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ABSTRACT

A customizable procedure for the formulation of Pavement Distress Index (PDI)

based on human rating behavior is presented in this dissertation. This procedure

formulates PDI as the maximum PDI value in a user-defined scale minus the Total

Deduct Value (TDV), which is the sum of the product of each individual Deduct-Value

(DV) and its corresponding weight. These weights, defined as a function of

corresponding DV-percentages, i.e. individual DV over TDV, are identified using data

simulated according to the studies by Sun and Yao (1991) and PAVER, a Pavement

Management System (PMS) developed by the U. S. Army Corps of Engineers. Because

these functions, called weight-curves captured from the two independent studies are quite

similar, the rating behavior of pavement experts can be concluded to be reasonably

stable, and therefore PDI may be formulated by fixing the weight-curve and customizing

individual DVs only.

Non-linear programming techniques are employed in this study. DVs for user-

defined distresses are determined when the total squared sum of the difference between

user-rated PDI and that computed by the proposed formulation for a series of samples is

minimized. Initially, simulated data from PAVER was used to establish and illustrate this

procedure. Field data was later on used for validation purposes. The proposed

methodology caters to user-defined PDI scales and distress definitions, and determines

DVs for user-defined distresses so that the user-rated PDIs can be reproduced when

similar pavement conditions happen. This procedure simplified the iterative PDI

formulation process to the automated customization of deduct-values, it would thus

greatly facilitate the formulation of a PDI for agencies that are implementing a PMS.
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Chapter 1 Introduction

1.1 Significance of Pavement Distress Information

Pavement distresses are visible imperfections on the surface of pavements. They are

symptoms of the deterioration of pavement structures. Most, if not all, agencies that have

implemented a Pavement Management System (PMS) collect periodic surface distress

information on their pavements through distress surveys (Haas et al. 1994). Generally

four categories of surface distress are collected: surface defects, permanent deformation

or distortion, cracking, and patching, with each category including several specific types

of distresses. Although an extremely wide variation exists in the manner in which the

distress surveys are conducted, recorded, analyzed, summarized, and stored, information

on distress type, severity, density, and sometimes location is usually gathered.

Pavement engineers have long recognized the importance of distress information in

quantifying the quality of pavements. This information has been used to document

present pavement condition, chart past performance history, and predict future pavement

performance (Shahin et al. 1994).  Pavement distress information is also broadly used as

the only quality measure of pavements in many PMS. This is particularly true for systems

used by local governments and in urban areas where roughness measurements are not

performed because of a lack of equipment availability, high cost, or a lack of relative

applicability.
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1.2 Necessity for PDI Formulation

Pavement distress information can be used in a detailed manner for developing a

demand-based localized maintenance program. However, in order to obtain an overall

assessment of pavement conditions for a road network, it is often necessary to combine

individual distress data to form one composite index, called Pavement Distress Index

(PDI), which summarizes the condition of each pavement segment or project. This is

particularly true when distress information is used for project selection purpose. Is it

more important to repair a section with alligator cracking or rutting? What combinations

of density and severity of the different distresses will indicate that one pavement section

is in a worse state than another pavement with a different set of distresses (Haas et al.

1994)? In addition, the composite PDI is also easier to understand at the non-technical

level within and outside of an agency.

1.3 Nature of the PDI

By definition, PDI is a subjective evaluation of pavement conditions by experienced

pavement engineers, based on a user-defined scale, such as 0-5, 0-10, or 0-100. It

summarizes the pavement condition in terms of individual distress, so that pavement

performance may be evaluated, predicted, and improved using effective treatments. As

Grivas et al. (1992) pointed out, the objective of developing a PDI is to (1) Combine

distress data in a manner that reflects the maintenance practices of a specific agency and
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that is meaningful to field personnel and middle and upper management;  and (2) Create a

sufficiently responsive condition measure that can be used for network-level analysis.

Assessments of pavement conditions are usually obtained by means of organized

experiments using expert panels. As such, it is impractical and expensive to perform

pavement quality ratings on an entire pavement network. Consequently, considerable

effort in PDI formulation has gone into correlating various objective, high speed and

reliable mechanical measurements with the subjective ratings on samples of the network

(Haas et al. 1994). Based on the established relationship, the necessity of repeated

organized experiment is eliminated, and the expert-rated PDIs may be reproduced using

the objective measures of individual pavement distress.

1.4 Methods for PDI Formulation

There are two major streams in the PDI formulation methods, i.e. the pure regression and

the deduct-value method. Pure regression analysis is one of the most commonly adopted

approaches, and its implementation may date back to the time of the AASHO Road Test,

when the famous AASHO Present Serviceability Index (PSI) was formulated (Carey and

Irick, 1960). In this method, each distress included is considered as an independent

variable, and all the independent variables combined linearly or nonlinearly to reproduce

the user-ratings based on pure data fitting. Similar analyses were also reported by Turner

et al. (1986) and Wu (2000) in developing quantitative rating indexes in Alabama and

North Carolina, respectively.
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A more popular method involves the use of deduct-values. In this method, each type-

severity-density distress on a pavement is considered a “deduct-value” from the rating of

a perfect pavement. The magnitude of the deduct-value represents the impact of the

distress on the pavement condition when it appears alone. The relative amount of the

deduct-value implies that certain types of distress contribute more than others to the

overall pavement damage. The PDI is hence the rating of a perfect pavement minus the

total deduct-value, which is a nonlinear aggregation of all the individual deduct-values.

Because of its clear physical meaning, the deduct-value method has received wide

acceptance by many agencies, such as the Federal Aviation Administration, the U.S.

Department of Defense, and the American Public Works Association (Shahin 1994).

According to the author’s survey, many state highway agencies have also taken

advantage of the deduct-value concept and use it in the development of their PMS. These

states include Arkansas, Iowa, New York, North Carolina, South Carolina, South Dakota,

Tennessee, Washington, the Province of Alberta and British Columbia in Canada

(FHWA 1983, Jackson et al. 1996, StanTech 1999).

Both of the aforementioned methods for PDI formulation are not perfect. First, they are

both very costly and time-consuming to develop. Each individual distress type

contributes in a distinct manner toward the aggregate pavement condition: The

formulation of a PDI must accommodate the relative significance of each distress type

and magnitude (severity and density) (Grivas et al. 1992). Since there are several types of

distress, several possible degrees of severity for each type, and a wide range of density
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for each type, combining the effects of these three characteristics to form one index is a

large-scale regression problem, and hence entails great effort. For the deduct-value

method, the large-scale regression is replaced by an inevitable and painstaking iterative

process, because both the individual deduct-values and how they should be “non-

linearly” combined are unknown. As evidenced by the two previous studies (Shahin and

Kohn 1979, Sun and Yao 1991), a common loop for such an iterative process is to

assume the individual deduct-values and the combination schemes first, and then adjust

them according to field-tests and user-rated PDIs.

In addition, the painstakingly established relationships or models are applicable only to a

selected distress definition. Once there is a change in the distress definition, the original

PDI model would be rendered meaningless and un-usable. This is extremely undesirable

because every agency is free to select the distresses to be included in its PDI formulation;

it is not uncommon for an agency to update its distress definitions, either. For example,

some agencies may introduce new data collection methods or equipment, which may well

alter some or all of the existing distress definitions. In order to update the deduct-values

for the newly included distress definitions, the iterative formulation process has to be

started again.

1.5 The Desired Procedure

In some sense, existing procedures did not solve the PDI formulation problem

satisfactorily, and, in fact, brought about a dilemma. On the one hand, PDI formulation
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has to allow for the free choice of distress definitions; on the other hand, the costly

formulation process just produces a definition-specific model. The fact that distress

definitions may change aggravates the situation. In order to avoid such a dilemma, a

customizable procedure that is flexible enough to accommodate a wide range of distress

definitions without undergoing the conventional iterative formulation process may be

more appropriate.

In the study of Sun and Yao (1991), the idea of such a customizable procedure was first

proposed. They reported that human rating behavior might be used as the basis for PDI

formulation because it was found to be reasonably stable across China. This study will

further explore the concept of such a customizable procedure based on human rating

behavior, and it will construct and automate a more generic PDI formulation procedure

that is customizable to any distress definition.

1.6 Objectives and Scope

The primary objective of this research is to develop a customizable procedure for PDI

formulation based on human rating behavior. Specifically, this study will: (1) Propose a

generic PDI formulation as the maximum PDI value in a user-defined scale minus the

sum of the product of each individual deduct-value and its corresponding weight; (2)

Identify the human rating behavior, i.e. the relationship between the individual deduct-

value and its corresponding weight (the so-called weight-curve) by approaching the

PAVER and China method using the proposed formulation, and analyze the stability of



7

the rating behavior; (3) Automate the extraction of deduct-values based on a reasonably

stable weight-curve and user distress survey data; (4) Verify whether the extracted

deduct-values would reproduce the user-rated PDI reliably.
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Chapter 2 Literature Review

2.1 Introduction

Several PDI formulation methods based on the deduct-value concept are reviewed in this

Chapter. These include the original and modified PAVER PCI method, the China method

(Sun and Yao 1991), and the Baladi’s method (Baladi 1991). Each of these methods is a

complete start-from-scratch PDI formulation process. The PAVER and China methods

are the forerunners of the method proposed in this dissertation. It is the objective of this

Chapter to review the common formulation process of a deduct-value method, i.e. the

distress definition, PDI formulation, iterative solution of the formulation, and validation.

2.2 The PAVER PCI Method

PCI is the abbreviation for Pavement Condition Index. It was initially developed for the

pavement maintenance of the army airports by the U. S. Army Corps of Engineers. It is a

numerical index, ranging from 0 for a failed pavement to 100 for a pavement in perfect

condition. It measures pavement structural integrity and surface operational condition.

The essential concept behind PCI is to consider each given distress severity and amount

as a negative deduct on pavement condition. Once these deduct-values are determined,

the relationship between PCI, the subjective rating and objective measurements may be

established. PCI, the user rating, may be reproduced when similar conditions occur on the

road in the future.
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According to Shahin and Kohn (1979), there are several essential steps in developing the

PCI. The first step is to select a rating scale as a standard for comparing different

pavements. The next step is to clearly and exactly describe and define each pavement

distress types, severity levels, and the measurement criteria. In PAVER system, deduct-

value curves, such as those shown on Figure 2-1 for alligator cracking, were developed

for each of the distress types in the third step. The abscissa of the graph is the extent or

density of distress. Each graph contains three curves corresponding to the severity of the

distress. The ordinate is the deduct-value. Because each deduct-value represents its

negative effect on pavement structural integrity and operational surface condition, these

deduct-values should be adjusted based on distress surveys by using samples with single

type-severity-density distressed samples.

Figure 2-1.  Example of a deduct curve for alligator cracking (Shahin and Kohn 1979).
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In the last step, the total deduct-value is computed by adding the individual distress type

deduct-values. On severely distressed pavements with multiple distress types, the total

deduct-value can exceed 100. Thus, under the philosophy that a pavement with two type-

severity distress combinations which each has a deduct-value of 35 is not in a state as bad

as a pavement with a deduct-value of 70 for one type-severity combination, a series of

curves were established for correcting the total deduct-value, as shown in Figure 2-2

(Haas et al. 1994). The corrected deduct-value is determined and subtracted from the

maximum possible PCI. However, the above steps should be repeated for field-testing,

revision, and improvement to ensure that the distress definitions accurately described

field conditions and that the PCI agreed closely with the collective judgement of the

experienced pavement engineers.

Figure 2-2 Corrected deduct-value curves (for asphalt pavements, Shahin 1979).
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The PCI model can be mathematically expressed as:

( )qTDVFDVPCI
p

i

m

j
ij

i

,100
1 1

⋅







−= ∑∑

= =

(2-1)

where,

100 = maximum value for PCI, on a 0~100 scale;

DVij = deduct-value for distress type i, and severity level j;

i = counter for the number of distress types;

j = counter for distress severity levels;

p = total number of distress types;

mi = total number of distress severity levels for the ith distress type;

F(TDV, q) = an adjustment function for multiple distresses that vary with TDV, and q;

TDV = total deduct-value, which is given by

∑∑
= =

=
p

i

m

j
ij

i

DVTDV
1 1

; and (2-2)

q = total number of deducts with a deduct-value greater than 2, q≤ p;

For practical applications of the PAVER method to determine PCI, there is a complete set

of nomographs for both deduct-value for each type, severity, and density of distress, and

the adjustment function. These graphs can be found in Shahin and Kohn (1979), and

Shahin (1994). With the help of these curves, the determination of PCI for any distress

sample is simply a step-by-step process as illustrated in Figure 2-3.
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Figure 2-3. Working steps for PCI calculation (Shahin and Kohn 1979).
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2.3 The Modified PAVER Method by MTC

The PCI procedure considers 19 types of distresses for asphalt-surfaced roads, streets,

and parking lots. Some users have expressed interest in reducing the number of distresses

used in the PCI procedure to expedite field inspection. The Metropolitan Transportation

Commission (MTC) of Oakland, California, presented a modified PCI method in its PMS

implementation. MTC consolidated the 19 distress types to only 7, leaving out some less

frequent distress types. The major objectives for the consolidation were to expedite the

pavement condition survey process and minimize the time required to train the staff, who

will do the survey, while still preserving adequate amount of information to make

reasonable maintenance rehabilitation decisions. An analysis of the effect of reducing the

number of distresses on the PCI values was hence conducted (Shahin et al. 1995). The

study compared the standard PCI method to the modified method used by MTC. It is

found that there is a deviation from the standard PCI when consolidating the distress

types. However, this difference is between 1 to about 7-points, depending on the database

used, and types of distresses that exist in any specific site or region.  The author

cautioned that each agency would have to assess the benefit of reducing the number of

distresses versus the deviation from the true PCI.

2.4 The Modified PAVER PCI Method by StanTech

Some PMS software developers chose to embed the deduct-value method for their PMS.

The PAVER deduct-value method was modified by StanTech Consulting Ltd. (StanTech
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1999) and implemented in their software package. Two major modifications to the

original PAVER PCI method were made. The primary one is the way the multiple

deduct-values is combined to determine the Corrected Deduct-Value (CDV). The other

modification is that the individual deduct-value curves are expressed in a standardized

log equation form. This modified version of PAVER procedure has been implemented in

South Carolina, New Jersey, Tennessee, Alberta, and British Columbia (StanTech 1999).

In the modified method, PDI is represented on a 0~10 scale, which can be expressed as

PDI=10.0-CDV (2-3)

where,

CDV = Corrected Deduct-Value, which is transformed from the TDV for each pavement

segment, and is calculated as:

(TDV)Log.(NED)Log..(CDV 1010 95650395800014010 ×+×−= (2-4)

for asphalt pavements, and

             
1 1

∑∑
= =

=
m

i

n

j

i

DVijTDV (2-5)

(2-6)

NED = Number of Equivalent Distress;

i = counter for distress types;

j = counter for distress severity levels, j=1, 2, and 3 representing Low, Medium and High

severity levels, respectively;

m = maximum number of distress types considered;

     
1 1 max
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ni =  maximum number of distress severity levels for distress type i;

DVij =  the deduct-value for distress type i and severity level j, which is related to the

percent distressed area PDAij according to Equation 2-7:

)()( ijijijij PDALogbaDVLog ×+=   (2-7)

aij = regression coefficients;

bij = regression coefficients;

DVmax = the maximum deduct-value observed in a specific sample, which can be

expressed as:

)(  
,

max ij
ji

DVMaxDV =       (2-8)

2.5 The Baladi’s Method

Baladi (1991) proposed a procedure for formulating pavement condition index for

individual distress. There are several steps in this process, which starts with the

identification and determination of types of distress, severity levels for each type of

distress, and the determination of a rating scale, such as 0 to 100. Based on these

definitions and the rating scale, a panel of engineers is asked to determine the maximum

tolerable density for each type-severity distress before any treatment will be scheduled.

This density level is hence designated as the threshold deduct-value, or the so-called

engineering criterion for that particular type-severity distress. Finally, deduct-values for

other density levels for the same type-severity distress are obtained by linearly scaling up

and down according to the designated engineering criterion. The individual condition
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index may be further combined using weighting factors assigned by the user to form a

composite PDI. This process has been adopted by North Carolina and South Dakota,

respectively (Chan et al. 1997, Jackson et al. 1996).

2.6 The China Method

In the development of several PMS in China, Sun and Yao (1991) adopted the deduct-

value concept in formulating the distress indexes for asphalt pavements. According to the

local experiences, they proposed a different procedure for PDI formulation based on a

different set of distress definition and measuring method. The following is a description

of the procedure.

(1) The Standardization of distress classification and measurement

Pavement distresses, in this method, are classified into four categories, namely cracking,

deformation, surface defects and potholes. The first category may include four different

types of cracking distress, namely longitudinal, transverse, block, and alligator cracking.

Deformation category may include depression, rutting, shoving and corrugation 4 types

of distresses. Distresses such as polishing, raveling, bleeding, and patching types belong

to the surface defect category. This distress classification and definition system is

tabulated in Table 2-1 with detailed explanations. The convention for distress

measurement is also clearly defined. Longitudinal and transverse cracking distress are

measured in linear meters. All other distresses are measured by the area of the outer
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Table 2-1. The standardized distress classification system for the China method (Sun
and Yao 1991).

Type of Distress Description Rating Standards
Longitudinal
Cracks

Longitudinal cracks are cracks that are usually straight
and parallel to the pavement centerline, situated at or
near the middle of the lane. It can occur singly or as a
series of almost parallel cracks or with some limited
branching.

Low: Cracks are narrower than 3mm with low severity or
no spalling.

High: Cracks are wider than 3mm with high severity
spalling.

Transverse
Cracks

Transverse cracks are unconnected cracks running
transversely (relatively perpendicular to pavement
centerline) across the pavement.

Low: Cracks are narrower than 3mm with low severity or
no spalling.

High: Cracks are wider than 3mm with high severity
spalling.

Block Cracks Block cracks are interconnected cracks forming a series
of blocks, approximately rectangular in shape. Block
sizes are usually greater than 300mm and can exceed
3000 mm.

Low: Cracks are narrower than 3mm with low severity or
no spalling. The block diameter is between 100-300cm;

High: Cracks are wider than 3mm with high severity
spalling and the block diameter is between 50-100cm.

Alligator Cracks Alligator cracks are interconnected or interlaced cracks
which forms a network of multi-sided blocks resembling
the skin of an alligator. The block size can range from
100 to about 300 mm.

Low: Mainly longitudinal cracks, with some transverse
cracks. The diameter of the blocks falls within 30-50cm.
Cracks are not spalled.

Medium: Cracks form a pattern of articulated pieces that
may be slightly or moderately spalled. The diameter of
the blacks falls within 10-30cm.

High: The diameter of the blocks is less than 10cm.
Cracks are severely spalled and loosened at edges. The
pieces rock under traffic and pumping may exist.

Depression Depressions are localized areas within a pavement with
elevations lower than the surrounding area. They may
not be confined to wheel paths only but may extend
across several wheel paths.

Low: The depression is lower than 25mm.

High: The depression is deeper than 25 mm.

Rutting Rutting is longitudinal deformation or depression in the
wheel paths that occur after repeated applications of axle
loading. It may occur in one or both wheel paths of a
lane. The length to width ratio would normally be
greater than 4 to 1.

Low: Rutting depth is lower than 25 mm;

High: Rutting depth is higher than 25 mm;

Corrugation and
Shoving

Corrugations are regular longitudinal undulations,
closely spaced alternate valleys and crests with
wavelengths of less than 2m.

Shoving is permanent, longitudinal displacement of a
localized area of the pavement surface caused by traffic
pushing against the pavement. Traverse shoving may
arise with turning movements.

Low: The difference between the valley and the crest is
less than 25 mm. The height of the shoving area is less
than 25 mm.

High: The difference between the valley and the crest is
more than 25 mm. The height of the shoving area is more
than 25 mm.

Polishing and
Raveling

Polishing is the smoothening of the upper surface of the
road stone. The coarse aggregates are exposed and
become glossy and smooth in appearance.

Raveling is the wearing away of the pavement surface
caused by the loss of binder or the dislodging of
aggregate particles or both.

Low: Polishing.

High: Raveling.

Bleeding Bleeding is identified by a film of bituminous material
on the pavement surface that creates a shiny, glass-like,
reflective surface that results in less friction..

No.

Patching Patch is an area where the pavement has been removed
and replaced with a new material.

Low: Patch is in good condition and has low severity
distresses of any type.

High: Patch has high severity distresses of any type.
Potholes Pothole is a bowl-shaped cavity in the pavement surface

after the loss of surface materials.
Low: Depth of the pothole is less than 25 mm;

High: Depth of the pothole is more than 25 mm.
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rectangle of the specific distress, with the long-side of the rectangle parallel with the

center line of the pavement.

(2) The formulation of PDI

The idea for the PDI formulation in this approach is graphically shown in Figure 2-4. The

calculating process is broken down into a step-by-step weighing process. In mathematical

form, the PDI is computed as:
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where,

100 = the highest PDI value, or the ceiling of the PDI scale;

DVijc = deduct-value for the ith type, jth severity level, and cth category;

wijc = weight specific for DVijc, and it is given by
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wic = weight for the composite deduct-value for the ith type, cth category of distress, after

the combination of the different severity-levels for that type, and category of distress. wic

is given by:
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wc = weight for the composite deduct-value for the cth category of distress, after the

combination of mc different types, and different severity levels for each type of distresses

contained in that category. wc is given by:
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Figure 2-4. The flow-chart of PDI calculation in the China method (Sun and Yao 1991).
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mc = total number of distress types for category c;

nic = total number of severity levels for the ith distress in the cth category;

i =  counter for distress types;

j =  counter for distress severity levels, j=1, 2, or 3;

c = counter for distress categories, 1≤ c≤ 4;

(3) Determination of the weight function ( )1ζ , ( )2ζ , and ( )3ζ

Obviously, determination of these weights in Equation 2-9 is crucial for this procedure to

be functional. Since pavements are rated based on the prevailing distress conditions, Sun

and Yao (1991) contended that the weight for any single distress might be considered as a

function of its proportion in the total distress that is present for a road section. As a matter

of fact, if only one type of the distress is present, then the evaluation will be based solely

on this type of distress, hence the weight for this distress will be 1.0. When there is no

such distress, then this type of distress will not be considered in the evaluation process,

i.e. the weight is zero. Because these weights are practically unutterable but contained in

the user-rated PDI values, mathematical calculations are entailed to extract these weights.

It is clear that the deduct-values and their corresponding weights are both unknown in

Equation 2-9. An iterative method similar to that employed in PAVER is necessary to

determine these weights. Several steps are involved in this process.
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Step 1. Determine the weighting factors for different severity levels of a single distress

type. Select several road sections with a single defect type, but different combinations of

distress severity and density, and ask the engineers to give their ratings. The ratings are

based on a 0 to 100 scale, and noted as Pavement Condition Rating (PCR). Assume the

deduct-values for a specific distress type-severity first, and the weights for different

severity levels can be determined by:

          (2-13)

where,

i = the different severity levels for the single type of distress under study, i=1, 2;

j = different road sections with the same type of distress;

iw  = weight for severity level i corresponding to DVi,  given by

%100
2
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PCRj = average rating from all of the raters for road section j;

DVi = the deduct-value for severity level i;

ε = difference between PDI and PCR. If ε is small enough, then the assumed DVi and the

derived iw are acceptable. Otherwise, assume DVi and compute iw again, until ε is

satisfactorily small.

Setp 2. Repeat the process in Step 1 to obtain iw  for different DV-percentages for a

single distress type within a specific distress category.
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Step 3. Repeat Step 1 and Step 2 for all the other distress types to obtain single deduct-

value for each type-severity of distress and the weights corresponding to their DV-

percentages.

Step 4. Determine the weighting factors for the combination of different types of

distresses. This step needs to use the product from the previous steps first to compute the

composite deduct-value for each type of distress. Then Equation 2-14 is used for the

iterative process to determine the weights for each different DV-percentage. Select road

sections with different combinations of different types of distresses, ask the engineers to

rate these sections and obtain the average PCR values. Use Equation 2-14 to calculate the

corresponding deduct-values.

( ) ( ) ε=−⋅∑ ∑ |PCR - 100DV| lk
l k

kw (2-15)

where,

k = different types of distress contained in a road sample;

DVk = composite deduct-value for distress type k by combining different severity levels

in that type;

l = the different road sections with similar distress types, l = 1, 2, …, m;

m = the total number of such road sections;

PCRl = the average rating of the rating group for road section l.

In actual experiment, it is very difficult to obtain enough number of road sections to

satisfy Equation 2-13, therefore, iterative method is inevitable, i.e., assume the deduct-



23

value first, calculate weight value and check the value of ε. If ε is not small enough, then

adjust deduct-values, re-calculate the weights until ε is acceptable. Normally, 5% is an

acceptable value for ε. The obtained deduct-values are shown in Table 2-2.

When all the weight points are plotted against the DV-percentage, the researchers found

that all the three functions, ( )1ζ , ( )2ζ , and ( )3ζ  can be represented using a single

curve, called weight-curve as shown in Figure 2-5. A cubic polynomial fitting of the

curve by this study is found to be: 32 45.240.494.2 xxxw +−= , (r2=0.99) where, w is the

corresponding weight for a specific deduct-value, and x  is the corresponding DV-

percentage. The researchers reported that the weight-curve had satisfactorily captured the

rating behavior of pavement raters, and it is found to be reasonably stable across China.

This weight-curve was hence used to simplify the PDI formulation process. An

application reported that this weight-curve was also applicable for PDI formulation for

concrete pavements (Zou et al. 1991).

2.7 Summary

Several existing deduct-value methods are reviewed in this Chapter. These include the

original and modified PAVER PCI method, the Baladi’s method, and the China method.

As a summary, this section provides some comments on the advantages and

disadvantages of these methods. The PAVER PCI method is a widely accepted and

implemented method, and it has produced profound impacts on the formulation method

of pavement distress index. It is valid in concept, comprehensive by nature, and simple to
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Table 2-2. Deduct-values for different distresses in the China method (Sun and Yao
1991).

Distress Density IndexDistress Type-Severity Index
and Description 1 2 3 4 5 6

Density 0.1% 1% 5% 10% 40% >40%
1 Low 6 16 16 32 70 70
2

Longitudinal
Cracking High 10 15 25 44 80 80

Density 0.1% 0.5% 1% 3% 5% >5%
3 Low 1 6 8 18 25 25
4

Transverse
Cracking High 4 9 12 25 38 38

Density 0.1% 1% 5% 10% 50% 100%
5 Low 8 12 18 30 50 60
6 Medium 10 14 22 35 55 70
7

Alligator
Cracking High 12 17 23 45 70 90

8 Low 5 8 16 25 32 40
9

Block
Cracking High 8 12 20 35 62 68

10 Low 2 10 20 33 65 75
11

Depression
High 4 12 27 40 75 100

12 Low 1 5 10 20 45 60
13

Rutting
High 3 10 20 30 60 80

14 Low 3 6 12 25 47 70
15

Corrugation/
Shoving High 5 12 22 35 63 90

16 Low 1 3 6 12 18 20
17

Polishing/
Raveling High 2 6 20 40 55 60

18 Low 2 6 10 15 20 35
19 Patching High 4 10 15 20 30 50
20 Bleeding N/A 1 5 10 12 20 30
21 Low 1 12 25 42 67 80
22

Pothole
High 10 17 30 52 77 100
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Figure 2-5. The weight-curve for the stepwise China method (Sun and Yao 1991).

use. However, some limitations of the PAVER method are also apparent. Firstly, this

method is developed to be implemented throughout the U. S. Army installations, it is

intended to be a default procedure, and therefore there is no calibration procedure for this

method that is readily available. It originates from airport applications, and later on

extends to applications for local roads and parking lots. As acknowledged by the authors,

the PCI has not been validated for high-speed roads such as the interstate highways

(Shahin and Kohn 1979). In addition, the construction of this method is iterative by

nature, which involves the use of hypothetical samples and time-consuming calibration

process afterwards. What is more important, all the resultant deduct-values are dependent

on the distress definitions in PAVER, and are in fact not portable. Despite the various
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The Baladi’s method is primarily intended for the formulation of individual distress

indexes. It is conceptually simple and easy to implement. However, its shortcomings are

also significant in several aspects: (1) It is hard to find enough field data covering the full

range of densities for a particular distress, because pavement distresses are highly

correlated (Hajek and Haas 1987). Based on the imagination of the panel engineers,

direct rating of individual distress without field validation may be misleading. (2) It is

questionable that the deduct-values for different densities may be reliably determined by

linear extrapolation. Studies have shown that the relationship between deduct-values and

densities is linear only in a log-log coordinate system (Jackson et al. 1996, StanTech

1999). (3) This type of deduct-values should be calibrated by actual performance curve

(Jackson et al. 1996), which involves an iterative process between the engineering criteria

and the performance curves. In addition, good quality performance data is also difficult to

obtain. (4) The compatibility between different individual distress indexes entails careful

calibration before they can form some meaningful composite indexes to enable the

comparison of projects with different deterioration pattern.

The major disadvantage of the China method is its heuristic iterative method. For a

typical road section, several types of distresses are common. Thus, which deduct-value

should be adjusted is a big problem. The worst thing may happen is that the wrong item is

adjusted, and a small enough ε is also reached. This iterative method lacks some reliable

and systematic criteria. Consequently, the quality of the results may be compromised.

Furthermore, the awkward distress categorization system will undoubtedly limit the
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applicability of this method. Unless an agency is willing to accept the distress definition

dictated by this method, and also its much more computation entailed, practically, the

agency is unlikely to adopt this method. However, this method is brilliant in several

aspects. It incorporates rater’s behavior into the PDI formulating process. In addition, this

weight-curve is also found to be reasonably stable across China and applicable to other

facilities such as concrete pavements. Obviously, if the weight-curve is reasonably stable,

then the inter-reaction between deduct-values and their corresponding weights are

severed. This would greatly simplify the formulation and customization process, so that

the application of the deduct-value method may be facilitated.

Based on this review, it is clear that several steps are common to establish a PDI. First of

all, a distress survey manual and procedure is developed, which determines exactly what

type, severity level, and density of distresses to be collected, and how these distresses

should be measured. The next step is to establish a rating scale and incorporate

appropriate threshold values, i.e. at which the pavement is considered in need of repair.

This rating scale can be based on values from 0 to 100, or any other ranges. The threshold

value depends on the collective engineering judgement and criteria. The last step is to

construct the relationships between subjective ratings and objective measurements of

pavement distresses.

It is also clear that the conventional PDI formulation methods are faced with a dilemma.

These methods entail time-consuming iterative processes, because the deduct-value for

each defined distress and the combination schemes are both unknowns. On the other
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hand, the established PDI model is applicable only to the selected distress definition.

Update of this distress definition may render the established model useless. As most

agencies collect pavement distress information, and use PDI as an important criterion for

their pavement maintenance decisions, each agency therefore needs a responsive PDI

model of its own. A customizable and hence simple procedure for PDI formulation is

thus highly desirable.
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Chapter 3 The Proposed Procedure: Part I—Determination of the Weight-Curve

3.1 Introduction

This Chapter describes the first part of the proposed procedure. The main objective of

this Chapter is to: (1) Introduce the proposed formulation, which formulates PDI as the

maximum PDI value in a user-defined scale minus the Total Deduct Value (TDV), which

is the sum of the product of each individual deduct-value and its corresponding weight;

(2) Define the relationship between each individual deduct-value’s DV-percentage and its

corresponding weight as the weight-curve, and identify the existence of the weight-curve

in both PAVER and China method; (3) Determine the appropriate form of the weight-

curve, and verify its reasonable stability. Sample data generated according to the PAVER

and China method are employed throughout this Chapter.

3.2 The Proposed Formulation

Based on the studies of PAVER and Sun and Yao (1991), a generic PDI formulation for a

specific sample pavement segment is proposed as:

( )∑
=

⋅⋅−=
M

i
iiiPDI wDVSSPDI

1
(3-1)

where, 
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SPDI = maximum value of PDI in a user-defined scale of 0 to SPDI. Different agencies may

specify different values such as 5, 10, and 100 for SPDI. SPDI=100 is adopted in this

dissertation unless otherwise specified;

Si = <b1, b2, …, bi, …, bM>, which is a vector with binary elements, and bi ∈ {0, 1};

M = maximum number of type-severity-density states in the user’s distress definition;

i = counter for the type-severity-density states, 1≤ i ≤ M;

DVi = deduct-value for the ith type-severity-density distress;

wi = weight specific to the DV-percentage of DVi, which is given by an unknown

function ( )f :
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There are several advantages associated with this formulation. First of all, it is much

simpler as compared with Equation 2-9. It is thus much easier to use. This formulation is

also able to accommodate any distress definitions, because it defined the weight for an

individual deduct-value as a function of the quotient of the specific deduct-value over the

total deduct-value of all the distresses in a specific sample. In addition, this formulation

directly incorporates the human rating behavior into the PDI formulation process. The

human behavior is defined as how pavement raters assign the contribution of each

specific deduct-value towards the total deduct-value for a specific multi-distressed road

segment. What is more, if the rating behavior of the pavement experts, i.e. the weight-
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curve, is assumed to be reasonably stable, Equation 3-1 will be a generically

customizable formulation.

Based on the proposed formulation, PDI is now dependent on the deduct-values alone.

Therefore, practitioners may calibrate the deduct-values for each distress according to

their own distress definition, and obtain a totally responsive PDI. The implication of this

calibration is that the time-consuming iterative process common to the establishment of

both PAVER and China methods are thus eliminated. Apparently, this advantage depends

on a stable rating behavior of pavement engineers.

The difficulty of the establishment of the proposed procedure lies in the identification of

the unknown weight-curve, because mathematically this weight-curve may not be unique.

It is very difficult to establish the weight-curve in Equation 3-1 from scratch using field

samples, because the size and extent of data needed for this purpose is beyond the

resources available.  This may be one of the reasons why both PAVER and China

methods have avoided the proposed formulation. To avoid reinventing the wheel, this

study identifies the weight-curve by approaching the existing PAVER and China

methods.

3.3 Overview of the Research Methodology

The approach of this research has three parts, in which the proposed procedure is

established in the first two parts. In the first part, this study demonstrates the existence of
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the weight-curve, as defined by this study, in both PAVER and China method, and

verifies its reasonable stability in both format and functional relationship. In other words,

the objective of this step is to determine wi given DVi and PDI in the proposed

formulation. In this process, sample data simulated according to both PAVER and China

methods will be used.

In the second part, this study will demonstrate how individual deduct-value may be

identified by making use of the reasonably stable and, hence, fixed weight-curve. The

objective of this part is to determine DVi, given wi and PDI in the proposed formulation.

The distress definition and PDI computation procedure of PAVER are used to generate

the sample data.

To further elaborate the proposed procedure, the last part of this study will demonstrate

how this procedure may be customized using real-world distress-survey data. This is a

practical application of the proposed formulation. PDIs for real-world, as opposed to

simulated, distress samples can be determined given both DVi and wi. Distress survey data

from Minnesota will be used in this case study. The first part is detailed in this chapter,

while the second and third parts will be presented in Chapters 4 and 5, respectively.

3.4 Sample Data Generation
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3.4.1 Reducing the Sampling Space

A complete distress sample is composed of a series of distresses and a corresponding PDI

rating. The type, severity, density, and the total number of the distresses in one sample

are varied, but the type and severity are not repeated. Samples used to identify the

weight-curve are randomly generated based on the PAVER method. There are altogether

19 types of distresses considered in the PAVER method for asphalt pavements. Except

for the polished-aggregate distress, which has only one severity-level, all other distress-

types have low, medium, and high three severity-levels. This amounts to 55 type-severity

distresses. Each type-severity distress has a continuous deduct-value curve along the

distress-density, which ranges from 0% to 100%.

Several steps are followed in the sample generating process. First of all, each type-

severity-density distress in the PAVER method is coded with a Distress IDentification

number (DID), so that each DID has a specific deduct-value. Because the density

dimension for these distresses is continuous, it is digitized into 6 levels first for

simplicity, i.e. 6 points are used to represent each continuous deduct-value curve. These

points are chosen to best represent the curve as reported in Shahin and Kohn (1979). The

chosen points are listed in Table 3-1. After the digitization, the sampling space

encompasses 55x6=330 DIDs, with each DID having a specific deduct-value as

illustrated in Table 3-2, called the PAVER DV-Table. It can be read from the DV-Table

that different types of distresses have different deduct-values; and for the same type of

distress, deduct-values increase with the increase of both distress density and severity

level.
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Table 3-1. Chosen digitization points for the deduct-value curves in the PAVER method.

1 2 3 4 5 6
1 Low 0.1% 1% 5% 10% 50% 100%
2 Medium 0.1% 1% 5% 10% 50% 100%
3 High 0.1% 1% 5% 10% 50% 100%
4 Low 1% 1% 5% 10% 50% 100%
5 Medium 0.5% 1% 5% 10% 50% 100%
6 High 0.1% 1% 5% 10% 50% 100%
7 Low 0.1% 1% 5% 10% 50% 100%
8 Medium 0.1% 1% 5% 10% 50% 100%
9 High 0.1% 1% 5% 10% 50% 100%

10 Low 2% 5% 10% 20% 50% 100%
11 Medium 0.5% 5% 10% 20% 50% 100%
12 High 0.3% 5% 10% 20% 50% 100%
13 Low 0.3% 1% 5% 10% 20% 50%
14 Medium 0.1% 1% 5% 10% 20% 50%
15 High 0.1% 1% 5% 10% 20% 50%
16 Low 0.1% 1% 5% 10% 50% 100%
17 Medium 0.1% 1% 5% 10% 50% 100%
18 High 0.1% 1% 5% 10% 50% 100%
19 Low 0.5% 1% 5% 10% 50% 100%
20 Medium 0.1% 1% 5% 10% 50% 100%
21 High 0.1% 1% 5% 10% 50% 100%
22 Low 1% 1% 5% 10% 50% 100%
23 Medium 0.1% 1% 5% 10% 50% 100%
24 High 0.1% 1% 5% 10% 50% 100%
25 Low 0.35% 1% 5% 10% 20% 35%
26 Medium 0.35% 1% 5% 10% 20% 35%
27 High 0.35% 1% 5% 10% 20% 35%
28 Low 0.1% 1% 5% 10% 50% 100%
29 Medium 0.1% 1% 5% 10% 50% 100%
30 High 0.1% 1% 5% 10% 50% 100%
31 Low 0.35% 1% 5% 10% 20% 60%
32 Medium 0.35% 1% 5% 10% 20% 60%
33 High 0.35% 1% 5% 10% 20% 60%
34 Low 1.5% 5% 10% 20% 50% 100%
35 Medium 0.3% 5% 10% 20% 50% 100%
36 High 0.3% 5% 10% 20% 50% 100%
37 Low 1.5% 5% 10% 20% 30% 50%
38 Medium 1.5% 5% 10% 20% 30% 50%
39 High 1.5% 5% 10% 20% 30% 50%
40 Polished Aggregates N/A 2.5% 5% 10% 20% 50% 100%
41 Low 0.1% 1% 5% 10% 50% 100%
42 Medium 0.1% 1% 5% 10% 50% 100%
43 High 0.1% 1% 5% 10% 50% 100%
44 Low 1% 3% 5% 10% 20% 50%
45 Medium 1% 3% 5% 10% 20% 50%
46 High 1% 3% 5% 10% 20% 50%
47 Low 0.1% 1% 5% 10% 50% 100%
48 Medium 0.1% 1% 5% 10% 50% 100%
49 High 0.1% 1% 5% 10% 50% 100%
50 Low 0.4% 1% 5% 10% 20% 50%
51 Medium 0.1% 1% 5% 10% 20% 50%
52 High 0.1% 1% 5% 10% 20% 50%
53 Low 1% 3% 5% 10% 20% 30%
54 Medium 1% 3% 5% 10% 20% 30%
55 High 1% 3% 5% 10% 20% 30%

Alligator Cracking

Block Cracking

Corrugation

Longitudinal/Transverse 
Cracking

Bleeding

Weathering and Raveling

Rutting

Patching/Utility Cut 
Patching

Joint Reflection Cracking

Edge Cracking

Bumps and Sags

Depression

Slippage Cracking

Railroad Crossing

Potholes

Lane Shoulder Dropoff

*: Each extent index represents a specific percentage of distressed area for different types of 
distresses in a sample. 

Extent Index*Type-Severity Index and Description

Swell

Shoving
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Table 3-2. Deduct-values for every distress in the PAVER method.

1 2 3 4 5 6
1 Low 5 11 26 33 53 62
2 Medium 8 22 39 47 68 78
3 High 12 30 54 62 82 91
4 Low 0 0 5 9 20 28
5 Medium 0 3 11 17 34 43
6 High 0 8 20 30 59 71
7 Low 1 2 8 12 30 39
8 Medium 5 16 31 40 62 74
9 High 10 34 51 61 85 94

10 Low 0 4 8 12 20 29
11 Medium 0 11 18 27 37 44
12 High 0 23 34 50 73 87
13 Low 0 2 10 17 23 33
14 Medium 2 10 22 31 41 58
15 High 7 20 38 51 68 80
16 Low 1 9 21 28 46 50
17 Medium 5 19 36 44 63 68
18 High 7 29 49 61 85 90
19 Low 0 1 3 5 12 16
20 Medium 4 9 13 19 35 43
21 High 6 16 30 41 69 78
22 Low 0 0 1 3 12 20
23 Medium 1 3 9 13 29 40
24 High 2 7 15 23 55 72
25 Low 0 3 10 18 29 40
26 Medium 0 12 29 41 60 80
27 High 0 34 60 72 89 100
28 Low 5 5 10 18 41 49
29 Medium 9 9 19 30 57 60
30 High 11 18 30 44 69 74
31 Low 0 2 4 5 9 15
32 Medium 5 6 10 14 20 28
33 High 8 9 16 24 34 46
34 Low 0 4 7 10 18 27
35 Medium 0 10 17 26 38 42
36 High 0 20 31 49 69 72
37 Low 0 0 4 7 19 26
38 Medium 0 4 10 17 39 42
39 High 0 10 20 32 69 72
40 Polished Aggregates N/A 0 1 4 7 12 20
41 Low 2 20 44 55 84 100
42 Medium 7 31 68 87 100 100
43 High 20 52 88 100 100 100
44 Low 2 4 7 12 17 20
45 Medium 7 18 27 39 46 50
46 High 20 38 50 68 77 80
47 Low 0 4 19 27 46 53
48 Medium 2 11 32 44 63 70
49 High 4 19 51 67 86 91
50 Low 0 4 14 20 28 36
51 Medium 3 10 25 35 49 64
52 High 8 19 38 52 66 80
53 Low 2 7 9 11 17 20
54 Medium 12 21 27 35 44 50
55 High 34 40 45 53 64 70

*: Each extent index represents a specific percentage of distressed area for different types of 
distresses in a sample. 

Rutting

Patching/Utility Cut 
Patching

Alligator Cracking

Block Cracking

Corrugation

Longitudinal/Transverse 
Cracking

Depression

Bumps and Sags

Bleeding

Weathering and 
Raveling

Potholes

Lane Shoulder Dropoff

Joint Reflection Cracking

Edge Cracking

Swell

Shoving

Slippage Cracking

Railroad Crossing

Extent Index*Type-Severity Index and Description 
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According to the PAVER method, the sampling space may be further reduced by the fact

that the maximum deduct number for a single sample is no more than seven. However,

even after these two reductions, the possibilities of forming a sample are still extremely

large. For example, there are 330
1C =330 possibilities for a single type-severity sample;

While for a two type-severity sample, the possibilities will be the permutation of

330
2C =54285, and for a 7 type-severity sample, the possibilities will be the permutation of

330
7C =7.931345505e13.

3.4.2 Generating the Random Samples

It is impractical for this study to explore such extremely large sample space entirely.

Random process is therefore used to generate samples. Three pseudo random numbers

are used in this process. The first number is used to generate the total number of

distresses in one sample, which ranges from 1 to 7. The next one produces random

numbers between 1 and 55, representing each distress type-severity. The third one

generates random numbers between 1 and 6, representing the six digitized density levels

for each type-severity distress. The combination of the last two random numbers

corresponds to a unique deduct-value as listed in Table 3-2. For example, “53” and “6”

combination will point to a deduct-value of “20”. This is a low-severity “swell” distress,

with the highest density level, which constitutes one distress in a sample. The

combination of the last two random numbers also corresponds to a unique DID. For the

example above, the DID will be ( )( )66153 +×− , which is “318”. A fixed random seed is

used in order to make this process repeatable.
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A C++ program is developed to generate these samples. The flow chart of this program is

shown in Figure 3-1. Because not every sample generated randomly is viable, two

constraints are used in the program to rule out some unpractical samples. The first

constraint is that the TDV should not exceed 166, 180, and 200, for two-distress, three-

distress, and four-or-more-distress samples, respectively. The rationale for these TDV

caps are that the U. S. Army Corps Engineers had not observed those roads with a higher

TDV in their study. These specific values are based on the corrected curves in PAVER

 (Shahin and Kohn 1979). The other constraint is that no same type-severity distress may

exist in one sample. As the possibility of a totally repeated sample is very low, it is not

enforced as a criterion in this study. For a single type-severity sample, the probability of

such a repetition is 1/330=0.3%, and for a seven type-severity sample, the probability is

330
71 C , which is practically zero.

3.4.3 Verifying the Randomness of the Generated Samples

As some constraints have been enforced during the sample generating process, it is

necessary to check the randomness of the generated samples. This verification process

may include two aspects. The first aspect is the verification of whether every one of the

330 DIDs has been sampled uniformly, so that each individual DID will have an equal

opportunity in building samples. On the other hand, for a group of generated samples, the

frequency of samples composed of different number of distresses are also checked for

their uniformity. In other words, a 1-distress, 2-distress, or a 7-distress sample should

enjoy an equal opportunity of being sampled.
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Figure 3-1. Flow chart of the program for random sample generating.

Start

Total Sample
Number

sample = 0

sample=sample+1

Stop

Is this sequence of DVs
acceptable to form a sample?

(1) TDV<166, 180, 200?
(2) same distressrepeated?

random distress
number in one

sample

random distress
type and severity

random distress
density

generated file:
sample.txt

Generating a sequence of distresses for one sample

No

Yes

Yes

Output one sample to file

Total Sample
Number reached?

No
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20,000 samples are generated using the PAVER DV-Table. Table 3-3 shows an example

sheet of 20 such generated samples. These samples are separated sequentially into 10

groups, with 2,000 samples in each group. Each group is taken as the result from a

separate sampling process. According to these 10 repeated sampling processes, the

observed average frequency, and standard deviation for 1-distress, 2-distress, …, 7-

distress samples, are listed in Table 3-4. The theoretical average frequency should be

2,000/7=285.71. Statistical t-tests for mean are conducted for each type of samples, and

the results are also tabulated in Table 3-4. Clearly, these t-tests support that these

different types of samples have been sampled uniformly at a 99% significance level. The

plot in Figure 3-2 shows the variation of these average frequencies.

Table 3-3. An illustration of the generated DV-sequence data (20 samples).

Sample 
Number

DV1 DV2 DV3 DV4 DV5 DV6 DV7 PDI*

1 18 27 2 4 27 49 1 34.5
2 9 91
3 3 34 10 2 71.49
4 4 2 3 60 40 69 13.4
5 4 4 74 40 8 68 1 11.2
6 5 33 40 4 59 8 7 28.4
7 11 7 17 80.25
8 50 2 59 43 4 2 14.6
9 26 61 14 1 17 4 36

10 55 9 53.2
11 7 17 51 9 38 2 22 30
12 9 67 8 10 33 33.5
13 7 4 91.97
14 47 10 44 35.5
15 67 39 26.4
16 4 96
17 8 44 35 44.45
18 87 9 32.4
19 8 31 3 16 42 43
20 26 12 51 8 39 17 41 18.6

* PDI is calculated using the PAVER method.
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Table 3-4. Sample randomness study: randomness of number of distress in one sample.

Figure 3-2. Sample randomness examination: average frequency for different types of
samples.
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 Number of Distress 
in One Sample

Average Frequency for          
10-times Sampling

Standard 
Deviation t-statistics

1 278.80 15.30 1.43*
2 289.40 14.67 0.79
3 291.00 7.76 2.15
4 288.40 10.29 0.83
5 281.70 17.49 0.73
6 288.50 19.72 0.45
7 282.20 13.99 0.79

Note: *is calculated using theoretical mean 2000/7=285.71, critical t-value =3.0 
at 99% significance level. 
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For the ten groups of samples, the average frequency, or observed mean, and standard

deviation for each DID are calculated and tabulated in Table 3-5. It is noticed that the

frequencies for some DIDs are recorded as zero. This is due to the fact that there are 25

zero deduct-values among the 330 DIDs in the PAVER DV-Table as shown in Table 3-2.

They have actually been excluded from the sampling process. Except for these zero

frequencies, the rest frequencies also depict a wide range, from 9 to 35, which is shown

in Figure 3-3. Because different types of samples are uniformly sampled, each type of

sample has a probability of 1/7 of being sampled. Therefore, the average number of

distresses in each individual sample should be:

47
7
1

6
7
1

5
7
1

4
7
1

3
7
1

2
7
1

1
7
1

=





 ×+×+×+×+×+×+× . The theoretical mean for each

DID in the 2000 sample group should be 23.26
25330
42000

=







−
× . Statistic t-tests are

conducted for each DID to verify whether significant difference exists between the

theoretical and observed means. The results for these t-tests are also tabulated in Table 3-

5. In order to save space, only an excerpt is shown. The results show that around 40% of

these DIDs are not uniformly sampled, or the observed frequency is significantly

different from the theoretical mean at a 95% significance level. The entire result is

plotted in Figure 3-3 with the theoretical mean drawn in a solid line. According to our

observation, DIDs with a very high deduct-value, say more than 60, or very low deduct-

value, say less than 5 are prone to be less sampled. This can be ascribed to the

confinement of the TDV caps, which renders DIDs with very high deduct-values easily

discarded. Furthermore, as those survived samples with larger deduct-value is usually
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Table 3-5. Sample randomness study: randomness of each DID.

DID 
Number

Average Frequency for       
10-times Sampling Standard Deviation t-statistics

1 26.40 4.14 0.83
2 27.40 3.72 1.77
3 23.80 4.44 1.08
4 23.80 3.94 1.22
5 22.10 4.79 2.12
6 18.50 4.60 4.49*
7 28.70 6.91 1.55
8 28.30 6.34 1.49
9 25.40 6.45 0.04
10 22.50 3.98 2.24
11 18.70 2.45 8.53
12 16.20 3.36 8.58
13 26.80 6.86 0.68
14 28.50 5.19 1.94
15 20.80 3.26 4.38
16 18.50 4.95 4.35
17 15.50 3.21 9.68
18 13.20 2.49 15.42
19 0.00 0.00 N/A**
20 27.60 4.53 1.60
21 30.60 4.95 3.38
22 29.60 5.15 2.63
23 25.60 3.72 0.24
24 25.20 4.02 0.09

intentionally omitted to save space
327 19.90 4.31 3.98
328 20.50 4.99 3.05
329 18.20 2.49 9.05
330 16.80 4.49 6.00

Notes: *t-value is greater than critical t-value=2.76 at 99% 
significance level. **zero deduct-value in PAVER, not sampled.
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Figure 3-3. Sample randomness examination: average frequency for each DID.
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hence easily underrepresented.
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determine the extent to which a specific distress is biased for a specific region, it is

extremely difficult to simulate these biases. The regional phenomenon of data is not

simulated in this study.

3.5  Determination of the Shape of the Weight-Curve

3.5.1 The Formulation

Determination of the weight-curve is to determine the relationship between each DV-

percentage and its corresponding weight. To be specific, it is to find a mapping function

from DV-percentages to their weights as has been done differently in the China method.

Based on the available PAVER method, the problem can be formulated as an

optimization process in order to minimize the difference between the output from the

proposed formulation and that from PAVER (SPDI is set to 100). Mathematically

speaking, this is to approach the PAVER method using the proposed formulation:

( ) ( ) ( )∑ ∑∑
= ==









⋅⋅−⋅








⋅=

K

k

M

i
kikikik

M

i
kiki wDVSqTDVFDVSMin

1

2

11

, . ε (3-4)

where,

ε = the total squared sum of the differences between the PDIs from the two methods;

Ski = <bk1, bk2, …, bkm, …, bkM>, which is a vector with binary elements, and Bkm∈{0, 1};

DVki = deduct-value for DID number i, in sample k;

( )∑
=

⋅=
M

i
kikik DVSTDV

1

, (3-5)

which is the sum of all the individual deduct-values contained in sample k;
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F(TDVk, q) = the adjustment function in the PAVER method;








 ⋅
=

k

kiki
ki TDV

DVS
fw , (3-6)

i.e. the corresponding weight for the DV-percentage of DVki is determined by an

unknown function ( )f . wki is the decision variable.

M = the maximum number of DIDs, which is 330 as defined in the PAVER method;

i = counter for the number of DIDs;

k =   counter for sample numbers; and

K =  total number of samples.

q =  the same meaning as defined in Equation 2-1;

Apparently, without assuming the shape of the mapping function ( )f , this least-square

formulation is impossible to be solved directly. However, it is unwarranted to assume any

shape of the weight-curve at this stage. Therefore, the problem is re-formulated in order

to solve for some discreet points on the mapping function, and then obtain the mapping

function by a curve-fitting process. If the mapping function is digitized into 101

corresponding points, and only integer DV-percentage values from 0% to 100% are

considered, the problem will become the determination of the 101 corresponding values

of vh (0 =h=100) on the unknown function ( )f . These vh are determined when the

summed squared error between the output from PAVER and the proposed method for K

samples is minimized. Equation (3-4) may be reformulated as:

( ) ( ) ( )∑ ∑∑
= ==
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Where,

( )hfvh = , (3-8)

which is the decision variable, and









×

⋅
= 100int

k

kiki

TDV
DVS

h (3-9)

where,

int( ) = integer operation.

3.5.2 Solution Techniques

Equation 3-7 is intentionally configured as an unconstrained non-linear programming

problem. No constraint, even the range of each weight, which should logically be

between 0 and 1, is enforced. The program is supposed to anneal by itself, so that the

actual rating behavior may be captured. Non-linear programming techniques are the

conventional choices in solving Equation 3-7. Since the function ( )f  is unknown, the

derivative of Equation 3-7 is non-existent. Therefore, only derivative-free techniques are

feasible for this application. Among a host of derivative-free techniques, the direct search

method as described by Hooke and Jeeves (1961) was selected and implemented for this

study.

3.5.3 The Hooke-Jeeves Direct Search Method

Direct search is an important method for non-linear programming. It is conceptually

simple. It works by changing one variable at a time while keeping all the others constant

until the minimum is reached. For example, one method would set one of the variables,
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say 1x , constant and vary 2x  until a minimum was obtained. Then keeping the new value

of 2x  constant, change 1x  until an optimum for the value of 2x  is achieved, and so on.

The search directions for optimization is determined solely from successive evaluations

of the objective function ( )xψ , where x  is a vector. As compared with algorithms based

on the evaluation of first and possibly second derivatives, direct search method requires

much less problem preparation effort. Although the search method may execute slower

than its counterparts making use of derivatives, it may cost less to implement and hence

more satisfactory in the user’s view of point (Himmelblau 1972).

Hooke and Jeeves (1961) proposed a logically simple strategy of search that made use of

prior knowledge and at the same time rejected obsolete information concerning the nature

of the topology of the objective function. This algorithm, as described by Himmelblau

(1972) operates by two major phases, an exploratory search around the base point (the

base point is the vector of initial guesses of the independent variables for the first

iteration), and a pattern search in a direction selected for minimization. Before the

exploratory search, all the elements of x  and the initial incremental change ∆ x  are

initialized. To initiate an exploratory search, ( )xψ  is evaluated at the base point, and then

each variable is changed in rotation, one at a time, by incremental amounts, until all the

parameters have been so changed. To be specific, ( )0
1x  is changed by an amount +∆ ( )0

1x ,

so that ( )1
1x = ( )0

1x +∆ ( )0
1x . If ( )xψ  is reduced, ( )0

1x +∆ ( )0
1x  is adopted as the new element in

x . If the increment fails to improve the objective function, ( )0
1x  is changed by –∆ ( )0

1x , and

the value of ( )xψ  again checked as before. If the value of ( )xψ  is not improved by either
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( )0
1x +∆ ( )0

1x  or ( )0
1x -∆ ( )0

1x , ( )0
1x is left unchanged. Then ( )0

2x is changed by an amount ∆ ( )0
2x ,

and so on, until all the independent variables have been changed to complete one

exploratory search. For each step or move in the independent variable, the value of the

objective function is compared with the value at the previous point. If the objective

function is improved for the given step, then the new value of the objective function

replaces the old one in the testing. However, if a perturbation is a failure, then the old

value of ( )xψ  is retained.

After making one (or more) exploratory searches in this fashion, a “pattern search” is

made. Based on the successfully changed variables (i.e. those variable changes that

decreased ( )xψ  a pattern search direction for minimization may be defined. A series of

pattern searches is made along this vector as long as ( )xψ  is decreased by each pattern

search. The magnitude of the step for the pattern search in each coordinate direction is

roughly proportional to the number of successful steps previously encountered in each

coordinate direction during the exploratory searches for several previous iterations. The

change in step size, ∆ x , in the pattern search is taken as some multiple of the ∆ x used in

the exploratory searches in order to accelerate the search. An exploratory search

conducted after a pattern search is termed a type II exploratory search, and the success or

failure of a pattern move is not established until after the type II exploratory search has

been completed.
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If ( )xψ  is not decreased after the type II exploratory search, the pattern search is said to

fail, and a new type I exploratory search is made in order to define a new successful

direction. If the type I exploratory search fails to give a new successful direction, ∆ x  is

reduced gradually, until either a new successful direction can be defined or each ∆ ix

becomes smaller than some preset tolerance. Failure to decrease ( )xψ  for a very small

∆ x indicates that a local optimum has been reached. Three basic tests must be satisfied

for the sequence of searches to terminate. The first test occurs after each exploratory

search and pattern search—the change in the objective function is compared with a

prespecified small number. If the value of the objective did not vary by an amount more

than the specified number from the previous base value of the objective function, the

exploratory search or pattern search is considered a failure. In the absence of such a

failure, a test is made to determine if the objective function was increased (a failure) or

decreased (a successful search). This second test ensures that the value of the objective

function is always being improved. The third test is conducted after an exploratory-search

failure on the fractional change in ∆ x . The search can terminate if the change in each

variable, ∆ ( )k
ix , is less than some prespecified number (Himmelblau 1972).

3.6 Preliminary Results and Analysis

A computer program was developed based on another by Johnson (1994) to implement

the Hooke and Jeeves direct search algorithm. The user’s guide for this program was

documented in Appendix of this dissertation. A number of runs using the program were
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conducted. A series of randomly generated values between 0 and 1 were used as the

initial guess of the 101 decision variables. The program would terminate when the

minimum changes between the last two consecutive iterations were less than a threshold

value of 0.1. Six sample sizes, namely 100, 300, 500, 1000, 2000, 20000 simulated

according to the PAVER method were studied.

It is found that starting values sorted in an ascending fashion could speed up the

converging process. Although no constraints have been applied, the final results satisfy

the constraints reasonably well. It is rare that values less than 0, or above 1 would appear

in the solution. When the determined 101 decision variables, or the mapped weights are

charted against the corresponding DV-percentages, the results from different sample sizes

depict quite similar trends. The results for the sample size of 100, 1000, and 20,000 are

shown in Figure 3-4. It can be seen that the DV-percentage is not linearly mapped to the

weight, because the curve these discreet points fit is not a straight line. However, DV-

percentage and the mapped weight do display some positive proportional relationship. A

larger DV-percentage will always correspond to a larger weight, and vice versa. It can

also be observed from Figure 3-4 that sample size has very little effects on the shape

depicted by these discreet points. These results support the existence of a weight-curve

associated with the PAVER method. A sample size of 1000 may well determine the non-

linear shape of the weight-curve. Larger sample size will not result in a significantly

different shape of the weight-curve. Experiments with curve-fitting software show that

these points can be represented by a series of polynomial, and better fit can be reached by

increasing the degree of the polynomial.
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Figure 3-4. Weight-curve associated with the PAVER method.

In order to corroborate this finding, this research also identified the existence of the

weight-curve in the stepwise China method (Sun and Yao 1991). A similar formulation to

Equation 3-5 was initiated to use the proposed formulation to approach the China method

as introduced in Chapter 2. The formulation is:
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where,

Skc = <bk1, …, bkr, …, bk4>, which is a vector with binary elements, and Bkr∈{0, 1};
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Skci = <bk11, …, bkrs, …, 
cmkb 4 >, which is a vector with binary elements, and Bkrs∈{0, 1};

Skcij = <bk111, …, bkrst, …, 
icc nmkb 4 >, which is a vector with binary elements, and Bkrst∈{0,

1};

Spk = <bk1, …, bku, …, bkN>, which is a vector with binary elements, and Bku∈{0, 1};

N = maximum number of DIDs, N=22×6=132 as defined in Table 2-2;

p = counter for DIDs;

k and K are as defined in Equation 3-4;

all undefined variables are as that defined previously.

The term vh in this formulation was also solved by the Hooke and Jeeves direct search

technique (Hooke and Jeeves 1961). Sample data generated according to the DV-Table of

the China method were used. Refer to Table 2-2. After plotting these weights against the

corresponding DV-percentage, a very similar weight-curve to that shown in Figure 3-4 is

obtained, refer to Figure 3-5. The weight-curve is a monotonously increasing function,

which can be fitted closely by a polynomial. It was found that sample size has very little

effect on the shape of the weight-curve, unless it is very small, say less than 100.

These two studies show that both the PAVER and China method can be approached by

the proposed formulation, using a polynomial-shaped weight-curve. In fact, these two

weight-curves are pretty similar despite that the PAVER weight-curve displays a flatter

middle part. For any DV-percentage, the maximum difference of the mapped weight

between these two weight-curves is 0.09, refer to the imposed PAVER weight-curve in
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Figure 3-5. Weight-curve associated with the China method.

Figure 3-5. The weight-curve characterizes the way in which pavement raters convert

DV-percentage into weight, or the contribution from a specific distress among a series of

other distress for a road sample. Despite the fact that there is little similarity between the

PAVER and China method in their distress definition, geographical location, and

pavement raters, they both possess a similar weight-curve. This fact indicates that the

rating behavior for the U. S. Army and China Engineers are similar: higher DV-

percentage receives higher weight, and lower DV-percentage maps to lower weight. This

reasonably stable behavior may be used as the anchorage for PDI formulation. This

constitutes the foundation of the proposed procedure.

3.7 Determination of the Weight-Curve as a Polynomial

0
0.1

0.2
0.3

0.4

0.5
0.6

0.7
0.8

0.9

1

0% 20% 40% 60% 80% 100%

DV Percentage, %

M
ap

pe
d 

W
ei

gh
t

100 samples 1000 samples
10000 samples PAVER Model
China Model

Max. Difference=0.09



54

3.7.1 The Formulation and Solution

Based on the ascertained shape of the weight-curve, this study further obtained the

continuous mapping relationship using the conventional Least Squared Estimation (LSE)

technique. For Equation 3-1, if the weight-curve, the wki is assumed to be a Lth degree

polynomial function of DV-percentage, hki, and let

k

kiki
ki TDV

DVS
h

⋅
= , then (3-11)
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l

l
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where,

l = counter for the degree of the polynomial, and l=1, 2, …, L.

Therefore, the setup in Equation 3-4 becomes
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la = coefficient for the Lth degree polynomial equation of the weight-curve.

The formulation in Equation (3-13) is a typical multi-linear regression formulation as

shown in Equation (3-16).
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TaYkZ = (3-16)

where,

a = the matrix of the regression coefficients.

Given Zk, and YT, a can be determined using the classical LSE technique. A multi-linear

regression analysis program is developed to determine la  (l=1, 2, …, L) in this study.

The program has been successfully validated using a popular Statistics Software package

called JMP (version 3.2.5) by SAS Institute Inc.

3.7.2 Why 3rd Polynomial?

In order to identify an appropriate degree of the polynomial for the weight-curve, a series

of polynomial curves with different degrees are used to fit the sample data based on LSE.

These include 1st, 2nd, 3rd, 4th, 5th, 6th, and 7th degree Polynomials. As suggested by Figure

3-4 and Figure 3-5, 1000 is chosen to be the sample size to identify the appropriate

degree of polynomials to represent the weight-curve, because this size of sample has

produced quite comparable trends to larger sample sizes. The regression coefficients and

r2 values for these different weight-curves are determined using the self-developed multi-

linear regression program. The results are tabulated in Table 3-6, and the corresponding

weight-curves are plotted and compared in Figure 3-6.

As Table 3-6 shows it that except the first and second-degree polynomials, all the other

polynomials provide a very good fit to the samples (the r2 value is no less than 0.97 for
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Table 3-6. Regression results for different types of polynomials (1000 samples, PAVER
method).

Power a0 a1 a2 a3 a4 a5 a6 a7 r2 F
1st 16.57 1.06 ---- ---- ---- ---- ---- ---- 0.63 831.88

zeroed 1.40 ---- ---- ---- ---- ---- ---- N/A N/A
2nd 8.74 1.92 -1.26 ---- ---- ---- ---- ---- 0.91 3346.93

zeroed 2.14 -1.34 ---- ---- ---- ---- ---- N/A N/A
3rd 5.13 3.09 -5.43 3.23 ---- ---- ---- ---- 0.97 9284.54

zeroed 3.30 -5.77 3.46 ---- ---- ---- ---- N/A N/A
4th 4.85 3.51 -7.99 7.81 -2.45 ---- ---- ---- 0.98 7913.60

zeroed 3.78 -8.82 8.95 -2.95 ---- ---- ---- N/A N/A
5th 4.71 4.61 -17.87 36.91 -36.98 14.24 ---- ---- 0.98 7394.08

zeroed 4.94 -19.30 39.82 -39.60 15.12 ---- ---- N/A N/A
6th 4.44 3.04 1.48 -46.41 125.80 -133.00 50.04 ---- 0.98 6994.06

zeroed 3.14 2.80 -55.11 145.66 -152.40 56.90 ---- N/A N/A
7th 4.47 2.32 12.86 -112.34 311.04 -404.15 248.50 -57.31 0.98 6151.15

zeroed 2.60 11.46 -105.27 286.57 -358.58 207.79 -43.57 N/A N/A

Figure 3-6. Selection of the 3rd polynomial as the weight-curve for the PAVER method.
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1000 samples). This indicates that the weight-curve is polynomial-shaped, other than a

straight line or a parabola. As the weight-curve will logically pass the origin, the constant

coefficient from the regression analysis are zeroed. For the 6th and 7th degree of

polynomials, although they both have very high r2 values, they are not selected. This is

because these two polynomials display some additional curvatures, which causes

difficulty in the practical interpretation of these curves. Their application also entails

much more computation than a lower degree curve. The third-degree polynomial, though

the simplest in format, gives quite comparable performance (r2=0.97) to all the other

higher degree polynomials. Therefore, the 3rd polynomial is a better choice.

Logically, the weight-curves should also cross the (100%, 1.0) point, as shown in Figure

3-6.  However, this constraint is not enforced during the regression analysis. This is

because this enforcement during regression will result in the choice of some higher order

weight-curves. Instead, the (100%, 1.0) point is enforced as an isolated boundary

condition. In real applications, if only one distress exists, then the weight will be enforced

to be 1.0, no matter what the output is from the weight-curve function. Indeed, every

output from the weight-curve that is greater than 1.0 is also enforced to be equal to 1.0,

because a weight that is greater than 1.0 is meaningless. This is true for several points in

the China weight-curve as shown in Figure 3-5.

In order to investigate the stability of the cubic weight-curve with respect to sample sizes,

a series of sample sizes are used to generate the cubic polynomial. These include 100,

300, 500, 1000, and 20000 samples. The regression results are tabulated in Table 3-7,
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Table 3-7. The cubic weight-curves as determined using different sample sizes.

Sample Size a0 a1 a2 a3 r2 F
100 6.15 3.16 -5.79 3.48 0.97 811.83

zeroed 3.43 -6.31 3.88 N/A N/A
300 4.32 3.18 -5.70 3.42 0.98 3589.56

zeroed 3.38 -6.09 3.72 N/A N/A
500 4.59 3.17 -5.69 3.44 0.97 4484.05

zeroed 3.36 -5.99 3.64 N/A N/A
1000 5.13 3.09 -5.43 3.23 0.97 9284.54

zeroed 3.30 -5.77 3.46 N/A N/A
2000 4.29 3.17 -5.62 3.37 0.98 21070.82

zeroed 3.34 -5.92 3.57 N/A N/A
20000 4.62 3.16 -5.63 3.38 0.98 201623.47

zeroed 3.35 -5.95 3.60 N/A N/A

which shows very little difference in the coefficients. The two curves from 100, and

20,000 samples are plotted in Figure 3-7. The maximum difference between these two

curves is just 0.025, which is practically insignificant. Therefore, the choice of 1000 as

the sample size to generate the cubic polynomial is valid.

The stability of the cubic weight-curve with respect to the number of distress considered

is also investigated. Samples generated using only seven types of distress as used in the

MTC modified PAVER method are used to derive the cubic polynomial. Table 3-8

tabulates the regression coefficients for the obtained cubic polynomials. Sample sizes

such as 100, 300, 500, 1000, and 2000 are employed. It can be seen that the coefficients

from different sample sizes do not change significantly. The cubic weight-curve derived

by 1000 samples is compared with its counterpart by using all 19 types of distress in

Figure 3-8. The two weight-curves virtually overlap, and the maximum difference

recorded is 0.0016, which is practically zero. This shows that the consolidation of the 19
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Figure 3-7. Influence of sample size on the shape of the cubic polynomial weight-curve.

Table 3-8. Cubic weight-curves determined using 7 types of distresses only in the
modified PAVER method by MTC.

Sample
Size

a0 a1 a2 a3 r2 F

100 3.45 3.21 -5.69 3.43 0.98 1288.95
zeroed 3.35 -5.93 3.59 N/A N/A

300 6.25 3.05 -5.30 3.11 0.97 2413.53
zeroed 3.30 -5.71 3.39 N/A N/A

500 5.10 3.14 -5.59 3.36 0.98 4904.07
zeroed 3.34 -5.90 3.57 N/A N/A

1000 4.77 3.14 -5.56 3.32 0.98 10556.93
zeroed 3.32 -5.84 3.51 N/A N/A

2000 4.97 3.13 -5.54 3.31 0.98 20257.14
zeroed 3.33 -5.84 3.51 N/A N/A
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Figure 3-8. Difference between the cubic polynomial weight-curves obtained by
considering different types of distresses.

distress types does not affect the shape of the cubic weight-curve associated with the

PAVER method. It is believed that this conclusion holds for any subset of the 19 PAVER

distresses, because PAVER method is valid for any subset of the 19 types of distress.

In order to further support that cubic polynomial is a better choice, weight-curves with

different degrees of polynomials extracted from the China method are compared. 1000 is

used as the standard sample size. The regression results are listed in Table 3-9 and shown

in Figure 3-9. It is clear that the cubic polynomial almost overlaps with all the other

weight-curves, except the 1st and 2nd degree weight-curves. As it is the simplest to use,

the cubic is a better choice as the degree of the weight-curve. The influence of sample

sizes for the cubic polynomials was also examined. The results as tabulated in Table 3-10
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Table 3-9. Regression results for different degrees of polynomials for the China Method
(1000 samples).

Power a0 a1 a2 a3 a4 a5 a6 a7 r2 F
1st 9.39 1.20 ---- ---- ---- ---- ---- ---- 0.78 1817.68

zeroed 1.40 ---- ---- ---- ---- ---- ---- N/A N/A
2nd 3.42 1.93 -1.09 ---- ---- ---- ---- ---- 0.95 6023.77

zeroed 2.02 -1.13 ---- ---- ---- ---- ---- N/A N/A
3rd 0.73 2.84 -4.35 2.56 ---- ---- ---- ---- 0.98 11964.7

zeroed 2.87 -4.41 2.60 ---- ---- ---- ---- N/A N/A
4th 0.59 3.06 -5.69 4.95 -1.28 ---- ---- ---- 0.98 9760.68

zeroed 3.09 -5.81 5.10 -1.34 ---- ---- ---- N/A N/A
5th 0.60 3.00 -5.15 3.33 0.65 -0.80 ---- ---- 0.98 8128.46

zeroed 3.04 -5.34 3.72 0.30 -0.68 ---- ---- N/A N/A
6th 0.51 2.40 2.20 -28.06 61.63 -55.76 18.63 ---- 0.98 7033.09

zeroed 2.40 2.47 -29.56 64.90 -58.87 19.72 ---- N/A N/A
7th 0.49 1.66 13.74 -94.53 247.57 -326.97 216.68 -57.11 0.98 6180.95

zeroed 1.65 14.28 -97.63 255.33 -336.69 222.64 -58.53 N/A N/A

Figure 3-9. Comparison for weight-curves in different degrees of polynomials for the
China method.
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Table 3-10. Cubic weight-curves determined using samples from the China method.

Sample Size a0 a1 a2 a3 r2 F
100 0.983 2.85 -4.47 2.67 0.98 1220.10

zeroed 2.89 -4.53 2.72 N/A N/A
300 1.02 2.83 -4.36 2.58 0.98 4151.95

zeroed 2.87 -4.44 2.63 N/A N/A
500 0.63 2.84 -4.35 2.56 0.98 6715.57

zeroed 2.87 -4.40 2.60 N/A N/A
1000 0.73 2.84 -4.35 2.56 0.98 11964.70

zeroed 2.87 -4.41 2.60 N/A N/A
2000 0.84 2.83 -4.33 2.55 0.98 22624.23

zeroed 2.87 -4.40 2.59 N/A N/A
10000 0.85 2.82 -4.30 2.52 0.98 111071.16

zeroed 2.86 -4.37 2.57 ---- ----

show that sample sizes have little effect on the obtained weight-curves, and 1000 samples

are sufficient to determine a cubic weight-curve.

3.8 Stability of the Weight-Curve

It is true that the PAVER and China weight-curve in Figure 3-5 look similar in shape. It

is the objective of this section to examine the quantitative difference between the two

weight-curves, so that the stability of the weight-curve can be apprehended

quantitatively. Take 101 points from the continuous cubic polynomial weight-curve

corresponding to 0% to 100% of DV-percentage, and plot the difference between the two

weight-curves with the DV-percentage in Figure 3-10.  It can be seen that the difference

between the two weight-curves is sigmoid.  All the differences are within the range of
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Figure 3-10. Difference between the two weight-curves.

-0.04 to +0.09. The two peak differences are reached at 20% and 80% DV-percentage,

respectively.

The difference in weights may be transferred into the difference in total deduct-value, and

hence PDI. For the extreme case, one deduct-value equals to 100, and it takes up to 80%

of the total deduct-value in the sample, the variation in PDI caused by different weight-

curves will be 9-points. The extreme case may happen actually in the rating according to

a single distress. A 9-point difference is quite reasonable for the findings from two

studies in different parts of the world. Indeed, this extreme case is rare. Most of the

deduct-values for a single distress will be less than 100, and a single deduct-value seldom

takes up to 80% of the total deduct-value. So most of the time, the variation in PDI will
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These claims were verified using 1000 simulated data according to PAVER. Based on the

same set of deduct-values in PAVER, the generated PDIs according to different weight-

curves were plotted and compared in Figure 3-11. It is found that 95%, and 88% of the

time, the difference between the two PDIs are less than 6-points, and 5-points,

respectively. The range of the difference is –9 to +8-points. This result shows that the

variation in the obtained PDI caused by interchanging the two weight-curves is

acceptable.

Figure 3-11. Impacts of interchanging the two weight-curves.

This finding also indicates that expressed in the weight-curve as defined in this study, the

human rating behavior is pretty stable. As these two weight-curves were rooted in two
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any of the two existing weight-curves as the default weight-curve in the formulation of its

own PDI. This will not cause much lost in its own rating behavior, but will help eliminate

the cumbersome iterative process of PDI formulation when starting from scratch.

It should be pointed out that adoption of a default weight-curve is different from the

adoption of an entire default model, such as PAVER. The error introduced by adopting a

default weight-curve may be roughly quantified, while the error by adopting an entire

default model may be extremely difficult to discern and quantify. Not to mention the

possible incompatibility of the default model with the specific situations of an agency. In

addition, adopting a default weight-curve will not compromise the obtained PDI, because

the error introduced is borne entirely by the deduct-values to be determined. If the

weight-curve from the PAVER or China method is adopted, the error for an individual

deduct-value will not go beyond 15-points in the worst case, as will be reported later in

Chapter 4.

3.9 Conclusions

The first part of the proposed procedure is described in this Chapter. A generalized PDI

formulation procedure is proposed using the weight-curve concept. It is concluded that

the weight-curve as defined in this study is existent in both the PAVER and China

methods. This weight-curve may be obtained by approaching the PAVER and China

method using the proposed method. The unconstrained Hooke and Jeeves’ direct search
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technique is proved to be simple, efficient, and effective in identifying the weight-curve.

A cubic polynomial is found to be the simplest satisfactory shape of the weight-curve.

The weight-curve is shown to be reasonably stable, because the weight-curves associated

with the PAVER and China methods are quite similar both graphically and quantitatively.

The variation in PDI caused by interchanging the two weight-curves will not be more

than 6-points on a 0 to 100 scale at 95% of the time. This finding has significant

implications for the formulation of PDIs. A simple customization process may supersede

the complicated formulation process. The two interacting parts in the proposed PDI

formulation may be calibrated separately. Or more simply, PDI may be formulated by

fixing the weight-curve and adjusting individual deduct-values only.
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Chapter 4 The Proposed Procedure: Part II—Determination of the Individual

Deduct-Values

4.1 Introduction

This Chapter describes the second part of the proposed procedure. The objective of this

Chapter is twofold: (1) Introduce how to use the Broyden algorithm to extract the deduct-

values based on a fixed weight-curve; and (2) Evaluate the performance of the proposed

procedure in reproducing user-rated PDI. This Chapter is taken as an illustration of the

proposed procedure, which is customized using user data simulated based on the PAVER

method.

4.2 The Formulation

As the next integral step of the proposed procedure, deduct-values for individual DIDs

have to be determined. By fixing the weight-curve, this problem may be formulated as an

optimization process, i.e. deduct-values are determined when the total squared sum of the

difference between the user-rated PDI and that produced by the proposed method for a

series of samples is minimized. This can be expressed mathematically in the following

form:
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St.

      0 =DVki=100,        i=1, 2, …, M  (4-2)

     DVki=DVk(i+1),       (j-1)×6+1 ≤ i ≤ (j-1)×6+6, j=1, 2, …, 55;      (4-3)

    DVki=DVk(i+6),       (j-1)×3+1 < i ≤ (j-1)×3+3, for j=1, 2, …, 13; and

         (j-1)×3 < i ≤ (j-1)×3+2, j=15, 16, …, 19;  (4-4)

By incorporating the weight-curve, Equation 4-1 may be rewritten as:
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where, ε is considered a function of all the defined DIDs. Equation 4-5 is constrained by

not only the range for each deduct-value, but also the logical sequence for the deduct-

values for a specific type of distress with different levels of severity and density.

Equation 4-5 constitutes the other indispensable part of the proposed procedure. It is able

to accommodate direct user distress survey data, and derive the deduct-values for each

individual type-severity-density distress as defined by the user, based on a reasonably

stable weight-curve when the objective function is minimized. Although Equation 4-5

may be used alternatively to determine a new weight-curve, it is not recommended,

unless this update is justified by dedicated studies comparable to PAVER or Sun and Yao

(1991).

4.3 Sample Data Preparation
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Sample data simulated according to the PAVER method is used. The same algorithm for

sample generating as described in Chapter 3 is adopted. Each typical sample is composed

of a series of coded Distress IDentification number (DID) and a corresponding user-rated

PDI. The number of DIDs in each sample is random. The user-rated PDI here is actually

the PAVER_PCI, which is the rating of the U. S. Army Corps of Engineers. An excerpt

of such DID sequence sample is shown in Table 4-1. Table 4-1 and Table 3-3 are inter-

related by the PAVER DV-Table in Table 3-2. For example, the DID “148” at the upper-

left corner of Table 4-1, its corresponding deduct-value is taken from the 25th, i.e.

( )( )( )166 ,148mod148 +−  row and 4th, i.e. ( )( )6 ,148mod  column of Table 3-2, which is

18. mod(, ) is an operation returning only the remainder of the division operation. For

example, mod(148, 6) equals 4. The format of distress data has been designed based on

the actual format of distress survey data from the State of Minnesota, North Carolina

(North Carolina DOT 2000), and Washington (Kay et al. 1993, Jackson 1993). This will

facilitate the possible implementation of the developed procedure.

Two independent sample groups with each having 5000, and 2000 samples, respectively

have been prepared. The 5000 samples are used to identify a sufficient sample size for the

Broyden algorithm to determine all those deduct-values, and the 2000 samples are used

as a test set to investigate performance of the obtained deduct-values. Table 4-1 and

Table 3-3 is just used to show the inter-relationship between the DV-sequence data and

DID-sequence data. It does not mean that the same set of data is used for the extraction of

both the weight-curve and also the individual deduct-values.
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Table 4-1. Illustration of a DID-sequence sample (20 samples).

4.4 Solution Technique: The Broyden Algorithm

4.4.1 Why Broyden Algorithm?

Equation 4-5 is a complex constrained non-linear programming problem. The complexity

of the problem lies first in its extremely large solution space. For the simulated user data,

there are altogether 330 decision variables, with each variable having a possible solution

of from 0 to 100. The problem may also be highly non-linear, depending on the degree of

polynomial chosen for the weight-curve. For the simplest cubic weight-curve, the

formulation is in the forth order of each decision variable. In addition, the large number

of constraints that need to be enforced make the problem even more complicated. For

example, every deduct-value should be within the range of 0 to 100. For the same type of

Sample 
Number

DID1 DID2 DID3 DID4 DID5 DID6 DID7 PDI*

1 148 267 139 224 280 305 91 34.5
2 194 91
3 134 197 206 74 71.49
4 289 79 111 174 326 179 13.4
5 115 224 48 326 57 102 37 11.2
6 164 78 138 289 35 57 314 28.4
7 316 201 76 80.25
8 324 313 35 30 115 259 14.6
9 208 106 297 37 76 237 36

10 244 116 53.2
11 238 317 88 135 309 259 8 30
12 169 292 57 230 4 33.5
13 247 289 91.97
14 10 75 286 35.5
15 292 268 26.4
16 237 96
17 7 243 322 44.45
18 72 185 32.4
19 193 82 146 114 228 43
20 222 131 291 32 9 207 167 18.6

* PDI is calculated using the PAVER method.
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distress, the deduct-value should logically increase when both the severity and density

level increases. Based on this analysis, the technique chosen should have robust search

capability to avoid the local optima that occur frequently for a non-linear programming

problem. It should also be able to handle the large number of constraints effectively.

There are many conventional methods that may be employed to solve Equation 4-5, such

as the direct search, or derivative-based algorithms. As a general rule, gradient and

second-derivative methods converge faster than direct search methods (Himmelblau

1972). The setup in Equation 4-5 is definitely differentiable. It is sensible to employ

faster derivative-based method. Termed as a quasi-Newton method, the Broyden method

is by nature second derivative based. Therefore, it enjoys the robustness and efficiency of

the second derivative method. However, it makes use only of the first derivative

information, which saves the trouble of computing the second derivative and inverting

the Hessian matrix. In addition, the performance of the unconstrained Broyden algorithm

was identified to be superior, in terms of robustness, number of functional evaluations,

and effectiveness, or computer time to termination (to within the desired degree of

precision). Broyden algorithm was also found to perform better for more difficult

problems than some best-known algorithms such as the Davidon-Fletcher-Powell (DFP)

algorithm (Himmelblau 1972).  Therefore, the Broyden algorithm is adopted in this

study.

4.4.2 Description of the Broyden Algorithm

A general nonlinear programming problem without constraints may be formulated as
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Min. ( )xf  , nEx ∈ (4-6)

where,

( )xf  = the objective function. The objective of the minimization process is to seek a

stationary point of ( )xf , that is the first derivative ( ) 0* =∇ xf , so that ( )xf  is minimized.

What conventional non-linear programming methods have to determine is to specify the

effective search direction and walking step toward the optimal point *x . Specifically, this

is to determine how to transit from a point ( )kx  at the kth stage of the search to another

point ( )1+kx , that is:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kkkkkkkkk sxsxxxx *1 ˆ λλ +=+=∆+=+ (4-7)

where,

( )kx∆  = the walking step, which is a vector from ( )kx to ( )1+kx ;

( )kŝ  = a unit vector in direction ( )kx∆ ;

( )ks  = any vector in direction ( )kx∆ ;

( ) ( )kk *,λλ  = scalars such that

( ) ( ) ( ) ( ) ( )kkkkk ssx *ˆ λλ ==∆ (4-8)

Depending on how the search direction and step length are determined, there are a variety

of algorithms. The best-known Newton method makes use of second-derivative

information, and specify both the search direction and step length by

( ) ( ) ( )[ ][ ] ( )[ ]kkkk xfxfxx ∇∇−=
−+    

121 , or (4-9)
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( ) ( ) ( ) ( )[ ] ( )[ ]kkkkk xfxHxx ∇−= −+     1*1 λ (4-11)

where, H is the Hessian matrix of the objective function, defined as:
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The essence of the Broyden method is to approximate the Hessian matrix or its inverse

using only first-order derivatives. This saves the trouble of the computation of the second

partial derivatives of the objective function, and also the inversion of the Hessian matrix.

The algorithm computes a new x vector from the one on the preceding stage by an

equation analogous to Equation 4-7:

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )[ ]kkkkkkkk xfxxsxx ∇−=+=+   ˆ *1 ηλλ (4-13)

where, ( )[ ]kxη  is called the direction matrix and represents an approximation to the

inverse of the Hessian matrix.

Let ( )[ ] ( )kkx ηη ≡ ,   (4-14)

( ) ( ) ( )kkk ηηη ∆+=+1 ,  and (4-15)

let ( )kη∆  be a symmetric matrix with a rank of 1, Broyden (1967, cited in Himmelblau

1972) determined that



74

( )
( )( ) ( ) ( )( )[ ] ( )( ) ( ) ( )( )[ ]

( )( ) ( ) ( )( )[ ] ( )( )kTkkk

Tkkkkkk
k

ggx

gxgx

∆∆−∆

∆−∆∆−∆
=∆  

 
  

η

ηη
η (4-16)

where,

( )( ) ( ) ( )kkk xxx −=∆ +1 (4-17)

( )( ) ( )[ ] ( )[ ]kkk xfxfg ∇−∇=∆ +1 (4-18)

Equation 4-16 can be used as the recursive relations to calculate ( )kη  or to calculate ( )kŝ in

Equation 4-13. In the simplest algorithm the minimization starts by choosing ( )0x and

( ) 00 >η , and then applying Equation 4-13, Equation 4-15, and Equation 4-16 in sequence

until, say [ ] ε<∇ |||| kxf , where ε is a prespecified precision.

4.4.3 The First Derivative

Although the Broyden method does not require the information on second derivatives, it

does entail the derivation of the first derivatives. For the objective function shown in

Equation 4-5, the analytical first derivative can be derived as
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where,

DVt = the deduct-value for DID number t;

t = 1, 2, …, 330 for the current problem;
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All undefined parameters are as defined previously.

Apparently, the derivative for each DVt (0≤t≤330, with each t corresponding to a DID) is

obtained by summing up all the components contained in the K samples. The computer

codes for the Broyden’s algorithm as implemented by Himmelblau (1972) is referred to,

but rewritten in order to implement in the Visual Basic 5.0 environment.

4.4.4 Constraints Handling

As shown in Equation 4-2, Equation 4-3, and Equation 4-4, there are three types of

constraints for the formulation in Equation 4-1. Firstly, each deduct-value is bound by the

range as defined by the PDI scale. In the simulated data, the range is 0~100. A deduct-

value outside this range is not defined and hence meaningless. The second type of

constraint is called the sequence constraint, that is, for the same type of distress, higher

density and severity levels should have higher deduct-values. In addition, some type-

severity-density states may have specific values. As mentioned in Chapter 3, there are 25

deduct-values are zeroed in the sampling process, therefore, the deduct-values for these

DIDs must be enforced to be zero.

These three types of constraints may lead to numerous constraints. In the simulated data,

there are 330 decision variables. These include 19 types of distress, with each type having

3 severity levels, and 6 density levels, excluding the polished aggregate which has only
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one severity level and 6 density levels. Each type of these distresses may need 12

constraints to enforce the severity sequence, and 15 for density sequence. The polished

aggregate may need 5 to enforce the density sequence. The number of such sequence

constraints is 491. What is more, the logical range of these 330 variables may entail 660

constraints. If the 25 specific values are also considered, the total constraint number may

be well beyond 1000.

Two methods have been explored in this study to handle these constraints. These include

the heuristic, and the penalty method. In the heuristic method, the Broyden algorithm is

used to solve the unconstrained problem, and all the constraints are dealt with

heuristically. The basic operation is to feed the algorithm with constraint-compliant

starting points. Solutions from a previous iteration or a complete run are adjusted to

comply with all the constraints before they are used as the starting points of the next

iteration or next run. This process iterates until the objective function stops to improve

significantly. The final solution is sorted based on distress density and severity,

respectively to satisfy all the sequence constraints.  The possible negative values are

replaced with zero, and the values greater than SPDI are replaced with SPDI to satisfy the

range constraints. Clearly, this is essentially an application of the unconstrained Broyden

algorithm.

The penalty method assesses penalty (add non-negative value to the existing objective

function value) when any deduct-value violates the constraints. The penalty will be

directly added to the original setup in Equation 4-5, to convert the original constrained
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problem into an unconstrained one. The final solution will hence satisfy both the original

objective function and the penalty function. For a specific deduct-value for DID number

i, the penalty may come from 6 sources: (1) density-related raw-penalty, assessed when i

is a higher density DID but is associated with a lower deduct-value, called RP1; (2)

density-related raw-penalty, assessed when i is a lower density DID but is associated with

a higher deduct-value, called RP2; (3) severity-related raw-penalty, assessed when i is a

higher severity DID but is associated with lower deduct-values, called RP3 ; (4) severity-

related raw-penalty, assessed when i is a lower severity DID but is associated with a

higher deduct-value, called RP4 ; (5) range-related raw-penalty, assessed when the

deduct-value is above SPDI, called RP5 , and (6) range-related raw-penalty, assessed when

the deduct-value is less than zero, called RP6.

The amount of penalty is designed to be related to the amount of the violation. For the

violation of range constraints, the raw-penalty is calculated as the squared amount that is

beyond zero or SPDI. On the other hand, if the sequence constraints are violated, the raw-

penalty is calculated as the squared difference between a specific deduct-value and its

immediate neighbor in the defined DV-Table. The total penalty is the summation of all

the 6 raw-penalty components for all the samples in consideration, with each component

being adjusted by a constant penalty multiplier. The total penalty function may be written

as:
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M

i
ki RPRPRPRPRPRPSPen

1 1
665544332211 µµµµµµ (4-22)

where,
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Pen = total penalty for the violations of constraints;

µ1, µ2, µ3, µ4, µ5, µ6   = constant multiplier for RP1, RP2, RP3, RP4, RP5, RP6, respectively;
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The first derivative of the penalty function may be derived as:
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4.5 Running of the Broyden Algorithm

There are many factors that affect the performance of the Broyden algorithm. These may

include the constraint-handling methods, starting points, sample sizes, and the stopping

criteria. These influencing factors should be carefully examined in order to ensure that

the algorithm is run correctly, and a reliable result is obtained.
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4.5.1 Start and Termination of the Broyden Algorithm

The Broyden algorithm entails an initial point to get started. Due to the non-linear nature

of the problem, different starting points may influence the final solution, because there

are many local optima in the solution space. Therefore, it is always sensible to run the

problem using different starting points and take the best (with the smallest objective

function value) as the final solution. Random starting points are the most appropriate

choice for practical applications. The PDI scale, 0 to SPDI may be a good range for

randomizing the starting points. Because PAVER is an established procedure, its deduct-

values may also be used as the starting points to obtain the customized deduct-values.

A single stopping criterion is used for terminating the Bryoden algorithm. It is the

decrease of the objective function value between the last two consecutive iterations.

Obviously, the terminating threshold will not exert any significant impact on the solution

if it is sufficiently small. Lowering this threshold beyond a sufficiently small value may

just unnecessarily increase the calculation load without improving much the quality of the

solution. In this study, the initial threshold is chosen as 1% of the SPDI. This value may be

adjusted according to the converging curve and the terminal objective function value. A

leveled-off converging curve after termination indicates that the current threshold is

reasonable, because there is not much potential of further decrease of the objective

function value. In contrast, if the program terminates when the converging curve is still in

its steep decreasing process, the threshold should be adjusted lower. In addition, as a

squared sum of the individual errors, the objective function value by itself signifies the
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average difference between the user-rated PDI and that produced by the current DV-

Table. Therefore, a very big difference may well necessitate a decrease of the threshold,

and vice versus.

4.5.2 Selection of the Constraint-Handling Method

Constraint-handling method is an integral part of a constrained non-linear programming

problem. It plays a key role in ensuring the efficiency and quality of the final solution. In

order to select the better constraint-handling method, the two constraint-handling

methods described previously are compared. The comparison is conducted based on the

following two criteria: (1) algorithm efficiency, which is embodied by the converging

process; and (2) quality of the results, which is characterized by the constraint-

compliance, and the terminal objective function value. The better algorithm will display

faster converging process, and produce solutions with smaller objective function value.

4.5.3 Identification of a Sufficient Sample Size

Not all sample sizes are able to provide sufficient information for the determination of the

deduct-values defined by the user. A sufficient sample size needs to be identified

according to the required accuracy level. The accuracy level is characterized by the

repeatability of the solution from different sample sizes. Such a sample size may be

identified in the following manner. First of all, set an allowable error between the results

from different sample sizes, such as 5-point on a 0~100 PDI scale, for the majority, say

95% of the decision variables. Second, start the Broyden algorithm with a small sample

size, say 500 samples, and record the results. Third, add some more samples and pool
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them with the existing samples, run again, and compare the current results with the

previous one from the fewer samples. Forth, check the distribution of the variation

between the two solutions, and if the error is less than the allowable error, the smaller

sample size will be the sufficient sample size. Last, keep on adding samples, and

checking the results, until the sufficient sample size is identified.

4.6 Evaluation of the Performance of the Proposed Procedure

If the simulated data used in this Chapter is assumed to be real user data, the extraction of

the deduct-values may be considered the customization process of the proposed

procedure using the user data. The obtained deduct-values constitute the customized user

DV-Table. Although the distress definition in the PAVER method is inherited in the

simulated data, in reality, the user may elect to use any distress definitions.

Besides the extraction of the deduct-values according to the user distress definition and

the fixed weight-curve, the proposed procedure is supposed to reproduce the user-rated

PDI reliably. Together with the fixed weight-curve and the computed deduct-values, the

proposed procedure should reproduce the user-rated PDI using data other than that used

in deriving the deduct-values. This criterion is important because it verifies the practical

applicability of the proposed procedure. Of course, the computed PDI will not be exactly

the same as the user-rated PDI. Statistical analyses have to be conducted on the

corresponding error between the two PDIs to gauge the quality of the reproduction. Such

measures as maximum positive and negative error, mean, and standard deviation may be
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used to gauge the range and variation of the error. In addition, statistical t-test for mean

and F-test for variance may also be used to verify whether the computed and user-rated

PDI possess similar mean and variance. 2000 simulated samples will be used in this

process.

As a spin-off, the interchangeability of the PAVER and the China weight-curve may be

investigated by taking advantage of the above evaluation process. This may be done by

replacing the PAVER weight-curve with the China weight-curve in calculating the

computed PDI, and comparing the obtained PDI with the user-rated PDI. If the China

weight-curve produces acceptable agreement with the user-ratings, this may indicate that

the two weight-curves are interchangeable. This investigation helps justify the adoption

of human rating behavior as the anchorage for simplifying the complicated PDI

formulating process. The same set of statistical measures mentioned above are employed

to gauge the quality of the reproduction based on the China weight-curve.

4.7 Results

4.7.1 Selection of the Constraint-Handling Method

The two constraint-handling methods are compared in this section with an aim to

identifying the better method. The converging processes are compared first to show

which method is more efficient. Two parallel runs, each adopting a different constraint-

handling method, are conducted based on the same random starting points from 1 to 100,

the same 2000 samples, and the same threshold of 0.1. The converging processes for

these two parallel runs are shown in Figure 4-1.
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Figure 4-1. Comparison of the converging process of the heuristic and penalty method.

Obviously, the heuristic method is more efficient. The objective function value dropped

very much sharper than that of the penalty method. Within five hours, the program

reached the terminating threshold of 0.1. On the other hand, the penalty method took 7

times as much time to reach the same threshold level, only with the terminal objective

function value still 3% ((22,695-21,983)/21,983×100%), higher than that of its

counterpart. In order for the penalty method to reach the same terminal objective function

value, it may take another 84 hours, because its converging rate is extremely slow: every

100 drop in the objective function value takes up to 12 hours.

All the multipliers for the individual penalty functions are chosen to be equal, and the

constant of 100 is used. The multiplier, the threshold, and the desired accuracy level of

the deduct-values should match internally. For example, for the desired accuracy level of

0.1 for the deduct-values, if the threshold is chosen to be 0.1, then the multipliers should
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not be less than 10. Otherwise even if there is a violation by 0.1 in the deduct-values, the

objective function will be unable to detect it. Similarly, if the threshold is increased to

1.0, then the multipliers should also be increased to no less than 100. Multipliers

satisfying this internal logic are found to perform similarly.

In addition to the comparison of the converging process, the solutions from the two

methods are also compared. Table 4-2 is a typical derived user DV-Table produced by

the Broyden algorithm. Besides its faster converging process, the heuristic constraint-

handling method is also found to produce deduct-values of quite comparable quality to

that by its penalty counterpart. The deduct-values obtained from the heuristic method are

deducted from the corresponding deduct-values determined using the penalty method.

The error distribution is shown in Figure 4-2. The majority (96%) of the differences is

within ±2-points. The maximum positive difference is less than 6-points, and the

minimum negative difference is less than 8-points. The mean of these errors is 0.08, with

a standard deviation of 0.92.

It should be noted that the two constraint-handling methods are different by nature. The

penalty method penalizes the Broyden algorithm if it searches outside the feasible zone,

and eventually converges to a theoretically guaranteed constraint-compliant solution. On

the contrary, the heuristic method does not constrain the operation of the Broyden

algorithm at all. It just supplies the algorithm with constraint-compliant starting points,

and there is no theoretical guarantee that the solution will be constraint-compliant.

However, this method is observed to be both efficient, and effective for this particular
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Table 4-2. A typical solution of the Heuristic Broyden Algorithm (2000 samples).

1 2 3 4 5 6
1 Low 5 11 30 37 53 62
2 Medium 8 25 42 50 68 79
3 High 17 34 54 64 77 92
4 Low 0 0 5 10 23 30
5 Medium 0 5 15 20 37 44
6 High 0 8 22 34 60 74
7 Low 0 8 9 14 34 44
8 Medium 6 20 35 42 65 75
9 High 10 38 54 62 78 94

10 Low 0 5 8 13 35 32
11 Medium 0 14 20 30 40 46
12 High 0 27 38 52 70 84
13 Low 0 0 14 20 27 36
14 Medium 0 6 26 34 44 59
15 High 5 25 41 55 69 81
16 Low 0 11 24 30 45 51
17 Medium 6 22 42 45 63 65
18 High 8 34 52 62 80 88
19 Low 0 1 3 4 14 16
20 Medium 4 8 15 21 37 45
21 High 4 19 34 41 70 77
22 Low 0 0 1 4 13 24
23 Medium 0 5 10 13 31 40
24 High 0 7 18 27 55 71
25 Low 0 4 10 20 33 43
26 Medium 0 16 30 44 61 81
27 High 0 37 59 74 85 100
28 Low 4 6 10 20 43 50
29 Medium 8 9 22 36 60 61
30 High 12 20 33 46 70 75
31 Low 0 0 6 7 7 17
32 Medium 5 5 9 15 24 31
33 High 8 8 21 28 36 50
34 Low 0 5 6 9 23 31
35 Medium 0 10 19 31 41 43
36 High 0 25 34 51 71 75
37 Low 0 0 5 7 22 33
38 Medium 0 4 12 21 43 44
39 High 0 11 24 35 70 72
40 Polished Aggregates N/A 0 0 4 7 16 22
41 Low 7 24 46 54 84 97
42 Medium 7 36 71 87 99 100
43 High 24 55 85 94 99 100
44 Low 0 5 9 12 19 24
45 Medium 6 18 31 40 47 54
46 High 24 42 51 66 77 80
47 Low 0 4 24 30 49 55
48 Medium 0 12 35 45 65 70
49 High 4 23 53 65 86 90
50 Low 0 6 18 24 31 41
51 Medium 4 10 30 38 50 64
52 High 8 22 39 52 68 78
53 Low 0 6 8 8 20 23
54 Medium 12 27 31 37 46 52
55 High 36 43 47 52 63 68
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Figure 4-2. Analysis of the errors of corresponding deduct-values obtained by the
heuristic and penalty method.

optimization setup, the heuristic method is hence selected for handling the constraints in

this research. All the following discussions will be based on the heuristic method.

4.7.2 Influence of the Starting Points, and Sample Size on the Converging Process

The influence of the starting points, and sample sizes on the converging process of the

heuristic Broyden algorithm are examined in this section. Four different starting points,

namely the PAVER start, all-zero start, random start I (randomized from 1 to 100), and

random start II (randomized from 10 to 15), and two sample sizes, namely 2000, and

5000 samples are employed and compared. The converging processes for the 2000, and

5000 samples with different starting points are shown in Figure 4-3, and Figure 4-4,

respectively.
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Figure 4-3. Comparison of the converging process for different starting points (2000
samples).

Figure 4-4. Comparison of the converging process of different starting points (5000
samples).
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As it can be seen from Figure 4-3, that a better starting point will shorten the converging

process. If the Broyden algorithm is started from the PAVER DV-Table, the initial

objective function value is very low, and only several iterations will be enough for the

algorithm to reach the neighborhood of the terminal objective function value. While the

initial objective function value will be much higher if the algorithm is started from

random starting points. For a random start run that all values are initialized between 1 and

100 (random start I), or 10 to 15 (random start II), or all-zero, at least 10 iterations will be

needed for the algorithm to converge. In addition, as it is shown by these curves, starting

points dictate the unique path of the converging process. Nonetheless, there is only

marginal difference between the terminal objective function values from different random

starts. The difference is observed to be on the order of 0.1%. This result is practically

significant, because random starting points may be the most appropriate choice in real

applications, and the Broyden algorithm is robust with respect to different starting points.

Larger sample size may not necessarily entail more iterations before convergence as

shown by the comparison of Figure 4-3 and Figure 4-4. 40 iterations are enough for the

derivation of the deduct-values using 2000 samples. The same number of iterations may

be also enough for 5000 samples, although each such iteration will take longer time to

complete. This shows that the Broyden method is very efficient in terms of the number of

iterations needed. Since the initial parts of converging curves are much steeper for the

5000-sample case, this indicates that the Broyden method works better with larger sample

sizes.
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4.7.3 Identification of a Sufficient Sample Size

For the simulated data, five sample sizes are studied to find the sufficient sample size.

These include 500, 1000, 1500, 2000, and 5000 samples, with each larger sample size

encompassing all the samples contained in a smaller sample size. For example, the 1000

sample size is composed of the 500 samples in the 500 sample size and an additional 500

samples. The 1500 samples are the aggregation of the 1000 samples with another 500

samples, and so on.

The identification study started from a random initial DV-Table with the smallest sample

size, 500 samples. With a terminating threshold of 0.1, the heuristic Broyden algorithm

was run and a DV-Table similar to that as tabulated in Table 4-2 was obtained. The

Broyden algorithm was then run with increasingly bigger sample sizes, such as 1000,

1500, 2000, and finally 5000. The DV-Table associated with each sample size was also

recorded. The errors between the corresponding deduct-values for every two immediate

neighboring sample size were hence obtained.  Two typical error series between the 500

and 1000 samples, and the 2000 and 5000 samples were shown in Figure 4-5. The results

of the statistical analyses for all the error series were tabulated in Table 4-3.

As it can be seen from Figure 4-5 that the solution from 500 samples are very much

different from that from 1000 samples. The error range spans from –17 to +19, with a

standard deviation of 5.64. There are also 10% of the error is larger than 10-points. This

wide range variation of the result shows that the solution from 500 samples is not

reliable. Once more information is given, the solution changes a lot. In contrast, the
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Figure 4-5. Plot of errors for individual DIDs between different sample sizes.

Table 4-3. Analysis of errors for individual DIDs between different sample sizes.

Source of the Error Series
Measures 500~1000

samples
1000~1500

samples
1500~2000

samples
2000~5000

samples
Mean 0.91 0.16 -0.05 -0.05
Variance 5.64 2.60 1.93 1.87
Error Range, Min./Max. -17/19 -10/11 -8/11 -7/11
Error % >5-points 31 8 4 4
Error % >10-points 10 1 0 0

solution from 2000 samples is found to be very approximate to that produced by 5000

samples. There are 96% of the error that is less than 5-points, with a standard deviation of

1.87. The two solutions almost share the same mean: the mean difference is 0.05. This

indicates that the results from 2000 samples were stable. There is very little marginal

benefit to add additional samples to the existing sample set, because the solution will not

improve much. 2000 is identified as the sufficient sample size.
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As Table 4-3 shows, the errors in terms of mean, standard deviation, and range, are

shrinking with the increase of sample sizes. This trend agrees very well with the fact that

the more sample you use, the more reliable the results will be, if the samples are of the

same quality (randomly generated). As shown in Figure 4-6, the shrinking trend of the

standard deviation with respect to sample sizes may also help identify that 2000 is a

sufficient sample size. Because the curve leveled off beyond the 2000 sample size,

additional samples may not improve the variation of the errors significantly. It is the

practitioners’ responsibility to choose whether or not to add more samples to gain a

marginal improvement in the stability of the solution. Based on this result, a sample size

of 2000 was used to obtain the deduct-values for the following performance evaluation

analysis.

Figure 4-6. Determination of a sufficient sample size according to error variation.
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4.7.4 Performance of the Proposed Procedure

Another 2000 samples are generated for the evaluation of the performance of the

proposed procedure. The computed PDI is calculated based on the obtained DV-Table, as

shown in Table 4-2, and the fixed PAVER weight-curve. The corresponding computed

and user-rated PDIs for the 2000 samples are plotted and compared in Figure 4-7. The

detailed statistics of the comparison is tabulated in Table 4-4.

Figure 4-7. Performance of the customized deduct-values (PAVER weight-curve, 2000
samples).
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It can be seen that the majority of the corresponding points fall within the two parallel

lines of  “User-Rated PDI±5-points”. For the differences, these two methods recorded a

range of “-15” to “+19”, and about 13% of the differences are larger than 5-points.
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Table 4-4. Detailed statistics of the comparison between the derived PDI and user-rated
PDI for the simulated data.

Items PAVER Weight-Curve China Weight-Curve
Mean 0.28 -1.80
Standard Deviation 3.61 4.06
Range, Min./Max. -15/19 -24/12
Error >5-points, % 13 19
Error >10-points, % 2 3
Error >15-points, % 0 1
F-Value 1.01 1.00
t-Value 0.34 2.24
Sample size 2000 2000
t-test and F-test critical values: 1.96 and 1.11 is used for tc and Fc at a 95%
significance level, respectively; 2.58 and 1.17 is used at a 99% significance level,
respectively.

beyond 15-points. This result indicates that customized DV-Table may reproduce the

User-Rated PDI with an error of 10-points at 98% of the time. Statistical tests show that

the computed PDI and User-Rated PDI also have similar means and variances at a 95%

significance level. In addition, they are closely correlated by a regression relationship

with a slope of 0.98.

Nonetheless, Figure 4-7 also indicates that there exist some discrepancies between the

computed and user-rated PDIs, especially when the pavement conditions are bad, say PDI

less than 15-points. This may be explained by the “incompatible” nature between the

proposed and the PAVER method, because the User-Rated PDI is actually the PAVER

PCI in the simulated data.
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One simple example will help understand this incompatibility. Say a sample road section

has two distresses, with deducts of 100 and 5-points, respectively. According to their

TDV of (100+5)=105 and the total deduct number q=2, the PAVER-PCI can be

determined as 25 using Figure 2-2 and Figure 2-3. However, for the proposed method,

the PDI for this sample, as calculated by Equation 3-1 is only 9.25, i.e.
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which is more reasonable practically. According to our observation, this is one of the

leading causes for the discrepancies between the two methods.

This difference can be ascribed to the different modeling concepts of the two models. The

PAVER model contends that a pavement with two type-severity combinations with each

having a deduct-value of 35 is not in as bad a state as a pavement with a deduct-value of

70 for a single type-severity distress (Haas et al. 1994). The final rating is adjusted based

only on the total deduct-value and total number of deducts, without considering the

composition of the distresses. On the other hand, the proposed model argues that raters

base their ratings on the predominant distress. In the example illustrated, the dominating

deduct, 100 dictates the final rating, although every distresses in the sample are

considered. Fortunately, such discrepancies occur more often for very bad road, say PDI

less than 15, and anyway such roads need to be repaired.
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4.7.5 The Interchangeability of the Two Weight-Curves

For the 2000 testing samples, the computed PDI is calculated based on the obtained DV-

Table, as shown in Table 4-2, and the China weight-curve (Table 3-9). The corresponding

computed and user-rated PDIs are plotted and compared in Figure 4-8. The detailed

statistics of the comparison is tabulated in Table 4-4.

Figure 4-8. Performance of the customized deduct-values (China weight-curve, 2000
samples).
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tests show that the Computed PDI and the User-Rated PDI have similar means and

variances at a 99% significance level. In addition, the regression analysis produces a

slope of 0.99 with r2 =0.97, which indicates very good agreement between these two

PDIs.   Since the two weight-curves originated from two independent studies in different

parts of the world, the interchangeability greatly supports that the rating behavior of

pavement engineers are reasonably stable, and therefore can be used as the anchorage for

the simplification of the PDI formulation process.

4.7.6 Impacts of the Default Weight-Curve

The proposed model is formulated based on a default weight-curve, and the error

introduced is absorbed entirely by the deduct-values to be determined, because the PDI is

not supposed to be compromised.  It is the purpose of this section to examine how much

these deduct-values will deviate from that tabulated in the original PAVER DV-Table.

Based on the 2000 training samples, the Broyden algorithm was run to derive the DV-

Tables using the PAVER, and China weight-curve respectively. These two DV-Tables,

together with the original PAVER DV-Table are numbered as DV-Table I, II, and III,

respectively.  The differences between the corresponding deduct-values in DV-Table

I~III, II~III, and I~II, are computed and analyzed. The statistical results are tabulated in

Table 4-5.

As Table 4-5 shows, the deduct-values obtained using the two default weight-curves are

both different from the PAVER deduct-values, which are used to generate the training
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Table 4-5. Analysis of the deviations of the deduct-values.

Items DV-Table I~III DV-Table II~III DV-Table I~II*
Mean 0.13 -0.51 0.64
Standard Deviation 2.71 3.92 1.93
Range, Min./Max. -6/12 -10/15 -6/5
Error >5-points, % 5 14 2
Error >10-points, % 0 2 0
Error >15-points, % 0 0 0
F-Value 1.13 1.16 0.97
t-Value 0.09 0.36 0.46
Sample size 330 330 330
t-test and F-test critical values: 1.96 and 1.20 is used for tc and Fc at a 95%
significance level, respectively.
*DV-Table I is from PAVER Weight-Curve, DV-Table II is from China Weight-Curve, and DV-Table III
is the original PAVER DV-Table, Table 3-2.

samples. When the PAVER weight-curve is used, 5% of the DIDs records a difference of

more than 5-points. This reflects that the combining schemes employed by the proposed

and the PAVER method are not compatible. Although the physical meaning of the

deduct-value for a specific distress in the two methods is both defined as the “deduct”

when a pavement is rated based on this specific distress alone, the deduct-value is not the

same.

If the China weight-curve is used in determining these deduct-values, the maximum

discrepancy may be as high as 15-points. However, the differences are less than 10-points

at 98% of the time. Therefore, adoption of either of the two default weight-curves, the

deduct-values obtained do not deviate very much from those listed in the original

PAVER DV-Table.
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It can also be seen from Table 4-5 that the deduct-values in DV-Table I~II agree very

well between themselves. The maximum difference is only 6-points, and 98% of the

DIDs recorded a difference of less than 5-points. These deduct-values also have a similar

mean and variance at a 95% significance level as suggested by the statistical t-test and F-

test. This result suggests that the two weight-curves are actually interchangeable in

determining deduct-values.

4.8 Conclusions

The second part of the proposed procedure for PDI formulation is described in this

Chapter. The individual deduct-values are successfully obtained using the Broyden

algorithm. As an example application of the proposed procedure, the whole process also

illustrated how the proposed procedure may be used to establish the user DV-Table

through customization.

As an optimization technique, the Broyden algorithm is subject to the influence of many

factors, such as the constraint-handling method, sample size, starting points, and

termination criteria. It is concluded that the unconstrained Broyden algorithm with the

proposed heuristic constraint-handling method is both efficient and effective. Of course,

the practitioners may also elect to employ the penalty method for their applications.

However, it should be realized that it is the responsibility of the practitioners to find the

best sample size and terminating threshold for their particular applications. The

parameters identified in this study were just for illustration purpose. It is important that
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the practitioners apprehend the manner in which the Broyden algorithm should be

implemented, rather than what parameters others had used.
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Chapter 5 Case Studies

5.1 Introduction

In Chapters 3 and 4, the proposed procedure has been completely formulated. It has also

been verified using samples simulated by the PAVER method. In order to show its

applicability for practical data, actual data from the State of Minnesota was used for

validation purposes. The primary objective of this case study is to show how the

proposed procedure can be customized according to the user’s distress definition and

distress data. Steps for application of the proposed procedure include: (1) Define the

distresses according to the user’s needs and preferences; (2) Collect the distress data and

user-rated PDI for a series of sample road segments; (3) Determine the deduct-values for

each defined type-severity-density distress using the Broyden algorithm according to a

training set of the distress samples; and (4) Validate whether the determined deduct-value

can reproduce user-rated PDI when similar pavement conditions occur according to a

testing set of distress samples.

5.2 Case Study for Asphalt Pavements

5.2.1 Definition of the Distresses

There are 11 type-severity distresses that are collected for asphalt pavements in the

Minnesota Department of Transportation (MnDOT). The density for each type-severity

of distress ranges from 0% to 100%. These distresses include high, medium, and low

severity Transverse Cracking, high, medium, and low severity Longitudinal Cracking,
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Multiple Cracking, Alligator Cracking, Rutting (depth>0.5-inch), Weathering and

Raveling, and Patching. Because the “Weathering and Raveling” distress is seldom used

in the MnDOT data collection, only 10 type-severity distresses are considered in this

study. PDI in Minnesota is called Surface Rating (SR), which is represented on a scale of

0 to 4. A sample excerpt of the original distress data is illustrated in Table 5-1. In order to

simplify the derivation process, the density of each type-severity distress is digitized into

6 levels, with each level representing a density range of 0~5%, 5.1~10%, 10.1~20%,

20.1~30%, 30.1~50%, and 50.1~100%, respectively. After the digitization, every type-

severity-density distress will be given a unique DID number. The 10 type-severity

distresses will produce 60 DIDs in total, with each distress having 6 density levels. Table

5-2 shows an excerpt sheet of the coded samples converted from Table 5-1.

4000 samples were obtained from MnDOT and used in this study. These data were

equally separated into two groups. The training group was used to derive the deduct-

value for each DID for the above 10 type-severity distress. The testing group data was

used to check whether the determined deduct-values would reproduce the user-rated PDI.

The cubic weight-curve for the PAVER method as recommended in Chapter 3 was used.

5.2.2 Solution of the Deduct-Values

The heuristic Broyden algorithm was employed to determine the 60 deduct-values. A

sufficient sample size was first identified, according to random starting points from 1 to 4

(SPDI), and the terminating threshold of 0.04 (1% of SPDI). Three sample sizes (1000,
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Table 5-1. Illustration of MnDOT distress survey data for asphalt pavements.

Table 5-2. The Converted MnDOT distress survey data for asphalt pavements.

2000, and 4000) were fed into the Broyden algorithm, and the DV-Tables associated with

each sample size were obtained. The errors between the DV-Tables of 1000 and 2000

samples, and 2000 and 4000 samples were plotted in Figure 5-1.

As shown in Figure 5-1, 1000 samples performed very well in approching the solution

from 2000 samples. The mean and standard deviation of the errors were 0.03, and 0.12,

respectively. However, given some 1000 additional samples, the deduct-values for some

DIDs might change as much as 0.69, or a 17-point equivalent on a 0 to 100 scale. This

Transverse Cracking Longitudinal Cracking Rutting
Low Med  High  Low Med High > 0.5"

14** 24 5 38 0 0 0 0 23 0 2.9
34 20 35 35 0 0 60 0 1 0 2.1
12 2 0 11 0 0 87 0 7 0 2.0
8 6 100 0 60 4 25 0 3 0 2.0

52 0 20 4 0 0 0 0 0 0 3.6
20 0 40 0 0 0 0 0 0 0 3.3
24 0 75 93 0 0 0 0 2 0 2.7
24 20 5 16 11 0 0 0 1 0 3.5

PDI 
(SR)*

Note:Each row is a sample, and each column is a specific distress type-severity; *PDI is called 
Surface Rating (SR) in MnDOT, it is on a scale of 0 to 4; **values are densities in percentage.

Alligator 
Cracking

PatchingMultiple 
Cracking

Transverse Cracking Longitudinal Cracking Rutting
Low Med  High  Low Med High > 0.5"
3* 10 13 23 0 0 0 0 52 0 2.9
5 9 17 23 0 0 42 0 49 0 2.1
3 7 0 21 0 0 42 0 50 0 2.0
2 8 18 0 30 31 40 0 49 0 2.0
6 0 15 19 0 0 0 0 0 0 3.6
3 0 17 0 0 0 0 0 0 0 3.3
4 0 18 24 0 0 0 0 49 0 2.7
4 9 13 21 27 0 0 0 49 0 3.5

PDI      
SR

Multiple 
Cracking

Alligator 
Cracking

Patching

Notes: *each row is a sample, and each value is a distress ID number, ranging from 1 to 60; zero 
shows no such distress appears in a particular sample. 
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Figure 5-1. Selection of the sufficient sample size for asphalt pavements.

result suggested that the solution from 1000 samples was not stable, and therefore, 1000

was not a sufficient sample size. After the sample size was increased to 2000, the mean

and standard deviation of the errors between the two DV-Tables from 2000 and 4000

samples decreased by 88%, and 15%, respectively. This indicated that the solution of

2000 samples approached the solution of 4000 samples better than the solution of 1000

samples did in approaching the solution of 2000 samples. Additional samples beyond

2000 did not help reduce the mean and standard deviation of the error as significantly as

they did beyond 1000 samples. The solution from 2000 samples was more stable.

However, it is difficult to say that 2000 is a sufficient sample size, because the maximum

change between 2000 and 4000 solutions is 0.63, or a 16-point equivalent on a 0 to 100

scale. Due to limited data availability, this study used 2000 as the sample size.
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The 2000 training samples were then used to determine the user DV-Table. Three parallel

runs with different starting points were conducted to explore the possible influence of the

starting points. These included random start I (randomized between 1 to 4) , random start

II (randomized between 1 to 4), and all-zero start.  The converging processes of the three

runs are shown in Figure 5-2. As reported before, different starting points dictate only the

unique converging paths of the Broyden algorithm, but do not affect the final objective

function value. As the converging curve leveled off when the algorithm terminated, the

threshold of 0.04 was a very good choice. The solution from random start I was adopted

and tabulated in Table 5-3.

Repeatability is the only way to gauge the reliability of such a result from practical data.

Between different runs, the reliable results should either reproduce themselves entirely or

Figure 5-2. The converging process of the Broyden method for the MnDOT asphalt
pavement distress data (2000 samples).

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100 120 140 160 180
Number of Iterations

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

, l
og

ar
ith

m

all-zero start
random start I
random start II



106

Table 5-3. MnDOT DV-Table for asphalt pavements (2000 samples, random start).

with an acceptable variation, say 0.2, or a 5-point equivalent on a 0 to 100 scale.

Solutions from the three random starts are compared in Figure 5-3. The comparison

revealed that the results were pretty stable for most of the distresses. However, for some

type-severity distresses, the discrepancy between different results would be as high as

1.1-points, or a 28-point equivalent on a 0~100 scale. This discrepancy indicated that

some of the deduct-values were not reliably determined. These deduct-values included

distresses such as density-level VI, medium and high-severity Longitudinal Cracking,

density-level V and VI of Alligator Cracking, and all density-levels of Patching.

Why are 2000 simulated samples able to determine 330 deduct-values reliably in the

previous chapter, while 2000 real data samples are unable to determine the 60 deduct-

values? This dissimilarity may be explained by the biased nature of the samples used. In

actuality, some very severe distresses, such as high density Alligator Cracking may not

be existent because they will be fixed before they develop to an advanced stage. These

kinds of distresses may never reach the high density-level before they are repaired. The

practical samples are consequently very biased. Correcting these bias may take thousands

of more samples. Because of limited data availability, this research is unable to determine

a sufficient sample size for the MnDOT data.

Density DID1 DID2 DID3 DID4 DID5 DID6 DID7 DID8 DID9 DID10
I 0.05 0.05 0.12 0.07 0.18 0.19 0.45 0.09 0.10 0.28
II 0.06 0.11 0.28 0.12 0.19 0.31 0.61 0.46 0.47 0.28
III 0.08 0.28 0.51 0.17 0.19 0.31 0.93 0.73 0.80 0.43
IV 0.09 0.43 0.76 0.25 0.47 0.64 1.23 1.11 1.04 0.43
V 0.12 0.60 1.01 0.38 0.53 0.64 1.62 1.88 1.16 0.73
VI 0.17 0.76 1.52 0.59 1.17 1.48 2.40 2.37 2.02 0.73
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Figure 5-3. The deduct-values from different starting points (2000 samples).

If all the DVs in Table 5-3 are converted to the 0~100 scale, as shown in Table 5-4, the

deduct-values are significantly different from those in the PAVER DV-Table, Table 3-2,

for similar distresses and density levels. PAVER may therefore not be a good source of

deduct-values for the MnDOT PMS. Some types of distresses, such as the Multiple

Cracking, do not exist in the PAVER system at all, which contributes to the differences in

deduct-values. A highway agency like MnDOT must  formulate the PDI and determine

all the deduct-values on their own if they elect to use the deduct-value method. Although

only 6 discreet points in each weight-curve have been determined by this algorithm, a

more precise or continuous weight-curve for each distress may be determined by repeated

running of the algorithm with the data digitized differently. Well-selected digitization

points may save some efforts.
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Table 5-4. The MnDOT DV-Table on a 0~100 scale for asphalt pavements (2000
samples, random start).

5.2.3 Verification of the Performance of the Deduct-Values

The validity of the deduct-values determined by the 2000 training samples is examined in

this section. Together with the 2000 testing samples, these deduct-values are fed into the

proposed formulation, Equation 3-1, to determine the computed PDIs. The computed PDI

is then compared with the existing user-rated PDIs in the testing group data. Statistical

and regression analyses are used to verify the agreement between computed and user-

rated PDIs. As shown in Figure 5-4, the two PDIs are in very close agreement: the slope

of the regression line is 0.99. The detailed statistics in Table 5-5 indicates that 99% of the

time, the difference between the two PDIs is less than “0.4”, or a 10-point equivalent on a

0~100 scale. The two PDIs also possess similar mean and variance as supported by the t-

test for mean and F-test for variance at a 95% significance level. The analyses show that

individual deduct-values as determined by the 2000 training samples can reliably

reproduce the user-rated PDI.

It is interesting to note, although deduct-values are different as determined by random

start I and the all-zero start, as shown in Figure 5-3, the DV-Table from the all-zero start

Density DID1 DID2 DID3 DID4 DID5 DID6 DID7 DID8 DID9 DID10
I 1 1 3 2 5 5 11 2 3 7
II 2 3 7 3 5 8 15 12 12 7
III 2 7 13 4 5 8 23 18 20 11
IV 2 11 19 6 12 16 31 28 26 11
V 3 15 25 10 13 16 41 47 29 18
VI 4 19 38 15 29 37 60 59 51 18
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Figure 5-4. Verification of the obtained deduct-values for asphalt pavements, random
start results.

Table 5-5. Detailed statistics of the comparison between the derived PDI and user-rated
PDI for the MnDOT data.

Asphalt Pavements Concrete Pavements
Items

random start all-zero start random start all-zero start
Mean 0.02 0.02 0.03 0.04
Standard Deviation 0.10 0.10 0.15 0.16
Range, Min./Max. -1.04/1.18 -0.79/1.48 -1.74/0.35 -1.81/0.46
Error >0.20-point, % 3.45 3.20 6.25 5.90
Error >0.40-point, % 0.45 0.65 2.83 3.07
F-Value 0.96 0.95 1.12 1.16
t-Value 1.21 1.14 2.18 2.50
Sample size 2000 2000 848 848
t-test and F-test critical values: 1.96 and 1.11 is used for tc and Fc at a 95%
significance level, respectively; 2.58 and 1.17 is used at a 99% significance level,
respectively.
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also similarly, if not better, reproduces the user-rated PDI for the same 2000 training

samples.  The detailed statistics are tabulated in Table 5-5 and the corresponding PDIs

are plotted in Figure 5-5. This result can also be explained to the biased nature of the data

used. Some deduct-values, although differently determined did not create any

discrepancies in PDI, because they might have never participated in the PDI calculation

process. Therefore, caution should be exercised when assessing and accepting the deduct-

values from real data, especially those for very severe types of distress, such as Alligator

Cracking.

5.3 Case Study for Concrete Pavements

5.3.1 Definition of Distresses

There are 9 type-severity distresses that are collected for concrete pavements in MnDOT.

Figure 5-5. Verification of the obtained deduct-values for asphalt pavements, all-zero
start result.
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These distresses include slight and severe Spalling, Faulted Joints, Cracked Panels,

Broken Panels, Faulted Panels, Overlaid Panels, Patches (>5 sq. ft.), and the D-cracking.

A sample excerpt of the original distress data is illustrated in Table 5-6. PDI for concrete

pavements is defined similarly on a 0~4 scale to that for the asphalt pavements. The

density for each type-severity of distress ranges from 0% to 100%. In order to simplify

the derivation process, the density of each type-severity distress is digitized into 6 levels,

with each level representing a density range of 0~5%, 5.1~10%, 10.1~20%, 20.1~30%,

30.1~50%, and 50.1~100%, respectively. After digitization, each specific type-severity-

density state is represented by a DID number. The 9 type-severity distresses produce 54

DIDs in total because each type-severity distress has 6 density levels. Table 5-7 shows an

excerpt sheet of the coded samples as converted from Table 5-6.

1,848 samples are obtained from MnDOT and used in this study. These data are separated

first into training and testing two groups. The training group contains 1000 samples. The

remaining 848 samples are used as the testing group. The cubic weight-curve for the

PAVER method, as recommended in Chapter 3, is used.

Table 5-6. Illustration of MnDOT distress survey data for concrete pavements.

Patches

> 5 sq.ft.
19** 0 0 14 3 0 0 0 0 3.4
16 42 0 0 1 0 0 0 0 2.4
48 10 0 0 1 0 0 0 0 3.8
24 0 24 100 6 0 0 0 0 2.3
17 0 0 0 0 0 0 0 0 3.7
0 3 3 3 0 0 0 0 0 3.8
0 0 0 5 0 0 0 0 0 3.9
0 0 0 0 0 0 0 0 0 4.0

Note:Each row is a sample, and each column is a specific distress type-severity; *PDI is called Surface 
Rating (SR) in MnDOT, it is on a scale of 0 to 4; **values are densities in percentage.
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Table 5-7. The converted MnDOT distress survey data for concrete pavements.

5.3.2 Solution of the Deduct-Values

The heuristic Broyden algorithm is employed to determine the 54 deduct-values using the

1000 training samples. As evidenced by the performance of 1000 samples of asphalt

pavements, 1000 was assumed to be a sufficient sample size. No detailed study was

conducted to identify the “true” sufficient sample size. Three parallel runs with different

starting points were conducted to investigate the influence of the starting points. These

may include the all-zero start, and the random start I and II (randomized from 1 to 4).

These three parallel runs may also help identify the reliability of the obtained DV-Table.

The converging processes for different runs are shown in Figure 5-6. The determined

deduct-values from random start I are tabulated in Table 5-8.

As shown in Figure 5-6, different starting points converge to almost the same terminal

objective function. However, this convergence does not mean that the DV-Table

determined by each run is the same. On the contrary, the three DV-Tables are composed

of very different deduct-values for some types of distress, such as Broken Panels, Faulted

Panels, Overlaid Panels, Patches, and D-Cracking. Refer to Figure 5-7. From different

Patches

> 5 sq.ft.
3* 0 0 21 25 0 0 0 0 3.4
3 11 0 0 25 0 0 0 0 2.4
5 8 0 0 25 0 0 0 0 3.8
4 0 16 24 26 0 0 0 0 2.3
3 0 0 0 0 0 0 0 0 3.7
0 7 13 19 0 0 0 0 0 3.8
0 0 0 19 0 0 0 0 0 3.9
0 0 0 0 0 0 0 0 0 4.0

Notes: *each row is a sample, and each value is a distress ID number, ranging from 1 to 60; zero shows no 
such distress appears in a particular sample.
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Figure 5-6. The converging process for the Broyden algorithm (1000 samples).

Table 5-8. MnDOT DV-Table for concrete pavements (1000 samples).

runs, the deduct-value for some types of distress may change from 0.0 to 4.0. This

variation indicates that the solution for some types of distress using the 1000 samples is

very unreliable. Indeed, according to our observation, some deduct-values in Table 5-8

have never changed during the running process. This phenomenon suggests that some

deduct-values may have never been calibrated, and therefore the information contained in

the 1000 samples appears to be biased and insufficient for the determination of all the

deduct-values.
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Density DID1 DID2 DID3 DID4 DID5 DID6 DID7 DID8 DID9
I 0.16 0.39 0.22 0.08 0.33 0.00 0.07 0.24 0.30
II 0.29 0.63 0.41 0.10 0.45 0.20 0.08 0.59 0.51
III 0.45 0.93 0.62 0.25 0.57 4 0.11 0.95 0.52
IV 0.69 1.42 0.86 0.41 0.67 4 0.21 1.04 1.54
V 0.89 1.62 1.30 0.68 0.68 4 0.53 3 1.74
VI 1.59 2.61 1.67 1.13 3* 4 3 3 2.00
*: values shown in shadow and bold faces are observed to be never calibrated. 
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Figure 5-7. Comparison of the DV-Table for concrete pavements from different runs
using different starting points (1000 samples).

5.3.3 Verification of the Performance of the Deduct-Values

Together with the testing group data, the determined deduct-values are fed into Equation

3-1 to compute PDIs. The computed PDI is then checked against the existing user-rated

PDIs in the 848 testing samples. Interestingly, results from both the random start I and

all-zero start produce close agreement between the computed and user-rated PDIs. As it is

shown in Figure 5-8, and Table 5-5, the DV-Table from random start I produces a close

regression relationship with the user-rated PDI (the slope is 0.84). About 97% of the

errors are less than 0.40, or a 10-point equivalent on a 0-100 scale. According to the

statistical t-test for mean and F-test for variance, the two PDIs have a similar mean and

variance at a 95% significance level. As also shown by Figure 5-9 and Table 5-5, the DV-

Table from the all-zero start produces almost the same level of agreement between the

two PDIs. According to these 848 testing samples, there is no doubt that individual
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Figure 5-8. Verification of the obtained deduct-values for concrete pavements (848
samples, random start).

Figure 5-9. Verification of the obtained deduct-values for concrete pavements (848
samples, all-zero start).
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deduct-values as determined using the 1000 training samples can reliably reproduce the

user-rated PDI.

Because a different DV-Table produced almost the same level of agreement, some

deduct-values must have never participated in the PDI calculation process. In other

words, some types of distress may have neither appeared in the training samples, nor in

the testing samples. One should, therefore, examine the data range before giving credit to

the determined deduct-values. As the proposed method is essentially regression-based, it

is the practitioner’s responsibility to feed sufficient and unbiased data into the algorithm.

Abnormal signals from the converging process and the final output should be carefully

observed, in order to ascertain the reliability of the solutions.

5.4 Conclusions

A real application of the proposed procedure using actual data from MnDOT was

illustrated in this Chapter. Distress definitions from MnDOT and data from direct distress

survey were used to customize the proposed procedure. The Broyden algorithm

successfully extracted deduct-values for all the defined distresses. Using the customized

DV-Table, together with the testing set of data, the user-rated PDI can be reproduced

with reasonable accuracy. The computed PDI and the User-Rated PDI have a similar

mean and variance at the 95% significance level. Over 97% of the absolute difference

between the two PDIs is less than 0.40, or a 5-point equivalent on a 0~100 scale. The
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same process was also found to be applicable for other facilities such as concrete

pavements.

This application verified the validity and applicability of the proposed procedure: PDI

may be formulated by fixing the relatively stable weight-curve and customizing the

individual deduct-values only. However, as real distress survey data is very biased in

nature, caution should be exercised in adopting the deduct-values for some very severe

type of distresses, such as Alligator Cracking. Unbiased data should be entered into the

algorithm in order to obtain a reliable deduct-value for every type of distress.
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Chapter 6 Summary

6.1 Recapitulation

PDI is one of the most important indexes common to almost all PMS. By nature, it is a

subjective characterization of pavement conditions based on objective measurements of

individual distresses. At the initial stage of its development and implementation of PMS,

every agency has to formulate its own PDI in order to ensure the system’s

responsiveness.

Almost all of the existing PDI formulation procedures are faced with a dilemma. On the

one hand, PDI formulation has to allow for the free choice of distress definitions; on the

other hand, the costly formulation process just produces a definition-specific model. The

fact that distress definitions may change even within an agency aggravates the situation.

This dissertation established and assessed a customizable procedure based on human

rating behavior, or the relationship between the individual deduct-values and their

corresponding weight. The method developed herein enables the easy procurement of

deduct-values based on user-specific distress definitions by eliminating the iterative PDI

formulation process common to most of the previous studies such as PAVER and Sun

and Yao (1991).

This study proposed a generic PDI formulation as the maximum PDI value in a user-

defined scale minus the Total Deduct-Value (TDV), which is the sum of the product of
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each individual deduct-value and its corresponding weight. The weight is defined as a

function of DV-percentage, i.e. individual deduct-value over TDV. Because it is

extremely difficult to obtain this function using field data, the function is obtained by

approaching the existing studies based on a least squared optimization setup. The weights

are identified when the squared sum of the difference between the user-rated PDI and

computed PDI for a series of samples is minimized. The simplest and yet effective weight

function, called weight-curve, is found to be a 3rd degree polynomial. Because the

weight-curves extracted from the two independent studies, PAVER and Sun and Yao

(1991) are very similar in function form, the extreme difference in PDI caused by

interchanging the curves in the proposed formulation is less than 9-points on a 0~100

scale. One can conclude that the weight-curve itself is portable and may be used as the

basis for PDI formulating PDI.

By fixing the weight-curve initially, the customization of deduct-values is accomplished

by a non-linear programming technique, the Broyden algorithm. Deduct-values for user-

defined distresses are determined when the summed squared difference between the

computed PDI and the user-rated PDI for a series of samples is minimized. The weight-

curve can be recalculated by the same optimization setup using the newly determined

deduct-values when one deems it to be absolutely necessary. A software package was

developed in Visual Basic 5.0 to fully automate the customization process.

As a case study, the proposed customizable procedure was implemented to formulate a

PDI using direct distress survey data from MnDOT. Deduct-values were successfully
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identified for each distress as defined by MnDOT for both asphalt and concrete

pavements. It was determined that these deduct-values are capable of reliably

reproducing the user-rated PDIs when similar pavement conditions occur. The 3rd degree

polynomial weight-curve from the PAVER method is applicable for both asphalt and

concrete pavements.

6.2 Contributions

The proposed methodology can facilitate the formulation of the PDI for agencies that are

implementing a PMS. First, this procedure is based on reasonably stable human rating

behavior. This feature enables the proposed procedure to be easily customized to

different distress definitions because the painstaking iterative process common to most

conventional procedures is eliminated.

Second, the proposed formulation is superior to that of the existing methods. There is a

clear physical meaning for each part of this formulation. This formulation is also

mathematically friendly, which enables easy identification of both the weight-curve and

deduct-values. By comparison, verifying the stability of the correction curves for the

PAVER method would be extremely difficult. Deriving the deduct-values based on the

step-wise formulation in the China method is also very difficult. In addition, the

modeling concept of the proposed procedure proves to be better suited for rating bad

pavements than the concept embedded in PAVER. The proposed procedure models every

component in a sample, beyond just the total deduct-value.
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Third, the proposed procedure allows the direct use of samples with mixed distresses

from the distress survey in the formulation process, while it produces deduct-values with

the same physical meaning as those in PAVER. This capability, though adopted from the

previous studies, is significant, because it relieves the workload of field data collection

during PDI formulation.

In addition, the proposed procedure encourages the adoption of a default weight-curve,

which is far more meaningful than adopting an entire default model. It eliminates the

possible incompatibility problem inherent to adopting default models, and ensures the

maximum responsiveness of a PDI with the least amount of effort from the agency. More

importantly, the proposed procedure enables an agency to adapt actively to its own needs.

For example, this procedure makes it easier for an agency to update its DV-Table in

response to the introduction of a new data collection method, equipment, or a new

maintenance standard.

6.3 Limitations

Theoretically, both weight-curve, and deduct-values are unique to each agency. Adoption

of a default weight-curve can definitely introduce discrepancies. In the proposed

procedure, such discrepancies are borne entirely by the determined deduct-values, so that

the integrity of PDI is not compromised. As a result, the values of these deduct-values

may deviate from those in PAVER by as much as 15-points on a 0 to 100 scale. It should
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be noted that actual pavement performance curves should be used as additional

constraints to identify these deduct-values, if they are also employed for the development

of individual distress indexes.
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 Appendix User’s Guide to the Visual Basic Programs

1. Introduction

This appendix is the user’s guide to the non-linear programming algorithms developed in

this study for the determination of both weight-curve and individual deduct-values. All

codes are written in Visual Basic Professional Edition 5.0 (VB5.0). There are three major

functions in the developed programs. The first one is the determination of the shape of

weight-curve based on given sample files. The next function is the determination of the

continuous weight-curve by regression analysis. And the third function is the derivation

of deduct-values for individual distress based on a given initial DV-Table, and sample

data files. According to the three functions, the graphic user interface is separated into 6

frames, namely the INPUT MODULE FRAME, CALCULATION MODULE FRAME,

WEIGHT-CURVE FRAME, WEIGHT-CURVE DISCREET POINTS FRAME,

DEDUCT-VALUE TABLE AS DETERMINED FRAME, and the FRAME for the

display of objective function value. The user-interface is shown in Figure A-1. The

following is a frame by frame description of the program.

2. THE WEIGHT-CURVE FRAME

The main function of this frame is to display the initial and possible later-on update of the

coefficients for the weight-curve, according to the user-specified degree of the weight-

curves. The existing coefficients, as shown in Figure A-1, “3.27”, “-5.96”, and “3.65” is
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the default value of the proposed model. The later-on updates may come from multi-

linear regression analyses, which are activated by the WEIGHT-CURVE button in the

CALCULATION MODULE FRAME. The credibility of the regression analysis is

indicated using the two text-boxes, R-SQUARED VALUE, and F-STATISTICS. The

sample data file name is specified by the SAMPLE FILE NAME text-box in the INPUT

MODULE FRAME. Users may specify the degree of the polynomials through the

DEGREE OF POLYNOMIAL combo-box. The maximum degree of the polynomial is

set as seven (7). The minimum degree of the polynomial is set as three (3). The

corresponding text-boxes will appear/disappear according the specified degree of

polynomial.

3. DEDUCT-VALUE TABLE AS DETERMINED

DEDUCT-VALUE TABLE AS DETERMINED is a DBGRID in VB5.0, which bounds

with an ACCESS database table. It is also called the DV-Table. Each row of this

DBGRID displays the Distress IDentification (DID) number, while each column displays

the discreet density level for a specific type of distress. Each number displayed is the

corresponding deduct-value for that specific type-severity-density state of distress. For

example, the value of “98” at the up-left corner of the DBGRID is the deduct-value as

determined for DID number “1”, and the first density level. The value of “93” at the

lower-right corner of the DBGRID is the deduct-value for DID number “6”, and density

level “6”.
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Figure A-1. The Graphical user interface of the program.
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This DBGRID provides the initial input to start the Broyden algorithm. It also stores the

final output of the program. Before the user start to compute individual deduct-values,

this DBGRID should be initialized. Several schemes are available for the initialization

process. The first scheme is to use the default PAVER DV-Table, which is activated by

the PAVER DV-Table button in the INPUT MODULE FRAME. Another scheme is to

initialize the DBGRID randomly, using a pair of user-specified random numbers. The

random number is intended to be between “0” to “100”. However, the user may ignore

this limitation, because even a negative number will also work. The DBGRID also allows

manual editing, which may be considered as an additional scheme in initializing the

DBGRID.

When the program terminates, the DBGRID will be updated. This is the final result of the

deduct-values as determined. A backup text-file will be generated at the same time. The

file name is dependent on the calculation algorithms employed. For example,

“BROYDEN.txt” will be generated when the button BROYDEN has been pressed for the

computation purpose. A file named “HK.txt” will be created when the Hooke and Jeeves

algorithm is chosen.

4. THE OBJECTIVE FUNCTION VALUE FRAME

Objective function value is defined as the squared sum of the difference between the

given PDI in the sample file and that calculated using the proposed model based on the

current DV-Table and weight-curve. This value will update each time when the program



133

terminates. It may act as an indicator on how well the current DV-Table is performing.

For example, if the value for the objective function is “16,000” for “1,000” samples, then

the average difference between the two PDIs is =000,1000,16 4-points, assuming the

difference is equal for each sample. This is the primary indicator for the user to judge the

performance of the algorithms and the determined DV-Table.

5. THE INPUT MODULE FRAME

THE INPUT MODULE FRAME includes two frames. The first one encompasses 5 text-

boxes. The SAMPLE FILE NAME text-box stores the user-input file name. The file

should be in ASCII text file format, with either fixed width for each field, or comma

delimitation. The PDI SCALE box indicates the scale the user prefers for its PDI. A value

of “4.0” implies a PDI-range of 0.0~4.0 (4.0 for the best pavements). In addition, this

value also dictates the final range of the deduct-values, i.e. the contents in the DBGRID

when the program terminates. The user should pay attention not to use a random range

beyond the PDI scale to initialize the DV-Table. Otherwise, this will cause unnecessary

computation load to the program without producing any better results as verified by this

study. # OF TYPESEVERITY text-box stores the maximum number of distress DID, that

is considered by the user. Similarly, # OF DENSITY text-box indicates the maximum

number of density the user wish to discretize. It is suggested that the user use 6 density

levels as defined in the algorithms. A larger value will cause unnecessarily slow-down of

the program. PRECISION text-box is used to stipulate the precision level intended for a

run of the program. The precision refers to the precision of the model of the gradients.
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However, for the Hooke-Jeeves direct search method, it indicates the distance between

the final two sought points (step length).

The INITIALIZATION MODULE is the second frame in the INPUT MODULE

FRAME. It consists of 6 command buttons, and 4 text-boxes. The two RANDOM

NUMBER BETWEEN text-boxes accept user-input about the range within which the

DV-Table will be randomly initialized. Note this number should not be larger than the

specified PDI scale as cautioned above. The PERTURB DV-Table button is used to

perturb the deduct-values in the DV-Table. The amount of this perturbation is determined

by the value of the corresponding text-box beside it. The perturbation process will add a

random value between 1 and the value in the text-box to all the deduct-values in the DV-

Table. This process is found to be effective in re-initializing the algorithm, when it is

stuck (the objective function value stops to drop significantly).  The NUMBER OF

ITERATION text-box has a default value of “1”. However, the maximum number of

iterations is not “1”, and it is not used as the terminating criteria for this program. Instead,

this program employed the minimum change in the objective function value between two

consecutive iterations. The minimum change is set as 0.011 in our experiment, and may

be adjusted based on sample size, and stage of the progress of the program.

RANDOM DV-Table button activates the process of the random initialization of the DV-

Table. DENSITY SORTING and SEVERITY SORTING buttons will sort the existing

DV-Table according to the density and severity levels of the distress, respectively. The

underlying concept is that a higher density and/or severity distress should have higher
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deduct-values. DENSITY SORTING is found to be extremely beneficial in speeding up

the converging process. PAVER DV-Table buttons, once pressed, will initialize the DV-

Table using the default PAVER DV-Table.

6. THE CALCULATION MODULE FRAME

This frame undertakes the computation function of the program. HOOKE AND JEEVES

button will activate the Hooke and Jeeves direct search algorithm once pressed. The

current DV-Table in the DBGRID, the RHO VALUE, PRECISION, and NUMBER OF

ITERATIONS text boxes will provide input for this algorithm.

RHO VALUE is the parameter for algorithm convergence control. It is a multiplier for

the search step in the direct search algorithm, and is between 0 and 1. A default value of

0.5 is found to be quite robust. Smaller values of RHO correspond to bigger step-size

changes, which make the algorithm run more quickly. However, there is a chance

(especially with highly nonlinear functions) that these big changes will accidentally

overlook a promising search vector, leading to nonconvergence. On the other hand, larger

values of RHO correspond to smaller step-size changes, which force the algorithm to

carefully examine nearby points instead of optimistically forging ahead. This improves

the probability of convergence. The step-size is reduced until it is equal to (or smaller

than) PRECISION. The number of iterations performed by Hooke-Jeeves is determined

by RHO and PRECISION: RHO(number_of_iterations) = PRECISION. However, in this

program, the minimum change, say 0.01, in the objective function is used to determine



136

whether the search will continue. As the converging process for the direct search method

is very much slower than the Broyden method, it is suggested that the Broyden method be

applied first. The BROYDEN button will activate the BROYDEN variable metric

optimization algorithm. The initial DV-Table, PRECISION, and NUMBER OF

ITERATIONS are its essential inputs.

WEIGHT-CURVE button starts the regression analysis for a new weight-curve. The

sample file, and the existing current DV-Table will be used as input. The regression

coefficients will be displayed in the COEFFICIENT text boxes. The value of the

DEGREE OF POLYNOMIAL combo box will determine the independent variable

number in the regression analysis. The value of B0ENFORCE combo-box indicates

whether the intercept will be enforced to zero. Because each weight-curve is enforced to

cross the origin, so most of the time, it is advisable to give a TRUE value for the

B0ENFORCE combo box.

QUIT button will cause the program to terminate. However, “Ctrl+Break” is needed to

cause termination while the program is still running.

7. THE WEIGHT-CURVE DISCREET POINTS FRAME

The primary function of this frame is to determine the discreet points on a weight-curve

using optimizing algorithms. There are four command-buttons and one DBGRID in this

frame. The WEIGHT-CURVE BROYDEN button is actually not activated, because the
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derivative for this objective function is non-existent. The main calculation function is

performed by the HOOKE_WC button. Once pressed, this button will accept input from

the user-specified sample file in the SAMPLE FILE NAME text-box, and initialize the

program using values in the DBGRID, and start to compute. This search will terminate

until the minimum change for the objective function value between any two consecutive

searches drops below “0.01”. The RANDOMIZE button will randomize the DBGRID

using random values between “0.0” and “1.0”, inclusive. The SORT ASCENDINGLY

button will sort the existing values in the DBGRID ascendingly. This is to ensure some

better form of initial values for the search algorithm. There are two columns in the

DBGRID. The first column is the DV-percentage in integer format, and the second

column is the initial and also the final mapped weight. For example, the value “1”,

“0.706” in the first row means a DV-percentage of 1% will correspond to a weight of

“0.706”. The shape of the weight-curve is determined by these discreet points using

curve-fitting algorithms.
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