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ABSTRACT 

 

 Chemical sensors have become major analytical tools for how we monitor 

and obtain information about the chemical nature of ourselves and our 

surroundings.  Two characteristics of chemical sensors that are under constant 

development and improvement are their selectivity and their sensitivity.  

Selectivity is a concern of any chemical sensor, without it the signal obtained by 

a chemical sensor cannot be related to the target species concentration with any 

confidence.  With chemical sensors the selectivity is generally created by the 

used of a chemical recognition layer such as a permeable membrane, or a thin 

chemical film.  The sensitivity of a chemical sensor is a concern, as with any 

quantitative analytical method, so that small differences in analyte concentration 

are distinguishable and trace analysis can be performed.   In this work the 

selectivity and sensitivity of two distinctly different devices used as chemical 

sensors are investigated.  The first device combines a scintillation fiber with a 

selective polymer coating to create a chemical sensor selective for 137Cs.  Both 

the selectivity and sensitivity of the scintillation fiber are improved with the 

addition of the chemical recognition layer.  The second device investigated is a 

microcantilever sensor.  Microcantilevers have been used to monitor chemicals 

present in both air and liquid environments.  However, in moving from 

measurements made in air to measurements made in liquids, a great deal of 

sensitivity is lost due to differences in the interfacial energies of the 
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microcantilevers in these two different environments.  To overcome this limitation 

surface modification of the microcantilevers was investigated to improve the 

sensitivity of these devices.  Surfaces of the microcantilevers were modified by 

several different methods, the binding of gold nanobeads to the surface, creation 

of a roughened dealloyed surface, and the physical milling and chemical etching 

of grooves into the surface of the microcantilevers, each of these surface 

modifications was shown to enhance the sensitivity of microcantilever chemical 

senors over microcantilever chemical sensors with smooth surfaces. 
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PREFACE 

 

 Chapter 1 is intended to introduce the reader to the basic concepts of 

chemical sensors.  Descriptions of the four major areas of chemical sensors, 

thermal, electrochemical, optical, and mass, are discussed. 

 Chapter 2 discusses the development of a chelating scintillation fiber for 

use in the detection of radioactive materials.  The major focus is the improvement 

of the selectivity and sensitivity of the chelating scintillation fiber over the 

traditional scintillation fiber. 

 Chapter 3 details the development of a disordered dealloyed surface 

structure for use with microcantilever sensors. 

 Chapter 4 examines further the effect of organized surface modifications 

on the sensitivity of microcantilevers. 

 Chapter 5 details some interesting other sensor work that was performed 

but did not reach a mature state, as well as provides a summary and conclusions 

to the body of work.  
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CHAPTER 1 
 

INTRODUCTION TO SENSOR TECHNOLOGIES 

 

1.1 INTRODUCTION 

 

Everyday we make measurements, from simple measurements of ambient 

temperature to measurements that identify the constituents in complex mixtures.  

These measurements allow us to understand and to control our lives and the 

world around us.  The methods we use to make these measurements are 

constantly evolving and being replaced with new methods that offer better, faster, 

cheaper, and more accurate information.  The driving force behind the evolution 

of these methods is the desire to be able to acquire and apply information in real 

time so that we may have greater control over our surroundings. 

The methods we use to acquire analytical information often involve the 

use of sensors.  A sensor as defined by the Oxford English dictionary is a device 

that detects or measures a physical property and records, indicates or otherwise 

responds to it.  Sensors can be categorized into two general categories.  The first 

category is physical sensors that measure parameters such as temperature, 

pressure, electric charge, and light intensity.  These sensors are some of the 

most advanced products of the evolution of the methods we use to acquire 

information.  Some examples of physical sensors that are in common use include 

devices for temperature monitoring (thermocouples, or thermistors), piezoelectric 
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pressure monitors, flowmeters, humidity sensors, and light density sensors 

(photodiodes, charged-couple devices, and photomultipliers).  A general 

definition of a physical sensor is a device that provides an electronic signal 

through which changes in a particular property within its immediate environment 

can be monitored[1].  Generally these sensors are nearly ideal in that they are 

sensitive, selective for the desired parameter, cheap, robust, and have 

reproducible behavior from batch to batch.   

The second category of sensors is chemical and biological sensors 

(biosensors).  It is this second category of sensors that is the subject of this 

dissertation, however most of these sensor systems contain within them physical 

sensors to convert the chemical information into an electronic or other 

analytically useful signal.  A basic definition of a chemical sensor or a biosensor 

is a device which delivers information about the chemical nature of its 

surrounding environment, that consists of both a physical sensor and a 

chemically responsive layer[2].  While a chemical sensor or biosensor may 

contain a physical sensor at its core, its character is generally determined by a 

chemically selective film, layer, or membrane at the sensing area.  The 

composition of this layer is crucial to the effectiveness of the sensor, as it 

controls the selectivity, sensitivity, lifetime, and response time of the device. 

The differentiation between chemical sensors and biosensors is generally 

based upon the type of selective layer being used.  Chemical sensors utilize 

polymer films, membranes, or low molecular weight materials as their selective 

layer, while biosensors use selective layers that consist of biomolecules, such as 
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enzymes, antibodies, receptors, or whole cells as part of the sensing process.  

Since all biomolecules can be considered chemicals in their own right, 

biosensors are essentially a subgroup of chemical sensors and from this point on 

will be referred to as such. 

Chemical sensors are the products of many measurement systems based 

on many different types of technologies.  They are based upon the methods of 

physical sensors, but also rely on chemistry, physics, electronics, and biology.  

Thus, chemical sensors represent multidisciplinary products that have emerged 

from the combined knowledge of these fields of science that are able to 

recognize specific chemical events and convert this recognition into some form of 

a useful output.  

 

1.2 HISTORICAL PERSPECTIVE OF CHEMICAL SENSORS 

 

 Chemical sensors are relatively new types of measurement devices.  Until 

the mid-1950’s, the glass pH electrode could have been thought of as the only 

portable chemical sensor reliable enough to measure a chemical parameter.  

This sensor was invented in 1922[3], and had undergone three decades of 

development and was still limited to measurements in solution or on wet surfaces 

and had to be recalibrated often.  In the 1950s other sensing technologies based 

on oxidation-reduction reactions at the surface of electrodes were developed 

which provided detection for metallic ions and some organic compounds[4-6].  

The first application of these electrochemical methods to make a true chemical 
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sensor was for the measurement of the oxygen content of physiological fluids 

and tissues[7].  For this sensor, Clark encapsulated the electrodes and 

supporting chemical components with a semipermeable membrane that allowed 

the analyte to diffuse freely within the sensor without loss of critical components.  

This idea of a membrane separating the solution from the electrode also led to 

the first biosensor, a glucose sensor developed by Clark and Lyons[8].  Ion 

selective electrodes like these were the first transducers used for many different 

chemical sensors.  Since this time the development of new transduction 

principles, such as piezoelectric devices[9], and microcantilevers[10, 11], and 

new methods of immobilizing  recognition layers has led to the rapid evolution of 

chemical sensors and biosensors.  Table 1.1 shows some of the major 

landmarks in the development of chemical and biological sensors.      

 

1.3 BASIC COMPONENTS OF CHEMICAL SENSORS 

 

Chemical sensors consist of some common basic components.  These 

components include a recognition layer, a physical transducer, and the 

electronics and or software used to collect information from the device as shown 

in Figure 1.1.  The recognition layer of a chemical sensor contains the 

components (polymeric layer, antibody, etc.) used to selectively monitor the 

chemical constituents within the environment of the sensor.  The interaction 

between the recognition layer and the analyte of interest is detected by the 

transducer and the change in the transducer that results from the chemical    
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Table 1.1 Historic landmarks in the development of chemical sensors. 

________________________________________________________________ 
Date  Event      Reference 
 
1922  First glass pH electrode   [3] 
1925  First blood pH electrode   [12] 
1954  Invention of the oxygen electrode  [7] 
  Invention of pCO2 electrode  [13] 
1962  First amperometric biosensor  [8] 
1964  Coated piezoelectric quartz sensor [9] 
1969  First potentiometric biosensor  [14] 
1975  First binding protein biosensor  [15] 
  Invention of pCO2/pO2 optode  [16] 
1979  Surface acoustic wave sensors for gas [17] 
1980  Fiber optic pH sensor or in vivo blood [18] 
  gases 
1982  Fiber optic based biosensor for glucose [19] 
1983  Fiber optical in-vivo measurements    [20] 

of interstitial fluids 
1986  First tissue-based biosensor  [21] 
1994  First microcantilever sensors  [10, 11] 
2000  First chelating scintillation fibers  [22] 
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Figure 1.1 Basic components of a chemical sensor. 
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events is expressed as a signal that may include changes in temperature, mass, 

light intensity, reflectance, voltage, or impedance.  The electronics and software 

then detect, amplify, and process this signal. 

 

1.3.1 Recognition Layers 

 As mentioned earlier the key difference between a physical sensor and a 

chemical sensor is the use of a recognition layer to provide selectivity for the 

analyte(s) of interest.  The selection of the recognition layer is a key element in 

the design of any chemical sensor.  The chemical and biochemical reagents that 

can be used as recognition layers are nearly unlimited.  The recognition layer 

should ideally be specific for the analyte of interest, but is often just selective for 

the analyte of interest over other species.  Recognition layers used in chemical 

sensors can be divided into three major subdivisions, ionic recognition, molecular 

recognition, and biological recognition.  Ionic recognition can be done through the 

use of selective membranes, as with ion selective electrodes (ISEs).  Ion 

exchanging polymers have also been used to detection ions with electrochemical 

transducers.  Molecular recognition can be done through several means, such as 

chelation and complexation with the analyte, molecular size discrimination, and 

spectroscopic methods.  Biological recognition elements include biologically 

active elements to employ selectivity such as enzymes, antibodies, nucleic acids, 

and receptors.  The distinctions between these subdivisions can sometimes blur.  

For example, coulombic forces can be involved in all three areas of recognition. 
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1.3.2 Transducers 

 There are many transduction principles that can be applied to chemical 

sensors.  The principal transduction methods can be broken down into four basic 

types; thermal, electrochemical, optical, and mass transducers[2].  Thermal 

transducers are devices that are able to convert heat changes into a usable 

electrical form, usually a resistance change.  Thermal transducers include 

devices such as the thermistor, pellistor and thermal conductivity detectors. 

Electrochemical transducers convert chemical signals developed in or at 

the surface of the recognition layer into potential, current, and conductance 

values.  Electrochemical transducers are broken down into three subdivisions 

based upon the type of signal produced.  Potentiometric transducers measure 

the potential of a cell at zero current.  Voltammetric and amperometric 

transducers apply a potential to the cell and measure the current, which is related 

to the analyte concentration.  Voltammetric measurements monitor the current 

through a potential sweep, while amperometric measurements monitor the 

current in response to a potential step.  The third type of electrochemical 

transducer is conductometric.  This method relies on the change in the 

composition of a solution after a reaction has taken place.  The change in 

solution composition is generally associated with an electrical conductance 

change of the solution, which is measured. 

Optical transducers typically consist of the many spectroscopic techniques 

developed for chemical analysis, such as absorption, fluorescence, and 
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scattering techniques.  Often optical waveguides are used to transport the light 

used for these techniques to and from the sensing area to the detector. 

Mass transducers generally operate by the use of the piezoelectric effect, 

where the frequency of an oscillating crystal shifts due to the absorption of 

material onto its surface[23].  The two most common mass transducers are the 

quartz crystal microbalance (QCM) and the surface acoustic wave (SAW) device.  

Table 1.2 shows a list of the transducer technologies describing the output of 

each and giving specific examples of developed chemical sensors. 

 

1.4 TYPES OF CHEMICAL SENSORS 

  

 Chemical sensors are generally subdivided into groups based on the type 

of transducers that they use.  The following sections will look at the fundamentals 

and examples from these four groups of sensors; thermal, electrochemical, 

optical, and mass sensors.  

 
1.4.1 Thermal Sensors 

A general property of any chemical reaction is the production or removal 

of heat from the environment.  The amount of heat produced or removed is 

related to the amount of the reactants and thus the measurement of the 

temperature change produced by a reaction can be related to the amount of a 

particular component of the reaction taking place.  This makes heat an ideal 

physical parameter to use in sensing systems.  There are three major types of  
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Table 1.2 Major sensor transducer technologies. 

 
 
 
________________________________________________________________ 
Transducer  Output    Examples 
 
Thermal 
Thermistors   Temperature   Enzyme Reactors 
 
Electrochemical 
Amperometric  Applied Current  Polymer Electrodes 
 
Potentiometric  Voltage   Enzyme Electrodes, 

Field Effect Transistors 
(FETs)  

 
Conductometric  Impedance   Conductimeters 
 
Optical 
Absorption   Light Intensity or Color UV-Vis Absorption 
 
Fluorescence Activation Fluorescence  Scintillation Fibers 
 
Mass 
Piezoelectric Crystals Frequency Shift  QCM and  SAW devices  
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thermal sensors.  The first measures the heat involved in a reaction on the 

surface of a temperature probe such as a thermistor.  The second class of 

thermal sensors is referred to as catalytic sensors and is used to detect 

flammable gases.  The final class of thermal sensors measures changes in the 

thermal conductivity of the atmosphere in which it is located when other gases 

are introduced. 

 

Thermistors 

A thermistor is a sensitive device for measuring temperature changes.  Its 

operation is based on changes in the electrical resistance of specific sintered 

metal oxides (such as BaO, CaO, or transition metal oxides of Co, Ni, and Mn) 

with temperature.  The electrical resistances of these oxides decreases by 4-7% 

per degree rise in the temperature with an accuracy of ±0.005°C[24, 25].  

Typically these devices are constructed as an oxide bead covered with a 

protective glass coating as shown in Figure 1.2A.  Changes in the resistance, 

and thus the temperature of the device are measured using a Wheatstone bridge 

circuit.  Selectivity is achieved by carrying out a reaction near, or at the surface of 

the thermistor, which involves only the analyte of interest.  Thermistors have 

been used to measure the small amounts of heat evolved during an enzymatic 

reaction through use of a microcalorimeter setup shown in Figure 1.2B.  In this 

design an analyte solution flows through a bed of immobilized enzyme and the 

temperature of the effluent from the enzyme bed is measured and compared to 

the temperature of a reference thermistor.  The reference thermistor measures  
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Figure 1.2 A thermistor sensor (A) Typical metal oxide thermistor. (B) 

Microcalorimeter setup using thermistors to measure heat evolved from an 

enzymatic reaction[25]. 
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the temperature of the analyte solution after it flows through an identical bed 

without the immobilized enzyme[26-30].  Miniaturized thermistor based 

biosensors have also been developed and used[31-34].  

 

Catalytic Gas Sensors 

Catalytic gas sensors are a common group of sensors used to detect 

flammable gases.  These sensors operate by measuring the quantity of heat 

produced during the controlled, catalyzed combustion of a flammable gas in air.  

The combustion of a flammable gas is generally a very exothermic reaction, 

making this a very sensitive method.  A catalytic gas sensor requires a heater to 

keep the sensor at a temperature high enough to combust the gas, a catalyst to 

assist the combustion process, and a device to measure the heat evolved during 

the combustion.  The simplest catalytic gas sensor (for hydrocarbons) can be 

created with just a platinum wire.  The platinum wire is heated by passing a 

current through it to achieve the combustion temperature, and the combustion of 

the gas is catalyzed at the surface of the wire. The heat evolved then increases 

the temperature of the wire and changes it electrical resistance, which is 

measured.  Often a feed-back mode is used to keep the temperature of the wire 

constant by changing the current applied to it, in this case the current change is 

measured and related to the temperature change caused by the combustion of 

this quantity of gas. 

More commonly a device known as a pellistor is used as a catalytic 

sensor.  This device retains the platinum wire for heating and temperature 
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transducer, but uses a more efficient catalyst, typically palladium, for the 

combustion process that allows lower temperatures to be used[35, 36].  A 

diagram of a pellistor is shown in Figure 1.3.  A particular problem of catalytic 

sensors is fouling of the catalyst by organosulfur or organophosporous 

compounds.  This can be resolved by making the beads from a porous alumina 

in which the catalyst is mixed[37].  As with the thermistors, pellistors are usually 

operated in pairs, one containing the catalyst, and one without it acting as a 

reference. 

 

Thermal Conductivity Sensors 

 Unlike the other two types of thermal sensors discussed, this sensor does 

not involve a chemical reaction taking place at the surface of the sensor.  

Instead, this sensor uses the differences in the thermal conductivity of different 

gases.  In this sensor a filament is heated to around 250°C.  The heat loss from 

the filament to the surroundings is dependent on the thermal conductivity of the 

surrounding gas.  The thermal conductivities of gases vary dramatically and the 

temperature of the filament changes with respect to the nature of the surrounding 

gas and its concentration.  The change in the temperature of the filament is 

detected as a change in the electrical resistance of the wire, just as with the other 

thermal sensors[38].  Thermal conductivity detectors were one of the first 

detectors used with gas chromatography (GC) and a typical design is shown in 

Figure 1.4.  
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Figure 1.3 A typical pellistor device. 
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Figure 1.4 A thermal conductivity detector 
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1.4.2 Electrochemical Sensors 

 Electrochemical sensors combine the specificity of a chemical or biological 

recognition layer with an electrochemical transducer, which converts the 

recognition process into an electrical signal.  The electrical signal is related to the 

recognition process and is proportional to the analyte concentration.  

Electrochemical sensors fall into one of three categories depending on the nature 

of the electrical signal produced.  These categories are amperometric, 

potentiometric, and conductometric sensors. 

 

Amperometric Sensors 

 Amperometric sensors are based upon the detection of an electroactive 

species involved in the recognition process.  The transduction process works by 

controlling the potential of the working electrode at a fixed value, relative to the 

reference electrode, and monitoring the current as a function of time.  The 

applied potential serves to drive the electron transfer reaction of the electroactive 

species and the resulting current is a direct measure of the rate of the electron 

transfer reaction.  This rate reflects the rate of the recognition process and is thus  

proportional to the concentration of the target analyte[39, 40].  Consider an 

oxidized species (Ox) and reduced species (Red) of a coupled system shown 

RedneOx ⇔+ −              E0’   (1.1)  

where n is the number of electrons transferred.  This reaction can be shifted 

toward the left by applying a potential that is more positive than the formal 

potential of the reaction (E0’) to the working electrode of the system under 
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standard state conditions.  The resulting current from the transfer of electrons at 

the working electrode can be related to the concentration of the reduced species 

in the sample by the equation 

    0== xdx
dC

nFADi     (1.2) 

where i is the Faradaic current, n is the number of electrons transferred, F is the 

charge corresponding to one mole of electrons, A is the electrode area, D is the 

diffusion coefficient, which is a characteristic of the analyte, and the derivative 

term represents the concentration profile at the electrode surface.  Similar to 

amperometric sensors are voltammetric sensors.  These sensors also measure 

the current as a function of the applied potential, however these methods used a 

potential sweep, rather than a potential step, and a peak is observed in the 

current near the formal potential of the reaction.  The magnitude of the peak is 

related to the concentration of the analyte[39-41]. 

   Amperometric sensors show some selectivity since the reduction 

(oxidation) potential is characteristic of the species being analyzed.  This 

selectivity is fairly limited though unless modified electrodes, that incorporate 

other means of selectivity are used[42].  One of the simplest modified electrodes 

to prepare is a modified carbon paste electrode.  Carbon paste electrodes are 

prepared by mixing graphite paste with Nujol to form a paste that is placed in an 

electrode holder as shown in Figure 1.5.  These electrodes can be modified by 

simply adding a selective component, such as a complexing agent, or an 

electroactive species such as ferrocene in with the paste.  Other electrodes can  
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Figure 1.5 Schematic of a carbon paste electrode. 
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be coated with polymer films to proved selectivity.  The polymers used are 

generally of three types, conducting, ion-exhange, or redox polymers[41].    

 

Potentiometric Sensors 

 Potentiometric sensors convert the chemical recognition process into a 

potential signal, which is proportional to the concentration (activity) of the species 

generated or consumed during the recognition process.  This potential is 

measured under conditions where the current is nearly zero.  These sensors are 

attractive because of their selectivity, simplicity, and low cost.  However they are 

generally less sensitive and slower responding than amperometric sensors[41]. 

 Most potentiometric sensors rely on the use of ion selective electrodes 

(ISEs) for obtaining an analytical signal.  ISEs are generally membrane based 

devices, consisting of a permselective ion conducting material, which separates 

the sample solution from the inside of the electrode as shown in figure 1.6.  

Inside the electrode is an electrolyte solution that contains the ion of interest at a 

constant activity.  The membrane is designed to produce a potential difference 

that is due to the analyte of interest.  Most membranes contain a reagent that 

selectively binds the target analyte and the interaction between this reagent and 

the analyte produces a charge separation at the surface of the membrane that is 

measure as a potential against the reference electrode.  When there is a 

difference in the activity of the analyte of interest in the sample and the activity of 

the analyte in the electrolyte solution a membrane potential arises.  Since the 

potential of the reference electrode is fixed, the cell potential that is measured  
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Figure 1.6 Ion-selective electrode geometry for a bench or dip-type electrode.
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can be related to the activity of the target analyte.  ISEs follow a Nernstian 

behavior and the potential, E, can be related to the activity of the analyte, ai, by 

the equation: 

ia
nF

RT
CE log

303.2








+=    (1.3) 

where C is a constant term that contains the interface potentials in the cell, R is 

the gas constant, T the temperature in Kelvin, F the Faraday constant, and n the 

charge on the analyte of interest.  The above equation is true except at low 

analyte concentrations were coexisting ions interfere and a modified form of the 

equation that considers the activity of interfering ions must be used.  ISEs can be 

divided into categories based upon the nature of the membrane material.  These 

categories include glass membrane electrodes, liquid membrane electrodes, and 

solid-state membrane electrodes.  The pH sensor, a glass membrane electrode 

is the oldest and best know ISE[3]. 

 ISEs in collaboration with other selective layers have been used to 

produce many types of chemical sensors.  An example is the monitoring of urea, 

using an ammonium ISE coated with a gel matrix containing the enzyme urease.  

When urea enters the gel matrix with the enzyme it is broken down into 

ammonium and bicarbonate ions.  An ammonium ISE then detects the liberated 

ammonium in the reaction layer.  This sensor is able to detect urea 

concentrations from 50 µM to 200 mM[25]. 

 Another type of potentiometric sensors that has come into use is 

the field-effect transistor (FET).  The basic configuration of a FET is known as the 
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insulated gate FET (IGFET) and is shown in Figure 1.7.  It consists of two n-type 

silicon layers separated by a p-type silicon layer and an insulating layer 

consisting of silicon dioxide.  One of the n-type silicon layers is used as a source 

and the other as a drain for electrons.  The source region is electrically biased 

with respect to the drain by an small positive applied potential, VD.  The gate is a 

metal, insulated from the silicon layers, so that it forms a capacitor, a 

metal/insulator/semiconductor (MIS) arrangement.  The gate region is charged 

with a potential VG, which is below the threshold potential, VT for p-type silicon.  

Above the threshold potential p-type silicon converts to n-type silicon, and 

inversion occurs.  With the gate potential below the threshold potential the silicon 

remains in the p-type configuration and there is no drain current.  When the gate 

potential is set above the threshold potential, there is a surface inversion and p-

type silicon becomes n-type silicon.  Now current is able to pass from the drain to 

the source, without crossing the p-n junction and is proportional to the electrical 

resistance of the surface inversion, which is controlled by the gate potential, and 

the drain potential VD [25, 43].  To convert this configuration into a chemical 

sensor the metal of the gate is replaced by a chemical recognition layer in 

contact with a sample solution as shown in Figure 1.8.  These devices are 

generally known as CHEMFETs, with other names given based upon the type of 

recognition layers used (i.e ion selective FETs, ISFETs and enzyme FETs, 

ENFETs).  
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Figure 1.7 Schematic of an insulated gate field-effect transistor (IGFET)[25]. 
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Figure 1.8 Schematic of field-effect transistor with a chemical recognition layer 

(CHEMFET)[25]. 
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Conductometric Sensors 

 The third type of electrochemical sensors used, measures the variation of 

conductance, which is the reciprocal of the sensor resistance.  Various types of 

chemiresistors to measure conductance changes have been described, however 

these devices generally lack selectivity.  The use of arrays of these sensing 

elements has been the most attractive technique to date.  In an array each 

sensing element can be coated with a different conducting polymer and a unique 

signature response can be obtained for individual analytes.  These signatures 

can be obtained from mixtures of analytes and have been referred to as 

electronic noses.  With the use of neural network analysis, the evaluation of 

these devices is possible 

 

1.4.3 Optical Sensors 

  Optical transduction methods for chemical analysis are well established 

and sensors based upon these techniques are of great interest.  Most optical 

sensors rely on optical fiber technology to transmit light to and from a sample.  

The principal components of fiber optic sensors generally consist of a light 

source, optical fiber(s), a chemical recognition element, and an optical detector.  

Other elements such as lenses, filters, and spatial filtering devices are usually 

required to complete the system.  Chemical sensing with optical fibers is an 

attractive technique due to the access to many previously developed optical 

transduction techniques for chemical analysis, such as fluorescence, absorption, 

and Raman spectroscopy techniques.  The use of fibers, which have very low 
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light attenuation, also allows for remote in situ monitoring of difficult or hazardous 

locations, such as groundwater or nuclear tank waste monitoring. 

 Optical fibers consist of a core, a cladding that surrounds the core, and a 

jacket that encompasses both these layers.  Light is guided through an optical 

fiber by total internal reflectance at the core-cladding interface as shown in 

Figure 1.9.  Total internal reflection depends on the refractive index of the core 

material (n1), the refractive index of the cladding material (n2), and the angle of 

incidence of the light wave, θ1 as described by Snell’s law 

2211 sinsin θθ nn =     (1.4) 

where θ2 is the angle of the refracted beam to the normal.  In the case of an 

optical fiber the refractive index of the cladding material is lower than the 

refractive index of the core material (n2 < n1).  At the critical angle for total internal 

reflection, θ1 equals θc, and the refracted beam θ2 is equal to 90° to the normal 

(parallel to the boundary between the core and cladding).  For this case Snell’s 

law becomes 









= −

1

21sin
n
n

cθ     (1.5) 

 and the critical angle can be calculated for any particular interface.  At any angle 

greater than the critical angle, all of the incident light is reflected back into the 

denser medium, the fiber core in the case of a fiber optic.   At angles smaller than 

the critical angle the light will be refracted into the cladding of the fiber and 

attenuated before it can escape the fiber[44, 45].  For total internal reflection to 

actually occur within an optical fiber, there must be no flux of energy into the   
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Figure 1.9 Diagram of fiber optic waveguide and conditions to achieve total 

internal reflection. 
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lower refractive index material (the cladding).  This is not the case with fiber 

optics as there is a finite decaying electrical field across the interface of the core 

and cladding that extends into the lower refractive index material.  This field is 

known as the evanescent field.  The depth that this field penetrates into the lower 

refractive index material depends on the wavelength and for visible light is 

typically between 100 and 200nm[25, 45, 46].  This phenomenon can be used to 

probe materials near the surface or within the cladding of the optical fiber[47-49].    

An important parameter in the design of a fiber optic sensor is the 

numerical aperture (NA) of the fiber to be used.  The NA is given by 

max0 sinθnNA =     (1.6) 

where n0 is the refractive index of the medium from which the light is entering the 

fiber, and θmax is the maximum launch angle of an incident beam entering the 

optical fiber.  The NA describes the light collection efficiencies of a fiber optic 

sensor, with larger NA being preferred[44]. 

 Fiber-optic sensors can be classified into two categories as shown in 

Figure 1.10[25, 45].  In the first case the fiber acts solely as a lightguide that 

separates the sensing location from the detector and other monitoring 

instrumentation.  This classification of fiber optic sensors is known as extrinsic 

sensors (Figure 1.10A).  The second classification is known as intrinsic sensors 

(Figure 1.10B).  In these sensors the optical fiber plays an active role as the light 

transmitted is modulated by chemical interactions at the fiber terminus or along 

its sides (by employing the evanescent field).  Many types of reagents phases  
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Figure 1.10 Modes of optical fiber use in sensors (A) Extrinsic fiber optic sensors  

(B) Intrinsic fiber optic sensors. 
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have been used with fiber optics to create optical sensors, typically the 

complexation of the analyte with reagents to alter the absorption or to quench or 

induce fluorescence are often used.  Biological agents, such as mono- and 

polyclonal antibodies have been used with fiber optics for performing competitive 

binding immunoassays for both biological and chemical analytes[20, 50-52].  

A special area of fiber optic sensing that is relevant to our work involves 

scintillation fibers.  Scintillation fibers are used to detect radioactive particles, by 

converting the energy of the radioactive emission into photons.  Similar to a 

typical fiber optic a scintillation fiber consists of a core that is primarily 

polystyrene but is doped with an aromatic scintillator that exhibits a good 

fluorescence quantum yield.  When an ionizing particle enters the core of the 

fiber it loses energy, which excites the electronic energy levels of polystyrene.  

The polystyrene then relaxes emitting a photon of light[53, 54].  Polystyrene 

unfortunately has a poor fluorescence yield, which must be enhanced.  To 

enhance the fluorescence yield of the scintillation fiber an aromatic scintillator 

with a high fluorescence yield is added to the polystyrene.  To ensure 

intermolecular energy transfer between the respective quantum levels of the 

polystyrene and the scintillator requires that the emission band of polystyrene 

overlap the absorption bands of the scintillator as shown in Figure 1.11.  Another 

factor that controls the choice of the aromatic scintillator is the emission 

wavelength.  This is important as polystyrene attenuates shorter wavelengths 

much faster than longer wavelengths, as shown in Figure 1.12.  Depending on 

the emission wavelength of the scintillator, a wavelength shifter  
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Figure 1.11 Absorption and Emission bands of polystyrene fiber core (a), a p-

terphenyl scintillator (b), wavelength shifter 1,4-bis-[2-(5-phenyloxazolyl)]-

benzene, POPOP (c), and the scintillator 1-phenyl-3-mesityl-2-pyrazoline, PMP 

(d)[53].
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Figure 1.12 Light attenuation of different wavelengths of light through a 

polystyrene core fiber[53]. 
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may also be added to the polystyrene core to shift the measured photons to 

longer wavelengths.  The wavelength shifter typically absorbs the emission of the 

aromatic scintillator and then emits light at a longer wavelength that is not as 

readily absorbed by the polystyrene core[53].  Generally scintillators with large 

Stokes shifts are preferred to reduce self-absorption of the emission wavelength 

by the scintillator material.  The core is then covered with a coating (typically 

polymethyl methacrylate, PMMA) with a lower refractive index, than the core to 

induce total internal reflections.  Thus a scintillation fiber combines scintillation 

properties with the transmission properties of a fiber optic.  In contrast to most 

other fiber optic sensors, scintillation fibers require the use of no light source, as 

the photons measured are generated within the fiber by the interaction of ionizing 

particles with the core. 

 

1.4.4 Mass Sensors 

 Piezoelectric crystals are capable of measuring small mass changes very 

accurately.  By coating these crystals with a chemically selective layer they can 

be used as chemical sensors.  This section will discuss two traditional types of 

piezoelectric mass sensors, namely bulk acoustic wave (BAW) devices, and 

surface acoustic wave (SAW) devices.  A third type of sensor, based upon the 

deflections of the microcantilevers used in atomic force microscopy, can be mass 

sensitive and will also be discussed. 
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Bulk Acoustic Wave Sensors 

 When an anisotropic crystal, such as quartz, is mechanically stressed it 

gives out an electrical signal and conversely when an electrical signal is applied 

to these crystals they will mechanically deform[23].  With the application of an 

oscillating electrical potential the crystal will vibrate with a given frequency.  The 

resonance frequency of this vibration is dependent on the crystal and its mass 

plus any other material coated or absorbed onto it.  The absorption of an analyte 

to the surface of the crystal shifts the resonance frequency, which can be 

measured with high sensitivity.  The relationship between the surface mass 

change and the change in resonance frequency, ∆f is defined by the Sauerbrey 

equation[55] 

A
m

f
k

f
fm

∆
−=∆ 21

ρ
   (1.7) 

where ∆m is the mass in grams of the adsorbed material on an area A (cm2) of 

the sensing region, f is the overall resonant frequency, ρm is the density of the 

thin active coating on top of the piezoelectric substrate, and kf is a frequency 

constant.  For a 5 MHz crystal a resonance frequency shift of 1 Hz, which is 

easily measured, corresponds to a change in mass of 17 ng/cm2 [1].  The quartz 

crystal microbalance (QCM) is the most common type of BAW and a schematic 

is shown in Figure 1.13 [25, 56, 57]. 
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Figure 1.13 Quartz crystal microbalance, an example of a BAW device[1]. 
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Surface Acoustic Wave Sensors 

 Surface acoustic wave (SAW) devices operate slightly differently from the 

BAW devices mentioned above.  As the name implies, the difference comes from 

where the resonating waves are generated, the bulk crystal or the crystal 

surface.  In a SAW device a set of interdigitated electrodes, a transmitter and a 

receiver, are positioned at each end of the crystal.  An AC voltage signal is 

applied to the transmitter set of interdigitated electrodes.  The electric field 

causes the lattice of the piezoelectric material beneath the electrode to distort, 

causing a surface acoustic wave to propogate toward the other end of the crystal. 

At the other end another set of interdigitated electrodes, the receiver creates an 

AC voltage when the surface acoustic wave passes underneath them.  Any 

absorbed material in the path of the wave affects the transmission of the wave, 

and changes in amplitude, frequency, or phase shift are monitored.  A typical 

SAW device is shown in Figure 1.14[25, 56, 57]. 

 

Microcantilever Sensors 

Micromachined cantilevers used as probes in atomic force microscopy 

(AFM) are extremely sensitive to a variety of environmental factors, such as 

acoustic noise, temperature, humidity, and ambient pressure[58].  

Microcantilevers (MCs) are simple mechanical devices.  They are small leaf 

springs with typical dimensions of 0.2-1 µm thick, 20-100 µm wide, and 100-500 

µm long, which are attached at one end to a support for handling.  A sharp tip on 

the underside of the leaf spring allows it to be used in AFM for mapping surfaces.  
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Figure 1.14 Schematic of a typical surface acoustic wave (SAW) device[1]. 
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 This sharp tip is not used when a standard AFM MC probe is used as a chemical 

sensor.  MCs are produced using well-established batch processes, involving 

photolithographic patterning and a combination of surface and bulk 

micromachining.  Figure 1.15 is an image of a one-dimensional array of silicon 

MCs from a focused ion beam (FIB) mill. 

Microcantilever sensors operate by a variety of transduction mechanisms.  

Depending on the parameter measured, deflection or resonance frequency, the 

mode of MC operation can be either static, or dynamic.  These two modes are 

each associated with different transduction principles, as shown in Figure 1.16.  

MCs operating in a dynamic mode are mechanical oscillators, that can be 

evaluated using simple classical models[10, 59-61].  

Generally, the MC oscillations are insignificantly dampened by the 

medium the MC is contained in, or by chemical coatings on it surface.  When an 

analyte binds to the cantilever surface, the additional mass, ∆m, can be related to 

a shift in the MC resonance frequency, f from its original resonance frequency, f0 

to the new resonance frequency, f1, by 

( )K
m

ff 22
0

2
1 4

11
π
∆

=−     (1.8) 

in which K is the cantilever spring constant.  From equation 1.8 it can be seen 

that high fundamental resonance frequencies are required for typical resonators 

(SAW or BAW devices) to achieve appreciable mass sensitivity.  However MCs 

with resonance frequencies of 20-200 kHz may have enhanced mass sensitivity 

when compared with BAW and SAW sensors operating at 5-500 MHz.  This  
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Figure 1.15 Focused Ion Beam image of a one-dimensional array of silicon 

microcantilevers.  Dimensions 100 µm wide, 400 µm long, and 1 µm thick. 
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Figure 1.16 Transduction principles that are operative with microcantilever 

sensors. 
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sensitivity is due to the relatively low stiffness and minuteness of the suspended 

mass of a MC structure.  In principle, a nanocantilever with an active area of only 

1 µm2 should be capable of detecting the mass associated with a single 

molecule[62-64].  Nanostructures have been successfully used in studies of very 

small molecular displacements and molecular level forces[62, 64-66]. The 

fundamental resonance frequency, fr,, of a nanocantilever oscillator can be 

defined using a classical mechanical model[67] 

o
r m

k
f π2=       (1.9) 

where k is the spring constant and mo is the effective suspended mass of the 

cantilever.  It is important to recongnize that the resonance frequency fr may 

undergo noticeable fluctiations, ∆fr, due to exchange between the mechanical 

and thermal energy of the cantilever[67]. 
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where KB is Boltzmann’s constant, T is the absolute temperature, Q is the quality 

factor of the cantilever oscillator, and B is the measurements bandwidth.  Though 

equation 1.10 predicts increased absolute fluctuations of the resonance 

frequency, ∆fr, as the resonance frequency, fr increases, the relative frequency 

instability ∆fr /fr, decreases in the case of higher frequency oscillators 
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Combing equations 1.9 and 1.11 the smallest (noise limited) detectable change 

in the resonator mass can be expressed by 

Qf

TBkK
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B
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51281 π
=∆     (1.12) 

As can be concluded from equation 1.12, the major parameters that affect the 

performance of a mass-sensitive nanomechanical oscillator are stiffness, 

resonance frequency, amplitude, and quality factor.  Assuming a measurement 

bandwidth of 1 Hz, equation 1.12 predicts single atom mass sensitivity (10-23 g) 

for a nanocantilever with fr of 108 Hz, quality factor of 104 and a spring constant 

of 1 Nm-1.  

 The static mode of MC responses can be related to mechanical stress 

generated in the plane of the MC.  Thermally induced stresses are typical for 

metal-coated MCs for which the coefficients of thermal expansion differ for the 

metal and the base material of the MC.  A temperature change in the surrounding 

medium produces an unequal expansion of the layers in the bimaterial MC, 

which results in a bending of the structure.  This bending translates into 

femtojoule level sensitivities, and as a result the presence of an analyte may be 

detected by the heat produced by their adsorption onto the MC, or by the heat 

produced by a chemical reaction associated with the adsorbate.  In this manner 

MC sensors can also be categorized as thermal sensors. 

 The adsorption (surface interaction) or absorption (bulk phase interaction 

with thin films) of an analyte onto a surface induces significant changes in the 

interfacial stress of the surface.  MCs appear suitable for real-time 
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measurements of surface stress changes in the low milliNewton-per-meter range, 

which makes them capable of converting changes in the Gibbs free energy 

created by interactions of an analyte with a binding site on the cantilever surface 

into a readily measurable mechanical response[68-71].  To use a MC as a 

chemical sensor one side of the MC is modified so that it has high affinity toward 

a targeted analyte (active side), while the other side is relatively passive.  This 

allows for a differential surface stress to be developed due to Gibbs free energy 

changes associated with the adsorption or absorption of analyte onto the active 

side (equal stress changes on opposing sides would cancel out).  The deflection 

of the MC caused by adsorbate induced surface stress changes can be 

described by a simple classical relationship derived by Stoney to describe the 

bending of electroplated metal films on thin plates nearly a century ago[72].  

Stoney related changes in the radius of curvature, R, of a plate to the differential 

surface stress, ∆σeff by 
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=      (1.9) 

in which, ν is Poisson’s ratio, and E is Young’s modulus for the substrate, and t is 

the thickness of the MC.  Similarly the deflection of the cantilever tip, zmax is 

releated to the differential surface stress by 
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where l is the length of the MC.  Equations 1.9 and 1.10 give accurate predictions 

when adsorbate induced stresses are generated on ideal smooth surfaces or 

within coatings, that are thin compared to the MC. 

MCs systems usually incorporate an optical lever read-out method to 

measure their responses.  In this method a laser beam is reflected from the tip of 

the MC, and as the MC bends the reflected beam is displaced (Figure 1.17).  The 

displacement of the beam is converted into an electrical signal by projecting the 

beam onto a position sensitive photodetector (PSD).  Deflections (or resonance 

frequency shifts) in the MC can then be measured and related to an event 

occurring on its surface.  

 

1.5 STATEMENT OF PROBLEM 

 

 A continuing effort in chemical sensor research is aimed at improving both 

the selectivity and sensitivity of these devices, so that lower limits of detection 

can be achieved with greater confidence.  This body of work focuses on 

improving both the selectivity and the sensitivity of two different types of chemical 

sensors described in Chapter 1.  Plastic scintillation fibers have been used to 

detect the decay of radioactive species in solutions, but these sensors lack the 

selectivity to distinguish particles emitted from different radioactive species.  The 

research presented in Chapter 2 utilizes the ability of plastic scintillation fibers to 

detect radioactive particles while improving both the selectivity and sensitivity of 
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this device, through the use of a chemically selective layer.  Microcantilever  

 

 

 

Figure 1.17 Schematic of optical lever read-out arrangement for microcantilever 

sensing. 
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sensors are relatively new chemical sensing devices with great potential.  Herein 

methods to improve the sensitivity of these devices through surface modifications 

are presented. 
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CHAPTER 2 

 
CHELATING SCINTILLATION FIBERS 

FOR MEASUREMENTS OF 137Cs 
 
 

2.1 INTRODUCTION 

 

A major project of the DOE is the safe remediation of high-level 

radioactive waste that has been stored in underground tanks throughout the 

United States.  There are 271 waste tanks of varying designs, containing more 

than 93 million gallons of radioactive waste at four sites across the United 

States[73].  The Hanford Reservation in Washington state contains nearly 2/3 of 

the high-level waste stored in the United States[74].  Many of these tanks are 

reaching their expected lifetimes and some are known, or are presumed, to have 

leaked waste into the surrounding environment[75, 76].  The bulk of the radiation 

from these waste tanks comes from 137Cs and 90Sr.  Respectively, they represent 

40% and 25% of the total curie content of these tanks[77].  The tanks were filled 

with waste from numerous chemical processes and the resultant waste is a 

complex mixture of various forms (supernatant, salt cake, and sludge)[75].  To 

properly process this stored waste into stable forms and to remediate the storage 

sites it is necessary to characterize the contents of the waste within these tanks. 

Scintillation counting techniques are among the most useful methods for 

the detection of a wide assortment of radiation types[54].  The most commonly 
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used scintillating materials are inorganic alkali halide crystals and organic liquids 

and plastics.  Inorganic scintillators produce better light yields, but exhibit slower 

response times than organic scintillators.  Organic scintillators are generally used 

for α- and β-particle detection because of their fast response times[54].  The 

ease with which plastic organic scintillators can be fabricated and shaped makes 

them extremely useful for scintillation techniques.  In β-particle scintillation 

counters, the kinetic energy from the radiating particle is absorbed by scintillator 

molecules, which then relax via fluorescence emission of radiation.  The resultant 

photons can be measured by a photomultiplier tube or other phototranducer.  

Plastic scintillation fibers consist of a core that is primarily polystyrene, doped 

with an aromatic scintillator that exhibits a good fluorescence quantum yield.  The 

scintillating core is then covered with a PMMA coating that has a lower refractive 

index than the core to induce total internal reflections, and reduce light losses at 

fiber surface interfaces[53].  Thus a scintillating fiber combines scintillation 

properties with the light transmission characteristics of a fiber optic.  

 Dual mechanism bifunctional polymers (DMBPs) consist of two distinct 

functional groups on a given supporting network, each of which functions by a 

different complexing mechanism.  One mechanism is typically aspecific and 

serves to rapidly bring the species of interest into the polymer matrix, making it 

easily accessible to a highly specific recognition mechanism.  Ion exchange is 

typically the access mechanism to bring metal ions into the polymer and into 

range of the highly specific recognition site[78, 79].  The recognition site 

functions to selectively retain the analyte of interest within the polymer.  DMBPs 
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are divided into three classes based upon the recognition mechanism.  Class I 

DMBPs consist of ion exchange/redox resins, Class II consists of ion 

exchange/coordination resins, and Class III are ion exchange/precipitation 

resins[79]. 

 The study presented in chapter 2 utilizes commercially available 

scintillation fibers that have been coated with a Class II DMBP for the detection 

of 137Cs in aqueous samples and in tank waste simulants. Specifically, the DMBP 

is composed of phenol-formaldehyde oligomers grafted onto a polystyrene based 

resin bearing diphosphonate ligands (Figure 2.1).  The DMPB has been shown to 

be selective for Cs (I) in the presence of Na (I) with distribution coefficients 

greater than 400 ml/g[78].  Further selectivity studies have been performed in this 

work to evaluate possible interfering species of the DMBP that are common 

within sample matrices that contain 137Cs.  These fibers are similar to solid phase 

micro-extraction (SPME) fibers, as they are able to combine sampling, extraction, 

concentration, and sample introduction techniques into a solitary step. Unlike 

procedures using SPME fibers, which consist of two processes, the partitioning 

of the analyte between the coating and sample and the desorption of the analyte 

into an analytical instrument, there is no need of a desorption step for these 

chelating, scintillation fibers[80].  However, the desorption step can be performed 

to regenerate the fiber.  The instrumental and procedural simplicity of this 

approach should facilitate field measurements.  
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Figure 2.1 Cesium Selective Dual Mechanism Bifunctional Polymer (DMBP). 
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2.2 EXPERIMENTAL SECTION 

 

2.2.1 Instrumentation 

Experiments were performed using an EG&G ORTEC (Oak Ridge, TN) 

photon counting system.  The system consisted of a series bin and power supply 

(series 401/2), a high voltage power supply (model 456) with an output range of 

10 to 3000 V, a photon counter (model 9315), an amplifier discriminator (model 

9302) with a gain setting of 20 or 200 for the amplifier and a 0.050 to 1 V 

threshold range for the discriminator.  A RCA IP28 (U.S.A) or Hamamatsu R928 

(Iwata-Gun, Japan) photomultiplier tube was used to collect impeding photons in 

a Pacific PMT housing (model 3377D) cooled with dry ice.  Counting times for all 

experiments was 100 seconds and data presented is typically the average of 10 

count cycles. 

Scintillating fibers were positioned by the use of a machined Delcron piece 

that was threaded to fit into the PMT housing.  A hole was drilled through the 

center of the Delcron piece that extended back to contact the window in front of 

the photocathode.  This allowed the fiber to be positioned as close to the 

photocathode as possible and assured that the same area of the photocathode 

was impeded with photons from each scintillation fiber used in these studies.  In 

this arrangement, no optics external to the fiber are needed to efficiently couple 

scintillation photons onto the PMT photocathode.  
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2.2.2 Cs Selective DMBP  

The phenol-formaldehyde grafted polystyrene based resin was prepared 

by a suspension polymerization of tetraisopropyl 1,1-vinylidenediphosphonate, 

vinylbenzyl chloride and acrylonitrile in a 1:1.35:2.25 mole ratio[78].  The resin 

contained 5% divinylbenzene as a crosslinking agent.  The benzyl chloride 

moiety on the resin was then converted to a benzaldehyde moiety by a reaction 

with excess dimethyl sulfoxide and sodium bicarbonate at reflux for 8 h.  The 

aldehyde site serves as the attachment point for the phenol-formaldehyde 

chains, which were grafted onto the resins[78].  The resin beads had diameters 

in the range of 75-150 µm. 

To reduce attenuation of β-emission by the beads and to produce a stable 

resin bed, the beads were ground to a smaller size using a ball mill filled with 

ceramic beads.  A large volume of the resin beads in water was placed in the ball 

mill and ground for 24 hours.  The diameter of the collected resin particles were 

then measured using a technique known as fineness of grind.  This technique 

uses two calibrated plates to measure the particle diameter.  One plate is spotted 

with the particles and the other is pulled across it smearing the sample across 

the first plate.  The plates are designed so that as they are pulled across each 

other the gap between them decreases. At the point where the particle size and 

the gap are equal the particles are dragged across the surface leaving streaked 

lines on the plate.  The size of the particles can then be read from the calibrated 

plate.  Using this technique the particles were determined to have diameters of 3-

5 µm.  The particles were then dried in an oven. 
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2.2.3 Materials and Chemicals  

The scintillating fibers BCF-12 were obtained from Bicron, (OH).  The 

dimensions of the scintillating fibers were 1 mm diameter x 1.5 m as received 

from the supplier.  They were cut to desired working lengths by hand.  

Radioactive 137C was donated by Professor Larry Miller of the UTK Nuclear 

Engineering Department and had an activity of 80 µCi in 20 ml of solution.  

Chemicals used in preparing the double shell slurry feed (DSSF) Hanford were 

KOH, NaOH, NaCl from Mallinckrodt (St. Louis, MO); Na2SO4, Na2CO3, NaNO2, 

and Ca(NO3)2•4H2O from Fisher (Fairlawn, NJ); Na2HPO4•7H2O, Al(NO3)3•9H2O, 

and NaF from Aldrich (Milwaukee, WI); Ba(NO3)2 from Allied Chemical & Dye 

Corporation (New York, NY); and Sr(NO3)2 from J.T. Baker Chemical Company 

(Phillipsburg, NJ).  A sulfonic acid functionalized ion exchange resin, Amberlite 

IRP-69 was obtained from Aldrich (Milwaukee, WI).  The ion exchange resin had 

a wet mesh size of 100-500 and an exchange capacity of 4.3 meq/g.  The resin 

particles were ground down using a ball mill to match the particle size of the Cs 

selective DMBP.   

 

2.2.4 Coating of Scintillation Fibers 

Plastic scintillation fibers were cut to the desired working length, washed 

with ethanol to remove any oils and dirt, and then air-dried.  Five-minute Epoxy 

from ITWDevcron (Danvers, MA) was diluted to a desired % epoxy solution (1-

10% w/w) with acetone.  The thickness of the epoxy coatings was measured 
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using a DekTak 8000 profilometer manufactured by Veeco (Santa Barbara, CA).  

The clean scintillation fibers were dipped into the epoxy solution and then placed 

into a bed of particles.  After removal from the particle bed the fibers were 

shaken to remove any loose particles.  The epoxy was then allowed to cure 

overnight.  Upon curing of the epoxy the fibers were rinsed in deionized water to 

remove any loose particles and air-dried.  Finally the tips of the fibers were 

snipped off to eliminate an area of thicker coating that developed as the fibers 

were pulled from the epoxy solution. 

 

2.3 RESULTS AND DISCUSSION 

 
2.3.1 Signal Considerations 

The radioactive decay of 137Cs can proceed by the two processes shown 

below: 

( )MevBaCs m 512.0137137 −+→ β ; γ+→ BaBam 137137   (2.1) 
 

( )MevBaCs 17.1137137 −+→ β      (2.2) 
 

These processes produce βs with maximum energies of 0.512 and 1.17 Mev 

respectively[81].  The weighted average energy is 0.171 Mev.  Using a 

relationship provided by Glendenin the penetration depth for this average energy 

is 35 mg/cm2[82].  In a density of 1000 mg/cm3 this corresponds to a depth of 

350 µm. 

 The signal in counts/second (Sig-cts) depends on the number of? β-

particles that are launched into the fiber/second that have sufficient residual 
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energy to produce a photon burst which registers above the threshold level set 

on the amplifier/discriminator.  The scintillator material used in these studies is 

reported to have a photon conversion efficiency of 8 photons/Kev[83].  The 

fraction of β-generated photons that result in photon pulses at the PMT (Ft) is 

approximated by 

pmtoptirt ffF /×=     (2.3) 

 
where fir is the fraction that are internally reflected toward the PMT and fopt/pmt is 

the product of the fraction transmitted by the optical components in the system 

(fiber, PMT window) and the quantum efficiency of the PMT; values are 

estimated to be 0.04 (based on a numerical aperture = 0.58) and 0.05, 

respectively.   This produces a Ft of 0.002.  If the discriminator level is set to the 

equivalent of 2 photons (a value that should adequately reject thermal PMT 

photocathode pulses) then the residual β-particle energy must be greater than 

approximately 125 Kev in order to register a count (i.e., energy (Kev) = 2 photons 

/ (8photons/Kev x Ft)) 

 The number of β-particles that satisfy these criteria and produce a 

detectable signal depends on the absolute activity of the source (Aabs) in Ci and 

the fraction emitted in the proper direction; i.e. a direction that will place the β-

particle in the fiber core with an energy exceeding 125 Kev (see Equation 2.4). 

dirabs fCisdisseAsctsctsSig ××=− /)/(7.3)/( 10   (2.4) 
 

 Figure 2.2A is a geometric depiction of a cross section of the fiber showing 

the core (1,000 µm dia.), optical cladding (~3 µm), epoxy (~1 µm), Cs-specific  
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Figure 2.2  Cross sectional views of a coated scintillation fiber (A) and surface 

view of coated fiber showing factors affecting conversion of β-particle energy to 

photons in the fiber core (B). 
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resin particles (~3-5 µm dia.) and surrounding sample solution.  Figure 2.2B is a 

 two dimensional graph showing the process of β-emission from a 137Cs located 

at a distance of 5 µm from the fiber core.  β-particles which are emitted with the 

weighted average energy (171 Kev) and at an angle as depicted that is less than 

87° should reach the core with sufficient energy (125 Kev) to be counted.   This 

assumes a linear loss in energy as the emitted β-particle travels through 

cladding, epoxy, or resin all having a density assumed to be close to 1,000 

mg/cm3.  The solid angle of collection is nearly 180° so fdir is assumed to be 0.5.    

 In most of the measurements the resin coated fiber is allowed to come to 

equilibrium with a volume of sample.  The fiber is removed and signal is 

registered while the fiber is dry (see Experimental Section).  Knowing the mass of 

resin on the fiber, the activity and volume of the sample solution, and the 

distribution coefficient (D) one can compute the activity of 137Cs bound to the 

resin.   For example, most measurements were performed using a 0.35 cm3 

sample volume (V) and 3.0 x 10-4 g of resin (M).  The mass of resin on the fiber 

was estimated by calculating the volume of the resin on the fiber and assuming a 

density of 1 g/cm3 for the resin particles.  The resin volume was calculated by 

determining the difference in volume between an uncoated fiber and a fiber 

coated with 5µm resin particles.  The value of D is approximately 490 cm3/g (see 

below).  Using the following relationship 

RS

R

AA
A

V
DM

−
=

0,

    (2.5) 
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where AR is the activity of resin bound 137Cs (used as Aabs Eq. 2.4) and AS,0 is the 

initial activity of 137Cs in the sample solution before uptake by the resin.   Using 

Equations 2.4 and 2.5, a count rate of 7 cts/s is calculated for the most dilute 

137Cs solution used in these studies (1.4 nCi in 350 µL).  The observed count rate 

was approximately 5 cts/s for this solution, which is reasonably comparable 

considering the assumptions made in this theoretical treatment. 

 The photon counting system used in this work was not ideally suited to 

these experiments.  In particular, while the discriminator level was readily 

adjusted within its limits, it was not possible to read out the actual discriminator 

setting.  Thus optimization studies could only be performed crudely.  In these 

studies it was observed that signal to noise levels were best when there was an 

appreciable background (~102 counts per 100 second count period).  Presumably 

this is a result of the wide range of β-particle energies from 137Cs emission.  

Although different discriminator levels were employed in these studies, a single 

setting is used whenever comparisons are made (e.g., in obtaining the calibration 

plots presented below).  Another limitation of the system is the crude mode of 

cooling the PMT.   Temperatures for the PMT probably varied slightly over long 

experiments or from day to day.  The PMT also needed to be changed during the 

course of the studies due to failure of the one initially employed.  It should be 

mentioned that the scintillation fibers are very well suited to coinicidence counting 

methods using the outputs from opposite ends of the fiber and the proper 

instrumentation.  By using such instrumentation and longer fibers with greater 

accessible resins amounts (M in Equation 2.5), limits of detection (LOD) lower 
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than reported herein should be possible. 

 

2.3.2 Coating Thickness Studies 

 The thickness of the coating applied to the scintillation fibers is of concern 

to prevent attenuation of β particles from the radioactive decay of 137Cs.  

Attenuation of β particles before they reach the core of the scintillating fiber 

would increase the LOD achievable with the fibers.  To study the effect of coating 

thickness upon signal counts, coated fibers were produced using varying percent 

epoxy solutions.  A plot of counts above background versus the percent epoxy 

used for each fiber is shown in Figure 2.3.  From this plot it can be seen that 

there is a steep drop in signal counts, when as little as a 1% epoxy solution is 

applied to the fibers.  This suggests that as small a percentage of epoxy as 

possible should be used to prevent signal attenuation.  Less occlusion of the 

resin is also expected for thin film epoxy coatings.  Unfortunately, coatings made 

from epoxy solutions below 1% were not physically stable.  This lack of stability 

caused irreproducibility between measurements when the same fibers were 

regenerated by an acid rinse and reused.  The signal loss from fibers coated with 

epoxy solutions above 1% is relatively constant.  The reason for this is not clear.  

Coatings that employed a percent epoxy solution of about 3% were also seen to 

be stable, allowing better reproducibility between measurements, made with the 

same fibers.  Profilometry measurements were used to determine the thickness 

of the epoxy coatings.  Fibers were dipped in an epoxy solution so that there 

were two sections of the fiber, coated and uncoated.  The fibers were coated with  
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Figure 2.3 Signal and background versus percent epoxy and particles coating 

the fiber. 
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3% and 10% epoxy solutions.  Measurements of these two coatings showed 

virtually no difference in thickness, with each fiber exhibiting a step height of ~1  

µm from an uncoated section of fiber to the coated section.  This is consistent 

with the signal data plot in Figure 2.3. 

 

2.3.3 Reproducibility 

 The reproducibility of the chelating, scintillating fibers was studied by 

coating seven fibers with the DMBP using a 3% epoxy solution.  Each of these 

fibers was then used to measure the signal from a 400 nCi/ml solution of 137Cs.  

The %RSD for the seven fibers was 11.0%.  This RSD represents not only the 

reproducibility in the coating of the fibers, but also positioning of the fiber within 

the PMT housing. This relatively low RSD value indicates that the fiber coating 

procedure used produces consistent resin coatings.  However, it is possible to 

regenerate fibers.  The fibers are regenerated by rinsing in 1M HCl for 10 

minutes to remove 137Cs from the DMBP.  The fibers are then rinsed with water 

for 10 minutes and dried.  To assure that 137Cs was removed, the signal from a 

regenerated fiber is compared to the signal from an unused fiber.  If the 

background signal measured with the regenerated fiber is within a standard 

deviation of the background measured with an unused fiber then the 

regeneration is considered complete; if not, the rinsing procedure is repeated. In 

some cases, particularly with repetitive regeneration, it was visually observable 

that this process resulted in the loss of resin from the fiber.  It is believed that the 

loss of the resin is caused by degradation of the epoxy used to secure the resin 



 63

to the fiber surface during rinsing with HCl. 

 The loss of resin from the fiber makes it difficult to use one fiber for a set 

of experiments and still achieve a linear response.  We did not conduct studies to 

find more reliable rinsing procedures.  While it is desirable to be able to 

regenerate the fibers to reduce experimental costs and deviations between 

fibers, the inability to do so reliably is not detrimental to their use because the 

fibers are inexpensive to produce and it has been shown that the reproducibility 

from fiber to fiber is sufficient for many applications.  For these reasons most 

experiments reported herein were performed using new fibers for each sample 

solution. 

 

2.3.4 Fiber Uptake Kinetics; With and Without Potential Interferences 

The rate of uptake of 137Cs into the polymer matrix was studied to 

determine an appropriate equilibration time for the fibers in solution.  A factor of 

the rate of uptake of 137Cs into the polymer is the ion exchange process.  This 

process may be limited by the concentrations of interfering cations in the sample 

matrix.  With increased concentrations of interfering cations, ion exchange with 

the target ion may be reduced through competition for ion exchange sites. 

Although such effect should be mitigated by the fact that in most experiments the 

capacity of the coated resin far exceeded the metal ion content of the sample 

(exclusive of Na (I)).  Figure 2.4 shows the counts measured in 350 µl of a 400 

nCi/ml solution of 137Cs versus time.  The measurements were made in a realistic 

matrix with an alkaline pH and a large (~107 fold) excess of Na (I).  As the figure  
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Figure 2.4 Signal counts versus equilibration time (min.) within several sample 

matrices that contain interfering metal ions.  A) 10-5 M Al (III) in 1M NaOH.  B) 10-

5 M Sr (II) in 1M NaOH.  C) 1M NaOH.  D) 10-5 M Cs (I) in 1M NaOH.  E) 5-fold 

diluted tank waste simulant. 
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shows, a plateau in signal is reached after 35 minutes of exposure.  Similar plots 

were constructed for solutions containing 20, 40, 80, and 200 nCi/ml 137Cs.  Each 

of these plots showed that a plateau was reached by 35 minutes of exposure to 

the respective solutions.  From this study an equilibration time of 35 minutes was 

set for all subsequent measurements. 

Figure 2.4 also shows the uptake process in the presence of potential 

interferences including uptake in a 5X diluted mock DSSF Hanford waste. The 

composition of the Hanford simulant and a 5-fold dilution used in these studies 

are shown in Table 2.1.   The simulated Hanford tank waste sample was made 

by the procedure described by Carlson of Pacific Northwest Laboratories[84].  

The chosen simulant approximates a DSSF supernate from Hanford Tank 241-

AW-101 with the exception that the total sodium concentration is lower than the 

actual tank waste (7 M rather than 10 M).  The initial rate of uptake of 137Cs is not 

significantly altered in the presence of these other metals (see initial slopes in the 

figure).   However, the equilibrium signals (in the 30-60 minute range) are 

different in some instances.  Given its extreme complexity it is not surprising that 

equilibrium signal levels in the Hanford matrix are significantly lowered.  In a 

matrix such as this the possibility of complicated secondary equilibria exists. 

Secondary equilibria would effectively alter (in many cases decrease) the 

concentration of free metal ions in the sample.  Since we are far from exceeding 

the capacity of the resin, the equilibrium signal in the presence of 10-5 M Cs (non 

radioactive) should not be altered.  The slight decrease relative to the 1.0 M 

NaOH matrix (without other metal ions) may simply reflect the reproducibility in  
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Table 2.1 Hanford DSSF 101-AW stock and diluted simulant composition. 

 

Species Stock 101-AW Simulant, M Diluted 101-AW Simulant, 

M 

Na 7.00x100 1.4x100 

Al 6.95x10-1 1.39x10-1 

Ba 8.28x10-7 1.66x10-7 

Ca 3.62x10-4 7.24x10-5 

K 6.65x10-1 1.33x10-1 

Sr 1.00x10-7 2.00x10-8 

SO4 1.52x10-2 3.04x10-3 

OH 5.82x100 1.16x100 

OH (free) 3.04x100 6.08x10-1 

Theoretical pH 1.51x101  

Cl 9.10x10-2 1.82x10-2 

CO3 1.96x10-1 3.92x10-2 

F 6.07x10-2 1.21x10-2 

NO2 1.23x100 2.46x10-1 

NO3 2.09x100 4.18x10-1 

PO4 2.45x10-2 4.90x10-3 
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preparing the fibers.  The presence of 10-5 M of other metal ions showed an 

increase in the measured signal for all metals evaluated.  Part of this increase 

may be attributed to the reproducibility in preparing the fibers.   However these 

metals appear to be enhancing the steady-state equilibrium of Cs with the resin.  

This signal enhancement is believed to be due to an increase in the uptake of 

137Cs, since β emission should not be affected.  The reason for this enhancement 

in ion exchange equilibria can be linked to several effects including ion-pair 

formation, salting-out, and repulsion due to like charges[85].  It has been 

reported that as ionic strength of the sample matrices increases, so does 

sorption of electrolytes onto the ion exchanger[86].  Increased  sorption of 137Cs 

into the resin used in our studies would lead to an increase in observed signal.  

Hydrolysis of cations can alter the concentrations of free metal ions in solution, 

as well as the pH of unbuffered solutions[86].  The presence of higher valence 

cations in solution can create exchange sites in the resin that contain higher 

valence ions than the analyte ion which may effect the uptake of the desired ion.   

It also has been reported that there is often a measurable difference in 

selectivity factors determined by single species experiments and those 

determined by competitive studies[87-89].  Thus selectivity enhancement 

observed in the presence of other cations is not unprecedented.  The 

mechanisms that lead to these enhancements however are not well understood, 

nor well documented in literature.  If the general composition of the major 

components of the waste tank sample are known (often the case), then 

calibration should be possible.  In some real situations, calibration by a standard 
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addition method may be desirable because it allows the analyte to be measured 

within the true sample matrix.  

 

2.3.5 Calibration Plots; With and Without Potential Intereferences 

A series of calibration plots were made to compare the signal achieved 

with an uncoated and a resin coated scintillation fibers.  These calibration curves 

are shown in Figure 2.5.  The 137Cs samples were made up in 1M NaOH with 

activities from 4 to 3200 nCi/ml (3.4x10-10 to 2.7x10-7 M 137Cs).  Three different 

curves are represented, coated fibers in, and out (dry condition) of the 137Cs 

containing solution, and an uncoated fiber in the 137Cs solution.  The slopes of 

the three curves show that the sensitivity of the coated fibers in, or out of solution 

is much greater than an uncoated scintillation fiber in solution.  The decrease in 

the counts between the calibration curves of the coated scintillation fibers 

measured dry and in solution verifies that the epoxy-polymer coating does not 

lead to excessive attenuation of the β particles.  The fiber appears to be able to 

measure β particles both in the resin and in the surrounding solution. Sensitivity 

(slope) and regression data for the plots appear in the figure.  The LOD 

achievable with the uncoated fibers was 13.10 nCi/ml (1.11x10-9 M 137Cs) while 

the coated fibers measured in solution and in the dry state were 1.83 and 3.65 

nCi/ml (1.54x10-10 and 3.08x10-10 M 137Cs), respectively.    These LOD values are 

based on a S/N of 2 with the noise value determined by the rms of the measured 

background signal.  
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Figure 2.5 Signal counts versus activity (nCi/ml) for fibers measuring 137Cs in 

solutions of 1M NaOH.  A) Coated fibers measured in solution.  B) Coated fibers 

measured out of solution.  C) Uncoated fibers measured in solution. 
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The DMBP used in these studies has been shown to selectively bind Cs 

(I) in the presence of Na (I), but no other selectivity studies had been 

performed[78].  A calibration plot for 137Cs in the presence of 10-5 M each of Cs 

(I), Rb (I), and Al (III) is shown in Figure 2.6.  Although the number of counts has 

decreased dramatically from the calibration plot produced in 1.0 M NaOH, the 

plot does remain linear with a sensitivity which approximately 4-fold lower that in 

Figure 2.5.  In the presence of these interfering metal ions the LOD is 6.3x10-10 

M.   Samples of 137Cs with concentrations from 5.3 nCi/ml to 3200 nCi/ml were 

also made so that they were in a 5-fold dilution of the stock DSSF simulant 

(composition is shown in Table 2.1).  These solutions were measured as before 

and the calibration curve is also shown in Figure 2.6.  The calibration curve was 

linear, with a sensitivity that was again approximately 4-fold less than in Figure 

2.5. The LOD achievable in the simulated tank waste is 7.1 x10-10 M. 

 The distribution coefficient (D) was calculated using data collected from 

uncoated fibers.  By subtracting the counts from uncoated fibers measured in the 

original solution from the counts of an uncoated fiber measured in the same 

solution after uptake of 137Cs by a coated fiber, the concentration of Cs in the 

resin can be determined.  Then using the estimated mass of resin on a coated 

fiber (300 µg) we can calculate the distribution coefficient by equation 2.6. 

( )
( )volume .soln./soln in Cs mmole

resin resin/mass in Cs mmole
=D   (2.6) 

 
For solutions of 3200, 2000, 1000, and 400 nCi/ml the distribution coefficients 

were calculated to be 493, 490, 430, and 551 ml/g, respectively.  This gives an  
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Figure 2.6 Signal counts versus activity (nCi/ml) for fibers measuring 137Cs in the 

presence of 10-5 M each of Cs (I), Rb (I), and Al (III) (A) and in the presence of 

Hanford tank waste simulant (B). 
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average of 490 ± 50 ml/g, which is consistent with the reported value being 

greater than 400 ml/g.[78]  Using this value of D the mass of 137Cs on the fiber 

(dry state) is approximately 6 pg at the LOD. 

 

2.3.6 Non-Specific Resin Studies 

The selectivity of the DMBP resins was compared with that of an ion 

exchange resin (Amberlite IRP-69).  The ion exchange resin particles were 

ground down to match the particle size of the DMBP using a ball mill.  The fibers 

were coated with the ion exchange resin in the same manner as with the DMBP.  

Fibers were first used to measure the signal from 1600 nCi/ml solutions in 1 M 

NaOH and containing no interferences, and then the signal from a 1600 nCi/ml 

solution in a 5-fold diluted tank waste simulant.  Signal level for the ion exchange 

fiber were comparable to resin fibers.  However, the former retained only 2% of 

the original signal observed in the 1M NaOH matrix, when measured in the tank 

waste simulant.  The signal retention was a factor of 7 greater for the DMBP 

resin, under the same conditions, demonstrating the enhanced selectivity of the 

DMBP over a strong cation exchange resin. 

   

2.4 CONCLUSIONS 

 

This study has demonstrated chelating scintillation fibers for use in 

quantifying activities of radioactive metals in alkaline, aqueous samples, and in 

simulated tank waste.  The use of these fibers allows for simplified sampling, 
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extraction, concentration, and introduction into an analytical instrument.  

Reducing these typically separate steps into one step is advantageous to 

reducing sample handling by workers, which in turn reduces worker exposure to 

radiation sources.  The coating of the scintillation fibers with a Cs selective 

DMBP has shown to substantially improve the sensitivity over uncoated 

scintillation fibers.  Calibration curves are necessary to accurately quantitate the 

activity of 137Cs within a sample matrix.  General matrix conditions are known for 

most waste tanks making calibration of the fibers possible.  The DMBP showed 

good selectivity for Cs (I) over other metals.  With the use of other highly 

selective coating materials, fibers could be created to quantitatively monitor an 

array of analytes.    For example, a DMBP resin in the diphosphonic acid rather 

than diphosphonate form has been shown to extract both Cs (I) and Sr (II) from 

alkaline solutions[90]. 
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CHAPTER 3 
 

ENHANCED CHEMI-MECHANICAL TRANSDUCTION AT 
DISORDERED NANOSTRUCTURED INTERFACES 

 
 
3.1 INTRODUCTION 
 
 

Microfabricated cantilevers that have been commonly used in scanning 

probe microscopies have become increasingly popular as transducers in 

chemical and biological sensors [69, 91-96]. This growing fundamental and 

practical interest in cantilever-based sensors can be explained primarily by two 

factors. First, a microcantilever transducer directly converts changes in the Gibbs 

surface free energy created by surface-analyte intermolecular interactions into 

measurable mechanical responses. Second, the sensitivity of these cantilevers to 

small quantities of analytes is superior to that of many other transducers. Using 

gold-coated cantilevers bearing proper molecular receptors, ultra-low (ppb) 

concentrations of toxic gases in air [92, 94] and metal cations in water have been 

detected[95]. Other practical applications of cantilever-based sensors can be 

gained from differential [69] or more sophisticated algorithms [94] applied to 

responses from cantilevers arranged in arrays.  The measurement of changes in 

surface stress less than 10-4 N m-1 is possible when appropriate cantilever 

designs are combined with sensitive deflection measurements[97, 98]. Cantilever 

deflection is caused by a differential surface stress [72] and, consequently, 

unequal interaction of the analyte with opposite sides of the cantilever is 
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therefore important. Modification of only one side of silicon or silicon nitride 

microcantilevers with smooth polymer coatings or monolayers of reactive 

receptors is commonly employed [69, 93-96, 99, 100]. Our approach, however, 

consists of creating cantilevers having sides that are both chemically and 

structurally different.  It is believed that the creation of nano-sized metal clusters 

on one side of a cantilever will be especially advantageous in designing chemi-

mechanical transducers with large intrinsic enhancements in analyte induced 

deflection. Colloidal and optical properties of metal clusters organized into two- 

and three-dimensional (2- and 3-D) structures with submicrometer features have 

been extensively explored [101-105]. Importantly, similar procedures of receptor 

immobilization can be applied to smooth and nano-structured gold surfaces [101, 

103, 104]. It is also important to note that cantilever deflection is governed by the 

same intermolecular and surface forces as those acting in colloids and porous 

media [106, 107] or in small gaps between macroscopic surfaces [106, 108, 109]. 

Theoretical evaluations as well as direct measurements of mechanical stresses 

provide some evidence [106, 107] that integral stress in surface-confined colloids 

may exceed the `true' surface stress of smooth solids by several orders of 

magnitude. 
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3.2 EXPERIMENTAL SECTION 

 

3.2.1 Materials and Chemicals 

Triangular, open structure, silicon nitride cantilevers (length 350 µm, 

thickness 600 nm) were obtained from Park Scientific [99, 100]. The silver and 

chromium metals deposited on the cantilevers were obtained from Alfa Aesar 

and Kurt J. Lesker Company, respectively, and used as received. The following 

chemicals were all purchased from Sigma or Aldrich and used as received: the 

test hydrocarbon analytes, 2,7-dimethylnaphthalene (DMN), 2,3-

dihydroxynaphthalene (2,3-DHN), 2,7-dihydroxynaphthalene (2,7-DHN), 

tolazoline, ephedrine and tetrachloroethylene (TCE), and 20 nm gold particles. 

All other reagents used in these studies were purchased from either Sigma or 

Fisher Scientific and used as received. All water used to prepare solutions was 

obtained from a Barnstead E-Pure water filtration system. Ultra high purity 

nitrogen was used as the carrier gas in all gas phase experiments. Buffer 

solutions for liquid phase measurements consisted of monobasic and dibasic 

sodium phosphate dissolved in ultrapure water.  The ratio of the two components 

was fixed to yield a buffer of pH 7.  All liquid phase analyte solutions were 

prepared in this buffer that is also called the background solution.  Heptakis-6-

mercapto-β-cyclodextrin (HM-β-CD) was prepared using the method of Rojas, 

Koniger, and Stoddart. [110] by the scheme shown in Figure 3.1. 
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β-CD        (HM-β-CD) 

 

Figure 3.1 Preparation of scheme of heptakis-6-mercapto-β-cyclodextrin (HM-β-

CD)  
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3.2.2 Instrumentation  

Cantilever deflection measurements were made by reflecting a 5 mW 

diode laser (Coherent) operating at 632 nm off the cantilever tip and onto a 

position sensitive detector (built in-house). The output signal was processed 

using a lock-in amplifier (Stanford Research Systems). An 1-ml flow cell housing 

a cantilever holder was used for vapor-phase measurements. TCE and DMN 

vapors were delivered into the cell via a syringe pump through a T-joint and a 4-

way valve, which enabled switching between pure nitrogen and diluted analyte. 

The degree of analyte dilution was defined by the syringe pump flow rate divided 

over a total flow rate. The latter was measured at the cell outlet using a mass 

flow meter tube. The entire instrumental apparatus was located on a vibration 

isolation table in a thermally controlled environment. 

For liquid measurements the MC was mounted in a 100-µl flow cell from 

where it could be exposed to various solutions.  The solutions were delivered to 

the flow cell via a 10ml syringe connected to a 2-way valve.  This valve was 

connected in series to a second 2-way valve that was connected to a 50ml 

syringe.  Figure 3.2 is a picture of the gravity fed liquid flow cell.  Typically the 50 

mL syringe was filled with a 25mM phosphate buffer at pH 7, and the 10ml 

syringe filled with the same buffered solution containing a specific concentration 

of an analyte.  The pH of the solutions was measured using an Orion SA 520 pH 

meter (Thermo Orion, Beverly, MA).   

Electrochemical measurements were carried out using a conventional 

three-electrode cell. The geometrical area of the samples exposed to the  
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Figure 3.2  Image of gravity fed liquid flow cell used in microcantilever setup. 
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electrolyte was in the range of 0.5-2 cm2. An Ag/AgCl saturated KCl electrode 

and a coiled Pt wire were used as reference and auxiliary electrodes, 

respectively. The data acquisition and voltage control was performed using a CH 

Instruments 650 A Electrochemical Workstation (CHI version 2.05). Electrolyte 

solutions for defining the effective surface areas and thiol coverage were 1.0 M 

H2SO4 and 0.5 M KOH, respectively. 

 

3.2.3 Preparation of Cantilever Surfaces 

Two different technological strategies were used in order to create gold 

nano-structures on one side of the cantilevers. The first strategy (Process 1 in 

Figure 3.3) involves the deposition of a 40 nm layer of smooth gold followed by 

electrostatic binding [102] of monodisperse gold nanospheres (with a mean 

diameter of 20 nm) onto a 4-aminobenzenethiol-modified gold surface.  This 

procedure was performed by coating the cantilevers with the gold layer, 2-3 h 

immersion in a 1 mg ml-1 4-aminobenzenethiol in methanol solution, and rinsing 

with copious amounts of methanol then water. The cantilever was then placed in  

the solution of gold nanospheres for 1-2 days. The cantilever was then removed 

from the solution and gently washed with water. The second strategy (Process 2 

in Figure 3.3) uses chemical dealloying of co-evaporated granular Au:Ag films. 

This procedure is a thin film adaptation [111] of the method reported by Li and 

Sieradzki [112] that involves the preferential oxidation of the silver in the alloy. 

20-100 nm thick co-evaporated Au:Ag films were used in our studies. The vapor 

deposition of metals onto the cantilever surface was accomplished using a vapor  
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Figure 3.3 Schematic illustration of the techniques used in this study to prepare 

gold nanostructures.  Process I and II depict assembly of 20 nm gold 

nanospheres on a smooth gold surface and formation of the dealloyed gold 

surface, respectively.  The features in the illustration are not drawn to scale. 
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deposition chamber. The evaporation of a 15 nm gold layer on a 4 nm chromium 

adhesion layer was followed by co-evaporation of gold and silver until a 

composite Au:Ag film of the desirable thickness was formed. The deposition rate 

was 0.04-0.08 nm s-1 and, during co-evaporation, the mass deposition rates were 

the same for both silver and gold. Both the deposition rates and resulting coating 

thickness were monitored using a quartz crystal microbalance. The silver was 

then etched out of the films by placing the cantilever in an aqueous solution of 

0.2 w/v % HAuCl4 for 2-3 min.  

Chemical modification of the surfaces took place after the surfaces were 

structurally modified. The surfaces were modified using HM-β-CD in order to form 

a self-assembled monolayer on the surface. A 1.00 mM solution of the 

cyclodextrin was prepared in 60/40 DMSO/H2O and deaerated in a vacuum 

chamber for 30 min. The cantilever surfaces were cleaned using a 40 s 

immersion in piranha solution (75% H2SO4, 25% H2O2) to remove any 

contaminants. The cantilevers were then immersed in the cyclodextrin solution 

for 18-20 h. Upon removal from the cyclodextrin solution, the cantilevers were 

rinsed with copious amounts of the DMSO/H2O solvent. 

 

3.3 RESULTS AND DISCUSSION 

 

Figure 3.4 shows the atomic force microscopy (AFM) micrographs of the 

nanostructured surfaces. Although AFM is unable to probe very deep crevices, it 

clearly confirmed a high density of 20 nm gold spheres (Figure 3.4A) assembled  



 83

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 AFM images of gold nanospheres assembly (A) and 20nm thick 

dealloyed gold coating (B).  Both scan areas are 3 x 3 µm. 
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on aminobenzenethiol-modified gold surfaces and larger irregular gold clusters 

formed as result of dealloying Au:Ag films (Figure 3.4B). To complement the 

topographic information provided by AFM, scanning electron micrographs of 

dealloyed surfaces were also obtained [113]. An apparent feature of the 

nanostructured samples from these micrographs is their increased surface area. 

More importantly, some of the narrower gaps between gold particles are of the 

size favorable for involvement of short-range van der Waals, solvation, and steric 

forces [106]. These quasi 3-D nano-structures may be interpreted as surface 

confined colloids rather than porous solids. For the dealloyed gold samples, 

crevices that are narrow may permit strong short-range repulsive or attractive 

forces upon adsorption of guest molecules are apparent. The total surface area 

of such crevices increases with increasing thickness of the dealloyed layer. Both 

the size and the density of the surface confined gold particles increase in the 

following order: (i) assembly of 20 nm Au-nanospheres, (ii) 20 nm thick dealloyed 

gold, (iii) 50 nm thick dealloyed gold (not shown in the figures) and (iv) 75 nm 

thick dealloyed gold. Based on the AFM data, the roughness (RMS value) of the 

samples in this series was, respectively, 8, 13, 35 and 45 nm.  

Gas-phase measurements were conducted on cantilevers with three types 

of gold surfaces: smooth, gold nanosphere-modified, and dealloyed.  Liquid-

phase measurements were conducted on cantilevers with two types of gold 

surfaces: smooth and dealloyed.  In most cases the gold surfaces were 

covalently modified with HM-β-CD. Molecular recognition properties of β-

cyclodextrin and analogous compounds have been confirmed gravimetrically 
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[114], optically [111] electrochemically [115] and using capillary electrophoresis 

[116]. 

Figure 3.5 shows the gas-phase responses of the cantilever to DMN in 

terms of deflection of the cantilever tip. Deflection is also converted to effective 

differential stress, ∆σeff, using the Stoney's Equation (1.10) as shown in the 

figure. The response of the cantilever with smooth gold to 83 ppb of DMN (curve 

3.5a) was approximately the same as that for cantilevers with Au-nanosphere 

assembly (curve 3.4c) or with 20 nm dealloyed gold (curve 3.5b) exposed to 10 

times less concentrated analyte (i.e. 8.3 ppb DMN). Therefore, a 10-fold increase 

of adsorbate-induced differential stresses generated on cyclodextrin-modified 

cantilevers is readily achievable by structuring the gold side of the cantilever. 

There is even a further deflection enhancement (curves 3.5d and 3.5e) when the 

thickness of the nanostructures increased. Figure 3.5, curve e also shows a 

linear decrease in response as the concentration of DMN is decreased. A typical  

correlation coefficient for calibration plots obtained with the nanostructured 

surfaces is 0.997. An increased dynamic range due to the increased sensitivity is 

observed.  

Figure 3.6 provides a comparison of the response factors (nm of deflection 

per ppm) for the two gas-phase test analytes for smooth and nanostructured 

MCs with immobilized receptor phases. Nanostructuring influences the observed 

selectivity as the best response for DMN was observed with the 50 nm dealloyed 

cantilever while the thicker 75 nm dealloyed cantilever provided the largest 

response to TCE. Note also that a simple monolayer of mercapto-ethane  
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Figure 3.5 Enhanced responses of β-cyclodextrin modified cantilevers to DMN 

as a result of nanostructuring the gold-coated side.  The responses are 83.0 ppb 

DMN on smooth gold (a); 8.3 ppb DMN on 20 nm dealloyed gold coating (b); 8.3 

ppb DMN on 20 nm gold nanosphere assembly (c); 8.3 ppb DMN on 75 nm 

dealloyed gold coating (d); 8.3, 5.5, 2.8, and 1.4 ppb DMN on 50 nm dealloyed 

gold coating (e).  
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Figure 3.6 Comparison of the sensitivities of receptor coated microcantilevers for 

the two test analytes.  In one case the immobilized phase was mercapto-ethane 

and in the other cases the HM-β-CD. 
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provides responses to these analytes. However, the sensitivity is considerably 

less than with the equivalent nanostructured cantilever with cyclodextrin receptor.  

Selectivity as indicated by relative chemi-mechanical responses to the two 

analytes is also considerably larger for the cavitand receptor (2500 versus 200 

for mercapto-ethane cantilever).  

Enhancement factors (response factor for nanostructured 

cantilever/response factor for smooth gold cantilever) and limits of detection 

(LODs, based on a signal three times the baseline noise of 20 nm deflection) 

were determined from calibration plots for serial dilutions of DMN and TCE. 

These values appear in Table 3.1. In the best cases, the enhancement factors 

were about two orders of magnitude and the LODs are in mid-part-per-billion 

range for TCE and very impressive mid-part-per-trillion range for DMN.   A 

comparison of the LODs achieved for liquid–phase measurements for the 

analytes, 2,3-DHN, 2,7-DHN, tolazoline, and ephedrine on smooth and dealloyed 

gold surfaces is shown in Table 3.2.  Independent experiments were performed 

to verify that the observed increased response with nanostructuring exceeds the 

increased available receptor phase on the dealloyed surface. Our surface 

plasmon resonance experiments revealed that the HM-β-CD bound to smooth 

gold surfaces with a density slightly exceeding a monolayer. Inspection of the 

gold(III) oxide reduction wave in cyclic voltammograms of smooth and 50 nm 

dealloyed gold surfaces indicated a 13-fold increase in surface area with 

nanostructuring. Using the voltametric method reported by Porter and coworkers 

for the oxidative desorption of alkylthiols from gold surfaces [117], we obtained  
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Table 3.1 Comparison of limits of detection, LOD, and enhancement factors, EF, 

(relative to smooth gold cantilevers) for Nanostructured surfaces with HM-β-CD 

receptor phases. 

 

________________________________________________________________ 
Compound   Surface  LOD   EF 
 
      DMN   gold beads  1.5 ppb     9 
    20 nm dealloyed 2.0 ppb     6 
    50 nm dealloyed 0.14 ppb    93 
    75 nm dealloyed 0.17 ppb    73 
      TCE   gold beads  2.8 ppm    12 
    20 nm dealloyed 3.4 ppm    10 
    50 nm dealloyed   0.34 ppm    97 
    75 nm dealloyed 0.28 ppm  120 
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Table 3.2  Comparison of the LODs achieved for liquid–phase measurements for 

the analytes, 2,3-DHN, 2,7-DHN, tolazoline, and ephedrine on smooth and 

dealloyed gold surfaces. 

 

 
Compound   Surface    LOD (ppm)   
2,3-DHN   Smooth    288 
    50nm dealloyed   4.80 
 
2,7-DHN   Smooth    250 
    50nm dealloyed   7.50 
 
Tolazoline   Smooth    300 
    50nm dealloyed   17.0 
 
Ephedrine   Smooth    326 
    50nm dealloyed   31.3               
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surfaces coverages of 1.7×10-9 and 10×10-9 mol (thiol group)/(cm2 geometric 

surface area) for the smooth and 50 nm dealloyed surfaces, respectively (note: 

Porter observed coverages of about 0.9×10-9 mol/cm2 for alkylthiols). Conversion 

of these numbers to moles of HM-β-CD per surface area would require 

knowledge of the average number (of the 7 available) thiol groups involved in 

surface binding. Assuming that this number is the same for both types of 

surfaces, there is approximately a 6-fold increase in available receptors with 

nanostructuring of cantilevers. The fact that this number is less than the apparent 

increase in surface area indicates limited access of the moderately large 

macrocycle receptor to gold surfaces found in narrow crevices. Similarly, this 

highlights the contribution of surface stresses associated with short-range steric 

forces upon analyte binding to receptors in these confined spaces to the 

observed large cantilever responses. This is additional proof that response 

enhancements clearly exceed the increase in available receptor phase when 

comparing conventional to nanostructured microcantilevers. 

 

3.4 CONCLUSIONS 

 

We have shown that the asymmetric nanostructuring of cantilever 

surfaces can lead to two orders of magnitude enhancements in chemi-

mechanical transduction. The magnitude of the effective surface stresses 

generated at the quasi 3-D interfaces significantly exceeds surface free energies 

of common solids as well as adhesion energies of coating-substrate pairs 



 92

frequently used in chemical sensors. The demonstrated micrometer-scale 

movements of the nanostructured cantilevers are especially attractive as a 

platform for passive chemically controlled microfluidic systems powered 

exclusively by energy of analyte-device molecular interactions. Because the 

implemented asymmetric nanostructuring only slightly increases the deflection 

noise of the cantilever in equilibrium, it also provides an approach to sensors with 

significantly improved limits of detection and dynamic range. Since different types 

of nanostructures lead to different enhancement factors with respect to different 

chemicals, nanostructuring of cantilever surfaces can also create new modes of 

response selectivity. In comparison to several other coatings investigated in our 

study, dealloyed gold provided the most efficient transduction of chemical stimuli 

into mechanical responses. The implemented technology of dealloyed gold is 

highly compatible with conventional microfabrication and, we believe, can be 

extended to a great variety of other materials. Therefore, cantilever-based 

transducers with nanostructured surfaces described herein will have a broad 

impact on the future development of micro- and nano-fabricated chemical 

sensors, actuators and integrated `lab-on-chip' devices.  
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CHAPTER 4 
 

ENHANCING CHEMI-MECHANICAL TRANSDUCTION IN 

MICROCANTILEVER CHEMICAL SENSING BY 

PATTERNED SURFACE MODIFICATION 

 
 

4.1 INTRODUCTION 
 
 

Recent work from several research groups [69, 93, 94, 99, 100, 113, 118-

124] confirms that sensors based on MCs have substantial potential for various 

analytical applications.  In order to fully realize this potential, however, further 

optimization of MC designs and chemical coating selections may be required.   A 

clean smooth solid surface generally exhibits a tensile (positive) surface stress 

due to the electronic arrangement of the atoms composing the surface.  

Significant changes in stress on a surface can occur when surface atoms are 

caused to rearrange due to adsorption by a chemical species[125]. The change 

in stress can be either compressive or tensile depending upon the nature of the 

adsorbed species and its interaction with the surface. The surface stress and 

surface free energy are related by the Shuttleworth equation (Equation 4.1), 

ed

d
   

ε

γ
+γ=σ       (4.1)                   

where σ is the surface stress, γ is the surface free energy, and εe is the elastic 

surface strain that is defined as dA/A where A is the surface area and dA is the 

elastic increase in surface area[71, 125, 126]. In principle, the second term can 
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be comparable to the surface free energy and assume a positive or negative 

value[71].    However, a general trend is that if the initial surface Gibbs free 

energy is large, then modulation in surface stress and, hence, MC response can 

be large.  For example, pure gold surfaces in contact with air have large surface 

free energies, typically exceeding 1 N m-1.  Not surprisingly, when MCs coated on 

one side with gold are exposed to alkylthiols in the gas phase very large total 

responses are observed as the thiol compounds covalently bond to the gold[91, 

92]. 

In order to impart selectivity to MCs used in analytical sensing, chemically 

selective receptor phases need to be immobilized on one of the sides of the MC.  

Ideally, the interaction of the analyte with the receptor phase, while being 

selective, is reversible and exhibits reasonable kinetics for sensing applications.  

The use of MCs with reversible receptor phases for measurements in liquids 

(e.g., aqueous solutions) has not received a great deal of attention.  In part, this 

is because organic receptor phases in water possess surface free energies that 

are substantially smaller than the gold-gas phase case mentioned above.  

Therefore, modulation of surface stress is smaller and often within an order of 

magnitude of the inherent noise of MCs mounted in aqueous environments[113].  

This gives rise to low signal-to-noise levels and somewhat limited dynamic range. 

In chapter 3 the use of nanostructured MCs in gaseous and aqueous 

environments to improve the transduction of molecular recognition events into 

cantilever responses was discussed.  The limitations of smooth surface MCs 

were overcome by creating a highly disordered nanostructured surface on one 
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side of the MC and further modifying the surface with a self-assembled 

monolayer (SAM). The nanostucturing process increased the available surface 

for SAM phases and analyte binding and creates a quasi-3-D structure that is 

colloidal in nature. Importantly, the short-range forces associated with 

intermolecular interactions in the tight interstitial spaces of colloidal systems can 

be very large[106].  The in-plane component of these forces can serve to 

efficiently convert the chemical energy associated with analyte-receptor binding 

into mechanical energy manifested as MC static bending.  The same disordered 

nanostructured MC was used to stabilize thin films of a vapor deposited 

chemically selective phase.  It was shown that limits of detection for both modes 

of operation, SAMs and thin films, could be improved by orders of magnitude 

over MCs with smooth surfaces[127].  The work presented here in Chapter 4 

uses thin films rather than SAMs.  With thin films the stress that gives rise to 

bending of the MC results from swelling or contractions of the bulk phase upon 

absorption of an analyte.  The degree of swelling-induced MC bending upon 

analyte absorption scales with the film thickness and thus thin films can lead to 

larger bendings than SAMs.  There are also some disadvantages to thin films.   

Thin films result in prohibitively slower responses than SAMs, and the stress 

created in a thin film by absorption of an analyte may exceed the energy of the 

MC surface-film adhesion, resulting in a stress-slip condition.  This stress-slip 

condition, which results in poor transduction of the stress generated in the film by 

analyte absorption, is problematic with smooth surfaces and weakly interacting 

film-surface interfaces. 
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Herein, we report on another approach to improve sensitivity of MCs in 

liquid-phase measurements using patterned modification of the MC surface.  The 

distinction between this work and the work presented in Chapter 3 is the degree 

of order of the surface structuring.  The structuring in Chapter 3 is a completely 

disorganized surface, while the structuring presented here is done in an orderly, 

organized manner.  The advantage of an ordered surface over the disordered 

surface is that it allows mechanical modeling of the structure to become a 

possibility.  The ability to perform mechanical modeling, though not done in this 

work will provide a better understanding of how these surface modifications 

enhance the device sensitivity.  The surface modifications in our present work 

have larger features than the nanostructured surfaces reported previously and 

are created by two different methods.  The first method uses a focused ion beam 

(FIB) to controllably mill away areas of the silicon surface.  The second method 

of modification uses the FIB to dope regions of the silicon surface of the MC with 

Ga+ impurities.  The silicon MC is then etched in a hot KOH bath.  KOH is an 

anisotropic etchant for silicon and etches the <111> crystal plane of silicon much 

slower than the <100> or <110> crystal planes, regardless of dopants[128, 129].  

The doped areas of the silicon surface of the MC etch at a slower rate than areas 

that are not doped[130-137] and patterns can be created based on the doping of 

the surface.  In this case alternating areas of doped and undoped silicon were 

patterned on the MCs, which after etching in KOH left V-shaped grooves across 

the width of the MC, that depending on the dimensions were truncated at the 

bottom.  The nanoscale channels across the width of MCs were then filled with 
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an organic receptor phase.  As analytes absorb into the receptor phase the 

stress created in the phase can be more efficiently transferred to the surface 

creating a greater differential stress and thus more bending. 

 

4.2 EXPERIMENTAL SECTION 

 

The silicon MCs that were used in this study are commercially available, 

approximately 1.5 µm thick, beam-shaped and coated with a layer of aluminum 

(MikroMasch, Tallinn, Estonia).  Each chip carried two sizes of MCs, 400nm long 

by 100nm wide, and 200nm long by 50nm wide, the latter size was used for 

these studies.  The aluminum layer was removed from the MCs by immersing 

them in aqua regia (75% HCl, 25% HNO3) for 5 minutes.  The MCs were then 

rinsed in deionized (DI) water for 10 minutes, and dried under a gentle stream of 

nitrogen. The MCs were cleaned in piranha solution (75% H2SO4, 25% H2O2) 

and then rinsed in DI water and dried under a gentle nitrogen stream.  The 

surfaces of the MCs were then modified using a FIB (FIB 200, FEI Co., Hillsboro, 

OR, USA) by milling grooves across the entire width of the MCs to depths of 200 

or 400 nm.  An example of a milled lever is shown in Figure 4.1.  As seen in the 

figure the grooves are positioned approximately every 800 nm and are roughly 

400 nm wide.  The grooves covered the 100µm nearest the base of the 200µm 

long MCs.  The entire MC was not milled in order to leave an area to efficiently 

reflect a readout laser beam.  
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Figure 4.1 Focused ion beam image of grooved microcantilever with 400nm 

deep grooves. 
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Pattern files were created for the MCs that were grooved by doping and 

etching of the silicon surface.  These pattern files defined the areas of the 

regions to be doped and controlled the spacing between the doped areas for the 

FIB.  The defined areas were exposed to a 30kV, 1000 pA Ga+ beam current for 

the time required to achieve a doping of 1016 ions/cm2, within each defined area.  

The MCs were then removed from the FIB without further imaging and etched in 

a 70°C 60% w/w KOH solution for approximately 5 minutes.  After etching the 

MCs were rinsed in DI water for 20 minutes and then dried.  Examination by low 

current FIB was used to see if the etching was completed or if further etching 

was required to complete the grooves.  Figure 4.2 shows an image of the V-

shaped grooves produced by this method. 

Once the surface of the MC was modified it was placed into a physical 

vapor deposition (PVD) chamber (Cooke Vacuum Products, model CVE 301, 

South Norwalk, CT) to be coated with metallic and organic films.  The modified 

surface of the MC was coated sequentially with a thin film (~5.0nm) of chromium, 

a thin film of gold (~10 nm), and finally a film (100nm) of (2,3-O-dimethyl-6-O-

tertbutyl-dimethylsiyl)-β-cyclodextrin (MeSi-β-CD) synthesized in house[138].  

The chemical structure and general appearance of this macrocycle, teacup-

shaped, molecular receptor are depicted in Figure 4.3.   Film thicknesses were 

measured using a conventional quartz crystal microbalance (Maxtek, model TM-

100R, Sante Fe Springs, CA).  

The MC was mounted in a 100-µl flow cell from where it could be exposed  
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Figure 4.2 V-shaped grooved microcantilever prepared by Ga+ doping of silicon 

surface and subsequent anisotropic etching with KOH. 
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Figure 4.3 Monomeric units (A) and general shape (B) of the functionalized 

cyclodextrins used as receptor phases. R1 and R2 are (CH3)3CSi(CH3)3 (tertbutyl-

dimethylsilyl) and CH3, respectively.  The dimensions of a typical β-cyclodextrin 

are 8 angstroms wide and 6 angstroms deep. 



 102

to various solutions.  The solutions were delivered to the flow cell via a 10ml 

syringe connected to a 2-way valve.  This valve was connected in series to a 

second 2-way valve that was connected to a 50ml syringe.  Typically the 50 mL 

syringe was filled with a 25mM phosphate buffer at pH 7, and the 10ml syringe 

filled with the same buffered solution containing a specific concentration of an 

analyte.  The pH of the solutions was measured using an Orion SA 520 pH meter 

(Thermo Orion, Beverly, MA).  The deflection of the MC was measured using an  

optical beam bending method shown in Figure 1.17[92].  In this method the 

deflection of the MC is measured by reflecting a 5mW diode laser (Coherent 

Laser Corp., Auburrn, CA) operating at 635nm off of the MC and onto a position 

sensitive detector[127].  The output of the detector was recorded using an Agilent 

34970A data acquisition/switch unit (Agilent Technologies, Inc. Loveland, CO) 

and a pentium computer interfaced by a GPIB connection.  The flow cell was 

imaged using a Watec CCD camera (Edmund Industrial Optics, Barrington, NJ) 

to assist with alignment of the laser beam on the MC tip.  

The analytes and buffer components were obtained from Sigma (St. Louis, 

MO), or Aldrich (Milwaukee, WI) and used as received.  All of the buffer solutions 

consisted of monobasic and dibasic sodium phosphate dissolved in DI water.  

The ratio of the two components was fixed to produce a buffer at pH 7.  All of the 

analyte solutions were prepared in this buffer solution.  The acids and bases 

used were obtained from Fisher Scientific (Pittsburgh, PA).  The metals used 

during the coating process were obtained from Alfa Aesar (Ward Hill, MA) or the 
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Kurt J. Lesker Company (Livermore, CA) at a purity of 99.9%.  The MeSi-β-CD 

was synthesized using the method of Takeo et. al[139].  

 

4.3 RESULTS AND DISCUSSION 

 
 When a MC is modified with an analyte permeable coating that is much 

thicker than a monolayer, a dominant mechanism of MC deflection is analyte-

induced swelling of the coating.  Such swelling processes may be quantified by 

evaluating the molecular forces acting within the coating and between the coating 

and the analyte species.  The absorption of analytes into a coating can alter 

dispersion, electrostatic, steric, osmotic, and solvation forces acting within the 

coating[106].  The absorption of analytes into the coating requires the creation of 

a vacancy in the bulk coating [140] and this can give rise to swelling that is 

characterized by an expansion coefficient[141]. The swelling may effectively 

produce a stress or a pressure change inside the coating, depending on whether 

it is described as a solid, or a gel, respectively.  This pressure change multiplied 

by the thickness of the coating produces an apparent surface stress change 

(∆σapp) that can be used in Stoney’s equation to estimate deflections of a MC 

coated with a thin, soft responsive film.  In the case of thin film coatings, 

nanostructured surfaces improve the transduction of this in-plane stress into 

cantilever bending by reducing the ability of the thin film coating to slip along the 

MC surface as it swells.  It is also important to note that swelling of soft films that 

are physically confined in the in-plane dimension on a cantilever surface may 
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occur preferentially in the out-of-plane dimension and will not produce the 

desired MC bending.    

The response of both surface modified and unmodified MCs coated with a 

film of MeSi-β-CD to a series of analytes were measured to further study the 

effect of surface morphology on MC chemical response.  Cyclodextrin 

macrocycle sugar cavitands were chosen as chemical coatings based on their 

molecular recognition capabilities.  Interactions between the cyclodextrin and 

solutes are based upon size, geometry, and physiochemical properties of both 

the cyclodextrin and solutes and have shown high degrees of selectivity in 

chemical separations[116, 142-145].  The response of two surface modified MCs 

to 2,3-dihydroxynaphthalene (2,3-DHN) were compared with the response of an 

unmodified MC.  The depths of the grooves were 200nm for one MC and 400nm 

for the second.  The grooved region of each of these MCs was preferentially 

coated with 100nm of MeSi-β-CD using a mask, as was an ungrooved MC.   The 

response of these MCs to a series of dilutions of 2,3-DHN over the range 25 to 

1000 ppm is shown in Figure 4.4.  As can be seen in the figure the 400nm 

grooved MC gave the greatest response to each concentration of 2,3-DHN, 

followed by the 200nm grooved MC.  The unmodified MC showed no clear 

measurable response even for the higher concentrations of 2,3-DHN.  The 

magnitude of the response of the 400nm grooved MC was three times greater 

than that of the 200nm grooved MC.  The response of the 400nm and 200nm 

deep grooved MCs were linear with linear regression (R2) values of 0.97 and 

0.96, respectively.  The 2,3-DHN limit of detection for the 400nm deep grooved  



 105

 

 

 

 

 

 

 

 

Figure 4.4 Response curves for surface modified microcantilevers to 2,3-DHN. 

(A) Ungrooved, (B) 200nm deep grooves, (C) 400nm deep grooves. 
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MC was 36ppm.  This demonstrates that the addition of grooves leads to 

improvement in MC sensitivity.  In general, deeper grooves increased the 

sensitivity over shallower grooves.  We believe that the confinement of the 

receptor phase in the grooves allows the stress generated within the phase by 

absorption of analyte to be transduced into surface stress of the MC more 

efficiently.  While confinement of the film in grooves may serve to reduce stress 

induced slippage, there are other response factors involved.  The addition of 

grooves to the MC will also reduce the spring constant, making the cantilever 

more responsive, but also more noisy.  The resonance frequencies of the surface 

modified MCs were measured and from this relative spring constants were 

determined from the equation: 

m
k

f ∝      (4.2)  

where f is the resonance frequency in Hz, k is the spring constant in N m-1, and m 

is the mass of the cantilever in kilograms.  By measuring the resonance 

frequency and estimating the mass of each cantilever the spring constant can be 

estimated.  The measured resonance frequencies were 61.4 kHz for the 

ungrooved MC, 52.0 kHz for the 200nm deep grooved MC, and 39.9 kHz for the 

400nm deep grooved MC.  The mass of the ungrooved MC was estimated from 

the volume of the MC and the density of silicon.  For the grooved MCs the 

volume of the grooves was calculated and subtracted from the mass of the 

ungrooved MC.  From this information the spring constants of the ungrooved, 

200nm deep grooved, and 400nm deep grooved MCs were found to be in the 



 107

ratio of 2.7 to 1.8 to 1.0 respectively.   Since E and k are proportional to each 

other[146], the expected changes in response due to underlying structural 

changes should be a factor of 1.8 when comparing the smooth to the 200nm 

grooved MCs and a factor of 1.5 when comparing the 400nm to the 200nm 

grooved MCs.  The observed changes in responses to 2,3-DHN shown in Figure 

4.4 are considerably larger.  This suggests that both changes in spring constant 

and confinement of the responding film within grooves for the milled MCs are 

contributing to the observed improvement in sensitivity.  Finite element analysis 

of modified microcantilevers could be used to investigate which of these factors 

is more important in the improvement of the MC sensitivity[147].   

A surface modified MC with 400nm deep grooves was exposed to a series 

of VOCs (trichloroethylene, chloroform, and methylene chloride) each at a 

concentration of 100ppm.  The responses of the modified MC to these analytes 

are shown in Figure 4.5.  The variations in response to these analytes 

demonstrates that the MeSi-β-CD film gives modest selectivity to the MCs.  

Figure 4.5 also shows the reproducibility of the MC responses over multiple 

injections of an analyte.  A calibration curve was obtained for the DNAPL 

trichloroethylene in the concentration range of 1-1000ppm.  Above a 

concentration of 50ppm the responses leveled off indicating saturation.   

However, below 50ppm the responses (Figure 4.6) were linear and gave a linear 

regression (R2) of 0.98.  Although this particular MC system was not optimized 

(see below) it yielded a TCE limit of detection of 980ppb.  
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Figure 4.5 Response curve of 400nm deep grooved microcantilever to a series 

of VOCs. 
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Figure 4.6 Responses of a 400nm deep grooved microcantilever coated with 

100nm MeSi-β-CD to Trichloroethylene solutions of different concentrations. 
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The effect of MC thickness was studied on a 400nm deep grooved MC.  

Three MCs were thinned by 200, 400, and 600nm, respectively using the FIB.  

The surface of these MCs were grooved with 400nm deep grooves and then 

coated with MeSi-β-CD.  The responses of each of these MCs to 100ppm 

trichloroethylene were measured and are shown in Figure 4.7.  As the MCs 

become thinner the responses increase without an apparent decrease in the S/N 

ratio.  Thus, a several fold improvement in limits of detection over what we have 

found in this work above should be possible with thinning. 

The work presented was done entirely with MCs that were grooved by 

milling with the FIB.  However, MCs that were doped and etched have been 

shown to give similar enhancements as the milled ones.  Figure 4.8 shows the 

response of an ungrooved MC and a V-shaped grooved MC to the analyte 8-

hydroxyquinoline.  The work with V-shaped grooves has not yet reached 

maturity, but is believed to have great potential.  From strictly a geometric 

perspective, a V-shaped grooved MC such as the one shown in Figure 4.2 that 

experiences only a 0.1% in-plane swelling of a thin film in the groove is capable 

of producing a deflection at the tip of 4 µm per 100 µm of length.  This is an 

enormous deflection that is the result of large internal pressures generated in the 

thin film rather than a flimsy MC. 
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Figure 4.7 Response of 400nm deep grooved microcantilever to 

trichloroethylene after thinning of the microcantilever surface. (A) Unthinned, (B) 

Thinned by 200nm, (C) Thinned by 400nm, (D) Thinned by 600nm. 



 112

 

 

 

 

 

Figure 4.8 Response of ungrooved MC and a V-shaped grooved MC to 80ppm 

8-hydroxyquinoline.  
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4.4 CONCLUSIONS 

 
Surface modification of MCs has shown the potential to increase 

sensitivity of these devices as chemical sensors.  This increase in sensitivity is 

produced by improvement of the transduction of stress created in a chemical 

receptor phase, by analyte adsorption or absorption, to surface stress on the MC.  

With an asymmetric MC this leads to a larger differential stress, which results in 

larger deflections of the MC tip.  It should be noted that previous MC work with 

disordered nanostructured surfaces with smaller features yielded superior limits 

of detection (125 ppb for 2,3 DHN) using a similar coating[127].  This may 

indicate that the scale of the features on the grooved MCs (100’s of nm) used in 

this work needs further optimization.  Future optimization of MC chemical 

sensors will involve increasing the thickness of the coatings, and investigating 

further the effects of groove size and density and thinner cantilevers. 
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CHAPTER 5 
 

MISCELANEOUS WORK AND CONCLUDING REMARKS 
 

5.1 INTRODUCTION 

  

 During the course of the work described in prior chapters some other work 

was performed to support or follow-up other projects.  In particular, two main 

projects that were undertaken involved an attempt to detect β-particles using 

MCs, and the application of a new technique, matrix assisted pulsed laser 

evaporation (MAPLE) to controllably apply thin films to the individual 

microcantilevers on a single chip.  The attempt at β-particle detection was a 

follow-up to the development of the chelating scintillation fibers discussed in 

Chapter 1, while the application of the MAPLE technique was aimed at 

broadening the range of selective coatings we are able to apply to MCs, and 

improving the spatial resolution with which we could deposit multiple coatings. 

 

5.2  β -PARTICLE DETECTION WITH MCs 

 

 Bimaterial MCs respond to thermal effects due to the differences in 

thermal expansion coefficients of the two materials comprising the device.  They 

have been shown to respond to heat energies from 10-12 to 10-14 J depending on 

the geometry and dimensions of the MC[148-150].  Detection of radioactive 
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elements by the deflection of the MC caused by the heat lost by an ionizing 

particle as it passed through the MC was investigated.  A capillary column was 

packed with the chelating resin used in Chapter 2, and loaded with 137Cs by 

allowing this packed capillary to soak in a 3200 nCi/ml solution of 137Cs.  The 

capillary was then positioned within 1 cm of the MC on a positional stage.  The 

optical beam bending technique, used for the experiments described in Chapters 

3 and 4, was used to monitor the deflection of the MC.  A typical measurement 

was started with the direct path from the packed capillary to the MC blocked by a 

small piece of Al foil, after measuring this background for several minutes the Al 

foil was removed from the path between the packed capillary and the MC.  

Distinct deflections due to interaction of the ionizing β-particles with the MC were 

not observed.  The reason that no deflections were observed was most likely due 

to a combination of two factors.  First, the β-particles are of high energy and low 

mass.  As described in Chapter 2 β-particle of the energy emitted by the decay 

process of 137Cs has a penetration depth of ~ 350 µm through a material with a 

density of 1 g/cm3.  The second factor is the minute thickness of the MCs (~ 600 

nm).  Combined, the penetration depth of the β-particle and the comparatively 

small thickness of the MC leads to the loss of a very small amount of energy as 

these particles pass through the MC. In fact, less than 0.5% of the particles 

energy would be lost assuming the energy loss is linear with penetration depth, 

which it is not as most of a ionizing particles energy is lost as the particle comes 

to rest.  These factors combined with any energy lost by the β-particle as it 
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escaped the capillary packing, would put us below the sensitivity levels of the MC 

to heat energies.  To date only one literature article that has appear measuring 

radioactive decay of an element.  This article collected the charged particles from 

an alpha emitter 241Am, on a collector plate and measured changes in the MC 

resonance frequency due to electrostatic interactions with the plate[151].  

Another approach that may allow for indirect detection of a radioactive decay 

process by a MC is based upon the absorption of photons to produce the heat 

that causes MC deflection.  Chelating scintillation fibers could be used to convert 

the ionizing particles into photons.  These photons could then be directed at a 

MC with a chemical film that is a strong absorber of the wavelength of the 

photons emitted by the chelating scintillation fiber.  The heat produced by 

absorption of the photons should lead to deflections of the MC. 

 

5.3 MATRIX ASSISTED PULSED LASER EVAPORATION (MAPLE) 

 

 The development of MC sensors is beginning to move toward the use of 

arrays of MCs to improve the selectivity of the devices.  One factor limiting the 

development of these array systems is the ability to deposit different chemical 

recognition layers onto adjacent MCs in a spatially dense array.  Techniques 

used to coat MCs at this time (spin coating, PVD, SAM formation) lack the spatial 

resolution to be able to put different phases on individual, adjacent MCs.  One 

technique that appeared to be a promising tool in overcoming this problem is the 

technique known as matrix assisted pulsed laser evaporation (MAPLE).  MAPLE 
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is a descendant of pulsed laser deposition (PLD) techniques used to deposit thin 

films of metals, that uses an energy absorbing matrix like those used in matrix 

assisted laser desorption ionization mass spectrometry (MALDI-MS), to softly 

evaporate organic and biological materials intact.  A method of using MAPLE to 

direct write (MAPLE DW) on a substrate has been developed and has been 

quoted to have spatial resolution of around 10nm[152-155].  The application of 

this technique to coating individual MC on an array was investigated. 

 Initial experiments were done in a vacuum chamber setup for typical PLD 

applications.  A Lumonics PM-888 excimer laser was used with a Kr and F2 gas 

mixture to produce a 256 nm wavelength emission.  The Lumonics laser is 

capable of producing a 1 J photon burst.  A target was prepared by dissolving a 

10:1 ratio of the GC phase SP-2100 (methyl silicone), and a matrix material, 

polybutylmethylacrylate (PBMA) in t-butyl alcohol. This solution was then placed 

in a Teflon mold and frozen using liquid nitrogen.  The target was removed from 

the liquid nitrogen and positioned inside the vacuum chamber of the PLD system.  

A KBr pellet was fixed 180 degrees from the target and the chamber evacuated 

to 1e-5 torr.  Figure 5.1 is a schematic of the instrument setup.  The laser was 

focused onto the target and the target ablated with 50,000 pulses of the laser at 5 

pulses per second with a laser fluence of 0.05 J/cm2.  After coating the target 

was removed and an IR spectra obtained and compared with that of the bulk SP-

2100.  These spectra are shown in Figure 5.2.  These spectra show that using 

the matrix the SP-2100 phase was deposited with minimal damage to the 

structure. 
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Figure 5.1  Schematic of vacuum pumped matrix assisted pulsed laser 

evaporation (MAPLE) system.  
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Figure 5.2  IR spectra of bulk SP-2100 and thin film of SP-2100 deposited by 

MAPLE technique. 
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To be able to deposit materials with controlled spatial resolution the setup had to 

be modified from that described previously.  A setup similar to those described by 

Chrisey was constructed.  In this setup the laser beam from the Lumonics 

excimer laser was spatially filtered by passing it through an iris.  The spatially 

filtered beam was then reflected, using a UV grade mirror and a UV grade 

dichroic mirror toward a UV grade 10X microscope objective (LMU-10X-UVB) 

from Optic For Research (OFR) with a broadband antireflection coating.  The 

microscope objective focused the beam onto a quartz target disk.  The quartz 

target disk consisted of a commercially purchased quartz disk that had been spin 

coated with a film consisting of the GC phase SP-2100 and the absorbing matrix, 

polybutylmethylacrylate (PBMA) in a 10:1 ratio.  The thin film was prepared by 

dissolving the 10:1 mixture of SP-2100 and PBMA in 10.0 ml of chloroform and 

dispensing 1.0 ml of this solution onto the quartz disk and thin spinning the 

quartz disk at 3000 rpm for 1 minute.  This method produced quartz disks with a 

5 µm thick film as measured by profilometry.  The MCs were positioned in a 

Teflon mount below the quartz disk and the two were separated by a 25 µm thick 

spacer.  Alignment of the MC under the laser beam was facilitated by two linear 

stages with stepping motors.  The MC was imaged through the microscope 

objective and another lens onto a video CCD camera so that the process could 

be monitored and aligned properly.  A schematic of this setup is shown in Figure 

5.3.  The focused laser spot was approximately 10 µm  
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Figure 5.3  Image of setup for matrix assisted pulsed laser evaporation direct 

write (MAPLE-DW). 
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in diameter for an area of approximately 7.9 x 10-7 cm2.  To achieve a fluence of 

0.05 J/cm2 for this area only 39.5 µJ of energy are required at the target surface. 

To achieve this most of the energy of the laser had to be removed before 

it was focused onto the target.  To do this a 98% reflector was used to dump 

most of the beam energy into a beam stop, while the 2% of the energy that 

passed through the reflector was focused onto the target.    

The problem that occurred with direct writing of materials onto the MCs 

was that at fluences where the thin film coatings on the quartz target were 

evaporated and transferred to the substrate, the MCs were destroyed or 

damaged; and at fluences where the MCs were not damaged, the thin film 

coatings were not transferred from the surface of the quartz target to the MCs.  

Additional difficulty was added, as the energy output of the excimer laser was not 

consistent from day to day, and the energy required at the target was very small 

and difficult to control optimally. 

 

5.4. CONCLUDING REMARKS 

 

 Working in the area of sensor design and development has been a difficult 

and satisfying experience.  The advancement of two different sensor transducers 

used for chemical sensors has been described in the previous chapters and 

though conclusions were presented in each of these chapters a few final 

thoughts on each of these topics and there future will be presented here. 
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 The first combination of chelating resins with scintillation fibers to produce 

a sensor to selectively monitor metal ions in harsh, remote environments was 

accomplished.  This sensor showed both good sensitivity and selectivity and 

simplified the sampling, extraction, concentration, and introduction steps 

generally required to measure a radioactive sample.  This simplified process will 

significantly reduce worker handling and exposure to hazardous radioactive 

samples.  This technique can be readily applied to nearly any radioactive metal 

ion, as long as a selective recognition layer for the metal is available and can be 

fixed to the surface of the scintillation fiber.  One can envision an array of fibers 

coated with different selective phases capable of selectively binding different 

radioactive metals being used with CCD detectors to further reduce worker 

exposure by reducing sampling and measurement time requirements. 

 Structuring of MC surfaces has been shown to dramatically improve the 

magnitude of chemi-mechanical transduction mechanisms thus improving 

sensitivity of these devices over unstructured devices.  It also has been shown 

that the scale of the features plays a part in the enhancement as smaller features 

provide lower LODs (disordered structures versus ordered structures).  Other 

means of creating structured surfaces need to be investigated to see how they 

affect sensitivities.  One method of interest is the codeposition of metal and 

organic materials via PVD techniques to create a mesh of organic and metals 

rather than distinct layers that have been used in the work described here.  The 

development of such methods would only strengthen the understanding of the 

enhancement methods of these structured surfaces. 
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 In conclusion, chemical sensors are a broadening area, utilizing many 

techniques from different disciplines of the science community.  The use of 

chemical sensors will continue to increase as these devices are put to use in 

every imaginable situation to supply information about the chemical nature of our 

surroundings. 
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