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Abstract 

 

Fe3Al is an intermetallic compound which has shown some excellent engineering 

properties and has been widely studied for this reason. It also shows interesting 

mechanical phenomenon like yield stress anomaly and pseudoelasticity. Mechanical 

behavior and diffraction studies on the pseudoelastic aspect of Fe3Al have been presented 

in this work. 

Single crystalline, D03 ordered Fe3Al is known to show pseudoelastic behavior at 

room temperature. Pseudoelastic behavior was seen in both tension and compression with 

a distinct tension-compression asymmetry. No strain hardening occurred under tension 

even at high applied strains as opposed to compression, where the alloy strain hardened 

continuously. In-situ observations on the surface revealed reversible features indicating 

activity on the (211) planes.  

The tensile stress-strain curve shows notable changes with varying temperature. 

At very low temperatures (~100 K) shape memory effect is seen for small amounts (~3% 

in compression) of applied strain. At high temperatures (~393 K) pseudoelasticity is lost 

and plasticity commences. Between these two extremes, the reverse stress (stress during 

strain recovery) follows the Clausius-Clayperon type relationship with temperature but 

the forward stress remains unchanged.  

In-situ Neutron Diffraction experiments in both tension and compression show 

large reversible changes in the diffraction pattern upon loading. Intensities and position 

of various peaks changed reversibly by large amounts during the load-unload cycle. All 

changes in the diffraction pattern revert back close to the original pattern upon unloading. 



 v

These changes are closely correlated to the load-unload stress-strain curve. These large 

changes in the diffraction pattern point towards major structural changes inside the 

crystal and cannot be explained by elastic effects alone.  

Closer inspection revealed the appearance of new peaks and satellite reflections 

on loading, which disappeared upon unloading. Diffraction experiments point towards a 

phase transformation which might be responsible for the pseudoelastic behavior in Fe3Al.   
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CChhaapptteerr  ##  11  
 
 

Mechanical Properties of Ordered Alloys: 
Pseudoelasticity in Fe3Al 

 
 
 

1.1   Ordered intermetallics 
 
 

Intermetallics alloys are chemical compounds between two or more metals. 

Intermetallics are unique in the sense that the structure and properties displayed by them 

could be quite different from those of its constituents [1-3]. Therefore, even though we 

begin with simple metals we end up with properties which are quite different and in some 

respects more desirable than those of either of the constituent metals.  

Intermetallics show mixed bonding comprising of metallic and ionic/covalent 

character and a strong internal order, which can be long range or short range in nature. 

The presence of order introduces many structural features like superpartial dislocations, 

anti phase boundaries (APB), anti domain boundaries (APD) etc. All these factors greatly 

affect the macroscopic physical properties, including mechanical, magnetic, and 

electrical. 

Intermetallics have been studied extensively for structural applications. They 

promise a compromise between ceramic (strength) and metallic (ductility) properties. 

Intermetallics are specially suited for high temperature applications because they are 
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much better at retaining strength at high temperatures as compared to other alloys. Some 

intermetallics have been successfully used for high temperature structural applications 

(e.g. Ni3Al [4] ). 

The study of intermetallics has also aided the development of novel material like 

shape memory alloys (SMA)[5]. Other intermetallics display good magnetic properties 

[6] and superconductivity [7]. 

While intermetallics are of immense engineering interest, they are interesting 

systems also from a scientific point of view. With respect to the mechanical properties it 

is scientifically interesting to understand how the ordering-related aspects (e.g. 

superpartials, APBs, APDs) of these alloys influence the deformation mechanisms and 

thus the macroscopic behavior. Knowledge of these mechanisms also enables engineers 

to design alloys with improved macroscopic properties.  

In this work some specific aspects of the mechanical properties of D03-ordered 

Fe3Al namely its pseudoelasticity has been studied. 

 

1.2   Properties of ordered alloys  
 

In alloys it is sometimes thermodynamically favorable for compounds to form at 

or near definite atomic ratios (e.g. AB, A3B) below some critical temperature [2]. These 

are the intermetallic phases. Shown in figure 1.1 are four widely studied ordered lattices. 

Table 1.1 lists some common alloys in which these phases are known to occur [8].  
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Figure 1.1 Crystal structures of  (a) B2 (b) L12 (c) D019 (d) D03 [8] ordered alloys. 
 
 
Table 1.1 Examples of some intermetallic alloys which crystallize in the crystal structure shown 
in Figure 1.1 [8]. 
 

Structure Type Examples 

B2 CuZn, FeCo, NiAl, CoAl, FeAl, AgMg 

L12 Cu3Au, Au3Cu, Ni3Mn, Ni3Fe, Ni3Al, Pt3Fe 

D019 Mg3Cd, Cd3Mg, Ti3Al, Ni3Sn 

D03 Fe3Al,  Fe3Si, Fe3Be, Cu3Al 

L10 AuCu, CoPt, FePt, FePd 
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The complex lattices can be viewed as a combination of interpenetrating simpler 

lattices. For example the B2 lattice can be seen as two interpenetrating simple cubic 

lattices. Similarly, D03 can be seen as two interpenetrating FCC lattices. 

 

1.2.1 Long range and short range order 
 

In an ordered alloy, each type of atom can occupy to certain fixed sites in the 

crystal lattice throughout the alloy. This is known as long range order. For perfect long 

range order, each atom sits at its designated position in accordance with the crystal 

structure. The long range order parameter for a binary A-B alloy [9] is defined as  

 

                                                                      (1-1) 

 

where p is the probability that an A atom site is filled by an A atom and r is the fraction of 

the total sites that are occupied by A atoms for perfect order. This parameter can vary 

from 0 to 1, 0 for perfectly disordered alloy and 1 for perfectly ordered alloy.  

The order parameter changes with the temperature, heat treatment and 

composition of the alloy. On heating, the order changes from 1 to 0 as the temperature 

approaches the order-disorder temperature, Tc. This can happen slowly or suddenly as 

shown for B2 (β brass) and L12 (Cu3Au) structures in Figure 1.2 

 

r
rpS

−
−

=
1
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Figure 1.2 Variation of long range order with temperature in β brass (B2) and  Cu3Au (L12) [8]. 

 

Above Tc considerable amount of short range order is found. This means that the 

probability of finding unlike atoms sitting near each other is more than that predicted by a 

completely random distribution of atoms on lattice sites. In most cases specimens 

quenched from above Tc also retain short range order.  

 

1.2.2 Superpartial dislocations and anti phase boundary (APB) 
 

 The structure of an ordered alloy has a lower symmetry than its disordered 

counterpart. The lattice of an ordered structure is known as a superlattice, where ‘super’ 

signifies only the fact that certain types of atoms occupy certain lattice sites. As a 
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consequence of the lower symmetry, extra reflections appear in the diffraction pattern 

known as “superlattice reflections”.   

Partial dislocations and anti phase boundaries (APB) will be described in detail 

later in this chapter but needs to be brief mention is warranted at this point. When a full 

dislocation passes on a certain plane in either an ordered or a disordered structure, the 

lattice is restored after the dislocation has passed. Consider the case of a partial 

dislocation moving in an ordered lattice (or superlattice). Upon passage of the partial 

dislocation the order is disrupted in the plane on which the dislocation has passed. This 

means that the arrangement (in terms of order only) of atoms on either side of the partial 

dislocation is not the same. These dislocations are now known as superpartial 

dislocations.  

Note that upon the passage of a partial in a disordered lattice or a single element 

lattice the atomic arrangement would be the same on either side of the partial dislocation. 

The formation of a stacking fault can occur upon the passage of partials in a disordered 

lattice but this will not be discussed here. 

In an ordered alloy full dislocations dissociate into superpartial dislocations. The 

region between the superpartials where the order is disrupted as compared to the rest of 

the lattice is known as an anti phase boundary (APB) region. The separation of the 

superpartials or the width of the APB is determined by the APB energy.  

      

  



 7

1.2.3 Anti phase domains (APD)    
 
 

Ordering occurs both by nucleation and growth, and homogenously, in different 

alloys upon lowering of the temperature. For example, in a B2 lattice, ordering is 

generally homogenous but a nucleation and growth type mechanism is seen in most L12 

lattice. In a nucleation and growth model, highly ordered regions nucleate within the 

disordered matrix upon lowering of the temperature below Tc which grow until they 

contact each other. Homogenous ordering occurs by an increase in the number of unlike 

bonds throughout the matrix with decreasing temperature. For a given system, one of the 

above models is dominant but they do posses some characteristics of each other. For 

example, ordering occurs homogeneously in Fe3Al upon continuous cooling but by 

nucleation and growth isothermally.  

The small ordered regions which nucleate at different sites grow into ordered 

domains. These domains meet each other at planes where the order is disrupted. These 

planes are similar to APBs and are often referred to as APBs. The ordered domains are 

known as anti phase domains (APD) or simply domains. Figure 1.3 shows some 

examples of these domains as observed in a transmission electron microscope (TEM). 

 

1.3  Engineering importance of Fe3Al  
 
 

Interest in iron aluminides as structural materials started in the 1930s when many 

of its excellent properties were recognized [10, 11]. The main reasons driving the study  



 8

 

 

(a) 

 

(b) 

 

(c) 

Figure 1.3 Anti phase domains observed in a TEM in (a) Fe3Al (D03)  [8] (b) Cu3Au (L12) [12] (c) 
Mg3Cd (D019) [13]. 
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of iron aluminides for structural applications were the abundance and low cost of its two 

ingredients, iron and aluminum. As can be seen in the phase diagram (Figure 1.4) iron 

aluminides form a number of intermetallic phases, among which Fe3Al and FeAl are the 

most interesting because of their high strength at elevated temperatures [14, 15].   

Other than low material cost, iron aluminides have excellent corrosion resistance, 

low density (and thus good strength to weight ratio) and help conserve key strategic 

elements such as Cr, Ni, Mo etc.. Disadvantages of iron aluminides include low ductility 

at room temperature and loss in strength at elevated temperature [15-17]. Reference [18] 

lists some of the applications for which iron aluminides have been considered. Notable 

among these are jet engine compressor blades and housings, heating elements, furnace 

fixtures and heat exchangers.   

In this study we are particularly interested in Fe3Al based iron aluminides. Fe3Al 

has been considered as an alternative to stainless steel for many applications. They are 

suitable for applications involving high temperature and sulphidizing and/or oxidizing 

environments, e.g. resistance heating elements and porous gas metal filters.      

In the many extensive studies of Fe3Al that have been undertaken by major 

research organizations (reviewed in [15]), the main impetus has been to improve 

mechanical properties through control of microstructure and composition [19, 20]. 

Several long-term programs on Fe3Al were carried out at  
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Figure 1.4 Iron-aluminum phase diagram [21]. 
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Naval Ordinance Laboratory [18, 22-24], Ford Motor Company [25-27], Iowa State 

University [28-34], Pratt and Whitney [35], TRW [36], and Oak Ridge National 

Laboratory [19, 37-41]. These programs led to extensive characterization of Fe3Al based 

alloys.       

Although, a majority of these studies were aimed at improving room-temperature 

ductility, high-temperature strength and corrosion resistance, a number of studies, 

particularly references [27-32, 34, 42-45],  were focused on deformation mechanisms and 

the study of dislocation motion, formation of anti phase boundaries (APB) and anti phase 

domains (APD).  

These led to the discovery of some interesting properties in Fe3Al like yield stress 

anomaly [46-50] and pseudoelasticity [51-54]. Although these properties cannot be 

exploited in engineering applications at this stage, they are very interesting from a 

scientific point of view.  

The major part of this study is focused on the pseudoelastic effect displayed by 

Fe3Al under certain conditions. As compared to other pseudoelastic materials, 

pseudoelasticity in Fe3Al is unique in many respects as discussed in a later section.  

 

1.4  Pseudoelasticity in Fe3Al  
 

Pseudoelasticity or superelasticty as it is sometimes called can be best described 

through Figure 1.5 which shows a typical stress strain curve of a pseudoelastic material. 

Most metals and alloys show an elastic-plastic behavior [55, 56] upon the application of  
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Figure 1.5 Schematic stress-strain curve of a typical pseudoelastic material. 
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stress, where the elastic part is the recoverable part of the applied strain and the plastic 

part is the non-recoverable part upon unloading. The elastic part in most crystalline 

metals is linear corresponding to the stretching of metallic bonds and generally accounts 

for a small portion of the total elongation (0.1-0.5%). The plastic part may be linear or 

non linear and is the result of dislocation movement (slip), twinning, or phase 

transformations.    

In a pseudoelastic material, both the linear-elastic strain and non-elastic strain can 

be recovered upon unloading. The linear elastic portion is fully recovered but the non-

elastic portion may be fully or partially recovered. In this text, the part of the stress-strain 

curve beyond the elastic limit (   ) will be referred to as non-elastic, pseudoelastic or 

plastic whichever is appropriate. The terms pseudoelastic and plastic will be used when 

this part of the strain is recoverable and non-recoverable respectively. This phenomenon 

is commonly found in many shape memory materials and is well understood and 

documented [57] in those materials.  The strain recovery generally occurs at a lower 

stress (   ) than the forward non-elastic deformation stress (    ). Depending on the 

material and testing condition, either part or all of the applied non-elastic strain may be 

recovered. The area under the hysterisis loop represents the amount of energy dissipated 

during one load-unload cycle.  

In most alloys that exhibit pseudoelastic behavior e.g. NiTi [58, 59] and CuAlNi 

[60] a martensitic phase transformation is responsible for the effect [57]. Upon loading, 

the parent phase undergoes a stress-induced transformation to a martensitic phase. 

 
 

Τ
rσ Τ

fσ

T
fε
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Only certain twin variants of the martensite grow, that are favorably oriented with respect 

to the loading direction. Upon unloading the unstable martensitic phase transforms back 

to the parent phase thus releasing the applied strain. Martensite formation in these alloys 

has been confirmed using many experimental techniques including visual observation of 

twin variants, various diffraction techniques (X-rays [61], neutrons [62], electrons [63]), 

differential scanning caloriemetry [64], resistivity measurements [65], volume change 

etc. In addition, the martensitic phase transformation is characterized by a clicking noise 

upon loading and a kinking/bending during a compression test [57].  

Pseudoelasticity in Fe3Al was first reported in a series of papers by Guedou et al. 

[51-54] from 1976 to 1982. The first tests were shear tests on Fe3Al single crystals 

oriented for shear on two different slip systems namely {110}<111> and {112}<111> 

[51]. The single crystals were heat treated to form the D03 phase (Figure 1.6) [66-68]. It 

was found that, for specimens of both orientations a significant portion of the applied 

strain was recovered upon unloading (Figure 1.7). Quenched specimens, which were 

expected to be α phase (BCC solid solution) did not show any strain recovery.   

Also, it was found that maximum recovery occurred at a slightly off stochiometric 

composition Fe-23 at% Al. Shape memory effect was reported to occur at liquid nitrogen 

temperature. A subsequent paper [52] by the same group reported visual observations of 

twins and micro twins (Figure 1.8) accompanied by audible clicks during compression 

tests.  
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Figure 1.6 Iron-aluminum phase diagram from 20 at% Al to 28at% Al. The sequence of ordered 
phase changes with composition can be seen by the lines at 23% and 24 at% Al  [66-68]. 
 

 

Figure 1.7 The first stress-strain curve under shear loading, showing pseudoelasticity in Fe3Al. 
Guedou et al [51]. 
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Figure 1.8  Picture of twins seen on the sample surface by Guedou et al. [52]. 
 
 

 

It was asserted that these twins were somehow related to the pseudoelastic 

phenomenon. Many of the above observations namely strain recovery, composition and 

heat treatment  effects and orientation dependence were reconfirmed in later studies [69-

74].  The main conclusions coming out of the above studies were that pseudoelasticity in 

Fe3Al occurs only in D03-ordered single crystals (it was later also reported in textured 

polycrystalline Fe3Al by Nosova et al.[71] ), and the amount of recovery depends on the 

orientation of the crystal with respect to the loading direction.  

In a later paper [54] from the same group which discovered pseudoelasticity in 

Fe3Al, a model based on TEM observations was proposed to explain the phenomenon. 

Dislocation configurations and their motion were studied in thin foil specimens under 

tensile load, in a TEM.  The model was based on movement of APBs on certain 

crystallographic planes. The APB surface tension was thought to be responsible for 

providing the reverse force for strain recovery. This mechanism is discussed in detail in a 
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later section. The idea of twins and/or phase transformation as the responsible mechanism 

was rejected by Kubin et al. [54].    

  A number of other papers [69, 70, 74] have supported these observations. Their 

interpretations differ slightly but follow the same broad theme. Kubin et al. [54] also 

mentioned that no evidence of martensite was found during resistivity measurements and 

dilatometry experiments but did not provide any details of those experiments. The 

recovery in compression as a function of orientation as reported by Yasuda et. al. [73] is 

summarized in Figure 1.9. It is important to mention here that orientation studies showed 

some ambiguity because pseudoelasticity was maximized for an unexpected orientation. 

The traces found on the specimen were those of the {112} planes, and {112} <111> type 

twins are known to exist in D03 ordered Fe3Al [75]. But, specimens oriented ideally for 

these twins show less strain recovery in compression than those oriented to maximize 

{110} <111> slip. This was the main reason why twinning was not investigated further in 

any of these studies.  

None of the above studies involved detailed in situ or ex situ diffraction 

experiments on the single crystals. Kubin et al. [54] mentioned cursorily that Laue 

diffraction patterns do not show any change during and after loading.  

To summarize, pseudoelasticity is strongly influenced by the orientation of the 

crystals. Crystals aligned for maximum resolved shear stress on the {110} <111> slip 

system recover the maximum amount of applied strain. The composition at which 

pseudoelasticity is maximized is Fe 23 at% Al. Strain recovery occurs only in the D03  
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Figure 1.9 Orientation dependence of pseudoelastic recovery upon compressive loading[73].  
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phase and not in the B2 or solid solution (α) phases which also exist in the same 

composition range. None of the studies found any evidence of a phase transformation and 

there were conflicting reports on the presence of twins.  The only explanation suggested 

for this effect so far is that the surface tension of the APB formed during deformation 

provides the reverse force for strain recovery. Therefore, there is a need to revisit this 

effect and investigate the mechanism in more detail. There are three different possible 

mechanisms that could be responsible for the pseudoelastic effect in Fe3Al. These are 

discussed in the following section. 

 

1.4.1 Possible mechanisms 
 
 
(a) Surface tension of APBs 
 

Anti phase boundaries (APBs) are boundaries which separate two different 

ordered regions of an ordered lattice. As will be explained in detail below, the two 

regions on either side of an APB have the same ordered structure but the order is 

disrupted across the APB itself. APBs may be formed by passing partial dislocations 

through an ordered lattice. As a simple example Figure 1.10 shows the formation of an 

APB in a B2 ordered lattice. All the planes shown in the figure are {110} planes, 1.10 (a) 

and 1.10 (b) represent a BCC lattice and 1.10 (c) and 1.10 (d) the B2 lattice. If a ½<111> 

dislocation moves through region 1, the BCC planes remain unchanged (Figure 1.10 (b)) 

since there is only one type of atom. However, as can be seen in Figure 1.10 (d), after the 

passage of a ½ <111> dislocation in the B2 lattice, although regions 1 and 2 retain the  
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Figure 1.10 Formation of antiphase boundaries (APBs). (a) represents {110} planes of a BCC 
lattice. Upon passing a ½<111> dislocation through region 1 the overall lattice remains the same 
as seen in (b). (c) shows the {110} planes of an ordered B2 lattice. Passing a ½<111> dislocation 
produces an APB between regions 1 and 2 as seen in (d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Region 1 

Region 2 

(a) (b) 

(c) (d) 

Region 1 

(a) (b) 

(c) (d) 

½<111> 
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same order, the boundary between the two regions has wrong nearest neighbor bonds and 

is, therefore, an anti phase boundary (APB). If we consider an expanding dislocation 

loop, the area contained within this loop will act as an APB between the two ordered 

regions (volumes) on either side of this area. If another ½<111> dislocation is passed 

through region 1 in Figure 1.10 (d) it would eliminate the APB. 

The D03 lattice (Figure 1.11) is also based on the BCC lattice but is more 

complicated than the B2 ordered structure. The lattice can be described by 2 x 2 x 2 BCC 

type cells. In a D03 ordered Fe3Al unit cell, all the corner positions and four of the body 

centre positions are occupied by Fe atoms. Aluminum sits on the remaining four body 

centers. The conventional indicial notation for the D03 structure is based on the unit cell 

shown in Figure 1.11 and will be used throughout this text. However, in some papers e.g. 

Kubin et al. [54] indices based on a single BCC unit cell have been used.  

Analogous to the ½ <111> dislocation on the {110} plane of the B2 lattice 

described above, the D03 <111> dislocation consists of 4 partials. That is, the first partial 

is ¼ <111> the second is ½ <111> and so on.  As a result of the 4 partials there are 2 

types of APBs that can form upon passage of the <111> partials. 

The APB mechanism to explain pseudoelasticity in Fe3Al was proposed on the 

basis of TEM observations of dislocation motion seen in thin foil specimens under 

tension [54]. 

These qualitative observations were coupled with approximate energy 

calculations to come up with the model. In essence, the model states that the <111> 
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Figure 1.11 Ordered D03 lattice. Green spheres represent Fe atoms and red spheres Al atoms. 
 

 

partials move relative to each other extending the APBs on the {110} planes. The surface 

tension of these APBs is the driving force for strain reversal.  

Recently, Yasuda et al. [69] have published a more detailed account of the 

movement of dislocations. Their model can be explained with the help of Figure 1.12. 

According to Yasuda et al. [69], when a load is applied to the sample, the first 

superpartial namely ¼ <111> moves faster than the remaining 3 superpartials on the 

{110} plane, thus dragging an APB between itself and the remaining partials. This APB 

region has some surface tension associated with it. Upon unloading this superpartial 

springs back owing to the surface tension of the APB and restores the applied strain.  

In addition to the APBs formed by movement of superpartials, there are other 

APBs in an ordered single crystal because of the existence of domain structure. Ordered 

domains in a single crystal can be thought of as grains inside a polycrystalline material.  
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Figure 1.12  APB mechanism as proposed by Yasuda et al. [69] 
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Unlike polycrystalline grains, ordered domains do not differ in crystallographic 

orientation but only in order. 

For example, two neighboring domains would be a part of the same lattice and 

have the same type of order (e.g. D03) but would have an APB between them so that the 

stacking sequence changes across this boundary. As a one dimensional example Figure 

1.13 shows an ordered structure on either side of the dashed line. The ordering is ABC on 

either side of the line. Across the line however wrong nearest-neighbor bonds are present. 

The dashed line represents an APB in a one dimensional system. In this structure 

there are a number of different APBs that can form e.g. AA, BB, and BA. In Figure 1.13 

the APB formed is a CC type. Similarly, at an ordered domain boundary there are 

different types of APBs that can form on different planes. For example, on the {110} 

planes there are 2 types of APBs as mentioned above (dislocation induced APBs).  

 

 

ABCABCABCABC CABCABCABCABCABCABCABCABC CABCABCABCABC

 

 
Figure 1.13 Two ordered domains separated by an APB in a one dimensional ordered system. 
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In the mechanism described above we have ignored the presence of ordered 

domains. That is, we have assumed that superpartial dislocations move within one 

ordered domain. Yasuda et al. [69] have discussed what happens when different types of 

superpartials cross an ordered domain. Such events could move the domain boundaries 

and thus change domain sizes which could expand or shrink depending on which type of 

partial crosses which type of domain boundary. They assert that pseudoelasticity is 

closely related to domain size. The details of these effects are not described here but can 

be found in [69].       

 
(b)  Martensitic Phase Transformation 
 
 

Stress induced martensitic phase transformation is responsible for pseudoelasticity 

in many ordered alloys [57] most notably in NiTi and CuNiAl which have been 

extensively studied. The martensitic transformation and the nature of the resulting 

martensite are discussed first followed by its role in pseudoelasticity. Martensitic 

transformation is a phase transformation which occurs by a cooperative motion of several 

atoms upon application of a shear stress. There is no diffusion involved in this kind of 

phase transformation. The parent phase is usually a cubic lattice which transforms into a 

crystal structure of lower symmetry. Consequently, many different martensite variants 

can form depending on the transformation conditions. Figure 1.14 (a) shows a simplified 

picture of two martensite variants A and B that form in response to shear on the planes 

represented by the dashed lines.  These martensite variants are often twin variants of each  
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Figure 1.14 (a) Two dimensional representation of martensite variants A and B from a cubic 
parent phase. (b) FCC-BCT transformation in steel as proposed by Bain [76]. 
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other. A typical example of the structure resulting from such a transformation is shown in 

Figure 1.14 (b) which shows a face centered cubic to body centered tetragonal 

transformation in steels. The blue lines represent the parent phase which is a FCC lattice. 

This structure can easily be transformed into a BCT structure by expanding along the a 

axis of the BCT cell and contracting the c axis such that c/a ratio becomes close to one. 

When the shear stress reaches a critical level on certain crystallographic planes 

upon application of load the parent transforms to a martensitic phase. In a pseudoelastic 

material, the martensite becomes unstable upon removal of the load and transforms back 

to the parent phase, thus reversing the applied strain. There is no permanent slip since the 

martensitic transformation in such alloys takes place at a lower stress level than that 

required for slip.  

The stress-strain curve of single crystal Fe3Al (Figure 1.7) is very similar to those 

of known pseudoelastic materials like NiTi, CuAlNi etc. Since martensitic phase 

transformation is the most common known reason for pseudoelasticity, there is a need to 

look for phase transformation in Fe3Al upon loading.  

(c) Twinning  
 

Twins are similar to the martensitic transformations described in the preceding 

section. In both cases a finite volume of the parent crystal realigns itself to form a new 

lattice. Unlike martensite, twins have the exact same crystal structure as the parent phase 

differing only in their crystallographic orientation. There are two types of twins, growth 

twins and deformation twins. In this section we are only interested in deformation twins. 

Analogous to martensite formation, deformation twins are formed due to a shear on 
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certain crystallographic directions. Figure 1.15 illustrates twin formation when a shear 

stress acts on the twinning planes represented by the dashed lines. Note that each plane 

moves only a small distance relative to the preceding plane but the overall displacement 

is quite significant. Oval shaped atoms have been used to clearly illustrate the change in 

crystallographic orientation. The direction indicated by the green arrow in the parent 

crystal has to undergo a large rotation before it lines up along the direction shown by the 

red arrow in the new twinned crystal.  

 Twins are the preferred deformation mode at low temperatures and in crystals 

with low symmetry. These are conditions when slip becomes difficult either due to lack 

of vibrational energy (at low temperature) or lack of available slip systems (in low 

symmetry crystals). Under these conditions twins become energetically favorable and can 

form at lower stresses than those required for slip. Twins have the same crystal structure 

as the parent lattice and therefore do not have any stored chemical energy. They are 

stable under the conditions that the parent is stable. So, the question is whether these 

twins could provide the reverse force required for pseudoelasticity. Although there is no 

chemical energy stored in twins there is some elastic energy that is stored in the crystal to 

accommodate certain types of twins. This is illustrated using Figure 1.16, which shows a 

single twin variant in a compressed sample where the twins run from one free surface to 

the other without running into the compression platens. These twins do not have any 

chemical or elastic energy stored in them and therefore do not have any driving force to 

de-twin. Figure 1.16 (b) shows another case, where several twins variants run into the  
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Figure 1.15 Schematic illustration of deformation twin [77].  
 
 
 
 
 
 

  

 
Figure 1.16 Comparison of (a) twins running from one free surface to another free surface and 
(b) elastically accommodated twins. 

 

(a) (b) 
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compression platens and do not cross the width of the entire sample. These twins are 

accommodated by elastic deformation of the surrounding untwined regions. Once the 

load is released the stored elastic energy forces the twin to transform back to the original 

state.   

Although there could be many twinning systems in theory, only a few are 

preferred by real crystals e.g. in BCC crystals the normal twinning plane is {112} and the 

twinning direction is <111> (details of twinning crystallography can be found in 

reference [78]). If a pure metal (e.g. Fe) twins in the above sense the resulting structure is 

identical to the parent structure. However, if an ordered alloy like Fe3Al twins in the 

above sense, the resulting structure has the same lattice as the parent but the order is 

changed i.e. the atoms which were originally sitting at certain lattice points are no longer 

in the same positions. This is seen in Figure 1.17 where the order in the crystallographic 

direction indicated by the green arrow is ABAB or XYXY in the parent crystal. After the 

twinning operation the red arrow indicates the same crystallographic direction in the 

twinned part. The order in this direction is now AYBX in each layer. Nevertheless, the 

resulting structure is still ordered.  These kinds of twins are known as pseudotwins. In the 

strict sense pseudotwins are a different phase than the parent phase.  Pseudotwins have 

been reported by Green and Cohen [79] in D03-ordered Fe3Be. Its pseudoelasticity has 

been attributed to pseudotwinning (with {112} twin plane and <111> twin direction) 

[79]. Since the order in pseudotwins is not the same as the parent (which is the most 

stable order at that temperature), pseudotwins also have some chemical free energy. 

Therefore, there are two types of energies which drive the restoring force for reversal of   
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Figure 1.17 Formation of a pseudotwin accompanied by a change in order.  
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applied strain, namely the chemical energy due to unstable ordering of the pseudotwins 

and the elastic energy in the untwined regions of the crystal to accommodate these twins.  
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CChhaapptteerr  ##  22  
 
 
 

Experimental Methods 
 

 

The experimental procedures employed in this work can be divided into three 

broad categories which are alloy preparation (casting, thermo-mechanical processing and 

single crystal growth), mechanical testing procedures and neutron diffraction 

experiments. Among these the first two will be described here. The details of the neutron 

diffraction experiments have been included in chapter 4 for the sake of continuity. 

2.1  Alloy preparation 

 

2.1.1 Arc melting 
 

Several Fe3Al and FeCo alloys were arc melted and drop cast in a cylindrical 

copper mold measuring 13 mm in diameter for Fe3Al and 130 mm length. Figure 2.1 

shows a picture of the water cooled melting hearth in the main chamber of the arc melter. 

Figure 2.2 shows a photograph of the copper molds and Fe3Al cast rods used in this 

study. The iron and aluminum starting materials (>99.99% pure) were carefully weighed 

and then mixed by arc melting, with the buttons flipped and re-melted five times to 

ensure good mixing before drop casting. Total weight losses after  



 34

 
 
 

 

 
 
Figure 2.1 The inside of the arc melter chamber. The water cooled jacket in the middle holds the 
molds. Also seen is the arcing rod. 

 
 

 
 

Figure 2.2 Copper molds and cast Fe3Al rods. 
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melting and casting were less than 0.1%, which led to negligible changes in alloy 

composition after melting. Therefore, all compositions discussed in this paper are 

nominal compositions (atomic %) unless otherwise stated.  

2.1.2 Growth of single crystalline Fe3Al 
 

The cast alloys were directionally solidified in an optical zone melting furnace 

(Figure 2.3) at a growth rate of 40 mm/h to obtain single crystals (Figure 2.4). During 

growth of the first single crystal, a polycrystalline rod was used as a seed and the 

diameter of the molten zone was carefully reduced to produce a neck that prevented the 

slower growing grains from propagating.  

This produced a single crystal with growth direction <100>, as determined by 

Laue back scattered X-ray diffraction. As is explained by the schematic in Figure 2.5, this 

single crystal was reoriented and cut normal to the <418> direction and used as seed to 

produce additional single crystals with the <418> growth direction. This allowed us to 

obtain large samples in the <418> direction. The quality of single crystals was examined 

by Laue back scattered X-ray diffraction after every growth.  Only those single crystals 

with high quality were used for further examination.  

2.1.3 Heat treatments 

 The Fe3Al single crystals were homogenised at 1100 oC for 48 h, followed by 

furnace cooling at 80°C/h to ensure D03 order, as described in reference [68].  
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Figure 2.3 The optical zone melting furnace. Schematic diagram shows the single crystal growth 
process.  

 
 
 
 

 
 
 

Figure 2.4 Picture of grown single crystal Fe3Al rod.  
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Figure 2.5 Schematic of seeding procedure used to grow single crystals in the <418> direction.  
 
 

2.2  Mechanical testing 

2.2.1 Sample preparation 

The as grown single crystal Fe3Al rod was mounted on a two-angle goniometer 

(Figure 2.6) and a Laue X-ray measurement was done on the sample. The goniometer 

angles were adjusted to get exactly the desired orientation perpendicular to the 

goniometer face. The goniometer was then mounted on an EDM (electrical discharge 

machine) and samples were cut. Several different geometries of tensile and compression 

samples (Figure 2.7) were cut. The orientations of the final samples were found to be 

within 1o of the desired orientation. These samples were then ground (upto 1200 grit 

paper) and polished (alumina powder) to remove any non-uniformity. 

2.2.2 Uniaxial tests 

Several different tensile and compression tests were carried out in various load 

frames. Three different load frames, two made by Instron® and one by MTS® were used 

Natural growth direction 

<418> 

<100> 

<418> 
Loading direction grown by seeding 
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Figure 2.6 The two angle goniometer used to orient single crystal samples. 
 
 

  
 

Figure 2.7 Various geometries of tensile and compression samples. 
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for these tests. Strain measurement was carried out using an extensometer in certain 

cases. High temperature mechanical tests were carried out in a furnace mounted on the 

load frame. For low temperature tests two different methods were used. Some tests were 

done in various dry ice baths (which stabilize at known temperatures) and other by 

flowing liquid nitrogen through a copper tube surrounding the sample.  

Tensile tests on single crystal Fe3Al were always done on flat dogbone shaped 

specimen with a universal joint in the load train to avoid any alignment problems. For 

surface observations small samples were loaded in a tensile rig specially fabricated for 

this purpose (Figure 2.8). For both Fe3Al and FeCo compression sample geometries were 

either cylindrical or cuboidal.  

 

  

 
Figure 2.8 Tensile rig for loading small polished samples for surface observations. 
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Mechanical Properties of Pseudoelastic Fe3Al  
 
 

In this chapter a quantitative description of the pseudoelastic effect in Fe3Al is 

given. The macroscopic room temperature response of single crystal Fe3Al under tension 

and compression is described in the first section. This is followed by the mechanical 

response of Fe3Al at temperatures higher and lower than room temperature, including the 

shape memory effect shown by this material at very low temperatures. Also, surface 

features appearing on the samples during mechanical loading are described in this 

chapter.  

 

3.1 Stress-strain response at room temperature 
 

As was explained in chapter 1, unlike many other well known pseudoelastic 

materials, Fe3Al shows pseudoelasticity only in the single crystal form and in certain 

crystallographic directions. The pseudoelastic effect in Fe3Al is maximized when the 

single crystal is uniaxially loaded in the <418> direction[73]. Therefore in the present 

chapter all mechanical tests have been done in the <418> direction. Certain other 

directions were used in some experiments (in chapter 4) but unless otherwise stated 

<418> was the direction used for all uniaxial mechanical loading.     
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Figure 3.1 shows stress strain curves of <418> oriented Fe3Al single crystals 

under tensile and compressive loading, displaying the pseudo-elastic behavior of this 

alloy. The samples were loaded to 4% and 3% total strains, respectively, and 

subsequently unloaded. The strain recovery occurs at a very low stress (~100-200 MPa), 

thus making an unusually big hysterisis loop. There is a tension-compression asymmetry 

in the material. The stress at the elastic limit under compression is ~ 40MPa higher than 

in tension. When cycled a second time through the load-unload cycle in tension, the 

specimen broke between 2 to 4 % while loading (Figure 3.2). Also, the material strain 

hardens continuously during compression but does not in tension even at strains as high 

as 13% (Figure 3.3(a)).  

Figure 3.3 (a) and 3.3 (b) show the amount of recovery in tension and 

compression for various applied strains. The strain on the tensile curves (Figure 3.3 (a)) 

were obtained from extensometer readings, but for compression tests (Figure 3.3(b)) 

strains were calculated from corrected crosshead positions. It was found that up to 10% 

strain can be almost fully recovered in tension. When specimens were strained more than 

10%, a significant part of this strain was not recovered upon unloading. At 13% applied 

strain ~9% strain remained as plastic strain upon unloading. In compression (Figure. 

3.3(b)), there is less recovery. The amount of unrecovered strain becomes significant in 

the applied strain range of 9-10 %. 
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Figure 3.1 Stress-Strain curves of single crystal Fe3Al in <418> direction in tension and 
compression. 

 

 
Figure 3.2 Tensile stress-strain curves of specimen cycled twice in tension. Red cross shows the 

fracture in the 2nd cycle. 
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Figure 3.3  (a) Tensile stress-strain curves of monocrystalline Fe3Al showing different amounts 
of recovery when unloaded from different strains. (b) Compressive stress-strain curves of 
monocrystalline Fe3Al unloaded from various applied strains. 

 

(a) 

(b) 
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In samples which were strained up to 10% in tension, a small portion of the 

applied strain (~3% of total) was not recovered immediately. Rather recovery occurred as 

a function of time as shown in Figure 3.4. The amount of unrecovered strain increased 

with increasing applied strain. The recovery with time followed an exponential curve. 

The surfaces of tensile samples were observed during tests and two types of 

surface steps were found at different strain levels. One of these were shown to be traces 

of the (211) planes. These results have been discussed in detail in the discussions section.   

 

3.2  Stress-strain response at high temperature (100 -140 oC) 
 

Figure 3.5 summarizes the stress-strain response observed between room temperature and 

140 oC. High temperature tensile tests showed that pseudo-elastic behavior persisted up 

to a temperature of 100oC. At 120oC, although there was some pseudoelastic recovery, 

the sample did not recover most of the applied strain. At even higher temperature 

(140oC), the material deformed plastically without any recovery except the elastic part. 

At these higher temperatures, a very small stress drop occurred during loading in the 

previously flat (at room temperature) pseudo-elastic region of the stress strain curve (at a 

peak stress of ~500 MPa). The plateau stress wavered by a small amount (Figure 3.6) 

indicating that possibly two different deformation mechanism were active at 120oC 

namely one responsible for the slight pseudo-elasticity and the other responsible for the 

plasticity. 
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Figure 3.4 Strain recovery as a function of time for three different applied maximum strains. 
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Figure 3.5 Tensile stress-strain curves of monocrystalline Fe3Al at room temperature and above. 
 
 

 

Figure 3.6 Expanded view of the upper part of the stress-strain curve of monocrystalline Fe3Al at 
room temperature and 140oC. 
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3.3  Stress-strain response at low temperature ( -196 oC to room 
temperature) 
 

Tensile tests were carried out in various low temperature baths using dry ice and 

liquid nitrogen. As seen in Figure 3.7, up to a temperature of -73oC, the applied strain of 

~3% was fully recovered. At liquid nitrogen temperature (-196oC) none of the applied 

strain (~1%) was recovered. Furthermore, the stress at the elastic limit was significantly 

higher than at room temperature and other low temperature tests. All of this strain was 

recovered after the sample was heated up to room temperature, thus displaying the shape 

memory effect, which was observed both in tension and compression. Unlike well known 

shape memory alloys like NiTi alloys, Fe3Al showed the shape memory effect only at 

very low temperatures. Another sample was compressed to ~2.5% strain at a temperature 

of -178oC. Only the elastic part of the strain was recovered upon unloading. The controls 

were then shifted to constant load control and a small load corresponding to a stress of 

~15 MPa was applied to hold the sample in place. The sample was allowed to slowly heat 

up to room temperature. The crosshead movement was monitored as a function of 

temperature, as shown in Figure 3.8. Two distinct slopes were seen on the plot of 

crosshead position vs. temperature. The first one corresponds to the thermal expansion of 

the sample and the grips. The second slope is a superposition of the thermal expansion 

and the strain recovery upon heating up. The two straight line curves intersect at ~ -

143oC, which is the temperature at which recovery commences.  
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Figure 3.7 Tensile stress-strain curves of monocrystalline Fe3Al at room temperature and below. 
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Figure 3.8 Cross-head movement vs. temperature during heat up (under load control) of 
compression sample compressed (to 2.5% strain) and unloaded at 95K. 

3.4  Discussion 
 

One of the notable features of this material is the tension-compression asymmetry. 

It can be speculated that the strain hardening in compression corresponds to a second 

deformation mechanism (such as slip) which is responsible for the smaller recovery than 

in tension. In tension, the plateau stress is extremely flat and all the strain is recovered. 

Also, the higher stress at the elastic limit in compression may correspond to a different 

deformation mechanism.  

Corresponding to the recoverable and unrecoverable parts of the applied strains, 

distinct features were observed on the specimen surfaces. These experiments were done 

using the tensile rig of Figure 2.8. 
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Figure 3.9 shows polished faces of a tensile sample which was loaded to 10% 

strain and unloaded. Straight parallel lines appear on the surface in the pseudo-elastic 

region (Figure 3.9 (a)). The density of these lines increases as the applied strain is 

increased. These lines completely disappear when the sample was unloaded (Figure 3.9 

(b)). Figure 3.9 (c) shows a diagram of the trace analysis done on these samples. The 

crystallographic planes (D1 and D2 in figure 3.9(c)) corresponding to the two faces (on 

the gage section) of a tensile sample are known (from Laue X-ray diffraction). These 

planes combined with the measured angles (θ1 and θ2) give the complete description of 

the planes formed by the traces on the two faces.  This plane was found to be the (211) 

plane.  

Tensile samples were loaded up to 13% strain which is beyond the fully 

recoverable strain limit and surface observations were made using SEM. Figure 3.10 (a) 

shows parallel lines (labeled Type1) corresponding to the pseudo-elastic region, which 

are the same as those in Figure 3.9 (a). As the sample is strained more than 10% a second 

type of wavy line (labeled Type 2 in figure 3.10 (b)) which look similar to slip lines, 

appear on the surface. These lines do not disappear on unloading the sample. Some of the 

Type 1 lines are also seen trapped between these Type 2 lines. Parts of the sample, where 

no Type 2 lines appear, become completely free of Type 1 lines on unloading. This is 

also consistent with the fact that only about 4% strain can be recovered from samples 

strained to 13%, whereas all the strain is recovered from samples strained to 10%. 

Therefore, some of the applied strain is trapped once plasticity sets in.  
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Figure 3.9 Optical micrographs showing (a) parallel lines (steps) that appear during pseudo-
elastic deformation, and (b) the complete disappearance of these surface steps  upon unloading.(c) 
Slip line trace analysis on two perpendicular sample surfaces (known orientations D1 and D2) 
shows that the parallel steps are traces of the (211) planes. 
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Figure 3.10 SEM micrographs showing (a) surface steps (Type 1 lines) in the pseudo-elastic 
region, (b) wavy slip lines (Type 2 lines) beyond ~ 10% applied strain, and (c) Type 2 lines 
remaining after unloading (many, but not all, of the Type 1 lines are gone). 
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Tensile stress-strain curves at various temperatures (Figures 3.5 and 3.7) show 

that there is no appreciable change in the plateau stress during loading in the temperature 

range -73oC to 100oC. However, the unloading plateau stress (    in Figure 1.5) or the 

stress at which the maximum amount of recovery takes place increases constantly with 

increasing temperature. This behavior is typical of conventional SMAs [5], where the 

plateau stress increases linearly with temperature due to the Clausius-Clapeyron effect. In 

more general terms, this is indicative of a stress-induced transformation with some finite 

change in volume. The recovery stress, σr is plotted as a function of temperature in Figure 

3.11. In each case, the initial elastic (linear) section and the flat plateau section of the 

unloading part were extrapolated to find σr at their intersection. A straight line fitted 

through the data points gives a slope of 526 kPa/K.  Assuming a single transformation, 

from the Clausius-Clapeyron equation we have: 

 

vT
H

dT
d

r

rr

Δ
Δ

=
ε

σ
  =    526 kJ/K-m3                (3-1) 

 

 

Where ΔHr is the enthalpy of reverse transformation, Tr is the transformation 

temperature, ε is the transformation strain and Δv is the volume change during the 

transformation. Unfortunately, since the values of Tr, ε and Δv are not known, the ΔHr 

can not be found at this time.  
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Figure 3.11 Unloading plateau stress σr as a function of test temperature. Straight line is fitted to 
obtain the slope of the curve.  
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The nature of stress-strain curves, appearance/disappearance of slip lines and the 

increase in the value of recovery stress with increasing temperature are very similar to 

traditional shape memory and pseudo-elastic materials. However, many other 

characteristics of these alloys are dissimilar to SMA’s. Fe3Al shows pseudo-elastic 

behavior only in single crystal form. It does not strain harden in tension, even at very 

high applied stresses. Shape memory effect was seen at very low temperatures unlike 

traditional SMA’s which show shape memory effect at temperatures generally a few tens 

of degrees below 0oC. 
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CChhaapptteerr  ##  44  
 
 
 

In Situ Neutron Diffraction Studies of Single Crystalline 
Fe3Al  

 
 
 
 
 

Deformation in materials with crystalline lattice occurs by dislocation motion, 

twins, phase transformations etc [78]. In order to distinguish these various deformation 

mechanisms the atomic arrangement needs to be observed during deformation. 

Diffraction techniques allow us to study the atomic arrangements in various crystalline 

materials by measuring the inter-planar distances between layers of atoms. 

Neutron diffraction is discussed in this chapter with special emphasis on in situ 

deformation experiments and the time of flight technique. This is followed by results and 

analysis of in situ neutron diffraction experiments under uniaxial loads on single crystal 

Fe3Al. A brief description of each of the neutron diffraction instruments used for the 

present study is given to explain the geometrical aspects of the experiments. The chapter 

concludes with a discussion of results. 

4.1  Introduction to neutron diffraction 
 

Diffraction has been used for almost a century to study the structure of crystalline 

materials [80]. The full mathematical description of diffraction can be found in several 
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books [9, 81] and will not be discussed here. It is however, important to mention Bragg’s 

law [82]:  

 

                                    θλ sin2dn =                                            (4-1) 

 

 

which shows the relation between the d-spacing (d) of the crystallographic planes and the 

wavelength (λ) of the incident beam. The angle of the diffracted beam is θ and n is the 

multiplicity of the reflection. For the purpose of studying the crystal structure, d is the 

unknown quantity in many cases. This is one physical parameter of the crystal structure 

that we obtain from a diffraction pattern. Other physical quantities require a more 

rigorous mathematical description which will be developed as and when required in this 

chapter.   

X-rays are the most widely used form of radiation for diffraction. The desktop X-

ray diffractometers have various advantages like low production cost, relevant 

wavelengths, good intensity etc.  One of the major disadvantages of this type of a system 

is that the depth of penetration of these X-rays in metallic samples is of the order of a few 

microns [9]. Therefore, we only get diffraction information from the near surface regions 

of the specimen. This problem of low penetration depth also persists with electrons [83].  

Neutrons are the weapon of choice when high penetration depths are important. 

The wave nature of neutrons has been known for quite some time and the first diffraction 
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experiment was performed by von Halban in 1936 [84] . The fundamental laws of 

diffraction apply to neutrons in exactly the same way as X-rays. The difference lies in the 

fact that neutrons are not charged particles and have no electric field associated with 

them. Therefore, they are scattered by the nucleus of an atom as compared to the electron 

cloud in the case of X-rays and electrons. Since the scattering cross section of nuclei are 

orders of magnitude lower than that of the atoms, neutrons can penetrate much deeper. 

One of the direct consequences of this is that a much higher flux is required to get any 

significant diffraction.      

Unlike X-rays and electrons which can be produced in desktop diffractometers 

and electron microscopes respectively, neutrons are harder to come by. Two of the most 

popular forms of neutron sources are reactor sources and spallation sources. Neutron 

sources are generally huge facilities with several instruments being fed by the same 

neutron source.  

In reactor sources like HIFR at Oak Ridge National Laboratory and CNBC at 

Chalk River, neutrons are produced through a controlled nuclear reaction. The more 

preferred neutron sources these days are spallation sources at facilities like ISIS at 

Rutherford Appleton Laboratory , LANSCE at Los Alamos National Laboratory, IPNS at 

Argonne National Laboratory and SNS at Oak Ridge National Laboratory.  In a spallation 

source neutrons are produced by bombarding a metal target with accelerated protons. A 

typical layout of a spallation source is shown in Figure 4.1 which shows the neutron 

diffractometers at the Lujan Centre at LANSCE. Note that the instruments are located in  
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Figure 4.1 Layout of neutron diffractometers at the Lujan Centre at LANSCE. 
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a circle around the source. This is because the absence of charge on the neutrons make it 

extremely difficult to bend their path. Spallation sources allow the time of flight (TOF) 

measurement technique to be applied to diffraction experiments which provides an added 

level of flexibility in data analysis. TOF is discussed in detail in a later section. 

 

4.1.1 In situ neutron diffraction with deformation 
 

The high penetration depth of neutrons and their non-destructive nature allows 

immense flexibility in designing experiments. The use of bulk samples makes it easier to 

manipulate the sample as well as the sample environment during the diffraction. 

Therefore in situ experiments can be designed where neutron diffraction is performed 

while applying load, pressure, magnetic fields etc. to the sample. Also the sample can be 

kept at various temperatures, gas environments, vacuum etc.   

This flexibility in designing experiments has attracted the interest of scientists 

who study the mechanical behavior of crystalline materials. The desire to learn various 

changes in the crystal structure (d-spacings of various planes, texture, phase 

transformation, twinning etc.) during deformation prompted the interest in the design of 

in situ deformation neutron diffraction experiments. Recently, a number of neutron 

diffraction instruments optimized for such measurement (e.g. NPD and SMARTS at 

LANSCE, ENGIN and ENGIN X at ISIS) have been built. A more comprehensive 

review of in situ experiments can be found in reference [85]. The basic idea behind these 

instruments is to simultaneously study the transversely and longitudinally oriented planes 
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of the crystal during uniaxial loading. This is achieved by having an instrument geometry 

which uses two detectors at 45o to the loading axis as shown in Figure 4.2.  

The diffraction measurements are done at various stress/strain levels as the 

sample is loaded. However, depending on the neutron flux and the material being studied, 

each measurement can take a few minutes to obtain a decent diffraction pattern. 

Therefore all parameters like load, strain, temperature etc. have to remain stable during 

the measurements. Although these experiments are not truly real-time due to the above 

reason, the ability to get a full diffraction pattern without moving the load rig greatly 

increases the accuracy of the data. Also, in cases like pseudoelastic materials, where 

unloading has a reverse affect on the crystal structure in situ experiments are the only 

way to study the effect of straining on the crystal structure.  

 

4.1.2 Time of flight (TOF) technique 
 
 
 

The time of flight technique is a unique technique used to measure the neutron 

diffraction patterns. This is not a full review of the TOF technique but only the aspects 

relevant to the present experiments are discussed. TOF is the preferred measurement 

technique for pulsed neutron sources. These types of measurement are routine nowadays 

because of the greatly increased accuracy and speed of  modern data acquisition systems.  
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Figure 4.2 Geometry of a typical in situ neutron diffraction instrument. 
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TOF can be explained using the schematic in Figure 4.3, which shows a neutron 

source in relation to a neutron diffractometer. The red pulse which represents a proton 

pulse hits the target at regular intervals. Let us consider one such pulse which hits the 

target at t = 0. This produces neutrons with a whole spectrum of energies which take off 

radially from the target or the neutron source. Some of these neutrons are channeled to 

the sample (green beam) which is sitting in a diffractometer at a distance L1 from the 

source. The neutrons from one pulse, which start off together, are now separated because 

they have different energies (and thus velocities).  

When a neutron finds the right plane with d-spacing corresponding to its energy 

(according to Bragg’s law) then it is diffracted. Let us say one such neutron’s path 

corresponds to the blue path in the schematic. The detectors of neutron instruments 

(which have been used in the present study) are comprised of various tubes, the positions 

of which are accurately known. When a neutron hits a particular tube the event is 

recorded by the data acquisition system and the exact time of the event is noted. Let us 

say that this particular neutron happens to hit the detector at t = t1. Since the lengths of 

the source to the sample (L1) and from the sample to the tube (L2) are known the total 

path traveled by the neutron is known.  Therefore the velocity of this neutron can be 

calculated. This velocity then translates into the wavelength (λ) of the diffracted neutron 

through the well known wave-particle duality equation. The wavelength (λ) and the 

diffraction angle (θ) for the tube can be plugged into the Bragg’s Law (equation 4-1) to 

calculate the d-spacing corresponding to this neutron. By summing over all the tubes (a 

process called binning) a full intensity vs d-spacing pattern can be obtained. 
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Figure 4.3 Time of Flight measurements at a pulsed neutron source. 
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In practice, the calculations described above remain hidden under instrument 

parameters and huge polynomial equations. The instruments are calibrated from time to 

time and the parameters that these calibrations yield, take care of the above calculation. 

Also in the analysis above, it has been assumed that successive pulses of neutrons are 

well separated so that the neutrons from one pulse do not interfere with the neutrons of 

the next. This may not be true for all instruments and sources. There exist other 

techniques, like a chopper, whose timing is coordinated with pulse timing, in the path of 

the neutrons so as to chop off a part of the neutron spectrum. However, for a fundamental 

understanding of the TOF technique the above simple analysis is enough.    

 

4.2  Experimental results 
 

4.2.1 SMARTS diffractometer 
 
 

The SMARTS (Spectrometer for Materials Research at Temperature and Stress) 

diffractometer at the Los Alamos Neutron Science Centre (LANSCE) facility of the Los 

Alamos National Laboratory (LANL) is a 3rd generation neutron diffractometer. It is 

optimized for polycrystalline materials with in situ loading and temperature capabilities. 

Figure 4.4 shows a schematic of the diffractometer and Figure 4.5 shows an inside view 

of the diffractometer.  
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Figure 4.4 Schematic of the SMARTS diffractometer at LANSCE. 

 
 

 
 
Figure 4.5 Inside view of the SMARTS diffractometer at LANSCE. The load frame can be seen 
in the centre of the image and the transverse detector bank is on the left.  
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The diffraction geometry is the same as shown in Figure 4.2. A 250 kN Instron® 

load frame sits at 45o to the incident beam in the middle of the cave. There are two 

detector banks on either side of the incident beam. The whole setup sits on a circular 

stage which can be programmed to rotate/oscillate. The high temperature furnace mounts 

on top of the load frame. The furnace can be replaced by a cryogenic setup which is 

capable of temperatures as low as 90 K. The instrument is about 32 meters from the 

neutron source which gives the neutrons of different energies enough time to spread out 

sufficiently in space so as to provide good d-space resolution.  

 

4.2.2 Room temperature compression in SMARTS  
 
 

SMARTS is a diffractometer which is optimized for measurements on 

polycrystalline samples. A polycrystalline material, assuming no texture and a large 

number of grains, has a random distribution of grains which are oriented in all possible 

orientations. Therefore, a large number of neutrons of any energy will find a favorably 

oriented grain and diffract. This principle is illustrated in the schematic of Figure 4.6. 

Each of the incident neutrons of different energy finds a plane where Bragg’s law is 

satisfied. Ideally, the amount of diffraction would be uniform around the sample. 

Therefore each detector tube will be able to see peaks corresponding to each allowable 

reflection of the crystal. This gives a full diffraction pattern of the polycrystalline 

material.   

The case of a single crystal is shown in Figure 4.7. In this case only neutrons 
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Figure 4.6 Schematic showing the diffraction of neutrons by a polycrystalline sample. 
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Figure 4.7 Schematic showing the diffraction of neutrons by a single crystal sample. 
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with energy E1 find favorably oriented planes and diffract. The other energies do not find 

any plane which satisfies Bragg’s law and are either absorbed or simply transmitted. The 

net result is that all planes of the single crystal will diffract their respective neutrons with 

the right energies but since these planes are oriented in specific directions with respect to 

the detector position, the detectors, with their fixed coverage can only see a limited 

number of these planes.  

Single crystal Fe3Al samples were compressed in the <418> crystallographic 

direction. As discussed in chapter one, this direction was used because along this 

direction, maximum amount of strain is recovered during uniaxial tests. The compression 

samples were cylindrical with a diameter of 6 mm and length of 14.4 mm.  These were 

loaded on the SMARTS load frame and compressed. The stress vs crosshead 

displacement curve is shown in Figure 4.8 (a). Since a direct strain measurement was not 

used due to limitations of sample size, the crosshead displacement was used as a 

representation of strain. Fortunately in the non-elastic region (pseudoelastic/plastic), the 

stress increases only by a small amount and therefore most of the deformation is taking 

place in the sample. This means that the compliance of the machine represents a very 

small portion of the strain in this region. Due to the above reason the crosshead 

displacement in a very close representation of the strain in the non linear region. Neutron 

diffraction patterns were taken at different points along this loading curve. The dips in the 

curve represent points at which the loading/straining was stopped and a neutron 

diffraction pattern was recorded.  
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Figure 4.8 Evolution of diffraction pattern along one stress-strain curve cycle. (a) Stress vs 
Crosshead displacement showing points 1 through 4 where the above diffraction patterns were 
recorded by the (b) transverse bank (c) longitudinal bank. 
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Figure 4.8 (b) and (c) show four representative diffraction patterns taken at 

different points on the loading curve from transverse and longitudinal banks respectively. 

The first obvious result is that, the intensities of various peaks change as the sample is 

loaded in the non linear region. Some peaks change by as much as 3 times their original 

intensities. These intensities go back, close to their original values as the sample is 

unloaded to zero load.  

The diffraction patterns of Figure 4.8 have been indexed and shown in greater 

detail in Figure 4.9. The bottom plots in each of the series of diffraction patterns 

represent zero strain and the ones above are in order of increasing strain, the top one 

being at maximum strain. The diffraction pattern in the unloaded condition is not shown 

in these plots. The indexing of the peaks was done on the basis of the DO3 structure 

shown in Figure 1.11. The fundamental peaks are labeled in red while the superlattice 

reflections are labeled in green. This convention is followed throughout the rest of the 

text. The blue ticks at the base of the plots are the positions of the D03 reflections. 

As was expected for a single crystal the entire diffraction pattern including all 

allowable reflections is not captured by the SMARTS detectors. In the longitudinal bank 

we expect reflections which are close to the axial direction, which is the <418> 

crystallographic direction in this case. Therefore we see reflections like 420 and 620 

which are only a few degrees away from the <418> direction. The transverse bank is 

expected to show a portion of the band of reflections perpendicular to the <418> 

direction. In this case, one of the most significant set of reflections is the 200 series which 

is almost perpendicular to <418>. 
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Figure 4.9 Indexed diffraction patterns of sample compressed in the <418> crystallographic 
direction from (a) transverse bank and (b) longitudinal bank. Bottom plot is at zero strain and the 
strain increases progressively in each of the upper plots. 
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One of the distinct features of these plots is that most of the fundamental peaks 

become stronger while the superlattice peaks lose intensity. Some of the finer features of 

the diffraction pattern which cannot be clearly distinguished from these plots are 

discussed in a later section.  

 

4.2.3 Strain dependence of peak intensities 
 
 

Changes in peak intensities are closely related to the pseudoelastic strain on the 

sample. Figure 4.10 (a) shows that the peak intensities of the 422 peak from a similar 

experiment in the SMARTS diffractometer along with the stress-strain curve where only 

the pseudoelastic part of the strain has been plotted. The peak intensities were normalized 

such that the maximum peak intensity equals the maximum strain. The peak intensities 

follow the stress-strain curve very closely. Figure 4.10 (b) shows the intensities plotted as 

a function of the pseudoelastic strain. The intensities vary linearly with the strain.  

 

4.2.4 Compression in other orientations 
 

As discussed above, the SMARTS diffractometer has limited detector coverage in 

space and is ideally suited for polycrystalline samples. Only a handful of peaks could be 

captured in the diffraction pattern from a single crystal. Additional limitation was 

imposed because the pseudoelastic property is maximized in certain crystallographic 

direction, which then fixes one of the axes of our crystal namely the <418> direction.  
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Figure 4.10 (a) Pseudoelastic part of the stress-strain curve plotted with the peak intensity of the 
422 peak as a function of stress. (b)  peak intensity as a function of strain.  
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This meant that the peaks falling in the longitudinal bank would be expected to be 

identical and these are the peaks near the 418 (compressive direction) reflection in a 

stereographic projection. The reflections which fall in the transverse bank have a wider 

range and will depend on the rotation of the sample about the compressive axis. 

Nevertheless, these are also a limited number of reflections depending on the 

compressive direction. 

Although a full diffraction pattern can not be obtained, it might be possible to 

capture some of the important low index peaks by slightly changing the loading direction. 

As shown by Yasuda et. al. [73] single crystals show significant amounts of strain 

recovery close to orientations like 145 and 144.  

Therefore, the next set of experiments involved compression of single crystal with 

orientations 144 and 145 in the SMARTS diffractometer. These samples were cuboids in 

shape with dimensions 6 mm x 6 mm x 14.4 mm. The cuboidal shape facilitated the 

positioning of the samples in the correct orientation on the diffractometer such that one of 

the low index reflections was detected by the transverse detectors.  

Figures 4.11 and 4.12 show the resulting diffraction pattern evolution. The 

samples were compressed to ~3% total strain in each case almost all of which was 

recovered owing to the pseudoelastic nature of the material. The bottom plots represent 

zero strain and the top plot represents maximum strain. The 111 and 110 families of 

reflections are seen in the transverse bank of the sample compressed in the 145 and 144 

directions respectively. Trends similar to the 418 sample are seen in these two cases 

where the fundamental peaks increase in intensity and the superlattice peaks decrease.  
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Figure 4.11 Indexed diffraction patterns of sample compressed in the <145> crystallographic 
direction from (a) transverse bank and (b) longitudinal bank. Bottom plot is at zero strain and the 
strain increases progressively in each of the upper plots. 
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Figure 4.12 Indexed diffraction patterns of sample compressed in the <144> crystallographic 
direction from (a) transverse bank and (b) longitudinal bank. Bottom plot is at zero strain and the 
strain increases progressively in each of the upper plots. 
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4.2.5 Individual peak behavior  
 

Peaks from the above diffraction pattern were fitted individually and parameters 

such as d-spacing, intensity, peak breadth etc. were obtained. Figure 4.13 shows peak 

intensity and micro strain as a function of the crosshead movement for the 100 and 111 

type peaks. The two peaks are from two different experiments on different samples. The 

peak intensities have been normalized such that the intial peak intensity in each case is 

one. Micro strains are defined as           

                        

         (4-2) 

 

where dhkl is the d-spacing of the hkl reflection and d0
hkl is the initial d-spacing. 

Microstrains are used as a representation of the normalized peak position to compare the 

relative movements of the peaks.  

As seen from the plots, the different peaks of the same family (100 or 111) behave 

differently.  The peak intensities do not change significantly in the elastic region as was 

expected but change by a huge amount as the pseudoelastic strain increases. The 

intensities of all the fundamental reflections increase while those of the superlattice 

decrease. The intensities of the 400, 800 and 444 increase by about 300-400 % while the 

decrease in the intensity of 600, 111, 222 and 333 is about 20-50%. The 200 peak almost 

entirely vanishes. The microstrains of 200/600 and 400/800 pairs seem to move together 

but microstrains of the 111 family changes independent of each other.  
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Figure 4.13 (a) and (b) show how the peak intensities of the 100 and the 111 family of reflections 
vary in the transverse bank as a function of strain. (c) and (d) show the micro strains of the same 
reflections. 
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4.2.6 New peaks 
 
 

A closer inspection of the diffraction pattern yields the appearance of certain new 

peaks upon the application of strain, the most distinct of which are presented here. The 

first of these peaks can be seen from the diffraction pattern of Figure 4.9 (a). This peak 

appears as a broad peak near the disappearing 200 peak. When plotted on an expanded 

vertical scale it can be distinctly seen as shown in Figure 4.14. Figure 4.14 (a) is the 

diffraction pattern before straining the sample. Figure 4.14 (a) and (b) are on the same 

scales for comparison. The new peak can clearly be seen at a d-spacing which is slightly 

higher than the 200 d-spacing. This new peak disappears as we unload the sample. 

Figure 4.15 is a series of plots of the raw neutron diffraction data obtained from 

the ISAW software.  The vertical scale represents the tube number of the detectors of the 

neutron instrument. The horizontal scale is the d-spacing. The brightness of the spot (in 

this case the darkness) is a measure of its intensity. The way in which the tubes are 

numbered caused the pattern to break into two parts as in Figure 4.15 (b) and (c) with a 

blank band in between. As the sample is strained, 4.15 (b) and (c), the intensity of the 200 

peak decreases. At the same time the new peak discussed above (Figure 4.14) appears as 

a streak and becomes more intense with further straining. Upon unloading the new peak 

disappears.  
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Figure 4.14 The transverse bank diffraction pattern showing a new peak in (b) near the original 
(a) 200 reflection 
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Figure 4.15 Laue-like images (ISAW images) drawn from the raw diffraction 
data showing the new peak. (a) zero strain (b) ~2% strain (c) ~3% strain 

(a) 

(c) 

(b) 
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A separate new peak with a character quite different from that described above is 

seen near the 400 reflection. It appears as a small satellite reflection near the 400 peak 

(Figure 4.16). The peak intensity is quite small and is not detected in the binned 

diffraction pattern as it is lost in the background. However if the data are plotted one tube 

at a time, the new satellite reflection appears in the same tubes as part of the 400 peaks. 

Data from five such tubes have been plotted in Figure 4.16. The peak disappears upon 

unloading the sample.   

 

4.3  HIPPO instrument 
 

HIPPO (High-pressure preferred orientation neutron diffractometer) is a 3rd 

generation neutron diffractometer at LANSCE. The short beam path (~ 9 m) allows high 

neutron flux and thus good intensities although at the cost of some resolution in d-space. 

The most unique feature of HIPPO is its huge detector coverage. The instrument has five 

sets of detectors from 10o to 150o scattering angles, as shown in Figure 4.17 (a). Figure 

4.17 (b) and (c) compare the detector coverage of the SMARTS and the HIPPO 

instruments in angular space shown on a stereographic projection.  

Although primarily used for the measurement of preferred orientations and for 

high pressure experiments the diffractometer has diverse capabilities. The design of the 

instrument allows different modules to be lowered into the diffractometer. Among the 

various modules that were available the CRATES module was of interest in the study of  
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Figure 4.16 Satellite reflections seen near the 400 peaks upon plotting the data one tube at a time.  
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Figure 4.17 (a) HIPPO schematic showing the placement of detectors. (b) SMARTS detector 
coverage on a stereographic projection. (c) HIPPO detector coverage.  

 

 

(a) 

(b) (c) 
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pseudoelasticity in Fe3Al. CRATES is a uni-axial stress-rig which allows in situ tensile 

and compression experiments. 

 

4.3.1 In situ tensile experiment in HIPPO  
 

Due to the limited detector coverage of SMARTS (Figure 4.17) most of the low 

index peaks of single crystal Fe3Al could not be detected. In order to have more detector 

coverage and thus to be able to gather information about the behavior of other peaks, in 

situ tensile experiments were conducted in the HIPPO diffractometer.  Dog bone shaped 

tensile specimen was loaded in tension in the <418> direction. Similar to the SMARTS 

experiments, the specimen was at 45o to the beam direction.  

The results of the findings are summarized in Figure 4.18. Each ring of detectors 

in HIPPO is divided into ten detector panels. Three of the ten detector panels of the 40 

degree bank which show some interesting activity of low index peaks have been plotted 

in the figure. Since the HIPPO diffractometer is only ~9m from the moderator the 

resolution of the time of flight and hence the d-space is not as good as the SMARTS 

diffractometer (~32m from the moderator). Therefore, it was necessary to plot the data 

one panel at a time and thus get rid of unwanted background from the other panels which 

did not contain any low index peaks.  

 Since more applied strain can be recovered during tensile loading (chapter 3) as 

compared to compression, the samples were strained to ~ 6.1 % before they were 

unloaded. As with the SMARTS experiments, these experiments also showed big  
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Figure 4.18 The evolution of diffraction pattern as a function of strain during tension experiment 
in HIPPO. Only the interesting detector panels have been included. 
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changes in the diffraction pattern. Upon unloading, the sample recovered most of the 

applied strain and the diffraction pattern was again close to the original diffraction pattern 

without load.  

The specific peak behavior of some of the major peaks that were detected in these 

experiments was somewhat different from the SMARTs experiments. For example, the 

400 peak intensity in this case decreased as compared to the 400 peak in the transverse 

bank of SMARTS which increased (Figure 4.9). The 200 peak seemed to move to a 

higher d-spacing and grow in intensity. However it was not clear, whether in fact was the 

original 200 peak. The resulting diffraction pattern may be a superposition of the 200 and 

a completely new peak.  

Another broad new peak similar to it and at approximately the same position was 

observed in another detector panel (panel 26). This new peak appeared at a d-spacing 

where no D03 peak was expected. The 220 peak intensity increased by a huge amount. 

Again it was not clear from the data whether the resulting big peak was the original peak 

or the superposition of the 220 peak and a new peak. The change in the peak position of 

both 200 and 220 (if indeed they were the original peak) was orders of magnitude higher 

than that expected from elasticity.  Also notable was the fact that the broad peak near the 

200 reflection was similar in broadness and peak position to the broad peak that appeared 

near the 200 reflections in the SMARTS transverse bank (Figure 4.14). 
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4.4  Shape memory effect  
 

The details of the shape memory effect shown by single crystal Fe3Al have 

already been discussed in chapter 3. In this section results of low temperature experiment 

done in the SMARTS diffractometer are reported. The sample was taken through a full 

shape memory thermo-mechanical cycle and neutron diffraction patterns were taken at 

various points along this cycle.  

The sample used in this case was a cylindrical sample with a diameter of 6 mm 

and a length of 14.4 mm. The sample was aligned for compression in the <418> 

direction. A low temperature furnace based on cryogenic cooling was used at the 

SMARTS instrument. The low temperatures were achieved by using special grips 

through which liquid nitrogen flows at a controlled rate. The temperature was monitored 

by low temperature thermocouples located at various locations along the grips. The 

temperature was controlled by controlling the flow rate of liquid nitrogen in the grips. 

Temperatures as low as 95 K can be achieved using this system. 

In the first part of the experiment the sample was taken to low temperatures 

without any load. Diffraction patterns were taken at various points during the cooling 

process. Unlike conventional shape memory alloys like NiTi, Fe3Al did not show any 

phase transformation upon cooling to ~95 K.  

The sample was then compressed to ~3 % total strain at this low temperature. 

None of the applied strain was recovered upon unloading as seen in Figure 4.19. The 

diffraction pattern however, changed in a similar way as the room temperature 

experiments.  



 90

 

Figure 4.19 Compression stress-strain curve at ~95 K. No recovery occurs upon unloading. 

 

Figure 4.20 (a) through (d) show the effect of loading on the diffraction pattern. 

Most notably, the 200 peak intensity decreases drastically. Other peaks also change in a 

similar way.  

The sample is then heated up and brought up to room temperature. Throughout 

the heating process a very small load (~10 MPa) is applied to hold the sample in place. 

Also the machine is kept in load control mode so that the crosshead would move so as to 

keep the constant 10 MPa load on the sample. The crosshead movement was monitored 

as the sample was heated up (Figure 4.21). Since the temperature of the sample was ~95 

K at the beginning of this part of the experiment there was a significant amount of 

thermal contraction of the samples as well as the grips etc.   
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Figure 4.20 Diffraction Patterns (a)-(d) low temperature compression. (e)-(h) recovery upon 
heating (shape memory). 

(a) 

(h) 

(g) 

(f) 

(e) 

(d) 

(c) 

(b) 

200 
400 
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Figure 4.21 The change in slope of the crosshead movement (at constant load control) with 
temperature marks the commencement of shape memory type recovery. 

 

As the sample was heated the sample and the grips expanded in a linear way.  At 

approximately 140 K, there was a significant change in the slope of this line. After the 

sample was at room temperature the measured length showed that almost all the applied 

strain was recovered. The change in slope corresponded to the commencement of 

recovery of the shape memory material.  

Throughout this cycle diffraction patterns were recorded. These are shown in 

Figures 4.20 (e) through (h). The peak intensity of the 200 peak was plotted as a function 

of the run number (Figure 4.22) which corresponds to the sequence of events described 

above.  Note that the intensity does not return to the original value. This may be due to a 

time dependent component of the recovery as discussed in chapter 3. 
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Figure 4.22 The 200 peak intensity during different parts of the shape memory cycle. 
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4.5  Mechanism 
 

The changes in diffraction pattern upon loading points towards some change in 

the structure of material. There could be two possible reasons for these big changes in the 

diffraction pattern. One, changes have occurred in the crystal lattice. Two, the lattice has 

reoriented or a rotation has occurred in effect (e.g. twin). Since the SMARTS detectors 

are small in size it was thought that a rotation could be responsible for the peak intensity 

changes. Therefore, simulations of what happens when certain twins form were done in 

order to explain the observed changes. After the data were carefully analyzed it was 

concluded that they could not be explained by a rotation in the crystal lattice.  

In chapter 1 three possible mechanisms were discussed. Twins can be eliminated 

because no rotation was observed. It is also highly unlikely that the APB mechanism is 

operative. Although the passage of partial dislocations would increase the disorder in the 

crystal, huge changes in peak intensities are not expected from such dislocation motion. 

Furthermore it is unable to explain the new peaks and satellite reflections. 

The occurrence of new peaks (Figure 4.14, 4.15 and 4.18) and satellite reflections 

(Figure 4.16) suggests that a phase transformation is the most likely operative mechanism 

for pseudoelasticity in Fe3Al. Unfortunately a full detailed diffraction pattern could not 

be obtained from either of the neutron diffractometers (HIPPO or SMARTS) and 

therefore the details of this transformation could not be determined using the current data.   
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Conclusions and Future Work 
 
 
 

5.1  Conclusions 

 

Fe3Al single crystal shows pseudoelastic and shape memory behavior in the 

<418> loading direction. Strains up to 10% were recovered in tension, with a big stress-

strain hysterisis. Less strain was recovered during compressive loading where the stress-

strain curve also showed strain hardening. Parallel step lines appeared on the sample 

surface corresponding to the pseudo-elastic straining, which disappeared on removal of 

the strain. These were shown to be traces of the (211) planes. Wavy slip lines were seen 

on samples strained beyond the recoverable limit, which did not disappear after 

unloading. These slip lines trapped some of the parallel step lines. Pseudo-elastic 

recovery in Fe3Al was found to be a function of time. At temperatures higher than or 

equal to 120oC, pseudo-elasticity was lost. Shape memory effect was observed under 

tension and compression at very low temperatures (~ -178oC). The unloading part of the 

tensile stress-strain curve showed that the variation of recovery stress with temperature 

followed the Clausius-Clapeyron law. Although the nature of pseudo-elasticity in single 

crystal Fe3Al has many of the same characteristics as well known SMAs, Fe3Al does not 

show all the physical effects of SMAs.  
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Neutron diffraction patterns as a function of a strain showed large reversible 

changes in peak intensities. The changes in the superlattice and the fundamental peak 

intensities of the same family varied in different ways. Certain broad new peaks and 

satellite reflections appeared upon loading. All these changes in the diffraction pattern 

were reversible and the diffraction pattern went back close to the original pattern upon 

unloading of the sample. It was concluded that the changes in diffraction pattern did not 

represent any rotation indicative of twin formation. The appearance of new peaks pointed 

towards a possible phase transformation. 

 

5.2  Future work 

The details of the transformation that is responsible for pseudoelasticity in Fe3Al 

needs to be studied. Additional diffraction experiments have to be done in a 

diffractometer which is specifically built for single crystals with better spatial resolution.  
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