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ABSTRACT 
 

This thesis presents the results of an analytical probabilistic based design 

procedure for concentrically loaded compression members and simply supported 

beams of fiber-reinforced polymeric (FRP) composite materials.  Resistance 

factors for use in an LRFD format are developed for columns for both flexural 

buckling and local buckling of doubly symmetric sections, both flexural buckling 

and flexural-torsional buckling of equal leg angles, and material failure. 

Resistance factors are developed for lateral-torsional buckling of simply 

supported doubly symmetric beams loaded with concentrated vertical loads at 

mid-spans. The developed resistance factors are a function of the coefficient of 

variation of the appropriate material properties.  The proposed resistance factors 

were determined to provide a reliability index of 3.0 for stability failure modes 

and a reliability index of 3.5 for the material failure mode.   
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CHAPTER 1 

INTRODUCTION 

A composite material system is a combination of two or more materials in 

order to produce better specific mechanical performance and physical properties 

than any single material on its own. One type of composite material that is 

gaining use in structural engineering applications is fiber-reinforced polymer 

(FRP) composites. 

The most important component of fiber reinforced polymer (FRP) 

composite structural elements is the fiber (the reinforcement of a composite 

system). It is used to provide adequate strength and stiffness. Typically, pultruded 

composites have 40-80 percent fibers by volume. Glass fibers (E-Glass, Z-Glass 

and S-Glass) and carbon fibers are the major fibers used for civil composites. The 

other component of the FRP composite is the polymer resin matrix that binds the 

fibers together, transfers the loads into fibers, and protects the fibers against 

environmental damages. Polyesters, vinylesters, and epoxy resins are the most 

popular resins used for civil structural applications.  

The most popular techniques for manufacturing structural FRP composite 

are pultrusion and hand lay-up techniques. The pultrusion manufacturing is a fully 

automated controlled process. It is used to produce straight, long members, as 

well as open and solid geometrical shaped (I-shapes, box, wide flange, and tube 

sections) members. A machine called “the puller” is used in this process to pull 

the raw materials. It consists of pulling pads that grip the product and a drive 

system that keeps the product moving. This machine is located just before the 
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final cut-off saw. Typically, the process starts with the unidirectional glass roving 

(fiber runs along the length of the profile). Then the fiberglass mat (a 

multidirectional reinforcement) is added in. Finally, the glass is wetted out with 

the liquid resin and pulled into a heated die where the product changes from liquid 

to a solid profile. After the profile exits the die, it gets pulled by the puller and cut 

to the desired length.  

The hand lay-up technique is the oldest and simplest. It is used for 

manufacturing both small and large reinforced products. Multi-directional fiber 

reinforcement can be used. The reinforcing mat is positioned in the open mold; 

then the resin is poured, brushed or sprayed over and into the glass. This 

technique is used for the cases where fibers with different orientations are 

required.  

Fiber reinforced polymer (FRP) composite structural elements have a high 

strength-to-weight ratio. They are corrosion-resistant, do not decay deteriorate, 

and are nonconductive. Generally, they have good fatigue properties and are 

resistant to freeze-thaw damage. On the other hand, FRP elements have features 

that are problematic in structural design, such as their lack of ductility and low 

stiffness. The modulus of elasticity is 25% of the modulus of elasticity of steel. 

Thus, limit states which are a function of stiffness, such as buckling and 

serviceability issues, are relatively more important for design considerations. 

Because of the high strength/stiffness ratio of the FRP composites, the design of 

most FRP structures is controlled by deformation rather than by strength. Most 

FRP composite structural components behave linearly under load till failure, 
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unlike steel where the redistribution of load follows the initial yielding. FRP 

material costs are greater than concrete and steel materials. However, reduced 

weight, increased speed of construction or lower maintenance offset the higher 

initial cost of FRP materials. 

Hindering the increased use of FRP composites is the lack of established 

design standards.  Chambers (1997) presented a proposed draft outline of a 

standard which was based on load and resistance factor design (LRFD).  

Probabilistic based load factors have been well established (e.g. ASCE 7) but 

there is the need to develop both design equations and associated resistance 

factors for FRP members.   

This dissertation presents the development of a probabilistic based code 

for FRP members.  A target safety level is determined.  Since the variability of 

FRP material properties is a function of fiber type, fiber volume, lay-up and 

quality control procedures, the resistance factors are developed as a function of 

the coefficient of variation (CV) of the material properties.  Thus, a manufacturer 

would need to provide information on the CV of their product to the structural 

engineer. Manufacturers who provide material with a smaller CV would be 

rewarded by having the design code specify a larger resistance factor. 

Specifically, proposed design equations and related resistance factors for 

concentrically loaded FRP pultruded compression members and simply supported 

beams with concentrated loads at mid-spans, under short-term loading are 

developed.  Limit states considered for columns are flexural buckling and local 

buckling of doubly symmetric sections, both flexural buckling and flexural-
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torsional buckling of equal leg angles, and material failure. Lateral-torsional 

buckling limit state is considered for doubly symmetric simply supported beams. 

The effects of long-term behavior such as creep and duration of load effects are 

beyond the scope of the present investigation. 
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CHAPTER 2 

LITERATURE REVIEW 

In the past several years, a number of experimental and analytical studies 

have been performed in order to develop design guidelines for FRP composite 

members. 

2.1 CONCENTRIC COLUMNS (GLOBAL BUCKLING) 

Zureick and Scott (1997) investigated experimentally the short-term 

behavior of concentrically loaded FRP composite slender members. Design 

guidelines and a step-by-step example were provided. A total of 24 specimens of 

box and I-shape cross-sections with effective slenderness ratios ranging from 36 

to 103 were used in this study. The test results were compared to the following 

analytical formulas (Zureick and Scott, 1997): 

L
IEP L

E 2
min

2   π=                                                                   (2.1) 

)
 
 (1
GA
Pn

PP

LTg

Es

E
e

+
=                                                                   (2.2) 

where, PE  is the buckling load as proposed by Hewson (1978) which is a 

modified form of the familiar Euler buckling equation, Pe  is the critical buckling 

load of a slender composite column proposed by Engesser (1989), EL  is the 

elastic modulus of elasticity in the longitudinal direction, I min is the moment of 

inertia about the minor principal axis, L is the length, GLT  is the in plane shear 

modulus of elasticity, ns  is the form factor for shear, and Ag  is the gross area. 
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Tests were performed to estimate the longitudinal elastic properties ( Ec
L , Et

L , F c
L  

and Ft
L ), and in plane shear properties (GLT , Fv ).  

where,  

Ec
L  : longitudinal modulus from compression tests. 

Et
L : longitudinal modulus from tension tests. 

F c
L : ultimate strength from compression tests. 

Ft
L : ultimate strength from tension tests. 

GLT : in-plane shear modulus. 

Fv : ultimate shear stress. 

The percentage-difference between Et
L  and Ec

L  ranged from 0.3 to 10.3. 

Thus, Ec
L  was recommended to use as EL  in the design equations and guidelines. 

The experimental buckling loads were determined and compared with the 

predicted ones using equations 2.1 and 2.2. The ratios of the experimental 

buckling loads to the analytical buckling loads using equations 2.1 and 2.2 

developed by Zureick and Scott (1997) were used in this investigation. Design 

guidelines for concentrically loaded unidirectional FRP members were 

recommended as follows, 

PP ncr  φ=                                                                                  (2.3) 

where, φ c is the resistance factor and Pn  is the nominal compressive resistance. 

They suggested a φ c  factor of 0.85. Pn  is defined as: 

FAP crgn  =                                                                               (2.4) 
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where, Ag  is the gross area of the column and F cr  is the critical buckling stress, 

FFF c
LEscr    ≤= η                                                                              (2.5) 

where, F E  is the elastic buckling stress, and ηs  is the shear deformation 

parameter. 

) / (
 

2

2

rL
EF

eff

L
E

π=                                                                               (2.6) 

) ]() / ( /   [1

1
22 GErLn LTLeffs

s
π

η
+

=                                           (2.7) 

Where, Leff  is the effective length of the column. 

Barbero and Tomblin (1993) experimentally determined the critical loads 

and investigated global buckling for I-shaped FRP long columns. Tests were 

performed on I-shaped FRP cross-sections (4 in. x 4 in. x ¼ in., 6 in. x 6 in. x ¼ 

in., and 6 in. x 6 in. x 3/8 in.) with lengths ranging from 4 ft. to 20 ft. The 

experimentally determined buckling loads were compared with the theoretically 

predicted loads as follows: 

Pcr = 
L

D
2

2 π                                                                              (2.8) 

where, L is the column length and D is the bending stiffness. Southwell’s method 

was used to determine the buckling loads using a data deduction technique on the 

hyperbolic experimental results about the weak and strong axes (Southwell, 

1932). The long column tests were performed using a Material Testing System 

(MTS) for weak and strong axes. For the weak axis, all buckling loads were 

below the theoretical prediction. Thus, the theoretical load can be considered the 
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upper bound for the actual buckling load because the theoretical value assumes 

perfect lay up and manufacturing conditions. The ratio of the experimental 

buckling load to the analytical buckling load ranged from 0.94 to 1.01 with an 

average of 0.96 and a standard deviation of 0.02. For the strong axis, the critical 

loads for several cross-sections were not obtained because of the machine 

capacity. All failure loads were below the theoretical value. Although the 

theoretical buckling load was always high, all percentage differences between the 

experimental and the theoretical loads were less than 6.2 percent. The predicted 

(Euler) buckling loads for long columns are very accurate even for complex 

materials. The results developed by Barbero and Tomblin (1993) are very close to 

the results developed for I-shaped FRP cross-section columns by Zureick and 

Scott (1997). Zureick and Scott (1997) had an average of 0.93 (< 4% difference) 

for the ratios of the experimental buckling loads and the analytical buckling loads 

using equation 2.1. 

Zureick and Steffen (2000) conducted a short-term experimental behavior 

investigation for concentrically loaded equal-leg single angle members made of 

pultruded FRP material. The experiment was conducted on 25 specimens. A 

detailed material study was performed on all tested specimens to obtain the 

relevant orthotropic material constants ET ,GLT , and ν LT  (transverse elastic 

modulus, in-plane shear modulus and major Poisson’s ratio respectively), as well 

as the ultimate compressive and the in-plane shear strengths. An average value for 

Poisson’s ratio was found to be ν LT  = 0.3. 

For loaded polymeric composite single angle members with single 
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symmetrical cross section about the y-axis, the buckling occurs in either a flexural 

mode (flexure about the minor z-axis) or a flexural-torsional mode (flexure about 

the major y-axis and twist about the member longitudinal x-axis). 

For the flexural mode, the critical buckling load can be shown to have the 

form (Zureick and Steffen, 2000): 

A

r
LK

EP g

z

zz

L
ez









= 2

2π            (2.9) 

where, 

Pez : flexural buckling load about the z-axis. 

Ag : gross sectional area. 

           E L  :longitudinal modulus of elasticity. 

L zK z : effective length for bending about the principal z-axis. 

rz : radius of gyration about z-axis. 

Seven specimens failed in this mode. The experimental flexural buckling loads 

( Pexp ) were compared with those predicted theoretically ( Ppred ) using equation 

(2.9). 

For the flexural-torsional mode, the critical buckling load can be shown to 

have the form (Zureick and Steffen, 2000): 













+
−−

+
=
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4
11

2 2PP

PPH
H
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P

exey

exeyexey
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in which, 
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2
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










+= D

LK
D

r
P t

w

p
ex

xx )(
1

2

2

2
π                               (2.12) 

where, 

P ft : flexural-torsional buckling load. 

Pey : flexural buckling load about the y-axis. 

Pex : torsional buckling load about the longitudinal x-axis. 

L yK y : effective length for bending about the principal y-axis. 

L xK x : effective length for twisting about the longitudinal x-axis. 

 r y : radius of gyration about y-axis. 

 Dw ,  Dt : warping rigidity and torsional rigidity respectively. 

 r p : combined geometrical and material constant. 

For the angle problem discussed in this investigation the parameters  Dw ,  Dt , H 

and r p
2  are equal to: 

144)1(

3AED g

TLLT

L
w

νν−
=  

3
2 3tb

GD LTt =  

8
5

=H  
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3

2
2 br p ≈  

where, 

ν LT : major Poisson’s ratio. 

ν TL : minor Poisson’s ratio. 

b: leg width. 

t: leg thickness. 

Substituting the values of the parameters into the formula for Pex  and rearranging, 

then Pex can be shown to have the formula: 

A
tLK

E
tb

GP g
TLLT

LLT
ex

xx 











−
+=

)/()1(12)/( 2

2

2 νν
π                 (2.13) 

The experimental flexural-torsional buckling loads were compared to the 

theoretical loads from equation 10 using Lx  = L y  = L  and K x  = K y  = 1.0, even 

though K y  is somewhere between 0.5 for fixed and 1.0 for pinned boundaries. 

When EL /GLT <20, the flexural-torsional buckling load P ft is 90% of the 

torsional buckling load Pex . The computed value of the flexural-torsional 

buckling value will not change significantly if K y  changes from 1.0 to 0.5. To 

examine the influence of the effective length on torsion ( K x  varies from 0.5 when 

the angle ends are restrained, to 1.0, when the angle ends are free to wrap), 

equation (2.13) was conservatively approximated in the case of an equal leg angle 

to the equation: 
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A
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
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π                   (2.14) 

For practical angle lengths and for materials with E L /GLT  values equal to or less 

than 5.5, the second term of (2.14) is negligible when K x  is assumed equal to 1.0. 

Also the flexural-torsional buckling load is approximately equal to 90% of that of 

torsional buckling. So, for practicality, for the case of polymeric composite equal-

leg angles reinforced with fibers having a longitudinal modulus equal to or less 

than that of the glass, the flexural buckling load can be estimated using the 

following simplified equation: 

A

t
b

GPP g
LT

exft









=≈
2

9.09.0                    (2.15) 

Eighteen specimens failed in this mode. The experimental flexural buckling loads 

( Pexp ) were compared to those predicted theoretically ( Ppred ) using equations 

2.13 and 2.15. The ratios of the experimental buckling loads to the analytical 

buckling loads using equations 2.9, 2.10, and 2.15 developed by Zureick and 

Steffen (2000) were used in this investigation. 

2.2 CONCENTRIC COLUMNS (LOCAL BUCKLING) 

Yoon (1993) investigated experimentally and analytically short-term 

compression behavior for axially loaded I-shaped FRP columns. He tested a total 

of thirty-two I-shaped columns made from pultruded fiber reinforced polymer 

materials, twenty-two specimens made using a polyester matrix, and ten 

specimens made using a vinylester matrix. The sizes and lengths for these 
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specimens were selected so that local buckling occurred at loads less than those 

which would cause global buckling or material failure. The lengths varied from 

35 in to 120 in, with slenderness ratios ranging from 20 to 50. The width to 

thickness ratios of the flange ranged from 6 to 13, and the depth to thickness 

ratios for the web ranged from 15 to 26. The experiment was terminated at the 

post buckling stage. After applying the load, the column specimen was observed 

until out-of-plane deflections at the tips of the flange occurred. Critical buckling 

loads were experimentally determined and compared to the analytical critical 

buckling loads.  

An analytical solution was developed for the prediction of the local 

buckling loads for pultruded columns composed of flat plates under short-term 

axial loads. The proposed solution was based on classical orthotropic plate theory. 

It accounts for the rotational restraint at the junction of the web and the flange.  

)/()1( 12
E 

2
2112

2211
2

tb
E

cr
νν

π
σ

−
=                                                                    (2.16) 

where, 

 σ cr : the critical buckling stress.  

 E11 : major Young’s modulus. 

 E22 :minor Young’s modulus. 

ν12 : major Poisson’s ratio, 
E
E

22

11
12 <ν . 

            ν 21 : minor Poisson’s ratio, 
E
E

11

22
21 <ν . 
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             t: the thickness of the plate. 

             b: the width of the plate or half the with of the flange. 

 Tension and compression tests were performed to estimate the material 

properties E11 , E22 , ν12 , and ν 21 . The average values for E11  and E22  in tension 

and compression tests were almost identical. The experimental local buckling 

loads ( Pexp ) were compared to those predicted theoretically ( Ppred ) using 

equations 2.16. The ratios of the experimental local buckling loads to the 

analytical local buckling loads using equations 2.16 developed by Yoon (1993) 

were used in this investigation. 

Tomblin and Barbero (1994) investigated local flange buckling for FRP 

thin-walled pultruded columns. Wide flange FRP I-shaped columns were used in 

this investigation. Local buckling tests were performed on 4 in. x 4 in. x ¼ in., 6 

in. x 6 in. x ¼ in., 6 in. x 6 in. x 3/8 in., and 8 in. x 8 in. x 3/8 in. cross-sections.  

Sothwell’s method was used to reduce the data and determine the critical loads 

(Southwell, 1932). For mode II (the shortest lengths), the percentage difference 

between the experimental and the theoretical was less than 11 percent. For mode 

III (the intermediate length), all percentage differences between the experimental 

and the theoretical were less than 9 percent, and all loads were slightly less than 

the theoretical values. For mode IV (the longest column lengths), all percentage 

differences were 13-24 percent, and all loads were below the theoretical ones. The 

local buckling loads obtained experimentally were in good agreement with the 

theoretical predictions. Tomblin and Barbero (1994) did not provide results that 
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could be used in this study. 

2.3 BEAMS 

Stoddard (1997) investigated experimentally and analytically lateral-

torsional behavior of hybrid (E-glass and carbon fiber) and non-hybrid (all glass 

fiber) FRP I-shaped beams subjected to vertical concentrated short term loading 

acting at mid-spans. Five different I-shaped 4 x 2 x ¼ in. reinforced cross sections 

were tested. Eight specimens were used in this study. Elastic lateral-torsional 

buckling of doubly symmetric FRP beams was predicted theoretically using three 

approaches. 

Three analytical approaches were presented to calculate the lateral-

torsional buckling loads. The first approach is the classical one-dimensional 

isotropic theory derived by Timosheko and Gere (1961) for thin walled slender I-

shapes loaded with pure moment around the X-axis. The isotropic material 

properties were replaced by orthotropic material properties. The second approach 

uses the energy method along with an orthotropic constitutive system developed 

by Pandey at. al (1995). This approach failed to account for the importance of 

load height above the shear center and bending-twisting coupling effects. The 

third approach was derived to account for these deficiencies in order to predict 

more accurately the lateral-torsional buckling loads for FRP beams. The 

approximate solution for the critical lateral-torsional buckling load using the third 

approach was derived to be: 


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where, 

Pcr : critical load. 

L: span length. 

G: shear modulus of elasticity. 

J: torsional constant. 

  I yy : minor axis bending stiffness, IE YYa ., . 

   IY : minor axis second moment of inertia. 

  E Ya, : apparent modulus of elasticity in minor axis. 

 Iωω : wraping stiffness, CE Ya ω., . 

Cω : wraping constant. 

  α sc : distance between shear center and application of load. 

  H s : bending-twisting coupling term.  

Tension and compression tests were conducted to determine the material 

properties. Experimental results for lateral-torsional buckling loads were 

compared to the analytical results. Results developed by Stoddard (1997) were 

used in this investigation. 

Brooks and Turvey (1995b) tested only one FRP I-shape specimen twice 

at three different span lengths ranging from1750 mm to 1250 mm in the first set 

of buckling. Load was always applied through the centroid of the specimen. 

Turvey (1996a) performed a second set of buckling tests. An identical I-shape 

FRP section was used with three different span lengths ranging from 1500 mm to 

500 mm with the load applied at, below, and above the centroid. 
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In the first set of tests, the experimental results were compared with two 

lateral-torsional buckling theories developed for isotropic materials. The first 

formula was derived by Nethercot (1973). It consisted of a buckling coefficient, a 

material parameter, and slenderness ratio components. The second formula was 

developed by Timoshenko and Gere (1961) using the energy method. The formula 

is used for loading a cantilever beam through its centroidal axis. Brooks and 

Turvey (1995b) evaluated these equations at appropriate span lengths by 

substituting the orthotropic properties for the isotropic material constants. The 

results showed that these formulas are not consistent, particularly at shorter spans. 

The errors ranged from 16.6% to 15.5%. 

In the second set of tests, the effect of load position, below or above the 

centroid on lateral-torsional buckling of FRP I-shape cantilever beams, was 

examined (Turvey, 1996a). The experimental results of buckling moments were 

compared to a modified formula for theoretical critical moments that account for 

load position predicted by Nethercot's (1973). The theoretical closed form 

solution underestimates the experimental buckling loads by 55%. Turvey and 

Brooks (1995a and 1996a) concluded that if out-of-straightness and pre-buckling 

deformations were accounted for in the theoretical predictions, the theoretical 

results would be better. Brooks and Turvey (1995a, 1995b, and 1996a) did not 

provide enough data points to be used in this study. 

Davalos et al. (1997) conducted a comprehensive experimental and 

analytical analysis to investigate flexural-torsional buckling for two full-size 

pultruded FRP I-beams under mid-span concentrated loads. The theoretical 
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analysis is based on energy principles. The total potential energy equations 

governing instability for the I-beams were developed using nonlinear plate theory. 

The Rayleigh Ritz method was used to solve the equilibrium equation. The 

experimental critical bucking loads were compared to the proposed analytical 

solutions and finite-element analysis results. A good agreement was obtained, 

however Davalos et al. (1997) did not provide enough data points to be used in 

this investigation. 
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CHAPTER 3 

STATISTICAL PROPERTIES 

3.1 DISTRIBUTIONS CONSIDERED 

The determination of the statistics and probability distributions of the 

random variables describing material properties plays an important role in the 

development of probabilistic based design specifications.  The choice of the 

probability distribution to represent the material property data will have a large 

effect on the calculated reliability.  Assuming different distributions for the 

material properties can result in computed probabilities of failure that vary by 

more than an order of magnitude.  

 Normal, Lognormal, and Weibull distributions have been investigated. 

Several approaches have been used for the distribution problem. The steel 

industry prescribed a lognormal distribution for steel material properties. The 

wood industry prescribed a Weibull distribution. The Military Handbook 

examines the two-parameter Weibull distribution first. If it is not rejected, no 

further distribution is examined. If it is rejected, normal and lognormal 

distributions are examined (MIL-HDBK-17, 1990).  

 The determination of the nominal material property and the reliability 

analysis to determine resistance factors will be affected by the chosen probability 

distribution. The performance of the distribution tails most affect civil 

engineering applications. Distributions that are similar in the central regions can 

have different behavior in the tail regions of the data. Civil engineers are 

interested in lower tails of probability distributions for strengths. The lower tails 
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of Wiebull, normal and lognormal probability distributions are shown in figure1. 

 A special case of the three-parameter Weibull cumulative distribution is 

the two-parameter Weibull cumulative distribution. The two-parameter Weibull 

cumulative distribution function is as follows: 
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 where: 

 k: the shape parameter. 

 α: the scale parameter. 

The shape parameter is determined by solving the following equation 

numerically. 
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where: 

 n: the number of data points. 

The scale parameter is determined from the following formula: 
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For normal distribution, the probability that a data point falls between a 

and b is given by the area under the function: 

f(x)= e x 22 2/)(

2
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−−                          (3.4) 
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Figure 1. Lower Tail of Cumulative Distribution Functions. 

  

For lognormal distribution, the probability that a data point falls between a 

and b is given by the area under the function: 

f(x)= e
x

x 22 2/])[log(

2
1 σµ

πσ
−−            (3.5) 

where: 

 x: the data point. 

 µ: the mean for ln xi . 

 σ: the standard deviation of ln xi . 

3.2 DISTRIBUTION FITTING 

 Strength, modulus of elasticity, and ultimate strain were determined for 

tension, compression, flexure, and shear loadings. Data used in this study are 
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taken from two different studies that examined the short-term axial compressive 

strength of E-glass/vinylester pultruded I- and box-shaped components (Zureick, 

1997), and the short-term eccentric axial compressive strength of E-

glass/polyester pultruded square tube components (Kang, 2000).  Coupons from 

the former study are labeled VG. Coupons from the later study are labeled T for 

the tension test, C for the compression test, V for the shear test, and B for the 

flexure test. Weibull, normal and lognormal distributions were considered. The 

Anderson-Darling test was used to examine the data. The observed significance 

level (OSL) is the probability to determine the value of the test statistic at least as 

large as that determined from the data set if the hypothesis that the data set is 

actually from the distribution being examined is true. Usually, if the OSL is less 

than 0.05, the null hypothesis is rejected. For different data sets, the OSL of the 

three distributions were calculated and shown in table 1. Given in table 1, bold 

font represents OSL > 0.05 and underline font represents the highest value of 

OSL for each data set. For the cases described in table 1, lognormal distribution is 

the best distribution for strength. Weibull or lognormal distributions are the best 

distributions for modulus of elasticity. Normal distribution is the most appropriate 

distribution for ultimate strain. The FRP material properties were considered to 

follow a two-parameter Weibull distribution.  The Weibull distribution has been 

the most common probability distribution to be used with FRP material properties 

(King, 1986, Rust et al., 1989).  A three-parameter Weibull distribution has 

sometimes been used, but it has been shown that the two-parameter Weibull 

distribution   is   adequate  (Alqam, 2002).  It  is  assumed  that  the  nominal  FRP  
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Table 1. OSL of the Three Distributions for Strength, Modulus 
                              of  Elasticity, and Ultimate Strain with Tension,  

                Compression, Flexure, and Shear. 

Property  Observed Significance Level (OSL) 
  N Weibull Normal Lognormal 

Longitudinal Tensile Strength ( Ft )         
     VG 1 - 6 30 0.009 0.113 0.195 
     VG 7 - 12 30 0.302 0.198 0.120 

     VG 13 - 18 24 0.136 0.142 0.147 
     VG 19 - 24 24 0.008 0.142 0.260 

     T 30 0.407 0.757 0.684 
Longitudinal Compressive Strength ( F c )         

     VG 1 - 6 30 0.001 0.064 0.154 
     VG 7 - 12 30 0.213 0.576 0.662 

     VG 13 - 18 24 0.088 0.106 0.117 
     VG 19 - 24 24 0.469 0.542 0.467 

     C 30 0.213 0.147 0.106 
Longitudinal Flexural Strength ( F b )         

     B 30 0.060 0.242 0.313 
Shear Strength ( F v )         

     VG 19 - 24 24 0.517 0.204 0.103 
     V 18 0.068 0.195 0.275 

Longitudinal Tensile Modulus ( Et )         
     VG 1 - 6 30 0.179 0.500 0.517 
     VG 7 - 12 30 0.022 0.001 0.000 

     VG 13 - 18 24 0.01 0.012 0.012 
     VG 19 - 24 24 0.171 0.519 0.546 

     T 30 0.171 0.372 0.379 
Longitudinal Compressive Modulus ( Ec )         

     VG 1 - 6 30 0.154 0.333 0.361 
     VG 7 - 12 30 0.053 0.006 0.002 

     VG 13 - 18 24 0.01 0.012 0.015 
     VG 19 - 24 24 0.299 0.199 0.174 

     C 30 0.499 0.587 0.563 
Longitudinal Flexural Modulus ( Eb )         

     B 30 0.412 0.560 0.472 
Shear Modulus ( Gv )         

     VG 19 - 24 24 0.065 0.297 0.350 
     V 18 0.111 0.320 0.473 

Ultimate Tensile Strain (ε ut )         
   Τ 30 0.085 0.553 0.537 

Ultimate Compressive Strain (ε uc )         
   C 13 0.110 0.334 0.472 

Ultimate Flexural Strain (ε ub )         
   Β 30 0.092 0.500 0.516 

Ultimate Shear Strain (γ v )         
   V 18 0.047 0.038 0.016 
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design properties would be the five-percentile value.  The five-percentile value is 

typical for civil engineering applications and appropriate for FRP materials 

(McNutt, 1998; Ellingwood, 2000). 

The OSL for the Weibull distribution (MIL-HDBK-17, 1990): 

 ADADOSL ** 54.4)ln(24.110.0exp[1/{1 ++−+= ]}       (3.6) 
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The OSL for the normal and the lognormal distributions (MIL-HDBK-17, 1990):  
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For the normal distribution is: 
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3.3 CORRELATION BETWEEN VARIABLES 

The correlation coefficient provides a measure of the linear relationship 

between two variables. The correlation coefficient, ρ , between two sets of data is 

obtained from the following formula:  

 ρ = 
σσ

µµ

yx

n

i
yixi yxn

∑ −−
=1

))((1

                                         (3.15) 

where: 

 xi
: data point in the first data set. 

 yi : data point in the second data set. 

 µ x : the mean for the first data set. 

 µ y : the mean for the second data set. 

 σ x : the standard deviation for the first data set. 

 σ y : the standard deviation for the second data set. 

 Sachs (1984) presented a test procedure to examine the presence of the 

correlation coefficients. The computed correlation coefficient is compared with 

the value computed from the formula:  

 tt nn nr 2
;2;2 )2(/ αα −− +−=                      (3.16) 

 
 
 

where, 

 tn α;2−  : percentage point for the t-distribution. 

 n: sample size. 
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 (n-2): degrees of freedom. 

 α: level of significant.  

The correlation coefficients between strength and modulus of elasticity, 

strength and ultimate strain, modulus of elasticity and ultimate strain were 

calculated and given in table 2. These values were tested by comparing them to 

the values from equation 3.16 (Sachs, 1984) for two sided test at 5% level with 

degrees of freedom equal to number of data points minus two (DF=n-2). For 

n=30, the corresponding value is 0.361. For n=24, the corresponding value is 

0.404. For n=18, the corresponding value is 0.468. For n=13, the corresponding 

value is 0.553.  It is noticed that 9 out of 13 correlation factors for modulus of 

elasticity versus strength (tension, compression, bending and shear) pass the 

corresponding values, which means they have strong positive linear relationships. 

For modulus of elasticity versus ultimate strain, 2 out of 4 have negative strong 

linear relationships. For strength versus ultimate strain, 1 out of 4 has a negative 

strong linear relationship. 
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Table 2. Correlation Coefficients between Strength and Modulus 
        of Elasticity, Strength and Ultimate Strain, Modulus 

    of Elasticity and Ultimate Strain. 
 

Correlation 
Coefficient  

   
   

  
T 

(N=30) 
C 

(N=30) 
B 

(N=30)
V 

(N=18)
VG 1-6 
(N=30) 

VG 7-12 
(N=30) 

VG 13-18 
(N=24) 

VG 19-24 
(N=24) 

Etl , Ftl  0.791    0.680 0.770 0.730 0.080 
Etl , ε ut  -0.438            
Ftl , ε ut  0.155            
Ecl , F cl   0.281   0.400 0.730 0.750 0.290 
Ecl , ε uc   -0.328           
F cl , ε uc   -0.596           
Ebl , Fbl    0.826          
Ebl , ε ub    -0.445          
Fbl ,ε ub    0.029          
Gv , F v      0.650       0.370 
Gv , γ u      0.025         
F v ,γ u      0.451         
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CHAPTER 4 

THREE-PARAMETER VS. TWO-PARAMETER WEIBULL 

DISTRIBUTION FOR PULTRUDED COMPOSITE MATERIAL 

PROPERTIES 

This chapter is a slightly revised version of a paper published in the journal, 
Composite Structures, in 2002 by Maha Alqam, Richard M. Bennett, and Abdul-
Hamid Zureick:  
 
Alqam, M., Bennett, R. M., and Zureick, A-H. (2002). “Three-parameter vs. two-
parameter Weibull distribution for pultruded composite material properties.” 
Composite Structures, Vol. 58, 497-503. 
 
My primary contribution to the paper is comparing three-parameter vs. two-
parameter Weibull distributions on the basis of goodness of fit, nominal design 
values, and allowable load to achieve uniform reliability. 
 
 
4.1 ABSTRACT 

 The three-parameter and two-parameter Weibull distributions are 

compared using 26 mechanical property data sets of fiber-reinforced polymeric 

(FRP) composite materials manufactured by the pultrusion process.  Both strength 

and stiffness properties were examined.  The probability distributions were 

compared on the basis of goodness of fit, nominal design values, and allowable 

load to achieve uniform reliability.  It is recommended that the two-parameter 

Weibull distribution be used to characterize FRP composite material properties.  

The primary bases for this recommendation are small differences in nominal 

design values and small differences in allowable loads between the two-parameter 

and three-parameter Weibull distributions. Other supporting reasons for the 

recommendation are similar observed significance levels in distribution fitting, 
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computational efficiency, and the fact that the location parameter of the three-

parameter Weibull distribution is near the first order statistic. 

4.2 INTRODUCTION 

 The determination of the statistics and probability distributions of the 

random variables describing material properties plays an important role in the 

development of probabilistic based design specifications.  The choice of the 

probability distribution chosen to represent the material property data will have a 

large effect on the calculated reliability.  Assuming different distributions for the 

material properties can result in computed probabilities of failure that vary by 

more than an order of magnitude.  This is the result of the lower tail behavior of 

different cumulative distribution functions, which has become known as the tail-

sensitivity problem in structural reliability (Ditlevsen, 1981).  

 The Weibull distribution (Weibull, 1951) is often used to describe the 

strength of fiber-reinforced polymer (FRP) composites  (King, 1986, Rust et al., 

1989).  Typically, the two-parameter Weibull distribution is used, although the 

three-parameter Weibull distribution is more robust and may provide a better 

characterization of the data.  While the two-parameter Weibull distribution was 

previously used by Mottram (1994) to examine the compressive strength property 

data of flat pultruded panels, the three-parameter Weibull distribution was used by 

Abdallah et al. (1996) to assess the reliability of glass-fiber reinforced polymeric 

pultruded rods and by Zureick and Steffen (2000) to compute the 95% lower 

confidence limit on the 5th percentile of the compressive property data of E-glass 

polyester and vinylester pultruded single angles. 
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This paper examines the two-parameter versus the three-parameter 

Weibull distribution for characterizing FRP composite material properties.  Only 

the Weibull distributions are considered in this paper, although other probability 

distributions may also fit the data.  The purpose of the paper is to determine the 

adequacy of the two-parameter Weibull distribution or if there is justification for 

using the three-parameter Weibull distribution for FRP material properties. 

 The three-parameter Weibull cumulative distribution function is given by: 
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in which θ is the scale parameter, β is the shape parameter, and δ is the location 

parameter.  If δ=0, the distribution becomes the two-parameter Weibull 

distribution. 

Zanakis (1979) documents seventeen different methods for obtaining the 

parameters of the three-parameter Weibull distribution.  Two common parameter 

estimation methods used in engineering are the modified moment method and the 

maximum likelihood method, with those being the methods considered in this 

paper. The two-parameter and three-parameter Weibull distributions are 

compared on the basis of the goodness-of-fit of the distribution to FRP material 

property data and lower tail behavior.  The lower tail behavior is examined 

through the analysis of nominal design values and probabilistic based allowable 

loads. 

Data used for the comparisons are taken from two different studies that 

examined the short-term axial compressive strength of E-glass/vinylester 
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pultruded I- and box-shaped components in one case (Zureick and Scott, 1997), 

and the short-term eccentric axial compressive strength of E-glass/polyester 

pultruded box-shaped components in another case (Zureick et al, 2001).  Coupons 

from the former and latter study are labeled VG and PG, respectively.  Coupon 

data from a study (Mottram, 1994) of E-glass/polyester plates is also included in 

this study, and labeled as PG-M.  Both stiffness and strength parameters are 

examined, with a total of twenty-six data sets and over seven hundred data points 

being considered.  A summary of the data sets is given in Table 3, which gives the 

sample size and coefficient of variation of each data set.   

4.3 PARAMETER ESTIMATION 
 
 Two methods are used for parameter estimation, the modified moment 

method and the maximum likelihood method.  Moment methods are based on 

equating sample moments to the corresponding distribution moments.  The mean 

value or the first moment, µ, of the Weibull distribution is: 
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where Γ is the gamma function.  The variance or second moment about the mean, 

σ2, is: 
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By equating the mean µ to the sample mean x  and the variance σ2 to the sample 

variance s2, equations 4.2 and 4.3 can be used to estimate the parameters of the 

Weibull distribution.   An estimate of the location parameter, δ, is also required, 
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with a common estimate for δ being x1, the first order statistic (the first data point 

when ordering from smallest to largest). A better estimate of the location 

parameter is (Zanakis, 1979): 
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in which δ̂  is the estimate of the location parameter, δ, and xi is the ith order 

statistic of the sample of size n. 

 Improvements have been made to the basic moment method, resulting in 

the modified moment method (Dodson, 1994).  Parameters of the Weibull 

distribution are estimated from the following equations: 

( )
2

ˆ/1

2

2
1

2

ˆ
111

ˆ
11ˆ

21

)(




















+Γ−









+Γ−








+Γ

=
−

−

β

ββ

βn
xx

s      (4.5) 









+Γ−








+Γ

=

ββ

θ

ˆ
11ˆ

21

ˆ
2

s       (4.6) 











+Γ−=

β
θδ ˆ

11ˆˆ x       (4.7) 

 in which a hat indicates the estimate of the parameter.  Equations 4.5 – 4.7 will 

be used in this paper as one estimate of the parameters of the three-parameter 

Weibull distribution. 

In two cases out of the 26 data sets examined, the modified moment 

method resulted in a location parameter less than zero.  In these two cases, the 
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location parameter was set to zero as a negative location parameter would imply 

the possibility of negative values for the material properties. For cases in which 

there was a positive estimate of the location parameter ( δ̂ ), the average values of 

1/ˆ xδ  and x/δ̂  are 0.90 and 0.77, respectively, where x1 and x are the minimum 

(first order statistic) and sample mean of the data set.  Values of the location 

parameter in terms of the first order statistic and the mean value are given in 

Table 3. 

 The second method of estimating the parameters of the Weibull 

distribution that will be used is the maximum likelihood method.  This method 

requires solving the following simultaneous equations (Dodson, 1994). 
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 Equation 4.10 can be difficult to solve.  This is apparent from the graph 

shown in Figure 2, in which the left hand side of Equation 4.10 is plotted for 

different values of δ̂  for the longitudinal tensile strength of data set VG19-24.  

The values of θ̂  and β̂  are held constant and equal to the maximum likelihood 

estimate    (θ̂ = 58.7  Mpa  and  β̂ = 2.18)  while  δ̂    is  varied.  The   change   in  
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Table 3. Description of Data Sets and Location Parameter for Three- 
  Parameter Weibull Distribution of 1/ˆ xδ  and x/δ̂ . 

Location Parameter, δ̂  
Modified 
Moment 
Method 

Maximum 
Likelihood 

Method 
Material Property 

(1) 

Sample 
Size 
(2) 

Coefficient 
of Variation 

(3) 
1/ˆ xδ

(4) 
x/δ̂  

(5) 
1/ˆ xδ

(6) 
x/δ̂  

(7) 
Longitudinal Tensile Strength 

VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
30 
30 
24 
24 
30 

 
0.074 
0.130 
0.102 
0.077 
0.069 

 
0.984 
0.949 
0.957 
0.913 
0.800 

 
0.883 
0.760 
0.811 
0.786 
0.680 

 
0.996 
0.925 
0.983 
0.979 
0.878 

 
0.894 
0.741 
0.833 
0.843 
0.746 

Longitudinal Compressive Strength 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 
PG-M 

 
 

30 
30 
24 
24 
30 
51 

 
 

0.073 
0.093 
0.114 
0.106 
0.122 
0.092 

 
 

0.985 
0.756 
0.969 
0.948 
0.935 
0.560 

 
 

0.886 
0.605 
0.819 
0.793 
0.750 
0.427 

 
 

0.994 
0.932 
0.995 
0.940 
0.938 
0.819 

 
 

0.894 
0.747 
0.841 
0.786 
0.752 
0.624 

Shear Strength 
VG 19-24 
PG 

 
24 
18 

 
0.072 
0.098 

 
0* 

0.950 

 
0* 

0.816 

 
0* 

0.988 

 
0* 

0.848 
Transverse Compressive Strength 

PG-M 
 

52 
 

0.060 
 

0.974 
 

0.871 
 

0.982 
 

0.877 
Longitudinal Tensile Modulus 

VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
30 
30 
24 
24 
30 

 
0.068 
0.096 
0.116 
0.046 
0.063 

 
0.949 

0* 

0.917 
0.974 
0.947 

 
0.836 

0* 

0.742 
0.902 
0.839 

 
0.938 

0* 

0.962 
0.981 
0.947 

 
0.826 

0* 

0.778 
0.908 
0.838 

Longitudinal Compressive Modulus
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
 

30 
30 
24 
23 
30 

 
 

0.054 
0.087 
0.132 
0.040 
0.040 

 
 

0.940 
0.852 
0.940 
0.749 
0.941 

 
 

0.843 
0.703 
0.753 
0.682 
0.864 

 
 

0.973 
0* 

0.984 
0* 

0.962 

 
 

0.873 
0* 

0.788 
0* 

0.884 
Shear Modulus 

VG 19-24 
PG 

 
24 
18 

 
0.113 
0.104 

 
0.841 
0.895 

 
0.666 
0.742 

 
0* 

0.970 

 
0* 

0.804 
* indicates location parameter was set equal to zero 
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Figure 2.  Value of Equation 4.10 vs. Location Parameter, δ 

 
curvature near the root may cause many standard root-finding techniques, such as 

Newton-Raphson, to fail.  Even if the method does not fail, the flat slope for most 

of the graph coupled with the steep slope near the root often results in slow 

convergence.  The best technique is generally  to start  with  a  value  just  slightly  

less than the minimum data point, reduce this value until there is a change in sign, 

and then use some standard root finding technique over the interval in which the 

sign changes. 

 In five out of the 26 data sets examined, the maximum likelihood 

estimator of the location parameter was less than zero.  Often in these cases, the 

estimators were unreasonable.  For example, the maximum likelihood estimate of 
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the location parameter for the longitudinal tensile modulus for specimens VG7-12 

was negative approximately eight times the mean value.  The shape parameter 

was 139.5, while the typical range of the shape parameter is 6 to 25.  In these five 

cases, the location parameter was taken as zero, or the two-parameter Weibull 

distribution was used. 

 The maximum likelihood estimator of the location parameter is generally 

just slightly less than the minimum data point.  For the 19 cases with a positive 

location parameter, the average values of 1/ˆ xδ  and x/δ̂  are 0.96 and 0.82, 

respectively.  The location parameter from the maximum likelihood method is 

given in Table 3. 

4.4 GOODNESS OF FIT 
 

Many methods, such as Chi-square, the Kolmogorov-Smirnov, exist for 

determining the goodness of fit of a probability distribution to a set of data.  The 

Anderson-Darling test was chosen for this study as it is more sensitive to the tail 

behavior (Lawless, 1982), and has been recommended for statistical analysis of 

composites (Rust et al., 1989).  The sensitivity to the tail behavior is particularly 

useful in structural engineering applications, where the tail is important in 

computing the structural reliability.  The Anderson-Darling statistic is obtained 

as: 

[ ]
[ ]∫

∞

∞− −
−

= )(
)(1)(

)()(~
0

00

2
02 xdF

xFxF
xFxF

nA n
n       (4.11) 

in which )(~ xFn is a step function that jumps at the order statistics of x, and 
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)(0 xF is the hypothesized continuous cumulative distribution function. The 

Anderson-Darling statistic is a measure of the square of the error between the data 

and the hypothesized distribution weighted so  that  the tails of the  data  are  more 

important than the central portion.  For computation purposes, the Anderson-

Darling statistic can be obtained as: 

[ ] ( )( )[ ]{ }∑
=

−+ −



 −+

−
=

n

i
inin nxFxF

n
iA

1
10)(0

2 1ln)(ln21     (4.12) 

in which x(i) is the ith order statistic of the data set.  For the Weibull distribution, 

an observed significance level, OSL, is obtained as follows (Rust et al, 1989): 

[ ]** 48.4ln24.110.0exp1
1

ADAD
OSL

++−+
=     (4.13) 

in which 

2* 2.01 nA
n

AD 







+=       (4.14) 

The OSL is the probability of obtaining a value of the test statistic at least as large 

as that obtained from the data if the hypothesis that the data are actually from the 

distribution being tested is true.  Typically, a 5% significance level is used, so that 

the null hypothesis is only rejected if the OSL is less than 0.05. 

 The modified moment method and the maximum likelihood method were 

used to determine parameters of the three-parameter Weibull distribution for each 

of the 26 data sets being considered in this paper.  The maximum likelihood 

method was also used to determine parameters for the two-parameter Weibull 

distribution by setting δ=0 and only using equations 4.8 and 4.9.  Although the 
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parameters for the two-parameter Weibull distribution could be determined using 

moment methods, the maximum likelihood method is the generally used method 

for the two-parameter Weibull distribution (Rust et al., 1989).  An OSL was 

obtained for each of the distributions for each data set.  The results are shown in 

Table 4.   

 The two-parameter Weibull distribution cannot be rejected at the 5% 

significance in nineteen out the 26 cases.  The three-parameter Weibull 

distribution is rejected in five cases for parameters determined with the modified 

moment method and in three cases for parameters determined with the maximum 

likelihood method.  In most cases in which the three-parameter Weibull was 

rejected, the two-parameter Weibull was also rejected for the same data set. 

 The average OSL for the two-parameter Weibull distribution was 0.178, 

with the average OSL for the three-parameter Weibull distribution being 0.386 

and 0.356 for the modified moment method and the maximum likelihood method, 

respectively.  Although strictly speaking the OSL cannot be used for ranking 

distributions, higher values of the OSL do indicate a higher significance level.  

Therefore, it appears that the three-parameter Weibull distribution is slightly 

preferable to the two-parameter Weibull distribution, though the two-parameter 

Weibull distribution cannot be rejected in most cases. 

 Abdallah et al. (1996) compared the two-parameter and three-parameter 

Weibull distribution for compressive, tensile, and flexural strength and stiffness of 

glass fiber reinforced pultruded rods.  Distributional parameters were obtained  by 
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Table 4. Observed Significance Level Using the Anderson- 
             Darling Test for Different Weibull Distributions. 

 
Observed Significance Level 

Three-parameter Weibull 
Material Property 

(1) 
Two-parameter 

Weibull 
(2) 

Modified 
Moment 
Method 

(3) 

Maximum 
Likelihood 

Method 
(4) 

Longitudinal Tensile Strength 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
0.009 
0.302 
0.138 
0.008 
0.699 

 
0.823 
0.045 
0.224 
0.208 
0.871 

 
0.817 
0.072 
0.146 
0.420 
0.860 

Longitudinal Compressive Strength 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 
PG-M 

 
0.001 
0.212 
0.088 
0.469 
0.214 
0.122 

 
0.536 
0.475 
0.183 
0.272 
0.131 
0.255 

 
0.320 
0.727 
0.117 
0.303 
0.096 
0.157 

Shear Strength 
VG 19-24 
PG 

 
0.517 
0.073 

 
0.610* 

0.544 

 
0.517* 

0.486 
Transverse Compressive Strength 

PG-M 
 

0.020 
 

0.546 
 

0.424 
Longitudinal Tensile Modulus 

VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
0.179 
0.022 
0.010 
0.177 
0.180 

 
0.505 
0.030* 

0.023 
0.622 
0.504 

 
0.522 
0.022* 

0.012 
0.508 
0.414 

Longitudinal Compressive Modulus 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
 

0.153 
0.052 
0.010 
0.299 
0.504 

 
 

0.518 
0.012 
0.042 
0.386 
0.753 

 
 

0.483 
0.052* 

0.036 
0.299* 

0.678 
Shear Modulus 

VG 19-24 
PG 

 
0.065 
0.116 

 
0.312 
0.598 

 
0.065* 

0.701 
* indicates a location parameter of 0.0 

 



 40

using linear regression of the data when plotted on Weibull probability paper.  

The two-parameter and three-parameter Weibull distributions were compared on 

the basis of the correlation coefficient between the best fit line and the data.  The  

correlation coefficient for the two-parameter Weibull distribution averaged 0.902 

for the 22 data sets considered,  while  the  correlation  coefficient averaged 0.924 

for the three-parameter Weibull distribution.  This is consistent with the present 

results in that the three-parameter Weibull distribution in general provides a 

slightly better fit of the data than the two-parameter Weibull distribution, although 

the two-parameter Weibull distribution provides a reasonable fit.  

4.5 NOMINAL DESIGN VALUE 
 
 Nominal design values are used in design practice.  Typically in structural 

engineering, the nominal design value for material properties is the 5-percentile 

value (Ellingwood, 2000).  The 5-percentile value for each of the three Weibull 

distributions being considered is shown in Table 5.  Statistical uncertainty, or the 

uncertainty from using a finite sample size to estimate the parameters, was not 

accounted for in any of the design values.  Several methods are available for 

accounting for statistical uncertainty, with no agreed upon method.  Rather than 

potentially biasing the results by accounting for statistical uncertainty, it was not 

included in the calculations, although it would need to be included in actual code 

development. 

The three-parameter Weibull distributions resulted in 5-percentile values 

that averaged five percent greater than the 5-percentile value from the two-

parameter   Weibull   distribution.  The  5-percentile  value  from   the   maximum  
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Table 5. Ratio of 5-Percentile Value to Mean Value. 

Ratio of 5-percentile value to mean value 
Three-parameter Weibull Material Property 

(1) 
Two-parameter 

Weibull 
(2) 

Modified 
Moment Method

(3) 

Maximum 
Likelihood Method 

(4) 
Longitudinal Tensile Strength 

VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
0.825 
0.754 
0.800 
0.817 
0.863 

 
0.904 
0.817 
0.857 
0.876 
0.879 

 
0.909 
0.814 
0.863 
0.888 
0.886 

Longitudinal Compressive Strength 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 
PG-M 

 
 

0.821 
0.805 
0.772 
0.785 
0.765 
0.811 

 
 

0.906 
0.839 
0.852 
0.847 
0.822 
0.834 

 
 

0.908 
0.853 
0.857 
0.847 
0.825 
0.841 

Shear Strength 
VG 19-24 
PG 

 
0.876 
0.802 

 
0.867 
0.862 

 
0.876 
0.874 

Transverse Compressive Strength 
PG-M 

 
0.857 

 
0.910 

 
0.913 

Longitudinal Tensile Modulus 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
0.857 
0.857 
0.785 
0.899 
0.871 

 
0.894 
0.824 
0.825 
0.931 
0.900 

 
0.895 
0.857 
0.838 
0.934 
0.903 

Longitudinal Compressive Modulus 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
 

0.884 
0.856 
0.748 
0.926 
0.914 

 
 

0.912 
0.854 
0.814 
0.927 
0.932 

 
 

0.918 
0.856 
0.826 
0.926 
0.936 

Shear Modulus 
VG 19-24 
PG 

 
0.760 
0.784 

 
0.815 
0.837 

 
0.760 
0.855 
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likelihood method parameters was just slightly greater than that obtained from the 

modified moment method parameters, about half a percent.  Using the two-

parameter Weibull distribution would result in lower estimates of the 5-percentile 

value relative to the three-parameter Weibull distribution.  This is consistent with 

the results of Tenn (1981) who found that the two-parameter Weibull distribution  

resulted in lower allowable design values than the three-parameter Weibull, 

although he found only about a 1% decrease. 

4.6 EFFECT OF DISTRIBUTION ON ALLOWABLE LOAD 
 
 A performance function is considered as follows. 

DLRg −−=       (4.15) 
 

where R is the resistance, L is a live load, D is a dead load, and g<0 is failure.  

The load is considered to be half dead load and half live load.  The dead load is 

assumed to follow a normal distribution with a coefficient of variation of 0.10, 

and the live load is assumed to follow an Extreme Type I distribution with a 

coefficient of variation of 0.25.  These are approximately the statistics and load 

ratio applicable to both building and bridge loads (Galambos et al., 1982, Nowak, 

1995). 

 Each data set was used for the resistance, R, and a dead and live load, D 

and L, were determined using first-order reliability methods (Ang and Tang, 

1984) such that the reliability index would be 3.00.  Both the three-parameter 

Weibull distribution determined using the modified moment method and the 

maximum likelihood method were used.  The ratios of the allowable load from the 

three-parameter Weibull distribution to the allowable load from the two-
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parameter Weibull distribution are shown in Table 6.   

The three-parameter Weibull distributions resulted in allowable loads that 

averaged 7% greater than allowable loads from the two-parameter Weibull 

distribution, with the modified moment method giving on the average just slightly 

higher allowable loads. Given the fact that different chosen probability 

distributions can result in allowable loads that vary by as much as 50% (Gromala  

et al, 1990), the 7% variation in allowable load is not very significant. 

The allowable load was also examined for a live load to dead load ratio of 

four instead of one, a ratio based on composite structures being lighter, resulting 

in higher live to dead load ratios.  For a live load to dead load ratio of 4, the 

allowable load from the three-parameter Weibull distributions averaged 3% 

greater than the allowable load using the two-parameter Weibull distribution.  The 

decrease in the ratio of allowable loads was expected since the resistance statistics 

become less important as the uncertainty in the load increases with increasing live 

to dead load ratios.  The 3% difference is virtually insignificant. 

4.7 EVALUATION OF RESULTS 
 
 Not much difference was observed between the modified moment method 

and the maximum likelihood method for the three-parameter Weibull distribution.  

Both resulted in similar observed significance levels (OSL), nominal design 

values, and allowable loads.  If a three-parameter Weibull distribution is to be 

used to characterize the data, it is recommended that the modified moment 

method be used.  This is because of the relative ease in estimating the distribution  

parameters, the less likelihood in obtaining a negative location parameter, and the 
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Table 6. Ratio of Allowable Load from Three-Parameter Weibull to  
            Two-Parameter Weibull for a Reliability Index of 3.00. 

Ratio of allowable load to allowable load for two 
parameter Weibull distribution Material Property 

(1) Modified Moment 
Method 

(2) 

Maximum Likelihood 
Method 

(3) 
Longitudinal Tensile Strength 

VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
1.07 
1.18 
1.09 
1.08 
1.01 

 
1.07 
1.18 
1.09 
1.08 
1.01 

Longitudinal Compressive Strength 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 
PG-M 

 
 

1.08 
1.07 
1.15 
1.12 
1.16 
1.05 

 
 

1.07 
1.08 
1.15 
1.12 
1.16 
1.06 

Shear Strength 
VG 19-24 
PG 

 
0.99 
1.09 

 
1.00 
1.09 

Transverse Compressive Strength 
PG-M 

 
1.03 

 
1.03 

Longitudinal Tensile Modulus 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
1.02 
0.95 
1.10 
1.00 
1.01 

 
1.02 
1.00 
1.11 
1.00 
1.01 

Longitudinal Compressive Modulus 
VG 1-6 
VG 7-12 
VG 13-18 
VG 19-24 
PG 

 
 

1.00 
0.99 
1.20 
1.00 
1.00 

 
 

1.00 
1.00 
1.21 
1.00 
1.00 

Shear Modulus 
VG 19-24 
PG 

 
1.16 
1.12 

 
1.00 
1.13 
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similarity in the results to those obtained using the maximum likelihood method. 

 The two-parameter Weibull distribution could not be rejected at the 5% 

level for 19 out of the 26 data sets.  Although the two-parameter Weibull resulted 

in lower nominal design values and lower allowable loads than either of the three-

parameter Weibull distributions, the differences were well less than ten percent.  

This difference is insignificant in most structural engineering applications. 

 Even though the three-parameter Weibull distribution is more robust than 

the two-parameter Weibull distribution, there are some problems with the three-

parameter Weibull distribution.  The basic conceptual problem is that there is a 

nonzero lower bound, which implies that for loads less than the lower bound there 

is no chance of failure.  Average values of the lower bound, or location parameter, 

were within 10% of the first order statistic, and were about 80% of the mean 

value.  If additional data were to be collected such that, for example, the sample 

size was doubled, the scale parameter would undoubtedly decrease. 

4.8 CONCLUSIONS 

 The three-parameter and two-parameter Weibull distributions were 

compared using 26 sets of data on fiber-reinforced polymeric pultruded composite 

material mechanical properties.  Both strength and stiffness properties were 

examined.  It is recommended that the two-parameter Weibull distribution be used 

to characterize FRP composite material properties.  The primary bases for this 

recommendation are small differences in nominal design values and small 

differences in allowable loads between the two-parameter and three-parameter 

Weibull distributions.  Other supporting reasons for the recommendation are 
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similar observed significance levels in distribution fitting, computational 

efficiency, and the fact that the location parameter of the three-parameter Weibull 

distribution is near the first order statistic.  The last reason implies that there is a 

load near the lowest data point that can be applied to the structural member for 

which there is no chance of failure.  This seems counterintuitive, as it seems 

reasonable that there would be some chance of failure at any load level, albeit the 

probability could be quite small. 
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CHAPTER 5 

DEVELOPMENT OF RESISTANCE FACTORS 
 

5.1 TARGET RELIABILITY INDEX (β) 

 Probabilistic design is based on achieving a certain reliability level, often 

expressed as a target reliability index, β.  For most materials the target reliability 

index can be obtained by examining current design practice.  This process is often 

referred to as code calibration and makes use of the many years of successful 

design practice.  With FRP materials, there is not this design experience, and thus 

typical code calibration cannot be used.  Rather a target reliability index has to be 

chosen that would represent an adequate safety level. 

The target reliability index should depend on the mode and the 

consequences of approaching various limit states.  Ellingwood (2000) suggested a 

reliability index of 2.5 for a ductile failure mode and not serious consequence of 

failure, 3.0 for either a ductile failure mode and serious consequence or a brittle 

failure mode and not serious failure consequence, and 4.0 for a brittle failure 

mode and serious consequence. Ellingwood (2000) suggested that the target 

reliability index be set to approximately 3.5 for FRP materials, because they 

exhibit little ductility. 

The reliability index for hot-rolled steel, cold-formed steel, reinforced or 

prestressed concrete, and engineered wood elements designed by LRFD 

specifications tend to fall in the range of 2.2 to 3.0 (Ellingwood, 2000).  

Specifically for short tied reinforced concrete columns failing through concrete 
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crushing, or the failure being above the balanced point, the reliability index is 

approximately 3.2 (Ellingwood et al, 1980).  For short tied columns failing 

through steel yielding, or failure being below the balanced point, the reliability 

index is approximately 4.1 when the resistance factor is 0.9 and 3.0 when the 

resistance factor is 0.7.  For short spiral columns failing through concrete 

compression, the reliability index is approximately 2.9.  Israel et al (1987) report a 

reliability index of approximately 2.7 for concentrically loaded short reinforced 

concrete columns with 1% reinforcing and 3.5 for columns with 3% reinforcing.  

For concentrically loaded steel columns, Ellingwood et al. (1980) reported the 

reliability index as a function of the slenderness ratio λ, which is defined as the 

square root of the yield stress divided by the Euler buckling stress.  For λ=0.3 

(short column) the reliability index is approximately 3.3.  The reliability index 

decreases to approximately 2.3 for λ in the range of 1.1-1.3, and then increases 

back to 3.2 for λ=1.9 (long column).    

The target reliability index chosen for the development of the engineered 

wood construction LRFD standard (AF&PA/ASCE 16-95) was 2.4.  Ellingwood 

(1997) gives the background for this selection.  Glulam beams designed by 

allowable stress design (ASD) and subjected to occupancy live loads had a 

reliability index in the range of 2.6 to 2.7.  Roof beams designed for snow loads 

had reliability indices in the range of 2.1 to 2.2.  The target reliability index of 2.4 

was approximately an average of the reliability inherent in ASD design of beams 

subjected to occupancy and snow loads.  
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Hsiao et al. (1990) suggest a very similar target reliability index, 2.5 for 

members, for the development of LRFD criteria for cold-formed steel.  

Ellingwood (1997) reported a reliability index of 2.4 for cold-formed steel tension 

members and concentrically loaded compression members, 2.7 for flexure in 

laterally supported beams, and 2.5 for lateral-torsional buckling.  These values are 

similar to the reliability in hot-rolled steel.  The American Institute of Steel 

Construction LRFD spec (AISC, 1993) reports an implied beta of approximately 

2.6 for members. 

Gromala et al. (1990) point out that the reliability index is a function of 

the chosen probability distributions.  For a set of wood member data, they 

obtained a reliability index of 2.9 when using a Weibull distribution for the 

resistance and a reliability index of 3.6 when using a lognormal distribution for 

the resistance. 

For this study, a target reliability of 3.0 for buckling and local failures 

(long columns), 3.5 for material failures (short columns) and 3.0 for lateral-

torsional buckling failures (beams) was chosen.  These target reliability indices 

for FRP members are slightly higher than those used in the development of the 

wood and cold-formed steel specifications. The reasoning is that a higher 

reliability index is justified for a material with which we have little design 

experience.  FRP materials tend to be more brittle than other types of materials, 

which would also justify a higher reliability index.  For FRP members under axial 

compression, material failures are more brittle than buckling failures, which 

justifies using a higher reliability index for material failures.  The target reliability 
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indices are appropriate for gravity loadings (dead and live load) and will be used 

to develop resistance factors.   

5.2 PROBABILISTIC BASED DESIGN 

The coefficient of variation of material properties for well-established 

materials like steel and concrete has been taken as a constant due to the stability 

and uniformity of the production process.  For FRP materials, the coefficient of 

variation of material properties will be a function of such things as fiber type, 

fiber volume, lay-up, and quality control procedures.  The manufacturer has some 

control over the coefficient of variation.  Thus, the resistance factor will be 

developed as a function of the coefficient of variation.  Coefficients of variation 

for material properties (modulus of elasticity, compressive strength) of 0.05, 

0.075, 0.10, 0.15, 0.20, 0.25 were considered in this study.  This range of 

coefficients of variations was considered because it bounds the uncertainty 

expected in FRP materials.  

The FRP material properties were considered to follow a two-parameter 

Weibull distribution. The Weibull distribution has been the most common 

probability distribution to be used with FRP material properties (King, 1986, Rust 

et al., 1989). The dead load was assumed to follow a normal distribution with a 

mean of 1.05 times the nominal value, Dn, and a CV of 0.10 (Galambos et al., 

1982). The live load was assumed to follow an Extreme Type I distribution with a 

mean value equal to the nominal value, Ln, and a CV of 0.25 (Galambos et al., 

1982).  Nominal live load to dead load ratios of 0.5, 1.0, 2.0, 3.0, 4.0 were 

considered.  Cross sectional properties and the unbraced length were considered 
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to be deterministic.  The resistance factor was found based on the equation, 

nnn φRLD =+ 6.12.1                                                                                (5.1) 

where Rn is the nominal resistance calculated using nominal (5-percentile) 

material properties and φ is the resistance factor. 

The performance function used for this analysis is as follows: 

 LDXRg −−=                                                                                                                                  (5.2) 

where g is the performance function such that g < 0 failure, g = 0 is the limit state, 

and g>0 is safe, R is the resistance, D is the dead load, L is the live load, and X is 

a model error.  The model error is a random variable that accounts for both 

systematic and random errors in the prediction of the resistance.  It is obtained 

from the statistics of the ratio of experimentally obtained resistances to the 

predicted resistances.   

First-order reliability methods (Ang and Tang, 1994) are used to find a 

resistance from equation 5.2 such that the target reliability index is met.  The 

corresponding nominal resistance is obtained, and equation 5.1 is used to 

determine the necessary resistance factor to obtain this nominal resistance. 

 
5.3 DOUBLY SYMMETRIC CROSS-SECTIONS 
 

Zureick and Scott (1997) tested four different doubly symmetric cross-

sections, two wide flange sections and two box sections subjected to concentric 

axial compression.  The specimens were made using a vinylester matrix and E-

glass rovings and nonwoven mats.  Six specimens of each cross section were 

tested, resulting in 24 total specimens.  Twenty-two of these specimens failed in 
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global buckling and will be used in this analysis.  The slenderness ratios varied 

from 36 to 103.  Zureick and Scott (1997) proposed two analytical formulas for 

the buckling load of axially loaded polymer columns.  The first is similar to 

Euler’s buckling load.  

g
L

E A

r
KL

EP 2

min

2 









= π                                                                                    (5.3) 

where PE is the buckling load, EL is the longitudinal elastic compressive modulus, 

r is the radius of gyration, KL is the effective unbraced length, and Ag is the gross 

area.  The ratio of the experimental buckling load, Pexp, to PE ranged from 0.85 to 

0.97 with an average of 0.92 and a standard deviation of 0.038. 

 The second proposed analytical formula was a modification to equation 

5.3 that accounts for shear deformations. 

)  /  (  1 GAPn
PP

LTgEs

E
e

+
=                                                                  (5.4) 

where ns is the shear factor for the specific cross section and GLT is the in-plane 

shear modulus.  The ratio of Pexp/Pe ranged from 0.88 to 1.01 with an average of 

0.94 and a standard deviation of 0.039.  Equation 5.4 was slightly more accurate 

than equation 5.3, but both equations had about the same amount of precision.  

The ratio of the experimental resistance to the calculated resistance, or the model 

error, was fit by a normal distribution. 

The difference in prediction of buckling strength between equations 5.3 

and 5.4 will be a function of the ratio of EL/GLT.  For the columns tested by 
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Zurieck and Scott (1997), the ratio of EL/GLT ranged from 3.8 to 6.8 with an 

average of 5.1.  They recommend that equation 5.3 is adequate for ratios of 

EL/GLT less than 6 for short-term behavior. For long-term behavior, Zurieck and 

Scott (1997) recommend the use of equation 5.4.  Their reasoning is that the in-

plane shear modulus GLT is much more matrix-dependent than the longitudinal 

elastic modulus and will therefore be more susceptible to degradation over time. 

The resistance factors developed using equation 5.3 are included in table 

7.  Figure 3 shows the resistance factor obtained using equation 5.3 for the 

resistance vs. the nominal live load to dead load ratio, Ln/Dn, for different 

coefficients of variation of the longitudinal modulus, ( )
LECV .   

The resistance factor is almost constant with varying Ln/Dn ratios, and 

generally decreases with increasing ( )
LECV .  An interesting phenomenon occurs 

for small coefficients of variation of EL; the resistance factor actually decreases 

with decreasing ( )
LECV .  This can be explained by looking at Figure 4 that shows 

three relationships for the case of Ln/Dn=4.0.  One line shows a resistance factor 

based on using the mean value of EL instead of the nominal value.  The resistance 

factor increases with decreasing ( )
LECV .  A second line shows the ratio of the 

mean value of EL to the nominal, or fifth percentile, value of EL.  The resistance 

factor for use with the nominal value of E is found by multiplying the resistance 

factor based on mean of EL by the ratio of mean to nominal.  Since the ratio of the 

mean to the nominal is decreasing faster than the resistance factor based on the 

mean  value  is  increasing,  the  resistance  factor  based  on  nominal values does  
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Table 7. Resistance Factors for Doubly Symmetric Columns 
        with Buckling Failure Using Equation 5.3. 

Resistance Factor (φ) 
Ln/Dn 

COV 0.5 1.0 2.0 3.0 4.0 
0.050 0.887 0.850 0.808 0.787 0.776 
0.075 0.873 0.862 0.827 0.810 0.800 
0.100 0.832 0.843 0.828 0.816 0.808 
0.150 0.727 0.755 0.766 0.768 0.767 
0.200 0.622 0.652 0.673 0.679 0.683 
0.250 0.526 0.554 0.576 0.585 0.590 

 

 

 
 Figure 3.  Resistance Factors vs. DL nn for Buckling Failure  
   of Doubly Symmetric Columns. 
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 Figure 4. DL nn = 4.0 

 
actually decrease with decreasing ( )

LECV  at some point.   

The resistance factor versus the coefficient of variation of EL is plotted in 

Figure 5 for all Ln/Dn ratios.  A reasonable fit to the data is a constant resistance 

factor for ( ) 1.0≤
LECV , and a resistance factor that is a linear function of the 

coefficient of variation for ( ) 1.0>
LECV .  The resistance factor using best-fit lines 

for the data would be: 

 ( ) 83.075.100.1 ≤−=
LECVφ                                                       (5.5) 

Thus, it is proposed that rather than a constant resistance factor, the resistance 

factor be a function of ( )
LECV , or the uncertainty level in the FRP material 

property.  The  resistance  factor  would  increase  with a decreasing coefficient of 
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Figure 5. Resistance Factors for Doubly Symmetric Cross-Sections  
               with Buckling Failure Based on En  for all DL nn  Using  

                     Model Error of Equation 5.3. 
 

 
is suggested for ( ) 10.0≤

LECV which might suggest that there is no benefit to the 

manufacturer for reducing the ( )
LECV  when it is less than 0.10.  This is not true, 

as a smaller ( )
LECV  would result in a larger nominal value for a given mean 

value. 

 The resistance factors, assuming EL and GLT perfectly correlated, 

developed using equation 5.4 are shown in table 8. The determination of the 

resistance factor for equation 5.4 that includes shear deformations would require 

knowledge of the joint probability distribution of EL and GLT.  Even first-order 
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Table 8. Resistance Factors for Doubly Symmetric Columns  
with Buckling Failure Using Equation 5.4 

        (EL and GLT perfectly correlated). 
 

Resistance Factor (φ) 
    Ln/Dn     

COV 0.5 1.0 2.0 3.0 4.0 
0.050 0.906 0.868 0.825 0.804 0.794 
0.075 0.892 0.880 0.845 0.827 0.817 
0.100 0.849 0.861 0.846 0.834 0.826 
0.150 0.743 0.770 0.783 0.785 0.783 
0.200 0.636 0.666 0.687 0.695 0.697 
0.250 0.536 0.565 0.587 0.559 0.602 

 

 
statistically independent, and then assuming EL and GLT to be perfectly correlated.   

Results for these two assumptions are shown in Table 9 for different values of the 

slenderness ratio L/r, the nominal live load to dead load ratio Ln/Dn, and the ratio 

of the mean values, 
LTL GE µµ / .  The ratio of 6/ =

LTL GE µµ  is typical of glass 

fibers and the ratio 20/ =
LTL GE µµ  is typical of carbon fibers.  It is assumed in 

Table 9 that both EL and GLT have the same coefficient of variation. 

 It is seen in Table 9 that there is little difference between the resistance 

factor for assuming statistical independence and assuming perfect correlation.  

The resistance factors for assuming perfect correlation average 3.4% less than for 

assuming statistical independence.  Also given in Table 9 are the resistance 

factors from equation 5.5.  It is seen that equation 5.5 tends to be slightly 

conservative, with the resistance factor averaging 3.3% less than that for 

assuming   perfect   correlation   between   EL   and   GLT.   For   simplicity,   it   is  
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Table 9.  Resistance Factors for Different Assumptions Concerning EL and GLT. 

Resistance Factors 

CV Ln/Dn L/r LTL GE µµ / EL and GLT 

Independent 

EL and GLT 

Perfectly 

Correlated 

Equation 

5.5 

6 0.879 
40 

20 0.909 

6 0.864 
1 

100 
20 0.871 

0.861 

6 0.836 
40 

20 0.853 

6 0.827 

0.1 

4 

100 
20 0.831 

0.825 

0.825 

6 0.696 
40 

20 0.763 

6 0.671 
1 

100 
20 0.683 

0.666 

6 0.728 
40 

20 0.791 

6 0.702 

0.2 

4 

100 
20 0.714 

0.697 

0.650 

 

 

 

 

 

 



 59

recommended that equation 5.5 be used to determine the resistance factor for 

buckling of doubly symmetric cross-sections whether equation 5.3 or equation 5.4  

is used to determine the buckling load.  Equation 5.4 should be used to determine 

the buckling load when the material properties are such that shear deformations 

are significant. 

5.4 LOCAL BUCKLING FOR DOUBLY SYMMETRIC CROSS-      
      SECTIONS 
 

Yoon (1993) investigated experimentally and analytically short-term 

compression behavior for axially loaded I-shaped FRP columns. He tested a total 

of thirty-two I-shaped columns made from pultruded fiber reinforced polymer 

materials. Twenty-two specimens were made using a polyester matrix, and ten 

specimens were made using a vinylester matrix. The sizes and lengths for these 

specimens were selected so that local buckling occurred at loads less than those 

which would cause global buckling or material failure. The lengths varied from 

35 in. to 120 in., with slenderness ratios ranging from 20 to 50. The width to 

thickness ratios of the flange ranged from 6 to 13 and the depth to thickness ratios 

for the web ranged from 15 to 26. The experiment was terminated at the post 

buckling stage. After applying the load, the column specimen was observed until 

the out-of-plane deflections at the tips of the flange occurred. Critical buckling 

loads were experimentally determined and compared to the analytical critical 

buckling loads. 

 An analytical solution was developed for the prediction of the local 

buckling loads for pultruded columns composed of flat plates under short-term 
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axial loads. The proposed solution is based on the classical orthotropic plate 

theory. It accounts for the rotational restraint at the junction of the web and the 

flange.  

)/()1( 12
E 

2
2112

2211
2

tb
E

cr
νν

π
σ

−
=                                                                      (5.6) 

where, 

 σ cr : the critical buckling stress.  

 E11 : major Young’s modulus. 

 E22 :minor Young’s modulus. 

ν12 : major Poisson’s ratio, 
E
E

22

11
12 <ν . 

            ν 21 : minor Poisson’s ratio, 
E
E

11

22
21 <ν . 

             t: the thickness of the plate. 

             b: the width of the plate or half the with of the flange. 

 Tension and compression tests were performed to estimate the material 

properties E11 , E22 , ν12 , and ν 21 . The average values for E11  and E22  in tension 

and compression tests were almost identical. The experimental local buckling 

loads ( Pexp ) were compared to those predicted theoretically ( Ppred ) using 

equations 5.6. The major Poisson’s ratio (ν12 ) and the minor Poisson’s ratio (ν 21 ) 

are considered to be constants since changing ν12  and ν 21  by up to 50% has a 

small effect on the critical buckling stress (<3%). The major Young’s modulus of 
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elasticity ( E11 ) and the minor Young’s modulus of elasticity ( E22 ) are considered 

to be the random variables. Data values (thirty-two specimens) for both variables 

developed by Yoon (1993) were used to determine the correlation between them. 

The correlation coefficient between E11  and E22  was calculated to be 0.353. The 

correlation coefficient (0.353) was compared to the value from equation 3.16 

(Sachs, 1983) for two sided test at 5% level with degrees of freedom equal to the 

number of data point minus two (DF=n-2). For n=32, the corresponding value is 

0.349. Since the correlation coefficient (0.353) is very close to the corresponding 

value using equation 3.16 (more by 1%), both E11  and E22  are considered to be 

independent random variables. Both random variables are assumed to fit the two-

parameter Weibull Distribution. 

Experimental results for local buckling tests were compared to the 

analytical results. The ratio of the experimental critical load, Pexp , to the 

analytical critical load, Panal , ranged from 0.844 to 1.42 with an average of 1.07 

and a standard deviation of 0.146 (Yoon, 1993). The ratio of the experimental 

resistance to the calculated resistance, or the model error, was fit by a normal 

distribution. The resistance factors were developed using equation 5.6 for all 

cases of DL nn /  (0.5, 1.0, 2.0, 3.0, and 4.0). The resistance factor is almost 

constant with varying DL nn / . The average values of the resistance factors are 

considered in this analysis. All values for the resistance factors are tabulated in 

table 10.  Based  on  data  developed by Yoon (1993), µµ EE 2211
/  is assumed to be  
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Table 10. Resistance Factors for Columns with Local Bucking Using  
               Equation 5.6. 

Resistance Factor (φ), Ln/Dn = 0.5 Resistance Factor (φ), Ln/Dn = 1 

COVE COVE 

COVG 0.05 0.075 0.1 0.15 0.2 0.25 COVG 0.05 0.075 0.1 0.15 0.2 0.25 

0.050 0.854 0.871 0.888 0.910 0.901 0.865 0.050 0.857 0.876 0.894 0.925 0.921 0.891 

0.075 0.871 0.891 0.909 0.931 0.922 0.885 0.075 0.876 0.895 0.914 0.946 0.942 0.914 

0.100 0.895 0.907 0.927 0.948 0.943 0.905 0.100 0.894 0.914 0.933 0.965 0.962 0.936 

0.150 0.91 0.931 0.948 0.974 0.975 0.942 0.150 0.92 0.940 0.960 0.990 0.999 0.975 

0.200 0.901 0.922 0.943 0.975 0.988 0.970 0.200 0.921 0.942 0.962 0.997 1.015 1.002 

0.250 0.865 0.885 0.905 0.942 0.968 0.974 0.250 0.891 0.913 0.935 0.975 1.002 1.011 

Resistance Factor (φ), Ln/Dn = 2 Resistance Factor (φ), Ln/Dn = 3 

COVE COVE 

COVG 0.05 0.075 0.1 0.15 0.2 0.25 COVG 0.05 0.075 0.1 0.15 0.2 0.25 

0.050 0.836 0.857 0.872 0.903 0.914 0.899 0.050 0.824 0.843 0.860 0.892 0.908 0.899 

0.075 0.857 0.875 0.895 0.923 0.937 0.922 0.075 0.843 0.861 0.881 0.911 0.930 0.921 

0.100 0.873 0.893 0.912 0.945 0.957 0.944 0.100 0.860 0.881 0.900 0.931 0.951 0.940 

0.150 0.903 0.923 0.945 0.977 0.995 0.983 0.150 0.892 0.911 0.931 0.965 0.987 0.981 

0.200 0.914 0.937 0.957 0.995 1.051 1.014 0.200 0.906 0.930 0.951 0.987 1.009 1.014 

0.250 0.899 0.922 0.942 0.983 1.013 1.024 0.250 0.899 0.919 0.940 0.979 1.014 1.028 

Resistance Factor (φ), Ln/Dn = 4 Resistance Factor (φ), Ln/Dn Average 

COVE COVE 

COVG 0.05 0.075 0.1 0.15 0.2 0.25 COVG 0.05 0.075 0.1 0.15 0.2 0.25 

0.050 0.816 0.833 0.852 0.884 0.902 0.894 0.050 0.837 0.856 0.873 0.903 0.909 0.890 

0.075 0.832 0.854 0.873 0.904 0.923 0.917 0.075 0.856 0.875 0.894 0.923 0.931 0.912 

0.100 0.853 0.871 0.891 0.925 0.944 0.940 0.100 0.875 0.893 0.913 0.943 0.951 0.933 

0.150 0.882 0.903 0.925 0.960 0.979 0.978 0.150 0.901 0.922 0.942 0.973 0.987 0.972 

0.200 0.902 0.923 0.944 0.979 1.006 1.013 0.200 0.909 0.931 0.951 0.987 1.014 1.003 

0.250 0.897 0.918 0.939 0.978 1.012 1.025 0.250 0.890 0.911 0.932 0.971 1.002 1.012 

 



 63

1.8. Changing the ratio µµ EE 2211
/  has no effect on the resistance factors. Figure 6 

shows the resistance factors obtained from equation 5.6 for resistance vs. COV for 

both E11  and E22 . Figure 6 shows that the resistance factor is almost constant 

regardless of the coefficient of variation of E11  and E22  for all values of 

coefficient of variations. The  resistance  factor  using  the best-fit  surface  for the 

 
data would be: 

φ = 0.93           for all values of ( ) 11ECV and ( ) 22ECV                               (5.7)                     

 An interesting phenomenon occurs for the case when ( ) 11ECV and ( ) 22ECV  

are equal; the resistance factor actually decreases with decreasing ( )ECV .  This 

can be explained by looking at Figure 7 that shows three relationships for the case 

of Ln/Dn=1.0.  One line shows a resistance factor based on using the mean value 

of E instead of the nominal value.  The resistance factor increases with decreasing 

( )ECV .  A second line shows the ratio of the mean value of E to the nominal, or 

fifth percentile, value of E.  The resistance factor for use with the nominal value 

of E is found by multiplying the resistance factor based on mean of E by the ratio 

of mean to nominal.  Since  the  ratio  of  the  mean  to  the  nominal is decreasing 

faster than the resistance factor based on the mean value is increasing, the 

resistance factor based on nominal values does actually decrease with decreasing 

( )ECV when ( ) 11ECV = ( ) 22ECV . 
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 Figure 6. Resistance Factors for Doubly Symmetric Cross-Sections  
                            with Local Buckling Failure vs. COV of E11  and E22 . 
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5.5 EQUAL LEG ANGLE CROSS – SECTIONS 
 

Zureick and Steffen (2000) tested 25 concentrically loaded equal-leg 

single angle FRP members with slenderness ratios from 30 to 105. All specimens 

had E-glass reinforcement, with seven having a polyester matrix and eighteen 

having a vinylester matrix. Buckling occurred in either a flexural mode (flexure 

about the minor principal axis) or a flexural-torsional mode (flexure about the 

major principal axis and twist about the member longitudinal axis). For the 

flexural mode, the critical buckling load is of the form (Zureick and Steffen, 

2000): 
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= 2

2π                                                                                    (5.8) 

where Pez is the flexural buckling load about the minor principal axis, or 

the z-axis.  Seven specimens failed in this mode.  The ratio of Pexp/Pez ranged 

from 0.74 to 0.93 with an average of 0.81 and a standard deviation of 0.065.  A 

lognormal distribution provided an adequate fit to the model error. The resistance 

factors determined using equation 5.8 are shown in table 11. Figure 8 shows the 

resistance factor obtained using equation 5.8 for the resistance vs. the coefficients 

of variation of the longitudinal modulus, ( )
LECV for all DL nn /  ratios. Based on 

best fit lines, a resistance factor for the limit state of flexural buckling would be: 

 ( ) 71.035.184.0 ≤−=
LECVφ                                                       (5.9) 

For the flexural-torsional mode, the critical buckling load can be shown to 

have the form (Zureick and Steffen, 2000): 
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Table 11. Resistance Factors for Equal Leg Columns with 
  Flexural Bucking Using Equation 5.8. 

 
Resistance Factor (φ) 

  Ln/Dn   
COV 0.5 1.0 2.0 3.0 4.0 
0.050 0.747 0.721 0.689 0.673 0.664 
0.075 0.741 0.733 0.708 0.693 0.685 
0.100 0.712 0.722 0.710 0.700 0.693 
0.150 0.627 0.651 0.661 0.663 0.661 
0.200 0.539 0.565 0.583 0.589 0.592 
0.250 0.457 0.481 0.500 0.508 0.512 

 
 

 

 

 

Figure 8. Resistance Factors for Equal Leg Single Angle-Sections 
           with Flexural Buckling Failure Based on En  for all DL nn   

                  Using Model Error of Equation 5.8. 
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where Pft is the flexural-torsional buckling load, Pey is the buckling load about the 

major principal y-axis, Pex is the torsional buckling load about the longitudinal x-

axis, and H is combined material and geometrical constant with the details in 

Zureick and Steffen (2000).  Eighteen specimens failed in this mode.  The ratio of 

Pexp/Pft ranged from 0.97 to 1.39 with an average of 1.14 and a standard deviation 

of 0.126.  Besides the analytical difficulty of equation 5.10, the development of a 

resistance factor would require knowledge of the joint probability distribution of 

EL, GLT, and the major and minor Poisson’s ratios, νLT and νTL. 

 Zureick and Steffen (2000) developed a simplification to Equation 5.10 

for EL/GLT<20: 
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= 29.0                                                                                  (5.11) 

where b is the width of a leg and t is the thickness of a leg.  The ratio of Pexp/Pft 

with Pft obtained from equation 5.11 ranged from 1.08 to 1.66 with an average of 

1.31 and a standard deviation of 0.135.  A normal distribution provided an 

adequate fit for the model error. 

Equation 5.11 over predicts the flexural-torsional buckling loads and 

results in resistance factors greater than 1.0 for coefficients of variation less than 

0.135. This equation has been modified, by multiplying the flexural-torsional 

buckling loads by the mean of the model error, 1.31. The constant becomes 1.2, 
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which is the old constant, 0.9, times 1.31, resulting in Equation 5.12.  

A
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







= 22.1                                                                                   (5.12) 

The modified model error has a mean of 1.0 and a CV of 0.17. The 

resistance factors developed using equation 5.12 are shown in table 12. 

 
Figure 9 shows the resistance factor obtained using equation 5.12 for the 

resistance vs. the coefficients of variation of the longitudinal modulus, ( )
LECV for 

all DL nn /  ratios. The resistance factor according to the best-fit lines for the data 

would be: 

( ) 84.087.093.0 ≤−=
LTGCVφ                                                               (5.13) 

5.6 MATERIAL FAILURES (SHORT COLUMNS)  

Short columns will fail by a material failure, or crushing.  The resistance is 

determined as P = (FC)L Ag, where (FC)L is the longitudinal compressive strength.  

No model error is necessary for material failure as (FC)L was found as a load 

divided by an area, or using the same prediction equation.  The resistance factors 

developed for material failure are included in table 13.  

Figure 10 shows the resistance factor obtained  for the resistance vs. the 

coefficients of variation of the longitudinal modulus, ( )
LECV for all DL nn /  ratios. 

The resistance factor according to the best-fit line for the data would be: 

( )( ) 79.040.203.1 ≤−=
LCFCVφ                                                                                   (5.14) 

The CV of the longitudinal compressive strength, (FC)L, will be a function 



 69

Table 12. Resistance Factors for Equal Leg Columns with 
                    Flexural-Torsional Bucking Using Equation 5.12. 

 

Resistance Factor (φ) 
    Ln/Dn     

COV 0.5 1.0 2.0 3.0 4.0 
0.050 0.787 0.836 0.858 0.848 0.781 
0.075 0.807 0.837 0.853 0.848 0.614 
0.100 0.807 0.831 0.849 0.711 0.646 
0.150 0.801 0.826 0.800 0.745 0.672 
0.200 0.796 0.833 0.831 0.769 0.683 
0.250 0.816 0.856 0.846 0.777 0.688 

 

 

 

 
Figure 9. Resistance Factors for Equal Leg Single Angle-Sections  

  with Flexural-Torsional Buckling Failure Based on En  
     for all DL nn  Using Model Error of Equation 5.12. 
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               Table 13 Resistance Factors for Material Failure. 

Resistance Factor (φ) 
    Ln/Dn     

COV 0.5 1.0 2.0 3.0 4.0 
0.050 0.818 0.645 0.463 0.324 0.222 
0.075 0.742 0.724 0.685 0.667 0.655 
0.100 0.764 0.651 0.481 0.339 0.234 
0.150 0.712 0.635 0.488 0.350 0.242 
0.200 0.688 0.623 0.488 0.353 0.247 
0.250 0.675 0.615 0.487 0.355 0.249 

 

 

 

 
Figure 10. Resistance Factors for all Cross-Sections of Material Failure  

                           Based on En  for all DL nn . 
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of the specimen width.  Coupon specimens with a greater width will have less 

variation than specimens with a smaller width.  Typically a 25 mm wide specimen 

is tested.  As most actual cross-sections will have widths greater than this, the 

actual CV of the strength of the cross-section will probably be less than the CV of 

the coupon.  Using the CV of the coupon in equation 5.14 will thus typically be 

conservative. 

5.7 DOUBLY SYMMETRIC SIMPLY SUPPORTED BEAMS 
 
 Stoddard (1997) investigated experimentally and analytically the lateral-

torsional behavior of hybrid (E-glass and carbon fiber) and non-hybrid (all glass 

fiber) FRP I-shaped beams subjected to vertical concentrated short term loading 

acting at mid-spans. Five different I-shaped 4 x 2 x ¼ in. reinforced cross sections 

were  tested.  Eight specimens  were  used  in  this study.  Elastic  lateral-torsional  

buckling of doubly symmetric FRP beams was predicted theoretically using three 

approaches. 

  Three analytical approaches were presented to calculate the lateral-

torsional buckling loads. The first approach is the classical one-dimensional 

isotropic theory derived by Timosheko and Gere (1961) for thin walled slender I-

shaped loaded with pure moment around the X-axis. The isotropic material 

properties were replaced by orthotropic material properties. The second approach 

uses the energy method along with an orthotropic constitutive system developed 

by Pandey at. al (1995). This approach failed to account for the importance of 

load height above the shear center and bending-twisting coupling effects. The 

third approach was derived to account for these deficiencies in order to predict 
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more accurately the lateral-torsional buckling loads for FRP beams. The results 

using the third formulation are considered in this study. The approximate solution 

for the critical lateral-torsional buckling load is derived to be as follows 

(Stoddard, 1997): 
















+−++=

GJLGJGJGJ
GJ
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I

H
L

I
L

II
L

P yysc

yy

syysc
yycr

ααπ ωω 729.1
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176.0989.21.199.17 2

2

2

2

2

2  (5.15) 

where, 

Pcr : critical load. 

L: span length. 

G: shear modulus of elasticity. 

J: torsional constant. 

  I yy : minor axis bending stiffness, IE YYa ., . 

   IY : minor axis second moment of inertia. 

  E Ya, : apparent modulus of elasticity in minor axis. 

 Iωω : wraping stiffness, CE Ya ω., . 

Cω : wraping constant. 

  α sc : distance between shear center and application of load. 

  H s : bending-twisting coupling term.  

 The bending - twisting coupling term of equation 5.15 ( H s ) has been 

ignored since H s  has relatively no effect (<0.1 %) on the lateral–torsional 

buckling load for the boundary and loading conditions used (Stoddard, 1997). The 

distance between the shear center of the cross section and the point at which the 
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load is applied to the beam (α sc ) has a dramatic effect on the lateral–torsional 

buckling capacity of the member (Stoddard, 1997). The modulus of elasticity in 

minor axis ( E Ya, ) and the shear modulus of elasticity (G) are considered to be the 

random variables. Data values (eight specimens) for both variables developed by 

Stoddared (1997) were used to determine the correlation between them. The 

correlation coefficient between E Ya,  and G was calculated to be -0.660. The 

correlation coefficient (-0.660) was compared to the value from equation 3.16 

(Sachs, 1983) for two sided test at 5% level with degrees of freedom equal to the 

number of data point minus two (DF=n-2). For n=8, the corresponding value is 

0.707. Since the correlation coefficient (0.660) did not exceed the corresponding 

value using equation 3.16, both E Ya,  and G are considered to be independent 

random variables. Both random variables are assumed to fit the two-parameter 

Weibull Distribution. 

Experimental results for lateral-torsional buckling tests were compared to 

the analytical results. The ratio of the experimental critical load, Pexp , to the 

analytical critical load, Panal , ranged from 0.8 to 1.24 with an average of 1.07 and 

a standard deviation of 0.12 (Stoddard, 1997). The ratio of the experimental 

resistance to the calculated resistance, or the model error, was fit by a normal 

distribution. The resistance factors were developed using equation 5.15 for all 

cases of DL nn /  (0.5, 1.0, 2.0, 3.0, and 4.0). The resistance factor is almost 

constant with varying DL nn / . The average values of the resistance factors are 

considered in this analysis. All values for the resistance factors are tabulated in 
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table 14. Based on data developed by Stoddard (1997), µµ GYaE
/

,
 is assumed to 

be 9. Changing the ratio µµ GYaE
/

,
 from 9 to 8 or 10 has relatively no effect 

(<0.5%) on the resistance factors. Figure 11 shows the resistance factors obtained 

from equation 5.15 for resistance vs. COV for E Ya,  (for all cases of COV of G). 

Figure 12 shows the resistance factors obtained from equation 5.15 for resistance 

vs. COV for G (for all cases of COV of E Ya, ). Figure 11 shows that the resistance 

factor is almost constant with varying the coefficient of variation of E Ya,  for 

( ) 10.0
,

≤
E Ya

CV , and decreases with increasing the coefficient of variation of E Ya,  

for ( ) 10.0
,

≥
E Ya

CV . Figure 12 shows that the resistance factor is almost constant 

with varying the coefficient of variation of G for all values of COV of E Ya, . 

A reasonable fit to the data is a constant resistance factor for 

( ) 10.0
,

≤
E Ya

CV , and a resistance factor that is a linear function of the coefficient 

of variation of E Ya,  for ( ) 10.0
,

≥
E Ya

CV .  The resistance factor using best-fit lines 

for the data would be: 

 ( ) 93.0)( 0.99 03.1 E Y a, ≤−= CVφ                                                                 (5.16) 

Thus, it is proposed that rather than a constant resistance factor, the resistance 

factor be a function of ( )E Y a,CV , or the uncertainty level in the FRP material 

property.  The resistance factor would increase with a decreasing coefficient of 

variation of the modulus of elasticity in minor axis, E Ya, , and remain constant 

with varying the shear modulus of elasticity, G.   
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Table 14. Resistance Factors for Simply Supported Beams with 
        Lateral-Torsional Buckling Using Equation 5.15. 

Resistance Factor (φ), Ln/Dn = 0.5 Resistance Factor (φ), Ln/Dn = 1 

COVE COVE 

COVG 0.05 0.075 0.1 0.15 0.2 0.25 COVG 0.05 0.075 0.1 0.15 0.2 0.25 

0.050 0.920 0.939 0.937 0.887 0.814 0.741 0.050 0.906 0.928 0.940 0.913 0.845 0.773 

0.075 0.928 0.947 0.946 0.895 0.823 0.749 0.075 0.914 0.939 0.951 0.922 0.854 0.782 

0.100 0.935 0.954 0.954 0.904 0.831 0.758 0.100 0.921 0.947 0.959 0.927 0.862 0.790 

0.150 0.949 0.970 0.968 0.918 0.846 0.771 0.150 0.937 0.964 0.974 0.946 0.881 0.808 

0.200 0.963 0.982 0.981 0.932 0.859 0.787 0.200 0.949 0.976 0.987 0.958 0.893 0.823 

0.250 0.976 0.995 0.993 0.943 0.872 0.808 0.250 0.961 0.990 0.998 0.970 0.906 0.835 

Resistance Factor (φ), Ln/Dn = 2 Resistance Factor (φ), Ln/Dn = 3 

COVE COVE 

COVG 0.05 0.075 0.1 0.15 0.2 0.25 COVG 0.05 0.075 0.1 0.15 0.2 0.25 

0.050 0.874 0.899 0.917 0.910 0.862 0.797 0.050 0.856 0.883 0.903 0.904 0.862 0.802 

0.075 0.882 0.908 0.927 0.919 0.871 0.806 0.075 0.863 0.891 0.914 0.915 0.871 0.811 

0.100 0.889 0.916 0.935 0.928 0.880 0.815 0.100 0.870 0.899 0.921 0.924 0.880 0.820 

0.150 0.905 0.933 0.953 0.947 0.986 0.831 0.150 0.884 0.915 0.936 0.939 0.898 0.839 

0.200 0.917 0.947 0.965 0.959 0.911 0.846 0.200 0.899 0.928 0.952 0.953 0.911 0.850 

0.250 0.930 0.958 0.978 0.971 0.923 0.860 0.250 0.912 0.941 0.964 0.966 0.924 0.867 

Resistance Factor (φ), Ln/Dn = 4 
10 

 

COVE COVE 

COVG 0.05 0.075 0.1 0.15 0.2 0.25 COVG 0.05 0.075 0.1 0.15 0.2 0.25 

0.050 0.846 0.873 0.894 0.899 0.861 0.805 0.050 0.880 0.904 0.918 0.903 0.849 0.784 

0.075 0.853 0.881 0.902 0.908 0.870 0.817 0.075 0.888 0.913 0.928 0.912 0.858 0.793 

0.100 0.861 0.889 0.910 0.971 0.879 0.826 0.100 0.895 0.921 0.936 0.931 0.866 0.802 

0.150 0.875 0.904 0.927 0.935 0.898 0.842 0.150 0.91 0.937 0.952 0.937 0.893 0.818 

0.200 0.888 0.918 0.942 0.951 0.915 0.857 0.200 0.923 0.950 0.965 0.951 0.898 0.833 

0.250 0.903 0.931 0.953 0.963 0.926 0.871 0.250 0.936 0.963 0.977 0.963 0.910 0.833 
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Figure 11. Resistance Factors for Doubly Symmetric Cross  

            Section Beams with Lateral-Torsional Buckling vs.  
            COV of E Ya,  for all Cases of COV of G. 

 

 
Figure 12. Resistance Factors for Doubly Symmetric Cross  

          Section Beams with Lateral-Torsional Buckling vs.  
          COV of G for all Cases of COV of E Ya, . 
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CHAPTER 6 

CONCLUSIONS 
 

Short-term concentrically loaded compression members and simply 

supported beams loaded with concentrated loads at mid-spans of fiber-reinforced 

polymeric (FRP) pultruded composite members were investigated using an 

analytical probabilistic based design procedure.  Resistance factors for use in an 

LRFD format are developed for columns with flexural buckling and local 

buckling of doubly symmetric sections, both for flexural buckling and flexural-

torsional buckling of equal leg angles, and material failure.  Resistance factors are 

developed for lateral-torsional buckling of doubly symmetric simply supported 

beams with concentrated loads at mid-spans. The resistance factors are based on a 

target reliability index of 3.0 for buckling failures and 3.5 for material failures.  

To account for different variabilities in the material properties from different 

compositions and manufacturing quality control, the developed resistance factors 

are a function of the coefficient of variation of the appropriate material properties.  

Creep and long term behavior were outside the scope of the present work and are 

not considered in this study.  It is recommended that creep and long-term behavior 

be investigated in future work. 

Based on the results of the present thesis, model code language can be 

developed.  The factored axial compression resistance load, Pr, for concentrically 

loaded compression FRP members is found as: 

nr PP φ=                                                                                                   (6.1) 



 78

where Pn is the nominal resistance and φ is the resistance factor.  The value of Pr 

shall not be taken as greater than: 

 
( )

( )( ) 79.040.203.1 ≤−=

=

LCF

gLCn

CV

AFP

φ
                                                               (6.2) 

For doubly-symmetric cross-sections, the factored resistance shall not be taken as 

greater than: 
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where PE is determined as: 
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For cases where EL/GLT is not greater than 6.0, it is permissible to take Pn as PE. 

For equal-leg angle sections, the factored resistance shall not be taken as greater 

than either of the following: 
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For simply supported beams, the factored resistance load, Pr, for mid-span 

concentrically loaded FRP members is found as: 

nr PP φ=                                                                                                   (6.7) 

 

For beams of doubly symmetric sections with concentrated loads at mid-spans, 

the factored resistance shall not be taken as greater than: 
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 In all cases, the nominal material properties are the 5-percentile values 

determined using a Weibull distribution for the data. 
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