
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2003

Data Access in Wide Area Networks of
Heterogeneous Workstations
Kim Buckner
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Buckner, Kim, "Data Access in Wide Area Networks of Heterogeneous Workstations. " PhD diss., University of Tennessee, 2003.
https://trace.tennessee.edu/utk_graddiss/1978

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268767337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Kim Buckner entitled "Data Access in Wide Area
Networks of Heterogeneous Workstations." I have examined the final electronic copy of this dissertation
for form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Computer Science.

James S. Plank, Major Professor

We have read this dissertation and recommend its acceptance:

Bradley Vander Zanden, Jeffrey Becker, Micah Beck

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Kim Buckner entitled “Data Access in
Wide Area Networks of Heterogeneous Workstations.” I have examined the final electronic
copy of this dissertation for form and content and recommend that it be accepted in
partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major
in Computer Science.

James S. Plank

Major Professor

We have read this dissertation
and recommend its acceptance:

Bradley Vander Zanden

Jeffrey Becker

Micah Beck

Acceptance for the Council:

Anne Mayhew

Vice Provost and Dean of Graduate Studies

(Original signatures are on file with student records.)

Data Access in Wide Area Networks of

Heterogeneous Workstations

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Kim Buckner

August 2003

Abstract

The accessibility of data in wide area networks can be difficult. This research shows
the use of the Internet Backplane Protocol (IBP) along with a modified version of the C
standard I/O library that can allow data to be easily accessible without having to make
major modifications to legacy code. In fact if legacy programs only use standard input
and output routines, they need only be recompiled to effect a homogeneous file system. It
also demonstrates that this access is predictable enough to make decisions on what data to
access and in what fashion that access is most effective.

ii

DEDICATION

This dissertation is dedicated to my wife, Laura, without whose loyalty and support I
would not have been able to stay the course and to my parents, Bonnie and Carl Buckner
for the example they set and the encouragement they gave.

iii

Contents

1 Introduction 1

2 Background 3
2.1 Current work . 3
2.2 Restrictions and Difficulties . 4

3 Application and Tools 7
3.1 FASTA . 7

3.1.1 FASTA Serial Version Description 7
3.1.2 FASTA Parallel Version Description 8

3.2 IBP . 9
3.3 NetSolve . 10
3.4 IBP STDIO . 10

4 Modeling and Testing the Application 11
4.1 Application Model . 11

4.1.1 Basic Equation . 12
4.1.2 Breakdown of Times . 12
4.1.3 Final Model . 16

4.2 Initial Testing . 18

5 Validation Data Acquisition 20
5.1 Processors . 20
5.2 SE . 21
5.3 SQ . 21
5.4 SL . 21
5.5 SO . 21
5.6 SS . 21
5.7 SR . 23
5.8 C . 23
5.9 FO . 23
5.10 DW . 23

iv

5.11 DRX
. 23

5.12 DRC . 28
5.13 Example Calculation . 28

6 Testing for Validation 29
6.1 Single query results . 29
6.2 Multiple query results . 33

7 Continuing Experiments Using Large Files 37
7.1 Introduction . 37
7.2 Hardware . 37
7.3 Initial Tests . 41
7.4 Distributed Input Tests . 45

8 Conclusions and Directions 48
8.1 Conclusions . 48
8.2 Future Directions . 49

Bibliography 50

Appendix 54

A Remote Invocation 55
A.1 New Client-Server Software . 56

Vita 59

v

List of Tables

5.1 Executable size read . 22
5.2 Query file size . 22
5.3 Average log file sizes . 22
5.4 Average output file sizes . 22
5.5 Average sequence lengths . 24
5.6 20 sequence totals . 24
5.7 Reference file sizes . 24
5.8 Speed of comparing queries to sequences . 24
5.9 File open test results in seconds . 25
5.10 Disk write test bandwidth . 26
5.11 Disk read test bandwidth . 27

6.1 Testing Machines . 29

7.1 New Testing Machines . 38
7.2 File open test results in seconds . 38
7.3 Disk read test bandwidth . 39
7.4 Disk write test bandwidth . 40

vi

List of Figures

6.1 One Query, Using NFS. 31
6.2 One Query, Using Local Storage (IBP). 31
6.3 One Query, No Buffering Using DSI-UT . 31
6.4 One Query, No Buffering Using DSI-NC. 31
6.5 One Query, No Buffering Using Ultra2. 32
6.6 One Query, Buffering Using DSI-UT. 32
6.7 One Query, Buffering Using DSI-NC. 32
6.8 One Query, Buffering Using Ultra2. 32
6.9 Seven Queries, Using NFS. 34
6.10 Seven Queries, Using Local Storage. 34
6.11 Seven Queries, Buffering Using DSI-UT. 34
6.12 Seven Queries, Buffering Using DSI-NC. 34
6.13 Seven Queries, Buffering Using Ultra2. 35
6.14 Seven Queries, No Buffering Using DSI-UT. 35
6.15 Seven Queries, No Buffering Using DSI-NC. 35
6.16 Seven Queries, No Buffering Using Ultra2. 35

7.1 One Query, Large Files, Using Local Storage (IBP). 42
7.2 One Query, Large Files, Buffering Using DSI-UT. 42
7.3 One Query, Large Files, Reversed Order, Buffering Using DSI-UT. 42
7.4 One Query, Large Files, No Buffering Using DSI-UT. 42
7.5 One Query, Large Files, Reversed Order, No Buffering Using DSI-UT. . . . 43
7.6 Seven Queries, Large Files, Using Local Storage. 43
7.7 Seven Queries, Large Files, Buffering Using DSI-UT. 43
7.8 Seven Queries, Large Files, Reversed order, Buffering Using DSI-UT. 43
7.9 Seven Queries, Large Files, No Buffering Using DSI-UT. 44
7.10 Seven Queries, Large Files, Reversed order, No Buffering Using DSI-UT. . . 44
7.11 One Query, Large Files, Buffering Using SInRG. 46
7.12 One Query, Large Files, Reversed Order, Buffering Using SInRG. 46
7.13 One Query, Large Files, No Buffering Using SInRG. 46
7.14 One Query, Large Files, Reversed Order, No Buffering Using SInRG. 46
7.15 Seven Queries, Large Files, Buffering Using SInRG. 47
7.16 Seven Queries, Large Files, Reversed Order, Buffering Using SInRG. 47

vii

7.17 Seven Queries, Large Files, No Buffering Using SInRG. 47
7.18 Seven Queries, Large Files, Reversed Order, No Buffering Using SInRG. . . 47

viii

Chapter 1

Introduction

The expanding use of wide-area networks requires new ways of scaling applications to take
advantage of the available computing resources. Large heterogeneous collections of worksta-
tions are becoming readily available to the average business or research department. Many
of these organizations have existing software applications which can require long running
times to perform their operations. This may be due to the application being very compu-
tationally intensive or to its having heavy input/output requirements or some combination
of these and other factors. The same organizations which have available to them these
relatively large collections of workstations do not have the additional monetary resources
to provide dedicated fast networks, high-performance clusters, Symmetric Multiprocessors
(SMP) or the like, or high-capacity storage servers. A typical example of such an organiza-
tion is a small private college or university.

Wide-area settings should be able to provide increased computing power if they can be
properly harnessed. In order to harness such settings, applications must be able to execute
on some reasonably sized subset of the resources available to the user. Not all applications
can be readily adapted to the wide-area.

High-performance parallel numerical applications generally require some uniform com-
munication layer such as Parallel Virtual Machine (PVM) [33] or Message Passing Interface
(MPI) [12]. These applications also often require some specific number of processors, for
instance a power of two. Such applications usually need a large amount of interprocess
communication in the form of scatters, gathers, reductions or other operations required to
share state among the different components of the computation. They often do not lend
themselves well to situations where the number of processors is arbitrary, the processing
environments are heterogeneous, or the communication layer is not uniform. This is not to
say that high-performance parallel numerical applications have not been made to perform
well in a wide-area environment, only that they are not very flexible.

Serial applications, those whose computational structure show very little potential for
parallelization, also seem inappropriate. Having more machines on which to execute these
applications does nothing to improve their performance since they are normally designed to
operate on a single processor. But some serial applications can accurately process subsets

1

of the original input data or accurately perform subsets of their total operation, depending
on input, and require no interprocess communication.

If existing serial applications are capable of processing a portion of their data accurately
or can be modified to do so, then the applications can be expanded to the wide-area,
providing that data can be made available to the individual processors in such a manner
that data access is not a serious bottleneck. The applications may involve storage and/or
access of very large data files, files with sizes larger than two gigabytes. Many operating
systems and file systems are becoming capable of handling these large files but physical
storage is still often limited to specific disk farms or other repositories such as offered by
the Internet 2 Distributed Storage Infrastructure (I2DSI) [5]. Reading and writing of files
stored in these limited, often remote, locations can not always be made transparent to user
applications because all the resources do not share a uniform file system and many legacy
applications are dependent upon the file access methods available when they were designed.

Even though use of wide-area environments presents many problems, the problems are
not insurmountable. This research will show that not only can legacy serial applications be
expanded into a wide-area setting but that such applications can be modeled with sufficient
accuracy to be able to make scheduling decisions based on the model.

The rest of this dissertation is organized as follows: Chapter 2 provides background
information. Chapter 3 discusses the chosen application and the software tools used. Chap-
ter 4 covers the application model. Chapter 5 deals with gathering of the model validation
data. Chapter 6 covers the results of the initial testing and model verification. Chapter
7 contains the results of large file testing. Chapter 8 gives conclusions and talks about
directions for continuing work

2

Chapter 2

Background

Software is being developed at many commercial and research sites to help take advantage
of newly available wide-area resources. So much is being developed in fact that the user is
often presented a confusing melange of choices.

2.1 Current work

Heterogeneity has been one of the main problems of wide-area computation. Creating
portable software has become easier as operating systems become more similar and begin
to support standards such as the Portable Operating Systems Interface (POSIX) [19]. The
need for separate binaries still exists but given proper preparation, an application can be
compiled to meet the requirements of a new platform fairly quickly, that is if it does not
rely upon operating system specific or vendor specific support.

Efforts such as Globus [13] and Legion [16] are middleware environments which attempt
to exploit the potential of the ”Computational Grid” for high-performance computations.
They seek to provide a homogeneous platform on which to execute by supplying uniform
resource management and allocation mechanisms for global resources. WebOS [34] provides
wide-area operating system services. It allows for remote process invocation and load bal-
ancing. It also provides a wide-area file system. WebOS attempts to make execution in a
wide-area environment transparent to applications.

Condor [23] exploits the potential of idle resources. It migrates processes among a set
of participating processors (workstations). While this is a dynamic environment, it does
not support truly parallel applications. The heterogeneity of the environment becomes
a problem if a process must be checkpointed and moved. The checkpoint may not be
portable or the results of the computation may become unreliable due to different data
representations. The process may also remain idle for long periods because binaries are not
available for the architectures that are currently free. NetSolve [8] is another project that
harnesses available resources. It is a client-server model with an agent that enables remote
execution of problems (functions) in a manner similar to Remote Procedure Call (RPC) [31].
The interaction between the clients, servers and agents is architecture independent and the

3

problems can be customized to operate in almost any setting.
Along with execution environments, data storage and access need to be able to adapt

to the wide-area environment. Globus has three components that provide data access:
GASS [6] supplies a global name space and an Application Program Interface (API) for
remote file access and caching; RIO [14] enables remote I/O for parallel applications;
GridFTP [2] [27] is a data transfer protocol based on extensions to the standard FTP
protocol. Legion has a global file system, composed of files represented as storage objects
(vaults) [21]. Each object can be customized for its use with a particular application. The
Jade [28] file system was designed for file access in an Internet. It defines naming conven-
tions and access protocols that allow processes to transparently access local and remote
files. Ufo [1] is implemented as a user-level extension to the operating system. It uses the
tracing facilities of the operating system to intercept system calls, allowing applications to
treat remote files as if they were local. Smart File Objects (SFO) [35] are implemented as
middleware to take advantage of the time during the application’s compute operations to
prefetch data in order to help alleviate the slowdown due to data access overhead. It uses
the Legion global file system for data access.

WebFS is a component of WebOS. WebFS is designed to provide flexibility in the wide-
area environment and it implements many of the same types of operations as file systems
such as the Network File System (NFS) [30], including caching and a global name space
(using Uniform Resource Locators (URLs)). xFS [3] does away with the ‘standard’ file
system model of a single server or a small set of servers through which all files must be
accessed. Instead it uses a server-less model in which any participating machine in the
system can provide any and all file system services. CFS [11] is a peer-to-peer read-only
file system based on the secure file system SFS [15]. It uses small storage blocks and
block replication to improve performance. IBP, the Internet Backplane Protocol [25], is
being developed to provide storage across networks. It provides a very low level set of
data storage and retrieval operations and allows the movement of data to be directed by
the application. IBP requires that a server or another application be running at the data
destination and that sufficient storage space for the data be available.

2.2 Restrictions and Difficulties

Globus and Legion seek to provide a uniform layer upon which to build wide-area computa-
tions. However, they can be difficult to port and require that the local area administrators
relinquish some autonomy by implementing specific components of the Globus or Legion
process control and access structure. WebOS leverages several other software applications
to provide its services. One of these relies on the Solaris /proc file system to provide system
security. Even though many applications are restricted to an operating system such as Unix,
reliance on vendor specific implementations makes applications such as WebOS inherently
non-portable. The /proc file system is being used by many current operating systems such
as Solaris2, Solaris8, and Linux. However there is no standard for its implementation and
even the Solaris2 and Solaris8 systems have completely different API’s.

4

Condor harnesses resources (workstations), primarily in a local area, that are currently
unused and that some user or owner has allowed to be ‘harvested’. It can only access user
files from the user’s machine (machine on which a particular process was started). If a
process is moved, that user’s machine is still required for file access, presenting a serious
problem if that workstation fails and incurring additional penalties in network overhead for
data transfer. NetSolve uses a client-server model to provide RPC-like services. It does
not provide a global environment and maintains no state between calls. Data required
by the problem is sent from the client to the server and the results are sent back. Each
problem that a server can solve must be defined in a problem description and may need to
include additional code to provide data translation, file access, error handling, et cetera.
These problem descriptions must be hand crafted by someone familiar with the server’s
environment, its restrictions, and the application’s requirements.

NFS is basically limited to the local area and does not scale well to the wide-area. The
Andrew File System (AFS) [17] and the Distributed File System (DFS) [18] can operate in
a wider area environment but are kernel based and thus can present a portability problem.
For example the DFS server is currently limited to the AIX and Solaris operating systems.
Coda [29] was an attempt to expand the capabilities of AFS by replicating file servers
to provide scalability. Globus’ RIO provides remote I/O operations but requires that the
applications use MPI-IO. GASS provides mechanisms that can be used to access remote files
in many different modes provided that the sites that are holding the files are participating
Globus sites and that the programmers understand the GASS mechanisms well enough to
make the correct accessing choices. GridFTP is a protocol that data storage systems must
implement in order to provide access to GridFTP clients. Legion can only access files that
are in the Legion space. Accessing data outside of this space can be difficult or impossible
at runtime. As SFO uses the Legion object space it has the same limitation on data access.
Additionally, SFO is currently only implemented for the Mentat system.

xFS uses RAID style data striping across the participating machines. It is only effective
in a restricted environment where the participating machines are connected by very fast
networks such as Myrinet. IBP is not a file system per se but leverages local file systems
to provide application transparent data storage. It does require that a server be running
somewhere but the server is accessed via sockets so its location is flexible. Writes to IBP byte
arrays are append-only so editing data in place is not currently possible. No special access
restrictions are enforced. If any process belonging to any user possesses a valid ‘capability’,
that process can do anything to the byte array that the capability allows.

Jade also uses local file systems. The Jade library is dynamically linked so it does not
require re-compilation. It provides the user a method of mounting resources, remote or
local, in a per user directory. But the namespace is also per user, so that exporting a file
name does not guarantee access to the file. All remote files are cached in their entirety in the
local file system on opening. This can impact availability of local resources seriously in the
case of large data sets and leads to cache coherency problems. Ufo, like Jade, personalizes
the view of the file system. It ensures that a current local copy of any remote file exists
when that file is opened. Ufo does not require re-compilation but relies on attaching to a

5

process via /proc and intercepting system calls to give the user transparent access to remote
files.

Unlike other systems that require specialized access permissions, operating system kernel
changes or other non-portable modifications, the proposed system, combining IBP and the
C standard I/O library, simply extends the functionality of the standard I/O library and
provides a more user-friendly interface to IBP with few limitations. It can provide a legacy
program with access to globally located data by the simple expedient of re-compiling the
application. It also provides standard file system access to remote storage that is not
normally accessible to a process, such as the local disk of a remote desktop computer. It
does require that an IBP server be running on the processor that has access to the actual
data storage location, but that is no different from other standard file systems.

6

Chapter 3

Application and Tools

3.1 FASTA

FASTA is a set of programs based on a fast algorithm for biological sequence compar-
isons [24]. These sequences are character representations of sets of proteins. The sequences
may represent those found in DNA or may be from other sources. The current version of the
distribution when this research was begun was 3.2. The particular program used is “fasta3”
which can be compiled for serial or parallel (PVM only) use. This application and similar
ones are in daily use by many genome projects around the world and there are large data
libraries readily available from sources such as the GenBank

gR genetic sequence database at
the National Center for Biotechnology Information part of the National Library of Medicine
at the National Institutes of Health 1 .

The different versions of the program can operate from command-line arguments alone,
or a mix of command-line and standard input with querying of the user for necessary infor-
mation as needed. The program as delivered always writes some information to standard
output but parts of the output can be sent to a file with command-line arguments.

3.1.1 FASTA Serial Version Description

The serial version “out-of-the-box” performs these operations.

1. It validates the command-line arguments.

2. It opens the query file containing the query sequences (this can be standard input if
only one (1) sequence is being tested).

3. Then it opens the “FASTLIB” file, a file containing a set of library description entries.
Each consists of:

(a) a file description,

1http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html

7

(b) a file content type (protein sequence or DNA sequence) indicator,

(c) an arbitrary character assigned by the creator of this FASTLIB file used to allow
fasta3 to differentiate between entries or to group files (all files with the same
character assigned will be selected for searching),

(d) and the filename of a file that either contains a set of reference DNA or pro-
tein sequences for comparison or contains the names of other files of reference
sequences.

4. The process extracts the reference data filenames from the FASTLIB file that match
the command line character. Only one character is allowed on the command line.

5. It then reads in the first query and begins reading from the reference files to compare
the sequences. During each comparison of the query sequence to a reference sequence,
a relative score is assigned which represents how well the reference sequence matches
the query sequence. The program maintains a list of the best scores and the corre-
sponding file offsets of those reference sequences. The serial version uses standard I/O
functions to read the data files.

6. Once the query is compared against all the reference sequences, the output is gen-
erated, re-reading portions of the reference files to get the sequences that have been
selected as the best matches so that the output can be generated.

7. Repeat from 5) for the remainder of the queries. This version maintains no portion
of the reference file in memory so it starts at the beginning of the first reference file
for every query sequence processed.

3.1.2 FASTA Parallel Version Description

The parallel version “out-of-the-box” master process works similarly.

1. It validates the command-line arguments.

2. It then determines how many workers are needed from command-line arguments and
spawns them using PVM.

3. Contact is established with the workers and each is informed of the filename of the
reference file along with which portion of the file each should process. Only a single
reference file is allowed in this version.

4. It sends all workers the first query once they all check back in indicating they have
their reference data.

5. The master prepares the next query to send.

6. It then waits on the workers.

8

7. As they finish it receives each worker’s results.

8. It tabulates the results and then sequentially requests from the appropriate worker
the reference sequence data for the selected best matching sequences.

9. After all the data to generate the output has been received, it sends the next query
to the workers and writes the output.

10. The master repeats from 5) until done.

The parallel worker operation is markedly different.

1. Each receives the initialization information from the master process.

2. It then opens the reference file and reads from that file its portion of the reference
data using non-buffered input/output (open() and read()).

3. It blocks waiting for the next communication from the master.

4. If the communication is a request for sequence data, the worker sends the data else it
goes on to the next step else it exits.

5. The worker then compares the query to the in-memory portion of the reference file.

6. Last it sends the results to the master and blocks at step 3) waiting for a response.

3.2 IBP

File access over a wide-area setting is an obvious problem. There is no guarantee of a
uniform name space or uniform file access semantics. IBP can be used to address this
problem. It provides for very primitive data storage and retrieval. Data is treated as simple
arrays of bytes with no notion of machine-dependent format. This means that applications
using IBP must decide on internal data representations if access will be across platforms or
use readily available translations such as eXternal Data Representation (XDR) [32]. IBP
allows for byte array creation, removal, write (append only), read, and remote store. It also
gives the user access to FIFOs (usually for inter-process communication), a uniform data
access API and global name space. The storage that IBP uses in any local area network is
determined beforehand and can consist of any standard file storage space in the local file
system. The amount of space to be used is determined when the server is started so local
administrators can control IBP’s resource usage. Unlike NFS, IBP has no special access
protection. It manages its data as local files with whatever access permissions are granted
to the server process via its owner. That means the owner of the server process can then
access the data stored in IBP byte arrays created by that server regardless of who stored
the data. But just as the IBP server will have to be trusted by the local administrator,
either the owner of the server will have to be trusted by the client or the data in byte arrays
can be encrypted.

9

3.3 NetSolve

Another problem is remote invocation of copies of the application. Utilities such as remote
shell (rsh) and secure shell (ssh) can be used but are fairly limited in scope. NetSolve can
be leveraged to provide easier access to remote resources. NetSolve, like IBP, only requires
a server to be running on the machine where one desires to execute. The server accepts
jobs from clients who become aware of the server via an intermediary agent. This agent
is known to both the server and the client but need not be near either one. The server
accepts jobs based on the problem to be solved and any restrictions placed on it when it
was started. Once completed, the results of the job are returned to the client, and the
server maintains no state. Again, like IBP, any files created and any processes spawned by
the server only have the access capabilities granted the owner of the process, modified by
any restrictions specified to the server. NetSolve starts the applications in a simple manner
using fork-and-exec. Access to the servers and agents is via sockets and access control can
be specified at the server by a configuration file which can limit access to certain domains
or addresses much like Unix’s rhosts.

3.4 IBP STDIO

In general, applications can be accessed via NetSolve without any code modification or re-
compilation. This is because its ‘problem descriptions’ can be as simple as a call to the Unix
system() function. Rewriting applications to use IBP instead of the local file system is not
usually difficult providing the applications rely on such basic file operations as read() and
write(): simply replace those system calls with the corresponding IBP calls. Because the se-
rial version of FASTA, like many other programs, primarily uses the standard input/output
(stdio) library functions such as fopen(), fread(), fgetc() and ungetc(), IBP STDIO, a
modified version of the FreeBSD Unix C stdio library, was developed as part of this dis-
sertation. This allows access to IBP byte arrays while still allowing use of the underlying
system libraries to access local files if desired. The creation of IBP STDIO resulted in very
few changes being made to the FASTA code because all the file access semantics, includ-
ing function names and arguments, remain the same. The IBP STDIO library is statically
linked to the application’s code which only to has to have some #include’s changed. Other-
wise its use is transparent to the application. Depending on the name of the file, operations
are performed on IBP byte arrays, or they are passed to the appropriate standard library
functions for operations in the local file system.

10

Chapter 4

Modeling and Testing the

Application

4.1 Application Model

Modeling the application in terms of physical properties of the networks, processors and
files is the focus of this chapter. These are some of the more basic components that will be
used in the model:

DRE = Apparent disk read bandwidth for the executable file, in megabytes per second.

DRQ = Apparent disk read bandwidth for the query file, in megabytes per second.

DRR = Apparent disk read bandwidth for a reference file, in megabytes per second.

DWL = Apparent disk write bandwidth for the log file, in megabytes per second (using
write())

DWO = Apparent disk write bandwidth for the output file, in megabytes per second
(using fprintf())

SL = Size of a log file in megabytes

SO = Size of an output file in megabytes

SQ = Size of the query file in megabytes

SR = Size of a reference file in megabytes

The data and file sizes used are all in megabytes. The bandwidths for the equations are
all in megabytes per second.

11

4.1.1 Basic Equation

The basic model of the program can be written

TT = T1 + T2 + T3 + T4 + T5 + T6 (4.1)

where

TT = total execution time.

T1 = time in which the task is spawned, the program validates the command line and then
prepares to read the first query.

T2 = time to read the queries into memory

T3 = time to read the reference file(s) into memory.

T4 = time it takes to compare the queries to the references.

T5 = time to compute the final values for the selected sequences, prepare and write the
output.

T6 = time to write final statistics to files and perform cleanup prior to exiting.

4.1.2 Breakdown of Times

Equation (4.1) is overly simplistic of course and does not show the many different factors
involved. Here are the details of those factors.

1. T1 has a number of separate components.

T1 = SE/DRE + SOLH
/DWO + FOopen + FOfopen

(4.2)

is the equation for T1 in which

(a) SE = the size of the executable file that is read from disk to memory by the
operating system.

(b) SOLH
= the size of the header written to the log file.

(c) FOfopen
= the time to open and create an output file using fopen().

(d) FOopen = the time to open and create a log file using open().

In the tests run for validation, both log and output files reside on the same disk. This
time is typically dominated by the time to read the executable.

12

2. T2 is composed of the time is takes to read the first query, rewind the file, and read all
the query sequences. The first query is used to make an initial determination of the
type of sequences being used, either protein or DNA. The query file is expected to be
uniform, all queries of one sequence type. Because query sequences are usually smaller
than the size of the buffer that standard I/O libraries use (usually 8192 bytes), the
second read of this sequence can be safely ignored. The value can then be expressed
in terms of file size and apparent disk access time as:

T2 = SQ/DRQ. (4.3)

3. T3 is the time it takes to read the data from the reference file(s) multiplied by the
number of queries. This multiplication is necessary because the references are not
saved in memory as they are read, and when a new query is started the reading of
the reference file(s) starts at the beginning. However, when using NFS or another
local file system which may cache file data or IBP STDIO with read caching enabled,
repetitive reads of cached data do not require remote disk access, rather they access
local memory or possibly swap space on local disk. The amount of data that can be
cached is dependent on several factors, the most important being:

(a) the amount of physical memory available,

(b) the current usage of local memory by processes,

(c) and the amount of reference data read.

For instance, in the tests performed to determine the disk I/O statistics, it was seen
that if multiple reads of the same 189 megabyte file were performed using Sun Ultra 2
or Sun Ultra 5 machines, both of which had 256 megabytes of RAM, the subsequent
reads of the data, even by a new process, took significantly less time, by at least a
factor of 10. Sun Ultra 1 machines which also had 256 megabytes of RAM did not
appear to cache that much data or cache it for any significant time between process
invocations. Repetitive reads on these machines showed much more uniform results.
However if the amount of data was reduced to approximately half of the size of the
RAM, then all three sets of machines showed similar results.

The amount of data read is the total amount of reference data divided by the number
of processors involved. With 70 processors and 189 megabytes of reference data, each
processor reads approximately 2.7 megabytes. On all machines in the test set this is
cached for the life of the process either in local memory or in local swap space.

Thus, for a given processor on which the amount of reference data accessed fits into
some file cache, T3 can be expressed as:

T3 =

NR
∑

i=1

(SRi
/DRRi

) + (Nq − 1) ∗

NR
∑

i=1

(SRi
/DRCi

), (4.4)

13

where it is assumed that each processor has a cache separate from all other processors.
For those processors on which the data will not all fit into the cache and assuming
LRU cache replacement policy we have:

T3 = Nq ∗

NR
∑

i=1

(SRi
/DRRi

), (4.5)

where

(a) NR = the number of reference files accessed by the processor.

(b) SRi
= the size of the data from reference file i.

(c) DRRi
= the apparent disk read bandwidth for the disk on which reference file i

resides.

(d) DRCi
= the apparent disk read bandwidth for the disk on which cached reference

reference data from file i resides.

(e) Nq = the number of queries.

4. T4 can be expressed as:

T4 = Nq ∗

(

NR
∑

i=1

SRi

)

/Cp, (4.6)

where

(a) Cp = the time the it takes to compare a query to one megabyte of reference
sequence data on processor p.

(b) NR = the number of reference files.

Cp is a constant value for each type of processor. It can vary from machine to machine
depending on the current computational load but in the long run, these deviations av-
erage out. For the FASTA process, the bulk of the operations are integer comparisons
and the computation for the score is very small in terms of floating point operations.

5. In T5 each selected best sequence (the tests used a default of 20) is re-read from the
reference file(s) twice, once while preparing the best scores and once while preparing
the alignment of the reference sequences with the query sequence.

This time then becomes a function of the total time to print (write) the output,
represented as

PT = POH
+ POBT

+ POAT
, (4.7)

plus the time to re-read the selected reference sequences twice

RT =

Nq
∑

i=1

2 ∗

NRi
∑

j=1

(

SSij
/DRRij

)

 . (4.8)

14

The print times can be further broken down to the apparent disk write bandwidth
times the amount of data being written:

PH = SOA
/DWO, (4.9)

PBT =

Nq
∑

i=0

SOBi

 /DWO, (4.10)

PAT =

Nq
∑

i=0

SOAi

 /DWO. (4.11)

These combined yield:

PT =

SOH
+

Nq
∑

i=1

(SOBi
+ SOAi

)

 /DWO (4.12)

Combining equations (4.8) and (4.12) leads to

T5 =

SOH
+

Nq
∑

i=1

(SOBi
+ SOAi

)

 /DWO +

Nq
∑

i=1

2 ∗

NRi
∑

j=1

(

SSij
/DRRij

)

 (4.13)

where

(a) NRi
= the number of selected best reference sequences for query i.

(b) POH
= the time to print the output header.

(c) POBT
= the total time to print the best scores for all queries.

(d) POAT
= the total time to print the alignment for all queries.

(e) SSij
= the size in megabytes of reference sequence j matching query i.

(f) DRRij
= the apparent disk read bandwidth for reference file j of query i.

(g) SOH
= the size in megabytes of the output header.

(h) SOBi
= the size in megabytes of the output best scores for query i.

(i) SOAi
= the size in megabytes of the output alignment for query i.

6. T6 includes printing a small program statistics summary to the output file, printing
statistics to the log file, and closing the query file. The file close operation time is
so small as to be unmeasurable because the file buffers are flushed at the end of the
T5. This means that the file close operation is simply a local software operation and

15

requires no real disk access. This component can then be expressed in terms of the
printing operations,

T6 = POS + PLS . (4.14)

Here

(a) POS = time to print program (output) statistics and

(b) PLS = time to print log statistics

and these can be broken down to

POS = SOS/DWOand (4.15)

PLS = SLS/DWL (4.16)

resulting in
T6 = SLS/DWL + SOS/DWO (4.17)

4.1.3 Final Model

There are two cases of the final model. The first is the case of no read caching. For this,
substituting equations (4.2), (4.3), (4.5), (4.6), (4.13) and (4.17) into equation (4.1) gives

TT = SE/DRE + SOLH
/DWO + FOopen + FOfopen

+

[SQ/DRQ] +

[

Nq ∗

NR
∑

i=1

(SRi
/DRRi

)

]

+

[

Nq ∗

(

NR
∑

i=1

SRi

)

/Cp

]

+

SOH
+

Nq
∑

i=1

(SOBi
+ SOAi

)

 /DWO+

Nq
∑

i=1

2 ∗

NRi
∑

j=1

(

SSij
/DRRij

)

 + [SLS/DWL + SOS/DWO] . (4.18)

The second case considers the situations where caching of read data is expected to have
a significant impact. Here equation (4.4) is used in place of (4.5) giving:

16

TT = SE/DRE + SOLH
/DWO + FOopen + FOfopen

+

[SQ/DRQ] +

[

NR
∑

i=1

(SRi
/DRRi

) + (Nq − 1) ∗

NR
∑

i=1

(SRi
/DRCi

)

]

+

[

Nq ∗

(

NR
∑

i=1

SRi

)

/Cp

]

+

SOH
+

Nq
∑

i=1

(SOBi
+ SOAi

)

 /DWO+

Nq
∑

i=1

2 ∗

NRi
∑

j=1

(

SSij
/DRRij

)

 + [SLS/DWL + SOS/DWO] . (4.19)

Because writing the entire log file and the entire output file are both accounted for, the
terms relating to output are combined and represented with

[SO/DWO + SL/DWL] = [SOLH
/DWO] +

SOH
+

Nq
∑

i=1

(SOBi
+ SOAi

)

 /DWO

+

[SLS/DWL + SOS/DWO] (4.20)

The input files, query and reference, are stored on the same disk for the tests so, occur-
rences of DRQ and DRR are replaced with DR. Because the caching of the input, if any,
will all be done to the same storage device for all input processed by any one processor,
DRCi

is replaced with DRC . By substituting in these replacements equation (4.18) is further
simplified to

TT =
[

SE/DRE + FOopen + FOfopen

]

+ [SQ/DR] +
[

Nq ∗

NR
∑

i=1

(SRi
/DR)

]

+

[

Nq ∗

(

NR
∑

i=1

SRi

)

/Cp

]

+

Nq
∑

i=1

2 ∗

NRi
∑

j=1

(

SSij
/DR

)

 + [SL/DWL + SO/DWO] (4.21)

and equation (4.19) to

17

TT =
[

SE/DRE + FOopen + FOfopen

]

+
[

SQ +

NR
∑

i=1

(SRi
/DR) + (Nq − 1) ∗

NR
∑

i=1

(SRi
/DRC)

]

+

[

Nq ∗

(

NR
∑

i=1

SRi

)

/Cp

]

+

Nq
∑

i=1

2 ∗

NRi
∑

j=1

(

SSij
/DR

)

 + [SL/DWL + SO/DWO] . (4.22)

Combining terms in equation (4.21) yields

TT = FOopen + FOfopen
+ [SE/DRE] + [SQ/DR] +

(

Nq ∗

NR
∑

i=1

SRi

)

+

2 ∗

Nq
∑

i=1

NRi
∑

j=1

SSij

 /DR+

[

Nq ∗

(

NR
∑

i=1

SRi

)

/Cp

]

+ [SO/DWO] + [SL/DWL] . (4.23)

The same operation on equation (4.22) results in

TT = FOopen + FOfopen
+ [SE/DRE] +

SQ +

NR
∑

i=1

SRi
+

2 ∗

Nq
∑

i=1

NRi
∑

j=1

SSij

 /DR+

[

(Nq − 1) ∗

NR
∑

i=1

SRi

]

/DRC +

[

Nq ∗

(

NR
∑

i=1

SRi

)

/Cp

]

+

[SO/DWO] + [SL/DWL] . (4.24)

The computation of the predicted running times will be based on equations (4.23) and
(4.24).

4.2 Initial Testing

The FASTA serial version was modified so that it would accept all arguments from the
command line. This removed dependencies on environment variables and/or operator input.
The reason behind these modifications is that when running tasks in the background using
remote shells, there are sometimes conflicts caused because some environment variables may
not be set. Also in these cases operator input is impossible. These modifications changed
nothing about the actual operation of the program.

18

FASTA was then changed so that all the output would go to a single file and none
of the output would be sent to standard output. The original code always wrote some
data to standard output regardless of options selected at execution. This simply involved
changing when the output file was opened and which function was used to write the data
in question. Minor functions to log execution and time different portions of the program
were added and the program was changed so that the user could specify a beginning file
offset and an ending file offset for the query file, the reference file(s), or both. Doing this
simply extended already existing capabilities by using functions normally limited to the
PVM (parallel) version. These modifications allow the serial version of the program to be
run as multiple parallel processes with no interprocess communication.

FASTA testing began with a subset of the DNA data bank from GenBank
gR . This subset

is a file of approximately 189 megabytes. It contains 401,113 reference DNA sequences, a
total of 144,592,971 characters which require comparison against any query DNA sequence.
The query sequences are approximately 300 characters long, chosen randomly from Gen-
Bank.

In order to start the multiple applications and specify which portion of the reference
data each processed, two driver programs were created. These simply take command line
arguments, divide the data among the specified number of processors, and cause a task to
spawn on each machine in the test group. NetSolve was used to start the remote tasks.
This required that a NetSolve server be started on each machine in the test group but as
the servers use very few cpu cycles when idle they can be left to run indefinitely.

The results of the initial testing are from tests using 70 desktop computers in the Com-
puter Science department for application execution. Data was stored for these tests in four
locations, three within the department and the fourth in North Carolina. The number of
processors was chosen for mainly logistical reasons. It is large enough to include a reason-
able population of different architectures and it is small enough so that it can almost always
be assured that there are enough machines available for program execution.

19

Chapter 5

Validation Data Acquisition

Validation of the models in the previous chapter requires data. To obtain that data, a series
of tests was performed and the pertinent data were extracted. All of the results here are
from tests that were performed one process at a time and so that there is no contention for
resources by multiple processes.

5.1 Processors

The test processes were run from different machines belonging to one of the following five
sets.

1) Pent3 : a set of Pentium III processor computers running Linux or Windows NT, con-
nected in a cluster and belonging jointly to the Innovative Computation Laboratory
(ICL) and Oak Ridge National Labs. Only machines currently running Linux were
used.

2) Sparc5 : various Sun SPARCstation 5’s through out the department.

3) Ultra1 : the department Cetus lab consisting of Sun Ultra 1’s.

4) Ultra2 : the department Gemini lab consisting of Sun Ultra 2’s.

5) Ultra5 : the department Hydra lab consisting of Sun Ultra 5’s.

The data storage was provided by one of the following machines.

1) Wangzot : a Sun Ultra5 400MHz machine with a Sun StorEdge
gR A1000 Array with

6 18GB disk drives configured as RAID-5 used as an NFS file server.

2) Plank : a Sun Sparc2 workstation with an attached 8 GB Sun disk pack used as an
NFS file server.

20

3) DSI-UT and DSI-NC: IBM RS6000 MultiProcessor Internet File Servers with attached
Tape robots for a maximum storage capacity of approximately 600 gigabytes. One
located in the CS department at UT and one located at Chapel Hill, North Carolina.

5.2 SE

This was simply a matter of determining the size of the executable file that is loadable using
the ‘size’ utility. The values are in Table 5.1.

5.3 SQ

Table 5.2 has the size of the files containing the queries.

5.4 SL

The sizes of the log files are in Table 5.3. The difference in sizes of these files is primarily
due to the length of the strings representing the file names and the number of arguments.
Those using files stored in IBP generally have the strings representing all the byte array
capabilities (not just read or write) which are considerable longer than the paths of the
NFS files used. The table has averages of all the log files by test for each set of tests run.
The largest log files are for the tests using local IBP servers, which had the log and output
files stored in byte arrays as well as the query and reference files. The smallest set of files
is for the test using NFS for all the storage because the path names are very short.

5.5 SO

The size of the individual process output files varies considerably. FASTA assigns a value to
every reference sequence compared to the query sequence based on a number of factors. It
then selects the, at most, (n) reference sequences which have a value within a predetermined
range. There may be no reference sequences selected and only selected The smallest output
file for the multiple query tests had 5 queries which had no matches and in the largest
output file all queries had (n) matches. In the computations of predicted running times the
average sizes of the output files for single and multiple queries from Table 5.4 were used.

5.6 SS

The reference sequence files used contained Expressed Sequence Tag (EST) sequences.
These normally have fairly short (300-500) base proteins in the sequence and a line of
arbitrary length of descriptive data. FASTA re-reads the selected reference sequences twice
from the input files, once to compute the alignment with the query sequence and again to

21

Table 5.1: Executable size read

Machine O/S Megabytes

Pent3 550MHz Linux 2.2.15 0.2598

SPARC5 SunOS 5.7 0.3275

Ultra1 SunOS 5.7 0.3275

Ultra2 SunOS 5.5.1 0.3223

Ultra5 SunOS 5.7 0.3275

Table 5.2: Query file size

Queries Megabytes

One 0.0004

Seven 0.0029

Table 5.3: Average log file sizes

Test Type Megabytes

Using NFS storage 0.00059

Using IBP storage 0.00086

Prepositioning in IBP 0.00108

Table 5.4: Average output file sizes

Queries Megabytes

One 0.018

Seven 0.129

22

generate the output. It was assumed that the maximum number of sequences (20) would
always be selected. Table 5.5 shows the average number of characters for the sequences
and descriptions. Table 5.6 contains the 20 sequence total and are the values used in the
validation.

5.7 SR

The sizes of the reference files are in Table 5.7. The EST file on DSI is actually two files
but FASTA accesses it as though it were one file. It is split because this version of FASTA,
and in fact the Linux operating system used for these tests, has not yet been modified to
handle file sizes in excess of 231

− 1 bytes.

5.8 C

The data in Table 5.8 was extracted from multiple runs of the same tests used for the
validation. The FASTA program is instrumented so that the time to read the reference
data is excluded from the time to compute the match. It was felt that this was a better
approach than developing a modified version of the program that reads some large piece of
reference data into memory and then processes a query against that stored data.

5.9 FO

This is the time it takes to create/open a file for writing, or open it for reading. (See
Table 5.9.) Both open() and fopen() were tested. The logging functions use open() and
write() and the rest of the output is generated using fopen() and fprintf().

5.10 DW

DW is the apparent disk write access time in megabytes per second. The test results in
Table 5.10 represent a single process writing to a file. The tables show times for both write()
and fprintf().

5.11 DRX

Apparent disk read access bandwidth shown in Table 5.11 is in megabytes per second. The
test which gathered the data used fgets(), a C standard I/O function, in the same fashion
the FASTA program does. The input file consists of the same type of data used in the
reference library file, so each line is seldom more than 80 characters long. The query data
is in the same format as the reference data so these test results will be used for all read
operations.

23

Table 5.5: Average sequence lengths

File Avg Seq Avg Desc

EST human subset 360 129

EST human on DSI 390 131

Table 5.6: 20 sequence totals

File Megabytes

EST human subset 0.0093

EST human on DSI 0.0080

Table 5.7: Reference file sizes

File Megabytes

EST human subset 188.991

EST Human on DSI 2050.613

Table 5.8: Speed of comparing queries to sequences

Machine Avg Megabytes/Sec

Pent3 0.385

Sparc5 0.031

Ultra1 0.067

Ultra2 0.086

Ultra5 0.182

24

Table 5.9: File open test results in seconds

Machine Disk Create No create
open() fopen() fopen()

Pent3 IBP (Ultra2) 0.025 0.040 0.011

Sparc5 IBP (Ultra2) 0.049 0.081 0.044

Ultra1 IBP Ultra2) 0.032 0.054 0.017

Ultra2 IBP (Ultra2) 0.031 0.041 0.011

Ultra5 IBP (Ultra2) 0.025 0.038 0.017

Pent3 IBP (DSI-NC) 0.376 0.520 0.458

Sparc5 IBP (DSI-NC) 0.398 0.430 0.236

Ultra1 IBP (DSI-NC) 0.376 0.425 0.235

Ultra2 IBP (DSI-NC) 0.382 0.397 0.198

Ultra5 IBP (DSI-NC) 0.374 0.397 0.210

Pent3 IBP (DSI-UT) 0.788 0.793 0.391

Sparc5 IBP (DSI-UT) 0.041 0.066 0.035

Ultra1 IBP (DSI-UT) 0.017 0.033 0.012

Ultra2 IBP (DSI-UT) 0.015 0.027 0.009

Ultra5 IBP (DSI-UT) 0.012 0.026 0.010

Pent3 IBP (local) 0.002 0.004 0.001

Sparc5 IBP (local) 0.103 0.283 0.020

Ultra1 IBP (local) 0.032 0.052 0.004

Ultra2 IBP (local) 0.024 0.049 0.004

Ultra5 IBP (local) 0.005 0.016 0.002

Pent3 NFS (plank) 0.022 0.042 0.007

Sparc5 NFS (plank) 0.043 0.049 0.034

Ultra1 NFS (plank) 0.024 0.042 0.009

Ultra2 NFS (plank) 0.022 0.036 0.007

Ultra5 NFS (plank) 0.022 0.043 0.017

Pent3 NFS (wangzot) 0.004 0.010 0.001

Sparc5 NFS (wangzot) 0.012 0.016 0.013

Ultra1 NFS (wangzot) 0.006 0.011 0.007

Ultra2 NFS (wangzot) 0.006 0.007 0.004

Ultra5 NFS (wangzot) 0.005 0.006 0.010

25

Table 5.10: Disk write test bandwidth

Machine Disk Mbytes/Sec
write() fprintf()

Pent3 IBP (Ultra2) 0.085 0.461

Sparc5 IBP (Ultra2) 0.058 0.249

Ultra1 IBP (Ultra2) 0.095 0.527

Ultra2 IBP (Ultra2) 0.091 0.562

Ultra5 IBP (Ultra2) 0.101 0.659

Pent3 IBP (DSI-UT) 0.092 0.508

Sparc5 IBP (DSI-UT) 0.060 0.270

Ultra1 IBP (DSI-UT) 0.106 0.623

Ultra2 IBP (DSI-UT) 0.104 0.704

Ultra5 IBP (DSI-UT) 0.092 0.717

Pent3 IBP (DSI-NC) 0.003 0.011

Sparc5 IBP (DSI-NC) 0.003 0.011

Ultra1 IBP (DSI-NC) 0.003 0.011

Ultra2 IBP (DSI-NC) 0.003 0.011

Ultra5 IBP (DSI-NC) 0.003 0.011

Pent3 IBP (local) 0.009 0.071

Sparc5 IBP (local) 0.012 0.079

Ultra1 IBP (local) 0.058 0.368

Ultra2 IBP (local) 0.097 0.601

Ultra5 IBP (local) 0.081 0.609

Pent3 NFS (plank) 0.100 0.142

Sparc5 NFS (plank) 0.763 0.734

Ultra1 NFS (plank) 0.941 0.837

Ultra2 NFS (plank) 0.952 0.862

Ultra5 NFS (plank) 0.955 0.888

Pent3 NFS (wangzot) 1.726 1.961

Sparc5 NFS (wangzot) 1.022 0.999

Ultra1 NFS (wangzot) 6.373 5.927

Ultra2 NFS (wangzot) 8.501 7.943

Ultra5 NFS (wangzot) 8.015 7.768

26

Table 5.11: Disk read test bandwidth

Machine Disk Mbytes/Sec

Pent3 IBP (Ultra2) 0.674

Sparc5 IBP (Ultra2) 0.340

Ultra1 IBP (Ultra2) 0.748

Ultra2 IBP (Ultra2) 0.740

Ultra5 IBP (Ultra2) 0.840

Pent3 IBP (DSI-UT) 0.730

Sparc5 IBP (DSI-UT) 0.369

Ultra1 IBP (DSI-UT) 0.829

Ultra2 IBP (DSI-UT) 0.916

Ultra5 IBP (DSI-UT) 0.996

Pent3 IBP (DSI-NC) 0.017

Sparc5 IBP (DSI-NC) 0.017

Ultra1 IBP (DSI-NC) 0.017

Ultra2 IBP (DSI-NC) 0.017

Ultra5 IBP (DSI-NC) 0.017

Pent3 IBP (local) 2.306

Sparc5 IBP (local) 0.096

Ultra1 IBP (local) 0.495

Ultra2 IBP (local) 0.911

Ultra5 IBP (local) 0.644

Pent3 NFS (plank) 0.851

Sparc5 NFS (plank) 0.828

Ultra1 NFS (plank) 0.928

Ultra2 NFS (plank) 0.929

Ultra5 NFS (plank) 0.922

Pent3 NFS (wangzot) 5.622

Sparc5 NFS (wangzot) 1.572

Ultra1 NFS (wangzot) 5.843

Ultra2 NFS (wangzot) 10.452

Ultra5 NFS (wangzot) 9.580

27

5.12 DRC

In both the NFS and IBP cases, the apparent disk read access time when caching is in
use is affected by a number of factors. One, which cannot be accurately modeled, is the
current usage of the local disk by processes. This includes disk swap space. However, for
the general case, testing of the data access time during normal working hours and using a
mix of machines gives a good approximation of the validation testing conditions.

Another factor which has perhaps more impact is the amount of swap space for data
caching. When using NFS this is be approximately one half of the available swap space.
This is tunable by the system administrators but is usually not changed once the initial
installation is complete. IBP STDIO caching is currently configured so that the amount
of cache space is a minimum of 1 megabyte and a maximum of 100 megabytes. If that
minimum amount is not available in either volatile or stable storage, no caching is done.
Once a storage area is chosen and a maximum size determined, neither is changed for the
life of that process. Both NFS and IBP use their cache space in a LRU manner, so that
if the amount being cached exceeds the space available and the data is reread from the
beginning each time, the access time devolves to that of reading initially from the remote
storage. As caching for IBP is equivalent to reading the data from the original file on the
first pass followed by reading the data from local IBP storage on all subsequent reads, the
data necessary to compute this is in Table 5.11.

5.13 Example Calculation

Assume that a test process is running on a Sparc 5 machine. It is processing one query
against the EST human subset reference file. The query file, the reference file and the
output, both log file and FASTA results, are using IBP on the DSI server at UT. The
executable is residing in NFS on wangzot. Note that in this situation there is only one
reference file and one query. Using equation 4.23 and values from the tables we have

TT = 0.041sec + 0.066sec + [0.3275mb/1.572mb/sec] +

[0.0004mb/0.369mb/sec] +

[(1 ∗ 188.991mb) + (2 ∗ 0.0093mb)] /0.369mb/sec+

[1 ∗ 188.991mb/0.031mb/sec] + [0.018mb/0.270mb/sec]

+ [0.00086mb/0.060mb/sec] (5.1)

TT = 0.041sec + 0.066sec + 0.208sec + 0.001sec + 512.221sec+

6096.484sec + 0.067sec + 0.014sec (5.2)

TT = 6609.102sec (5.3)

28

Chapter 6

Testing for Validation

This chapter contains the results of putting the data and equations from the previous
sections to work. The intent is to see if the predictive model is reasonable. The best way to
represent the comparison between the predicted and actual results is graphically. The two
following sections document that comparison for the case of using a single query sequence
and the case of using 7 query sequences. In each case, 70 processors were used with the same
189 megabyte reference file. The test data was collected for five different sets of machines
(list in Table 6.1) and the results for each set are combined. The different test sub-cases
correspond to the locations of the reference data and the output files.

6.1 Single query results

The first eight figures in this chapter are graphs of the results of using a single query. The
data storage areas were varied to more completely test the system and the model. The
primary storage server was IBP. However, the local NFS file-system was used for storage
during preliminary testing to validate the test programs and the program model. It is not
the intent to show that IBP can compete with NFS in a local area network, this information
is only included for completeness. Regardless, when the input and output files are stored
in local NFS the model does a fair job of predicting the running time of the processes, see

Table 6.1: Testing Machines

Name Processor Speed O/S Number

Pent3 Dual Pentium III 550 MHz RedHat Linux 7.1 8

Sparc5 Sun Sparc 85 MHz Solaris 2 20

Ultra1 Sun Sparcv9 143 MHz Solaris 7 30

Ultra2 Dual Sun Sparcv9 167 MHz Solaris 2 12

Ultra5 Sun Sparcv9 400 MHz Solaris 7 30

29

Figure 6.1.
Next the input data was pre-positioned on each processing machine on its local disk using

an IBP server (Figure 6.2). In this situation IBP allows access to data storage resources
that may not normally be available to an external process. The data for this test is divided
between the processors and stored prior to the application starting. Output data is also
written to this local storage and then moved by the driver program after the job completes.
This is done only for ease of data collection and is not strictly necessary. Both graphs show
that the computation time (T4) is the dominant component of overhead.

No buffering was used for the results in Figures 6.3 - 6.5. These tests simply used the
IBP storage as if it were a standard file system. No read buffering is involved because the
IBP STDIO library will only do that for byte arrays if an IBP server exists on the local
host and no such server was allowed to exist.

The IBP buffering tests of Figures 6.6 - 6.8 use a local IBP server accessing the local
disk to buffer the read of data from the reference files. The buffering is transparent to the
process and is managed by the IBP STDIO library. All that is required is that a local IBP
server be started (by the driver program) before the application. The storage for the local
IBP servers is /var/tmp instead of /tmp because /var/tmp is normally the larger of the
two.

The Figures 6.6 and 6.8 show that the actual total execution time is greater than the
predicted results, primarily in the time required to read the reference data. The reason is
even though the processes are contending for storage access, the IBP STDIO library uses a
buffer of one megabyte. The functions (such as fread()) that the process uses to read the
reference data have a buffer size of one (1) kilobyte. This means that for the size of data an
individual machine reads in this test (2.7 megabytes) there are approximately 2765 reads
from the remote storage without buffering and 3 remote reads for the case with buffering.
Then there is an additional read of the data from the local disk. This means that even
though there is contention for disk and network access in all the remote access tests, it is
relatively speaking a smaller proportion of the time to read the data in the buffering tests.

Figure 6.7 has the opposite result. This is due to the manner in which the data is
transferred from remote storage to the buffer. In determining the data transfer rates (the
table values of chapter 5) the amount requested per read was one kilobyte. For each of
these reads a round-trip network connection must be established then the data transferred.
Because of the large number of reads the overhead of establishing the network connection
(latency) is quite large. The test version of IBP uses a maximum data transfer size of one
megabyte. This virtually assures that the majority of network traffic will be transfers of the
largest possible size. In the case of the connection to a remote site having a large network
latency this can result in a significant increase in overall transfer rate. This increase in
transfer rate is also occurring in the other buffering tests, it is just not as significant a
factor.

In each set of test results there are anomalies. For instance in Figure 6.1 the result for
the actual computation on the Sparc5 machines is much longer than the predicted time.

30

pa pa pa pa pa

400

0

100

200

300

400

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

5.
1%

31
.5

%

-2
.1

%

-4
.6

%

4.
2%

Figure 6.1: One Query, Using NFS.

pa pa pa pa pa

400

0

100

200

300

400

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

28
.8

%

13
.3

%

2.
7%

9.
3%

27
.0

%

Figure 6.2: One Query, Using Local Storage
(IBP).

pa pa pa pa pa

400

0

100

200

300

400

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

41
0.

4%

96
.5

%

17
2.

7%

15
0.

9% 47
9.

3%

Figure 6.3: One Query, No Buffering Using
DSI-UT

pa pa pa pa pa

400

0

100

200

300

400

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

17
.7

%

19
.1

%

12
.9

%

15
.2

%

16
.3

%

Figure 6.4: One Query, No Buffering Using
DSI-NC.

31

pa pa pa pa pa

400

0

100

200

300

400

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

16
79

.3
% 22
0.

9%

43
1.

7%

37
1.

9%

11
90

.0
%

Figure 6.5: One Query, No Buffering Using
Ultra2.

pa pa pa pa pa

400

0

100

200

300

400

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

19
.9

%

14
.9

%

4.
5%

18
.4

%

53
.6

%

Figure 6.6: One Query, Buffering Using DSI-
UT.

pa pa pa pa pa

400

0

100

200

300

400

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

-5
1.

0%

-2
4.

9%

-3
8.

6%

-3
9.

4%

-3
7.

7%

Figure 6.7: One Query, Buffering Using DSI-
NC.

pa pa pa pa pa

400

0

100

200

300

400

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

38
1.

9%

14
.1

%

3.
0%

15
.1

%

82
.8

%

Figure 6.8: One Query, Buffering Using Ul-
tra2.

32

Similarly in the rest of the graphs there is some component that is noticeably different
from the predicted values. This is typically a by-product of the fact that these machines and
their networks are in active use by others. Also the model sets (Table 6.1) are relatively
small, the largest being the Ultra5 and Ultra1 machines. The others have 20 or fewer
members, not all of which were available for any given test. This means that as the number
of tests for any one configuration was small the impact of even a single machine being
heavily loaded can be significant.

Also note that even though the Ultra2 machines are physically part of the same LAN
as the rest of the actual processing machines, when the reference data is stored on one of
them, the differences between predicted and actual access times are much larger than would
seem to be warranted. This is ascribed to the configuration of the switches which connect
this cluster of workstations to the rest of the network. They were originally installed to
research different networking strategies and methods, particularly when performing parallel
processing and were not intended to be used other than as a cluster. On an individual basis
they respond as might be expected of any other workstation but the cluster connection to
the LAN is the bottleneck when large numbers of external accesses are made.

6.2 Multiple query results

Multiple query results are given in the same order as the single query results. These
comparisons are of the predicted values to the actual values for the cases where multiple
(seven) queries were used in the testing. Figures 6.9 through 6.16 are the graphs for these
results.

Again we see that for the NFS and Local Storage tests the predicted results and the
actual results are very close. From this it is inferred that the model is accurate. The tests
that use IBP buffering also have results that very closely match the model, more so even
than the single query tests.

On the other hand, the tests that use no buffering and only read directly from IBP show
that some factor has not been correctly accounted for. Specifically, this is the impact of
multiple processes reading from a single IBP server. This is not a uniform factor. Each IBP
storage array is affected by such things as the load on the local processor running the server,
the disk access semantics of the particular hardware architecture, the amount of local disk
cache available on that processor, how network connections are handled by the O/S kernel,
the network speed and type that connects that server to the client.

As can be seen in the multiple query tests the multiple-access effect has significant
impact on the predictability of the process running time. The use of IBP buffering (and we
assume any local data buffering) can minimize this impact in the long run. The multiple
query tests without buffering that are accessing DSI-NC seem to indicate that the multiple-
access effect has small impact. Actually, the latency of the connection is so large that it
masks that impact.

A comparison of the single and multiple query results illustrates the multiple-access
effect. Except for the case of DSI-NC, the single query times are not much different than

33

pa pa pa pa pa

2100

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

-3
4.

5%

41
.7

%

-4
.2

%

-1
0.

6%

-2
.9

%

Figure 6.9: Seven Queries, Using NFS.

pa pa pa pa pa

2100

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

36
.6

%

12
.6

%

-4
.3

%

0.
4%

12
.4

%

Figure 6.10: Seven Queries, Using Local
Storage.

pa pa pa pa pa

2100

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

8.
6%

8.
9%

-2
.6

%

11
.8

%

43
.7

%

Figure 6.11: Seven Queries, Buffering Using
DSI-UT.

pa pa pa pa pa

2100

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

-5
9.

0%

-7
.2

%

-2
6.

4%

-2
2.

2%

-5
.2

%

Figure 6.12: Seven Queries, Buffering Using
DSI-NC.

34

pa pa pa pa pa

2100

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

41
9.

1%

6.
9%

-1
.5

%

14
.2

%

84
.4

%

Figure 6.13: Seven Queries, Buffering Using
Ultra2.

pa pa pa pa pa

2100

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

11
93

.9
%

13
6.

4%

27
9.

1%

36
6.

4%

76
0.

1%

Figure 6.14: Seven Queries, No Buffering Us-
ing DSI-UT.

pa pa pa pa pa

2100

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

14
.2

%

17
.5

%

12
.8

%

15
.2

%

15
.5

%

Figure 6.15: Seven Queries, No Buffering Us-
ing DSI-NC.

pa pa pa pa pa

2100

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U2 U5

20
07

.1
% 26

6.
3%

54
2.

6%

68
0.

9%

13
75

.1
%

Figure 6.16: Seven Queries, No Buffering Us-
ing Ultra2.

35

the unbuffered results. This is because the buffering only has an impact on those reads that
occur after the initial access to some block of data. In the multiple query case, all accesses
to the data after the first query are from local disk, so that the longer the process runs (the
more queries that are processed at a single time), the less impact the multiple-access effect
has.

36

Chapter 7

Continuing Experiments Using

Large Files

7.1 Introduction

Preliminary testing showed that the original hypothesis appears accurate and that the model
seems to be consistent. Testing began on a large input reference. The original test reference
file was a subset of the EST human database from GenBank

gR . This file was 189 megabytes
and contained 401,113 DNA sequences. As seen in the previous chapter, running times for
processing queries against this reference file are reasonable and in some sense predictable.
The large input we use in this chapter is the entire EST human DNA sequence set from
GenBank

gR stored in two files residing on DSI file servers. The reference was divided into
two files because of the 2 gigabyte limit currently imposed on file size by some compilers
and operating systems. The total size of this reference EST database is 2.003 gigabytes and
it contains 4,084,858 DNA sequences.

7.2 Hardware

Between the original tests to validate the operation of the software systems and the model
and these large file tests, the department’s hardware experienced significant changes. Op-
erating systems were upgraded, older hardware was phased out and newer machines were
installed. The new machine sets are reduced to four: Ultra1, Ultra5, Sparc5 and Pent3.
Their characteristics are in Table 7.1.

These changes also required re-examination of the original data obtained for chapter 5.
Most remained the same but the file access data showed some significant changes, generally
due to network reconfigurations and improvements in physical connections. Additionally,
some of the preliminary testing was performed using reference data stored on an I2-DSI
server located at Chapel Hill, North Carolina which is no longer available due to hardware
failures. The new reference data is contained in Tables 7.2, 7.3, and 7.4.

37

Table 7.1: New Testing Machines

Name Processor Speed O/S Number

Pent3 Dual Pentium III 550 MHz RedHat Linux 7.1 8

Sparc5 Sun Sparc 85 MHz Solaris 8 20

Ultra1 Sun Sparcv9 143 MHz Solaris 8 30

Ultra5 Sun Sparcv9 400 MHz Solaris 8 30

Table 7.2: File open test results in seconds

Machine Disk Create No create
open() fopen() fopen()

Pent3 IBP (DSI-NC) 0.015 0.018 0.322

Sparc5 IBP (DSI-NC) 0.040 0.057 0.131

Ultra1 IBP (DSI-NC) 0.029 0.059 0.148

Ultra5 IBP (DSI-NC) 0.018 0.029 0.138

Pent3 IBP (DSI-UT) 0.011 0.012 0.009

Sparc5 IBP (DSI-UT) 0.046 0.105 0.031

Ultra1 IBP (DSI-UT) 0.037 0.068 0.030

Ultra5 IBP (DSI-UT) 0.015 0.029 0.016

Pent3 IBP (sinrg) 0.013 0.258 0.490

Sparc5 IBP (sinrg) 0.050 0.154 1.000

Ultra1 IBP (sinrg) 0.033 0.075 0.782

Ultra5 IBP (sinrg) 0.015 0.030 0.391

Pent3 IBP (local) 0.002 0.012 0.001

Sparc5 IBP (local) 0.069 0.204 0.017

Ultra1 IBP (local) 0.041 0.095 0.009

Ultra5 IBP (local) 0.008 0.026 0.003

Pent3 NFS (wangzot) 0.004 0.003 0.003

Sparc5 NFS (wangzot) 0.007 0.010 0.007

Ultra1 NFS (wangzot) 0.005 0.010 0.004

Ultra5 NFS (wangzot) 0.003 0.004 0.003

38

Table 7.3: Disk read test bandwidth

Machine Disk Mbytes/Sec

Pent3 IBP (DSI-UT) 1.033

Sparc5 IBP (DSI-UT) 0.428

Ultra1 IBP (DSI-UT) 0.572

Ultra5 IBP (DSI-UT) 0.954

Pent3 IBP (DSI-NC) 0.026

Sparc5 IBP (DSI-NC) 0.026

Ultra1 IBP (DSI-NC) 0.026

Ultra5 IBP (DSI-NC) 0.027

Pent3 IBP (sinrg) 0.504

Sparc5 IBP (sinrg) 0.403

Ultra1 IBP (sinrg) 0.590

Ultra5 IBP (sinrg) 1.051

Pent3 IBP (local) 2.306

Sparc5 IBP (local) 0.088

Ultra1 IBP (local) 0.228

Ultra5 IBP (local) 0.481

Pent3 NFS (wangzot) 21.089

Sparc5 NFS (wangzot) 1.986

Ultra1 NFS (wangzot) 3.660

Ultra5 NFS (wangzot) 14.188

39

Table 7.4: Disk write test bandwidth

Machine Disk Mbytes/Sec
write() fprintf()

Pent3 IBP (DSI-UT) 0.157 0.869

Sparc5 IBP (DSI-UT) 0.027 0.165

Ultra1 IBP (DSI-UT) 0.051 0.293

Ultra5 IBP (DSI-UT) 0.029 0.565

Pent3 IBP (DSI-NC) 0.124 0.709

Sparc5 IBP (DSI-NC) 0.070 0.306

Ultra1 IBP (DSI-NC) 0.077 0.372

Ultra5 IBP (DSI-NC) 0.120 0.688

Pent3 IBP (sinrg) 0.055 0.227

Sparc5 IBP (sinrg) 0.026 0.147

Ultra1 IBP (sinrg) 0.051 0.283

Ultra5 IBP (sinrg) 0.114 0.665

Pent3 IBP (local) 0.313 2.959

Sparc5 IBP (local) 0.012 0.081

Ultra1 IBP (local) 0.029 0.191

Ultra5 IBP (local) 0.083 0.533

Pent3 NFS (wangzot) 7.661 9.774

Sparc5 NFS (wangzot) 1.147 1.146

Ultra1 NFS (wangzot) 2.029 2.046

Ultra5 NFS (wangzot) 9.734 10.114

40

7.3 Initial Tests

The testing with reference files in excess of 2 gigabytes was begun with the EST reference
data stored on the DSI server at UT Knoxville. As in the preliminary testing, there are three
basic test configurations and all tests were performed using 70 machines located within the
Computer Science Department. The tests are:

1) all input reference and query data and log and output files are located on the same
remote server and accessed using IBP

2) all input reference and query data are located on the remote server, data reads are
buffered on the local machine using an IBP server much like NFS file buffering, and
log and output files are also written to the local IBP server

3) all input reference and query data are prepositioned on the local machine using IBP
and the log and output files are written to the local IBP server

The single query results are again given first. Figure 7.1, ”Using Local Storage (IBP)”,
serves to support the contention that the model of the computation is basically correct
given that the various factors involved in the computation can be accurately measured.
The Pent3 results when buffering is used, Figure 7.2, seem rather anomalous. The predicted
time in this test sequence is much greater than the actual time.

These machines are always the first to start. The reason for this is the driver program
which accesses a list of potential server machines from an agent. Along with the names of
the servers the driver receives integer and floating point benchmark values for each machine.
Because the FASTA3 application performs basic integer comparisons, the driver sorts the
machines using the integer benchmark value, fastest first. This should mean that those
processors which run first, if they are fast enough, can access their data without being as
seriously impacted by the effects of multiple-access as the other processors. To test this
theory, the order of execution is reversed, the fastest 70 processors are still selected out of
the available servers but the slowest of these is started first and the fastest last. Figure 7.3
shows that even though there is a small (approximately 6%) increase in read time for the
Sparc5, Ultra1 and Ultra5 machines, the Pent3 machines have something on the order of a
430% increase in the time to read the reference data.

The remaining two single query graphs, Figures 7.4 and 7.5, indicate that in the case
where the data access is directly from the remote storage, the order of execution has little
effect. These graphs do show that the effect of multiple-access to a storage area is even
more pronounced for long running processes. The multiple query (seven) results in Figures
7.6 through 7.10 show results similar to the single query tests.

41

pa pa pa pa

2000

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

-7
.9

%

3.
1%

-4
.7

%

1.
3%

Figure 7.1: One Query, Large Files, Using
Local Storage (IBP).

pa pa pa pa

2000

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

-1
3.

5%

28
.6

%

10
8.

6%

37
1.

2%

Figure 7.2: One Query, Large Files, Buffer-
ing Using DSI-UT.

pa pa pa pa

2000

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

86
.7

%

34
.2

%

11
7.

6%

40
1.

5%

Figure 7.3: One Query, Large Files, Reversed
Order, Buffering Using DSI-UT.

pa pa pa pa

2000

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

10
70

.7
%

11
4.

6%

22
9.

7%

70
4.

3%

Figure 7.4: One Query, Large Files, No
Buffering Using DSI-UT.

42

pa pa pa pa

2000

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

10
67

.3
%

10
7.

3%

21
4.

0%

66
2.

8%

Figure 7.5: One Query, Large Files, Reversed
Order, No Buffering Using DSI-UT.

pa pa pa pa

14000

0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

-7
.8

%

2.
9%

-7
.4

%

-2
.2

%

Figure 7.6: Seven Queries, Large Files, Using
Local Storage.

pa pa pa pa

14000

0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

-5
.7

%

37
.5

%

12
6.

9%

43
7.

3%

Figure 7.7: Seven Queries, Large Files,
Buffering Using DSI-UT.

pa pa pa pa

14000

0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

42
.2

%

39
.4

%

12
9.

4%

45
2.

2%

Figure 7.8: Seven Queries, Large Files, Re-
versed order, Buffering Using DSI-UT.

43

pa pa pa pa

14000

0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

11
72

.7
%

11
9.

6%

23
5.

2%

71
9.

0%
Figure 7.9: Seven Queries, Large Files, No Buffering Using DSI-UT.

pa pa pa pa

14000

0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

11
20

.9
%

11
5.

4%

22
7.

0%

70
0.

8%

Figure 7.10: Seven Queries, Large Files, Reversed order, No Buffering Using DSI-UT.

44

7.4 Distributed Input Tests

The question now arises: can reducing the number of processes accessing the data signif-
icantly improve the predictability of the running time? To test this, the large input files
have been divided into ten approximately equally sized files and each placed on a separate
machine, using IBP. One problem here is finding sufficient storage space for the data. Even
though many of the desktop machines being used have large local disks with partitions in
excess of 2 gigabytes, these partitions are often administratively restricted to specific users
or uses or are shared by many users. This means that it can be difficult for an arbitrary
user to store files of 200 megabytes or more on multiple desktop units.

Storage for the files for these tests was provided by a cluster of Sun Enterprise 220R
servers which are dual 450MHz UltraSparc-II, 64-bit processors with 512 megabytes of ram
and four megabytes of cache, part of the Scalable Intracampus Research Grid (SInRG) [20]
project. The standardization tests have been performed with these machines and those
results are included in Tables 7.2, 7.3, and 7.4. The discovery of storage resources will not
be dynamic but will follow the pattern already established, file names or IBP capabilities
are passed to the driver program via command line arguments.

Any more testing using data prepositioned on the processing machines would serve no
purpose. It has already been seen that this case is predictable. Therefore the tests using
the SInRG machines is limited to the buffered and unbuffered cases.

The improvement in overall execution time seen in the distributed input tests is signif-
icant. Examination of Figures 7.11 through 7.18 and comparison with their counter-parts
from Figures 7.2 through 7.5 and 7.7 through 7.10 shows that by distributing the data
storage we have significantly reduced the data access time. This corresponds to a reduction
in the multiple-access effect as evinced by fact that the actual times more closely approach
the predicted times in these tests.

Another fact that comes from the examination is that neither the fastest nor the slowest
processor sets were significantly affected by reversing the order in which the processors were
used. The Ultra1 and Ultra5 sets do show a marked change. With 70 processors and 10
separate data storage machines, 7 processors now access each data storage area. In general
there are 7 Pent3 machines per test so they either access the first machine or the last. The
same basic thing holds for the Sparc5, only with approximately 14 machines. That means
the Ultra1 and Ultra5 machines are contending for the remainder of the storage areas. It
appears that the reverse ordering in this case improves the access patterns by reducing
conflicts for those machines.

45

pa pa pa pa

2000

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

-4
6.

7%

9.
4%

-3
.8

%

52
.8

%

Figure 7.11: One Query, Large Files, Buffer-
ing Using SInRG.

pa pa pa pa

2000

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

-4
2.

3%

7.
3%

-1
1.

9%

39
.0

%

Figure 7.12: One Query, Large Files, Re-
versed Order, Buffering Using SInRG.

pa pa pa pa

2000

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

28
.9

%

13
.1

%

58
.3

%

13
5.

6%

Figure 7.13: One Query, Large Files, No
Buffering Using SInRG.

pa pa pa pa

2000

0

500

1000

1500

2000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

22
.0

%

13
.1

%

-2
.1

%

39
.9

%

Figure 7.14: One Query, Large Files, Re-
versed Order, No Buffering Using SInRG.

46

pa pa pa pa

14000

0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

-3
0.

7%

8.
5%

-0
.3

%

59
.7

%

Figure 7.15: Seven Queries, Large Files,
Buffering Using SInRG.

pa pa pa pa

14000

0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

-2
5.

3%

9.
8%

-7
.3

%

48
.7

%

Figure 7.16: Seven Queries, Large Files, Re-
versed Order, Buffering Using SInRG.

pa pa pa pa

14000

0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

29
.6

%

8.
9%

55
.8

%

13
1.

1%

Figure 7.17: Seven Queries, Large Files, No
Buffering Using SInRG.

pa pa pa pa

14000

0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

T_6 - Stats

T_5 - Output

T_4 - Comp

T_3 - Refs

T_2 - Queries

T_1 - Init

P3 S5 U1 U5

24
.6

%

12
.5

%

-3
.7

%

38
.4

%

Figure 7.18: Seven Queries, Large Files, Re-
versed Order, No Buffering Using SInRG.

47

Chapter 8

Conclusions and Directions

8.1 Conclusions

This research has shown that a legacy serial application can easily be made to function in
a wide-area setting. Further it has shown that such applications can be modeled so that
the application’s performance can be predicted with some accuracy. This can be of great
benefit to researchers or others who do not have locally available resources for storage of
large data sets or computation but do have access to sufficient wide-area resources.

The research has also shown the usefulness of IBP as a medium for data access in
wide-area networks. For such diverse, heterogeneous systems it can be used to provide a
relatively simple and predictable “file system”. By combining IBP with the C standard I/O
library we now have a method by which legacy code can be easily modified to operate in
the wide-area environment. This can result in the saving of many man-hours over trying to
rewrite such code.

Perhaps as importantly, it has shown that restrictions such as file size limits and disk
storage space can be overcome by the use of IBP. The data can be easily divided up and
stored in separate locations even though this adds somewhat to the complexity of the data
access. With IBP there is now a consistent way to access such data stored on practically
any machine that can be accessed through a network connection.

The research has also provided insight into predicting data access times in wide-area
program networks. Modeling of the application is not necessarily simple, but even in the
case of legacy programs it can be done fairly accurately. In the simplest uses of the model,
such as those where the data is prepositioned on the local machine, data access prediction
based on basic bandwidth tests is reasonable. But in situations where multiple processes are
attempting access of the same data at arbitrarily overlapping intervals, this is not enough.

For any wide-area network there are a large number of dynamic components, such as
switches and routers, that contribute to the overhead of the data access. In addition there
is the contention for the network medium by outside processes. And, as has been seen,
something as simple as the order of execution of the wide-area programs can markedly im-
pact overall performance. The point being that static predictions can only supply a general

48

idea of the running time of a process in this type of environment. But such predictions and
initial testing based on them can supply information on how to pre-configure the system
for good average performance in the long run.

8.2 Future Directions

A major drawback to the system as tested for this research is its static nature. All mea-
surements and data storage decisions are made before any test is begun and no attempt is
made to update information after each test. This naturally points to research into dynamic
performance data acquisition for use in the prediction model. Information gained through
this could give some better idea of the overall performance of networks under varying load
conditions.

Another research avenue is that of dynamic selection of storage resources. The Logistical
Backbone (L-Bone) component of the Network Storage Stack [26] is being developed to
provide dynamic information on availability of IBP servers and corresponding live network
bandwidth. With this more accurate prediction of the data access time, total execution time
predictions are improved. This improvement would lead to the ability to make a choice of
storage location for a particular computational resource to minimize overall running time.
This would in turn lead to the ability to make well-informed load balancing decisions, i.e.
the faster processors should reasonably be asked to process more data than the slower
processors.

Fault tolerance in the system as tested was not considered. In the tested system the
results of each processor were independent of all other results. With the ability to dynami-
cally select duplicate data storage locations, failure of one portion of the computation due to
inaccessibility of data can be easily rectified by restarting that portion of the computation
using a different data location. Information to support this dynamic selection process could
be made available through resources such as the exNode [4] component of the Network
Storage Stack.

49

Bibliography

50

Bibliography

[1] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman. Extending the oper-
ating system at the user level: The Ufo global file system. Proceedings of the USENIX
Annual Technical Comference, pages 77–90, Jan 1997.

[2] W. Allcock, J. Bresnahan, I. Foster, L. Liming, J. Link, and P. Plaszczac. Gridftp
update january 2002. Technical report, The Globus Project, Jan 2002.

[3] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and R. Y.
Wang. Serverless network file systems. ACM Transactions on Computer Systems,
14(1):41–79, Feb 1996.

[4] S. Atchley, S. Soltesz, J. S. Plank, M. Beck, and T. Moore. Fault-tolerance in the
network storage stack. In IEEE Workshop on Fault-Tolerant Parallel and Distributed
Systems, Ft. Lauderdale, FL, April 2002.

[5] M. Beck and T. Moore. The Internet2 Distributed Storage Infrastructure Project: An
architecture for internet content channels. Computer Networks and ISDN Systems,
30(22–23):2141–2148, Nov 1998.

[6] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A data move-
ment and access service for wide area computing systems. In Proceedings of the Sixth
Workshop on I/O in Parallel and Distributed Systems, May 1999.

[7] R. L. Burden, J. D. Faires, and A. C. Reynolds. Numerical Analysis. PWS Publishers,
Boston, second edition, 1981.

[8] H. Casanova and J. Dongarra. NetSolve: A network server for solving computational
science problems. The International Journal of Supercomputer Applications and High
Performance Computing, 11(3):212–223, Fall 1997.

[9] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid:
Towards an architecture for the distributed management and analysis of large scientific
datasets. Submitted to Netstore ’99, Oct 1999.

[10] A. Choudhary, M. Kandemir, H. Nagesh, J. No, X. Shen, V. Taylor, S. More, and
R. Thakur. Data management for large-scale scientific computations in high perfor-
mance distributed systems. In Proceedings of the 8th IEEE International Symposium

51

on High Performance Distributed Computing, pages 263–274. IEEE Computer Society
Press, Aug 1999.

[11] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative
storage with CFS. In Proceedings of the 18th ACMSymposium on Operating System
Princples (SOSP ’01), Chateau Lake Louise, Banff, Canada, Oct 2001.

[12] Message Passing Interface Forum. MPI: A message passing interface standard. Version
1.1, Jun 1995.

[13] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. In-
ternational Journal of Supercomputer Applications and High Performance Computing,
11(2):115–128, 1997.

[14] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Remote I/O: Fast access to distant
storage. In Proceedings of the Fourth Workshop on I/O in Parallel and Distributed
Systems, pages 14–25, 1997.

[15] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure distributed read-only file
system. ACM Transactions on Computer Systems, 20(1):1–24, Feb 2002.

[16] A. S. Grimshaw, W. W. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds. Legion:
The next logical step toward a nationwide virtual computer. Department of Computer
Science Technical Report CS-94-21, University of Virginia, Jun 1994.

[17] IBM. AFS User Guide, Version 3.6. International Business Machines Corporation,
first edition, Apr 2000. Publication Number GC09-4561-00, copyright 1989, 2000 IBM
Corp.

[18] IBM. IBM DFS for AIX and Solaris Administration Guide, Version 3.1. International
Business Machines Corporation, Apr 2000. copyright 2000 IBM Corp.

[19] JTC 1/SC 22. Information technology – Portable Operating System Interface (POSIX)
– Part 1: System Application Program Interface (API) [C Language]. ISO/IEC 9954-
1:1996, Aug 2000.

[20] Innovative Computing Labratory. SInRG, complete project narrative. Avaliable at
http://icl.cs.utk.edu/ sinrg/docs/sinrg-narrative.pdf, Jan 2002.

[21] M. J. Lewis and A. Grimshaw. The core Legion object model. In Proceedings of the
Fifth IEEE International Symposium on High Performance Distributed Computing,
pages 551–561. IEEE Computer Society Press, Aug 1996.

[22] D. Libes. Expect: Curing Those Uncontrollable Fits of Interaction. In Proceedings of
the Summer 1990 USENIX Conference, Anaheim, CA, Jun 1990.

52

[23] M. Litzkow, M. Livny, and M. W. Mutka. Condor - A hunter of idle workstations.
In Proceedings of the 8th International Conference of Distributed Computing Systems,
pages 104–111, Jun 1988.

[24] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.
In Proceedings of the National Academy of Sciences of the United States of America,
volume 85, pages 2444–2448, Apr 1998.

[25] J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany, and R. Wolski. The
Internet Backplane Protocol: Storage in the network. NetStore ’99: Network Storage
Symposium, Internet2, Oct 1999.

[26] J. S. Plank, M. Beck, and T. Moore. Logistical networking research and the network
storage stack. In Work-in-progress report, FAST 2002, Conference on File and Storage
Technologies. USENIX, January 2002.

[27] The Globus Project. GridFTP: Universal data transfer for the grid. Available at
http://www.globus.org/datagrid/deliverables/C2WPdraft3.pdf, Sep 2000.

[28] H. C. Rao and L. L. Peterson. Accessing files in an internet: The Jade file system.
IEEE Transactions on Software Engineering, 19(6), Jun 1993.

[29] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C.
Steere. Coda: A highly available file system for a distributed workstation environment.
IEEE Transactions on Computers, 39(4):447–459, Apr 1990.

[30] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and
D. Noveck. NFS version 4 protocol. RFC 3010, Dec 2000.

[31] R. Srinivasan. RPC: Remote Procedure Call Protocol Specification Version 2. RFC
1831, Aug 1995.

[32] R. Srinivasan. XDR: External Data Representation Standard. RFC 1832, Aug 1995.

[33] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:
Practice and Experience, 2(4):315–339, Dec 1990.

[34] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Cullen, P. Eastham, and
C. Yoshikawa. WebOS: Operating system services for wide area applications. In Pro-
ceedings of the 7th IEEE International Symposium on High Performance Distributed
Computing, pages 52–63. IEEE Computer Society Press, Jul 1998.

[35] J. B. Weissman. Smart File Objects: A remote file access paradigm. In Proceedings of
the Sixth Workshop on Input/Output in Parallel and Distributed Systems, pages 89–97.
ACM Press, May 1999.

53

Appendix

54

Appendix A

Remote Invocation

During the initial validation of the model, it was noted that the time required to farm out
the test processes was longer than seemed reasonable. It was theorized that NetSolve was
the source of this overhead.

After examining the data from the preliminary tests closely, it became apparent that
using NetSolve to start a large number of jobs incurred a significant penalty. This is
attributed to several factors.

1) The initial connection to a NetSolve agent results in a proxy of the client process
being created. All communication to and from the client must go through this proxy.

2) Every connection to the NetSolve agent results in a new agent process being created,
via fork() and exec(), to handle the connection.

3) Every connection to a NetSolve server results in at least one more server process
being created (also with fork() and exec()) to handle the connection even if the task
is refused for such reasons as insufficient capability or no such task on the server..

4) When a server initially accepts a task, information about the acceptance is not re-
turned to the agent immediately nor is the impending load on the server correctly
predicted. Specifically, even though the load is expected to be increased by some
amount for every task a server performs, this information is based on metrics that
assume mathematical computations based on the sizes of the input data and the pro-
jected speed of the local machine and assumes floating-point operations. If a task
such as FASTA is started, this metric results in totally inaccurate initial load values.

5) The agent does not make any assumptions about which, if any server may have ac-
cepted the task. Consequently the next client request for the same task may get the
previous list of servers in the same order.

The last item means that instead of being able to rely on the agent to provide a list
that is ordered in terms of least loaded server to most loaded server as implied by the

55

documentation, the list defaults to alphabetical order. The ordering of this list and the fact
that no machine is removed from it during the initialization of all the remote tasks, means
that left to itself , NetSolve would start all the jobs on a single server.

Because this is an unwanted situation, the configuration file for each server was modified
so that each only accepts a single task at time. This means that the set of servers available
for any particular task could change radically if another process was attempting to access
them. Even though this sufficed to ensure one task per server it did not change the way
the agent responded. The agent still provided a list of all the potentially available servers
and the NetSolve client code was required to contact each in turn until one was found that
would accept the job. The time to start a particular task then is severely impacted by that
task’s place in the list of tasks to start. Each request by a client means opening a network
connection to a local NetSolve Proxy process which in turn contacts the remote server.
That server then spawns a process to handle the request. Any request in these tests was
potentially refused due to the limit of one task per process which means that this entire set
of operations must be repeated until some server accepts the task. The final testing scenario
settled on 70 machines, this being a number that was large enough to be significant and
could usually be relied upon to be available. Using NetSolve this means that in order to
start 70 tasks 2485 requests have to be sent out by the client to servers.

Assuming that Ts is the time to contact a server and get an accept/reject response, Te

is the time to actually start a task on a server, then the total time, Tt, to start task m is

Tt = Tem
+

m
∑

i=1

Tsi
, (A.1)

And the time to start N servers is

Tt =
N

∑

j=1

Tej
+

j
∑

i=1

Tsi
(A.2)

Assuming that the time to start a task on any particular machine is a constant, Te and that
the time to connect to any particular server and get an accept/reject response is a constant
Ts then (A.2) reduces to

Tt = N ∗ Te + (N (N + 1)) ∗ Ts. (A.3)

During the validation testing the time to start a task was approximately 0.3 seconds and and
the time to contact a server for the accept/reject response was approximately 0.2 seconds.
This meant that the time to start the 70 tasks using NetSolve took on the order of 70 * 0.3
+ (70(71) / 2) * 0.2 = 70 + 2485 = 518 seconds or approximately 8.6 minutes. This is not
a serious problem in and of itself but it is enough to be noticeable and could significantly
impact the prediction of total running time.

A.1 New Client-Server Software

The problems that thus far encountered with NetSolve were, overhead, difficulty of crafting
problem descriptions, and difficulty in modifying the system. To overcome these a more

56

basic client-server system for remote processing was needed. The most important principle
focused on during the creation of this new system simplicity.

The primary advantage that the resulting client-server system has over the NetSolve
code is this simplicity. When a server starts it opens a configuration file and searches a
set of paths specified in that file for executable programs. These programs are the only
resources that it uses. The server then acquires the current processor load as reported by
a basic Linux/Unix utility, uptime. Last, it runs a simplified benchmark suite to derive
floating point and integer operation per second values.

There is same problem encountered with NetSolve that in order to be used a server must
exist on the remote host. In either case this can be done by by individually logging in to
the remote host or through the use of a scripting language such as Expect [22] to automate
the procedure. Once the servers are in place they report to an agent. The report contains
their status, the set of tasks they can execute and the processor statistics. They update the
agent periodically (the default is five minutes) with the current cpu load.

In order to execute a task, the client first must explicitly request a list of servers from
the agent. The list is supplied with the processor statistics. This allows the client to
determine which servers to use and in what order to use them. The client then contacts the
selected server directly and passes a string which contains the name of the executable and
its command line arguments. The server validates the task name and if correct, causes the
task to be executed through fork() and execv(). This is an asynchronous set of operations.
There is no concept of waiting for the results after the initial contact. The client queries
the server for the status of the task when it chooses.

This all means that there is no specific mechanism for transmitting parameters to or
receiving results from a task. The client is responsible for ensuring that data is available
where the task can access it and for ensuring some method for returning results is established
ahead of time. But this is really no different from NetSolve. Even though NetSolve has
a mechanism for sending and receiving data, it is not effective when talking about tens or
hundreds of megabytes. As a consequence the user must modify the basic RPC-like concept
no NetSolve. This is the point at which NetSolve’s load balancing system breaks down, with
nothing specified as an argument but a file name string, the built-in system for determining
server load has nothing to work with.

Fortunately, FASTA was very easily accommodated to this new client-server system.
Because FASTA can write to any file, part of the front-end program’s function is to use the
new client-server mechanism to start IBP servers on the remote hosts, if needed, establish
local byte arrays for prepositioning data or for output files and then delete the byte arrays
after the data is saved and terminate the serves when no longer needed.

The efficacy of this new system is seen in that unless there is a failure of a server, there
is no need to contact more than one server to initiate a task. Therefore, using the same
notation as the previous section and again assuming that the times to contact a server and
start a task are constant, the time to start N tasks

Tt = N ∗ (Te + Ts) . (A.4)

57

Using the same values of 0.2 and 0.3 seconds respectively, the total time for 70 tasks is on
the order of 70 * (0.2 + 0.3) = 35 seconds or 0.6 minutes, a significant improvement over
the 8.6 minutes used by NetSolve..

58

Vita

Kim Buckner was born in Republic, Washington on February 7, 1954. He attended
public schools in Ferry County and graduated from Republic High School in 1970. After
periods of work and junior college he joined the U.S. Navy in 1975. In 1990 he resumed
college study and received a Bachelor of Science in Computer Science in 1993. Retiring
from the Navy in 1995, he began at the University of Tennessee, Knoxville. He completed a
Master of Science in Computer Science in May, 1998 and received the Doctor of Philosophy
Degree in August, 2003.

59

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2003

	Data Access in Wide Area Networks of Heterogeneous Workstations
	Kim Buckner
	Recommended Citation

	main_etd.dvi

