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Abstract

This dissertation develops models to understand and mitigate the bull-

whip effect across supply chains. The models explain the bullwhip effect

that is caused by using the up to target ordering policy in standard Material

Requirement Planning (MRP) systems. In the up to target ordering policy,

the orders are directly driven by actual demand oscillations. We develop the

models in AutoRegressive Integrated Moving Average (ARIMA) forms for

a single demand item in a tandem line supply chain model. Different from

supply chain models in current literature that are based on the assumption

of the up to target ordering policy with some specific ARIMA models and

specific numbers of stages in supply chain, the up to target ordering policy

models in this dissertation can be applied to any ARIMA demand, any or-

dering lead time, and any number of stages in supply chains to derive the

closed form expressions of the variation in inventory and the variation in

orders. In addition, we propose the generalized ordering policy in which

the up to target ordering policy is a special case. The generalized ordering

policy permits manufacturers to smooth orders with the guaranteed station-

ary inventory in which smoothing orders is regarded as an effective way to

mitigate the bullwhip effect. With the generalized ordering policy, manu-

facturers can control the tradeoffs between the variation in inventory and

the variation in differencing orders which is stationary due to differencing.

The generalized order models can be applied to any ARIMA demand, any

ordering lead time, and any smoothing period. Two special cases of the
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generalized ordering policy are also illustrated. One is the previously men-

tioned up to target ordering policy that minimizes the variation in inventory.

Another is the smoothing ordering policy that minimizes the variation in

differencing orders. We also provide generic formulas to determine the opti-

mal smoothing weights in the smoothing ordering policy for ARIMA(p, 0, q)

and ARIMA(p, 1, q) orders. Finally, this dissertation introduces the bounded

MRP following the rate based planning concept. We propose a simulation

based technique to set the bounds into standard MRP systems for expo-

nential smoothing or ARIMA(0,1,1) demand. With this bounded MRP, we

can mitigate the bullwhip effect and reduce the conflict between production

planning and infeasible capacity planning.

Keywords and Phrases: Bullwhip Effect; Supply Chain Modeling; Pro-

duction Planning; Capacity Planning; Material Requirement Planning; Rate

Based Planning; Generalized Ordering Policy; Infinite Loading; Order up to

a Target; Smoothing Production; AutoRegressive Integrated Moving Average;

and Exponential Smoothing.
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Chapter 1

Introduction

Supply chain management mainly deals with the management of materi-

als and information across the supply chain, from suppliers to manufacturers

to distribution (warehouses and retailers), and ultimately to the consumer.

The objective of supply chain management is to provide a flow of relevant

information that will enable suppliers to provide an uninterrupted and pre-

cisely timed flow of materials to customers. In other words, the goal of any

effective supply chain management system is to reduce inventory with the

assumption that products are available when needed. Figure 1.1 shows a di-

agram of information flow and materials flow in a tandem line supply chain.

The purpose of supply chain modeling is to gain an understanding of

the dynamics of flows in supply chains. The ultimate goal is to apply these

models in designing and managing supply chains.

On the manufacturing floor, a major barrier to reduced inventory and bet-
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Retailer
(Stage 1)

Wholesaler
(Stage 2)

Distributor
(Stage 3)

Manufacturer
(Stage 4)

Information flow

Product flow

Figure 1.1: Flows of Supply Chain Diagram

ter flow is congestion, i.e. some form of queuing due to variation, capacity

constraints and batching. Factory physics (Hopp and Spearman 2000) pro-

vides theoretical models of the impact of these factors on the flow of products

in processes. The discipline has reached the level of maturity needed to be-

come a valuable tool in designing and managing manufacturing and service

processes.

In supply chains, additional factors such as time delays and imperfect

information become important. For example, there will typically be a lead

time between the time when an order is placed and the time that the order

is available to meet customer demand. This means that the order is placed

to meet future demand and therefore is made with imperfect information. In

this environment, a major barrier to reduced inventory and better flow is the

bullwhip effect, a phenomenon in which variation in customer demand results

in progressively larger variation in orders and inventory at the upstream

stages of the supply chain.

Supply chain models have provided some basic insights into the dynamics

of the supply chain. For example, they have shown that better inventory

accuracy, improved forecasting and information sharing alone are incomplete.
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(Many supply chain strategies are focused primarily on improving the quality

of information.) To eliminate the bullwhip effect, it is also necessary to reduce

lead times.

However there are many other unanswered questions about dynamics of

supply chains. The goal of this dissertation is to develop theoretical models

to provide additional insights into these questions.

Typically, in lean manufacturing, final assembly produces (in the short

term) at a constant rate and serves as the drumbeat for the entire manufac-

turing operation. A finished goods inventory (or alternately an order queue)

buffers final assembly from the day to day variations in customer demand.

Operations upstream from this drumbeat process are driven by pull signals.

In planning the rate of this drumbeat for future weeks, there are several

goals. First, the changes in the drumbeat should be gradual since it would

be difficult for the manufacturing process to accommodate quick and drastic

changes. Second, the drumbeat should be relatively close to the rate that

has been planned (i.e. forecasted) earlier, so that the internal operations and

the external suppliers can prepare in advance for changes. Third, there must

be adequate flexibility to change the rate to adjust quickly to changes in the

level of customer demand. Obviously, the third objective may conflict with

the first two.

Rate based planning is a method for planning the rate of the drumbeat

while attempting to achieve a satisfactory tradeoff among these three goals.

In rate based planning, a plan of weekly production rates is specified, typi-

3



cally for twelve weeks into the future. This plan is updated weekly.

Rather than freeze this plan (as is often done in traditional planning

and scheduling methods), rate based planning allows the actual production

to vary within specified ranges around the plan. Let Pt denote the actual

production in week t and let P̂t(l) denote the production for week t + l that

is planned in week t. In rate based planning, constraints are imposed in the

form of (1− cs) ∗ P̂t−s(s) ≤ Pt ≤ (1 + cs) ∗ P̂t−s(s), s = 1, 2, 3, ..., S. S is the

number of periods in the planning horizon. The sequence cs, s = 1, 2, 3, ..., S

is called the flexibility requirements profile, where cs < 1 (see Srinivasan

2004).

The flexibility requirements profile gives guaranteed restrictions on devi-

ations of actual production from the planned values given in earlier weeks

(i.e., guaranteed production forecast accuracy) and the same amount of free-

dom to flex in response to variation in customer demand. However, there

have been no mathematical models of the relationships between the flexi-

bility requirements profile and other performance measures such as schedule

smoothness and inventory variation.

Clearly understanding these relationships would be a valuable aid in defin-

ing the flexibility requirements profile, since errors in defining this profile can

be costly. For example, if the flexibility profile is too tight, is creates delays

in responding to changes in demand and therefore creates a bullwhip effect.

On the other hand if it is to loose it allows production to vary in response

to random week-to-week variation in customer demand and therefore results
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in an erratic schedule. Toney 2004 has done numerical simulations to study

these relationships. However there has been no previous work of developing

theoretical models of these relationships.

One goal of this dissertation is to provide insights into the tradeoffs among

production forecast accuracy, schedule smoothness and inventory variation.

We define a model that has a generalized ordering policy. Using this model we

can, for example, optimize the parameters of the ordering policy to minimize

the week-to-week variation in production and observe the resulting inventory

variation and production forecast accuracy.

The following sections clarify the previously introduced topics in details.

1.1 The Bullwhip Effect in Supply Chains

The problem in unplanned demand oscillations in the supply chains that

causes inventory overstock or stock-outs and creates distortions interrupting

the flow of the supply chain is known as the “Bullwhip Effect.” This is caused

by a disturbance or lump of demand oscillates back through the supply chain

often resulting in huge and costly disturbances at the supplier end of the

chain. Often, these demand oscillations cost manufacturing to acquire and

expedite more raw materials and reschedule production in order to avoid

inventory overstock or stock-outs.

Figure 1.2 shows a well known picture of the bullwhip effect from the

studies of Lee, Padmanahan and Whang 1997. The studies show the bullwhip

5



Figure 1.2: Bullwhip Effect in Diaper Industry (Lee, Padmanahan and
Whang 1997)

effect in the diaper industry between diaper demand and the diaper supply

chain although the demand should be easy to estimate directly from the

number of new born babies in a region.

In the bullwhip effect, orders to the supplier tend to have a larger variance

than sales to the buyer and this distortion propagates upstream in an am-

plified form. The distortion of demand data implies that the manufacturer

who only observes its immediate order data will be misled by the amplified

demand patterns. Theoretically, let σC , σR, σM , and σS denote the standard

deviations of weekly order sizes by the consumer, retailer, manufacturer, and

supplier, respectively. The bullwhip effect means that

σC < σR < σM < σS.
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That is, small changes in customer orders result in moderate spikes in re-

tailer orders, creating large spikes in wholesaler orders, which finally results

in even larger spikes in manufacturer orders to suppliers. Even when con-

sumer demand is stable, order sizes are highly variable and the variability

increases as one moves upstream. This has serious cost implications. For

example, the manufacturer incurs excess raw material cost due to unplanned

purchases of suppliers, additional manufacturing expenses created by excess

capacity, inefficient utilization and overtime, excess warehousing expenses

and additional transportation costs due to inefficient scheduling and pre-

mium shipping rates. This leads to huge inefficiencies, as each part of supply

chain stocks inventory to prepare for variability. The costs of the bullwhip

effect ranged form $14 billion for the food service industry (Troyer 1996) to

$30 billion for the grocery industry (Kurt 1993).

Lee, Padmanahan and Whang 1997 shows how four rational causes create

the bullwhip effect:

1. Demand signal processing: if demand increases, retailers order more

than the actual demand needed in anticipations of future supply short-

ages.

2. Rationing game: supply shortages cause retailers to order more than

the actual forecasts in the hope of receiving larger shares.

3. Order batching: high ordering setup costs motivate retailers to order

in large batches.
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4. Manufacturer price variation: low prices cause retailers to order in large

quantities to stock inventory to handle the price uncertainties.

Lee, Padmanahan and Whang 1997 also suggests several ways to react to

the bullwhip effect:

1. Avoid multiple demand forecast updates. Point of sale demand data or

information sharing across the supply chain by passing demand data

from downstream through upstream can reduce highly variable demand

and long resupply lead times.

2. Eliminate gaming in shortage situations. Suppliers can allocate product

based on past sales records, rather than on orders, so customers don’t

exaggerate their orders. Another way is penalty on return policies, so

retailers are less likely to cancel orders.

3. Break order batches. Electronic data interchange can reduce the cost

of placing orders.

4. Stabilize prices. Everyday low price can reduce the frequency and level

of wholesale price discounting to prevent customers from stockpiling.

From the four sources of the bullwhip effect proposed by Lee, Padmana-

han and Whang 1997, we distinct our mathematical models in this disserta-

tion to the demand signal processing aspect. The other aspects in rationing

game, order batching, and price variation can be developed in future research.
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1.2 Material Requirement Planning and Ca-

pacity Planning

Material Requirement Planning (MRP) is used to tell when to order

and when to manufacture, based on demand. MRP goals are to minimize

inventory levels and maintain delivery schedules.

MRP-based production is often referred to as a push-type production

because job orders are initiated according to schedules generated by MRP

systems that push the jobs from one operation to the next throughout the

process. This is in contrast to pull-type production where jobs are initiated

from downstream operations, pulling from one operation to the next. Al-

though pull-type production, such as Just In Time (JIT) or lean production,

has advantages over push-type production in reducing waste, it is a tool only

for a short-range production planning. MRP-based systems are still needed

as tools for medium-range and long-range production planning.

Standard MRP systems assume materials or capacities to be infinite load-

ing. In practice, MRP systems may not be feasible because of the capacity

limitations unless manufacturers have excess capacities or manufacturers can

easily flex production capacity in response to lumpy demand. Standard MRP

systems do not provide capacity planning. Traditionally, manufacturers use

rough cut capacity planning (RCCP) to check the feasibility of the capacities.

If the capacities are not feasible, the problems must be solved manually by

changing the timing of production requirements or updating MRP which is
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a time-consuming process for most manufacturers of any size or complexity.

Hence, both push-type production and pull-type production have difficul-

ties to encounter the bullwhip effect since push-type production would have

a conflict between production planning and capacity planning while pull-type

production is suitable only for a stable and predictable production process

not for a volatile production process driven by lumpy demand.

1.3 Rate Based Planning

Rate based planning is a way to level the production that can be done

by smoothing the productions. Under rate based planing, demand variation

is accommodated with changes in capacities. In this way, manufacturers are

warned in advance so that planning should significantly reduce the level of

surprises at or near the build date. Hence, rate based planning mitigates

the bullwhip effect in the supply chain and alleviates the conflict between

production planning and infeasible capacity planning in using MRP.

Rate-based planning can be managed by rates and bounds. The bounds

for rate based planning reflect day-to-day or week-to-week production quan-

tities that will not be an exact set amount. Rather, the production will vary

around a rate but within a range of production forecasts.

Figure 1.3 shows a flexibility requirements profile for rate base planning

in which the flexible capacity boundaries are planned as a function of lead

time. The amount of flexible capacity depends on its planning horizon in
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Figure 1.3: Flexibility Requirements Profile

which the more planning time manufacturers have, the greater their ability to

respond to variations in production. The additional lead time provides time

to increase or decrease capacity in more significant amounts. As the execution

time period draws nearer, the rate-based plan constrains the production rate

into more narrow boundaries. Thus, at execution, the actual productions are

inside the near-term rate-based execution band.

1.4 Time Series Forecasting Techniques

Manufacturers need forecasting techniques for demand modeling in the

production planning. This dissertation uses the univariate time series fore-

casting techniques for demand modeling since we consider only a single de-

mand item. The demand models in this dissertation are developed following

the Box-Jenkins methodology called the univariate autoregressive integrated
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moving average (ARIMA). Some ARIMA models are closely related to the

exponential smoothing models.

A time series is a set of ordered observations equally spaced over time or

space

Z1, Z2, Z3, ..., Zt−1, Zt, Zt+1, ....

The purpose of the time series modeling is to find a model that accurately

represents the past and future pattern of time series

Zt = Pattern + et (1.1)

where Zt can be the observed demand at time t. The pattern can be random,

seasonal, trend, cyclical, intervention, or all combinations. Hence, a time

series Zt is a linear function of the past actual values and random shocks

(i.e., error terms) in the form:

Zt = f [Zt−i, et−i] + et, where i > 0.

The purpose of time series analysis is to extract all possible information

(pattern) from a time series so that et’s are distributed as white noise. By

definition, white noise is identical and independently distributed (IID), hav-

ing no patterns with a zero mean and an error variance that is lower than

the variance of Zt.

A major aspect of time series modeling is the consideration of the autocor-
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related pattern of the time series. While correlation measures the degree of

dependence or association between two variables, autocorrelation means that

the value of a series in one period is related to the value of itself in previous

periods. With autocorrelation, there is an automatic correlation between

observations in a series. Frequently, this autocorrelation results from the

momentum of a series.

The ARIMA model has gained enormous popularity in many areas and

research practice due to its power and flexibility (Hoff 1983, Pankratz 1983,

Vandaele 1983). However, it is a complex technique which is not easy to

use and requires a great deal of experience (Bails and Peppers 1982). The

ARIMA method is appropriate only for a time series that is stationary (i.e.,

its mean, variance, and autocorrelation should be approximately constant

through time) and it is recommended that there are at least 50 observations in

the input data. It is also assumed that the values of the estimated parameters

are constant throughout the series.

The specific number and type of ARIMA parameters to be estimated

need to be predetermined in the model identification phase. The major tools

used in the identification phase are plots of the series, correlograms of auto

correlation (ACF), and partial autocorrelation (PACF). The decision is not

straightforward and in less typical cases requires not only experience but

also a good deal of experimentation with alternative models as well as the

technical parameters of ARIMA.

An ARIMA(p, d, q) model following Box, Jenkins, Reinsel and Jenkins,
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1994 has three types of estimated parameters in the ARIMA model; which

are: the autoregressive parameters (p), the differencing parameters (d), and

moving average parameters (q). Due to the complexity of ARIMA modeling,

the degrees of p, d, q commonly used in practice are no more than 2.

There are several different methods for estimating the parameters in

which all of these methods should produce very similar estimates but may be

more or less efficient for any given model. In general, a function minimiza-

tion algorithm (such as quasi-Newton method which is a nonlinear estimation

method, is used during the parameter estimation phase by maximizing the

likelihood of the observed series given the parameter values.

A seasonal ARIMA(p, d, q)(ps, ds, qs) model is a generalization and exten-

sion of the simple ARIMA(p, d, q) model in which a pattern repeats seasonally

over time. For a seasonal ARIMA model, six types of parameters need to

be estimated. In addition to the non-seasonal parameters (p, d, q), seasonal

parameters (ps, ds, qs) also need to be estimated. Analogous to the simple

ARIMA parameters, these seasonal parameters are: seasonal autoregressive

parameters ps, seasonal differencing parameters ds, and seasonal moving av-

erage parameters qs. For example, the model (0,1,2)(0,1,1) describes a model

that includes no autoregressive parameters, 1 differencing parameter, 2 mov-

ing average parameters, no seasonal autoregressive parameters, 1 seasonal

differencing parameter, 1 seasonal moving average parameter.

Exponential smoothing models are closely related to ARIMA(p, d, q) mod-

els. The model ARIMA(0,1,1) is the single exponential smoothing model.
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The model ARIMA(0,2,2) is the double exponential smoothing model. The

model ARIMA(0,3,3) is the triple exponential smoothing model. The single

exponential smoothing model assumes that the series displays a time-varying

mean with no trend. The double exponential smoothing model assumes that

the series displays a time-varying level with a linear trend. The triple ex-

ponential smoothing model assumes that the series displays a time-varying

level with a quadratic trend.

Exponential smoothing models are widely used as a time series forecasting

method. The simplest form of exponential smoothing is single exponential

smoothing. In single exponential smoothing, the Pattern in (1.1) is com-

puted using a moving average, where the current and immediately preceding

observations are assigned greater weight than the respective older observa-

tions. The specific formula for single exponential smoothing is

Ẑt = λZt + (1− λ)Ẑt−1.

When applied recursively to each successive observation in the series, each

new smoothed value, or forecast value Ẑt, is computed as the weighted av-

erage of the current observation Zt and the previous smoothed observation

Ẑt−1. The previous smoothed observation was computed in turn from the pre-

vious observed value and the smoothed value before the previous observation,

and so on. Thus, in effect, each smoothed value is the weighted average of the

previous observations, where the weights decrease exponentially depending
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on the value of parameter λ.

1.5 Organization of the Dissertation

This dissertation consists of six chapters.

Chapter 2 is an overview of the current mathematical modeling techniques

that explain the bullwhip effect in the supply chain.

Chapter 3 describes the ARIMA supply chain models for the up to target

ordering policy used in standard MRP systems (Gilbert 2004). The models

can be applied to any ARIMA demand, any ordering lead time, and any

number of stages in supply chains.

Chapter 4 proposes the generalized ordering policy that permits manu-

facturers to control the tradeoffs between the variation in inventory and the

variation in differencing orders which is stationary by differencing. The gen-

eralized ordering policy can be applied to any ARIMA demand, any ordering

lead time, and any predetermined smoothing period. The generalized order-

ing policy includes the up to target ordering policy introduced in chapter 3

that minimizes the variation in inventory and the smoothing ordering policy

that minimizes the variation in differencing orders. This chapter also provides

generic formulas to determine the optimal smoothing weights in the smooth-

ing orders when the demand models are ARIMA(p, 0, q) and ARIMA(p, 1, q).

Chapter 5 illustrates the unbounded MRP tables using the up to tar-

get ordering policy and the smoothing policy. This chapter also proposes
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the bounded MRP using the rate based planning concept by proposing a

simulation-based technique to set the bounds that can be incorporated into

standard (order up to target) MRP tables for the single exponential smooth-

ing or ARIMA(0,1,1) demand.

Chapter 6 gives the conclusion and suggests directions for future research.

1.6 Contributions

This dissertation makes several contributions to the supply chain man-

agement field.

First, all supply chain models in current literature are based on the as-

sumption that up to target ordering policy is used. We propose the general-

ized ordering policy that includes the up to target ordering policy as a special

case. The generalized ordering policy permits manufacturers to smooth or-

ders arbitrarily to mitigate the bullwhip effect by controlling the tradeoffs

between the variation in inventory and the variation in differencing orders

(which is stationary by differencing) by changing the smoothing weights with

the guaranteed stationary inventory. The generalized order models can be

applied to any type of demand, any ordering lead time, and any desired

smoothing period. With the generalized order models, manufacturers can

know the variation in inventory and the variation in orders theoretically such

that manufacturers can set the safety stock corresponding to the variation in

inventory or set the production plan corresponding to the variation in orders.
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Second, supply chain models in current literature that explain how the

bullwhip effect propagates across supply chains only applied to some specific

ARIMA models and specific numbers of stages in supply chain, the order

up to target in chapter 3 (Gilbert 2004) can be responded to any ARIMA

demand, any ordering lead time, and any number of stages in supply chains.

We also show that the up to target ordering policy is a special case of the

generalized ordering policy that minimizes the variation in inventory.

Third, we describe the smoothing ordering policy which is a special case

of the generalized ordering policy that minimizes the variation in differencing

orders. We also provide generic formulas to determine the optimal smooth-

ing weights for the smoothing ordering policy for any ARIMA(p, 0, q) and

ARIMA(p, 1, q) demand.

Finally, we propose the bounded MRP system corresponding to the rate

based planning concept for single exponential smoothing or ARIMA(0,1,1)

demand. We provide a guideline using a simulation based technique for man-

ufacturers to set the bounds such that the variation in week-to-week orders

is significantly reduced compared with the standard MRP tables without

bounds. Hence, the bounded MRP not only mitigates the bullwhip effect

but also reduces the conflict between production planning and infeasible ca-

pacity planning. We also provide a MATLAB program that automatically

sets the bounds for a given ARIMA(0,1,1) demand data for any ordering lead

time and any smoothing period.
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Chapter 2

Previous Works and Literature

Review

Mathematical models of supply chains have provided some very practical

managerial insights about supply chain dynamics. These models have lead to

an understanding of the bullwhip effect, a phenomenon in which the variation

in orders and inventory grow at successive stages of the supply chain.

Forrester 1961 documented case studies and computer simulations of the

bullwhip effect. Sterman 1989 discussed the bullwhip effect using the beer

game which is an experiential supply chain simulation. Both papers provides

the understanding of the causes and managerial implications of the bullwhip

effect. Sterman 1989 proposed, through illustration in the beer game, that

irrational decisions lead to bullwhip effect. Lee, Padmanahan and Whang

1997 argued that rational actions still result in bullwhip effect.
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Lee, Padmanahan and Whang 1997 proposed four sources of the bullwhip

effect: demand signal processing, rationing game, order batching, and price

variation. The paper also proposed the actions that can be taken to mitigate

the impact of the four sources of the bullwhip effect. The paper analyzed

mathematical models and shows that with a single stage, AR(1) demand,

and lead time is 1, the variation in orders exceeds the variation in demand.

Lee, So, and Tang 2000 used an AR(1) demand process and arbitrary lead

times to explicitly model the orders and inventory in a two-stage supply

chain. They applied these results in determining the value of information in

a two-stage supply chain.

Chen et. al., 2000 quantified the bullwhip effect by using two level sys-

tem with order up to policy. The demand is forecast with p-period moving

average. Where

Order quantity = Mean demand during lead time + Z.95(Standard

deviation of lead time demand forecast error)

then

Variance(Retailer order quantity)

Variance(Customer order quantity)
≥ 1 + 2L/p + 2(L/p)2

where L is the lead time between when an order is placed and when it is

delivered and p is the period used to forecast demand. The paper proposed

that variability increases with lead time, decreases with forecast horizon and

decreases with correlation in demand.
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Graves 1999 used an ARIMA(0,1,1) time series of demand and an arbi-

trary lead time to derive the ARIMA(0,0,1) series of orders and the distribu-

tion of inventory. He used these results to recursively model multi-stage sys-

tem. Graves 1999 developed a model of a multistage supply chain, in which

the order at a given stage becomes the demand for the upstream stage. The

lead time at each stage is permitted to be an arbitrary number of periods.

Graves assumes that the customer demand is ARIMA(0,1,1) or exponential

smoothing.

These supply chain models have been based on a particular time series

model for demand, for example, independent identically distributed, autore-

gressive or exponential smoothing. These models have been single stage

models, i.e., given the time series of demand, they modeled the order and

inventory at a single stage. In many instances, the lead time was assumed

to be one period.

Two recent supply chain models have used more general demand models.

Aviv has developed a single stage supply chain model which uses a stage

space approach to model demand. Gilbert 2004 has developed s multiple

stage supply chain model where the demand is assumed to be any ARIMA

time series.

Aviv et. al., 2002 proposed a methodology for assessing the benefits

of various types of information sharing agreements between members of a

supply chain. A Kalman filter was used to model demand and the method

was applied to a two-stage supply chain.
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Gilbert 2004 proposed a supply chain model, based on ARIMA time se-

ries models. The model can be applied with any given lead time and any

ARIMA demand and explicitly provides the ARIMA models of orders and

inventory. It applies to supply chain with any numbers of stages, under the

assumption that the order for a given stage becomes the demand for the

stage immediately upstream.

All of these previous models are based on the assumption of the up to

target ordering policy used in standard MRP systems. This dissertation in-

troduces a generalized ordering policy, having infinite loading ordering policy

as a special case. This model can be used to derive the optimal smoothing

ordering policy, i.e., the policy that minimizes the week to week variation

in production. In particular, we develop closed form expressions to de-

termine the optimal smoothing weights for the smoothing ordering policy

for ARIMA(p, 0, q) and ARIMA(p, 1, q) demand models. We demonstrate

how this policy can be used to set bounds into standard MRP tables for

ARIMA(0,1,1) or exponential smoothing demand.
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Chapter 3

The Standard MRP Ordering

Policy

This chapter introduces a method to explain the bullwhip effect in supply

chains generated from demand oscillations provided that the order up to a

target is used in the ordering policy (Gilbert 2004). The method assumes that

demand can be modeled with the autoregressive integrated moving average

(ARIMA) methodology. The orders are generated using an order up to a

target which is the standard MRP/ERP system for production planning in

manufacturing. The method provides a means of quantifying the impact of

lead-time reduction on required inventory levels, on required manufacturing

flex capacity and on the variability of orders to upstream suppliers.

Specifically, this chapter gives a method for predicting the range of vari-

ation in inventory as a means to determine the target safety stock and the
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range of variation in orders as a means to determine the flex capacity re-

quirements.

Since the inventory absorbs the variation in demand over the entire lead-

time, the variation in inventory will be larger than the standard error of the

demand forecast. Orders absorb not only the change in demand but also the

change in the forecast over the lead-time. Therefore the variation in orders

will be larger than the variation in customer demand. This multiplication

of variation in orders is sometimes called the bullwhip effect. (See Forester

1961, Sterman 1988, Lee, Padmanabhan and Whang 1997, and Gilbert 2004.)

3.1 Introduction

With a customer demand for an item sold by a retailer (or manufacturer

or distributor), the retailer sends weekly orders for these items to the supplier,

but there is a lead-time that elapses between the placement of the order and

delivery.

The retailer would like to know how to choose a safety stock inventory

target to get some desired level (say three-sigma) of protection against stock-

outs. The retailer would also like to be able to provide the upstream supplier

long-term forecasts of future orders, along with a commitment that the actual

orders will not deviate from their forecast by more than a specified range.

(See Tsay 1999, and Tsay and Lovejoy 1999) for a discussion of this type of

agreement.)
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Thus the retailers would like to know:

• What is the predicted range of variation in ending inventory?

• What is the predicted range of variation in actual orders around the

long-term forecasts?

The results of this chapter apply with any given any lead time L and any

ARIMA(p, d, q) demand series and explicitly provides the ARIMA model of

orders and inventory. It applies to supply chains with any numbers of stages,

under the assumption that the orders for a given stage become the demand

for the stage immediately upstream.

3.2 The Assumptions of the Method

This section introduces the autoregressive integrated moving average

(ARIMA) methodology following the notation of Box, Jenkins, Reinsel and

Jenkins 1994 as a way for demand modeling. With the demand in an ARIMA

form, we can derive its corresponding forecast demand. Then we present the

interrelationship between the inventory, demand, and orders in which we

propose the standard MRP/ERP ordering policy as the order policy.

3.2.1 Demand

We will use the general class of ARIMA time series models to model the

demand in our supply chain model, and then derive ARIMA models of the
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time series of inventory and orders. Many of the specific models (i.e., the

autoregressive model, the exponential smoothing model and the independent

identically distributed (IID) model) that have been used by previous research

to model demand are special cases of the ARIMA model.

We follow the notation of Box, Jenkins, Reinsel and Jenkins 1994. We

will assume that the time series of demand, if it is stationary, can be repre-

sented by an autoregressive moving average model, ARMA(p, q) where p is

the number of autoregressive terms and q is the number of moving average

terms:

Zt = µ + φ1(Zt−1 − µ) + φ2(Zt−2 − µ) + ... + φp(Zt−p − µ)

+ at − θ1at−1 − θ2at−2 − ...− θqat−q.

(3.1)

Where Zt is the demand at time t. µ is the process average. at is a time

series of independent identically distributed random variables with expected

value E(at) = 0 and variance V (at) = σ2
a. The series of random shocks, at,

is referred to as the noise series.

B will denote the time series backshift operator where

BZt = Zt−1; hence BnZt = Zt−n.

Then the stationary time series can be written as:

φ(B)(Zt − µ) = θ(B)at.
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where

φ(B) = 1− φ1B − φ2B
2 − ...− φpB

p

is called the autoregressive operator of order p.

θ(B) = 1− θ1B − θ2B
2 − ...− θqB

q

is called the moving average operator of order q.

We will assume that the time series of demand, if it is nonstationary, can

be modeled by differencing to obtain a stationary series.

∇ will be used to denote the difference operator:

∇Zt = (1−B)Zt and ∇dZt = (1−B)dZt.

A nonstationary demand series Zt will then be represented by an autore-

gressive integrated moving average or ARIMA(p, d, q) series:

φ(B)∇dZt = θ(B)at

ϕ(B)Zt = θ(B)at

where

ϕ(B) = φ(B)∇d

is called the autoregressive integrated operator of order p + d.

The time series Zt can also be represented as a linear transfer function of
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the noise series

Zt = µ + ψ(B)at

where

ψ(B) = 1 + ψ1B + ψ2B
2 + ....

ψ(B) can be computed as ψ(B) = θ(B)/ϕ(B). Therefore, the ψ weights of

the ARIMA process can be determined recursively by equating coefficients

of B as follows:

ψ1 = ϕ1ψ0 − θ1

ψ2 = ϕ1ψ1 + ϕ2ψ0 − θ2

ψ3 = ϕ1ψ2 + ϕ2ψ1 + ϕ3ψ0 − θ3

...
...

...

ψj = ϕ1ψj−1 + ϕ2ψj−2 + ... + ϕp+dψj−p−d − θj

(3.2)

where ψ0 = 1, ψj = 0 for j < 0 and θj = 0 for j > q.

For j > max{p + d− 1, q} the ψ’s satisfy the difference equation

ψj = ϕ1ψj−1 + ϕ2ψj−2 + ... + ϕp+dψj−p−d.

Then, Zt can be expressed in random shock form as

Zt = µ + at + ψ1at−1 + ψ2at−2 + ψ3at−3 + .... (3.3)
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3.2.2 Forecast Demand

Suppose that the lead-time L is the number of periods that elapse be-

tween the time an order is placed and the time the items ordered are received

in inventory. This lead-time could be due to order processing, manufacturing

flow time transportation time or any other types of delays. At origin time t,

we are to make a forecast Ẑt(L) of Zt+L. Zt+L in the random shock form is

Zt+L =
∞∑

j=0

ψjat+L−j.

Let denote E[Zt+L|Zt, Zt−1, ...], which is the conditional expectation of

Zt+L given knowledge of all the Z’s up to time t, be Et[Zt+L]. Since at are a

sequence of independent random variables with mean zero and variance σ2
a,

then E[at+j|Zt, Zt−1, ...] = 0, j > 0. Thus,

Ẑt(L) = ψLat + ψL+1at−1 + ... = Et[Zt+L].

We then have

Zt+L = (at+L + ψ1at+L−1 + ... + ψL−1at+1) + (ψLat + ψL+1at−1 + ...)

= et(L) + Ẑt(L).

where et(L) is the error of the forecast Ẑt(L) at lead time L.

In summary, let j be a nonnegative integer, Ẑt(j) can be calculated from

the conditional expectations of Zt+j, following these rules:
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1. Et[Zt−j] = Zt−j; j = 0, 1, 2, ....

The Zt−j (j = 0, 1, 2, ...), which have already happened at origin t, are

left unchanged.

2. Et[Zt+j] = Ẑt(j); j = 1, 2, 3, ....

The Zt+j (j = 0, 1, 2, ...), which have not yet happened, are replaced

by their forecasts Ẑt(j) at origin t.

3. Et[at−j] = at−j = Zt−j − Ẑt−j−1(1); j = 0, 1, 2, ....

The at−j (j = 0, 1, 2, ...), which have happened, are available from

Zt−j − Ẑt−j−1(1).

4. Et[at+j] = 0; j = 1, 2, 3, ....

The at+j (j = 0, 1, 2, ...), which have not yet happened, are replaced by

zeros.

3.2.3 Inventory

We assume that the inventory of this item is managed by placing orders

at the end of each period. The order placed in period t arrives in period t+L,

where L is the lead-time. Thus in each period current period’s demand is

taken from inventory, the order placed L periods in the past is received into

inventory and a new order is placed to be received L periods into the future.

The inventory, demand and orders are related by the equation:

It = It−1 + Ot−L − Zt (3.4)
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where It is the ending inventory of period t and Ot is the order placed at the

end of period t.

(3.4) assumes that any unmet demand is backordered, i.e., the inventory

is not restricted to non-negative values.

It can be expressed in another form by substituting

It−1 = It−2 + Ot−L−1 − Zt−1

into (3.4). By substituting recursively, we have

It =
∞∑

j=0

Ot−L−j −
∞∑

j=0

Zt−j. (3.5)

3.2.4 Order

We assume the order policy is the standard MRP/ERP ordering policy:

The order is equal to the safety stock target minus the current ending inven-

tory plus the sum of the forecast over the lead-time minus the outstanding

orders:

Ot = T − It + Ẑt(1) + Ẑt(2) + ... + Ẑt(L)

−Ot−1 −Ot−2 − ...−Ot−L+1

(3.6)

where T is the safety stock inventory target.

Simply stated, the ordering policy is to place the order in time period t,

the quantity needed to bring the expected inventory to the target level T in

31



time period t + L. The actual inventory will differ from the target by the

sum of the forecast errors over the lead-time. This ordering policy can be

viewed as an “order up to a target” policy (Veinott 1965).

In manufacturing viewpoint, this order policy is an “infinite loading”

policy because it assumes that the manufacturer has an unlimited capacity

to fulfill the order requested by the retailer.

3.3 The Method

Under the assumptions given in the previous section, the following results

due to Gilbert (2002) hold:

• The time series of inventory It is ARIMA(0, 0, L− 1) or MA(L− 1).

• The time series of orders Ot is ARIMA(p, d, max{p + d, q − L}).

The parameters of both of these models can be explicitly determined from

the parameters of the original ARIMA(p, d, q) model of the demand time

series Zt.

Theorem 1 It is an MA(L-1) with mean T and standard deviation

σI =
√

1 + (1 + ψ1)2 + (1 + ψ1 + ψ2)2 + ... + (1 + ψ1 + ψ2 + ... + ψL−1)2σa.

Proof
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It differs from the inventory target T by the sum of the errors of the

forecasts made at time t− L

It = T − et−L(1)− et−L(2)− ...− et−L(L).

These errors are given by

et−L(1) = Zt−L+1 − Ẑt−L(1) = at−L+1

et−L(2) = Zt−L+2 − Ẑt−L(2) = at−L+2 + ψ1at−L+1

et−L(3) = Zt−L+3 − Ẑt−L(3) = at−L+3 + ψ1at−L+2 + ψ2at−L+1

...
...

...

et−L(L) = Zt−L+L − Ẑt−L(L) = at + ψ1at−1 + ψ2at−2 + ... + ψL−1at−L+1.

Combining the above terms gives

It = T − at − (1 + ψ1)at−1 − (1 + ψ1 + ψ2)at−2 − ...

− (1 + ψ1 + ψ2 + ... + ψL−1)at−L+1.

(3.7)

To write It in a standard ARIMA(p, d, q) form in (3.1), we define a
(I)
t = at

to give

It = T − a
(I)
t − θ

(I)
1 a

(I)
t−1 − θ

(I)
2 a

(I)
t−2 − ...− θ

(I)
L−1a

(I)
t−L+1.

Thus It can be seen to be MA(L− 1) with parameters

θ
(I)
i = 1 + ψ1 + ψ2 + ... + ψi; i = 1, 2, 3, ..., L− 1

33



which is an MA(L− 1).

The expected value of the inventory E[It] = T .

The standard deviation of the inventory is

σI =
√

1 + (1 + ψ1)2 + (1 + ψ1 + ψ2)2 + ... + (1 + ψ1 + ψ2 + ... + ψL−1)2σa.

End of proof

Theorem 2 Ot is an ARIMA(p, d,max{p+d, q−L}) with the form: φ(B)∇d(Ot−
µ) = θ(O)(B)a

(O)
t , or ϕ(B)(Ot − µ) = θ(O)(B)a

(O)
t with θ(O)(B) of order

q(O) = max{p + d, q−L} and σa(O) = Kσa where K = 1 + ψ1 + ψ2 + ... + ψL.

Proof

The theorem says that Ot has the same autoregressive operator as φ(B)

and difference operator ∇d(B) as the demand series Zt, and in the stationary

case has the same mean as the demand series. However, Zt has a different

moving average operator θ(O)(B) and has a noise series that is a multiple of

K times the original noise series of the demand process.

We will first write the Ot as a linear transfer function of the original noise

series at. We then scale at to give Ot in standard ARIMA linear transfer

function form Ot = ψ(O)(B)a
(O)
t .

Then we observe that the coefficients of ψ(O)(B)a0
t exhibit the same long

term pattern as those of ψ(B). Hence the ARIMA model for Ot written in

difference equation form differs from that of Zt only in the form of the MA

terms. However, since ψ(O)(B) and ϕ(B) are known we can solve for θ(O)
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using the relationships of (3.2).

We first express the order time series Ot as a transfer function of the

original noise series. In time period t − 1, Ot−1 was computed so that if

the forecasts Ẑt−1(1), Ẑt−1(2), ..., Ẑt−1(L), were perfect, then It+L−1 would

be exactly equal to the target T . In this case settings, Ot equal to Ẑt−1(L)

would make It+L also equal to the target T . However since the forecasts

are not perfect, Ot must also account for the changes in the forecasts that

occur between time t−1 and t, and account the difference between the actual

demand Zt and the forecast Ẑt−1(1).

Therefore we write Ot as the difference between the actual demand and

the forecast made one period earlier, plus the changes in the forecast for the

next L− 1 periods, plus the forecast of demand for period t + L.

Ot = (Zt − Ẑt−1(1)) + (Ẑt(1)− Ẑt−1(2)) + (Ẑt(2)− Ẑt−1(3)) + ...

+ (Ẑt(L− 1)− Ẑt−1(L)) + Ẑt(L)

(3.8)

where

Zt − Ẑt−1(1) = at

Ẑt(1)− Ẑt−1(2) = ψ1at

Ẑt(2)− Ẑt−1(3) = ψ2at

...
...

...

Ẑt(L− 1)− Ẑt−1(L) = ψL−1at
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and

Ẑt(L) = µ + ψLat + ψL+1at−1 + ψL+2at−2 + ....

Thus we obtain

Ot = µ + (1 + ψ1 + ψ2 + ... + ψL)at + ψL+1at−1 + ψL+2at−2 + .... (3.9)

To check the validity of (3.7) and (3.9) with the assumption of (3.6), we

substitute It, Ẑt(i); i = 1, 2, 3, ..., L, and Ot−i; i = 1, 2, 3, ..., L− 1 into (3.6).

Then, we have

Ot = T − It + Ẑt(1) + Ẑt(2) + ... + Ẑt(L)−Ot−1 −Ot−2 − ...−Ot−L+1

= µ + (1 + ψ1 + ψ2 + ... + ψL)at + ψL+1at−1 + ψL+2at−2 + ...

which is the same as (3.9).

To establish a standard ARIMA transfer function form of Ot first define

K = 1 + ψ1 + ψ2 + ... + ψL

and define a noise process

a
(O)
t = Kat

It follows that

σa(O) = Kσa.
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Then it is possible to write Ot in standard linear transfer function form

Ot − µ = a
(O)
t + (ψL+1/K)a

(O)
t−1 + (ψL+2/K)a

(O)
t−2 + ...

= ψ(O)(B)a
(O)
t

(3.10)

where

ψ
(O)
j = ψL+j/K, j = 1, 2, 3, ....

From the above equation, we observe that the coefficients of ψ(O)(B), ad-

justed by a time lag L, are proportional to the coefficients of ψ(B) : ψ(O)(B) =

BLψ(B)/K. Thus the difference equation form of Ot differs from that of Zt

only in the form of the MA operator θ(O).

Multiply both sides of the above equation by ϕ(B), we get

ϕ(B)(Ot − µ) = θ(O)a
(O)
t .

If we solve for θ(O)(B) = ϕ(B)ψ(O)(B) using (3.2), we find θ(O)(B) as follows

θ
(O)
0 = 1

θ
(O)
1 = −ψL+1/K + ϕ1

θ
(O)
2 = −ψL+2/K + ϕ1ψL+1/K + ϕ2

θ
(O)
3 = −ψL+3/K + ϕ1ψL+2/K + ϕ2ψL+1/K + ϕ3

...
...

...

θ
(O)
j = −ψL+j/K + ϕ1ψL+j−1/K + ϕ2ψL+j−2/K + ... + ϕj−1ψL+1/K + ϕj.
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To prove that the MA operator θ(O) has the order q(O) = max{p + d, q−L},
let j = max{p + d, q − L}.
Case 1: let j = p + d or p + d ≥ q ≥ q − L.

From Zt, the ψ’s are

ψ0 = 1

ψ1 = ϕ1ψ0 − θ1

ψ2 = ϕ1ψ1 + ϕ2ψ0 − θ2

ψ3 = ϕ1ψ2 + ϕ2ψ1 + ϕ3ψ0 − θ3

...
...

...

ψq−L = ϕ1ψq−L−1 + ϕ2ψq−L−2 + ... + ϕq−Lψ0 − θq−L

...
...

...

ψq−1 = ϕ1ψq−2 + ϕ2ψq−3 + ... + ϕq−1ψ0 − θq−1

ψq = ϕ1ψq−1 + ϕ2ψq−2 + ... + ϕqψ0 − θq

ψq+1 = ϕ1ψq+1 + ϕ2ψq+2 + ... + ϕq+1ψ0

...
...

...

ψp+d−1 = ϕ1ψp+d−2 + ϕ2ψp+d−3 + ... + ϕp+d−1ψ0

ψp+d = ϕ1ψp+d−1 + ϕ2ψp+d−2 + ... + ϕp+dψ0

ψp+d+1 = ϕ1ψp+d + ϕ2ψp+d−1 + ... + ϕp+dψ1

...
...

...
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hence, for i ≥ 0

ψp+d+i = ϕ1ψp+d+i−1 + ϕ2ψp+d+i−2 + ... + ϕp+dψi. (3.11)

For Ot, the θ(O)’s are

θ
(O)
1 = −ψL+1/K + ϕ1

θ
(O)
2 = −ψL+2/K + ϕ1ψL+1/K + ϕ2

θ
(O)
3 = −ψL+3/K + ϕ1ψL+2/K + ϕ2ψL+1/K + ϕ3

...
...

...

θ
(O)
p+d = −ψL+p+d/K + ϕ1ψL+p+d−1/K + ... + ϕp+d−1ψL+1/K + ϕp+d

θ
(O)
p+d+1 = −ψL+p+d+1/K + ϕ1ψL+p+d/K + ... + ϕp+dψL+1/K

θ
(O)
p+d+2 = −ψL+p+d+2/K + ϕ1ψL+p+d+1/K + ... + ϕp+dψL+2/K

...
...

...

hence, from (3.11), we have θ
(O)
p+d+i = 0 for i ≥ 1. In this case, the MA

operator θ(O) has the order q(O) = p+d when j = max{p+d, q−L} = p+d.

Case 2: let j = q − L or q − L ≥ p + d.
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From Zt, the ψ’s are

ψ0 = 1

ψ1 = ϕ1ψ0 − θ1

ψ2 = ϕ1ψ1 + ϕ2ψ0 − θ2

ψ3 = ϕ1ψ2 + ϕ2ψ1 + ϕ3ψ0 − θ3

...
...

...

ψp+d−1 = ϕ1ψp+d−2 + ϕ2ψp+d−3 + ... + ϕp+d−1ψ0 − θp + d− 1

ψp+d = ϕ1ψp+d−1 + ϕ2ψp+d−2 + ... + ϕp+dψ0 − θp+d

ψp+d+1 = ϕ1ψp+d + ϕ2ψp+d−1 + ... + ϕp+dψ1 − θp+d+1

...
...

...

ψq−L = ϕ1ψq−L−1 + ϕ2ψq−L−2 + ... + ϕp+dψq−p−d−L − θq−L

...
...

...

ψq−1 = ϕ1ψq−2 + ϕ2ψq−3 + ... + ϕp+dψq−p−d−1 − θq−1

ψq = ϕ1ψq−1 + ϕ2ψq−2 + ... + ϕp+dψq−p−d − θq

ψq+1 = ϕ1ψq+1 + ϕ2ψq+2 + ... + ϕp+dψq−p−d+1

ψq+2 = ϕ1ψq+2 + ϕ2ψq+1 + ... + ϕp+dψq−p−d+2

...
...

...

hence, for i ≥ 1

ψq+i = ϕ1ψq+i−1 + ϕ2ψq−i−2 + ... + ϕp+dψq−p−d+i. (3.12)
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For Ot, the θ(O)’s are

θ
(O)
1 = −ψL+1/K + ϕ1

θ
(O)
2 = −ψL+2/K + ϕ1ψL+1/K + ϕ2

θ
(O)
3 = −ψL+3/K + ϕ1ψL+2/K + ϕ2ψL+1/K + ϕ3

...
...

...

θ
(O)
p+d = −ψL+p+d/K + ϕ1ψL+p+d−1/K + ... + ϕp+d−1ψL+1/K + ϕp+d

θ
(O)
p+d+1 = −ψL+p+d+1/K + ϕ1ψL+p+d/K + ... + ϕp+dψL+1/K

θ
(O)
p+d+2 = −ψL+p+d+2/K + ϕ1ψL+p+d+1/K + ... + ϕp+dψL+2/K

...
...

...

θ
(O)
q−L = −ψq/K + ϕ1ψq−1/K + ... + ϕp+dψq−p−d/K

θ
(O)
q−L+1 = −ψq+1/K + ϕ1ψq/K + ... + ϕp+dψq−p−d+1/K

θ
(O)
q−L+2 = −ψq+2/K + ϕ1ψq+1/K + ... + ϕp+dψq−p−d+2/K

...
...

...

hence, from (3.12), we have θ
(O)
q−L+i = 0 for i ≥ 1. In this case, the MA

operator θ(O) has the order q(O) = q−L when j = max{p+d, q−L} = q−L.

From case 1 and case 2, q(O) = max{p+d, q−L}. Thus Ot is ARIMA(p, d, max{p+

d, q − L}) having the same autoregressive operator ϕ(B) and difference op-

erator ∇d(B) as Zt but having a moving average operator θ(O)(B) of order

q(O) = max{p+d, q−L} with parameters θ
(O)
j (B), j = 1, 2, ..., q(O) as defined

above. The underlying noise series has σa(O) = Kσa.
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End of proof

3.4 The Model for Multistage Supply Chain

The model provides a measure of the bullwhip effect and insights into the

parameters that determine the magnitude of the bullwhip effect. It provides

a means of determining the cumulative impact of lead times in a multistage

supply chain.

A measure of the bullwhip effect is K = 1+ψ1+ψ2+...+ψL, the multiplier

that translates a shock in demand into a shock in orders: a
(1)
t = Kat. The

multiplier K tells how the error in the order forecast grows as the forecast

horizon L increases. This additional forecast error is due to changes in the

forecast demand Ẑ during the forecast horizon.

Under the assumptions of the model, the effect of lead times in a multi-

stage supply chain (in which the order at each stage become the demand for

the stage immediately upstream) are additive. For example, the multiplier

of N stages having lead-times L(1), L(2), L(3), ..., L(N) is the same as the

multiplier of a single stage having lead-time

L = L(1) + L(2) + L(3) + ... + L(N).

For example, consider a two-stage supply chain with lead times L(1) and
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L(2). The transfer function for the demand at the first stage is

Zt = µ + at + ψ1at−1 + ψ2at−2 + ....

The multiplier for the first stage is

K(1) = 1 + ψ1 + ψ2 + ... + ψL.

The noise process for the first stage is

a
(1)
t = K(1)at.

The transfer function for the order for the first stage is

O
(1)
t = µ + a

(1)
t + (ψL(1)+1/K

(1))a
(1)
t−1 + (ψL(1)+2/K

(1))a
(1)
t−2 + ....

The demand for the upstream stage two is the order of the adjacent down-

stream stage one or Z
(2)
t = O

(1)
t .

Therefore,the multiplier for the stage two is

K(2) = 1 + ψ1/K
(1) + ψ2/K

(1) + ... + ψL(1)+L(2)/K(1).

The noise process for the stage two is

a
(2)
t = K(2)a

(1)
t .
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The transfer function for the order at stage two is

O
(2)
t = µ+a

(2)
t +

(
(ψL(1)+L(2)+1/K

(1))/K(2)
)
a

(2)
t−1

(
(ψL(1)+L(2)+2/K

(1))/K(2)
)
a

(2)
t−2+....

Substituting

a
(2)
t = K(2)a

(1)
t = K(2)K(1)at = (1 + ψ1 + ψ2 + ... + ψL(1)+L(2))at

into the above equation, we obtain

O
(2)
t = µ+(1+ψ1+ψ2+...+ψL(1)+L(2))at+ψL(1)+L(2)+1at−1+ψL(1)+L(2)+2at−2+....

The above expression can be seen to be the multiplier of a single stage having

a lead-time of L(1) + L(2).

Since Z
(2)
t = O

(1)
t is ARIMA(p, d, q(1)) where q(1) = max{p + d, q − L(1)},

by theorem 2, O
(2)
t is ARIMA(p, d, q(2)) where q(2) = max{p + d, q(1)−L(2)}.

3.5 Sample Models

This section exemplifies the generic formulas from the previous section

when the demand series are ARIMA(0,1,1), ARIMA(0,2,2), ARIMA(0,3,3),

and ARIMA(1,0,0). The model ARIMA(0,1,1) or IMA(1,1) is the single ex-

ponential smoothing model (McKenzie (1984)). The model ARIMA(0,2,2) or

IMA(2,2) is the double exponential smoothing model. The model ARIMA(0,3,3)
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or IMA(3,3) is the triple exponential smoothing model. These exponential

smoothing models are commonly used in forecast method.

The single exponential smoothing method, or simple exponential smooth-

ing model, uses the exponentially weighted average of recent data and the

forecast. The model assumes that the data displays a time-varying mean

without a consistent trend.

The double exponential smoothing model, or linear exponential smooth-

ing (Brown’s or Holt’s), is used when the data displays a time-varying linear

trend as well as a time-varying level (Brown’s uses 1 parameter, Holt’s uses

separate smoothing parameters for level and trend).

The triple exponential smoothing model, or quadratic exponential smooth-

ing, is used when the data displays a time-varying quadratic trend as well as

a time-varying level.

The models in AR(p) are intuitively appealing as descriptions of nature.

Much of classical physics can be written as low order differential equations.

In an AR(p) model, the forecast is made from a set of exponentially decay

weights of the past data.

3.5.1 ARIMA(0,1,1)

This section illustrates the applications of theorem 1 and 2 when the

demand series is ARIMA(0,1,1). These results correspond to those given

in Graves (1999). One interesting observation of Graves is that if consumer

demand is IMA(1,1) then the orders at all upstream stages are also IMA(1,1),
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which is stated in theorem 2 that Ot is an ARIMA(p, d, max{p + d, q − L}).
Since L can be an integer greater than zero, then max{p + d, q−L} is 1 and

Ot is always IMA(1,1), given Zt is IMA(1,1).

The general form of the IMA(1,1) model is

Zt = Zt−1 + at − θat−1 (3.13)

or

ϕ(B)Zt = θ(B)at

where ϕ(B) = 1−B, i.e., ϕ1 = 1 and ϕj = 0 for j > 1. θ(B) = 1− θB, i.e.,

θ1 = θ and θj = 0 for j > 1. Thus, we can compute

ψ(B) = θ(B)/ϕ(B) = 1 + (1− θ)B + (1− θ)B2 + (1− θ)B3 + ...

i.e., ψi = 1− θ, i = 1, 2, 3, ....

Hence, Zt in random shock form is

Zt = at + (1− θ)at−1 + (1− θ)at−2 + (1− θ)at−3 + .... (3.14)
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By theorem 1, It is MA(L− 1) with

θ
(I)
1 = 1 + (1− θ) = 2− θ

θ
(I)
2 = 1 + (1− θ) + (1− θ) = 3− 2θ

θ
(I)
3 = 1 + (1− θ) + (1− θ) + (1− θ) = 4− 3θ

...
...

...

θ
(I)
L−1 = L− (L− 1)θ.

Thus,

It = T − at − (2− θ)at−1 − (3− 2θ)at−2 − ...− (L− (L− 1)θ)at−L+1.

The standard deviation of the inventory is given by

σI =

√
1 + (2− θ)2 + (3− 2θ)2 + ... +

(
L− (L− 1)θ

)2
σa

By theorem 2, Ot is IMA(1,1)

(1−B)Ot = (1− θ
(O)
1 B)a

(O)
t

where

θ
(O)
1 = −ψL+1/K + ϕ1

a
(O)
t = Kat
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K = 1 + L(1− θ).

Therefore

θ
(O)
1 =

−(1− θ)

1 + L(1− θ)
+ 1 =

1 + (L− 1)(1− θ)

1 + L(1− θ)
.

By theorem 2 we also have

σa(O) = Kσa = (1 + L(1− θ))σa.

Rewritten following the ARIMA(p, d, q) form in (3.1), we have

(1−B)Ot =
(
1− 1 + (L− 1)(1− θ)

1 + L(1− θ)
B

)
a

(O)
t

=
((

1 + L(1− θ)
)− (

1 + (L− 1)(1− θ)
)
B

)
at

or in the random shock form in (3.9)

Ot =
(
1 + L(1− θ)

)
at + (1− θ)at−1 + (1− θ)at−2

+ (1− θ)at−3 + ....

(3.15)

3.5.2 ARIMA(0,2,2)

The general form of the IMA(2,2) model is

Zt = 2Zt−1 − Zt−2 + at − θ1at−1 − θ2at−2
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or

ϕ(B)Zt = θ(B)at

where ϕ(B) = 1−ϕ1B−ϕ2B
2 = 1−2B +B2, θ(B) = 1−θ1B−θ2B

2. Thus,

we can compute ψ’s using (3.2)

ψ0 = 1

ψ1 = ϕ1ψ0 − θ1 = 2− θ1

ψ2 = ϕ1ψ1 + ϕ2ψ0 − θ2 = 2(2− θ1)− 1− θ2 = 3− 2θ1 − θ2

ψ3 = ϕ1ψ2 + ϕ2ψ1 + ϕ3ψ0 − θ3 = ϕ1ψ2 + ϕ2ψ1

= 2(3− 2θ1 − θ2)− 1(2− θ1) = 4− 3θ1 − 2θ2

ψ4 = ϕ1ψ3 + ϕ2ψ2 + ϕ3ψ1 + ϕ4ψ0 − θ4 = ϕ1ψ3 + ϕ2ψ2

= 2(4− 3θ1 − 2θ2)− 1(3− 2θ1 − θ2) = 5− 4θ1 − 3θ2

ψ5 = ϕ1ψ4 + ϕ2ψ3 = 2(5− 4θ1 − 3θ2)− 1(4− 3θ1 − 2θ2) = 6− 5θ1 − 4θ2

...
...

...

ψj = ϕ1ψj−1 + ϕ2ψj−2 = (j + 1)− jθ1 − (j − 1)θ2.

Thus,

ψ(B) = θ(B)/ϕ(B) = 1+(2−θ1)B+(3−2θ1−θ2)B
2+(4−3θ1−2θ2)B

3+ ....
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i.e., ψi = (i + 1)− iθ1 − (i− 1)θ2, i = 1, 2, 3, ...

By theorem 1, It is MA(L− 1) with

θ
(I)
1 = 1 + (2− θ1) = 3− θ1

θ
(I)
2 = 1 + (2− θ1) + (3− 2θ1 − θ2) = 6− 3θ1 − θ2

θ
(I)
3 = 1 + (2− θ1) + (3− 2θ1 − θ2) + (4− 3θ1 − 2θ2) = 10− 6θ1 − 3θ2

...
...

...

θ
(I)
L−1 = (L/2)(L + 1)− (

(L− 1)/2
)
Lθ1 −

(
(L− 2)/2

)
(L− 1)θ2.

Thus,

It = T−at−(3−θ1)at−1−(6−3θ1−θ2)at−2−...−
( L∑

i=1

i−
L−1∑
i=1

iθ1−
L−2∑
i=1

iθ2

)
at−L+1.

The standard deviation of the inventory is given by

σI =

√√√√1 + (3− θ1)2 + (6− 3θ1 − θ2)2 + ... +
( L∑

i=1

i−
L−1∑
i=1

iθ1 −
L−2∑
i=1

iθ2

)2

σa.

By theorem 2, Ot is IMA(2,2)

(1− 2B + B2)Ot = (1− θ
(O)
1 B − θ

(O)
2 B2)a

(O)
t
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where

θ
(O)
1 = −ψL+1/K + ϕ1

θ
(O)
2 = −ψL+2/K + ϕ1ψL+1/K + ϕ2

θ
(O)
j = −ψL+j/K + ϕ1ψL+j−1/K + ϕ2ψL+j−2/K = 0; j ≥ 3

a
(O)
t = Kat

K =
L+1∑
i=1

i−
L∑

i=1

iθ1 −
L−1∑
i=1

iθ2

σa(O) = Kσa =
( L+1∑

i=1

i−
L∑

i=1

iθ1 −
L−1∑
i=1

iθ2

)
σa.

3.5.3 ARIMA(0,3,3)

The general form of the IMA(3,3) model is

Zt = 3Zt−1 − 3Zt−2 + Zt−3 + at − θ1at−1 − θ2at−2 − θ3at−3

or

ϕ(B)Zt = θ(B)at

where

ϕ(B) = 1− ϕ1B − ϕ2B
2 − ϕ3B

3 = 1− 3B + 3B2 −B3

θ(B) = 1− θ1B − θ2B
2 − θ3B

3.
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Thus, we can compute ψ’s using (3.2)

ψ0 = 1

ψ1 = ϕ1ψ0 − θ1 = 3− θ1

ψ2 = ϕ1ψ1 + ϕ2ψ0 − θ2 = 3(3− θ1)− 3− θ2 = 6− 3θ1 − θ2

ψ3 = ϕ1ψ2 + ϕ2ψ1 + ϕ3ψ0 − θ3

= 3(6− 3θ1 − θ2)− 3(3− θ1)− θ3 = 9− 6θ1 − 3θ2 − θ3

ψ4 = ϕ1ψ3 + ϕ2ψ2 + ϕ3ψ1 + ϕ4ψ0 − θ4 = ϕ1ψ3 + ϕ2ψ2 + ϕ3ψ1

= 3(9− 6θ1 − 3θ2 − θ3)− 3(6− 3θ1 − θ2) + (3− θ1) = 12− 9θ1 − 6θ2 − 3θ3

ψ5 = ϕ1ψ4 + ϕ2ψ3 + ϕ3ψ2

= 3(12− 9θ1 − 6θ2 − 3θ3)− 3(9− 6θ1 − 3θ2 − θ3) + (6− 3θ1 − θ2)

= 15− 12θ1 − 9θ2 − 6θ3

...
...

...

ψj = ϕ1ψj−1 + ϕ2ψj−2 + ϕ3ψj−3 = 3j − 3(j − 1)θ1 − 3(j − 2)θ2 − 3(j − 3)θ3.

Thus,

ψ(B) = θ(B)/ϕ(B)

= 1 + (3− θ1)B + (6− 3θ1 − θ2)B
2 + (9− 6θ1 − 3θ2 − θ3)B

3

+ (12− 9θ1 − 6θ2 − 3θ3)B
4 + ...
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i.e., ψi = 3j − 3(j − 1)θ1 − 3(j − 2)θ2 − 3(j − 3)θ3, i = 1, 2, 3, ....

By theorem 1, It is MA(L− 1) with

θ
(I)
1 = 1 + (3− θ1) = 4− θ1

θ
(I)
2 = 1 + (3− θ1) + (6− 3θ1 − θ2) = 10− 4θ1 − θ2

θ
(I)
3 = 1 + (3− θ1) + (6− 3θ1 − θ2) + (9− 6θ1 − 3θ2 − θ3) = 19− 10θ1 − 4θ2 − θ3

θ
(I)
4 = 1 + (3− θ1) + (6− 3θ1 − θ2) + (9− 6θ1 − 3θ2 − θ3) + (12− 9θ1 − 6θ2 − 3θ3)

= 31− 19θ1 − 10θ2 − 4θ3

...
...

...

θ
(I)
L−1 =

(3(L− 1)L

2
+ 1

)
−

(3(L− 2)(L− 1)

2
+ 1

)
θ1

−
(3(L− 3)(L− 2)

2
+ 1

)
θ2 −

(3(L− 4)(L− 3)

2
+ 1

)
θ3.

Thus,

It = T − at − (4− θ1)at−1 − (10− 4θ1 − θ2)at−2

− (19− 10θ1 − 4θ2 − θ3)at−3 − (31− 19θ1 − 10θ2 − 4θ3)at−4

− ...−
((

1 +
L−1∑
i=1

3i
)
−

(
1 +

L−2∑
i=1

3i
)
θ1 −

(
1 +

L−3∑
i=1

3i
)
θ2 −

(
1 +

L−4∑
i=1

3i
)
θ3

)
at−L+1.

The standard deviation of the inventory is given by

σI =

√
1 + (θ

(I)
1 )2 + (θ

(I)
2 )2 + (θ

(I)
3 )2 + ... + (θ

(I)
L−1)

2σa.

53



By theorem 2, Ot is IMA(2,2)

(1− 3B + 3B2 −B3)Ot = (1− θ
(O)
1 B − θ

(O)
2 B2 − θ

(O)
3 B3)a

(O)
t

where

θ
(O)
1 = −ψL+1/K + ϕ1

θ
(O)
2 = −ψL+2/K + ϕ1ψL+1/K + ϕ2

θ
(O)
3 = −ψL+3/K + ϕ1ψL+2/K + ϕ2ψL+1/K + ϕ3

θ
(O)
j = −ψL+j/K + ϕ1ψL+j−1/K + ϕ2ψL+j−2/K + ϕ3ψLj−3/K = 0; j ≥ 4

a
(O)
t = Kat

K =
(
1 +

L∑
i=1

3i
)
−

(
1 +

L−1∑
i=1

3i
)
θ1 −

(
1 +

L−2∑
i=1

3i
)
θ2 −

(
1 +

L−3∑
i=1

3i
)
θ3

σa(O) = Kσa.

3.5.4 ARIMA(1,0,0)

When demand is ARIMA(1,0,0) or AR(1)

Zt − µ = φ(Zt−1 − µ) + at

or

ϕ(B)(Zt − µ) = θ(B)at
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where ϕ = φ(B) = 1 − φ, with −1 < φ < 1 and θ(B) = 1. Thus, we can

compute

ψ(B) = θ(B)/ϕ(B) = 1 + φB + φ2B2 + φ3B3 + ...

i.e., ψ1 = φi,for i = 1, 2, 3, ....

By theorem 1, It is MA(L− 1) with

θ
(I)
1 = 1 + φ = (1− φ2)/(1− φ)

θ
(I)
2 = 1 + φ + φ2 = (1− φ3)/(1− φ)

θ
(I)
3 = 1 + φ + φ2 + φ3 = (1− φ4)/(1− φ)

...
...

...

θ
(I)
L−1 = 1 + φ + φ2 + φ3 + ... + φL−1 = (1− φL)/(1− φ).

Thus,

It = T−at−
(
(1−φ2)/(1−φ)

)
at−1−

(
(1−φ3)/(1−φ)

)
at−2−...−

(
(1−φL)/(1−φ)

)
at−L+1.

The standard deviation of the inventory is given by

σI =

√
1 +

(
(1− φ2)/(1− φ)

)2

+
(
(1− φ3)/(1− φ)

)2

+ ... +
(
(1− φL)/(1− φ)

)2

σa.
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By theorem 2, Ot is ARIMA(1,0,1) or ARMA(1,1)

(1− φB)(Ot − µ) = (1− θ
(O)
1 B)a

(O)
t

where

θ
(O)
1 = −ψL+1/K + ϕ1

a
(O)
t = Kat

K = 1 + φ + φ2 + φ3 + ... + φL = (1− φL+1)/(1− φ).

Therefore

θ
(O)
1 =

−φL+1

(1− φL+1)/(1− φ)
+ φ =

φ(1− φL)

1− φL+1
.

By theorem 2 we also have

σa(O) = Kσa =
1− φL+1

1− φ
σa.

Rewritten following the form in (3.1), we have

(1− φB)Ot =
(
1− φ(1− φL)

1− φL+1
B

)
a

(O)
t

=
(1− φL+1

1− φ
− φ(1− φL)

1− φ
B

)
at

or in the random shock form in (3.9)

Ot = (1 + φ + φ2 + φ3 + ... + φL)at + φL+1at−1 + φL+2at−2 + φL+3at−3 + ....
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The lag one autocorrelation for AR(1) demand is φ. As was pointed out

in Lee, So, and Tang (2000) the bullwhip effect in orders does not exist when

the autocorrelation (φ) is zero. If φ = 0, then K = 1, θ(O) = 0, and Ot = Z,

i.e. the ordering process is the white noise series which is a pure pull.

For a given lead time, K grows as φ increases. As φ approaches 1, (i.e.

demand approaches a random walk), the value of K approaches L + 1.

3.6 Applications of Sample Models

This section gives the applications of the sample models compared to various

current literatures in 1) multistage supply chain for ARIMA(0,1,1) demand

model used by Sternman 1989, 2) ARIMA(0,1,1) demand model used by

Tsay 1999, and 3) ARIMA(1,0,0) demand model used by Lee, So, and Tang

2000.

3.6.1 Multistage Supply Chain ARIMA(0,1,1) Appli-

cation

In a multistage supply chain in which the consumer demand follows an

exponential smoothing model, the orders at the upstream stages also follow

an exponential smoothing model, but with successively smaller values of the

smoothing parameter and successively larger values of the standard error.

If the stages are numbered consecutively with stage 1 being closest to the

consumer and the lead time for each stage i is denoted L(i). The IMA(0,1,1)
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model written as an exponential smoothing model is

Ẑt = αZt + (1− α)Ẑt−1 (3.16)

with α = 1− θ, Then

α(O(i)) =
α

1 + (L(1) + L(2) + ... + L(i))α

σO(i) =
(
1 + (L(1) + L(2) + ... + L(i))α

)
σa

where αO(i)
is the exponential smoothing parameter for forecasting the orders

at stage i. σO(i)
is the standard error of the forecast of orders at stage i.

An exponential smoothing model can be thought of as a random walk

buried in noise (see Box, Jenkins, Reinsel and Jenkins 1994). The parameter

α indicates the fraction of at, the single period forecast error that is due to

changes in the level of consumer demand and 1−α is the fraction of the error

due to noise. The expressions above say that if the lead time is long then

the variation in orders is large and most of the variation is due to noise. A

small α provides a lot of smoothing. While a large α provides a fast response

to the recent changes in the time series and a smaller amount of smoothing.

For example, when α = 1− θ = 0, the demand series is Zt = µ + at, which is

a white noise series ARIMA(0,0,0). When α = 1− θ = 1, the demand series

is Zt = Zt−1 + at, which is a random walk series ARIMA(0,1,0).

Consider a four-stage supply chain, with each stage having a lead time of
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four weeks as in the beer game (Sternman 1989). Suppose that demand is

generated by a random walk (α = 1) with a standard error of 1 (σa = 1).

Then αO(1)
= 1/5, αO(1)

= 1/9, αO(1)
= 1/13, αO(1)

= 1/17 and σO(1) = 5,

σO(2) = 9, σO(3) = 13, σO(1) = 17.

3.6.2 ARIMA(0,1,1) Application

As a practical tool, ARIMA supply chain models provide a means to

determine the inventory levels and manufacturing flex capabilities required

to meet customer demand. And they provide a means of explicitly quan-

tifying the impact of lead-time reduction on required inventory levels, on

manufacturing flex capacity required and on the ability to reduce variation

for upstream suppliers.

Suppose for example, that the customer demand for an item sold by a

retailer is given by a time series Zt, where Zt is the demand in week t.

Suppose that Zt has been modeled with an exponential smoothing forecast

model
(
ARIMA(0,1,1)

)
with α = 1 − θ = 0.2 and σa = 10. Suppose also

that the current level of the process is Ẑt = 100.

Suppose the supplier delivers the items to the retailer L = 4 weeks after

the order is placed. The retailer also gives the supplier a forecast of the order

F = 10 weeks before it is placed along with a commitment that the actual

order will not deviate from this forecast by more than a specified range (Tsay

1999).

Thus the retailer would like to know how to compute an inventory target
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T (safety stock level) to get specified (say a three-sigma) level of protection

against stock-outs. The retailer would also like to compute the (again say 3-

sigma) range of variation in actual orders will not deviate from their forecast

by more than a specified range (Tsay 1999).

The formula’s below can all be derived from the results of this chapter,

using standard time series techniques.

The standard deviation of the inventory from theorem 1 is

σI =

√
1 + (2− θ)2 + (3− 2θ)2 + ... +

(
L− (L− 1)θ

)2
σa

=
√

1 + (1 + α)2 + (1 + 2α)2 + ... + (1 + (L− 1)α)2σa

=
√

1 + 1.22 + 1.42 + 1.62 · 10 ≈ 26.

To maintain a three-sigma level of protection against stock-outs the safety

stock would be set at ±3σI = ±3 ∗ 26 = ±78. If the lead time could be

reduced to one week then the three-sigma safety stock level could be reduced

to ±3 ∗ √1 ∗ 10 = ±30.

The forecast of the orders is given by

Ôt(F ) = E[Ot+F ] = (1− θ)(at + at−1 + at−2 + ...) = Ẑt

where Ôt(F ) is the forecast of Ot+F made at time t.

From (3.9), the standard error of the order forecast, i.e. the standard

60



deviations of (Ot+F )− Ôt(F )) can be derived as

Ot+F − Ôt(F ) =
(
1 + L(1− θ)

)
at+F + (1− θ)(at−F−1 + at−F−2 + ... + at+1)

s(F ) =

√
Ot+F − Ôt(F ) =

√
(1 + Lα)2 + (F − 1)α2σa

s(10) =
√

(1 + 4 ∗ 0.2)2 + 9 ∗ 0.22 ∗ 10 ≈ 19.

Thus the three-sigma range of variation in actual orders around the 10-week

forecast is ±3 ∗ 19 = ±57. If the lead time could be reduced to one week the

range could be reduced to ±3 ∗
√

(1 + 1 ∗ 0.2)2 + 9 ∗ 0.22 ∗ 10 ≈ ±40.

3.6.3 AR(1) Application

Lee, So, and Tang 2000 give an expression for the time series of orders

when demand is AR(1). Here we show that the expression that they derive

for orders, is equivalent to the ARMA(1,1) process derived above.

To show the equivalence we first must make adjustments for notational

differences. The demand model in equation 2.1 of Lee, So, and Tang 2000 is

Dt = d + ρDt−1 + εt

where Dt is the actual demand in period t. εt is i.i.d. normally distributed

with zero and variance σ2. −1 < ρ < 1.

This is equivalent to the AR(1) demand model used above

Zt − µ = φ(Zt−1 − µ) + at
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where

µ = d/(1− θ).

Lee, So, and Tang 2000 define a lead-time l in the order l + 1 periods

after the order is placed. Therefore the relationship between the lead-time

L used in this paper and the lead time l used by Lee, So, and Tang 2000 is

L = l + 1.

With these notational changes the expression given in equation 3.6 of Lee,

So, and Tang 2000

Yt+1 = d + ρYt +
1− ρl+2

1− ρ
εt+1 − ρ(1− ρl+1)

1− ρ
εt

where Yt is the orders, can be written as

Ot − µ = φ(Ot−1 − µ) +
1− φL+1

1− φ
at +

φ(1− φL)

1− φ
at−1

if we define

a
(O)
t =

1− φL+1

1− φ
at = Kat

then we get

Ot − µ = φ(Ot−1 − µ) + a
(O)
t +

φ(1− φL)

1− φL+1
a

(O)
t−1

which is the ARMA(1,1) model for orders given above.
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3.7 Insights

These results provide mathematical insights as the followings.

1. The magnitude of the bullwhip effect. The bullwhip effect depends

only on the lead-time and the autocorrelation in the demand. From theorem

1, the bullwhip effect on inventory is

KI =
√

1 + (1 + ψ1)2 + (1 + ψ1 + ψ2)2 + ... + (1 + ψ1 + ψ2 + ... + ψL−1)2.

From theorem 2 the bullwhip effect on the order is

KO = 1 + ψ1 + ψ2 + ... + ψL.

From KI and KO, when the lead-time (L) is long and the autocorrelation (ψ)

is high, most of the variation in orders and inventory is due to the bullwhip

effect, rather than variation in demand.

2. The impact of the number of stages. In multistage supply chains the

bullwhip effect on orders depends only on the total of the lead times, not

on the number of stages. In a supply chain having N stages with lead times

L(1), L(2), L(3), ..., L(N), the standard error of orders at the N th stage, is the

same of the standard error of orders of a single stage supply chain having the

same demand series and a lead time of L(1) + L(2) + L(3) + ... + L(N).

3. The existence of the bullwhip effect with the optimal forecast model.

The results shown above are based on an assumption that the minimum mean
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square error forecasting model is being used. Yet the bullwhip effect exists

if the lead time is nonzero and the demand is autocorrelated. In practical

terms this says that improving forecast accuracy can reduce, but does not

eliminate, the bullwhip effect.

4. The existence of the bullwhip effect with shared of point of sale demand

data. From the transfer functions of demand and orders made at time t

forecasted for time t+L periods in the future, it can be shown that Et[Ot+L] =

Et[Zt+L]. This means that an upstream customer who receives the orders as

demand, will make the same forecast from the time series of the orders as he

would make from point of sale data. This result is not surprising since, by

assumption, each stage has the optimal forecast model.

The practical implications of these results is that the bullwhip effect ex-

ists even under the most optimistic assumptions regarding point of sale in-

formation sharing and forecasting models. Thus a supply chain integration

strategy based solely on better data accuracy, better forecasting models and

point of sale information sharing will not guarantee successful supply chain

integration. A reduction in lead-time is necessary in reducing the bullwhip

effect.
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Chapter 4

The Generalized Ordering

Policy and The Smoothing

Ordering Policy

This chapter introduces the generalized ordering policy that permits

manufacturers to control the tradeoffs between the variation in inventory

and the variation in differencing orders. The standard MRP ordering policy

introduced in chapter 3 is a special case of the generalized ordering policy

that has the minimum variation in inventory (point A in figure 4.1). Where

the smoothing ordering policy introduced later in this chapter has the min-

imum variation in differencing orders (point B in figure 4.1). Figure 4.1

exemplifies the indifference curve of the sum of the variation in inventory

and the variation in differencing orders. For single exponential smoothing or
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Figure 4.1: Indifference Curve of the Sum of Variations for Single Exponential
Smoothing Demand

ARIMA(0,1,1), the variation in differencing orders is the variation in order

changes from one period to the next.

With this generalized ordering policy, manufacturers can smooth orders

which is regarded as an effective way to mitigate the bullwhip effect. The

generalized order models can be applied to any ARIMA demand, any ordering

lead time, and any smoothing period. We also provide generic formulas to

determine the optimal smoothing weights in the smoothing ordering policy

for ARIMA(p, 0, q) and ARIMA(p, 1, q) orders.

4.1 Introduction

With an incoming retailer order, a supplier may not take an immediate

response to the changes in retailer orders but gradually react to these changes
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since both supplier and retailer do not instantly believe that the fluctuation

in incoming customer demand (that drives the variation in retailer’s orders)

is an indicative of a permanent change. By taking slow reactions to the order

changes, they can cancel out insignificant order variation by smoothing the

order changes.

Hence, instead of using the standard MRP ordering policy to immediately

bring the inventory back to target at the ordering lead time (L) periods in the

future, a retailer may place orders gradually to control the variation in order

changes. Smoothing out the orders instead of directly placing the current

order to bring the inventory level back to target is regarded as an effective

way to mitigate the bullwhip effect.

However, the retailer also needs a warranty that the order in a given

period will not cause under/overstock on the inventory level. For example,

the retailer may level the production rate that would not be changed (its

variation in productions is zero), then the production may not be able to

react to the demand needed. As a result, the inventory level will be either

overstocked (if the production rate is set too high) or stock-outs (if the pro-

duction rate is set too low). Thus, an implemented ordering policy must have

a stationary inventory. The generalized ordering policy guarantees that such

ordering policy has a stationary inventory.

We also introduce the smoothing ordering policy which is a special case

of the generalized ordering policy that minimizes the variation in differencing

orders. The differencing order is needed because it has a finite term in the
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ARIMA random shock form. Hence, its variance is finite which is a require-

ment for optimization. With the gain in minimizing variation in differencing

orders, the smoothing ordering policy increases the variation in inventory

and the safety stock is increased compared with those of the standard MRP

ordering policy.

4.2 Generalized Ordering Policy

The transfer function of the up to target order in (3.9) is

Ot − µ = (1 + ψ1 + ψ2 + ... + ψL)at + ψL+1at−1 + ψL+2at−2 + ...

= K(O)at +
∞∑
i=1

ψL+iat−i.

The term K(O)at represents the change between t−1 and t of the forecast

for period t, t + 1, t + 2, ..., t + L. The term
∑∞

i=1 ψL+iat−i represents the

forecast of demand for period t + L that was made in the period t− 1. This

is infinite loading because it absorbs all of the changes in the forecast in a

single period.

A generalized model uses S periods to adjust to the changes in the fore-

cast. Let S be the smoothing period. L is the lead time. Let µ = 0, we can
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define the generalized order in random shock form

Ot = β0at + β1at−1 + β2at−2 + ... + βS−1at−S+1

+ (1 + ψ1 + ψ2 + ... + ψS+L −
S−1∑
i=0

βi)at−S

+ ψS+L+1at−S−1 + ψS+L+2at−S−2 + ...

(4.1)

where βi ∈ <; i = 0, 1, 2, ..., S − 1 is the smoothing weight.

This order is a weights sum of the S + 1 most recent shocks (rather than

only the one most recent shock as in the infinite loading model) plus the

Ẑt−S(S + L), the forecast of demand in period t + L made in period t− S.

The noise series order function in (4.1) can be rewritten in the forms of

demand Z’s and forecast demand Ẑ where

at−j = Zt−j − Ẑt−j−1(1); j = 0, 1, 2, ...

Ẑt−S(L) = ψS+Lat−S + ψS+L+1at−S−1 + ψS+L+2at−S−2 + ...

Ẑt−S−1(L) = ψS+L+1at−S−1 + ψS+L+2at−S−2 + ψS+L+3at−S−3 + ....

Thus

Ot = β0

(
Zt − Ẑt−1(1)

)
+ β1

(
Zt−1 − Ẑt−2(1)

)

+ β2

(
Zt−2 − Ẑt−3(1)

)
+ ... + βS−1

(
Zt−S+1 − Ẑt−S(1)

)

+
(
1 + ψ1 + ψ2 + ... + ψS+L−1 −

S−1∑
i=0

βi

)(
Zt−S − Ẑt−S−1(1)

)

+ Ẑt−S(L)

(4.2)

69



or

Ot = β0

(
Zt − Ẑt−1(1)

)
+ β1

(
Zt−1 − Ẑt−2(1)

)

+ β2

(
Zt−2 − Ẑt−3(1)

)
+ ... + βS−1

(
Zt−S+1 − Ẑt−S(1)

)

+
(
1 + ψ1 + ψ2 + ... + ψS+L −

S−1∑
i=0

βi

)(
Zt−S − Ẑt−S−1(1)

)

+ Ẑt−S−1(L).

(4.3)

We next show that in order to have a stationary inventory (see the proof

in theorem 3), it is necessary that

S∑
i=0

βi = K

where βS = K −
S−1∑
i=0

βi

K = 1 + ψ1 + ψ2 + ... + ψS+L.

(4.4)

Thus, K represents the magnitude of the bullwhip effect, the multiplier ap-

plied to each shock in demand in creating the order.

In the infinite loading model, the shocks get multiplied all in one period.

In the generalized ordering policy, the multiplication can be multiplied. From

the proof in theorem 3, the inventory needs to be stationary, that is

It =
∞∑

j=0

Ot−L−j −
∞∑

j=0

Zt−j
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which converges only when

S∑
i=0

βi = K = 1 + ψ1 + ψ2 + ... + ψS+L.

(4.1) is in fact a generalized form of the ordering policy. For example, if

we can adjust the coefficient weight β by letting β0 = 1 + ψ1 + ψ2 + ... + ψL

and βi = ψL+i, for i = 1, 2, ..., S−1 then (4.1) is the standard MRP ordering

policy. In this case, S = 0, hence, S can be interpreted as the βS−1’s weight

that is different from ψ
(O)
S−1’s weight given in (3.6).

Under the generalized ordering policy in (4.1), the following results hold:

• The time series of inventory It is MA(S + L− 1).

• The time series of order Ot is ARIMA(p, d, max{p+d+S, q−L+S}).
∇dOt, the stationary part of Ot, is ARMA(p,max{p+d+S, q−L+S}).

The parameters of both of these models can be explicitly determined from

the parameters of the original ARIMA(p, d, q) model of the demand time

series Zt.

Theorem 3 It is an MA(S+L-1) with mean T and standard deviation

σI =
√

1 + (θ
(I)
1 )2 + (θ

(I)
2 )2 + ... + (θ

(I)
S+L−1)

2σa

where θ
(I)
i = 1+ψ1 +ψ2 + ...+ψi−β0−β1− ...βi−L; i = 0, 1, 2, ..., L+S− 1.

Corollary 1 The generalized ordering policy that has the minimum variation

in inventory is the standard MRP ordering policy.
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Proof

To prove that inventory It under the ordering policy in (4.1) is stationary,

from (3.5)

It =
∞∑

j=0

Ot−L−j −
∞∑

j=0

Zt−j

from (3.3)

Zt = at + ψ1at−1 + ψ2at−2 + ....

Thus, we have

Ot−L − Zt = −at − ψ1at−1 − ψ2at−2 − ...− ψL−1at−L+1 + (β0 − ψL)at−L

+ (β1 − ψL+1)at−L−1 + ... + (βS−1 − ψS+L−1)at−L−S+1

+ (1 + ψ1 + ψ2 + ... + ψS+L−1 −
S−1∑
i=0

βi)at−S−L

Ot−L−1 − Zt−1 = −at−1 − ψ1at−2 − ψ2at−3 − ...− ψL−1at−L + (β0 − ψL)at−L−1

+ (β1 − ψL+1)at−L−2 + ... + (βS−1 − ψS+L−1)at−L−S

+ (1 + ψ1 + ψ2 + ... + ψS+L−1 −
S−1∑
i=0

βi)at−S−L−1

Ot−L−2 − Zt−2 = −at−2 − ψ1at−3 − ψ2at−4 − ...− ψL−1at−L−1 + (β0 − ψL)at−L−2

+ (β1 − ψL+1)at−L−3 + ... + (βS−1 − ψS+L−1)at−L−S−1

+ (1 + ψ1 + ψ2 + ... + ψS+L−1 −
S−1∑
i=0

βi)at−S−L−2

...
...

...
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combining the above terms gives

It =
∞∑

j=0

Ot−L−j −
∞∑

j=0

Zt−j

= −at − (1 + ψ1)at−1 − (1 + ψ1 + ψ2)at−2 − ...

− (1 + ψ1 + ψ2 + ... + ψL−1)at−L+1

− (1 + ψ1 + ψ2 + ... + ψL − β0)at−L

− (1 + ψ1 + ψ2 + ... + ψL+1 − β0 − β1)at−L−1

− ...− (
1 + ψ1 + ψ2 + ... + ψS+L−1 −

S−1∑
i=0

βi

)
at−L−S+1.

(4.5)

To write It in a standard ARIMA(p, d, q) form in (3.1), we define a
(I)
t = at

to give

It = T − a
(I)
t − θ

(I)
1 a

(I)
t−1 − θ

(I)
2 a

(I)
t−2 − ...− θ

(I)
S+L−1a

(I)
t−L−S+1.

Thus It can be seen to be MA(S + L− 1) with parameters

θ
(I)
i = 1 + ψ1 + ψ2 + ... + ψi − β0 − β1 − ...βi−L; i = 0, 1, 2, ..., L + S − 1

which is an MA(S + L− 1).

The expected value of the inventory E[It] = T .

The standard deviation of the inventory is

σI =

√
1 + (θ

(I)
1 )2 + (θ

(I)
2 )2 + ... + (θ

(I)
S+L−1)

2σa.
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If we substitute the coefficient weight β’s of the generalized ordering pol-

icy in (4.5) with β0 = 1+ψ1+ψ2+ ...+ψL and βi = ψL+i, for i = 1, 2, ..., S−1

then we have the minimum variation in inventory and its standard variation

is

σI =

√
1 + (θ

(I)
1 )2 + (θ

(I)
2 )2 + ... + (θ

(I)
L−1)

2σa

which is the standard variation in inventory using standard MRP ordering

policy. Hence, the generalized ordering policy that has the minimum varia-

tion in inventory is the standard MRP ordering policy as stated in corollary

1.

End of proof

Theorem 4 Ot is an ARIMA(p,d,max{p+d+S,q-L+S}) with the form: θ(B)∇d(Ot−
µ) = θ(O)a

(O)
t , or ϕ(B)(Ot − µ) = θ(O)a

(O)
t with θ(O)(B) of order q(O) =

max{p + d + S, q − L + S}. Its stationary part of Ot is ∇dOt with the

ARMA(p,max{p+d+S,q-L+S}) form: φ(B)(∇dOt − ∇dµ) = θ(O)a
(O)
t with

θ(O)(B) of order q(O) = max{p + d + S, q − L + S}.

Proof

For a standard MRP order Ot in ARIMA(p, d, q(O)) form

ϕ(B)(Ot − µ) = θ(O)a
(O)
t

where q(O), θ(O), and a
(O)
t follow the notations in section 3.3 or, given the
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demand Zt is ARIMA(p, d, q)

q(O) = max{p + d, q − L}

K = 1 + ψ1 + ψ2 + ψ3 + ... + ψL

a
(O)
t = Kat

θ
(O)
j = −ψL+j/K + ϕ1ψL+j−1/K + ϕ2ψL+j−2/K + ... + ϕj−1ψL+1/K + ϕj

or in the random shock form in (3.6)

Ot − µ = ψ(O)(B)a
(O)
t = (1 + ψ

(O)
1 B + ψ

(O)
1 B2 + ...)a

(O)
t

= a
(O)
t + (ψL+1/K)a

(O)
t−1 + (ψL+2/K)a

(O)
t−2 + ...

= (1 + ψ1 + ψ2 + ... + ψL)at + ψL+1at−1 + ψL+2at−2 + ....

We can obtain its stationary order,∇dOt, by differencing ARIMA(p, d, q(O))

Ot to be in ARMA(p, q(O)) form

φ(B)(∇dOt −∇dµ) = θ(O)a
(O)
t .

∇dOt can be expressed in the random shock form

∇dOt = ψ(∇dO)(B)a
(O)
t

=
(
1 + ψ

(∇dO)
1 B + ψ

(∇dO)
2 B2 + ψ

(∇dO)
3 B3 + ...

)
a

(O)
t .
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The weights ψ
(∇dO)
j are determined from φ(B)ψ(∇dO)(B) = θ(O)(B) to satisfy

ψ
(∇dO)
j = φ1ψ

(∇dO)
j−1 + φ2ψ

(∇dO)
j−2 + ... + φpψ

(∇dO)
j−p − θ

(O)
j

with ψ
(∇dO)
0 = 1, ψ

(∇dO)
j = 0 for j < 0, φj = 0 for j > p, and θ

(O)
j = 0 for

j < q(O). Since the ψ(∇dO) weights are absolutely summable and the process

∇dOt itself is stationary, so we can obtain a constant mean and variance of

∇dOt.

For the generalized ordering policy, we replace the first S ψ(O)’s weights

in (3.6) with βi; i = 0, 1, 2, ..., S − 1, hence, the moving average operator for

the generalized order will shift S more terms. Let

K = 1 + ψ1 + ψ2 + ψ3 + ... + ψS+L

a
(O)
t = β0at.
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Then the generalized order in random shock form

Ot − µ = ψ(O)(B)a
(O)
t = (1 + ψ

(O)
1 B + ψ

(O)
1 B2 + ...)a

(O)
t

= a
(O)
t + (β1/β0)a

(O)
t−1 + ... + (βS−1/β0)a

(O)
t−S+1

+
(
(K −

S−1∑
i=0

βi

)
/β0)a

(O)
t−S + (ψS+L+1/β0)a

(O)
t−S−1

+ (ψS+L+2/β0)a
(O)
t−S−2 + (ψS+L+2/β0)a

(O)
t−S−3 + ...

= β0at + β1at−1 + ... + βS−1at−S+1 + (K −
S−1∑
i=0

βi)at−S

+ ψS+L+1at−S−1 + ψS+L+2at−S−2 + ψS+L+3at−S−3 + ....

Multiply both sides of the above equation by ϕ(B), we get

ϕ(B)(Ot − µ) = θ(O)a
(O)
t .
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If we solve for θ(O)(B) = ϕ(B)ψ(O)(B) using (3.2), we find θ(O)(B) as follows

θ
(O)
0 = 1

θ
(O)
1 = −β1/β0 + ϕ1

θ
(O)
2 = −β2/β0 + ϕ1β1/β0 + ϕ2

...
...

...

θ
(O)
S−1 = −βS−1/β0 + ϕ1βS−2/β0 + ... + ϕS−2β1/β0 + ϕS−1

θ
(O)
S = −(K −

S−1∑
i=0

βi)/β0 + ϕ1βS−1/β0 + ... + ϕS−1β1/β0 + ϕS

θ
(O)
S+1 = −ψL+S+1/β0 + ϕ1(K −

S−1∑
i=0

βi)/β0 + ϕ2βS−1/β0 + ... + ϕSβ1/β0 + ϕS+1

θ
(O)
S+2 = −ψL+S+2/β0 + ϕ1ψL+S+1/β0 + ϕ2(K −

S−1∑
i=0

βi)/β0 + ϕ3βS−1/β0 + ...

+ ϕS+1β1/β0 + ϕS+2

...
...

...

θ
(O)
S+j = −ψL+S+j/β0 + ϕ1ψL+S+j−1/β0 + ... + ϕj−1ψL+S+1/β0 + ϕj(K −

S−1∑
i=0

βi)/β0

+ ϕj+1βS−1/β0 + ... + ϕS+j−1β1/β0 + ϕS+j.

To prove that the MA operator θ(O) of the generalized ordering policy has

the order q(O) = max{p+d+S, q−L+S}, let j = max{p+d+S, q−L+S}.
Case 1: let j = p + d + S or p + d ≥ q ≥ q − L.

78



From Zt, the ψ’s in (3.11) are

ψp+d+i = ϕ1ψp+d+i−1 + ϕ2ψp+d−i−2 + ... + ϕp+dψi; i ≥ 0

however, since we arbitrarily change the first S ψ’s weights in Ot, then

ψS+p+d+i = ϕ1ψS+p+d+i−1 + ϕ2ψS+p+d−i−2 + ... + ϕp+dψS+i; i ≥ 0.
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For the generalized order Ot, the θ(O)’s are

θ
(O)
0 = 1

θ
(O)
1 = −β1/β0 + ϕ1

θ
(O)
2 = −β2/β0 + ϕ1β1/β0 + ϕ2

...
...

...

θ
(O)
S−1 = −βS−1/β0 + ϕ1βS−2/β0 + ... + ϕS−2β1/β0 + ϕS−1

θ
(O)
S = −(K −

S−1∑
i=0

βi)/β0 + ϕ1βS−1/β0 + ... + ϕS−1β1/β0 + ϕS

θ
(O)
S+1 = −ψL+S+1/β0 + ϕ1(K −

S−1∑
i=0

βi)/β0 + ϕ2βS−1/β0 + ... + ϕSβ1/β0 + ϕS+1

...
...

...

θ
(O)
S+p+d−1 = −ψL+S+p+d−1/β0 + ϕ1ψL+S+p+d−2/β0 + ... + ϕp+d−2ψL+S+1/β0

+ ϕp+d−1(K −
S−1∑
i=0

βi)/β0 + ϕp+d

θ
(O)
S+p+d = −ψL+S+p+d/β0 + ϕ1ψL+S+p+d−1/β0 + ... + ϕp+d−1ψL+S+1/β0 + ϕp+d

θ
(O)
S+p+d+1 = −ψL+S+p+d+1/β0 + ϕ1ψL+S+p+d/β0 + ... + ϕp+dψL+S+1/β0

θ
(O)
S+p+d+2 = −ψL+S+p+d+2/β0 + ϕ1ψL+S+p+d+1/β0 + ... + ϕp+dψL+S+2/β0

...
...

...

hence, from Zt, we have θ
(O)
p+d+S+i = 0 for i ≥ 1. In this case, the MA operator

θ(O) has the order q(O) = p + d + S when j = max{p + d + S, q − L + S} =

p + d + S.

80



Case 2: let j = q − L or q − L ≥ p + d.

From Zt, the ψ’s in (3.12) are

ψq+i = ϕ1ψq+i−1 + ϕ2ψq−i−2 + ... + ϕp+dψq−p−d+i; i ≥ 1

however, since we arbitrarily change the first S ψ’s weights in Ot, then

ψS+q+i = ϕ1ψS+q+i−1 + ϕ2ψS+q−i−2 + ... + ϕp+dψS+q−p−d+i; i ≥ 1.
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For the generalized order Ot, the θ(O)’s are

θ
(O)
0 = 1

θ
(O)
1 = −β1/β0 + ϕ1

θ
(O)
2 = −β2/β0 + ϕ1β1/β0 + ϕ2

...
...

...

θ
(O)
S−1 = −βS−1/β0 + ϕ1βS−2/β0 + ... + ϕS−2β1/β0 + ϕS−1

θ
(O)
S = −(K −

S−1∑
i=0

βi)/β0 + ϕ1βS−1/β0 + ... + ϕS−1β1/β0 + ϕS

θ
(O)
S+1 = −ψL+S+1/β0 + ϕ1(K −

S−1∑
i=0

βi)/β0 + ϕ2βS−1/β0 + ... + ϕSβ1/β0 + ϕS+1

...
...

...

θ
(O)
S+p+d−1 = −ψL+S+p+d−1/β0 + ϕ1ψL+S+p+d−2/β0 + ... + ϕp+d−2ψL+S+1/β0

+ ϕp+d−1(K −
S−1∑
i=0

βi)/β0 + ϕS+p+d−1

θ
(O)
S+p+d = −ψL+S+p+d/β0 + ϕ1ψL+S+p+d−1/β0 + ... + ϕp+d−1ψL+S+1/β0 + ϕS+p+d

θ
(O)
S+p+d+1 = −ψL+S+p+d+1/β0 + ϕ1ψL+S+p+d/β0 + ... + ϕp+dψL+S+1/β0

θ
(O)
S+p+d+2 = −ψL+S+p+d+2/β0 + ϕ1ψL+S+p+d+1/β0 + ... + ϕp+dψL+S+2/β0

...
...

...

θ
(O)
S+q−L = −ψS+q/β0 + ϕ1ψS+q−1/β0 + ... + ϕp+dψS+q−p−d/β0

θ
(O)
S+q−L+1 = −ψS+q+1/β0 + ϕ1ψS+q/β0 + ... + ϕp+dψS+q−p−d+1/β0

θ
(O)
S+q−L+2 = −ψS+q+2/β0 + ϕ1ψS+q+1/β0 + ... + ϕp+dψS+q−p−d+2/β0

...
...

...
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hence, from Zt, we have θ
(O)
q−L+S+i = 0 for i ≥ 1. In this case, the MA operator

θ(O) has the order q(O) = q − L + S when j = max{p + d + S, q − L + S} =

q − L + S.

From case 1 and case 2, q(O) = max{p + d + S, q − L + S}. Thus Ot is

ARIMA(p, d, max{p + d + S, q − L + S}). Also, its differencing generalized

order is ARMA(p,max{p + d + S, q − L + S})

φ(B)(∇dOt −∇dµ) = θ(O)a
(O)
t .

∇dOt can be expressed in the random shock form

∇dOt = ψ(∇dO)(B)a
(O)
t

=
(
1 + ψ

(∇dO)
1 B + ψ

(∇dO)
2 B2 + ψ

(∇dO)
3 B3 + ...

)
a

(O)
t

where, ψ
(∇dO)
j = φ1ψ

(∇dO)
j−1 + φ2ψ

(∇dO)
j−2 + ... + φpψ

(∇dO)
j−p − θ

(O)
j

(4.6)

with ψ
(∇dO)
0 = 1, ψ

(∇dO)
j = 0 for j < 0, φj = 0 for j > p, and θ

(O)
j = 0 for

j < q(O).

The standard deviation of ∇dOt is absolutely summable in the form

σ∇dOt
=

√
1 +

(
ψ

(∇dO)
1

)2

+
(
ψ

(∇dO)
2

)2

+
(
ψ

(∇dO)
3

)2

+ ... σ
a
(O)
t

(4.7)

where σ
a
(O)
t

= β0σa.

End of Proof
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4.3 Sample Models of the Generalized Order-

ing Policy

This section exemplifies the smoothing ordering policy for ARIMA(0,1,1),

ARIMA(0,2,2), ARIMA(0,3,3), and ARIMA(1,0,0) demand.

4.3.1 ARIMA(0,1,1)

This section illustrates the application of theorem 3 and 4 when the

demand series, Zt, is ARIMA(0,1,1)

(1−B)Zt = (1− θB)at

or in random shock form

Zt = at + (1− θ)at−1 + (1− θ)at−2 + (1− θ)at−3 + ....

The standard MRP order in (3.15) is

(1−B)Ot =
((

1 + L(1− θ)
)− (

1 + (L− 1)(1− θ)
)
B

)
at

or in random shock form

Ot =
(
1 + L(1− θ)

)
at + (1− θ)at−1 + (1− θ)at−2 + (1− θ)at−3 + ....
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Its differencing order is an MA(2)

∇dOt =
(
1 + L(1− θ)

)
at −

(
1 + (L− 1)(1− θ)

)
at−1.

The generalized order with S smoothing period in random shock form is

Ot = β0at + β1at−1 + β2at−2 + ... + βS−1at−S+1

+
(
1 + (S + L)(1− θ)−

S−1∑
i=0

βi

)
at−S

+ (1− θ)at−S−1 + (1− θ)at−S−2 + (1− θ)at−S−3 + ....

(4.8)

Rewritten in the forms of demand Z’s and forecast demand Ẑ where

at−j = Zt−j − Ẑt−j−1(1); j = 0, 1, 2, ...

Ẑt−S−1(L) = (1− θ)at−S−1 + (1− θ)at−S−2 + (1− θ)at−S−3 + ....

Thus

Ot = β0

(
Zt − Ẑt−1(1)

)
+ β1

(
Zt−1 − Ẑt−2(1)

)

+ β2

(
Zt−2 − Ẑt−3(1)

)
+ ... + βS−1

(
Zt−S+1 − Ẑt−S(1)

)

+
(
1 + (S + L)(1− θ)−

S−1∑
i=0

βi

)(
Zt−S − Ẑt−S−1(1)

)

+ Ẑt−S−1(L).

(4.9)
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By theorem 3, It is MA(S + L− 1) with

θ
(I)
1 = 2− θ

θ
(I)
2 = 3− 2θ

θ
(I)
3 = 4− 3θ

...
...

θ
(I)
L−1 = L− (L− 1)θ

θ
(I)
L = (L + 1)− Lθ − β0

θ
(I)
L+1 = (L + 2)− (L + 1)θ − β0 − β1

...
...

...

θ
(I)
L+S−1 = (L + S)− (L + S − 1)θ −

S−1∑
i=0

βi.

Thus

It = T − at − (2− θ)at−1 − ...− (
L− (L− 1)θ

)
at−L+1

− (
L + 1− Lθ − β0

)
at−L

− (
L + 2− (L + 1)θ − β0 − β1

)
at−L+1 − ...

−
(
L + S − (L + S − 1)θ −

S−1∑
i=0

βi

)
at−L+S+1.

(4.10)
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The standard deviation of the inventory is given by

σI =
(
1 + (2− θ)2 + (3− 2θ)2 + ... +

(
L− (L− 1)θ

)2

+
(
L + 1− Lθ − β0

)2
+

(
L + 2− (L + 1)θ − β0 − β1

)2
+ ...

+
(
L + S − (L + S − 1)θ −

S−1∑
i=0

βi

)2
)1/2

σa.

By theorem 4, Ot is IMA(1,1+S)

(1−B)Ot = (1− θ
(O)
1 B − θ

(O)
2 B2 − ...− θ

(O)
S+1B

S+1)a
(O)
t

where

a
(O)
t = β0at

K = 1 + (S + L)(1− θ)
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and

θ
(O)
0 = 1

θ
(O)
1 = −β1/β0 + 1 = (β0 − β1)/β0

θ
(O)
2 = −β2/β0 + β1/β0 = (β1 − β2)/β0

...
...

...

θ
(O)
S−1 = −βS−1/β0 + βS−2/β0 = (βS−2 − βS−1)/β0

θ
(O)
S = −(K −

S−1∑
i=0

βi)/β0 + βS−1/β0 =
(
− (

1 + (S + L)(1− θ)
)

+
S−1∑
i=0

βi + βS−1

)
/β0

θ
(O)
S+1 = −ψL+S+1/β0 + (K −

S−1∑
i=0

βi)/β0 =
(
1 + (S + L− 1)(1− θ)−

S−1∑
i=0

βi

)
/β0.

Rewritten following the ARIMA(p, d, q) form, we have

(1−B)Ot = a
(O)
t − (

(β0 − β1)/β0

)
a

(O)
t−1

− (
(β1 − β2)/β0

)
a

(O)
t−2 − ...− (

(βS−2 − βS−1)/β0

)
a

(O)
t−S+1

−
((

− (
1 + (S + L)(1− θ)

)
+

S−1∑
i=0

βi + βS−1

)
/β0

)
a

(O)
t−S

−
((

1 + (S + L− 1)(1− θ)−
S−1∑
i=0

βi

)
/β0

)
a

(O)
t−S−1

= β0at − (β0 − β1)at−1 − (β1 − β2)at−2 − ...− (βS−2 − βS−1)at−S+1

−
(
− (

1 + (S + L)(1− θ)
)

+
S−1∑
i=0

βi + βS−1

)
at−S

− (
1 + (S + L− 1)(1− θ)−

S−1∑
i=0

βi

)
at−S−1.

88



Its differencing generalized order is an MA(1+S)

∇dOt = β0at − (β0 − β1)at−1

− (β1 − β2)at−2 − ...− (βS−2 − βS−1)at−S+1

−
(
− (

1 + (S + L)(1− θ)
)

+
S−1∑
i=0

βi + βS−1

)
at−S

− (
1 + (S + L− 1)(1− θ)−

S−1∑
i=0

βi

)
at−S−1.

(4.11)

The standard deviation of ∇dOt following (4.7) is

σ∇dOt
=

(
β2

0 + (β1 − β0)
2 + (β2 − β1)

2 + ... + (βS−2 − βS−1)
2

+
(
1 + (S + L)(1− θ)−

S−1∑
i=0

βi − βS−1

)2

+
(
1 + (S + L− 1)(1− θ)−

S−1∑
i=0

βi

)2
)1/2

σa.

(4.12)

4.3.2 ARIMA(0,2,2)

The IMA(2,2) demand model in ARIMA(p, d, q) form is

(1−B)2Zt = (1− θ1B − θ2B
2)at

or in random shock form

Zt = at + (2− θ1)at−1 + (3− 2θ1 − θ2)at−2 + (4− 3θ1 − 2θ2)at−3 + ....
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The standard MRP order is

(1− 2B + B2)Ot = (1− θ
(O)
1 B − θ

(O)
2 B2)a

(O)
t

or in random shock form

Ot = Kat + ψL+1at−1 + ψL+2at−2 + ψL+3at−3 + ...

where

K =
L+1∑
i=1

i−
L∑

i=1

iθ1 −
L−1∑
i=1

iθ2

ψi = (i + 1)− iθ1 − (i− 1)θ2.

Its differencing order is an MA(2)

∇dOt = (1− θ
(O)
1 B − θ

(O)
2 B2)a

(O)
t .

The generalized order with S smoothing period in random shock form is

Ot = β0at + β1at−1 + β2at−2 + ... + βS−1at−S+1 + (K −
S−1∑
i=0

βi)at−S

+ ψS+L+1at−S−1 + ψS+L+2at−S−2 + ψS+L+3at−S−3 + ....
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By theorem 3, It is MA(S + L− 1) with

θ
(I)
1 = 3− θ1

θ
(I)
2 = 6− 3θ1 − θ2

θ
(I)
3 = 10− 6θ1 − 3θ2

...
...

...

θ
(I)
L−1 =

L(L + 1)

2
− (L− 1)L

2
θ1 − (L− 2)(L− 1)

2
θ2

θ
(I)
L =

(L + 1)(L + 2)

2
− L(L + 1)

2
θ1 − (L− 1)(L)

2
θ2 − β0

θ
(I)
L+1 =

(L + 2)(L + 3)

2
− (L + 1)(L + 2)

2
θ1 − L(L + 1)

2
θ2 − β0 − β1

...
...

...

θ
(I)
L+S−1 =

(L + S)(L + S + 1)

2
− (L + S − 1)(L + S)

2
θ1

− (L + S − 2)(L + S − 1)

2
θ2 −

S−1∑
i=0

βi.

Thus

It = T − a
(I)
t − θ

(I)
1 a

(I)
t−1 − θ

(I)
2 a

(I)
t−2 − ...− θ

(I)
S+L−1a

(I)
t−L−S+1.

The standard deviation of the inventory is given by

σI =

√
1 + (θ

(I)
1 )2 + (θ

(I)
2 )2 + ... + (θ

(I)
S+L−1)

2σa.
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By theorem 4, Ot is IMA(2,2+S)

(1−B)2Ot = (1− θ
(O)
1 B − θ

(O)
2 B2 − ...− θ

(O)
S+1B

S+1 − θ
(O)
S+2B

S+2)a
(O)
t

where

a
(O)
t = β0at

K =
S+L+1∑

i=1

i−
S+L∑
i=1

iθ1 −
S+L−1∑

i=1

iθ2

and

θ
(O)
0 = 1

θ
(O)
1 = −β1/β0 + 2 = (2β0 − β1)/β0

θ
(O)
2 = −β2/β0 + 2β1/β0 − 1 = (−β0 + 2β1 − β2)/β0

θ
(O)
3 = −β3/β0 + 2β2/β0 − β1/β0 = (−β3 + 2β2 − β1)/β0

...
...

...

θ
(O)
S−1 = −βS−1/β0 + 2βS−2/β0 − βS−3/β0 = (−βS−1 + 2βS−2 − βS−3)/β0

θ
(O)
S = −(K −

S−1∑
i=0

βi)/β0 + 2βS−1/β0 − βS−2/β0

θ
(O)
S+1 = −ψL+S+1/β0 + 2(K −

S−1∑
i=0

βi)/β0 − βS−1)/β0

θ
(O)
S+2 = −ψL+S+2/β0 + 2ψL+S+1/β0 − (K −

S−1∑
i=0

βi)/β0

θ
(O)
S+j = −ψL+S+j/β0 + 2ψL+S+j−1/β0 − (ψL+S+j−2/β0 = 0; j ≥ 3.
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Rewritten following the ARIMA(p, d, q) form, we have

(1− 2B + B2)Ot = (1− θ
(O)
1 B − θ

(O)
2 B2 − θ

(O)
3 B3 − ...− θ

(O)
S+2B

S+2)a
(O)
t .

Its differencing generalized order is an MA(2+S)

∇dOt = (1− θ
(O)
1 B − θ

(O)
2 B2 − θ

(O)
3 B3 − ...− θ

(O)
S+2B

S+2)a
(O)
t .

The standard deviation of ∇dOt following (4.7) is

σ∇dOt
=

(
β2

0 + (2β1 − β0)
2 + (β2 − 2β1 + β0)

2 + ... + (βS−1 − 2βS−2 + βS−3)
2

+
(
K −

S−1∑
i=0

βi − 2βS−1 + βS−2

)2

+
(
ψL+S+1 − 2(K −

S−1∑
i=0

βi) + βS−1

)2

+
(
ψL+S+2 − 2ψL+S+1 + (K −

S−1∑
i=0

βi)
)2

)1/2

σa

where

K =
L+1∑
i=1

i−
L∑

i=1

iθ1 −
L−1∑
i=1

iθ2

ψi = (i + 1)− iθ1 − (i− 1)θ2.
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4.3.3 ARIMA(0,3,3)

The IMA(3,3) demand model in ARIMA(p, d, q) form is

(1−B)3Zt = (1− θ1B − θ2B
2 − θ3B

3)at

or in random shock form

Zt = at + (3− θ1)at−1 + (6− 3θ1 − θ2)at−2

+ (9− 6θ1 − 3θ2 − θ3)at−3 + (12− 9θ1 − 6θ2 − 3θ3) + ....

The standard MRP order is

(1− 3B + 3B2 −B3)Ot = (1− θ
(O)
1 B − θ

(O)
2 B2 − θ

(O)
3 B3)a

(O)
t

or in random shock form or in random shock form

Ot = Kat + ψL+1at−1 + ψL+2at−2 + ψL+3at−3 + ...

where

K =
(
1 +

L∑
i=1

3i
)
−

(
1 +

L−1∑
i=1

3i
)
θ1 −

(
1 +

L−2∑
i=1

3i
)
θ2 −

(
1 +

L−3∑
i=1

3i
)
θ3

ψi = 3i− 3(i− 1)θ1 − 3(i− 2)θ2 − 3(i− 3)θ3.
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Its differencing order is an MA(2)

∇dOt = (1− θ
(O)
1 B − θ

(O)
2 B2 − θ

(O)
3 B3)a

(O)
t .

The generalized order with S smoothing period in random shock form is

Ot = β0at + β1at−1 + β2at−2 + ... + βS−1at−S+1 + (K −
S−1∑
i=0

βi)at−S

+ ψS+L+1at−S−1 + ψS+L+2at−S−2 + ψS+L+3at−S−3 + ....
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By theorem 3, It is MA(S + L− 1) with

θ
(I)
1 = 4− θ1

θ
(I)
2 = 10− 4θ1 − θ2

θ
(I)
3 = 19− 10θ1 − 4θ2 − θ3

θ
(I)
4 = 31− 19θ1 − 10θ2 − 4θ3

...
...

...

θ
(I)
L−1 =

(
1 +

L−1∑
i=1

3i
)
−

(
1 +

L−2∑
i=1

3i
)
θ1 −

(
1 +

L−3∑
i=1

3i
)
θ2 −

(
1 +

L−4∑
i=1

3i
)
θ3

θ
(I)
L =

(
1 +

L∑
i=1

3i
)
−

(
1 +

L−1∑
i=1

3i
)
θ1 −

(
1 +

L−2∑
i=1

3i
)
θ2 −

(
1 +

L−3∑
i=1

3i
)
θ3 − β0

θ
(I)
L+1 =

(
1 +

L+1∑
i=1

3i
)
−

(
1 +

L∑
i=1

3i
)
θ1 −

(
1 +

L−1∑
i=1

3i
)
θ2 −

(
1 +

L−2∑
i=1

3i
)
θ3 − β0 − β1

...
...

...

θ
(I)
L+S−1 =

(
1 +

L+S−1∑
i=1

3i
)
−

(
1 +

L+S−2∑
i=1

3i
)
θ1 −

(
1 +

L+S−3∑
i=1

3i
)
θ2

−
(
1 +

L+S−4∑
i=1

3i
)
θ3 −

S−1∑
i=0

βi.

Thus

It = T − a
(I)
t − θ

(I)
1 a

(I)
t−1 − θ

(I)
2 a

(I)
t−2 − ...− θ

(I)
S+L−1a

(I)
t−L−S+1.

96



The standard deviation of the inventory is given by

σI =

√
1 + (θ

(I)
1 )2 + (θ

(I)
2 )2 + ... + (θ

(I)
S+L−1)

2σa.

By theorem 4, Ot is IMA(3,3+S)

(1−B)3Ot = (1− θ
(O)
1 B − θ

(O)
2 B2 − ...− θ

(O)
S+1B

S+1 − θ
(O)
S+3B

S+3)a
(O)
t

where

a
(O)
t = β0at

K =
(
1 +

L+S∑
i=1

3i
)
−

(
1 +

L+S−1∑
i=1

3i
)
θ1 −

(
1 +

L+S−2∑
i=1

3i
)
θ2 −

(
1 +

L+S−3∑
i=1

3i
)
θ3
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and

θ
(O)
0 = 1

θ
(O)
1 = −β1/β0 + 3 = (3β0 − β1)/β0

θ
(O)
2 = −β2/β0 + 3β1/β0 − 3 = (−3β0 + 3β1 − β0)/β0

θ
(O)
3 = −β3/β0 + 3β2/β0 − 3β1/β0 + 1 = (−β3 + 3β2 − 3β1 + β0)/β0

θ
(O)
4 = −β4/β0 + 3β3/β0 − 3β2/β0 + β1/β0 = (−β4 + 3β3 − 3β2 + β1)/β0

...
...

...

θ
(O)
S−1 = −βS−1/β0 + 3βS−2/β0 − 3βS−3/β0 + βS−4/β0

= (−βS−1 + 3βS−2 − 3βS−3 + βS−4)/β0

θ
(O)
S = −(K −

S−1∑
i=0

βi)/β0 + 3βS−1/β0 − 3βS−2/β0 + βS−3/β0

θ
(O)
S+1 = −ψL+S+1/β0 + 3(K −

S−1∑
i=0

βi)/β0 − 3βS−1)/β0 + βS−2/β0

θ
(O)
S+2 = −ψL+S+2/β0 + 3ψL+S+1/β0 − (K −

S−1∑
i=0

βi)/β0 + βS−1/β0

θ
(O)
S+3 = −ψL+S+3/β0 + 3ψL+S+2/β0 − 3ψL+S+2/β0 − (K −

S−1∑
i=0

βi)/β0

θ
(O)
S+j = −ψL+S+j/β0 + 3ψL+S+j−1/β0 − 3(ψL+S+j−2/β0 + ψL+S+j−3/β0 = 0; j ≥ 4.

Rewritten following the ARIMA(p, d, q) form, we have

(1− 3B +3B2−B3)Ot = (1− θ
(O)
1 B− θ

(O)
2 B2− θ

(O)
3 B3− ...− θ

(O)
S+3B

S+3)a
(O)
t .
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Its differencing generalized order is an MA(3+S)

∇dOt = (1− θ
(O)
1 B − θ

(O)
2 B2 − θ

(O)
3 B3 − ...− θ

(O)
S+3B

S+3)a
(O)
t .

The standard deviation of ∇dOt following (4.7) is

σ∇dOt
=

√
(1 + (θ

(O)
1 )2 + (θ

(O)
2 )2 + (θ

(O)
3 )2 + ... + (θ

(O)
S+3)

2 σa.

4.3.4 ARIMA(1,0,0)

The AR(1) demand model in ARIMA(p, d, q) form is

(1− φB)Zt = at

or in random shock form

Zt = at + φat−1 + φ2at−1 + φ3at−3 + ....

The standard MRP order is

(1− φB)Ot =
(
1− φ(1− φL)

1− φL+1
B

)
a

(O)
t

or in random shock form

Ot = (1 + φ + φ2 + φ3 + ... + φL)at + φL+1at−1 + φL+2at−2 + φL+3at−3 + ....
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Since d = 0, its differencing order is the same as the order Ot.

The generalized ordering policy with S smoothing period in random shock

form is

Ot = β0at + β1at−1 + β2at−2 + ... + βS−1at−S+1

+ (K −
S−1∑
i=0

βi)at−S + φS+L+1at−S−1 + φS+L+2at−S−2 + φS+L+3at−S−3 + ...

where

K = 1 + φ + φ2 + φ3 + ... + φS+L =
1− φS+L+1

1− φ
.

By theorem 3, It is MA(S + L− 1) with

θ
(I)
1 = (1− φ2)/(1− φ)

θ
(I)
2 = (1− φ3)/(1− φ)

θ
(I)
3 = (1− φ4)/(1− φ)

...
...

...

θ
(I)
L−1 = (1− φL)/(1− φ)

θ
(I)
L = (1− φL+1)/(1− φ)− β0

θ
(I)
L+1 = (1− φL+2)/(1− φ)− β0 − β1

...
...

...

θ
(I)
L+S−1 = (1− φL+S)/(1− φ)−

S−1∑
i=0

βi.
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Thus

It = T − a
(I)
t − θ

(I)
1 a

(I)
t−1 − θ

(I)
2 a

(I)
t−2 − ...− θ

(I)
S+L−1a

(I)
t−L−S+1.

The standard deviation of the inventory is given by

σI =

√
1 + (θ

(I)
1 )2 + (θ

(I)
2 )2 + ... + (θ

(I)
S+L−1)

2σa.

By theorem 4, Ot is ARMA(1,1+S)

(1− φB)Ot = (1− θ
(O)
1 B − θ

(O)
2 B2 − ...− θ

(O)
S+1B

S+1)a
(O)
t

where

a
(O)
t = β0at

K = 1 + φ + φ2 + φ3 + ... + φS+L =
1− φS+L+1

1− φ
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and

θ
(O)
0 = 1

θ
(O)
1 = −β1/β0 + φ = (φβ0 − β1)/β0

θ
(O)
2 = −β2/β0 + φβ1/β0 = (φβ1 − β2)/β0

...
...

...

θ
(O)
S−1 = −βS−1/β0 + φβS−2/β0 = (φβS−2 − βS−1)/β0

θ
(O)
S = −(K −

S−1∑
i=0

βi)/β0 + φβS−1/β0

θ
(O)
S+1 = −φL+S+1/β0 + φ(K −

S−1∑
i=0

βi)/β0.

Rewritten following the ARIMA(p, d, q) form, we have

(1− φB)Ot = (1− θ
(O)
1 B − θ

(O)
2 B2 − θ

(O)
3 B3 − ...− θ

(O)
S+1B

S+1)a
(O)
t .

Its differencing generalized order is the same as the generalized order. From

(4.6)

∇dOt = ψ(∇dO)(B)a
(O)
t

=
(
1 + ψ

(∇dO)
1 B + ψ

(∇dO)
2 B2 + ψ

(∇dO)
3 B3 + ...

)
a

(O)
t

102



where the ψ(∇dO)’s are

ψ
(∇dO)
0 = 1

ψ
(∇dO)
1 = ϕ1 − θ

(∇dO)
1 = β1/β0

ψ
(∇dO)
2 = ϕ1ψ

(∇dO)
1 − θ

(∇dO)
2 = β2/β0

ψ
(∇dO)
3 = ϕ1ψ

(∇dO)
2 − θ

(∇dO)
3 = β3/β0

...
...

...

ψ
(∇dO)
S−1 = ϕ1ψ

(∇dO)
S−2 − θ

(∇dO)
S−1 = βS−1/β0

ψ
(∇dO)
S = ϕ1ψ

(∇dO)
S−1 − θ

(∇dO)
S = (K −

S−1∑
i=0

βi)/β0

ψ
(∇dO)
S+1 = ϕ1ψ

(∇dO)
S − θ

(∇dO)
S+1 = φL+S+1/β0

ψ
(∇dO)
S+2 = ϕ1ψ

(∇dO)
S+1 = φL+S+2/β0

ψ
(∇dO)
S+3 = ϕ1ψ

(∇dO)
S+2 = φL+S+3/β0

...
...

...

ψ
(∇dO)
S+j = ϕ1ψ

(∇dO)
S+j−1 = φL+S+j/β0.

The standard deviation of ∇dOt following (4.7) is

σ∇dOt
=

(
β2

0 + β2
1 + β2

2 + ... + β2
S−1 +

(
K −

S−1∑
i=0

βi

)2

+ φ2(L+S+1) + φ2(L+S+2) + φ2(L+S+3) + ...
)1/2

σa

=

(
β2

0 + β2
1 + ... + β2

S−1 +
(
K −

S−1∑
i=0

βi

)2

+
φ2(L+S+1)

1− φ2

)1/2

σa.

(4.13)
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4.4 The Smoothing Ordering Policy

for ARIMA(p,0,q) and ARIMA(p,1,q)

Instead of using the standard MRP ordering policy introduced in chapter

3 that minimizes the variation in inventory It, we can control the tradeoffs

between the variation in inventory It and the variation in differencing general-

ized orders ∇dOt by adjusting the weight β’s. The minimum variation in dif-

ferencing generalized orders∇dOt, the so called smoothing orders, is obtained

by minimizing the variation of ∇dOt respected to {βi; i = 0, 1, 2, ..., S − 1}.
This section provides generic formulas to determine the β’s weights for

the smoothing orders for ARIMA(p, 0, q) and ARIMA(p, 1, q) demand mod-

els. By using these generic formulas, a retalier/supplier can obtain an MRP

plan that has the smallest changes in the ordering plan from period to pe-

riod. However, the tradeoff for the retalier/supplier in using the smoothing

ordering policy is the need in the increased amount of inventory compared

with using the up to target ordering policy. These generic formulas can be

applied to any ordering lead time L and any smoothing period S. Under the

smoothing ordering policy, the following theorems hold:

Theorem 5 For an ARIMA(p, 0, q) order model, the smoothing order that

has the minimum variation in orders has the set of optimal smoothing weights

βi =
K

S + 1
for i = 0, 1, 2, ..., S where K = 1 + ψ1 + ψ2 + ψ3 + ... + ψS+L and

βS = K −∑S−1
i=0 βi.

Proof
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The smoothing ordering policy for ARIMA(p, 0, q) is to minimize σ∇dOt
re-

spected to {βi; i = 0, 1, 2, ..., S − 1}. However, the differencing order for

ARIMA(p, 0, q) is the same as the generalized order in (4.1)

∇dOt = Ot = β0at + β1at−1 + β2at−2 + ... + βS−1at−S+1 + (K −
S−1∑
i=0

βi)at−S

+ ψS+L+1at−S−1 + ψS+L+2at−S−2 + ...

where K = 1 + ψ1 + ψ2 + ... + ψS+L and its standard deviation σ∇dOt
= σOt

is

σ∇dOt
=

(
β2

0 + β2
1 + β2

2 + ... + β2
S−1 + (K −

S−1∑
i=0

βi)
2

+ ψ2
S+L+1 + ψ2

S+L+2 + ...
)1/2

σa

where
∑∞

i=S+L+1 ψ2
i is absolutely summable.

Thus, the system of linear equations of
d

dβ
V ar(∇0Ot) =

d

dβ
V ar(Ot) = 0
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is

d

dβ0

= 2β0 − 2
(
K −

S−1∑
i=0

βi

)
= 0

d

dβ1

= 2β1 − 2
(
K −

S−1∑
i=0

βi

)
= 0

d

dβ2

= 2β2 − 2
(
K −

S−1∑
i=0

βi

)
= 0

...
...

...

d

dβS−1

= 2βS−1 − 2
(
K −

S−1∑
i=0

βi

)
= 0.

Hence, the set of optimal smoothing weights βi for i = 0, 1, 2, ..., S−1 for the

smoothing ordering policy for that minimizes the variation in differencing

order for ARIMA(p, 0, q) model is

βi = K −
S−1∑
i=0

βi

where i = 0, 1, 2, ..., S − 1 and K = 1 + ψ1 + ψ2 + ... + ψS+L, hence,

β0 = β1 = β2 = ... = βS =
K

S + 1
=

1 + ψ1 + ψ2 + ... + ψS+L

S + 1
. (4.14)

End of Proof

For AR(1) model, substitute K = 1+φ+φ2+φ3+...+φS+L =
1− φS+L+1

1− φ
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into (4.14), we have

β0 = β1 = β2 = ... = βS =
K

S + 1
=

1− φS+L+1

(S + 1)(1− φ)
. (4.15)

Theorem 6 For an ARIMA(p,1,q) order model, the smoothing order that

has the minimum variation in week-to-week order changes has the set of

optimal smoothing weights

βi =
(i + 1)(−2S + 3i)

(S + 2)(S + 3)
ψS+L+1 +

(i + 1)6(S − i + 1)

(S + 1)(S + 2)(S + 3)
K

for i = 0, 1, 2, ..., S where K = 1 + ψ1 + ψ2 + ψ3 + ... + ψS+L and βS =

K −∑S−1
i=0 βi.

Proof

From (4.1), the generalized order

Ot = β0at + β1at−1 + ... + βS−1at−S+1 + (K −
S−1∑
i=0

βi)at−S

+ ψS+L+1at−S−1 + ψS+L+2at−S−2 + ...

where

K = 1 + ψ1 + ψ2 + ... + ψS+L.
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The first differencing order ∇dOt = Ot −Ot−1

Ot −Ot−1 = β0at + (β1 − β0)at−1 + (β2 − β1)at−2 + ...

+ (βS−1 − βS−2)at−S+1

+
(
K −

S−1∑
i=0

βi − βS−1

)
at−S

+
(
ψS+L+1 −

(
K −

S−1∑
i=0

βi

))
at−S−1

+
(
ψS+L+2 − ψS+L+1

)
at−S−2

+
(
ψS+L+3 − ψS+L+2

)
at−S−3 + ....

(4.16)

The variation in first differencing order is

V ar(Ot −Ot−1) = β2
0 + (β1 − β0)

2 + (β2 − β1)
2 + ...

+ (βS−1 − βS−2)
2

+
(
K −

S−1∑
i=0

βi − βS−1

)2

+
(
K − ψS+L+1 −

S−1∑
i=0

βi

)2

+ (ψS+L+2 − ψS+L+1)
2

+ (ψS+L+3 − ψS+L+2)
2 + ...

(4.17)

where
∑∞

i=S+L+2(ψi − ψi−1)
2 is finite by the property in the variance in dif-

ferencing ARIMA model.

We obtain the minimum variation in differencing orders by minimizing
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the variation in ∇dOt respected to {βi; i = 0, 1, 2, ..., S − 1}. The system of

linear equations of
d

dβ
V ar(Ot −Ot−1) = 0 is

d

dβ0

= 2β0 − 2(β1 − β0)− 2
(
K −

S−2∑
i=0

βi − 2βS−1

)− 2
(
K − ψS+L+1 −

S−1∑
i=0

βi

)
= 0

= 8β0 + 2β1 + 4β2 + 4β3 + ... + 4βS−2 + 6βS−1 − 4K + 2ψS+L+1

d

dβ1

= 2(β1 − β0)− 2(β2 − β1)− 2
(
K −

S−2∑
i=0

βi − 2βS−1

)

− 2
(
K − ψS+L+1 −

S−1∑
i=0

βi

)
= 0

= 2β0 + 8β1 + 2β2 + 4β3 + 4β4 + ... + 4βS−2 + 6βS−1 − 4K + 2ψS+L+1

d

dβ2

= 2(β2 − β1)− 2(β3 − β2)− 2
(
K −

S−2∑
i=0

βi − 2βS−1

)

− 2
(
K − ψS+L+1 −

S−1∑
i=0

βi

)
= 0

= 4β0 + 2β1 + 8β2 + 2β3 + 4β4 + 4β5 + ... + 4βS−2 + 6βS−1

− 4K + 2ψS+L+1

d

dβ3

= 2(β3 − β2)− 2(β4 − β3)− 2
(
K −

S−2∑
i=0

βi − 2βS−1

)

− 2
(
K − ψS+L+1 −

S−1∑
i=0

βi

)
= 0

= 4β0 + 4β1 + 2β2 + 8β3 + 2β4 + 4β5 + 4β6 + ... + 4βS−2 + 6βS−1

− 4K + 2ψS+L+1

...
...

...
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d

dβS−4

= 2(βS−4 − βS−5)− 2(βS−3 − βS−2)− 2
(
K −

S−2∑
i=0

βi − 2βS−1

)

− 2
(
K − ψS+L+1 −

S−1∑
i=0

βi

)

= 4β0 + 4β1 + ... + 4βS−6 + 2βS−5 + 8βS−4 + 2βS−3 + 4βS−2 + 6βS−1

− 4K + 2ψS+L+1

d

dβS−3

= 2(βS−3 − βS−4)− 2(βS−2 − βS−3)− 2
(
K −

S−2∑
i=0

βi − 2βS−1

)

− 2
(
K − ψS+L+1 −

S−1∑
i=0

βi

)

= 4β0 + 4β1 + ... + 4βS−5 + 2βS−4 + 8βS−3 + 2βS−2 + 6βS−1

− 4K + 2ψS+L+1

d

dβS−2

= 2(βS−2 − βS−3)− 2(βS−1 − βS−2)− 2
(
K −

S−2∑
i=0

βi − 2βS−1

)

− 2
(
K − ψS+L+1 −

S−1∑
i=0

βi

)

= 4β0 + 4β1 + ... + 4βS−4 + 2βS−3 + 8βS−2 + 4βS−1 − 4K + 2ψS+L+1

d

dβS−1

= 2(βS−1 − βS−2)− 4
(
K −

S−2∑
i=0

βi − 2βS−1

)− 2
(
K − ψS+L+1 −

S−1∑
i=0

βi

)

= 6β0 + 6β1 + ... + 6βS−3 + 4βS−2 + 12βS−1 − 6K + 2ψS+L+1.

The system of linear equations can be expressed in the matrix form shown

in table 4.1. The step 1 to step 4 for solving the generic formula for βi; i =

0, 1, 2, ..., S − 1 of table 4.1 are shown as the followings.

Step 1: The row operations of table 4.1 using Eq.i-(2/3)*Eq.S, i=1,2,3,...,S-1
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Table 4.1: The System of Linear Equations in Matrix Form

Eq. β0 β1 β2 β3 … βS-6 βS-5 βS-4 βS-3 βS-2 βS-1 K ψS+L+1

1 8 2 4 4 … 4 4 4 4 4 6 -4 2
2 2 8 2 4 … 4 4 4 4 4 6 -4 2
3 4 2 8 2 … 4 4 4 4 4 6 -4 2
4 4 4 2 8 … 4 4 4 4 4 6 -4 2
5 4 4 4 2 … 4 4 4 4 4 6 -4 2
6 4 4 4 4 … 4 4 4 4 4 6 -4 2
… … … … … … … … … … … … … …
S-4 4 4 4 4 … 2 8 2 4 4 6 -4 2
S-3 4 4 4 4 … 4 2 8 2 4 6 -4 2
S-2 4 4 4 4 … 4 4 2 8 2 6 -4 2
S-1 4 4 4 4 … 4 4 4 2 8 4 -4 2
S 6 6 6 6 … 6 6 6 6 4 12 -6 2

is shown in table 4.2.

Step 2: Solve the Block Diagonal.

The block diagonal matrix is shown in table 4.3.

Step 2.1: LU Factorization of the Block Diagonal Matrix.

By setting A = LU , where A is the block diagonal matrix in table 4.3. We

decompose matrix A into a product of a lower triangular matrix L and an

upper triangular matrix U , shown in table 4.4. From table 4.4, we have

li =
−(i− 1)

i
; i = 2, 3, 4, ..., S − 3

ui =
2(i + 1)

i
; i = 1, 2, 3, ..., S − 3.

Proof by induction that

ln = −2/un−1 = −(n− 1)/n

un = 4 + 2ln = 4− 2(n− 1)/n = 2(n + 1)/n.

Given
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Table 4.2: Step 1: Row Operations of the System of Linear Equations

Eq. β0 β1 β2 β3 … βS-6 βS-5 βS-4 βS-3 βS-2 βS-1 K ψS+L+1

1 4 -2 … 4/3 -2 2/3
2 -2 4 -2 … 4/3 -2 2/3
3 -2 4 -2 … 4/3 -2 2/3
4 -2 4 … 4/3 -2 2/3
5 -2 … 4/3 -2 2/3
… … … … … … … … … … … … … …
S-4 … -2 4 -2 4/3 -2 2/3
S-3 … -2 4 -2 4/3 -2 2/3
S-2 … -2 4 -2/3 -2 2/3
S-1 … -2 16/3 -4 2/3
S 6 6 6 6 … 6 6 6 6 4 12 -6 2

Table 4.3: Step 2: Block Diagonal Matrix of the System of Linear Equations

Eq. β0 β1 β2 β3 … βS-6 βS-5 βS-4

1 4 -2 …
2 -2 4 -2 …
3 -2 4 -2 …
4 -2 4 …
5 -2 …
… … … … … … … … …
S-4 … -2 4 -2
S-3 … -2 4
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Table 4.4: Step 2.1: LU Factorization of the Block Diagonal Matrix.

Eq. β0 β1 β2 β3 … βS-6 βS-5 βS-4

1 4 -2 …
2 -2 4 -2 …
3 -2 4 -2 …

A = … … … … … … … … …
S-5 … 4 -2/3
S-4 … -2 16/3 -4
S-3 … 4 12

Eq. β0 β1 β2 β3 … βS-6 βS-5 βS-4

1 1 …
2 l2 1 …
3 l3 1 …

L = … … … … … … … … …
S-5 1
S-4 lS-4 1
S-3 lS-3 1

Eq. β0 β1 β2 β3 … βS-6 βS-5 βS-4

1 u1 -2 …
2 u2 -2 …
3 u3 -2 …

U = … … … … … … … … …
S-5 uS-5 -2
S-4 uS-4 -2
S-3 uS-3
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u1 = 4 = 2(1 + 1)/1.

Let n = 2

l2 = −2/u1 = −2/4 = −1/2 = −(n− 1)/n = −1/2 = −(2− 1)/2

u2 = 4 + 2l2 = 4 + 2(−1/2) = 3 = 2(n + 1)/n=2
(
(2+1)/2

)
.

Let n = k

lk = −(k − 1)/k

uk = 2(k + 1)/k.

Let n = k + 1

lk+1 = −2/uk = −2/
(
2(k +1)/k

)
= −k/(k +1) = −(

(k +1)− 1
)
/(k +1)

uk+1 = 4 + 2lk+1 = 4 + 2(−k/(k + 1)) = 2(k + 2)/(k + 1)

= 2
(
(k + 1) + 1

)
/(k + 1).

The solution for the matrix lower tridiagonal matrix L and upper tridi-

agonal matrix U is shown in table 4.5.

Step 2.2: Solve for y from Ly = b.

y is the vector of [y1, y2, ..., yS−3]
T and b is the S−3 by 4 matrix of βS−3, βS−2, βS−1, ψS+L+1

from Eq. 1 to S − 3. The matrix Ly = b is shown in table 4.6.

From Ly = b shown in table 4.6, we have y = βS−3+kyT [βS−2, βS−1, ψS+L+1]

where ky = [ky1, ky2, ..., kyS−4, kyS−3]
T . We have kyi = (i + 1)/2; i =

1, 2, 3, ..., S − 3.

Proof by induction that

kyn = 1− lnkyn−1 = 1− (− (n− 1)/n
)
kyn−1 = (n + 1)/2.

Given

ln = −(n− 1)/n
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Table 4.5: Step 2.1: LU Solution of the Block Diagonal Matrix

Eq. β0 β1 β2 β3 … βS-6 βS-5 βS-4

1 1
2 -1/2 1
3 -2/3 1

L = … … … … … … … … …
S-5 1
S-4 -(S-5)/(S- 1
S-3 -(S-4)/(S- 1

Eq. β0 β1 β2 β3 … βS-6 βS-5 βS-4

1 4 -2 …
2 3 -2 …
3 8/3 -2 …

U = … … … … … … … … …
S-5 2(S-4)/(S-5) -2
S-4 2(S-3)/(S-4) -2
S-3 2(S-2)/(S-3)

Table 4.6: Step 2.2: The Matrix Ly = b

Eq. β0 β1 β2 … βS-7 βS-6 βS-5 βS-4 βS-3 βS-2 βS-1 K ψS+L+1

1 1 … 4/3 -2 2/3
2 -1/2 1 … 4/3 -2 2/3
3 -2/3 1 … 4/3 -2 2/3
4 -3/4 … 4/3 -2 2/3
… … … … … … … … … … … … … …
S-6 … 1 4/3 -2 2/3
S-5 -(S-6)/(S-5) 1 4/3 -2 2/3
S-4 … -(S-5)/(S-4) 1 4/3 -2 2/3
S-3 … … -(S-4)/(S-3) 1 -2 4/3 -2 2/3
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Table 4.7: Step 2.2: Solve for y from Ly = b

Eq. βS-3 ky βS-2 βS-1 K ψS+L+1

1 2/2 4/3 -2 2/3
2 3/2 4/3 -2 2/3
3 4/2 4/3 -2 2/3

y = … … … … … … …
S-5 (S-4)/2 4/3 -2 2/3
S-4 (S-3)/2 4/3 -2 2/3
S-3 -2 (S-2)/2 4/3 -2 2/3

ky1 = 1 = (1 + 1)/2.

Let n = 2

ky2 = 1− l2ky1 = 1− (−1/2)1 = 3/2 = (2 + 1)/2.

Let n = k

kyk = (k + 1)/2 .

Let n = k + 1

kyk+1 = 1− lk+1kyk = 1− (− k/(k + 1)
)(

(k + 1)/2
)

= (k + 2)/2.

The solution for y is shown in table 4.7.

Step 2.3: Solve for x from Ux = y.

x is the vector of [x1, x2, ..., xS−3]
T and y is the S−3 by 4 matrix of βS−3, βS−2, βS−1, ψS+L+1

from Eq. 1 to S−3 shown in table 4.7. The matrix Ux = y is shown in table

4.8.

From Ux = y shown in table 4.8, we have kxi = (S − i − 2)(i/4); i =

1, 2, 3, ..., S − 3 and βi,S−3 = −i/(S − 2); i = 1, 2, 3, ..., S − 3.

Proof by induction that

kxn = (2kxn+1 + kyn)/un = (S − n− 2)(n/4).
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Table 4.8: Step 2.3: The Matrix Ux = y

Eq. β0 β1 β2 … βS-6 βS-5 βS-4 βS-3 ky βS-2 βS-1 K ψS+L+1

1 4 -2 … 2/2 4/3 -2 2/3
2 3 -2 … 3/2 4/3 -2 2/3
3 8/3 … 4/2 4/3 -2 2/3
… … … … … … … … … … … … … …
S-6 … -2 (S-5)/2 4/3 -2 2/3
S-5 2(S-4)/(S-5) -2 (S-4)/2 4/3 -2 2/3
S-4 … 2(S-3)/(S-4) -2 (S-3)/2 4/3 -2 2/3
S-3 … 2(S-2)/(S-3) -2 (S-2)/2 4/3 -2 2/3

Given

un = 2(n + 1)/n

kyn = 1 = (n + 1)/2

kxS−3 =
kyS−3

uS−3

=
(S − 2)/2

2(S − 2)/(S − 3)

= (S − 3)/4 =
(
S − (S − 3)− 2

)
(S − 3)/4.

Let n = S − 4

kxS−4 =
2kxS−3 + kyS−4

uS−4

=

(
2(S − 3)/4

)
+ (S − 3)/2

2(S − 3)/(S − 4)

= (S − 4)/2 =
(
S − (S − 4)− 2

)
(S − 4)/4.

Let n = k

kxk = (S − k − 2)(k/4).

Let n = k + 1

kxk−1 =
2kxk + kyk−1

uk−1

=

(
2(S − k − 2)(k/4)

)
+ k/2

2k/(k − 1)

= (S − k − 1)(k − 1)/4 =
(
S − (k − 1)− 2

)
(k − 1)/4.

Proof by induction that

βn,S−3 = 2βn+1,S−3/un = −n/(S − 2).
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Table 4.9: Step 2.3: Solve for x from Ux = y

Eq. βS-3 kx βS-2 βS-1 K ψS+L+1

1 -1/(S-2) (S-3)/4 4/3 -2 2/3
2 -2/(S-2) (S-4)*2/4 4/3 -2 2/3
3 -3/(S-2) (S-5)*3/4 4/3 -2 2/3

x = … … … … … … …
S-5 -(S-5)/(S-2) 3(S-5)/4 4/3 -2 2/3
S-4 -(S-4)/(S-2) 2(S-4)/4 4/3 -2 2/3
S-3 -(S-3)/(S-2) (S-3)/4 4/3 -2 2/3

Given

un = 2(n + 1)/n

βS−3,S−3 = 2βS−2,S−3/uS−3 = −2.

Let n = S − 4

βS−4,S−3 = 2βS−3,S−3/uS−4 =
2(S − 3)/(S − 2)

2(S − 3)/(S − 4)
= (S − 4)/(S − 2).

Let n = k

βk,S−3 = −k/(S − 2).

Let n = k − 1

βk−1,S−3 = 2βk,S−3/uk−1 =
2
(− k/(S − 2)

)

2k/(k − 1)
= −(k − 1)/(S − 2).

The solution for x is shown in table 4.9.

Step 3: Solve for Eq. S-3 to Eq. S-1 to diagonalize βS−4.

The solution from solving Eq. S-3 to Eq. S-1 to diagonalize βS−4 is shown

in table 4.10.

Step 4: Solve Eq. 1 to Eq. S to diagonalize βS−3, βS−2, and βS−1.

After step 1 - 3, the final matrix is shown in table 4.11.
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Table 4.10: Step 3: Solve Eq. S-3 to S-1 to diagonalize βS−4

Eq. βS-4 βS-3 βS-2 βS-1 K ψS+L+1

S-3 1 -(S-3)/(S-2) (S-3)/3 -(S-3)/2 (S-3)/6
S-2 -2 4 -2/3 -2 2/3
S-1 -2 16/3 -4 2/3

Eq. βS-4 βS-3 βS-2 βS-1 K ψS+L+1

S-3 1 -(S-3)/(S-2) (S-3)/3 -(S-3)/2 (S-3)/6
S-2 1 (S-2)(S-4)/[3(S-1)] -(S-2)/2 (S-2)/6
S-1 1 -3(S-1)/(2*S) (S-1)/(2*(S+2))

Table 4.11: Step 4: Solve Eq. 1 to S to diagonalize βS−3 and βS−2

Eq. β0 β1 β2 … βS-6 βS-5 βS-4 βS-3 βS-2

1 1 … -1/(S-2) (S-3)/3
2 1 … -2/(S-2) (S-4)*2/3
3 1 … -3/(S-2) (S-5)*3/3
… … … … … … … … … …
S-5 … 1 -(S-5)/(S-2) 3(S-5)/3
S-4 … 1 -(S-4)/(S-2) 2(S-4)/3
S-3 … 1 -(S-3)/(S-2) (S-3)/3
S-2 … 1 (S-2)(S-4)/[3(S-1)]
S-1 … 1
S 6 6 6 … 6 6 6 6 4

Eq. βS-1 K ψS+L+1

1 -(S-3)/2 (S-3)/6
2 -(S-4)*2/2 (S-4)*2/6
3 -(S-5)*3/2 (S-5)*3/6
… … … …
S-5 -3(S-5)/2 3(S-5)/6
S-4 -2(S-4)/2 2(S-4)/6
S-3 -(S-3)/2 (S-3)/6
S-2 -(S-2)/2 (S-2)/6
S-1 -3(S-1)/(2*L) (S-1)/(2*(S+2))
S 12 -6 2
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Table 4.12: Step 4.1: Solve Eq. 1 to S to diagonalize βS−3

Eq. β0 β1 β2 … βS-6 βS-5 βS-4 βS-3 βS-2

1 1 … (1/3)*[(S-4)/(S-1)+(S-3)]
2 1 … (2/3)*[(S-4)/(S-1)+(S-4)]
3 1 … (3/3)*[(S-4)/(S-1)+(S-5)]
… … … … … … … … … …
S-4 … 1 [(S-4)/3]*[(S-4)/(S-1)+2]
S-3 … 1 [(S-3)/3]*[(S-4)/(S-1)+1]
S-2 … 1 [(S-2)/3]*[(S-4)/(S-1)]
S-1 … 1
S 1 1 1 … 1 1 1 1 2/3

Eq. βS-1 K ψS+L+1

1 -(S-2)/2 (S-2)/6
2 -(S-3)*2/2 (S-3)*2/6
3 -(S-4)*3/2 (S-4)*3/6
… … … …
S-4 -3(S-4)/2 3(S-4)/6
S-3 -2(S-3)/2 2(S-3)/6
S-2 -(S-2)/2 (S-2)/6
S-1 -3(S-1)/(2*S) (S-1)/(2*(S+2))
S 2 -1 1/3

Step 4.1: Solve Eq. 1 to S to diagonalize βS−3 (shown in table 4.12).

Step 4.2: Solve Eq. 1 to S to diagonalize βS−2 (shown in table 4.13).

Step 4.3: Solve Eq. 1 to S to diagonalize βS.
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Table 4.13: Step 4.2: Solve Eq. 1 to S to diagonalize βS−2

Eq. β0 β1 β2 … βS-3 βS-2 βS-1

1 1 … [1/2]*[[(S-4)/(S-1)+(S-3)]*(S-1)/S-(S-2)]
2 1 … [2/2]*[[(S-4)/(S-1)+(S-4)]*(S-1)/S-(S-3)]
3 1 … [3/2]*[[(S-4)/(S-1)+(S-5)]*(S-1)/S-(S-4)]
… … … … … … … …
S-5 … [(S-5)/2]*[[(S-4)/(S-1)+3]*(S-1)/(S-4)]
S-4 … [(S-4)/2]*[[(S-4)/(S-1)+2]*(S-1)/(S-3)]
S-3 … [(S-3)/2]*[[(S-4)/(S-1)+1]*(S-1)/(S-2)]
S-2 … 1 [(S-2)/2]*[[(S-4)/(S-1)]*(S-1)/(S-1)]
S-1 … 1 -3(S-1)/(2*S)
S 1 1 1 … 1 2/3 2

Eq. K ψS+L+1

1 -[1/6]*[[(S-4)/(S-1)+(S-3)]*(S-1)/(S+2)-(S-2)]
2 -[2/6]*[[(S-4)/(S-1)+(S-4)]*(S-1)/(S+2)-(S-3)]
3 -[3/6]*[[(S-4)/(S-1)+(S-5)]*(S-1)/(S+2)-(S-4)]
… … …
S-5 -[(S-5)/6]*[[(S-4)/(S-1)+3]*(S-1)/(S+2)-4]
S-4 -[(S-4)/6]*[[(S-4)/(S-1)+2]*(S-1)/(S+2)-3]
S-3 -[(S-3)/6]*[[(S-4)/(S-1)+1]*(S-1)/(S+2)-2]
S-2 -[(S-2)/6]*[[(S-4)/(S-1)]*(S-1)/(S+2)-1]
S-1 (S-1)/(2*(S+2))
S -1 1/3
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By solving step 4.2 Eq. 1 to Eq. S, we have

(
2− 2

3

−3(S − 1)

2S
−

S−2∑
i=1

i

2

((S − 4

S − 1
+ S − i− 2

)S − 1

S
− (S − i− 1)

))
βS−1

+

(
1

3
− 2

3

S − 1

2(S + 2)
−

S−2∑
i=1

− i

6

((S − 4

S − 1
+ S − i− 2

)S − 1

S + 2
− (S − i− 1)

))
ψS+L+1

−K = 0

then,

(S + 1)(S + 2)(S + 3)

12S
βS−1 − S2 − 2S − 3

12
ψS+L+1 −K = 0

hence,

βS−1 =
S(S − 3)

((S + 2)(S + 3)
ψS+L+1 +

12S

(S + 1)(S + 2)(S + 3)
K.

By solving step 3 Eq. S-1, we have

βS−2 − 3(S − 1)

2S
βS−1 +

S − 1

2(S + 2)
ψS+L+1 = 0

hence,

βS−2 =
(S − 1)(S − 6)

(S + 2)(S + 3)
ψS+L+1 +

18(S − 1)

(S + 1)(S + 2)(S + 3)
K.
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By solving step 1 Eq. S-1, we have

−2βS−3 +
16

3
βS−2 − 4βS−1 +

2

3
ψS+L+1

hence,

βS−3 =
(S − 2)(S − 9)

(S + 2)(S + 3)
ψS+L+1 +

24(S − 2)

(S + 1)(S + 2)(S + 3)
K.

By solving step 1 Eq. S-2, we have

−2βS−4 + 4βS−3 − 2

3
βS−2 − 2βS−1 +

2

3
ψS+L+1

hence,

βS−4 =
(S − 3)(S − 12)

(S + 2)(S + 3)
ψS+L+1 +

30(S − 3)

(S + 1)(S + 2)(S + 3)
K.

By solving step 1 Eq. 2 to Eq. S-3, we have

−2βS−i + 4βS−i+1 − 2βS−i+2 +
4

3
βS−2 − 2βS−1 +

2

3
ψS+L+1

for i=5,6,7,...S, hence,

βS−i =
(S − i + 1)(S − 3i)

(S + 2)(S + 3)
ψS+L+1 +

(S − i + 1)6(i + 1)

(S + 1)(S + 2)(S + 3)
K

where i = 5, 6, 7, ..., S.
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Also

βS = K −
S−1∑
i=0

βi =
−2SψS+L+1 + 6K

(S + 2)(S + 3)
.

Hence, the value of βi; i = 0, 1, 2, ..., S

βi =
(i + 1)(−2S + 3i)

(S + 2)(S + 3)
ψS+L+1 +

(i + 1)6(S − i + 1)

(S + 1)(S + 2)(S + 3)
K (4.18)

where K = 1 + ψ1 + ψ2 + ... + ψS+L and the ψ’s weights following (3.2).

Its variation in first differencing generalized order, V ar
(
Ot − Ot−1

)
, can

be found by substituting the β’s weights following (4.18), K, and ψ’s weights

into (4.17) where
∑∞

i=S+L+2(ψi − ψi−1)
2 is absolutely summable.

End of proof

For ARIMA(0,1,1) model, substitute ψS+L+1 = 1− θ and K = 1 + ψ1 +

ψ2 + ψ3 + ... + ψS+L = 1 + (S + L)(1− θ) into (4.18), we have the smoothing

weights’s βi; i = 0, 1, 2, ..., S

βi =
(i + 1)

(
4S2 + (10− 3i)S + (6− 3i) + 6(S − i + 1)L

)

(S + 1)(S + 2)(S + 3)

− (i + 1)
(
4S2 + (4− 3i)S + 3i + 6(S − i + 1)L

)

(S + 1)(S + 2)(S + 3)
θ.

(4.19)

Its variation can be expressed in the function of S, L, and θ by substituting
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β’s, K, and ψ’s into (4.18), then

V ar(Ot −Ot−1) =

(
(4S2 + 10S + 6) + 12

(
L2 + (S + 1)L

)

(S + 1)(S + 2)(S + 3)

− 8(S2 + S) + 24(L2 + SL)

(S + 1)(S + 2)(S + 3)
θ

+
(4S2 − 2S + 6) + 12(L2 + SL− 1)

(S + 1)(S + 2)(S + 3)
θ2

)
σ2

a.

(4.20)

4.5 Insights

This section provides the insights for the generalized ordering policy and the

smoothing ordering policy.

1. Stationary inventory condition for the generalized ordering policy. In

order to have a stationary inventory variance,
∑S

i=0 βi = K (where K =

1+ψ1 +ψ2 +ψ3 + ...+ψS+L) represents the magnitude of the bullwhip effect.

In the infinite loading policy, the (forecast error) shocks are summed up in

one period, In the smoothing policy, the shocks are extended to smoothing

S + 1 periods such that it minimizes the variation in differencing orders.

However, the sum of (forecast error) shocks for both ordering policies are the

same.

2. The distribution of the optimal smoothing weight β for the smoothing

policy. For ARIMA(p, 0, q) order model, the ratio of βi for i = 0, 1, 2, ..., S

over the magnitude of the bullwhip effect K is

βi

K
=

K/(S + 1)

K
=

1

S + 1
for i = 0, 1, 2, ..., S
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That is, the optimal smoothing weights β for ARIMA(p, 0, q) order model

are the average of K over S + 1 periods.

For ARIMA(p, 1, q) order model, the shape of the ratio of βi for i =

0, 1, 2, ..., S over the magnitude of the bullwhip effect K depends on the

autocorrelation in the demand (ψ’s weights). The shape is moving from

a bell shape when the autocorrelation is low to a left tail shape when the

autocorrelation is high, which is shown below. That means the smoothing

ordering policy tends to react less to the most recent shocks in order to

smooth the week to week order variation.

To illustrate the shape of the β’s weights, we consider the model ARIMA(0,1,1)

demand model in (3.14)

Zt = at + (1− θ)at−1 + (1− θ)at−2 + (1− θ)at−3 + ....

The infinite loading orders following (3.15)

Ot =
(
1 + L(1− θ)

)
at + (1− θ)at−1 + (1− θ)at−2 + (1− θ)at−3 + ....

For simplicity, let L = 0, when θ = 1, ARIMA(0,1,1) demand is the noise

series Zt = at and its infinite loading orders Ot = Zt. For the smoothing

orders, K = 1. The β’s weights following (4.19) is

βi =
6(i + 1)(S − i + 1)

(S + 1)(S + 2)(S + 3)
for i = 0, 1, 2, ..., S.
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Although limS→∞βi = 0, asymptotically, the shape of βi can be roughly

estimated from

β0 : βS/2 : βS =
6

(S + 2)(S + 3)
:
6

4

S + 2

(S + 1)(S + 3)
:

6

(S + 2)(S + 3)

≈ 1

S2
:

1

S
:

1

S2

which is approximately a bell shape.

When θ = 0.5, K = 1 +
S

2
for the smoothing orders. The β’s weights

following (4.19) is

βi =
(i + 1)(4S − 3i + 4)

(S + 1)(S + 2)2
for i = 0, 1, 2, ..., S.

Also limS→∞βi = 0. Asymptotically, the shape of βi can be roughly esti-

mated from

β0 : βS/2 : βS =
4

(S + 2)2
:
5

4

5S + 8

(S + 1)(S + 2)
:

S + 4

(S + 2)2

≈ 1

S2
:

1

S
:

1

S

which is approximately a left tail shape.

When θ = 0, ARIMA(0,1,1) demand model is the random walk series

Zt = Zt−1 + at and its infinite loading orders Ot = Zt. For the smoothing

orders, K = 1 + S. The β’s weights following (4.19) is

βi =
(i + 1)(4S − 3i + 6)

(S + 1)(S + 2)(S + 3)
for i = 0, 1, 2, ..., S.
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Table 4.14: The β’s Weights for ARIMA(0,0,0), L = 0, S = 0 to 6

S β0/K β1/K β2/K β3/K β4/K β5/K β6/K

0 1
1 0.5 0.5
2 0.3 0.4 0.3
3 0.2 0.3 0.3 0.2
4 0.1429 0.2286 0.2571 0.2286 0.1429
5 0.1071 0.1786 0.2143 0.2143 0.1786 0.1071
6 0.0833 0.1429 0.1786 0.1905 0.1786 0.1429 0.0833

Also limS→∞βi = 0. Asymptotically, the shape of βi can be roughly esti-

mated from

β0 : βS/2 : βS =
4S + 6

(S + 1)(S + 2)(S + 3)
:

(S + 2)(5S + 12)

8(S + 1)(S + 2)(S + 3)
:

S + 6

(S + 2)(S + 3)

≈ 1

S2
:

1

S
:

1

S

which is approximately a left tail shape. Table 4.14 shows the ratio βi/K for

S from 0 to 6 when θ = 1. Table 4.15 shows the ratio βi/K for S from 0

to 6 when θ = 0.5. Table 4.16 shows the ratio βi/K for S from 0 to 6 when

θ = 0.

4.6 Applications of Smoothing Policy for Sup-

plier Contracts

This section illustrates applications of using the smoothing policy for

supplier contracts with specific ARIMA models. With constraints in supplier
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Table 4.15: The βi/K for ARIMA(0,1,1) θ = 0.5, L = 0, S = 0 to 6

S β0/K β1/K β2/K β3/K β4/K β5/K β6/K

0 1
1 0.4444 0.5556
2 0.25 0.375 0.375
3 0.16 0.26 0.3 0.28
4 0.1111 0.1889 0.2333 0.2444 0.2222
5 0.0816 0.1429 0.1837 0.2041 0.2041 0.1837
6 0.0625 0.1116 0.1473 0.1696 0.1786 0.1741 0.1563

Table 4.16: The βi/K for ARIMA(0,1,0), L = 0, S = 0 to 6

S β0/K β1/K β2/K β3/K β4/K β5/K β6/K

0 1
1 0.4167 0.5833
2 0.2333 0.3667 0.4
3 0.15 0.25 0.3 0.3
4 0.1048 0.181 0.2286 0.2476 0.2381
5 0.0774 0.1369 0.1786 0.2024 0.2083 0.1964
6 0.0595 0.1071 0.1429 0.1667 0.1786 0.1786 0.1667
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contracts, a manufacturer requires the production level to be within specific

tolerance bounds that suppliers agree to follow. The manufacturer also wants

to hold the smallest level of inventory and the small variation in week-to-week

variation in production. Section 4.6.1 illustrates the supplier contracts when

the demand is AR(1). Section 4.6.2 illustrates the supplier contracts when

the demand is ARIMA(0,1,1).

4.6.1 AR(1) Demand Model

Suppose that the weekly demand for a product is AR(1) with φ = .5,

µ = 100, σa = 5. The company has a zero lead time, L = 0, but has supplier

contracts that require the production level to be within 5% of the amount

forecast 4 weeks earlier, within 10% of the forecast of 8 weeks earlier and

within 15% of the forecast made 12 weeks earlier.

The company has four considerations: 1) It must meet the commitments

to its suppliers. 2) It wants small variation in week to week variation in

production. 3) It wants to hold as little inventory as possible. 4) It wants to

meet customer demand.

The production plan for this supplier contracts is to find the smallest

number of smoothing period, S, for which the optimal smoothing policy

meets constraint 1. By making the number of smoothing periods as small as

possible, we minimize the variation in inventory. Then by using the optimal

smoothing policy, we find the policy that has the smallest week to week

variation of all policies that smooth over that number of weeks. Then we set
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the inventory target needed to meet customer demand. In other words, we

find the optimal smoothing production policy that minimizes the variation in

inventory subject to the constraint that the actual production will be within

the required ranges within high 3-sigma probability.

For supplier contracts, we set

3σOt−Ôt−4
≤ 5%µ = 5

3σOt−Ôt−8
≤ 10%µ = 10

3σOt−Ôt−12
≤ 15%µ = 15.

For an AR(1) model, the generalized order following (4.1) is

Ot = β0at + β1at−1 + ... + βS−1at−S+1 + βSat−S + ψS+L+1at−S−1 + ψS+L+2at−S−2 + ...

= β0at + β1at−1 + ... + βS−1at−S+1 + βSat−S + φS+L+1at−S−1 + φS+L+2at−S−2 + ...

and the standard deviation of the forecast error

σOt−Ôt−i
=

(
β2

0 + β2
1 + β2

2 + ... + β2
i−1

)1/2
σa, i ≤ S + 1

=
(
β2

0 + β2
1 + ... + β2

S + φ2(S+L+1) + φ2(S+L+2) + ... + φ2(i−S−1)
)1/2

σa, i ≥ S + 2

where the optimal beta weight following theorem 5 is

βi =
K

S + 1
=

1 + ψ1 + ψ2 + ... + ψS+L

S + 1
=

1

S + 1

1− φS+L+1

1− φ
for i = 0, 1, 2, ..., S.
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The standard deviation of the inventory following theorem 3 is

σI =
(
1 + (θ

(I)
1 )2 + (θ

(I)
2 )2 + ... + (θ

(I)
S+L−1)

2
)1/2

σa

=
(
1 +

(1− φ2

1− φ

)2
+

(1− φ3

1− φ

)2
+ ... +

(1− φL

1− φ

)2

+
(1− φL+1

1− φ
− β0

)2
+

(1− φL+2

1− φ
− β0 − β1

)2
+ ... +

(1− φL+S

1− φ
−

S−1∑
i=0

βi

)2
)1/2

σa.

Also, the standard deviation of the production following theorem 4 is

σOt =
(
β2

0 + β2
1 + ... + β2

S + φ2(S+L+1) + φ2(S+L+2) + φ2(1S+L+3) + ...
)1/2

σa

=
(
β2

0 + β2
1 + ... + β2

S +
φ2(S+L+1)

1− φ2

)1/2 ∗ σa.

Hence, we find the optimal smoothing production by varying the values

of smoothing periods S from 0 to 12. The result is shown in table 4.17. From

the table, the optimal smoothing period is 11 with βi = .1666 for i = 0, 1, ...11

where the target inventory is set as 3σI = 44.31 and the 3-sigma range of the

variation in production is 3σOt = 8.66. Compared with the loading policy,

the smoothing policy reduces the 3-sigma range of the variation in production

from 17.32 to 8.66 while it increases the inventory target needed from 0 to

44.31.

4.6.2 ARIMA(0,1,1) Demand Model

In this section, suppose that the weekly demand for a product is ARIMA(0,1,1)

with θ = .7, lead time, L = 0, σa = 5. The supplier contracts require the
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Table 4.17: Supplier Contracts for AR(1) Model with L = 0, φ = .5, S = 0
to 12

S 0 1 2 3 4 5 6 7 8 9 10 11 12
βi 1 0.75 0.5833 0.4688 0.3875 0.3281 0.2835 0.2490 0.2218 0.1998 0.1817 0.1666 0.1538

S 0 1 2 3 4 5 6 7 8 9 10 11 12
i = 4 17.287 16.453 15.271 14.063 11.625 9.844 8.504 7.471 6.654 5.994 5.452 4.999 4.615
i = 8 17.320 16.488 15.309 14.104 13.008 12.059 11.251 10.565 9.410 8.477 7.710 7.069 6.526
i = 12 17.32116.48915.30914.10413.00812.05911.25110.565 9.981 9.478 9.041 8.658 7.993

S 0 1 2 3 4 5 6 7 8 9 10 11 12
3σI 0 3.75 8.00 12.70 17.44 22.02 26.34 30.41 34.21 37.78 41.14 44.31 47.32

S 0 1 2 3 4 5 6 7 8 9 10 11 12
3σOt 17.32 16.49 15.31 14.10 13.01 12.06 11.25 10.57 9.98 9.48 9.04 8.66 8.32

itt OO −− ˆ3σ

quantity changes in production level to be within 10 units of the forecast 4

weeks earlier, within 15 units of the forecast 8 weeks earlier, and within 20

units of the forecast 12 weeks earlier. Hence, for supplier contracts, we set

3σOt−Ôt−4
≤ 10

3σOt−Ôt−8
≤ 15

3σOt−Ôt−12
≤ 20.
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For an ARIMA(0,1,1) model, the generalized order following (4.1) is

Ot = β0at + β1at−1 + ... + βS−1at−S+1 + βSat−S + ψS+L+1at−S−1 + ψS+L+2at−S−2 + ...

= β0at + β1at−1 + ... + βS−1at−S+1 + βSat−S + (1− θ)at−S−1 + (1− θ)at−S−2 + ...

and the standard deviation of the forecast error

σOt−Ôt−i
=

(
β2

0 + β2
1 + β2

2 + ... + β2
i−1

)1/2
σa, i ≤ S + 1

=
(
β2

0 + β2
1 + ... + β2

S + (1− θ)2(i− S − 1)
)1/2

σa, i ≥ S + 2

where the optimal beta weight following theorem 6 is

βi =
(i + 1)

(
4S2 + (10− 3i)S + (6− 3i) + 6(S − i + 1)L

)

(S + 1)(S + 2)(S + 3)

− (i + 1)
(
4S2 + (4− 3i)S + 3i + 6(S − i + 1)L

)

(S + 1)(S + 2)(S + 3)
θ

for i = 0, 1, 2, ..., S.

The standard deviation of the inventory following theorem 3 is

σI =
(
1 + (θ

(I)
1 )2 + (θ

(I)
2 )2 + ... + (θ

(I)
S+L−1)

2
)1/2

σa

=
(
1 + (2− θ)2 + (3− 2θ)2 + ... +

(
L− (L− 1)θ

)2

+
(
(L + 1)− Lθ − β0

)2
+

(
(L + 2)− (L + 1)θ − β0 − β1

)2
+ ...

+
(
(L + S)− (L + S − 1)θ −

S−1∑
i=0

βi

)2
)1/2

σa.

Also, the standard deviation of the first differencing production following
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theorem 4 is

σ∇dOt
= σOt−Ot−1

=
(
β2

0 + (β1 − β0)
2 + (β2 − β1)

2 + ... + (βS − βS−1)
2 + (1− θ − βS)2

)1/2

σa.

The optimal smoothing production is found by varying the values of

smoothing periods S from 0 to 12, the result is shown in table 4.18. From

the table, the optimal smoothing period is 11 with the target inventory set

as 3σI = 36.42 and the 3-sigma range of the variation in production changes

is 3σOt−Ot−1 = 3.05. Compared with the loading policy, the smoothing policy

reduces the 3-sigma range of the variation in production changes from 18.31

to 3.05 while it increases the inventory target needed from 0 to 36.42.

From the table, we can see that the values of 3σOt−Ôt−12
do not decrease

when the forecasting periods increase since the distribution of the smoothing

β’s weights for ARIMA(p, 1, q) model is not uniform distributed as those in

ARIMA(p, 0, q) model.
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Table 4.18: Supplier Contracts for ARIMA(0,1,1) Model with L = 0, θ = .7,
S = 0 to 12

S β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12

0 1
1 0.6 0.7
2 0.42 0.61 0.57
3 0.32 0.51 0.57 0.5
4 0.257 0.431 0.523 0.531 0.457
5 0.214 0.371 0.471 0.514 0.5 0.429
6 0.183 0.325 0.425 0.483 0.5 0.475 0.408
7 0.16 0.288 0.385 0.45 0.483 0.485 0.455 0.393
8 0.142 0.259 0.351 0.418 0.461 0.478 0.471 0.439 0.382
9 0.127 0.235 0.322 0.389 0.436 0.464 0.471 0.458 0.425 0.373
10 0.115 0.214 0.297 0.363 0.413 0.446 0.463 0.463 0.447 0.414 0.365
11 0.105 0.197 0.275 0.34 0.39 0.427 0.45 0.459 0.455 0.437 0.405 0.359
12 0.097 0.183 0.256 0.319 0.369 0.408 0.435 0.451 0.455 0.447 0.428 0.397 0.354

S 0 1 2 3 4 5 6 7 8 9 10 11 12
i = 4 16.904 15.223 14.723 14.523 13.484 12.284 11.159 10.168 9.308 8.567 7.924 7.366 6.876
i = 8 19.151 17.685 17.256 17.086 17.017 16.999 17.009 17.037 16.705 16.178 15.562 14.918 14.278
i = 12 21.16019.84319.46219.31119.25019.23419.24419.26819.30319.34519.39119.44219.289

S 0 1 2 3 4 5 6 7 8 9 10 11 12
3σI 0 6.00 9.60 12.76 15.74 18.66 21.55 24.45 27.38 30.35 33.36 36.42 39.53

S 0 1 2 3 4 5 6 7 8 9 10 11 12

18.31 10.92 8.04 6.49 5.51 4.84 4.35 3.97 3.67 3.43 3.22 3.05 2.90

itt OO −− ˆ3σ

tO∇σ3
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Chapter 5

Bounded MRP for Exponential

Smoothing Demand

This chapter illustrates the implementations of the up to target ordering

policy (in chapter 3) and the smoothing ordering policy (in chapter 4) into

MRP tables. Then it introduces the bounded MRP system which is an up

to target MRP table with an enforced set of upper/lower bounds. This

set of bounds is served as a flex quantity profile in rate based planning that

aids manufacturers in reducing the conflict between production planning and

infeasible capacity planning in standard MRP systems. The set of bounds

also help to mitigate the bullwhip by limiting the changes in orders instead

of letting the orders be oscillated uncontrollably by actual lumpy demand.

The objective of the bounded MRP is to control the variation in week-

to-week production rate to match the flexibility in capacity changes with a
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stationary inventory. If the set of bounds is too wide, the bounded MRP will

behave like an unbounded standard MRP since maximum planned orders

will be at the level that the planned inventory hit the target before the

planned orders hit the bounds. If the set of bounds is too narrow, the orders

in the bounded MRP will be exploded after the enforced bounded periods,

hence, the orders after the bounded periods will be unusually large or small

to recover the inventory stock-outs or overstocks. Figure 5.1 illustrates the

production rate in the bounded MRP when the set of bounds is too wide.

Figure 5.2 illustrates the production rate in the bounded MRP when the set

of bounds is too narrow.

This chapter also provides a simulation based technique to determine the

optimal bound widths in bounded MRP tables for exponential smoothing

or ARIMA(0,1,1) demand. We considers only single exponential smoothing

demand for several reasons. First, single exponential is one of the simplest

and most widely used forecasting techniques. Second, it has a stationary

order changes from one period to the next, hence it has a finite variance

which is a prerequisite for optimization. Finally, its smoothing orders with

the minimum variation in order changes from one period to the next follow

the goal of capacity planning that desires the minimum changes of production

plan.
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Figure 5.1: The Set of Bounds is too Wide in an Bounded MRP

Figure 5.2: The Set of Bounds is too Narrow in an Bounded MRP
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5.1 Introduction

In a pull-type production, the production and delivery of materi-

als are driven by the drumbeat process from the upstream processes. The

drumbeat process maintains a constant production rate that creates a flat

demand pattern for the internal upstream processes and the external sup-

pliers. Scheduling is done only at the drumbeat process and all the other

processes respond to pull signals from the process immediately downstream.

This pull-type production is well served in the short term. In the longer term,

however, manufacturers need a push-type production such as MRP systems

to set a plan for future production planning that can handle the changing

level of demand and the rate of the drumbeat.

However, the traditional MRP system is not very well suited for produc-

tion planning. If the MRP schedule is frozen for several weeks into the future,

it does not allow quick enough response variation in customer demand. When

the MRP schedule is not frozen, the result is “schedule nervousness”, that

is, the plan is constantly changing.

Manufacturers need a tool for planning the production rate, or the drum-

beat, called rate-based planning. Rate-based planning gives a plan of the

future rate of the drumbeat, but with a pre-specified amount of flexibility to

vary from this plan. To understand the rationale for rate-based planning it

is necessary to first understand the three primary planning and scheduling

goals.
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These goals can be articulated from a functional perspective of the rate-

based planning:

• Manufacturing would like production rate that never changes.

• Marketing would like instantaneous changes in production rate in re-

sponse to changes in demand, to avoid late deliveries, stock-outs and

overstocks.

• Purchasing and the external suppliers would like a firm long-term com-

mitment to future production rates in order to know future material

needs.

For the first goal, it is impossible to maintain a production rate that

never changes. However, it is necessary to smooth demand to insulate the

production processes and the suppliers from the short-term variation in de-

mand. The smoothing technique to satisfy this goal is the smoothing ordering

policy introduced in section 5.2.2 that can be applied to the MRP system.

The second goal is to respond quickly to true changes in the level of

demand. A slow reaction time (lead time) creates high variation in inven-

tory, which in turn results in stock-outs and overstocks. The production and

inventory levels were generated using standard infinite loading MRP com-

putations. This is the standard MRP ordering policy introduced in section

5.2.1.

By using the standard MRP ordering policy, the inventory variation is

much larger that of the demand. In addition, each change in demand is
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followed by a much larger change in production due to its lead time. This is

the bullwhip effect that the reaction time causes the variation in production

to be much larger than the variation in demand. Since there is a lead time

delay in reacting to variation, the change in the production level must cover

not only the variation in current week’s demand but also the change in the

forecasted level of demand over lead time. Since in reality no production

process could economically accommodate such large swings in the production

rate, most of the variation created by the lead time will be absorbed by the

inventory. Thus the variation in inventory will in actuality be much larger

than that the standard MRP production plan resulting in some combination

of late shipments, lost sales, overstocks and other failures.

The third goal is to reduce the uncertainty for manufacturing and the

upstream suppliers in planning future capacity and materials requirements.

This objective would suggest the weekly rates of the drumbeat should be

determined and fixed (frozen) for several weeks into the future. However this

objective conflicts with the first and second objectives. The period of the

freeze in the schedule represents a delay in responding to changes in the level

of demand, i.e., lead time. The slow response time will create large swings

in the inventory resulting in stock-outs and overstocks. Although the freeze

will make production levels predictable, the production levels will be highly

variable due the bullwhip effect.

The Flexibility Requirements Profile for rate-based planning does not use

a frozen schedule. Rather it produces a plan but permits deviations, within
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specified ranges, from that plan. This compromise gives manufacturing and

the suppliers a forecast of future production, with a guaranteed level of ac-

curacy, while retaining some flexibility to respond quickly to changes in the

level of demand. Since the amount of change from the plan is constrained,

rate-based planning also has a smoothing effect on production.

Rate-based planning begins with a predetermined weekly profile of flexi-

bility that has been agreed upon by manufacturing and the suppliers. This is

the flexibility requirements profile that gives the amount (usually expressed

as a percentage of the planned drumbeat) by which the actual drumbeat can

deviate from the current plan for future weeks (see figure 1.3).

There will typically be smaller amounts of deviation permitted for weeks

in the near future than for weeks in the more distant future. For example,

the flexibility requirements profile may require that the actual drumbeat for

the first four weeks not deviate from the plan by more than five percent.

For weeks five through eight the allowable deviation may be ten percent and

for weeks nine though twelve the allowable deviation may be fifteen percent.

The rate-based planning for an MRP system is introduced by the bounded

MRP ordering policy in section 5.3.

5.2 The Unbounded MRP

This section illustrates the implementations of the up to target ordering

policy (introduced in chapter 3) and the smoothing ordering policy (intro-
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duced in chapter 4) into unbounded MRP tables.

5.2.1 MRP Mechanism

Let L be the ordering lead time, in which the receipt at time t or Rt is

the order placed at time t−L or Ot−L. F is the forecast period. An example

of the unbounded MRP at period t and at period t + 1 is shown in table 5.1

and table 5.2.

For ARIMA(0,1,1), the demand Zt:

Zt = at + (1− θ)(at−1 + at−2 + at−3 + ...).

Forecast demand Ẑt from section 3.5.1:

Ẑt(F ) = (1− θ)(at + at−1 + at−2 + ...) for F = 1, 2, 3, ...

= (1− θ)Zt + θẐt−1(F )

= Ẑt.

(5.1)

Receipt:

Receipt = Order placed L periods in the past.
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Table 5.1: Standard MRP at Period t

 
Period  t t+1 t+2 t+3 t+4 t+5 … t+F-1  t+F 

Demand   tZ  )1(ˆ
tZ  )2(ˆ

tZ  )3(ˆ
tZ  )4(ˆ

tZ  )5(ˆ
tZ  … )1(ˆ −FZt  )(ˆ FZt  

Receipts tR  )1(ˆ
tR  )2(ˆ

tR  )3(ˆ
tR  )4(ˆ

tR  )5(ˆ
tR  … )1(ˆ −FRt  )(ˆ FRt  

Inventory tI  )1(t̂I  )2(t̂I  )3(t̂I  )4(t̂I  )5(t̂I  … )1(ˆ −FI t  )(ˆ FI t  

Order  tO  )1(ˆ
tO  )2(ˆ

tO  )3(ˆ
tO  )4(ˆ

tO  )5(ˆ
tO  … )1(ˆ −FOt  )(ˆ FOt  

 

Table 5.2: Standard MRP at Period t + 1

 
Period  t+1 t+2 t+3 t+4 t+5 t+6 … t+F  t+F+1 

Demand   1+tZ  )1(ˆ
1+tZ  )2(ˆ

1+tZ )3(ˆ
1+tZ )4(ˆ

1+tZ )5(ˆ
1+tZ … )1(ˆ

1 −+ FZt  )(ˆ
1 FZt+  

Receipts 1+tR  )1(ˆ
1+tR  )2(ˆ

1+tR )3(ˆ
1+tR )4(ˆ

1+tR )5(ˆ
1+tR … )1(ˆ

1 −+ FRt  )(ˆ
1 FRt+  

Inventory 1+tI  )1(ˆ
1+tI  )2(ˆ

1+tI  )3(ˆ
1+tI  )4(ˆ

1+tI  )5(ˆ
1+tI  … )1(ˆ

1 −+ FI t  )(ˆ
1 FI t+  

Order  1+tO  )1(ˆ
1+tO  )2(ˆ

1+tO )3(ˆ
1+tO )4(ˆ

1+tO )5(ˆ
1+tO … )1(ˆ

1 −+ FOt  )(ˆ
1 FOt+  
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or

Rt = R̂t−1(1)

R̂t(i) = R̂t−1(i + 1) for i = 1, 2, 3, ..., L− 1

R̂t(L) = Ot

R̂t(L + i) = Ôt(i) for i = 1, 2, 3, ..., F − L.

(5.2)

The inventory It from (3.4):

Ending Inventory = Beginning Inventory + Receipt - Demand

or

It = It−1 + Ot−L − Zt = It−1 + Rt − Zt

Ît(1) = It + R̂t(1)− Ẑt(1)

Ît(i) = Ît(i− 1) + R̂t(i)− Ẑt(i) for i = 2, 3, 4, ..., F.

(5.3)

5.2.2 Standard MRP Ordering Policy

In the standard MRP ordering policy introduced in chapter 3, the order

at time t, Ot, is the quantity needed to bring the inventory back to the

target level T in time period t + L. This is the up to target ordering policy

that minimizes the variation in inventory. Since this ordering policy assumes

that the order can be filled up indefinitely with the assumption in unlimited

materials and capacity to bring the inventory up to the target, it is also called

the infinite loading policy. Thus,
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Net Requirement = Target Ending Inventory - Prior (L− 1) Weeks Ending

Inventory + Forecast Demand

or

Ot = T − It−1 + Ẑt(L), if L = 0

Ot = T − Ît(L− 1) + Ẑt(L), if L ≥ 1

Ôt(i) = T − Ît(L− 1 + i) + Ẑt(L + i); for i = 1, 2, 3, ..., F − L

Ôt(i) = Ôt(F − L); for i = F − L + 1, F − L + 2, F − L + 3, ..., F.

(5.4)

An example of a simulated order up to target policy MRP uses 52 weeks

with at is assumed to be randomly Normal distributed N(µ, σ) = N(0, 10).

The initial Z0 is 100. F = 11. L = 4. The demand Zt is ARIMA(0,1,1)

where Zt = Zt−1 + at − θat−1 and θ = 0.7. The forecast demand Ẑt(F ) =

(1 − θ)Zt + θẐt−1(F ) for F ≥ 1. The noise at following section 3.2.2 is

at−i = Zt−i − Ẑt−i−1(1); i = 0, 1, 2, .... The generated 52 weeks noise at and

demand Zt are shown in table 5.3.

The inventory target T is set to 3σI since T can vary within ±3σI since

at is generated from a normal distribution. From theorem 1,

σI =
√

1 + (2− .7)2 + (3− 2 ∗ .7)2 + (4− 3 ∗ .7)2 ∗ 10 = 29.77

hence T = 3σI = 89.31. Table 5.4 shows the standard MRP at period 11.

Table 5.5 shows the standard MRP at period 12.

147



Table 5.3: 52 Weeks Generated Demand Data

Week a t Zt Week a t Zt Week a t Zt Week a t Zt

1 -5.20 94.80 14 -8.44 99.00 27 5.50 107.52 40 15.92 112.54
2 4.45 102.89 15 -7.41 97.50 28 -12.19 91.48 41 2.93 104.32
3 9.36 109.13 16 6.47 109.16 29 9.67 109.68 42 5.00 107.27
4 3.15 105.73 17 9.15 113.78 30 -3.64 99.27 43 3.94 107.71
5 -17.29 86.23 18 0.97 108.35 31 24.31 126.13 44 -3.63 101.32
6 2.57 100.91 19 -1.90 105.77 32 2.19 111.30 45 9.75 113.61
7 -7.59 91.52 20 4.23 111.33 33 6.73 116.50 46 -1.41 105.38
8 3.11 99.95 21 1.40 109.77 34 -14.61 97.18 47 2.56 108.93
9 -1.74 96.03 22 -0.71 108.08 35 -20.74 86.66 48 13.33 120.47

10 -1.30 95.95 23 -8.42 100.16 36 -12.24 88.95 49 4.74 115.87
11 -0.67 96.19 24 -1.20 104.85 37 -6.45 91.06 50 -10.86 101.69
12 25.58 122.24 25 -2.84 102.85 38 -10.23 85.35 51 12.44 121.73
13 10.37 114.70 26 -9.38 95.45 39 13.69 106.20 52 -16.40 96.62

Table 5.4: Standard MRP at Period 11

Week 11 12 13 14 15 16 17 18 19 20 21 22
Demand 96.19 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66
Receipts 82.42 103.68 93.94 94.40 95.39 96.66 96.66 96.66 96.66 96.66 96.66 96.66
Inventory 88.52 95.54 92.83 90.57 89.30 89.30 89.30 89.30 89.30 89.30 89.30 89.30
Order 95.39 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66

Table 5.5: Standard MRP at Period 12

Week 12 13 14 15 16 17 18 19 20 21 22 23
Demand 122.24 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33
Receipts 103.68 93.94 94.40 95.39 152.93 104.33 104.33 104.33 104.33 104.33 104.33 104.33
Inventory 69.97 59.58 49.64 40.70 89.30 89.30 89.30 89.30 89.30 89.30 89.30 89.30
Order 152.93 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33
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The forecast demand at week 10, Ẑ10, is 96.86 and the demand at week

11, Z11, is 96.19. At week 11, the forecast demand at week 11 following (5.1)

is Ẑ11 = (1− θ)Z11 + θẐ10 = 0.3 ∗ 96.19 + 0.7 ∗ 96.86 = 96.66.

The orders made at week 7, 8, 9, and 10, or O7, O8, O9, O10, are 82.42,

103.68, 93.94, and 94.40. At week 11, the receipts following (5.2) are R11 =

O7 = 82.42, R̂11(1) = O8 = 103.68, R̂11(2) = O9 = 93.94, and R̂11(3) =

O10 = 94.40.

The inventory at week 10 is 102.29. At week 11, the inventory following

(5.3) is I11 = I10 +R11−Z11 = 102.29+82.42−96.19 = 88.52. Î11(1) = I11 +

R̂11(1)− Ẑ11(1) = 88.52 + 103.68− 96.66 = 95.54. Î11(2) = Î11(1) + R̂11(2)−
Ẑ11(2) = 95.54 + 93.94− 96.66 = 92.83. Î11(3) = Î11(2) + R̂11(3)− Ẑ11(3) =

92.82 + 94.40− 96.66 = 90.57.

By using the standard MRP ordering policy, at week 11 following (5.4),

O11 = T − Î11(3) + Ẑ11(4) = 89.31 − 90.57 + 96.66 = 95.39. From (5.2),

R̂11(4) = O11 = 95.39. From (5.3), Î11(4) = Î11(3) + R̂11(4) − Ẑ11(4) =

90.57 + 95.39 − 96.66 = 89.30. From (5.4), Ô11(1) = T − Î11(4) + Ẑ11(5) =

89.30 − 89.30 + 96.66 = 96.66. Repeating these calculations, we have the

results shown in table 5.4. Also from (5.4), we let Ô11(8), Ô11(9), Ô11(10),

Ô11(11) be Ô11(7), which is 96.66.

At week 12, the demand at week 12, Z12, is 122.24. The forecast demand

at week 12 is Ẑ12 = (1− θ)Z11 + θẐ11 = 0.3 ∗ 122.24 + 0.7 ∗ 96.66 = 104.33.

From (5.2), R12 = R̂11(1) = 103.68, R̂12(1) = R̂11(2) = 93.94, R̂12(2) =

R̂11(3) = 94.40, and R̂12(3) = R̂11(4) = 95.39. The inventory following (5.3)
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is I12 = I11+R12−Z12 = 88.52+103.68−122.24 = 69.97. The order following

(5.4), O12 = T − Î12(3) + Ẑ12(4) = 89.31 − 40.70 + 104.33 = 152.93. Then

the rest of the calculations for the MRP table for week 12 can be repeated

as those in period 11.

5.2.3 Smoothing Ordering Policy

The smoothing ordering policy, which minimizes the variation in order

changes from one period to the next, can also be applied to the above MRP

by changing the orders Ot and the order forecasts Ôt(i); i = 1, 2, 3, ..., F (

F is the forecast period) in an MRP table at a given time period t, and all

mechanisms to calculate demand, receipt, and inventory are the same as a

standard MRP table in section 5.2.2. From (4.9), the smoothing order at

week t

Ot = β0

(
Zt − Ẑt−1(1)

)
+ β1

(
Zt−1 − Ẑt−2(1)

)
+ β2

(
Zt−2 − Ẑt−3(1)

)

+ ... + βS−1

(
Zt−S+1 − Ẑt−S(1)

)
+ βS

(
Zt−S − Ẑt−S−1(1)

)
+ Ẑt−S−1(L).

Since at−i = Zt−i − Ẑt−i−1(1); i = 0, 1, 2, ..., the smoothing order at week t

can be rewritten as

Ot = β0at + β1at−1 + ... + βS−1at−S+1 + βSat−S + Ẑt−S−1(L)

Ôt(i) = βiat + βi+1at−1 + ... + βSat−S + Ẑt−S−1(L); when i ≤ S

= Ẑt(L); when S + 1 ≤ i ≤ F , which is the infinite loading.

(5.5)
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Table 5.6: β’s Weights for L = 4, S = 10, F = 11, θ = 0.7

β β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Value 0.1615 0.2983 0.4101 0.4972 0.5594 0.5969 0.6094 0.5972 0.5601 0.4983 0.4115

Where the β’s weights following theorem 6 and (4.19) are

βi =
(i + 1)

(
4S2 + (10− 3i)S + (6− 3i) + 6(S − i + 1)L

)

(S + 1)(S + 2)(S + 3)

− (i + 1)
(
4S2 + (4− 3i)S + 3i + 6(S − i + 1)L

)

(S + 1)(S + 2)(S + 3)
θ

(5.6)

for i = 0, 1, 2, ..., S and βS can be found from either (5.6) or

βS =
(
1 + (S + L)(1− θ)−

S−1∑
i=0

βi

)
.

With lead times L = 4 weeks, smoothing period S = 10 weeks, forecast

period F = 11 weeks, θ = 0.7, the β’s weights are show in table 5.6.

The inventory target T is set to 3σI since T can vary within ±3σI . From

theorem 3,

σI =
(
1 + (2− .7)2 + (3− 2 ∗ .7)2 + (4− 3 ∗ .7)2

+ (5− 4 ∗ .7− .1615)2 + (6− 5 ∗ .7− .1615− .2983)2 + ...

+ (14− 13 ∗ .7− .1615− .2983− ...− .4983)2
)1/2

∗ 10 = 63.52

hence T = 3σI = 160.57.
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Table 5.7: Smoothing MRP at Period 11

Week 11 12 13 14 15 16 17 18 19 20 21 22
Demand 96.19 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66
Receipts 98.74 97.65 96.47 95.30 94.29 93.56 92.39 91.98 93.10 95.14 95.39 96.13
Inventory 183.40 184.40 184.21 182.85 180.49 177.39 173.12 168.43 164.87 163.35 162.08 161.54
Order 94.29 93.56 92.39 91.98 93.10 95.14 95.39 96.13 96.03 96.38 96.58 96.66

Table 5.8: Smoothing MRP at Period 12

Week 12 13 14 15 16 17 18 19 20 21 22 23
Demand 122.24 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33 104.33
Receipts 97.65 96.47 95.30 94.29 97.69 100.02 102.47 105.81 109.44 110.65 111.71 111.31
Inventory 158.82 150.96 141.93 131.89 125.25 120.93 119.07 120.55 125.66 131.98 139.36 146.34
Order 97.69 100.02 102.47 105.81 109.44 110.65 111.71 111.31 110.71 109.33 107.18 104.33

Table 5.7 shows the smoothing MRP at period 11. Table 5.8 shows the

smoothing MRP at period 12.

The demand pattern in this section is the same as the demand pattern

shown in table 5.3. The forecast demand at week 10, Ẑ10, is 96.86 and the

demand at week 11, Z11, is 96.19. At week 11, the forecast demand at week

11 following (5.1) is Ẑ11 = (1−θ)Z10+θẐ10 = 0.3∗96.19+0.7∗96.86 = 96.66.

The data for the week t demand Zt, forecast demand Ẑt, and the noise at

are shown in table 5.9.

Let Ẑi = Ẑ0 for i < 0, then ai = 0 for i ≤ 0. From (5.5), the smoothing
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Table 5.9: Zt, Ẑt, and at for L = 4, S = 10, F = 11, θ = 0.7

t 0 1 2 3 4 5 6 7 8 9 10 11 12

94.80 102.89 109.13 105.73 86.23 100.91 91.52 99.95 96.03 95.95 96.19 122.24

100 98.44 99.77 102.58 103.53 98.34 99.11 96.83 97.77 97.25 96.86 96.66 104.33

-5.20 4.45 9.36 3.15 -17.29 2.57 -7.59 3.11 -1.74 -1.30 -0.6725.58

tẐ

tZ

ta

orders at week 7, 8, 9, and 10 are shown below.

O7 = β0a7 + β1a6 + β2a5 + ... + β9a−2 + β10a−3 + Ẑ−4

= 0.1615 ∗ (−7.59) + 0.2983 ∗ (2.57) + 0.4101 ∗ (−17.29) + ...

+ 0.6094 ∗ (−5.20) + 100 = 98.74

O8 = β0a8 + β1a7 + β2a6 + ... + β9a−1 + β10a−2 + Ẑ−3

= 0.1615 ∗ (3.11) + 0.2983 ∗ (−7.59) + 0.4101 ∗ (2.57) + ...

+ 0.5972 ∗ (−5.20) + 100 = 97.65

O9 = β0a9 + β1a8 + β2a7 + ... + β9a0 + β10a−1 + Ẑ−2

= 0.1615 ∗ (−1.74) + 0.2983 ∗ (3.11) + 0.4101 ∗ (−7.59) + ...

+ 0.5601 ∗ (−5.20) + 100 = 96.47

O10 = β0a10 + β1a9 + β2a8 + ... + β9a1 + β10a0 + Ẑ−1

= 0.1615 ∗ (−1.74) + 0.2983 ∗ (−1.74) + 0.4101 ∗ (3.11) + ...

+ 0.4982 ∗ (−5.20) + 100 = 95.30.

Hence, the smoothing orders made at week 7, 8, 9, and 10, or O7, O8, O9,
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O10, are 98.74, 97.65, 96.47, and 95.30. At week 11, the receipts following

(5.2) are R11 = O7 = 98.74, R̂11(1) = O8 = 97.65, R̂11(2) = O9 = 96.47, and

R̂11(3) = O10 = 95.30.

The inventory at week 10 is 180.86. At week 11, the inventory following

(5.3) is I11 = I10 + R11 − Z11 = 180.86 + 98.74 − 96.19 = 183.40. Î11(1) =

I11 + R̂11(1) − Ẑ11(1) = 183.40 + 97.65 − 96.66 = 184.40. Î11(2) = Î11(1) +

R̂11(2)− Ẑ11(2) = 184.40+96.47−96.66 = 184.21. Î11(3) = Î11(2)+ R̂11(3)−
Ẑ11(3) = 184.21 + 95.30− 96.66 = 182.85.

By using the smoothing ordering policy, the smoothing order following

(5.5) at week 11

O11 = β0a11 + β1a10 + β2a9 + ... + β9a2 + β10a1 + Ẑ0

= 0.1615 ∗ (−0.67) + 0.2983 ∗ (−1.30) + 0.4101 ∗ (−1.74) + ...

+ 0.4983 ∗ (4.45) + 0.4115 ∗ (−5.20) + 100 = 94.29.

From (5.2), R̂11(4) = O11 = 94.29. From (5.3), Î11(4) = Î11(3) + R̂11(4) −
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Ẑ11(4) = 182.85 + 94.29− 96.66 = 180.49. From (5.5),

Ô11(1) = β1a11 + β2a10 + ... + β10a2 + Ẑ1

= 0.2983 ∗ (−0.67) + 0.4101 ∗ (−1.30) + ... + 0.4115 ∗ (4.45) + 98.44 = 93.56

Ô11(2) = β2a11 + β3a10 + ... + β10a3 + Ẑ2

= 0.4101 ∗ (−0.67) + 0.4972 ∗ (−1.30) + ... + 0.4115 ∗ (9.36) + 99.77 = 92.39

...
...

...

Ô11(9) = β9a11 + β10a10 + Ẑ9 = 0.4983 ∗ (−0.67) + 0.4115 ∗ (−1.30) + 97.25 = 96.38

Ô11(10) = β10a11 + Ẑ10 = 0.4115 ∗ (−0.67) + 96.86 = 96.58

Ô11(11) = Ẑ11 = 96.66.

Repeating these calculations, we have the results shown in table 5.7.

At week 12, the demand at week 12, Z12, is 122.24. The forecast demand

at week 12 is Ẑ12 = (1− θ)Z11 + θẐ11 = 0.3 ∗ 122.24 + 0.7 ∗ 96.66 = 104.33.

From (5.2), R12 = R̂11(1) = 97.65, R̂12(1) = R̂11(2) = 96.47, R̂12(2) =

R̂11(3) = 95.30, and R̂12(3) = R̂11(4) = 94.29. The inventory following (5.3)

is I12 = I11 + R12 − Z12 = 183.40 + 97.65 − 122.24 = 158.82. The order

following (5.4), the smoothing order

O12 = β0a12 + β1a11 + β2a10 + ... + β9a3 + β10a2 + Ẑ1

= 0.1615 ∗ (25.58) + 0.2983 ∗ (−0.67) + 0.4101 ∗ (−1.30) + ...

+ 0.4983 ∗ (9.36) + 0.4115 ∗ (4.45) + 98.44 = 97.69.
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Then the rest of the calculations for the MRP table for week 12 can be

repeated as those in period 11.

The comparison between standard MRP inventory and smoothing MRP

inventory using 52 weeks generated demand data is shown in figure 5.3. The

comparison between standard MRP (1−B)Ot and smoothing MRP (1−B)Ot,

including the demand changes from one period to the next (Zt−Zt−1) using

52 weeks generated demand data is shown in figure 5.4.

From the data, the variation in demand changes Zt − Zt−1 is 91.73. The

variation in standard MRP Ot−Ot−1 is 751.14 while the variation in smooth-

ing MRP Ot − Ot−1 is 8.72. For the variations in inventory, the variation in

standard MRP It is 886.47 while the variation in smoothing MRP Ot−Ot−1

is 1212.51. Hence, using the smoothing policy can reduce the variation in

order changes Ot−Ot−1 99 percent compared with using the standard MRP

ordering policy with the compensation in the increase in the variation in

inventory 37 percent.

5.3 The Bounded MRP

This section proposes a simulation based technique to set upper/lower

bounds to an order up to target MRP table. The width of the bounds should

be set such that it will not be too wide then it has no effect to control the

variation in production that creates the bullwhip effect (see figure 5.1), or

it will not too narrow then the orders after the enforced bounded will be
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exploded (see figure 5.2). The optimal width of the bounds is set into an

unbounded standard MRP table to enforce its variation in order changes to

have the closet variation as if using an unbounded smoothing MRP table.

5.3.1 Bounded MRP Mechanism

Let L be the ordering lead time. S is the smoothing period. F is the

forecast period. An example of the bounded MRP at period t and at period

t + 1 is shown in table 5.10 and table 5.11.

At period t, the upper bound is set as

Ut(i) = Ôt(i) + bt(i)

and lower bound is set as

Lt(i) = Ôt(i)− bt(i)

for i = 1, 2, 3, ..., F . The demand Zt and Ẑt, receipt Rt,inventory It, order Ot

and Ôt(i) are calculated the same as the standard MRP table. However, Ot

cannot exceed the lower bound and upper bounds set in the previous period.

For example, at period t + 1,

Lt(1) ≤ Ot+1 ≤ Ut(1)

159



Table 5.10: Bounded MRP at Period t

 
t Flex. Qty. ( )1tb  ( )2tb  ( )3tb  ( )4tb  ( )5tb  … ( )1−Fbt  ( )Fbt   

Period  t t+1 t+2 t+3 t+4 t+5 … t+F-1  t+F 

Demand   tZ  tẐ  tẐ  tẐ  tẐ  tẐ  … tẐ   tẐ  

Receipts tR  )1(ˆ
tR  )2(ˆ

tR  )3(ˆ
tR  )4(ˆ

tR  )5(ˆ
tR  … )1(ˆ −FRt  )(ˆ FRt  

Inventory tI  )1(t̂I  )2(t̂I  )3(t̂I  )4(t̂I  )5(t̂I  … )1(ˆ −FI t  )(ˆ FI t  

Order  tO  )1(ˆ
tO  )2(ˆ

tO  )3(ˆ
tO  )4(ˆ

tO  )5(ˆ
tO  … )1(ˆ −FOt  )(ˆ FOt  

Upper Bound  )1(tU  )2(tU  )3(tU  )4(tU  )5(tU  … )1( −FU t  )(FU t  

Lower Bound  )1(tL  )2(tL  )3(tL  )4(tL  )5(tL  … )1( −FLt  )(FLt  

 
 

Table 5.11: Bounded MRP at Period t + 1

 
t+1 Flex. Qty. ( )11+tb  ( )21+tb  ( )31+tb  ( )41+tb  ( )51+tb  … ( )11 −+ Fbt  ( )Fbt 1+   

Period  t+1 t+2 t+3 t+4 t+5 t+6 … t+F  t+F+1 

Demand   1+tZ  1
ˆ

+tZ  1
ˆ

+tZ  1
ˆ

+tZ  1
ˆ

+tZ  1
ˆ

+tZ  … 1
ˆ

+tZ   1
ˆ

+tZ  

Receipts 1+tR  )1(ˆ
1+tR  )2(ˆ

1+tR )3(ˆ
1+tR )4(ˆ

1+tR )5(ˆ
1+tR … )1(ˆ

1 −+ FRt  )(ˆ
1 FRt+  

Inventory 1+tI  )1(ˆ
1+tI  )2(ˆ

1+tI  )3(ˆ
1+tI  )4(ˆ

1+tI  )5(ˆ
1+tI  … )1(ˆ

1 −+ FI t  )(ˆ
1 FI t+  

Order  1+tO  )1(ˆ
1+tO  )2(ˆ

1+tO )3(ˆ
1+tO )4(ˆ

1+tO )5(ˆ
1+tO … )1(ˆ

1 −+ FOt  )(ˆ
1 FOt+  

Upper Bound  )1(1+tU )2(1+tU )3(1+tU )4(1+tU )5(1+tU … )1(1 −+ FU t  )(1 FU t+  

Lower Bound  )1(1+tL  )2(1+tL )3(1+tL  )4(1+tL )5(1+tL … )1(1 −+ FLt  )(1 FLt+  
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also,

Lt+1(i) ≥ Lt(i + 1)

and

Ut+1(i) ≤ Ut(i + 1)

for i = 1, 2, 3, ..., F − 1. If the bound width bt(i) is too wide (−∞, +∞),

Ot+1 will be exactly the order up to target (infinite loading) policy because

Ot+1 will hit the inventory target first before it will hit the bound width bt(i)

made at time t. However, If the bound width bt(i) is too narrow, the orders

in the bounded MRP will be exploded after the bounded periods in order to

get the inventory back to the target.

We can set the bound directly to standard unbounded MRP by setting

the bound width bt(i) from the standard deviation of the smoothing Ot −
Ot−i(i), or σOt−Ot−i(i), times a constant c. σOt−Ot−i(i) can be interpreted as

the standard deviation of the error of the actual smoothing order at time t

and the prior forecast smoothing orders made at time t− i projected for time

t. We use the constant c to adjust the width of the bounds to enforce the

bounded MRP to have the closet variation as the smoothing unbounded MRP

σOt−Ot−i(i). The motivations in setting the bounds width bt(i) as c∗σOt−Ot−i(i)
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is provided in section 5.3.2. Thus the bound width bt(i) is set as

bt(i) = c ∗ Smoothing
√

V ar
(
Ot −Ot−i(i)

)

when i ≤ S + 1

bt(i) = c
(
β2

0 + β2
1 + β2

2 + ... + β2
i−1

)1/2
σa

when S + 2 ≤ i ≤ F

bt(i) = c
(
β2

0 + β2
1 + ... + β2

S−1 + β2
S + (1− θ)2(i− S − 1)

)1/2

σa.

(5.7)

By setting the bounds width bt(i) this way, new bounds are computed at

the flex fences, that is, the period at which the bounds are first imposed or

become tighter. The bounds bt(i) is the flexibility requirements profiles that

gives the amount by which the actual order at period t+ i, Ot+i, can deviate

from the current planned orders made at the period t, Ôt(i). This bound

width bt(i) can be expressed as a percentage of the planned orders following

the notation in table 5.10, where i = 1, 2, 3, ..., F

bt(i)

Ôt(i)
∗ 100 =

Ut(i)− Ôt(i)

Ôt(i)
∗ 100

=
Ôt(i)− Lt(i)

Ôt(i)
∗ 100

=
c ∗ Smoothing

√
V ar

(
Ot −Ot−i(i)

)

Ôt(i)
∗ 100.

(5.8)

To the supplier, the lower bound on the flex requirements profile repre-

sents a commitment from the customer guaranteeing the minimum quantity

162



Table 5.12: Bound Widths bt(i) for L = 4, S = 10, F = 11, θ = 0.7

i 1 2 3 4 5 6 7 8 9 10 11
bt( i ) 1.62 3.39 5.32 7.28 9.18 10.95 12.53 13.88 14.97 15.78 16.31

of materials that will be bought in the future weeks. The upper bound rep-

resents a commitment from the supplier to the customer guaranteeing the

ability to ramp up beyond the plan by the specified amount. Indeed, the

flexibility requirements profile does not have to be symmetric, the ramp up

and ramp down requirements could be different for a given week.

To illustrate, we use the same 52 weeks demand data shown in table 5.3

with ordering lead time L = 4, smoothing period S = 10, forecast period

F = 11. Suppose that we let the inventory target T to be 3σI following

theorem 3, then T = 160.57.

Suppose we let c = 1. The values of the smoothing β’s weights is shown

in table 5.6. The values of the bounds width bt(i), where i = 1, 2, 3, ...11

following (5.7) is shown in table 5.12. Table 5.13 shows the bounded MRP

at period 1. Table 5.14 shows the bounded MRP at period 2.

In the bounded MRP, the demand, receipt, inventory, and order are cal-

culated the same as the standard MRP in section 5.2.2 except that the order

can not exceed the lower bound and upper bound.

At week 1, the order O1 following (5.4) is O1 = T − Î1(3) + Ẑ1(4) =

160.57−170.45+98.44 = 88.55. Ô1(1) = T−Î1(4)+Ẑ1(5) = 160.57−160.57+
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Table 5.13: Bounded MRP at Period 1

1 bt( i ) 1.62 3.39 5.32 7.28 9.18 10.95 12.53 13.88 14.97 15.78 16.31
Week 1 2 3 4 5 6 7 8 9 10 11 12
Demand 94.80 98.44 98.44 98.44 98.44 98.44 98.44 98.44 98.44 98.44 98.44 98.44
Receipts 100.00 100.00 100.00 100.00 88.55 98.44 98.44 98.44 98.44 98.44 98.44 98.44
Inventory 165.77 167.33 168.89 170.45 160.57 160.57 160.57 160.57 160.57 160.57 160.57 160.57
Order 88.55 98.44 98.44 98.44 98.44 98.44 98.44 98.44 98.44 98.44 98.44 98.44
LB 96.82 95.05 93.12 91.16 89.26 87.49 85.90 84.55 83.47 82.66 82.13
UB 100.05 101.83 103.76 105.72 107.62 109.39 110.97 112.32 113.41 114.22 114.75

Table 5.14: Bounded MRP at Period 2

2 bt( i ) 1.62 3.39 5.32 7.28 9.18 10.95 12.53 13.88 14.97 15.78 16.31
Week 2 3 4 5 6 7 8 9 10 11 12 13
Demand 102.89 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77
Receipts 100.00 100.00 100.00 88.55 100.05 101.83 103.76 101.90 99.77 99.77 99.77 99.77
Inventory 162.88 163.11 163.33 152.11 152.39 154.45 158.44 160.57 160.57 160.57 160.57 160.57
Order 100.05 101.83 103.76 101.90 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77
LB 100.22 100.37 96.58 92.49 90.59 88.82 87.24 85.89 84.80 84.00 83.47
UB 101.83 103.76 105.72 107.06 108.96 110.73 112.31 113.41 114.22 114.75 116.08
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98.44 = 98.44. The lower bound is L1(1) = Ô1(1) − b1(1) = 98.44 − 1.62 =

96.82. The upper bound U1(1) = Ô1(1) + b1(1) = 98.44 + 1.62 = 100.05.

Ô1(2) = T − Î1(5) + Ẑ1(6) = 160.57 − 160.57 + 98.44 = 98.44. The lower

bound is L1(2) = Ô1(2) − b1(2) = 98.44 − 3.39 = 95.05. The upper bound

U1(2) = Ô1(2)+ b1(2) = 98.44+3.39 = 101.83. Repeating these calculations,

we have the results shown in table 5.13.

At week 2, the order O2 following (5.4) is O2 = T − Î2(3) + Ẑ2(4) =

160.57− 152.11 + 99.77 = 108.23. However, O2 must stay within the bounds

[L1(1), U1(1)] or [96.82, 100.05], hence O2 = 100.05. Ô2(1) = T − Î2(4) +

Ẑ2(5) = 160.57 − 152.39 + 99.77 = 107.95. However, O2 must stay within

the bounds [L1(2), U1(2)] or [95.05, 101.83], hence Ô2(1) = 101.83. The lower

bound is L2(1) = Ô2(1) − b2(1) = 101.83 − 1.62 = 100.22. Since L2(1) >

L1(2), the lower bound is L2(1) = 100.22. The upper bound U2(1) = Ô2(1)+

b2(1) = 101.83 + 1.62 = 103.45. Since U2(1) > U1(2), the upper bound U2(1)

is U1(2) = 101.83.

Also, Ô2(2) = T − Î2(5) + Ẑ2(6) = 160.57 − 154.45 + 99.77 = 105.89.

However, Ô2(2) must stay within the bounds [L1(3), U1(3)] or [93.12, 103.76],

hence O2 = 103.76. The lower bound is L2(2) = Ô2(2) − b2(2) = 103.76 −
3.39 = 100.37. Since L2(2) > L1(3), the lower bound is L2(2) = 100.37.

The upper bound U2(2) = Ô2(2) + b2(2) = 103.76 + 3.39 = 107.15. Since

U2(2) > U1(3), the upper bound U2(2) is U1(3) = 103.76. Repeating these

calculations, we have the results shown in table 5.14 where the lower bound

L2(11) = Ô2(11) − b2(11) = 99.77 − 16.31 = 83.47 and the upper bound
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U2(11) = Ô2(11) + b2(11) = 99.77 + 16.31 = 116.08.

5.3.2 Motivations in Setting bt(i) as c ∗ σOt−Ot−i(i)

From the information from the order at time t, Ot, we want to make a

forecast of the order at time t + i periods in the future by using the past

information in Ot and its forecast values Ôt(i). The objective is to set the

bounds bt(i) around the current orders Ot or Ôt(i) such that the bounds is

wide enough to guarantee that its inventory will not be exploded, in other

words, the inventory is stationary. Also, we want to set the bounds tight

enough to be effective in controlling the rate of orders changes. Following

the generalized ordering policy proposed in chapter 4, the order Ot in (4.1).

Ot = β0at + β1at−1 + ... + βS−1at−S+1 + (1 + ψ1 + ψ2 + ... + ψS+L −
S−1∑
i=0

βi)at−S

+ ψS+L+1at−S−1 + ψS+L+2at−S−2 + ...

where S is the smoothing period, L is the ordering lead time, β’s is the

smoothing weights.

For exponential smoothing demand (ARIMA(0,1,1)), the generalized or-

der Ot in (4.8) is

Ot = β0at + β1at−1 + ... + βS−1at−S+1 +
(
1 + (S + L)(1− θ)−

S−1∑
i=0

βi

)
at−S

+ (1− θ)at−S−1 + (1− θ)at−S−2 + (1− θ)at−S−3 + ....
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Let Bt−i(i) be a the proposed (upper/lower) bounds modified from the

generalized orders Ot to be used with the bounded MRP. Bt−i(i) is interpreted

as the bounds made at the past t − i periods projected for i periods ahead.

At period t, suppose that Ot in table 5.12 hit the upper bound Ut−i(i) in

table 5.12 that is previously set at period t− i, then Ot = Ut−i(i) = Bt−i(i).

Vice versa, suppose that Ot hit the lower bound Lt−i(i), then Ot = Lt−i(i) =

Bt−i(i). We want to set Bt−i(i) such that it can absorb the future orders that

makes the inventory at time t be stationary. Two proposed forms of bounds

Bt−i(i) for any ARIMA demand are:

1. The bounds Bt−i(i) is the sum of the smoothing weight β’s up to period

i modified from the generalized orders in (4.1).

2. The bounds Bt−i(i) is to lengthen lead time i more periods modified

from the generalized orders in (4.1).

The two mathematical forms of the bounds Bt−i(i) are shown below:

Form 1: The bounds Bt−i(i) is the sum of the smoothing weight β’s up to
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period i modified from the generalized orders in (4.1).

When i < S

Bt−i(i) = (β0 + β1 + ... + βi)at−i + βi+1at−i−1

+ βi+2at−i−2 + ... + βS−1at−S+1

+
(
1 + ψ1 + ψ2 + ... + ψS+L −

S−1∑
i=0

βi

)
at−S

+ ψS+L+1at−S−1 + ψS+L+2at−S−2 + ψS+L+3at−S−3 + ....

When i ≥ S

Bt−i(i) =
(
1 + ψ1 + ψ2 + ... + ψi+L

)
at−i

+ ψi+L+1at−i−1 + ψi+L+2at−i−2 + ....

(5.9)

In case 2, the bound Bt−i(i) is simply the standard MRP ordering policy for

lead time i + L.

To prove that the inventory It in (5.9) is stationary. Suppose that the

inventory target T = 0 and the level µ = 0.

Proof

From (3.5),

It =
∞∑

j=0

Ot−L−j −
∞∑

j=0

Zt−j.

Case 1: i ≤ S − 1.
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From (5.9),

Bt−i(i) = (β0 + β1 + ... + βi)at−i + βi+1at−i−1 + βi+2at−i−2

+ ... + βS−1at−S+1 +
(
1 + ψ1 + ψ2 + ... + ψS+L −

S−1∑
i=0

βi

)
at−S

+ ψS+L+1at−S−1 + ψS+L+2at−S−2 + ψS+L+3at−S−3 + ....

From (3.3),

Zt = at + ψ1at−1 + ψ2at−2 + ψ3at−3 + ....

Suppose that Ot at period t in table 5.12 hits the bound Bt−i(i) made at

period t− i, then Ot = Bt−i(i). Thus, we have

Ot−L − Zt = −at − ψ1at−1 − ψ2at−2 − ...− ψL+i−1at−L−i+1

+ (β0 + β1 + ... + βi − ψL+i)at−L−i + (βi+1 − ψL+i+1)at−L−i−1

+ (βi+2 − ψL+i+2)at−L−i−2 + ... + (βS−1 − ψL+S−1)at−L−S+1

+
(
1 + ψ1 + ψ2 + ... + ψL+S −

S−1∑
i=0

βi

)
at−L−S

+ ψL+S+1at−L−S−1 + ψL+S+2at−L−S−2 + ....
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Ot−L−1 − Zt−1 = −at−1 − ψ1at−2 − ψ2at−3 − ...− ψL+i−1at−L−i

+ (β0 + β1 + ... + βi − ψL+i)at−L−i−1 + (βi+1 − ψL+i+1)at−L−i−2

+ (βi+2 − ψL+i+2)at−L−i−3 + ... + (βS−1 − ψL+S−1)at−L−S

+
(
1 + ψ1 + ψ2 + ... + ψL+S −

S−1∑
i=0

βi

)
at−L−S−1

+ ψL+S+1at−L−S−2 + ψL+S+2at−L−S−3 + ....

Ot−L−2 − Zt−2 = −at−2 − ψ1at−3 − ψ2at−4 − ...− ψL+i−1at−L−i−1

+ (β0 + β1 + ... + βi − ψL+i)at−L−i−2 + (βi+1 − ψL+i+1)at−L−i−3

+ (βi+2 − ψL+i+2)at−L−i−4 + ... + (βS−1 − ψL+S−1)at−L−S−1

+
(
1 + ψ1 + ψ2 + ... + ψL+S −

S−1∑
i=0

βi

)
at−L−S−2

+ ψL+S+1at−L−S−3 + ψL+S+2at−L−S−4 + ...

...
...

...
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combining the above terms gives

It =
∞∑

j=0

Ot−L−j −
∞∑

j=0

Zt−j

= −at − (1 + ψ1)at−1 − (1 + ψ1 + ψ2)at−2

− ...− (1 + ψ1 + ψ2 + ... + ψL+i−1)at−L−i+1

− (
1 + ψ1 + ψ2 + ... + ψL+i − β0 − β1 − ...− βi

)
at−L−i

− (
1 + ψ1 + ψ2 + ... + ψL+i+1 − β0 − β1 − ...− βi+1

)
at−L−i−1

...
...

...

−
(
1 + ψ1 + ψ2 + ... + ψL+S−1 −

S−1∑
i=0

βi

)
at−S−L−1.

For ARIMA(0,1,1) demand,

It = −at − (2− θ)at−1 − (3− 2θ)at−2 − ...− (L + i− (L + i− 1)θ)at−L−i+1

− (
1 + (L + i)(1− θ)− β0 − β1 − ...− βi

)
at−L−i

− (
1 + (L + i + 1)(1− θ)− β0 − β1 − ...− βi+1

)
at−L−i−1

...
...

...

−
(
1 + (L + S − 1)(1− θ)−

S−1∑
i=0

βi

)
at−L−S+1.

Case 2: i ≥ S.
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From (5.9),

Bt−i(i) =
(
1 + ψ1 + ψ2 + ... + ψi+L

)
at−i + ψi+L+1at−i−1 + ψi+L+2at−i−2 + ....

From (3.3),

Zt = at + ψ1at−1 + ψ2at−2 + ψ3at−3 + ....

Suppose that Ot at period t in table 5.12 hits the bound Bt−i(i) made at

period t− i, then Ot = Bt−i(i). Thus, we have

Ot−L − Zt = −at − ψ1at−1 − ψ2at−2 − ...− ψL+i−1at−L−i+1

+
(
1 + ψ1 + ψ2 + ... + ψi+L−1

)
at−L−i

Ot−L−1 − Zt−1 = −at−1 − ψ1at−2 − ψ2at−3 − ...− ψL+i−1at−L−i

+
(
1 + ψ1 + ψ2 + ... + ψi+L−1

)
at−L−i−1

Ot−L−2 − Zt−2 = −at−2 − ψ1at−3 − ψ2at−4 − ...− ψL+i−1at−L−i−1

+
(
1 + ψ1 + ψ2 + ... + ψi+L−1

)
at−L−i−2

...
...

...

combining the above terms gives

It =
∞∑

j=0

Ot−L−j −
∞∑

j=0

Zt−j

= −at − (1 + ψ1)at−1 − (1 + ψ1 + ψ2)at−2

− ...− (1 + ψ1 + ψ2 + ... + ψL+i−1)at−L−i+1.
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For ARIMA(0,1,1) demand,

It = −at − (2− θ)at−1 − (3− 2θ)at−2 − ...− (L + i− (L + i− 1)θ)at−L−i+1.

End of proof

Form 2: The bounds Bt−i(i) is to lengthen lead time i more periods modified

from the generalized orders in (4.1).

Bt−i(i) = β0at−i + β1at−i−1 + β2at−i−2 + ... + βS−1at−i−S+1

+
(
1 + ψ1 + ψ2 + ... + ψS+L+i −

S−1∑
i=0

βi

)
at−i−S

+ ψS+L+i+1at−i−S−1 + ψS+L+i+2at−i−S−2 + ....

(5.10)

To prove that the inventory It in (5.10) is stationary. Suppose that the

inventory target T = 0 and the level µ = 0.

Proof

From (3.5),

It =
∞∑

j=0

Ot−L−j −
∞∑

j=0

Zt−j.

From (5.10),

Bt−i(i) = β0at−i + β1at−i−1 + β2at−i−2 + ... + βS−1at−i−S+1

+
(
1 + ψ1 + ψ2 + ... + ψS+L+i −

S−1∑
i=0

βi

)
at−i−S

+ ψS+L+i+1at−i−S−1 + ψS+L+i+2at−i−S−2 + ....

173



From (3.3),

Zt = at + ψ1at−1 + ψ2at−2 + ψ3at−3 + ....

Suppose that Ot at period t in table 5.12 hits the bound Bt−i(i) made at

period t− i, then Ot = Bt−i(i). Thus, we have

Ot−L − Zt = −at − ψ1at−1 − ψ2at−2 − ...− ψL+i−1at−L−i+1

− (ψL+i − β0)at−L−i − (ψL+i+1 − β1)at−L−i−1

− ...− (ψL+i+S−1 − βS−1)at−L−i−S+1

+
(
1 + ψ1 + ψ2 + ... + ψL+i+S −

S−1∑
i=0

βi

)
at−L−S−i

+ ψL+i+S+1at−L−S−i−1 + ψL+i+S+2at−L−S−i−2 + ...

Ot−L−1 − Zt−1 = −at−1 − ψ1at−2 − ψ2at−3 − ...− ψL+i−1at−L−i

− (ψL+i − β0)at−L−i−1 − (ψL+i+1 − β1)at−L−i−2

− ...− (ψL+i+S−1 − βS−1)at−L−i−S

+
(
1 + ψ1 + ψ2 + ... + ψL+i+S −

S−1∑
i=0

βi

)
at−L−S−i−1

+ ψL+i+S+1at−L−S−i−2 + ψL+i+S+2at−L−S−i−3 + ...
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Ot−L−2 − Zt−2 = −at−2 − ψ1at−3 − ψ2at−4 − ...− ψL+i−1at−L−i−1

− (ψL+i − β0)at−L−i−2 − (ψL+i+1 − β1)at−L−i−3

− ...− (ψL+i+S−1 − βS−1)at−L−i−S−1

+
(
1 + ψ1 + ψ2 + ... + ψL+i+S −

S−1∑
i=0

βi

)
at−L−S−i−2

+ ψL+i+S+1at−L−S−i−3 + ψL+i+S+2at−L−S−i−4 + ...

...
...

...

combining the above terms gives

It =
∞∑

j=0

Ot−L−j −
∞∑

j=0

Zt−j

= −at − (1 + ψ1)at−1 − (1 + ψ1 + ψ2)at−2

− ...− (1 + ψ1 + ψ2 + ... + ψL+i−1)at−L−i+1

− (
1 + ψ1 + ψ2 + ... + ψL+i − β0

)
at−L−i

− (
1 + ψ1 + ψ2 + ... + ψL+i+1 − β0 − β1

)
at−L−i−1

...
...

...

−
(
1 + ψ1 + ψ2 + ... + ψL+i+S−1 −

S−1∑
i=0

βi

)
at−L−i−S+1.
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For ARIMA(0,1,1) demand,

It = −at − (2− θ)at−1 − (3− 2θ)at−2 − ...− (L + i− (L + i− 1)θ)at−L−i+1

− (
1 + (L + i)(1− θ)− β0

)
at−L−i

− (
1 + (L + i + 1)(1− θ)− β0 − β1

)
at−L−i−1

...
...

...

−
(
1 + (L + i + S − 1)(1− θ)−

S−1∑
i=0

βi

)
at−L−i−S+1.

End of proof

We can see that the bound width bt(i) = c ∗ σOt−Ot−i(i) in (5.7) is closely

related to the two forms of Bt−i(i) in (5.9) and (5.10). Although both forms of

Bt−i(i) guarantee stationary inventory, they don’t guarantee that the bound

width will be tighter as the forecasting period is nearer due to the random

noise a(t) that can be positive or negative. Since our objective in setting the

bounds in bounded MRP is to enforce the bounded MRP to have the closet

properties in order and inventory variations as the smoothing MRP does, we

propose to use the value of the bounds width bt(i) = c∗σOt−Ot−i(i) in (5.7) as

a flex quantity profile to the standard MRP systems instead of finding the

complicated forms of Bt−i(i). Where the c value is served as an adjusting

factor to enforce the properties in order and inventory variations. c value

can be found by simulated the value of c to any specific demand time series

data. By using one determined c value across all forecast periods, we can

guarantee that the bound width will be tighter as the forecasting period is
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nearer.

5.3.3 Set bt(i) by Varying the c Value

In this section, we propose a simulation based technique to set the bounds

by determining the c value in (5.7). If the bounds are too narrow, the varia-

tion in order changes Ot −Ot−1 will be small, but the variation in inventory

It will be too large. On the other hand, If the bounds are too wide, the

variation in order changes Ot − Ot−1 will be too large, but the variation in

inventory It will be close to variation in inventory using the standard MRP

ordering policy.

Since our objective in setting the bounds is to reduce the variation in

standard MRP order changes Ot −Ot−1 to be close to the variation in order

changes Ot−Ot−1 by using the smoothing policy, we can find the bounds by

varying the c values.

By using 52 weeks generated demand data, with θ = 0.7, lead time L = 4,

smoothing period S = 10, forecast period F = 11, the comparison between

the variance of (unbounded) smoothing MRP (1 − B)Ot and variance of

bounded MRP (1−B)Ot by varying the c values is shown in figure 5.5. The

comparison between the variance of (unbounded) smoothing MRP inventory

and the variance of bounded MRP inventory by varying the c values is shown

in figure 5.6.

From figure 5.5 and figure 5.6, we can choose the value of c between 0.5

to 1.5. If the c value chosen is 0.61, the variation in bounded MRP Ot−Ot−1
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Figure 5.5: Comparison of (1−B)Ot Variations between Bounded MRP v.s.
(Unbounded) Smoothing MRP for 52 weeks with L = 4, S = 10, F = 11,
θ = 0.7
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θ = 0.7
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Table 5.15: Comparison of It and Ot − Ot−1 Variations for L = 4, S = 10,
F = 11, θ = 0.7

Order Changes Inventory
Demand Changes 114.22
Ordering Policy

Standard MRP 633.37 1238.46
Smoothing MRP 13.39 2320.89
Bounded MRP, c = 0.61 13.48 8399.53
Bounded MRP, c = 1.53 38.06 2607.45

Variation

is approximately the same as the variation in (unbounded) smoothing MRP

Ot −Ot−1. If the c value chosen is 1.53, the variation in bounded MRP It is

closet to the variation in (unbounded) smoothing MRP It.

By the MATLAB program provided in appendix A, The result is shown

in table 5.15.

The variation in demand changes, V ar(Zt−Zt−1), is 114.02. The variation

in order changes by using the standard MRP ordering policy, V ar(Ot−Ot−1),

is 633.37 in which the bullwhip effect multiplier, V ar(Ot − Ot−1)/V ar(Zt −
Zt−1), is 5.55. The variation in inventory by using the standard MRP ordering

policy, V ar(It), is 1238.46.

The variation in order changes by using the smoothing ordering policy,

V ar(Ot−Ot−1), is 13.39. The bullwhip multiplier, V ar(Ot−Ot−1)/V ar(Zt−
Zt−1), is reduced to 0.11. However, the variation in inventory by using the

smoothing ordering policy, V ar(It), is 2320.89 then the ratio of the inventory

variation by using smoothing MRP over standard MRP is 1.87.
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By using the bounded MRP with c = 0.61, the variation in order changes,

V ar(Ot−Ot−1), is 13.48. The variation in inventory V ar(It) is 8399.53. The

variation in order changes by using the bounded MRP is close to the vari-

ation by using the (unbounded) smoothing MRP. However, the ratio of the

variation in inventory by using bounded MRP over (unbounded) smooth-

ing MRP is 3.8. Figure 5.7 shows the comparison of the variations in order

changes Ot−Ot−1 when the ordering policy are (unbounded) standard MRP,

(unbounded) smoothing MRP, and bounded MRP at c = 0.61. Figure 5.8

shows the comparison of the variations in the inventory when the ordering

policy are (unbounded) standard MRP, (unbounded) smoothing MRP, and

bounded MRP at c = 0.61.

By using the bounded MRP with c = 1.53, the variation in order changes,

V ar(Ot−Ot−1), is 38.06. The variation in inventory V ar(It) is 2607.45. The

variation in inventory by using the bounded MRP is close to the variation

by using the (unbounded) smoothing MRP. However, the bullwhip multi-

plier is increased from 0.11 to 0.33. Figure 5.9 shows the comparison of

the variations in order changes Ot − Ot−1 when the ordering policy are (un-

bounded) standard MRP, (unbounded) smoothing MRP, and bounded MRP

at c = 1.53. Figure 5.10 shows the comparison of the variations in the inven-

tory when the ordering policy are (unbounded) standard MRP, (unbounded)

smoothing MRP, and bounded MRP at c = 1.53.
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Figure 5.7: Bounded MRP Ot − Ot−1 for 52 weeks with L = 4, S = 10,
F = 11, θ = 0.7, c = 0.61
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Figure 5.8: Bounded MRP It for 52 weeks with L = 4, S = 10, F = 11,
θ = 0.7, c = 0.61
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Figure 5.9: Bounded MRP Ot − Ot−1 for 52 weeks with L = 4, S = 10,
F = 11, θ = 0.7, c = 1.53
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Figure 5.10: Bounded MRP It for 52 weeks with L = 4, S = 10, F = 11,
θ = 0.7, c = 1.53
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From the simulation results in varying the c value, we can see that the

lower bound and upper bound should be set at c = 1.53 where the variation

in bounded MRP It is closet to the variation in (unbounded) smoothing MRP

It.

5.3.4 Steps for Setting the Bounds

This section provides a guideline for manufacturers in setting bounds

for standard MRP tables. The MATLAB code to determine the bounds

for a given demand series for a standard MRP table is also provided in the

appendix A.

The steps in setting bounds for a standard MRP table are shown below.

Step 1: Fit the demand data Zt to ARIMA(0,1,1) following (3.13)

Zt = Zt−1 + at − θat−1.

This can be done using any time series statistical software. From this step,

we obtain the θ value.

Step 2: Calculate the forecast demand Ẑt following the form of the exponen-

tial smoothing demand in (3.16)

Ẑt = αZt + (1− α)Ẑt−1, where α = 1− θ.

Step 3: Let N be the number of observations of demand data. Calculate σa,
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the standard deviation of the white noise series, where at is calculated from

at−j = Zt−j − Ẑt−j−1(1); j = 0, 1, 2, ..., N − 1.

Step 4: With a given order lead time L, smoothing period S, forecast period

F , calculate the smoothing weight βi where i=0,1,2,...,S following (5.6)

βi =
(i + 1)

(
4S2 + (10− 3i)S + (6− 3i) + 6(S − i + 1)L

)

(S + 1)(S + 2)(S + 3)

− (i + 1)
(
4S2 + (4− 3i)S + 3i + 6(S − i + 1)L

)

(S + 1)(S + 2)(S + 3)
θ.

Step 5: With the standard MRP table following table 5.10, we can set the

bound width bt(i) where i = 1, 2, 3, ..., F following (5.7).

bt(i) = c ∗ Smoothing
√

V ar
(
Ot −Ot−i(i)

)

when i ≤ S + 1

bt(i) = c
(
β2

0 + β2
1 + β2

2 + ... + β2
i−1

)1/2
σa

when S + 2 ≤ i ≤ F

bt(i) = c
(
β2

0 + β2
1 + ... + β2

S−1 + β2
S + (1− θ)2(i− S − 1)

)1/2

σa.

Where the constant c is determined by ranging the c values applied to set

the widths of the bounds. the simulated c value can be from 0 to 3. Thus

a retailer/supplier can choose the value of c where the variation in bounded

MRP inventory meets the (unbounded) smoothing MRP inventory.

Also, the (unbounded) smoothing MRP can be determined following table
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5.1 where the smoothing order at period t, Ot, in table 5.1 is calculated

following (5.5)

Ot = β0at + β1at−1 + β2at−2 + ... + βS−1at−S+1 + βSat−S + Ẑt−S−1.

The MATLAB program to determine the bounds for a given demand se-

ries for a standard MRP table is provided in the appendix A. The information

required for a user are:

1. .txt file demand data.

2. θ.

3. Ordering lead time L.

4. Smoothing period S.

5. Forecasting period F .

6. Initial value of the demand µ.

7. cI value from 0 to 3 to set the inventory target at cIσI .

8. RO/I value from 0 to 1;

• If RO/I = 1, the bound is set where the bounded MRP week-to-

week order variance equal to the (unbounded) smoothing MRP

week-to-week order variance.
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• If RO/I = 0, the bounds is set where the bounded MRP inven-

tory variance equal to the (unbounded) smoothing MRP inventory

variance.

5.4 Insights

This section provides the insights for the bounded MRP for exponential

smoothing demand.

1. The shape of the flex quantity profile. From section 4.5, we know

that the distribution of the smoothing weights β for ARIMA(0,1,1) order

model is moving from a bell shape when the autocorrelation is low to a left

tail shape when the autocorrelation is high. Hence, the shape of the flex

quantity profile is directly determined by the β’s weights as shown in (5.7).

For a high autocorrelation demand, the widths of the flex quantity profile are

wider those of a lower autocorrelation demand. Although the widths of the

bounds are wider for the longer forecast periods, the rate in increasing widths

are not constant across all forecast periods depending on the distribution of

the smoothing weights β.

This can be seen from the table 5.16 and table 5.17. Both tables show

the values of βi for L = 0, S from 0 to 6. In table 5.16, when θ = 1, the

model is a noise series ARIMA(0,0,0) with low autocorrelation. In table

5.17, when θ = 0, the model is a random walk series ARIMA(0,1,0) with

high autocorrelation. Those tables also show the values of the flex quantity
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Table 5.16: The β, b(i), b(i)− b(i− 1) for θ = 1 ARIMA(0,0,0), L = 0, S =
0 to 6

S β0 β1 β2 β3 β4 β5 β6

0 1.0000
1 0.2500 0.2500
2 0.0900 0.1600 0.0900
3 0.0400 0.0900 0.0900 0.0400
4 0.0204 0.0523 0.0661 0.0523 0.0204
5 0.0115 0.0319 0.0459 0.0459 0.0319 0.0115
6 0.0069 0.0204 0.0319 0.0363 0.0319 0.0204 0.0069

S b(1) b(2) b(3) b(4) b(5) b(6) b(7)
0 1.0000
1 0.5000 0.7071
2 0.3000 0.5000 0.5831
3 0.2000 0.3606 0.4690 0.5099
4 0.1429 0.2696 0.3725 0.4371 0.4598
5 0.1071 0.2083 0.2988 0.3677 0.4088 0.4226
6 0.0833 0.1654 0.2434 0.3091 0.3570 0.3845 0.3935

S b(2)-b(1) b(3)-b(2) b(4)-b(3) b(5)-b(4) b(6)-b(5) b(7)-b(6)
1 0.2071
2 0.2000 0.0831
3 0.1606 0.1085 0.0409
4 0.1267 0.1029 0.0645 0.0228
5 0.1012 0.0906 0.0689 0.0411 0.0138
6 0.0821 0.0780 0.0657 0.0479 0.0275 0.0089
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Table 5.17: The β, b(i), b(i)− b(i− 1) for θ = 0 ARIMA(0,1,0), L = 0, S =
0 to 6

S β0 β1 β2 β3 β4 β5 β6

0 1.0000
1 0.6946 1.3610
2 0.4899 1.2102 1.4400
3 0.3600 1.0000 1.4400 1.4400
4 0.2746 0.8190 1.3064 1.5326 1.4173
5 0.2157 0.6747 1.1483 1.4748 1.5620 1.3886
6 0.1735 0.5621 1.0006 1.3617 1.5630 1.5630 1.3617

S b(1) b(2) b(3) b(4) b(5) b(6) b(7)
0 1.0000
1 0.8334 1.4337
2 0.6999 1.3039 1.7720
3 0.6000 1.1662 1.6733 2.0591
4 0.5240 1.0458 1.5492 1.9831 2.3130
5 0.4644 0.9436 1.4278 1.8744 2.2529 2.5425
6 0.4165 0.8576 1.3176 1.7601 2.1589 2.4948 2.7542

S b(2)-b(1) b(3)-b(2) b(4)-b(3) b(5)-b(4) b(6)-b(5) b(7)-b(6)
1 0.6003
2 0.6040 0.4682
3 0.5662 0.5071 0.3858
4 0.5218 0.5035 0.4339 0.3299
5 0.4792 0.4842 0.4466 0.3785 0.2896
6 0.4411 0.4600 0.4424 0.3988 0.3359 0.2594
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profiles following the bound widths in (5.7) with c = 1 for illustration. Also

the increase rates of the bound widths, b(i)− b(i− 1), are also shown in the

tables to show the shape of the flex profile.
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Chapter 6

Conclusion and Future

Research

6.1 Conclusion

The main goal of this dissertation is to develop ARIMA supply chain

models to understand and mitigate the bullwhip effect across supply chains

caused by actual lumpy demand. In distinction of supply chain models in

current literature that made assumption in the up to target ordering policy

and are limited to specific ARIMA demand models, we propose the gener-

alized ordering policy that includes the up to target ordering policy as a

special case and can be applied to any ARIMA demand, any ordering lead

time, and any desired smoothing period with the guaranteed stationary in-

ventory. With the generalized ordering policy, manufacturers can smooth the
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orders arbitrarily to mitigate the bullwhip effect by controlling the tradeoffs

between the variation in inventory and the variation in differencing orders

(which is stationary by differencing) by changing the smoothing weights. We

also provide generic formulas to determine the optimal smoothing weights

for the smoothing ordering policy for ARIMA(p, 0, q) and ARIMA(p, 1, q)

demand, hence, manufacturers can achieve the minimum variation in orders

when the demand is ARIMA(p, 0, q) demand or the minimum variation in or-

der changes from one period to the next when the demand is ARIMA(p, 1, q).

This dissertation also exemplifies the implementation of the smoothing

policy into MRP tables for exponential smoothing ARIMA(0, 1, 1) demand.

We also propose the bounded MRP system corresponding to the rate based

planning concept for single exponential smoothing or ARIMA(0,1,1) demand.

The bounded MRP can be directly implemented into standard (order up to

target) MRP tables. With this bounded MRP, manufacturers can mitigate

the bullwhip effect and reduce the conflict between production planning and

infeasible capacity planning.

6.2 Future Works

There are several directions that we can further explore the research.

First, the smoothing ordering policy and the bounded MRP can achieve

only an optima point for each single stage in the proposed tandem line supply

chain model. The future work can be developed to achieve the optimal point

194



across the tandem line supply chain model.

Second, we provide the optimal smoothing weight formulas in the smooth-

ing ordering policy only for ARIMA(p, 0, q) and ARIMA(p, 1, q) demand. The

optimal smoothing weight formulas for ARIMA(p, 2, q) and ARIMA(p, 3, q)

demand can be derived in future research. Hence, the optimal smoothing

weight formulas can be applied to the family of exponential smoothing mod-

els that cover no trend (ARIMA(0,1,1)), linear trend (ARIMA(0,2,2)), and

quadratic trend (ARIMA(0,3,3)) time series data.

Third, we consider only ARIMA models without seasonality (ARIMA(p, d, q)).

The seasonal ARIMA models (ARIMA(p, d, q)(ps, qs, ds)) can be explored

since seasonality plays a major role in supply chain management field due to

actual consumer behavior.

Fourth, this dissertation can only be applied to a single demand item

that uses univariate ARIMA modeling techniques. Future works can consider

multiple items in a supply chain that requires multivariate ARIMA modeling

techniques such as vector autoregression (VAR).

Fifth, the supply chain model used in this work is the tandem line supply

chain model which is the simplest form of the supply chain models. A network

of more complex supply chain models such as multiple retailers and multiple

suppliers can be investigated.

Sixth, following the four causes that create the bullwhip effect proposed

by Lee, Padmanahan, and Whang 1997, we consider only the demand signal

processing. The other aspects in rationing game, order batching, and price
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variation can be developed in future research.

Seventh, other time series forecasting techniques can be explored to study

the bullwhip effect in supply chains. Examples of those techniques are au-

toregressive conditional heteroskedastic (ARCH), generalized autoregressive

conditional heteroskedastic (GARCH), and nonlinear time-series.
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Appendix A: Determining the Bounds for a

given demand time series

1. Main Function

function MRPBoundInfC

%

% A MATLAB file to determine the upper and lower bound for a

% bounded MRP table, given demand series modelled to be an

% ARIMA(0,1,1) or exponential smoothing demand

% Require functions: findbeta.m, findinvtarget.m, findunbORI.m,

% setabsFbnd.m, findinfbndORI.m

% Usage: MRPBoundInfC

% Input:

% 1) A .txt file of N observations demand series Z(t)

% 2) theta: from 0 to 1

% 3) L: ordering lead time

% 4) S: smoothing period

% 5) F: forecasting period

% 6) Zbar: The initial value of the demand Z(0)

% 7) cInv: Inventory target at cInv*std(sigma Inventory)

% 8) RatioVarOI:

% If RatioVarOI = 1, optimal is chosen where the bounded

% MRP week-to-week order variance equal to the smoothing
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% unbounded MRP week-to-week order variance

% If RatioVarOI = 0, optimal is chosen where the bounded

% MRP inventory variance equal to the smoothing

% unbounded MRP inventory variance

% Output:

% 1) c: optimal value of the bound

% 2) b: 2 by F-1 matrix of the upper and lower bound

% 3) beta: the smoothing weight

% Vuttichai Chatpattananan

% Input

Z = []; Zhat = []; a = [];

Zfilename = input(’Enter the demand

file name, i.e. Z52.txt: ’,’s’);

Z = load(Zfilename); theta =

input(’Enter the theta value [0,1], i.e., 0.7: ’,’s’);

theta =

str2num(theta);

L = input(’Enter the ordering lead time, i.e., 4:

’,’s’);

L = str2num(L);

S = input(’Enter the smoothing period,

i.e., 10: ’,’s’);
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S = str2num(S);

F = input(’Enter the forecast

period, i.e., 12: ’,’s’);

F = str2num(F); Zbar = input(’Enter the

initial value of the demand Z(0),

i.e., 100: ’,’s’);

Zbar = str2num(Zbar);

cInv = input(’Enter the Inventory target at cInv*std

(sigma Inventory), i.e., 3: ’,’s’); cInv = str2num(cInv);

disp(’Criteria to choose optimal c’);

disp(’ 0: bounded MRP

inventory variance equal to the smoothing

unbounded MRP inventory variance’);

disp(’ 1: bounded MRP week-to-week order variance equal to the

smoothing unbounded MRP week-to-week order variance’);

RatioVarOI = input(’ Enter 0 or 1 , i.e., 0: ’,’s’);

RatioVarOI = str2num(RatioVarOI);

Zhat(1) = (1-theta)*Z(1)+theta*Zbar;

% Calculate the forecast demand Zhat

for i = 2:length(Z)

Zhat(i) = (1-theta)*Z(i)+theta*Zhat(i-1);

end

a(1) = Z(1)-Zbar;
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% Calculate the noise series a(t) and its standard deviation sigmaa

for i = 2:length(Z)

a(i) = Z(i)-Zhat(i-1);

end

sigmaa = std(a);

% Unbounded MRP

betainf = []; OInf = []; RInf = []; IInf = []; InfLoadT = 0;

betaopt = []; OOpt = []; ROpt = []; IOpt = []; SmoothT = 0;

betainf = findbeta(S,L,theta,’I’);

% Option for smoothing: I = Infinite Loading, S = Smoothing

betaopt = findbeta(S,L,theta,’S’);

% Option for smoothing: I = Infinite Loading, S = Smoothing

[VarInvI,VarInvS,InfLoadT,SmoothT] =

findinvtarget(S,L,theta,sigmaa,cInv,betaopt);

% Set the inventory target

[OOpt,ROpt,IOpt,OOptDev,TOOptDev] =

findunbORI(S,L,theta,Zbar,sigmaa,a,Z,Zhat,betaopt,SmoothT);

% Smoothing Unbounded MRP

cBM = []; OOptDevMat = []; IOptMat = []; SmoothODevbMat = [];

SmoothiMat = []; VarOchk = 10^9; VarIchk = 10^9; cBMin = 0; BMin =

[]; OOptMin = 0; IOptMin = 0; VarOI = []; cBi = 0;

for cBOpt

=0:.01:3
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cBi = cBi+1; cBM(cBi) = cBOpt;

% Bounded MRP

bopt = []; BOpt = []; SmoothUB = [];

SmoothLB = []; SmoothB = []; % Smoothing MRP Bounds

MRPd = []; Smoothr = []; Smoothi = []; Smootho = [];

% Generate Smoothing Bounded MRP

Smoothr = []; Smoothi = []; Smootho = [];

% Generate Smoothing Bounded MRP

[bopt,BOpt] = setabsFbnd(S,L,F,theta,Zbar,a,sigmaa,Zhat,’S’);

% Set the bound for the Smoothing

BOpt = cBOpt*BOpt;

[MRPd,Smootho,Smoothr,Smoothi,SmoothB,SmoothUB,SmoothLB,

SmoothODevb,TSmoothODevb] = findinfbndORI(S,L,F,theta,

Zbar,sigmaa,a,Z,Zhat,SmoothT,bopt,BOpt);

VarOsim = abs((std(SmoothODevb))^2-(std(OOptDev))^2)

/(std(OOptDev))^2;

VarIsim = abs((std(Smoothi(1:length(a),1)))^2-(std(IOpt))^2)

/(std(IOpt))^2;

if RatioVarOI*VarOsim+(1-RatioVarOI)*VarIsim<RatioVarOI*VarOchk

+(1-RatioVarOI)*VarIchk ...

VarOchk = abs((std(SmoothODevb))^2-(std(OOptDev))^2)

/(std(OOptDev))^2;

VarIchk = abs((std(Smoothi(1:length(a),1)))^2-
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(std(IOpt))^2)/(std(IOpt))^2;

cBMin = cBOpt;

BMin = BOpt;

OOptMin = (std(SmoothODevb))^2;

IOptMin = (std(Smoothi(1:length(a),1)))^2;

end

OOptDevMat(cBi) = (std(OOptDev))^2;

IOptMat(cBi) = (std(IOpt))^2;

SmoothODevbMat(cBi) = (std(SmoothODevb))^2;

SmoothiMat(cBi) = (std(Smoothi(1:length(a),1)))^2;

VarOI(cBi) = RatioVarOI*VarOchk+(1-RatioVarOI)*VarIchk;

end

% Screen Output Variance Summary

ZDev = []; % Z(t)-Z(t-1)

ZDev(1) = Z(1)-Zbar; for i = 2:length(a)

ZDev(i) = Z(i)-Z(i-1);

end

disp(sprintf(’\n%s%6.2f%s%6.2f%s%6.2f’,’S = ’,S,’, L = ’,L,’,

theta = ’,theta));

disp(sprintf(’%s%f’,’Inventory Target: ’,SmoothT));

disp(sprintf(’%s%f’,’Simulated Var Z(t)-Z(t-1): ’,(std(ZDev))^2));

% Demand

disp(sprintf(’\n%s%f’,’Optimal Bound: Constant number = ’,cBMin));
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% Optimal Bound

disp(sprintf(’\t%s%s’,’Bound: ’,num2str(BMin)));

disp(sprintf(’\n%s’,’Simulated Var O(t)-O(t-1), Bounded MRP,

Unbounded Smoothing MRP, Unbounded Standard MRP’)); % Var O(t)-O(t-1)

disp(sprintf(’%s%f%s%f%s%f’,’Smoothing Bounded MRP: ’,OOptMin,’,

’,(std(OOptDev))^2,’, ’,(std(OInfDev))^2));

disp(sprintf(’\n%s’,’Simulated Var I(t), Bounded MRP, Unbounded

Smoothing MRP, Unbounded Standard MRP’)); % Var I(t)

disp(sprintf(’%s%f%s%f%s%f’,’Smoothing Bounded MRP: ’,IOptMin,’,

’,(std(IOpt))^2,’, ’,(std(IInf))^2));

% Plot

figure % Var O(t)-O(t-1)

plot(cBM,SmoothODevbMat,’r--’);

title(sprintf(’%s%d%s%d%s%s’,’Simulated Values of Smoothing

Var O(t)-O(t-1), S = ’,S,’, L = ’,L,’, Theta = ’,num2str(theta)));

xlabel(’c’); grid on; gtext(’----- Bounded MRP’); hold on;

plot(cBM,OOptDevMat,’b-.’); gtext(’-.-.- Unbounded MRP’); hold off

figure % Var I(t)

plot(cBM,SmoothiMat,’r--’);

title(sprintf(’%s%d%s%d%s%s’,’Simulated Values of Smoothing

Var I(t), S = ’,S,’, L = ’,L,’, Theta = ’,num2str(theta)));

xlabel(’c’); grid on; gtext(’----- Bounded MRP’); hold on;
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plot(cBM,IOptMat,’b-.’); gtext(’-.-.- Unbounded MRP’); hold off

2. Find the Smoothing Weights beta

function beta = findbeta(S,L,theta,method)

%

% Find the smoothing beta weights

%

if method == ’I’

betainf = []; % Infinite Loading

betainf(1) = 1+L*(1-theta);

betainf(2:S) = 1-theta;

beta = betainf;

else

betaopt = []; % Optimal beta

for j = 0:S-1

betaopt(j+1) = (j+1)*(4*S^2+(10-3*j)*S+6-3*j+6*(S-j+1)*L)

/(S+1)/(S+2)/(S+3)-(j+1)*(4*S^2+(4-3*j)*S+3*j+6*

(S-j+1)*L)/(S+1)/(S+2)/(S+3)*theta;

end

beta = betaopt;

end

3. Find the Inventory Target
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function [VarInvI,VarInvS,InfLoadT0,SmoothT0] =

findinvtarget(S,L,theta,sigmaa,cInv,betaopt,method)

%

% Find the Inventory target

%

VarInvI = 0; VarInvS = 0; % Inventory Target

for i = 1:L

VarInvI = VarInvI+(1+(i-1)*(1-theta))^2;

end

sum1 = 0; for i = 0:S-1

sum1 = sum1+betaopt(i+1);

VarInvS = VarInvS+(sum1-1-(L+i)*(1-theta))^2;

end

InfLoadT0 = cInv*sqrt(VarInvI)*sigmaa; VarInvS =

VarInvS+VarInvI;

SmoothT0 = cInv*sqrt(VarInvS)*sigmaa;

4. Find the Unbounded MRP

function [O,R,I,ODev,TODev] = findunbORI(S,L,theta,Zbar,sigmaa,

a,Z,Zhat,beta,InvTarget)

%

% Find the unbounded smoothing MRP

%
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O = []; % Order

for i = 0:S-1

sum1 = 0;

for j = 0:i

sum1 = sum1+beta(j+1)*a(i-j+1);

end

O(i+1) = sum1+Zbar;

end

sum1 = 0;

for j = 0:S-1

sum1 = sum1+beta(j+1)*a(S+1-j);

end

O(S+1) = sum1+(1+(S+L)*(1-theta)-sum(beta))*a(1)+Zbar;

for i =

S+2:length(a)

sum1 = 0;

for j = 0:S-1

sum1 = sum1+beta(j+1)*a(i-j);

end

O(i) = sum1+(1+(S+L)*(1-theta)-sum(beta))*a(i-S)+Zhat(i-S-1);

end

R = []; % Receipts

for i = 1:L
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R(i) = Zbar;

end for i = L+1:length(a);

R(i) = O(i-L);

end

I = []; % Inventory

I(1) = InvTarget+R(1)-Z(1); for i = 2:length(a)

I(i) = I(i-1)+R(i)-Z(i);

end

ODev = []; % O(t)-O(t-1)

ODev(1) = O(1)-Zbar; for i = 2:length(a)

ODev(i) = O(i)-O(i-1);

end

TODev = beta(1)^2; % Theoretical value of Var O(t)-O(t-1)

for i = 2:S

TODev = TODev+(beta(i)-beta(i-1))^2;

end

TODev =

TODev+(1+(S+L)*(1-theta)-sum(beta)-beta(S))^2+(1+(S+L-1)

*(1-theta)-sum(beta))^2;

TODev = TODev*sigmaa^2;

5. Set the Bounds from the Var[O(t)-O(t-i)(i)]

function [bnd,BND] =

213



setabsFbnd(S,L,F,theta,Zbar,a,sigmaa,Zhat,method)

%

% Set the bounds by using the variance of week-to-week order

% Var[O(t)-O(t-1)]

%

bnd = []; % Infinite Loading Bound

for i = 1:F-1

bnd = [bnd findbeta(S,L,theta,method)’];

end

BND = []; sum1 = 0; for i = 0:S-1

if i<F-1

sum1 = sum1+bnd(i+1,1)^2*sigmaa^2;

BND(i+1) = sqrt(sum1);

end

end

if S<F-1

sum1 = sum1+(1+(S+L)*(1-theta)-sum(bnd(:,1)))^2*sigmaa^2;

BND(S+1) = sqrt(sum1);

end

for i = S+2:F-1

sum1 = sum1+(1-theta)^2*sigmaa^2;

BND(i) = sqrt(sum1);

end
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6. Find the Bounded MRP

function [MRPd,bndo,bndr,bndi,bndB,bndUB,bndLB,ODevb,TODevb]

= findinfbndORI(S,L,F,theta,Zbar,sigmaa,a,Z,Zhat,bndT,bnd,BND)

%

% Find the bounded MRP

%

for i = 1:length(a)

MRPd(i,1) = Z(i); MRPd(i,2:F) = Zhat(i);

for j = 1:L

if i==1

bndr(i,j) = Zbar;

if j==1

bndi(i,j) = bndT+bndr(i,j)-MRPd(i,j);

else

bndi(i,j) = bndi(i,j-1)+bndr(i,j)-MRPd(i,j);

end

else

bndr(i,j) = bndr(i-1,j+1);

if j==1

bndi(i,j) = bndi(i-1,j)+bndr(i,j)-MRPd(i,j);

else

bndi(i,j) = bndi(i,j-1)+bndr(i,j)-MRPd(i,j);

end
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end

end

for j = L+1:F

if L==0

if j==1

if i==1

bndo(i,j) = MRPd(i,j);

else

bndo(i,j) = bndT-bndi(i-1,j)+MRPd(i,j);

if bndo(i,j)>bndUB(i-1,j)

bndo(i,j) = bndUB(i-1,j);

elseif bndo(i,j)<bndLB(i-1,j)

bndo(i,j) = bndLB(i-1,j);

end

end

elseif j-L<length(bnd(1,:))+2

bndo(i,j-L) = bndT-bndi(i,j-1)+MRPd(i,j);

bndB(i,j-L-1) = BND(j-L-1);

bndUB(i,j-L-1) = bndo(i,j-L)+bndB(i,j-L-1);

bndLB(i,j-L-1) = bndo(i,j-L)-bndB(i,j-L-1);

if (i>1)&(j-L<length(bnd(1,:))+1)

if bndo(i,j-L)>bndUB(i-1,j-L)

bndo(i,j-L) = bndUB(i-1,j-L);
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elseif bndo(i,j-L)<bndLB(i-1,j-L)

bndo(i,j-L) = bndLB(i-1,j-L);

end

bndUB(i,j-L-1) = bndo(i,j-L)+bndB(i,j-L-1);

bndLB(i,j-L-1) = bndo(i,j-L)-bndB(i,j-L-1);

bndUB(i,j-L-1) =

min(bndUB(i,j-L-1),bndUB(i-1,j-L));

bndLB(i,j-L-1) =

max(bndLB(i,j-L-1),bndLB(i-1,j-L));

end

else

bndo(i,j-L) = bndT-bndi(i,j-1)+MRPd(i,j);

end

else

bndo(i,j-L) = bndT-bndi(i,j-1)+MRPd(i,j);

if j-L==1

if i>1

if bndo(i,j-L)>bndUB(i-1,j-L)

bndo(i,j-L) = bndUB(i-1,j-L);

elseif bndo(i,j-L)<bndLB(i-1,j-L)

bndo(i,j-L) = bndLB(i-1,j-L);

end

end

217



elseif j-L<length(bnd(1,:))+2

bndB(i,j-L-1) = BND(j-L-1);

bndUB(i,j-L-1) = bndo(i,j-L)+bndB(i,j-L-1);

bndLB(i,j-L-1) = bndo(i,j-L)-bndB(i,j-L-1);

if (i>1)&(j-L<length(bnd(1,:))+1)

if bndo(i,j-L)>bndUB(i-1,j-L)

bndo(i,j-L) = bndUB(i-1,j-L);

elseif bndo(i,j-L)<bndLB(i-1,j-L)

bndo(i,j-L) = bndLB(i-1,j-L);

end

bndUB(i,j-L-1) = bndo(i,j-L)+bndB(i,j-L-1);

bndLB(i,j-L-1) = bndo(i,j-L)-bndB(i,j-L-1);

bndUB(i,j-L-1) =

min(bndUB(i,j-L-1),bndUB(i-1,j-L));

bndLB(i,j-L-1) =

max(bndLB(i,j-L-1),bndLB(i-1,j-L));

end

if bndo(i,j-L)>bndUB(i,j-L-1)

bndo(i,j-L) = bndUB(i,j-L-1);

elseif bndo(i,j-L)<bndLB(i,j-L-1)

bndo(i,j-L) = bndLB(i,j-L-1);

end

else
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bndo(i,j-L) = bndT-bndi(i,j-1)+MRPd(i,j);

end

end

bndr(i,j) = bndo(i,j-L);

if i==1

if j==1

bndi(i,j) = bndT+bndr(i,j)-MRPd(i,j);

else

bndi(i,j) = bndi(i,j-1)+bndr(i,j)-MRPd(i,j);

end

else

if j==1

bndi(i,j) = bndi(i-1,j)+bndr(i,j)-MRPd(i,j);

else

bndi(i,j) = bndi(i,j-1)+bndr(i,j)-MRPd(i,j);

end

end

end

bndo(i,F-L+1:F) = bndo(i,F-L);

for j = F+1:F+L

if j-L<length(bnd(1,:))+2

bndB(i,j-L-1) = BND(j-L-1);

bndUB(i,j-L-1) = bndo(i,j-L)+bndB(i,j-L-1);
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bndLB(i,j-L-1) = bndo(i,j-L)-bndB(i,j-L-1);

if (i>1)&(j<F+L)

if bndo(i,j-L)>bndUB(i-1,j-L)

bndo(i,j-L) = bndUB(i-1,j-L);

elseif bndo(i,j-L)<bndLB(i-1,j-L)

bndo(i,j-L) = bndLB(i-1,j-L);

end

bndUB(i,j-L-1) = bndo(i,j-L)+bndB(i,j-L-1);

bndLB(i,j-L-1) = bndo(i,j-L)-bndB(i,j-L-1);

bndUB(i,j-L-1) = min(bndUB(i,j-L-1),bndUB(i-1,j-L));

bndLB(i,j-L-1) = max(bndLB(i,j-L-1),bndLB(i-1,j-L));

end

end

end

end

ODevb = []; TODevb = 0; % O(t)-O(t-1)

ODevb(1) = bndo(1,1)-Zbar;

for i = 2:length(a)

ODevb(i) = bndo(i,1)-bndo(i-1,1);

end

TODevb = bnd(1,1)^2; % Theoretical value of Var O(t)-O(t-1)

for i = 2:S

TODevb = TODevb+(bnd(i,1)-bnd(i-1,1))^2;
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end

TODevb = TODevb+(1+(S+L+1)*(1-theta)-sum(bnd(:,1))-bnd(S,1))^2

+(1+(S+L)*(1-theta)-sum(bnd(:,1)))^2;

TODevb = TODevb*sigmaa^2;
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