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Abstract  

 

 The comparison of frontal sinus radiographs for positive identification has 

become an increasingly applied and accepted technique among forensic anthropologists, 

radiologists, and pathologists.  However, the current method of outline comparison by 

visual assessment fails to meet evidence admissibility guidelines as set forth in the 1993 

case of Daubert v. Merrell-Dow Pharmaceuticals, Inc.  Specifically, no empirical testing 

of the uniqueness of frontal sinus outlines has ever been performed, there has been no 

evaluation of the probability of misidentification using the technique, there are no 

standards controlling the technique’s operation, and there are no subjective standards for 

confirming or rejecting a putative identification.  Despite the fact that identifications 

based upon frontal sinus radiograph comparisons have been routinely accepted by 

scientists, medical examiners and law enforcement officers, these shortcomings could 

pose serious problems if forensic scientists were ever called upon to testify regarding 

such an identification in trial. 

 This study investigated frontal sinus outline variability using Elliptic Fourier 

Analysis (EFA), a geometric morphometric approach that fits a closed curve to an 

ordered set of data points, generating a set of coefficients that can be treated as shape 

descriptors used as variables in discriminatory or other multivariate analyses, or used to 

reproduce the outline.  By modeling 2-dimensional representations of frontal sinuses (as 

seen in posterior-anterior cranial radiographs) as closed contours by digitizing their outer 

borders, differences in their shapes were assessed quantitatively by comparing the 

Euclidean distances between the EFA-generated outlines.  The probability of 
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misidentification was assessed using likelihood ratios and posterior probabilities based on 

the EFA coefficients. 

 Results showed that there is a quantifiable and significant difference between the 

shapes of different individuals’ frontal sinus outlines as represented by Euclidean 

distances, since distances between outlines of different individuals were shown to be 

significantly larger than those between replicates (simulated antemortem and 

postmortem) of the same individual.  Likelihood ratios using EFA coefficients showed 

that the probability of a frontal sinus match given the correct identification versus the 

probability of a match from the population at large was very high, and therefore the 

probability of misidentification was very low.   

This study concluded that for individuals with sufficiently remarkable frontal 

sinus outlines, us ing EFA coefficients of digitized frontal sinus outlines to estimate the 

probability of a correct identification, and thereby confirm or reject a presumptive 

identification, is a reliable technique.  Given these results, EFA comparison of frontal 

sinus out lines is recommended when it may be necessary to provide quantitative 

substantiation for a forensic identification based on these structures. 
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Introduction 

 

The use of frontal sinus radiographs in confirming the identity of human remains 

of an unknown individual has a relatively long history in forensics dating back to1925 

(Culbert and Law, 1927).  Traditionally, such identifications have been made by 

comparison of antemortem and postmortem radiographic records by a qualified expert 

(usually, a forensic anthropologist, pathologist, or radiologist) who makes a visual 

assessment as to the agreement (or lack thereof), making a largely subjective judgment as 

to whether the two radiographs are of the same individual.  In the past, such assessments 

have received approval, and resulting opinions have been readily accepted in courts of 

law.   

However, it is exceedingly rare that an expert’s opinion goes unchallenged by 

other experts and/or opposing council.  Moreover, recent rulings concerning admissibility 

of scientific evidence in court require more than credibility, persuasion, and manifest 

experience of the scientific expert.  Methods used in positive identification need not only 

be considered valid and reliable, but they must be standardized and repeatable by other 

experts.  Dwight (1878), clearly acknowledging the place of forensic anthropology within 

the legal system, noted that: “…it is for the jury, not the expert, to decide on the identity 

of a skeleton; it is for the expert to show whether the identity is possible or probable.”   

However, without a standardized means for comparison, how do we show 

(quantitatively) whether an identification is possible or probable?  The lack of an answer 

is a major shortcoming of current practices of identification by the visual comparison of 
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antemortem and postmortem radiographs of frontal sinuses of the putatively same 

individual. 

Furthermore, despite the fact that many believe that the shapes of frontal sinus 

outlines are unique to each individual, no empirical studies have ever rigorously tested 

this hypothesis.  Several studies use linear measurements (such as height and width) and 

descriptive variables (such as the presence of asymmetry and number of septa) to 

examine differences in frontal sinuses between groups or to construct categories for 

comparison, but such studies are insufficient and inconclusive as to the reliability of 

comparing individual frontal sinuses for positive identification.  The lack of such testing 

consequently results in a lack of statistical estimates of reliability and therefore no 

knowledge of the probability of misidentification.  The value of comparing antemortem 

and postmortem radiographs in forensic contexts is fully and widely appreciated, but 

more extensive research into the uniqueness of each individual’s frontal sinus outline and 

the statistical reliability of diagnostic features used in positive identification is necessary. 

The study presented here was undertaken in response to these observed 

shortcomings and its purpose was three-fold: 

1.  To emphasize the need for objectivity and a standardized methodology for 

identification using frontal sinus outlines, especially in light of recent rulings in 

admissibility law; 

2.  To empirically assess frontal sinus outline variability using Elliptic Fourier 

Analysis (EFA); 

3.  To investigate the reliability of the EFA method for identification, and 

estimate the probability of misidentification (at least in a forensic context). 
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 Chapters 1-4 describe and review several prerequisites needed to understand the 

research presented in the subsequent chapters.  Since this investigation deals with a 

method of positive identification, Chapter 1 discusses the concept of personal 

identification and why this task is important in our society, and reviews the history of 

forensic applications using radiology, including (and in particular) applications to cases 

of personal identification, thus providing an essential background as to how and why 

radiology has come to be so important to forensic investigations concerning 

identification.  Chapter 2 is devoted to the frontal sinuses as an anatomical structure; it is 

imperative to have a comprehensive understanding of the growth, development, purpose, 

function and sources of variation of any structure used in personal identification.  Chapter 

3 reviews the use of frontal sinuses in positive identification (including previous 

investigations into its variation) and case studies in which the technique has been used.  

Chapter 4 summarizes the history and importance of the laws pertaining to the 

admissibility of scientific evidence, which is essential to understanding the purpose and 

implications of the following investigation.   

 Chapter 5 describes the materials and methods used to undertake the study, and 

chapter 6 presents the results.  Chapter 7 consists of a discussion of the preceding study 

including its significance, possible sources of error, and limitations. 
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Chapter 1:  Personal Identification 

 

The Importance of Identification 

 Establishing positive identification of an unknown individual is important in our 

society for both legal and humanitarian reasons.  Legally, issues of inheritance and 

succession to property, collection of insurance policies and pensions, administration of 

wills, lawsuits involving negligent parties, prosecution of homicide, detection of 

fraudulent deaths, accident reconstruction, remarriage, issuance of a death certificate and 

other matters concerning property and business interactions all depend on the ability to 

establish a positive identification (Phrabhakaran et al., 1999; Sopher, 1972; Wentworth 

and Wilder, 1932).  Morally, confirming identification is usually critical in the closure 

and resolution of surviving relatives and friends as well as being the subject of matters of 

international concern such as investigations in conflict regions including Kosovo, 

Argentina, Bosnia and Rwanda.   

Wentworth and Wilder (1932) noted that it “would seem to be possible under all 

circumstances [to positively identify an individual] only by making use of some mark or 

peculiarity permanently and unalterably fixed upon the body itself.”  The suggestion of 

some kind of artificial permanent mark or tattoo to ensure unequivocal identification has 

often been proposed, but we have come to discover that such markings are not necessary 

since we can take advantage of our individual unique features.   Recent progress has 

allowed us to further explore and document differences among individuals, increasing the 

potential avenues for positive identification.   
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So important is the issue of identification in today’s society that all possible 

avenues should be explored in order to accurately identify deceased individuals.  

Accordingly, forensic experts in identification methods should utilize all available 

evidence in an attempt to assess identification as accurately as possible.  Sometimes, this 

is a straightforward process, particularly when remains are fresh and visual clues are 

readily available.  Other times, however, it is necessary to use less conventional methods 

of identification based on individual peculiarities or variations in anatomy.   

Identification Systems 

It is important to remember that although certain features of individuals are 

commonly referred to as “identification symbols”, they are more aptly called 

“reidentification symbols”.  Any valid system of identification is based on two already 

established and previously known facts—the identity of that individual, and a record of 

her or her own particular uniqueness.  Identification by “reidentification symbols” is a 

method for verifying that the individual concerned is the same as the one previously 

concerned. 

The task of reidentification is usually the responsibility of the forensic 

pathologist, coroner, or law enforcement officer.  The identification method used in 

forensic contexts is dictated by the postmortem condition of the body as well as the 

availability of antemortem information about the deceased for comparison.  The 

reliability of individual methods varies, but a corroboration of several less reliable 

methods can increase the probability of a correct identification (Sopher, 1972).  Although 

the present study focuses on identification using frontal sinus radiographs, the reader 

should be aware of and minimally familiar with the numerous other identification 
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methods in use, particularly since methods are frequently compared and contrasted in 

attempts to identify their respective strengths and weaknesses. 

Visual examination is the most frequent mode of personal identification (Sopher, 

1972).  It usually involves recent deaths with well-preserved bodies whose facial and 

other physical features or markings are not distorted by decomposition or injury and can 

be readily identified by relatives or friends.  Less frequently, friends or relatives may be 

asked to identify personal effects found in context with the deceased.  Fingerprint 

comparison, based on the premise that no two individuals have identical ridge patterns on 

their fingers, provides the most widely used means of quantifiable identification (Sopher, 

1972) and is supported by studies that suggest that the probability of two individuals 

having identical fingerprints is extremely remote (Pankanti et al., 2001).  The use of 

deoxyribonucleic acid (DNA) in identification is an increasing trend.  Scientists have 

realized since the 1950s that an individual’s DNA (located in the cellular nuclei of all 

living organisms) encodes information about the individual’s inherited characteristics, 

and moreover, that this code is unique to each individual.  DNA analysis allows 

identification by reference to the inheritable traits contained in any human nucleic cell.   

Identification by comparison of antemortem and postmortem dental records is a 

well-documented, accepted, and widely used procedure (Farrell, 1979; Sopher, 1972), 

and is considered one of the most effective means of identification of unknown bodies 

(Sainio et al., 1990).  Its reliability rests in the fact that there are innumerable 

combinations of restorations, prosthetics, dentition gaps, and carious lesions that an 

individual may possess.  While these are usually compared using radiographs, even hand-

written notes have been shown to be applicable to the dental identification process 
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(Adams, 2002).  Identification by comparison of various aspects of the skeleton 

(including morphological peculiarities, unusual allometric relations, epigenetic traits, 

healed fractures, and evidence of previous medical care) has become increasingly popular 

with forensic anthropologists, pathologists and radiologists.  As this method is intimately 

linked to the investigation of frontal sinus outline variability, it will be reviewed in 

greater detail below.  

Skeletal Identification 

 One problem in identification is that of establishing the identity of bodies that are 

skeletal, decomposed, dismembered, or badly burned.  Visual recognition in these cases 

is obviously out of the question, and fingerprint evidence is often unobtainable.  Teeth 

may also become scattered and lost so that dental comparisons may not be possible even 

if most of the skull has been recovered.  In these cases, identification must rely on the 

bones alone, and forensic anthropology is of great necessity here (Dwight, 1878).  An 

anthropological (skeletal) analysis is often the method of choice for estimating the 

ancestral (and perhaps ethnic) affinity, sex, age and stature of the individual.  This 

assessment, though useful in narrowing the pool of potential candidates in the search for 

identity, is not (yet) a positive identification. 

A positive identification is generally made on the basis of agreement between the 

skeleton and facts known about a putative deceased person who has been selected for 

comparison on the basis of being missing and possibly dead (Kerley, 1977).  Any 

distinguishing features or traits such as prosthetics, fractures, and congenital or traumatic 

deformities or abnormalities may be particularly convincing evidence and can often 

provide the basis for a highly probable identification (Dwight, 1878).  Generally, the 
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greater the number of skeletal peculiarities that match peculiarities of a sought-for 

individual and the more unusual the peculiarity, the greater the probability that the 

identification is correct (Dutra, 1944).   

In addition to comparing aspects of the skeleton, photographic superimposition 

can sometimes be applied in a skeletal identity investigation (Kerley, 1977).  This method 

involves superimposing a photograph of a suspected victim over a radiograph of a skull.  

While this technique can be used to positively exclude the possibility that the skull of the 

remains would have fitted with the contours of the face of the deceased, it cannot be 

taken as absolute identification (Kerley, 1977). 

 Increasingly frequent is the direct (visual) comparison of antemortem and 

postmortem radiographs for the purpose of confirming a presumptive identification by 

matching specific unique visual findings or features on the antemortem and postmortem 

radiographs of that person (Brogdon, 1998).  The history and development of this method 

of identification is closely related and particularly pertinent to the investigation of the 

techniques presented in this study.  

History and Basic Radiological Concepts 

On Friday afternoon, 8 November, 1895, Wilhelm Conrad Röntgen, working in 

his Würzburg physics laboratory, made a serendipitous and monumental discovery:  “If 

the discharge of a fairly large Rühmkorff induction coil is allowed to pass through a 

Hittorf vacuum tube … and if one covers the tube with a fairly close-fitting mantle of thin 

black cardboard, one observes in the completely darkened room that a paper screen with 

barium platinocyanide placed near the apparatus glows brightly or becomes fluorescent 

with each discharge, regardless of whether the coated surface or the other side is turned 
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toward the discharge tube.  The fluorescence is still visible at a distance of two meters 

from the apparatus.  It is easy to prove that the cause of the fluorescence emanates from 

the discharge apparatus and not from any other point of the conducting circuit” (Röntgen, 

1895; English translation in Pais, 1986) 

In this same publication, Röntgen reports that materials containing atoms with a 

high atomic number Z, notably lead, attenuated these rays, which he called “X-Strahlen” 

(from which derives the English name “x-rays”; in German they are called 

“Röntgenstrahlen” in his honor), much more readily than atoms with few protons in the 

nucleus, such as hydrogen and many other atoms in soft tissues.  Indeed, one of the first 

medical photographs (the first roetgenogram or radiograph) is of his wife’s hand, made 

on December 22, 1895.  As usual, she was wearing her wedding ring, and its image 

showed up clearly on the photograph; this is how Röntgen found out about the scattering 

of x-rays by high-Z atoms.  Subsequent studies by Röntgen and others have shown that 

the intensity distribution of x-ray wavelengths depends on (1) the supply voltage between 

anode and cathode, (2) the material of the anode, and (3) the current between cathode and 

anode. 

Modern x-ray equipment used in medicine takes advantage of our knowledge of 

the various mechanisms generating x-rays in the anode material: (1) bremstrahlung and 

(2) K- or L-shell capture; as well as our knowledge of attenuation mechanisms: (1) 

Compton scattering, (2) pair production, (3) nuclear reaction, (4) photon scattering, and 

(5) photoelectric effect (Dössel, 2000).  By suitably adjusting the parameters controlling 

these mechanisms, medical radiologists can produce very clear and diagnostically 

revealing images of either bony material or soft tissue. 
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 What is imaged on an x-ray film is conventionally called a radiograph in the 

medical profession, not an x-ray as it is called in common parlance, and will be referred 

to as a radiograph in this study.  Conventional radiographs are produced in the following 

manner:  The attenuated beam that has passed through the body part(s) being investigated 

illuminates a gelatin film containing silver bromide crystals in an emulsion.  A bromide 

ion in such a crystal hit by an x-ray photon is oxidized into elementary bromine, releasing 

an electron (Br– + x-ray photon ?  Br + e–) that diffuses within the crystal.  This electron 

subsequently reduces an Ag+- ion to a Silver atom (Ag+ + e– ?  Ag).  During the 

‘development process’ of the emulsion (usually by hydochinone or some chemically 

similar reducing agent) practically all Ag+-ions in the crystal containing the ‘seed’ Ag 

atom are reduced to elementary Silver, while the process called “fixing” removes the 

non-excited Silver bromide crystals.  In other words, in a radiograph, dark regions are 

where x-ray beams illuminated the film, white ones are where the beam was absent. 

Very few x-rays reach the part of the film directly under bones because of the large 

amounts of calcium they contain which attenuates many of the x-ray beams.  Substances 

that attenuate x-ray beams considerably (such as bone minerals) are referred to as 

radiopaque, while less attenuating material (such as soft tissues) are called radiolucent. 

The examination of radiographs has become commonplace in medicine and has 

many prognostic and diagnostic applications.  The x-ray wavelengths used in medical 

diagnoses vary, and x-ray technologists are trained to select and use wavelengths 

according to the attenuation properties and thickness of the parts they are filming.  This is 

done by varying the operating voltage (usually several kilovolts (kV)) of the machine; the 

higher the voltage, the harder or more penetrating the x-ray beams are.  The time of 
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exposure can also be altered, and the dosage of radiation can be adjusted by varying the 

current driving the tube (usually in the miliampere range).   

Both making and examining radiographs requires some knowledge of the relative 

radiodensities of various substances; keeping thickness as well as other technical 

parameters constant, the radiographic appearance of substances will vary as a function of 

their attenuation numbers.  In practice, the radiologist adjusts the technical parameters to 

accentuate those differences as defined by what is being examined.  This is an important 

aspect to keep in mind, since x-ray examinations of the body often involve beam 

penetrations through various tissues of differing attenuations, and what is actually 

rendered on the film can be called a “composite shadowgram.”  The shadowgram 

represents the integral of the attenuations along the beam line from source to film 

(Novelline, 1999; Prossinger and Bookstein, 2003; Spoor et al., 2001).    

Forensic Radiology 

Radiographic investigation of human remains began soon after the discovery of x-

rays as investigators came to realize that x-rays provided a non-destructive means of 

examining human remains.  The method was actually first applied to ancient rather than 

forensic specimens.  By the end of the 19th Century, Culin and Lester made radiographs 

of a Peruvian mummy from Pachacamac (Rowe, 1953).  In 1898, Culin published a 

radiograph of a spear thrower from Colorado and soon thereafter, a large number of 

Peruvian and Egyptian mummy bundles were examined using x-rays (Petrie, 1898; 

Rowe, 1953).  Other early applications of radiology in anthropology included the study of 

bone pathologies (Hooton, 1930) and growth (Greulich and Pyle, 1959).  Being far less 

laborious than dissection or serial section, radiography also permitted the examination of 
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much larger samples, allowing more quantitative approaches (Spoor et al., 2001).  Early 

radiographic investigations, however, typically considered only general anthropological 

and pathological findings with little or no emphasis on skeletal variability (Brothwell et 

al., 1968).   

Radiology, however, soon found applications in many medicolegal and forensic 

anthropological investigations including: 

• age estimation (Greulich and Pyle, 1959; Murphy and Gantner, 1982),  

• sex estimation (Krogman and Iscan, 1986; McCormick et al., 1985; 

Morgan and Harris, 1953; Murphy and Gantner, 1982),  

• ancestry estimation (Stewart, 1979),  

• stature estimation (Murphy and Gantner, 1982),  

• determining whether or not remains were human (Messmer, 1986; Murphy 

and Gantner, 1982),  

• locating and recovering bullets and other foreign bodies and determining 

the direction, angle and location of wounds (Eckert and Garland, 1984; 

Fatteh and Mann, 1969; Schmidt and Kallieris, 1982),  

• detecting air-embolisms (Camps, 1969; Schmidt and Kallieris 1982),  

• detecting and aging fractures and other trauma (Camps, 1969; Eckert and 

Garland, 1984; Fatteh and Mann, 1969; Schmidt and Kallieris, 1982),  

• diagnosing tuberculosis (Schmidt and Kallieris, 1982),  

• examining hyoid or cartilage fractures in hanging or strangulation victims 

(Camps, 1969; Fatteh and Mann, 1969),  
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• examining past medical history (Murphy and Gantner, 1982),  

• illustrating dental morphologies and anomalies (Eckert and Garland, 1984; 

Krogman and Iscan, 1986),  

• separating skeletal remains from wood charcoal and other charred material 

(Krogman and Iscan, 1986; Morgan and Harris, 1953),  

• diagnosing premortem skeletal health (Krogman and Iscan, 1986),  

• studying the relationship between bone and soft tissue as a check of and 

development of methods for facial reconstruction (Rowe, 1953),  

• detecting metallic poisons such as arsenic, lead and mercury in suspected 

poisoning cases (Fatteh and Mann, 1969; Schmidt and Kallieris, 1982), 

and 

• examining burned, skeletonized or decomposed individuals for the 

purpose of identification (see below).   

As a result, the value of radiography has become well established in the criminal and 

medicolegal work of police officers, medical examiners and attorneys (Cornwell, 1956).    

Positive identification following a presumptive identification by comparing 

antemortem and postmortem radiographs has become an increasingly applied technique 

in medicolegal investigations.  The earliest suggestion of the use of radiology in the 

identification of unknown human bodies was by Schuller (1921) who called attention to 

the potential use of frontal sinus variability in this context.  The technique is based on the 

notion that osteological features as seen in radiographs may be sufficiently individual as 

to aid in the confirmation of identity based on the variability of these features.  Often, 
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such positive identifications are based on several features or details of agreement, but an 

identification can even be based on a single bony feature if it is deemed to be distinctly 

unique (Brogdon, 1998; Messmer, 1986).  Comparative radiography for the purpose of 

identification has become a well-established technique in forensic anthropology and it 

has been said that it compares favorably well with fingerprint and dental identifications 

(Murphy et al., 1980).   

In cases where a visual or fingerprint identification is not possible, radiographic 

identification has come to predominate since the teeth and skeleton will usually survive 

longer than other identifying characteristics and is hence almost always available for 

examination (Murphy et al., 1980).  It has even been noted that it is virtually impossible 

to destroy a body by fire so completely that no element remains accessible for 

examination and comparison (Bass, 1984).  For this reason, radiographic identification is 

routinely used following mass disasters and in the identification of burned, mutilated, 

decomposed, fragmented, skeletonized and otherwise unrecognizable human remains.  

Especially in these latter cases, radiography is sometimes the only means by which an 

individual’s identity can be established (Cornwell, 1956), particularly in the absence of 

teeth and/or dental records (Atkins and Potsaid, 1978; Jensen, 1991; Marlin et al., 1991).  

Moreover, given that radiographs have become a common diagnostic tool for various 

other medical investigations thus increasing the availability of antemortem records for 

comparison, the potential for applying the technique is improving.  Indeed, radiographic 

comparison is a common procedure in the identification of unknown remains in most 

forensic facilities throughout the world (DiMaio and DiMaio, 1989). 
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Some suggest that “abnormal” features such as anomalous or unusual 

development, healed fractures, deformities, degenerations, pathologies, abnormal 

calcifications, tumors, trauma, and prosthetic devices are most important for 

identification purposes (Brogdon, 1998; Murphy et al., 1980).  Such assertions are based 

on the idea that abnormalities and post-surgical features produce traits that are very likely 

to be unique to that individual.  Moreover, in the event of some abnormality, the chance 

that the individual will have an antemortem radiograph available for comparison is high.   

This technique has been applied in various published case studies including identification 

using: 

• a foot deformity (Sudimack et al., 2002),  

• bone spurs present on the legs and feet (Owsley and Mann, 1989),  

• post-surgical cranial defects (Hogge et al., 1995),  

• surgical fusion of foot bones (Sivaloganathan and Butt, 1988),  

• prosthetic devices (Penalver et al., 1997),  

• pelvis deformities (Angual and Derczy, 1998),  

• iliac crest peculiarities (Brogdon, 1998),  

• bony spicules on the innominate and flattened regions of the obturator 

foramen (Rouge et al., 1993),  

• congenital acetabular dysplasia (Varga and Takacs, 1991),  

• wrist fractures (Atkins and Potsaid, 1978),  

• a patellar defect (Riddick et al., 1983), and 

• fusion of the sacroiliac joint (Murphy and Gantner, 1982). 
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However, many recognize that the richness of normal anatomical detail revealed in 

radiographs is equally, if not more, important since the widespread occurrence of 

nonpathological anatomical features available for comparison in most radiographs may 

obviate the need to use pathological or abnormal features (Joblanski and Shum, 1989).  

This technique makes many parts of the skeleton usable for identification, and while 

those that tend to be more variable may be more reliable, nearly every bone in the body 

could be (or has been) used for identification (Hogge et al., 1993). 

Comparison of normal anatomical variation may significantly increase the 

potential number of corresponding features for identification (Joblanski and Shum, 1989).  

Radiographic examinations of the details of bone structure often reveal individual 

characteristics that can be compared (like fingerprints) to establish identity (Kade et al., 

1967).  Identity can be established in these cases by comparison of minute details of 

external cortical contours and bone surfaces (Kerley, 1977) and metric analysis 

(Sassouni, 1959; Thorne and Thyberg, 1953), as well as the internal architecture of the 

bones such as their trabecular pattern (Joblanski and Shum, 1989; Kahana et al., 1998; 

Kahana and Hiss, 1994; Mann, 1998) and vascular grooves (Brogdon, 1998).   

Numerous reported cases and studies illustrate the use of radiography (often in 

conjunction with other evidence) to establish individuality using nonpathological 

variation of various aspects of the skeleton including: 

• parts of the skull (Culbert and Law, 1927; Fatteh and Mann, 1969; 

Joblanski and Shum, 1989; Murphy et al., 1980; Rhine and Sperry, 1991; 

Sassouni, 1959; Singleton, 1951; Thorne and Thyberg, 1953),  

• the chest (Martel et al., 1977; Murphy et al., 1980; Singleton, 1951),  
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• the sternum (Rouge et al., 1993),  

• the abdomen (Angyal and Derczy, 1998; Joblanski and Shum, 1989; 

Murphy et al., 1980),  

• costal cartilage (Marek, 1983),  

• the spine (Brogdon, 1998; Fatteh and Mann, 1969; Jensen, 1991; Kahana 

et al., 2002; Kahana et al., 1997; Murphy et al., 1980; Owsley et al., 1993; 

Singleton, 1951; Stevens, 1966; Valenzuela, 1997),  

• the clavicle (Adams and Maves, 2002; Marek, 1983; Sanders et al., 1972),  

• the scapula (Ubelaker, 1990),  

• the hand and wrist (Greulich, 1960; Koot, 2003),  

• the pelvis (Singleton, 1951),  

• the femur (Dutra, 1944), and 

• the ankle and foot (Kade et al., 1967; Singleton, 1951).   

The lumbosacral region has been cited as being especially useful since it tends to survive 

the longest, especially in fires (Cornwell, 1956). 

An important caveat to observe, however, is that the anatomy of adult bone is not 

stable, but continually remodeled and restructured in response to changes in function 

(Currey, 1984).  The stability of the bone is related to the stability of the loading regimes 

to which it is subjected as well as advanced age, which is associated with a loss of 

cortical bone.  One study (Sauer et al., 1988), however, demonstrated that aspects of the 

postcranial axial skeleton generally chosen to compare for identification are quite stable, 
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and the ability to make a positive identification from postcranial axial material may not 

diminish, even after two-and-a-half decades. 

 Prior to comparison for the purpose of identification, an investigator must be 

equipped with an appreciation for how, why and where a structure may vary, and what 

constitutes “normal” and “non-normal” variation.  Such an appreciation can only be 

gained through a comprehensive understanding of the anatomical structure of interest 

including a working knowledge of how the structure develops, its sources of variation, 

and the purpose and function of the structure.  To this end, before addressing the use of 

frontal sinuses in positive identification, the following chapter presents a synopsis of the 

frontal sinuses as an anatomical structure in order to increase appreciation for the adult 

form and its variability. 
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Chapter 2:  The Frontal Sinuses 

 

Ontogeny 

The frontal sinuses are formed by invagination of the epithelium covering the 

walls of the nasal cavity.  Around the fourth or fifth fetal month, this invaginated pouch is 

directed upward and medially resulting in the emergence of ethmoidal and frontal cells 

(cavities).  There appears to be some variation in which cells, exactly, give rise to the 

frontal sinuses.  They are usually considered a derivative of the recessus frontalis, one or 

more of the cellulae ethmoidales anterior, or both (Schaeffer, 1916a).  However, others 

maintain that they may also develop by the expansion of the cellulae infundibulares, the 

recessus conchalis, or the infundibulum ethmoidale (Davis, 1918).  The relative rate of 

advancement of the cells appears to determine which of them will eventually become the 

frontal sinus (Davis, 1918) and its extent (Prossinger and Bookstein, 2003).   

Toward the end of the fifth fetal month, a marked differentiation of this pouch 

takes place with the invagination of the vesicles into the frontal bone.  These cavities, 

later involved in the emergence of the frontal sinuses, are lined with a mucous membrane 

and surrounded by a thin layer of compact bone.  The development of the frontal sinuses 

then proceeds by two simultaneous processes:  the progressive advancement of the sinus 

mucosa and the concomitant resorption of the adjacent bone.  Frontal sinus expansion 

proceeds very slowly in this manner until birth.  Very little is known about the processes 

of pneumatization at the cellular and tissue level, and even less is known about how 

pneumatization is controlled (Witmer, 1999). 
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At birth, the frontal sinuses are very small and essentially indistinguishable from 

the ethmoid air cells.  During the first year after birth, the frontal sinus complex is still 

ethmoidal in topography (Samuel and Lloyd, 1978), but by the second year, 

pneumatization has reached the frontal bone (Figure 2.1).  The frontal sinuses become 

more conspicuous in size by the second or third year when their apex often extends above 

nasion.  Further expansion into the vertical portion of the frontal bone begins around the 

fifth year, with most children over the age of six demonstrating vertical projection 

radiographically (Brown et al., 1984; Dolan, 1982a; Donald et al., 1994; Libersa and 

Faber, 1958; Maresh, 1940; Prossinger and Bookstein, 2003; Szilvassy, 1973).  The main 

enlargement of the sinuses occurs during puberty with a small additional increase in 

height several years after this growth spurt in some individuals (Brown et al., 1984; 

Prossinger and Bookstein, 2003).  This spurt in enlargement is completed slightly earlier 

in girls than in boys (around 10 and 14 years, respectively), and frontal sinus growth is 

generally completed by the twentieth year (Prossinger and Bookstein, 2003).   

“Normal” Anatomy  

In adults, the frontal sinus usually appears as two irregularly shaped and 

asymmetric cavities extending backward and laterally for a variable distance between the 

tables of the frontal bone, often separated from each other by a thin bony septum that is 

usually deflected to one side of the median plane (Gray, 1901) (Figure 2.2).  One frontal 

sinus lobe on each side of the cranium is the prevailing anatomical arrangement, but 

supernumerary or absent frontal sinuses have been observed (Szilvassy, 1973).  The most 

common outline of the frontal sinus resembles a triangle with the base inferior and the 

apex superior.  It is not uncommon for frontal sinuses to extend into the orbital margin 
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Figure 2.1:  Development of the Frontal Sinuses. 

(From Baylor College of Medicine, 1996)  
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Figure 2.2:  “Normal” Adult Frontal Sinuses. 

The frontal sinuses in (a) frontal and lateral view of a living individual (Kids ENT Home 

Page, 2000), (b) cut-away skull (University of Calgary Medical Clinic, 2000), and (c) 

radiograph (The University of Tennessee Forensic Anthropology Center, 2003).
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of the frontal bone (sometimes called “supraorbital sinuses”), and in some cases, this is 

the only region where they are present, with no projection into the vertical portion (Cryer, 

1907; Schaeffer, 1916b; Shapiro and Janzen, 1960).   

Along the roof and the anterior wall there may be numerous bony ridges (called 

lamellae).  In an anterior-posterior radiograph, these ridges, which are incomplete 

partitions of varying lengths, appear as projections extending downward into the sinus, 

producing recesses and giving the sinuses their irregular “scallop- like” outlines (see 

Figure 2.2c).  Membranes and septa arise from these ridges, hanging into the sinus.  They 

may partly or completely divide the sinus, with partial division more common than 

complete division (Samuel and Lloyd, 1978; Shapiro and Janzen, 1960).  At least one 

complete bony septum is usually present internally, separating the sinus cavity, and as a 

rule it is very thin (< 0.5 mm) (Turner, 1902).   The septum is usually situated along the 

medial plane, but deviation is very common.  In most cases, the inferior and anterior 

portion of the septum is medially oriented, with displacement occurring superiorly and 

posteriorly.   

There are three primary boundaries of the frontal sinuses:  the anterior (forehead), 

posterior (cranial cavity), and inferior (orbital plate) (Hajek, 1926), forming the three 

bony walls of the sinus, which are best visible in a lateral view of the sinus cavity (see 

Figure 2.2a).  The anterior wall is formed by the convex outer table of the frontal bone 

and may include the superciliary ridges and glabella.  The anterior wall is generally the 

thickest of the borders but may vary considerably in thickness (from < 1 mm to 8 mm) 

(Turner, 1902).  The posterior wall is formed by the inner table of the vertical portion of 

the frontal bone and is thus slightly convex forward.  It, too, varies in thickness, but tends 
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to be much thinner (usually < 0.5 mm) and with a more constant thickness (Turner, 

1902).  The posterior aspect of this wall is in contact with the frontal lobes of the brain 

and thus may be characterized by meningeal markings.  The inferior wall of the frontal 

sinus is the orbital plate (the upper and inner roof of the orbits) and the ethmoidal 

labrynth, and is the thinnest of the three frontal sinus walls (Turner, 1902).  

 The sinus cavity is filled with air and fluids and lined by a thin muco-periosteal 

membrane that is continuous with the lining of the nasal chamber (Turner, 1902).  This 

membrane is covered by a layer of ciliated epithelium and contains a number of mucous 

glands (Caffey, 1993).  There appears to be some variation in the manner of connectivity 

between the frontal sinus and the nasal cavity in accordance with the embryology of the 

sinus.  In most cases, the pneumatic space extends downward and inward communicating 

with the frontal recess either by a true naso-frontal duct, or by an ostium frontale directly 

in the caudal portion of the frontal sinus (Schaeffer, 1915; Turner, 1902).  Fronto-nasal 

ducts vary greatly in diameter, length and direction (Samuel and Lloyd, 1978) ranging 

from 2.6–5.1 mm in diameter and averaging 6.2 mm in length (Lang, 1989). 

 While Schuller (1921) noted that the form, size and position of the frontal sinuses 

do not change throughout adult life, slight changes are possible and have been noted.  

Changes in the appearance of frontal sinuses during life are attributable primarily to bone 

thinning with old age and trauma.  The following list indicates six key mechanisms by 

which frontal sinus size and/or morphology may change during life (Buckland-Wright, 

1970; Dolan, 1982b; Schuller, 1943): 

1.  With age, the walls of the frontal sinus may become thin causing the sinuses to 

appear larger.  
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2.  Aging corresponds to shrinkage of the frontal lobes of the brain causing sinus 

enlargement as a compensatory process. 

3.  Post menopausal women may experience symmetrical hyperostosis on the 

inner surface of the forehead causing a reduction in sinus size. 

4.  Changes to the appearance of frontal sinuses may be induced by chronic 

inflammatory processes such as sinusitis, tuberculosis and syphilis, which 

can lead to either a thinning or thickening of the bone and subsequently 

causing an increase or reduction in sinus volume. 

5.  Tumors, injury, trauma and obstruction of the fronto-nasal duct may cause 

changes in sinus volume. 

6.  Other disease processes including mucoceles, osteomas, fibrous dysplasia, 

benign tumors and malignant neoplasms may alter the radiological 

appearance of the frontal sinuses.   

Variations  

Wide variations in frontal sinus anatomy seem to be the rule.  The medial and 

orbital portions of adult frontal sinuses are relatively uniform, but the upper and lateral 

portions are quite irregular in appearance.  Researchers have reported on variation in 

frontal sinus volume, cross-sectional area, outline geometry, and shape related to:  

• sex (Buckland-Wright, 1970; Hanson and Owsley, 1980; Harris et al., 

1987b; Schuller, 1943),  

• climate (Koertvelyessy, 1971; Kondrat, 1995),  

• extent of the supraorbital ridges (Hajek, 1926; Samuel and Lloyd, 1978),  
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• presence of a metopic suture (Hodgson, 1957; Montiero et al., 1957; 

Samuel, 1952; Samuel and Lloyd, 1978; Schuller, 1943; Torgersen, 1950; 

Van Alyea, 1951),  

• acromegaly or cretinism (Schuller, 1943; Shapiro and Janzen, 1960),  

• cranial indices (Gulisano et al., 1987; Strek, 1992; Turner and Porter, 

1922), and  

• ancestry (Brothwell et al., 1968; Ikeda, 1980; Turner, 1902).   

Several suggestions have been put forth as being major contributors to the final 

adult shape of frontal sinuses and thus being responsible for the wide variation including:  

• cranio-facial configuration (Koppe and Nagai, 1999; Shapiro and Schorr, 

1980),  

• endocrine factors (Buckland-Wright, 1970),  

• hormonal factors (Samuel and Lloyd, 1978; Schuller, 1943; Shapiro and 

Schorr, 1980),  

• biomechanical factors (Koppe and Nagai, 1999),  

• genetics (Koppe and Nagai, 1999; Maresh, 1940; Samuel and Lloyd, 

1978; Walander, 1965; Wolfowitz, 1974,), 

•  irregular or varying degrees of resorption of the diploe (Hajek, 1926; 

Shapiro and Janzen, 1960),  

• thickness of the frontal bone (Shapiro and Schorr, 1980),  

• environmental factors (Koppe and Nagai, 1999),  

• ambient air pressure and breathing (Maresh, 1940; Walander, 1965),  
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• trauma (Maresh, 1940),  

• infection (Carmody, 1929; Walander, 1965), and  

• congenital abnormalities (Montiero et al., 1957).   

Others suggest that their development is random (Asherson, 1965). 

Extreme variation is seen in the size (often measured as volume, cross-sectional 

area, or dimensions) of frontal sinuses.  Sinuses may be absent or too small to be 

detected, or on the other extreme, may extend well into the frontal region or beyond.  

Studies show varying findings, but indicate that average adult frontal sinus size is about 

28 mm high, 27 mm wide, and 17 mm deep (Donald et al., 1994).  Smaller or less 

developed sinuses generally consist of a single centrally concave recess and are usually 

located along the inner upper margin of the orbit (Hajek, 1926).  In rare cases, the frontal 

sinuses may be considerably large, hyperpneumatizing into other bones of the skull 

including the lesser wings of the sphenoid, the temporal bone, the nasal bone, the crista 

galli of the ethmoid, and the ascending process of the maxilla (Cryer, 1907; Dolan, 

1982a; Hajek, 1926; Shaeffer, 1916b).  Some studies have commented on the increase in 

size of frontal sinuses in those with well-marked supraorbital ridges (Hajek, 1926; 

Samuel and Lloyd, 1978), and increased pneumatization has been noted to be 

characteristic of individuals with acromegaly (Shapiro and Janzen, 1960). 

Since the left and right frontal sinus lobes develop independently, it is not 

surprising that they display a high degree of asymmetry in dimensions, as first noted by 

Zuckerkandl (1895).  Asymmetry is generally attributed to a more rapid development on 

one side at the expense of the other (Turner, 1902).  Directional asymmetry has received 

some attention in the literature, but the results are inconclusive.  While some report that 
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right sinus lobes tend to be larger than their left counterparts (Hajek, 1936; Lang, 1989; 

Schuller 1943), others have reported the opposite (Harris et al., 1987b; Marciniak and 

Nizankowski, 1957).  Others (including Strek et al., 1992) have found no significant 

differences between the sizes of the left and right frontal sinus lobes.  Perhaps these 

findings are population specific. 

Sex differences in frontal sinus dimensions and morphology have been widely 

noted, with sinuses generally reported to be larger in males than in females (Buckland-

Wright, 1970; Hajek, 1926; Harris et al., 1987b); one exception is Canadian Eskimo 

populations (Yoshino et al., 1987).  While some studies indicate that females display 

more numerous scallops (loculations) along the upper border (Krogman and Iscan, 1986; 

Schuller, 1943), others indicate that increased loculations are more frequent in males 

(Harris et al., 1987b).  Hanson and Owsley (1980), however, indicate no significant sex 

differences. 

Inter-group variability has been noted for many features of the frontal sinuses, 

though an early study attempting to determine racial and/or ethnic characteristics showed 

negative results (Mayer, 1935).  There have, however, been reports on general trends in 

certain populations.  For example, frontal sinuses are reported to be frequently absent in 

Australian Aborigines (Turner, 1902), while modern African Negros often have well-

developed sinuses (Brothwell et al., 1968).  Turner and Porter (1922) reported greater 

frontal sinus development in “mixed European races” than in “pure races.”  Several 

studies suggest an environmental or climatic factor contributing to the configuration or 

size of the frontal sinuses.  Koertvelyessy (1972) suggested that cold and/or cold-dry 

adapted populations are characterized by smaller sinuses and reported that Alaskan 
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Eskimos have relatively small sinus surface areas with a high frequency of bilateral 

absence.  West Hudson Bay Eskimos are reported to have sinus surface areas smaller 

than Alaskans (Hanson and Owsley, 1980).  Kondrat (1995) found a strong positive 

correlation between annual seasonal temperature fluctuation and frontal sinus 

dimensions. 

Two sinus cavities separated by a bony septum (most often located near the mid-

sagittal plane) is the usual configuration, but variations have been reported on the number 

of sinus cavities present.  A small percentage of individuals have been noted to have an 

unpartitioned central sinus (Quatrehomme et al., 1996).  The presence of three or more 

sinus lobes is considered by some to be quite rare (Phrabhakaran et al., 1999), but others 

suggest that duplicate and triplicate (Schaeffer, 1916b) or even four and five sinus 

cavities (Cryer, 1907) are quite common.  One author (Lang, 1989) suggests that 

supernumerary sinuses are more common on the left side than the right. 

 Occasionally, there is a complete absence or agenesis of one or both of the frontal 

sinus lobes.  The first observation of the absence of a (maxillary) sinus was by Morgagni 

in 1723 (Blanton and Biggs, 1969).  Studies report varying findings, but indicate that 

complete agenesis of the frontal sinus occurs in 5-15% of adults and the percentage may 

vary in different geographic groups (Harris et al., 1987b). 

The reason for the absence of the frontal sinus has been debated, some having 

suggested that the congenital absence or underdevelopment of the frontal sinuses is 

associated with metopism (Hodgson, 1957; Montiero et al., 1957; Samuel, 1952; Samuel 

and Lloyd, 1978; Schuller, 1943; Torgersen, 1950; Van Alyea, 1951).  The justification 

for this assumption is based on the fact that frontal sinus development occurs together 
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with the development of the frontal bone, perhaps with a feedback regulating mechanism.  

If the frontal bones do not fuse, the metopic suture persists and pneumatization of the 

frontal sinuses may be retarded or suppressed, or they may fail to develop altogether 

(Samuel and Lloyd, 1978; Van Alyea, 1951). 

One report supports this view by indicating a higher frontal sinus agenesis rate in 

metopic skulls (24%) versus non-metopic skulls (5%) and that when sinuses are present 

in metopic skulls, they tend to be reduced (Torgersen, 1950).  In contrast, however, 

another study reported that among metopic individuals, bilateral absence of frontal 

sinuses only occurred in 8% of a sample, indicating no strong association between 

metopism and frontal sinus agenesis (Marciniak and Nazankowski, 1959). 

 Estimates of the frequency of unilateral agenesis also vary, but suggest that failure 

of development of one of the frontal sinuses occurs in 1-15% of adults (Donald et al., 

1994).  Some indicate that unilateral agenesis is more common than bilateral agenesis, 

and that the absence of both sinus lobes is considerably more rare (Samuel and Lloyd, 

1978).  Sex and geographic trends may exist for unilateral and bilateral absence, with one 

report suggesting greater agenesis in women than in men (36.8% and 47.1% for “white” 

and “yellow” races, respectively, in women, versus 19.6% and 39.7% in men), and 

greater agenesis rates in Eskimo and Indian populations (31.7%) than in European 

populations (16.9%) (Strek et al., 1992). 

Several authors question the reported frequency of agenesis, ascribing it to a 

shortcoming of the employed methodology, namely, the inadequate examination of the 

horizontal portion of the frontal bone (Schaeffer, 1916b; Shapiro and Janzen, 1960).  Not 

infrequently, the frontal sinus extent is limited to within the orbital plate of the frontal 
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bone, and not invading the vertical part (or hugging very closely to the ethmoid 

labyrinth).  Thus, such cases, not being visible radiographically, are falsely reported as 

frontal sinus absence.  Reports of agenesis based solely on radiographic images 

invariably present higher estimates than those based on cadaveric dissections that include 

examination of the orbital portion.  

Purpose and Function 

 While Weinert (1925) indicates that there is no evidence of frontal sinus 

pneumatization in the phylogenetic scale below the mammalian level, O’Malley (1924) 

suggests that it is present in some reptiles.  Witmer (1999) suggests that the difference 

may be that while mammals possess (“proper”) pneumatized paranasal sinuses, other 

clades of vertebrates exhibit air- filled epithelial diverticula of the nasal cavity.  Paranasal 

sinuses appear to have evolved independently at least twice in Mammalia and 

Archosauria, with only the maxillary sinus being a nearly ubiquitous feature (Witmer, 

1999).  Frontal sinuses have appeared independently in a number of eutherian clades, but 

the homologies are far from clear (Witmer, 1999).  

The reason for the presence of the paranasal sinuses in higher animals (including 

humans) has been a matter of some debate since their presence was first noted in the early 

1st Century AD (Blanton and Biggs, 1969).  Several theories for their anatomical and 

physiological significance have been proposed, and while some are considered more 

plausible than others, no single theory has been universally accepted as the reason for 

their existence (Blanton and Biggs, 1969).  Indeed, one wonders why the possibility of 

more than one proposed mechanism has not been adequately and thoroughly discussed in 

the literature. 
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 Proposed theories include enhancing resonance amplification to the voice, 

warming and humidifying inhaled air, increasing the olfactory membrane area, absorbing 

shock applied to the head in order to protect sensory organs, secretion of mucus to 

maintain adequate moisture levels in the nasal chambers, thermal insulation of the 

nervous centers (or maintaining adequate internal cranial temperature), aiding facial 

growth and architecture, decreasing bone mass in the skull, and existence as an 

evolutionary remnant (Blanton and Biggs, 1969; Bookstein et al., 1999; Prossinger and 

Bookstein, 2003; Prossinger et al., 2000; Ravosa et al., 2000).   

O’Malley (1924) contends, based on a comparative anatomical study, that the 

primary function of the frontal sinuses is to give necessary bulk and strength to the facial 

skeleton without adding too much weight.  He notes that frontal sinuses may serve other 

functions as well including completing saturation of inhaled air, widening the skull base 

to carry the more numerous permanent teeth, and acting as resonating chambers which 

would enhance the modulation of tones in nuanced speech (O’Malley, 1924).  He 

suggests that the bulging forward of the cranial roof and downward inclination of the face 

bring the sinuses in front of the sound producing mechanism in the larynx, maximizing 

the result (O’Malley, 1924). 

Shapiro and Schorr (1980) suggest that the presence of frontal sinuses has to do 

with the size and shape of the face, i.e., its form.  Cranial enlargement due to increased 

brain growth tends to be associated with reduction in facial size.  Whenever the 

neurocranium changes its form, they contend, the orbits might need to re-orientate 

because the optical axes of the eyes determine their orientation.  They suggest that when 

there is a marked cranio-facial incongruence due to a small cranium and a large face, 
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sinuses help create a spatial gap, and that the orientation of the orbits is important 

(Shapiro and Shorr, 1980).  In support of this, they note that animals such as large dogs 

have a large distance between the neurocranium and the orbits; thus, the orbits must be 

placed significantly anterior to the anterior part of the cranium.  Consequently, the frontal 

sinuses in dogs are quite large.  In humans, where the orbits lie directly below the anterior 

frontal lobes (and are thus not anterior to the neurocranium), sinuses are comparably 

smaller.  

Because only very few theories are currently considered sufficiently rigorous, the 

frontal sinuses in H. sapiens remains a bit of an anatomical curiosity.  A more 

comprehensive understanding of the significance of paranasal sinuses, including the 

frontal sinuses, will likely require additional studies in comparative anatomy, further 

investigation into the bases of human variation, and perhaps controlled laboratory 

investigations (Hylander et al., 1991). 

Radiology of the Skull and Sinuses 

The majority of the diversity in frontal sinus morphology can be ascribed to its 

dimensions, outline shape and situation, all of which can be detected in radiographs of 

frontal sinuses (see Figure 2.2c).  Sinuses are typically examined radiographically for two 

reasons:  one, diagnosing and examining pathological conditions affecting the paranasal 

sinuses, and two, use in forensic applications.  

The earliest report of the use of radiographs in determining the presence or extent 

of paranasal sinuses was by Scheier in 1896 (Maresh, 1940).  Since its first application, 

the radiograph has become a valuable tool in the diagnosis of sinus disease and in the 

determination and delineation of anatomic conformations. 
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There are several standard positions used to assess the paranasal sinuses by 

standard radiographs (Samuel and Lloyd, 1978): 

a) occipito-mental   

b) submento-vertical 

c) lateral  

d) 39° oblique  

e) occipito-frontal  

These different positions are generally used to best inspect a particular sinus 

cavity or portion of a sinus.  The occipito-mental view (especially when the mouth is 

open) provides a good view of the spheniodal sinus and while useful for examination of 

the periphery of the frontal sinus, usually obscures orbital surfaces (Dolan, 1982a).  The 

submento-vertical view is also primarily used to expose the sphenoidal sinus.  The lateral 

position is the best for viewing the fluid levels in the antrum and for diagnosing 

sphenoidal sinus diseases, and also provides a good view of the nasopharynx and soft 

palate.  The occipito-frontal position is named for the first person to extensively 

investigate and report on studying the paranasal sinuses using radiography (Caldwell, 

1918).   Through position experimentation, he was also able to develop projections that 

allowed frontal sinus anatomy to be defined adequately and clearly, and led to the 

Caldwell projection, which is traditionally thought to be the best for examining frontal 

sinuses, and now serves as a standard in modern sinus surveys (Dolan, 1982a).  To obtain 

this view, the radiographic baseline is tilted 15-20° upwards from a line through nasion 

that is parallel to the Frankfort horizontal, with the sagittal plane vertical (Figure 2.3).  

Advantages of this position include:  (1) the frontal sinus is almost in direct contact with  
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Figure 2.3:  Positioning the Skull for a Caldwell View of the Frontal Sinuses. 

(From Baylor College of Medicine, 1996) 
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the film, (2) distortion is limited, (3) geometric blur is minimal, and (4) the outlines are 

clearly shown. 

Frontal sinuses are not visible radiographically until they have extended into the 

base of the vertical plate of the frontal bone (2 to 6 years) and don’t reach the level of the 

orbital roots until around 6 to 8 years (Caffey, 1993).  Even if visible, however, the 

radiographic appearance of frontal sinuses in children is cloudy and not well defined as 

the sinuses are developing closer to the posterior than the anterior frontal bone (Samuel 

and Lloyd, 1978). 

There exist several other methods of radiographic examination of the sinuses, 

though they are not as frequently used.  Tomography uses tomographic units capable of 

pluridirectional or circular movement to take film sequences in three planes (coronal, 

lateral and axial).  Sometimes a contrast media method is used, where a radio-opaque 

medium is introduced into the paranasal sinuses.  Ultrasound examination is possible 

though rarely used because of its limited diagnostic usefulness.  While sometimes useful 

in the diagnoses of diseased maxillary sinuses in children, the air content of the sinuses 

generally limits the penetration of the ultrasound ray.  Computerized axial tomography 

(CAT) scans are becoming a more frequently used method for examining the sinuses.  

Using this method, the head is scanned by a collimated fan of x-ray beams.  An image of 

one “slice” of tissue is made by rotating this fan about the individual’s skull.  A large 

number of different but coplanar beam attenuations is recorded, allowing a reconstruction 

of the attenuated regions (Hounsfeld, 1973; Spoor et al., 2001; Zonnefeld, 1987).  An 

image of the tissue slice in then reconstructed as a series of attenuation values.   
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It has oftentimes been suggested that the frontal sinus morphology of no two 

individuals is alike—that the configuration of the frontal sinus is as unique to an 

individual as his or her fingerprints.  This idea was first put forth by Schuller (1921) and 

has been supported by numerous researchers since (see the following chapter for specific 

studies and references).  The significance of such observations was immediately 

recognized and was first used in identification in 1925 (Culbert and Law, 1927).  Before 

x-ray diagnostic methods, observation Szilvassy of frontal sinuses were limited to those 

made on cadavers by anatomists, but now it has become possible to observe the anatomy 

of the frontal sinuses of living individuals as well.  The irregular shape of frontal sinus 

outlines as observed in radiographs has been fairly extensively studied (though never 

quantitatively), and accordingly developed as a method of identifying individuals 

following Schuller’s 1921 suggestion, with some regarding the accuracy of this technique 

to be 100% (Sassouni, 1959).  This notion is further supported by reports that even 

monozygotic twins differ in their frontal sinus morphology (Asherson, 1965; Schuller, 

1921).  Previous studies of frontal sinus uniqueness and the history of identification using 

frontal sinuses merit review, to be undertaken in the following chapter. 
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Chapter 3:  The Frontal Sinuses in Positive Identification 

 

Previous Studies on Uniqueness 

In order to be considered a viable means of confirming identity, we must know 

whether observed details of the morphology of frontal sinus outlines are unique to each 

individual.  Many researchers’ claims of the individualized nature of frontal sinus 

morphology stem from observations of numerous, even thousands, of radiographs and 

failing to find two that were identical (Asherson, 1965; Cryer, 1907; Culbert and Law, 

1927; Poole [from Mayer 1935]; Schuller, 1921).  While these observations are 

noteworthy in that they provide some subjective support for claims of uniqueness, they 

fall short of actually being able to quantify the chances that two different people would 

have identical or very similar frontal sinus patterns since they did not quantitatively 

assess outline shape.   

Some studies have made attempts at more quantitative assessments of uniqueness, 

but many of these involved very small sample sizes (Harris et al., 1987a  (N=32); 

Ubelaker, 1984 (N=35)).  Others have used larger samples, but addressed somewhat 

different questions such as applying standard measurements and the affect of experience 

level on the ability to make a correct match (Gulisano et al., 1987; Kullman et al., 1990; 

Ribeiro, 2000).  Most investigations of frontal sinus variability have focused on inter-

group variation and often describe differences in terms of linear dimensions of the frontal 

sinus from the radiograph including maximum height and lateral extension or an index 

based on these measurements, surface areas, or asymmetry of left versus right sinus lobes 
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(Brothwell et al., 1968; Buckland-Wright, 1970; Gulisano et al., 1987; Hanson and 

Owsley, 1980; Harris et al., 1987a; Koertvelyessy, 1972; Strek, 1992).    

Studies by Yoshino et al. (1987) and Reichs and Dorion (1992) quantify sinus 

attributes by a code system and suggest that the possible combinations of codes is 

extremely large, but this method does not address sinus morphology per se, only general 

characteristics.  Moreover, as Reichs and Dorion (1992) point out, their analysis does not 

permit assessment of what proportion of the population exhibits a particular configuration 

since certain characteristics may co-vary and not all traits occur simultaneously.  While 

revealing quantifiable differences in frontal sinus characteristics as observed in 

radiographs and suggesting that the probability of misidentification would be small, such 

studies haven’t estimated the probability of misidentification using the technique.  More 

rigorous estimating attempts have been carried out for other identification systems such 

as fingerprints (Pankanti et al., 2001), with the consequence that the methodology has 

become more accepted.    

Systems of Classification, Description and Comparison 

Many investigators have recognized that frontal sinuses provide various 

parameters for classifications and methods for comparing, with the result that 

classification systems of frontal sinuses and methods of their anthropomorphic 

description have become important in the study of frontal sinuses.  Such classification 

systems can be used for studies of variation, recording and storing information about 

frontal sinuses, and making the knowledge available for identification cases.  Most 

proposed sys tems are based on a number of basic characteristic features of the frontal 

sinuses including:  the presence or absence of one or both lobes, size (codified by height, 
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breadth, or cross-sectional area), symmetry/asymmetry, and position/number of septa 

(Marek et al., 1983; Reichs and Dorion, 1992; Ribeiro, 2000; Schuller, 1943; Yoshino et 

al., 1987).  Even though they may be useful for their intended investigation, none have 

received widespread acceptance.  Many classification systems have not been 

standardized, and there is a suspected lack of reproducibility. 

The typical method of comparison in an identification case generally follows 

these steps:  (1) A suitable antemortem radiograph of the putative victim is obtained from 

an appropriate source.  This is usually done following a presumptive identification based 

on other evidence and involves canvassing medical facilities for possibly available 

records.  (2) A radiograph is taken of the forensic skull at a similar orientation and 

magnification as the antemortem specimen.  Orientation similarity is important because it 

is desirable to assess the features from the same perspective, as many osteological 

features appear different from different angles.  Standardized methods have been 

suggested for obtaining reproducible, identical angulation (Harris et al., 1987a), but this 

can usually be accomplished through repeated trial.  Similar magnification is also 

considered necessary, and laws of radiological optics explain the differences seen due to 

differing distances:  X-rays diverge, so magnification of an x-rayed image results as a 

function of the distance from the film.  If using two radiographs with differing 

magnification is unavoidable, the magnification coefficient can be determined by 

dividing the dimensions of a given linear structure in the image by the dimensions of the 

same structure in the object.  (3) The two frontal sinuses (in the cases studied here, ante-

and postmortem) are compared either by direct visual inspection of side-by-side 

radiographs, or by tracing one of the outlines onto orthodontic paper and superimposing it 
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onto the other radiograph to compare the height, width and pattern of edge loculations.  It 

is recommended that viewboxes are used for the comparison and that overhead lights are 

extinguished (Messmer, 1986).  A number of common features (or negative features) of 

comparison should be sought.  There is currently no standard or minimum number of 

required points of concordance, but one to four unique concordant features and no 

discrepancies has been suggested as enough evidence for a positive identification 

(Fischman, 1985).  

The problem with this comparison method is that it involves a simple visual 

comparison with the consequence that the final identification decision is subjective and 

based solely on the knowledge, experience or ability of the examiner.  In addition to 

insufficient data necessary to estimate the probability of two individuals possessing 

indistinguishable frontal sinus morphologies, the technique of visually comparing frontal 

sinus outlines is also characterized by a distinct lack of standardized methods when being 

used to confirm identity.  Nonetheless, visual comparison seems to remain the method of 

choice.   

Frontal Sinus Outlines vs. Fingerprints 

 The technique of identification by frontal sinus radiographs is often compared and 

contrasted with fingerprint analysis which is widely recognized to be a well-established 

system of identification.  Due to the importance of positive identification, it is to be 

expected that frontal sinus outline comparison acquires a degree of reputation for rigor as 

does fingerprint identification.  Asherson (1965) proposes four criteria for the feature that 

a system of identification should be based upon:  1) it is present on every individual; 2) it 

is unique to each individual; 3) it is permanent, fixed, and unalterable by deformity, 
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displacement or replacement; and 4) it is classifiable.  Table 3.1 summarizes to what 

extent fingerprints and frontal sinuses meet Asherson’s criteria, as well as other 

advantages and disadvantages that have been pointed out by researchers for each method.  

Commonly cited advantages of using frontal sinuses rather than fingerprints for 

identification are that frontal sinuses cannot be altered by human ingenuity (i.e. they 

cannot be changed with criminal intent as with fingerprints by, for example, acid 

treatment, skin grafting or the use of gloves), frontal sinus radiographs have prognostic 

and diagnostic as well as identification use, and skeletal elements including the frontal 

sinus region of the skull are more often recovered than hands in cases of accidents, 

burning, decomposition, dismemberment, etc.  Advantages of fingerprints include being 

cheaper to secure and store, more individuals have their prints on record, prints can be 

left unintentionally and lifted if not available on record, and fingerprints are present on all 

individuals and do not change with time (although no known study has investigated the 

configuration of the frontal sinuses over time with identification purposes in mind 

(Kullman et al., 1990)).  Both records are simple to secure and can be taken non-

intrusively, the data can be stored and retained in a precise and cost effective manner 

(Ribeiro, 2000), and both methods are less expensive than DNA testing. 

Applications/Case Studies 

Suggested applications of frontal sinus identification are broad and include having 

radiographs on file for those in nationalized industries or those who are at risk of dying in 

their careers such as soldiers, flight crewmembers, police officers and firefighters.  

Radiographs may be taken prior to cremation to prevent the wrong body from being  
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Table 3.1:  Characteristics of Identification by Fingerprints and Frontal Sinuses 

 

Characteristic or 
Criterion 

Fingerprints Frontal Sinuses 

Present on every 
individual 
 

Yes, present on every 
individual 

No, only present on about 
95% of individuals 

Unique to each individual Yes, unique to each individual Not yet empirically 
established 
 

Permanent and fixed Yes, permanent and fixed Changes with age, trauma, 
infection, etc. 
 

Unalterable by human 
ingenuity 
 

No, may be altered Yes, unalterable 

Recordable 
 

Recordable by ink impression Recordable by radiograph  

Recovery from deceased 
 

Not often recovered Often recovered 

Cost Inexpens ive to record and 
store 

Relatively expensive to 
record and store 
 

Availability for 
comparison 
 

Widely available Not widely available 

Liftable Can be lifted/left 
unintentionally 
 

Cannot be left 
unintentionally or lifted 

Easy to obtain Simple and nondestructive to 
secure 

Simple and nondestructive to 
secure  
 

Safe to obtain Yes Minimal exposure to x-rays 

Other applications None Prognostic/diagnostic 
 

Applicable to all Yes Not present in subadults 
 

Time to make ID Less time than frontal sinuses 
 

More time than fingerprints 

Classified and centrally 
stored and retrievable 

Yes, located at FBI No 
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cremated.  Other individuals of specific identification interest may include inmates and 

mental patients, twins, and those involved in immigration services.  The following 

summary of significant forensic case reports in the literature makes it clear that frontal 

sinus radiographs are a valid aid to identification and that this value has been recognized 

in many scientific fields including anthropology, radiology, and odontology. 

Culbert and Law (1927) documented the first identification obtained through the 

use of radiographs of the skull.  It was the first of its kind to be accepted in American 

court, setting a precedent for the method of radiographic comparison for establishing 

identity.  Frontal sinus radiographs (along with other radiographically established details) 

were compared in the positive identification of an American who was discovered in a 

river in India and whose body had been disfigured by decomposition, precluding 

identification by other means. 

 When the authenticity of postmortem radiographs and photographs taken during 

the autopsy of President John F. Kennedy at the U.S. Naval Hospital on November 22 

1963 was questioned by conspiracy theorists, two anthropology consultants were asked 

by the House Select Committee on Assassinations in 1979 to examine the materials and, 

if scientifically possible, determine whether or not they were those of the late President.  

Based on comparisons of frontal skull views, they found that “the outlines of the frontal 

sinuses of the autopsy X-rays were virtually superimposable on those shown in the 

clinical X-rays” (Kerley and Snow, 1979).   

 While these two cases are prominent by virtue of their historical significance, 

there has been a recent surge of publications in the forensic and radiological literature 

describing numerous cases in which identification was established based on frontal sinus 
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comparison (Anguyal and Derczy, 1998; Atkins and Potsaid, 1978; Camps, 1969;  

Cheevers and Ascencio, 1977; Haglund and Fligner, 1993; Joblanski and Shum,1989; 

Kirk et al., 2002; Marek et al., 1983; Marlin et al.,1991; Murphy and Gantner, 1982; 

Owsley, 1993; Phrabhakaran et al.,1999; Quatrehomme et al.,1995; 1996; Reichs, 1993; 

Reichs and Dorion, 1992; Stewart, 1979; Ubelaker, 1984; Yoshino et al., 1987).   

Numerous unpublished comparisons undoubtedly exist, although there does not appear to 

be a reliable statistic on how frequently frontal sinus radiographs are uses as the basis for 

positive identification. 

 While many recognize the necessity and usefulness of frontal sinus radiograph 

comparisons in confirming identity, previous methods of comparison and studies of 

uniqueness are not rigorous enough for meeting the criteria established in recent trends in 

admissibility law.  Forensic experts including anthropologists, radiologists and 

pathologists are now expected to meet stricter standards when substantiating their claims 

that two radiographs belong to the same individual.  As forensic scientists, our pursuits 

differ from those of purely academic (research-driven) physical anthropologists; in 

addition to performing scientific research and acquiring knowledge as an end unto itself, 

we must also consider the applications of our findings to legal matters.  In the case of 

identification by frontal sinus morphology, it is necessary to consider the legal 

applications and ramifications of comparison methodologies.  The following chapter 

reviews the history and current standards of scientific evidence admissibility law that 

must be considered, as well as the impact these standards (should) have on testimony and 

research in forensic anthropology.    
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Chapter 4:  The Admissibility of Scientific Evidence 
 

 

History of Scientific Evidence Admissibility  

Expert witness testimony is one case in which physical anthropologists’ 

knowledge of techniques and methodology are needed in the legal system.  Although 

forensic anthropology is a relatively young discipline (its beginning is traditionally 

considered to be the creation of the Physical Anthropology section of the American 

Academy of Forensic Sciences in 1972 (Iscan, 1988)), testifying as an expert witness has 

become an important and increasingly accepted role of the forensic anthropologist.  As 

scientific techniques in many disciplines have become more varied and sophisticated, the 

use of scientific evidence in the criminal justice system has become an increasing trend.   

In the American system of law, scientific evidence is generally thought of as 

somewhat novel even though the use of scientific evidence in trial dates back nearly 500 

years (Eckert and Wright, 1997).  The first record of presenting a scientific case in a court 

of law was when surgeon Ambrose Pare, considered the father of French legal medicine 

(Thomas, 1974), in the mid 1500s scientifically described firearm wounds, deduced the 

location of a bullet given the victim’s position when hit, and located bullets by palpation 

(Hunter et al., 1996).  Pare was responsible for beginning what is now the science of 

ballistics (Bono, 1981).  His conclusions were enthusiastically accepted by both the 

scientific and legal communities, and scientific opinion thereafter began to appear more 

frequently in the judicial system. 

As late as the middle of the 19th century, however, there was still an abundance of 

controversy and ensuing legal challenges during court trials due to the lack of 
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sophistication and rigor in various scientific disciplines, rendering investigations largely 

subjective (Eckert, 1997a, b).  Forensic medicine, however, would soon thereafter begin a 

rapid increase in sophistication followed closely by other forensic sciences.  With the 

further development of laboratory instrumentation and techniques, the importance of 

forensic toxicology and serology rose at the beginning of the 20th century.  Soon to 

follow were fields such as criminology, odontology and anthropology (Eckert, 1997b).   

Today, most American forensic scientists are organized into the American 

Academy of Forensic Sciences, founded in 1948 by Dr. R.H. Gradwohl as “a professional 

society dedicated to the application of science to the law.. [and] committed to the 

promotion of education and the evaluation of accuracy, precision and specificity in the 

forensic sciences” (American Academy of Forensic Sciences, 2003).  There are currently 

over 5,000 members from the United States, Canada, and fifty other countries worldwide 

representing a wide range of forensic specialists including physicians, attorneys, dentists, 

toxicologists, physical anthropologists, document examiners, psychiatrists, engineers, 

criminologists, educators, and others who practice, study and perform research in the 

forensic sciences.  However, the types of expert witnesses appearing in trial are vast, with 

one consulting company advertising 7,600 categories of experts in areas ranging from 

those mentioned above to specialties as obscure as pit bulls and yarn (Cwik, 1999). 

Concurrent with the increase in expert testimony in the courts, debate in the legal 

community arose regarding standards for the admissibility of such evidence (Cwik, 

1999).  These standards have evolved significantly in the last century largely due to 

several Supreme Court rulings and Congressional Acts. 
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The first important ruling regarding the admissibility of scientific evidence was 

issued in Frye v. United States (1923).  In this case, Frye wished to provide the results of 

an earlier “lie detector” test as support of his plea of “not guilty” to a murder charge.  

“Systolic blood pressure deception testing” was, at the time, a new technique, leaving the 

Court unsure as to how to assess its validity.  The Court decided to give an opinion on the 

standard for the admissibility of scientific expert witness testimony. The critical words of 

the Court’s opinion state:  

“Just when a scientific principle or discovery crosses the line between the 
experimental and demonstrable stages is difficult to define.  Somewhere in 
this twilight zone the evidential forces of the principle must be recognized, 
and while courts will go a long way in admitting expert testimony deduced 
from a well-recognized scientific principle or discovery, the thing from 
which the deduction is made must be sufficiently established to have 
gained general acceptance in the particular field in which it belongs.” 
(Frye v. United States, 1923). 
 

No authority was cited, however, and the Court concluded that the technique in question 

had not yet gained the required standing and scientific recognition among authorities in 

the fields of physiology and psycho logy to be considered admissible under this new 

guideline (McCormick, 1972).   

Historically, general acceptance in a particular field has been shown by scientific 

publications and evidence of practical use and testimony by scientists on their peers’ 

position regarding their competence about the evidence in question.  The “Frye Rule”, as 

this general acceptance test came to be known, became the dominant standard for 

determining admissibility of scientific evidence in the majority of courts.  This 

dominance was facilitated in large part by the fact that the rule was easy to apply and 

required little scientific sophistication on the part of the judges.    
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Several rationales were offered in support of the using the “Frye Rule” as a means 

of excluding evidence including:  it guarantees a minimum number of knowledgeable 

experts, promotes uniformity of decisions, eliminates the need for time-consuming 

hearings on admissibility, and assures a method by which those best qualified to assess 

the validity of scientific evidence would effectively determine its admissibility (Beggs, 

1995).   

Over time and with advancements in science, many courts and legal 

commentators began to modify or ignore the Frye standard.  One of the key concerns was 

that new scientific evidence, though sound, often failed the Frye test.  McCormick, a key 

legal commentator on evidence, indicated:  

“‘General scientific acceptance’ is a proper condition for taking judicial 
notice of scientific facts, but not a criterion for the admissibility of 
scientific evidence.  Any relevant conclusions which are supported by a 
qualified expert witness should be received unless there are other reasons 
for exclusion” (McCormick, 1972).   
 
In 1975, Congress enacted the Federal Rules of Evidence (1975), which was the 

first modern and uniform set of evidentiary rules for the trial of civil and criminal cases in 

federal courts.  Rule 702 specifically addressed expert witness testimony, stating that:  

“If scientific, technical or other specialized knowledge will assist the trier 
of fact to understand the evidence or to determine a fact in issue, a witness 
qualified as an expert by knowledge, skill, experience, training or 
education may testify thereto in the form of an opinion or otherwise” (Fed. 
R. Evid. 702, 1975).   
 
The adoption of the Federal Rules of Evidence did not remove the confusion in 

the courts concerning the admissibility of scientific evidence.  The text of the Federal 

Rules did not include the Frye standard, and the legislative history made no mention of 

Frye or its general acceptance standard.  This led to a mixed use of Frye, the Federal 
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Rules of Evidence or some hybrid of the two.   When called upon to apply Rule 702, a 

majority of federal courts continued to utilize Frye, being reluctant to accept the 

overruling of a precedent of Frye’s stature and often incorporating general acceptance 

into the relevance determination of Rule 702 (Beggs, 1995). 

The confusion over the admissibility of scientific evidence continued until the 

United States Supreme Court decided Daubert v. Merrell-Dow Pharmaceuticals, Inc 

(1993).   The case involved birth defects allegedly caused by a mother’s use of Bendictin, 

an anti-nausea drug, during her pregnancy.   

Merrell-Dow moved for summary judgment, submitting an affidavit of Dr. 

Lamm, a physician and epidemiologist who was considered a respected authority on 

health risks from exposure to chemical substances.  After reviewing numerous published 

studies, he concluded that Bendictin was not a risk factor for human birth defects, 

whereupon Merrell-Dow contended that Daubert could not produce any scientific 

evidence to show otherwise.   

In response, Daubert presented affidavits from eight experts who claimed to have 

found a link between the drug and birth defects based on test tube and live animal studies 

suggesting causation, analyses of pharmacological similarities between Bendictin and 

other substances known to cause birth defects, and reanalyses of published studies 

concerning Bendictin.  The trial court granted Merrell-Dow’s motion for summary 

judgment, finding that Daubert’s experts relied on evidence that was not sufficiently 

established to have general acceptance in the field.  The Court of Appeals affirmed the 

trial court’s decision based upon the Frye standard.  The case was appealed to the United 
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States Supreme Court who granted review to resolve the “sharp divisions regarding the 

proper standard for admission of expert testimony” (Daubert v. Merell-Dow, 1993). 

 The Supreme Court first had to address the question of whether the general 

acceptance test of Frye survived the enactment of the Federal Rules of Evidence.  The 

Court ultimately concluded that the Federal Rules of Evidence superceded Frye and 

should thus govern admissibility, indicating that a “rigid and absolute general acceptance 

test” should not be the standard in order that a reasonable minority opinion may be 

admitted into evidence, usually in the form of new and emerging research based on 

reliable, well-designed studies (Daubert v. Merrell-Dow, 1993).  

In addition to acknowledging that the Federal Rules of Evidence superceded Frye, 

the Court interpreted the language of Rule 702 to set forth standards for the admissibility 

of scientific evidence:  reliability (which requires “scientific knowledge” be grounded in 

the methods and procedures of science and more than subjective belief or speculation), 

and relevance (which requires that the information facilitate the fact- finder in reaching a 

conclusion in the case, i.e. that there is a valid scientific connection to the pertinent 

inquiry).  Furthermore, the Court identified some of the factors relevant to determining 

whether the evidence is scientific.  These factors are often referred to as the “Daubert 

guidelines” (Table 4.1).  

The first of these guidelines pertains to whether the content of the testimony can 

be (and has been) empirically tested using the scientific method. This guideline was 

based upon the persuasions of two philosophers of science who have indicated that the 

scientific status of a theory rests in its falsifiability, or refutability, or testability (Popper, 

1989), and that statements constituting a scientific explanation must be capable of  
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Table 4.1:  The Daubert Guidelines for Determining Whether Evidence is 

Scientific and Therefore Admissible Under Federal Rule 702 

 

The Daubert Guidelines 

1.  The content of the testimony can be (and has been) tested using 
the scientific method 
2.  The technique has been subject to peer review, preferably in the 
form of publication in peer reviewed literature  
3.  Consider known or potential error rates and applicable 
professional standards 
4.  Consider general acceptance within the relevant scientific 
community 
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empirical test (Hempel, 1966).  Second, the technique should be subject to peer review, 

preferably in the form of publication in peer-reviewed literature. Although publication is 

not required for admissibility and in some instances may not ensure reliability, the review 

process increases the likelihood that the scientific community will detect any error or 

fundamental flaw that exists in the technique or its application.   

Third, for particular techniques, the court should consider known or potential 

error rates for the technique as well as any professional standard(s) that may be 

applicable.  These error rates are generally derived during the process of scientific testing 

and can help to clarify the accuracy of the technique to the trier(s) of fact.  

Lastly, the Court may also consider general acceptance by identifying the relevant 

scientific community and assessing the degree of acceptance within that community.  The 

Court summarized that “general acceptance” is not a necessary precondition to the 

admissibility of scientific expert evidence under the Federal Rules of Evidence, and that 

pertinent evidence based on scientifically valid principles better suits the demands of 

Rule 702. 

Another landmark decision on admissibility was the 1999 case of Kumho Tire 

Co., Ltd. v. Carmichael (1999).  In Kumho Tire, the Court held that the Daubert 

interpretation of Rule 702 applies with equal force to proposed tests based on technical or 

otherwise specialized knowledge.   

In 2000, another significant event occurred when the Federal Rules of Evidence, 

including Federal Rule 702, were amended, effective December 1, 2000 to read:   

“If scientific, technical or other specialized knowledge will assist the trier 
of fact to understand the evidence or to determine a fact in issue, a witness 
qualified as an expert by knowledge, skill, experience, training or 
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education may testify thereto in the form of an opinion or otherwise, if (1) 
the testimony is based upon sufficient facts or data, (2) the test is the 
product of reliable principles and methods, and (3) the witness has applied 
the principles and methods reliably to the facts of the case.” (Federal 
Rules of Evidence, 2000) 

 
This amendment considers Daubert guidelines and interpretations and better 

clarifies the issues of reliability and relevance. 

The Impact of Daubert 

The Daubert guidelines have had some remarkable consequences on expert 

witness testimony, and in fact, some have even called the Daubert ruling a “revolution” 

and “perhaps the most significant change in scientific evidence law in years” (Baute, 

2000).  Since the Daubert decision, scholars have commented extensively on the 

increased use of expert scientific evidence in courts, particularly in the fields of mass tort 

litigation, criminal law, and federal civil rights litigation (Beggs, 1995).  Some have 

viewed the courts’ past unwillingness to grapple with the basics of the scientific method 

as a principle failing of the legal system’s approach to scientific evidence, and see the 

Daubert guidelines as progress by calling on judges to apply scientific standards to 

evaluate evidence (Faigman, 1994).   

The Daubert opinion emphasized that the court should be flexible in conducting 

its inquiry and should focus on the principles and methodology that underlie the evidence 

and not the conclusions they generate.  For this reason, a separate proceeding, called a 

Daubert hearing, is often held within or before the trial in which the expert has been 

asked to testify.  It generally focuses on the methods themselves and not the result, and 

can help to shed light on substandard procedures and protocols ahead of time.  Unlike the 

Frye test, by evaluating a technique on its own merits independent of how long the 
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technique has been in use or how large a following it has, Daubert helps clear the way for 

admitting novel, yet sound, scientific evidence.  

Needless to say, the Daubert ruling has also caused some confusion and debate.  

The dissenting opinion in Daubert warns of the pitfalls inevitably created when the 

Supreme Court offers general observations in its opinions, and questions the definitions 

of “scientific knowledge”, “the scientific method”, “scientific validity”, and “peer 

review” (Daubert v. Merell-Dow, 1993, Opinion of Chief Justice Rehnquist and Justice 

Stevens).  The suggested “gatekeeping” role also places trial judges in a challenging 

position, forcing them to determine whether a technique, of which they presumably have 

little or no knowledge, is scientifically valid.  The competence of federal judges to decide 

whether a scientific theory can and has been tested has been seriously questioned, and it 

has been previously cautioned that the courts cannot be considered arbiters of scientific 

validity, but are an institution established for the resolution of disputes (Herman, 1990).  

Moreover, unlike scientific inquiry, legal fact- finding is generally not subject to revision 

as additiona l data becomes available, but rather must settle issues based on currently 

available data and information within the constraints of a dispute resolution system 

(Beggs, 1995).  Others have commented on the inherent difficulty of evaluating a process 

or technique independent of external considerations (Majmudar, 1993). 

Furthermore, while many forensic disciplines are organized by associations or 

societies which have certification boards for identifying individuals who they recognize 

as being qualified as an expert, the credentials of those appearing on the stand vary 

widely as there are currently no minimum standards set by the court for determining who 

is qualified to testify (Frankel, 1989).  Cross-examination, however, should theoretically 
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weed out the unqualified.  Rules have been proposed for the regulation of expert 

testimony, but none have received widespread acceptance (Travis, 1974).   

Another issue to bear in mind is the difference between the admissibility of a 

particular piece of evidence and its weight (Matt T. Adamson, personal communication).  

Just because scientific evidence is admissible, does not mean that the fact- finder (the 

judge or the jury) must believe it or give it any weight.  For example, while a particular 

piece of evidence may be admissible under Daubert, an opposing expert could convince 

the fact-finder(s) that such evidence is only accurate 60% of the time, and that his own 

methods are more accurate.  It is then up to the fact- finder(s) to decide which testimony 

deserves more weight.  The decision is ostensibly based on the research and techniques 

used to back up the testimony, but may also be influenced by such things as appearance 

and presentation.  Thus, the research itself is initially important in getting past the 

gatekeeper (i.e. the judge) on admissibility, but it is also important that the expert 

convince the fact- finders(s) of its believability (Matt T. Adamson, personal 

communication). 

Since Daubert is a statutory rather than a constitutional case, it is not necessarily 

binding on the states and is not used in all state courts.  Daubert applies only to federal 

trials, and since admissibility standards vary from state to state in lower courts, they are 

free to continue to follow the Frye Rule or other state tests (Gianelli, 1993).  The trend is 

for states to adopt the Federal Rules of Evidence and apply Daubert standards, though 

some have chosen to reject doing so.  Table 4.2 indicates which states currently apply 

which standard.   
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Table 4.2:  Scientific Evidence Admissibility Standards by State.  

(From Lustre, 2003) 

 
States applying 

Daubert or similar 
test 

States which 
continue to apply 

Frye 

States which have 
not rejected Frye 
but which apply 
Daubert factors 

States that have 
developed their own 

test 

Alaska Arizona Alabama Georgia 
Arkansas California Hawaii Utah 
Colorado District of Columbia Massachusetts Virginia 

Connecticut Florida Nevada Wisconsin 
Delaware Illinois New Hampshire  

Idaho Kansas New Jersey  
Indiana Maryland   
Iowa Michigan   

Kentucky Minnesota   
Louisiana Mississippi   

Maine Missouri   
Montana Nebraska   
Nebraska New York   

New Mexico North Dakota   
North Carolina Pennsylvania   

Ohio Washington   
Oklahoma    

Oregon    
Rhode Island    

South Carolina    
South Dakota    

Tennessee    
Texas    

Vermont    
West Virginia    

Wyoming    
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Although a number of states continue to follow the Frye standard or some other 

state test (Mahle, 1999), given that Daubert is the current standard for federal courts as 

well as the most scientifically stringent standard to date, it provides an appropriate 

guideline for conducting research and preparing testimony.   The Frye Rule, however, 

should be borne in mind since many states do continue to apply this standard and forensic 

scientists are considerably more likely to testify in state court (Matt T. Adamson, 

personal communication). 

Implications for Forensic Anthropology and Frontal Sinuses 

Given the novelty of the field of forensic anthropology coupled with the rate of 

scientific progress in general, many techniques testified to by forensic anthropologists 

may be considered new and emerging information.  Anthropologists must therefore be 

particularly cautious that their investigations result in methods and techniques that will be 

admissible under the Daubert guidelines.  This is not to say that anthropological research 

has been or is lacking in scientific rigor, but forensic anthropological techniques have not 

often met the Daubert test, so it is as of yet unclear how many of them will or would be 

received in court if and when they are put to this challenge.  It should thus be a specific 

aim of anthropological studies to meet Daubert standards when the potential exists for 

the resulting technique to be considered in court. 

In the case of identification by frontal sinus morphology, many have proffered (or 

at least supported) the notion that it is unique to each individual, and it has been used in 

numerous cases to confirm identity.  In 1977, the American Board of Forensic 

Anthropology (ABFA) was formed in response to the “need to identify forensic scientists 



 59 
 

qualified to provide essential professional services for the nation’s judicial and executive 

branches of government.”  In the ABFA’s definition of forensic anthropology, 

the board indicates that forensic anthropologists apply standard scientific techniques 

developed in physical anthropology to identify human remains and to assist in the 

detection of crime (ABFA, 1996).  It is not clear, however, that “standard scientific 

techniques” have been applied to the question of frontal sinus uniqueness or their 

reliability in establishing positive identification.  Previous observations have tried, it 

seems, but none approached the empirical issue rigorously enough to provide the kind of 

testing and reliability estimates requested by the Daubert guidelines. 

 The lack of reliability estimates is an important point because the courts have a 

history of strongly emphasizing this issue, and indeterminate or essentially unknown 

error rates have often contributed to decisions to exclude evidence, as have non-

compliance with standards in assessing the reliability of a technique and the use of flawed 

statistics (Beggs, 1995).  While many courts have concluded that fingerprint testing is 

sufficiently scientific and reliable to be admitted under Rule 702, the case of United 

States v. Plaza (2002) seriously questioned the admissibility of fingerprint analysis.  

When examined in light of the Daubert guidelines, the Supreme Court concluded the 

following:  With regard to scientific testing, it seems that fingerprint identification 

techniques have only been subject to adversarial courtroom testing, and have not been 

tested in a manner that could properly be characterized as scientific.  There are no 

objective standards, with the final identification decision being subjective and based on 

the knowledge, experience or ability of the examiner.  In addition, there seems to be a 

lack of peer review.  The Court, moreover, felt that since fingerprint examiners learn their 
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craft on the job without concomitant scientific training, fingerprint examiners do not 

constitute a “scientific community.” 

 Studies investigating error rates have been conducted to test the likelihood of two 

people having the same fingerprint (Pankanti et al., 2001), but there are currently no 

standards controlling the technique’s operation, no subjective determination standards, 

and no mandatory qualification standards for individuals to become fingerprint 

examiners.  Examinations are generally accepted as reliable by fingerprint examiners, but 

as the Court noted, fingerprint examiners (though well-respected) do not constitute a 

scientific community.  The Court thus found it difficult to find fingerprint identification 

consistent with the Daubert guidelines and thus was faced with the possibility of 

disallowing fingerprint evidence.  The Court decided, however, that excluding the 

government from presenting fingerprint testing in this case would be unwarranted and 

heavy handed.  In the end, the ruling indicated that presentation of how the fingerprints 

were obtained as well as differences and similarities between fingerprints would be 

allowed, but that evaluations as to the “opinion” that the fingerprint is of a particular 

person (or not) would not be allowed (United States v. Plaza, 2002). 

 This has very important implications for the potential of frontal sinus 

identifications to be upheld against the rigor of the Daubert guidelines (Table 4.3).  With 

regard to the four Daubert guidelines, the technique of identification by frontal sinus 

morphology fulfills two of the criteria at best.  There are certainly a large number of 

publications relating to the possible uniqueness of each individual’s frontal sinus 

morphology and substantial literature on case studies marking situations where the 

technique has been used to establish a positive identification.  However, no standard  
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Table 4.3:  Fingerprints and Frontal Sinus Outlines in Positive Identification— 

How Well Do They Satisfy the Daubert Guidelines? 

 

Guideline  Fingerprints Satisfies 
Daubert? 

Frontal Sinuses  Satisfies 
Daubert? 

Scientific 
testing 

?Only subject to 
adversarial courtroom 
testing- no proper 
scientific testing 

No ?No empirical tests 
have been performed 

No 

Error rates 
and 
standards 

?Test of the 
probability of two 
people having the 
same fingerprints 
indicate that it is small 
 
 
?No standard 
controlling the 
technique’s operation 
 
?No objective 
determination 
standards 
 
?No qualification 
standards for 
individuals to become 
fingerprint examiners 

Yes 
 
 
 
 
 
 
No 
 
 
 
No 
 
 
 
No 

?Previous 
observations suggest 
that the probability of 
two people having 
identical frontal 
sinuses is small 
 
?No standard 
controlling the 
technique’s operation 
 
?No objective 
determination 
standards 
 
?ABFA certifies 
qualified forensic 
anthropologists 

No 
 
 
 
 
 
 
No 
 
 
 
No 
 
 
 
Yes 
 

General 
acceptance 

?Generally accepted as 
reliable, but not by a 
scientific community 

No ?Generally accepted as 
reliable within relevant 
scientific community 

Yes 

Peer 
review and 
publication 

?Many publications, 
but not in 
(scientifically) peer-
reviewed literature 

No? ?Extensive publication 
in peer-reviewed 
literature 

Yes 
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methodology has ever been accepted.  There appears to be general acceptance within the 

fields of forensic anthropology and radiology that the technique is sufficiently reliable.   

 However, while the technique is capable of being empirically tested, no such tests 

have ever been performed or perhaps even devised.  As mentioned earlier, the reliability 

of comparing postmortem and antemortem radiographs of frontal sinuses should be well-

founded since sinuses show differences even in monozygotic twins, but to reiterate, 

statistical estimates of reliability have never been established.  Anthropologists appear to 

be fond of phrases like “unique to each person” and “like a fingerprint”, while no 

empirical studies that establish this claim as a fact have ever been performed.  Moreover, 

(and partially as a consequence of the lack of empirical testing), there seems to be a 

complete lack of attempts to estimate potential error rates for the identification technique.  

Anyone offering a novel theoretical basis or methodology that has not been 

subject to meticulous adversarial or empirical testing should be prepared to present 

convincing evidence that the methodology has a basis in good science as required by 

Daubert.  The following chapters describe a study undertaken with the aim of providing 

this basis by empirically testing the variability of frontal sinus outlines and estimating the 

potential rate of error when using frontal sinus outlines in identification.   
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Chapter 5:  Materials and Methods  
 

Geometric Morphometrics 

The field of morphometrics is concerned with methods for the description and 

statistical analysis of shape variation within and among samples of organisms and any of 

their structures, and is used when one needs to describe and compare shapes of organisms 

or of particular structures (Rohlf and Marcus, 1993).  Historically, as biological inquiry 

became more quantitative, a plethora of methods were borrowed from modern statistics, 

some of which (such as significance testing) have become mandatory in published 

analyses of biological data (Richtsmeier et al., 2002).  Using morphometric 

methodologies, observations designed to capture the essence of biological shapes can be 

analyzed simultaneously by using multivariate statistics.  Recently, the focus has been 

steered from multivariate space back to the geometry of biological shape.  This 

movement and the methods developed subsequently comprise what is now referred to as 

geometric morphometrics, the fusion of geometry and biology (Bookstein, 1982).   

This approach is characterized by using coordinate data to capture the geometry 

of the structure being studied.  The geometric relation among the points is then used to fit 

an appropriate function to them, and the estimates of the parameters of the fitted function 

can then be used as variables in standard univariate and multivariate statistical analyses 

(Rohlf and Marcus, 1993).  This approach has flourished because of investigators’ desires 

to analyze biological shapes in ways that preserve the geometric integrity of shape and 

avoid collapsing the form into a series of linear or angular measures that do not include 

information pertaining to geometric relationships of the whole (Richtsmeier et al., 2002). 
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Complementing the emphasis in recent years on landmark-based morphometric 

methods, there have been important advances in other methods for the analysis of outline 

data (Rohlf, 1996).  Fitting curves to outlines is a method of interest when there are few 

(if any) homologous landmarks on a structure or when the outlined shape itself is of 

interest rather than its relationship to various landmarks (Rohlf, 1990).  Sometimes there 

are either not enough landmarks (or not enough biologically homologous ones) to 

adequately capture the variation in the biological structure of interest (Rohlf, 1996).  In 

cases such as frontal sinus outline projections, the shape can be captured by the 

coordinates of a sequence of points along its outline.  Since this study is concerned with 

variation in frontal sinus shape and size in two dimensions, and since it is recognized that 

frontal sinuses lack obvious biologically homologous landmarks, a geometric 

morphometric analysis of coordinates of points along its outline is the most suitable 

approach for the question at issue.    

Closed contours (data consisting of points along a closed outline) are commonly 

used in morphometrics.  While several different techniques for analyzing closed contour 

data could be employed, some type of Fourier analysis is usually used, and is considered 

one of the best-known methods for characterizing the variation in the shapes of outlines 

(Sampson et al., 1996).  Fourier analysis has been applied to biological problems such as 

comparison of wing shape in different taxa of mosquitoes (Rohlf and Archie, 1984) and 

distinguishing between populations of mussels (Ferson et al., 1985), and is considered to 

have potential applications in taxonomic and phylogenetic inference (Rohlf and Marcus, 

1993). 
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Geometric morphometrics have found wide application in anthropology including 

evolutionary and paleoanthropology (Bacon, 2000; Havarti et al, 2002; Zollikofer, 2002), 

primatology and comparative primate anatomy (Lockwood et al., 2002; Lynch et al, 

1996), bioarchaeology (McKeown, 1999), and modern human growth and variation 

(Hennessy and Stringer, 2002; Mitterocker et al., 2001; Ross et al., 1999).  However, a 

limited number of studies have applied Fourier analyses to problems in anthropology 

(Christensen and Slice, 2002; Ferrario et al., 1996; Friess and Baylac, 2001; Tanaka et al., 

2000).  The current study will examine frontal sinus outlines using Fourier analysis by 

representing each frontal sinus as a closed contour.  Bookstein et al. (1982) note that 

there are limitations to the amount of biological information one can give to the 

coefficients of Fourier functions, suggesting that such data sets are sensitive only to 

differences in shape and not to differences in interpretation of homology between radii at 

different points along an outline.  However, as Rohlf and Archie (1984) note, if the goal 

is to measure shape per se (which, in this investigation, it is), then this could actually be 

considered an advantage.  While there may be some limitations to EFA in certain 

investigations, given that this study is intended to examine shape per se, it seems a well-

suited approach. 

Sample 

 Frontal sinus radiographs used for this study were obtained from four sources.  

First, radiographs of skulls of two skeletal collections kept at the University of Tennessee 

Department of Anthropology were taken specifically for this study.  The William M. 

Bass Donated Skeletal Collection consists of partial and complete skeletal remains of 

individuals who have donated their remains to that program, 257 of which were suitable 
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for this study (by virtue of having present, complete, and undamaged frontal regions).  

The University of Tennessee Forensic Skeletal Collection consists of skeletons of human 

and non-human remains from forensic cases, 105 of which were appropriate for this 

study.   

 The other two sources were two sets of previously taken radiographs:  61 historic 

plains Arikara crania, and 161 radiographs from the University of Tennessee Student 

Health Center (the latter taken for clinical purposes).   All specimens were known to be 

of adult status, but no other information (age, sex, ancestry, etc.) was recorded (except for 

the fact that Arikara were of known ancestry).  Inquiry into Human Subjects Review 

revealed that since no identifying information was to be examined or recorded, the study 

did not constitute a research project which would fall under the purview of the 

Institutional Review Board (IRB). 

Radiograph Methodology 

 Cranial radiographs were taken by me expressly for this study of the two 

collections kept at the University of Tennessee Department of Anthropology—the UT 

Donated and UT Forensic specimens.  They were taken at the University of Tennessee 

Student Health Center with the assistance of an x-ray technician using a HoLogic HFQ 

Series 100kHz High Frequency machine.  Although the x-ray technician had previous 

experience taking radiographs of skeletal remains, the settings used for the present study 

were developed on a trial-and-error basis, and for most specimens the parameters were: 

 KVP (peak kilovoltage):  48 kVpeak  

 CM (distance from tube to film): 40 cm 

 MA (current in the x-ray tube): 75 mA 
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 SEC (exposure time):   65 ms 

For denser (i.e. more opaque) skulls, the KVP was increased to 50kVpeak. 

 A standardized methodology was used to orient the skulls in the following 

manner:  The image beams traversed the skull posterior to anterior with the frontal bone 

nearest the film to allow minimal distortion and maximum clarity of the frontal sinus 

outline.  The skull was placed face down on a foam/cloth doughnut with the midsagittal 

plane perpendicular to the x-ray plate using the median palatine suture as a guide (Figure 

5.1a).  Next, the skull was oriented with the cassette perpendicular to a straight line 

running through nasion and the superior border of the externa l auditory meatus, an 

orientation within the range considered a “Caldwell view” (Figure 5.1b).  The central axis 

of the x-ray beam was centered on a point between the external occipital protuberance 

and lambda.  

This subset of the total sample, i.e. those radiographs taken specifically for this 

study, allowed repeated access to the same crania without fear of unhealthy side-effects 

such as repeated exposure to x-rays.  Consequently, duplicate radiographs could be taken, 

simulating ante- and post-mortem conditions.  Each duplicate was taken using the same 

methodology but at a different time so that the skull would have to be re-aligned and 

duplicates would not simply be copies.  It was considered necessary to allow for the 

introduction of an error that would resemble the forensic context where the precise 

orientation of the antemortem film would not be able to be replicated. 

Obtaining and Digitizing Outlines 

 While the upper and lateral limits of the frontal sinus are easily defined and 

readily discernable, the lower limit is significantly more difficult to locate on  
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                               a                                                                          b 

Figure 5.1:  Orientation of Skulls for Radiographs. 

Orientation (a) along the median palatine suture, and (b) along a straight line through the 

upper margin of the external auditory meatus and nasion. 
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radiographs.  Many researchers have recognized this problem, and as a consequence, 

several methods of arbitrarily delimiting the lower margin have been proposed.  Schueller 

(1943) suggested a line drawn at the level of the planum sphenoidale, which theoretically 

indicates the maximum downward extension of the frontal sinus, but this feature is not 

easy to find on many radiographs.  Another suggested method involves drawing a 

horizontal line at nasion (Brothwell et al., 1968), but this too has been considered 

problematic.  One widely accepted method, first proposed by Libersa and Faber (1958), 

involves a “baseline” drawn tangential to the upper margin of the orbits (Figure 5.2).  

This method was based on Terracol and Guerrier’s (1958) statement that paranasal 

sinuses are only to be considered frontal when they extend above this line.  Whether one 

considers this statement to be valid or not, it does provide a simple, standardized way of 

identifying a lower border.   

This baseline method was the one selected for the current study because (1) it is 

easy to apply and replicate, and (2) it has been recognized by several previous researchers 

as an accepted methodology (Brothwell et al., 1968; Buckland-Wright, 1970; Hanson and 

Owsley, 1980; Ikeda, 1980; Koertvelyessy, 1972; Libersa and Faber, 1958; Ribeiro, 

2000; Strek et al., 1992).   

To obtain frontal sinus outlines for comparison, each radiograph was 

superimposed with Mead “ACADEME” tracing paper, and the frontal sinus outline was 

traced in pencil onto the paper over a light table.  Since the selected method of analysis 

necessitates closed contours, only the outermost border of each frontal sinus was traced 

and did not include partial or complete septations.  At the time that the radiographs were 

traced, a method for delineating the lower border had not yet been decided upon, so the  
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Figure 5.2:  “Baseline” Delineating Lower Margin of Frontal Sinus. 
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upper borders of the orbits were also traced onto the tracing paper for possible later use.  

After the use of the above described “baseline” was chosen, the line was drawn in over 

the traced outlines and the orbital borders erased, resulting in a set of outlines 

representing the upper and lateral outermost borders or the frontal sinuses with a straight 

line at the base (Figure 5.3).   

A total of 946 radiographs were examined for the study (584 individuals, 362 of 

which had duplicates).  Some of the radiographs could not be outlined, however, either 

because there was no frontal sinus visible at all or because the sinus present was so small 

that it did not project above the baseline.  The resulting sample consisted of 503 

individuals, 305 of whom had “ante” and “postmortem” duplicates (Table 5.1).    

The traced outlines were then scanned using a UMAX Astra 2400s scanner.  Images were 

saved in *.JPG format as black and white images with 600 dpi resolution.  Next, the 

outlines were digitized (i.e. x,y-coordinates were obtained) using the software package 

tpsDig (Rohlf, 1997).  Individual images were imported into tpsDig, which results in the 

image being displayed in the main window (Figure 5.4a).  Outlines of structures using 

tpsDig can be computed automatically whenever they are separated from the rest of the 

image; this can be achieved by choosing an appropriate brightness threshold  (Rohlf, 

1997).  The default value is 128, but a different threshold can be specified using the 

toolbox option (Figure 5.4b).  Since the imported images were pencil tracings on tracing 

paper, the contrast was not the same from image to image or sometimes even within the 

image.  This required that the threshold be adjusted for each image by trial-and-error.  In 

each image, a threshold that best separated the outline from the paper and other “noise” 

was selected.  These values ranged from 175 to 210. 
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Figure 5.3:  Sample Outline Including Baseline. 
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Table 5.1:  Sample of Radiographs Used 

 

Sample Total number of 
radiographs 

examined 

Number not used due 
to absent or too small 

sinuses 

Total number of 
radiographs used in 

this study 
UT Donated 257 (x2) 27 (x2) 230 (x2) 
UT Forensic 105 (x2) 28 (x2) 75 (x2) 
UT Arikara 61 10 51 
UT Student  161 15 146 

Total 584 80 503  
(305 of which have 
“ante” and “post-

mortem” duplicates) 
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Figure 5.4:  Digitizing Outlines with tpsDig. 
 
(a) An outline image imported into tpsDig; (b) the threshold tool used to choose an 

appropriate value; (c) the outline” tool used to register the x and y-coordinates of the 

outline; and (d) the outline coordinates saved. 
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In several instances (due to the variable shades of the pencil), parts of the outline 

were not sufficiently dark to be picked up without including other background noise from 

the paper or erased portions of the outline.  If breaks were present in the outline (i.e. if it 

did not appear as a fully closed curve in the image), tpsDig would outline both the outer 

and inner portion of the structure leading to a misrepresentation of the shape of interest.  

In these cases, the image was imported into Arcsoft PhotoImpression (1998), a 32-bit 

photo-editing program for Windows, where they were edited by erasing and/or drawing, 

so that the images that could be properly outlined in tpsDig. 

The coordinate data was saved in *.tps files (Figure 5.4d).  All of the data were 

saved into two files; one that contained all the coordinate data for single copies of each 

frontal sinus outline examined (hereafter referred to as “singles”), and a second that 

contained all the coordinate data for duplicate outlines of individuals with two frontal 

sinus outlines to examine (“duplicates”).  

Elliptic Fourier Analysis 

The method of Elliptic Fourier Analysis (Kuhl and Giardina, 1982) is a very 

general procedure that can fit a closed curve to an ordered set of data points with any 

desired degree of precision.  It uses an orthogonal decomposition of a curve into a sum of 

harmonically related ellipses.  The algorithm does not require the points to be equally 

spaced, and the ellipses can be combined to approximate practically any closed plane 

curve arbitrarily well given enough harmonics (Ferson et al., 1985).   

Elliptic Fourier Analysis (EFA) is based on separate Fourier decomposition of the 

first differences of the x and y-coordinates (? xi and ? yi) as parametric functions of the 

cumulative chordal distance, t, of the points around the outline where t is scaled to go 
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from 0 to 2π  (Rohlf, 1990).  The x- and y-coordinates of points along the length, t, of an 

outline can be represented as a sum of k harmonics using sine and cosine terms: 
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treated as a set of shape descriptors used for variables in discriminatory or other 

multivariate analyses (Bookstein et al., 1982).  The coefficients of the kth harmonic of the 

outline’s x-projection are: 

∑
=

−




 −

∆
∆

=
p

k

ii

i

i
k T

kt
T
kt

t
x

p
T

A
1

1
22

2
cos

2
cos

2
ππ

π
 

 ∑
−

−





 −
∆
∆

=
p

k

ii

i

i
k T

kt
T
kt

t
x

p
TB

1

1
22

2
sin

2
sin

2
ππ

π
 

where: 

p = the number of steps around the outline 

? xi = x i - xi-1 

? ti  = the chordal distance of the step between points i-1 and i 

ti = the cumulative length of such steps up to step i 

T = tp = the total length of the outline contour 

The coefficients for the y-coordinates, Ck and Dk are found in the same way using the 

incremental changes in the y-direction.  Here, elliptic Fourier coefficients were generated 

using the software package EFAWin. 
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Computing Fourier Coefficients 

EFAWin (Isaev, 1995) is a program that computes elliptic Fourier coefficients for 

an outline described by a set of x- and y-coordinates.  The input file contains these x- and 

y-coordinates for the outline(s) along with an optional file label and the number of points 

around the outline.  These coordinates, obtained in tpsDig, were converted to an 

EFAWin-compatible format using tpstoefa (Page, 1998), a program that converts a 

directory of *.tps files with outlines into a single file for EFAWin.   

The outlines are loaded, together with their Fourier outlines, as shown in the 

example outline of Figure 5.5a.  (Note that outlines appear inverted in the figure because 

the coordinates (0,0) in tpsDig are in the lower right-hand corner; this does not affect the 

result of EFA because it is invariant to orientation.)  The number of harmonics to be 

computed can be adjusted here, and is constrained to be less than or equal to the number 

of points divided by 2 (Nyquist Theorem).  Increasing the number of harmonics provides 

an increasingly better approximation of the original outline.  Figure 5.5 shows a sample 

outline of a frontal sinus and improvements in its characterization with increasing the 

number of harmonics from 1 (producing the best-fitting ellipse), through 3, to 10 

harmonics.  In this study, 20 was selected as an appropriate number of harmonics to 

analyze the frontal sinus outlines because it was found that even the most complex 

outlines could be represented sufficiently well.   

After clicking the report button, EFAWin lists the available options (Figure 5.5b).  

These include invariance to size, location, rotation and starting point of the digitized 

outline, as well as the option for a reproduced outline.  Size standardization can be  
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Figure 5.5:  Obtaining EFA Coefficients with EFAWin. 

(a) Imported outline data and Fourier outlines, and (b) saving the coefficients invariant to 

location, rotation and start position.  
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achieved by estimating the area of the enclosed region (measured as the area of the 

ellipse defined by the first harmonic), and then dividing by its square root.  In this study, 

however, size was not selected as an invariant since it was considered optimal to retain 

size as a factor for consideration when looking at the differences between frontal sinus 

outlines.   Invariance to location is accomplished by estimating the x- and y-coordinates 

of the centroid of the enclosed region and then subtracting these from the input x- and y-

coordinates.  Invariance to rotation and starting point are achieved by procedures that are 

somewhat arbitrary.  The outline is rotated so that the major axis of the ellipse defined by 

the first harmonic is parallel to the x-axis.  Invariance to start position is achieved by 

restarting the outline at a point at the major vortex of the ellipse on the positive x-axis.  

These two operations have the problem that they make the alignment of the outlines 

dependent on their shape.   

The output is a file that contains a set of four elliptic Fourier coefficients and 

(optionally) an estimated outline for each harmonic (Figure 5.6).  Here, coefficients were 

calculated for each of the files of coordinate data (“singles” and “duplicates”) using 20 

harmonics. 

Computing Distances and Likelihood Ratios 

The resulting EFA coefficients were then used in two ways.  First, they were used 

to regenerate the outlines by determining the x- and y-coordinates around the centroid.  

Euclidean (data space) distances between pairs of outlines were then calculated by 

summing the distances between corresponding x- and y- coordinates for every second 

degree around the outline from 0 to 360 (180 points total).  For “duplicates”, this yields 

305 total comparisons (each individual compared to its own duplicate), and for “singles”, 
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Input file:  C:\MYDOCU~1\MYPICT~1\SAMPLE~1\TPSTOE~1.DTA 
Label: Converted from TPS to DTA format 
 
N points = 675, N harmonics = 10 
Invariant to location 
  Centroid of outline = 382.77,271.066 
Invariant to rotation 
  Rotation angle (radians) = 0.163495 
Invariant to start angle 
  Start angle (radians) = 1.33617 
 
Elliptic Fourier coefficients: 
 
Zeroth harmonic: 
A0=1.82452, C0=1.51298 
 
Coefficients for harmonics: 
                       A                        B                           C                          D 
  1         112.473167      -3.21394896e-06     4.11202166e-07    -48.1969948 
  2        -2.80686545      17.6074181             0.72632217           -17.3480072 
  3         9.00702            -6.05565834          -11.5538206            -11.2342672 
  4        -4.15845299       0.30120638            2.67414689            7.89381552 
  5        0.0526259504   -3.00395513            3.22234154           -2.64744735 
  6        0.221028835      -0.218118504         0.668859839          0.161757961 
  7        2.17653227        -1.95158231         -0.370202005           0.836782455 
  8        1.88338804        -1.71468508          0.890924871          -0.603945851 
  9        0.935728848      -0.498330325       -1.59179389            0.0319974422 
 10       1.62672162         0.12535736           0.343770295         -0.0943612307 
 

Figure 5.6:  EFAWin Output with EFA Coefficients. 
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126,253 comparisons result (each individual compared to every other individual), though 

a random sample of 1000 was selected from this latter group for analysis.  Distances were 

calculated using R (2003), and summary statistics for the distances were calculated in 

SAS (2001). 

What is really needed to estimate reliability, however, is a quantified assessment 

of individual uniqueness and the probability of misidentification using this method for an 

individual case.  Assertions of uniqueness should be given as the probability of a match 

given the correct identification versus the probability of a match from the population at 

large.  To make this assessment, the EFA coefficients were used to calculate likelihood 

ratios and posterior probabilities. 

A likelihood ratio is the probability of the evidence supposing a hypothesis is true, 

divided by the probability of the evidence supposing it is false (Robertson and Vignaux, 

1995).  Here, the hypothesis is “these two frontal sinus outlines belong to the same 

individual”, and the odds ratio or likelihood ratio is represented as the probability of the 

frontal sinuses matching given the correct identification over the probability of a match 

from the population at large:   

( )
( )µ|

|

2

12

xP
xxP

 

 To calculate this, one first needs a parametric form for the above.  Multivariate 

normal would be ideal, but it doesn’t work here, because the coefficients are Laplace, not 

normally, distributed.  The likelihood ratio is represented as: 
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where: 

1x   = the EFA coefficients from duplicate 1 (simulated antemortem)  

2x  = the EFA coefficients from duplicate 2 (simulated postmortem) 

bs  = the variation among “singles” 

bd  = the variation within “duplicates” 

Likelihood ratios were calculated in R (2003), and summary statistics for the 

rations were calculated in Microsoft Excel (1999).  A likelihood ratio greater than 1 

indicates evidence in favor of the hypothesis, while a ratio less than one is evidence 

against it, with exactly 1 being neutral.  Any evidence with a likelihood ratio greater than 

1 is relevant from an evidentiary perspective, and the further from 1 the ratio is, the 

greater the probative value of the evidence (Robertson and Vignaux, 1995).   

The posterior probability represents the probability that the identification is 

correct assuming that the identification (prior to the osteological evidence) is as likely to 

be correct as incorrect (this assumption is discussed further later), and is calculated by 

dividing the likelihood ratio by the likelihood ratio plus one.  This operation was 

performed in Microsoft Excel (1999). 

Assessing the Effect of Orientation 

Many consider it essential in a forensic context that the second (postmortem) 

radiograph is taken at precisely the same angle as the first (antemortem) film (Asherson, 

1965; Culbert and Law, 1927), which is usually done on a trial-and-error basis.  It may be 

argued, however, that the practice of taking multiple postmortem radiographs until they 

best resemble the antemortem radiographs may be problematic from an evidentiary 
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perspective.  For example, opposing council may question the expert regarding how 

many attempts were necessary before the two radiographs “matched” precisely enough.  

In order to test the error contribution of slightly different orientation when making a 

comparison, 3 skulls were radiographed an additional 8 times.  The specimens were 

selected to represent one “small” frontal sinus (specimen 1), one “medium” frontal sinus 

(specimen 2), and one “large” frontal sinus (specimen 3).   Each specimen was 

radiographed at angles differing from the original (standard) orientation in the following 

ways:   

5° and 10° laterally; 

5°, 10°, and 15° superiorly; and 

5°, 10°, and 15° inferiorly. 

These radiographs were then evaluated in the same manner as was previously 

described.  Tracings were made by hand onto tracing paper, with only 22 outlines 

resulting; two were unobtainable, because for the “small” frontal sinus, angling the skull 

down caused the entire frontal sinus outline to fall below the baseline.  The tracings were 

then converted to digital images, digitized and saved as *.tps files, and converted using 

tpstoefa.  EFA coefficients were calculated using EFAWin and saved as angles.txt.   

Likelihood ratios comparing off-angle replicates and normals (standards) of the same 

individual were then calculated from the EFA coefficients as described above. 
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Chapter 6:  Results 
 

Euclidean Distances Between Outlines 

 Summary statistics for the Euclidean distances between “duplicates” (same 

individuals compared to themselves) and “singles” (individuals compared to all other 

individuals not including themselves) for 20 harmonics are shown in Tables 6.1 and 6.2, 

respectively, and histograms representing the occurrences of distances in the samples are 

shown in Figures 6.1 and 6.2 (a N=1000 random subset of the singles data was used here 

instead of all 126,253 comparisons due to the extremely large number of comparisons 

and resulting time required to perform the calculations).  The average distance between 

different individuals (978.26) is significantly higher than the average distance between 

duplicate outlines of the same individual (88.91), and a test of means showed that they 

were different at a highly significant level despite significantly different variances (Table 

6.3) indicating a significant shape difference in the outlines of frontal sinuses of different 

individuals.  One can see from examining the percentiles in Tables 6.1 and 6.2 that there 

is some overlap in the distances between the groups (in other words, some of the singles 

compared show smaller Euclidean distances between them than between some duplicates, 

and some duplicates show larger distances between them than between some singles).  

However, a plot of the cumulative density function shows this overlap to be minimal 

(Figure 6.3).   

Typicalities are another way of assessing similarity between the duplicate outlines 

as compared to other outlines.  Here, the typicalities represent the similarity of each  
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Table 6.1:  Summary of Distances Between Duplicates 

Statistic Value 
N 305 
Mean 88.91 
Standard Deviation 39.06 
Skewness 1.24 
Variance 1525.79 

Percentiles 
100% Max 262.36 
99% 213.99 
95% 168.89 
90% 135.29 
75% Q3 105.72 
50% Median 82.14 
25% Q1 62.76 
10% 45.93 
5% 39.32 
1% 30.73 
0% Min 21.19 
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Table 6.2:  Summary of Distances Between Singles 

Statistic Value 
N 1000 
Mean 978.26 
Standard Deviation 520.92 
Skewness 0.83 
Variance 271359.72 

Percentiles 
100% Max 2894.41 
99% 2550.05 
95% 1964.43 
90% 1719.98 
75% Q3 1294.80 
50% Median 892.76 
25% Q1 582.50 
10% 382.60 
5% 298.57 
1% 199.06 
0% Min 118.14 
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Figure 6.1:  Distances Between Duplicates.  
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Figure 6.2:  Distances Between Singles. 
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Table 6.3:  Test of Means 

Statistic Test Value P-value 
Levene’s test for equality of 
variances 

123.92 
(F-value) 

<0.0001 

T-test for equality of means using 
unequal variances 

53.50 
(T-value) 

<0.0001 
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Figure 6.3:  Cumulative Density Plot of Distances Between Duplicates and Singles.  

Cumulative densities of Euclidean distances between duplicates (left), and between 

singles (right). 
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individual when compared to its own duplicate versus when compared to other individual 

outlines.  The typicality for each case is calculated by summing the occurrences in the 

singles comparisons of a distance greater than or equal to the distance between the 

duplicate of that individual case.  The typicalities of each case are illustrated in Figure  

6.4, which shows that most typicalities are very close to if not equal to 1.  In other words, 

for an individual case, the probability of finding a non-duplicate with a Euclidean 

distance less than or equal to that case’s duplicate is very small. 

Figures 6.5 through 6.8 show examples of the extreme distance comparisons—the 

smallest and largest distances between duplicates of the same individual, and the smallest 

and largest distances between pairs of different individuals.  Figure 6.5 shows that for 3 

of the 4 different individuals showing similar outlines (i.e. small Euclidean distances), 

this was due primarily to the fact that these outlines were very small and unremarkable to 

begin with.  As Figure 6.6 shows, the smallest distances between duplicate outlines of the 

same individuals were again due to the outlines being quite small, usually a single 

concave recess.  The smaller the outlines are to begin with, the better the chance that they 

will have small distances between them, and this is somewhat intuitive.  What it suggests 

for forensic comparisons, however, is that it may not be advisable to use this method for 

comparing very small, unremarkable frontal sinuses.   

Large distances between different individuals was quite expected, and clearly 

illustrated in Figure 6.7.  Duplicates showing large distances are relatively large and 

complex outlines to begin with, and again, this seems intuitively predictable.  In looking 

at the outlines in Figure 6.8, however, it becomes clear that a visual assessment of these  
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Figure 6.4:  Typicalities of Duplicate Outlines 
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  Figure 6.5:  Smallest Distances Between Different Individuals   
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Figure 6.6:  Smallest Distances Between Duplicate Individuals
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Figure 6.7:  Largest Distances Between Different Individuals
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Figure 6.8:  Largest Distances Between Duplicate Individuals 
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outlines would probably lead to the conclusion that they were from the same individual, 

despite the fact that an EFA assessment may suggest otherwise. 

Likelihood Ratios from EFA Coefficients 

The EFA coefficients themselves do not follow a normal distribution, but a 

Laplace, or double-exponential distribution (Evans et al., 1993), with the distribution 

function: 


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1 ,   x ≥  a 

where: 

a =  mean 

b = )2(var/  

To illustrate this, the Laplace distribution and distribution of the four EFA coefficients 

for singles for the first, second, third, and twentieth harmonics are shown in Figure 6.9.   

A summary of the log likelihood ratios (likelihood ratios converted to log base-10 

scale) for 1, 5, 10, 15 and 20 harmonics are shown in Table 6.4.  A likelihood ratio of 1 

would indicate that you would be equally likely to get that distance between duplicates of 

the same individuals as you would between different individuals.  The average likelihood 

ratio for all harmonics in this study is fantastically high, and increases with increasing 

harmonics.  Thus, the odds of a match given the correct identification are significantly 

higher than the odds of a match from the population at large.  Indeed, on average, the 

odds are about 1.09E+84 to 1. 
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Figure 6.9:  Laplace Distribution of EFA Coefficients. 

Distribution of coefficients Ak, Bk, Ck, and Dk (left to right, top to bottom) for the (a) 

first, (b) second, (c) third, and (d) twentieth harmonics.
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Table 6.4:  Log Likelihood Ratios 
 

Number of 
Harmonics 

Mean Standard 
Deviation 

1 1.81 1.32 
5 10.09 4.96 
10 16.64 9.02 
15 20.02 12.88 
20 21.22 16.54 
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The posterior probabilities for 1, 5, 10, 15, and 20 harmonics are shown in Table 

6.5 and Figure 6.10.   For most cases, the posterior probability is 1 or very near 1.  These 

results speak to the reliability of the technique, suggesting that the probability of a correct 

identification given a match would be nearly 1 in most cases, and about 96% on average.  

Comparing EFA coefficients using likelihood ratios and posterior probabilities, thus, 

provides a very reliable method for correctly identifying a match. 

The Effect of Orientation 

 The posterior probabilities (using 5 harmonics) representing comparisons between 

the “standard” outlines and those that differed from it in orientation are shown in Table 

6.6, and reproductions of the outlines obtained by the standard orientation versus the 

variants are shown in figures 6.11-6.13.  The values highlighted in gray in Table 6.6 

show very small posterior probabilities, suggesting that these variations in orientation 

significantly affected the projected shape of the frontal sinus outline.  For 5° changes, 

there appears to be little effect on the projected outline, with only two comparisons 

showing significantly large deviations in shape.  Tilting the skull more than 5° down 

appears to have had the largest effect, causing all observed cases to appear significantly 

different from the standard (i.e., posterior probabilities are very small).   

It appears that the difference in the projection created may also be somewhat 

dependent on the shape of the frontal sinus itself, as specimen 2 showed greater deviation 

for more differences in orientation, while specimen 3 had high probabilities for all but 

two of the deviated positions.  Strangely, tilting the skull superiorly appears to have 

increased the similarity to the standard.   
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Table 6.5:  Posterior Probabilities 
 

Number of 
Harmonics 

Mean Standard 
Deviation 

1 0.88 0.23 
5 0.96 0.18 
10 0.94 0.22 
15 0.92 0.25 
20 0.90 0.29 
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Figure 6.10:  Posterior Probabilities 
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Table 6.6:  Angle Variations and Corresponding Posterior Probabilities (5 Harmonics) 

 

Angle Variation Specimen 1 Specimen 2 Specimen 3 
5° inferior 0.999 1 1 
5° lateral 1 1 1 
5° superior 2.4E-48 6.6E-148 1 
10°  inferior N/A 6.3E-135 1.7E-8 
10°  lateral 1 1.4E-24 .999 
10°  superior 2.7E-47 8.3E-159 1 
15°  inferior N/A 2.6E-24 3.0E-27 
15°  superior .999 1 1 
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Figure 6.11:  Angle Variations and Resulting Projection Changes for Specimen 1 
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Figure 6.12:  Angle Variations and Resulting Projection Changes for Specimen 2 
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Figure 6.13:  Angle Variations and Resulting Projection Changes for Specimen 3 
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To present the relevant point (considering a forensic context), while large 

deviations in orientation between the antemortem and postmortem radiographs appear to 

create significant differences in the projected shape of the frontal sinus, smaller 

deviations may not affect the application of the technique in question. 
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Chapter 7:  Discussion 

 

Significance of Findings (and Bayes’ Theorem) 

 Are frontal sinus outlines unique and reliable in confirming or refuting that two 

radiographs belong to the putatively same individual?  The results presented in the 

previous chapter quantitatively support previous notions of the individualized quality of 

frontal sinus outlines and their reliability in forensic identifications.   

One question that forensic anthropologists (or other forensic specialists making 

the identification) must consider is:  what probability is acceptable for an identification?  

In other words, with what degree of certainty would you feel comfortable in claiming that 

you have correctly identified the remains of a previously unidentified individual?  Since 

neither the courts nor the discipline of forensic anthropology (or for that matter, any 

forensic discipline involved in personal identification) recognize an objective standard for 

confirming or rejecting a frontal sinus-based identification, this remains a judgment call 

for the expert.  It is also important to bear in mind a number of important considerations 

when interpreting the significance of these findings. 

Consider the fallacy of the transposed conditional, or what has become known as 

the “prosecutor’s fallacy” (Thompson and Schumann, 1987).   The “prosecutor’s fallacy” 

is the error of confusing conditional probability P(A|B) with P(B|A).  Consider the 

examples “the card is a diamond” and “the card is red”; the probabilities of one given the 

other are not equal.  The probability that the card is a diamond given that it is red is ½, 

while the probability that the card is red given that it is a diamond is 1.  An error often 

committed by prosecutors (particularly in DNA cases) is confusing the following two 
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conditional probabilities and alleging that they are equal:  (1) The probability that a DNA 

sample taken from a person matches that found at the scene of a crime given that the 

person is innocent, and (2) The probability that the person is innocent given that his/her 

DNA sample matches that found at the scene of the crime.  The two probabilities are not 

the same, and it is clearly the second one that is of interest.  The probability of the first 

may be very small, and the error committed is in declaring that the probability of the 

second must also be very small when in fact it may be much larger.  

With regard to frontal sinus morphology and the results obtained here, this 

amounts to confusing the following two probabilities:  (1) The probability of a frontal 

sinus match given that the identification is correct and (2) the probability that the 

identification is correct given a frontal sinus match.  The preceding study addressed the 

first, and showed the average probability to be about 96%.  Again, however, it is the 

second of these probabilities that is of interest in a forensic context.  Arriving at 

probability (2) requires the application of Bayes’ Theorem (Bayes, 1763), which tells us 

how to update our knowledge by incorporating other information.  Bayes’ Theorem 

states: 

P(A|B) = P(B|A) •  P(A)/P(B) 

The configuration of Bayes’ Theorem of interest for this investigation would be: 

ID)Incorrect (
)IDCorrect (

)IDIncorrect |Match(
)IDCorrect |Match(
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P
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Posterior Odds   =   Likelihood Ratio   •   Prior Odds 

The prior odds represent an initial body of information which we use to estimate a 

final posterior odds that represents the confidence that the identification is correct.  The 

posterior odds are what we want to know—the odds in favor of a correct identification 

after taking other evidence into account.  The two will only be equal if the prior odds are 

equal to 1, i.e., if the probability that the identification is correct is equal to the 

probability that it is incorrect.  This is clearly not the case, since there is always some 

other reason or evidence to suggest that the identification may be correct (or else why 

would you be comparing the radiographs in the first place?).   Thus, the prosecutor’s 

fallacy is no fallacy if there is no initial body of information, and the prior odds of a 

match is equal to 1.  The fallacy consists in the prosecutor’s claim of a small probability 

of a match while failing to mention that conveniently omitted information (prior odds) 

may have led to a significantly different estimate.  

Prior odds are always greater than 1 in such cases because there is already some 

reason that the two radiographs are being compared, presumably because there is already 

other evidence to suggest that they belong to the same individual (medical records, of 

course, were not pulled at random from the population at large).  Such evidence increases 

the prior odds, though quantification of these odds may not be straightforward.   

 In sum, assuming a prior odds of 1 provides only the absolutely most conservative 

estimate of a correct identification in the absence of any other information or evidence.  

In this study, even this most conservative estimate provides a posterior probability of 

about 96%.  When prior odds are considered, this posterior probability is likely to 
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increase to an even higher level.  The technique, therefore, should be considered a (more 

than) sufficiently reliable method for confirming or rejecting a positive identification.    

Possible Sources of Error in the Research Method 

As with any research endeavor, there are several potential sources of error that 

may affected these results.  The first of these is the sample itself, since the radiographs 

were taken by different individuals for varying reasons—the forensic and donated 

samples were taken (or at least oriented) by me specifically for the present study, the 

student sample was taken by (possibly multiple) UT Student Health X-ray Technicians, 

and the Arikara sample was taken by two others.  While each sample was taken to 

produce a Caldwell view, they may differ slightly with regard to orientation and distance 

since a Caldwell view may vary within several degrees.  Moreover, one subset of the 

sample consisted of radiographs of live individuals, while the other two consisted of 

radiographs of skeletal material. 

All of the tracings were done by me, requiring my interpretation of the location of 

the orbital margins and the outer border of the frontal sinuses.  There may, therefore, 

have been some error involved in interpreting the color gradation and features of the 

radiographs, and thus in identifying the precise locations and boundaries of the frontal 

sinuses.  However, since one individual did them all, error in this area (if present) should 

be considered consistent.   

The precision of the resulting digital outlines may have been affected by at least 

two factors.  First, the use of pencil for the tracings resulted in outline images that varied 

in color within the image, which may have contributed to precision limitations.  Second, 

the resolution of the scanner may have resulted in some loss of precision.  Either of these 
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may have the effect of producing digital images that did not precisely reflect the outlines 

as seen in the radiographs. 

 Some of this error could undoubtedly be reduced through some fine-tuning to 

facilitate data processing.  Methods for tracing the outline from scanned (digital) 

radiographs using computer-aided programs were explored, but it seems that radiographs 

themselves have too much color gradation and computer programs were not able to 

isolate the outline of interest.  Tracings could also have been done in ink or some other 

medium with a more consistent color tone thus producing a more precise outline. 

Limitations of the Technique 

Despite the encouraging results presented in the previous chapter, the technique of 

identification by EFA comparison of frontal sinus outlines as seen in standard 

radiographs unfortunately suffers from several possible limitations relating primarily to 

the availability, applicability and quality of radiographic records.  Radiographic 

comparison of any feature presupposes two sets of films, one antemortem taken during 

life, and one taken of the postmortem remains.  The technique, therefore, is highly 

dependent on the accuracy and availability of hospital and/or mortuary records; 

inadequate, unreliable or unavailable antemortem or postmortem data can prove a great 

hindrance to identification using this method.   

There are several reasons that records may not be available.  First and foremost, 

while an increasingly utilized diagnostic tool, not everyone has had an antemortem 

radiograph of his or her skull or sinuses taken.  Obviously, those without such a record 

created are not candidates for this method of identification.  However, the practice of 

taking radiographs has become increasingly frequent due to decreases in the cost of the 
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technology as well as the fact that it has become an obligatory procedure preceding many 

treatments of the frontal sinuses.  Some have even suggested that deliberate radiographs 

should be taken and kept specifically for the purposes of identification (Law, 1934).  In 

many countries, unfortunately, radiography is not used as routinely in the investigation of 

medico- legal cases due to the scarcity of x-ray equipment in mortuaries.  As a result, 

postmortem films may be difficult to obtain and radio logy may only be used in special 

cases (Fatteh and Mann, 1969).   

Second, for a number of reasons, even if such a record was produced and 

available at one time, it may no longer be available.  In most countries, radiographs 

pertaining to the inactive files of patients are stored for at least five years (Marek, 1983; 

Mason, 1983; Messmer, 1986).  In the U.S., medical records are usually retained until the 

statute of limitations for acts of medical malpractice has run out (Kahana and Hiss, 1997).  

The decision to retain radiographic records and for what period of time is often dependent 

on economical considerations; the cost of storage may make it difficult to maintain 

radiographs indefinitely and sheer bulk of storage has been cited as a reason not to retain 

radiographs.  Yet another reason is that radiograph film contains significant amounts of 

recoverable silver so there are monetary incentives to periodically trim files (Messmer, 

1986).  However, with recent advances making it possible to store the images digitally, 

perhaps this will become less of a concern.  Due to their forensic potential, some have 

suggested that for identification purposes, all anterior/posterior skull radiographs, and all 

radiographs of the frontal sinuses should be stored and arranged according to a 

classification system (Marek et al., 1983), and others insist that clinical radiologists 

should be made aware of the importance of storing radiographs for extended periods of 
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time and developing efficient record keeping methods to enable prompt retrieval of films 

for identification purposes (Kahana and Hiss, 1997). 

Even if a record of a cranial radiograph is available for comparison, it may still 

fail to be applicable for the purpose of identification using this technique for a number of 

reasons.  Recall that a certain subset of the population lacks radiographically 

demonstrable frontal sinuses.  These individuals, though possessing the proper 

antemortem records, may not be suitable for this identification method.  However, given 

that they comprise only a small percent of the population, significant likelihood ratios 

may still result.  If, for example, p represents the proportion of individuals without frontal 

sinuses (which in the sample used here was 81 out of 584 or about 14%), then the 

likelihood ratio for a sinus- less individual would be 1/p, or 1/(81/584) or 7.3.  Thus, even 

for comparisons of sinus- less individuals, likelihood ratios would be significantly greater 

than one and may still be used in forensic comparisons, though with somewhat less 

strength than for more remarkable frontal sinuses. 

Cases of subadults or those whose frontal sinuses have been affected by pathology 

or trauma also present potential applicability problems and should be considered with 

caution as changes in the size and shape of the frontal sinuses may have occurred.  

Antemortem frontal sinus films are not usually taken unless to aid in the investigation and 

diagnosis of a medical problem, so there is a good chance that many antemortem films 

may have been affected by trauma or pathology (however, this did not appear to affect 

the ability to make a match in a study by Kirk et al. (2002)).  Moreover, as the preceding 

study showed, even if radiographs are available and the frontal sinus is present, it may be 

too small or unremarkable to apply the technique considered here.  This problem is 
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similar to one experienced in dental identifications – those who have a dental record but 

who lack teeth or have unremarkable dentition (i.e. have no restorations, gaps, etc.) 

would not be suited for dental comparisons for confirming identification (Adams, 2003). 

 Another concern is the quality of both the antemortem and postmortem records.  

Obviously, the greater the quality of the records, the more reliable the conclusions drawn 

from them.   It is widely recognized that the quality of films for comparison is greatly 

enhanced with the use of trained personnel in a properly equipped center.  Specifically, a 

comparison is enhanced by sufficient clarity, similar orientation and distances, and 

minimal deformation and magnification.   

 Finally, one should consider the consequences (i.e. limitations) of using 

conventional radiography.  All structures in the path of the x-ray beam appear 

superimposed on the image and cannot be distinguished from each other, “collapsing” 

three-dimensional structures into two dimensions provides only limited information on 

structures such as frontal sinuses (Spoor et al., 2001).  The method used here to 

investigate variability further reduces the representation of the structure to that portion 

located above the established baseline.  Recently, a number of researchers have used CT 

scans for comparison (Haglund and Fligner, 1993; Reichs and Dorion, 1992; Smith et al., 

2002), arguing that CT scans provide a dimension to the analysis that is not present in 

standard A-P radiographs and that it may afford greater precision because it can reveal 

greater detail.  Perhaps such comparisons will become increasingly frequent due to the 

increased applications of CT scans and MRIs in medicine and dentistry, but this 

technique will no doubt also need to be tested for reliability and such tests will likely be 

significantly more complex than the current investigation. 
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Developing an Objective, Standardized Methodology 

 Another important issue in identification by frontal sinus radiographs is:  who is 

qualified to do it?  In most instances, only a board certified expert will be asked to testify 

and these individuals ostensibly have sufficient education, training and experience to be 

qualified to make assessments of identity and testify as to the result.  Indeed, it is highly 

advisable to employ the expertise of a certified radiologist to examine the radiographs for 

comparison.  While some note that mismatches could be rare, even by observers with 

limited training and experience (Kullman et al., 1990), many (including Hogge et al., 

1993; Koot, 2003; Messmer, 1986; Murphy et al., 1980) support the need for trained 

interpreters in identification cases, and find that those with more experience fared better 

in comparisons.  Although the results of the orientation test suggest that slight changes in 

orientation do not significantly affect the projected shape of the frontal sinus outline, 

many suggest that radiological and anatomical training can compensate for a slight 

change in orientation and help avoid technical traps caused by both position and 

exposure, thereby facilitating comparison. 

 Perhaps, however, the technique would be enhanced by a methodology that did 

not depend solely on the expertise of the user, but which was standardized and repeatable 

by other reputable forensic scientists.  Ubelaker (1984) once questioned in preparing for a 

court testimony positively identifying an individual by frontal sinus morphology 

comparison:  What is the precedent for making a positive identification from a 

radiographic comparison?  As previously underscored, to date there are no objective, 

reproducible comparison methods recognized within forensic radiology or anthropology, 

with comparisons based on sub jective visual comparison by a qualified (usually certified) 



 117 
 

expert.  In light of recent decisions regarding the admissibility of expert witness 

testimony, however, it seems imperative that a quantified system of objectifying 

comparisons is established if conclusions are to withstand cross-examination.  

Ubelaker (1984) noted that an “exact match” of details of frontal radiographs, 

especially in the frontal sinus area, is sufficient basis for positive identification.  But what 

is an “exact match”?  It is suggested here, based on the results of this study, that a 

“match” be considered two frontal sinus outlines possessing sufficiently similar EFA 

coefficients so as to result in a convincing posterior probability.  This method, like no 

other investigated before it, can be applied objectively and quantitatively to frontal sinus 

identification cases.  Especially when prior odds are factored in, the probability of 

correctly identifying a match (or rejecting one) is sufficiently high.  

 Another question to consider is:  Is the proposed technique worthwhile?  Should 

forensic scientists bother with this method of frontal sinus-based positive identification?  

Given the acceptance that visual assessments have gained in the past and the success with 

which they have been applied, it may be redundant (if not overkill) to perform EFA on all 

frontal sinus comparisons in forensic contexts.  A visual assessment can be performed 

quickly and easily, while an EFA will require more time and resources, which may make 

it seem significantly less appealing.  However, where the EFA technique may prove 

particularly valuable is in cases that may go to trial and therefore will likely be 

challenged by another expert and/or opposing council.  In such cases, the results of an 

EFA comparison may significantly strengthen the expert’s argument by demonstrating 

that the comparison technique meets Daubert guidelines in 1) having been empirically 

tested, 2) having known error rates established, and 3) having been applied via an 
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objective, standard method.  Perhaps the technique could be further enhanced (and made 

somewhat less cumbersome) by the development of a software package designed to 

specifically address and facilitate forensic EFA comparisons.  

Keeping it in Perspective 

 All of the above said, there are a few important ideas to keep in mind regarding 

statistical probabilities and “proving” positive identifications.  While the Daubert 

guidelines require statistical estimates of reliability and objective methods (and not 

unjustly so), it is a misconception that any statistical probabilities exist independently of 

human judgment.  Even in the case of DNA evidence (which is widely regarded as 

unique, objective, and reliable for establishing identity), there is no complete objectivity 

since DNA comparisons, too, exist only within a framework of assumptions (Evett and 

Weir, 1998). 

 In testifying as to whether two pieces of evidence (fingerprints, DNA samples, or 

frontal sinus radiographs) came from the same individual, experts often report that “the 

two are identical”, when indeed, two of anything will inevitably be somewhat different.  

The task of the forensic anthropologist, thus, is not to answer whether two frontal sinus 

outlines are identical, but whether there is sufficient evidence to suggest that they 

originated from the same individual.   

Moreover, as previously quoted:  “…it is for the jury, not the expert, to decide on 

the identity of a skeleton; it is for the expert to show whether the identity is possible or 

probable” (Dwight, 1878).  While the research presented here has contributed to the quest 

for objectivity, quantification, and estimating potential rates of error (misidentification), 

the ultimate decision as to whether a positive identification has been made is still up to 
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the triers of fact.  While the expert plays a role in determining the degree or state of belief 

in the minds of the jurors, it is ultimately the jurors’ belief in the probability of the 

identification that matters.  In other words, an expert in no way “proves” a positive 

identification; the issue is proven only when the jury decides that an expert can be 

believed.  This believability, however, can be enhanced through processes of inference 

that are less subjective and more objective.  
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Conclusion 

 

To reiterate, the purposes of the preceding study were: 

1.  To emphasize the need for objectivity and a standardized methodology for 

identification using frontal sinus outlines, especially in light of recent rulings in 

admissibility law; 

2.  To empirically assess frontal sinus outline variability using Elliptic Fourier 

Analysis (EFA); 

3.  To investigate the reliability of the EFA method for identification, and 

estimate the probability of misidentification (at least in a forensic context). 

The current state of admissibility law as reviewed in Chapter 4, coupled with 

observed methodological shortcomings of visually comparing frontal sinus outlines 

clearly illustrates the need for objectivity and standardization when comparing frontal 

sinus radiographs in a forensic context.  Given the courts’ history of emphasizing the 

Daubert guidelines (such as in the case of fingerprint evidence), a strong case can be 

made for the need of forensic identification techniques to satisfy these guidelines.  

Moreover, the history and current state of frontal sinus-based positive identifications 

clearly fail in this regard, as shown in the review of previous studies on uniqueness and 

the subjective visual comparison method typically used in forensic cases. 

The need for an empirical assessment of frontal sinus outline variability was 

satisfied by the preceding study, which demonstrated that the Euclidean distances 

between EFA-generated outlines of different individuals were significantly larger than 
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those between replicates of the same individual, and thus that each individuals’ frontal 

sinus outline is distinctly (and quantifiably) different.   

Finally, the EFA method was concluded to be a reliable method for comparing 

frontal sinus outlines to confirm or reject a putative identification based on the fact that 

posterior probabilities of a match given the correct identification were very high, with 

higher probabilities expected when prior odds are taken into consideration.   

It is hoped that this dissertation will serve to encourage the use of EFA or similar 

objective method when attempting frontal sinus-based identifications, and stimulate 

further discussion in forensic anthropology and other forensic sciences regarding the 

reliability of identification methods, and perhaps encourage evaluation of the extent to 

which other techniques satisfy the Daubert guidelines. 
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Appendix A consists of an outside folder called “outlines”, containing the *.jpg 

images of all of the original outlines used for this study.  There are five folders within the 

“outlines” folder, each containing individual files of outlines (including duplicates if 

applicable) sampled from the W.M. Bass Donated Skeletal Collection (“UT Donated”), 

the University of Tennessee Forensic Skeletal Collection (“UT Forensic”), the Arikara 

Collection (“UT Arikara”), and the University of Tennessee Student Health Center (“UT 

Student”), as well as the outlines used for the test of orientation (“Angles”). 
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