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Abstract

Coping with computational intractability has inspired the development of a

variety of algorithmic techniques. The main challenge has usually been the design

of polynomial time algorithms for NP -complete problems in a way that guar-

antees some, often worst-case, satisfactory performance when compared to exact

(optimal) solutions.

We mainly study some emergent techniques that help to bridge the gap be-

tween computational intractability and practicality. We present results that lead

to better exact and approximation algorithms and better implementations. The

problems considered in this dissertation share much in common structurally, and

have applications in several scientific domains, including circuit design, network

reliability, and bioinformatics.

We begin by considering the relationship between graph coloring and the im-

mersion order, a well-quasi-order defined on the set of finite graphs. We establish

several (structural) results and discuss their potential algorithmic consequences.

We discuss graph metrics such as treewidth and pathwidth. Treewidth is well

studied, mainly because many problems that are NP -hard in general have polyno-

mial time algorithms when restricted to graphs of bounded treewidth. Pathwidth

has many applications ranging from circuit layout to natural language processing.

We present a linear time algorithm to approximate the pathwidth of planar graphs

that have a fixed disk dimension.

We consider the face cover problem, which has potential applications in fa-

cilities location and logistics. Being fixed-parameter tractable, we develop an

algorithm that solves it in time O(5k + n2) where k is the input parameter. This

is a notable improvement over the previous best known algorithm, which runs in

O(8kn).
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In addition to the structural and algorithmic results, this text tries to illustrate

the practicality of fixed-parameter algorithms. This is achieved by implementing

some algorithms for the vertex cover problem, and conducting experiments on

real data sets. Our experiments advocate the viewpoint that, for many practical

purposes, exact solutions of some NP -complete problems are affordable.
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Chapter 1

Introduction and Background

The notion of Fixed-Parameter Tractability has recently changed the landscape

in the search for efficient and practical algorithms for NP -hard problems. The

story started two decade ago, when Neil Robertson and Paul Seymour undertook

the task of proving a conjecture of Wagner [57]. They were able to establish

that graphs are well-quasi ordered by some containment relations. Their work,

considered by many to be the deepest discrete mathematics project of this cen-

tury, opened the door for many applications and inspired Fellows and Langston,

who were the first to notice and thoroughly study the algorithmic consequences

[28, 29, 30, 27]. They proved that some parameterized NP -complete problems

become tractable when the corresponding input parameter is fixed. This led to

the emergence of Parameterized Complexity Theory, pioneered mainly by Downey

and Fellows [21].

It is really due to this new classification of “difficulty” that many researchers

around the globe strive nowadays to obtain “faster” exact algorithms for some

NP -complete problems, once used to be dismissed as intractable. The problems

of interest are classified as fixed-parameter tractable. These are parameterized
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problems that become easy (tractable) when their input parameter is fixed. The

endeavor for proving that a certain parameterized problem is fixed-parameter

tractable is sometimes associated with obtaining better exact algorithms for the

problem. Such a “positive” impact is a lot more beneficial than negative answers

provided, only for the research community, by some hardness result.

In this first chapter, we briefly review some well-quasi ordering background

from a graph-theoretic angle. We discuss graph containment relations and single

out two of them that define well-quasi-orders: the minor order and the immersion

order. We also introduce (formally) the concept of fixed-parameter tractability

and survey some problems that are relevant to our work.

In chapter 2, we focus our attention on immersion containment and discuss its

relationship to graph coloring. Chapter 3 is devoted to the discussion of common

and new algorithmic techniques developed along the road for better and faster

algorithms. Some of these techniques are examined in more details in chapter

4 as we present sequential and parallel implementations for the Vertex Cover

problem. We also introduce a new algorithm to solve the Face Cover problem for

plane graphs. This is the context of chapter 5.

Some graph metrics are also discussed in this text. We focus our attention on

the treewidth and pathwidth of graphs. The pathwidth metric has been studied

recently because of its applications in VLSI design. In fact, the author’s research

started by trying to obtain fast approximation algorithms for the pathwidth of

planar graphs that have a fixed disk dimension. A new algorithm, presented in

chapter 6, nicely reduces the task of approximating the pathwidth of a graph

of disk dimension k to that of an outerplanar graph by loosing only an additive

constant.

2



1.1 Notation

We mainly restrict our attention to finite, simple and undirected graphs. We

neglect loops and multiple edges that may be introduced by applying some oper-

ations to graphs under discussion. For a given graph G, V (G) and E(G) denote

the sets of vertices and edges of G respectively. For simplicity, we often use V and

E, without refering to G, when no confusion results. The cardinality of V (also

termed the order of G) is denoted by n. Edges of a simple graph are uniquely

identified by their endpoints. We use uv to denote an edge whose endpoints are

u and v.

The neighborhood of a vertex v of G = (V,E) is defined by: NG(v) = {u ∈
V : uv ∈ E}. The subscript G will be dropped and N(v) will be used when there

is no ambiguity about the graph under discussion. The cardinality of N(v) is the

degree of v. The smallest and largest degrees taken over all vertices of a graph

are denoted by δ(G) and ∆(G) respectively.

We denote by Ks the complete graph on s vertices. Ks,t = (A,B) will be

used to denote a complete bipartite (or bichromatic) graph where {A,B} is the

corresponding partition of V (G). Complete graphs play an important role in our

applications. Particularly, we will be interested in finding complete subgraphs

(AKA cliques) of maximum size in a given graph.

Part of this work is restricted to planar graphs. A planar graph is one that

can embed in the plane without edge crossings. A particular planar embedding

(or simply, drawing) of a graph is called a plane graph. The family of planar

graphs has many interesting subfamilies. An outerplanar graph, for example, is a

planar graph that has at least one embedding in the plane minus an open disk so

that vertices lie on the boundary of the disk and edges are drawn in the exterior

(or, equivalently, interior) of the disk without crossing. Outerplane graphs are

3



particular outerplanar embeddings or drawings of outerplanar graphs.

1.2 Graph Metrics

We briefly describe some properties of graphs that are commonly known as graph

metrics. Among several well known graph metrics, the ones reviewed in this

section are those relevant to our work.

1.2.1 Treewidth

Definition 1 A tree decomposition of a graph G is a pair (T, Y ), where T is a

tree and Y = {Yi : i ∈ V (T )} is a collection of subsets of V (G) satisfying the

following:

(i) ∀uv ∈ E(G),∃i such that {u, v} ⊆ Yi.

(ii) ∀i, j, k ∈ V (T ), if j is on the path between i and k in T , then Yi ∩ Yk ⊆ Yj.

The width of a tree decomposition (T, Y ), denoted by w((T, Y )), is max{|Yi| :

Yi ∈ Y } − 1. The treewidth of G, denoted by tw(G), is min{w((T, Y )) : (T, Y ) is

a tree decomposition of G}.

Tree decompositions of a graph G whose width is the same as tw(G) are

considered optimal tree decompositions. Figure 1.1 shows a graph and two tree

decompositions of which one is optimal.

1.2.2 Pathwidth

Definition 2 A path decomposition of a graph G is a pair (P,X), where P is a

path and X = {Xi : i ∈ V (P )} is a collection of subsets of V (G) satisfying the

following:

4
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Figure 1.1: (a) A graph G. (b) A tree decomposition of G. (c) An optimal tree

decomposition of G.

(i) ∀uv ∈ E(G),∃i such that {u, v} ⊆ Xi.

(ii) ∀i, j, k ∈ V (P ), if i ≤ j ≤ k, then Xi ∩ Xk ⊆ Yj.

The width of a path decomposition (P,X), denoted by w((P,X)), is max{|Xi| :

Xi ∈ X} − 1. The pathwidth of G, denoted by pw(G), is min{w((P,X)) : (P,X)

is a path decomposition of G}.

As for tree decompositions, optimal path decompositions of a graph, G, are

those whose width agree with pw(G). Figure 1.2 shows a graph and two path

decompositions of which one is optimal.

The pathwidth of any path is one. The pathwidth of a complete graph, Kt, is

t − 1 (since any pair of vertices of Kt must belong to at least one Xi in any path

decomposition (P,X)). Moreover, trees could have arbitrarily large pathwidth, as
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witnessed by ternary trees1. This being true since the pathwidth of a ternary tree

grows with its height.

Since a path is a special tree, any path decomposition of a graph G is a tree

decomposition. Hence, ∀G, tw(G) ≤ pw(G). This inequality is strict in general.

The fact that ternary trees could have arbitrary pathwidth shows that the gap

between the treewidth and the pathwidth of a graph could be arbitrarily large.

1.2.3 Cutwidth

A linear layout of a graph G is a permutation, L, of the vertices of G. In other

words, L is a function from V (G) to {1, 2, . . . , |V (G)|}. We think of a linear layout

as a drawing of G so that vertices lie on a horizontal line while edges are free to

cross (even if the graph is planar). The cutwidth of a linear layout of a graph

G is the maximum number of edges of G that are cut by a vertical line drawn

between consecutive vertices in the layout. The cutwidth of G is the minimum

cutwidth taken over all possible linear layouts of G. Figure 1.3 shows a graph and

two possible linear layouts of which one is optimal.

����
��
��
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�
�� ����

a

d c

b
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 � �� �
��   

� �� � � �� �
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a b d c
� �� �

�� � �
� �

�� �
�
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� �� �

a cb d

(a) (b) (c)

width = 4 width = 3

Figure 1.3: (a) A graph G. (b) A linear layout of G. (c) An optimal linear layout

of G.

1trees whose internal vertices are all of degree 3
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1.3 Well-Quasi-Ordering Theory and Graphs

Let ≤ be a binary relation defined on a set X. (X,≤) is called a quasi-order if

≤ is reflexive and transitive in X. It is sometimes more convenient to say: ≤
defines a quasi-order on X, or X is quasi-ordered by ≤. An antichain is a set of

elements of X that are pairwise uncomparable under ≤2. A descending chain is

a sequence of distinct elements, a1, a2, a3, . . ., of X such that ai+1 ≤ ai for i ≥ 0.

A quasi-ordered set (X,≤) is a well-quasi-order (or, for simplicity, wqo) if (1) it

has no infinite antichain, and (2) there exist no infinite descending chain.

We shall see that finding a wqo relation on the set of graphs may have impor-

tant algorithmic consequences. There are many well known quasi-order relations

defined on graphs. The subgraph relation, denoted ≤, being the first to notice.

Unfortunately, ≤ is not a wqo since, for example, the set of all cycle graphs

presents an infinite antichain. (see figure 1.4).

1.3.1 Topological Containment

Let e = uv be an edge of a graph G. Subdividing e is the operation that replaces

e by a path with endpoints u and v. The length of the introduced path may be

zero or more. A subdivision of a graph H is a graph obtained from H (or a graph

isomorphic to H) by edge subdivision.

A graph H is said to be topologically contained in a graph G, written H ≤t G,

if a subgraph, H ′ of G is isomorphic to a subdivision of H. H ′ is called an H-mode

in G and vertices of H ′ that correspond to those of H are called corners of the

model. Figure 1.5 shows that K4 is topologically contained the three-dimensional

cube, Q3.

2a and b are comparable under ≤ if either a ≤ b or b ≤ a

8
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Remark 1 H ≤t G if and only if there is a one-to-one mapping from V (H) to

V (G) under which edges of H are mapped to vertex-disjoint paths between the

images of the corresponding endpoints.

Topological containment induces another quasi-order relation on graphs, usu-

ally called the topological order . It is not, however, a wqo. The infinite antichain

for subgraph containment, depicted in figure 1.4, does not serve as an antichain

for ≤t since C3 ≤t C4 ≤t C5 ≤t .... A well known example is the infinite sequence

of double − cycle graphs, depicted in figure 1.6 below.

1.3.2 Minor Containment

Let e = uv be an edge of a graph G. Contracting e is the operation that replaces

e, u, and v by one vertex w, and sets N(w) = N(u) ∪ N(v). A graph H is said

to be a minor of a graph G, written H ≤m G, if a graph isomorphic to H can be

obtained from a subgraph of G by contracting edges. This notion is illustrated in

figure 1.7, which shows that K5 is a minor of the Peterson graph.

Minor containment defines a quasi-order on the set of graphs. In their deepest

discrete mathematics work of the century, Robertson and Seymour proved what

is now known as the Graph Minor Theorem [55]:

Theorem 1 Graphs are well-quasi-ordered by minor containment.

Remark 2 Minor containment can also be characterized as follows: H is a minor

of G if and only if there exists a one-to-one mapping from the vertices of H

to connected subgraphs of G for which the images of adjacent elements of H

are connected in G by vertex-disjoint paths. It follows that the minor order is

a generalization of the topological order, because a single vertex is a trivially

connected component.
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Remark 3 It was shown in [28] that, if ∆(H) ≤ 3, then, for any graph G,

H ≤m G if and only if H ≤t G.

1.3.3 Immersion Containment

A pair of adjacent edges uv and vw, with u 6= v 6= w, is lifted by deleting the

edges uv and vw, and adding the edge uw. A graph H is said to be immersed

in a graph G if and only if a graph isomorphic to H can be obtained from G by

taking a subgraph and lifting pairs of edges. This notion is illustrated in figure

1.8, which shows that K4 is immersed in K1 + P5.

Another result of the work of Robertson and Seymour is the following theorem.

Theorem 2 [56] Graphs are well quasi-ordered by immersion containment.

Remark 4 H is immersed in G if and only if there exists a one-to-one mapping

from the vertices of H to the vertices of G for which the images of adjacent

elements of H are connected in G by edge-disjoint paths. Under such an injection,

an image vertex is called a corner of H in G; all image vertices and their associated

paths are collectively called a model of H in G. Therefore, like the minor order, the

immersion order is also a generalization of the topological order. This is trivially

due to the fact that vertex-disjoint paths are edge-disjoint.

Remark 5 if ∆(G) ≤ 3, then, for any graph H, H ≤i G if and only if H ≤t G.

Combining this with remark 3, we obtain: if ∆(H) ≤ 3 and ∆(G) ≤ 3 then

H ≤t G ⇐⇒ H ≤m G ⇐⇒ H ≤i G.

We revisit the immersion order in more details in the next chapter by discussing

its relationship with graph coloring.
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1.4 Algorithmic Consequences of WQO Theory

A family F of finite graphs is closed in the minor order if G ∈ F implies that any

minor of G is in F . The obstruction set of F , denoted by obs(F,≤m), consists of

minor-minimal elements in F ’s complement. Therefore, F can be characterized

by means of obs(F,≤m) as follows: G ∈ F ⇐⇒ ∀H ∈ obs(F,≤m), H 6≤m G. Due

to WQO theory, we know that obs(F,≤m) is finite. (Otherwise, it would be an

infinite anti-chain.) Thanks for the following theorem of Robertson and Seymour

[55], such F must have a polynomial time recognition test.

Theorem 3 For every fixed graph H, there exists a polynomial time algorithm

that, given a graph G, decides whether H ≤m G.

Remark 6 The run time of the algorithm mentioned in Theorem 3 is O(n3). It

will be O(n) if the graph G is of bounded treewidth. Despite the large constant

hidden by the big O notation, such run time is interesting since the order of H

did not show up in the exponent of n. We study this type of (fixed-parameter)

algorithms in the next section.

It would be useful (algorithmically) if one is able to determine the elements of

obs(F,≤m). Unfortunately, WQO theory does not provide such information.

13



Theorem 4 [30] There is no algorithm to compute, from a finite description of a

minor-closed family F of graphs as represented by a Turing machine that accepts

precisely the graphs in F , the set of obstructions for F .

Note that families of finite graphs that are closed in the immersion order also

have finite obstruction sets. Moreover, due to the following theorem of Fellows

and Langston [29], they can be recognized in polynomial time.

Theorem 5 For every fixed graph H, the problem that takes as input a graph G

and determines whether H ≤i G is solvable in time O(nh+3), where h is the order

of H.

Remark 7 For an immersion closed family, F , the membership test is O(nh+3),

where h is the order of the largest graph in obs(F,≤i). It was shown in [29] that,

if F is of bounded treewidth, then it has an O(n2) membership test. This mem-

bership test used the result of Robertson and Seymour that testing for immersion

containment can be done in linear time on graphs of bounded treewidth [55]. We

note that such membership test should, in principle, run in linear time since its

quadratic time was due to an algorithm for constructing tree decompositions of

bounded width, which now takes linear time[6].

Let ≤Q be any quasi-order defined on the set of finite graphs. A family F of

finite graphs is said to exclude a graph H in ≤Q, if H 6≤Q G for all G ∈ F (in

other words, if H /∈ obs(F,≤Q)). For example, planar graphs are characterized

by Kuratowski theorem as the family of graphs that exclude K5 and K3,3 in the

topological order [42]. The same characterization holds if topological containment

is replaced by minor containment [65].

A family F of finite graphs is said to have a bounded treewidth if for all G ∈ F ,

tw(G) ≤ c, where c is a constant. For example, the family of outerplanar graphs

14



has treewidth two. In fact, graphs of treewidth two are exactly the series-parallel

graphs . These are planar graphs that exclude K4 in the minor order3.

Graph families that are closed in the minor order and exclude a planar graph

are of particular interest, again, due to the following results of Robertson and

Seymour [55].

Theorem 6 For every planar graph H, there exists a constant CH , such that

every graph G that doesn’t have an H-minor satisfies tw(G) ≤ CH .

Theorem 7 If a family F of finite graphs is minor-closed and excludes a planar

graph, then F has a polynomial-time membership test.

Remark 8 Theorem 7 predated the linear-time tree decomposition algorithm of

Bodlaender [6]. It is now well known that graph families that are closed in the

minor order and exclude a planar graph can be recognized in linear time.

1.5 Parameterized Complexity

Many problems of practical interest are NP-complete [32]. In other words, it is

very unlikely that a polynomial-time algorithm exists for any of these problems.

Various algorithmic techniques were invented solely to cope with this computa-

tional intractability problem. Common classical methods include approximation

algorithms, randomized algorithms, and heuristic techniques. Once a problem

is determined to be NP-Complete, exact algorithms used to be dismissed and

classical methods were the only adopted methods of approach.

Despite the fact that exact solutions are not usually sought, many exact expo-

nential algorithms appeared for NP -complete problems [44, 24, 59]. Practicality,
3By remark 3, series-parallel graphs are also characterized by those that exclude K4 in the

topological order.
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however, was not usually pursued. We can list several “fastest” exact exponential

algorithms that were never implemented.

Not all applications benefit from approximate or heuristic solutions. Especially

if, in practice, exact algorithms could deliver desired solutions in real time. In fact,

in some practical applications of some NP -complete problems, either the input

instance is of modest size or some input parameter is fairly small. In chapter 4,

we empirically show that exact exponential algorithms for such applications are

affordable.

The input of most NP -complete problems consists of a pair (I, k), where I is

the input instance and k is a parameter. These problems are called parameterized

problems . In this text, we adopt the notation π(k) for a parameterized problem

π, and we assume that n denotes the size of I.

As we mentioned earlier, the dawn of fixed-parameter tractability appeared to

have started with Fellows and Langston. They considered only graph problems

whose yes instances are closed under the minor and the immersion orders. With

this approach, they showed that some parameterized problems must have fast

exact algorithms when corresponding input parameters are fixed. Their (noncon-

structive) proofs relied on Theorem 1 and the arguments in remark 7. This opened

a door for more scrutiny, later, by Downey and Fellows (then many others). As

a result, Parameterized Complexity was born and a new hierarchy, termed the

W-hierarchy, of classes within NP was defined.

At the bottom of the new hierarchy lies the class of problems that become

tractable when the relevant parameter is fixed.

Definition 3 Let (I, k) be a parameterized problem, where I is the problem

instance and k is the parameter. (I, k) is fixed parameter tractable (FPT ) if it

has an algorithm that runs in time O(f(k)|I|c), where |I| is the size of I, f(k) is

16



an arbitrary function, and c is a constant.

When k is fixed, f(k)|I|c is, simply, a polynomial. Thus the given problem

is tractable even if the growth of f(k) is very fast (factorial for example). The

corresponding run time is called uniform poly-time.

Constructively proving that a problem is FPT is useful since it usually pro-

vides an algorithm that runs in uniform poly-time. In fact, this is usually not

the end. Many researchers around the globe are challenged to obtain faster ex-

act algorithms for FPT problems. This is achieved by obtaining an algorithm

whose run-time, O(f(k)|I|c), exhibits a new function of k (f(k)) that is slower in

variation then the best (previously) known function.

Algorithms for FPT problems are called fixed-parameter algorithms . It was

believed that such algorithms work only when the parameter in question is fixed.

The algorithm described in [13], for example, was designed only to determine if

the input graph has a vertex cover of size at most 5. It is now clear, at least

to our research group at the University of Tennessee, that most fixed-parameter

algorithms designed for a given FPT problem are nothing but exact exponential

algorithms for the optimization version of the problem.

1.6 Some Fixed Parameter Tractable Problems

We discuss briefly a set of well known FPT problems that we considered in our

research. WQO theory had the honor to be the first tool used for classifying some

of these problems. For a minimization (maximization) parameterized problem

π(p), Yk(π) denotes the family of yes instances of π(p) for all p ≤ k (p ≥ k).
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1.6.1 The Vertex Cover Problem (VC)

The inputs to Vertex Cover are an undirected graph G and a parameter k. The

question asked is whether a set S of k or fewer vertices covers every edge in G.

(An edge is covered if either or both of its endpoints are in S.)

The parameterized Vertex Cover problem (V C(k)) is NP -complete for arbi-

trary k. When k is fixed, YK(V C) is closed under taking minors. To see this, note

that both the operation of taking a subgraph and the one of contracting edges

cannot lead to more edges to cover. It follows (by the argument of Remark 6)

that V C(k) is FPT .

There has been tremendous progress in the process of obtaining better exact

algorithms for this problem. It’s now solvable in O(1.2852k + kn) [15].

1.6.2 The 3-Hitting Set Problem (3-HS)

Given a collection C of subsets of a finite set S and a positive integer k. The

Hitting Set problem is to decide whether there exists a subset S ′ of S such that

|S ′| ≤ k and every subset in C has a nonempty intersection with S ′. Hitting Set is

NP -complete and the parameterized version of the problem (HS(k)) is W [2]-hard

in general. In other words, the problem does not seem to have a practical solution

when k is fixed (see [21]). When every subset in C is of size not exceeding a fixed

positive integer d, the problem is called d-Hitting Set (or d-HS) and, while still

NP -complete, its parameterized version, d-HS(k), is known to be FPT . When

d = 2, the problem reduces to that of finding a Vertex Cover for a graph whose

vertices and edges correspond to elements of S and C respectively. The d = 3

case received some attention lately, mainly because of its potential applications

in computational biology. The simplest approach would solve 3-HS(k) in O(3kn)

where n is the input size. Most recently, Niedermeier and Rossmanith presented
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an O(2.270k + n) algorithm4 [53].

1.6.3 The Planar Dominating Set Problem (PDS)

A dominating set of a graph G = (V,E) is a subset, V ′ of V , that has a nonempty

intersection with the neighborhood of every vertex that belongs to its complement.

Deciding whether a given graph has a dominating set of size not exceeding k is

NP -complete. Moreover, this problem is W [2]-hard in general [21, 20]. It is fixed-

parameter tractable when the input is a planar graph [1, 21]. There are two recent

algorithms for the parameterized Planar Dominating Set problem (PDS(k)) that

use different approaches. The first has a run time of O(46
√

(34k)n) [1] and is based

on dynamic programming on tree decompositions. Of course, this algorithm is

not practical but is of theoretical interest because of its subexponential behavior.

The second, assumed to be more practical, runs in O(8kn) [2] and is simpler to

implement but a lot harder to analyze.

1.6.4 The Face Cover Problem (FC)

A face cover of a plane graph is a set of faces whose boundaries contain all vertices.

For arbitrary k > 0, determining whether a plane graph G has a face cover of size

k is an NP -complete problem [5]. Existence of algorithms that solve the problem

in time O(ckn) [5, 1] proves that the problem FC(k) is FPT . The algorithm

described in [1] solves FC(k) in O(336
√

(34k)n + n2) by reduction to the planar

dominating set problem. It is believed that Face Cover has a better algorithm

that runs in O(8kn) time using the same reduction and the PDS(k) algorithm of

[2]. The latter being more practical for small k. In chapter 5, we present a direct

4Here n is the whole input size which is assumed to be quadratic in the number of elements

of the set S.
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algorithm with a run time of O(5k + n2).

1.6.5 The Disk Dimension Problem (DD)

The disc dimension of a planar graph G, denoted by dd(G), is the least positive

integer k such that G embeds in the plane minus k open discs, {di}k
i=1, so that

every vertex of G lies on the boundary, Ci, of some disc di. It is not hard to see

that the disk dimension of a planar graph is the minimum face cover taken over

the set of all possible planar embeddings of the graph. Despite this relationship,

the two problems are totally different. This is because no solution of one could

help solving the other.

The parameterized Disc Dimension problem, DD(k), is to decide for a given

planar graph G whether the disk dimension of G is not more than k.

DD(k) was originally introduced in [27], where it was shown to be decidable

in O(n2) for any fixed k, since Yk(DD) is closed in the minor order and excludes

a planar graph (see Remark 6). Hence DD(k) is FPT . The decision version of

the general problem is NP -complete [26].

1.6.6 Graph Metrics Problems

Each graph metric described in section 1.2, gives rise, naturally, to a parameterized

(decision) problem. The problems TW (k), PW (k) and CW (k) are to determine,

respectively, whether some input graph has treewidth, pathwidth and cutwidth

that is not greater than k.

All three problem are NP -complete, even when restricted to planar graphs of

maximum degree three [3, 49].

The families Yk(TW ) and Yk(PW ) are closed in the minor order. Therefore,

TW (k) and PW (k) are FPT .
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As for CW (k), Yk(CW ) is closed in the immersion order. Observing that

Yk(CW ) has bounded treewidth, the argument of Remark 7 was used in [29] to

show that CW (k) is FPT .

1.6.7 Within k Vertices of F

Let F be a family of graphs that is closed under taking subgraphs. The set of

all graphs that have k or fewer vertices whose removal produces an element of

F is denoted by Wk(F ), and is known as the family of graphs that are within k

vertices of F . The corresponding problem of deciding membership in Wk(F ) is

NP -hard in general. It provides a generalization of many known problems. For

example, if F is the set of edgeless finite graphs, then membership in Wk(F ) is

exactly V C(k). When F is closed in the minor order, membership in Wk(F ) is

FPT [28].
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Chapter 2

Graph Coloring and the

Immersion Order

The relationship between graph coloring and the minor order has been studied

for over sixty years, mainly due to the four color theorem and the famous long

standing conjecture of Hadwiger [35]. We study the relationship between graph

coloring and the immersion order by examining properties of graphs that are

t-chromatic and exclude Kt in the immersion order. Our investigation of this

relationship led us to conjecture that if G requires at least t colors, then Kt ≤i G.

We present evidence in support of our proposition by studying properties of

counterexamples that are minimal w.r.t ≤i, aiming at proving their existence is

impossible. We establish several properties of such minimal counterexamples. In

particular, we prove that, if any exist, they must be both 4-vertex-connected and

t-edge-connected. The t = 5 case is examined in additional detail.

The structural results obtained in this chapter are also of algorithmic impor-

tance. Proving that graphs that exclude Kt in the immersion order are (t − 1)-

colorable (as our conjecture claims) could lead, due to Theorem 5, to useful
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polynomial-time preprocessing for the very hard coloring problem.

2.1 Background

Coloring a graph G is assigning colors to vertices of G so that adjacent vertices

receive different colors. For example, Kt requires exactly t colors. The chromatic

number of G, denoted by χ(G), is the minimum number of colors required by G

in any proper coloring of its vertices. Of course it is well known that determining

χ(G) is NP-hard. Since Kt is the smallest t-chromatic graph, it is tempting to

try to associate χ(G) with some sort of clique contained within G. After all, if G

contains Kt as a subgraph, then it is easy to show that G can be colored with no

fewer than t colors. To see that the presence of a Kt subgraph is not necessary,

however, one needs only to observe that C5, the cycle of order five, requires three

colors yet does not contain K3 as a subgraph.

Nevertheless, perhaps some weaker form of Kt is present. One possibility is

topological containment (as a motivation, note that C5 contains K3 topologically).

Sometime in the 1940s Hajós conjectured that if χ(G) ≥ t, then G must contain

a topological Kt [36]. The conjecture is trivially true for t ≤ 3. In 1952 Dirac

proved it true for t = 4 [19]. It was not until Catlin’s work in 1979 that Hajós’

conjecture was finally settled, and negatively, with a family of counterexamples for

t ≥ 7 [12]. One such counterexample is the 13-vertex graph depicted in figure 2.1.

It requires seven colors and contains no topological K7. Subsequently, Erdős and

Fajtlowicz were able to prove the rather surprising result that almost all graphs

are counterexamples [25]. Thus Hajós’ conjecture remains open only for t ∈ {5, 6}.
Another possibility is the minor order, which is a generalization of the topolog-

ical order. Hadwiger conjectured in 1943 that, if χ(G) ≥ t, then G must contain

a Kt minor [35].
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Figure 2.1: A 7-chromatic graph that does not contain a topological K7.

24



By remark 3, this conjecture equates to Hajós’ conjecture for t ≤ 4. Wagner

proved in 1964 that, for t = 5, Hadwiger’s conjecture is equivalent to the four

color theorem [66]. In 1993 Robertson, Seymour and Thomas proved it true

for t = 6 [58]. Whether Hadwiger’s conjecture holds true in general, however,

has thus far not been decided. This is in spite of decades of research, hordes

of supporting evidence and a multitude of results on many of its variants and

restrictions [9, 22, 39, 62, 64, 68]. As of this writing, a resolution of Hadwiger’s

conjecture seems distant.

We focus instead on the immersion order. Immersion containment is quite

distinct from topological and minor containment. Recalling Figure 1.8, for exam-

ple, we observe that K4 is contained in K1 + P5 in neither the topological nor

the minor order. Previous investigations into the immersion order have generally

been conducted from a purely algorithmic standpoint. We refer the reader to

[10, 28, 29, 30, 43] for examples and applications. In contrast, here we mainly

consider structural issues.

2.2 Preliminaries

Recall that we restrict our attention to finite, simple undirected graphs (multiple

edges and loops that may arise from lifting are irrelevant to coloring). G is said

to be t-vertex-connected if at least t vertex-disjoint paths connect every pair of

its vertices. A vertex cutset is a set of vertices whose removal breaks G into two

or more nonempty connected components. The cardinality of a smallest vertex

cutset in G is equal to the largest t for which G is t-vertex-connected (unless G

is a complete graph, which can have no vertex cutset). G is said to be t-edge-

connected if at least t edge-disjoint paths connect every pair of its vertices. An

edge cutset is a set of edges whose removal breaks G into two or more nonempty
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connected components. The cardinality of a smallest edge cutset in G is equal to

the largest t for which G is t-edge-connected.

If χ(G) ≤ t, then G is said to be t-colorable. If χ(G) = t, then G is said to

be t-chromatic. If χ(G) = t and χ(H) < t for every proper subgraph H of G,

then G is said to be t-color-critical . A t-coloring of G is realized by a map c from

the vertices of G to the set {1, 2, .., t} so that, if G contains the edge uv, then

c(u) 6= c(v). Given such a map, cij is used to denote the subgraph induced by

the vertex set {u : c(u) ∈ {i, j}}. A path contained within cij is termed a Kempe

chain [69], so-named in honor of the foundational work done on them by Kempe

in [40]. Of course cij need not be connected, and so for any u ∈ cij we employ

cij(u) to denote the set {v : v resides in the same connected component of cij as

does u}. Such sets have useful properties.

Observation 1 If {i, j} 6= {k, l}, then cij and ckl are edge disjoint.

Although the immersion order is traditionally defined in terms of taking sub-

graphs and lifting pairs of edges, Kempe chains and Observation 1 make it helpful

for us to utilize as well the alternate characterization described in remark 4.

Suppose vertex u has degree t−2 or less in a t-chromatic graph G. Then G−u

must also be t-chromatic. Otherwise G−u could be colored with t−1 colors, and

u assigned one of the t − 1 colors unused within N(u).

Observation 2 If G is t-color-critical, then δ(G) ≥ t − 1.

If G is t-chromatic but G − u is only (t − 1)-chromatic, then it is possible to

consider only colorings in which u is assigned a unique color.

Observation 3 If G is t-color-critical, then for any vertex u there exists a col-

oring c in which c(u) = 1 and c(v) 6= 1 for every vertex v ∈ G − u.
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2.3 Motivation

Given the assorted connections between graph coloring, connectivity and the im-

mersion order, we seek to determine just how χ(G) is related to immersion contain-

ment. A main purpose of this chapter is an attempt to formalize this relationship

with the following conjecture, which we find both plausible and appealing.

Conjecture 1 If χ(G) ≥ t, then G contains an immersed Kt.

In the sequel, we present compelling preliminary evidence in support of this

conjecture. Our investigations to date suggest that it merits more detailed scrutiny.

Its complete resolution, however, is well beyond the scope of this text.

Our conjecture, like Hadwiger’s, is trivially true for t ≤ 4. This is because the

immersion order generalizes the topological order, for which Hajós’ conjecture is

long known to hold when t ≤ 4. We address the t = 5 case in some detail, and

come to within one edge of proving the conjecture holds for it.

Before proceeding, we introduce a notion of immersion criticality and show

how it relates to the possible existence of counterexamples. G is said to be t-

immersion-critical if χ(G) = t and χ(H) < t whenever H is properly immersed

in G. Because χ(Kt) = t, any counterexample must either be t-immersion-critical

or have properly immersed within it another t-immersion-critical counterexample.

Similarly, any t-immersion-critical graph distinct from Kt must be a counterex-

ample. Thus our conjecture is equivalent to the statement that Kt is the only

t-immersion-critical graph for every t. Although we have thus far fallen short

of establishing this one way or the other, we can show that there are at most a

finite number of them. To do this, we rely on properties of well-quasi-orders and

immersion order obstruction sets.

Theorem 8 There are finitely many t-immersion-critical graphs for each fixed t.
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Proof Consider the family of graphs F = {G : χ(G) < t and χ(H) < t for every

H ≤i G}. Then, by definition, F is closed in the immersion order. Because graphs

are well-quasi-ordered by the immersion relation, it follows that F ’s obstruction

set is finite. This set contains precisely the t-immersion-critical graphs.

2.4 Properties of t-Immersion-Critical Graphs

Connectivity of minimal counterexamples played an important role in the long

endeavor for a settlement of Hadwiger’s conjecture. G is said to be t-minor-

critical 1 if χ(G) = t and χ(H) < t whenever H is a proper minor of G. Kt is

of course both (t − 1)-vertex-connected and (t − 1)-edge-connected. Thus, if any

t-minor-critical graph is not as strongly connected, then Hadwiger’s conjecture is

false for all t′ ≥ t. So suppose G denotes a t-minor-critical graph other than Kt

(in which case the conjecture fails). Some 35 years ago [46], Mader showed that

G must be at least 7-vertex-connected whenever t ≥ 7. This provides evidence in

support of the conjecture for t ∈ {7, 8}. A few years later [62], Toft proved that

G must also be t-edge-connected. This provides additional supporting evidence

for all t. Very recently, Kawarabayashi has shown that G must be at least d t
3
e-

vertex-connected as well [38].

Following the same trend, we study both the vertex and edge connectivity

of t-immersion-critical graphs. Because the immersion order includes the taking

of subgraphs, we know that t-immersion-critical graphs are also t-color-critical.

They are, therefore, 2-vertex-connected and (t − 1)-edge-connected [63]. We now

establish that such graphs are either isomorphic to Kt or 4-vertex-connected and

t-edge-connected. We assume t ≥ 5 unless stated otherwise. Kempe chains play

a pivotal role in our investigation.

1This notion has sometimes been termed t-contraction-critical.
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2.4.1 Vertex Connectivity

We begin with three easy and useful lemmas about cutsets, paths and coloring.

Lemmas 1 and 2 are probably well known, although they may not be formulated

elsewhere in precisely the same way we state them in this treatment. Lemma 2,

which we dub The Patching Lemma, is especially helpful. Lemma 3 is certainly

well known, and mentioned in a variety of sources (e.g., [9, 64, 68]). We include

the proofs of these lemmas here both for completeness and, more importantly, to

illustrate and clarify their utility in subsequent results.

Lemma 1 Let S denote a minimum-cardinality vertex cutset in a 2-vertex-connected

graph G, and let C denote a connected component of G\S. Then any two elements

of S must be connected by a path whose interior vertices lie completely within C.

Proof Because G is 2-vertex-connected, |S| ≥ 2. Let a and b denote any two

distinct elements of S. It must be that a is adjacent to some vertex u in C, since

otherwise S is not minimal (S\{a} defines a vertex cutset of cardinality |S| − 1).

Similarly, it must be that b is adjacent to some vertex v in C. If u = v, then we

are done. If u 6= v, then the connectedness of C ensures that there is a subpath

P from u to v lying completely within C. Thus au∪P ∪ vb is the desired path.

Two colorings are said to be equivalent if the partitions induced by their re-

spective color classes are identical.

Lemma 2 (The Patching Lemma) Let S denote a vertex cutset of G, and let G1

and G2 denote a pair of induced subgraphs for which G1∪G2 = G and G1∩G2 = S.

If G1 and G2 admit t-colorings whose restrictions to S are equivalent, then G is

t-colorable.

Proof Let S, G, G1 and G2 be as defined in the statement of the lemma. Let

c and d denote the specified t-colorings of G1 and G2, respectively. Modify one
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coloring, say d, by renaming its color classes so that each element of S is assigned

the same integer under both colorings. Patched together, c and d now provide a

t-coloring of G.

The Patching Lemma can be used to establish the following well-known fact.

Lemma 3 No vertex cutset of a t-color-critical graph can be a clique.

Proof Suppose otherwise for some G with cutset S. Remove S from G. Let C

denote one resultant connected component, and let G1 be the subgraph induced

by C ∪ S. Let G2 denote the subgraph induced by G\C1. Because G is t-color-

critical, G1 and G2 must each be (t − 1)-colorable. And because S is a clique,

any (t− 1)-coloring of G1 and any (t− 1)-coloring of G2 must be equivalent when

restricted to S. But now by the Patching Lemma, G must also be (t−1)-colorable,

and thus not t-color-critical.

To simplify matters, we shall adopt the following conventions for the remainder

of this subsection:

t is at least five,

G denotes a t-immersion-critical graph,

S denotes a minimum-cardinality vertex cutset in G,

C denotes a connected component of G\S,

G1 denotes the subgraph induced on C ∪ S, and

G2 denotes the subgraph induced on G\C.

Lemma 4 Every t-immersion-critical graph is 3-vertex-connected.

Proof Suppose otherwise, as witnessed by some G with S = {a, b}. We know

from Lemma 3 that the edge ab is not present in G. Let i ∈ {1, 2}. By Lemma 1,
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there must be a path, Pi, with endpoints a and b, whose vertices lie completely

within Gi. Lifting the edges of P3−i to form the single edge ab, and then taking the

subgraph induced by the vertices of Gi, produces a graph Hi properly immersed

in G. It follows that Hi is (t− 1)-colorable. Because ab is present in Hi, any such

coloring of Hi assigns different colors to a and b. But Gi is a subgraph of Hi.

Thus, there are (t− 1)-colorings of G1 and G2 that each assign different colors to

a and b. By the Patching Lemma, this ensures a (t − 1)-coloring of G, which is a

contradiction.

Lemma 4 applies to t-topological-critical graphs as well. To see this, note that

the two paths defined in the proof are vertex-disjoint. An analog of Lemma 4 does

not hold, however, if the graph is only known to be t-color-critical. Such graphs

are guaranteed only to be 2-vertex-connected. A t-color-critical graph that is not

be 3-vertex-connected can be constructed as follows. Begin with a pair of non-

adjacent vertices, u and v, a copy of Kt−1 and a copy of Kt−2. Connect u to every

vertex but one in the copy of Kt−1. Connect v to every vertex but some different

one in the copy of Kt−1. Now connect both u and v to every vertex in the copy of

Kt−2. Such a graph is depicted in Figure 2.2, with t = 4. Note that these graphs

are not t-immersion-critical. In the instance shown, for example, K4 is properly

immersed using a model whose corners are u plus the vertices of K3.
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Figure 2.2: A 4-color-critical graph that is not 3-vertex-connected.
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Lemma 5 If |S| = 3, then G1 and G2 admit (t − 1)-colorings that assign more

than one color to the elements of S.

Proof Let S = {u, v, w}, and consider the case for G1. By Lemma 1, there is a

path between u and v in G2. Lifting this path and taking the subgraph induced

by the vertices of G1 produces a graph H properly immersed in G. Because G

is t-immersion-critical, and because H contains the edge uv, H must admit a

(t − 1)-coloring that assigns different colors to u and v. As a subgraph of H, G1

can likewise be colored. A symmetrical argument handles the case for G2.

What we have really just shown is that if G is only 3-vertex-connected, then

G1 admits a (t − 1)-coloring that assigns different colors to any fixed pair of

elements of S. This raises the possibility that a single coloring of G1 may suffice,

simultaneously assigning different colors to all three elements of S. We now show

that this cannot happen, and that two distinct colorings are involved. It follows

that the same must then be true for G2.

Let a and b denote vertices of G, and let c denote a coloring of G in which

c(a) = i 6= j = c(b). If a and b belong to the same connected component of cij,

then they are connected by some Kempe chain Pij contained within cij. In this

event, we say that a and b are c-chained .

Lemma 6 If |S| = 3, then neither G1 nor G2 admits a (t − 1)-coloring that

assigns three different colors to the elements of S.

Proof Suppose otherwise, as witnessed by a (t − 1)-coloring c of G1. Let S =

{u, v, w} and assume, without loss of generality, that c(u) = 1, c(v) = 2 and

c(w) = 3. Let d denote some (t − 1)-coloring of G2. By Lemma 5 and the

Patching Lemma, it must be that d assigns exactly two colors to the elements

of S. So assume, again without loss of generality, that d(u) = d(v). If u and v
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are not c-chained, then we can exchange colors 1 and 2 in c12(v) to produce a

(t − 1)-coloring c′ of G1 that assigns color 1 to both u and v and leaves the color

of w set to 3. This means that the restrictions of c′ and d to S are equivalent.

But now, by the Patching Lemma, G is (t − 1)-colorable, which is impossible.

Thus it must be that u and v are c-chained by some P12 in G1. Lifting this

chain and taking the subgraph induced by the vertices of G2 produces a graph

H properly immersed in G. H contains uv, and so must admit a (t − 1)-coloring

d′ that assigns different colors to u and v. G2 is likewise colored by d′. By the

Patching Lemma, d′ cannot assign a third color to w. So assume, again without

loss of generality, that d′(w) = d′(u). If u and w are not c-chained, then (as in

the previous argument) we can construct a (t − 1)-coloring c′′ of G1 so that the

restrictions of c′′ and d′ to S are equivalent, which is impossible.

Thus it must be that u and w are c-chained by some P13 in G1. Because

they are edge disjoint, P12 and P13 can be lifted simultaneously. Lifting these two

chains and taking the subgraph induced by the vertices of G2 produces a graph

H ′ properly immersed in G. H ′ contains both uv and uw, and so must admit

a (t − 1)-coloring d′′ that assigns different colors to u and v and different colors

to u and w. G2 is likewise colored by d′′. By the Patching Lemma, d′′ cannot

assign three colors to the elements of S. So it must be that d′′(v) = d′′(w). If v

and w are not c-chained, then (as in the previous arguments) we can construct a

(t− 1)-coloring c′′′ of G1 so that the restrictions of c′′′ and d′′ to S are equivalent,

which is impossible.

Thus it must be that v and w are c-chained by some P23 in G1. Because they

are edge disjoint, P12, P13 and P23 can be lifted simultaneously. Lifting these three

chains and taking the subgraph induced by the vertices of G2 produces a graph

H ′′ properly immersed in G. H ′′ contains uv, uw and vw, and so must admit a

(t − 1)-coloring d′′′ that assigns three different colors to S. G2 is likewise colored
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by d′′′. This means that the restrictions of c and d′′′ to S are equivalent, which is

impossible, contradicting the supposition that c exists.

We are now ready to prove that minimum-cardinality vertex cutsets of t-

immersion-critical graphs have at least four elements. The use of Kempe chains

in Lemma 6 has been especially effective, so much so that we need only paths not

chains in what follows.

Theorem 9 Every t-immersion-critical graph is 4-vertex-connected.

Proof Suppose otherwise, as witnessed by some G with S = {u, v, w}. Let c and

d denote (t − 1)-colorings of G1 and G2, respectively. By Lemmas 5 and 6, we

restrict our attention to the case in which both c and d assign exactly two colors

to elements of S. Without loss of generality, assume c(u) = c(v) and d(u) = d(w).

By Lemma 1, there is a path P1 in G1 whose endpoints are u and w. Similarly,

there is a path P2 in G2 whose endpoints are u and v. Lifting Pi and taking the

graph induced by the vertices of G3−i produces a graph H3−i properly immersed

in G. H1 contains uv, and so must admit a (t−1)-coloring c′ that assigns different

colors to u and v. G1 is likewise colored by c′. By Lemma 6, c′ cannot assign a

third color to w. Lest the restrictions of c′ and d to S be equivalent, it must be

that c′(w) = c′(v). H2 contains uw, and so must admit a (t − 1)-coloring d′ that

assigns different colors to u and w. G2 is likewise colored by d′. By Lemma 6, d′

cannot assign a third color to v. But if d′(v) = d′(u), then the restrictions of c and

d′ to S are equivalent. And if d′(v) = d′(w), then the restrictions of c′ and d′ to

S are equivalent. Thus, under some pair of colorings of G1 and G2, the Patching

Lemma ensures that G is (t − 1)-colorable, a contradiction.
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2.4.2 Edge Connectivity

We begin with a pair of well-known observations (see, for example, [68]).

Observation 4 A minimum-cardinality edge cutset separates a graph into exactly

two connected components.

Observation 5 If H is obtained by deleting the edge uv from a t-color-critical

graph, then H is (t − 1)-colorable and, under any (t − 1)-coloring, u and v are

assigned the same color.

The next lemma plays an essential role in our edge-connectivity arguments. It

is probably also well known, but may not be formulated elsewhere in exactly the

same way we state it here.

Lemma 7 Let H be obtained by deleting the edge uv from a t-color-critical graph.

Let c denote a (t − 1)-coloring of H with c(u) = c(v) = 1. Then v ∈ c1i(u)∀i ∈
{2, 3, . . . , t − 1}.

Proof Let H and c be defined as stated. Assume the lemma is false, then there

exists a color i ∈ {2, 3, . . . , t − 1}, such that v /∈ c1i(u). Swapping colors 1 and i

in c1i(u) produces c′, another (t−1)-coloring of H. But then u and v are assigned

different colors under c′, which is impossible.

For simplicity, we adopt the following conventions in the remainder of this

subsection:

t is at least 5,

G denotes a t-immersion-critical graph,

S denotes a minimum-cardinality edge cutset in G,
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C1 and C2 are “the” two components of G\S,

S1 and S2 denote the sets of endpoints of elements of S contained in C1 and

C2, respectively,

uv denotes an element of S, with u ∈ S1 and v ∈ S2, and

H denotes G\{uv}.

Lemma 8 If G is not t-edge-connected, then every (t − 1)-coloring of H assigns

either one color to S1 and all t − 1 colors to S2 or vice versa.

Proof Assume G is not t-edge-connected. Then S must have cardinality t − 1.

Being a subgraph of G, H can be (t − 1)-colored by some coloring c that assigns

the same color to u and v. WLOG, let c(u) = c(v) = 1. By Lemma 7, v ∈ c1i(u)

for all i ∈ {2, 3, . . . , t − 1}. It follows that u and v are the endpoints of t − 2

Kempe chains {P1i}t−1
i=2 such that P1i ⊆ c1i. Let S ′ = S\{uv}. Then S ′ is a cutset

of cardinality t − 2 of H. By Observation 1, the chains are edge disjoint, and so

each contains at least one distinct element of S ′. Every path between u and v in

H contains at least one edge of S ′. Hence, there is a one-to-one correspondence

between {P1i}t−1
i=2 and elements of S ′. This means that every element of S ′ has an

endpoint assigned color 1 by c. If c assigns only color 1 to S1, then it must assign

all t−1 colors to S2. Similarly, if c assigns all t−1 colors to S1, then it must assign

only color 1 to S2. The only remaining case to consider occurs if c assigns more

than one but fewer than t − 1 colors to S1. To show that this cannot happen, we

now proceed by contradiction, and suppose S1 contains vertex w assigned color i,

but no vertex assigned color j, where {i, j} ⊆ {2, 3, . . . , t − 1}. Since every edge

of S ′ has an endpoint of color 1, w has no neighbor colored j in C2. Then, it

must be that cij(w) is completely contained within C1. Swapping colors i and j

in cij(w) produces c′, another (t−1)-coloring of H with c′(u) = c′(v) = 1. By this

construction, c′ assigns color j to endpoints of two different elements of S ′, and
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accordingly assigns color i to the endpoint of no element of S ′. We conclude that

v /∈ c′1i(u), contradicting Lemma 7.

Theorem 10 Any t-immersion-critical graph other than Kt is t-edge-connected.

Proof Suppose otherwise, then there exist some G that is t-immersion-critical,

not isomorphic to Kt, and not t-edge-connected. By Lemma 8 and, without loss

of generality, H admits a (t − 1)-coloring c that assigns color 1 to S1 ∪ {v}.
Thus all t − 1 colors are assigned to S2, and we index the elements of S2 by

{v = v1, v2, .., vt−1}, where c(vi) = i.

Let i and j denote distinct elements of {1, 2, .., t − 1}. Then cij(vj) must

contain vi since, otherwise, we can exchange colors i and j in cij(vj) to produce a

(t−1)-coloring of H in which the elements of S2 are assigned t−2 colors, thereby

contradicting Lemma 8. It follows that vi and vj are the endpoints of a Kempe

chain, Pij contained within cij(vj). Moreover, even if i or j is 1, the elements of S1

are excluded from this chain. This being true since, if Pij contains an element of

S1, then it will use at least two edges of S ′ = S\uv (one to reach S1 and another

to go back to C2). This is impossible by Lemma 8.

Therefore Pij is completely contained within C2. Because such a chain exists

for each pair of vertices in S2, and because the chains are edge disjoint, Kt−1 is

immersed in C2 using a model whose corners are the elements of S2.

Now let i denote an element of {2, .., t − 1}. From the proof of Lemma 8, we

know that u and v are the endpoints of a Kempe chain containing vi. This means

that u and vi are the endpoints of a subchain completely contained within C1∪S.

Because such a chain exists for each vertex in S2\{v}, because the chains are edge

disjoint, and because uv ∈ G, Kt is immersed in G using a model whose corners

are u ∪ S2. This is the desired contradiction.

Corollary 1 If G is t-immersion-critical and not Kt, then δ(G) ≥ t.
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Proof Immediate from Theorem 10 and the fact that δ(G) is an upper bound on

G’s edge connectivity.

Corollary 2 If G is t-color-critical with a vertex u of degree t − 1, then Kt is

immersed in G via a model whose corners are u ∪ N(u).

Proof Follows from the proof of Theorem 10 by letting S be the set of edges

incident on u.

2.5 On Settling the t = 5 Case

Let n denote the number of vertices in G. Mader has shown recently that any

graph with at least 3n − 5 edges must contain a topological (and hence an im-

mersed) K5 [47]. A 5-immersion-critical graph G can therefore contain at most

3n − 6 edges, and so δ(G) ≤ b2(3n − 6)/nc = 5. We know from Corollary 1 that

a 5-immersion-critical graph other than K5 satisfies δ(G) ≥ 5.

Observation 6 If G is 5-immersion-critical and not K5, then δ(G) = 5.

Let K−
5 denote the graph obtained by deleting one edge from K5. Recall that

a pair of vertices is said to be c-chained if they are connected by some Kempe

chain under coloring c.

Theorem 11 If χ(G) ≥ 5, then K−
5 is immersed in G.

Proof Any graph requiring five or more colors has a 5-immersion-critical graph

immersed within it. Moreover, if that immersed graph is K5, then we are done.

Thus it suffices to consider only the case in which G itself is 5-immersion-critical

and not K5. By Observation 6, G has a vertex, u, of degree five. By Observation

3, G has a coloring c in which c(u) = 1 and c(v) 6= 1 for every vertex v ∈ G − u.

38



Let the neighborhood of u be denoted by the set {v, w, x, y, z}. It must be that

c assigns colors 2 through 5 across this collection of five vertices, since otherwise

u could be reassigned another color producing a 4-coloring of G. Thus, without

loss of generality, we assume that v, w and x receive distinct colors and that y

and z are colored the same. Every pair of vertices in {v, w, x} must be c-chained,

else one of them could be recolored. Similarly, every vertex in {v, w, x} must be

c-chained to at least one vertex in {y, z}. It follows that some vertex in {y, z},
say y, is c-chained to at least two elements of {v, w, x}. Each of the chains so

identified is edge-disjoint with the others, as well as with the edges incident on u.

Therefore the set {u, v, w, x, y} forms the corners of K−
5 model immersed in G.

It might be possible that a resolution of the t = 5 case could be based on

properties that are indirectly associated with coloring or immersion containment.

Note that the t = 4 case of Hajós’ conjecture follows simply from the fact that

δ(G) ≥ 3 for any 4-color-critical graph G. We suspect that every simple 5-edge-

connected graph contains K5 in the immersion order. If this suspicion is true, then

of course the t = 5 case of our conjecture is settled, because 5-immersion-critical

graphs are 5-edge-connected. It is easy to see that our suspicion may be justified

only as long as we restrict our attention to simple graphs. See Figure 2.3.
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Figure 2.3: A 5-edge-connected multigraph of order five with no immersed K5.
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2.6 Graph Coloring and Cutwidth

For any graph G, ∆(G) and cw(G) are related by the inequality: cw(G) ≥ ∆(G)
2

.

There is also a simple relation between δ(G) and cw(G).

Lemma 9 For any graph G, if δ(G) ≥ r − 1 then cw(G) ≥ ( r
2
)2.

Proof Let G be a graph satisfying δ(G) ≥ r − 1. Then G has at least r vertices.

The lemma follows immediately from the simple fact that, in any linear layout of

G, each of the first dr/2e vertices have at least r/2 neighbors among the rest of

the graph.

Theorem 12 For any graph G, if χ(G) ≥ t then cw(G) ≥ ( t
2
)2.

Proof Let G be a t-chromatic graph. Then G has a t-color-critical subgraph, H.

Since δ(H) ≥ t − 1, and by Lemma 9, ( t
2
)2 ≤ ch(H) ≤ cw(G).

Remark 9 We know that Yk(CW ) is closed in the immersion order. We also

know that the minimum degree of a t-immersion-critical graph, other than Kt, is

t. Let G be a t-chromatic graph that does not contain Kt in the immersion order.

Then G has immersed in it, a t-immersion-critical graph of minimum degree t.

Therefore, by Lemma 9, cw(G) ≥ ( t+1
2

)2.

2.7 Potential Applications

Despite the theoretical nature of our conjecture, it may have practical applications.

As an example, consider the conjecture of Hadwiger along with ours. Together,

they may form the basis of an efficient preprocessing strategy for the “very hard”

graph coloring problem. This is because, at least in principle, both the immersion
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and the minor containment of Kt in an arbitrary graph G have polynomial-time

order tests for any fixed t.

To illustrate, consider the case t = 5. Assuming our conjecture is true (which

we strongly believe), if we test and find that K5 is absent from G in either the

immersion or the minor order, then four or fewer colors are required to color G.

Moreover, it seems that the two orders are rather orthogonal. See Figure 2.4. K5

is a minor of the graph in Figure 2.4(a). It is found by contracting the edge uv.

In Figure 2.4(b), K5 is obtained by lifting uw and wy to form uy and lifting vw

and wx to form vx. It is hoped, therefore, that when used together these two

tests would provide a better “coloring filter” than when either is used alone. We

note also that practical order tests have already been developed for the case t ≤ 4

in the immersion order [10], and t ≤ 5 in the minor order [48].
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Figure 2.4: Graphs containing K5 in the minor but not the immersion order, and

vice versa.
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Chapter 3

Algorithmic Techniques for FPT
Problems

3.1 Kernelization

Fast preprocessing techniques have proved useful for many problems that require

computationally expensive algorithms. In general, the goal is to reduce the size

of any given input instance as much as possible, and guarantee that an equivalent

instance is produced. In other words, solving the problem for the original input

instance is equivalent to solving it for the preprocessed one.

Common Preprocessing Actions

When dealing with graph algorithms, common preprocessing techniques include

the following actions:

(i) Checking if the input graph is not connected. If so, dealing with each

(smaller) connected component is usually easier. The process of detect-

ing connected components in a graph takes linear time since it’s based on
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breadth-first search. For this reason, most algorithms assume the input

graph is already connected.

(ii) Dealing with isolated vertices. This may be regarded as a special case of (i)

since an isolated vertex is nothing but a singleton connected component of

the given graph. Such singletons are simply deleted with a possible change

to the prospective solution. For example, in problems like Vertex Cover and

Disk Dimension, isolated vertices can be automatically deleted (whenever

detected). On the other hand, for problems like Face Cover and Dominating

Set, deleting isolated vertices must be accompanied with adding an element

to the solution (and decrementing the parameter).

(iii) Dealing with low degree vertices. We shall see in the next chapter that if an

instance, (G, k), of the Vertex Cover problem has vertices of degree less than

3, then it can be preprocessed into another one, (G′, k′) such that δ(G′) > 2

and k′ < k. Moreover, a pendant vertex can be deleted in almost all problem

instances. It is often accompanied with a change to the problem instance

and, if dealing with a search problem, the prospective solution needs to be

updated.

(iv) Dealing with high degree vertices. Such vertices play an important role

in many problems. For example, if (G, k) is an instance of the Cutwidth

problem, the presence of a vertex of degree larger than 2k + 1 in G implies

automatically that it is a no instance.

(v) Detecting Special subgraphs. Some special subgraphs that can be quickly

detected could have a dramatic impact on the final output answer. As an

example, consider the Vertex cover problem. If the input instance is (G, k),
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then the presence of a simple path1 of length 2k + 1 in G automatically

implies that (G, k) is a no instance.

For many FPT problems, some preprocessing actions are guaranteed to re-

duce, in polynomial time, the size of any input instance to a function of the

parameter. This type of preprocessing, termed Kernelization, is now a common

practice in the design of algorithms for FPT problems. It is conceived as the pro-

cess of reducing a given problem instance to its combinatorial core, the problem

kernel .

Example 1 The Vertex Cover problem has a well known simple kernelization that

produces, for a given instance (G, k), a kernel (G′, k′) such that |V (G′)| ≤ k′2 +k′.

The idea is the following: if a vertex, v, has more than k neighbors then it must

be in every vertex cover of size k. Otherwise, all of its neighbors must be used to

cover the (at least k +1) edges connecting them to v. Iterative application of this

simple rule yields an instance (G′, k′) such that every vertex of G′ has at most

k′ neighbors. If a cover, C of size k′ (or less) exists, then G′\C has at most k′2

vertices (since it contains the neighbors of at most k′ vertices).

We prove in a subsequent chapter that, along with some preprocessing meth-

ods, this kernelization of Vertex Cover produces an instance (G′, k′) such that

|V (G′)| ≤ k′2

3
+ k.

3.2 Bounded Search Trees

The bounded search tree technique is a simple and effective approach that proved

useful for many interesting problems. It basically consists of an exhaustive search

in a hypothetical tree whose size is bounded by a function of the parameter.

1not self intersecting
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We say hypothetical since it is never actually constructed. The search is usually

conducted recursively via depth-first search. The root of the search tree consists

of the (usually kernelized) given instance of the problem. Each visited node is

constructed in polynomial time (when needed). We illustrate with the following

example from [21].

Example 2 Let (G, k) be a kernelized instance of the Vertex Cover problem. The

search for a solution (or just an answer) proceeds using the search tree technique

as follows. The root consists of the instance (G, k). If G is edgeless, then we are

done since no edges are to be covered anymore. Now let uv be any any edge of G.

Then either u or v (or both) belongs to the sought cover. Assuming u does, we

construct a node corresponding to the instance (G − u, k − 1). The search now

proceeds recursively: If (G−u, k−1) is a yes instance then we add u to the solution

of G − u and halt. Otherwise, it is still possible that a suitable solution can be

found by adding v to the cover. So we construct another instance (G − v, k − 1)

and proceed similarly.

The height of the binary tree in the above example is bounded above by k

since each time a node is constructed, its corresponding parameter value is one

minus the parameter associated with its parent node. So if level k is reached, the

parameter is zero and there is no need to proceed. It follows that the number of

nodes in this particular search tree is bounded above by 2k.

Note that we are dealing only with FPT problems. If the parameterized

problem is not FPT then, unless the W-hierarchy collapses, any search tree for

the problem is not bounded by a function of the parameter.

Some efficient algorithms have been designed lately that use bounded search

trees in a clever way. The most recent Vertex Cover algorithm uses a search tree

whose size is bounded above by 1.2852k [15]. This type of improvement is often
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due to branching and pruning techniques. While branching is a rule by which

children of a certain node are spawned, pruning occurs mainly in two cases: (1)

If it is possible to foretell that one of the branches (at least) has no solution,

and (2) if the existence of a solution for one branch implies that another branch

has a solution (so it is safe to prune this branch). Algorithms that use a search

tree are often called branching algorithms. Since they are usually preceded by

kernelization, the terms kernelization and branching are very popular in the FPT

community.

3.3 The Use of Tree Decomposition

Problems that are NP -hard in general are often solvable in polynomial-time when

restricted to graphs of bounded treewidth. Once a tree decomposition, (T, Y ), of

width w is given for a graph G, it is often possible to use dynamic programming

and the structure of the tree T to obtain algorithms whose run times are of

the form O(f(w)nc). When a parameterized problem π(k) admits this type of

algorithm, it will be interesting to obtain a relationship between its parameter

and the treewidth of its yes instances. For if f(w) is g(k), π(k) is trivially FPT .

A generic technique for the use of constant-width tree decompositions to obtain

polynomial-time algorithms is described in [4]. We illustrate with a concrete

example, by showing how to use the technique to obtain a uniform-poly-time

algorithm for Vertex Cover. Before we proceed, we need the following, probably

well known, Lemma.

Lemma 10 The treewidth of any element of Yk(V C) is bounded above by k.

Proof Let G be a graph that admits a vertex cover, C, of size k. Then a width-k

path decomposition, (P,X), of G is constructed by setting Xi = C ∪ {vi}, where
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{vi}n−k
i=1 is the set of vertices that are in the complement of C in V (G). Thus

tw(G) ≤ pw(G) ≤ k.

Let G be a yes instance of V C(k) and let (T, Y ) be an optimal tree decompo-

sition of G. Then, by Lemma 10, w(T, Y ) ≤ k. We now show how to to use (T, Y )

to solve V C optimally in time O(4kn). To do so, we make use of the following

notations:

- r denotes the root of T

- t denotes the current (visited) node of T

- G(t) is the subgraph of G induced by vertices of Xt

- Sub(t) denotes the subtree of T whose root is t.

- H(t) is the subgraph of G induced by vertices that appear in Sub(t). For

example, H(r) is G itself.

- For each subset Z of Gt, f(Z, t) denotes the size of the smallest vertex cover

that contains Z.

- ft = min{f(Z, t) : Z ⊂ V (G(t))}. In other words, ft is the size of an

optimal vertex cover of H(t), provided such cover of size ≤ k exists.

- A table, Mt, is associated with each node t of T . Each row of Mt corresponds

to a subset Z of G(t) and is used to store two items: the characteristic vector

αZ of Z, and the value of f(Z, t).

Since w(T, Y ) ≤ k, the number of rows of Mt is at most 2k+1. The number of

columns is at most k+2 and can be augmented by |V (G)| to store the characteristic

vector of the cover whose size if f(Z, t) if dealing with the search version of the

problem.

We start by initializing the tables Mt. If Z ⊂ V (G(t)) is a vertex cover of
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G(t), then the initial value assigned to f(Z, t) is the size of Z2. This initialization

step is performed by any traversal of T .

The next step is to update each table as we move up the tree T , in such a

way that each node is visited after all its descendents. This task is shown in the

function UPDATETABLE, shown below.

Function UPDATETABLE

Input: Table Mt corresponding to an internal node t of T , tables {Mt′ : t′ is a

child node of t}.
Output: Updated Mt if at least one row Z has f(Z, t) ≤ k. Otherwise, exit and

report that no global solution exists.

Begin function

flag ← 0

for each row Z in Mt do

if f(Z, t) ≤ k

for each child node t′ of t do

f(Z, t) ← min{f(Z ′, t) + |Z\Z ′| : Z ′ ⊂ V (G(t′))}
if f(Z, t) ≤ k

flag ← 1

if flag = 0

return 0

return Mt

End function

The pseudo-code for UPDATETABLE does not show all the details. For

2It is easy to see that not all vertices of G(t) are needed in the cover. So we assume that

|Z| ≤ k.
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example, some flag can be used to guarantee that all children of a node have their

tables updated and ready, so updating the current table becomes possible. The

variable flag is used in the code to check whether the table Mt has at least one

“potential” solution.

UPDATETABLE is called first on nodes whose children are all leaves. Then

it is called on all nodes whose (non-leaf) children have their tables updated, until

it either stops to declare that no solution is possible, or reaches the root of the

tree. If the size of the optimal vertex cover of G is not more than k, then fr is

this size.

The time required by UPDATETABLE is quadratic in the number of rows of

Mt. This is easily seen because of the number of comparisons needed for computing

f(Z, t) on line 53. Therefore, it takes O((2k)2) = O(4k) time. Moreover, the

number of nodes in a tree decomposition is O(n), where n is the order of G. It

follows that V C(k) can be decided in O(4kn) time.

One may argue that the algorithm shown in example 2 is better. This is not

the case in general. The upper bound of k on the treewidth of Yk(V C) graphs

is very loose. In practice one would expect this treewidth to be a lot less. For

example, planar graphs that belong to Yk(V C) have treewidth O(
√

k). However,

although treewidth is FPT , algorithms that construct optimal tree decomposition

of graphs of fixed treewidth are still impractical.

3It is possible to do this computation in linear time by a careful ordering of the rows in each

table. Our intention, however, is to illustrate the method and not to obtain the best possible

algorithm

49



3.4 Pseudo-Kernelization

We now introduce a new technique for the design of efficient algorithms for FPT

problems.

A pseudo-reduction rule is a reduction rule that applies only when some con-

dition P (π(k)) is placed on the input instance of the parameterized problem π(k).

Applying this rule must provably reduce the size of any input instance to a func-

tion of the parameter k. Of course, we are only interested in obtaining a bound

on the size of the kernel that improves on the one given by normal kernelization.

A pseudo-kernelization algorithm for a problem π(k) is a fixed-parameter algo-

rithm that uses a condition P (π(k)) in its search tree phase as follows: If P (π(k))

holds then reduce the size of the current instance. Otherwise, a better branching

rule is applied due to the absence of P .

Pseudo-kernelization applies well to 3-HS(k). The best algorithm for the

problem is due to Niedermeier and Rossmanith and runs in O(2.270k +n2). Their

reduction rules lead to a kernel of size O(k3).

Recall that the input of 3-HS(k) consists (in addition to the parameter k) of

a collection of subsets of a set S where each subset is of size three or less. It is to

be determined whether there exists a set, S ′, of k or fewer elements of S that has

non-empty intersection with all elements of the collection C. Now consider the

following condition:

P (3HS(k)): The input has no one single pair of variables (elements of S) that

appear in more than three sets (i.e., three elements of C).

If P holds, then we have the following pseudo-reduction rule: If an element, u,

of S appears in more than 3k sets, then add u to S ′. The reason why we place u

in S ′ is simple: If u /∈ S ′, then at most all k elements of S ′ would be needed to hit

the 3k + 1 sets containing u. By the pigeon hole principle, at least one element of
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S ′ would share 4 sets with u, violating P .

The pseudo-reduction rule (above) leads to a pseudo-kernel of size not exceed-

ing 3k2. To see this, note that, every element of C has to contain one of the k

elements of S ′. Moreover, none of these k variables can appear in more than 3k

sets. It follows that, after the pseudo-reduction rule is applied, C has at most 3k2

elements.

Now assume P doesn’t hold. Then at least one pair {u, v} appears in (at least)

4 sets. So there are (at least) 4 elements of S that appear with {u, v} in a set.

While searching for a solution we could branch with the following 3 cases: Either

u ∈ S ′, or v ∈ S ′, or all (at least 4) elements appearing with {u, v} are added

to S ′. Let T (k) be the size of the subtree of the search tree that is rooted at a

node associated with the current value of k. Assuming that P does not hold in

this subtree, then we can branch according to the above branching rule and get:

T (k) = 2T (k − 1) + T (k − 4) = 2.107k In other words, as long as P is absent, the

branching rule we use is better than rules that do not assume its absence.

This technique is plausible in the sense that: if P holds then we have good

news for kernelization and re-kernelization and when P doesn’t hold then we have

good news for branching.

Another nice feature of pseudo-kernelization is flexibility. It is possible to use

another pseudo-kernelization condition P ′ that places more (less) restriction on

the input to obtain a smaller (larger) pseudo-kernel but the speedup promised for

branching would be slower (faster). As an example, if we replace 3 by 4 in P , we

could still get a pseudo-kernel of size bounded above by 4k2 and a branching rule

that leads to T (k) = 2T (k − 1) + T (k − 5)(= 2.056k).
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3.5 Interleaving

Interleaving is a technique that is only used in a branching algorithm. The idea

is simple: before applying a branching rule and moving to a child node in the

search process, check if the current instance is amenable to kernelization (if a

kernelization algorithm is known). If so, it is re-kernelized.

Let A and B be kernelization and branching algorithms (respectively) for a

FPT problem π(k). The run time of B is O(f(k)g(k)) where g(k) is the (upper

bound of the) size of the kernel produced by A and f(k) is the exponential function

obtained due to branching rules. It is proved in [52] that interleaving kernelization

and branching as explained above, reduces the run time of B to O(f(k) + g(k)).

3.6 Other Techniques

Other kernelization and branching techniques appeared in recent fixed-parameter

algorithms. We list some of them briefly;

Catalytic Branching: used in a branching algorithm for the max-leaf-spanning-

tree problem [31]. It simply consists of using one vertex of the graph as a

catalyst by assuming it to be in (or not in) the potential solution. To find

such vertex, all |V (G)| vertices are tried prior to branching.

Coordinatized Kernelization: Appeared also in [31] and is currently used in some

new algorithms. The main idea is to assume the input, I, of a problem π(k)

satisfies an extreme condition: I ∈ Yk(π) and I /∈ Yk+1(π) if π is a maxi-

mization problem, I /∈ Yk−1(π) if it is a minimization problem. Accordingly,

some reduction rules are drawn.

Crown Decomposition: A kernelization technique introduced recently by M. Fel-
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lows [26] and is useful in at least a couple of FPT problems. In particular,

it applies to the vertex cover problem, where a kernel of size not exceeding

3k can be obtained.
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Chapter 4

A Case Study: The Vertex Cover

Problem

We describe implementations of sequential and parallel algorithms for the Vertex

Cover problem. This work is part of a general project aimed at the implementa-

tions of exact algorithms for FPT problems. The motivations behind this project

are:

(i) Instances of FPT problems are, in general, amenable to reduction in size

by kernelization techniques. The size of the kernelized instance is bounded

above by a function of the input parameter. This property is believed to

be the fundamental difference between FPT problems and other NP -hard

ones.

(ii) The use of search trees in most FPT algorithms caught our attention. Our

intuition is: in such search spaces, solutions (when they exist) are not nec-

essarily scarce. Moreover, some solutions tend to be in subtrees that are

of modest size. This suggests that balanced decompositions of search trees
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among several processors could sometimes lead to unusual speedups over

sequential algorithms.

(iii) We were encouraged by the amount of resources present at the University

of Tennessee. In particular, parallel implementations could benefit from the

large number of processors that are available.

The asymptotically fastest known algorithm would solve the parameterized

Vertex Cover problem (V C(k)) in O(1.2852k + kn) [15]. Earlier sequential im-

plementations could solve the problem for k ≤ 200 in less than an hour. Most

recently, a parallel implementation raised this (so called) klam value1 to more

than 400 but with graphs of size not exceeding 800 [14]. We obtain better run

times and raise the klam value considerably. Moreover, our codes run on inputs

of arbitrary size.

The first version of our code is divided into four modules: Preprocessing Tech-

niques, kernelization based on linear programming, sequential branching with re-

preprocessing (aka interleaving), and parallel branching based on search tree de-

composition. We discuss these modules and present experimental results obtained

by running our code on real and synthetic data sets.

4.1 Notations and Data Structures

Throughout this chapter, we assume the following:

G denotes the input graph of our V C(k) algorithm,

k denotes the parameter,

1The klam value, associated with a problem π(k), is defined in [21]. In this text, it is regarded

as the current estimated upper bound on k for which solutions could be obtained in real time.
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k′ denotes the current value of k during the different steps of the algorithm

n denotes the order of G,

n
′

denotes the (current) order of G
′

,

C is a potential vertex cover of size ≤ k (if any), and

vertices of G are indexed from 0 to n − 1.

The adjacency matrix representation is used for graphs in the code. Because

search tree algorithms are recursive, any implementation should take into account

the memory overflow problem that could result. For best use of memory resources,

we don’t make physical changes to the adjacency matrix of G while searching for a

solution. It is kept unchanged and is stored as a global variable, called GRAPH.

All changes made to G are recorded in a vector of size n called the status vector.

The status vector keeps track of the status of vertices of G. Each vertex, vi, is

either in the cover (status[i] = 1), is not in the cover but still active (status[i] = 0)

or it has been deleted (status[i] = −1). So, if G and status are given, we can

easily obtain C and the current graph, G′, obtained by a sequence of operations

made to G up to the current stage.

Another useful vector is the degree vector, which keeps track of the current

degree of each vertex. This is useful in the branching stage where vertices of high

degree are preferred. So we don’t have to compute the degrees at each node of

the tree. Moreover, degree is used to delete isolated vertices (those whose degree

drops to 0) and detect low degree vertices who play a major role in preprocessing

(and repreprocessing). The use of status and degree is illustrated in functions

REMOV E-V ERTEX and ADD-V ERTEX below.

Function REMOV E-V ERTEX

Input: G′, given by vector status, and v ∈ V (G′) given by its index s.
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Action: Delete v from G′.

Begin function

If status[s] 6= 0

error message and exit

status[s] ← −1

for i=0 to n-1 do

if (status[i] = 0 and GRAPH[i][s] = 1)

degree[i] ← degree[i] − 1

if degree[i] = 0

status[i] ← −1

n′ ← n′ − 1

n′ ← n′ − 1

End function

Function ADD-V ERTEX

Input: G′, C (given by status), and v given its index s.

Action: Add v to C.

Begin function

if status[s] 6= 0

error message and exit

status[s] ← 1

for i=0 to n-1 do

if (status[i] = 0 and GRAPH[i][s] = 1)

degree[i] ← degree[i] − 1

if degree[i] = 0

status[i] ← −1
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n′ ← n′ − 1

n′ ← n′ − 1

k′ ← k′ − 1

End function

The status vector is useful in constructing the final C. This construction is

needed since some operations, made to the graph in preprocessing and kerneliza-

tion, change the graph (G′) and the value of the parameter k′, without adding

vertices to the cover. For example, the vertex folding operation, described in the

next section, changes G′ and decrements k′, but does not provide a clue upon what

vertex is added to C until a final cover of G′ is obtained. This folding operation

requires a special stack of folded vertices represented by a 3 × n array, folded,

and an integer, foldindex, which holds the index of the top of the stack. folded

is used in order to undo some changes made to G′ while constructing C.

4.2 Reduction Techniques

We describe a few preprocessing and reduction rules for V C(k). Then we show

how linear programming can be used for further reduction. The goal is to find a

set C ⊂ V (G) such that, if G has a vertex cover of size k, then at least one such

cover must contain C.

The following lemma proved useful in obtaining strict upper bounds on the

size of a preprocessed graph. Moreover, it helps us decide when it is unnecessary

to use our costly linear programming kernelization.

Lemma 11 Let G = (V,E) be a graph admitting a vertex cover of size k. Then

k(1 +
1

∆(G)
) ≤ |V | ≤ k(1 +

∆(G)

δ(G)
) (4.1)
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Proof Let C be a vertex cover of size k of G. The complement, C̄, of C is an

independent set consisting of n − k vertices. Let F be the set of edges that have

endpoints in C̄. Since each element of C̄ has at least δ(G) neighbors in C, the

number of edges in F is at least |C̄|δ(G). In other words, |F | ≥ (n− k)δ(G). The

number of edges incident on elements of C is not smaller than |F | and is not larger

than |C|∆(G). So k∆(G) ≥ |F | ≥ (n−k)δ(G). This proves that n ≤ k(1+ ∆(G)
δ(G)

).

Moreover, every element of C has at least one neighbor in C̄. Which implies that

k = |C| ≤ |F | ≤ (n − k)∆(G). .

A regular graph is one whose vertices are all of the same degree. Lemma 11

implies the following property of regular graphs.

Corollary 3 If G is a regular graph of order n, then the size of an optimal vertex

cover of G is at least n
2
.

4.2.1 Preprocessing

Preprocessing rules are often easy and fast. The rules described in this section

are applied iteratively until none of them could further apply.

Rule 1 A pendant vertex may be deleted while adding its unique neighbor to the

cover. This is done as follows: Let u be a pendant vertex and let v be its unique

neighbor, then

- Add v to C

- decrement the degree of each neighbor of v

- delete those neighbors whose degree drops to zero

- decrement k′

- update the value of n′ according to the number of vertices that are deleted.
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Rule 2 Adjacent neighbors of degree-two vertices are included in the cover. To

illustrate, let u be of degree two and let v and w be its neighbors. If vw is an edge

of G′, then at least two of the three vertices (u, v, and w) is in any vertex cover.

So choosing v and w is not going to produce a cover that is larger than optimum.

Rule 3 (Introduced in [15]) Degree-two vertices whose neighbors are not adjacent

can be “folded” as follows: (Again, let N(u) = {v, w}).

- NG′(u) ← NG′(v) ∪ NG′(w)

- delete v and w.

- decrement k′

- n′ ← n′ − 2

- foldindex ← foldindex + 12

- Update folded to keep track of the current change (by storing indices of u, v,

and w in folded[foldindex][0], folded[foldindex][1], and folded[foldindex][2]

respectively.

To see why this folding operation works, note the following:

(i) if a neighbor of u is placed in C, then u would be pendant and we can place

its second neighbor in C. Thus it is safe to assume that either u ∈ C or

{v, w} ⊂ C.

(ii) If u is in any cover C of size k′, then the new graph has a cover of size

k′ − 1: when u is in C, neither of v and w is in C. Therefore all neighbors

of v and w must be in C. So, after folding u, the edges incident on u in

the new graph are double-covered by u and by its new neighbors (formerly

neighbors of v and w), which allows us to exclude u from the cover of the

2The initial value of foldindex is -1.
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new graph and decrement k′. In this case, the resulting graph has a cover

of size k′ − 1 if and only if the previous one has a cover of size k′.

(iii) if v and w are in any cover C of size k′. Then their edges can be covered

by u in the new graph which would then have a cover of size k′ − 1.

It follows that folding u results in a new graph whose optimal vertex cover is

one less than that of the original graph.

Rule 4 (See [11]) Consider vertices of degree at least k + 1. Let v be any such

vertex, then we add v to C since otherwise, C would contain all (> k) neighbors

of v.

The procedure that takes care of all of the preprocessing rules is called PREPROCESS.

After finding a solution, the cover is generated by reversing the folding operation.

This is described by function UNFOLD below.

Function UNFOLD

Input: status, folded and the size, n, of status.

output: a vertex cover of G given by its characteristic vector cover.

Begin function

for i = 0 to n − 1 do

if status[i] = 1

cover[i] = status[i]

for i = foldindex downto 0 do

if cover[(folded[i][0])] = 1

cover[(folded[i][0])] ← 0

cover[(folded[i][1])] ← 1

cover[(folded[i][2])] ← 1
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else

cover[(folded[i][0])] ← 1

return cover

End function

Theorem 13 There is an O(kn + n2) algorithm that takes as input a graph G

and a positive integer k and produces a graph, G′ and an integer k′ ≤ k such

that: G has a k-Vertex-Cover if and only if G′ has a k′-Vertex-Cover. Moreover:

|V (G′)| ≤ k′2

3
+ k′.

Proof Apply each of the above mentioned preprocessing actions iteratively. At

each step, the value of k is decremented. Thus the O(kn) run time claimed can

be easily seen since all operations can be dealt with using the status and degrees

vectors, each of linear size. Reading the graph (at least for initializing the degrees

vector) takes O(n2). The resulting graph G′ satisfies 3 ≤ δ(G′) ≤ ∆(G′) ≤ k′.

Thus by Lemma 11, |V (G′)| ≤ k′2

3
+ k′.

4.2.2 Kernelization Based on Linear Programming

The optimization version of Vertex Cover can be stated as follows: assign a value

Xu ∈ {0, 1} for each vertex u of the input graph G, so that the sum of all vertices

assigned the value 1 is minimized, and at least one of the endpoints of each edge

is assigned a value of 1. In other words:

(1) Minimize: Σu∈V Xu.

(2) Subject to: Xu + Xv ≥ 1 whenever uv ∈ E.

(3) Under the constraints: Xu ∈ {0, 1} for all u ∈ V .

This is (obviously) an integer programming formulation of the problem. We

refer to it by V CIP . In this context, the size of an optimal vertex cover is called
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the objective function, and the set of all functions from V (G) to {0, 1} that satisfy

condition (2) is called the region of feasible solutions.

Since Integer Programming (IP ) is an NP-complete problem, it is often useful

to replace the constraints Xu ∈ {0, 1} by Xu ≥ 0. Thus obtaining a linear

programming (LP ) formulation, V CLP , of the problem. This transformation from

IP to LP is usually called an LP relaxation of the problem since the resulting

problem has a “wider” range of feasible solutions.

The value of the objective function returned by a V CLP solver (which we

call OPTLP ) is always a lower bound on the one returned by a V CIP solver

(called OPTLP ). One of the achievements of the work of Nemhauser and Trotter

is the fact that OPTIP ≤ 2 ∗ OPTLP [51, 37, 41]. A simple proof of this results

appeared in [41]. We include a slightly modified version of this proof here as it

helps clarifying our kernelization strategy of V C(k).

Let LPSOLV ER be, as its name suggests, a program that takes as input a

V CLP instance and returns an optimal LP solution. Let {Xu : u ∈ V } be the

set of values assigned by LPSOLV ER to vertices of G.

Define:

P = {u ∈ V (G) : Xu > 0.5},
Q = {u ∈ V (G) : Xu = 0.5}, and

R = {u ∈ V (G) : Xu < 0.5}.

Our LP -based kernelization is simple. We just add into the cover all elements

of P and delete all elements of R. The remaining graph, G′, is the one induced by

the set Q. We now show why these operations are sound by proving that at least

one optimal vertex cover contains P and, therefore, has an empty intersection

with R.
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Let A be the set of vertices of P that are not selected by some optimal Vertex

Cover solution, OPTIP . And let B be the subset of R that are selected by OPTIP .

We may assume |A| 6= |B|, since, otherwise, replacing B by A gives the desired

optimal cover. Note that elements of B have no neighbors in Q. So, If |A| < |B|
then replacing A by B in OPTIP gives a better cover. Moreover, if |A| > |B| then

a better LP solution would be obtained by setting Xu ← Xu + ε for all u ∈ B and

Xv ← Xv − ε for all v ∈ A, where ε = min{Xv − 0.5 : v ∈ A}. This is impossible

because LPSOLV ER must have delivered an optimal solution.

Notice that the size of any optimal vertex cover of G′ is bounded below by

Σu∈QXu, which is at least 0.5|Q|. This is true since the optimal value returned

by LPSOLV ER is bounded above by OPTIP (in minimization problems). The

kernelization algorithm tries to find vertices that belong to a cover C of size ≤ k.

This is achieved as follows:

- k′ ← k − |P |.

- if |Q| > 2k′ then No solution (return 0). Otherwise:

- Add P to the cover C.

- Construct G′ from the vertices of Q.

To illustrate, we only need to justify the second step. Clearly, |C| ≥ Σu∈V Xu =

Σu∈P Xu + Σu∈QXu = |P | + |Q|
2

. Therefore, k′ = k − |P | ≥ |C| − |P | = |Q|
2

.

When dealing with huge and dense graphs, the above LP formulation may not

be practical, especially since the number of constraints (rows) is the number of

edges in the graph, and we have to deal with graphs having millions of edges. For

this purpose we use a code that solves the dual of our LP problem [18]. The dual

of a minimization LP problem is a maximization one. Moreover, the number of

constraints in the dual problem is exactly equal to the number of vertices of the
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input graph (see [16] for more details about obtaining the dual of an LP problem).

Other methods to speed up this LP kernelization appear in [37].

4.3 Search Techniques

We implemented sequential and parallel search techniques to solve V C(k). For

this first version, we chose a simple approach based on selecting a vertex, v, of

highest degree and proceeding recursively by either adding v or all its neighbors to

the cover. This operation is often referred to by “branching at vertex v”. This is

why search tree algorithms are sometimes called branching algorithms. Figure 4.1

shows a graph G and the (hypothetical) search tree that corresponds to running

a V C(4) branching on G. The dotted edge is never used.

The branching algorithm used in our implementation is described in [15]. Some

of the branching rules are not incorporated yet because they rely on folding of

degree 2 vertices, which is not implemented in the branching phase of our code

at this point. Interleaving of folding is due to appear in the next version. The

current version includes interleaving of preprocessing rules 1 and 4.

Recall the description of pruning in the previous chapter. For simplicity, let

us say that a node is pruned if we can make it a leaf and not consider its instance

for a solution. Several new pruning techniques are incorporated in our code over

these proposed in [15]. In particular:

(i) At each node in the search tree, we check whether n′ becomes larger than

k(1 + ∆(G′)
δ(G′)

). If so, the current node is pruned.

(ii) If the number of edges is larger than k′∆(G′) then the current node is

pruned. (In a yes instance, k′ vertices cover all edges. Each vertex of the k′

vertices covers at most ∆(G′) edges, so there are at most k′∆(G′) of them).
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Figure 4.1: (a) The input graph, G, to V C(4). (b) the corresponding search tree
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(iii) If ∆(G′) drops to 2, we just search for a solution of size k′ in linear time.

If none exists, the node is pruned, otherwise a solution is returned.

Our parallel implementation relies on a decomposition of the search tree: the

search tree is decomposed into subtrees and each subtree is assigned to a different

processor using, simply, SSH to the different machines available.

To illustrate how our search tree decomposition code works, consider a (gen-

eral) search tree that corresponds to an input of V C(k). Suppose we can use 4

processors. The first step in our decomposition would actually build the tree up to

level 2 (since, if it were full, it would have 4 leaves). Then, if the number of leaves

that do not correspond to no instances is less than 4, the algorithm proceeds to

more levels by branching at the leaf with the largest value of k′, since such leaf

would correspond to the largest instance.

4.4 Experimental Results

4.4.1 Nonsynthetic Data Sets

Each real data set corresponds to a family of protein sequences who share a com-

mon domain. The sequences are obtained from NCBI [50] and, using ClustalW

[17], pairwise alignments are performed and corresponding scores are recorded. A

score between two sequences determines how aligned they are. The goal of biol-

ogists is usually to obtain a best representative phylogenetic tree for this protein

family. It was noted in [14] that better phylogenetic trees are obtained by consid-

ering a subset of this data set consisting of sequences whose pairwise scores are

higher than a certain threshold value, t. To accomplish this task, a graph is con-

structed so that vertices and edges correspond to protein sequences and pairwise
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scores respectively. To get the desired subset, edges of scores below t are deleted

and the resulting graph, G1, is simple and unweighted. It is now easy to see that

the desired set corresponds to a clique (i.e., complete subgraph) of maximum size

in G1. Since the clique problem is not FPT , we use the fact that a clique in G1

is nothing but the complement of a vertex cover in the complement, G2, of G1

(see figure 4.2). G2 is often called the conflict graph (w.r.t. t). Our vertex cover

code then comes into play, and is used iteratively until an optimal vertex cover

is obtained for G2. Once a solution is obtained, the sequences corresponding to

cover vertices are removed from the data set and the remaining sequences are fed

into ClustalW to get a phylogenetic tree.

Aiming at obtaining real data sets, we followed the same approach as in [14]

and downloaded several sets of protein sequences from [50].
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Figure 4.2: (a) A clique in G1 is the complement of (b) a vertex cover in G2 = Ḡ1
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The following tables (Table 1 and Table 2) display some of our results. PRE-

PROCESS and LPSOLVER are the codes that correspond to the previously de-

scribed preprocessing and kernelization algorithms. The number of machines used

in these experiments is 32, each is a 500 Mhz Sun UltraSPARC IIe processor. In

all the tables below, time is measured in seconds unless otherwise stated.

Note that, since the data sets obtained are very dense, the decomposition

strategy used in the parallel algorithm of this first version did not help in getting

a satisfactory speedup over the sequential code. We observed that most processors

finish too early being assigned subtrees corresponding to easily detectable no in-

stances (the value of k is already decreased tremendously in most subtrees whose

roots are close to the global root). Notice, however, the total run time required

to find a solution.

Although we can’t declare an upper bound on our klam value at this time,

we are sure that it is at least 1000. In fact, we were able to obtain covers of size

more than 2000 for data sets corresponding to sequences sharing the SH3 domain.

The number of those sequences (at the time we downloaded them) is 2466. The

graphs have, depending on the chosen threshold value, a number of edges ranging

between 1.5 million and 2.2 million. For threshold 15, our code could finish in 17

minutes. The other cases were harder at this time and the current version is not

appropriate for them. In fact, many experiments on the graph corresponding to

threshold 5 could finish in one to two hours but, for threshold 10, the answer did

not appear in real time (took more than a day). Based on the number of ways we

can improve this V C(k) code, our second version, which is due to appear soon,

should be able to deal easily with the hard instances, and is expected to scale up

to larger graphs as well.
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Table1. Conflict Graphs of 972 sequences from the Globin protein family.

Threshold k Y/N PREPROCESS LPSOLV ER Sequential Parallel

Time n’ k’ Time n’ k’ Branching Branching

5 284 Y 1 99 43 1 0 0 - -

5 283 N 1 99 42 1 - - - -

10 391 Y 1 867 289 9 221 117 1 not needed

10 390 N 1 867 288 9 221 116 9 not needed

15 427 Y 1 240 107 2 174 96 1 not needed

15 426 N 1 240 106 2 174 95 1 not needed

Table 2. Conflict graphs corresponding to 839 sequences with SH2 domain.

Threshold k Y/N PREPROCESS LPSOLV ER Sequential Parallel

Time n’ k’ Time n’ k’ Branching Branching

5 399 Y 1 803 387 45 494 250 6 not needed

5 398 N 1 803 386 45 494 249 154 mins. 120 mins.

10 547 Y 1 726 435 69 616 389 19 15

10 546 N 1 725 433 66 615 387 62 55

15 606 Y 1 547 314 54 547 314 15 11

15 605 N 1 538 304 61 538 304 18 14
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4.4.2 Synthetic Data Sets

Our synthetic data sets were obtained in several ways. A graph generator was

written only to produce graphs with a vertex cover of size k and whose vertices

have degrees in a given range. We generated many graphs and tested the code.

The results were always impressive.

Our best experiments were obtained on data sets from Carleton University,

where the parallel code was unusually faster than the sequential one. This really

verified our intuition about the behavior of parallel codes that are based on the

search tree decomposition technique.

Of course, the speedup shown in table 3 is not always possible. We report

it only to show how high a speedup can be when a decomposition of search tree

is used for parallelism. In fact, worst cases where very small (even negligible)

speedup could happen. Especially when dealing with very dense graphs. In such

an extreme case, the search tree looks like a path near its root and gets “thicker”

at lower levels until it becomes almost full. Thus, all processors but one could

finish quickly because they were assigned easy instances.

Although the extreme case described above is rare, it actually happened with

a particular family of real data sets. Future versions of this code are expected to

deal with this difficulty, mainly by developing techniques for reassigning jobs to

processors that finish early.

Table 3. Graphs of size 600 obtained from Carleton University.

Graph k Y/N PREPROCESS LPSOLV ER Sequential Parallel

name Time n’ k’ Time n’ k’ Branching Branching

RG30 400 Y 1 500 300 skipped - - days 5

RG31 400 Y 1 500 275 skipped - - days 4

RG32 400 Y 1 500 250 skipped - - days 4
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4.4.3 Observations

While running our first version on numerous graphs, we distinguished three types

of behaviors:

(i) Powerful preprocessing and kernelization finish most (if not all) of the job

(as shown in table 1).

(ii) Powerful sequential kernelization and branching (armed with interleaving)

can do very well (see table 2). In fact, interleaving did really make a huge

difference when incorporated. More preprocessing and kernelization rules

will be interleaved in the next version.

(iii) On some hard instances, the sequential code could be very slow. These are

instances that will benefit from our search space decomposition technique

and would benefit a lot from increasing the number of processors. The

results displayed in table 3 show how important is the incorporation of

this parallel approach, which has the potential of achieving super-linear

speedups.
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Chapter 5

Fast Algorithms for the Face

Cover Problem

We now turn our attention to the Face Cover problem. This work further illus-

trates the “kernelization and branching” methodology, and elucidates how the

planarity of a graph can be exploited in this context.

In the optimization version of the face cover problem (FC), we are given a

plane graph G, and seek the least number k of faces whose boundaries contain all

the vertices of G. The corresponding decision version is NP-complete [5].

When k is fixed and a face cover of size at most k exists, finding such a cover

can be accomplished in linear time. All recent FC(k) algorithms use a reduction

to the parameterized Planar Dominating Set problem (PDS(k)). This reduction

first appeared in [21] where an O(12k) flawed algorithm was presented.

PDS(k) has two recent algorithms that are based on different approaches. The

first, which runs in O(8kn) by using the bounded search tree technique, appeared

in [2]. Although Face Cover was not mentioned, it is believed that the best FC(k)

algorithm would follow from this work and should have a run time of O(8kn) [26].
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The second PDS(k) algorithm uses dynamic programming on tree decomposition,

and is used to solve FC(k) (explicitly) in O(336
√

(34k)n + n2) [1]. Of course, this

algorithm has a better asymptotic run time. Yet, an algorithm with a run time

of O(8kn) would be preferred in practice.

Face cover has a highly practical linear-time algorithm when k = 1, since this

is just recognition of outerplane graphs. However, even for k = 2, none of the

known algorithms seems to be encouraging.

In this chapter, a direct O(5k + n2) algorithm, FACECOV ER, for FC(k)

is presented. Our algorithm is simple to implement, but its analysis is intricate.

Most of this chapter is involved with the proofs of correctness and time complexity

analysis.

The notation G = (V, F ) is used when referring to a plane graph. For a face

f ∈ F , the set of vertices appearing in the ordered tuple associated with f is

called the boundary of f and is denoted by V (f). For a vertex v ∈ V , the set of

faces whose boundaries contain v is denoted by F (v).

For a planar graph G, δ(G) ≤ 5. Which implies that we can always find a

vertex that belongs to the boundaries of at most five faces. So, if we use the

search tree technique, branching at such vertex introduces at most five “smaller”

instances of the problem. The question now is, after performing this branch

operation, is there any guarantee that another vertex of degree ≤ 5 is present in

the resulting graph? The answer is usually no. We shall see, later in this chapter,

that some reduction rules can be used to modify the graph and always guarantee

(in the worst case) the existence of a vertex belonging to no more than five faces

that qualify for membership in the cover.

Face Cover is a special case of the Hitting Set Problem (HS). To see why, note

that a face cover of G = (V, F ) is a hitting set of the sets {F (u) : u ∈ V }. We

mentioned earlier that HS(k) is not FPT , unless we fix the number of elements
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allowed in each of the input sets. We denoted this restricted form of HS(k) by

d-HS(k), where d is the (fixed) upper bound on the size of input sets. Thus, a

d-HS algorithm can be used to solve the face cover problem when the degree of

any vertex of the input plane graph is bounded by d. We deal, however, with

the general face cover problem. Moreover, preprocessing techniques used for the

general HS algorithm in [67] apply well to FC(k) instances.

5.1 Preliminaries

We shall assume that our input is like the input of a HS algorithm. In fact, this

is why we chose to characterize plane graphs by vertices and faces. The data

structure used for a plane graph consists, essentially, of two lists corresponding

to vertices and faces of the graph. The list associated with a vertex v starts with

the number of faces in F (v) then a list of the indices of these faces. Similarly, the

list associated with face f contains the number of vertices in V (f) followed by the

indices of elements of V (f). Figure 5.1 shows a plane graph and the corresponding

input to our FC(k) algorithm.
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V(2): 4; 0,1,2,4

Figure 5.1: A plane graph and the corresponding input representation
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The number of vertices of the given plane graph is denoted by n. When dealing

with graphs, the size of input is often quadratic in n. This is due to the popular

adjacency matrix representation. In our case, the graph is plane and, thanks to

Euler’s formula, has a linear number of edges and faces. We show that, according

to our representation, the size of input is linear in n.

Lemma 12 Let G = (V, F ) be a given plane graph, and let V (f) and F (v) be as

defined above. Then the sets {F (v) : v ∈ V } and {V (f) : f ∈ F} have linear size.

Proof Consider the bipartite graph H = (A,B) constructed as follows:

(i) A and B consist of the vertices and faces of G respectively.

(ii) An edge of H connects a vertex v of A to a vertex f of B if and only if

f ∈ F (v) (if and only if v ∈ V (f)).

The number of edges of H is the same as the number of edges in G since, for any

vertex v of G, dG(v) is the number of faces in F (v) which is the same as dH(v).

It follows that |E(H)| ≤ 3n − 61. Therefore: |{F (v) : v ∈ V }| = Σv∈V d(v) =

2|E(G)| = 2|E(H)|. This proves that |{F (v) : v ∈ V }| is of linear size. Moreover,

|{V (f) : f ∈ F}| = Σf∈BdH(f) = 2|E(H)| = |{F (v) : v ∈ V }|.

We use the bounded search tree technique in our FC(k) algorithm. During the

search process, the vertex set is partially covered by the already selected faces.

We shall, then, reduce the graph at each step by eliminating covered vertices.

While this action is easy (and safe) when dealing with a general HS instance, it

must be performed carefully in our case. Especially because we need to be assured

that every node in the search tree has at most 5 children. Moreover, deleting a

covered vertex from a plane graph might change the size of an optimal face cover

1we show in the next chapter that, if G is a yes instance of FC(k) then |E(G)| ≤ 2n−3k+6.
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and produce incorrect results. As an example, consider the graph shown in figure

5.2. If the algorithm selects the outer face and deletes all its vertices, the resulting

graph has a face cover of size one, while the original graph has a minimum face

cover of size three. Our algorithm deals carefully with covered vertices. Before

deleting a covered vertex, v, we modify all faces containing it by, simply, deleting

v from their (ordered) lists. This face compaction will be called “the surgical

operation” later in this chapter. It is depicted in figure 5.3.

5.1.1 Annotated Plane Graphs Representation

For a given plane graph G = (V, F ), vertices and faces are of two types: active

and marked. Active vertices are those to be covered (i.e., not covered yet) and

active faces are those that can be used to cover active vertices. A plane graph

with active and marked vertices and/or faces will be called annotated in this text.

A general version of the face cover problem was presented in [5], where not all

vertices of the graph are to be covered. Our algorithm will be ready to deal with

this version as well. In fact, if a vertex is not to be covered, then we may assume

that it has been covered earlier during the process of finding the face cover and it

will be marked.
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Figure 5.2: Deleting the vertices that are covered by selecting the outer face

produces a wrong answer.
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Figure 5.3: (a) Before selecting face f . (b) After selecting f . The circled vertices

are marked. For simplicity, edges between marked vertices are not contracted in

this figure. Dotted edges and the regions marked with X are “implicitly” present

but not actually added to the graph.
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Marking a face f is done by deleting V (f) after replacing the index of f by

-1 in the list(s) F (v) of each vertex v ∈ V (f). This process takes O(|{F (v) : v ∈
V (f)}|). Thus it is O(n). We will refer to this procedure by MARK-FACE(f).

Similarly, marking a vertex v is done by deleting F (v) after replacing the

index of v by -1 in the list(s) V (f) of each f ∈ F (v). This procedure, denoted

by MARK-V ERTEX(v), takes time O(|{V (f) : f ∈ F (v)}|) which is O(n). To

show that such simple operation is sound, we prove it to be equivalent to a surgical

operation on the graph.

5.1.2 A Surgical Operation

Two neighbors, u and w, of a vertex, v, are consecutive if some face, f , contains

the three vertices such that one if the two ordered tuples (u, v, w) and (w, v, u) is

a sub-tuple of the ordered tuple of f .

If a vertex, v, is of degree at least 2, and is marked, then active faces that

are adjacent to it will not be needed to cover it. Deleting v could lead to wrong

answers as shown in Figure 5.2. So, prior to removing v, we make sure that the

marking operation avoids such cases. The marking operation simply consists of

(1) contracting edges between v and all marked neighbors of v, then (2) adding

edges between consecutive active neighbors of v (even if they are adjacent) and

marking all faces that contain v in the resulting graph. This action is safe in the

following sense: every face that is adjacent to v and is used to cover a neighbor

of v, must contain two consecutive neighbors of v. Thus, adding an edge between

consecutive neighbors preserves active faces that might later be needed to cover

neighbors of v (and possibly other vertices). We refer to this operation on the

graph by the surgical operation. In our implementation of the algorithm, we did

not need to perform the surgical operation. It is used only to show that the
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algorithm has the claimed performance and the operations of marking vertices

and faces are sound.

Notice also the case where only one vertex of a face is left active at a certain

point. In this case, the face is still active unless the vertex belongs to some other

face. We shall see that preprocessing rules detects this case and deals with it,

leaving no such faces in the graph. Figure 5.3, which shows (a snapshot of) the

effect of the surgical operation, depicts some pendant faces.

5.2 Preprocessing

For simplicity, we assume the given graph is connected. Due to the chosen input

representation, however, our code works in both cases. Our preprocessing consists

of two main rules:

The Dominated Face Rule: If two faces, f and f ′, of G are such that V (f) ⊂
V (f ′), then f is said to be dominated by f ′. In such case, f can be marked

since every face cover of G that contains f can be replaced by a (possibly

better) cover that contains f ′.

The Dominated Vertex Rule: If two vertices, u and v, are such that F (u) ⊂
F (v), then v is said to be dominated by u, and v is marked since any face

that covers u will cover v.

Checking if a vertex (face) is dominated is done by a search through all the

sets of {F (v) : v ∈ V } ({V (f) : f ∈ F}). It thus takes linear time. It follows

that checking if the graph has dominated vertices or faces can be accomplished in

O(n2). Each dominated vertex or face is then marked in O(n) time. Therefore,

the total run time of preprocessing is O(n2). We shall refer to this preprocessing

algorithm by procedure PREPROCESS later in this chapter.
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We noticed that many preprocessing actions described in our previous version

of the algorithm (as well as subsequent face cover kernelization techniques by

other authors) were just particular cases of the above two rules. For example,

if all interior vertices of a path, P , of length more than two are of degree two,

then we used to contract all interior edges (edges between interior vertices). Thus

keeping one (necessary) interior vertex of degree two. This turns out to be the

dominated vertex rule since two interior degree-two vertices have the same set

of active faces. Moreover, the (easy) pendant vertex rule, which simply adds

the unique face containing a pendant vertex to the cover, is also a special rule

of the dominated vertex rule since the (unique) neighbor of a pendant vertex is

dominated.

5.3 Kernelization

This section is devoted to the proof of the following theorem.

Theorem 14 Let G = (V, F ) be an instance of FC(k). There is an algorithm

that runs in O(n2) and produces another, instance G′ = (V ′, F ′), of FC(k′) such

that:

(i) G is a yes instance of FC(k) ⇐⇒ G′ is a yes instance of FC(k′),

(ii) k′ ≤ k, and

(iii) |V (G′)| ≤ 2k′3.

Lemma 13 Three or more vertices of a plane graph, G, may not be common to

more than two faces of G.

Proof Assume vertices u1, u2, and u3 belong to three faces, f1, f2, and f3. Con-

struct another plane graph, G′, by drawing three vertices, v1, v2, and v3 such that
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vertex vi is placed inside face fi and joined to all vertices that lie on the boundary

of fi. The subgraph of G′ induced by vertices {ui}3
i=1 and {vi}3

i=1 is isomorphic

to K3,3. This is a contradiction.

Lemma 14 Let G be a a yes instance of FC(k). If two faces of G have more

than 2k common vertices, then any face cover of size k contains at least one of

them.

Proof Let C be a face cover of size k. Assume faces f1 and f2 contain 2k + 1

common vertices and are not elements of C. Then, by the pigeon hole principle,

some element of C must cover at least three of the 2k + 1 common vertices of f1

and f2. This is impossible by lemma 13.

Corollary 4 Let G be a yes instance of FC(k). If no pair of faces of G have 2k+1

common vertices, then every face whose length exceeds 2k2 is in any optimal face

cover of G.

Corollary 5 Let G be a yes instance of FC(k). If f ∈ F has more than 2k

vertices with more than k faces, then f must be in any optimal face cover of G.

We now describe the kernelization process and use it in a proof of Theorem

14. This process is referred to, later, by procedure KERNELIZE.

The first step in KERNELIZE is a simple search for all faces of length > 2k′2,

where k′ is originally equal to k. This is done in O(n) time since the length of

a face is captured when reading input. All faces that are found whose length

exceeds 2k′2 are kept in a list, L.

The second step is the following: For each face f ∈ L, the number of common

vertices with all other faces of L is computed. (We may only consider faces that

contain at least one common vertex with f). If a face f ′ has more than 2k′
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common vertices with f then their common vertices are all added to a list M

of vertices that are to be marked2, and a virtual new vertex, v, is added to the

list of vertices such that F (v) = {f, f ′}. This operation is equivalent to adding

a (virtual) degree-two vertex that dominates all common vertices of f and f ′. If

no such face f ′ exists, then, because of corollary 5, f is added to a list C of faces

that are in the cover and are to be marked. Moreover, if the number of faces that

share more than 2k′ common vertices with f exceeds k′, then f is also selected in

the cover and, thus added to list C. Otherwise, more than k′ faces will have to be

in the cover. Note that, because of Lemma 14, we stop the search if more than k′

disjoint pairs of faces have (at least) 2k′ + 1 common vertices.

The last step deals with a cleanup of the lists and an update of the parameter:

vertices in M are marked, faces in C are marked together with their boundary

vertices, and the parameter k′ is replaced by k − |C| (k is unchanged while C,

being originally empty, is filled with cover faces). Then list L is emptied and the

process is repeated from step one until no more faces of length > 2k′2 are found

(or no solution can be found).

Proof of Theorem 14:

Algorithm KERNELIZE just described satisfies the three conditions of the the-

orem. In particular, condition (iii) follows from corollary 4. As for the time

complexity, we note the following:

(i) Step one takes O(n) since it’s a simple filling of list L by a one pass through

the list of active faces.

(ii) Step (ii) takes O(kn): for each face f ∈ L, we either find another face f ′

that shares 2k′ + 1 vertices with f or we add f to C. By Lemma 14, no more

2Note that, by the surgical operation, active faces do not have marked vertices on their

boundaries.
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than k pairs of faces can share 2k + 1 vertices, and no more than k faces can be

added to C. Hence, the number of iterations in step two is at most k throughout

the whole process.

(iii) The last (cleanup) step takes time O(n2) since it deals with marking

vertices and faces that are in M and C respectively. The proof of Theorem 14 is

now complete.

5.4 A Direct Face Cover Algorithm

Our direct algorithm is represented by the procedure FACECOV ER shown be-

low. Subroutines PREPROCESS, KERNELIZE and MARK-FACE corre-

spond (obviously) to the processes previously described in detail.

Procedure FACECOV ER

Input: A plane graph G = (V, F ) given by {F (u) : u ∈ V } and {V (f) : f ∈ F},
and an integer k ≥ 1.

Output: A face cover, C of size ≤ k of G if one exists. NULL otherwise.

Begin procedure

k′ ← k

(G,C, k′) ← PREPROCESS(G, k′)

(G,C, k′) ← KERNELIZE(G, k′)

Select an active vertex v ∈ V such that |F (v)| = min{F (u)|u is active in V }.
For every f ∈ F (v) do

C1 ← C ∪ {f};
G1 ← MARK-FACE(f);

(G1, C1, k
′) ← KERNELIZE(G1, k

′ − 1);

C2 ← FACECOV ER(G1, k
′);
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if(C2 6= NULL)

return C1 ∪ C2

return NULL

End procedure

We shall prove that, at every call to FACECOV ER, the selected vertex, v,

has no more than five active faces in its F (v) list. We know that the first call is

guaranteed to select such vertex. As a remark, we note that, at least three such

vertices are present in the graph. This is guaranteed by virtue of Euler’s formula

and the following lemma, which first appeared as a corollary in [54].

Lemma 15 If G is a planar graph, then G has at least three vertices of degree

≤ 5.

Proof Let m = |M = {v ∈ V (G) : d(v) > 5}| and l = |L = {v ∈ V (G) :

d(v) ≤ 5}|. Then: 3n − 6 ≥ e(G) ≥
∑

v∈L
d(v)+

∑
v∈M

d(v)

2
≥

∑
v∈L

d(v)+6m

2
≥

∑
v∈L

d(v)+6(n−l)

2
≥

∑
v∈L

d(v)

2
+ 3n − 3l. Therefore l ≥ 2 +

∑
v∈L

d(v)

6
> 2

If a vertex, v, is the only active vertex of face f , then f will only be selected

(and marked) if v doesn’t belong to any other face. Otherwise, it would be dom-

inated (thus marked). We can, therefore, assume that every active face has at

least two active vertices.

Faces of length two may exist due to the surgical operation which could in-

troduce multiple edges between two vertices. This case is easily handled by

KERNELIZE since two vertices cannot belong to more than one face of length

two (by the dominated face rule).

Lemma 16 Let v be an active vertex of an annotated plane graph, G. Then no

marked neighbor of v belongs to an active face of v.
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Proof The lemma follows immediately from the surgical operation.

Theorem 15 FACECOV ER runs in O(5k + n2) time.

Proof At each call to FACECOV ER, the (plane) subgraph induced by active

vertices of G1 must have a vertex, v, of degree ≤ 5. By Lemma 16, the active faces

in F (v) are faces that are common to v and its active neighbors. Thus the number

of such active faces would exceed five only if v has multiple edges with at least one

of its neighbors. Which means that v belongs to faces of length two. However,

a face of length two will only be active if it’s the unique face that is common to

its two vertices. This proves that each node in the search tree has at most five

children. Having no more than k levels, the search tree has at most O(5k) nodes.

Thus pure branching would take O(5kk3) (after the (O(n2) kernelization). since

interleaving is used as in [52], the run time of branching reduces to O(5k + k3)

and the overall run time is (5k + k3 + n2). This completes the proof.

5.5 Remarks

We implemented our direct FC algorithm. Our code was tested on input plane

graphs of size up to 200. The purpose of testing the code at this time was checking

for correctness but we noted that answers were obtained in seconds especially after

incorporating interleaving.

So far, we don’t know of any other code for FC. It is interesting to see how ours

would compare to the other indirect algorithm of Alber et al. [1]. As noted earlier,

we anticipate that their use of tree decompositions and dynamic programming may

impose some overhead. This justifies our direct approach, which is a lot faster

when the size of the cover is small.
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Chapter 6

Approximation Algorithms for

Planar Graphs of Fixed Disk

Dimension

We now turn our attention to planar graphs. We derive some useful properties of

planar graphs whose optimal disk dimension is fixed. This work originally aimed

at extending the work of Govindan et al. [33] to obtain a fast approximation

algorithm for the pathwidth of planar graphs that have disk dimension two or

more. We present a linear time algorithm for graphs of any fixed disk dimension.

The proofs in this chapter rely heavily on Kuratowski’s theorem [42]. So we

will assume from this point on that neither K5 nor K3,3 could be topologically

contained in a planar graph. We also use the facts that outerplanar graphs exclude

only K2,3 and K4 in both the minor and the topological orders, while series-parallel

graphs exclude only K4 in both orders.

Let DDk denote the family of planar graphs whose disk dimension is at most

k. We refer to such planar graphs by DDk graphs. They enjoy several interesting
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properties that are discussed in the following two sections.

6.1 Disk Dimension and Face Cover

Given a DDk graph G, we know that G has an embedding in the plane so that

all vertices lie on the boundaries of at most k disks. Such disks can be treated as

faces since they have empty interior.

On the other hand, let H be a graph that has at least one embedding in which

k faces cover all vertices. Since the interiors of the k faces are empty, one would

treat them as the k disks in a DDk layout of H. But where do we draw a vertex

which belongs to more than one of the cover faces? We ask this question because

we would like to draw the disks so that no two of them share a common vertex.

The answer is easy. Since the boundaries of the k disks in a DDk layout need not

be cycles of the graph, we dictate that such vertex belongs to the boundary of

exactly one disk. So it will be possible to treat the set {Ci : Ci is the boundary

of disk di} as a partition of G. This is illustrated in figure 6.1 where vertex u

belongs to two cover faces but is drawn on one of the two disks.

A DDk layout of a graph G whose disk dimension is k is considered an optimal

layout. Similarly, if a planar graph H has no embedding in which fewer than

k faces cover all vertices, then any embedding that has a face cover of size k

is considered an optimal embedding of H. Figure 6.1 shows a DD2 layout of

K5
−. Noting that DD1 graphs are the outerplanar graphs and that K5− is not

outerplanar (since it contains a K4 subgraph), the layout shown in this figure is

optimal.

Despite the similarity between disk dimension and face cover, it is important

to notice the difference between the problems DD(k) and FC(k) defined earlier.

Knowing that a given embedding of a planar graph, G, has a face cover of size
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Figure 6.1: A DD2 layout of K5
−

k implies that its disk dimension is at most k, but does not provide any lower

bound. Figure 6.2 shows two embeddings of an outerplanar graph of which one is

optimal and the other has an optimal face cover of size four.

6.2 Fundamentals

We use ci to denote the center of disk di. The wheel graph of G with respect to

{di}k
i=1 is defined by: Gw = (V ∪{ci}k

i=1, E ∪⋃k
i=1{uci : u ∈ Ci}). Note that Gw is

defined in terms of a particular layout and, therefore, it is not necessarily unique.

The planarity of Gw is useful. We will employ it in many of our proofs.

The distance between a pair of vertices in a graph G is the length of the shortest

path connecting them. The diameter of G is the maximum of all distances between

pairs of vertices of G. It is easy to visualize that, if G is a connected DDk graph

given with some optimal DDk layout, then the diameter of the corresponding Gw

is bounded above by 3k−1. To see this, let c0 and c1 be the centers of two adjacent

disks (d0 and d1 respectively). Then some pair of vertices, (u, v) ∈ Ci × Cj are

adjacent in G. The path c0u∪ uv ∪ vc1, in Gw, connects the two centers and is of
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Figure 6.2: (a) An outerplane embedding of an outerplanar graph. (b) Another

planar embedding of the same graph
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length 3. It follows that, in the worst case, the distance between any two centers

ci and cj does not exceed 3(k − 1). Finally, since any vertex of G is a neighbor

of (exactly) one of the centers of Gw, the distance between any two vertices is at

most 2 + 3(k − 1) = 3k − 1.

A planar graph G is maximal planar if ∀u, v ∈ V (G), uv /∈ E(G) ⇒ G′ =

(V (G), E ∪ {uv}) is not planar. The disk dimension of such a graph is at least

n/3, where n is the number of vertices. To see this, we note that in any DDk

layout of a maximal planar graph, none of the k disks can contain more than

three vertices (but, a disk may have to contain fewer than three). In fact, n/3 is

only a lower bound, since some graphs have disk dimension more than n/3. For

example, it follows from Theorem 17 (to follow) that dd(K2,11) = 6 > d(13/3)e.
Thanks to Euler’s formula, we know that a planar graph of order n can have

at most 3n − 6 edges. And an outerplanar graph of order n has at most 2n − 3

edges. Since outerplanar graphs are exactly the DD1 graphs the following result

generalizes this to DDk graphs.

Theorem 16 Let G be a planar graph having n vertices and e edges and satisfying

dd(G) = k. Then e ≤ 2n + 3k − 6

Proof Let ni be the number of vertices in Ci. Then
∑k

i=1 ni = n. G is not

maximal planar since more edges can be drawn in the interior of each disk di

between vertices that lie on the boundary. For each di, the maximum number of

such edges is ni − 3. This gives a total of n− 3k edges that can be added to G to

get another planar graph G′ on n vertices satisfying G ⊆ G′. It follows that the

number of edges of G′ is bounded above by 3n − 6 and is equal to e + n − 3k.

Lemma 17 If (A,B) = K2,3 ≤t G, and i ≥ dd(G), then the three vertices of B

do not lie on the boundary of a single disk in any DDi layout of G.
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Proof Extending G to Gw allows us to get K3,3 = (A ∪ {ci}, B) ≤t Gw. Which

is impossible since Gw is planar.

Theorem 17 If K2,3m+1 ≤t G, then dd(G) > m.

Proof Let (A,B) = K2,3m+1 ≤t G. If dd(G) ≤ m, then at least 3 vertices of B

must lie on the boundary of some disk di. This contradicts the assertion of lemma

17.

Observation 7 Let G = (V,E) be an element of DD2. Then G has two vertices

u and v such that dd(G − uv) = 1. To see this, note that removing two adjacent

vertices that lie on the two disks of a DD2 layout of G would lead to unifying the

two disks. (It’s like thickening edge (u, v) and opening a tunnel between the two

disks.)

Lemma 18 Let G be a planar graph satisfying dd(G) = k > m > 0. Then G has

at most 2m vertices {u1, u2, ...ul}, l ≤ 2m, such that dd(G−{u1, u2, ...ul}) ≤ k−m.

Proof Let G be given with an optimal (DDk) layout. There are at least two

disks, di and dj in the layout that have an edge joining some u on di to a v on dj.

By Observation 7, removing u and v results in replacing di and dj by one disk.

This can be repeated m times or until we get a DDk−m graph.

6.3 A Reduction Algorithm

We present an algorithm that, when given any planar graph G and a positive

integer k, tries to remove at most 2k − 2 vertices of G in order to obtain an

outerplanar subgraph H of G. If the algorithm fails to produce any such H, then

dd(G) > k. Hence, our algorithm proves the following theorem.
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Theorem 18 The family of graphs whose disk dimension is at most k is a sub-

family of W2k−2(outerplanar).

According to Lemma 18, given a DDk graph G, there are pairs of adjacent

vertices whose removal reduces the disk dimension of G. The question is, how do

we find such pair when G is not given by a DDk layout?

Theorem 19 Let G be a DDk graph satisfying K4 ≤t G. Let u be any of the 4

corners of the K4 model in G. Then the three neighbors of u in the model can’t

all belong to the boundary of the same disk as u.

Proof Note first that the four corners {ui}4
i=1 of a K4-model cannot all lie on the

boundary of the same disk. Otherwise Gw would contain a K5 in the topological

order. Let v2, v3, and v4 be the neighbors of u1 in the model. Assume also that,

either vi = ui or vi is on the u1 − ui path of the K4 model. Let {di}k
i=1 be a

DDk layout of G such that u1 ∈ C1. Assume {v2, v3, v4} ⊂ C1. If u2 6= v2, then

({u1, u2}, {v2, v3, v4}) = K2,3 ≤t G. To see this, note that u2 − v2, u2 − u3 − v3,

and u2 − u4 − v4 are vertex disjoint paths in the model of K4 ≤t G. Which is

impossible by Lemma 17.

Theorem 20 Let G be a DDk graph satisfying (A,B) = K2,3 ≤t G. Let u be

any of the 2 corners corresponding to A in the K2,3 model. Then the 3 neighbors

of u in the model can’t all lie on the same disk as u.

Proof Let v1, v2 and v3 be the neighbors of u in the model. Then (A, {v3, v4, v5})
is another K2,3 model in G. Result follows by Lemma 17.

We are ready now to present our reduction algorithm. Procedure REDUCE,

below, uses the following assumptions and notations: We use the expression 2-

corner of a K2,3-model to denote any of the two elements of A when (A,B) =
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K2,3 ≤t G. Function outerplanar is an outerplanarity test. If G is not outerplanar,

and K4 is a minor of G, a corner of the K4-model is returned together with its

three neighbors in the model. If K4 is not a minor of G but K2,3 is, a 2-corner is

returned together with its three neighbors in the model.

Procedure REDUCE

Input: A planar graph G with n vertices and e edges, and an integer k ≥ 1.

Output: A set S of “at most” 2k−2 vertices of G such that G−S is outerplanar.

If no such set exists, return NULL.

Begin procedure

If(e > 2n − 3k + 6)

return NULL;

S ← φ;

If (k = 0) return NULL;

If (outerplanar(G)) return S;

If (K4 ≤t G)

u ← corner of a K4-model in G;

else

u ← 2-corner of a K2,3-model in G;

{v0, v1, v2} ← neighborhood of u in the model;

for (i = 0; i < 3; i + +)

S ′ = REDUCE(G − {u, vi}, k − 1);

if (S ′ 6= NULL)

return S ∪ S ′

return NULL

End procedure

94



Note that corners of a K4-model can be found by the linear-time algorithm

described in [45]. Corners of a K2,3-model can also be found in linear time [61].

Lemma 19 Let (G, k) be the input to procedure REDUCE, where G is any pla-

nar graph of order n. The output of REDUCE is either an outerplanar subgraph

of order n− 2k + 2 or the fact that G is not in DDk. Moreover, REDUCE runs

in O(3kn).

Proof The preceding lemmas and discussion explain the output of REDUCE.

As for its time complexity, note that each time vertex u is found (u is the corner

of a K4-model or a 2-corner of a K2,3-model), we branch with three cases in the

search tree. The height of the search tree is at most k. So it has at most 3k nodes.

All other statements in the code are done in linear time.

6.4 Tree Decompositions of DDk Graphs

Theorems 17 and 6 imply the following:

Corollary 6 For fixed k, graphs that belong to DDk have bounded treewidth.

We have already observed that, if G is connected, the diameter of Gw is

bounded above by 3k−1. It is shown in [23], that, for a planar graph G, tw(G) is

O(D) where D is the diameter of G. This provides an alternate proof of corollary

6. By Lemma 18, given a DDk graph G, there are at most 2k − 2 vertices whose

removal produces an outerplanar graph. And outerplanar graphs have treewidth

two or less. We therefore have an explicit upper bound on the treewidth of DDk

graphs:

Theorem 21 Let G be a DDk graph. Then tw(G) ≤ 2k.

95



The following procedure uses the same technique as in REDUCE to remove

at most 2k − 2 vertices of the graph. It outputs NULL only if dd(G) > k. There

is no need, however, to go all the way until the resulting graph is outerplanar. It

is well known that series-parallel graphs are “the” graphs that have treewidth at

most two.

Procedure ddk tw

Input: A planar graph G.

Output: A width 2k tree decomposition (T,X) of G

Begin procedure

If (series-parallel(G))

(T,X) ← sp tw(G);

return (T,X);

If (k = 1)

return NULL; // G can’t be outerplanar and not series-parallel

u ← corner of a K4-model in G;

{v0, v1, v2} ← neighborhood of u in the model;

for (i = 0; i < 3; i + +)

(T,X1) ← ddk tw(G − {u, vi}, k − 1)

if(width(T) < 2k − 1)

X ← {Xi ∪ {u, vi} : Xi ∈ X1};
return (T,X);

return NULL;

End procedure

ddk tw runs in O(3kn) since it uses the same concept as REDUCE. It should

be faster than REDUCE in general because it doesn’t check for the presence of
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a K2,3-model.

So far, we showed constructively that the treewidth of DDk graphs is bounded

above by 2k. We can further show that it is in fact O(
√

k). To do this, we rely

on the work of Alber et al. [1] on the Planar Dominating Set problem.

Theorem 22 Treewidth of DDk graphs is O(
√

k).

Proof Define: PDSk = {G : G is planar and has a dominating set of size ≤ k},
and DDw

k = {Gw : G ∈ DDk}. Clearly, DDw
k ⊂ PDSk. And, by the work of

Alber et al., treewidth of PDSk graphs is O(
√

k). Let G be a DDk graph, then

G ⊂ Gw corresponding to a suitable DDk layout.

Using the above theorem to obtain a tree decomposition for DDk graphs would

not be easy unless we have a (relatively) fast algorithm that solves the DD(k)

problem. However, the current best algorithm for DD(k) is highly impractical.

6.5 Pathwidth Approximation

Optimal path decompositions of DDk graphs can be obtained (theoretically) in

polynomial time. This is due to [8], which asserts that optimal path decompo-

sitions can be found in polynomial time for graphs of bounded treewidth. The

algorithm suggested is not practical, however, because it operates on sets of size

O(n11) in its first step.

Motivated by fast approximation algorithms for the pathwidth of DD1 graphs,

we show how to get similar algorithms for DDk graphs. In fact, we rely on Lemma

18 (by using procedure REDUCE) to show how to obtain a linear time algorithm

whose performance ratio is 3 on general DDk graphs and 2 on some biconnected

ones.
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Take, for example, a DD2 graph G. Delete a (suitable) pair {u, v} of vertices.

The resulting graph, H, is outerplanar. Using the work of [34], we can find a path

decomposition (P,X) that is not more than 3pw(H)+2 in O(n) time. (The bound

stated in [34] is only O(nlogn), because the algorithm described there relies on

obtaining optimal path decompositions of trees. It has more recently been shown

that such decompositions can be computed in linear time [60]. Thus the algorithm

of [34] runs in linear time as well.) Adding the two vertices to every element of X

gives a path decomposition of G of width ≤ 3pw(H) + 4 ≤ 3pw(G) + 4 because

H ⊆ G. If H were biconnected, we could use the algorithm of [7] to obtain a path

decomposition of width ≤ 2pw(H) + 1.

Procedure ddk pw, below, assumes that a path decomposition of a given outer-

planar graph, H, can be obtained by function outpl pw in linear time. The width

of the path decomposition returned by outpl pw is not more than 3pw(H) + 2.

Thus, given graph G as input, ddk pw returns a path decomposition of width not

exceeding 3pw(G) + 2k. It outputs NULL only if dd(G) > k.

Procedure ddk pw

Input: A planar graph G.

Output: A path decomposition (P,X) of G

Begin procedure

If (outerplanar(G))

(P,X) ← outpl pw(G);

return (P,X);

S ← REDUCE(G, k)

if(|S| ≤ 2k − 2)

(P,X1) ← outpl pw(G\S);

X ← {Xi ∪ S : Xi ∈ X1};
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return (P,X);

return NULL;

End procedure

Theorem 23 If G is a DDk graph of order n, a path decomposition of G with

width at most 3pw(G) + 2k can be constructed in O(3kn) time.

Proof Obtaining the path decomposition of width at most 3pw(G)+2k has been

described in details in the preceding paragraphs. The claimed time complexity

follows from lemma 19 since the time consuming part of function ddk pw is the

call to REDUCE. Other parts of the code run (obviously) in linear time.

6.6 Remarks

We showed that graphs of disk dimension k or less are within 2k − 2 vertices of

outerplanar graphs. The containment of DDk in W2k−2(outerplanar) is proper.

In fact, for arbitrary r > 0, a graph, Gr, that has disk dimension r and is within

one vertex of outerplanar can be constructed from K1 and (r− 1) copies of K3 by

connecting a vertex u representing K1 to all vertices of (r − 1)K3. The resulting

graph is Gr = K1 + (r − 1)K3 is shown in figure 6.3. Gr is (obviously) planar

and has disk dimension r. Procedure REDUCE could still do a good job on

this graph since, unless the edges connecting u to other vertices are subdivided,

it would only take out two vertices of which one is u.

Our constructive proof, manifested in procedure REDUCE, allows for a family

of approximation algorithms for DDk graphs. To illustrate, if problem π is easy

(or, as in our case, has a fast approximation) on outerplanar graphs then, for

some fixed k, it has an absolute approximation algorithm for DDk graphs since

the quality of solution will only be affected by an additive constant.
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Figure 6.3: A “within one vertex from outerplanar” graph whose disk dimension

is four.
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Chapter 7

Summary and Directions for

Future Research

We have explored the relationship between graph coloring and the immersion or-

der, and have conjectured that if χ(G) ≥ t, then G contains an immersed Kt.

We proved that, for each fixed value of t, there can be only a finite number of

t-immersion-critical graphs. Our most important results are that t-immersion-

critical graphs other than Kt must, if any exist, be both 4-vertex-connected and

t-edge-connected. Since the immersion containment generalizes topological con-

tainment, the absence of an immersed Kt in a graph implies that it does not have

a topological Kt. So, for t ∈ {5, 6}, the existence of any counterexample to our

conjecture would prove that Hajós conjecture is also false for (any of) these cases,

a problem that has been open for about 60 years.

We considered the different techniques used in exact algorithms for problems

that are NP -complete but fixed parameter tractable. Aiming at showing that

such exact algorithms should not be dismissed, we implemented a parameterized

Vertex Cover algorithm. Based on experimental results, we judge that recent
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developments of fixed-parameter algorithms did really make a breakthrough in

bridging the gap between notoriously hard problems and practicality. The role

played by preprocessing techniques is essential and, based on our experience, we

find that any preprocessing idea counts. We continue, therefore, to explore and

add new preprocessing algorithms to our dynamically improving code. Our linear

programming method for kernelization of V C(k) already obtains a kernel of size

≤ 2k. We suspect, however, that the crown reduction method (which obtains

a kernel of size ≤ 3k) and the linear programming method are orthogonal and,

together, could lead to further reduction.

Our implementation of Vertex Cover used the search tree technique, called

branching. We implemented a parallel version of branching, based on a decompo-

sition of the search tree. This method (which we call the “search tree decompo-

sition” technique) is very promising since it could lead to super-linear speedups

on some input instances. The (sequential and parallel) branching phase of our

algorithm includes interleaving of some preprocessing rules. With all the new

techniques and technologies used and “to be used” in this project, it is hoped

that the code will keep scaling up to accommodate larger input instances and

cope with its rich areas of applications.

We considered the FPT Face Cover problem and presented a novel direct

algorithm that runs in O(5k + n2) time. We think that indirect approaches that

use dynamic programming on tree decompositions are still far from practical.

An open problem is whether a small tree decomposition could be obtained for

the input plane graph by exploiting (only) the fact that a face cover of size k is

present.

We considered the pathwidth metric. Because exact fixed-parameter algo-

rithms for this problem are still far from practical at this time, and because

approximation algorithms appeared for the pathwidth of several subfamilies of
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planar graphs, we extended previous work by presenting an approximation algo-

rithm for the pathwidth of planar graphs with fixed disk dimension. Our algorithm

is highly practical and could take as input any planar graph. It could fail only

when the input is not of the given fixed disk dimension.

To get the pathwidth approximation algorithm, we showed that the family,

DDk, of planar graphs of disk dimension k or less is properly contained in the

family, W2k−2(outerplanar), of graphs that are within 2k− 2 vertices of outerpla-

nar. Our constructive proof allows also for a family of approximation algorithms

for DDk graphs. In fact, since most hard problems have fast solutions on outer-

planar graphs, a general approximation strategy for a problem on DDk would be

to use our reduction algorithm and obtain an outerplanar subgraph by removing

no more than 2k − 2 vertices, then solve the problem and append the 2k − 2

vertices to the solution.

We provided a tree decomposition algorithm that guarantees a width that is

not larger than twice the disk dimension of the input planar graph. This algorithm

should be useful as a heuristic for constructing tree decompositions of planar

graphs in general. It might be possible to use tree decompositions and dynamic

programming to obtain a fixed-parameter disk dimension algorithm. It would be

very challenging, however, to obtain a practical algorithm for this problem.
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[9] Béla Bollobás. Extremal Graph Theory. Academic Press, New York, 1978.

[10] H. D. Booth, R. Govindan, M. A. Langston, and S. Ramachandramurthi.

Sequential and parallel algorithms for K4 immersion testing. Journal of Al-

gorithms, 30:344–378, 1999.

[11] J.F. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal on

Computing, 22:560–572, 1993.

[12] Catlin. Hajös graph-coloring conjecture: variation and counterexamples.

JCTB, 26:268–274, 1979.

[13] Kevin Cattell and Michael J. Dinneen. A characterization of graphs with

vertex cover up to five. In ORDAL, pages 86–99, 1994.

[14] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon. Solving

large FPT problems on coarse grained parallel machines. Technical report,

Department of Computer Science, Carleton University, Ottawa, Canada,

2002.

[15] J. Chen, I. Kanj, and W. Jia. Vertex cover: further observations and further

improvements. Journal of Algorithms, 41:280–301, 2001.

[16] Vasek Chv´tal. Linear Programming. W.H.Freeman, New York, 1983.

[17] ClustalW. See http://helix.nih.gov/apps/bioinfo/clustalw.html.

106



[18] W. Cook. Private communication, 2003.

[19] G. A. Dirac. A property of 4-chromatic graphs and some remarks on critical

graphs. J. London Math. Soc., 27:85–92, 1952.

[20] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-

pleteness. Congressus Numerantium, 87:161–187, 1992.

[21] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,

1999.

[22] P. Duchet and H. Meyniel. On hadwiger’s number and the stability number.

Annals of Discrete Math., 13:71–74, 1982.

[23] D. Eppstein. Diameter and treewidth in minor-closed graph families. Algo-

rithmica, 27(3):275–291, 1999.

[24] David Eppstein. Small maximal independent sets and faster exact graph

coloring. In Frank Dehne, Jörg-Rudiger Sack, and Roberto Tamassia, editors,

Proc. 7th Worksh. Algorithms and Data Structures, number 2125 in Lecture

Notes in Computer Science, pages 462–470. Springer-Verlag, August 2001.

[25] P. Erdös and S. Fajtlowicz. On the conjecture of hajös. Combinatorica,

1:141–143, 1981.

[26] M. Fellows. Private communication, 2003.

[27] M. R. Fellows and M. A. Langston. Nonconstructive advances in polynomial-

time complexity. Information Processing Letters, 26:157–162, 1987.

[28] M. R. Fellows and M. A. Langston. Nonconstructive tools for proving

polynomial-time decidability. Journal of the ACM, 35:727–739, 1988.

107



[29] M. R. Fellows and M. A. Langston. On well-partial-order theory and its

application to combinatorial problems of VLSI design. SIAM Journal on

Discrete Mathematics, 5:117–126, 1992.

[30] M. R. Fellows and M. A. Langston. On search, decision and the efficiency

of polynomial-time algorithms. Journal of Computer and Systems Sciences,

49:769–779, 1994.

[31] M. R. Fellows, Catherine McCartin, Frances A. Rosamond, and Ulrike Stege.

Coordinatized kernels and catalytic reductions: An improved fpt algorithm

for max leaf spanning tree and other problems. FSTTCS, pages 240–251,

2000.

[32] Michael R. Garey and David S. Johnson. Computers and Intractability.

W. H. Freeman, New York, 1979.

[33] R. Govindan, M. A. Langston, and S. Ramachandramurthi. A practical

approach to layout optimization. In Sixth International Conference on VLSI

Design, pages 222–225, 1993.

[34] R. Govindan, M. A. Langston, and X. Yan. Approximating the pathwidth of

outerplanar graphs. Information Processing Letters, 68:17–23, 1998.
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