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ABSTRACT 

 

The aim of this research was to investigate the effect of some of the process variables on 

the structure and properties of the webs in a thermal point bonding process. The main 

objectives were to understand the changes taking place in the fiber structure due to 

applied heat and pressure, the effect of bond area and bond size on fiber morphology, and 

the physical properties of the web. Thermally bonded carded webs were produced and 

characterized in order to determine the role of bond area and bond size on strength and 

stiffness of the point bonded fabrics and fiber morphology. The webs were also 

characterized to see the changes taking place in fiber morphology on thermal bonding. It 

was observed that the bond strength increases with bond area and bond size. The effect of 

bond area and bond size on fiber morphology were negligible. Significant morphological 

differences were observed in the bonded and the unbonded regions of the thermally 

bonded webs. To see how the staple fiber studies relate to the behavior of continuous 

filaments, similar sets of samples were produced and characterized using the spunbond 

system. The observed trends for properties with respect to bonding conditions were 

similar for spunbond samples. However, actual values of tensile and other physical 

properties were much higher for spunbond webs. 
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CHAPTER  I 

 

INTRODUCTION 

 

Thermal bonding is the most popular method of bonding used in nonwovens. It offers 

high production rates because bonding is accomplished at high speed with heated 

calender rolls or ovens. Thermal bonding process has been used successfully with a 

number of thermoplastic fibers. It offers significant energy conservation with respect to 

latex bonding because of effective thermal contact, and because no water needs to be 

evaporated after bonding. It is environmentally friendly because there are no residual 

ingredients to be disposed of. A wide range of fibers are available for thermal bonding. 

These include homofil and bicomponent fibers, which in turn allow a wide range of 

fabric properties and aesthetics to be obtained. Among the various types of thermal 

bonding, point bonding is the most widely used technique [1].  

Nonwoven fabric properties are determined by the characteristics of bond points, and in 

particular, by the stress-strain relationship of the bridging fibers. During point bonding, 

the bond points and the bridging fibers develop distinct properties. Among those 

properties are the bond area and bond size, which also affect the final fabric properties 

like the strength and stiffness. The properties such as strength and stiffness affect the 

final product of the thermal point bonding process. Limited research has been done to 

understand how the bond area and bond size variables affect the final properties of the 

thermal point bonded fabric. This has been mainly due to the fact that it is hard to 
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produce such samples, and moreover, it is a tedious and strenuous procedure to 

characterize the bond points and the fibers surrounding the bond. 

Since thermal point bonding possesses so many advantages, it is important to determine 

how variables such as bond area and bond size along with bonding temperature affect the 

final properties of the web. 

In this regard, the main objectives of this research were 

1. To examine the changes taking place in the fibers in the bonded region, unbonded   

            region  and bond vicinity during thermal bonding. 

2. To understand the failure behavior of thermally point-bonded fabrics, such as 

what factors limit extension, how failure begins and continues, the effect of fiber 

structure on bond strength, etc. 

3. To be able to suggest optimum processing conditions for thermal bonding based       

on variables like bond area, bond size and bonding temperature, and 

4.   To understand how fiber properties translate into fabric properties in the thermal  
 
      bonding processes. 
 

A series of samples produced under various bonding conditions were thoroughly 

characterized. Studies were done with both staple fibers and spunbond fibers. 
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CHAPTER  II 

 

LITERATURE REVIEW 

 

2.1 Nonwovens 

 

Nonwoven fabrics are sheets made from natural or synthetic, organic or inorganic, fibers 

or filaments, which have not been converted to yarns, and are bonded to each other, not 

predominantly by hydrogen bonding but by any combination of the following means: 

adding an adhesive, thermally fusing the fibers or filaments to each other or to other 

meltable fibers or powders; fusing the fibers to be bonded by first dissolving and then re-

solidifying their surfaces; creating physical tangles or tufts among the fibers; holding the 

fibers or filaments in place with sewing or knitting stitches with yarns made from the 

fibers of the sheet or from the fibers. The fibers may be natural or manufactured. They 

may be staple or continuous or be formed in situ [5]. The production of nonwovens 

amounts to approximately 20% of the total production of textiles, and their share 

continues to grow. Fibers, binders and a bonding process are needed to manufacture a 

nonwoven. The steps in the processing of manufacturing nonwovens are shown in Fig 

2.1. 
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Fig 2.1 The Process of Manufacturing Nonwovens  
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Nonwoven fabrics demonstrate specific characteristics such as absorbency, liquid 

repellency, resilience, stretch, softness, strength, flame retardancy, washability, 

cushioning, filtering, bacterial barrier and sterility [4]. They are used in a wide variety of 

applications such as disposable diapers, sanitary items, hospital gowns, wiping cloths, 

computer diskette linings, base materials for coated fabrics, interlinings, and engineering 

fabrics.  

All nonwoven fabrics are based on a fibrous web, they are: 

1) Dry-Laid 

2) Wet-Laid 

3) Melt-Blown 

4) Spunbond 

 

2.2 Web Bonding Methods 

Basically there are three types of bonding techniques used in nonwovens. They are: 

Chemical Bonding 

Mechanical Bonding 

Thermal Bonding 

 

(a) Chemical Bonding: Bonding a web by means of a chemical has been one of the most 

common methods. The chemical binder is applied to the web and is cured. The most 

commonly used binder is latex, because it is economical, easy to apply and very 

effective. Several methods are used to apply binder and these include saturation bonding, 

spray bonding, print bonding and foam bonding. 
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(b) Mechanical Bonding: This involves fiber entanglement. This can be achieved 

through needle punching or fluid jet action. In many applications, mechanical bonding is 

used as a first stage of bonding, followed by chemical or thermal bonding, which impart 

additional strength and other desirable characteristics not attainable through needling 

alone. 

(c) Thermal Bonding: Thermal bonding is the process of using heat to bond or stabilize 

a web structure that contains of a thermoplastic binder. All or part of the fibers act as 

thermal binder, thus eliminating the use of latex or resin binders. Thermal bonding is the 

leading method used by the cover-stock industry for baby diapers. Polypropylene has 

been the most suitable fiber with its low melting point of approximately 165 °C. The 

thermal bonded polypropylene nonwovens are also soft to touch. The fiber web is passed 

between heated calender rollers, where the web is bonded. In most cases, point bonding 

using embossing rolls is the most desired method, adding softness and flexibility to the 

fabric. Use of smooth rolls bonds the entire fabric increasing the strength, but reducing 

drape and softness. 

 
2.2.1 Characteristics of Thermal Bonding 

The first thermally bonded nonwovens were produced in the early 1940s. The carrier 

fiber was rayon, and plasticized cellulose acetate or vinyl chloride was applied as the 

binder fiber [3]. However, the technology at that time was not developed very well and 

the cost of the available binder fibers was very high. With the increase in energy cost and 

the development of technology, manufacturers began to produce new binder fibers and 
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carrier fibers. These made it possible to produce more products incorporating thermal 

bonding. 

There are three key components in thermal bonding [3]: 

•     Structure of carrier or base fiber. 

• Heat activated binder fiber. 

• The bonding process. 

The carrier fiber is the skeleton structure of the nonwoven fabric. It gives the fabric 

strength, integrity and certain properties depending on the fiber composition. 

The binder used in the thermal bonding process may be a fiber, binder sheaths in a 

sheath-core bicomponent fiber, powder, film, hot melt, netting or the outer surface of a 

homogeneous carrier fiber [3]. The physical properties of the thermal binder fibers, when 

they are used and deposited in and around the fibrous matrix, affect the ultimate product 

properties, as does the thermal bonding process itself. 

All thermal bonding processes have two common features: 

•     The melting point of the binder fiber must be lower than that of the carrier fiber. 

• Heat must be applied either alone, combined with pressure, followed by pressure 

as in the case of calenders, ovens and radiant heat sources- or simply generated as 

part of the process (e.g. ultrasonic bonding) 

There are four methods of thermal bonding [6]. They are Hot Calendering, Oven 

Bonding, Ultrasonic Bonding, Radiant Heat Bonding. 

I. Hot Calendering 

There are three different types of hot calendering 
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(i) Area Bond Hot Calendering: This process involves the use of a calender with a hot 

metal roll opposed by a wool felt, cotton or special composition roll. The amorphous or 

co-polymeric binder fibers used in this process provide bonding at all cross-over points 

between the carrier and the binder fibers. The resultant product  is smooth, thin and stiff. 

(ii) Point Bond Hot Calendering: This method produces fabrics which range from thin, 

closed, inelastic, strong, and stiff to open, bulky, weak, flexible and elastic depending on 

the density, the size and the pattern of the bond points. 

(iii) Embossing Hot Calendering: This method is a figured or sculptured area-bond hot 

calendaring. The area bonding is three dimensional. A “bulky but thin” product can be 

made in any pleasing or functional construction, depending on the face geometry of the 

embossing rolls.  

II. Oven Bonding: Through air oven bonding involves the application of hot air to the 

surface of the nonwoven fabric. Products manufactured using through-air ovens tend to 

be bulky, open, soft, strong, extensible, breathable and absorbent. 

III. Ultrasonic Bonding: This process involves the application of rapidly alternating 

compressive forces to localized areas of fibers in the web. The stress created by these 

compressive forces is converted to thermal energy, which softens the fibers as they are 

pressed against each other. Fabrics produced by this technique are soft, breathable, 

absorbent, and strong. 

IV. Radiant Heat Bonding: Radiant heat bonding is achieved by exposing the web to a 

source of radiant energy in the infrared range, which increases the temperature of the web 

and soften the binder component. Radiant bonding is better used for powder bonded 

nonwovens to produce soft, open, and absorbent webs with low-to-medium strength.  
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Thermal bonding is an important technology. Compared to other bonding processes, 

thermal bonding offers a number of advantages [2]: 

1.   Efficiency: Chemical bonding methods use water or other solvents as a carrier for 

      the bonding agent. This water has to be evaporated before the chemical bonding 

      process can occur. Furthermore, additional energy is often required to cure the 

      binder. As an example, the water evaporation heat load in a chemical spray 

      application can easily be 10 to 12 times the heat used in thermally bonding   

      process. 

2. Emissions: No solvent vapors or other gases need to be released. 

3. Space and Capital Cost: Smaller units can be used since less heat is transferred 

and speeds are higher. 

4. Cleanliness: The spray station or pad of the wet systems in most plant       

environments require substantial clean-up efforts. Furthermore, downstream 

equipment, conveyors and rollers, require less cleaning as well in thermobonding 

systems. 

5.    Quality: Thermally bonded nonwoven webs usually are softer, especially as 

compared to spray bonding, wherein there is a tendency for the binder resin to 

concentrate at the surface of the batt. Thermal bonded products also have greater 

strength per unit weight and are more absorbent and porous due to smaller 

bonding points. 

6. Flexibility: Since the binders are mixed into the web, thermal bonding processes 

are readily adaptable to the manufacture of design or composite structures. 

Cellulosic blends, acrylics or any other binder combination of the new material. 
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Emerging fiber production technology will further widen the applicability of 

thermal bonding techniques. 

7. Toxicology: The product is usually made from a single polymer. Problems 

associated with food or chemical filtration and skin tolerability are reduced or 

eliminated entirely. 

Among the thermal bonding methods, point bonding is the most widely used technique. 

PP fibers, by themselves or as binder fibers, are used most often for point bonding. Low 

melting copolymers of polyester are also used. Special sheath/core bicomponent fibers, 

where the core has a higher melting temperature, have also been developed for thermal 

bonding [1]  

 

2.3 Point Bonding Process 

In the point bonding process, the web is fed by an apron leading to a calender nip 

consisting of one engraved and one smooth roll. As the web enters the hot calender nip, 

fiber temperature is raised to the point at which tackiness and melting cause fiber 

segments caught between the tips of engraved points and smooth roll to adhere together. 

The heating time is of the order of milliseconds. The process is schematically shown in 

Fig.2.2 [1]. 

The fabric emerging from the nip may be cooled by contacting two water cooled rolls. 

Fiber shrinkage tendencies are accommodated by fabric relaxation; otherwise cooling  
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Fig 2.2 Schematic of the Thermal Point Bonding Process [1]. 
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takes place under tension and a thin ‘boardy’ fabric results. Fabric is then wound up 

under controlled tension into a roll of appropriate hardness and integrity [7]. 

2.4 Process Variables 

There are three main process variables, namely bonding temperature, bonding pressure, 

and time (or calendering speed). At a fixed bonding pressure, there is an optimal time and 

temperature, which gives maximum bond strength. Contact time is determined by 

production line speed, so temperature is the logical control variable [9]. Bonding 

temperature is the most influential parameter followed by pressure and speed [8]. 

 

2.4.1 Effect of Bonding Temperature 

Shimalla and Whitwell [10] have studied the effect of bonding temperature on the 

strength of the fabrics and reported that higher bonding temperatures generally improves 

individual bond strength but can be detrimental to fiber strength. For pure polypropylene 

webs the temperature effect occurs less dramatically, but the maximum tenacity in the 

machine direction (MD) increases rapidly between 150°C and 155°C. At higher 

temperatures the resulting material resembles a film more than a textile. De Angelis  [11] 

measured the dependence of the breaking strength of overall calendered polypropylene 

fiber nonwoven fabric on bonding temperature. Their results indicated that, for a given 

nip-line pressure and calendering speed, the breaking strength reaches a maximum at a 

critical bonding temperature. On keeping nip-line pressure constant, the critical 

temperature was found to be a function of the calendaring speed. The decrease in 
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breaking strength above the critical temperature level was attributed to the ‘loss of fiber 

integrity and formation of film-like spots at high temperatures.’ Bechter [13] also 

confirmed the existence of a critical bonding temperature (dependent on speed) for 

maximum tensile properties in point-bonded PP-fiber nonwoven fabrics. Malkan [14] 

studied the failure behavior of polypropylene spunbonded webs with respect to bonding 

temperature. Brittle failure was mainly associated with higher bonding temperatures and 

was initiated mainly by bond rupture. The temperature of maximum strength lies in close 

proximity to the surface melting temperature of the fibers [8]. 

 

2.4.2 Effect of Bonding Pressure 

The nip line pressure is important since it influences the heat transfer to and through the 

web, as well as melting point, flow, and viscosity of the polymer. Bechter [13] observed 

that, in the case of point-bonded polypropylene webs, the bonding temperature at which 

the strength maximum occurred was unaffected by the nip line pressure. This influence 

depends upon melting behavior of the fibers. If the position of maxima occurs in the  

early-melting region, a low calendaring pressure is desirable so that the ‘thin’ melting 

zone is not disturbed. Muller [12] reported an optimum pressure for the bonding of heavy 

webs. The authors suggested that, at high nip pressures, flow from the fiber is disturbed 

and there is considerable fiber damage at the perimeter (as seen through SEM). Both of 

these effects lead to reduction in web strength.  
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2.4.3 Effect of Contact Time 

The contact time of the web in the nip is primarily influenced by the production speed 

and roll diameters. Preheating the unbonded web, which may permit higher speeds, has 

been reported to cause bonded-web tensile properties to deteriorate [15]. This has been 

attributed to a slight crystallinity increase in the unbonded fibers, which requires a higher 

bonding temperature. Shimalla and Whitwell [10] studied the influence of time during 

bonding. Increasing the bonding time is expected to increase the extent of contact 

primarily due to the kinetics of wetting. Specific bond strength is also increased if 

diffusion is involved. Longer residence times can cause heat setting (stress relaxation 

under fixed length), which imparts a degree of dimensional stability against shrinkage 

that is dependent on the temperature of the heat-setting operation. Changes in fiber 

molecular orientation during exposure to elevated temperatures also influences bonded 

web properties [16].  DeAngelis [11] studied the influence of calendering speed on tensile 

properties. Increasing the calender speed while maintaining the roll temperature and 

pressure constant reduced the breaking strength. Muller [12] studied the thermal bonding 

of heavy webs with calendars. He showed that for heavy webs, the tensile strength in MD 

and CD was higher at the higher production speed. The influence of nip pressure is more 

intense at the lower speeds, which demonstrates the sufficiency of contact time to transfer 

the heat into the fibers also at high speeds. He observed three things when the speed 

increased: 

(a) The calender temperature required for maximum strength increases to compensate 

for the reduced contact time. 
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(b) The influence of calendering pressure is greater at faster speeds. The author 

suggested that this was due to reduced heat transfer at higher production rates. 

(c) The maximum strength achieved increases. 

 

An increase in production rate, when compensated by an appropriate increase in 

temperature, reduced the bond point area and actually increased the fabric strength.  

 

2.5 Point Bonded Fabric Strength Mechansims 

Crane [17] has studied the fabric strength mechanism for polyester staple fiber thermally 

bonded nonwovens, and he came out with three observations, which are discussed below: 

 

2.5.1 Bond Point Integrity Per Se 

This reflects the effectiveness of providing anchor points to inter-connect all the fibers in 

the fabric. It is a measure of melt adhesion between fibers, realized under optimized 

temperature and pressure. Throughput speed, and hence nip residence time, affects the 

extent of heating and fiber softening necessary for effective melt adhesion. Fiber surface 

modification with finish could detract seriously from bond strength, depending on finish 

type and level. 

If bond integrity is very poor, fabric fracture will occur by fiber slippage mode. In blends 

of binder fibers with matrix fibers, the melt adhesion bond between the two components 

will determine fabric strength. If bond point integrity is only moderate, partial fiber peel 

from the bond point surface will occur followed by fiber tip fracture at its anchorage to 
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the bonded area. Infrequently, as in fabrics which were overbonded at high temperature, 

the bond point itself was highly embrittled and it breaks by cracking into two parts, like a 

plastic chip. 

 

2.5.2 Strength at Bond Point Perimeter 

Crush damage at bond perimeter causes sharp reduction in the fiber’s load bearing ability 

due to stress concentration at the crush mark. This physical discontinuity in fiber strength 

along its axis may also be viewed in terms of thermal discontinuity along fiber axis due to 

the difference in heat treatment, melting and re-crystallization between fiber segment 

under bond point, and free segment bridging bond points. Tenacity and crystallinity 

change along fiber axis from one bond point to the next, especially at the interface to the 

bonded area itself. 

Fiber bending, at the root of its attachment to the bond area, does occur in fabric 

particularly in cross-directional tensile pull. Brittle fibers and those with low loop 

tenacity to straight tenacity ratios would be susceptible to fracture under severe bending 

[17]. 

 

2.5.3 Strength of Bridging Fibers 

The fiber stress-strain curve is that of heat exposed fiber, as experienced in the bonding 

process, rather than that of the unbonded fiber. Upon fabric straining in MD pull, 

different fibers in the fabric will sustain varying magnitudes of strain levels. Some fibers 

will actually experience compressive buckling despite moderate fabric tensile pull. A 

fabric made of fibers of low breaking elongation will have its fibers break sequentially as 
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each reaches its own break strain level. On the other hand, a fabric of fibers of high break 

elongation will have its fibers continuously sharing in supporting the fabric tensile pull, 

followed by concurrent failure [17]. 

 

2.6 Influence of Calender Pattern 

The calender pattern is important for achieving the desired combination of qualities in a 

bonded web. In the patent literature on calender patterns it is suggested that, to obtain a 

fabric with textile-like characteristics and adequate strength, there should be 15.5 x 104 

to 77.5 x 104 bonds/m2  (100-500 bonds/ in2), covering 5- 25% of the web area [15, 18]. 

The height of lands on the roll is another calender-pattern variable. According to Brock 

[19], the height of lands should be less than the thickness of web entering the nip, so that 

surfaces of the web away from the bond points will also contact the rolls. This will 

produce light bonding of fibers between bond points. It can be pointed out that melting 

occurs only in the area of the engraving and that the fibers keep their characteristics in 

between [12]. Further, if the land height is substantially greater than the thickness of the 

web, the intermediate regions would experience no compression, and filaments in these 

regions would hardly be bonded. The result would be a low web strength [19]. The 

strength of the bonded web does not come from partial bonding of the intermediate 

regions. A recent trend is to use a land height greater than the web thickness so as to 

avoid intermediate bonding and achieve an optimum combination of strength and 

softness. The strength of a fabric can be manipulated to some extent by changing the 

frequency and placement of the fiber bonding points in the thermal bonding process [25]. 

The best combination of strength and softness is obtained when the raised lands are 
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vertical (i.e. the sides are perpendicular to the surface), with a little rounding at the edges 

to minimize damage to the fibers [19]. In practice, the sides of the lands are made at a 

small angle with respect to the normal to the roll surface owing to the difficulty of 

engraving vertical sides. 

 

2.7 Morphology of Bond Points and Bridging Fibers During 

      Thermal Bonding 

Mi et al. [20] suggested that bond strength is important in determining the strength of 

point-bonded fabrics. Theoretical results of their model indicate that ‘high-strength’ 

bonds defined by fabric failure being caused by failure of the bridging fibers, led to the 

strongest fabrics. 

As the fabric passes through the calender, it gets compressed to approximately one tenth 

of its original thickness at bond points [21]. From scanning electron micrograph pictures, 

bond areas appear void free, although density measurements have suggested void content 

up to 5%. Drelich et al. [26] studied thermal bonding with fusible fibers and reported that 

polymer in the bond region no longer has any fiber characteristics. 

Fabric failure was determined by the character of bond points and, in particular, by the 

stress-strain relationship of the bridging fibers. During point bonding, the bond points and 

the bridging fibers develop distinct properties, different from those of the virgin fibers, 

depending on the process variables employed. This change in properties has been hinted 

at by several authors but has not been investigated.  

Warner [21] suggested that fibers break at the bond periphery because of the local 

thermo-mechanical history of the polymer. The material at the perimeter is weak and 
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brittle and he attributed this brittleness to crystallization in an unoriented state, especially 

at the perimeter where polymer is a result of extrusion from under the pin. Thus he 

suggested that the strength of the point-bonded fabrics will be governed by the bond-

periphery strength. 

Crane et al. [17] suggested that ‘physical discontinuity in fiber strength along its axis may 

be viewed in terms of thermal discontinuity due to differences in heat treatment, melting 

and re-crystallization between fiber segments under the bond points and free segments 

bridging bond points.’ Wei et al. [22] observed that ‘significant morphological changes 

occur in the bonding regions, and the physical properties of thermally bonded fabrics are 

a manifestation of the nature and quality of the bonding regions’ (including the parts of 

the bridging fibers that have been affected by bonding).  

The results of Akai and Aspin [23] in the manufacture of embossed PP tapes indicated 

that embossing increased crystallinity, improved crystal perfection, and caused some 

molecular orientation. A correct choice of embossing conditions increased the strength of 

these tapes by 15%. In point bonding, therefore, the molecular orientation of the fibers 

compressed by the land probably changes, but these changes have not been investigated. 

Pressure is expected to increase melting point and glass transition temperature and thus 

could exert a significant influence on the rate of crystallization. Pressure also influences 

the rates of crystal nucleation and growth, and could therefore lead to complicated 

interactive effects. Philips and Tseng [24] studied the influence of pressure on the 

crystallization in PET. Their results showed that the volume density of crystal nuclei 

increased, resulting in high crystallinity levels, when polymers were crystallized under 

pressure. Malkan [14] studied thermal bonding of polypropylene spunbonded webs and 
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reported that size and characteristics of bond are not very much affected by bonding 

temperature or bonding pressure. However, edges of bond sites become sharper at high 

temperatures and pressures. On the other hand Wei et al. [22] have reported that bond 

area increases with increase in bonding temperature. They also have reported shrinkage 

of fibers during thermal bonding, especially in the case of highly drawn fibers. 

 

2.8 Theoretical Modeling 

Attempts have been made to theoretically model the effects of bond area, bond pattern, 

fiber tensile properties, fiber orientation distribution and bonding intensity on fabric 

tensile properties. Grindsaff and Hansen [27] developed the first computer simulation of 

the stress-strain behavior of point-bonded nonwoven fabrics. The fiber stress-strain curve 

was truncated at the point of plastic deformation to simulate the weakening at the bond 

edge. The fiber-orientation distribution was adjusted on the basis of micrographs. There 

was good correlation between the model and the experimental curves. 

Mi et al. [20, 25] developed a computational model incorporating the effects of bond 

pattern, bond area fraction, bond-site shape, fabric-failure mechanism, and fiber 

orientation distribution for predicting the load-deformation behavior of point bonded 

webs. Mi used some assumptions to accommodate the actual stress-strain behavior of the 

fiber in the digitized form. The fabric load-deformation was calculated by stepping 

through increments of fabric strain. The change in fiber orientation distribution function 

was calculated at each step. The theoretical results indicate that the shape of bond sites, 

pattern, layout and percentage of bond area do have a significant influence on the 
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strength of the fabric. The model also predicts that higher fiber elongation leads to 

stronger fabrics, as was reported by Kwok [7]. 

Although the model does not predict exact web properties, it is useful for conceptually 

experimenting with the effects of the bond pattern, percentage bond area, fiber tensile 

properties, fiber-orientation distribution, and bonding intensity on fabric tensile 

properties. 

 

2.9 Spunbonding 

2.9.1 Process Description 

Spunbonding is a one step process, which involves fiber extrusion, fiber attenuation, web 

formation and bonding of the web to impart strength, cohesiveness and integrity to it. The 

filament spinning, drawing and deposition are the most critical steps in the spunbonding 

process. Hartman [40] proposed some of the various basic possible variations of the 

process, which are shown in Fig 2.3. 

The first process (A) uses longitudinal spinnerets, with air slots on both sides of the 

spinneret for the expulsion of drawing air(1). The room air(2) is carried along and, after 

lay-down of the filaments, is removed by suction(3). This process is very well suited for 

tacky polymers, such as polyurethane. Bonding takes place due to tackiness of the 

filaments. 

The second process (B) allows a higher draw-ratio, with subsequently increased 

orientation of the filaments. Filaments are drawn with several air or gas streams(1),(2) & (3) 

using drawing conduits. The air is removed by suction(4) after web formation. This  
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Fig 2.3 Four Basic Variations of the Spunbond Process 
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process has special advantage in preparing fine spunbonded webs with a textile-like 

appearance and handle of the web. 

The third process C operates with regular cooling ducts(1) and drawing jets(3). The 

drawing and cooling arrangements can be operated to give very high spinning speeds. 

The temperature and humidity of room air(2) can be controlled. The air is removed by 

suction(4) after web formation. 

The fourth process (D) has a mechanical drawing step between spinneret and lay-down 

zone. A very high level of molecular orientation can be achieved with this method. The 

remainder of the process is similar to process C. 

A number of spunbonding processes can be classified into one of the above basic four 

types of the process. The method of bonding may be chemical, mechanical or thermal. 

Thermal bonding is the most widely used technique for spunbonding. 

The Reicofil system shown in Fig 2.4 has been developed by the Reifenhauser GmbH of 

Germany. The polymer pellets are fed into the extruder hopper. Polymer is melted and 

mixed as it moves along the extruder. The molten polymer is delivered to a metering 

pump, which in turn feeds the polymer to the spinning block at a constant rate through a 

feed distribution system. The feed distribution, which is very critical, balances the flow, 

the temperature and the residence time of the polymer across the width of the die. The 

spinneret, which is rectangular in shape, has several thousand holes. The cooling air-duct, 

located below the spinning block, continuously cools the filaments with conditioned air.  

Air is sucked away at the bottom by a ventilator. The filaments are drawn and laid down 

on a moving sieve belt simultaneously by a venturi effect. The condensed web passes  
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Fig 2.4 Schematic of Reicofil-II Spunbond Line 
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over moving belts and is thermally bonded by hot calenders. The bonded web is then 

wound under slight tension. 

 

2.10 Fiber Morphology in Thermal Bonding 

A good understanding of the role of fiber morphology in thermal bonding is very 

important to understanding the changes taking place during the process. Wei [22] studied 

the effect of bonding temperature on the aesthetic and textile properties of the thermally 

bonded polypropylene nonwoven fabrics. He observed that the mechanical properties 

(tensile strength and stiffness) of the fabrics were found to be greatly affected by the 

bonding temperature. The tensile strength and stiffness of the fabrics made from lower 

birefringence (less oriented) fibers showed higher values than those made from highly 

oriented structure. He also observed that this could be attributed to partial melting of 

ordered regions in the amorphous region; however, at higher temperature, shrinkage that 

coincides with the melting of small and imperfect crystals occurs abruptly and very steep 

for both fibers. It was observed that low orientation fibers yield fabrics that are generally 

stronger, and exhibit lower shrinkage. 

Zhang [28], and many authors [29-34] have studied the evolution of structure and 

properties in the spunbonding process. The studies showed that fiber morphology plays 

an important role in bond formation. The nature of bond points depends on fiber 

morphology. 

Chand [35] showed that fiber morphology plays a very important role in determining 

optimum bonding conditions of the webs. The studies showed that fibers with relatively 

less developed morphology yielded stronger and tougher webs as compared to fibers with 



 26

more developed morphology. The fiber with high molecular orientation and crystallinity 

tended to form a weak and brittle bond due to the lack of polymer flow and to the 

fibrillation of the fibers in the bonded regions. 
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CHAPTER III 

EXPERIMENTAL DETAILS 

 

3.1 Processing 

3.1.1 Staple Fiber Webs 

Polypropylene staple fibers produced at FiberVisions, Inc., were carded and then 

calendered at their laboratories. Bonding was carried out using different sets of pattern 

rolls, to obtain a range of bond areas and bond sizes (Table 3.1) so that a comparison 

could be made. The effective bond areas used varied from about 10% to 23.2%. The 

bonding temperature, was varied from 144°C to 172°C in increments of 4°C for different 

fabrics. The nip pressure of 45 psi (pounds per square inch) was kept constant for all the 

samples, and production speed of the samples was 250 ft/min. 

 

 

Table 3.1 Details of Staple Fiber Samples Produced 

Sample Series Bond Area, % Bond Size (inches X inches) 

I 10.8 0.020 X 0.0385 
II  23.2 0.022 X 0.040 

III               15.2 0.020 X 0.039 
IV 18.8 0.025 X 0.053 
V    19.9 0.030 X 0.057 
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2.1.2 Spunbond Webs 

Spunbond studies were carried out using a 35 MFR Exxon PP. The Spunbond fiber webs 

were prepared at Kimberly Clark, Roswell, GA and calendered at Fiber Visions, 

Covington, GA. A total of 6 series of samples were produced at temperatures varying 

from 120 to 160°C in increments of 10°C. Bonding was carried out using different sets of 

pattern rolls, to obtain a range of bond areas and bond sizes so that a comparison could be 

made. The effective bond areas used varied from about 10.8% to 23.5%. The pressure 

was kept constant at 45 psi and production speed was 250 feet/min for all the samples. 

The sample description is given in Table 3.2. 

 

3.2 Characterization of the webs 

 
3.2.1 Basis Weight 

       The basis weight was measured using the IST 130.1-92 Standard Test Method for the 

Mass per Unit Area of Nonwoven Fabrics. Two 10” x 1” samples were cut from each 

web and weighed. The average values of weight measures were calculated and divided by 

the area to get the fabric basis weight (g/m2).  

 

3.2.2 Tensile Properties 

Tensile properties of the fabrics were measured using a United Tensile Tester with test 

conditions described in the ASTM D1117-80 for nonwoven fabrics  [36]. A gauge length 

of 5” (12.7 cm), width of 1” (2.54 cm) and extension rate of 5”/min (12.7 cm/min) were 
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Table 3.2 Details of Spunbond Samples Produced 

Sample No Bonding 
Temperature 

Bond Area (%) Bond Size (in X in) 

    
 1-130 130 23.5 0.022 X 0.041 
 1-140         140   
 1-150 150   
 1-160 160   
 2-120 120 10.8 0.020 X 0.040 
 2-130 130   
 2-140 140   
 2-150 150   
 2-160 160   
 3-130 130 15.2 0.020 X 0.039 
 3-140 140   
 3-150 150   
 3-160 160   
 4-130 130 18.6 0.025 X 0.053 
 4-140 140   
 4-150 150   
 4-160 160   
 5-140 140 12.0  
 5-150 150   
 5-160 160   
 6-140 140 14.3 0.020 X 0.040 
 6-150 150   
 6-160 160   
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used in both machine direction and cross direction for the webs. 

 

3.2.3 Single Bond Strip Tensile Test 

This test was done in order to estimate bond strength and the degree of load sharing 

between fibers during the tensile deformation of the web. A schematic of this test is 

shown in Figure3.1. A strip of size 80 mm x 5 mm was cut from the web. The strip was 

cut across the width direction from two sides to leave only one bond uncut in the middle 

of the strip, as shown. The strip was then subjected to a conventional tensile test.  

The test was conducted on the United Tensile Tester with a gauge length of 1” (2.54 cm) 

and extension rate of 0.5”/min (1.27 cm/min). A total of twenty tests were done for each 

sample. 

 

3.2.4 Fabric Flexibility (Cantilever Method) 

According to ASTM D1388-64 Standard Test Method for Stiffness of fabrics, four 1”x 6” 

specimens were cut and tested using the F.R.L. Cantilever Bending Tester with an 

inclination angle of 41.5°. The bending length I is exactly half-length of the fabric that 

overhangs the edge and bends under its own weight. Each test specimen was measured 

with four readings on each end of both sides. Flexural Rigidity (G), a measure of the 

interaction between weight and stiffness, was calculated using the equation: 

G = W x c3 
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Fig 3.1 Schematic of Single Bond Strip Tensile Test 
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3.2.5 Tear Strength  

The tear strength was determined using the Elemendorf tear tester. INDA standard test 

100.1 (ASTM D5734) was the method used to measure the tear strength. Measurements 

were taken along the machine and cross directions. A total of five measurements were 

taken for each web sample. 

 

3.2.6 Diameter and Birefringence 

Fiber diameter and birefringence were measured using an optical microscope. The 

retardation technique was used for measurement of birefringence. For unbonded regions 

of the web, fibers in that region were cut and separated from the web using a sharp pair of 

scissors. Thirty measurements were taken in all cases. 

 

3.2.7 Wide Angle X-ray Diffraction (WAXD) 

Crystallite size was measured using the Rigaku WAXD system in reflection mode. 

Crystallite size was calculated automatically by the computer from full-width at half 

maximum intensity of reflection peaks in equatorial scans [38]. Equatorial scans were 

obtained from 2θ = 10° to 30° in steps of 0.01° and a dwell time of 4 seconds. “Duco 

Cement” was used as a glue for sample preparation for equatorial scans. Use of Duco 

Cement was helpful in sample preparation from only bonds and very short fibers from 

unbonded regions of the web. Duco Cement is totally amorphous and does not interfere 

with crystalline peaks of polypropylene. The Rigaku WAXD system was operated at 35 
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kV and 30 mA. Bonded and unbonded regions were carefully separated from the web 

using a pair of sharp scissors. 

 

3.2.8 Scanning Electron Microscopy 

SEM images of the fabrics and the samples from tensile tests were taken using a Hitachi 

S- 3500N electron microscope. Back-scattered images, under 30 Pa gas pressure, were 

taken in order to minimize the problems due to static charge generation. Images were 

obtained at magnification ranges of 90 to 1000x. Samples of staple and spunbond webs 

were examined for single bond strength and tensile strip test under conventional tensile 

tester. The samples were tested at intermediate stages (65% to 80% of strength of webs 

tested for failure stage) to see at what stage of loading the web failure began at the bond 

point, in addition to observing at the fractured stage (failure stage). 

 

3.2.9  Statistical Analysis 

Statistical analysis was done using the ‘Analysis of Variances’ method, the GLM 

procedure in SAS. Statistical analysis was done for both staple fiber and spunbond 

studies. Fifteen null hypotheses were tested: 

1. No significant effect of bonding temperature on peak load (MD and CD have 

significant difference), tear strength (MD and CD have no significance difference) 

and bending length (MD and CD are significantly different) for staple fiber webs. 

2. Significant effect of bond area on peak load (Significant differences were also 

observed among the sample series), tear strength (III is significantly different 

from I and II). But, bond area does not have a significant effect on bending length 
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(II is significantly different from I and III across all temperature levels) for staple 

fiber webs. 

3. Significant effect of bond size on peak load (Significant differences were also 

observed among the samples across all the temperature levels). No significant 

effect of bond size on tear strength and bending length for staple fiber webs. 

4. Significant effect of bond area on peak load (Significant differences among the 

samples across the temperature levels), tear strength (sample 3 is different from 

samples 1 and 2) and significant effect of bond area on bending length (sample 2 

is significantly different from samples 1 and 3) of spunbond webs. 

5. Significant effect of bond size on peak load (significant effect within the sets of 

the samples), tear strength (significant difference among the sets of the samples, 

sample 4 is significantly different from samples 3 and 6), and no significant effect 

of bond size on bending length of spunbond webs. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Staple Fiber Studies 

4.1.1 Web Properties 

A single bond strip tensile test was done in order to estimate the bond strength and the 

degree of load sharing between the fibers during tensile deformation. This single bond 

strip test was chosen for the investigation since, during this test, stress is forced to 

concentrate on a single bond. As a result, it is possible to obtain a good estimate of the 

strength of a bond. Obviously the fabric strength should relate in some way to bond 

strength. The single bond tensile strength values of the webs bonded over a wide range of 

bonding temperatures are shown in Fig 4.1. From the figure, it is observed that with 

increase in bonding temperature, the web strength increases up to a maximum and then 

decreases with further increase in temperature. Chand [35] and Dharmadhikary [39], 

observed similar trends. Web elongation and initial modulus are shown in Figures 4.2 and 

4.3, respectively. Web elongation exhibited a similar trend to that of tensile strength. 

However, initial modulus did not show any optimum and continued to increase with 

increase in bonding temperature. Higher strength, breaking elongation and initial 

modulus may be partly attributed to higher breaking elongation of the fibers. Higher 

breaking elongation of the fibers leads to greater degree of load sharing between the 

fibers during web deformation. Tear strength values are shown in Fig 4.4. It  
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Fig 4.1. Peak Load From Single Bond Strip Test (MD) vs Bonding Temperature 

for Staple Fiber Webs 
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Fig 4.2. Peak Elongation From Single Bond Strip Test (MD) vs Bonding 

Temperature for Staple Fiber Webs 
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Fig 4.3 Initial Modulus From Single Bond Strip Test (MD) vs Bonding Temperature 

for Staple Fiber Webs 
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Fig 4.4. Tear Strength (MD) vs Bonding Temperature for Staple Fiber Webs 
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is observed that the changes in tear strength values along the range of bonding 

temperature are minimal for all the set of staple fiber samples. The bending length values 

of the staple fiber webs is given in Fig 4.5, and there is a slight increase in bending length 

with increase in bonding temperature for all the set of samples. The fracture mechanism 

of the single bond tensile test samples is analyzed and discussed in the next section. 

 

Effects of bond area, bond size and bonding temperatures, and their combined effects are 

discussed below with respect to staple (thermal bond) and spunbond samples 

 

4.1.2 Effect of Bonding Temperature 

To determine the effect of bonding temperature on the fiber morphology and strength of 

the web, Set I series of samples were chosen which have 10.8% of bond area and (0.020 

X 0.0385) of bond size, respectively. From Fig 4.6, it was observed that there is a large 

difference between the values of peak loads (from single bond strip tensile test) in the 

two directions. The difference in peak load between the two directions is larger at lower 

temperatures. With increase in bonding temperature, the difference decreases, largely due 

to drop in the strength values in the MD. This change in values with bonding temperature 

is attributable to change in failure mechanism. Fig 4.7 shows the tear strength values for 

the control series in both MD and CD. Here, we can observe that the values in the CD are 

higher than the MD along the range of bonding temperature. Fig 4.8, bending length 

values are shown where it is observed that the values in both the 
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Fig 4.5. Bending Length (MD) vs Bonding Temperature for Staple Fiber Webs 
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Figure 4.6. Peak Load (Single Bond Test) vs Bonding Temperature for Set –I 

Sample of Staple Fiber Webs 
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Fig 4.7. Tear Strength Values for Set – I Sample vs Bonding Temperature for 

Staple Fiber Webs 
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Fig. 4.8. Bending Length Values of Set – I Sample vs Bonding Temperature for 

Staple Fiber Webs 
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directions, machine and cross directions follow the same pattern along the range of 

bonding temperature, but, the values of MD are higher than the values in CD. This shows 

that the web becomes stiffer with increase in bonding temperature 

 

4.1.3 Effect of Bond Area 

 

The effect of Bond Area was studied using three sets of samples which vary in bond area, 

but have bond size in the same range (Set-I (0.020 X 0.0385), Set-III (0.020 X 0.039), 

Set-II (0.022 X 0.040) ). For this, Set- I (10.8%), Set- III (15.2%) and Set-II (23.2%) 

were chosen, so that we can clearly see the differences of the effect of bond area on 

morphology and strength of the web. 

Fig 4.9, shows results of the comparison of bond area with peak load values from single 

bond strip test in MD for the three sets of samples. It is observed that the sample Set- II 

(23.2%) shows higher strength along the range of the bonding temperature investigated, 

when compared with the other two sets of samples, which had lower bond areas 

compared to Set- II. This shows that the higher strength values with increased in bond 

area are observed. There is a simultaneous decrease in elongation and an increase in 

modulus as well. These differences may also be attributable to differences in the failure 

mechanism. As a result of more efficient bonding with increase in bond temperature, the 

web becomes stiffer. Fig 4.11, shows the observed bending length values, which clearly 

show the trend with temperature for all the samples. But, the bending length differences 

taking place in all the samples across the range of the bonding temperatures are very 

small. Fig 4.10 shows the tear strength values of the three sets of samples to compare the 
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effect of bond area. It is observed that the webs with higher bond areas Set- II and Set- III 

show higher tear strength values along the range of the bonding temperature when 

compared to web of Set- I (10.8%). The differences in the tear strength values for all the 

three sets of samples are minimum. 

 

4.1.4 Effect of Bond Size 

 

For comparing the effect of bond size on strength of the web and the morphology, three 

sample series were selected and they are Set- III (0.020 in X 0.039 in), Set- IV (0.025 in   

X 0.053 in) and Set- V (0.030 in X 0.057 in) (Bond Areas are, Set-III- 15.2%, Set-IV-

18.8%, Set-V-19.9%) (Table 3.1, p-27) respectively. These samples are selected in such a 

way that the bond areas are in the same range, so that these bond area differences do not 

interfere with the bond size differences. 

Fig 4.12 shows the values of the peak load of the three samples along the range of 

bonding temperature from the single bond strip test. It is observed that the webs having 

higher bond sizes show higher load values compared to samples with lower bond sizes. 

That is, samples from Set- IV and Set- V show higher peak load values compared to Set- 

III. This difference can be due to differences in the failure mechanism. Also, there is a 

slight increase in the peak load values with an increase in the bonding temperature for all 

three sets of samples. The differences observed for tear strength values for the three set of 

samples are very minimal. From Fig 4.13, it is clear that a mixed pattern was observed 

for all the set of samples. Its also observed for a range of bonding temperature that, the 

sample Set- III, with least bond size compared to the other two, showed higher tear 
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Fig 4.9. Comparison of Bond Area with Peak Load From Single Bond Strip Test 

(MD) vs Bonding Temperature for Staple Fiber Webs 
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Fig 4.10. Comparison of Bond Area (MD) with Tear Strength vs Bonding 

Temperature for Staple Fiber Webs 
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COMPARISON OF BOND AREA WITH BENDING LENGTH IN MD

0
1
2
3
4
5
6
7
8

140 150 160 170 180

TEMPERATURE (C)

I  (10.8%)

II  (23.2%)

III  (15.2%)

 
 

Fig 4.11. Comparison of Bond Area (MD) with Bending Length vs Bonding 

Temperature for Staple Fiber Webs. 
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Fig 4.12. Comparison of Bond Size with Peak Load From Single Bond Strip Test  

(MD) vs Bonding Temperature for Staple Fiber Webs 
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Fig 4.13. Comparison of Bond Size with Tear Strength (MD) vs Bonding 

Temperature for Staple Fiber Webs 
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strength. These minimal differences, which were observed in peak load and tear strength 

values are also seen in bending length values from Fig 4.14. Despite minimal differences 

in bending length values, all the three set of samples show increase in stiffness values 

along the range of bonding temperature. This is true as the webs become stiffer with the 

increase in the calender temperature. 
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Fig 4.14. Comparison of Bond Size with Bending Length (MD) vs Bonding 

Temperature for Staple Fiber Webs 
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4.1.5 Analysis and Discussion 

 

Fracture mechanisms of the webs were studied using the scanning electron microscope 

(SEM) photographs. All the samples were analyzed after the tensile test. The pictures 

were taken for samples produced at lower, medium (optimum) and higher bonding 

temperature at intermediate (65% to 80% of the breaking load) and failure stages, 

respectively. 

 

 

4.1.6 Effect of Bonding Temperature 

 

Samples, stretched to intermediate stages were examined to see how the bond deforms 

during single bond tensile testing. (Fig 4.15) At lower bonding temperature of 148°C, we 

can see that the bond starts disintegrating i.e., fibers start pulling out one by one from the 

bond point. The first picture shows the neighboring bond point, where the bond stays 

intact. From Fig 4.16, it is obvious that at the neighboring bond point (either above or 

below the bond at the notch), where the fibers start pulling out from the bond and the 

bond disintegrates. This is the main reason why the bond strength is less at lower bonding 

temperatures. 

As observed from the Fig 4.17, webs bonded at medium bonding temperature (160°C), at 

the intermediate stage the fibers stretch out from the bond point and at the neighboring 

bond, re-orientation of fibers takes place making the bond point weak. In the failure stage  
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Neighboring Bond                                                                                                                         Strained Bond 

 

 

Fig 4.15 SEM Image Showing Disintegration of Bond at 148°C (Intermediate Stage) 

 

 

 

 

Neighboring Bond                                                                                                                         Strained Bond 

 

Fig 4.16 SEM Image Showing Disintegration of Bond at 148°C (Failure Stage) 
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Neighboring Bond                                                                                                                         Strained Bond 
 

 
 

Fig 4.17 SEM Image Showing Re-Orientation of Fibers and Disintegration of Bond 

at 160°C (Intermediate Stage) 

 

 

 

Neighboring Bond                                                                                                                         Strained Bond 

 

 

 

Fig 4.18 SEM Image Showing Re-Orientation of Fibers and Disintegration of Bond 

at 160°C (Failure Stage) 
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(Fig 4.18), fiber re-orientation takes place and slight disintegration of the bond can be 

seen. That is why at bonding temperatures around 160°C, the web strength was higher. 

At higher bonding temperature (172°C), (Fig 4.19, Fig 4.20), it was observed both at 

intermediate and failure stages, the filaments break at the bond perimeter and the bond is 

still intact. Fiber morphology tests were done by birefringence and X-ray diffraction. 

(Table 4.1) The values of fiber birefringence are the same for all the samples indicating 

that the changes that might be taking place during bonding in the unbonded regions in 

these cases are minimal. This is due to the fact that the starting fibers have a fairly high 

level of orientation and, also due to higher processing speeds, since the dwell times in the 

calender are very low. However, the crystal sizes show differences in the bonded and 

unbonded regions, with the values being higher in the bonded areas. In the unbonded 

areas, crystal sizes are in the same range for all the process conditions investigated.  

 

4.1.7 Effect of Bond Area 

 

From the SEM photographs of the webs, which were taken from samples tested after the 

single bond tensile test and the fiber morphology parameters, we can see the effect of 

bond area on the strength and morphology of the web can be seen. 

At lower bonding temperature (148°C), the fibers pull out from the bond point at the 

intermediate stage and during the failure stage, total disintegration of the web takes place 

(Figures 4.21 and 4.22), i.e., fibers pull out one by one from the bond point making the 

bond weak. Chand [35] also showed a similar trend of disintegration of the bond point at  
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                Neighboring Bond                                        Strained Bond 

 

Fig 4.19 SEM Image Showing Filaments Breaking Near The Bond Boundary at 

172°C (Intermediate Stage) 

 

Neighboring Bond                                                                                                                         Strained Bond 

 

 

Fig 4.20 SEM Image Showing Filaments Breaking Near The Bond Boundary at 

172°C (Failure Stage) 
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Table 4.1 Staple Fibers Morphological Parameters-Effect of Bonding Temperature 

 

Temperature 
(°C) 

Fiber 
Diameter 
(µm) 

Birefringence Crystal Size  
(A° ) 
Unbonded 

Crystal Size  
(A° ) 
 Bonded 

SET – I     
144 18.1 0.024 106 156 

148 18.4 0.023 107 171 

156 18.3 0.023 106 170 

160 17.8 0.024 102 171 

168 19.4 0.020 110 163 

172 18.1 0.024 108 179 

 

 

Neighboring Bond                                                                                                                         Strained Bond 
 

 
Fig 4.21 SEM Image Showing Disintegration of Bond at 148°C (Intermediate Stage) 
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Neighboring Bond                                                                                                                         Strained Bond 
 

  
Fig 4.22 SEM Image Showing Disintegration of Bond at 148°C (Failure Stage) 

 

 

Neighboring Bond                                                                                                                         Strained Bond  

 

Fig 4.23 SEM Image Showing Re-Orientation of Fibers and Disintegration of Bond 

at 160°C (Intermediate Stage) 
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low bonding temperature. It is also seen that, there is a slight disintegration of fibers in 

the neighboring bond points at intermediate and failure stages. At a medium temperature 

of 160°C, from, re-orientation of fibers takes place in the neighboring bond points in both 

the intermediate and the failure stages (Fig 4.23 and Fig 4.24). The fibers stretch at the 

vicinity of the bond point, but the bond still remains intact at both the stages. At higher 

bonding temperature of 172°C,  (Fig 4.25 and Fig 4.26), it is observed that the filaments 

break at the perimeter of the bond point. At this stage, the neighboring bond point is still 

intact because of higher bonding temperature. This phenomena is clearly seen both in the 

intermediate and failure stages. From Table 4.2, it is seen that the fiber diameter and fiber 

birefringence in the unbonded regions remain the same for all the samples indicating that 

the changes taking place during bonding in these cases are minimal. However, the crystal 

size values in the unbonded regions remain the same for all the samples and the crystal 

size values of bonded regions are higher than that of the unbonded regions. Within the 

bonded areas, the crystal sizes are slightly affected by bonding temperatures. 

 

4.1.8 Effect of Bond Size 

 

From Figures 4.27 and 4.28, it is obvious that at a lower bonding temperature of 148°C, 

at intermediate and failure stages the fibers pull out one by one from the bond point, i.e., 

the bond disintegrates and the bond becomes weak. Even the neighboring bond points 

exhibit the same trend, even though, not to that extreme. At medium bonding    

temperatures of 160°C, it can be seen that from Figures 4.29 and 4.30, re-orientation of 
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                Neighboring Bond                                                                                                                             Strained Bond  

 
Fig 4.24 SEM Image Showing Re-Orientation of Fibers and Disintegration of Bond 

at 160°C (Failure Stage) 

 
 
 
 

                Neighboring Bond                                                                                                                        Strained Bond  

 

Fig 4.25 SEM Image Showing Filaments Breaking Near The Bond Boundary at 

172°C (Intermediate Stage) 
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                Neighboring Bond                                        Strained Bond 
 

 
 

Fig 4.26 SEM Image Showing Filaments Breaking Near The Bond Boundary at 

172°C (Failure Stage) 

 

 

Table 4.2. Staple Fibers Morphological Parameters, Effect of Bond Area 

 

Sample - (Temp) 
(°C) 

Fiber 
Diameter 
(µm) 

Birefringence Crystal 
Size (A° )  
Unbonded 

Crystal 
Size (A° ) 
 Bonded 

SET- I (160) 17.8 0.024 102 171 

SET- II (160) 18.3 0.024 109 163 

SET- III 160) 18.8 0.023 104 153 
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                   Neighboring Bond                                   Strained Bond  

 

Fig 4.27 SEM Image Showing Disintegration of Bond at 148°C (Intermediate Stage) 

 

 

               Neighboring Bond                                                                                                                         Strained Bond  

 

Fig 4.28 SEM Image Showing Disintegration of Bond at 148°C (Failure Stage) 
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              Neighboring Bond                                                                                                                         Strained Bond 

 
 

Fig 4.29 SEM Image Showing Re-Orientation of Fibers and Disintegration of Bond  

 at 160°C (Intermediate Stage) 

 

 

                 Neighboring Bond                                    Strained Bond 

 

Fig 4.30 SEM Image Showing Re-Orientation of Fibers and Disintegration of Bond 

at 160°C (Failure Stage) 
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fibers take place in the bond point at both intermediate and failure stages. Fibers stretch 

from the main web making the bond point region stretch. But, the bond point stays intact 

in both the stages. At higher bonding temperature of 172°C, from Fig 4.31 and Fig 4.32, 

it is observed that the bond points stays intact, but, the filaments break at the periphery of 

the bond point making the bond weak. The bond point stays intact in both the stages. The 

neighboring bond point stays intact with the web in both the stages. This trend is also 

observed with the webs of other bond areas. 

From the data in Table 4.3, it is seen that the fiber diameter and fiber birefringence values 

remain the same for all the samples. From these values it can be said that the changes 

taking place in the unbonded region during calendaring are minimal. Also the crystal size 

values for the unbonded regions remain in the same range. The crystal size values in the 

bonded regions are higher than those in the unbonded regions and the values in bonded 

regions vary because higher temperature and bonding conditions making these 

morphological changes taking place due to bond size variations insignificant. 

 
 
 

4.2 Spunbond Studies 

4.2.1 Web Properties 

 

In this section, results from spunbond samples are discussed. A total of 6 series of 

samples were produced at bonding temperatures varying from 120 to 160°C. Bonding 

was carried out using different sets of pattern rolls, to obtain a range of bond areas and 
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             Neighboring Bond                                                                                                                        Strained Bond 

 

Fig 4.31 SEM Image Showing Filaments Breaking Near The Bond Boundary at 

172°C (Intermediate Stage) 

 
 
 
 
 

               Neighboring Bond                                         Strained Bond  

 
Fig 4.32 SEM Image Showing Filaments Breaking Near The Bond Boundary at 

172°C (Failure Stage) 
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Table 4.3 Staple Fibers Morphological Parameters, Effect of Bond Size  

 

Sample -
Temp (°C) 

Fiber 
Diameter 
(µm) 

Birefringence Crystal 
Size   (A° ) 
Unbonded 

Crystal 
Size  (A° ) 
Bonded 

SET- III 
(160) 

18.8 0.023 104 153 

SET – IV 
      (160) 

18.4 0.023 106 142 

SET- V  
(160) 

18.6 0.023 99 140 
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bond sizes so that a comparison can be made. The effective bond areas and bond sizes 

used varied from about 10.8% to 23.5% and (0.020 X 0.039) to (0.025 X 0.053). The 

pressure was kept constant at 45 psi for all the samples and the samples were produced at 

a rate of 250 feet/min.  

Like staple fibers, a single bond strip test was chosen for this investigation. For spunbond 

samples, a strip tensile test was also carried out, as the stress-strain response is 

determined, to a significant extent, by the changes taking place in the unbonded region, 

as well as by the load transfer between the bonds. 

Peak load values (from single bond strip test) of all the sample series are shown in Fig 

4.33. The strength values show the expected trend with the increase in bond temperature 

for all the series. In the case of the strip tensile test, it is observed that the web strengths 

follow similar trends with single bond tensile test strength, except that the values of the 

fabric strip test are much higher than the single bond test values as shown in Fig 4.34. 

The web tensile strength increases up to an optimum bonding temperature and then 

decreases with the increase in bond temperature. Similar trends in comparable conditions 

were also observed by Chand [35] and Dharmadhikary [39]. The peak-elongation values 

(Fig 4.35) show a smaller increase with increase in bond temperature, and initial modulus 

values (Fig 4.36) show minimal changes for all the set of spunbond samples. As a result 

of more efficient bonding with increase in bond temperature, the web becomes stiffer and 

all the samples show a slight increase (Fig 4.37) in bending length values with increase in 

bond temperature.  
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Fig 4.33. Peak Load (Single Bond Strip Test)(Machine Direction) vs Bonding 

Temperature for all the sets of Spunbond samples. 
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Fig 4.34. Peak Load From Tensile Strip Results in MD vs Bonding Temperature for 

all Spunbond Samples 
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PEAK ELONGATION - SINGLE BOND TEST
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Fig 4.35. Peak Elongation (From Single Bond Strip Test) (MD) vs Bonding 

Temperature for Spunbond Samples 
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Fig.4.36 Initial Modulus (MD) vs Bonding Temperature for Spunbond Samples. 
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Fig.4.37 Bending Length (MD) vs Bonding Temperature for Spunbond Samples. 
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4.2.2 Effect of Bonding Temperature 

 
To see the effect of bonding temperature on strength, stiffness and fiber morphology of 

the web, a sample having a bond area of 23.5% and bond size of (0.022 X 0.041), 

respectively, was chosen. The peak load values (from the single bond strip tensile test) in 

the two directions MD and CD for the sample having bond area of 23.5% increases. And 

is shown in Fig 4.38. There is a large difference between the values in the two directions. 

The difference between the loads is small at lower temperatures. With increase in 

bonding temperature, the difference increases, largely due to the increase in the strength 

values in the MD. The same trend is also observed when the same sample undergoes the 

tensile strip test (Fig 4.41); the only difference is that the load values in strip test are 

much higher than that of the single bond tensile test. The same trend is also observed 

with samples having different bond areas, as seen from Fig 4.39. This change in values 

with bonding temperature is attributable to change in the failure mechanism. The 

optimum temperature for these samples was observed to be about 150°C (Fig 4.40), 

which are the break elongation values from the tensile strip test results. These results are 

close enough for the peak load values (Fig 4.39) from the tensile strip test. The tear 

strength values for this sample in both MD and CD are shown in Fig 4.42. The tear 

strength values in the MD are higher than in the CD at lower bonding temperatures. But 

this difference between MD and CD reduces with increasing in bonding temperature and 

tear strength values reduce in both directions with increase in bonding temperature. The 

change in bending length values  (Fig 4.43) are minimal in both directions with increase  
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Fig 4.38 Peak Load (Single Bond) Values of Sample Having 23.5% of Bond Area vs 

Bonding Temperature  
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Fig 4.39 Peak Load Values (MD) From Single Bond Strip Test vs Bonding 

Temperature for Spunbond Samples 
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Fig 4.40 Breaking Elongation Values (MD) From Tensile Strip Test vs Bonding 

Temperature of Spunbond Samples 
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Fig 4.41 Peak Load Values From Tensile Strip Test of Sample With Bond Area of 

23.5% vs Bonding Temperature  
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Fig 4.42 Tear Strength Values of Sample With Bond Area of 23.5% vs Bonding 

Temperature 
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Fig 4.43 Bending Length Values of Sample With Bond Area of 23.5% vs Bonding 

Temperature 
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in bonding temperature. 

 

4.2.3 Effect of Bond Area 

 
The effect of Bond Area was studied using three sets of samples, with different in bond 

area, but bond a size in the same range (p-29), so that the differences occurring due to 

bond size were minimum and the effect of bond area on fiber morphology and strength of 

the fabric could be analyzed. For this analysis, the three samples compared have bond 

areas 10.8%, 15.2% and 23.5%, respectively. Figure 4.44 shows the comparison of bond 

area with peak load values in MD for the three sets of samples. During the single bond 

strip test, it was observed that the sample having high bond area 23.5% had higher 

strength across the range of the bonding temperature when compared to the other two sets 

of samples. At low temperatures, all three webs showed low strength and with increase in 

temperature, the peak load values increased for all the three bond areas, making the webs 

much stiffer. For the strip tensile test values (Fig 4.45), it is observed that the peak load 

values for the samples with higher bond areas reach a maximum and then fall off, and 

these values are higher than those samples having lower bond area with increase in 

bonding temperature. The differences observed in Fig 4.44 and Fig 4.45 may be 

attributable to the differences in the failure mechanism. The tear strength results correlate 

with the strip tensile results, i.e., it is tougher to tear the webs bonded at low bonding 

temperatures compared to those bonded at higher temperatures. It can be clearly seen 

from Fig 4.46, that webs having higher bond areas show higher tear strength values at 

low bonding temperatures and then decrease as the bonding temperature increases. This  
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Fig 4.44 Single Bond Strip Results of Peak Load Values (MD) vs Bonding 

Temperature for Bond Area Comparison 
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Fig 4.45 Tensile Strip Results of Peak Load Values in MD vs Bonding Temperature 

for Bond Area Comparison 
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Fig 4.46 Tear Strength Results in MD vs Bonding Temperature for Bond Area 

Comparison 
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Fig 4.47 Bending Length Results in MD vs Bonding Temperature for Bond Area 

Comparison 
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is true for the remaining webs as well. It is also observed that the differences in values of 

bending length (Fig 4.47) are not as large as seen for strength values. But the sample with 

higher bond area  (23.5%) shows higher bending length compared to the sample having 

bond area of 10.8% with increase in bond temperature. These differences reflect bond 

area differences. 

 
4.2.4 Effect of Bond Size 

 
For comparing the effect of bond size with different physical properties, three sets of 

samples having bond sizes (0.020 X 0.039), (0.020 X 0.040) and (0.025 X 0.053) were 

selected, whose bond areas (15.2%, 14.3%, 18.6%) are in the same range. From Fig 4.48, 

it is observed that the webs having higher bond sizes show higher peak load values, as 

obtained from the single bond strip test. At lower bonding temperatures, webs with 

different bond sizes show lower strengths, and as the temperature increases the strength 

also increases with webs having higher bond sizes showing higher strength values 

compared to the webs of smaller bond size. These differences can be attributed to the 

differences in the failure mechanism, which are explained in the next section. From the 

tensile strip test results (Fig 4.49), it is observed that the webs with different bond sizes 

increase in strength with increase in the bonding temperature, just as observed from the 

single bond test results. From Fig 4.50, it is observed that the webs having larger bond 

size have higher tear strength at lower bonding temperature and then the tear strength 

decreases as the temperature increases. This is true for the remaining set of samples, i.e., 

as the bonding temperature increases, the tear strength values decrease. The bending 

length values (Fig 4.51), show almost the same pattern for all the samples.  At higher 
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Fig 4.48 Single Bond Strip Results of Peak load Values in MD vs Bonding 

Temperature for Bond Size Comparison 
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Fig 4.49 Tensile Strip Results of Peak Load Values in MD vs Bonding Temperature 

for Bond Size Comparison 
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Fig 4.50 Tear Strength Results in MD vs Bonding Temperature for Bond Size 

Comparison 

 

 

BENDING LENGTH - BOND SIZE COMPARISON

0

0.5

1

1.5

2

2.5

3

3.5

4

125 135 145 155 165

BONDING TEMPERATURE (C)

B
E

N
D

IN
G

 L
E

N
G

T
H

 (
cm

)

3  (0.020 X 0.039)
6  (0.020 X 0.040)
4  (0.025 X 0.053)

 

Fig 4.51 Bending Length Results in MD vs Bonding Temperature for Bond Size 

Comparison 
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temperature (160°C), the values are almost the same for all the three sets of samples. It 

appears that the effect of bond size on the stiffness values is minimal, which is consistent 

with the observations in the staple fiber studies as well. 

 
 
4.2.5 Analysis and Discussion 

 
4.2.6 Effect of Bonding Temperature 
 
Single bond tensile tested webs examined under scanning electron microscope and 

images were taken from the failure mechanism of the webs. It was done to see how the 

bond deforms during the tensile testing. At lower bonding temperature of 1300C, we can 

see that the bond disintegrating, i.e., fibers pull out one by one from the bond point (Fig 

4.52). The first image shows the neighboring bond point, where a little trend of 

disintegration was observed. This shows that the effect of failure mechanism during 

tensile testing, is also seen in the neighboring bond points along with the bond point 

which undergoes tensile testing. 

At a medium bonding temperature of 1400C, a similar trend of disintegration was 

observed (Fig 4.53), as seen at low bonding temperatures at the failure stage of the single 

bond tensile testing of the webs. 

At higher bonding temperatures of 1600C (Fig 4.54), it was observed from the SEM 

image that filaments break at the vicinity of the bond point, but the bond stays intact. At 

this point, the neighboring bond point is still intact because of higher bonding 

temperature. The breaking of filaments at the vicinity of the bond makes it a weak bond 

point. This phenomenon was also observed in staple fiber studies. 
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               Neighboring Bond                                                                                                                     Strained Bond 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 4.52 SEM Image Showing Disintegration of Bond at 130°C (Failure Stage) 
 
 
 
 
 
 

                   Neighboring Bond                                                                                                             Strained Bond 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.53 SEM Image Showing Bond Disintegration and Re-orientation of Fibers at  

140°C (Failure Stage) 
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                   Neighboring Bond                                                                                               Strained Bond 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.54 SEM Image Showing Filaments Breaking Near The Bond Boundary at 

160°C  (Failure Stage) 

 

 
 
 
 

 
Table 4.4 Spunbond Fibers Morphological Parameters, Effect of Bond Temperature 

 
 
 

 
 
 
 
 
 

Sample – Bond 
Area - Temp (°C) 

Fiber Dia 
(µm) 

Birefringence Crystal 
Size  (A° ) 
Unbonded 

Crystal Size 
(A° ) 
Bonded 

1 – 23.5%  (130)  19.9 0.021 123 168 

1 – 23.5%  (160) 19.9 0.019 118 162 
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From Table 4.4, we can see that the values of fiber birefringence and fiber diameter in the 

unbonded regions is in the same range for the sample at low and high bonding 

temperatures indicating that the changes taking place during calendering, with short 

intervals of calendering, are very low. However, the crystal size values in the unbonded 

regions remain in the same range and the crystal size values of bonded regions are higher 

than that of the unbonded regions. 

 
 
4.2.7  Effect of Bond Area 

 
 

From the SEM images of the webs, which were taken from samples tested after single 

bond tensile tests and obtaining the fiber morphology parameters, we can see the effect of 

bond area on the strength, stiffness and morphology of the web can be seen. 

From Figure 4.55, it is observed that at lower bonding temperature (130°C), the fibers 

pull out from the bond point. During the failure stage, total disintegration of the bond 

takes place, i.e., fibers pull out one by one from the bond point making the bond weak. 

Chand [35] also showed a similar trend of disintegration of bond point at low bonding 

temperature. It is also seen that there is a slight disintegration of the fibers in the 

neighboring bond points during the failure stage and this shows that the effect of 

disintegration not only occurs on the bond which undergoes tensile testing but, also in the 

neighboring bonds. For fabrics bonded at medium temperature (140°C), as shown in Fig 

4.56, the bond starts to stretch from the filaments of the web and re-orientation of fibers 

takes place in the neighboring bonds. At higher bonding temperature of 160°C, (Fig 4 

.57), the filaments break at the vicinity of the bond point. At this stage, the neighboring 
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                   Neighboring Bond                                                                                                                         Strained Bond 

 

 

 

 

 

 

 

 

Fig 4.55 SEM Image Showing Disintegration of Bond at 130°C (Failure Stage) 

 

 

 

Neighboring Bond                                                                                                                         Strained Bond 

 

 

 

 

 
 
 
 
 
 
 

Fig 4.56 SEM Image Showing Bond Stretching at 140°C (Failure Stage)         
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bond point is still intact because of higher bonding temperature. From Table 4.5, it is seen 

that the fiber diameter and fiber birefringence values in the unbonded regions remain the 

same for all the samples indicating that the changes taking place during the processing 

speeds, with short dwell times in the calender, are very low. But, the crystal size varies 

from unbonded regions to bonded regions. However, the crystal size values in the 

unbonded regions remain the same for all the samples and the crystal size values of 

bonded regions are higher than that of the unbonded regions. 

 
 

4.2.8 Effect of Bond Size 

 

From Fig 4.58, it is obvious that at a lower bonding temperature of 130°C, at failure 

stage, the fibers pull out one by one from the bond point, i.e., the bond disintegrates and 

the bond becomes weak. Even the neighboring bond points also exhibit the same trend, 

eventhough, not of that extreme. At medium temperatures of 140°C, (as observed from 

Fig 4.59) disintegration of the bond takes place and fibers pull out one by one from the 

bond point and fiber re-orientation takes place at the neighboring bond making it a weak 

bond. At a higher bonding temperature of 160°C, (Fig 4.60), it is observed that the bond 

point stays intact but, the filaments break at the periphery of the bond point making the 

bond weak. The neighboring bond point stays intact during the failure stage. This trend is 

also observed with the webs of other bond sizes. From Table 4.6, it is seen that the fiber 

diameter and fiber birefringence values remain the same for all the samples indicating 

that the changes that might be taking place during these processing speeds, with short  
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                       Neighboring Bond                                                                                                                  Strained Bond 

 

      

 

 

 

 

 

 

Fig 4.57 SEM Image Showing Filaments Breaking Near The Bond Boundary at 

160°C  (Failure Stage) 

 

 

 

Table 4.5 Spunbond Fibers Morphological Parameters, Effect of Bond Area 

 

 

 
 
 

Sample - Bond 
Area -Temp (°C) 

Fiber Dia 
(µm) 

Birefringence Crystal 
Size (A° ) 
Unbonded 

Crystal Size 
(A° ) 
Bonded 

2 – (10.8%) 20.2 0.021 107 162 

3 -  (15.2%) 20.1 0.020 112 162 

1 -  (23.5%) 19.9 0.019 118 162 
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             Neighboring Bond                                                                                                                        Strained Bond 
 

         

 

 

 

 

 

 

 
Fig 4.58 SEM Image Showing Disintegration of Bond at 130°C (Failure Stage) 

 

 

              Neighboring Bond                                                                                                                         Strained Bond 

               

 

 

 
 
 
 
 
 
 
 
 

Fig 4.59 SEM Image Showing Bond Disintegration at 140°C (Failure Stage) 
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                  Neighboring Bond                                                                                                                         Strained Bond 
 

                       

 

 

 

 

 

 

Fig 4.60 SEM Image Showing Filaments Breaking Near The Bond Boundary at 

160°C  (Failure Stage) 

 

 

 

 

Table4.6 Spunbond Fibers Morphological Parameters, Effect of Bond Size  

 

 

 

 

Sample – Bond Size - 
Temp (°C) 

Fiber Diameter 
(µm) 

Birefringence Crystal Size 
(A° ) 
Unbonded 

Crystal 
Size  (A° ) 
Bonded 

3    – (0.020 X 0.039) 
 

20.1 0.020 112 162 

6    – (0.020 X 0.040) 
 

19.8 0.019 116 170 

4    –  (0.025 X 0.053) 
 

19.7 0.022 109 160 
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dwell times in the calender, are very low. Also, the crystal size values for the unbonded 

regions remain in the same range. The crystal size values of bonded regions are higher 

than those of unbonded regions and the values in bonded regions vary because of higher 

temperature and bonding conditions making the morphological changes taking place due 

to bond size variations insignificant. 
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CHAPTER V 

CONCLUSIONS 

 

The series of samples produced under various bonding conditions, using both staple 

fibers and spunbond fibers, were thoroughly characterized. Based on this study, the 

following conclusions can be drawn as far as the effect of bond temperature, bond area 

and bond size are concerned 

 

1. Effect of Bonding Temperature 

a) Bond strength increases up to a maximum and then decreases with 

increase in bonding temperature for both staple fiber and spunbond 

studies. 

b) Tear strength changes are small with for range of samples investigated, but 

the values in CD show a higher tear strength than MD over the range of 

the bonding temperature for staple fiber webs. However, tear strength 

values are higher with spunbond samples and show a decreasing trend 

with increase in bonding temperature. 

c) Bending length values show a slight increase with bonding temperature for 

staple fiber webs. For spunbond webs, the bending length value 

differences are small with the bonding temperature for the range of study. 

d) Effect of bonding temperature on fiber morphology in the unbonded 

regions is negligible for both staple and spunbond studies. 
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e) 150°C was found to be the optimum bonding temperature for spunbond 

studies. 

2. Effect of Bond Area 

a) Bond strength increases with increae in bond area for both staple and 

spunbond samples. 

b) Slightly higher tear strength values for samples having higher bond areas 

than samples having lower bond areas along the range of bonding 

temperature are observed for staple fiber webs. For spunbond samples, 

tear strength decreases with increase in bonding bond area. 

c) Bending length values are slightly higher for samples having higher bond 

areas for staple fiber webs. For spunbond webs, the bending length 

differences are small with respect to bond area for the range of samples 

investigated. 

d) Effect of bond area on fiber morphology in the unbonded region is 

negligible for both staple and spunbond studies. 

3. Effect of Bond Size 

a) Bond strength increases with increase in bond size for staple and 

spunbond webs. 

b) Tear strength differences are small for staple fiber webs and for spunbond 

webs, tear strength decreases with increase in bonding temperature for 

larger bond size. 
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c) Bending length value differences are minimal for both staple and 

spunbond webs with respect to the bond size for the range of samples 

investigated. 

d) Effect of bond size on fiber morphology in the unbonded region is 

negligible for both staple and spunbond webs. 

 

In all the cases, crystal sizes were different in the unbonded and bonded regions, values 

being higher in the bonded regions. This is due to the effect of heat in the bonded region. 

However, in the unbonded regions, the effect is negligible at these processing conditions, 

for fibers investigated, which may be due to fairly well developed structure of the fibers.    
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APPENDIX I 

 
 

SAS Output for ‘ Analysis of Variances’ using GLM method to see the Effect of 
Bond Temperature on Peak Load of Set – I sample of Staple Fiber Web. 
 
 

The GLM Procedure 
 

Dependent Variable: pload 
 
 
Source                  DF       Sum of Squares           Mean Square        F Value      Pr > F    

Model      13             7348.4026                  565.2617            0.47         0.9357 

Error                    130       155026.8514                 1192.5142             

Corrected Total   143       162375.2539                                                                     

 

                        R-Square           Coeff  Var          Root MSE               pload Mean 

                       0.045256            451.4501            34.53280                  7.649306 
 
 
Source                  DF       Type   I    SS              Mean Square        F Value       Pr > F 

Direction               1          7322.673556               7322.673556         6.14            0.0145 

Temp                     6            13.059028                      2.176505         0.00           1.0000        

Direction*Temp    6            12.669970                      2.111662         0.00           1.0000 

 

Source                   DF      Type  III  SS             Mean Square         F Value        Pr > F 

Direction                1        7310.444660             7310.444660           6.13            0.0146 

Temp                      6            11.815399                   1.969233           0.00            1.0000 

Direction*Temp     6            12.669970                   2.111662           0.00            1.0000 
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APPENDIX II 
 
 

SAS Output for ‘ Analysis of Variances’ using GLM method to see the Effect of 
Bond Temperature on Tear Strength of Set – I sample of Staple Fiber Web. 
 
 

The GLM Procedure 
 

Dependent Variable: tstrength 
 
 
Source                  DF       Sum of Squares           Mean Square        F Value      Pr > F    

Model      15             5355.0000                  357.00000            2.20         0.0155 

Error                     64          10400.0000                  162.50000             

Corrected Total    79          15755.0000                                                                     

 

                        R-Square           Coeff  Var          Root MSE               tstrength Mean 

                       0.339892             12.84388            12.74755                 99.25000 
 
 
Source                  DF       Type   I    SS              Mean Square        F Value       Pr > F 

Direction               1              0.000000                     0.00000               0.00           1.0000 

Temp                     7        5355.00000                  765.00000              4.71            0.0003        

Direction*Temp    7              0.00000                      0.00000              0.00            1.0000 

 

Source                   DF      Type  III   SS             Mean Square         F Value        Pr > F 

Direction                1              0.00000                       0.00000           0.00             1.0000 

Temp                      7        5355.00000                   765.00000           4.71             0.0003 

Direction*Temp     7              0.00000                      0.000000          0.00             1.0000 
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APPENDIX III 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Temperature on Bending Length of Set – I sample of Staple Fiber Web. 
 
 

The GLM Procedure 
 

Dependent Variable: bendlgth 
 
 
Source                  DF       Sum of Squares           Mean Square        F Value      Pr > F    

Model      15            108.5799219             7.2386615            19.73         <0.001 

Error                    112            41.0862500             0.3668415            

Corrected Total   127           149.6661719                                                                     

 

                        R-Square           Coeff  Var          Root MSE               bendlgth Mean 

                       0.725481             13.47581             0.605674                  4.494531 
 
 
Source                  DF       Type   I    SS              Mean Square        F Value       Pr > F 

Direction               1             84.33757813             84.33757813       229.90         <.0001 

Temp                     7            21.88304688               3.12614955          8.52         <.0001        

Direction*Temp    7              2.35929687               0.33704241          0.92          0.4948 

 

Source                   DF      Type  III  SS             Mean Square         F Value        Pr > F 

Direction                1          84.33757813             84.33757813       229.90          <.0001 

Temp                      7          21.88304688               3.12614955           8.52          <.0001 

Direction*Temp    7             2.35929687               0.33704241           0.92          0.4948 
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APPENDIX IV 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Area on Peak Load of Sets – I, II, III samples of Staple Fiber Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: pload 
 
 
Source                  DF       Sum of Squares           Mean Square         F Value       Pr > F    

Model       23           0.46240475             0.02010455            18.89         <0.0001 

Error                    213           0.22666444             0.00106415            

Corrected Total   236           0.68906920                                                                    

 

                        R-Square           Coeff  Var          Root MSE               pload Mean 

                       0.671057             23.10598             0.032621                 0.141181 
 
 
Source                  DF          Type   I    SS              Mean Square        F Value       Pr > F 

Group                      2             0.23890983             0.11945492            112.25          <.0001 

Temp                       7           0.15249972              0.02178567             20.47          <.0001        

Group*Temp         14           0.07099520              0.00507109               4.77          <.0001 

 

Source                   DF         Type  III  SS             Mean Square         F Value        Pr > F 

Group                      2             0.23890983             0.11945492            112.25          <.0001 

Temp                       7           0.15249972              0.02178567             20.47          <.0001        

Group*Temp         14           0.07099520              0.00507109               4.77          <.0001 
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APPENDIX V 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Area on Tear Strength of Sets – I, II, III samples of Staple Fiber Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: tstrength 
 
 
Source                  DF       Sum of Squares           Mean Square        F Value      Pr > F    

Model       23           14679.16667             638.22464            4.83         <0.0001 

Error                      96           12680.00000             132.08333            

Corrected Total   119            27359.16667                                                                    

 

                        R-Square           Coeff  Var          Root MSE               tstrength Mean 

                       0.536536             10.88501             11.49275                 105.5833 
 
 
Source                    DF         Type   I    SS           Mean Square         F Value       Pr > F 

Group                      2             4026.666667           2013.333333         15.24           <.0001 

Temp                       7           5172.500000             738.928571          5.59            <.0001        

Group*Temp         14           5480.000000             391.428571          2.96            0.0009 

 

Source                    DF          Type III    SS        Mean Square        F Value        Pr > F 

Group                      2             4026.666667           2013.333333         15.24           <.0001 

Temp                       7           5172.500000             738.928571          5.59            <.0001        

Group*Temp         14           5480.000000             391.428571          2.96            0.0009 
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APPENDIX VI 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Area on Bending Length of Sets – I, II, III samples of Staple Fiber Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: bendlgth 
 
 
Source                  DF       Sum of Squares           Mean Square        F Value      Pr > F    

Model       23           58.0241667             2.5227899            6.21         <0.0001 

Error                    168           68.2950000             0.4065179             

Corrected Total   191          126.3191667                                                                   

 

                        R-Square           Coeff  Var          Root MSE               bendlgth Mean 

                       0.459346            111.58811             0.637588                5.502083 
 
Source                  DF         Type   I    SS              Mean Square        F Value       Pr > F 

Group                      2             8.48666667              4.24333333         10.44           <.0001 

Temp                       7          41.95750000              5.99392857         14.74          <.0001        

Group*Temp         14           7.58000000               0.54142857          1.33           0.1933 

 

Source                  DF          Type  III    SS            Mean Square       F Value       Pr > F 

Group                      2             8.48666667              4.24333333         10.44           <.0001 

Temp                       7          41.95750000              5.99392857         14.74          <.0001        

Group*Temp         14           7.58000000               0.54142857          1.33           0.1933 
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APPENDIX VII 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Size on Peak Load of Sets – III, IV, V samples of Staple Fiber Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: pload 
 
 
Source                  DF       Sum of Squares           Mean Square        F Value      Pr > F    

Model       22           0.20310489             0.00923204            7.68         <0.0001 

Error                    195           0.23448226             0.00120247             

Corrected Total   217           0.43758716                                                                 

 

                        R-Square           Coeff  Var          Root MSE               pload Mean 

                       0.464147            22.90763             0.034677                0.151376 
 
 
Source                  DF         Type   I    SS              Mean Square        F Value       Pr > F 

Group                      2             0.04156093              0.02078046         17.28           <.0001 

Temp                       7            0.08751956              0.01250279         10.40          <.0001        

Group*Temp         13            0.07402440              0.00569418          4.74           <.0001 

 

Source                  DF          Type III    SS            Mean Square        F Value       Pr > F 

Group                      2             0.042969634             0.02148467         17.87          <.0001 

Temp                       7            0.08678886              0.01239841         10.31          <.0001        

Group*Temp         13            0.07402440              0.00569418          4.74           <.0001 
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APPENDIX VIII 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Size on Tear Strength of Sets – III, IV, V samples of Staple Fiber Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: tstrength 
 
 
Source                  DF       Sum of Squares           Mean Square        F Value      Pr > F    

Model       23           6226.66667             270.72464              3.11         <0.0001 

Error                      96           8360.00000             87.08333             

Corrected Total   119           14586.66667                                                                  

 

                        R-Square           Coeff  Var          Root MSE             tstrength Mean 

                       0.426874            8.457866             9.331845                110.3333 
 
 
Source                  DF         Type   I    SS              Mean Square        F Value       Pr > F 

Group                      2             511.666667              255.833333           2.94           0.0578 

Temp                       7          1240.000000             177.142857           2.03           0.0584        

Group*Temp         14          4475.000000             319.642857           3.67           <.0001 

 

Source                  DF          Type   III    SS          Mean Square        F Value       Pr > F 

Group                      2             511.666667              255.833333           2.94           0.0578 

Temp                       7          1240.000000             177.142857           2.03           0.0584        

Group*Temp         14          4475.000000             319.642857           3.67           <.0001 
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APPENDIX IX 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Size on Bending Length of Sets – III, IV, V samples of Staple Fiber Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: bendlgth 
 
 
Source                  DF       Sum of Squares           Mean Square        F Value      Pr > F    

Model       23           66.31750000             2.88336957          14.50       <.0001 

Error                     168          33.41500000             0.19889881            

Corrected Total    191          99.73250000                                                                  

 

                        R-Square           Coeff  Var          Root MSE             bendlgth Mean 

                       0.664954             8.268472             0.445981                5.393750 
 
 
Source                  DF         Type   I    SS              Mean Square        F Value       Pr > F 

Group                      2             0.46625000              0.23312500            1.17           0.3122 

Temp                       7          60.88583333             8.697976719        43.73           <.0001        

Group*Temp         14            4.96541667             0.35467262            1.78           0.0447 

 

Source                  DF         Type  III    SS              Mean Square        F Value     Pr > F 

Group                      2             0.46625000              0.23312500            1.17           0.3122 

Temp                       7          60.88583333             8.697976719        43.73           <.0001        

Group*Temp         14            4.96541667             0.35467262            1.78           0.0447 
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APPENDIX X 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Area on Peak Load of Sets – 2,3,1 samples of Spunbond Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: pload 
 
 
Source                  DF       Sum of Squares           Mean Square        F Value      Pr > F    

Model       12           0.18114987             0.01509582          18.91         <.0001 

Error                     239          0.19082156             0.00079842            

Corrected Total    251          0.37197143                                                                 

 

                        R-Square           Coeff  Var          Root MSE             pload Mean 

                       0.486999             41.78744             0.028256                0.067619 
 
 
Source                  DF         Type   I    SS              Mean Square        F Value       Pr > F 

Group                      2             0.06375761             0.03187880            39.93          <.0001 

Temp                       4           0.10524596             0.02631149            32.95           <.0001        

Group*Temp           6           0.01214630             0.00202438            2.54             0.0213 

 

Source                  DF         Type   III    SS          Mean Square        F Value        Pr > F 

Group                      2             0.04358676             0.02179338            27.30          <.0001 

Temp                       4           0.10665932             0.02666483            33.40           <.0001        

Group*Temp           6           0.01214630             0.00202438            2.54             0.0213 

 

 
 

   

          
          



 104

APPENDIX XI 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Area on Tear Strength of Sets – 2,3,1 samples of Spunbond Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: tstrength 
 
 
Source                  DF       Sum of Squares          Mean Square     F Value       Pr > F    

Model       12          888183.846             74015.321          9.57          <.0001 

Error                      52          40210.000                 7730.962            

Corrected Total     64          1290193.846                                                                 

 

                        R-Square           Coeff  Var          Root MSE             tstrength Mean 

                       0.688411             32.52807             87.92589                270.3077 
 
 
Source                  DF            Type   I    SS            Mean Square          F Value       Pr > F 

Group                      2             151049.8462             75524.9231            9.77            0.0003 

Temp                       4            330514.8333             82628.7083          10.69            <.0001        

Group*Temp           6            406619.1667             67769.8611            8.77            <.0001 

 

Source                  DF         Type   III    SS          Mean Square        F Value         Pr > F 

Group                      2            133100.8333           66550.4167             8.61              0.0006 

Temp                       4           330514.8333           82628.7083           10.69             <.0001        

Group*Temp           6           406619.1667           67769.8611             8.77             <.0001 
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APPENDIX XII 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Area on Bending Length of Sets – 2,3,1 samples of Spunbond Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: bendlgth 
 
 
Source                  DF       Sum of Squares          Mean Square      F Value       Pr > F    

Model       12          29.57788462             2.46482372        7.68          <.0001 

Error                      91          29.21250000             0.32101648           

Corrected Total    103         58.79038462                                                                

 

                        R-Square           Coeff  Var          Root MSE             bendlgth Mean 

                       0.503108             11.58566             0.566583                4.890385 
 
 
Source                  DF           Type   I    SS          Mean Square          F Value         Pr > F 

Group                      2             6.55188462             3.27594231            10.20            0.0001 

Temp                       4          16.16100000             4.04025000           12.59            <.0001        

Group*Temp           6            6.86500000             1.14416667            3.56              0.0032 

 

Source                  DF         Type   III    SS          Mean Square        F Value         Pr > F 

Group                      2            3.90333333             1.95166667             6.08             0.0033 

Temp                       4         16.16100000             4.04025000           12.59            <.0001        

Group*Temp           6           6.86500000             1.14416667             3.56             0.0032 
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         APPENDIX XIII 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Size on Peak Load of Sets – 3,4,6 samples of Spunbond Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: pload 
 
 
Source                  DF       Sum of Squares          Mean Square      F Value       Pr > F    

Model       10          0.25345637             0.02534564         24.65          <.0001 

Error                     206         0.21183211             0.00102831           

Corrected Total    216         0.46528848                                                                

 

                        R-Square           Coeff  Var          Root MSE             pload Mean 

                       0.544730             35.53934            0.032067                0.090230 
 
 
Source                  DF           Type   I    SS          Mean Square          F Value           Pr > F 

Group                      2             0.08451008             0.04225504            41.09              <.0001 

Temp                       3           0.14013694             0.04671231            45.43              <.0001        

Group*Temp           5            0.02880935            0.00576187              5.60              <.0001 

 

Source                  DF         Type   III    SS          Mean Square        F Value            Pr > F 

Group                      2            0.04713877             0.02356938             22.92               <.0001 

Temp                       3           0.14065609             0.04688536             45.59              <.0001        

Group*Temp          5          0.02880935            0.00576187              5.60             <.0001      
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         APPENDIX XIV 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Size on Tear Strength of Sets – 3,4,6 samples of Spunbond Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: tstrength 
 
 
Source                  DF       Sum of Squares          Mean Square      F Value       Pr > F    

Model       10         447482.7273             44748.2727         8.35          <.0001 

Error                      44         235910.0000             5361.5909           

Corrected Total     54         683392.7273                                                              

 

                        R-Square           Coeff  Var          Root MSE             tstrength Mean 

                       0.654796             33.64460            73.22289                217.6364 
 
 
Source                  DF           Type   I    SS          Mean Square          F Value           Pr > F 

Group                      2             190885.6439          95442.8220            17.80               <.0001 

Temp                       3            167064.6528          55688.2176            10.39              <.0001        

Group*Temp           5            89532.4306            17906.4861              3.34               0.0121 

 

Source                  DF         Type   III    SS          Mean Square        F Value            Pr > F 

Group                      2            145830.0694           72915.0347             13.60               <.0001 

Temp                       3           167064.6528           55688.2176             10.39              <.0001        

Group*Temp          5          89532.4306             17906.4861             3.34             0.0121      
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APPENDIX XV 
 
 

SAS Output for ‘Analysis of Variances’ using GLM method to see the Effect of 
Bond Size on Bending Length of Sets – 3,4,6 samples of Spunbond Webs. 
 
 

The GLM Procedure 
 

Dependent Variable: bendlgth 
 
 
Source                  DF       Sum of Squares          Mean Square      F Value       Pr > F    

Model       10         19.66204545            1.96620455         5.57           <.0001 

Error                      77         27.17750000             0.35295455           

Corrected Total     87         46.83954545                                                              

 

                        R-Square           Coeff  Var          Root MSE             bendlgth Mean 

                       0.419774             11.54101            0.594100                5.147727 
 
 
Source                  DF           Type   I    SS          Mean Square          F Value           Pr > F 

Group                      2             1.95902462            0.97951231              2.78               0.0686 

Temp                       3          13.30074653           4.43358218             12.56              <.0001        

Group*Temp           5            4.40227431           0.88045486              2.49               0.0379 

 

Source                  DF         Type   III    SS          Mean Square        F Value            Pr > F 

Group                      2            0.90418403             0.45209201              1.28               0.2836 

Temp                       3         13.30074653            4.43358218             12.56              <.0001        

Group*Temp          5            4.40227431            0.88045486               2.49              0.0379       
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