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ABSTRACT 

We explore the use of different strategies for the construction of optimal choice 

experiments and their impact on the overall efficiency of the resulting design. We then 

evaluate how these choice designs meet the desired characteristics of optimal choice 

designs (orthogonality, level balance, utility balance and minimum level overlap). We 

further explore the feasibility of using entropy as a secondary measure of design 

optimality. We find that current algorithms afford little flexibility for using this 

secondary measure.  We further study the impact of misspecification of the assumed 

parameter values used in creation of optimal choice designs. We find that the impact of 

misspecification varies widely based on the discrepancy between the true and assumed 

parameter values. Further we find that entropy becomes a more feasible secondary 

measure of design optimality if one considers the potential of misspecification of the 

values. Current design and analysis strategies for stated preference experiments assume 

that compensatory decisions are made. We consider how different decision strategies may 

be represented through manipulating the assumed parameter values used in creating the 

choice designs. In this context, the consequences of misspecification of the decision 

strategy are also evaluated. Given the large prevalence of no-choice choices in stated 

preference experiments, we study how different measures of choice complexity impact 

the selection of the no-choice alternative. We conclude by suggesting a comprehensive 

strategy that should be followed in the creation of choice designs.  

Keywords: Stated Preference Experiment, Discrete Choice Experiment, Entropy, 
Efficiency, Non-compensatory Decision Strategy, No-Choice Alternative 
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1. Introduction 

1.1 Choice as a Way of Life 

Choice is a way of life. In each and every activity there are choices – what to eat, 

where  to eat, where to live, what to buy – the options are innumerable and as a result 

companies and not-for-profit organizations now find that they need to be more attentive 

to the needs and wants of their customers.  

The term customer has assumed a much wider definition in recent years. The 

American Heritage Dictionary of the English Language indicates that a customer is “1. 

One that buys goods or services or, in a more informal setting, 2. An individual with 

whom one must deal”. The customer to a marketing department is the individual who 

purchases the organization’s goods or services; to a city government a customer is each 

of the constituents of the area; and to an environmentalist the customer is any individual 

impacted by an impending environmental change. Every organization must know who 

their customers are, what they need and want; otherwise the customers can choose to take 

their business elsewhere.  

The rapid pace of change faced by organizations, whether for-profit or not-for-

profit, evolves as new organizations enter the market and others leave. These 

organizations require tools to help monitor the needs and wants of their customers. Stated 

preference techniques afford organizations the opportunity to devise studies to 

comprehensively understand these needs and wants.  

Stated preference methods are pervasive in many fields, though often identified 

by different names, including conjoint analysis, contingent valuation, and discrete choice 
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analysis. In Marketing, the studies of consumers and the choices they make is a mature 

and well understood field. Starting with the seminal work of Tukey and Luce in 1964, the 

field of conjoint analysis was developed as an experimental technique to study 

consumer’s choices. The field has evolved over time and is now a subset of a collection 

of techniques known as stated preference analysis. In Economics, the field of contingent 

valuation is a well researched, documented and applied field to understand consumer’s 

preferences for non-market goods. The techniques in this field are also a subset of those 

known as stated preference analysis. Economic experimentation is classified into two 

broad categories, nomotheoretical experimentation (which is motivated by well-

articulated formal theories) and nomoempirical experimentation (studying the effects of 

variables not well understood in formal theories). Stated preference techniques applied in 

economics most often relate to nomotheoretical experimentation (Madden 1995). Many 

other fields, including medicine and transportation, have adopted and researched the 

techniques available through stated preference analysis.  

Although the modeling and cognitive techniques of stated preference analysis are 

well researched, both practically and academically, the experimental design work is not 

as complete as work on models. This affords an opportunity for statistical research on the 

design of stated preference studies. 

1.2 The Evolution of Conjoint Analysis 

 Discrete choice analysis and conjoint experiments are the most widely applied 

techniques for measuring and analyzing the preferences of consumers by marketing 

professionals. The application of these techniques is embraced by academia and industry 
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making this a rich field with great potential for further development, due especially to the 

constraints and complexities associated with experimental design in the industrial 

framework.  The seminal work on conjoint analysis was published in 1964 by Luce, a 

mathematical psychologist, and Tukey, a statistician. In 1971, Green and Rao introduced 

the concepts of conjoint analysis to the field of marketing, and since that time there have 

been many well documented applications of the techniques. For a comprehensive review 

of the use of conjoint experiments see Green et al’s (2001) article Thirty Years of 

Conjoint Analysis: Reflections and Prospects. The application of conjoint techniques, 

especially in the world of marketing, has been conducted worldwide. 

 Conjoint analysis asks respondents to sort (no ties allowed), rate or rank (ties 

allowed) a set of profiles, constructed using a selected group of attributes, on a given 

scale, for example the likelihood of purchase. The profiles given to the participants are 

designed through the use of experimental design techniques. Once compiled, analysis of 

this data is typically completed through the use of ordinary least squares (OLS) which 

provides estimates of the partworth values of each attribute. These partworths reflect the 

weights that respondents place on the levels of the attributes used to construct the 

experimental profile. The results can then be used to predict the market share for certain 

products or to respond to market segments.  

 Discrete choice experiments were introduced to the marketing literature in 1983 

by Louviere and Woodworth  and have since become a popular choice for studying the 

choice behavior of consumers. In discrete choice experiments participants are provided 

with a choice set that contains several different alternatives (profiles) and asked to make a 

choice among them. Often this choice is phrased as “Given the need and these options, 
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which product would you select?” These alternatives are similar to those used in conjoint 

analysis as they are constructed through the use of experimental design techniques, but 

are presented in choice sets of smaller size. Each participant is presented with several 

choice sets and asked to make a set of sequential decisions regarding their preferences. 

 Stated preference experiments have several advantages over traditional conjoint 

experiments. First, the data collection for a discrete choice experiment involves simulated 

purchase decisions (Haaijer, Kamakura and Wedel 2001). The participant is provided 

with several different options and asked to select the one they would be the most likely to 

purchase, unlike the rating, ranking or sorting of a conjoint experiment. Second, stated 

preference methods provide a direct estimate of the market share for each product in the 

study, unlike conjoint experiments where these market shares must be estimated after 

estimating the parameters. Third, stated preference experiments provide the option for 

utilizing alternative or brand specific attributes and levels. Lastly stated preference 

experiments provide the ability for the consumer to state that they find none of the 

purchase options provided acceptable by making a no purchase decision.  

 Although stated preference experiments provide many advantages over traditional 

conjoint studies, there are several disadvantages that can be identified. First, the choice 

response in a stated preference experiment provides less information than the rating, 

ranking or sorting of the traditional conjoint experiment. Second, large sample sizes from 

each participant are often required in order to collect enough information for the results to 

have the necessary precision. Lastly, we are often unable to model the results of a stated 

preference experiment at the individual level as is done in conjoint experimentation. 
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Sample size restrictions often require that the modeling be completed at the aggregate 

level, whether by the entire population or by previously defined meaningful segments.   

1.3 Evolution of Stated Preference Experiments 

 How consumers make a choice from among competing products is a major 

concern for many involved in marketing research. Understanding how the consumer 

makes decisions concerning multi-attribute products is analogous to understanding each 

consumers “black box” of decision making. Although difficult to accomplish, the ability 

to understand these internal processes provides a wealth of powerful information from 

which market share elasticities with respect to price, features and other variables can be 

calculated. 

The use of choice theory in economics is a mature field, although it has primarily 

focused on the use of field data, also known as scanner data or revealed data, for the 

construction of the model. Field data, while entirely reflective of a consumer’s 

preference, cannot answer every question about the consumer’s choices. Field data often 

contains many limitations that can restrict its potential uses in economic analyses. 

Confounding or high collinearity between the observed attributes and a lack of variability 

in many attributes makes it impossible to gain a true picture of the elasticities from field 

data. Further, in some applications limited or insufficient sample sizes results in 

imprecise parameter estimates (Madden 1995). 

The use of experimental choice data provides a solution to many of the problems 

associated with field data. First, the circumstances of choice are precisely specified, 

eliminating the need to analyze the field data to identify effects that may be dependent 



 

 6

upon one another. Second, experimentation allows the estimation of the effects of interest 

with maximum precision. Thirdly and most importantly, in the case of new product 

introductions and any other new attribute or attribute level, there may not exist field data 

from which to understand consumer choice preferences. As a result, experimental data is 

a powerful tool for understanding the preferences of consumers. This data can be used 

alone or in conjunction with field data to create a more robust model. 

Questions still remain about the validity of the data resulting from stated 

preference studies. Some believe that the results of stated preference studies may diverge 

from true preferences or revealed preferences due to experimental error or overly 

complex experimental designs. Others question the reliability of these designs. Reliability 

is generally considered to be comprised of two components, validity and stability. A 

design without validity indicates that there is a discrepancy between the stated preference 

data and actual behavior. The stability of the study concerns the magnitude of the random 

error present in the study (Madden 1995). 

Both types of data, revealed and stated preference, can be found to have 

limitations and advantages. When designing a study, it is important to pay special 

attention to the needs of the study and to make careful considerations as to which sort of 

data will best suit those needs. In some situations, such as new product introductions and 

extensive product updates, there may be no alternative other than to use stated preference 

data as the revealed preference data may not exist. In other situations a combination of 

the field and stated preference data, either in modeling or validation, may be the best 

approach for the study. 
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1.4 Outline of Dissertation 

 Section Two of this dissertation will provide an introduction to stated preference 

models. Terminology and key topics will be introduced.  

 Section Three will discuss the cognitive reasoning of consumers in the process of 

making choices. The different decision strategies employed by consumers and their 

influence on stated preference experiments are explored. 

Section Four will discuss the design of stated preference experiments. An 

overview of existing design methodologies will be presented along with their current 

applications. The efficiency of a choice design will be discussed as well as existing 

techniques for searching for more efficient designs in the design space. Limitations of the 

existing design techniques will also be presented and discussed. In addition measures for 

evaluating the complexity of a choice design will also be discussed.  

 Section Five will discuss and evaluate optimal design strategies for stated 

preference experiments. Several different methods of constructing efficient choice 

designs have been suggested in the literature and are reviewed and critiqued here.  

 Section Six addresses optimal choice designs with respect to the desired 

characteristics of choice designs. A review of the assumptions made in creating optimal 

designs and possible violations due to the structure of choice designs is also made.  

 Section Seven explores creating optimal designs that are optimal on two 

characteristics, efficiency and entropy. Simulations are used to explore the range of 

entropy that can be achieved on both optimal and randomly created designs.  
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 Section Eight explores the consequences of misspecification of the assumed 

parameter values used in the creation of optimal choice designs to the entropy and 

efficiency of the choice designs created. This is explored through simulating optimal 

choice designs under a variety of assumed parameter vectors.  

 Section Nine discusses how non-compensatory decision strategies can be 

represented though varying the assumed parameter values used in the creation of optimal 

choice designs. Recommendations for making these assumptions are presented.   

 Section Ten discusses the issues in modeling and design when the no-choice 

alternative is presented as an option in the choice set. The effect of the complexity 

measures introduced in section four on the probability of no-choice responses will also be 

evaluated. In addition the effect of losing specific observations in the experiment to the 

overall efficiency of the design will be studied.  

 Section Eleven will discuss the proposed steps to be used in creating choice 

experiments. The individual steps and the reasoning behind them will be discussed. In 

addition a sample experiment will be created using these steps. 

 Section Twelve presents a summary of the main accomplishments of this 

dissertation. 

 Section Thirteen presents suggestions for future research opportunities in the 

design of stated preference experiments.  
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2. Stated Preference Models 
 
 This chapter will discuss the history of probabilistic choice models. We will 

provide a background of the necessary terminology and models intended to be 

comprehensive enough that a novice in the field can achieve a basic understanding of the 

concepts being employed.  

 Stated Preference methods employ the techniques of both linear models and 

probabilistic choice models. The response format for the stated preference experiment 

determines the model that will be used. If the response for the stated preference 

experiment is a scheme of rating then the theory of linear models will be used. If the 

response for the stated preference experiment is ranking where there are five or more 

levels, then again the linear models theory can be used (with fewer than five levels we 

must revert to non-linear methods for analysis). When the response for the stated 

preference experiment is a choice, then a probabilistic choice model will be employed. 

We will assume the reader has a background in linear models and will introduce 

probabilistic choice models here. 

Stated preference methods have been used in the fields of economics, marketing, 

transportation, and even medicine. These fields see the benefits of understanding the 

needs and wants of their customers, and stated preference methods provide a technique 

for easily assessing the part-worths of consumer’s values. 

There are many different models of choice behavior, all of which share three 

central components:  

• Objects of choice (e.g., computers) 
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• Sets of attributes (e.g., monitor size, hard drive size, memory, etc.)  

• A model for understanding the individual choices and behavior patterns 

for the population  

There are a plethora of different responses to choose from, including but not limited to: 

1. Expressing Degrees of preference by rating options on a scale 

2. Completely ranking from most to least preferred 

3. Choosing either “Yes, I like this option” or “No, I do not like this option” 

4. Choosing one option from a set of competing ones 

The response is selected for the project based upon the desired results from the study. 

2.1 Terminology and Notation 

 The terminology and notation of stated preference techniques is central to 

understanding the methods and models of individual choice behavior. Choice models are 

designed to understand the utility consumers have for a service or good. This utility is 

identified by having consumers evaluate sets of alternatives, called profiles or choice sets, 

for the relative preference for each alternative. Each alternative is comprised of several 

attributes, the components that comprise the product or service being evaluated. A series 

of consumers evaluate sets of profiles and this information is used to determine their 

utility for the product or service. An individual’s utility is decomposed into two 

components, the systematic and random components as follows:  

Uiq = Viq + ∈iq  

where Uiq  is the true, unknown utility of the ith alternative for the qth individual, Viq is the 

systematic component or representative utility of the ith alternative for the qth individual 
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and ∈iq is the unobserved individual idiosyncrasies or tastes of the qth individual. The 

systematic component of the utility, Viq, is decomposed into the sum of the attributes 

times their weight. It is assumed that the Viq are homogeneous across the entire 

population or the segment under consideration. Parameter estimation for an individual’s 

or segments utility is completed using maximum likelihood techniques. An individual 

will select alternative i over alternative j if Uiq > Ujq. The ∈iq are assumed to be 

independent and identically distributed with a distribution that depends on the choice 

model selected for the particular study. 

Basic choice experiments are estimated using logit or probit models. The models 

are validated by checking the assumptions discussed above, and are evaluated using 

overall goodness of fit tests and likelihood ratio tests. We shall derive the basics of the 

Multinomial Logit Model in the next section. The multinomial logit model is the 

workhorse of probabilistic choice models, although it is often too simplistic and 

restrictive in its assumptions. 

2.2 Derivation and Assumptions of the Multinomial Logit Model 

 Probabilistic choice models originated in Psychometrics with Thurstone’s (1927) 

work. His random utility model became the basis for the economic theory underlying 

discrete choice and stated preference models. These models begin with the assumption 

that each consumer chooses the alternative with the greatest utility.  

 As discussed above, it is assumed that each consumers true utility can be 

decomposed into a systematic component Viq and random error ∈iq: 

Uiq = Viq + ∈iq  
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An assumption is also made that an individual selects the alternative with the greatest 

utility, known as utility maximization. The probability of selecting alternative i from 

choice set with J alternatives is given as:  

),...1,( JjUUPP jii =≥= or 

),...1,( JjVVPP ijiji =+−≤= εε  

Without loss of generality, if we assume that the an individual always chooses the first 

alternative then the choice probability above can be specified as: 

),...,,( 11131312121 εεεεεε +−≤+−≤+−≤= JJ VVVVVVPP . 

Therefore the probability of selecting alternative 1 will be: 
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Any probabilistic model we select will have the same derivation of the choice 

probabilities. The models differ only in their specification of the error distribution. A 

traditional statistical assumption that the errors follow a multivariate normal distribution 

would result in the multinomial probit (MNP) model, a well-known choice model with no 

closed form. Selection of the error distribution as a Gumbel or extreme-value distribution 

will result in a closed form representation of the probabilities. This is the well known 

multinomial logit (MNL) model (McFadden, 1974). The Gumbel distribution resembles 

the normal distribution except that it is slightly positively skewed. Its probability density 

function is:  
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 Since it is assumed that the errors are independently distributed, the joint 

probability density function can be written as the product of the J univariate density 

functions. Thus: 
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If we use the representation of the standard Gumbel distribution, we see the following: 
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We can evaluate the integral as follows: 
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This is formulation of the standard MNL model.  
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2.3 Properties of the Logit Model 

 The logit model formulation depends on the Independence from Irrelevant 

Alternatives Axiom (IIA). Suspected violation of this property can require the selection 

of a different choice model for the analysis.  

The IIA axiom assumes that the ratio of the probabilities of choosing one 

alternative over another (given that both alternatives have a non-zero probability of 

choice) is unaffected by the presence of any additional alternatives in the choice set. 

Although this is a fundamental assumption in the early work of stated preference 

modeling, it is an often unrealistic and highly improbable assumption in real applications. 

The original derivation of the logit model by Luce (1959) depends on this assumption. 

For example, consider the choice presented in Figure 1. A consumer is asked 

which form of transportation he would take to work given the option. We see that the 

available options are walking, taking a bus, and driving his or her own car. From this 

image we can determine the individual’s preferences for transportation to work. The 

Independence from Irrelevant Alternatives Axiom says that if a alternative is entered into 

this scenario that the ratios of preference between the existing three choice objects will 

remain constant. Assume that the determined choice probabilities are 50% for the option 

of driving ones own car, 25% for walking and 25% for taking the bus. Now consider this 

second choice option seen in Figure 2. IIA tells us that our choice participant should still 

prefer the car to the white bus in the same fashion as before. In this scenario the white 

bus and the red bus are identical except for the color of the bus. This clearly 
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Figure 1 - A Sample Choice Set 

 
 
 
 
 

 
 

Figure 2 - A Sample Choice Set with a Fourth Alternative 
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exhibits a violation of the IIA axiom, we would expect that the ratio P(car) / P(white bus) 

to increase since the red bus option will clearly impact P(white bus) more than it impacts 

P(car). 

 Hausman and McFadden (1984) propose a test that compares the logit model with 

the more general nested logit model to determine if IIA is violated. McFadden (1987) 

proposes a regression-based specification test for the logit model to evaluate the IIA 

assumption.  

2.4 Choice Models Not Subject to the IIA Assumption 

 One of the most widely discussed and often problematic properties of the simple 

logit model is the IIA property. Several suggestions have been made by researchers of 

models that are robust to this property and allow a richer pattern of alternative 

substitution.  

2.4.1 The Tversky Model (EBA) 

 Tversky (1972) proposed a probabilistic choice model in which the decision rule 

is stochastic while the utility is deterministic. He shows that the EBA model is not subject 

to the IIA property and is consistent with the theory of random utility maximization. 

These advantages are offset by several weaknesses. First, the attributes are assumed to be 

binary which may be unrealistic in describing the alternatives. Second, the number of 

parameters that must be estimated increases exponentially with the number of choice sets 

in the experiment. This can result in the estimation of the model becoming 

computationally infeasible, requiring the use of heuristic choice techniques.  
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2.4.2 Generalizations of the Logit Model 

 The multinomial logit model discussed earlier has enjoyed the most widespread 

application. Several extensions of the multinomial logit model have evolved including the 

nested logit model, the generalized extreme value (GEV) model and the universal or 

mother logit model.  

 The nested logit model was proposed by McFadden (1978) and has the advantage 

of avoding the IIA problem by viewing choice as a hierarchical decision process. The 

decision process is segmented a priori into a tree-like structure. Estimation of the nested 

logit model requires sequential applications of the logit model for each branch of the 

decision making process.  

 The GEV model was also proposed by McFadden (1978) as a more general 

discrete choice model. The logit model and the nested logit model are both special cases 

of the GEV model. The GEV model has been shown to be consistent with the theory of 

random utility maximization.  

 The universal or mother logit also avoids the IIA problem. The IIA is avoided 

through estimation of cross effects. McFadden (1975) proposed this model and noted that 

it is useful for testing different model specifications but is generally inconsistent with 

random utility maximization. 

2.4.3 The Multinomial Probit Model 

 The multinomial probit model is the most flexible model for specification of the 

error structure in its utility functions (Daganazo 1979, Currim 1982). Unlike the logit 

model, the probit model allows the error components to have different variances and also 
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to be correlated. Another advantage of the probit model is that the covariance matrix can 

be specified to avoid the IIA problem (Hausman and Wise 1978) . One disadvantage of 

the probit model is that estimation requires the calculation of an integral in one fewer 

than the number of choice sets dimensions. Recent computational and simulation 

advances have improved the feasibility of this integration (McFadden 1989, Pakes and 

Pollard 1989). 

2.5 Summary and Discussion 

 The choice of which model to employ depends on several different factors. First 

one must consider the type of response desired from the experiment. If the response is 

continuous in nature then linear model theory can be employed. If, however, the response 

is of a choice format then one must use a probabilistic choice model.  

 Which choice model to use remains controversial. Determination of the 

appropriate choice model prior to specifying the design of the experiment is highly 

desirable. If one selects too simple or complex a choice model then the usefulness of the 

experiment can be significantly impacted. 
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3. How Consumers Make Choices 

3.1 Introduction 

Researchers in the field of judgment and decision making (JDM) have studied 

how both individuals and organizations make decisions. Within the JDM field some 

researchers have formulated descriptive and mathematical models of different decision 

making strategies while others have studied the use of compensatory and non-

compensatory decision strategies by decision makers as task complexity and context 

change (Shugan 1980).  

3.2 Decision Strategies 

The JDM literature has established that individuals utilize many different decision 

strategies depending on the context of the decision being made. The factors influencing 

the decision strategies employed include, but are not limited to the product category, 

format in which the information is presented, time of day, time pressure and alternative 

similarity (utility balance). 

The framework for the use of heuristics by decision makers was first formalized 

by Shugan (1980) where he demonstrates the theoretical basis for strategy selection as a 

compromise between making the right decision and reducing the effort needed to make 

such a decision. Shugan (1980)  discusses four strategies employed by decision makers 

that are intended to save decision making costs by simplifying the choice process. The 

four strategies are conjunctive, disjunctive (maximin), minimax and lexicographic. Using 

the conjunctive process, any product not meeting the minimum cutoff level on any 
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attribute is eliminated from consideration. In the disjunctive (maximin) strategy products 

are compared on their most valued attributes and the product with the highest rating on 

the best characteristic is chosen. Using the minimax strategy the products are evaluated 

on their weakest attribute and the product with the best levels for the weakest attribute is 

chosen. The lexicographic strategy ranks the attributes in order of importance and then 

the product that ranks the best on the most important characteristics is chosen. This is an 

extension of the disjunctive strategy. 

Another model of identifying strategy was developed by Russo and Dosher 

(1983). Their strategy concentrates on observing the strategies employed by decision 

makers as opposed to modeling their effect on choice behavior. Their studies identify two 

classes of processing: holistic and dimensional. In the holistic strategy, the alternatives 

are processed first. In the dimensional strategy, the attributes are processed first. In 

addition, their study identifies two simplification strategies employed by decision makers 

in the choice process. The first strategy, dimensional reduction (DR), occurs when one 

ignores attributes deemed of small importance in the choice process. The second strategy, 

majority conforming decisions (MCD), occurs when one ignores the magnitudes of 

differences and gives directional, but equal importance to all attributes. Their results do 

not see these simplification strategies tied to choice difficulty, which implies that they 

may be part of the routine decision making process.  

It has been shown that the complexity of experimental choice tasks, including the 

number of attributes, the number of alternatives in the choice set and the similarity of the 

alternatives in the choice set do not influence the parameter estimates in discrete choice 
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experiments,  but instead influences the between subject variance components. This work 

includes a study addressing the following issues: 

• Does task complexity affect decision strategy selection in experimental 

choice tasks? 

• Does cumulative cognitive burden created by multiple choice scenarios 

done in sequence affect the selection of decision strategy by respondents? 

Swait and Adamowicz (2001) attempt to identify the number of latent decision making 

states experienced by participants over the course of an experiment. They define 

complexity of the choice process through an information theoretic process. Given a set of 

alternatives  that are described by a probability distribution π(x), the entropy (or 

uncertainty) of the choice process is defined as:  

∑ ≥−=
j

jjx xxH 0)(log)()( πππ  

Entropy will be minimized when there is one dominant alternative in the choice set and 

will achieve a maximum if each of the alternatives in the choice set is equally likely. 

Further, as the number of equally likely alternatives in a choice set increases so does the 

entropy. This allows the entropy measure to take into account the size of the choice set in 

the calculation of the difficulty of the choice scenario. In addition to calculating an 

individual measure of entropy for each alternative, the cumulative entropy of the choice 

process can be measured. This cumulative entropy measures the total amount of 

uncertainty faced by an individual through a sequence of choices (we can calculate the 

sum of the entropy for multiple choice sets due to the fact that entropy is additive) 

(Taneja 1996).   
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Measures of choice task uncertainty and cognitive burden can be used to identify 

the type of decision strategy being employed and the number of different decision 

strategies seen throughout a sequence of choice tasks. This allows the researcher to 

evaluate whether the different strategies have any influence on the quality of information 

obtained in the experiment and the stability of the estimates across different decision 

strategies is consistent with the selected choice model. Swait and Adamowicz (2001) 

show that the preference parameters depend on the degree of complexity faced during the 

choice task. They find that an increase in the complexity of the choice task produces a 

decrease in the variances of the estimates up to a point, then further increasing entropy 

results in an increase in the variance of parameter estimates.  
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4. Designs for Stated Preference Models 

Designs for stated preference models originated with practitioners and often with 

an assumption that designs that are efficient for linear models will also be efficient for 

choice models. Recently statisticians have begun to work on efficient designs for choice 

models. We will review designs currently recommended for choice models, starting with 

traditional design techniques and moving on to efficient choice designs.  

4.1 Introduction 

 Designs for stated preference studies present a research challenge. The traditional 

and proven design strategies of using balanced full factorial and fractional factorial 

designs and orthogonal arrays are not necessarily the most efficient designs for non-linear 

models. Further, each different non-linear model requires a new calculation for 

efficiency, and these efficiency measures are no longer independent of the true parameter 

values as is the case with linear design. One must make assumptions about the parameter 

values to optimize the designs, a difficult, but not impossible prospect in many situations. 

In most fields, assumptions can be made concerning at least the direction of these effects. 

Efficient designs have been shown to be fairly robust to misspecification of the parameter 

values (Huber and Zwerina 1996). However, assuming zero values for the parameters, a 

common assumption, may be inefficient for the selection of designs. 
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4.2 Review of Previous Design Strategies 

 Creating experimental designs for stated preference studies is similar to creating 

traditional statistical designs, with the added complexity of non-numerical responses, 

either binary or ordinal. The terminology used in the design of stated preference studies 

differs from that of traditional statistical design and needs to be understood prior to 

discussing design techniques. A factor is referred to as an attribute and factor levels are 

known as attribute levels. The treatment combinations are known as alternatives and 

alternatives are grouped together as profiles or choice sets.  

Some traditional techniques for statistical design are used in the design of stated 

preference studies. Commonly used techniques include blocking and randomization and 

even optimal design.  

 Green (1974) introduces the use of orthogonal arrays and incomplete block 

designs for the design of stated preference experiments. He proposes five questions to 

answer prior to deciding the type of design and model to be used for the particular 

situation. They are: 

1. What type of model does the researcher wish to apply? 

a. Main effects only 

b. Main effects plus selected interaction effects 

2. What is the nature of the levels comprising each factor? 

a. Each factor has the same number of levels 

b. Number of levels varies across factors 
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3. How many factors does the researcher wish to consider in each set of profile 

presentations? 

a. All factors 

b. A subset of the factors 

4. How many choice sets does the researcher wish to present in a single trial? 

a. All choice sets 

b. A subset of the choice sets 

5. What type of stated preference model does the researcher wish to employ? 

a. Single-stage estimation model 

b. Multi-stage estimation model 

Questions 1 and 2 are concerned with the experimental design of the study. The answers 

to these questions can lead one to consider fractional factorials, orthogonal arrays, latin 

square designs and other statistical techniques for the experimental design. Questions 3 

and 4 may necessitate the use of balanced incomplete block designs or partially balanced 

incomplete block designs to reduce the number of profiles presented at one time while 

retaining balance across the presentations. Question 5 deals with the estimation procedure 

to be used to determine the utilities of the attributes under study.  

Bunch, Louviere and Anderson (1996) present a comparison of existing design 

strategies for generic-attribute multinomial logit models that classifies designs into two 

categories, object-based and attribute-based designs. Object-based design strategies 

create a set of choice-objects using an existing design procedure, i.e. factorial designs, 

and then assign them to choice sets. Attribute-based design strategies design the entire 

choice experiment through manipulation of the attribute levels for all choice alternatives.  
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 Before deciding to use an object or alternative based design strategy, there are 

several decisions, both statistical and non-statistical, that must be made. First, the number 

of attributes and attribute levels must be identified; second, the correct utility 

specification must be made; third, the number of alternatives within each choice set must 

be determined; lastly, the number of choice sets to present to each consumer must be 

identified. These decisions relate to the market realism and cognitive complexity of the 

experiment as discussed above. Given these specifications one now considers the 

efficiency of the design, often searching for an optimal design.  

 We will now discuss different strategies for designing stated preference 

experiments. All of the object and alternative based design strategies to be discussed 

below begin with three initial steps.  

 1. Determine the number of attributes, K, and index them from k = 1, 2, …, K. 

 2. Select the number of levels for each attribute 

 3. Generate a set of M attribute profiles from a fractional factorial design 

Once these three steps have been accomplished, one can proceed with selecting the 

appropriate design strategy. 

4.2.1 Object-Based Design Strategies 

 Continuing with the initial classifications of Bunch, Louviere and Anderson 

(1996), the following object based design strategies are identified. In step three above, a 

set of attribute profiles is constructed from a fractional factorial design. Using those 

attribute profiles, choice sets are constructed in one of the following manners: 

1. Random Assignment 
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 Random Assignment of profiles to choice sets 

2. All Possible Pairs 

Take the profiles above and construct all possible pairs of these profiles 

for choice sets.  

 3. 2M Block Assignment 

Create the smallest orthogonal main effects fraction of a 2M factorial and 

treat each of the M factors as the presence or absence of that attribute 

profile in a choice set. This design technique generally results in choice 

sets of varying size. 

 4. Balanced Incomplete Block Designs (BIBD) 

Assign the M attribute profiles to choice sets using a BIBD (Cochran and 

Cox 1957, Raghavarao 1971). An advantage of the BIBD assignment is 

that choice sets are of fixed size and each of the profiles appears together a 

fixed number of times.  

4.2.2 Attribute-Based Design Strategies 

 In attribute based choice designs one wished to fix the size of the choice set so 

that there are J choice alternatives per choice set. To accomplish this we can use one of 

the following procedures: 

 1. Foldover 

Pair each of the M attribute profiles created in initial step three with its 

exact foldover. A disadvantage of this strategy is that one can only 

estimate linear and additive forms.  
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 2. Shifted Designs 

Create one or more additional attribute profiles from each of the original 

attribute profiles by shifting the original designs through modulo 

arithmetic. Note that when the factors are all two level, this strategy is the 

same as foldover. Three variants of this strategy are suggested: 

 a. Shifted Pairs 

Add one (mod L), where L is the number of attribute levels, 

to each attribute in the original J attribute profiles to create 

paired comparisons. 

   b. Shifted Triples 

Begin with a shifted pairs design, as in a above, and 

construct a third attribute profile by adding one (mod L) to 

the second attribute profile.  

   c. Shifted Quadruples 

Begin with the shifted triples design, as in b above, and 

construct a fourth attribute profile by adding one (mod L) 

to the third attribute profile. 

 3. IKL orthogonal main effects 

This design strategy differs from those discussed above as it does not 

employ the initial three steps for creating the J attribute profiles. Create an 

orthogonal main effects plan from these M*K columns to create the design 

plan (Jn is the size of the choice set, M is the number of alternatives and K 

is the number of attributes). Note that this technique often results in many 
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more choice sets than those discussed above. This design can be used to 

estimate attribute cross effects. (Louviere 1986, Kuhfeld and Tobias 2005) 

4.2.3 Other Design Strategies 

 The design strategies discussed above are the most common and pervasive design 

techniques employed currently. They can be used independently, as discussed above, or 

combined to create hybrid designs. More recently techniques for optimal design for 

choice experiments have been developed. 

 Huber and Zwerina (1996) introduce the use of an assumed model in the selection 

of efficient choice designs. They advocate estimating values for the parameters from 1) 

pre-tested questionnaires collected before the main experiment is conducted or 2) subject 

matter expert knowledge. This allows the final experimental design generated to be the 

most efficient given the knowledge we already have on the attributes. They suggest 

searching for the most efficient design through the use of relabeling and swapping the 

attributes and their levels within the design space. This approach assumes that the values 

of the parameter estimates obtained from the pilot are accurate and that the experimenters 

have enough initial information to devise a design that is sufficient for the pilot stage of 

the experiment. They also show the efficient designs are robust to modest 

misspecification of the parameter values. 

 Sandor and Wedel (2001) extend the work of Huber and Zwerina (1996) to create 

Bayesian designs through the use of prior distributions for the parameter values obtained 

through managers prior beliefs. Similar to Huber and Zwerina (1996) their work is 

restricted to the main effects MNL model only with qualitative predictors. To obtain the 
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prior beliefs managers are asked to provide a direct visualization of their subjective 

probability distribution (APD) for each of the attributes in the design. The authors then 

construct 95% credibility intervals for these estimates and fit a normal prior distribution. 

The design is then constructed to maximize the efficiency through use of the concepts of 

relabeling and swapping (Huber, et al. 1996) and cycling (Sándor and Wedel 2001). SAS 

has a macro, %choiceff, for the construction of optimal choice designs under the MNL 

model (Kuhfeld 2004).  

 Moderated choice experiments were introduced by Chzran (2001) as a solution to 

the problem of pollution by carry-over effects. In certain applications the use of multiple 

price structure levels for one retailer may pollute the results from round to round of the 

experiment. Chzran proposes moderated choice experiments as a solution to this problem. 

In a moderated choice experiment each participant sees only one level for one or more of 

the factors under consideration. He proposes a two stage design process for moderated 

choice experiments. First a fraction of a  kL  factorial is designed to determine the levels 

of the fixed factors. Once the fixed factor levels are identified another fraction of a  kL  

factorial is designed to set the levels of the remaining factors dependent upon the choice 

of the factor level for the fixed factors. This results in choice sets where each individual 

sees only one level of the fixed factors to reduce choice to choice pollution by carryover 

effects.  
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4.3 Efficiency in Choice Designs 

 Variance efficiency is a central component to the evaluation of an experimental 

design. More efficient choice designs result in more precise parameter estimates and the 

need for less data to achieve adequate precision.   

 When we refer to prior estimates in this work, we are not referring to a prior 

distribution as used in Bayesian statistics. As used by Huber and Zwerina (1996) and in 

this dissertation, prior estimates will refer to the assumed values of the parameters in the 

model used to create an optimal choice design. They are the equivalent of a degenerate 

Bayesian prior distribution with a single point having probability one. 

4.3.1 Measures of Linear Design Efficiency 

 Efficiencies are measurements of design goodness. Measures of design 

efficiencies are based on the information matrix. For linear responses the covariance 

matrix for the least squares estimators is proportional to the inverse of the information 

matrix, I = X’X where X is the model matrix. The more efficient the design the “smaller” 

the covariance matrix will be, i.e. the estimates of the parameters will be more precise. 

There are several different measurements of design efficiency including A-efficiency and 

D-efficiency. In some applications the error of the design, the inverse of efficiency, is 

considered. A-efficiency is a measure of the average variance for the estimators of the 

model parameters. The formulation of A-error is as follows: 

)1/())'(()1/()( 11 +=+= −− KXXtraceKItraceA  

where K+1 is the total number of parameters and I is the information matrix. A-efficiency 

is not the most utilized measure of efficiency for two reasons: 
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• Relative A-efficiency is not invariant to different recodings of the design matrix.  

• A-efficiency is also computationally expensive to update. 

D-efficiency overcomes these conflicts and is a related measure based upon the geometric 

mean of the eigenvalues of the covariance matrix: 
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D-efficiency is the most commonly used measure of criterion for evaluating designs. 

There are efficient computational algorithms for updating the determinant of X’X as the 

design changes and ratios of D-efficiencies are invariant under different codings of the 

design matrix. The D-efficiency criterion takes into account both the variances and 

covariance of the parameter estimators in the selection of the “best” design. 

4.3.2 Measure of Choice Design Efficiency 

Using the work of McFadden (1974), we derive the measure of choice design 

efficiency for the logit model. Using the logit model the probability of choosing an 

alternative i from a choice set Cn  is given by: 

∑
=

=
n

jn

in

J

j

x

x

nin

e

eXP

1

),(
β

β

β , 

where xjn is the row vector of K attributes describing alternative i and β is a column 

vector of weights associated with  those K attributes: Let Xn be a Jn x K matrix consisting 

of the row vectors xjn ε  Cn, and let J •  = ∑
=

N

n
nJ

1
be the total number of alternatives in the 

choice experiment. Then the design matrix for the choice experiment, X, is of size J •  x 
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K. Let Y be a matrix of choices with elements yin, where yin equals one if alternative i is 

chosen and zero otherwise. Then the log-likelihood of a sample Y is:  
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 By maximizing the likelihood equation above we can obtain the maximum 

likelihood estimator, β̂ , of the choice model. McFadden (1996)  shows that β̂  is 

asymptotically normal with mean β and covariance matrix: 
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where P is an J •  x J •  diagonal matrix with elements Pjn, and Z is a J •  x K matrix with 

rows: 
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When one assumes that the β’s are zero the variance covariance matrix has a much 

simpler form: 
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For a Fisher Information matrix, I, several established summary measures of efficiency 

are useful in comparing designs. D-efficiency is the most popular summary measure. D-

efficiency is calculated as  



 

 34

KK PZZIefficiencyD
11

1 )'det()det( ==− − . 

The larger the D-efficiency, the more efficient the choice design. When no prior 

information is assumed to be known about the parameter estimates β, the D-efficiency 

will be calculated using Σ0 and will be referred to as D0-efficiency. When we assume that 

β is non-zero the D-efficiency will be calculated using Σp and will be referred to as Dp-

efficiency. 

4.3.3 Principles of Efficient Choice Design 

 Huber and Zwerina (1996) discuss four principles that impact the efficiency of 

choice designs: level balance, orthogonality, minimal level overlap and utility balance. 

Level balance and orthogonality are important concepts retained from linear design 

theory, whereas minimal level overlap and utility balanced are measures of the within 

choice set structure of the design. Satisfying all four of these criteria simultaneously is 

the most desirable condition, but near impossible to achieve for most practical 

applications.  

 Level balance, also referred to as balance (Payne 1988, Ball 1997) is the 

requirement that all attribute levels occurs with equal frequency. For example, with a four 

level attribute, each level should occur in exactly one-fourth of the alternatives.  

 Orthogonality of main effects occurs when the joint occurrence of any two levels 

of different attributes appear in profiles with relative frequencies equal to the product of 

their marginal relative frequencies (Addelman 1962). In many practical applications level 

balance and orthogonality conflict and an improvement in one results in a degradation of 

the other.  
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 Minimal level overlap is important in the structure of individual choice sets. 

Contrasts between attribute levels are only meaningful as differences within the choice 

set. Minimal level overlap means that the probability that an attribute level repeats itself 

in a choice set is as small as possible. The most extreme violation of minimal level 

overlap would occur when one factor has the same level across all alternatives within the 

choice set. Choices from this set provide no information about the participant’s 

preferences for that particular factor.  

 Utility balance is achieved when the utilities of alternatives within choice sets are 

as close as possible. Achievement of utility balance requires some knowledge of the 

values of the parameters before construction of the design. Utility balance, along with the 

other three efficiency requirements is normally achieved and balanced through the 

maximization of pD efficiency.  

4.4 Summary of Characteristics of Existing Design Strategies 

 We consider the example of creating a discrete choice design for the consideration 

of three qualitative attributes ideally to be placed into nine choice sets of size 3. For each 

of the design strategies discussed above we will construct such a design and evaluate its 

efficiency using the measure of Dp efficiency defined previously. The summary results 

are presented in the Table 1, and a detailed evaluation of the designs constructed can be 

found in Appendix One.  

 We see that of our existing design strategies that the D-efficiency varies greatly 

according to strategy. The BIBD provides lowest Dp-efficiency under the equal-spaced 

prior assumption of [-1 0 -1 0 -1 0]. The best design under a zero prior is the design 
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Table 1 - Comparison of Existing Design Techniques 

Design 
Strategy Orthogonal Balanced

Minimum 
Overlap 

Utility 
Balance

Number 
of 
Choice 
Sets 

D0-
Efficiency

Dp-
Efficiency

Adjusted 
for # 
Choice 
Sets D0-
Efficiency

Adjusted 
for # 
Choice 
Sets Dp-
Efficiency

Random 
Assignment 
1 No No No No 9 3.612717 2.331546 0.401413 0.259061
Random 
Assignment 
2 No No No No 9 3.721623 2.252252 0.413514 0.25025
Shifting Yes Yes Yes No 9 5.194805 2.651816 0.577201 0.294646
All Triples No No No No 84 36.36364 21.97802 0.4329 0.261643
Foldover N/A N/A N/A N/A N/A N/A N/A N/A N/A 
BIBD No No No No 12 2.946376 5.194805 0.245531 0.4329
Orthogonal 
Main 
Effects  Yes Yes Yes No 9 5.194805 2.651816 0.577201 0.294646
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generated by shifting or the orthogonal main effects plan (these techniques result in 

identical designs). None of the designs remains desirable on all of the other 

characteristics of orthogonality, balance, minimum overlap and utility balance. 

4.5 Criteria for Evaluating Choice Design Complexity   

 Measuring the complexity of a choice experiment allows one to evaluate 

differences between potential designs beyond their relative efficiencies. There have been 

many suggestions and implementations in the literature for measuring the complexity of 

an experiment (Swait, et al. 2001, DeSharzo and Fermo 2002). In this section we will 

introduce the different measures of complexity and discuss their uses and expected 

effects.    

4.5.1 Entropy 

 Swait and Adamowicz (2001) discuss the use of entropy for measuring the 

complexity of choice designs. In their work they find that as the entropy of an individual 

choice and the cumulative entropy of the choice task increase the stability of the 

parameter estimates for the choice task decreases. The effect of this instability can be 

controlled through a modeling technique as described by Swait and Adamowicz (2001) or 

we can proactively control the effect by managing the entropy within a choice task (often 

measured as percent of maximum entropy for the particular choice task). 

 Entropy is a good measure of complexity as it increases as the number of choice 

sets and the number of alternatives increases. Figure 3 shows the relationship between the 

number of alternatives in the choice set (for a fixed number of attributes and choice sets) 
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Figure 3 - Entropy Versus the Number of Alternatives 
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and the maximum entropy for an individual choice. We see that the maximum choice 

entropy increases logarithmically as the number of alternatives in the choice set 

increases. Figure 4 shows the relationship between the number of choice sets in the 

design and the maximum and minimum choice entropy for the task. (We assume there are 

4 alternatives per choice set in this particular example and a fixed number of attributes.) 

The red line indicates the constant minimum entropy while the blue line indicates the 

linear relationship between the number of choice sets and the cumulative entropy of the 

experiment.  

 Entropy is not capable of measuring all complexity that is inherent in a choice 

experiment. Consider the two choice sets in Table 2. Choice set one has two alternatives 

and three attributes whereas choice set two has two alternatives and six attributes. Both of 

these choice sets have entropy of 0.6931, even though in choice set two one has to 

evaluate twice the number of attributes to make a choice. This is one clear deficiency of 

using entropy as the sole measure of complexity in a choice experiment.   

4.5.2 Number of Tradeoffs 

 The number of tradeoffs in a choice set is another suggested measure of 

complexity for choice sets. The number of tradeoffs in the choice set solves one of the 

defficiencies of entropy as it increases according to the number attributes in the choice 

set. The potential number of tradeoffs also increases as the number of alternatives in the 

choice set increases, and it is limited by the number of levels of each attribute. If there are 

more alternatives than levels in an attribute then the potential number of tradeoffs will be 

smaller than if there are more levels than alternatives in an attribute.  
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Figure 4 - Entropy Versus the Number of Choice Sets 

 

 

 

Table 2 - Two Sample Choice Sets A 

 Choice Set One Choice Set Two 
 Att 

One 
Att 
Two 

Att 
Three 

Att 
One

Att 
Two

Att 
Three

Att 
Four

Att 
Five 

Att 
Six 

Alternative 
One 

1 2 3 1 2 3 1 2 3 

Alternative 
Two 

3 2 1 3 2 1 3 2 1 
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Although counting the number of tradeoffs addresses a deficiency of entropy (not 

being able to distinguish between the numbers of attributes in a choice set) it is not by 

itself a perfect measure of complexity in a choice set. Consider the two choice sets in 

Table 3. Let us assume the equal-spaced prior for β, i.e. an equally spaced linear 

relationship between the levels of each attribute. Obviously in choice set one, alternative 

two is preferable to alternative one. In choice set two, assuming that all attributes are 

equally preferable, alternative two is preferable to alternative one. The choice in choice 

set one is much easier than the choice in choice set two because it is a dominant 

alternative, i.e. preferable in every attribute. The number of tradeoffs in choice set one 

and two is three. Therefore, the number of tradeoffs is by itself an incomplete measure of 

choice set complexity.  

 Additionally the number of tradeoffs considers tradeoffs between all levels to be 

equally complex. Consider a six level attribute where level six is the best and level one is 

the worst, a tradeoff between level one and level two is considered to be the same as a 

tradeoff between level one and level six by counting only the number of tradeoffs. 

Obviously, the choice between level one and level six is much easier than the choice 

between level one and level two (This is something that entropy is capable of measuring).  

4.5.3 Magnitude of Tradeoffs 

 Similar to the number of tradeoffs, the magnitude of tradeoffs is able to capture 

differences due to the number of attributes between different designs, something entropy 

is unable to accomplish. However, unlike the number of tradeoffs the magnitude of  
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Table 3 - Two Sample Choice Sets B 

 Choice Set One Choice Set Two 
 Att One Att Two Att Three Att One Att Two Att Three 
Alternative 
Two 

1 1 1 1 2 1 

Alternative 
Two 

2 2 2 2 1 2 
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tradeoffs is able to distinguish between tradeoffs that are close together and tradeoffs that 

are far apart.  

 The magnitude of tradeoffs is still a deficient measure of complexity in that it 

measures the magnitude of the tradeoff, but cannot distinguish if one alternative in the 

choice set is superior to the others, it merely measures the magnitude of the tradeoffs 

without regard to where the tradeoffs come from. 

4.5.4 Number of Attributes 

 DeSharzo and Fermo (2002) discuss several methods for measuring complexity in 

choice sets of stated preference experiments. In their study they show that as the number 

of attributes in a choice set increases the variance of the error component of utility also 

increases. This may be attributed to the greater cognitive burden, or changing decision 

strategies over the course of the experiment. This shows that increasing the realism of the 

experiment by increasing the number of attributes can actually be detrimental to the 

precision of the results. 

4.5.5 Mean Standard Deviation of Attribute Levels within Each Alternative 

 In addition to the number of attributes, DeSharzo and Fermo (2002) also discuss 

the mean standard deviation of attribute levels within each alternative as a measure of 

choice set complexity. The standard deviation among the normalized attribute levels of 

alternative j in choice set n is defined as: 
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where xij is the normalized ith attribute of alternative j, and K is the total number of 

attributes in alternative j. When all of the attributes in an alternative are equally 

preferable, whether highly preferable or highly undesirable, the measure, SDjn, will be 

small. To create a measure for the choice set as a whole, we calculate Average SDn, 

defined as: 

n
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where Jn is the total number of alternative in choice set n. They show that a higher value 

of Average SDn increases the variance of the utility. Therefore, alternatives in choice sets 

that vary significantly in the normalized levels of attributes lead to more complex 

decisions. 

4.5.6 Dispersion of the SD of Attribute Levels within Each Alternative 

 DeSharzo and Fermo (2002) also discuss the dispersion of the standard deviation 

of attribute levels within each alternative as a measure of choice set complexity. The 

dispersion of SDjn is the standard deviation across alternatives of the SDjn measure for 

each alternative in the choice set. Dispersion SDn is defined as below:  
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where Jn is the total number of alternatives in choice set n. They show that an increase in 

Dispersion SDn will lead to an increase in the variance of the utility.  
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4.5.7 Mean Standard Deviation of Attribute Levels within Each Attribute 

 DeSharzo and Fermo (2002) give us tools to evaluate attribute levels within an 

alternative. We also consider variability within an attribute as a measure of choice 

complexity. If the levels of an attribute across alternatives are similar (but not identical) 

then there is greater cognitive burden within that attribute for the decision maker. If, 

however, there is high variability within an attribute across alternatives then the 

participant may be able to spend less time considering tradeoffs. We define the standard 

deviation of attribute k in choice set n as: 
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where Jn is the number of alternatives in the choice set. This measure is attribute specific, 

so to create a measure for the choice set as a whole, we calculate Average SD, defined as: 
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where K is the number of attributes in the choice set. We hypothesize that Average SDM 

will present itself as a quadratic effect. When Average SDk is zero the choice will be very 

easy and when Average SDK achieves its maximum the choice will also be very easy, 

however between these two extremes complexity will increase and then decrease.  

4.5.8 Dispersion of the SD of Attribute Levels within Each Alternative 

 The dispersion of the amount of variability between the attribute levels for the 

choice set may also impact the complexity of the choice task. We define the dispersion of 

attribute levels as: 
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We believe that as dispersion SDK decreases, decisions will become more complex. 

 4.6 Special Considerations for Stated Preference Designs 

 The simplest stated preference study is what is known as a discrete choice study. 

In discrete choice studies, individuals are presented with a profile containing several 

alternatives and asked to select the one they would purchase given the opportunity. These 

simple tasks provide information concerning consumer’s utility for the products under 

study. For this binary response situation and other more complex stated preference 

response techniques, there are a unique set of design considerations that need to be 

examined. 

The first consideration that must be made is identifiability, i.e. the form of the 

utility function that will be estimated from a given experiment. All stated preference 

designs require a functional form including at least the main effects for each attribute 

under study. Many studies also seek to identify more complex models, i.e. second order 

or higher interactions, and designs must be capable of estimating those effects. The 

effects of interest may need to be evaluated as additive or multiplicative effects 

(Louviere, Hensher and Swait 2000a). 

Precision is another key consideration in the design of stated preference models. 

The precision of the estimates relates to the width of the confidence intervals for the 

parameters of interest. The narrower the confidence intervals are, the more precise the 

estimates for the parameters of interest. We always seek the maximum precision we can 
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achieve within the financial and time constraints of the experiment (Louviere, et al. 

2000a). We have shown that there are several measures of design complexity that are 

known to impact the precision of these estimates (the magnitude of Var(ε )) (Swait and 

Adamowicz 1997, DeSharzo, et al. 2002).  

In addition to considering the statistical attributes during the design phase it is 

also necessary to consider the degree of cognitive complexity that the experiment 

presents to the participants. The degree of complexity is determined in part by the 

number of alternatives in each profile and the number of profiles that are presented to 

each participant. There is considerable disagreement on the optimal level of complexity 

and the effect that the complexity of the experiment has on the validity of the results 

obtained. Many advocate presenting only a small number of choice sets to each 

participant, e.g. up to eight (Carson, et al. 1994), while others present evidence that 

participants can evaluate up to sixty choice sets without degradation of the results 

(Louviere, Hensher and Swait 2000b). Another issue that impacts the complexity of the 

task is the number of alternatives per choice set. Typical examples show three to six 

alternatives per profile. Again, the literature presents a conflicting view of the optimal 

number of alternatives per profile. (Carson, et al. 1994, Louviere, et al. 2000a) 

Another important issue in the design of any stated preference study is the issue of 

market realism. Market realism is the degree to which the experiment and associated 

tasks match the actual decision environment that a consumer faces in the course of their 

normal activities. Situations that do not match market conditions may lead participants to 

believe the experiment is not serious, or to have unrealistic expectations about what they 

may see from a given market or company in the future. One must also consider the carry 
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over effects present from choice set to choice set in the decision process. Carryover can 

often result in confusion of the consumer and further detract from market realism. 

(Haaijer, et al. 2001) 

4.6.1 The Base Alternative  

 In choice experiments, a base alternative is often included to scale the utilities 

from choice set to choice set (Dhar 1997). A base alternative can be a profile that is held 

constant over each choice set, it can be the option to choose “your current brand”, and 

including this alternative has the advantage of making the choice decision more realistic 

to the decision maker. However, it also provides an opportunity to avoid making difficult 

tradeoffs by selecting the well defined and easier own alternative.   

 Specific evaluation of the impact of the base alternative in the context of a stated 

preference experiment is not seen in the literature at this time. Macros exist within 

standard programs such as SAS® for the construction of designs with a constant 

alternative present in all choice sets.  

 One of the potential problems associated with the constant alternative is the fact 

that it is generally presented as the last alternative in each choice set. This violates the 

statistical practice of randomization, and assumption in the design of efficient choice 

experiments.  

4.6.2 The No-Choice Alternative 

Dhar  reviews the times and reasons participants choose the no-choice alternative. 

He finds that the option may be selected when none of the presented alternatives appear 
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attractive, or when participants believe that better alternatives may exist if they continue 

to search. He also finds that, in general, the no-choice option is selected more when the 

alternatives in the choice set have similar utility (i.e. high entropy) and less frequently 

when there is a dominant or dominated alternative in the choice set.  

4.6.2.1 Modeling the No-Choice Alternative 

Haaijer, Kamakura and Wedel (2001) study the effect of the no-choice alternative 

from the perspective of modeling. They discuss three models that may be used in the 

analysis of data containing the no-choice alternative. First they consider the standard 

multinomial logit model (MNL) in two ways. They use a series of zeros to describe the 

attribute values of the no-choice options and the standard multinomial logit model 

formulation. This may lead to biased results as it becomes a fixed part of the utility. 

Additioanlly, they consider the use of effects type coding, again with a multinomial logit 

model formulation. This resolves the issue of bias as all part-worth’s are now specified 

relative to the no-choice option. The second model considered is the nested logit (NL). 

This model specifies two nests, one with the no-choice alternative and the other with the 

real profiles. This formulation assumes that the consumer first chooses whether or not to 

purchase a product and then which product to choose. The last model considered if the 

no-choice multinomial logit model (NCMNL). The difference between the standard MNL 

and the NCMNL is the addition of an extra constant (cnc), but both models retain the 

context of the standard MNL. The NL model has one extra parameter,λ , called the 

dissimilarity coefficient. When λ  = 1, the MNL and NL are equal. 
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In two separate applications they found that the no-choice multinomial logit 

model provided the best fit to the data. This evaluation was made using the log-likelihood 

value, AIC and BIC. Additionally they identify two separate situations in which 

consumers choose the no-choice option. One motivation for “no-choice” arises when a 

consumer has little interest in the product category under research. An alternative 

motivation prompting consumers to choose the no-choice option is when none of the 

alternatives within the choice set are attractive or when they are all equally attractive and 

the decision is too difficult.  

4.6.2.2 Presentation of the No-Choice Alternative 

Similar to the presentation of the base alternative, in general the no-choice 

alternative is presented at the end of a choice set. Figure 5 shows the typical presentation 

of this alternative in a choice set. This constant presentation of the no-choice alternative 

is counter to the statistical property of randomization. However in the no-choice situation 

the constant presentation of this specific alternative may be logical given that it is much 

different from the other alternatives presented and easily identified as the only constant 

alternative in the choice set. Since the no-choice alternative is defined as “None of the 

other alternatives listed,” it is illogical to place it anywhere but last. 
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Figure 5 - The No-Choice Alternative Presentation 
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4.7 Summary and Discussions 

Existing choice design methodologies provide a definitive starting point for the 

development of new choice design structures. Once new designs are identified they must 

be evaluated for efficiency.  

We see that there are several established measures of choice set complexity 

already in the stated preference literature. These measures have been shown to have 

impact on the amount of variability in the random component of utility. In addition, we 

propose two additional measures that may be capable of accounting for complexity in the 

choice process.  

The ability to understand and model complexity in the choice process as Swait 

and Adamowicz (2001) and DeSharzo and Fermo (2002) do is important to improve the 

precision of our estimates. Improving the precision of the estimates improves the 

predictions from a choice experiment. However, as DeSharzo and Fermo (2002) suggest 

we may also use our knowledge of complexity in the choice process to take care in 

designing our choice experiment. If we can control the levels of these measures in our 

choice design then we may eliminate the necessity of modeling the variability caused by 

these effects in the analysis stage and so work with a much simpler model. 
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5. Optimal Design Strategies for Choice Models 

Optimal design has become one of the preferred methods for constructing designs 

for choice experiments. In addition to the guarantee that the design will be near optimal 

in terms of variance characteristics, the prevalence of automated algorithms for their 

construction makes the experimental design process easy to complete. Recent work has 

focused on the use of optimal designs for choice models such as the multinomial logit, 

multinomial probit and mixed logit (Carson, et al. 1994, Kuhfeld and Tobias 1994, Lazari 

and Anderson 1994, Huber, et al. 1996, Kessels, Goos and Vanderbroek 2005, Kuhfeld, 

et al. 2005). Given the large potential costs associated with running choice experiments, 

using more efficient designs allows for less data collection to achieve adequate precision.  

The use of efficient experimental designs for choice experimentation requires 

consideration of several different issues. These issues include: 

• The optimality criterion to employ (D-optimal, A-Optimal, G-Optimal, etc.) 

• The search algorithm to employ (A Federov type algorithm, a coordinate-

exchange algorithm, etc.) 

• The formulation of the variance-covariance matrix of the design 

The next sections will review the concerns associated with each of the preceding points.  

5.1 Selecting an Optimality Criterion 

Section 4.3.1 presents a summary of the optimality criteria that are employed for 

selecting choice designs. Further study of the differences between these criteria and 

recommendations for their use can be found in Kessels, Goos et al. (2005). We will use 
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D-efficiency in our evaluation of choice design algorithms as it is the most readily 

available in the software for both researchers and practitioners. 

5.2 The Selection of the Search Algorithm 

The selection of a search algorithm is often based on the need for speed and the 

ability of an algorithm to locate the most efficient designs. For further information on the 

selection of a search algorithm, there are many specific resources to be studied (Kuhfeld, 

et al. 1994, 2005). 

 For the practitioner of choice experiments the selection of an algorithm for 

finding efficient choice designs is often limited by those available in the software. For 

our purposes we will use the algorithms available from SAS® for efficient design 

creation and choice modeling, including Proc Optex and the %choiceff macro. 

5.3 Formulation of the Variance-Covariance (Information) Matrix 

The selection of an efficient choice design is impacted by the formulation of the 

information matrix employed in the selected design algorithm. In the literature there are 

currently three different formulations considered: 

• A linear model information matrix structured in the horizontal, traditional 

statistical setup (Kuhfeld, et al. 2005) (Technique 1) 

• A linear model information matrix structured in the typical vertical choice 

format (Huber, et al. 1996) (Technique 2) 

• An information matrix for the appropriate logit / probit model (vertical in 

structure) (Huber, et al. 1996) (Technique 3) 
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The question becomes which of these techniques will result in the best designs. 

Claims have been made in the literature that the three design construction techniques 

above are equivalent or result in designs that are sufficiently good. Let us consider the 

case of creating a design for an experiment intending to use the multinomial logit model 

for analysis. First, let us consider the differences in the construction of the data frame for 

the three techniques discussed above. From a traditional statistical perspective one would 

expect the data frame to be set up as seen in Table 4.This is the data frame that is used for 

the selection of an efficient design using technique one above. Techniques two and three 

will create a design using the data frame shown in Table 5. This data frame is the format 

that will be employed for the analysis of the choice experiment using the multinomial 

logit model.  

The question now becomes are the designs created using these three techniques 

with the already admitted differences in the data frames equally efficient. We will 

evaluate these differences using the SAS® macro %mktex for technique 1, Proc Optex 

for technique 2 and the SAS® macro %choiceff for technique 3.  

Formulating the variance-covariance matrix for a logit type model is a more 

complex process as it requires having prior knowledge concerning the parameters of the 

resulting model. There are three approaches currently being used to solve this problem: 

• Using zero for the parameter values 

• Using non-zero parameter values (Huber, et al. 1996) 

• Using Bayesian design techniques to incorporate uncertainty about the 

parameter values, i.e. a probability distribution for each parameter 

rather than a single value
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Table 4 - Technique One Data Frame 

Choice 
Set 

Attribute 1 
Alternative 
1 

Attribute 2 
Alternative 
1 

Attribute 1 
Alternative 
2 

Attribute 2 
Alternative 
2 

Attribute 1 
Alternative 
3 

Attribute 2 
Alternative 
3 

Choice 
(Response)

1        
…        
M        
 
 
 

Table 5 - Technique Two and Three Data Frame 

Choice Set Attribute 1 Attribute 2 Choice 
1   0 
1   0 
1   1 
… … … … 
M   0 
M   1 
M   0 
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Using zero values for the parameters assumes that respondents prefer each 

alternative in the choice set equally (each alternative contributes equally to the entropy of 

the choice set). This is likely an unrealistic assumption for most choice studies. Generally 

at least one knows the order in which the levels of an attribute will be preferred.  

This can be taken into account using a very simple assumption on the prior. Several 

authors have suggested that this prior specification on β will result in equivalent designs 

to the linear model formulation of technique 2. We will evaluate these claims below.  

Huber and Zwerina (1996) suggest using an equal-range prior with equally spaced 

levels for each attribute. Often it is not difficult to obtain more detailed information about 

the attribute levels by studying field data or manager’s prior beliefs. Although these prior 

assumptions on the parameters are not exact, Huber and Zwerina (1996) show that some 

misspecification of the prior does not have a significant impact on the relative efficiency 

of a set of designs.  

Using a Bayesian design algorithm allows one to further quantify the uncertainty 

faced in the parameters and is a more sophisticated method of creating choice designs. 

This works well when there is substantial uncertainty faced concerning the parameter 

estimates (Sandor 2001).  

5.3.1 Comparing the Three Design Techniques 

 We compare the design techniques discussed above with the following scenarios: 

• 33 in 9 choice sets of size 3 – main effects model 

• 33 in 27 choice sets of size 3 – main effects model 

• 32 · 4 · 5 in 80 choice sets of size 4 – main effects model 



 

 58

• 32 · 42 in 80 choice sets of size 4 – main effects model 

• 33 in 180 choice sets of size 3 – full factorial model 

• 32 · 4 · 5 in 80 choice sets of size 4 – main effects and 2 factor interactions 

• 32 · 42 in 1600 choice sets of size 4 – main effects and 2 factor interactions 

For each scenario we work with two different cases: β is zero and an equal-spaced prior 

assumption for β. 

 For all cases the designs created using technique one are inferior to those created 

using techniques two and three. In some cases technique one is not even capable of 

estimating the required design. When the assumption is that β is zero, technique three is 

slightly inferior to technique two, these results are seen in Table 6. When an equal-spaced 

prior assumption is used for β, the designs created using technique three are 

approximately ten to two hundred percent more efficient than those created using 

technique two. These results are seen summarized Table 7. 

5.3.2 Explaining the Differences Between the Techniques 

The simulations above show that technique 1 is clearly inferior to techniques 2 

and 3. This difference can be seen merely by examining the structure and size of the 

variance-covariance matrix for technique one versus that for techniques two and three.  

Example: 33 in choice sets of size three, 9 choice sets  

Consider the designs shown in Tables 8 and 9. These designs have nine choice sets of 

size three each with three three-level attributes. Table 8 shows the design formulation for 

technique 1, Table 9 shows the design formulation for techniques 2 and 3. Efficiency 

measures for technique one are calculated using the information matrix in Table 10, for 
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Table 6 - Comparison of the Three Techniques with a Zero Prior Assumption 

  Technique  
One 

Technique  
Two 

Technique 
Three 

Mean D-
Efficiency 

3.4641 5.1666     5.1496 33 in choice 
sets of size 
three, 27 
choice sets – 
Main effects 

Standard 
Deviation of 
Efficiency 

0 0.0091 0.0157 

Mean D-
Efficiency 

10.224 13.302 13.2611 32 . 42 in choice 
sets of size 
four, 80 choice 
sets – Main 
Effects 

Standard 
Deviation of 
Efficiency 

0.0130 0.0009 0.0062 

Mean D-
Efficiency 

24.5599    31.3224    31.3195 32 . 4 . 5 in 
choice sets of 
size four, 80 
choice sets – 
Main Effects  
 

Standard 
Deviation of 
Efficiency 

0.0000     0.0689     0.0009 

Mean D-
Efficiency 

47.7987    55.7334    55.7025 33 in choice 
sets of size 
three, 180 
choice sets – 
All 
Interactions 

Standard 
Deviation of 
Efficiency 

0.2342     0.0006     0.0030 

Mean D-
Efficiency 

29.5919    33.8934    33.8165 32 . 42 in choice 
sets of size 
four, 160 
choice sets – 
Main Effects 
and 2 factor 
interactions 

Standard 
Deviation of 
Efficiency 

0.2097     0.0016     0.0120 

Mean D-
Efficiency 

11.6860    13.7977    13.7068 32 . 4 . 5 in 
choice sets of 
size four, 80 
choice sets – 
Main Effects 
and 2 factor 
interactions 

Standard 
Deviation of 
Efficiency 

0.1533     0.0037     0.0101 
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Table 7 - Comparison of the Three Techniques with an Equal-Spaced Prior 
Assumption 

  Technique  
One 

Technique  
Two 

Technique 
Three 

Mean D-
Efficiency 

2.7242 3.8499 4.1309 33 in choice 
sets of size 
three, 27 
choice sets – 
Main Effects 

Standard 
Deviation of 
Efficiency 

0.3561 0.5023 0.5332 

Mean D-
Efficiency 

13.7784    15.8624    27.4915 32 . 42 in choice 
sets of size 
four, 80 choice 
sets – Main 
Effects 

Standard 
Deviation of 
Efficiency 

0.4773     0.5776     0.0911 

Mean D-
Efficiency 

11.6040    12.9402    24.1514 32 . 4 . 5 in 
choice sets of 
size four, 80 
choice sets – 
Main Effects  

Standard 
Deviation of 
Efficiency 

0.6615     0.0590 0.6019     

Mean D-
Efficiency 

28.1984    32.7970    45.5153 33 in choice 
sets of size 
three, 180 
choice sets – 
All 
Interactions 

Standard 
Deviation of 
Efficiency 

0.5132     0.5096     0.0044 

Mean D-
Efficiency 

13.9009    15.4494    29.4055 32 . 42 in choice 
sets of size 
four, 160 
choice sets – 
Main Effects 
and 2 factor 
interactions 

Standard 
Deviation of 
Efficiency 

0.4469     0.4007     0.0283 

Mean D-
Efficiency 

4.5939    5.5937     11.8425 32 . 4 . 5 in 
choice sets of 
size four, 80 
choice sets – 
Main Effects 
and 2 factor 
interactions 

Standard 
Deviation of 
Efficiency 

0.1691     0.2877     0.0346 
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Table 8 - Design Formulation for Technique One 

Alternative One Alternative Two Alternative Three 
Choice 
Set 

Attribute 
1 

Attribute 
2 

Attribute 
3 

Attribute 
1 

Attribute 
2 

Attribute 
3 

Attribute 
1 

Attribute 
2 

Attribute 
3 

1 3 3 1 1 1 1 1 1 3
2 3 3 2 2 2 1 3 3 3
3 2 1 3 1 3 1 1 2 3
4 1 3 2 2 1 2 2 2 2
5 2 2 3 2 1 1 3 1 3
6 1 2 1 3 1 1 2 3 2
7 3 1 2 2 3 1 3 2 1
8 1 2 2 2 3 3 3 2 2
9 3 2 3 1 3 3 1 1 2
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Table 9 - Design Formulation for Techniques Two and Three 

Choice 
Set 

Attribute 
1 

Attribute 
2 

Attribute 
3 

1 3 3 1
1 1 1 1
1 1 1 3
2 3 3 2
2 2 2 1
2 3 3 3
3 2 1 3
3 1 3 1
3 1 2 3
4 1 3 2
4 2 1 2
4 2 2 2
5 2 2 3
5 2 1 1
5 3 1 3
6 1 2 1
6 3 1 1
6 2 3 2
7 3 1 2
7 2 3 1
7 3 2 1
8 1 2 2
8 2 3 3
8 3 2 2
9 3 2 3
9 1 3 3
9 1 1 2
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Table 10 - Information Matrix for Technique One 
 Att  

1a 
Att  
1b 

Att 
2a 

Att 
2b 

Att  
3a 

Att  
3b 

Att 
1a 

Att  
1b 

Att  
2a 

Att  
2b 

Att  
3a 

Att  
3b 

Att  
1a 

Att  
1b 

Att  
2a 

Att  
2b 

Att  
3a 

Att  
3b 

Att 
1a 5 3 0 2 0 -1 -2 -2 2 0 -2 1 1 4 -1 0 1 4 
Att 
1b 3 5 2 3 -3 -4 0 -1 0 -1 -1 0 1 1 1 1 -1 0 
Att 
2a 0 2 5 3 -2 -2 0 -1 -4 -3 0 -1 0 -1 0 2 2 0 
Att 
2b 2 3 3 5 -1 -3 -2 -2 0 -1 0 -1 -1 0 0 -1 1 1 
Att 
3a 0 -3 -2 -1 4 2 -1 -2 2 1 0 0 1 2 -1 -2 1 2 
Att 
3b -1 -4 -2 -3 2 5 -1 2 0 1 0 1 -2 0 -2 0 2 2 
Att 
1a -2 0 0 -2 -1 -1 3 1 -1 -1 1 0 2 -1 2 2 -2 -3 
Att 
1b -2 -1 -1 -2 -2 2 1 5 0 0 2 1 -3 -3 1 2 -1 -2 
Att 
2a 2 0 -4 0 2 0 -1 0 6 2 1 1 0 2 1 -2 -2 1 
Att 
2b 0 -1 -3 -1 1 1 -1 0 2 3 -1 0 -1 0 -1 -3 -1 0 
Att 
3a -2 -1 0 0 0 0 1 2 1 -1 6 0 -1 -2 0 0 -3 -3 
Att 
3b 1 0 -1 -1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 
Att 
1a 1 1 0 -1 1 -2 2 -3 0 -1 -1 0 5 3 1 1 -1 0 
Att 
1b 4 1 -1 0 2 0 -1 -3 2 0 -2 1 3 5 -1 0 1 4 
Att 
2a -1 1 0 0 -1 -2 2 1 1 -1 0 0 1 -1 4 2 -1 -2 
Att 
2b 0 1 2 -1 -2 0 2 2 -2 -3 0 1 1 0 2 5 1 0 
Att 
3a 1 -1 2 1 1 2 -2 -1 -2 -1 -3 0 -1 1 -1 1 5 4 
Att 
3b 4 0 0 1 2 2 -3 -2 1 0 -3 1 0 4 -2 0 4 6 

 
* I = X’X 
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technique two we work with the information matrix presented in Table 11, and for 

technique three we work with the information matrix presented in Table 12. 

It becomes apparent that technique 1 can never be equivalent to techniques 2 and 

3. The information matrix of technique 1 is of a completely different size and structure 

than for techniques 2 and 3. The information matrices for techniques 2 and 3 are 

equivalent in size (both are 6 by 6) although they differ in magnitude of elements.  

 Technique 1 is not equivalent to techniques 2 or 3, so the question remains when 

are techniques 2 and 3 equivalent? Let us consider the design in Table 13 with no overlap 

and perfect level balance within choice sets. We continue working with the assumption 

that no prior information on the parameter estimates can be obtained, i.e. β is zero. The 

information matrices for this design for techniques 2 and 3 are presented in Table 14. We 

notice that the information matrices for techniques 2 and 3 are equivalent and always will 

be in the case of designs with no overlap and prefect level balance. 

 When β is assumed to be zero the information matrix for a choice design, Z’PZ, 

becomes Z’cIZ = cZ’Z, where c is the inverse of the number of alternatives in the choice 

set. Therefore, to compare the differences between the linear and choice design 

calculations of efficiency we can compare X’X (the linear formulation) and Z’Z (the 

choice formulation). When β is zero, we recall that Z is a J •  x K matrix with rows: 

njnjn xxz −= , where ∑
=

=
nJ

i
in

n
n x

J
x

1

1 . 

When the design is perfectly level balanced and has no overlap, the centering term is 

constant. Therefore, Z’Z and X’X are equivalent. When the design is not completely level 

balanced or when there is any overlap in the design, the centering term is no longer  
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Table 11 - Information Matrix for Technique Two 

 Attribute 
1a 

Attribute 
1b 

Attribute 
2a 

Attribute 
2b 

Attribute 
3a 

Attribute 
3b  

Attribute 
1a 18 9 0 0 0 0
Attribute 
1b 9 18 0 0 0 0
Attribute 
2a 0 0 18 9 0 0
Attribute 
2b 0 0 9 18 0 0
Attribute 
3a 0 0 0 0 18 9
Attribute 
3b  0 0 0 0 9 18

 

* I = Z’PZ, with β assumed to be zero
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Table 12 - Information Matrix for Technique Three 

 Attribute 
1a 

Attribute 
1b 

Attribute 
2a 

Attribute 
2b 

Attribute 
3a 

Attribute 
3b  

Attribute 
1a 12.67 7.33 -1 0 2 1
Attribute 
1a 7.33 14.67 -1 -1 1 -1
Attribute 
1a -1 -1 14.67 8.33 0 2
Attribute 
1a 0 -1 8.33 16.67 1 0
Attribute 
1a 2 1 0 1 12.67 6.33
Attribute 
1a 1 -1 2 0 6.33 10.67

 
* I = Z’PZ, with β assumed to be (-1 0 -1 0 -1 0) 
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Table 13 - Design with No Overlap and Perfect Level Balance 

Choice 
Set 

Attribute 
1 

Attribute 
2 

Attribute 
3 

1 3 1 2
1 2 2 2
1 1 3 1
2 3 1 2
2 2 3 1
2 1 2 3
3 3 2 1
3 2 1 3
3 1 3 2
4 3 1 1
4 1 3 3
4 2 2 2
5 2 1 3
5 3 3 1
5 1 2 2
6 2 3 1
6 3 2 2
6 1 1 3
7 1 3 2
7 3 1 1
7 2 2 3
8 2 3 2
8 3 2 1
8 1 1 3
9 1 2 3
9 3 1 2
9 2 3 1

 
 
 

Table 14 - Information Matrices for Techniques Two and Three 

Technique  2         Technique 3        
18 9 -6 -3 -8 -4  18 9 -6 -3 -8 -4
9 18 -6 -3 -4 -2  9 18 -6 -3 -4 -2

-6 -6 18 9 -7 -5  -6 -6 18 9 -7 -5
-3 -3 9 18 -5 -1  -3 -3 9 18 -5 -1
-8 -4 -7 -5 18 9  -8 -4 -7 -5 18 9
-4 -2 -5 -1 9 18  -4 -2 -5 -1 9 18
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constant and differences between Z’Z and X’X result. 

5.4 Summary and Conclusions 

In selecting the information matrix formulation it seems logical to employ the 

structure that corresponds with the model you intend to use to analyze the data. Utilizing 

the linear model information matrix remains convenient because the formulation of 

efficient designs for this case are well studied and understood, and there are currently 

many algorithms available for construction of such designs.  

Using the appropriate formulation of the information matrix in the selection of an 

efficient design allows one to consider all of the different issues related to the model 

before making a design selection. For example, although the efficiency measure for a 

linear and choice design are similar when there is no prior information assumed on the 

parameter estimates, that is not the case when β is assumed to be non-zero. Several 

authors have advocated the use of non-zero prior for the creation of efficient designs 

(Huber, et al. 1996, Swait, et al. 2001). Using only the linear model formulation for the 

information matrix ignores all of the additional information concerning the model under 

study. The issue becomes even more complex with the model is more involved that the 

multinomial logit. For example, considering the nested logit model, the model takes into 

consideration a two tiered decision making structure by the decision maker. The linear 

model is not capable of taking this into consideration. Further the linear model 

formulation does not take into consideration the structure of the choice set. 

Even in the context of more traditional linear designs, one of the foremost 

assumptions in the creation of optimal designs is that the model has been specified 
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correctly. In the linear model case, the model specification indicates that the correct terms 

are contained in the model. For choice designs the correct model specification means that 

we select a model, i.e. multinomial logit, probit, nested logit, etc., that is appropriate for 

the data being collected. In summary, the use of the information matrix for the 

appropriate model will result in designs that are best suited for the intended analysis.  
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6. Characteristics of Optimal Choice Designs 

Earlier we discussed four primary characteristics that are used to evaluate choice 

designs: level balance, utility balance, orthogonality and minimal level overlap. Level 

balance occurs when each level of an attribute appears with equal frequency in the overall 

design. Utility balance is achieved when each alternative within a choice set is equally 

preferable. We will measure utility balance through the use of entropy. Orthogonality is a 

criterion from linear design theory that guarantees that parameter estimates are 

independent. In choice design theory, however, it has been shown traditional 

orthogonality measures do not guarantee independent estimates or increased efficiency. 

Minimal level overlap indicates that within a choice set there is as little overlap as 

possible within an attribute.  

6.1 Evaluation of Efficient Choice Designs 

Although technique one in Chapter Five was shown to be inferior to techniques 

two and three it does allow some flexibility in the design creation process that techniques 

two and three cannot provide. First technique one allows one to create choice sets where 

all alternatives do not have the same number of attributes or even the same attributes. 

This can be particularly useful in brand specific studies. Another notable feature of 

technique one is that it results in all or almost all of the attributes, both within and 

between choice sets, being orthogonal.  

Although technique one allows greater flexibility in terms of orthogonality we 

have established that the designs it creates are inferior to those created using the correct 
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model specification for standard models that include main effects and two-factor 

interactions. Therefore we will now evaluate the optimal designs created using the SAS® 

macro %choiceff on the four characteristics of choice designs. We will evaluate designs 

for the 33 in 9 choice sets of size 3, 32 · 42 in 10 choice sets of size four and 32 · 4 · 5 in 10 

choice sets of size four. The results for these smaller design sizes extend to larger, more 

complex designs.  Each design size will be considered with a zero prior for β and also 

with an equal-spaced prior assumption for β. The equal-spaced prior assumption for β 

assumes that there is an equally spaced, linear relationship between the parameter 

estimates for the levels of each attribute. The designs created for this analysis are 

presented in Appendix Two. Table 15 shows the summary results for each of these cases.  

We see that the designs created with the zero prior assumption preserve the 

criterion of minimum level overlap, whereas the designs created with the equal-spaced 

prior do not. Violations of minimum level overlap become more severe the more 

complicated the design is. We note that when evaluated under the zero prior, all designs 

have maximum entropy (utility balance). When the designs are evaluated under the 

equal-spaced prior, the designs created using the zero prior assumption are less utility 

balanced (as measured using entropy) than those created under the equal-spaced prior 

assumption. The only design that preserves the criterion of orthogonality is the 33 design 

created using the zero prior assumption. 
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Table 15 - Summary of Design Characteristics for Efficient Designs 

 33 33 32 · 42 32 · 42 32 · 4 · 5  32 · 4 · 5 
 β = 0 Equal-

spaced 
prior 

β = 0 Equal-
spaced 
prior 

β = 0 Equal-
spaced 
prior 

Efficiency 1.68 1.38 4.39 2.93 3.87 2.66 
Level 
Overlap 

Minimum 3.7% Minimum 35% Minimum 25% 

Entropy 
(% Max) 
β = 0 

9.89 
100% 

9.89 
100% 

13.86 
100% 

13.86 
100% 

13.86 
100% 

13.86 
100% 

Entropy  
(% Max) 
Equal-
spaced 
prior 

6.0168 
60.84% 

6.48 
65.49% 

7.6104 
54.91% 

12.06 
86.96% 

5.8353 
42.10% 

12.21 
88.04% 

Level 
Balance 

Yes Not in 
Attribute 
3 

Not in 
Attribute 
2 

Not in any 
Attribute 

Not in 
Attribute 
4 

Not in any 
Attribute 

Orthogonal Yes No No No No No 
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6.2 Assumptions of Optimal Designs 

When we create an optimal design, there are several underlying assumptions that 

need to be met in order to ensure the design is truly optimal. Even if the intended analysis 

is simple descriptive statistics, departures from these assumptions can affect our 

interpretation of the experimental results.  

Cox (1958) discusses a primary assumption underlying the design of experiments. 

When a particular treatment is applied to an experimental unit the observation obtained is 

assumed to be: 

 

This assumption results in three core points: 

1. The effects of treatments and units are additive 

2. The treatment effects are constant 

3. The observation on one unit is unaffected by the treatment applied to other 

units 

The treatment effects are additive on the utility scale in the multinomial logit 

model. The second component of this assumption that the treatment effects are constant is 

an issue that is already familiar in choice designs. If we are proposing the use of a simple 

model for analysis of our choice experiment, such as the multinomial logit, then we are 

A quantity 
depending only 

on only the 
particular unit 

A quantity 
depending on the 

treatment used + 
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already assuming that out population is homogeneous and that the effect of different 

choice sets will be constant across experimental units or in our case across participants. If 

we are electing to use a more complex model for the analysis of our experiment, such as 

the mixed logit, then we retain greater flexibility in modeling the heterogeneity between 

participants in the experiment and the violation of this point is not severe. The third 

component of this assumption is the one most likely to be a problem for choice 

experiments. The assumption that the observations are independent is one that the choice 

literature has identified to be untrue in many cases. Consider for example the learning 

effect at the beginning of a choice experiment. When participant embark on the choice 

task they often spend the first few choices learning about the situation being studied. This 

learning may lead to inconsistencies in their choices due to unfamiliarity with the choice 

task or because the participant is searching to identify the sample space under which the 

experiment takes place. Another potential problem with this assumption is that 

participants are known to utilize more than one decision making process throughout the 

course of a choice experiment.   As discussed earlier, Shugan (1980) identifies four 

strategies (conjunctive, disjunctive (maximin), minimax and lexicographic) that decision 

markers employ. Swait (1996) shows that decision makers enter more than one decision 

state in the course of an experiment. During a choice experiment a participant may switch 

from a decision making strategy that uses all information in the choice set (lexicographic) 

to one that simplifies the process, ranking on only the important attributes (disjunctive). 

This change in decision making strategy may lead to different effects by the same 

treatment depending on the difficulty of the choices presented previously. 
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6.3 Summary and Conclusions 

In reviewing the six designs in appendix two we notice the following 

characteristics of optimal choice designs: 

• Orthogonality: Only the simplest of the optimal choice designs are 

orthogonal 

• Level Balance: Designs created with a zero prior preserve level balance 

more than those with a non-zero prior 

• Utility Balance (Entropy): The designs created with a zero prior all have 

maximum entropy under the assumed prior, i.e. all choices within the 

choice set are presumed to be equally preferable. When the equal-spaced 

prior is assumed the entropy is between 65 and 90% of the maximum 

possible. These designs are challenging, but not of maximum difficulty for 

the participants. We must note that a person’s true β differs from the 

assumed β therefore actual entropy differs from supposed entropy. 

• Level Overlap: The designs where there is an assumption of a zero prior 

for β all have minimum level overlap beyond that which is necessitated by 

more alternatives than attribute levels. The designs with the equal-spaced 

prior for β assumption have between 4 and 35% level overlap. Designs 

with the equal-spaced prior assumption always have some level overlap 

present, even for attributes with more levels than alternatives within a 

choice set. 
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Optimal choice designs do a good job of preserving the utility balance and minimum 

level overlap. Orthogonality and level balance are not preserved in optimal choice 

designs.   
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7. Optimal Design for Entropy and Efficiency 

 Swait and Adamowicz (2001) discuss the use of entropy for measuring choice 

complexity. They find that the stability of the parameter estimates change as the 

complexity of individual decisions and the cumulative cognitive burden increases. In 

addition to using the D-efficiency to decide which of a competing set of designs is most 

efficient, we can use entropy as an additional criterion in the design of the experiment. 

Using these two criteria simultaneously will allow the researcher to ensure that the design 

will result in the most efficient parameter estimates possible and that the potential 

efficiency of these estimates will not be influenced by the potential immeasurable effects 

of switching decision strategies due to the cognitive burden or the experiment.  

 Huber and Zwerina (1996) introduce the concept of utility balance, indicating that 

utility balance is one of the four criteria that should be evaluated in the creation of good 

choice. They posit that the higher the utility balance the better the design. High utility 

balance occurs when the alternatives in the choice set are well balanced in terms of 

preferences, leading to challenging tradeoffs between the alternatives in the choice set. 

Utility balance can be measured through entropy. In addition to measures of an individual 

choices utility balance, cumulative entropy can be used to measure the overall utility 

balance of the design.  

 Before further discussing entropy we must understand the implication of the prior 

on β and its effect on the entropy of a choice design. There are three primary 

methodologies for specifying the prior of a choice design as discussed earlier. These 

methodologies and their implications on the calculation of entropy are shown below: 
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1. Zero Prior Assumption 

When a zero prior is specified for β the assumption becomes that all alternatives 

in the choice set are equally preferable to the participants. This means that 

whenever we assume a zero prior for β we are assuming that every choice task is 

of maximum entropy. 

2. Simple, Linear Prior Assumption 

When we assume an equal-spaced prior as advocated by Huber and Zwerina we 

can calculate the entropy for each choice in the choice set and then evaluate 

designs on their relative entropy.  The equal-spaced prior assumption is that we 

are able to rank order the attribute levels in terms of their relative utility and that 

the levels are equally spaced in preference. 

3. Bayesian Prior Assumption 

Similar to the use of a simple, linear prior assumption we can calculate the 

entropy for each choice set based on the distribution assumption for β for each 

choice in the choice set. We can then evaluate designs on their entropy 

distribution. 

Huber and Zwerina (1996) conclude that for most applications we are able to 

identify, at the very least, simple directional priors for each parameter and that the 

increase in efficiency due to the use of these priors makes it a recommended practice. We 

will assume for the remainder of this discussion that, at very minimum, an equal-spaced 

prior is specified. 

 Although utility balance / entropy have been shown to be beneficial in the 

statistical design of experiments, what are the consequences of presenting a utility 
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balanced design to a choice experiment participant? According to Dhar  the tendency to 

defer choices is greater when differences in attractiveness between alternatives are small 

versus when they are large. This applies when there is a no-choice alternative present in 

the choice or when participants are prone to skip choices if they are too difficult. 

Therefore, increasing utility balance (entropy) as much as possible, which may lead to 

increased efficiency of the design, may be detrimental to other aspects of the choice 

experiment.  

 Maximizing entropy can result in the following issues for the experimenter: 

• Fatigue effects for the participants 

• Inconsistencies in choices due to difficulty of the task 

• Disengaging from the process due to lack of incentives 

• Disengaging from the choice task due to lack of realism of the alternatives 

presented 

These issues can be far more detrimental to the results of the experiment than a slight 

decrease in efficiency or utility balance due to selecting an “easier” design. 

 The determination of an appropriate level of cumulative entropy for a task lies 

with the designer of the experiment. In some situations the use of a design with maximum 

cumulative entropy may be entirely appropriate. For example, when the participants are 

highly engaged in the task and feel that there is significant reward to accurately 

responding to the choice tasks at hand, the use of a design with maximum efficiency and 

entropy may be highly appropriate. In other situations there may be consequences in the 

quality of information collected due to the use of designs with high entropy. For example, 

when participants are not interested in the task at hand or when they have a limited 
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understanding of the task, the use of the designs with high entropy can result in an 

increase in the amount of information lost through the selection of the no-choice 

alternative, or in the event that there is not a no-choice alternative in the design, the 

participant may skip the difficult questions. In addition to loss of information due to non-

response, there may be significant degradation of the data that are collected. D-efficiency 

as a measure of design goodness assumes that there is no correlation between the quality 

of information collected and the efficiency of the design. In fact the overall results of the 

experiment can be more reliable when collected with a design that is slightly less efficient 

and has lower cumulative entropy for the task.  

 We seek to answer two primary questions concerning the design of experiments 

using both entropy and efficiency as criteria for optimality: 

1. Can we create many D-efficient designs with a wide range of entropy values to 

afford experimenters choices in entropy? 

2. Can we modify D-efficient designs to have lower entropy without greatly 

decreasing the efficiency of the design? 

7.1 Optimal Design with Specific Entropy 

We approach the problem of creating optimal design with specific entropy 

through two avenues: 

1. Evaluation of the entropy of optimal designs created using the SAS® 

macro %choiceff 

2. Random simulation of designs to understand the possible range of entropy 

and efficiency values 
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We will evaluate scenarios 1 and 2 above for the following designs: 

• 33 in 9 choice sets of size 3 

• 32 · 42 in 10 choice sets of size 4 

• 32 · 4 · 5 in 10 choice sets of size 4 

• 32 · 4 · 52 in 15 choice sets of size 3 

 Random simulation of designs will assist in understanding the space of possible 

combinations for entropy and efficiency for a particular scenario. Once the design space 

is understood it is possible to understand the flexibility in choices of entropy for efficient 

designs that is possible. We consider the cases below to understand the flexibility in 

selecting efficient designs.  

 
Example: 33 in 9 choice sets of size 3 

Examining the designs created using the %choiceff macro in SAS®, we see that 

there is very little correlation between the cumulative entropy and the efficiency of the 

design. There is a range of efficiency from 3.35 to 3.6, with the least efficient design 

being only 93.1% as efficient as the most efficient design. The cumulative entropy of 

these efficient designs are between 8 and 8.8. These entropy values are between 80.89 

and 88.98% of the possible total cumulative entropy. 

In considering the random creation of designs for a 33 in 9 choice sets of size 3, 

there are 27 possible alternatives which results in 2925 possible choice sets of size three. 

This results in 4.27 x 1025 possible choice sets. We will begin by randomly simulating 

100,000 different choice designs and calculating the efficiency and entropy for each 

design. It should be noted that designs which are incapable of estimating the appropriate  
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main effects model are removed from consideration in our simulation; there are 30 

designs that were inestimable and removed from consideration. Figure 6 shows the 

results of the designs created by random simulation and with the %choiceff macro. 

We notice that there is a positive correlation between the cumulative entropy of the 

design and the D-efficiency of the design. The maximum possible cumulative entropy for 

this scenario is 9.89.  We find that of the most efficient designs there is a range of 

cumulative entropy from 8 to 9, or from about 80 to 90% of possible cumulative entropy. 

This gives us some flexibility in selecting optimal designs with a varied range of entropy 

for different applications. 

Example: 32 · 42 in 10 choice sets of size 4 

 Figure 7 shows the results for the designs created by random simulation and with 

the %choiceff macro. Our previous section discussed the results of a simulation in SAS® 

for optimal choice designs. The range of entropy for the efficient designs created using 

SAS® is from 11.4 to 12.6, or 82.25 to 90.91% of possible cumulative entropy. These 

designs are more complex than those created by the random selection. The efficiency of 

the designs create by SAS® have a range of efficiency from 2.75 to 3.15, whereas those 

created by random simulation have efficiency of 0.2 to 2. The designs created randomly 

are approximately 6.35 to 63.45% less efficient than those created using SAS®.  
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Figure 6 - Random versus Efficient Choice Designs Entropy and Efficiencies: 33 
 
 
 

 

Figure 7 - Random versus Efficient Choice Designs Entropy and Efficiencies: 32 · 42 
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Example: 32 · 4 · 5 in 10 choice sets of size 4 

Figure 8 shows the results for designs created with random simulation and the 

%choiceff macro. The range of entropy for the efficient designs created using SAS® is 

from 11.2 to 12.8, or 80.81 to 92.35% of possible cumulative entropy. These designs are 

more complex that those created using random selection. The efficiency of the designs 

created by SAS® have a range of efficiency from 2.45 to 2.8, whereas those created by 

have efficiency of 0.2 to 1.8. The designs created randomly are only from 7 to 64.29% 

efficient as the most efficient design created using SAS®.  

Example: 32 · 4 · 52 in 15 choice sets of size 3 

Figure 9 shows the results for the designs created by random simulation and with 

the %choiceff macro. The range of entropy for the efficient designs created using SAS® 

is from 12.6 to 14, or 76.46 to 84.96% of possible cumulative entropy. These designs are 

more complex than those created by the random selection. The efficiency of the designs 

create by SAS® have a range of efficiency from 2.95 to 3.4, whereas those created by 

random simulation have efficiency of 0.1 to 1.8. The designs created randomly are only 

from 2.94 to 52.94% efficient as the most efficient design created using SAS®.   

Examining these four cases we see that using random simulation is not an 

appropriate method to create choice designs that are both efficient and give a good range 

of entropy. Figures 6 – 9 reveal the success of SAS’s %choiceff macro in obtaining 

highly efficient designs. Using the SAS® macro %choiceff to create efficient designs 

allows us to have a range of entropy of about 10% for most cases. This provides us with 

some flexibility in creating designs with different values of entropy. 
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Figure 8 - Random versus Efficient Choice Designs Entropy and Efficiencies: 32 · 4 · 
5 
 

 

 
Figure 9 - Random versus Efficient Choice Designs Entropy and Efficiencies: 32 · 4 · 
52 
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7.2 Manipulating Efficient Designs 

 Consider the efficient choice design created by the %choiceff macro in SAS® in 

Table 16. This design has a D-efficiency of 3.0164 and cumulative entropy of 12.5528. 

This design has 93% of the maximum possible cumulative entropy. We see the entropy of 

each choice set in Table 17. Choice set 1 makes the largest contribution to the overall 

entropy of the choice task. We therefore decide to manipulate choice set one to reduce the 

cumulative entropy of the task and reevaluate the D-efficiency of the choice task. We 

continue this process for six iterations of updating the choice sets with the highest 

entropy. The results are shown in the Table 18. Over these six iterations we obtain a 

20.82% reduction in the cumulative entropy of the task while accepting a 16.73% 

reduction in the efficiency of the design. Figure 7 shows these iterations in relation to the 

efficiency and entropy of optimal and randomly generated choice designs. We see that 

our process results in designs that are less efficient than the optimal designs but also have 

less entropy that the optimal designs.  

7.3 Summary and Conclusions 

Creating efficient designs for choice experiments is best accomplished using a 

specialized algorithm for the construction of choice designs. Random creation of choice 

designs results in designs that show a wide range of values for both entropy and 

efficiency, however finding those that are the most efficient or with the highest entropy 

requires extensive, time consuming simulation. Given the space of possible designs, 

completing random searches in cases with more than three attributes or three levels per 

attribute is not a realistic approach to the problem. The random simulations do reveal that 
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Table 16 - An Efficient Choice Design 

  
Attribute 
1 

Attribute 
2 

Attribute 
3 

Attribute 
4 

1 3 2 1 4
1 2 3 2 3
1 1 2 4 2
1 3 3 3 1
2 2 2 3 1
2 2 3 1 2
2 1 1 4 1
2 3 1 2 2
3 3 3 1 1
3 1 1 3 1
3 2 2 2 1
3 1 2 2 2
4 2 1 2 4
4 1 2 4 2
4 3 3 2 1
4 1 3 1 3
5 3 2 1 4
5 2 3 3 2
5 1 3 2 4
5 2 1 4 3
6 3 1 3 2
6 1 3 1 4
6 2 2 4 1
6 3 2 2 3
7 2 2 4 1
7 3 1 2 3
7 3 2 1 3
7 2 3 3 2
8 2 1 1 4
8 1 2 1 3
8 3 3 2 1
8 1 1 3 1
9 3 1 4 2
9 2 3 1 3
9 2 1 2 4
9 1 2 3 3

10 3 1 3 2
10 1 3 2 4
10 3 1 1 3
10 2 2 4 1
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Table 17 - Choice Set Entropy 

Set  Entropy 
1 1.3235 
2 1.2683 
3 1.2683 
4 1.2754 
5 1.2683 
6 1.2683 
7 1.2683 
8 1.1727 
9 1.2754 

10 1.1644 
 

 

Table 18 - Iterative Adaptation of Entropy and Efficiency 

  Entropy Efficiency
1 12.5528 3.0164
2 12.0671 2.8864
3 10.9732 2.5174
4 11.649 2.7604
5 11.5381 2.705
6 9.9397 2.5118
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there is a strong, positive correlation between the cumulative entropy of a choice design 

and the efficiency of that design. Therefore, it will be unrealistic to assume that we can 

create very easy tasks (designs with very low cumulative entropy) that are very efficient.  

 The SAS® simulations reveal that within the efficient designs we still retain some 

flexibility surrounding the cumulative entropy of the design. We see the flexibility to 

choose entropy values within a range of approximately 10% for all of the cases studied. 

This, coupled with the fact the maximum cumulative entropy percentage does not much 

exceed 90%, tells us that we are not maximally tasking the participants.  

If one is looking to further reduce the cumulative entropy of the choice task then 

manually updating individual choice sets with the highest entropy will allow one to 

reduce the entropy of the choice task and evaluate its effect on the efficiency of the 

design. If a particular update results in a severe decrease in the efficiency of the design, 

then the update can be retracted and another change attempted. These updates can result 

in a fairly significant decrease in the cumulative entropy of the choice task without severe 

decreases in the efficiency of the design.  

Given the possible ramifications of over taxing the participant through the choice 

task inducing effects of fatigue, inconsistent choices or disengaging from the choice task, 

one should take into consideration the individual question entropy and cumulative 

entropy of the choice task when designing the choice task. Given that this consideration 

to the cumulative entropy of the task can be made without the design or use of a new 

algorithm, it should be considered whenever possible.  

 The exploration of the efficiency and entropy of designs created under different 

decision strategies gives additional insight into picking a choice design for a particular 
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study. Earlier research has established that consumers do enter multiple decision states 

over the course of the experiment. Therefore when selecting an efficient choice design, if 

we suspect that a particular decision strategy will be the secondary strategy of choice to 

the compensatory method, then we should pick a design that is a resistant as possible to 

misspecification of the decision strategy.  
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8. Prior Assumptions in Creating Optimal Choice Designs 

In our earlier discussions of the creation of optimal choice designs we explored 

the use of both a zero prior assumption and an equal-spaced prior assumption. These are 

the two most frequent recommendations currently made in the literature for creating 

optimal choice designs. Earlier work has shown that some misspecification of the 

magnitude of the equal-spaced prior does not have severe consequences for the efficiency 

of the choice design (Huber, et al. 1996). We will explore the consequences of different 

misspecifications of the prior estimates of the parameters to the efficiency, entropy and 

level balance of the resulting choice design.  

8.1 Possible Prior Assumptions 

We will introduce six different prior assumptions that have been formulated based 

on the type of parameter estimates seen in experiments analyzed in the literature and 

standard assumptions for the design creation. We will explore these possible prior 

assumptions and the consequences of misspecifying the priors for two different designs, a 

33 in thirty choice sets of size three and a 32 · 4 · 5 in forty choice sets of size four.  

8.1.1 Zero Prior 

The first prior assumption is a zero prior. A zero prior assumes that we have no 

prior knowledge of the effect of the different attribute levels nor the relative importance 

of the attributes under study. We earlier discussed that this is likely an unrealistic 

assumption in most research dealing with existing product categories. The zero prior 
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assumption results in designs that are very similar to those created using linear design 

techniques. An illustration of this prior for the two designs on consideration can be seen 

in Figures 10 and 11. This will be referred to as prior assumption one.  

We examine one such design created for the 33 in thirty choice sets of size three 

and a second design for the 32 · 4 · 5 in forty choice sets of size four to study the effect of 

the zero prior assumption on the level balance of the optimal choice design. Tables 19 

and 20 present a summary of the level balance seen in the designs created by each of the 

prior assumptions presented in this chapter. We see that when the zero prior is assumed 

the designs created are as close to level balanced as possible given the number of 

attribute levels and number of alternatives in a choice set. The 33 design exhibits perfect 

level balance and the 32 · 4 · 5 exhibits near perfect level balance.  

8.1.2 Equal-Spaced Prior 

The second prior assumption is one that is well established in the optimal choice 

design literature. The equal-spaced prior assumption is that we are able to rank order the 

attribute levels in terms of their relative utility and that the levels are equally spaced in 

preference. It further assumes that the relative importance of the attributes is equal. The 

equal-spaced prior is illustrated in Figures 12 and 13 for the two design cases under 

consideration and will be referred to as prior assumption number two. 

 Again we refer to Tables 19 and 20 to study the level balance of the designs 

resulting form the equal-spaced prior assumption. We see that the equal-spaced prior 

assumption for the 33 results in a design that still has near perfect level balance with a 

slight decrease in the frequency of the least preferred level and a relative increase in the  
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Figure 10 – Prior Assumption One for a 33 in 30 Choice Sets of 3 
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Figure 11 - Prior Assumption One for a 32 · 4 · 5 in 40 Choice Sets of 4 
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Table 19 - Level Balance for a 33 in 30 Choice Sets of 3 

    
Attribute 
1 

Attribute 
2 

Attribute 
3 

Prior One Level 1 30 30 30
  Level 2 30 30 30
  Level 3 30 30 30
Prior Two Level 1 30 31 31
 Level 2 32 30 31
 Level 3 28 29 28
Prior Three Level 1 27 29 32
 Level 2 38 35 28
 Level 3 25 26 30
Prior Four Level 1 30 25 23
 Level 2 29 35 40
 Level 3 31 30 27
Prior Five Level 1 27 23 25
  Level 2 32 29 32
  Level 3 31 38 33
Prior Six Level 1 23 31 30
  Level 2 39 31 31
  Level 3 28 28 29
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Table 20 - Level Balance for a 32 · 4 · 5 in 40 Choice Sets of 4 

    
Attribute 
1 

Attribute 
2 

Attribute 
3 

Attribute 
4 

Prior One Level 1 53 55 40 32 
 Level 2 52 52 40 32 
 Level 3 55 53 40 32 
 Level 4   40 32 
 Level 5    32 
Prior Two Level 1 43 46 34 24 
 Level 2 55 52 39 33 
 Level 3 62 62 43 36 
 Level 4   44 37 
 Level 5    30 
Prior Three Level 1 45 42 25 17 
 Level 2 51 55 34 25 
 Level 3 64 63 42 30 
 Level 4   59 41 
 Level 5    47 
Prior Four Level 1 30 36 35 31 
 Level 2 50 51 37 28 
 Level 3 80 73 43 31 
 Level 4   45 34 
 Level 5    36 
Prior Five Level 1 33 34 23 17 
 Level 2 61 58 45 34 
 Level 3 66 68 48 35 
 Level 4   44 38 
 Level 5    36 
Prior Six Level 1 46 44 23 17 
 Level 2 52 52 46 36 
 Level 3 62 64 47 36 
 Level 4   44 36 
 Level 5    35 
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Figure 12 - Prior Assumption Two for a 33 in 30 Choice Sets of 3 
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Figure 13 - Prior Assumption Two for a 32 · 4 · 5 in 40 Choice Sets of 4 
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most preferred level. For the 32 · 4 · 5 design we see that the levels occur proportionally 

to their respective utilities, the least preferable level occur the least frequently whereas 

the most preferred levels occur the most frequently (with the exception of level five on 

attribute four). 

8.1.3 Some Attributes are More Important than Others 

Another prior assumption that can be made is that perhaps in addition to knowing 

the rank ordering of the levels, we also know the relative importance of the attributes. For 

example if we are studying preferences for laptop computers among scientific researchers 

we may know that the amount of memory and cost will be the most important attributes 

(with memory being slightly more important) and that video card and processing speed 

will be of lesser importance. In addition to assuming that we know the relative 

importance of the attributes, we also assume that we know the relative importance of the 

attribute levels for each attribute. Figures 14 and 15 illustrate the prior assumption we 

will make for the two designs under consideration. These will be referred to as prior 

assumption three.  

We will additionally consider an additional prior assumption where some 

attributes are more important than others. These are illustrated in Figures 16 and 17. They 

are equivalent to those seen in Figures 14 and 15 but the opposite factors are considered 

to be the most important. This will be referred to as prior assumption four. Note that 

although Figures 14 and 16 appear indistinguishable, for the purpose of evaluating the 

consequences of misspecification of the prior values the differences will be notable. 
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Figure 14 - Prior Assumption Three for a 33 in 30 Choice Sets of 3 
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Figure 15 - Prior Assumption Three for a 32 · 4 · 5 in 40 Choice Sets of 4
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Figure 16 - Prior Assumption Four for a 33 in 30 Choice Sets of 3 
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Figure 17 - Prior Assumption Four for a 32 · 4 · 5 in 40 Choice Sets of 4 
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Again we refer to Tables 19 and 20 to study the level balance of the designs 

resulting form the prior assumptions three and four. For prior assumption three and the 33 

design we see close to level balance in the attributes with the smallest magnitude prior  

 (attribute three) and the furthest from level balance in the greatest magnitude prior 

(attribute one). For the 32 · 4 · 5 the distribution of levels is farthest from level balanced 

when the magnitude of the prior assumption is greater (attributes three and four). For 

prior assumption four we see behavior similar to prior assumption three except that the 

most and least preferred attributes are reversed. For the 32 · 4 · 5 we see that the behavior 

is the same, the level balance is most severely violated on attributes one and two, the 

attributes with the greatest magnitude priors assumed. 

8.1.4 Attribute Levels are Not Equally Spaced 

 Another possible prior assumption is that in addition to knowing the relative 

importance of the attribute levels, we know that they will not be equally spaced. This 

may be known for all of the attributes or only some of the attributes. Figures 18 and 19 

illustrate these prior assumptions assuming that all attributes are believed to exhibit this 

behavior for the two designs under consideration. This will be referred to as prior 

assumption five. Figures 20 and 21 illustrate the prior that will be used when only a 

subset of the attributes is believed to exhibit this behavior. This will be referred to as 

prior assumption six.  
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Figure 18 - Prior Assumption Five for a 33 in 30 Choice Sets of 3 
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Figure 19 - Prior Assumption Five for a 32 · 4 · 5 in 40 Choice Sets of 4
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Figure 20 - Prior Assumption Six for a 33 in 30 Choice Sets of 3 
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Figure 21 - Prior Assumption Six for a 32 · 4 · 5 in 40 Choice Sets of 4 
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Again we refer to Tables 19 and 20 to study the level balance of the designs 

resulting form the equal-spaced prior assumption. We see that prior assumption five for 

the 33 results in a design where the least preferred attribute levels are the least frequent 

and the other two attribute levels are fairly balanced (there is a slight deviation in 

attribute two). For the 32 · 4 · 5 the behavior is similar to that of the 33 design, the least 

preferred level of each attribute has the smallest frequency and the remaining levels are 

closer to level balanced in relation to their relative utility. Prior assumption six for the 33 

design results in near perfect level balance in all attributes except for the attribute with 

the unequally spaced attribute level. For the 32 · 4 · 5 we see behavior similar to that of 

the equal-spaced prior for the variables with an equal magnitude assumption, but the 

attributes where one level is consider to be unacceptable find behavior as in prior five. 

8.1.5 Summary 

 We introduced six different prior assumptions that are motivated both by standard 

practices in the creation of optimal choice designs and those that mimic the behavior of 

parameter estimates in actual choice experiments. We will use these prior assumptions to 

study the effects of misspecification of the prior on the efficiency and entropy of choice 

designs. 

 Studying the effect of the six different prior assumptions on the 33 design we see 

that the prior does impact the level balance of the resulting design. The further that a 

prior is from being equally spaced about zero, the further from level balanced the 

resulting design will be. When some attributes are more important the level balance of 

the design is also influenced.  
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Studying the effect of the six different prior assumptions on the 32 · 4 · 5 design 

we see that again the prior does impact the level balance of the resulting design. The 

impacts of the prior assumptions behave similarly to the 33 design but deviations from 

level balance are generally more severe.  

8.2 Effects of Misspecification of Parameter Values in Creating Optimal 

Choice Designs 

 We wish to study the effect of misspecification of parameter values on both the 

efficiency and entropy of choice designs. Tables 21 and 22 show us the results of 

evaluating 100 simulated designs created under each set of parameter value assumptions 

on each of the other five priors discussed in Section 8.1.  We evaluate the mean 

efficiency under each prior assumption, represented as the true efficiency and also the 

relative efficiency (calculated as a percent of the efficiency of the design created under 

the true prior assumption). We also evaluate the standard deviation of the design 

efficiency under each of the prior assumptions. In additional we evaluate each design for 

its entropy under the true prior assumption and the remaining five prior assumptions. We 

also report the average standard deviation of entropy between choice sets for each design. 

This measure is calculated as the standard deviation of the entropy of each choice set in a 

design averaged over the 100 simulated designs. This measure allows us to determine 

how consistent the entropy of each choice set within a choice task is under 

misspecification of the parameter values.  

 We will begin by discussing the effect of misspecification of a prior for the 33 

design: 
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Table 21 – Misspecification of Priors for a 33 in 30 Choice Sets of 3 
  Prior 

One 
Prior 
Two 

Prior 
Three 

Prior 
Four 

Prior 
Five 

Prior Six 

Prior One 
Design 

Mean 
Efficiency 

17.1817   
(100%)     

8.5173     
(71.75%) 

5.1886     
(51.62%) 

5.2033    
(51.79%)  

4.9871     
(51.88%) 

6.7917 
(63.58%) 

 Std 
Efficiency 

0.0388     0.3596     0.3794     0.3819     0.5406     0.3826 

 Mean 
Entropy 

32.9584    19.1818   13.3877    13.4354    12.8841    16.2526 

 Avg Std 
Entropy 

0.0000     0.2653     0.3014     0.3040     0.3225     0.2693 

Prior Two 
Design 

Mean 
Efficiency 

13.8060   
(80.35%)  

11.8702    
(100%)   

8.5875  
(85.44%)    

8.5636     
(85.24%) 

8.2690   
(89.76%)   

9.4682 
(88.63%) 

 Std 
Efficiency 

0.1839     0.0425     0.1185     0.1534     0.1334     0.0962 

 Mean 
Entropy 

32.9584    28.2190   22.2685    22.2080    21.5395    23.9626 

 Avg Std 
Entropy 

0.0000     0.1077     0.2368     0.2372     0.2865     0.1761 

Prior Three 
Design 

Mean 
Efficiency 

11.6977    
(68.08%) 

10.4115  
(87.71%)  

10.0511 
(100%)       

5.9363     
(59.09%) 

7.4672   
(77.68%)   

9.4713 
(88.66%) 

 Std 
Efficiency 

0.2196     0.1253     0.0486     0.1646     0.2032     0.1011 

 Mean 
Entropy 

32.9584    29.0177   27.6070    20.0125    23.2090    27.1227 

 Avg Std 
Entropy 

0.0000     0.1122     0.0899     0.2466     0.2644     0.1535 

Prior Four 
Design 

Mean 
Efficiency 

11.7022 
(68.11%)   

10.4022  
(87.63%)   

5.9376   
(59.07%)  

10.0465    
(100%)    

7.4306   
(77.30%)   

7.5786 
(70.94%) 

 Std 
Efficiency 

0.1902     0.1232     0.1830     0.0468     0.2039     0.1971 

 Mean 
Entropy 

32.9584    29.0369   20.0690    27.5942    23.1241    23.7508 

 Avg Std 
Entropy 

0.0000     0.1116     0.2449     0.0901     0.2643     0.1464 

Prior Five 
Design 

Mean 
Efficiency 

11.7629   
(68.46%)  

10.4468   
(88.01%) 

7.4791 
(74.41%)    

7.4765   
(74.42%)   

9.6129   
(100%)     

8.9485 
(83.77%) 

 Std 
Efficiency 

0.1853     0.1559     0.2049     0.2218     0.0670     0.1711 

 Mean 
Entropy 

32.9584    29.8151   23.5140    23.5468    27.7693    26.7804 

 Avg Std 
Entropy 

0.0000     0.0985     0.2366     0.2371     0.1432     0.1390 

Prior Six 
Design 

Mean 
Efficiency 

12.5719   
(73.17%)  

10.3954   
(87.58%) 

8.9057    
(88.60%)  

6.1395  
(61.11%)    

7.6900    
(80.00%) 

10.6826 
(100%)   

 Std 
Efficiency 

0.2067     0.1603     0.0873     0.2777     0.2507     0.0372 

 Mean 
Entropy 

32.9584    27.5320   24.4358    18.5873    21.8761    27.9859 

 Avg Std 
Entropy 

0.0000     0.1282     0.1932     0.2883     0.2408     0.0806 
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Table 22 - Misspecification of Priors for a 32 · 4 · 5 in 40 Choice Sets of 4 
  Prior 

One 
Prior 
Two 

Prior 
Three 

Prior 
Four 

Prior 
Five 

Prior 
Six 

Prior One 
Design 

Mean 
Efficiency 

15.6526   
(100%)   

6.2722   
(52.34%)  

3.1372   
(31.01%)   

2.5572   
(26.28%)   

4.3697 
(40.46%)   

5.3272 
(54.93%) 

 Std 
Efficiency 

0.0024     0.3909     0.3819     0.3631     0.4967     0.4030 

 Mean 
Entropy 

55.4518    25.9590   15.4779    12.7727    19.7497    24.3175 

 Avg Std 
Entropy 

0.0000     0.3388     0.3405     0.3195     0.3252     0.2916 

Prior Two 
Design 

Mean 
Efficiency 

13.0652   
(83.47%)  

11.9835   
(100%)    

7.7184  
(76.30%)   

3.9127    
(41.21%)  

7.2257   
(66.91%)   

8.4132 
(86.76%) 

 Std 
Efficiency 

0.0988     0.0477     0.2674     0.3016     0.2781     0.1344 

 Mean 
Entropy 

55.4518    49.0403   33.8487    21.0868    32.4775    38.3744 

 Avg Std 
Entropy 

0.0000     0.0817     0.3081     0.3546     0.3008     0.2081 

Prior Three 
Design 

Mean 
Efficiency 

11.1001    
(70.92%) 

9.7466   
(81.33%) 

10.1161     
(100%)   

2.7589   
(28.35%)   

5.7161     
(52.93%) 

7.1545 
(73.78%) 

 Std 
Efficiency 

0.1548     
 

0.1509     0.1423     0.3256     0.2894     0.2049 

 Mean 
Entropy 

55.4518    48.3339   48.1643    18.8368    31.9170    39.4124 

 Avg Std 
Entropy 

0.0000     0.1474     0.1098     0.3460     0.3048     0.2506 

Prior Four 
Design 

Mean 
Efficiency 

10.6844    
(68.26%) 

6.5671     
(54.80%) 

2.7459  
(27.14%)   

9.7300     
(100%)   

5.8745     
(54.50%) 

5.4441 
(56.14%) 

 Std 
Efficiency 

0.1423     0.2739     0.3463     0.1134     0.2003     0.1448 

 Mean 
Entropy 

55.4518    36.9900   18.9642    49.1797    35.8755    35.8187 

 Avg Std 
Entropy 

0.0000     0.2271     0.3222     0.0834     0.1964     0.1977 

Prior Five 
Design 

Mean 
Efficiency 

11.7772    
(75.24%)  

9.0560   
(75.57%)  

5.0081 
(49.51%)    

3.3127 
(34.05%)    

10.7992     
(100%)   

9.0739 
(93.57%) 

 Std 
Efficiency 

0.1216     0.1704     0.3738     0.2985     0.0963     0.1264 

 Mean 
Entropy 

55.4518    43.7072   27.5537    19.7890    48.6935    44.3938 

 Avg Std 
Entropy 

0.0000     0.2012     0.3525     0.3539     0.0911     0.1519 

Prior Six 
Design 

Mean 
Efficiency 

12.3571  
(78.95%)   

7.8180    
(65.24%) 

4.3192     
(42.70%) 

2.8801     
(29.60%) 

8.0365   
(74.72%)   

9.6976 
(100%)   

 Std 
Efficiency 

0.0707     0.1784     0.2015     0.3014     0.1866     0.0837 

 Mean 
Entropy 

55.4518    37.5566   24.1552    17.9572    37.1793    43.1140 

 Avg Std 
Entropy 

0.0000     0.2426     0.3445     0.3019     0.2650     0.1933 
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• Using the zero prior assumption results in extremely poor performance for any of 

the other parameter specifications (on average only 60% as efficient as the correct 

prior) 

• The equal-spaced prior (prior assumption two) has the smallest impact on the 

relative efficiency of all the other decision strategies (they are approximately 85% 

as efficient as the true prior designs) 

• Prior assumption five is the second most resistant to misspecification ( 

Misspecification results in designs approximately 75% as efficient as the true 

design) 

The remaining design strategies are less consistent in their impacts on the efficiency of 

designs created under other prior assumptions.  

If we examine the impact on efficiency for misspecification of the prior in 32 · 4 · 

5 designs, we find the following results: 

• The zero prior assumption results in very severe consequences if the prior is 

something other than non-zero. (These designs are only 30% as efficient as the 

designs created under the correct prior) Therefore the consequences of assuming 

no prior information are more severe than assuming a slightly incorrect prior.  

• The equal-spaced prior assumption (prior assumption two) is the best overall 

assumption is one is not confident enough to make stronger assumptions 

regarding the priors 

The remaining prior assumptions result in designs that are very inconsistent. They should 

not be considered is there is a chance that the true structure of the parameter estimates 

could be greatly different in shape or magnitude.  
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 Misspecification of the prior does not have a large impact on the overall utility 

balance of the resulting choice designs (measured as entropy) for either the 33 design. 

The resulting designs are within a twenty percent of the entropy of the true design. For 

the 32 · 4 · 5 design the impact of misspecification of the prior has a much larger impact 

on the entropy of the resulting design. The resulting design can have up to 70% less 

entropy that the design created under the correct prior assumption. This indicates that the 

decisions being made are much simpler. This is seen especially when the true prior is 

prior four and any other prior is specified for the creation of the choice design. 

8.3 Summary and Discussion 

From our study of the effects of misspecification of prior for the creation of 

choice designs we make the following recommendations: 

• When the design is easily balanced (in terms of the number of attribute 

levels and alternatives per choice set): 

o Specifying a zero prior is not a recommended practice unless one 

is absolutely unable to make any conjectures concerning at least 

the relative attractiveness of attribute levels 

o The effect of misspecification of an informative prior on the 

efficiency of the true design are not very severe 

o The effect of misspecification of the prior on the utility balance 

(entropy) of the true design are not very severe 

• When the structure of the design is not balanced (in terms of the number 

of attribute levels relative to the number of alternatives per choice set): 
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o The effects of misspecification of a prior on the efficiency of the 

design when one is not at least certain of the rank ordering of the 

levels or the shape of the prior can be very severe. 

o Misspecification of a zero prior results in the worst performance 

overall (26 – 55% of potential efficiency) 

o The impact of misspecification on the entropy of the design is 

equally severe as those to the efficiency of the design 

o Assuming prior four when it is not true has the second most severe 

impact on the efficiency of the design 

o None of the other priors are able to create efficient designs if prior 

four coincides with the true parameter levels (This may be due to 

the much larger magnitude of the assumed parameter values in this 

prior) 

From the result of our analysis we find that making a simple assumption (prior 

assumption two) concerning the prior results in designs that are most resilient to 

misspecification of the prior. One should not make assumptions concerning a change in 

shape of the prior (prior assumptions five and six) unless one if very confident that this is 

the true behavior. The designs created under these assumptions do not perform well under 

any of the other prior assumptions.  
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9. Decision Strategies and Optimal Choice Designs 

We earlier introduced four non-compensatory decision strategies – the 

conjunctive strategy, disjunctive strategy, minimax strategy and lexiographic strategy 

(Shugan 1980). The majority of methods used for the design and analysis of choice 

experiments assume that consumers make compensatory decisions – they use the 

available information from all attributes and alternatives to formulate their decision. This 

is aligned with the axiom of utility maximization that is fundamental to choice theory. 

Behavioral research has shown that participants do not always behave in a compensatory 

manner (Shugan 1980). Given that consumers may enter different decision making 

strategies in the course of an experiment (Swait, et al. 2001), can we create designs that 

are efficient for each strategy? Further, what are the consequences of misspecifying the 

decision strategy in creating a choice design? The minimax strategy is not easily 

represented through the manipulation of the prior assumption in the creation of efficient 

designs and is not studied as deeply in the literature as the other decision strategies. 

Therefore we will not consider it in our analysis. 

9.1 Decision Strategies and Prior Assumptions 

We will discuss which prior assumptions may be appropriate for the creation of 

designs in which decision makers are assumed to use a particular non-compensatory 

decision strategy. Although we use tools for analyzing the results of choice experiments 

that assume consumers use a compensatory decision strategy, the use of priors that reflect 

the real decision strategies may minimize the loss of efficiency resulting from switching 

decision strategies.  
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9.1.1 Compensatory Decision Making 

The compensatory decision making strategy assumes that all information 

available in the choice set is taken into consideration during the choice process. It 

assumes that all attributes and levels are considered in the decision making process. Any 

of the priors discussed in Chapter 8 could represent an accurate prior for a compensatory 

decision making strategy. There are no restrictions for assuming a prior in the 

construction of a choice design where individuals are assumed to use the compensatory 

decision making strategy for the choice task.  

 Based on our findings in Chapter 8 we should use any available information in 

formulating our priors for creating the choice design. If we are not confident in our 

knowledge of anything beyond the ranking of the levels for an attribute, then the equal-

spaced prior assumption is the best choice. The consequences of misspecification of the 

prior assumption for the compensatory decision strategy are worst when the shape of the 

prior is misspecified.  

9.1.2 Conjunctive Decision Making Strategy 

The conjunctive decision making strategy assumes that a consumer eliminates 

from consideration all alternatives that contain attribute levels that do not meet a 

predetermined minimum level of acceptability. Let us consider the parameter estimates 

that would result if this decision strategy were being employed with one of the attribute 

levels being unacceptable. The parameter estimate of the unacceptable level would result 

in utility much lower than that of the remaining levels. This behavior is similar to that 
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studied in prior assumptions five and six in Chapter 8. These are the only priors whose 

shapes align with the parameter estimates resulting from this decision strategy.  

Based on our results in Chapter 8 we know that the consequences of 

misspecification of a prior with a distinct non-linear shape (like those appropriate for the 

conjunctive decision making strategy) are more severe than specifying a simpler prior to 

create the choice design. Therefore we should only specify a prior reflective of the 

conjunctive decision making strategy if we are sure that this strategy will be employed 

for the entire choice task (or that one level is extremely unattractive for those using a 

compensatory strategy). Further, if we specify a prior reflective of the conjunctive 

decision making strategy in creating our choice design we are assuming that all people 

participating in the choice task will use this prior. Again, this is not likely a true 

assumption.  

9.1.3 Disjunctive Decision Making Strategy 

 The disjunctive decision making strategy assumes that the consumer decides 

which attributes are most important and then picks the alternative that has the most 

attractive level for those attributes. If we consider the parameter estimates that might 

result from a disjunctive decision making process, we would have one parameter that is 

of greater magnitude than the others in the study. This could be represented by priors 

three and four from Chapter 8, however these would not be the only way to specify such 

a prior.  

 Based on the results from Chapter 8, we would not recommend specifying a 

disjunctive decision strategy when constructing a choice design, the consequences of 
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misspecification of this prior are more severe than other priors. In addition, similarly to 

the conjunctive decision strategy, if we assume that a disjunctive strategy will be used by 

participants in a choice design we are assuming that all participants will use this strategy 

at all times, a very unrealistic assumption.  

9.1.4 Lexiographic Decision Making Strategy 

The lexicographic decision strategy assumes that the consumer ranks the 

attributes in order of preference and then selects the alternative that ranks the highest on 

the most important attributes. The prior assumption for this decision making strategy 

would have large magnitude for the most important attribute, slightly smaller magnitude 

for the second most important attribute and continuingly decreasing in magnitude priors 

for the remaining attributes.  

Similar to the problems with specifying a disjunctive decision strategy, there are 

several problems with assuming a lexicographic decision making strategy in the creation 

of a choice design. First, prior assumptions four and five from Chapter 8 would be one 

appropriate specification of the lexicographic decision strategy and misspecification of 

these priors were shown to be the most costly. Secondly, if we assume the lexicographic 

strategy in creating choice designs we are assuming that all participants will use this 

strategy at all times. Both of these assumptions could be costly in creating a choice 

design. 
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9.2 Summary and Discussion 

 We have reviewed several non-compensatory decision strategies that are 

recognized by the behavioral literature. For these strategies we have reviewed ways that 

the behavior of a participant making choices in this manner would be represented in the 

parameter estimates from a choice task. For these strategies we reviewed how specifying 

the prior assumptions associated with these strategies in the creation of a choice design 

can impact the efficiency of the choice design if the decision strategy is misspecified. We 

see that the conjunctive strategy is the only one where the benefits may outweigh the risk 

of misspecification if one is confident that the decision strategy will be employed.  

 Although we can specify priors that are reflective of a particular decision strategy, 

one needs to remember that the use of these priors to create the choice design assumes 

that everyone will use this strategy at all times in the choice task, likely an unrealistic 

assumption. Therefore we are likely better devoting our time to specifying appropriate 

priors (see Chapter 8) and creating choice tasks where participants will not use 

simplifying strategies in answering choice tasks.  
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10. Designs for the No-Choice Alternative 

As discussed earlier Haaijer, Kamakura and Wedel (Haaijer 2001) discuss the 

most appropriate models to use when dealing with data that contain a no-choice 

alternative. In particular, the use of the multinomial logit, the no-choice multinomial logit 

and the nested-logit models are discussed. The results of the models are only accurate to 

the point that the data collected are appropriate for that type of model. Earlier work in 

design efficiency has shown that data that are efficient for estimating one model are not 

necessarily the most efficient for another model.  

Before one can consider modeling the results of a choice analysis with the no-

choice option, it becomes necessary to consider if the prevalence of no-choice responses 

are significant. Examining twenty sample data sets made available to us by Sawtooth 

Software Inc., nineteen offered the no-choice option as a valid response. Amongst the 

nineteen relevant data sets the minimum percentage of no-choice responses was 2.65% 

and the maximum number of no-choice responses was 50.71%. One average 

approximately 22.28% of the responses was no-choice. Losing approximately one quarter 

of the data intended to be collected in an experiment could have extreme implications for 

the results of the analysis, especially if there is a systematic reason behind occurrence of 

no-choice responses in the study. 



 

 116

10.1 Why the No-Choice Alternative is Selected 

If we can understand why the no-choice option is selected by respondents then we 

can try to protect against it in our choice experiments. Possible systematic causes of the 

no-choice option may include: 

1. A learning curve 

The no-choice option may occur more frequently in early choice tasks due 

to unfamiliarity with the task at hand or searching for a better choice 

2. A Fatigue Effect 

As the task progresses, if it is too long, respondents may become fatigued 

with the task and select no-choice for this reason 

3. A difficulty correlation 

It may be that the selection of the no-choice alternative has to do with the 

difficulty of the choice task. The difficulty of the choice task can be 

measured through a measure of entropy. 

If the presence of the no-choice selection is believed to be systematic, special care should 

be taken in the analysis of the data from the choice task. If information can be gained on 

the prevalence of the no choice response prior to the choice task (perhaps through a pilot 

study or based on other studies) then the final experiment can be designed with the no-

choice alternative being taken into consideration.  

 Another consideration to be taken into account regarding the no-choice response 

is the purpose of the choice experiment. Consider the following example from Sawtooth 

Data Set I: each participant is presented with twenty choice sets to evaluate. Figure 22 
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Figure 22 - Percent of No-Choice Responses 
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illustrates the percent of each participant’s responses that were no-choice for this 

experiment. We see that nearly an equal number of participants never responded to any 

choice set (approximately 11%) as those who responded to every choice set 

(approximately 13%). In considering how and why to use the no-choice responses from 

the experiment, one must consider what we are hoping to learn from the experiment. 

There are several different options: 

• What are the preferences for this product among all consumers in the 

marketplace? (Including those who will never purchase the product, or are not 

interested in replacing their current product) 

• What are the preferences for this product amongst the engaged consumers in the 

marketplace? (Just those consumers who will purchase the product or who will 

replace there current product in the near future) 

 If we are interested in studying preferences among all consumers in the marketplace, 

then behavior such as that illustrated in this example is acceptable and should be modeled 

in the experiment. If we are only interested in studying engaged consumers for our 

product then behavior such as that seen in this example creates concern. First, we have 

targeted the wrong audience for our experiment and potentially incurred much more cost 

than necessary. Secondly, we now have to consider how to use the large amount of no-

choice data in modeling the results. For example, the people who never responded are 

obviously disengaged from the choice task. But what about the participants who only 

responded to ninety, eighty or seventy percent of the tasks? Are they completely 

disengaged from the process or did they just not find the offerings in the choice sets they 

did not respond to engaging? These types of questions become very challenging as one 
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approaches the analysis of the experiment. Thus, in the planning stage of the experiment 

it is very important to consider the desired use and application of the no-choice 

alternative. Further, the no-choice multinomial logit model only accounts for no-choice 

responses due to unattractiveness of the other alternatives, not for other reasons such as 

difficulty of the choice. 

 Once we decide the purpose of our experiment, and the inclusion of the no-choice 

alternative is confirmed, it becomes necessary to understand when and why consumers 

select the no-choice alternative. Understanding these reasons serves three purposes: 

• In the design phase we can attempt to reduce the propensity of consumers to 

select no-choice, thereby maximizing the information collected from the 

experiment 

• In the analysis phase we can control the effect of the no-choice alternative by 

modeling the reasons for the no-choice as covariates 

• To make the design robust to the selection of the no-choice alternative 

By combining these two ideas we can ensure that we achieve maximum precision in the 

collection and analysis of information for our experiment.  

 The behavioral literature on the no-choice alternative is fairly extensive and there 

are many documented reasons that the no-choice alternative becomes preferred in given 

situations. Dhar  indicates that consumers are more likely to select the no-choice 

alternative when there is high conflict in the choice set, i.e. if all or most of the alternative 

within the choice set are equally balanced in preference (utility balanced) then the 

decision becomes more complex and the no-choice alternative becomes preferred. Dhar 

and Nowlis (1996) also indicate that time pressure in the choice task leads to deferral of 
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choice in many contexts, however this conflicts with the logic of the no-choice logit 

model. Dhar and Sherman (1996) find that the willingness to choose is greater for unique 

good sets than for unique bad sets (even when matched for overall attractiveness). 

 Dhar and Nowlis (2004) show that there are two steps to the consumer decision 

making process, whether or not to buy and what to buy; however the order of these two 

decisions is not fixed. Luce (1996) finds that the readiness to choose is impacted by the 

ease of tradeoffs amongst alternatives in the choice set. Dhar (1997) also finds that 

difficulty in selecting only one alternative leads to choice deferral and further the 

tendency to defer is greater when differences in attractiveness are small versus when they 

are large. In addition, the preference for no-choice increases with the introduction of a 

new alternative that is relatively equal in overall attractiveness and the preference for no-

choice decreases with the introduction of a new alterative that is inferior to the existing 

choices.  

 The literature in general shows that when the complexity of the choice increases 

so does the propensity towards the no-choice alternative in the choice set. Therefore, the 

complexity measures discussed earlier may also impact the propensity towards selecting 

the no-choice alternative in the experiment. We will discuss those measures and their 

impact on the selection of the no-choice alternative in the next section.  

10.2 Decreasing the Propensity of No-Choice Alternatives 

 Every time the no-choice alternative is selected in a choice experiment there is a 

loss of information and a decrease in efficiency for the experiment as a whole. Reducing 

the prevalence of the no-choice selection will increase the information collected from the 
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experiment. In addition, given the large number of reasons for the no-choice alternative 

being selected if we can eliminate all but those resulting from truly not preferring the 

other available alternatives then we will be able to better model and understand the data. 

In a traditional choice experiment there are no-choice answers resulting from fatigue, 

start-up unfamiliarity, complexity of the choice and non-attractiveness of the other 

alternatives. When we model the data we would benefit from knowing why the no-choice 

alternatives were chosen, and generally the only assumption concerning the no-choice 

alternative in modeling is that the other alternatives in the choice set are unattractive.  

 We earlier identified several measures of complexity for choice sets. We now 

examine whether these complexity measures and the order of the choices have any 

impact on the percent of responses that were the no-choice alternative. We evaluate these 

complexity measures and their impact on the no-choice alternative for eleven sample data 

sets using a random effects logistic regression model (ID is the random effect and the 

complexity measure of interest is the fixed effect). A summary of these data sets is 

presented in Table 23. 

10.2.1 Entropy 

 The entropy of a choice experiment has been discussed as a measure of 

complexity shown to impact the amount of variability in individual’s responses to choice 

tasks. Since entropy is considered to be a measure of choice task complexity one would 

assume that as the entropy of a choice set increases the propensity to select the no-choice 

alternative will also increase. We examine our eleven sample data sets and fit a model to  
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Table 23  - Summary of Sample Data Sets 

Data Set  Attributes Number of 
Alternatives 
besides no-
choice 

Number of 
Choice Sets 
per 
Participant 

Number of 
Participants

A 2 · 3 · 42 2 12 136 
B 2 · 3 · 42 2 12 110 
C 32 · 4 · 5 4 10 539 
D 32 · 42 4 10 92 
E 3 · 4 · 5 3 10 400 
F 23 · 4 · 5 · 6 3 15 250 
G 5 · 8 · 9 5 12 1202 
H 5 · 6 · 9 5 12 1181 
I 22 · 33 · 6 3 12 50 
J 43 · 52 · 6 3 20 586 
K 3 · 4 · 8 3 10 270 
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determine if there is a relationship between the response, choice or no-choice, and the 

entropy of the choice set. We find conflicting results in our analysis. In the seven 

experiments where the model was estimable, five found that an increase of one in entropy 

decreased the probability of no-choice responses by a factor of .17 to .8 (data sets B, C, F, 

H and K) and two found that an increase of one in entropy increased the probability of 

no-choice responses by a factor of between 1.4 and 2.5 (Data sets E and G). The results 

of this analysis can be seen in Appendix Three. Based on earlier work using entropy as a 

measure of complexity (Swait, et al. 2001) we would have expected an increase in 

entropy to result in an increase in the selection of the no-choice alternative.  

 The results of this study are inconclusive; we cannot say for sure that increasing 

the entropy of a choice set will increase the propensity of the no-choice alternative. One 

potential problem with our analysis of entropy is that we have used the actual parameter 

estimates of a main effects only model to estimate the entropy of a choice set. This may 

not be a valid assumption for many of these data sets; however, we have no further 

information with which to evaluate the model assumptions. Entropy still remains a useful 

measure of complexity for a choice experiment as it has been shown to increase the 

variability in the responses, but was not a useful measure for predicting the probability of 

a no-choice response in these choice experiments with only 10 – 12 choice sets.  

10.2.2 Number of Tradeoffs 

 The number of tradeoffs has been proposed as a measure of choice task 

complexity. To date it has not been shown to have any conclusive impact on the results of 

a choice experiment. As discussed earlier the number of tradeoffs is not without flaws as 
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a measure of choice task complexity. Of the eleven choice experiments available to 

analyze with a no-choice alterative only two of the models were estimable. In both of 

those models, the addition of a tradeoff in the experiment decreased the probability of the 

no-choice alternative (Data sets D and F). (The results of this analysis can be seen in 

Appendix Three).  

 The distribution of the number of tradeoffs in a choice experiment is a fairly fixed 

number, given that the number of attribute levels generally exceeds the number of 

alternatives in the choice experiment. Therefore, the number of tradeoffs in a choice 

experiment is only viable as a measure of task complexity when there are attributes with 

a number of levels less than or equal to the number of alternatives in the choice set.  

10.2.3 Magnitude of Tradeoffs 

 The magnitude of tradeoffs has also been proposed as a measure of choice task 

complexity. Examining our eleven choice experiments, we find that only four are capable 

of estimating the necessary logistic regression model. In three of these experiments an 

increase in the magnitude of tradeoffs for the choice experiment results in an increase in 

the probability of no-choice alternative selection (Data Sets G, J and K) and in the last 

experiment an increase in the magnitude of tradeoffs resulted in a decrease in the 

probability of the no-choice alternative (Data set D). (The results of this analysis can be 

seen in Appendix Three). We expect that an increase in the magnitude of tradeoffs to 

result in an increase in the probability of no-choice due over the limited range of values 

for the magnitude of tradeoffs seen in these studies. For the one experiment with the 

counterintuitive result, a 32 · 42 in 10 choice sets of size four, there is little potential 
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variation in the number of tradeoffs since there are at most a number of levels equal to 

the number of alternatives in the choice experiment. Since choice designs tend to have 

little overlap in order to maximize the information collected from each choice set, we do 

not expect these results to carry over to more complex scenarios.  

 The three experiments with intuitive results (an increase in the magnitude of 

tradeoffs resulting in an increase in the probability of no-choice responses), a 5 · 8 · 9 in 

12 choice sets of size five, a 43 · 52 · 6 in 20 choice sets of size three and a 3 · 4 · 8 in ten 

choice sets of size three, there is more variability in the magnitude of tradeoffs as there 

are more levels than alternatives in the majority of the attributes. We have shown that 

increasing the magnitude of the tradeoffs in the choice experiment increases the 

probability of a participant selecting the no-choice alternative and the resulting loss of 

information from the choice made. These results are intuitive given the limited range of 

the magnitude of tradeoffs seen in these studies. 

10.2.4 Number of Attributes 

 The effect of the number of attributes on the percent of no-choice responses 

within an experiment requires much more information than we have available for 

analysis. Figure 23 shows a scatter plot of the number of attributes in our eleven choice 

experiments we are analyzing and the percent of no-choice responses in the experiment. 

This plot shows that there is no significant relationship between the number of attributes 

in the choice experiment and the percent of no-choice responses by participants. 

Although this relationship is not significant it is not a reason to conclusively decide that 

the number of attributes is not a significant predictor of percent no-choice responses. We 
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Figure 23 - Percent of No-Choice Responses by the Number of Attributes 
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cannot make a true determination here since there are many other factors that are 

confounded between these experiments. For example, we do not control for the number 

of alternatives in the experiment, the entropy of the choice tasks, or any of the other 

complexity measures that impact the percent of no-choice responses in the experiment. 

The number of attributes remains a viable measure of choice task complexity without a 

sure link to the selection of the no-choice alternative, but something that should be 

considered in the creation of a choice experiment.  

10.2.5 Mean Standard Deviation of Attribute Levels within Each Alternative 

 The effect of the mean standard deviation of attribute levels within each 

alternative is evaluated as a predictor of the probability of a participant selecting no-

choice alternatives within a choice set. As defined earlier the mean standard deviation of 

attribute levels within each alternative is defined as: 
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Of the eleven choice experiments evaluated for this analysis we find that nine result in 

estimable logistic regression models with choice / no-choice as the response variable and 

a fixed effect mean standard deviation of the attribute levels within an alternative and a 

random effect ID for respondents. Of these nine experiments six find that as the mean 
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standard deviation of attribute levels with an alternative increases, the probability of a no-

choice response decreases (Data set A, B, C, G, H, and K). The remaining three 

experiments find that as the mean standard deviation of attribute levels within an 

alternative increases, the probability of a no-choice response increases (Data sets E, F and 

K). (The results from this analysis can be found in appendix three.) 

 These results are inconclusive in terms of the direction of the effect of the mean 

standard deviation of attribute levels within an alternative on the probability of a no-

choice response. Although DeSharzo and Fermo (2002) show that the mean standard 

deviation of attribute levels within an alternative is a viable measure of choice task 

complexity in that it increases the variance of the random component of utility, we are 

unable to show that it contributes to an individuals propensity to select the no-choice 

response within an experiment.  

10.2.6 Dispersion of the SD of Attribute Levels within Each Alternative 

 DeSharzo and Fermo (2002) conclude that as the dispersion of the standard 

deviation of attribute levels within each alternative increases the variance of the utility 

also increases. The dispersion of the standard deviation of attribute levels within each 

alternative is defined as: 
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where SDj is defined as above. We hypothesize that as the dispersion of the standard 

deviation of attribute levels within an alternative increases, the propensity to select the 

no-choice alternative will also increase. Of the eleven data sets available for study we 
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find that six result in estimable models. Of these six, five agree with our hypothesis that 

as the dispersion of the standard deviation of attribute levels within an attribute increases 

the probability of the no-choice alternative also increases (Data sets A, E, F, G and K). 

The last comes to the conclusion that as the dispersion increases the probability of the no-

choice alternative decreases (Data set D). (The results of these analyses can be seen in 

Appendix Three). As mentioned when examining the magnitude of tradeoffs as a 

predictor of no-choice behavior, data set D is very simplistic in its structure. With only 

four attributes, each with only three or four levels, in four alternatives per choice set there 

is very little room for variability amongst the levels in an alternative. Therefore, the fact 

that its behavior is different from that of data sets A, E, F, G and K is not surprising. In 

all of these other experiments the context of the number of attributes, alternatives and 

attribute levels was far more complex. In conclusion, we find that in addition to being a 

good predictor of the variability in the utility of a choice, the dispersion of the attribute 

levels within an alternative it is also a good predictor of the probability if a no-choice 

response from a given choice set.   

10.2.7 Mean Standard Deviation of Attribute Levels within Each Attribute 

 We now seek to evaluate whether the mean standard deviation of attribute levels 

within each attribute has an impact on the probability of no-choice responses in the 

choice experiment. Of the eleven available experiments, five result in an estimable 

model. Of those five, four find that as the mean standard deviation of the attribute levels 

within an attribute increase so does the probability of a no-choice response (Data sets G, 

H, J and K), while data set D again results in a counterintuitive result, that as the mean 
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standard deviation of attribute levels within an attribute increases the probability of the 

no-choice response decreases. We again believe that the structure of data set D, as 

discussed earlier for the magnitude of tradeoffs and the dispersion of the standard 

deviation of attribute levels within an alternative, leads to this counterintuitive result. The 

results for these analyses may be seen in Appendix Three. We thus conclude that for data 

sets with a more complex structure, i.e. number of levels exceeding number of attributes, 

etc. that the mean standard deviation of attribute levels within an attribute is a good 

measure of the propensity to select the no-choice alternative in a choice experiment.  

10.2.8 Dispersion of the SD of Attribute Levels within Each Attribute 

 We now seek to evaluate whether the dispersion of the standard deviation of 

attribute levels within each attribute has an impact on the probability of no-choice 

responses in the choice experiment. Of the eleven data sets available for exploration, we 

find that four result in estimable models with choice / no-choice as the response, 

dispersion of the standard deviation of the attribute  levels within an attribute as a fixed 

effect and ID as a random effect. Of those three find that as the dispersion of the standard 

deviation of attribute levels within an attribute increases, the probability of a no-choice 

response also increases (Data sets D, G, and K), whereas the final data set A finds that as 

the dispersion of the standard deviation of attribute levels within an attribute increases, 

the probability of a no-choice response decreases. Data set A provides the 

counterintuitive result in this analysis, and this may be attributed to the more simplistic 

structure of the choice experiment. Data set A was a 2 · 3 · 42 in choice sets of size 2, 

much simpler than the structure of all the other experiments with the exception of data set 
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D. The magnitude of the effect of the dispersion of the standard deviation of attribute 

levels within an attribute for data set A was also smaller than the corresponding 

increasing effects for the other three data sets. We therefore conclude that when the 

structure of the choice experiment is sufficiently complex, increasing the dispersion of 

the standard deviation of the attribute levels within an attribute results in an increased 

probability of the selection of the no-choice alternative (a .1 increase in the dispersion of 

the standard deviation of attribute levels within an alternative results in between a 5 and 

20% increased possibility of selecting the no-choice alternative). 

10.2.9 Choice Order within the Choice Task 

 For each choice experiment we divide the choices made by a participant into three 

classes, the early choices, the middle choices and the end choices. Earlier discussions 

have indicated that the order of choices is believed to have an impact on whether or not 

an individual makes a choice. Early choices are often impacted by learning or searching 

effects. Participants are trying to learn and understand the choice task and may elect not 

to choose as a result. At the end of the choice task an individual’s willingness to choose is 

often impacted by a fatigue effect due to boredom with the choice task or the effects of 

the cumulative cognitive burden of the choice task as a whole. For each individuals 

choice task we create three indicator variables, the first that the choice set was in the 

learning phase (early), the second that the choice was in the middle of the experiment and 

the last that the choice was in the fatigue / burden stage (late). We use these variables to 

create a model where the response is choice / no-choice, there is a fixed effect choice 

order and a random effect ID. We see that this model is significant in eight of the eleven 
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data sets (A, C, D, E, F, G, H and J). In each of these cases, a choice being in the learning 

stage of the experiment results in a decreased probability of the no-choice alternative 

being selected in the first time period as oppose to the second and third. As no-choice 

selections are most likely to be made in the learning stages of choice experiments, we 

should take care to insure that choice sets which are very important to the overall 

experiment, i.e. they contribute greatly to the efficiency of the experiment, should not be 

placed late in the choice task for an individual as they are more likely to selected as no-

choice.  Figures 24 and 25 give an example of the behavior exhibited in data sets C and G 

of the percent no-choice on a question by question basis.  

10.2.10 Summary and Conclusions 

 Of the seven measures that have been introduced as measures of choice task 

complexity, we see that five illustrate conclusive (although not necessarily practically 

significant) results concerning the propensity of individuals to select no-choice 

alternative (the dispersion of the standard deviation of attribute levels within an 

alternative, the mean standard deviation of attribute levels within an attribute, the 

dispersion of the standard deviation of attribute levels within an attribute, the number of 

tradeoffs and the magnitude of those tradeoffs). The other two proven measures of task 

complexity, the mean standard deviation of attribute levels within an alternative and the 

entropy of the choice task, lead to inconclusive results concerning the propensity to select 

the no-choice alternative. In designing choice experiments when we have the flexibility 

to manage these measures as we assign choice sets to participants we should take care not 
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Figure 24 - Percent No-Choice by Question for Data Set C 

 
 
 

 

Figure 25 - Percent No-Choice by Question for Data Set G 

 



 

 134

to over burden participants by giving them choice sets that rank high on all the 

complexity measures that encourage no-choice responses. In addition, we have shown the 

placement of a choice set in an individual’s overall choice task has an effect on their 

propensity to select the no-choice alternative. Therefore, we should attempt to refrain 

from placing choice sets with high complexity according to the other complexity 

measures late in an individual’s choice task to attempt to reduce the likelihood of no-

choice responses. 

 Additionally we should note that out evaluation of these measures of choice 

design complexity are based on observational studies. In order to come to more 

conclusive recommendations concerning the effects of these measures on the propensity 

towards selecting the no-choice alternative it is necessary to study their effect via 

experimentation. 

10.3 Reducing the Severity of No-Choice Responses to Design Efficiency 

 We have shown that in choice experiments the selection of the no-choice 

alternative is very common. As previously discussed, we have seen that generally 

between 20 and 40 percent of the responses in a choice experiment will be for the no-

choice alternative. Even in other experimental situations it may be known that the process 

under study is prone to missing observations. In choice designs we can distinguish 

between missing responses and the selection of the no-choice alternative, but this data is 

not often used in the analysis of the results. It is therefore important to be able to evaluate 

the resistance of a design to missing data points. We consider the impact of losing ten, 

twenty, thirty and forty percent of the intended data to either the no-choice alternative or 
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non-response. We continue to work with four primary examples for evaluating choice 

designs: 33 in 9 choice sets of size 3, 32 · 42 in 10 choice sets of size 4 and 32 · 4 · 5 in 10 

choice sets of size four.  

 We note that the sample sizes evaluated in the following examples are smaller 

than we would normally see in applications (the size of the entire experiment would be 

much larger). The results here are more applicable when we are interested in being able 

to estimate models for each participant in the experiment.  

Example: 33 in 9 choice sets of size 3 

Consider an optimal 33 design in 9 choice sets of size 3 created using the 

%choiceff macro in SAS® with an equal-spaced prior for β. We examine the 

consequences of deleting ten, twenty, thirty and forty percent of the choice sets, 

attributing their deletion to the selection of the no-choice alternative in the experiment. 

For each scenario we calculate the number of choices expected to be no-choice, for 

example with 22% missing data, two of the nine choice sets will be assumed missing, and 

then compute the D-efficiency for all possible combinations of the original nine choice 

sets into designs with only seven choice sets.  

The original design has a D-efficiency of 3.51 and is shown in Figure 26 by the 

red line. We observe that the larger the percentage of data assumed to be missing, the 

worse the D-efficiency of the design becomes. We also notice that there can be 

considerable variability in the D-efficiencies of the designs constructed of all 

combinations of the remaining choice sets. In some cases, the resulting designs may not 

even be capable of estimating the required parameters of the model.  Figure 26 shows 

these results. 
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Figure 26 - 33 in 9 Choice Sets of Size 3 
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We also consider the D-efficiency of the optimal designs created by SAS® for the 

cases with 11, 22, 33 and 44% missing data. The results are presented in the Table 24. 

We notice that in some cases that the designs resulting from deleting the appropriate 

number of choice sets exhaustively do nearly as well as those created by SAS®, the 11 

and 22% missing cases, whereas in other cases the optimal designs created using SAS® 

are far superior, e.g. the 44% missing case.  

Example: 32 · 42 in 10 choice sets of size 4 

Consider an optimal 32 · 42 design in 10 choice sets of size 4 created using the 

%choiceff macro in SAS® with an equal-spaced prior for β. We examine the 

consequences of deleting ten, twenty, thirty and forty percent of the choice sets, 

attributing their deletion to the selection of the no-choice alternative in the experiment.  

For each scenario we calculate the number of choices expected to be no-choice, for 

example with 20% missing data, two of the ten choice sets will be assumed missing, and 

then compute the D-efficiency for all possible combinations of the original ten choice 

sets into designs with only eight choice sets.  

The original design has a D-efficiency of 2.56 and is shown in Figure 27 by the 

red line. We observe that the larger the percentage of data assumed to be missing, the 

worse the D-efficiency of the design becomes. We also notice that there can be 

considerable variability in the D-efficiencies of the designs constructed of all 

combinations of the remaining choice sets. In some cases, the resulting designs may not 

even be capable of estimating the required parameters of the model. In the case of 30% 

missing choice sets the resulting designs have a range of D-efficiencies with the worst 
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Table 24 - 33 in 9 Choice Sets of Size 3 

 11% Missing 22% Missing 33% Missing 44% Missing 
Number of 
Missing 
Choice Sets 

1 2 3 4 

SAS Optimal 
Design D-
efficiency 

3.09 2.68 2.23 2.29 

 

 

 

 

 
Figure 27 - 32 • 42 in 10 Choice Sets of Size 4 
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being only 64% as efficient as the best. This tells us that the consequences of loosing 

particular triplets of choice sets together can have catastrophic effects on the D-efficiency 

of the design, and that we should try to avoid losing these choice sets if at all possible.  

Figure 27 shows these results. 

We also consider the D-efficiency of the optimal designs created by SAS® for the 

cases with 10, 20, 30 and 40% missing data. The results are presented in the Table 25. 

We see that the designs resulting from losing 10 – 40% of the choice sets are less 

efficient that the designs created using SAS®.  

Example: 32 · 4 · 5 in 10 Choice Sets of size 4 

Consider an optimal 32 · 4 · 5 design in 10 choice sets of size 4 created using the 

%choiceff macro in SAS® with an equal-spaced prior for β. We examine the 

consequences of deleting ten, twenty, thirty and forty percent of the choice sets, 

attributing their deletion to the selection of the no-choice alternative in the experiment. 

For each scenario we calculate the number of choices expected to be no-choice, for 

example with 20% missing data, two of the ten choice sets will be assumed missing, and 

then compute the D-efficiency for all possible combinations of the original ten choice 

sets into designs with only eight choice sets.  

The original design has a D-efficiency of 2.7273 and is shown in Figure 28 by the 

red line. We observe that the larger the percentage of data assumed to be missing, the 

worse the D-efficiency of the design becomes. We also notice that there can be 

considerable variability in the D-efficiencies of the designs constructed of all 

combinations of the remaining choice sets. In some cases, the resulting designs may not 

even be capable of estimating the required parameters of the model.  Figure 28 shows the  
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Table 25 - 32 • 42 in 10 Choice Sets of Size 4 

 10% Missing 20% Missing 30% Missing 40% Missing 
Number of Missing 
Choice Sets 

1 2 3 4 

SAS Optimal 
Design D-efficiency 

2.70 2.46 1.95 1.70 

 

 
 
 
 

 
Figure 28 - 32 • 4 • 5 in 10 Choice Sets of Size 4 
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results for 10, 20, 30 and 40% of the data missing. We also consider the D-efficiency of 

the optimal designs created by SAS® for the remaining choice sets above, the results are 

presented in the Table 26.  

We notice that in some cases that the designs resulting from deleting the 

appropriate number of choice sets exhaustively do nearly as well as those created by 

SAS® (the 10, 20 and 30% missing cases). 

 10.4 Summary and Conclusions 

We have shown that the effect of participants selecting the no-choice alternative 

in choice experiments can have significant impact on the D-efficiency of the remaining 

choices used for analysis. Taking this knowledge into consideration during the selection 

of a design may lead one to pick a design that is as resistant as possible to the missing 

data. We also know that participants are predisposed to select the no-choice alternative 

under certain conditions, for example based upon the difficulty of the task. Our analysis 

of the eleven sample data sets did not always support this, which may be accounted to our 

lack of knowledge concerning the choice data sets under study. For example in our 

analysis we assumed a main effects only model with all qualitative factors, which is 

likely an invalid assumption for many of the choice experiments. Earlier literature has 

shown that the incidence of the no-choice alternative seems to be somewhat correlated 

with the order of the choice task, and we support this conclusion with our work on the 

sample data sets.  

We have also shown that there are several measures of choice task complexity 

that have an impact on the probability of a no-choice response from a particular choice  
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Table 26 - 32 • 4 • 5 in 10 Choice Sets of Size 4 

 10% Missing 20% Missing 30% Missing 40% Missing 
Number of Missing 
Choice Sets 

1 2 3 4 

SAS Optimal 
Design D-efficiency 

2.40 2.13 1.83 1.40 
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set. We can work with the timing and difficulty measures of these criteria to effectively 

place choice sets within a participant choice task to minimize the propensity of their 

selecting the no-choice alternative for a reason other unattractiveness.  

The idea of certain choice tasks being more important to the experiment than 

others is useful beyond the scope of choice experimentation. Consider, for example, a 

manufacturing process that tends to be unstable immediately after any changes in setup. 

Consider an experiment being run in a split plot format where the changes that lead to the 

instability are found upon changing the whole plot factor. We would therefore wish to 

analyze the repercussions of loosing specific runs of our experiment within each whole 

plot group and ensure that the most costly runs to lose are not placed immediately after 

the changeover of the whole plot unit level.   
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11. Designing Choice Experiments 

This chapter will discuss the steps that should be considered in the creation of a design 

for a choice experiment. We will start by discussing the recommended steps for a 

practitioner to take in the creation of a choice experiment, and conclude with an example. 

11.1 Steps to Creating a Choice Experiment 

The process of designing a choice experiment is not a simple one. It requires knowledge 

of the topic under study in addition to the statistical measures of design goodness that 

will assist in creating the most efficient and stable model at the conclusion of the choice 

task. Failure to consider any of the recommended steps in the creation of a choice 

experiment can result in a design that is not capable of answering the questions of 

interest.  

Step One: Overview of Topic to be Investigated 

 This stage of the choice experiment is often the easiest for the practitioner 

charged with creating the choice experiment. Generally there are several subject matter 

experts who are capable of identifying the attributes of interest and their levels for the 

choice experiment. In addition to identifying the attributes of interest and their levels, we 

need to begin to develop the prior parameter estimates that will be used in the analysis. 

This need not be more than a simple ranking of the anticipated effects of attribute levels 

from most to least attractive, and if anything can be anticipated about the differences in 

magnitude between the attribute levels that knowledge should also be collected. 
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 In addition to identifying the attributes, their levels and expected effects, it will 

also be necessary to rank these attributes in order of importance for the intended study. It 

may not be possible to study each and every attribute of interest so ranking the attributes 

will allow one to consider thoroughly the importance of each attribute to the intended 

results.   

Step Two: Consider the Target Population 

 Considering the target population of the choice experiment is a very important 

step in creating a choice design. The following questions should be answered in 

conjunction with identifying the target population: 

1. What do we want to learn from the experiment? 

Are we studying a group of consumers already engaged and knowledgeable 

about this product category or are we studying the entire potential population 

for this product, some of whom may be knowledgeable about the product and 

attributes and others who may have little to no knowledge concerning the 

product category. We may wish to estimate market shares amongst current 

users or amongst current and potential users. Our consideration of the target 

population may be linked to the stage of market development for the product. 

Are we studying our product to induce the majority to buy or are we 

attempting to create a new product where only the innovators and early 

adopters are in the market? 
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2. How engaged will the target population be? 

Once we understand our intended learning from the choice experiment, we 

can better understand the level of engagement that will be expected from our 

participants. For example if we are studying airline travel and we want to 

learn about the preferences of business travelers (from question one), then we 

know we very likely have a highly engaged and opinionated target population. 

This tells that we do not need to be as sensitive to the complexity of the choice 

task as the participants are likely going to be very interested in making their 

feelings known through the choice task. The opposite situation should also be 

considered. Assume we are interested in studying the market penetration of 

hybrid cars in the complete market of car buyers. There will be some people 

in this population who have very strong opinions about hybrid cars, such as 

car enthusiasts, people highly concerned with the environment or people 

seeking to maximize their gas mileage. On the other hand there will be people 

who have no opinions on hybrid cars, such as people who are not in the 

market to purchase a car, people who just view a car as a way to get from 

point A to point B or those without cars. In this case increasing the complexity 

of the choice task too much may result in some participants disengaging from 

the choice task.  

3. Can the target population be assumed to be homogeneous? 

Once we understand the intended results from the experiment and how 

engaged the target population is, we need to decide whether we can assume 

that the target population is homogeneous. Decisions on the homogeneity of 
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the population may influence the set-up of the choice task in later steps. With 

one homogeneous group we will just create one master choice task to be 

delivered to all participants. If we decide there are several heterogeneous 

groups within the target population creating the choice task becomes more 

complex process. First a way to identify the different groups must be decided 

upon; second we must decide whether or not each group will receive the same 

choice task. If all groups will receive the same choice task then a decision 

about a model capable of handling several heterogeneous groups must be 

made.  

Considering and understanding the issues pertaining to the target population will provide 

clarity in making decision concerning the remaining steps of designing the choice 

experiment.  

Step Three: Select the Number of Attributes and the Number of Attribute Levels 

 Although it would be desirable to use all attributes and all attribute levels for our 

choice experiment, in many cases it may be unrealistic to do so within the financial and 

time constraints. Using the ranking of attributes from step one and the input of subject 

matter experts, we can decide which attributes will be included in the experiment. Carson 

et al. (1994) indicate that they have been involved with choice experiments with between 

two and thirty attributes, with an average of about seven attributes per choice set being 

seen. They also note that generally as the number of attributes and levels in the choice 

experiment increase, other things such as the number of alternatives and the number of 

choice sets tend to decrease. In deciding on the number of necessary attributes, one 
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should also start to consider the number of alternatives and choice sets that will be 

allocated per participant (see next step). 

Step Four: Select the Number of Alternatives and the Number of Choice Sets 

 As mentioned above, considering the number of attributes in a choice experiment 

cannot be considered without simultaneously considering the number of choice sets and 

alternatives that will be in the experiment. Carson et al (1994) note that they have been 

involved with experiments that have between one and 32 choice sets and two to 28 

alternatives per choice set. They indicate that the average number of choice sets found in 

experiments is four, with the average number of alternatives in each choice set also being 

four.  

 Selecting the number of alternatives and the number of choice sets should be 

considered in balance with the understood target population for the experiment. Again, 

although we need to balance the number of attributes, alternatives and choice sets, 

populations that are more engaged in the choice topic can handle more complex choice 

tasks. Selecting the number of choice sets and the number of alternatives may also be 

related to the anticipated delivery and reward system for the choice experiment. For 

example, to receive a choice task in the mail with twenty choice sets may seem more 

daunting than clicking through twenty choice sets on the internet, and if the reward for 

completing the choice task is nothing, participants are going to be less willing to 

participate unless they have strong opinions on the topic being studied.  

 In addition to considering the number of “experimental” alternatives in the choice 

task, now is also the time to decide if a constant alternative will be provided as part of the 

choice task. Remember that this constant alternative may be one fixed alternative, a 



 

 149

statement of your current product or most commonly the option of none or no-choice. 

The presentation of this alternative also needs to be considered. For example if the no-

choice alternative is selected to be in the experiment will it be presented as: 

1. Select the no-choice alternative if you find none of the other options desirable, 

or 

2. Select the no-choice alternative if you are unable to decide between the other 

alternatives. 

The no-choice alternative may also be presented as a combination of these two, or 

something else entirely. The presentation of the no-choice alternative also becomes a 

consideration in the model that will be used to analyze the data.   

Step Five: Select the Number of Participants 

 Selecting the number of participants in a choice experiment is often a financial 

decision. Obviously having more participants is desirable. The number of participants 

may also depend on the delivery system for the experiment, whether mail, internet or in 

person. One last thing to consider in deciding the number of participants is that, on 

average, choice experiments see between 20 and 40% of the responses being no-choice, 

something that can become problematic if you are running a small experiment with just 

enough data collection for estimating your model.  

Step Six: Create Several Candidate Master Designs for Evaluation 

 Once we have answered all the questions in steps one through five, we need to 

begin creating designs to consider for our choice task. The first decision will be the 

model that will be used to analyze the data, and then we need to decide on the assumed 

parameter values for our attributes to be used in creating potential choice designs. Once 
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we have decided the model and the priors we can use a design creation algorithm to 

create the candidate designs. These designs should all have the required number of 

attributes, attribute levels and alternatives and the number of choice sets should be the 

number of participants times the number of choice sets per participant.  

Step Seven: Evaluate and Examine the Complexity Measures for Each of the 

Candidate Master Designs 

 Now that the candidate master designs have been created we should evaluate each 

choice set in the candidate designs on some of the following criteria: 

• Mean Standard Deviation of Attribute Levels within an Alternative 

• Dispersion of the Standard Deviation of Attribute Levels within an 

Alternative 

• Mean Standard Deviation of Attribute Levels within an Attribute 

• Dispersion of the Standard Deviation of Attribute Levels within an 

Attribute 

• Entropy 

• Number of Tradeoffs 

• Magnitude of Tradeoffs 

• Efficiency with the Choice Set Deleted 

Once these complexity measures have been calculated for each choice set, we need to 

examine the distribution of these values for each candidate design.  
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Step Eight: Select the Final Master Design 

 In examining the distributions of the complexity measures for each of the 

candidate master designs we should identify the candidate design that has the best 

distribution of levels for each of the measures as seen below: 

• Mean Standard Deviation of Attribute Levels within an Alternative – 

Smaller is more desirable 

• Dispersion of the Standard Deviation of Attribute Levels within an 

Alternative - Smaller is more desirable 

• Mean Standard Deviation of Attribute Levels within an Attribute - Smaller 

is more desirable 

• Dispersion of the Standard Deviation of Attribute Levels within an 

Attribute - Smaller is more desirable 

• Entropy - Smaller is more desirable 

• Number of Tradeoffs – Larger is more desirable 

• Magnitude of Tradeoffs - Smaller is more desirable  

• Efficiency with the Choice Set Deleted - Larger is more desirable 

Select the design with the best variation in each of the complexity measures.  

Step Nine: Allocate Choice Sets to Participants According to Complexity Measures 

Once we have selected the master design we need to allocate the choice sets to the 

participants of the experiment.  

• For each complexity measure divide choice sets into groups according to 

the desired levels of the criterion 
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• Allocate choice sets to participant by balancing the levels of each 

complexity measure within each participants choices (each participant will 

receive a different collection of choice sets). If individual level estimation 

is desired, ensure that the choice sets allocated to each individual result in 

an estimable model. 

• Order the choice sets for each participant by not placing the choice sets 

that have a large impact on efficiency in the beginning of a participant’s 

task and the choice sets with the least desirable complexity measures also 

not in the beginning of the task. 

Once these tasks have been completed we have a choice design that can be used 

to study our topic of consideration. This design should attempt to decrease the variability 

of estimates of utility and the propensity of the no-choice alternative being selected in the 

experiment.  

11.2 Creating a Sample Choice Design 

We will now implement the steps discussed above for the following choice task, 

based on data set J. This is a 43 · 52 · 6 experiments in twenty choice sets of size three 

with five hundred and eighty-six participants. We will create a master deign for 29 

participants and assume that they will be repeated for the remaining participants. 

Step One – Step Five: 

 Since we are basing this study on data set J we will use the parameters for that 

experiment. We will assume that the population is well engaged in the topic of interest 

and that they are homogeneous. Further, we will assume that a constant alternative of no-
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choice is used in the experiment and that the instructions surrounding this alternative are 

to select it when the other alternatives are unattractive. We will also assume that we are 

using the Multinomial Logit model with main effects and two factor interactions to 

analyze this data and those equal-spaced priors have been assumed on the main effect 

parameter estimates.  

Step Six: 

 We will use the SAS® macro %choiceff to generate four candidate master 

designs for this analysis. We use the equal-spaced prior assumption when generating the 

data sets. 

Step Seven: 

We evaluate each of the choice sets in each of the four master designs on seven 

different complexity measures, mean standard deviation of attribute levels within an 

alternative, dispersion of the standard deviation of attribute levels within an alternative, 

mean standard deviation of attribute levels within an attribute, dispersion of the standard 

deviation of attribute levels within an attribute, the magnitude of tradeoffs, the number of 

tradeoffs and the entropy. Figures 29 though 35 show the histograms of the distributions 

of the levels of these complexity measures. We notice that there are no significant 

differences between these efficient designs. Tables 27 though 33 identify the numerical 

summaries of these measures for each data set.  

Step Eight: 

We see that data set four has the most desired characteristics on the majority of 

the complexity measures. For this reason we select data set four as our final master 

design. 
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Figure 29 - Distribution of the Mean Standard Deviation of Attribute Levels within 
an Alternative 

 

 

Figure 30 -Distribution of the Dispersion of the Standard Deviation of Attribute 
Levels within an Alternative 
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Figure 31 -Distribution of the Mean Standard Deviation of Attribute Levels within 
an Attribute 
 
 

 
Figure 32 - Distribution of the Dispersion of the Standard Deviation of Attribute 
Levels within an Attribute 
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Figure 33 - Distribution of the Magnitude of Tradeoffs 

 

 

 

Figure 34 - Distribution of the Number of Tradeoffs
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Figure 35 - Distribution of Entropy 
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Table 27 - Distribution of the Mean Standard Deviation of Attribute Levels within 
an Alternative 

 
  D4 D3 D2 D1 
Max 1.9578 1.9966 1.9645 1.92227
Q3 1.4863 1.5072 1.4908 1.5054
Med 1.3521 1.3533 1.3667 1.353
Q1 1.2344 1.2372 1.2417 1.2341
Min 0.4615 0.4615 0.4615 0.4615
Mean 1.3645 1.3677 1.3639 1.3647
Std 0.2059 0.2128 0.2105 0.201

 
 

Table 28 - Distribution of the Dispersion of the Standard Deviation of Attribute 
Levels within an Alternative 

 
  D4 D3 D2 D1 
Max 0.81847 0.81504 0.84766 0.84766
Q3 0.38144 0.38779 0.39425 0.39487
Med 0.266 0.26619 0.26223 0.26331
Q1 0.16891 0.17226 0.16907 0.17364
Min 0.00701 0 0 0.0079
Mean 0.2885 0.2882 0.2896 0.2959
Std 0.15797 0.1538 0.1584 0.161

 
 

Table 29 - Distribution of the Mean Standard Deviation of Attribute Levels within 
an Attribute 
 
  D4 D3 D2 D1 
Max 1.9465 1.849 1.8909 1.8971
Q3 1.279 1.279 1.2829 1.28293
Med 1.099 1.1224 1.1312 1.1289
Q1 0.96 0.9645 0.9645 0.9573
Min 0.4553 0.4553 0.3849 0.4553
Mean 1.117 1.124 1.1275 1.126
Std 0.2354 0.25 0.2459 0.2427
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Table 30 - Distribution of the Dispersion of the Standard Deviation of Attribute 
Levels within an Attribute 

  D4 D3 D2 D1 
Max 1.0154 1.0487 1.0888 1.0559
Q3 0.6708 0.6758 0.6877 0.6708
Med 0.5347 0.5496 0.541 0.5369
Q1 0.4267 0.4267 0.4147 0.4258
Min 0.1725 0 0.1725 0
Mean 0.552 0.5542 0.5551 0.55199
Std 0.1747 0.1799 0.181 0.178125

 

Table 31 - Distribution of the Magnitude of Tradeoffs 

  D4 D3 D2 D1 
Max 42 42 42 42
Q3 28 28 28 30
Med 24 26 26 26
Q1 22 22 22 22
Min 10 10 8 10
Mean 24.8967 25.044 25.1114 25.1067
Std 5.24 5.598 5.5065 5.454

 

Table 32 - Distribution of the Number of Tradeoffs 

  D4 D3 D2 D1 
Max 17 18 17 17
Q3 15 15 15 15
Med 14 14 14 14
Q1 13 13 13 13
Min 8 8 8 9
Mean 13.82 13.777 13.8086 13.8586
Std 1.435 1.522 1.4609 1.5497
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Table 33 - Distribution of Entropy 

  D4 D3 D2 D1 
Max 1.0986 1.0986 1.0986 1.0986
Q3 1.0744 1.0744 1.0744 1.0744
Med 1.0744 1.0744 1.0744 1.0744
Q1 1.0684 1.0684 1.0684 1.0684
Min 0.7906 0.7906 0.7906 0.7906
Mean 1.068 1.068 1.068 1.068
Std 0.0275 0.0297 0.03057 0.02739
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Step Nine: 

 We now wish to allocate the 580 choice sets in our master design to 29 groups of 

20 choice sets for our participants. To do this we identify the position of each choice set 

within each of the seven measures of complexity (see Table 34). We then identify the 

median position for each choice set from the positions for each of complexity measures. 

We then allocate the choice sets in 29 sets of 20 choice sets based on the median overall 

position (see Table 35). The final remaining task is to order the choice sets that an 

individual participant will see. The order shown in Table  35 places the choice sets from 

easiest to hardest. This is not a bad choice of ordering since we earlier established that the 

choices that occur in the early stages of the experiment have a greater probability of 

resulting in a no-choice selection. We may wish to reorder the choice sets in the middle 

of the experiment either in a randomized fashion (to preserve the statistical characteristics 

of the design) or we may elect to keep the order as is. 

11.3 Summary and Conclusions 

 We have reviewed the proposed steps involved in the creation of efficient choice 

designs for stated preference experiments. We have shown that there is sufficient 

variability in the seven measures of choice set complexity to use them as a method to 

allocate choice sets to participants, ensuring that no one participant is over tasked in the 

course of the experiment.  
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Table 34 - Relative Position of Each Choice Set for Each Complexity Measure 

Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

1 383 254 166 457 131 33 245
2 574 560 578 497 572 222 85
3 149 269 111 172 67 223 246
4 23 255 179 397 132 34 247
5 554 514 532 547 506 35 248
6 95 106 128 40 68 104 249
7 21 465 210 91 133 105 9
8 146 70 86 97 69 389 250
9 430 385 459 291 460 516 86

10 43 349 51 29 33 224 251
11 109 343 247 357 216 106 87
12 421 387 435 556 383 36 88
13 354 457 487 405 461 225 89
14 313 30 264 402 217 226 252
15 489 34 119 34 70 227 253
16 324 179 88 24 71 390 90
17 156 53 20 251 20 37 36
18 482 333 558 460 566 573 254
19 520 83 574 46 573 391 473
20 527 450 224 352 218 392 255
21 407 470 507 94 462 107 256
22 213 29 248 219 219 393 91
23 160 57 42 368 34 38 2
24 29 319 60 44 35 108 92
25 295 187 89 316 72 228 10
26 171 176 56 122 36 109 257
27 450 395 413 245 384 394 474
28 46 578 54 567 37 9 258
29 321 332 75 359 73 110 259
30 490 375 517 335 463 111 260
31 292 116 183 265 134 229 93
32 96 107 265 562 220 39 261
33 406 414 227 491 221 230 475
34 271 280 246 301 222 395 94
35 184 40 64 343 38 10 95
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Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

36 359 236 219 141 223 517 262
37 320 379 339 236 303 396 96
38 176 494 342 3 304 397 476
39 136 407 438 126 385 231 263
40 25 341 180 398 135 40 477
41 474 231 484 572 464 41 264
42 214 243 314 136 305 518 265
43 283 91 76 361 74 112 37
44 199 482 223 503 224 398 266
45 49 357 8 76 3 4 267
46 314 31 353 332 306 399 268
47 230 213 406 221 386 400 269
48 35 126 67 257 75 232 270
49 284 92 28 26 21 113 38
50 195 132 29 27 22 114 478
51 384 114 355 540 307 233 479
52 150 485 363 555 308 42 39
53 99 566 429 376 387 234 97
54 348 199 100 105 76 235 98
55 484 353 239 150 225 401 480
56 317 190 346 131 309 402 99
57 285 159 162 6 136 403 40
58 549 111 469 20 465 519 271
59 341 131 249 215 226 404 481
60 219 471 334 538 310 115 100
61 280 534 362 372 311 236 272
62 252 401 462 284 388 116 101
63 110 439 14 114 10 11 4
64 20 398 101 407 77 43 102
65 517 503 575 350 574 405 103
66 565 25 250 220 227 406 104
67 469 313 535 253 507 237 273
68 310 552 454 233 466 520 274
69 476 386 376 521 312 44 275
70 220 472 430 377 389 238 105
71 113 366 327 320 313 407 276
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Table 34 – Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

72 388 117 12 228 11 12 106
73 32 473 46 293 39 45 107
74 397 400 234 384 228 408 277
75 336 27 57 124 40 117 482
76 68 44 129 183 78 118 278
77 391 277 431 536 390 239 108
78 337 351 379 516 391 240 109
79 395 250 90 23 79 409 110
80 174 403 202 156 137 241 483
81 465 361 358 479 314 242 279
82 451 8 184 81 138 243 11
83 394 208 181 83 139 244 280
84 580 93 235 484 229 119 281
85 417 512 328 446 315 120 484
86 526 356 526 524 508 410 111
87 152 175 7 60 4 13 41
88 27 320 9 77 5 5 282
89 236 36 87 98 80 411 12
90 559 335 301 565 316 121 283
91 471 390 392 404 392 245 485
92 88 412 286 208 230 246 112
93 185 41 422 509 467 412 284
94 234 139 38 15 41 413 42
95 269 6 33 197 23 46 113
96 24 256 22 9 24 247 114
97 60 576 98 566 81 47 115
98 208 506 298 459 231 122 13
99 333 491 271 310 232 48 43

100 124 136 112 322 82 49 285
101 374 32 47 103 42 248 286
102 428 100 544 318 509 249 116
103 129 11 240 147 233 414 117
104 89 337 71 10 83 521 14
105 162 292 367 117 317 250 287
106 2 5 2 17 1 6 15
107 577 97 102 408 84 50 486
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Table 34 – Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

108 38 21 263 280 234 251 288
109 447 540 547 523 547 522 487
110 538 556 562 393 548 252 289
111 420 404 48 100 43 253 290
112 435 212 472 431 468 415 488
113 257 498 216 161 140 123 291
114 322 297 343 132 318 416 292
115 418 517 563 260 549 254 16
116 202 312 185 84 141 255 489
117 302 98 70 11 85 523 293
118 166 50 4 62 6 14 44
119 125 302 228 541 235 51 294
120 216 480 333 519 319 256 295
121 360 76 272 434 236 52 17
122 54 80 97 225 86 257 490
123 361 77 153 69 142 417 118
124 518 252 371 418 320 258 296
125 177 163 37 164 44 124 491
126 294 393 357 382 321 53 297
127 423 454 432 378 393 259 492
128 457 476 447 553 394 260 119
129 50 526 214 394 237 261 18
130 516 340 573 380 575 418 493
131 261 336 323 452 322 125 45
132 215 183 23 138 25 54 46
133 550 492 546 370 510 262 298
134 334 52 296 473 323 524 120
135 114 367 321 342 324 419 299
136 33 294 130 39 87 126 47
137 97 108 303 195 325 525 300
138 303 541 471 474 469 526 121
139 197 427 439 424 395 263 122
140 122 563 389 412 326 127 123
141 190 219 420 144 396 420 301
142 11 88 49 101 45 264 302
143 491 446 529 551 511 421 303
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Table 34 – Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

144 51 305 113 323 88 55 48
145 157 54 52 30 46 265 49
146 61 22 123 420 89 15 124
147 501 441 524 290 512 422 50
148 311 359 313 73 327 527 125
149 5 172 10 79 12 56 19
150 8 555 103 106 90 266 304
151 477 448 527 488 513 423 126
152 499 376 364 373 328 267 494
153 14 558 114 324 91 57 305
154 223 266 206 282 143 128 306
155 371 230 372 419 329 268 127
156 70 430 324 187 330 424 128
157 246 194 311 392 331 269 495
158 515 479 542 287 514 270 496
159 353 217 501 307 470 271 51
160 69 45 182 266 144 58 307
161 370 10 308 273 238 129 497
162 356 170 500 442 471 59 129
163 139 238 172 198 145 272 130
164 253 575 167 571 146 7 308
165 275 570 475 423 472 425 52
166 203 339 479 87 473 528 498
167 48 38 158 70 147 426 499
168 351 149 557 5 550 427 309
169 167 51 3 306 7 2 5
170 144 321 302 344 332 273 53
171 305 383 491 41 474 428 310
172 459 345 488 495 475 274 311
173 263 90 50 102 47 275 312
174 100 567 384 354 397 529 131
175 41 525 205 453 148 130 500
176 238 358 416 246 398 429 313
177 59 384 146 336 149 131 314
178 431 573 136 576 150 60 501
179 274 103 329 520 333 132 315
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Table 34 – Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

180 470 118 541 464 515 276 132
181 568 154 377 522 334 133 54
182 488 488 497 530 516 530 316
183 140 239 273 308 239 277 133
184 218 75 93 512 92 61 317
185 396 251 131 184 93 134 134
186 298 378 217 313 151 135 135
187 119 559 335 249 335 430 318
188 240 487 168 199 152 278 136
189 169 481 375 113 399 574 319
190 519 218 536 575 517 62 320
191 424 268 359 243 336 279 502
192 415 78 365 374 337 280 321
193 561 423 571 305 567 281 137
194 553 484 251 55 240 431 322
195 312 360 322 454 338 282 323
196 128 289 252 53 241 432 324
197 58 86 274 155 242 283 325
198 286 160 149 338 153 136 55
199 18 143 109 107 94 284 138
200 478 205 565 437 551 285 326
201 579 16 580 312 580 286 139
202 323 542 412 89 400 433 140
203 6 173 11 80 13 63 20
204 445 281 165 504 154 64 503
205 463 262 360 480 339 287 141
206 573 373 127 544 155 65 327
207 192 200 154 389 156 137 504
208 402 225 152 448 157 138 328
209 366 274 409 339 401 434 329
210 504 368 569 403 568 288 142
211 563 311 340 470 340 139 21
212 498 145 143 422 158 140 330
213 178 166 401 314 402 435 331
214 496 283 551 525 518 141 332
215 536 310 543 494 519 289 143
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Table 34 – Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

216 221 406 275 309 243 290 333
217 400 134 331 321 341 436 334
218 487 96 514 465 520 531 335
219 379 185 548 78 552 532 505
220 4 153 15 2 14 142 506
221 45 65 68 258 95 291 336
222 94 322 380 230 403 533 144
223 436 388 493 441 476 292 337
224 71 431 31 28 26 143 338
225 196 133 13 229 15 16 145
226 241 46 266 485 244 66 339
227 364 94 115 35 96 293 340
228 244 121 433 238 404 294 341
229 464 298 396 558 405 144 146
230 338 228 39 162 48 145 147
231 222 405 458 458 477 534 148
232 86 369 159 71 159 437 22
233 212 501 229 277 245 438 342
234 556 495 194 436 160 67 507
235 116 191 186 267 161 295 149
236 130 12 150 190 162 439 150
237 291 364 354 563 342 68 508
238 389 408 173 201 163 296 151
239 444 557 516 188 478 146 343
240 296 317 351 181 343 440 344
241 243 257 476 59 479 535 345
242 508 198 69 259 97 297 152
243 155 421 287 533 246 69 153
244 331 186 174 202 164 298 509
245 440 508 481 445 480 441 510
246 276 147 72 12 98 536 346
247 264 89 278 356 247 70 154
248 288 260 198 515 165 17 347
249 228 247 195 514 166 71 348
250 332 326 533 206 521 442 349
251 118 459 253 214 248 443 350



 

 169

Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

252 179 164 104 108 99 299 23
253 485 447 236 483 249 147 511
254 258 547 473 64 406 148 512
255 141 110 53 31 49 300 513
256 67 308 187 268 167 301 351
257 76 240 254 358 250 149 155
258 82 152 255 54 251 444 352
259 455 9 463 568 407 150 514
260 345 435 448 177 408 302 515
261 242 442 91 440 100 72 56
262 376 102 330 447 344 151 156
263 544 286 572 304 576 445 516
264 30 276 40 16 50 446 57
265 315 33 317 500 345 152 517
266 40 151 19 18 16 73 157
267 210 71 94 223 101 303 353
268 432 314 443 112 409 304 518
269 209 249 126 416 168 305 158
270 416 513 66 451 102 74 519
271 281 535 424 545 410 75 58
272 441 374 417 388 411 447 159
273 537 79 464 443 412 153 354
274 468 67 520 326 522 537 520
275 168 246 196 158 169 306 355
276 290 130 147 191 170 448 59
277 55 82 197 159 171 307 160
278 433 39 288 209 252 308 161
279 481 245 556 383 553 449 356
280 413 455 506 406 523 575 357
281 170 486 492 185 481 450 60
282 132 2 211 92 172 154 358
283 75 543 289 50 253 309 359
284 567 346 105 409 103 76 360
285 492 519 560 178 554 451 521
286 120 127 207 283 173 155 24
287 254 263 387 498 346 18 361
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Table 34 – Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

288 231 253 21 252 27 77 362
289 145 415 393 489 413 310 363
290 123 451 408 340 414 452 25
291 47 273 138 65 174 538 364
292 108 344 132 182 104 156 522
293 382 544 534 47 524 453 523
294 551 214 281 210 254 311 524
295 529 309 465 444 415 157 162
296 566 372 356 561 347 78 365
297 493 282 325 189 348 454 525
298 64 315 116 33 105 312 366
299 373 515 496 502 482 313 367
300 297 157 304 345 349 314 163
301 452 461 141 428 175 158 368
302 339 192 256 56 255 455 6
303 13 381 35 262 51 159 61
304 273 355 310 74 350 539 369
305 570 469 576 569 577 79 62
306 328 64 368 297 351 315 164
307 330 119 386 355 416 540 370
308 204 579 297 548 256 160 63
309 304 229 451 32 483 576 371
310 72 354 319 413 352 456 372
311 564 206 434 379 417 316 373
312 147 72 106 109 106 317 374
313 104 142 155 255 176 161 64
314 268 155 83 285 107 162 165
315 92 167 402 22 418 541 526
316 235 140 156 256 177 163 166
317 267 156 482 242 484 457 527
318 405 458 307 552 353 164 375
319 126 128 32 505 52 19 376
320 282 188 510 240 525 542 528
321 442 499 539 222 555 577 377
322 319 226 291 276 257 165 26
323 138 394 398 167 419 543 65
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Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

324 309 490 145 580 178 20 529
325 87 290 142 300 179 458 378
326 575 210 545 319 526 318 379
327 546 500 410 528 420 166 530
328 467 463 550 367 556 544 380
329 543 377 552 542 557 459 381
330 191 135 282 49 258 319 167
331 539 279 320 578 354 167 531
332 414 363 453 438 485 545 382
333 522 438 391 529 421 460 383
334 479 220 478 449 486 461 532
335 572 182 577 482 578 462 533
336 367 73 36 263 53 168 168
337 44 49 163 137 180 463 169
338 578 112 361 478 355 320 170
339 316 397 92 317 108 169 66
340 117 391 270 154 259 321 171
341 427 18 124 299 109 170 384
342 57 577 99 531 110 171 67
343 358 571 397 559 422 172 172
344 410 270 326 543 356 173 385
345 194 58 245 429 260 174 173
346 510 444 426 348 423 464 386
347 226 370 84 286 111 175 174
348 111 440 16 115 17 21 7
349 306 574 452 475 424 22 387
350 233 410 436 127 425 322 388
351 80 392 122 237 181 465 389
352 355 350 241 148 261 466 390
353 232 271 134 327 182 323 391
354 381 60 175 203 183 324 392
355 443 399 347 133 357 467 393
356 342 202 537 254 527 325 394
357 512 221 107 410 112 80 175
358 34 47 336 67 358 468 176
359 17 104 148 192 184 469 395
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Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

360 307 295 449 38 426 326 534
361 434 69 502 513 487 327 27
362 448 456 366 227 359 328 177
363 266 528 405 466 427 176 535
364 201 382 43 369 54 81 536
365 270 84 468 166 488 546 396
366 560 502 540 121 528 329 397
367 1 474 1 99 2 3 1
368 329 63 456 366 489 547 178
369 15 342 257 51 262 470 179
370 555 227 480 275 490 471 398
371 335 523 494 477 491 330 537
372 375 464 440 128 428 331 399
373 483 334 466 169 429 177 400
374 200 460 276 435 263 82 68
375 325 181 212 93 185 178 180
376 557 365 521 537 492 179 401
377 390 284 373 118 360 332 538
378 287 307 137 244 186 333 402
379 419 14 226 526 264 180 181
380 148 478 258 57 265 472 403
381 63 531 176 204 187 334 28
382 198 505 404 432 430 473 182
383 79 74 171 346 188 83 404
384 16 211 133 334 113 23 69
385 437 61 523 235 529 548 405
386 525 113 441 425 431 335 406
387 248 328 199 14 189 336 183
388 318 562 437 129 432 337 184
389 377 287 120 171 114 338 407
390 36 222 188 269 190 339 185
391 207 527 81 455 115 181 539
392 454 101 139 481 191 182 408
393 473 568 279 462 266 340 186
394 62 532 82 95 116 474 187
395 363 15 455 234 493 549 540
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Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

396 188 193 259 216 267 475 409
397 456 509 483 535 494 476 541
398 154 258 457 365 495 550 410
399 523 316 518 329 530 477 411
400 10 66 160 72 192 478 188
401 411 409 267 386 268 341 542
402 249 516 423 469 433 479 412
403 552 467 567 468 569 342 543
404 547 204 117 173 117 84 189
405 265 285 41 439 55 85 70
406 571 158 570 381 570 183 413
407 247 195 260 217 269 480 414
408 524 362 290 211 270 343 415
409 513 122 189 270 193 344 416
410 115 329 34 396 56 24 417
411 387 565 505 463 531 345 190
412 135 553 230 274 271 481 544
413 346 522 277 311 272 86 545
414 505 483 512 130 532 551 546
415 460 161 549 239 558 552 547
416 399 537 203 160 194 346 191
417 227 24 140 66 195 553 418
418 163 19 421 145 434 482 192
419 497 275 74 573 57 1 193
420 151 496 177 450 196 87 194
421 106 197 381 231 435 554 419
422 250 299 390 111 361 184 195
423 514 497 419 146 436 483 196
424 217 85 411 341 437 484 420
425 507 536 348 507 362 185 71
426 256 432 450 175 438 347 421
427 462 507 460 292 496 555 548
428 78 177 61 42 58 186 197
429 211 259 394 272 439 556 422
430 158 55 26 288 28 25 8
431 466 422 369 119 363 348 423



 

 174

Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

432 453 87 349 427 364 485 198
433 66 169 204 45 273 578 199
434 121 124 425 205 440 486 424
435 509 539 218 163 197 187 200
436 172 504 299 207 274 188 201
437 541 380 559 456 533 88 425
438 42 524 237 518 198 89 549
439 133 3 44 467 59 8 202
440 3 137 5 63 8 26 29
441 205 572 338 471 365 349 72
442 279 445 108 411 118 90 73
443 289 261 467 25 441 189 550
444 52 306 27 289 29 27 3
445 26 99 85 96 119 487 426
446 369 293 370 298 366 350 551
447 107 323 403 21 442 557 427
448 548 174 378 174 367 351 428
449 425 48 407 546 443 190 203
450 542 301 341 472 368 352 204
451 528 318 538 510 559 579 552
452 239 418 477 58 497 558 205
453 480 62 568 180 571 353 429
454 344 477 489 496 498 354 430
455 486 554 485 296 499 488 206
456 426 189 280 579 275 91 431
457 403 68 77 362 120 191 432
458 308 1 395 539 444 192 207
459 259 548 470 19 500 559 553
460 386 244 509 476 534 489 208
461 521 549 498 493 501 355 433
462 438 325 233 577 276 92 434
463 350 493 374 417 369 356 554
464 90 338 238 149 277 490 209
465 7 396 17 116 18 28 30
466 245 120 24 139 30 93 210
467 372 561 486 501 502 193 211
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Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

468 98 7 95 371 121 94 74
469 532 138 519 37 535 560 212
470 531 533 283 532 278 95 435
471 180 165 445 294 445 357 75
472 206 178 208 281 199 194 555
473 187 129 344 506 370 96 436
474 31 207 284 212 279 358 213
475 558 17 193 86 200 359 556
476 19 296 121 36 122 360 437
477 449 462 503 430 536 561 438
478 182 215 261 52 280 491 214
479 412 241 220 142 281 562 439
480 562 235 499 560 537 361 557
481 503 425 461 527 446 195 215
482 352 150 215 395 282 362 440
483 299 115 446 176 447 363 216
484 161 426 315 303 371 492 441
485 83 564 300 351 283 196 31
486 164 20 262 218 284 493 442
487 28 580 55 375 60 197 217
488 101 125 164 7 201 494 218
489 404 59 110 110 123 364 219
490 461 162 561 179 560 495 443
491 225 538 269 387 285 365 558
492 277 146 118 325 124 97 76
493 102 475 6 61 9 29 32
494 183 429 294 401 286 366 220
495 127 511 62 194 61 30 444
496 73 416 25 140 31 98 445
497 12 550 73 433 125 198 446
498 22 196 65 193 62 199 33
499 429 530 495 554 538 367 221
500 153 232 352 331 372 368 222
501 81 233 30 170 32 31 559
502 569 26 332 487 287 99 447
503 165 109 125 120 126 200 77
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Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

504 392 278 316 508 373 369 223
505 85 420 135 328 202 370 224
506 112 141 399 168 448 563 448
507 56 81 200 157 203 371 78
508 535 402 525 333 539 496 449
509 74 436 285 213 288 372 225
510 131 13 144 421 204 201 226
511 189 452 292 88 289 373 560
512 502 267 414 247 449 497 561
513 142 510 528 261 540 498 227
514 224 265 530 165 541 499 562
515 327 411 385 353 450 564 563
516 91 371 96 224 127 374 450
517 77 419 78 363 128 202 228
518 533 330 566 517 561 203 451
519 134 4 79 364 129 204 229
520 229 272 190 85 205 375 564
521 362 248 490 186 503 500 565
522 181 216 221 511 290 205 230
523 458 569 418 557 451 100 34
524 495 417 513 415 504 206 566
525 506 352 309 490 291 207 79
526 349 348 383 534 374 208 231
527 530 466 388 499 375 209 232
528 255 264 244 151 292 501 233
529 137 42 58 123 63 210 567
530 143 424 63 43 64 211 234
531 385 518 508 492 505 212 568
532 53 520 382 232 452 565 569
533 251 300 169 200 206 376 570
534 365 95 428 550 453 101 452
535 65 428 213 399 293 377 235
536 39 234 170 347 207 102 453
537 262 123 45 461 65 103 80
538 260 144 293 278 294 378 454
539 408 303 564 75 562 379 571
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Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

540 398 546 515 104 542 566 455
541 159 56 18 1 19 213 81
542 494 437 531 302 543 502 456
543 272 304 191 271 208 380 457
544 540 242 415 248 454 503 236
545 380 389 400 315 455 504 458
546 500 449 554 486 563 505 572
547 357 433 345 4 376 506 573
548 173 347 231 400 295 214 82
549 105 545 318 414 377 507 35
550 193 201 225 48 296 567 237
551 378 288 427 349 456 508 459
552 278 148 59 125 66 215 83
553 93 168 209 90 209 216 460
554 409 551 474 574 457 32 574
555 475 184 555 226 564 509 575
556 186 237 201 13 210 381 238
557 293 453 511 241 544 568 239
558 340 529 157 390 211 217 240
559 37 331 192 82 212 382 461
560 393 489 553 264 565 569 462
561 576 209 295 279 297 218 241
562 103 223 80 360 130 219 463
563 439 324 306 564 378 383 464
564 422 171 222 143 298 570 465
565 446 521 232 570 299 220 466
566 343 203 312 391 379 384 467
567 175 35 151 337 213 221 468
568 9 28 242 152 300 510 469
569 326 180 337 68 380 511 576
570 472 224 161 8 214 512 577
571 84 443 268 385 301 385 578
572 534 327 522 549 545 513 579
573 237 37 178 330 215 386 242
574 347 43 504 135 546 580 580
575 300 291 444 295 458 387 243



 

 178

Table 34 - Continued 
Choice 
Set 

MSD 
Alt 

DSD 
Alt 

MSD 
Att 

DSd 
Att 

Magnitude 
Tradeoffs 

# 
Tradeoffs 

Entropy 

576 401 23 243 153 302 514 470
577 545 468 579 250 579 571 244
578 511 413 442 426 459 388 471
579 368 434 305 196 381 572 84
580 301 105 350 134 382 515 472
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Table 35 - Allocation of Choice Sets to Participants 
 G1 G2 G3 G4 G5 G6 G7 G8 G9 10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28 G29 

CS1 367 106 169 63 220 149 203 348 96 440 88 430 465 444 493 17 49 266 87 23 94 118 73 95 45 264 10 145 28 

CS2  132 541 439 24 303 35 498 224 428 501 104 405 89 136 142 144 146 16 43 184 221 468 8 122 97 117 496 445 261 

CS3 64 107 173 101 537 6 7 54 72 150 252 199 312 79 255 342 384 50 153 227 410 298 394 75 76 442 15 466 26 

CS4 476 489 529 100 492 503 552 48 319 495 225 185 519 82 123 530 160 103 167 230 246 177 236 198 282 286 313 292 507 

CS5 212 57 232 277 400 314 125 337 488 316 336 339 276 341 383 3 163 404 291 347 357 358 4 40 375 31 359 235 25 

CS6 381 390 330 392 457 207 418 419 345 420 417 275 487 242 497 188 387 433 435 475 238 364 510 80 116 244 517 354 416 

CS7 175 472 391 436 536 83 269 553 267 556 559 474 567 478 11 113 186 22 562 32 522 154 505 516 570 208 550 379 66 

CS8 249 520 92 98 288 548 84 119 36 121 129 351 438 573 464 183 257 558 197 568 226 1 243 247 59 422 108 258 533 

CS9 14 196 278 111 164 251 302 528 308 322 369 29 340 396 248 407 486 39 374 42 380 44 256 47 409 34 99 353 543 

CS 
10 

161 412 233 561 456 204 294 479 485 62 509 105 378 389 283 443 216 325 511 535 538 228 471 494 564 483 137 575 141 

CS 
11 

170 576 300 159 52 458 56 324 525 60 61 157 413 201 67 148 46 179 306 90 265 102 114 120 37 71 124 126 131 

CS 
12  

194 222 134 195 135 156 462 140 360 206 155 262 213 500 502 181 217 187 191 192 388 569 205 211 393 38 356 240 408 

CS 
13 

473 241 284 287 297 250 441 526 304 352 580 78 168 20 450 482 55 237 310 331 51 338 162 344 81 176 362 377 425 

CS 
14 

432 296 491 209 368 446 448 301 579 431 504 307 309 484 152 463 30 189 318 53 69 547 70 549 311 326 566 421 171 

CS 
15 

563 74 174 571 401 12 350 527 77 91 289 355 323 429 27 139 229 365 343 372 506 202 373 545 315 210 447 13 33 

CS 
16 

254 21 449 260 290 539 268 271 398 272 424 515 93 273 406 295 544 270 85 115 452 426 127 193 349 434 165 386 346 

CS 
17 

363 551 534 453 9 382 178 402 361 112 470 223 234 423 200 385 332 333 147 578 239 481 565 128 253 279 512 281 523 

CS 
18 

532 557 68 259 280 395 437 317 231 172 490 477 411 41 180 58 328 138 370 19 166 554 460 151 399 454 334 245 18 

CS 
19 

299 455 467 218 560 521 143 371 133 376 130 215 397 542 499 524 158 214 427 508 182 461 513 321 514 327 459 366 65 

CS 
20 

574 219 531 546 86 555 320 414 5 540 263 190 518 285 469 274 109 293 335 572 480 110 451 329 403 577 415 2 305 
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12. Accomplishments of this Dissertation 

 We now review the major accomplishments of this dissertation: 

• We provide numerous links between choice design practice and preferred 

statistical practices (see Section 4.2) 

Although there are many accomplishments in the field of choice analysis 

there is not currently a comprehensive source that reviews the common 

practices in the creation of designs for choice experiments and the 

preferred statistical practices of designing experiments. We also review 

where the assumptions of statistical design are met or violated in the 

process of creating choice designs. We find that traditional tabled designs 

(fractional factorials, BIBD, etc.) are too restrictive for generating good 

choice designs.  

• We evaluate the effectiveness of techniques suggested for the creation of 

optimal choice designs. (see Chapter 5) 

There are several different suggestions concerning how one should create 

optimal choice designs in the literature. We review these suggestions and 

several different existing computational programs available for the 

construction of choice designs. In addition we study through simulation 

the comparative effectiveness of these methods for creating efficient 

choice designs. We find that effective algorithms exist for the creation of 

optimal choice designs for the multinomial logit model. We also find that 

the most efficient designs are created using a simple informative prior. 
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• We identify and explore new and existing criteria for evaluating the 

complexity of a choice design (see Section 4.5) 

The use of entropy has been suggested and reviewed numerous times in 

the literature as a measure of choice design complexity. In addition the 

mean standard deviation of attribute levels within an alternative and the 

dispersion of the standard deviation of attribute levels within an alternative 

have also been reviewed as a measure of complexity in the choice task. 

We review these measures and suggest some additional measures of 

choice task complexity.  

• We explore what flexibility exists for using entropy as a secondary measure of 

design optimality. (see Sections 7.1 and 7.2) 

We explore whether entropy can be used as a secondary criterion of design 

optimality to control for effects that result from a participant experiencing 

too complex a choice task. We find that in some situations there is 

flexibility afforded for using entropy as a secondary criterion but in the 

majority of situations the range of entropy achieved through the use of 

optimal design algorithms presents too narrow a range of values to be 

practically useful. To explore this idea further would require modifications 

to the current algorithms, or entirely new algorithms. 

• We explore the consequences of misspecifying the prior in the creation of 

optimal choice designs. (see Chapter 8) 

We explore six different priors and their impact on the efficiency and 

entropy of the resulting choice design. We find that using a zero prior 
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assumption is never a good assumption as it results in designs that are 

extremely inefficient when we have even very simple information 

available about the preferences for specific attribute levels. We also find 

that misspecification of the shape of the prior creates inefficient designs if 

the shape is not as assumed. We conclude that the use of the equal-spaced 

prior is recommended unless we have concrete information to recommend 

other shaped priors.   

• We explore how designs should be constructed under the assumption that 

individuals often use non-compensatory decision making strategies. (see 

Chapter 9) 

We discuss four different types of decision making (compensatory, 

conjunctive, disjunctive, and lexicographic) that have been introduced as 

ways consumers can make decisions. Although currently choice design 

construction generally assumes that users make compensatory decisions 

we explore the use of different prior assumptions that follow different 

decision strategies and study the effect of misspecification of the decision 

strategy in the creation of the design. Our findings suggest that changing 

decision strategies during the course of an experiment can have a negative 

impact on the true efficiency of the design. 

• We explore how different criteria for design complexity relate to the selection 

of the no-choice alternative in the choice experiments. (see Section 10.2) 

We explore how established and newly suggested methods for measuring 

choice complexity impact the propensity towards selecting the no-choice 
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alternative. Although we do not find completely consistent results 

concerning the effects of these measures, many of the inconsistencies may 

be due to the limited range of the effects within a particular sample data 

set or a misspecified model due to our lack of knowledge regarding the 

data set. We do find that the selection of the no-choice alternative 

consistently occurs more frequently at the end of sequences of choices 

than the beginning.  

• We explore how the effect of losing a particular percent of choices within a 

certain choice task impacts the overall efficiency of the design. (see Section 

10.3) 

We find that losing specific combinations of choice sets within a particular 

choice experiment can have varying effects on the efficiency of the 

remaining choice sets. This suggests that we might violate the traditional 

statistical assumption of randomization when ordering the choice sets 

within a choice task for a participant. We should attempt to place the 

choice sets with the greatest effect on the overall efficiency of the 

experiment in a location that will be least likely to be selected as no-

choice due to other systematic effects (such as cumulative burden or 

fatigue or learning effects). We also find that there exist designs where the 

impact of losing choice sets is less severe. 
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13. Suggestions for Future Research 
 
 Designing against the selection of the no-choice alternative and effectively 

communicating the reasons that the no-choice alternative should be selected are two lines 

of defense against systematic violations of the design and analysis assumptions. 

However, we know that it is impossible to completely control against the selection of the 

no-choice alternative for systematic reasons other than unattractiveness. Currently the 

only models we have available for analyzing the results of experiments with the no-

choice alternative only model the selection of the no-choice alternative due to the 

unattractiveness of the other alternatives in the choice set. Developing models that can 

also model selection of the no-choice alternative due to choice difficulty will further 

enhance the results of stated preference models with a no-choice alternative.   

Since choice experiments involve working with people, there are many facets in 

the information collection process that can result in data sets that are not necessarily 

clean. Issues including changing decision strategies, fatigue, learning effects and outside 

distractions are some issues that can impact the clarity of individual’s decisions. The use 

of fuzzy methods for the analysis of data collected from choice experiments may be a 

way to alleviate some of these problems. If several solutions for a problem are available, 

fuzzy methods can provide a way to identify the dominant solutions. Using fuzzy 

methods may allow us to clarify the problems inherent in working with people to collect 

data. 

 Given the prevalence of the no-choice alternative in our sample of choice designs, 

the designers of choice experiments need to explore additional means of collecting 
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information from a choice experiment. For example, can we ask a follow-up question to 

the selection of a no-choice alternative that will identify why the participant selected the 

no-choice alternative? This additional information may somewhat negate the effects of 

the propensity of no-choice alternative selections in choice experiments.  

 Choice design and analysis techniques rely on the assumption that individuals 

make compensatory decisions. Given that it has been documented that individuals often 

use simplifying decisions strategies, the techniques used for the design and analysis of 

choice experiments need to be evaluated as to their effectiveness under these different 

decision strategies. If they no longer hold true then new techniques that account for these 

issues need to be developed.  
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A1 Appendix One 

A1.1 Design One: Random Assignment of 9 Profiles to 9 Choice Sets of 

Size 3 

Select an orthogonal array of a 33 design in the desired number of runs (for this 

example 9 runs to create 9 choice sets). Make 3 copies of this design and randomly assign 

one profile from each copy into a choice set at a time. Ensure that no two copies of the 

same profile exist in the same choice set. 

The 9 run orthogonal array: 

X=[1 1 1 
1 2 2 
1 3 3 
2 1 2 
2 2 3 
2 3 1 
3 1 3 
3 2 1 
3 3 2]  

The selected order of these 9 profiles into 9 choice sets of size three is: 

Set 1 - 8 7 1 
Set 2 - 3 9 7 
Set 3 - 2 3 6 
Set 4 - 6 4 8 
Set 5 - 5 8 4 
Set 6 - 1 2 3 
Set 7 - 4 1 2 
Set 8 - 9 6 5 
Set 9 - 7 5 9  

 

The final design indicating the profiles and their respective choice sets is: 
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    X1  X2   X3   Choice Set 
     3     2     1      1 
     3     1     3      1 
     1     1     1      1 
     1     3     3      2 
     3     3     2      2 
     3     1     3      2 
     1     2     2     3 
     1     3     3      3 
     2     3     1      3 
     2     3     1      4 
     2     1     2      4 
     3     2     1      4 
     2     2     3      5 
     3     2     1      5 
     2     1     2      5 
     1     1     1      6 
     1     2     2      6 
     1     3     3      6 
     2     1     2      7 
     1     1     1      7 
     1     2     2      7 
     3     3     2      8 
     2     3     1      8 
     2     2     3      8 
     3     1     3      9 
     2     2     3     9 
     3     3     2      9  

This design has a D0-efficiency of 3.613 and a Dp-efficiency of 2.331, assuming a prior 

on β of [-1 0 -1 0 -1 0]. 

A1.2 Design Two: Random Assignment of 3 Different Sets of 9 Profiles to 

9 Choice Sets of Size 3 

Select three different copies of a 9 run orthogonal array of a 33. Randomly assign 

one profile from each copy at a time into 9 choice sets of size three. This is similar to 

design one above except that one does not have to worry that about repeat copies of 

profiles within a choice set as the three copies of the fractional factorial are different. 

The three copies of the fractional factorial: 
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X1=[ 
     1     1     1 
     1     2     2 
     1     3     3 
     2     1     2 
     2     2     3 
     2     3     1 
     3     1     3 
     3     2     1 
     3     3     2]; 
 

X2=[ 
     1     1     2 
     1     2     3 
     1     3     1 
     2     1     3 
     2     2     1 
     2     3     2 
     3     1     1 
     3     2     2 
     3     3     3]; 
 

X3=[ 
     1     1     3 
     1     2     1 
     1     3     2 
     2     1     1 
     2     2     2 
     2     3     3 
     3     1     2 
     3     2     3 
     3     3     1];

  

The selected order of these 9 profiles into 9 choice sets of size three is: 

    Set 1 - 3 7 5 
    Set 2 - 2 6 1 
    Set 3 - 8 2 7 
    Set 4 - 1 5 3 
    Set 5 - 6 8 9 
    Set 6 - 4 3 8 
    Set 7 - 5 1 2 
    Set 8 - 3 4 4 
    Set 9 - 9 9 6  

 

The final design indicating the profiles and their respective choice sets is: 
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   X1  X2   X3   Choice Set 
     1     3     3  1 
     3     1     1  1 
     2     2     2  1 
     1     2     2  2 
     2     3     2  2 

          1     1     3      2  
     3     2     1  3 
     1     2     3  3 
     3     1     2  3 
     1     1     1  4 
     2     2     1  4 
     1     3     2  4 
     2     3     1  5 
     3     2     2  5 
     3     3     1  5 
     2     1     2  6 
     1     3     1  6 
     3     2     3  6 
     2     2     3  7 
     1     1     2  7 
     1     2     1  7 
     1     3     3  8 
     2     1     3  8 
     2     1     1  8 
     3     3     2  9 
     3     3     3  9 
     2     3     3  9  

This design has a D0-efficiency of 3.722 and a Dp-efficiency of 2.252, assuming a prior 

on β of [-1 0 -1 0 -1 0]. 

A1.3 Design Three: Use Shifting to Create 9 Choice Sets of Size Three 

from a 9 Run Fractional Factorial of a 33 Design 

 Select one 9 run fractional factorial of a 33 design. From each of the original 9 

profiles create 2 additional profiles to put into a choice set by adding one modulo 3 to 

each of the alternatives. This creates nine choice sets of size three.  

 The original fractional factorial: 
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X1=[ 
    1 1 1 
    1 2 2 
    1 3 3 
    2 1 2 
    2 2 3 
    2 3 1 
    3 1 3 
    3 2 1 
    3 3 2]  

The first and second choice sets are constructed by shifting the levels of the first and 

second profiles as shown below: 

 
(1, 1 ,1) →  (2, 2, 2) → (3, 3, 3) 
(1, 2 ,2) →  (2, 1, 1) → (3, 2, 2) 

 
The final design indicating the profiles and their respective choice sets is: 

 

X1  X2   X3   Choice Set 
    1     1      1    1 
     2     2     2      1 
     3     3     3      1 
     1     2     2      2 
     2     3     3      2 
     3     1     1      2 
     1     3     3      3 
     2     1     1      3 
     3     2     2      3 
     2     1     2      4 
     3     2     3      4 
     1     3     1      4 
     2     2     3      5 
     3     3     1      5 
     1     1     2      5 
     2     3     1      6 
     3     1     2      6 
     1     2     3      6 
     3     1     3      7 
     1     2     1      7 
     2     3     2      7 
     3     2     1      8 
     1     3     2      8 
     2     1     3      8 
     3     3     2      9 
     1     1     3      9 
     2     2     1      9  
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This design has a D0-efficiency of 5.195, and a Dp-efficiency of 2.652 assuming on β of 

[-1 0 -1 0 -1 0]. 

A1.4 Design Four: All Pairs / All Triples  

This method will create choice sets by combining all possible pairs or all possible triples. 

This will result 36 choice sets of size two or 84 choice sets of size three. The results for 

all triples has a D0-efficiency of 36.363, and a Dp-efficiency of 21.978 assuming on β of 

[-1 0 -1 0 -1 0]. 

A1.5 Design Five: Foldover 

Foldover will not be useful for the example as it is only defined for attributes with two 

levels. Further, with foldover we can only generate choice sets of size two. 

A1.6 Design Six: BIBD 

Balanced incomplete block designs can be used for the construction of choice sets. 

Similar to design one above we can place our 9 original profiles into 9 choice sets of size 

three by using a BIBD with t = 9 , k = 3, b = 12, r = 4.  

 

 The 9 run fractional factorial: 

X=[1 1 1 
1 2 2 
1 3 3 
2 1 2 
2 2 3 
2 3 1 
3 1 3 
3 2 1 
3 3 2]  
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The selected order of these 9 profiles into 12 choice sets of size three is: 

Set 1 – 123  
Set 2 – 456 
Set 3 – 789 
Set 4 – 147 
Set 5 – 258 
Set 6 – 369 
Set 7 – 159 
Set 8 – 729 
Set 9 – 483 
Set 10 – 186 
Set 11 – 429 
Set 12 - 753  

The final design indicating the profiles and their respective choice sets is: 
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This design has a D0-efficiency of 2.946 and a Dp-efficiency of 5.195 assuming a prior β 

of [-1 0 -1 0 -1 0]. 

 

A1.7 Design Seven: Orthogonal Main Effects Design 

We can construct our 9 choice sets of size three by creating an orthogonal 

blocking scheme that is capable of estimating at least all of the main effects for our 

design. In fact for this example we will retain the power to estimate some of the higher 

order interactions. 

See design three above for the final design inclusive of the profiles and their 

choice sets. This design has a D0-efficiency of 5.195 and a Dp-efficiency of 2.652 

assuming a prior β of [-1 0 -1 0 -1 0]. 
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A2 Appendix Two 

 
The designs in this section are the optimal designs evaluated for their performance on the 

4 criteria of choice designs: orthogonality, level balance, minimum overlap and utility 

balance (entropy). For each of the three design scenarios designs are presented with a 

zero prior assumption and also with an equal-spaced prior assumption.  
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A2.1 – 33 in 9 Choice Sets of Size 3 – Zero Prior 
Choice 
Set 

Attribute 
1 

Attribute 
2 

Attribute 
3 

1 1 1 1
1 3 2 2
1 2 3 3
2 1 2 1
2 2 1 2
2 3 3 3
3 1 3 2
3 2 2 1
3 3 1 3
4 3 1 2
4 2 2 1
4 1 3 3
5 3 2 2
5 2 3 1
5 1 1 3
6 1 3 1
6 3 2 3
6 2 1 2
7 2 2 3
7 3 3 1
7 1 1 2
8 2 3 2
8 1 2 3
8 3 1 1
9 2 1 1
9 1 3 3
9 3 2 2
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A2.2 – 33 in 9 Choice Sets of Size 3 – Equal-Speaced Prior 
Choice 
Set 

Attribute 
1 

Attribute 
2 

Attribute 
3 

1 3 1 3
1 2 2 2
1 1 3 1
2 1 2 3
2 3 1 2
2 2 3 1
3 3 1 3
3 2 2 1
3 1 3 2
4 3 2 1
4 2 1 2
4 1 3 3
5 3 3 1
5 2 1 2
5 1 2 3
6 2 1 1
6 3 3 3
6 1 2 2
7 1 3 2
7 2 2 3
7 3 1 1
8 1 1 2
8 2 3 3
8 3 2 2
9 3 3 2
9 1 2 1
9 2 1 3
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A2.3 – 32 · 42 in 10 Choice Sets of Size 4 – Zero Prior 

Choice Set 
Attribute 
1 

Attribute 
2 

Attribute 
3 

Attribute 
4 

1 2 3 4 3
1 3 1 1 2
1 1 3 2 4
1 2 2 3 1
2 3 1 2 3
2 3 2 3 4
2 2 3 4 2
2 1 1 1 1
3 1 3 3 3
3 2 2 4 1
3 3 1 2 2
3 2 1 1 4
4 2 1 4 4
4 1 2 3 3
4 1 2 2 2
4 3 3 1 1
5 2 3 1 2
5 3 2 4 4
5 2 1 2 3
5 1 1 3 1
6 1 3 2 4
6 3 1 4 3
6 3 1 3 2
6 2 2 1 1
7 1 2 4 2
7 2 1 2 3
7 1 3 1 4
7 3 3 3 1
8 1 1 4 1
8 3 2 1 4
8 2 3 3 2
8 3 2 2 3
9 1 2 2 2
9 1 3 1 3
9 3 3 4 1
9 2 1 3 4

10 2 1 4 4
10 3 1 3 2
10 1 2 1 3
10 3 3 2 1
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A2.4 - 32 · 42 in 10 Choice Sets of Size 4 – Equal-Spaced Prior 
Choice 
Set 

Attribute 
1 

Attribute 
2 

Attribute 
3 

Attribute 
4 

1 1 3 4 4
1 3 2 4 3
1 2 1 3 4
1 2 1 3 4
2 1 3 1 4
2 3 1 3 2
2 2 2 4 1
2 2 3 2 3
3 1 2 4 2
3 3 3 2 1
3 2 1 1 4
3 2 1 2 3
4 1 2 4 2
4 2 1 2 4
4 3 2 1 3
4 3 3 3 1
5 2 3 4 2
5 3 1 4 3
5 3 2 3 4
5 2 3 4 2
6 2 1 4 4
6 1 3 3 3
6 3 2 1 4
6 3 3 3 1
7 2 2 4 1
7 3 1 4 2
7 3 2 2 4
7 1 3 3 3
8 2 2 3 1
8 1 1 4 1
8 2 3 2 2
8 3 1 1 3
9 1 1 4 1
9 3 1 2 2
9 2 2 2 1
9 2 3 1 2

10 3 3 4 1
10 2 1 3 4
10 1 2 3 3
10 1 3 2 4
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A2.5 – 32 · 4 · 5 in 10 Choice Sets of Size 4 – Zero Prior 
Choice Set Attribute 1 Attribute 2 Attribute 3 Attribute 4 

1 2 2 3 5 
1 1 3 2 4 
1 1 2 1 1 
1 3 1 4 2 
2 3 1 3 1 
2 2 2 2 5 
2 1 3 4 4 
2 2 1 1 3 
3 1 3 3 3 
3 2 2 2 1 
3 3 2 4 4 
3 1 1 1 5 
4 1 2 2 1 
4 3 1 1 2 
4 3 3 4 5 
4 2 1 3 4 
5 3 1 2 2 
5 1 3 3 3 
5 2 1 1 4 
5 2 2 4 5 
6 2 3 4 1 
6 2 3 3 2 
6 1 1 2 5 
6 3 2 1 4 
7 3 2 4 3 
7 3 3 1 5 
7 2 1 2 4 
7 1 2 3 2 
8 2 3 2 2 
8 3 2 3 4 
8 1 1 4 1 
8 1 3 1 3 
9 2 3 1 1 
9 3 2 2 3 
9 1 1 3 5 
9 1 2 4 2 

10 2 1 4 3 
10 3 3 2 5 
10 3 3 3 1 
10 1 2 1 2 
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A2.6 - 32 · 4 · 5 in 10 Choice Sets of Size 4 – Equal-Spaced Prior 
Choice Set Attribute 1 Attribute 2 Attribute 3 Attribute 4 

1 3 2 2 3 
1 1 3 1 4 
1 3 1 3 1 
1 2 3 1 2 
2 1 2 4 2 
2 2 1 4 3 
2 3 3 3 1 
2 1 1 2 5 
3 1 1 4 5 
3 3 2 2 3 
3 2 3 3 2 
3 3 2 1 4 
4 1 3 3 3 
4 3 1 4 2 
4 2 2 1 5 
4 1 2 4 1 
5 3 1 3 1 
5 3 2 1 3 
5 2 2 4 1 
5 1 3 2 4 
6 1 3 3 3 
6 2 2 2 5 
6 3 1 4 2 
6 2 1 3 4 
7 2 2 3 5 
7 3 3 2 5 
7 2 1 4 3 
7 1 3 4 4 
8 3 2 2 4 
8 3 3 1 5 
8 2 3 4 1 
8 1 1 3 5 
9 2 1 4 3 
9 2 3 4 2 
9 1 1 4 5 
9 3 2 3 4 

10 2 1 2 4 
10 3 2 1 3 
10 2 3 2 1 
10 1 2 3 2 
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A3 Appendix Three 

Each of the following tables illustrates the results of a random effect logistic regression model with a response of choice / no-

choice, a fixed effect of the complexity measure indicated and a random effect indicating the ID of the person making the choice. 

DNC indicates that the model did not converge. 

 

A3.1 – Effect of Entropy on the Percent of No-Choice Alternatives 
  A B C D E F G H I J K 
Estimate -0.232 -0.915 0.898 -1.5793 0.3472 -0.6496 DNC -1.7565

 P-value 

Not  
Sig 
  0.0711 0.0013

Not 
Sig 
  0.0092 0.0027 0.0803 0.079 

Not 
Sig 
    <0.0001 

 

A3.2 – Effect of the Number of Tradeoffs on the Percent of No-Choice Alternatives 
 
  A B C D E F G H I J K 
Estimate -0.0971 -0.3122

 P-value 
DNC 
  

DNC 
  

DNC
  0.0146

Not  
Sig 
  0.0386

DNC
  

DNC 
  

DNC
  

Not 
Sig 
  

Not  
Sig 
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A3.3 – Effect of the Magnitude of Tradeoffs on the Percent of No-Choice Alternatives     
       
  A B C D E F G H U J K 
Estimate -0.07422 0.01524 0.1206

 P-value 

Not  
Sig 
  

Not  
Sig 
  

DNC 
  0.0133

Not
Sig 
  

Not  
Sig 
  

DNC
  

DNC
  

Not  
Sig 
  0.0176 <0.0001

 

A3.4 – Effect of the Mean Standard Deviation of Attribute Levels within an Alternative on the Percent of 
No-Choice Alternatives 
 
  A B C D E F G H I J K 
Estimate -1.0843 -1.7461 0.7825 0.9734 -0.4291 -0.3224 -0.8129 0.2941

 P-value 0.0087 <0.0001
DNC

 

Not 
Sig 

 <0.0001 0.0015 <0.0001 <0.0001

Not  
Sig 

 <0.0001 0.0162
 

A3.5 – Effect of the Dispersion of Attribute Levels within an Alternative on the Percent of No-Choice 
Alternatives 
 
  A B C D E F G H I J K 
Estimate 1.1756 DNC -1.905 0.6047 0.9762 0.6022

 P-value 0.0021 

Not 
Sig 

   0.0251 <0.0001 0.002

Not 
Sig 

 

Not 
Sig 

  

Not 
Sig 

 

Not 
Sig 

 <0.0001
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A3.6 – Effect of the Mean Standard Deviation of Attribute Levels within an Attribute on the Percent of No-
Choice Alternatives 
 
  A B C D E F G H I J K 
Estimate DNC -2.3854 0.5382 0.3003 0.344 1.3845

 P-value 

Not 
Sig 

  

Not 
Sig 

   0.0279

Not 
Sig 

 

Not 
Sig 

 <0.0001 0.0201 

Not 
Sig 

 0.0199 <0.0001
 

A3.7 – Effect of the Dispersion of Attribute Levels within an Attribute on the Percent of No-Choice 
Alternatives 
 
  A B C D E F G H I J K 
Estimate -0.7374 DNC 1.7678 0.5626 1.0748

 P-value 0.0706 

Not 
Sig 

   0.0797

Not 
Sig 

 

Not 
Sig 

 <0.0001

Not 
Sig 

  

Not 
Sig 

 

Not 
Sig 

 <0.0001
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A3.8 – Effect of the Choice Quantile on the Percent of No-Choice Alternatives 
 
  A B C D E F G H I J K 
Estimate 
Q1 0.4585 Not Sig 0.5422 0.523 0.5781 0.3225 0.2548 0.3695 Not Sig 0.3213 Not Sig 
 P-value 
Q1 0.0072   <0.0001 0.0679 <0.0001 0.0344 <0.0001 <0.001   <0.0001   
Estimate 
Q2 0.367 Not Sig 0.2034 -0.2735 -0.0598 0.1091 0.09959 0.03423 Not Sig 0.1687 Not Sig  
 P-value 
Q2 0.0297   0.0241 0.2667 0.5011 0.4605 0.0791 0.5304   0.0019   
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