

r expf�s ��AaAg : (3)

This number of o�spring yields a number of new adults given by

R0(�
�
A) = expf��JaJg

qX
s=1

r expf�s ��AaAg = r expf��JaJg1� expf�q��AaAg
expf��AaAg � 1

: (4)

Necessary for steady-state is R0 = 1, that is, each individual just replaces itself. R0 is a

monotonically decreasing function of ��A. For �A = 0 we have R0(0) = rq expf��JaJg.

We assume that rq > expf��JaJg and this implies R0(0) > 1. For large values of the

mortality rate, �A, this expression gives lim��A!1R0 = 0. Hence, there is one real root,

��A, of the condition R0 = 1 in (4).
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For this steady-state we obtain

r expf��JaJg
�
1� expf�q��AaAg

�
= expf��AaAg � 1 : (5)

This equation �xes �rst the steady-state mortality rate of the adults, ��A, and subse-

quently the total number of adults in steady-state, N�
A. We assume that the function

�A(NA) has an inverse.

The steady-state age distribution m�(a) for the juvenile individuals 0 � a � aJ , is

given by

m�(a) = m�(0) expf��Jag ; (6)

and for the adults, where a satis�es aJ � a < aM , it is described by

m�(a) = m�(0) exp
���JaJ � ��A(a� aJ)

	
: (7)

The last equation of (2) implies that m�(a) = 0 for a � aM . The proportionality

constant m�(0) is explicitly given by

m�(0) =
r��AN

�
A

expf��AaAg � 1
; (8)

where ��A is given by (5) and thereafter N�
A by ��A = �A(N�

A). Substitution of (8)

in (6) and (7) and subsequently the obtained result in (1c) when (5) is used, shows
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that this distribution m�(a) is indeed the steady-state age distribution. The asymptotic

distribution for the density need not converge to the derived age distribution m�(a). To

develop this important issue, we now derive a discrete-time formalism equivalent to the

continuous model.

4 The Discrete-time Model Formulation

We demonstrate that, with a single founder cohort, the dynamics of the continuous

model population can be described by a discrete-time nonlinear Leslie-matrix equation.

This is a consequence of the fact that the population density may also be described by a

sum of delta functions on the space of individual state variable (age) where the dynamic

behavior is described by ordinary di�erential equations.

We de�ne a set of natural age classes for the population as follows. Suppose that

aA = (l=k) aM for some k; l = 1; � � � ;1 where the vital ratio k=l is in lowest terms

and aA < aJ . The age interval [0; aM ] is divided into k subintervals each representing

an age class. Each reproductive period aA is divided into l subintervals such that the

age at maturation as well as all ages where reproductive events take place, occur at

transitions from one class to an adjacent class. When the juvenile period is a multiple

of the reproductive period we have l = 1. The adults are in classes determined by

intervals k� ql+ 1; � � � ; k. Now we aggregate the individuals into the classes introduced
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above. The discrete time-step length will be taken equal to

T = aM=k = aA=l ; (9)

the duration of the age-classes, and, without loss of generality, time is zero at an instant

of reproduction. The number of individuals at time iT in class j with age (j � 1)T <

a � jT is denoted as nij = nj(iT ) and is given by

nij =

Z jT

(j�1)T
m(iT; a) da ; i = 1; � � � ;1 ; j = 1; � � � ; k : (10)

With a single founder cohort all individuals are lumped at the left end point of the age

interval associated with the cohort. The number of adults at time iT , denoted by N i
A,

equals N i
A =

Pk
j=k�ql+1 n

i
j.

The life cycle graph is shown in Figure 1 for l = 2 and k = 11. At age a = aJ = 10 the

individual deposits eggs into the brood pouch. These eggs hatch at age a = aJ+aA = 14.

This shows that the survival probability in this age class equals that of the adults, pA.

Thus, the fertility at that instant, and at the equidistant ages aJ + saA, s = 1; � � � ; q

equals rpA.

Let n 2 Rk denote the vector with elements given in (10). The autonomous matrix

equation for the k � k population projection matrix, P(ni�1), reads ni = P(ni�1)ni�1
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or

j  aJ ! j j  aA ! j � � � j  aA ! j

j k � ql j j l j � � � j l j

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ni1

...

...

nik�ql+1

...

nik�ql+l+1

...

...

...

nik

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 � � � � � � 0 � � � rpi�1A � � � 0 � � � rpi�1A

pJ 0 � � � � � � � � � � � � � � � � � � 0 0

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . . pJ

. . .
. . .

. . .
. . .
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. . .

...
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. . .

. . . pi�1A

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...
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. . .

. . .
. . .

. . .
. . .
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. . .

. . .
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. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 � � � � � � � � � � � � � � � � � � 0 pi�1A 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ni�11

...

...

ni�1k�ql+1

...

ni�1k�ql+l+1

...

...

...

ni�1k

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

(11)

The fraction of the individuals expected to survive and move to the next class after the
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time step T di�ers for the juvenile and adult classes

pJ = exp
���JT	 ; (12)

pi�1A = lim
t"iT

NA(t)

NA((i� 1)T )
= lim

t"iT

NA(t)

N i�1
A

; (13)

where

dNA

dt
= ��A(NA)NA ; (i� 1)T � t < iT : (14)

We used the fact that (by choice of the time step) no adult reaches the maximum age

aM and no juvenile individual matures within each projection interval of length T , and

that the mortality rate is age-independent.

Reproduction of r > 0 o�spring occurs in the classes k� (s� 1)l, with s = 1; � � � ; q.

So, there are q nonzero elements in the �rst row of the k�k matrix at positions (1; k�sl),

s = 0; � � � ; q � 1 and the fertility is rpA. Because the survival probability pA depends

on the total number of adults, the matrix equation (11) is nonlinear.

4.1 Linear Model

Suppose that the mortality rate of the adults �A is independent of NA. Then, equa-

tion (11) is a linear autonomous nonnegative matrix with constant pi�1A = pA where

pA = exp
���AT	 : (15)
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The resulting nonnegative population matrix will be denoted by P. The characteris-

tic equation, det(�I � P) = 0, often called the Euler-Lotka equation for the matrix

equation (11), is

r exp
�� (�J � �A)aJ

	 q�1X
s=0

��(k�sl) exp
�� (k � sl)�AT

	
= rpk�qlJ

qX
s=1

��(k�(q�s)l)pslA = 1 ;

(16)

where � is a characteristic value (eigenvalue) of P. The column eigenvector equals

n =

0
BBBBBBBBBBBBBBBBBBBBBBB@

�k�1

�k�2pJ

...

�ql�1pk�qlJ

�ql�2pk�qlJ pA

...

pk�qlJ pql�1A

1
CCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBB@

�k�1

�k�2 expf��JTg
...

�ql�1 expf�(k � ql)�JTg

�ql�2 exp
�� (�J � �A)aJ � (k � ql + 1)�AT

	
...

exp
�� (�J � �A)aJ � (k � 1)�AT

	

1
CCCCCCCCCCCCCCCCCCCCCCCA

: (17)

When q = 1, semelparous species [12] are represented and individuals die imme-

diately after they reproduce. We assume in the sequel that q > 1. The case q = 2 is

considered in Kooi and Boer (1995) who develop a discrete-time model for species which

proliferate by binary �ssion into two unequal sized new-borns.

The right top element of the matrix is rpA > 0 since post-reproductive classes are

excluded, and this implies that the population matrix is irreducible. The life cycle
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graph, Figure 1, is strongly connected as there is a path in the graph from every node

to every other node [2] (pp. 58).

The population matrix is also primitive. The greatest common divisor of the integers

(k � (k � l); (k � l)� (k � 2l); � � � ; (k � (q � 1)l)� (k � ql); k � ql) = (l; l; � � � ; l; k � ql)

equals 1 and therefore the matrix is primitive, using the Euler-Lotka equation (16),

the de�nition of l and k by aM=k = T and [7] (Vol. 2). (It should be mentioned that

in [3] the last term k � ql is missing.) Primitiveness can also be derived from the life

cycle graph. For example in Figure 1, the lengths of its loops in the life cycle graph

are (k; k � l; � � � ; k � (q � 1)l); the greatest common divisor of these lengths is 1 and,

therefore, the population matrix P where pi�1A = pA given in (15) is primitive [2].

Thus, the nonnegative population matrixP is irreducible and primitive and therefore

the Perron-Frobenius theorem applies [2]. Hence, there is a dominant real eigenvalue

denoted by �� > 0 and there is convergence to the strictly positive eigenvector (17)

associated with this dominant positive real eigenvalue whether the projection matrix is

diagonalizable or nondiagonalizable [3].

Steady-state

When the dominant eigenvalue is equal to one, �� = 1, with aJ = (k=l � q)aA and

aA = lT , the characteristic equation (16) is the condition R0 = 1 in equation (4) for

the continuous-time formalism. Consequently a real �A = ��A exists and is again given
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by (5). The Euler-Lotka equation (16) can be rewritten with � = 1

R0(�A) = r exp
�� �JaJ	 qX

s=1

exp
��slT�A	 = rpk�qlJ

qX
s=1

pslA : (18)

The column eigenvector (17) associated with the dominant eigenvalue �� = 1 is just

the survival function for a single individual

n� =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1

expf��JTg
...

expf��JaJg

expf��JaJ � ��ATg
...

expf��JaJ � (ql � 1)��ATg

1
CCCCCCCCCCCCCCCCCCCCCCCA

: (19)

This vector is proportional to the continuous-time age distributions (6) and (7) where

the distinct ages a = jT , j = 0; � � � ; k � 1 are substituted.

Depending on whether the mortality rate of individuals is greater, smaller or equal

to ��A, the population increases in�nitely (R0 > 1), goes to extinction (R0 < 1) or

remains constant (R0 = 1). There is, however, always convergence of the discrete-time

distribution to the eigenvector (19) when there is a single founder cohort. With �A = ��A

(R0 = 1) the discrete-time steady-state is neutral stable.
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Cyclic Continuous-time Behaviour

Now we assume that the discrete-time distribution converges to the eigenvector (19),

the discrete-time steady-state distribution, and derive the time-dependency between

two reproductive events. Let � 2 [0; T ) denote the time since a reproductive event. For

� = 0, the total number of adults in the discrete-time model is given by NA(0) = N�
A

(recall that for the linear case this number is not �xed, but depends on the initial

number). Since there is no reproduction within each time interval, the time-variation

of the number of adults in the time interval � 2 [0; T ) is given by the ode

dNA

d�
= ���ANA ; (20)

with initial condition for � = 0, NA(0) = N�
A =

Pk
j=k�ql+1 n

�
J . Between two reproduc-

tive events for the discrete-time steady-state, the solution of this ode reads

NA(�) = N�
A expf���A�g : (21)

Hence, the continuous-time solution for the total number of adults, compatible with the

discrete-time steady-state, is periodic with period equal to T .

4.2 Nonlinear Model

In this section we analyse the local stability of the steady-state of the nonlinear pro-

jection matrix for the density-dependent population. We follow the technique proposed
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in [2, 21, 22].

For purposes of analysis, the per capita mortality rate, �A(NA), is assumed to be

�A(NA) = ��A + �A(1� NA

NA

) ; (22)

where ��A is given by (5), �A is a constant, positive or negative such that �A = 0 is the

linear case. The parameter NA is determined by environmental conditions.

For a �xed value of �A, there is a one-to-one correspondence between the mortality

rate and the number of adults. Since the mortality rate is age-independent, the time-

dependency of the total number of adults, NA(t), in each time interval (i�1)T � t < iT

is described by the ordinary di�erential equation

dNA

dt
= ���ANA � �A(1� NA

NA

)NA ; (23)

with initial condition for t = (i� 1)T , NA((i� 1)T ) = N i�1
A .

Equation (23) is the logistic equation

dNA

dt
= �(1� NA

K
)NA ; (24)

however, the growth rate can be negative in our formulation, namely � = �(��A + �A).

The carrying capacity is now interpreted as the asymptotic value for NA(t) when t!1.
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If there is no reproduction, then

K = lim
t!1

NA(t) =
(��A + �A)NA

�A
: (25)

In the linear case, where �A = 0, that the asymptotic value is zero follows from solving

(23).

We consider again the one founder cohort case. Because there is no reproduction

within each time interval, the number of adults in the time interval t 2 [(i� 1)T; iT ) is

obtained by integration of the equation (23) and equals

NA(t) =

8>><
>>:

(��A+�A) expf�(�
�
A+�A)(t�(i�1)T )gN

i�1
A

��A+�A+�A

�
expf�(��A+�A)(t�(i�1)T )g�1

�
N i�1
A =NA

; �A 6= ���A ;

N i�1
A

1+��A(t�(i�1)T )N
i�1
A =NA

; �A = ���A :
(26)

Thus the survival probability pi�1A = limt!iT NA(t)=N i�1
A is given by

pi�1A (N i�1
A ) =

8>><
>>:

(��A+�A) expf�(�
�
A+�A)Tg

��A+�A+�A

�
expf�(��A+�A)Tg�1

�
N i�1
A =NA

; �A 6= ���A ;

1
1+��ATN

i�1
A =NA

; �A = ���A :
(27)

Hence, the density-dependent function is of the compensatory or Beverton-Holt type,

see [21], [2] (pp. 232). For a �xed value of �A, the survival probability is a function of

NA and decreases monotonically toward zero from a maximum at NA = 0.
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Extinction Steady-state

In the extinction steady-state the number of organisms is zero. This trivial steady-state

is denoted by e . In this steady-state, the Jacobian equals the population projection

matrix, called the inherent projection matrix, see (1a). At the extinction steady state,

the density e�ects are unimportant and therefore the population projection matrix

governs the dynamics at low population levels, see also [3]. The mortality rate is given

by

e�A = ��A + �A ; (28)

and the survival probability epA = limt!iT NA(t)=N i�1
A is given by

epA(�A) = expf�(��A + �A)Tg ; �A 6= ���A : (29)

Because the function R0(�A) de�ned in (18) is monotonically decreasing and R0 = 1 for

�A = 0, we conclude that for �A > 0, we have R0 < 1 and the extinction steady-state

is stable. For �A < 0 we have R0 > 1 which implies instability and invasibility because

the number of individuals increases when rare. When �A < ���A, the mortality rate is

negative and loses its biological interpretation. Instability of the extinction steady-state

for this case is immediate.
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Positive Steady-state

We denote by b the nontrivial, positive steady-state. The reproductive output by an

average individual throughout its entire lifespan, with density-dependent mortality as

in (22), is

R0(bpA) = rpk�qlJ

qX
s=1

bp lsA = r expf��JaJgbp lA 1� bp lqA
1� bp lA ; (30)

where R0 = 1 gives the steady-state. In the previous section we showed that for rq >

expf��JaJg, ��A > 0 exists. In a similar way we show that for rq > expf��JaJg, 0 <

bpA < 1 exists and is unique. As a result, the survival probability in the positive steady-

state equals the survival probability for the linear steady-state (bpA = expf���ATg) and,

consequently, it does not depend on �A.

By substitution in the population projection matrix equation (11), it can be shown

that the discrete-time positive steady-state distribution is proportional to

bn =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1

expf��JTg
...

expf��JaJg

expf��JaJg bpA
...

expf��JaJg bp ql�1A

1
CCCCCCCCCCCCCCCCCCCCCCCA

; (31)
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where bpA = pA( bNA). The proportionality constant is such that bNA =
Pk

j=k�ql+1 bnJ .

This property is a result of the fact that the density-dependence a�ects the fertilities

and survival probabilities for the adults equally, since pi�1A given in (27) is equal for all

adult age-classes. This positive steady-state distribution is again the survival probability

function for a single individual.

Thus, the discrete-time positive steady-state distribution bn in (31) equals n� in (19).

Substitution of bpA in (27) gives an explicit expression for bNA

bNA =

8>><
>>:

NA
(��A+�A)(expf�(�

�
A+�A)Tg�bpA)

bpA�A
�
expf�(��A+�A)Tg�1

� ; �A 6= ���A ;

NA
1�bpAbpA��AT ; �A = ���A :

(32)

The stability properties of this positive steady-state are determined by the eigenval-

ues of the linear approximation matrix

Pjbn +
kX

j=k�ql+1

@P

@nJ

��bnHJ ; (33)

where HJ has bn in column j and zeros elsewhere. The partial derivative @P
@nJ

is only

nonzero for the elements of Pi�1 equal or proportional to pi�1A ; see (11). The partial

derivative of pi�1A (27), with respect to each element of the population vector evaluated

in steady-state given by (31), equals zero for i > 0; j = 1; � � � ; k � ql. For �A 6= ���A
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and i > 0; j = k � ql + 1; � � � ; k we have

@pi�1A

@nj

��bn = �(��A + �A) expf�(��A + �A)Tg�A(expf�(��A + �A)Tg � 1)

NA

�
��A + �A + �A(expf�(��A + �A)Tg � 1) bNA=NA

�2 : (34)

A similar expression holds for �A = ���A. When the magnitude of the eigenvalues of

the resulting approximation matrix is less than 1, the steady-state is stable.

Bifurcation Analysis

Bifurcation analysis is used to study the stability of the trivial and non-trivial steady-

states of the nonlinear model. Figure 2 shows the one-dimensional bifurcation diagram

with the bifurcation parameter �A. The steady-state ratio of the number of adults

bNA=NA is depicted as a function of the bifurcation parameter �A calculated with (32)

where the parameter values are listed in Table 1.

For �A = 0, the positive steady state bNA depends on the initial value NA(0) and

is neutral stable. For �A < 0, the positive steady-state bn 2 R+
k is stable and the

extinction steady-state solution en = 0 is unstable. For �A > 0, the positive steady-state

is unstable and the extinction steady-state solution is stable. Equation (32) implies that

bNA > NA, and therefore, the mortality rate �A becomes negative for large values of �A.

This yields that the positive steady-state is unstable. Computer simulations suggest

that the population goes extinct starting with positive values n(0) 2 R+k.

Generally, the asymptotic rate of convergence is the largest magnitude of the eigen-

values of the Jacobian evaluated in the steady-state. In Figure 3, these eigenvalues are
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shown in the complex plane for two values: �A = 0 and �A = �4. For �A = 0, we have

the linear case and the Jacobian equals the population projection matrix. The domi-

nant eigenvalue �� = 1 and all the other eigenvalues lie inside the unit circle. There is

no convergence to the steady-state in that the number of adults does not converge and

the steady-state is neutrally stable. However, the distribution converges to the steady-

state distribution and the rate of convergence is the ratio of magnitudes of the second

largest absolute magnitude and the largest magnitude, �� = 1, of the eigenvalues of the

population projection matrix [2].

The calculated values for �A = �4 show that the real eigenvalue is almost zero but

the complex conjugate pairs do not di�er much from the linear case. This shows that

the rate of convergence is fast only starting from a perturbation along the eigenvector

belonging to the real eigenvalue, but from other perturbations of the steady-state, the

rate of convergence is low.

Cyclic Continuous-time Behaviour

Similar to the linear model case, the asymptotic continuous-time solution for the number

of adults NA(t) is periodic with period T . Figure 4 shows the periodic behaviour for

�A = 0 (the linear case) and �A = �4 (the nonlinear case) with the parameter values

listed in Table 1. In the discrete-time steady-state situation, during the projection

interval, T , the number of adults starts at bNA and diminishes to bpA bNA at the end of the

period. It is then increased step-wise to bNA again because of the pulsed reproduction,

indicating the periodic solution.
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In the nonlinear case, the vector (31) is not proportional to the continuous-time

age distributions m�(a) (6) and (7) where the distinct ages jT , j = 0; � � � ; k � 1 are

substituted as was the case in the linear model. This is a result of the fact that the

density-dependent mortality rate is periodic as is the solution. With the continuous-time

steady-state, the number of adults is constant. This forces equivalence for the linear case

where the survival probability function is an exponential decay function. Consequently,

within the time intervals, the total number of adults also decays exponentially. For

the nonlinear density-dependent case, the survival function is no longer an exponential

decay function, but is given in (26) and shown in Figure 4.

Finally, we consider the following formulation of the mortality rate

�A(NA) = ��A + j�Aj(1 � NA

NA

) : (35)

This density-dependent mortality rate is similar to the one used in [6]. The one-

dimensional bifurcation diagram for �A > 0 is the mirror image of that for �A < 0

since (32) implies bNA > NA for the positive steady-state. Hence, the positive steady-

state is stable, except for �A = 0, where it is neutrally stable. The limiting value for

�A = 0 with bpA = expf���ATg using (32) is

bNA = NA
��AT

1� expf���ATg
: (36)
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5 Comparison of the Natural Discrete-time and the

Continuous-time Models

Generally, the population density distribution can be taken to be any distribution, in-

cluding the steady-state continuous-time age distribution, a uniform distribution within

each age class, and the measure distribution with a �nite number of cohorts. In the

latter case, the dynamics of the whole system is described by a set of ordinary di�eren-

tial equations; namely, for each cohort, one di�erential equation is formulated with the

number of individuals as a dependent variable.

The results obtained for the one founder cohort case in the previous section for a

single founder cohort can be elucidated using the notion of the torus T2. The length of

the centre-line of the torus in the long direction is aM and along the torus in the short

direction is aA. Suppose aA = 4, aJ = 10, and the number of reproductive events is

q = 3; thus, aM = aJ + 3aA = 22. Then aA=aM = 2=11, thus k = 11 and l = 2. After

l = 2 revolutions along the centre-line of the torus in the long direction accompanied

by k = 11 revolutions along the torus in the short direction, the orbit continues along

the path travelled the time 2aM = 11aA ago, showing periodicity. In Figure 5, the

trajectory of an individual is followed for this simple case.

In general, when the ratio of the reproductive period, aA, and the juvenile period,

aJ , is rational, aA=aJ 2 Q , after l revolutions along the centre-line of the torus in the

long direction accompanied by k revolutions along the torus in the short direction, the

orbit continues along the path travelled the time laM = kaA ago. This shows that when
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all individuals have one common ancestor, only a �nite number of cohorts exist, namely

k. O�spring from di�erent generations of the founder cohort are produced at the same

time and combine into a single cohort leading to the �nite number of cohorts.

If there are a �nite number of founder cohorts, then the total number of individuals

is obtained by superposition of the solutions for each founder cohort, all are of the same

period, but are out of phase. For l = 2 and k = 12, T = aA=2 = 2, the life cycle graph

is shown in Figure 6. There are two founder cohorts one starting with a = 0 and the

second with a = 2 at t = 0. The reproductive events occur at a = 16; 20; 24 for both

cohorts.

In Figure 7, the eigenvalues are shown in the complex plane for �A = 0 (linear case)

and the eigenvalues of the linear approximation matrix for �A = �4 (nonlinear case).

For �A = 0, the population projection matrix is cyclic with index of imprimitivity l = 2.

There is an eigenvalue which is in steady-state equal to one, �� = 1 with the eigenvector

given in (31). However, there is also an eigenvalue � = �1. All other eigenvalues are

inside the unit circle.

The eigenvector belonging to �1 equals that eigenvector belonging to 1 of the matrix

P2. This matrix is built up with 2 uncoupled graphs, see Figure 6. After re-ordering, the

full population projection matrix is built up with 2 projection matrices on the diagonal.

Both have the same structure as the projection matrix with l = 1 and k = 6, where

T = aA = 4 and the same Euler-Lotka equation (16) holds as for the projection matrix P

itself. This can be explained as follows. Let the time between two observations be equal
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to the period between two reproductive events aA. The life cycle graph separates now

into two independent sub-graphs. These are the life cycle graphs for the two founder

cohorts with ages at t = 0 equal to a = 0 and a = 2 while aging and the reproduction

strategy is the same. The survival probabilities and fertilities of the two corresponding

matrices are indicated in Figure 6. As a consequence, steady-state occurs under the same

conditions. Hence, the eigenvector evaluated at this steady-state belonging to eigenvalue

�� = �1 is the vector formed by merging the eigenvectors belonging to eigenvalue 1 of

these two matrices evaluated in this steady state, however, with di�erent signs

n��=�1 =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1

� expf��JTg
...

expf��JaJg

� expf��JaJ � ��ATg
...

� expf��JaJ � (ql � 1)��ATg

1
CCCCCCCCCCCCCCCCCCCCCCCA

: (37)

In general, the index of imprimitivity is l and there are l�1 complex eigenvalues with

magnitude 1, whose values are given by expfu=l 2�ig, u = 1; 2; � � � ; l�1, Caswell (1989)

indicating that there is no convergence.

With multiple founder cohorts there is no direct interaction between descendants

of di�erent founder cohorts. As a result, there is no convergence to the discrete-time

158



age distribution (31), when aA=aJ 2 Q . The cyclic behaviour depends on the initial

conditions, that is, the positive steady-state is neutrally stable.

For the density-dependent mortality case, a similar approach is impossible because

the mortality rate depends on the number of adults which changes at every time step.

However, the life cycle graphs shown in Figure 6 remain valid. Thus, also for density-

dependent mortality case, with multiple founder cohorts there is no direct interaction

between descendants of di�erent founder cohorts. The calculated values for �A = �4,

also shown in Figure 7, reveal that one real eigenvalue of the Jacobian evaluated in the

steady-state equals �1, indicating that there is no convergence. The Jacobian given

in (33) is the sum of two matrices of which the �rst term is just the population ma-

trix itself and is therefore imprimitive. The second term gives the interaction between

descendants of di�erent founder cohorts via the density-dependent mortality rate. How-

ever, the descendants of di�erent founder cohorts are still born at di�erent times. Thus,

the individuals in one age class have one common ancestor.

With a continuous age distribution and aA=aJ 2 Q , there is no convergence within a

class, and only the distribution of the total number of individuals in the classes converges

to an asymptotic distribution. As an example, when the continuous age distribution in a

class is uniform, it is uniform after each reproductive period aA, and does not converge

to the steady-state age distribution, m�(a). The values of the uniform distribution

within the classes change and converge to values so that the total number of individuals

in the classes converge to the discrete-time age distribution values. This is a result of
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the fact that o�spring are produced at the same time by multiple adult classes which

gives a mixing among the age classes with respect to total numbers. Within the age

classes, there is no mixing, and, therefore, there is no convergence.

When the ratio is irrational so that aA=aJ 62 Q , the orbit is not periodic on the torus;

hence, the map never closes on itself. The origin is never intersected again, however, it

is an accumulation point for the set of intersections, see [8, 16]. The intersection points

are dense in the horizontal axis [0; aM ] as in the Poincare section of the torus. As time

goes to in�nity, the orbit on the torus will eventually come arbitrarily close to every

point on the toroidal surface. This gives a countable in�nite number of cohorts as time

goes to in�nity.

With aA=aJ 62 Q , the dimension of the population projection matrix is in�nite.

Therefore we consider a series ln=kn with ln; kn !1 for n!1 such that this series of

rational numbers converges to the irrational ratio. Then, the length of the age interval

of the classes converges to zero, since T = aA=l. Equations (30) and (5) yield

bpA = expf���AaA=lg � 1� ��AT ; (38)

where we retained the �rst order approximation with respect to small T . Substitution

of this result in (32) gives the following approximating expression for bNA

bNA � NA

1� ��AT
: (39)
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Therefore we e�ectively have convergence to a in�nite number of cohorts dense with

respect to the continuous-time age distribution and the number of adults is close to

NA.

6 Discussion and Conclusions

In [9], populations with both continuous (death) and discrete (reproduction) elements

are investigated as we do here. The dynamics of the population with pulsed reproduction

are formulated by a di�erence equation for one state variable, namely the population

size. The inuence of the environment is taken into account as a density-dependent

within-season mortality. This formulation is appropriate for simple ecological systems

of seasonally breeding populations with non-overlapping generations.

Huyer (1997) studies the asymptotic behavior (existence and stability) of a similar

type of model, also incorporating discrete event reproduction, where growth is again

limited by resource availability. The population consists of a �nite number of cohorts.

Here the individuals die immediately after they reproduce as do semelparous species

such as Oikopleura, salmon, eel and most cephalopods.

The work here di�ers from Gyllenberg's and Huyer's in that the population is

iteroparous, that is the individuals reproduce more than once, and die immediately

after the last reproductive event. There is a juvenile period in which there is no re-

production and there are overlapping generations. The waterea Daphnia has this type

of life history. Furthermore, we consider continuous densities as well as delta measures
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(spikes, each spike representing a cohort) for the age distributions for the population.

When the individuals do not die immediately after the last reproductive event,

introduction of a post-reproductive class a�ects only the density-dependent mortality

rate de�ned in (22) while all other parameters and the analysis of the model remain

unchanged. Notice that the analysis would be much easier when the density a�ects all

the vital rates equally [2] (pp. 243), that is, when the mortality depends on the total

number of individuals and not only the number of adults.

In the literature, see for instance [9, 14], a relationship between the period of popu-

lation cycles and the type of density-dependence is made. Here the period depends just

on two life-history parameters.

Due to the discrete reproduction events in the physiologically structured populations

studied in this paper, there is not always convergence to the steady-state continuous-

time age distribution. When the iteroparous vital ratio of the juvenile period and

reproduction period is rational, there is no convergence to the steady-state continuous-

time age distribution. In this situation, the results obtained with the discrete-time

formalisms can be used to clarify results for the continuous-time representation. With

one founder cohort, the number of cohorts remains �nite and there is convergence to

a stable discrete-time age distribution when the mortality rate is density-dependent.

Reproduction at the same moment by multiple adult age classes yields a mixing among

the age classes with respect to the total number of individuals in the classes. There

is no mixing within an age class and, therefore, there is no convergence. This implies
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periodicity for the continuous-time age distribution and number of adults. With multiple

founder cohorts, again there is no convergence to the steady-state age distribution but

there is periodicity.

When the ratio between the juvenile period and reproduction period is irrational,

e�ectively there is convergence to the steady-state continuous-time age distribution.

With a �nite number of founder cohorts, there are asymptotically a countable in�nite

number of cohorts and the length of the age classes goes to zero. For a similar case in [16]

it was shown that the convergence rate can be small. This resembles the continuous

reproduction case (often used in the literature) with complete mixing, where at each

time, all adults contribute to the formation of o�spring, giving convergence to the

steady-state age distribution.

With the continuous-time steady-state age distribution the number of adults is time-

invariant and equals the value NA. Only when aA=aJ 62 Q for the density distributions

as well as measure distributions there is e�ectively convergence to the steady-state age

distribution and the same applies.

In [5], the relationships between the various discrete- and continuous-time models

for the dynamics of physiologically structured populations are elucidated. A numerical

scheme for the solution of physiologically structured populations is derived from the

Leslie matrix model. In that formulation, no juvenile period was assumed and therefore

the time step was equal to the �xed time period between two consecutive reproduc-

tion events. In this paper there is a juvenile period and its length together with the
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reproductive period determine the projection time interval in the Leslie matrix.

To solve the age structured McKendrick-von Foerster equation (1) Funasaki (1997)

used integration along the characteristics with a �xed time step. When the reproductive

period is a multiple of the time step chosen, an equivalent Leslie matrix model formu-

lation is possible. It was found that in those cases the solution is periodic as predicted

by the discrete-time model developed here. As a result of the juvenile period, the pro-

jection interval is, however, not the time period between two consecutive reproduction

events. The period of the cyclic behaviour generally is not the generation time, but is

equal to the reproductive period divided by the number of cohorts in that period. This

agrees with the results obtained in [6] based on time-series analyses.

Often the solution of the governing equations have to be approximated using nu-

merical techniques. Roundo� errors on digital computers imply working with rational

numbers. The dimension of the population matrix will be large and hence the corre-

sponding uctuations are of the order of the roundo� error and therefore imperceptible.

More important are truncation errors generally made with the �nite discretisation of

di�erential equations whereby often \nice" equidistant grid meshes are chosen in or-

der to facilitate the study of convergence of the numerical scheme. Furthermore, due to

large experimental errors or the biological stochasticity, measured vital parameter values

are often truncated to numbers with a few signi�cant digits. As a result, this involves

lumping of individuals into �nite cohorts yielding no convergence to the steady-state

age-distribution. The presented discrete-time model can be used to clarify obtained
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numerical results.

In nature, the juvenile period as well as the reproduction period are subject to bi-

ological stochasticity, and as a consequence, so is their ratio. Then, mixing among the

age classes is expected, yielding convergence to the steady-state age distribution. There-

fore, the steady-state age distribution based on estimated values for the juvenile period,

reproduction period, number of reproductive events during lifetime and the brood size

gives a good approximation for the long-term behaviour for a population when there

are initially a large number of individuals not belonging to a small number of distinct

cohorts. The steady-state distribution, then often called \stable age distribution", as-

sumption is made with the derivation of stage-classi�ed matrix models [2] (pp. 45) used

for risk assessment analyses. Each life-history stage (juvenile, adult) is described by

the number of individuals in that stage. The elements on the diagonal of the popula-

tion projection matrix are the proportions of individuals that remain in the same stage

during a time step and the sub-diagonal elements the proportions that go to the next

stage.

In ecotoxicology, predictions from ecotoxicity tests on individual organisms are made

about the e�ects of environmental stress from both biological (predators) or anthro-

pogenic sources (chemical concentrations) on population dynamics. In many ecological

studies, see for instance [1], a negative growth rate of the population leads to extinc-

tion. This is in agreement with the result for density-independent (linear) mortality

rate where the discrete-time steady-state is neutral stable. In [10, 15] the change of the
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juvenile period and the reproduction period of the waterea Daphnia due to an envi-

ronmental stress perturbation is dealt with. The population matrix model formulation

for iteroparous species (such as Daphnia), proposed here can be used to investigate the

e�ects of the changes in these two life-history parameters on the population dynam-

ics. In a subsequent risk assessment this and other stress e�ects can be translated into

consequences for population extinction.
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Table 1: List of symbols. The symbols in the column labelled `dimension' stand for: # number

of individuals, t time, v volume of environment. We took �J = ��A where ��A is the root of (5).

The parameter values in the last but one column are for analysis purpose. More biologically

realistic values are given in the last column.

Symbol Dimension Interpretation Values Values

a t Age
aJ t Juvenile period 10 8.3
aA t Reproductive period 4 4
aM t Maximum age 22 48.3
m(t; a) # t�1 v�1 Population density
NJ # v�1 Number of juveniles per unit volume
NA # v�1 Number of adults per unit volume
q # Number of reproductive events 3 10
r # Brood size 1 11
t t Time
� { Characteristic value
�J t�1 Mortality rate for juveniles
�A t�1 Mortality rate for adults
�A t�1 Density-dependent mortality rate
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Figure 1: The life cycle graph for the population projection matrices P. In this example

aA = 4 and aJ = 10, so l = 2 and k = 11. The number of reproductive events is q = 3, thus

aM = aJ +3aA = 22. The reproductive event occur at a = 14; 18; 22. The survival probabilities

pJ , pA, and the fertilities rpA are indicated. The numbers are the age in the di�erent stages.
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Figure 2: One-dimensional bifurcation diagram with respect to the bifurcation parameter �A.

The ratio bNA=NA is plotted as function of the bifurcation parameter �A de�ned in (22). For

�A < 0 the positive steady-state is stable (solid curve) and for �A > 0 it is unstable (dashed

curve). The extinction steady-state, eNA = 0, is unstable for �A < 0 and stable for �A > 0.
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Figure 3: The eigenvalues of the linearized nonlinear system in positive steady-state for �A = 0

(circles) and �A = �4 (bullets) in the complex plane. The parameter settings are given in

Table 1. For �A = 0 the dominant eigenvalue is �� = 1. This is a bifurcation point. For

�A > 0 this dominant eigenvalue is larger than one, �� > 1 and this gives an unstable positive

steady-state. For �A < 0 all eigenvalues are inside the unit circle and there is stability. Notice

that the real eigenvalue diminishes to almost zero for �A = �4 but that the complex conjugate

pairs change little as a function of the bifurcation parameter �A.
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Figure 4: The number of adults NA(t)=NA as a function of time t for �A = 0 (dashed curve)

and �A = �4 (solid curve) for two cycles with period T = 2. The parameter settings are given in

Table 1. With no reproduction, the asymptotic value reaches zero for �A = 0 and for �A = �4

((��A + �A)NA)=�A, see (25). For the continuous-time formulation we have the time-invariant

solution NA

NA
=

N�

A

NA
= 1, see (22).
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Figure 5: Cyclic solution when the ratio of aA and aJ is rational. In this example aA = 4

and aJ = 10, so l = 2 and k = 11. The number of reproductive events is q = 3, thus aM =

aJ + 3aA = 22. The reproductive events occur at a = 14; 18; 22. When there is one common

ancestor cohort starting with a = 0 and t = 0, the graph shows that o�spring from di�erent

generations of the founder cohort is produced at the same time (circles) and they are combined

into a single cohort (solid circles) leading to a �nite number of cohorts. There can be only

k = 11 di�erent cohorts with one founder cohort.
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Figure 6: The life cycle graphs for the population projection matrix P. In this example aA = 4

and aJ = 12, but we take l = 2 and k = 12. We did not take l = 1 and k = 6 in order to have the

two founder cohort case. The number of reproductive events is q = 3, thus aM = aJ+3aA = 24.

The reproductive events occur at a = 16; 20; 24. There can be only k = 12 di�erent cohorts

with two founder cohorts, six cohorts are descendants from one founder and six cohorts are

descendants from the second founder. The two sub-graphs are disjoint, showing no mixing

between the o�spring of the two founder cohorts.
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Figure 7: The eigenvalues of the linearized nonlinear system in positive steady-state for �A = 0

(circles) and �A = �4 (solid circles) in the complex plane, as in Figure 3. The parameters are

given in Table 1 except aJ = 12 instead of aJ = 10. We took l = 2 and k = 12 and not l = 1

and k = 6 in order to have the two founder cohort case.

178



PART III

Aggregated Population Models
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1 Introduction

Another type of model which can be used to study populations is the aggregated pop-

ulation model, in which all organisms grouped into one state variable are assumed to

have the same de�ning characteristics. When studying a more complex system, i.e.,

one which contains a number of di�erent species with many interactions resulting due

to the structure of the food web, this approach may be a more viable option. The

abstracts discussed here are extracted from manuscripts which are to be submitted for

publication.

2 Application to Mesocosms

The aggregated model approach has been used to study the dynamics of a system, a ma-

rine mesocosm, which included phytoplankton, microzooplankton, macrozooplankton,

and some higher-order consumers, such as �sh, oysters, clams, and anemones [1]. The

model was �ne-tuned to reproduce the dynamics of the mesocosms as best as possible

and then manipulated to study the e�ects of various scenarios on the model system.

The abstract from [1] is included here:

An energetic-based carbon ow model was developed to simulate the eco-

logical production dynamics of 1-m3 experimental marine mesocosms. The

model is used to simulate mesocosm experiments that vary in ecological com-

plexity and to investigate the e�ects of model structural aggregation (i.e.,
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levels of ecological detail) on predicting ecosystem response to multiple stres-

sors. In its most detailed form, the model food web structure consists of 22

state variables that represent the primary producers and 17 that represent

the consumers. The model also addresses the ecological e�ects of multiple

stressors in the form of toxic metals and excessive nutrient levels. Primary

producer biomass values are modi�ed daily in relation to surface irradiance,

water temperature, dissolved inorganic phosphorus, dissolved inorganic ni-

trogen, and dissolved inorganic silica values as well as through consumption

by modeled grazers. Consumer biomass values change daily as a function of

consumption minus energetic-based losses to respiration, excretion, locomo-

tion, and predation. The complete model has been developed as a predictive

tool for estimating ecological risks as probabilities.

The �rst scenario examined was the e�ect that three toxic metals had on the system.

The following is the abstract for \Considerations of Ecological Complexity in Modeling

the Impacts of Multiple Stressors on Plankton" and was work done in collaboration

with S.M. Bartell, K.R. Campbell, J. Hurlebaus, J.G. Sanders and D.L. Breitburg.

An energetics-based carbon ow model was developed to simulate the eco-

logical impacts of arsenic (As), cadmium (Cd), and copper (Cu) on the pro-

duction dynamics of a 1-m3 experimental marine mesocosm. The sensitivity

of predicted impacts of metals was examined in relation to three structural

representations of the mesocosm food web. The most detailed model de-
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scribed the primary producers and consumers using 23 state variables. The

second model used 12 and the third model used 7 state variables to represent

the same mesocosm trophic structure. All three models were used to sim-

ulate the exposure of mesocosm populations to the combined metals. The

results of the modeling study demonstrated that the magnitude and pattern

of predicted metal impacts on plankton production depended on assump-

tions concerning basic model structure. The e�ects of model aggregation on

the predicted impacts on phytoplankton production were greater than those

for total microzooplankton. The results also suggested that more highly ag-

gregated models appear to underestimate the potential impacts of metals on

the plankton production.

Another study, \The Implications of Structural and Functional Food Web Hetero-

geneity on Modeled Marine Mesocosm Responses to Multiple Stressors" was developed

in collaboration with S.M. Bartell, D.L. Breitburg and C. Richmond. The abstract

follows.

This modeling study examines the implications of imposing di�erent degrees

of structural and functional food web heterogeneity on simulated ecological

impacts of nutrient enrichment and metal contamination in experimental

marine mesocosms. Structural heterogeneity is de�ned as the number of

populations used to represent di�erent trophic guilds in food webs that de-

scribe the mesocosm. The model begins with a detailed (i.e., 39 populations
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of producers and consumers) food web used to simulate the probable im-

pacts of multiple stressors. Successive simulations are performed with model

structures that are systematically reduced in populations per trophic guild to

provide simpler descriptions of the mesocosm food web (e.g., 7 populations).

For each level of food web simpli�cation, functional heterogeneity is de�ned

by the variances assigned to the distributions of the bioenergetics parameter

values that determine the production dynamics of each model population.

Realistic ranges of model parameter values are developed using methods of

\Monte Carlo �ltering" in calibration of the models to results of mesocosm

experiments. Combinations of model structural and functional food web het-

erogeneity are used to simulate ecological impacts and risk posed by varying

exposures to nutrients (e.g., N and P) and toxic metals (As, Cd, Cu). Monte

Carlo methods are implemented to develop distributions of impacts on the

biomass of modeled food web populations and to identify the key model

parameters that contribute to impacts and risk. The simulated impacts are

compared with results measured in corresponding mesocosm experiments.

The combined modeling and experimental results can be explored to de-

velop theoretical relationships between food web complexity and food web

variability on ecological responses to multiple stressors.

These are only two examples of the possibilities that can be explored with an aggre-

gation model.
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