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ABSTRACT

Ecological communities are governed by complicated processes that give rise to

observable patterns.  Making sense of these patterns, much less inferring the underlying

processes, has proved challenging for several reasons.  Manipulative experiments in

natural communities may not be feasible due to large numbers of variables, lack of

adequate replication, or the risk of undesirable consequences (e.g., introducing an

invasive species).  The multivariate nature of ecological datasets presents analytical

problems as well; many statistical techniques familiar to ecologists have difficulty

handling large numbers of potentially collinear variables.  I present results from three

studies of spider communities in which I employ a combination of familiar and less

familiar statistical approaches to elucidate the factors influencing community structure in

spiders.  These approaches include null model analyses, nonmetric multidimensional

scaling (NMS) for variable reduction of predictor and response data matrices, multiple

regression, and observed variable structural equation modeling (SEM).  While NMS has

been employed as a multivariate descriptive analysis, examples of its use in further

analyses are rare.  SEM is a technique widely applied in other fields, but has only

recently been used in ecological studies.  General results from analyses of these three

studies suggest that: 1) significant patterns of spider species co-occurrence based on null

model analyses are consistent with a hypothesis of shared habitat preferences rather than

one of species interactions, 2) in multiple regressions using NMS axes as predictor and

response variables to compare the roles of plant species composition and habitat

architecture in influencing spider species composition, the plants explained as much or
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more variation as the architecture, and 3) based on SEM analyses using NMS axes for

spider species, plant species, arthropod orders and habitat architecture as variables, plant

species composition acts both indirectly (through its effect on arthropods and

architecture) and directly.  The combination in these analyses of a traditionally

descriptive multivariate approach (NMS) with null models, a classic regression approach,

and SEM permits the analysis of otherwise statistically intractable datasets (the original

data matrices).  This suite of approaches provides new insights into spider community

structure, and can be applied by ecologists working in other systems as well.
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INTRODUCTION

Problem statement

Ecological communities have been likened to a “black box” in which observable

patterns, such as abundance of individuals, local distributions, or species diversity, are

shaped by complicated processes hidden from the observer (Bender et al. 1984, Shipley

2000).  Collectively these patterns can be termed community structure (Swihart and Slade

1990), and the mechanisms by which they arise (i.e., intra- and interspecific interactions,

environmental influences) are community organization (Landres and MacMahon 1983).

Although these patterns may be fairly easy to measure, the underlying mechanisms and

processes are more difficult to discern.  This is because the specific attributes of a

community are determined by multiple, potentially collinear, environmental and

ecological factors, and direct and indirect interactions among these factors present both

conceptual and methodological challenges (Wootton 1994a, McCune and Grace 2002,

Graham 2003, Wootton and Emmerson 2005).

The basis of community organization is generally viewed as a combination of

habitat preferences and species interactions such as competition, predation and mutualism

(Wellborn et al. 1996).  An organism’s biotic environment includes both conspecific and

heterospecific individuals, some of which may serve as resources (e.g., food, shelter,

mates) or potential competitors for resources.  For example, plants are a component of an

animal’s environment that can provide nutritive or spatial/structural resources and may

ameliorate abiotic conditions by creating microclimates.  Other animals may be prey,

mates, competitors, or predators.  At the community level, individuals interact both
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directly with members of other species within and across trophic levels (direct effects),

and indirectly when interactions are mediated through one or more additional species

(indirect effects) (Wootton 1994a).

Questions about the roles of these different processes can be framed in the context

of habitat selection.  In a broad sense, habitat selection can viewed as a mechanism

enabling species coexistence through the differential recognition and use of patches

within a habitat, which then determines the number of species that can occupy that

habitat (e.g., Rosenzweig 1981, Brown 1990, Morris 2003).  For example, differences in

the grain at which habitat selection occurs (i.e., the number of sub-habitats recognized by

populations) can influence species diversity (MacArthur et al. 1966).  This view

considers habitat selection on an evolutionary scale by considering how selective forces

have acted to permit species coexistence (Brown 1990).

Habitat selection can also be thought of at a finer, ecological scale as an outcome

of biotic interactions (i.e., actual choice of patches is influenced by these interactions).

Within suitable areas, in the absence of competition or predation risks, individuals’

choice of habitat will be governed by resource availability (prey, space, etc.) and

preferences for particular habitat features.  More realistically, these choices are modified

by the need to avoid risks from heterospecifics or conspecifics (e.g., Spence 1981,

Gorman 1988, Dick 1996), with these interactions sometimes leading to occupation of

otherwise suboptimal habitats (Rosenzweig 1991).  At an ecological scale, these

interacting processes that shape habitat selection give rise to the patterns of local spatial

distributions of species within a community.
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In this dissertation, I use spider communities to investigate community patterns

and the potential processes that result in these patterns.  I also explore statistical

approaches designed for multivariate data and hypotheses with the goal of presenting

and/or refining methods that yield meaningful and interpretable results from complicated

data.  Spiders are a well-studied and diverse group of arthropods that are abundant in

terrestrial ecosystems (reviewed in Wise 1993), making them suited for studies of

complicated community dynamics.  Further, they play important roles as terrestrial

arthropod predators and have been shown to regulate other arthropod populations (Finke

and Denno 2002, Rosenheim et al. 2004, Denno et al. 2004) which can result in

cascading effects on plant diversity and biomass (reviewed in Halaj and Wise 2001; see

also Schmitz 2003, Schmitz et al. 2004), influence community succession (Hodkinson et

al. 2001, Schmitz et al. 2006), and affect ecosystem properties such as nutrient cycling

(Schmitz 2006).

Mechanisms of animal community organization

The role of plant communities

Habitat selection by animals is often influenced by the physical structure of the

environment, which may be created by the physical structure of the vegetation.  Habitat

architecture has repeatedly been shown to have a strong influence on community

structure in a variety of taxa (McCoy and Bell 1991, Tews et al. 2004; see Langellotto

and Denno 2004 for meta-analysis).  Habitat architecture can be described by single

measures such as vegetation height diversity (MacArthur and MacArthur 1961,

Rosenzweig and Winakur 1969, Murdoch et al. 1972, M’Closkey and Lajoie 1975,
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Greenstone 1984), vegetation density (Kelaher 2003), plant surface area (Parker et al.

2001), biomass (Heck and Wetstone 1977, Rigby and Lawton 1981), fractal geometry

(Williamson and Lawton 1991, Gunnarsson 1992), or the presence/abundance of specific

features (for example, perches [Rand 1964, Moermond 1979], leaf litter [Bultman and

Uetz 1982, Friend and Cellier 1990], nest sites [Tscharntke et al. 1998]).  Other authors

have used multiple measurements to describe the heterogeneity or complexity of habitat

architecture, often employing variable reduction techniques such as principal components

analysis, discriminant analysis, or cluster analysis to represent the data in a statistically

tractable manner while incorporating more information than a single metric can provide

(M’Closkey 1976, Rotenberry and Wiens 1980, August 1983, Koen and Crowe 1987,

Brose 2003).

Habitat architecture, often explains more variation than other components of the

environment.  Numerous studies have compared the influence of habitat architecture

versus that of prey availability (Greenstone 1984), temperature (Abele 1974, Rypstra

1986), species interactions (Dueser and Porter 1986), flooding regime (Brose 2003) or the

plant community (MacArthur and MacArthur 1961, M’Closkey and Lajoie 1975, Heck

and Wetstone 1977, Rotenberry 1985, Parker et al. 2001, Brose 2003), and have generally

found that architecture is a better predictor of animal community structure.

Comparing attributes of the floristic community to habitat architecture, or using

these attributes as sole predictors, to investigate their role in habitat selection and

consequent influence on animal community structure commonly involves representing

the plant community by a diversity measure (e.g., MacArthur and MacArthur 1961,

Murdoch et al. 1972, Heck and Wetstone 1977, Panzer and Schwartz 1998, Siemann
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1998, Siemann et al. 1998, Edwards and Otis 1999, Brose 2003, Hawkins and Pausas

2004), which some authors refer to as plant species composition (e.g., M’Closkey and

Lajoie 1975).  The relationship between plant diversity and animal community structure,

however, has been inconsistent.  In some studies plant diversity measures have been

important influences on animal community structure (Murdoch et al. 1972, Panzer and

Schwartz 1998, Tscharntke et al. 1998, Edwards and Otis 1999), while in others the

relationships have been weak (Siemann 1998, Siemann et al. 1998, Parker et al. 2001,

Hawkins and Pausas 2004) or non-significant (MacArthur and MacArthur 1961, Heck

and Wetstone 1977, Koen and Crowe 1987, Brose 2003).

These conflicting results may reflect the use of a single variable, plant diversity,

to represent the plant community.  Plant diversity metrics may not adequately represent

the taxonomic features of the plant community to which animals respond.  Two sites

could have comparable diversity values without necessarily sharing species in common.

I use plant species composition here to refer to measures that incorporate specific plant

species or functional groups of plant species.  Plant species composition in this sense has

been an important predictor of animal community structure as well (Ewert 1982,

Rotenberry 1985, Martínez-Vilalta et al. 2002, Beals 2006).  Rotenberry (1985) used the

dry weight of major taxonomic groups in his analyses and Ewert (1982) compared

frequencies of different plant taxa among his study areas.  In the studies cited above, the

plant community was represented by a single variable, plant diversity.

It is also reasonable to expect that plant species and habitat architecture will be

correlated (Rotenberry 1985).  For example, in studies where the dependent variables are

plant diversity and foliage height diversity (MacArthur and MacArthur1961, Murdoch et
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al. 1972, etc.), this correlation is expected since more diverse assemblages of plants are

likely to exhibit a greater diversity of growth forms.  MacArthur and MacArthur (1961)

do not report the correlation between these variables, but Murdoch et al. (1972) found

that plant diversity and foliage height diversity were highly correlated with one another

and were equally correlated with insect diversity.  Problems arise because few studies

satisfactorily account for the relationship between plant species composition (or

diversity) and habitat architecture (but see Rotenberry 1985).  If plant species and plant

architecture are strongly correlated, then statistically they will have similar effects on

community structure and cannot readily be distinguished.  For example, MacArthur and

MacArthur (1961) concluded that plant diversity does not explain additional variation

beyond that explained by habitat architecture, but never tested whether the reverse may

be true.  Their conclusions may result from the order in which they tested sequential sums

of squares, rather than from the greater importance of architecture to bird communities,

yet this study is cited frequently in papers as a classic example of the importance of

habitat architecture.

Species interactions

In addition to preferences for architectural or floristic characteristics, habitat

selection can also be influenced by species interactions.  Observational and experimental

evidence have indicated that both predation and competition influence community

organization, although opinions about the relative importance of these interactions have

shifted from an emphasis on competition to an emphasis on predation (Sih et al. 1985).

Through the 1970s the primacy of interspecific competition in shaping communities was
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a dominant paradigm in ecological research (Sih et al. 1985).  Several reviews have

addressed the evidence for interspecific competition from field experiments (e.g.,

Schoener 1983, Connell 1983) and concluded that competition was demonstrated in a

majority of studies.  Connell (1983) cautions, however, that this may in part be an artifact

of ecologists investigating competition only in systems where they expect it to occur, and

not publishing negative results.  While some studies have provided evidence for

competition as a contemporary force (e.g., Conley 1976, Stiling and Strong 1984),

evidence from others has not (e.g., Rotenberry and Wiens 1980, Strong 1982, Dueser and

Porter 1986).  Patterns that appear to be indicative of competition may in fact be the

“ghost of competition past,” rather than evidence of contemporary competition (Connell

1980).  Several authors have also pointed out that observed patterns could arise as a result

of habitat variation (Simberloff 1983), variation in food availability (Schluter 1982),

natural enemies (Strong 1982) or by random processes (Connor and Simberloff 1979,

Ulrich 2004, Bell 2005), without a need to invoke current competition as the mechanism.

Other studies have found that when “secondary associations” (Schluter 1984) are taken

into account (e.g., associations with food resources or habitat characteristics), putative

competition is less important in explaining distributions of populations (Schluter 1982,

Dueser and Porter 1986, Schoener and Adler 1991, Sfenthourakis et al. 2005).

While the existence of interspecific competition is not generally disputed, its

significance relative to other factors (e.g., disturbance, intraspecific competition,

predation) has been questioned (Paine 1981, Peterson 1982, Stapp 1997).  Stochastic

disturbance, for example, may reduce the importance of competition by keeping

population levels below thresholds at which competition occurs (Connell 1978, Huston
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1979, Paine 1981), as may parasitism (Faeth and Simberloff 1981).  Habitat

heterogeneity may reduce the chances of interspecific encounters and subsequent

potential for competition (Huston 1994).  Intraspecific competition may function

similarly by limiting population densities and thereby reducing the chances of encounter

with heterospecifics (Anon. 1944 [cited in May 1984], Riechert 1981, 1982).

Predation, and its avoidance, has also been shown to have a strong influence on

habitat selection.  Numerous studies have found that predation is as important or more

important than competition in structuring a broad variety of animal communities (e.g.,

Sinclair 1985 [ungulates], Hairston 1986 [salamanders], Stapp 1997 [mice]).  Dayton and

Fitzgerald (2001) suggested that among anuran species in ephemeral breeding sites, the

importance of competition versus predation depended on relative duration of the

existence of the site.  The strongest competitor was the most susceptible to predation, and

so may have been excluded from less ephemeral sites, which have higher probabilities of

colonization by predators (Dayton and Fitzgerald 2001).  Predation and competition may

interact, with one mediating the effect of the other (Gurevitch et al. 2000, Chase et al.

2002).  For example, predation may reduce the importance of competition among prey

species (Sih et al. 1985) by reducing one or more of their population sizes.  In the

absence of predators, competition may have a greater impact than when predators are

present (Gurevitch et al. 2000).  In some systems, the presence of competitors is

predicted to increase predation pressure by limiting refuge availability (Garvey et al

1994).  Intensity of competition has also been found to vary with daily cycles of

predation risk (Hill and Lodge 1994).  Perhaps the best example of the interaction of

predation and competition is that of intraguild predation, in which an individual both
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acquires a food resource and reduces the potential for competition with another individual

(Polis et al. 1989).

In addition to interactions between predation and competition, interactions and

indirect effects among species interactions and environmental factors have been

demonstrated.  For example, structural heterogeneity of the habitat may influence

predator-prey interactions by affecting the number of refuges for prey (e.g., Gilinsky

1984, Wywialowski 1987) or predator success (Clark and Messina 1998, Rypstra et al.

1999), or may influence competitive interactions by affecting the number of available

niches (Sih et al. 1985).  Predator-predator interactions may be mediated by habitat

architecture if structural characteristics reduce or enhance the impacts of intraguild

predation (Finke and Denno 2002).  Taken together, the interactions of these potential

mechanisms of community organization determine habitat selection among community

members.

Studies of community organization in spiders

Potential mechanisms of habitat selection have been studied extensively in

spiders.  Empirical studies of habitat associations that have attempted to distinguish

among the many factors potentially influencing spider communities have generally

concluded that vegetation architecture is the best predictor of spider community structure.

This is due in part to the fact that spiders exhibit an array of foraging strategies, requiring

various substrate configurations for different web types or hunting modes (reviewed in

Uetz 1991).  Habitat architecture has been shown to have fitness consequences as well;

grazing-mediated changes in vegetation structure affect the success of overwintering
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juvenile wolf spiders (Bonte et al. 2000).  Architectural parameters such as vegetation

structure (Hatley and MacMahon 1980, Robinson 1981, Gunnarsson 1988, 1990, Halaj et

al. 1998, McNett and Rypstra 2000), vegetation heterogeneity (Greenstone 1984), density

(Balfour and Rypstra 1998), and litter depth (Bultman and Uetz 1982) have all been

shown to influence both species diversity and abundance.

Both observational and manipulative studies have demonstrated this relationship

between habitat architecture and spider community structure. Hatley and MacMahon

(1980) found that species and guild diversities were higher in shrubs that were

experimentally manipulated to increase density and architectural complexity than in

clipped or control shrubs.  Increases in spider abundance and diversity are also associated

with increasing complexity in the physical structure of tree branches (needle density and

orientation, twig biomass, etc.) (Gunnarsson 1988, 1990, Halaj et al. 1998, Halaj et al.

2000).  Balfour and Rypstra (1998) found that higher weed densities were correlated with

higher web spider densities, indicating that more web attachment sites were available as

the vegetation became more structurally complex.  Successional changes in vegetation

lead to changes in architecture and associated changes in spider communities; older

habitats with more complex vegetation structure have greater diversities of spiders

(Lowrie 1948, Barnes 1953, Luczak 1959, 1963, 1966 [cited in Uetz 1991], Hurd and

Fagan 1992).  Studies that have discriminated between the effects of habitat architecture

and prey availability have generally concluded that while prey availability plays a role

(e.g., Ward and Lubin 1993), habitat architecture is a better overall predictor of spider

diversity and density (Bultman and Uetz 1982, Greenstone 1984, Rypstra 1986, Bradley

1993, Halaj et al. 2000, Fournier et al. 2003).)
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Habitat selection in response to plant species composition has not been studied

extensively in spiders.  This is because spiders are strictly predaceous, and most species

are generalist predators and therefore unlikely to be associated with specific plant species

based on specialization on a specialist herbivore.  Although some researchers have

observed associations between spiders and particular plant species or plant assemblages,

these have been attributed to the differing architectural qualities of the flora (Barnes

1953, Riechert and Reeder 1970, Stratton et al. 1979; see also succession literature cited

above).  Neither Barnes nor Stratton et al. explicitly quantified vegetation architecture.

Barnes speculated in his discussion that increases in vegetation stratification created more

niches, while Stratton et al. investigated spider communities associated with three

coniferous tree species considered to differ in physical structure.  Riechert and Reeder, on

the other hand, further investigated associations with plants by analyzing spider

associations with plant species grouped together based on measured architectural

features.  Four of the nine species studied were significantly associated with

physiognomically similar plant species.

The role of competition in habitat selection has been difficult to assess in spider

communities.  Many experiments to detect interspecific competition in spiders (reviewed

in Wise 1984, 1993) have found little evidence to support interspecific competition as a

mechanism organizing spider communities (e.g., Horton and Wise 1983, Riechert and

Cady 1983), although in a study of interspecific competition between two web building

species Spiller (1984) found that one species located its webs higher in the vegetation in

the absence of the other species, suggesting that selection of web locations is influenced

by the presence of a heterospecific.  One potential problem with interspecific competition
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experiments in spiders is that removal of competitors may also serve to remove a prey

resource, since intraguild predation is common among spiders (Riechert and Cady 1983,

Wise 1993 and citations therein).  More recent experimental studies have found both

evidence supporting the occurrence of interspecific competition (e.g., Balfour et al. 2003)

and evidence for a lack of interspecific competition (e.g., Buddle 2002).  Population

densities of spiders are often below levels at which competition might occur, possibly as

a result of abiotic factors and natural enemies (e.g., predators, parasites) (Wise 1993).

Riechert (1981, 1982, and pers. comm.) has suggested that territoriality may limit

population sizes and thereby reduce both interspecific and intraspecific exploitative

competition (see also Riechert and Gillespie 1986).  Demonstrating intraspecific

competition has also been difficult (reviewed in Wise 1993).  For example, although

Wise (1983) found evidence of intraspecific competition in agonistic encounters between

web residents and invaders, the effect on survival and egg production was not significant.

Many studies of spider communities have not investigated competition per se, but have

inferred it as a possible mechanism to explain observed patterns (Post & Reichert 1977;

Hatley & MacMahon 1980; Robinson 1981; Rypstra 1986).  However, as discussed

above, numerous other mechanisms could explain these patterns.

Predation can also influence habitat selection in spiders.  Spiders are generalist

predators that exhibit intraguild predation, often preying on confamilial (Balfour et al.

2003) and heterofamilial spiders (Turner and Polis 1979, Wise and Chen 1999, Denno et

al. 2004) and other predatory arthropods (Finke and Denno 2002, Rosenheim et al. 2004.

Spiders also exhibit cannibalism (Hallander 1970, Turner and Polis 1979, Wagner and

Wise 1996, Denno et al. 2004).  Densities of conspecifics have been shown to influence
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selection of microhabitats; increasing densities of a web building species resulted in more

even spacing of spiders on leaves of individual plants (Miyashita et al. 1998).  Both

intraguild and intraspecific predation are thought to be important in structuring spider

communities (reviewed in Wise 1993).  Further, spiders have many non-spider natural

enemies, and different architectural configurations can influence spiders’ susceptibility to

predators (e.g., birds [Gunnarsson 1990, 1996] or lizards [Spiller and Schoener 1988]).

As in other animal communities, habitat selection in spiders is determined to

varying degrees by multiple interacting factors, including habitat architecture,

microclimate, prey availability, species interactions and predation risks (reviewed in

Riechert and Gillespie 1986 and in Wise 1993).  Riechert and her colleagues have

demonstrated habitat selection in response to these factors in multiple spider taxa (e.g.,

Riechert and Tracy 1975, Kronk and Riechert 1979, Riechert 1981, 1982).  Given that

spider communities are both influenced by the same types of processes that affect other

animal communities and subject to interactions among these processes, they are an ideal

taxon in which to investigate the complicated nature of community structure and

organization.

Dissertation overview

Considerable research has been undertaken in an effort to understand the

processes governing community structure, but the complicated nature of factors

determining the organization of ecological communities has led many researchers to

adopt a reductionist approach (Billick and Case 1994, Inchausti 1994, Wootton 1994a).

This is reflected in studies in which only one or a few environmental variables are
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measured, but is also true in the case of species interactions, where pairwise interactions

are the most commonly investigated (Kareiva 1994, Stanton 2003, Strauss and Irwin

2004).  This tendency to reduce the scope of community analyses by: 1) a priori data

simplifications (selection of abundant species for analyses, use of diversity measures,

etc.), 2) a reliance on what are essentially univariate hypotheses, and 3) the lack of

incorporation of indirect interactions has slowed progress in understanding communities

(Drake et al. 1996, Malaeb et al. 2000, Grace in prep).  Many processes of interest to

ecologists cannot be measured meaningfully by a single variable (Arhonditsis et al.

2006), and the interdependence among organisms in communities necessitates

consideration of multivariable hypotheses in which species interact both directly and

indirectly with other species (Wootton 1994a, 1994b, Stanton 2003) and their

environment (Grace and Pugesek 1997, Pugesek 2003b).

Several practical considerations have contributed to this problem.  Experimental

manipulation of entire communities is rarely feasible due to the sheer numbers of

variables involved and difficulties with replication (Wootton 1994b, Hilborn and Mangel

1987, Shipley 2000).  Observational studies present difficulties both in terms of inferring

underlying processes and distinguishing between random and nonrandom patterns

(Gotelli and Graves 1996).  Ecologists have used null model approaches to investigate

large-scale patterns of species co-occurrence, body-size distributions, niche overlap, etc.,

and to determine the probability that an observed pattern arose by chance (reviewed in

Gotelli and Graves 1996).  While the mechanisms underlying nonrandom patterns cannot

be conclusively determined from such analyses, the results can suggest avenues for future
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research (Haukisalmi and Henttonen 1998, Peres-Neto et al. 2001, Collins and Simberloff

in prep).

An additional practical matter in the analysis of community data is that many

complex statistical analyses require large amounts of computing power, which until

relatively recently limited their use (McCune and Grace 2002).  The nature of ecological

datasets has also posed analytical problems.  Ecological data matrices tend to have high

β-diversity among sample units as a result of habitat heterogeneity and/or large numbers

of rare species, resulting in sparse data matrices (i.e., matrices with many zeros).  Most

traditional statistical techniques, including some multivariate approaches (e.g. Principal

Components Analysis, cluster analysis, and factor analysis), have difficulty handling such

matrices (Legendre and Legendre 1998).  The use of multivariate methods such as

nonmetric multidimensional scaling (NMS), which is amenable to use with sparse data

matrices, has been advocated and has seen increasing use by ecologists in recent years as

computing capabilities have expanded (McCune and Grace 2002).

Additionally, there is often high collinearity among ecological variables, which

causes problems for traditional techniques such as multiple regression (Graham 2003).

Indirect effects, in which relationships between two species are mediated by a third

species or an environmental variable, are difficult to explicitly incorporate in familiar

statistical analyses as well (Wootton 1994b, Arhonditsis et al. 2006).  Path analysis,

which has the ability to test complicated interdependencies among correlated variables,

was introduced in the ecological and evolutionary literature in the early half of the last

century.  The methods have since been refined and extended (e.g., d-separation, structural

equation modeling), but despite widespread application in other fields (psychology,
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sociology, economics [Malaeb et al. 2000, Tomer 2003]), the use of these powerful

techniques in ecology has been limited (Grace and Pugesek 1998, McCune and Grace

2002, Arhonditsis et al. 2006, Grace in prep).

In Chapter 1, I investigate patterns of spider species co-occurrence in three

communities.  Using a traditional approach to co-occurrence analysis, I show that, across

the entire community species are generally distributed randomly with respect to one

another, but that within subsets of the community (guilds and families) some groups

show aggregated, or congruent, distributions.  I suggest that these results are consistent

with a hypothesis of shared habitat affinities in the three communities studied, influenced

by the patchy distribution of habitat features previously shown to be preferred by spiders.

In this chapter I also develop a null model to examine patterns of species avoidance or

coexistence in species pairs within guilds that, based on NMS analyses, contribute to the

variation in species composition within sample quadrats.  Spider species pairs showing

significant nonrandom patterns (i.e., avoidance) are generally consistent with a

differential habitat preference hypothesis rather than a hypothesis of interspecific

competition.

In Chapter 2, I employ NMS for variable reduction of both predictor and response

variables.  The resulting NMS axes are used in multiple regression to investigate the

influences of vegetation architecture and plant species on community composition in

spiders.  Variable reduction via an ordination technique such as NMS, rather than

dropping raw variables, allows retention of the information in the original dataset while

producing statistically tractable variables for use in further analyses.  NMS reduced the

number of variables for predictor (habitat architecture and plant species) and response
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(spider species) data matrices, and I then use these new variables in multiple regression

analyses.  Because the NMS axes can be interpreted based on their correlations with the

original variables, this approach allows the recovery of biologically meaningful

information from regressions.  The advantage of this approach is that the important

variables are determined by the data themselves, rather than by a priori assumptions of

the researcher.  Contrary to expectations based on previous work in spiders and other

animals, plant species composition explains more variation in spider communities than

does habitat architecture, and is also a stronger predictor of other community structure

variables (overall abundance, species richness, and species diversity).

Chapter 3 expands upon the work in Chapter 2, attempting to elucidate the nature

of the relationship between plant and spider species composition in one of the old field

communities from Chapter 2.  In Chapter 2, I suggest that this relationship is an indirect

one in which plants influence the composition of non-spider arthropods, which in turn

influence the spiders through their roles as either prey or potential competitors or

predators.  Plant species may also be confounded with fine-scale architectural features of

the habitat, having an indirect effect on spiders owing to their structure or additionally

owing to the influence of plant species composition on biomass.  Using data collected in

control and treatment quadrats, in which I manipulated the architecture of a focal plant

species, I construct and test path models to explore the direct and indirect effects of plant

species, habitat architecture, biomass, temperature and non-spider arthropods (direct

effects only) on spider species composition.  As in Chapter 2, I use NMS for variable

reduction of the plants, habitat variables, arthropods, and spiders, allowing meaningful

interpretations of the results.  The use of path analytic models enables me to entertain
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multiple hypotheses about direct and indirect effects simultaneously, as opposed to the

traditional statistical approach of investigating a null hypothesis against a single

alternative hypothesis.  The results in the control quadrats are as expected; the influence

of plant species on spider species composition acts indirectly through their effects on

vegetation architecture and non-spider arthropod composition.  In the treatment quadrats

these indirect effects are still present, but the plant species also have direct effects on the

spiders, and these path models have a greater number of significant pathways than in the

control quadrats.

In Chapter 3 I also present regression models in which the non-spider arthropods

are grouped into non-predatory and predatory groups.  These results indicate that

herbivore and scavenger arthropods (potential prey) and predator and parasite arthropods

(potential competitors/predators) influence spider communities, and in some cases this

influence varies between treatment and control quadrats.
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CHAPTER 1

Species co-occurrence and habitat partitioning in heterogeneous environments

Introduction

Both biotic interactions and environmental constraints act to structure animal

communities.  Abiotic and biotic environmental factors (e.g., microclimate, vegetation

characteristics) delimit the range of suitable or preferred habitats, while biotic

interactions such as competition and predation are thought to shape the observed or

realized distributions of the constituent species of a community (Wellborn et al. 1996).

Differential use of space by animals within a community is thus assumed to reflect

partitioning of the habitat along one or more resource gradients (Conley1976) occurring

within the context of potential biotic interactions.  In a deterministic framework, this

spatial structuring of local distributions of species may result from active habitat selection

in heterogeneous environments based on resource requirements, interspecific interactions,

or some combination of these mechanisms.  In this study, I examine spatial distributions

(i.e., co-occurrence patterns) among species in three spider communities to ask the

question: do species occur independently of one another?  If not, are the patterns of

species co-occurrence consistent with a hypothesis of negative, interspecific interactions

or a hypothesis of shared habitat preferences?

Analyses of species co-occurrence have been used to infer processes influencing

community structure or assembly, based on the assumptions that distributions of the

species themselves implicitly incorporate all relevant environmental or resource

information (Schoener 1974, Conley 1976, Bell 2005), as well as incorporating
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information about species interactions (Levins 1968, Stone and Roberts 1992).  The

response to either environmental factors or other species varies in different contexts.

Thus, communities that are structured by species interactions should exhibit lower

average co-occurrence among species pairs than expected if interspecific competition is

important (Gotelli 2000) while communities in which positive species interactions (e.g.,

facilitation or mutualism) are important will tend to show higher than average co-

occurrence (Schluter 1984).  On the other hand, negative or positive patterns of

association among species may be largely determined by species’ affinities for dissimilar

or similar habitats, different resource requirements, or differing species characteristics,

resulting from dispersal abilities or traits governed by phylogenetic constraints (Schoener

and Adler 1991, Gotelli and McCabe 2002, Peres-Neto 2004).

Null models have been used extensively in ecology to determine whether

observed co-occurrence patterns are non-random or are simply the product of chance

(Gotelli 2000, 2001).  However, given that different mechanisms can give rise to similar

patterns, null models do not necessarily provide insight into which mechanisms may be

operating.  Inferring the processes underlying non-random patterns has been the subject

of controversy (see Gotelli and Graves 1996 for review).  One approach to this problem is

to limit analyses to groups in which we would expect a particular ecological mechanism

to be operating, permitting a narrower scope of inference.

Some authors have suggested restricting analyses to ecologically similar

assemblages (i.e., guilds [Root 1967]) or taxonomically related groups within a

community because this is the level at which ecologically significant interactions are

expected to occur (Stone and Roberts 1992, Graves and Gotelli 1993, Collins and
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Simberloff, in prep).  Closely related species may have similar resource requirements that

arise from recent shared ancestry (i.e., phylogenetic constraints), and by definition the

same is true for guilds.  Therefore, we might reasonably expect species in these groups to

be more likely to exhibit interspecific competition than those with differing resource

requirements (Stone and Roberts 1992, Graves and Gotelli 1993).  Conversely, due to

similar resource requirements, species in these groups may have similar habitat

preferences (Schluter 1984, Peres-Neto et al. 2001).  A significant pattern of negative

associations among species within a guild or taxon is consistent with a hypothesis of

interspecific competition, while a pattern of positive associations is consistent with a

hypothesis of shared habitat preferences.

In addition to the difficulties of elucidating the mechanisms underlying species

co-occurrence patterns, traditional analyses use presence/absence matrices and do not

take into account differences in species abundances (Graves and Gotelli 1993).  Two

species may appear to co-occur randomly based on presence/absence, but may show

nonrandom patterns in abundance (e.g., positive or negative covariance in abundances).

Incorporating the actual numerical composition of species within sample units, thus, may

reveal finer-scale patterns that are consistent with either species interactions or responses

to habitat features.  A common technique in community ecology that can include either

presence/absence or abundance data is ordination.  Ordination techniques such as

nonmetric multidimensional scaling use compositional dissimilarities among sample units

to represent the original species data matrix in a reduced-dimensional space.  The

correlations between species abundances in the original data matrix and the scores for the

sample units in the reduced dimensions (i.e., ordination axis scores) reveal both co-
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occurrence patterns and the simultaneous responses of each species to underlying

(unmeasured) environmental gradients (McCune and Grace 1992, Beals 2006).  Species

responding in opposite directions to one another may be partitioning the habitat to avoid

competition or predation, or may simply have different resource requirements or habitat

preferences (reviewed in Gotelli and Graves 1996).  Species responding similarly may be

partitioning the habitat with respect to prey size, diel activity, or spatial or other resource

requirements, etc. (Turner and Polis 1979).

Analyses of species co-occurrence patterns have a long history in community

ecology (Gotelli 2000).  Despite their limitations in inference, null model analyses of

species co-occurrence serve as a good starting point for investigating community

structure, as any patterns that appear can be further investigated experimentally

(Haukisalmi and Henttonen 1998, Peres-Neto et al. 2001).  Here I employ two null-model

approaches to investigate patterns of species co-occurrence and habitat partitioning in

three spider communities.  The first approach involves analyzing presence/absence

matrices using the C- and T-scores, which measure exclusiveness and congruence,

respectively (Stone and Roberts 1990, 1992) for each community as a whole, within

guilds, and within families.  The second approach uses ordination (nonmetric

multidimensional scaling [NMS]) of the species abundance data in each community to

examine patterns in species distributions among the sample units, which could potentially

result from species interactions or responses to underlying environmental gradients.  The

results of the NMS analyses are then used to construct null models for species pairs

within broadly-defined guilds based on similar foraging strategies (e.g., pairs of active

hunters or web builders).  This latter null model analysis was motivated by an observed
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pattern in the results from previous ordination analyses of these spider communities

(unpublished data).  Pairs of spider species within guilds that contributed to the variation

in composition among the sample units along ordination axes tended to be correlated with

the ordination axes in opposite directions.  The null distributions of differences in

correlation coefficients for all species pairs were used to test for nonrandom patterns.

Methods

Study areas

The study area consisted of three neighboring sites at the University of Tennessee

Woodlot in Knox County, Tennessee, USA, described in Beals 2006.  Two were old-field

sites: the “sloped field” (SF), maintained by periodic mowing, and the “tussock grass

field” (TGF) maintained by yearly late-spring flooding.  The third site, the “deciduous

woodland” (DW), was located in a deciduous forest dominated by tulip poplar

(Liriodendron tulipifera L.) and northern red oak (Quercus rubra L.).  I sampled spiders

in these sites during two periods (July and late August/early September) in 1997 and

1998.

Circular quadrats (0.1 m2) were located using a random walk technique (Catana

1955).  Initial sample sizes were set at 20 per sampling period in all three sites in the first

year.  In the second year sample sizes were set based on taking samples until the standard

error of the mean number of individuals per quadrat no longer decreased as samples were

added (Post and Riechert 1977).  This led to increased sample sizes in the SF and TGF

sites in the second year.  A total of 108 quadrats were sampled in the SF, 100 in the TGF,
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and 80 in the DW.  Spiders were sampled with a hand-held aspirator following the

protocol of Beals (2006) and Post and Riechert (1977).

Previous analyses did not detect differences in the spider communities across

sampling periods (Beals 2006), so the data were grouped by site for analyses.  The SF

and TGF each had about 60 species (numbers are approximate because of juveniles that

could be identified only to genus), while the DW had about 50 species.  As is typical in

natural communities, most species were rare; 60-70% of the species occurred in fewer

than five percent of the quadrats within a site, and about 30% of species in each site were

represented by a single individual.  Spider species were grouped into three broadly-

defined guilds: web-builders, ambushers/stalkers, and active hunters.  These guilds are

loosely based on the broad guilds of Uetz et al. (1999), but I have separated the

ambusher/stalker guild from the active hunters as they exhibit an intermediate strategy

between web-builders (sit-and-wait) and active hunting spiders (foraging occurs without

a web).  Analyses were also conducted at the family level, as spider families have often

been used as proxies for guilds (Uetz et al. 1999).

Co-occurrence

Typical null model analyses of species co-occurrence patterns involve a Monte

Carlo randomization algorithm in which the original species presence/absence matrix is

permuted to generate a specified number of null matrices (Gotelli and Graves 1996). The

permutations are often constrained to maintain either fixed row (species) or column

(sample units) sums, or both (Gotelli 2000, Miklós and Podani 2004).  In general, fixing

both marginal totals is recommended for both ecological and statistical reasons (Connor
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and Simberloff 1979, Gotelli 2000).  Several “swap” algorithms are available for

generating the randomized matrices; here I employed Miklós and Podani’s (2004) trial-

swap method (see below for details).  This method has been shown to sample null

matrices equiprobably from the universe of all possible matrices.  (Earlier swap

algorithms [e.g., the sequential swap and independent swap] resulted in biased

distributions of the null matrices [Gotelli and Entsminger 2001, Zaman and Simberloff

2004, Miklós and Podani 2004].)  Before randomization, a co-occurrence metric is

calculated for the observed matrix.  This value is then compared to the null distribution of

the metric calculated from each of the randomized matrices to test for non-random

patterns in the data.

Two common measures of co-occurrence are the C-score and T- (or

Togetherness) score.  The C-score measures the average number of “checkerboard units”

within a presence/absence matrix, in which one species is present in the absence of the

other (Stone and Roberts 1990).  A checkerboard unit is any 2×2 submatrix of the form
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1 0
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in which rows are species and columns are sample units.  The T-score (Stone and Roberts

1992) measures the number of 2×2 submatrices of the form
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These two scores ostensibly indicate patterns of negative or positive associations among

species; a significantly high C-score is interpreted as indicating a large number of species

pairs with exclusive distributions, while a significantly high T-score is interpreted as
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indicating a large number of species pairs with congruent distributions.  However, the C-

and T-scores have a linear relationship if calculated for the entire presence/absence

matrix when marginal totals (i.e., row and column sums) are fixed (Stone and Roberts

1992, Peres-Neto 2004, Collins and Simberloff, in prep); thus a community with a

significantly high C-score, indicating exclusive distributions, will at the same time have a

significantly high T-score, indicating congruent distributions.  With fixed marginal totals,

then, significant scores simply indicate a non-random pattern, but not whether

associations are negative or positive (Collins and Simberloff, in prep).  This is also

illustrated by Haukisalmi and Henttonen (1998) who found that in an artificial, structured

data matrix with similar numbers of positive (55) and negative (50) associations, the C-

score was higher than expected by chance.  This result is typically interpreted as

indicating overall exclusive distributions, but it is clear in this example that this

conclusion would be incorrect.

The relationship between these two measures can be decoupled by randomizing

(through the trial-swap) the entire matrix and then calculating the scores for sub-groups

(such as guilds or families) within this matrix (Stone and Roberts 1992, Collins and

Simberloff, in prep.).  Limiting co-occurrence analyses to ecologically similar or

taxonomically related species is generally agreed to be a more appropriate approach than

analyzing all species within a community together (Graves and Gotelli 1993, Collins and

Simberloff, in prep).  Species within guilds and families are theoretically more likely to

compete because of ecological and taxonomic similarities.  Thus, analyzing these subsets

of the community addresses more relevant and interesting biological questions (Collins

and Simberloff, in prep).  This approach also avoids the problem where, if only some
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subsets of species within the community are actually interacting or exhibiting nonrandom

patterns, the signal of this interaction will be swamped by all the species pairs that do not

exhibit exclusive patterns (the “dilution effect;” Diamond and Gilpin 1982).

C and T-scores for broadly-defined guilds (hunters, ambusher/stalkers, and web-

builders) were calculated within each site, as well as those for each spider family

represented by two or more species.  Analyses were done using C++ code written by M.

Collins, which performs the trial-swap algorithm of Miklós and Podani (2004).  10,000

randomized matrices were generated, with 500,000 attempted swaps (trial swaps)

between sampled matrices.  Each swap involves randomly selecting a 2×2 submatrix (by

randomly selecting two rows and two columns) and, if the submatrix is a checkerboard

unit (see above), swapping the rows or columns (Gotelli and Entsminger 2003).  This

method eliminates the “neighbor” bias created by traditional swap algorithms (Zaman

and Simberloff 2004) by counting the number of attempted swaps rather than the number

of actual swaps (Miklós and Podani 2004).  Both C- and T-scores calculated for the null

matrices were treated as one-tailed tests when comparing them to the scores for the

observed matrix, so only scores that were significantly high (α=0.05) were considered

(e.g., a significantly low C-score did not count as evidence for congruent distributions).

In addition to these scores, the number of species pairs exhibiting perfect checkerboards

(CHECKER) (i.e., species pairs for which every 2×2 submatrix is a checkerboard unit)

(Diamond 1975, Gotelli 2000) was calculated for the entire matrix.  This measure is

extremely stringent (and prone to Type II error), because a species pair that is exclusive

in all but a single sample unit cannot be counted as a checkerboard (Gotelli 2000).
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Habitat partitioning

In Beals (2006) I used nonmetric multidimensional scaling (NMS) implemented

in PC-ORD (PC-ORD 4, 1999, MjM Software Design, Gleneden Beach, Oregon) (see

Beals 2006 for details).  This method reduced the number of dimensions of the data

matrices and produced scores (the NMS axes) for each quadrat within a site based on

spider species composition.  Correlations between species and the NMS axes can be

interpreted as representing the direction and strength (sign and magnitude) of a given

species’ response to the underlying environmental gradient(s) (biotic or abiotic).  Because

individuals were not equitably distributed among the different species, each species was

relativized by its maximum occurrence in the quadrats within a given site (Faith et al.

1987, Legendre and Legendre 1998).  In this way, responses of less abundant species

were not swamped by responses of super-abundant ones.  Very rare species, occurring in

fewer than 5% of the quadrats in a site, were omitted from the analyses to reduce noise in

the data (McCune and Grace 2002).

I found that species pairs within broadly defined guilds that were at least

moderately associated with NMS axes (Kendall’s τ≥|0.30|) tended to have opposite signs

of their correlation coefficients (Beals 2006) (Table 1.1; all Tables and Figures are in

Appendix A).  I assume here that differing responses among spider species within

broadly defined guilds indicate that they may be spatially partitioning the habitat, based

on either dissimilar habitat preferences or species interactions.  Three spider axes (S3 in

both the SF and TGF and S1 in the DW) either had only a single species associated (TGF

and DW), or species associated with the axis were not in the same guilds; these axes
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could not be included in the analyses.  A total of 14 species pairs identified from the

previous analyses discussed above were used here.

The difference in spider species’ responses can be quantified by the magnitude of

difference between their correlations with a given NMS axis.  In other words, a species

pair in which one species is strongly positively correlated with the NMS axis and one is

strongly negatively correlated will have a greater difference between their correlation

coefficients than a pair with weak positive and negative correlations, or where the

correlations have the same sign.  I compared pairwise differences between correlation

coefficients of 14 species pairs to null distributions generated by Monte Carlo simulations

to ascertain whether apparent patterns of habitat partitioning were significantly non-

random.  MATLAB (MATLAB 6.5.1, 1984-2000, The Mathworks, Inc., Natick,

Massachusetts) was used to randomly generate 10,000 within-guild species pairs by

resampling the correlation coefficients from all species within the focal guild in the

original data matrix.  The correlation coefficient differences were calculated for each null

pair to generate distributions.  Observed values within guilds were compared to these null

distributions to obtain p-values.

Results

Hunting spiders were numerically dominant in terms of number of individuals in

both the SF (56%) and TGF (50%), a pattern primarily driven by the abundance of wolf

spiders (family Lycosidae), which comprised 47% and 40% of individuals in the SF and

TGF, respectively.  The DW was dominated by web-building spiders (69%); these were

primarily individuals in the families Linyphiidae (25%) and Theridiidae (28%). The
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remaining hunting and web-building families (13 in the SF and TGF and 11 in the DW)

each made up less than 15% of the individuals in the old field sites and less than 10% of

the individuals in the woodland site, while ambush spider families (Salticidae and

Thomisidae) each made up less than 16% of individuals in all three sites.

Co-occurrence

Community-wide, both the C- and T-scores indicated that species occur randomly

with respect to one another in all three sites (Tables 1.2-1.4).  The CHECKER score,

however, indicated a significantly higher number of perfect checkerboards than expected

by chance in the TGF (p=0.007), and weaker evidence for this in the DW (p=0.09)

(Tables 1.2-1.4).  Within guilds and families the majority of analyses of co-occurrence

patterns were non-significant, but significant nonrandom patterns that were found all

indicated congruent distributions.  In total, 21 out of 35 sub-matrices analyzed had

observed T-scores that were higher than the mean scores from the randomized matrices,

with 7 of these sub-matrices having significantly (α=0.05) higher scores (Tables 1.2-1.4).

Nine sub-matrices had higher but non-significant C-scores, and 5 had non-significant

Togetherness and C-scores that were either both higher or both lower.  Of the guilds and

families with significant non-random patterns, all showed congruent distributions; species

in these groups tended to co-occur more often than expected by chance (Tables 1.2-1.4).

In the sloped field, both the ambush guild as a whole and the family Salticidae (in the

ambush guild) had significantly high T-scores (p=0.05 and 0.03, respectively) (Table

1.2).  The Lycosidae (hunting spiders) also showed a trend towards congruent

distributions, though this was not significant (p=0.10).  All of the guilds in the tussock
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grass field showed random patterns, but within the family Thomisidae (ambush guild)

there was evidence of positive associations (p=0.05) (Table 1.3).  In the deciduous

woodland the web-building guild and two web-building families (Araneidae and

Theridiidae) also showed congruent patterns (p=0.03, 0.05 and 0.03, respectively) (Table

1.4).  Although I performed multiple tests I did not apply a Bonferroni correction because

this is an observational study, and therefore it is undesirable to inflate Type II error (see

Moran 2003).  Further, the Bernoulli probability of obtaining exactly 7 significant results

(at α=0.05) out of 35 by chance is 0.001.

Habitat partitioning

Of the 14 species pairs tested in this analysis, seven pairs were hunting spiders

and seven pairs were web-builders (Table 1.1).  Seven species pairs (five web-building

pairs and two hunting pairs) showed significantly (α=0.05) large differences in their

correlation coefficients compared to the null distributions (Table 1.5).  Additionally, two

species of hunting spiders had small but non-significant p-values for the differences in

their correlation coefficients (p=0.09).  An example graph of a null distribution of

differences in correlation coefficients plotted with the observed value is given in Figure

1.1 for the species pair Bathyphantes pallida and Gea heptagon associated with the first

NMS axis in the SF.  As above, I have not used a Bonferroni correction; here the

probability of 7 spurious results out of 14 at α=0.05 is 0.000002.
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Discussion

The results of both null model analyses show interesting nonrandom patterns in

some groups (guilds, families, and species pairs) within these spider communities, despite

a prevalence of random patterns in the majority of groups.  As discussed above, the

primary utility of null model analyses is the detection of nonrandom patterns; the

mechanisms that may give rise to these patterns cannot be conclusively inferred (Connor

and Simberloff 1979, Gotelli and Graves 1996).  However, constraining analyses to

groups of species among which we might reasonably expect to see particular mechanisms

operating (based on guild membership, etc., as here for example, or habitat affinities

[Peres-Neto et al. 2001, Peres-Neto 2004]) may allow us to entertain a smaller range of

mechanistic explanations.  If patterns are in fact nonrandom, these potential explanations

can subsequently be tested experimentally (Haukisalmi and Henttonen 1998, Peres-Neto

2004).

The first null model approach used here evaluates patterns of co-occurrence in

species presence/absence matrices.  At the community level, spider species in all three

communities appear to be distributed independently of one another based on the C- and

T-scores.  This may be due in part to the “dilution effect” (Diamond and Gilpin 1982), in

which the inclusion of many species pairs that would not be expected to exhibit

nonrandom patterns drowns out the signal of pairs that might.  Within guilds and families

in this study, the six submatrices that did show significantly nonrandom patterns all

indicated more co-occurrence (higher T-scores) than expected by chance.  Of those

submatrices with non-significant patterns, 15 had higher T-scores than expected, 9 had
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higher C-scores, and in 5 the C- and T-scores could not be decoupled.  These results are

generally consistent with a hypothesis of shared habitat preferences within these groups.

In both the SF and TGF, the ambush/stalker spiders were the only ones to show

significant positive associations (the ambush/stalker guild and family Salticidae in the SF,

and the family Thomisidae in the TGF).  Salticids have been shown to prefer more open

vegetation architecture (Robinson 1981) and vegetation structures with horizontal

orientation (Heikkinen and MacMahon 2004).  Thomisidae have been shown to prefer

dense (Hatley and MacMahon1980) and herbaceous (Abraham 1983) vegetation.

Previous analyses of the SF and TGF indicated that these types of architectural

characteristics were distributed patchily throughout the sites (Beals 2006), so the

significant congruent distributions of members of these two families may reflect their

shared affinities for vegetation architectural features that are spatially heterogeneous.

In the DW, the web-building guild and two web-building families (Araneidae and

Theridiidae) showed significant positive associations.  In this site, the vegetation was

sparse and patchily distributed; many sample units had no vegetation at all.  Web-builders

require attachment points for their webs, and in this study the majority of species in this

guild build aerial webs (Uetz et al. 1999).  Consequently it stands to reason that these

species would aggregate in sample units that provide vegetation structure necessary to

construct their webs.

The overall prevalence of random patterns in the presence/absence matrices from

these three communities is generally consistent with results from studies of arthropods

and other terrestrial invertebrates (e.g., Gotelli 2000, Gotelli and Ellison 2002, Ribas and

Schoereder 2002, Escobar et al. 2005, Sfenthourakis et al. 2005), though some of these
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studies also found significant nonrandom patterns in some matrices.  Gotelli and

McCabe’s meta-analysis (2002) of presence/absence matrices found no evidence for

nonrandom patterns among matrices of invertebrates (other than ants), and analyses of

congeneric species by Sfenthourakis et al. (2005) found that all but one matrix of

invertebrates (both arthropods and others) showed random patterns.  There are few

examples in the literature of analyses of spider species presence/absence matrices, but

Peres-Neto et al. (2001) found that within an assemblage of hunting spiders, associations

were positive overall.  When they accounted for environmental heterogeneity, all

pairwise negative interactions disappeared as did many of the positive ones, resulting in

random patterns of association among most species.  (Peres-Neto et al. did not constrain

the column totals in their analysis, so the C-and T-scores were not coupled.)  These

results are qualitatively similar to those presented here, and provide strong support for a

shared habitat preference hypothesis.

The second null-model approach used here incorporated relative abundance data

in NMS ordinations, and then examined patterns between species within guilds whose

abundances described moderate to large amounts of variation in species composition

among the sample units.  Analyses of the differences in correlation coefficients indicated

that observed values for half of the within-guild species pairs (7 out of 14) were non-

significant, a result that is consistent with results from the co-occurrence analyses.  Some

of these species pairs may co-exist through their use of different parts of the habitat

within sample quadrats, or through temporal partitioning.  For example, C. abbotti and R.

rabida in the SF are both nocturnal, but C. abbotti is a foliage runner while R. rabida is a
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ground runner (Uetz et al. 1999).  In the TGF, C. abbotti and P. undulata may coexist

through temporal partitioning (P. undulata is diurnal).

The remaining seven species pairs, however, did show significant negative

patterns of association.  Five of the seven significant comparisons involved web builders

(one pair in the SF and four pairs in the DW).  The six species in these comparisons

belong to four different families, each of which builds a different type of web.  Four of

the five species pairs with significant p-values for their correlation differences (one in the

SF and three in the DW) involve species from different web-building families, and it may

be that different architectural requirements for each web type drive the observed pattern

of negative co-occurrence.  As in the SF and TGF, architectural features of the vegetation

(e.g., maximum height and heterogeneity of open space within the vegetation) described

considerable variation among the sample units (Beals 2006).  However, members of one

pair in the DW (B. pallida and L. nebulosa, S2) belong to the same family (Linyphiidae).

The pattern for these two similar species may indicate a role for interspecific competition,

as both species build their sheet webs low to the ground (Kaston 1981) suggesting that

they have similar requirements for web attachments.  Linyphiids are also known to forage

off their webs (Uetz et al. 1999), and thus might be expected to have higher encounter

rates with one another than other web-builders.  The other two significant comparisons

involved the same two hunting species (P. milvina and C. abbotti) in different dimensions

(S1 and S2) in the TGF.  In both dimensions, the species showed significant opposite

responses.  These two species exhibit differences in diel activity (P. milvina hunts

diurnally while C. abbotti is nocturnal) and thus would not be expected to interact



36

strongly, supporting a hypothesis that their co-occurrence patterns are driven by

dissimilar habitat preferences.

Previous work (Beals 2006) provides some insight into spider responses to

particular habitat characteristics.  The two web-building species in the SF (B. pallida and

G. heptagon), for example, have been shown to have weak but significant responses to

increasing cover of herbaceous or grass species, respectively.  The significant opposite-

responding pair of hunting spiders in the TGF showed weak but significant responses to

different aspects of habitat architecture.  For example, P. milvina responded positively to

increasing heterogeneity in the heights of plants within a sample unit, while C. abbotti

responded negatively.  Spider species in the DW were predicted by plant species rather

than vegetation architecture (Beals 2006).  In the SF (above), spiders responded

differently to plant species with different growth forms (grasses versus herbs), but in the

DW the differences among the plant species to which spiders responded were less clear.

Differences in finer-scale architecture or palatability to herbivores may explain in part the

spatial patterns of the spiders examined here.

Taken together, the results presented here suggest that habitat preferences

play a greater role in structuring spider communities than species interactions.  This is not

to say that mechanisms like competition and predation do not occur or are never

important, at least for specific pairs or groups of species (Peres-Neto 2004).  In general,

however, habitat preferences seem likely to be stronger drivers of community-wide

patterns in these spider communities.  Interspecific competition among spiders has been

difficult to demonstrate and is generally thought to be of limited importance in

structuring spider communities (reviewed in Wise 1993).  Riechert (1981, 1982) has
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suggested that intraspecific competition acts to regulate spider populations at a level

below that at which interspecific competition would occur.  Wise (1993), on the other

hand, has argued that intraspecific competition is negligible, at least among web-building

spiders, because prey limitation acts as a density-independent limiting factor.  This also

results, however, in spider population densities being below competitive levels, so

interspecific competition is therefore even less important than intraspecific competition

(Wise 1993).  Spider population densities may be limited by a combination of abiotic

mortality and natural enemies (Wise 1993), and so we would not expect to see strong

signals of species × species interactions in this group, but rather signals of species ×

habitat interactions (e.g., habitat preferences) (Gotelli and Graves 1996).  Finally, it is

important to note that the analyses presented here indicate that many species occur

independently of one another.  Although I have focused on deterministic explanations for

the nonrandom patterns, stochastic processes also appear to be important in shaping these

communities.

Null model analyses such as those presented here are useful tools for describing

patterns of species co-occurrence  (Gotelli 2001).  The use and interpretation of null

models has been criticized because numerous mechanisms may be invoked as potential

explanations for nonrandom patterns.  By constraining analyses to groups such as guilds,

families, or other taxonomic units (e.g., Stone and Roberts 1992, Peres-Neto et al. 2001,

Sanderson 2004, Sfenthourakis et al. 2005, Collins and Simberloff, in prep) and

accounting for the scale of the study (e.g., islands versus sample units in an old field),

some mechanistic explanations can be ruled out, permitting more robust inference.  In a

similar fashion, many authors have constrained their analyses based on environmental
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factors, by either accounting for environmental heterogeneity (Peres-Neto et al. 2001,

Sfenthourakis et al. 2005) or using incidence functions to constrain reshuffled species in a

null matrix to occur within the range of sites in which they were actually observed

(Escobar et al. 2005, Collins and Simberloff in prep).  While null models cannot be used

to demonstrate mechanisms conclusively, by limiting the number of potential mechanistic

explanations constraints such as these may suggest more fruitful directions in future

research.



39

CHAPTER 2
Understanding community structure: a data-driven multivariate approach

This chapter has been revised slightly from a paper by the same name published in the
journal Oecologia in 2006 by Monica L. Beals:

Beals, M.L. 2006. Understanding community structure: a data-driven multivariate
approach. Oecologia DOI 10.1007/s00442-006-0551-8.

Introduction

The inherent complicatedness of natural communities challenges our

understanding of how habitat influences the abundance of individuals, local species

distributions, and species diversity.  Ecological datasets frequently contain large numbers

of variables that are highly collinear, leading to difficulties with both analysis and

interpretation (Graham 2003).  Many community-level studies simply ignore this and

focus on the effects of a single component of the environment, or limit measurements to a

small number of variables.  Given the potential for interactions and covariation among

ecological variables, a reductionist approach may yield statistically significant results

without elucidating the intricate nature of the relationships between communities and the

environment.  Here I combine two statistical approaches to assess whole-community

responses to multiple environmental variables.  I provide an example of this approach by

focusing on how communities of an important terrestrial arthropod predator (spiders)

respond to biotic components of the environment.

In animal communities, environmental variables may include simple measures of

habitat architecture or heterogeneity (such as vegetation density, foliage height diversity,

etc.) or plant species composition (e.g., species richness, diversity indices).  While
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heterogeneity of habitat architecture has been shown to influence community structure in

diverse taxa (surveyed in Tews et al. 2004), many studies have represented habitat

architecture with only one or two variables (e.g., MacArthur and MacArthur 1961;

Rosenzweig and Winakur 1969; Estades 1997), and in some cases have found no

significant relationships between vegetation structure and animal communities (e.g.,

Johnsingh and Joshua 1994).  Studies that have investigated several variables have found

that multiple aspects of habitat architecture (or other environmental components)

contribute to species abundance and diversity (e.g., Rotenberry and Wiens 1980; August

1983; Brose 2003).  Studies examining the role of plant species in structuring animal

communities have been similarly equivocal.  These typically use species richness or

diversity to summarize the plant community, and often find weak (e.g., Siemann et al.

1998; Parker et al. 2001; Hawkins and Pausas 2004) or contradictory (Siemann 1998)

relationships, or none at all (Heck and Wetstone 1977; Koen and Crowe 1987; Brose

2003).  Studies using multivariate techniques to describe plant communities have

generally met with greater success in detecting relationships between plant and animal

communities (Rotenberry 1985; Sanderson et al. 1995; Martínez-Vilalta et al. 2002).

The problems discussed above relate to the independent, or predictor, variables

measured in ecological studies.  Multivariate approaches have been recommended for

variable reduction of the predictors (Graham 2003), because information from the

original data is retained and a smaller, statistically tractable number of variables can be

used in further analyses such as regression (see Somershoe and Chandler 2004, for

example).  The same problems arise, however, when considering dependent, or response,

variables.  Many community-level studies either restrict the variables (i.e., species) to a
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small subset of the larger assemblage, chosen a priori, analyze individual species’

responses separately, or use diversity measures to represent the community (Drake et al.

1996).  While these are important components of community structure, they do not fully

address the complicated nature of community dynamics.

The importance of habitat architecture for spiders is well documented, both for

spider communities and for the distribution of individual species (reviewed in Uetz 1991

and Wise 1993; see Langellotto and Denno 2004 for meta-analysis).  Quantitative studies

investigating spider associations with floristic composition, on the other hand, are

uncommon (but see Riechert and Reeder 1970).  Because of their abundance and the ease

with which they can be studied, spiders are an ideal taxon for investigating the ways in

which habitat architecture and plant species composition structure communities.  Spiders

are also important predators in terrestrial ecosystems, with impacts on processes

including nutrient cycling, trophic cascades, and insect population regulation (reviewed

in Wise 1993).  In this study, I demonstrate a method by which multiple species’

responses to multiple architectural and floristic variables can be investigated

simultaneously, combining nonmetric multidimensional scaling and multiple regression

to analyze three spider communities.

Methods

Study area

The study areas were in Knox County, Tennessee (USA) in three adjacent sites

owned by the University of Tennessee.  Each site ("sloped field", "tussock grass field",

and "deciduous woodland") represents a different habitat type.  The sloped field (SF) is
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an old field maintained by periodic mowing, with a slope ranging from 5-15%.

Dominant plant species tend to be distributed fairly evenly throughout the site.  The

tussock grass field (TGF) is a level area separated from the sloped field by a band of

shrubs (approximately 7m wide).  This area is not mowed but is generally flooded at least

once each spring and drains slowly, usually drying out by mid-June.  Plant species tend to

be clumped, creating relatively homogeneous patches within this site that are dominated

by one or two species.  The deciduous woodland (DW) is adjacent to the sloped field but

disjunct from the tussock grass field.  This site consists of two facing slopes separated by

a narrow strip of wet-mesic bottomland (varying from approximately three to ten meters

in width).  The herbaceous layer is sparse, with a small number of shrubs dispersed

throughout the site (spiders were not collected in the forest canopy).

I sampled the three sites twice annually in consecutive years: 3 July to 18 July

1997, 23 August to 8 September 1997, 10 July to 29 July 1998, and 24 August to 20

September 1998, resulting in a total of 12 samples.  Within each site in a given sampling

period, I located circular quadrats (0.1 m2) by a random walk.  In the initial year of the

study, there were 20 quadrats in each site for both sampling periods.  Sample sizes were

increased the following year.  For both sampling periods, I sampled 34 quadrats in the

sloped field, 30 quadrats in the tussock grass field, and 20 quadrats in the deciduous

woodland (total number of quadrats sampled = 288).  These larger sample sizes were

determined by adding quadrats until the standard error of the number of individual

spiders per quadrat no longer decreased with additional quadrats (Post and Riechert

1977).
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Data collection

Measurement of habitat architecture variables and assessment of plant species

composition occurred at least one day in advance of spider sampling to minimize

disturbance to the spiders.  In each quadrat I recorded the following data: percent cover

for each plant species, an approximation of vegetation density, vertical structural

heterogeneity, vegetation height, and horizontal structural heterogeneity.  To approximate

foliage density, I placed a wood dowel (0.3 cm diameter) marked in one-centimeter

increments vertically in the center of each quadrat, and recorded the lowest height at

which at least one full centimeter was visible through the vegetation.  Vertical

heterogeneity is a measure of habitat architecture modeled after the point-intercept

method of estimating plant species cover.  At 10-centimeter increments above the ground,

I suspended small dowels (divided into seven five-centimeter segments) horizontally

from poles on either side of the quadrat, and counted the number of segments in contact

with vegetation at each height.  I reduced these data to two vertical structural

heterogeneity variables using nonmetric multidimensional scaling (an ordination method;

see below), which represented the amount and variability of open space within the

vegetation.  Vegetation height included the height of the tallest plant in each quadrat, as

well as the coefficient of variation of the heights of the tallest plants in each of four

quarters within the quadrat (a measure of horizontal structural heterogeneity; quadrats

with relatively uniform heights of the tallest plants will have a lower coefficient of

variation than quadrats in which heights are high in one quarter and low in another, for

example).  In the deciduous woodland, I also measured litter depth (measured in the

center of each quadrat and in each of the four quarters of the quadrat).  I derived
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additional habitat architecture variables in each quadrat by using the plant percent cover

data to quantify the total surface area of plants grouped by physiognomic characteristics

(hirsute or glabrous leaves, and growth form [i.e., vines, herbs, grasses, shrubs]) based on

Gleason and Cronquist (1991).  Although these variables are species-based, they are not

species-specific and therefore are appropriately included as habitat architecture variables.

Spider collections were completed between 10am and 3pm on clear days in which

no measurable precipitation occurred during the six hours prior to sampling.  I sampled

spiders based on the protocol of Post and Riechert (1977).  Populations of almost all

species were aggregated (s2 > mean) at the sampling scale of 0.1 m2 quadrats.  Post and

Riechert (1977) suggested that in cannibalistic taxa such as spiders, aggregated dispersion

patterns indicate adequate sampling scale (i.e., the quadrat size is greater than spider’s

spacing of themselves).  In each quadrat location I placed a metal cylinder (0.38 m high,

0.1 m2) on the ground and pushed the base of it into the soil to prevent spiders from

escaping.  I removed spiders in the cylinder with a handheld aspirator and placed them in

vials containing 70% ethyl alcohol.  I also removed the vegetation (and/or litter) from

each quadrat, which I then sorted in the lab to retrieve any remaining spiders.  I identified

individuals to species when possible; early instars that could not be identified to species

were identified to genus.  When a genus was represented by a single species in all three

study areas during all four sampling periods, I assumed juveniles of that genus belonged

to that same species.  In total, 2,337 individuals were identified (1,119 in the sloped field,

825 in the tussock grass field, and 393 in the deciduous woodland), representing

approximately 90 species, 75 genera, and 20 families.
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Data analysis: variable reduction and regression

Many commonly used statistical techniques (e.g., regression) are unable to deal

with sparse data matrices (i.e., matrices with many zeroes, as are often encountered with

species abundance data) (Legendre and Legendre 1998), or become difficult to interpret

in the presence of multicollinearity (Graham 2003), as is also often observed with

ecological data (such as habitat data).  Ordination techniques have been recommended for

variable reduction of predictor variables as a solution to the problem of multicollinearity

in multiple regression analyses (Graham 2003), which also addresses the problems of

sparse data matrices.  Very rarely, ecologists have used ordination to reduce the number

of response variables for regression or other general linear models (e.g., Boyer and Fong

2005; Willis et al. 2005), which has several advantages over more traditional approaches.

Because one can obtain correlations between the raw variables (e.g., species in this case)

and the new reduced variables, information from the raw data can be recovered.

Summary measures such as diversity lose information about individual species.

Additionally, multiple tests of individual species are unnecessary; species responses can

be analyzed simultaneously.  Using variables from ordination analyses in multiple

regression is conceptually similar to canonical correspondence analysis (CCA), but

unlike CCA does not constrain the representation of community structure to only the

measured environmental variables (McCune and Grace 2002).

Nonmetric multidimensional scaling (NMS) is an iterative ordination method that

places sample units in k-dimensional space using the ranked distances between them.  As

in other ordination methods (e.g., principal components analysis, detrended

correspondence analysis), sample units that are more similar to one another (based on
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species composition, for example) have scores that are closer together than sample units

that are less similar (Fasham 1977).  Ordered positions of the sample units in the final

configuration (i.e., reduced dimension) are optimized to maintain a monotonic

relationship between the distances of the ordinated points and the distance matrix

generated from the raw data (Legendre and Legendre 1998; McCune and Grace 2002).

Departures from monotonicity are indicated by “stress” (higher values of stress suggest

poorer fit between the raw data and the NMS configuration).  In contrast to other

ordination methods, the numbering of the axes is arbitrary; the first axis of an NMS

ordination does not necessarily explain more variation among the sample units than the

second, and so on (McCune and Grace 2002).  Correlations between the k axes of the

ordination and the original variables can be used to interpret the axes.  Because NMS

does not assume linearity or monotonicity of the underlying data structure, it is

particularly appropriate with the kinds of ecological data in this study (Fasham 1977;

Minchin 1987; McCune and Grace 2002).

To reduce the dimensionality of the plant, architecture and spider data matrices, I

used NMS with the Sørenson distance measure (PC-ORD 4, 1999, MjM Software

Design, Gleneden Beach, Oregon).  PC-ORD implements global NMS (see Discussion).

I used PC-ORD's autopilot mode, which performs 40 runs with the raw data and 50 runs

with randomized data using a random starting configuration each time; the program

calculates one-dimensional through six-dimensional solutions for each run and reports the

recommended k-dimensional solution.  I used raw percent cover data to perform

ordinations of the plant data matrices.  For the spider species ordinations, I adjusted

species counts by the maximum number of individuals of each species occurring within a
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site (Faith et al. 1987; Legendre and Legendre 1998).  Singletons and species occurring in

fewer than five percent of the quadrats were omitted from the ordinations (McCune and

Grace 2002).  Architecture ordinations included the following variables: vegetation

density, maximum height, horizontal heterogeneity, vertical heterogeneity (two

variables), and total surface area of hirsute and glabrous plants, grasses, vines, herbs, and

shrubs.  In the deciduous woodland the architecture data also included two litter

variables: maximum litter depth and coefficient of variation of litter depth.

I then used the k axes from each NMS analysis as variables in multiple linear

regressions using PROC REG in SAS (SAS 9.1, 2001, Sas Institute Inc., Cary, North

Carolina), employing all possible subsets regression for variable selection.  I used the

plant and architecture axes in multiple linear regressions as predictors of three general

components of spider community structure (number of individuals, species richness, and

species diversity [Simpson’s D']) and as independent variables in regressions with the

spider axes as dependent variables.  I selected initial candidate regression models (out of

all possible subsets) based on Akaike’s Information Criterion (the AIC option in SAS);

the final models chosen were those in which all parameter estimates were significant at

α=0.05 and which had minimum AIC scores.  Responses of individual spider species to

raw plant and architecture variables were interpreted based on the signs of the correlation

coefficients of both predictor and response variables with the NMS axes, and the signs of

the parameter estimates from the final regression models.  As this is an observational

rather than experimental study, I did not use a sequential Bonferroni correction, due to

the increased risk of Type II errors associated with it.  Arguments against using this

correction are detailed in Moran (2003).  In particular, he argues that the probability of
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finding multiple significant tests due to chance is very low.  Further, the correction

discourages ecologists from analyzing complicated communities in detail, because in

simpler analyses (fewer tests) the correction is less stringent (Moran 2003).

Results

Variable reduction

Because initial NMS analyses with all 288 quadrats indicated separation of the

sites based on all three data matrices (plant species, spider species, and habitat

architecture), but no separation based on sampling month or year, I analyzed the data

within sites (see Appendix B for alternate method of clustering quadrats by site).  The

spider and plant data were reduced to three dimensions (axes) and the architecture data to

two dimensions (axes) in all three sites.  I used Kendall's τ to interpret the NMS axes;

original variables that were correlated with a given axis at |τ|≥0.30 are included in the

tables below.  In total, 23 spider species were included in the NMS analyses for the

sloped field, and 18 spider species were included for those in the other two sites.

Analyses of the plant species data included totals of 38, 33, and 32 species in the sloped

field, tussock grass field, and deciduous woodland, respectively.  Eleven architecture

variables were included for the sloped field and tussock grass field; the deciduous

woodland included two additional litter variables.  Correlations between the spider (S1,

S2 and S3), plant (P1, P2 and P3) and architecture (A1 and A2) axes themselves did not

exceed |τ|=0.30.  All final configurations met the criterion of instability < 0.001

(instability measures changes in stress) with the exception of the plant ordination in the

Tussock Grass Field (instability < 0.004).  The spider ordination axes explained the least
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variation among sample units (cumulative variation explained ranged from 39% to 49%),

while the plant axes explained between 68% to 84% and the two habitat axes in all three

sites explained 95% of the variation.   Following a similar pattern, stress (Kruskal’s stress

Formula 1 x 100) was greatest in the spider ordinations (24.33 [SF], 22.74 [TGF] and

21.36 [DW]) followed by the plant ordinations (16.57 [SF], 15.69 [TGF] and 19.22

[DW]) and the habitat ordinations (10.97 [SF], 10.49 [TGF] and 8.76 [DW]).  While

some of these stress values are considered high (i.e., those approaching or exceeding 20

[McCune and Grace 2002]), stress values are known to be higher with larger sample sizes

or higher species counts (Clarke 1993; McCune and Grace 2002).

Regression analyses

Components of general community structure, such as number of individuals,

species richness or species diversity, were significantly predicted (α=0.05) by either

habitat architecture or plant species composition in all three sites (Table 2.1).  All three

measures were significantly predicted in the sloped field; two were significantly

predicted in the tussock grass field (richness and diversity) and in the deciduous

woodland (number of individuals and richness).  In five of the seven significant

regressions, whole model p-values were less than 0.01.

Responses to the original plant and architecture variables are presented in Table

2.2 as positive or negative, based on the signs of the correlation coefficients and

regression parameter estimates.  All three variables in the sloped field responded in the

same way (i.e., all positively or all negatively) to the five architecture variables, but

responded differently to the plant variables, if at all.  Richness and diversity in the
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tussock grass field, but not number of individuals, responded in the same way to

individual plant species (Table 2.2).  Similarly, in the deciduous woodland, both number

of individuals and richness showed the same responses to each plant species.  Number of

individuals per quadrat in the sloped field and deciduous woodland showed the strongest

associations with the predictor variables; these models explained 19% and 22% of the

variation in number of individuals, respectively (SF R2=0.19, DW R2=0.22).  The other

models of general community structure in these two sites explained less than 10% of the

variation (R2≤0.10).

Spider species composition was also significantly predicted by either habitat

architecture or plant species composition in all three sites (Table 2.3).  Regressions for

two of the spider axes in all three sites were significant at α=0.05; in the deciduous

woodland the regression for the third axis was also significant.  The pattern in the sloped

field and tussock grass field was for one of the spider axes to be predicted by an

architecture axis with low R2 values (architecture explained 4-7% of the variation along

these axes), and the other spider axis was predicted by one or more plant axes with higher

R2 values of 0.15 and 0.18.  In the deciduous woodland, one spider axis (S1) was

predicted by an architecture axis, and the other two were each predicted by a plant axis;

however, R2 values were comparable for all three regression models in this site (R2 values

ranged from 0.09-0.11).

 Individual spider species’ responses to the original plant and habitat architecture

variables are presented in Tables 2.4-2.6, following the format of Table 2.2.  In the sloped

and tussock grass fields, most species responded positively to most of the architecture

variables (e.g., the number of individuals of a given species tended to increase with
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increasing vertical heterogeneity, vegetation density, and herb cover) (Tables 2.4 and

2.5), but in the deciduous woodland the single spider species associated with S1

responded negatively to increasing horizontal and vertical heterogeneity (Table 2.6).

Clubiona abboti responded in the same direction to shared architecture variables in both

the sloped field and tussock grass field (Tables 2.4 and 2.5).  Unfortunately, this was the

only species that was correlated in more than one site with spider axes that were

predicted by the same architecture variables (plant species composition varied

considerably from site to site, so there was little overlap of those axes across sites).

Spider species responses to plant composition were more variable; positive and negative

responses to individual plant species were evenly split among the 14 spider species

associated with NMS axes across all three sites.  Some spider species were correlated

with more than one axis in each site, and so appeared to be responding to both

architecture and plant species (C. abboti in both the sloped and tussock grass fields,

Pardosa milvina in the tussock grass field, and Theridion frondeum in the deciduous

woodland), while others were only correlated with axes predicted by plant species

composition (Bathyphantes pallida in all three sites, and Lepthyphantes nebulosa in the

deciduous woodland) (Tables 2.4-2.6).

Discussion

The regression models involving habitat architecture generally support results

from previous studies in spiders (e.g., Hatley and MacMahon 1980; Rypstra 1986;

Gunnarsson 1990; Halaj et al. 1998).  Plant species composition, however, was a

significant predictor in all but one of the regression models, and was the sole predictor in
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almost two-thirds of them.  The stronger response of both spider communities as a whole

and individual spider species to plant species composition relative to habitat architecture

was contrary to expectations based on previous studies in both spiders and other animal

groups (e.g., MacArthur and MacArthur 1961; Riechert and Reeder 1970; M'Closkey and

Lajoie 1975; Brose 2003).  In general plant species composition explained more variation

in spider community composition than did habitat architecture.

Plant species may reflect habitat architecture at a finer scale than the architectural

variables considered here; for example, leaf pubescence has been shown to influence

arthropod community composition (Gruner et al. 2005).  Further, many attributes of plant

communities are not species-specific; physiognomic characteristics of plants may be

typical of a particular species but not unique to it.  These features may be correlated with

species composition, making it difficult to distinguish between an animal’s association

with specific plant species (or species assemblages) and the physical structure created by

the vegetation.  Some support for this possibility is provided by the sloped field data,

where individuals of each species responded in the same direction to the three upright

herbaceous species (Desmodium sp., Diodia virginiana, and Verbesina sp.), but in

opposite directions to the two graminoid species (Dactylis glomerata and Microstegium

vimineum) (Table 2.4).

On the other hand, plant species may have an indirect effect on spider community

structure via their influence on prey abundance or diversity.  Prey availability has been

shown to explain variation in spider community structure in some cases (e.g., Rypstra

1986, Halaj et al. 1998) but not others (e.g., Greenstone 1984).  In general, however,

these studies have demonstrated that habitat architecture explains more variation in
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distributions of spiders than prey availability does.  de Souza and Martins (2004) found

that spiders were more abundant on both natural and artificial inflorescences than on

vegetative branches, suggesting that the architectural features of the flowering branches

were at least as important as their potential to attract prey.

The significance of both the habitat architecture and plant composition axes in

these analyses underscores the complicated ways in which communities are organized,

and the difficulties of teasing apart the relative contributions of different environmental

factors.  Previous studies have shown differing effects of plant community attributes on

animal community structure, perhaps in part because the variables included (such as plant

diversity) did not capture the complicated nature of community dynamics.  In earlier

analyses of the data presented here, plant diversity (Simpson’s D) was never a significant

predictor of any aspect of the spider communities.  Unless one is interested in diversity

per se, richness and diversity measures may not adequately represent species composition

and the information contained therein (Rotenberry 1985).  Wimp et al. (2005) found, for

example, that while arthropod richness and abundance were very similar across genotype

treatments, the actual species composition of the arthropod community was significantly

different.  Similarly, Cramer and Willig (2005) found that a measure of rodent β diversity

based on the relative abundance of each species distinguished between habitat types,

while one based on species presence/absence did not.  In both cases, the inclusion of

detailed information about the species provided a more complete picture of these

communities.

The use of NMS axes in regression models allows incorporation of this detailed

information about species composition.  Ecologists increasingly use NMS as a tool for
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descriptive multivariate data analysis, and the principles and mechanics have been well

documented (e.g., McCune and Grace 2002).  However, several points bear emphasizing

here, in particular issues of sparse data matrices, choice of distance measures, the stress

metric, and the nature of NMS axes, as well as variant forms of the procedure.

Sparse data matrices.  NMS is well suited to community data, particularly when β

diversity is high (i.e., the data matrix contains many zeroes) (Faith et al. 1987) and

provides robust analysis of many data types.  In analyses of simulated data with known

gradients, NMS has shown superior ability to recover underlying data structure compared

to principal components analysis, principal coordinates analysis, reciprocal averaging,

and detrended correspondence analysis (Fasham 1977; Minchin 1987).

Choice of distance measure.  Though the use of an appropriate distance measure

is critical for any ordination analysis, in general NMS should not be sensitive to the

choice of distance measure, since it uses ranked rather than proportional distances (as

long as the distance measure used is appropriate for the type of data).  Both metric and

nonmetric measures can be used (Fasham 1977).  Because NMS assumes a monotonic

relationship between the distance measure and the ecological distances, however, any

measure in which this assumption does not hold would be inappropriate (the chi-square

measure, for example, violates this assumption [Faith et al. 1987, Legendre and Gallagher

2001]).

Stress.  This assumption of monotonicity is evaluated in NMS by the stress metric

(a loss function).  As mentioned above, stress values exceeding 20 may indicate poor

recovery of the underlying gradients (McCune and Grace 2002), but Clarke (1993)

suggested that rules-of-thumb regarding stress values are overly simplistic.  For example,
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stress increases with increasing sample sizes; with a data matrix of 100 or more sample

units, representing their inter-relationships in low-dimensional space becomes

challenging (Clarke 1993).  A potential solution to this problem would be to perform

NMS on grouped subsets of the data.  Stress values close to zero, on the other hand,

should be viewed with suspicion, as this can indicate a degenerate matrix resulting in a

configuration where sample units are tightly clustered in a few groups (Davison 1983,

Cox and Cox 2001).

NMS axes.  Axes in NMS behave differently than in other ordination techniques.

Because NMS attempts to minimize stress across dimensions when determining the final

configuration, the first axis of a solution in two dimensions will not be the same as the

first axis in a three-dimensional solution (McCune and Grace 2002), so the choice of

number of dimensions affects the interpretation of the scores for each axis.

Global versus local NMS.  In global NMS all distances between points are

evaluated simultaneously, and the final configuration attempts to maximize the rank order

agreement between all points (Minchin 1987).  In local NMS, this criterion is more

relaxed; the rank order agreement is assessed for sample points in pairs, allowing for

differences in the rate of change in compositional dissimilarity with environmental

distance throughout the ordination space (Prentice 1977, Minchin 1987).  Because of this

flexibility, this form of NMS might yield lower stress values.  Although both approaches

have been evaluated with respect to other ordination techniques (Fasham 1977, global;

Minchin 1987, local), the two approaches have not been systematically evaluated with

respect to each other.
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A number of ordination techniques are available in which environmental variables

are incorporated along with species data (i.e., dependent variables), among them

canonical correspondence analysis (CCA), biplots, canonical correlation, redundancy

analysis, and co-inertia analysis.  The latter three, however, are sensitive to nonlinearity

in the underlying data structure (McCune and Grace 2002), and therefore may be

inappropriate for community (i.e., species) data.  CCA is a constrained ordination method

that relates environmental variables to species data, but it ignores any variation in the

species data that is not explained by the measured variables (McCune and Grace 2002);

in other words, the results do not indicate what amount of variation in community

structure is unexplained.  This may result in misleading conclusions about the importance

of the chosen variables (McCune 1997).  McCune (1997) found that CCA can be very

sensitive to noisy data, and that inclusion of variables that are biologically unimportant to

the community can distort the representation of community gradients.  Both McCune

(1997) and McCune and Grace (2002) recommend relating environmental variables to

species ordinations subsequent to the application of unconstrained ordination techniques

such as NMS.

Unlike CCA, the species ordination in biplots represents unconstrained

community structure.  Biplots are a descriptive method that can be used to visualize

multivariate data and detect patterns (Gower and Hand 1996) by superimposing

trajectories of environmental variables on the species ordination.  Classical biplots,

however, assume a linear model for the data structure (Cox and Cox 2001).  While

nonlinear biplot methods have been proposed (e.g., Gower and Ngouenet 2005), there

still exists a practical problem in the visual interpretation of biplots in more than two
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dimensions (Jongman et al. 1995) or with large numbers of environmental variables

overlaid on an ordination graph.  Finally, both CCA and biplots incorporate a single

matrix of environmental variables.  While one could conceivably combine multiple data

matrices, this would make it impossible to assess community responses to different types

of environmental variables separately (for example, plant species composition versus

habitat architecture).  Ordinating data matrices of like variables individually allows

interpretation of the separate influences of each type of variable.

In the approach I present here, the NMS axes representing spider species

composition are secondarily related to NMS axes for environmental variables through

multiple regression analyses.  This approach has several advantages for community

analyses over the methods discussed above.  It provides the opportunity for statistical

hypothesis testing of complicated data sets by incorporating as much information from

the raw data as possible while producing statistically tractable datasets for regression

analyses, rather than simply being descriptive.  Because the assumptions in NMS about

the underlying structure of the data (e.g., response shapes) are less restrictive, it is more

likely to produce ecologically meaningful variables for further analyses.  The regression

models for the data in this study explain relatively low amounts of variation.  This is

likely because other factors that influence spider communities, such as abiotic factors or

predation by vertebrates or other arthropods, were not incorporated.  The low R2 values

indicate a problem with the data, not with the approach.  The high stress values and

comparatively lower variation explained in the spider ordinations suggest that the final

configuration was not capturing the underlying data structure as effectively for this

matrix, resulting in noise in the variables.  In spite of the noisiness of the data, this
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approach allowed an interpretable analysis of complicated data sets in which the data

themselves determined which of the original variables were important in these

communities.  Being able to explain at least some of the variation in these spider

communities allows a broader understanding of the roles of architecture and plant species

composition.  A final advantage is that by ordinating sample units based on actual species

composition, this approach implicitly incorporates species associations in the regressions,

thereby allowing individual species responses to be interpreted within the context of

community interactions.

Animal communities are structured by a complicated set of interacting factors.

Using an unconstrained, data-driven approach, this study has shown how multiple

components of both habitat architecture and plant species are related to spider community

structure, and elucidated the different responses of individual spider species.

Understanding the simultaneous responses of multiple species to environmental variables

constitutes an important step in community-level research.  This study contributes not

only to our knowledge of the community dynamics in an important group of terrestrial

predators, but also to our ability to incorporate complicated community data in ecological

research.
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CHAPTER 3

Indirect and direct effects on habitat selection in spider communities: the roles of
arthropods, vegetation architecture and plant species

Introduction

Interactions among heterospecific individuals in a community occur within and

across trophic levels, and are often indirect; that is, they are mediated through

interactions with other species (Wootton 1994a).  This combination of direct and indirect

effects leads to complicated dynamics among community members.  Community

structure and organization are determined, in part, by both environmental features such as

microclimate or habitat architecture, as well as by ecological interactions between a focal

group and more distantly related species (e.g., predation, competition and mutualism)

(Landres and MacMahon 1983, Wellborn et al. 1996), but these factors do not act in

isolation from one another.  One difficulty facing community ecologists has been the

dearth of analytical tools to develop and test multivariate hypotheses that both

incorporate direct and indirect effects and evaluate the simultaneous influences and

responses of community variables (Grace and Pugesek 1998, Malaeb et al. 2000,

Arhonditsis et al. 2006, Grace in prep).  Even if multiple factors are included in

traditional analyses, treating them as independent predictors precludes an understanding

of how these factors may interact, and the roles of direct and indirect effects.  Recently in

the ecological literature there has been a call for the use of multivariate models or

hypotheses as opposed to the more traditional application of multiple univariate models

to community ecology problems (Shipley 2000, Graham 2003, Arhonditsis et al. 2006,

Grace in prep).  In this study I employ path analysis in a structural equation modeling
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framework to investigate the structure of a spider community as it is influenced by the

complicated and interacting roles of the non-spider arthropod community, the plant

community and its architectural attributes, vegetation biomass and temperature.

At the community level, individuals interact both directly with members of other

species within and across trophic levels (direct effects), and indirectly when interactions

are mediated through one or more additional species (indirect effects) (Wootton 1994a,

1994b).  Although the significance of indirect effects in structuring ecological

communities is not well understood (Halaj and Wise 2001), indirect effects have been

shown to have important influences on community attributes and processes in a variety of

taxa.  For example, indirect effects influence tenebrionid beetle abundance (Sánchez-

Piñero and Polis 2000), genetic variation in predatory ladybird beetles (Astles et al.

2005), coexistence of aphids (van Veen et al. 2005), succession (Benedetti-Cecchi 2000)

and species interactions (Wootton 1994) in intertidal assemblages, reproduction success

in ducks (Blums et al. 2002) and plants (Vazquez and Simberloff 2004), and species

diversity in butterflies (Hawkins and Porter 2003), bats (Stevens 2004), spiders (Halaj et

al. 2000), and plants (e.g., Schmitz 2006, Schmitz et al. 2006).  Given their ubiquity in

ecological systems, ignoring indirect effects may result in inaccurate characterizations of

communities and misleading conclusions about the nature of species interactions within

them (Sih et al. 1985, Wootton 1994a, Grace in prep).

Local distributions of species within a community can arise from the direct effects

of the physical structure of the environment, resource availability, and species

interactions as well as the indirect effects of any of these factors.  For example, in animal

communities, vegetation architecture may simultaneously have a direct influence on a
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focal taxon (McCoy and Bell 1991) and an indirect influence through its effects on prey

availability by providing refuges or otherwise altering predator foraging efficiency (e.g.,

Gilinsky 1984, Schmitz et al. 2006).  In some predatory groups, structurally complex

vegetation may reduce the effects of intraguild predation by providing refuges for

predators, thus having an indirect negative effect on prey species (Finke and Denno

2002).   In some cases, the directions of direct and indirect effects may differ; Malaeb et

al. (2000) found a negative direct effect between two variables, but the indirect effect was

positive and stronger than the direct effect, resulting in a net effect that was positive.

This example underscores the need to incorporate the complicated dynamics of a system

or pathway in community analyses.

As in other animal communities, local distributions of spider species are

determined by a number of factors, including habitat architecture, microclimate, prey

availability, and predation risks (reviewed in Riechert and Gillespie 1986 and in Wise

1993).  Spiders’ foraging modes are tightly linked to habitat architecture, in part because

their various foraging strategies require different substrate configurations and different

spiders may show preferences for more open or more dense vegetation depending on web

type and/or hunting mode (reviewed in Uetz 1991).  Temperature affects spider activity

levels (e.g., Schmitz et al. 1997), and can vary at the microhabitat scale (i.e., from

sampling unit to sampling unit).  Spiders tend to be food-limited (Wise 1993), and prey

availability has been shown to influence spider distributions (Olive 1982, Caraco and

Gillespie 1986, Real and Caraco 1986, Gillespie and Caraco 1987).  Finally, spider

distributions may be influenced by avoidance of non-spider natural enemies (Wise 1993).
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These factors likely interact, and affect species composition both directly and

indirectly.  Spider densities can be influenced by a combination of habitat complexity and

prey availability (Rypstra 1983), and prey availability itself can vary with habitat

structure.  Susceptibility of spiders to bird predation has been shown to depend on

architectural configuration of the vegetation as well (Gunnarsson 1990, 1996).  Harwood

et al. (2003) have suggested that web-building spiders locate their webs based on a

compromise between habitat structure, prey availability, microclimate and predator

avoidance and this compromise likely applies to active hunting spiders and ambushers as

well.  The interactions of these factors may explain why, for example, many studies find

prey availability to be less important than other variables; spiders may be required to

choose habitats that minimize other risks at the expense of high prey availability.

Additionally, spider associations with habitat features such as plant species composition

or habitat architecture may be confounded by similar associations between these factors

and prey availability (Beals 2006).  Associations between spiders and habitat features

such as plant species composition may be indirect, mediated by direct associations with

prey availability.  Most studies that have examined indirect effects on spider communities

have looked at how spiders influence the plant community through top-down indirect

effects (i.e., trophic cascades) (e.g., the work of Schmitz and colleagues, Rosenheim et al.

2004, see also meta-analysis by Halaj and Wise 2001, but cf Halaj et al. 2000).

The current study expands on my previous work (Beals 2006) in which I found

that plant species composition predicted spider community structure as well as or better

than habitat architecture.  I hypothesized that plant species might indirectly affect spiders

through their influence on the presence of non-spider arthropods, through shared
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association with microclimate factors, or that they might be confounded with

architecture.  To investigate the interacting roles of non-spider arthropod community

composition, plant community composition, habitat architecture, vegetation biomass, and

microclimate (temperature) with respect to spider community composition, I develop

directed graphical models (sensu Shipley 2000) to test causal hypotheses about the

structure of an old field spider community.  Models specifying asymmetrical influences

(i.e., causal relationships) between variables cannot prove cause, of course, but can be

used to falsify causal hypotheses (Grace and Pugesek 1998) or determine whether causal

inferences are consistent with the structure of the data (Bollen 1989, Shipley 2000).

Methods

Study area

The study was conducted in an old-field site in Knox County, Tennessee, USA.

This site was described as the “sloped field” site in Beals (2006).  The composition of the

dominant plants was similar to that described in Beals (2006) (the grasses Dactylis

glomerata and Microstegium vimineum, and the perennial herbs Desmodium sp.,

Calystegia sepium, Verbesina sp., Vernonia gigantea, and Lysimachia nummularia);

additionally, Glechoma hederacea, Solanum sp., and Stellaria media were abundant

during this study.  While most of these species were distributed fairly evenly throughout

the site, C. sepium was primarily found in the upper half of the site, while G. hederacea

was limited to the lower half.  Sampling was carried out during October 2004.  Scientific

names of plants are taken from Wofford (1989).
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Data collection

Of the plant species in this site, Desmodium sp. was previously shown to have the

strongest influence on spider community composition (Beals 2006).  Quadrats (0.1m2)

were selected throughout the site based on the criterion of having ≥75% cover of

Desmodium sp.  To separate the effects of plant architecture from other plant qualities

(e.g., palatability to herbivores), I manipulated Desmodium plants in 50 of the quadrats

by removing every other leaf at its node.  The remaining 50 quadrats were unmanipulated

and served as controls.  Desmodium senesced prematurely in some quadrats during the

course of sampling, and it was necessary to exclud these quadrats from the analyses.  As

a result, a total of 54 quadrats (32 control and 22 treatment) were included in the final

analyses

At least one day prior to sampling within a given quadrat, plant species

composition and vegetation architecture data were collected.  I recorded plant species

composition in 5% increments for all species with cover ≥5%; species with less than 5%

cover were counted for richness information.  I measured vegetation architecture

following the protocol described in Beals (2006).  Variables measured included an index

of vegetation density, the height of the tallest plant in each compass quarter of the

quadrat, and a measure of open space within the vegetation of a quadrat based on the

point-intercept method.  I calculated the coefficient of variation of the plant heights to use

as a measure of horizontal heterogeneity independent of mean height; quadrats with

relatively uniform heights of the tallest plants have a lower coefficient of variation than

those in which plant heights differed greatly.  The open space data were reduced to two

variables using nonmetric multidimensional scaling, which represented a measure of
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vertical heterogeneity.  Quadrats with similar configurations of open space had similar

values for these variables.

Sampling was completed between 1000 and 1500 hrs EDST on days in which no

measurable precipitation had occurred during the previous six hours.  On the day of

sampling I measured temperature and relative humidity in the center of each quadrat

(near the ground) 10 minutes prior to collecting the arthropods.  Following sampling, all

vegetation was removed from the quadrat and taken back to the lab, where it was dried at

60º C for 48 hours and then weighed to measure aboveground dry weight biomass.  Four

missing biomass data points were replaced with the mean value of biomass (after Malaeb

et al. 2000, Arhonditsis et al 2006).

Arthropod sampling

To determine the influence of potential prey, competitors, and predators/parasites

on the spider community, I sampled spider and non-spider arthropods initially using a

vacuum sampler to ensure capture of flying insects.  Following the vacuum sampling, a

0.1m2 cylinder (open at both ends) was quickly placed around the quadrat and pushed

into the ground to prevent escape of the remaining arthropods.  I sampled these with a

handheld aspirator.  Arthropods were stored in Whirl-Pak bags in a cooler until return to

the lab.  I then placed them in a –20 º C freezer and later transferred them into vials

containing 70% ethanol.  The large numbers of Collembola collected with the vacuum

sampler required that this group be sub-sampled.  To remove soil particles and chaff from

the samples, I floated the Collembola in a 1:1 (v:v) sucrose solution, removed them from

the surface, rinsed them, and placed them back in ethanol.  I then sub-sampled from a



66

gridded petri dish by randomly selecting 10 squares out of 68 (approximately 9 mm2

each) and counting the number of Collembola in each square.  Although I did not assess

the possible bias introduced by this sub-sampling method, the bias should be comparable

for any given sample and therefore should not influence subsequent analyses.

All non-spider arthropods were identified to order, with the exception of the

Chilopoda (centipedes) and Diplopoda (millipedes), which were identified to class.  The

total numbers of individuals in each order (or class) were used in the primary analyses.

For analyses of the separate influences of potential prey arthropods (herbivores and

scavengers) and potential competitor or predator arthropods (predators and parasites),

orders in which both trophic levels were represented were identified to family, and

classified based on the predominant feeding mode of that family.  Total numbers of

herbivore/scavenger and predator/parasite individuals were tallied for each order (e.g.,

Coleopteran herbivores versus Coleopteran predators).  Spiders were identified to species

where possible; juveniles that could not be identified to species were identified to genus.

Variable reduction

The spider, arthropod, plant, and habitat architecture matrices contained large

numbers of often collinear variables, and the species data matrices contained many zeros.

To reduce the number of variables in each matrix I used nonmetric multidimensional

scaling (NMS) (PC-ORD 4, 1999, MjM Software Design, Gleneden Beach, Oregon),

which represents the data in reduced dimensions based on the underlying variables that

describe the variation among sample units.  In other words, the variable reduction is

based on the information contained in the raw data rather than potentially subjective
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decisions of the researcher (see Beals 2006).  Prior to the NMS analyses, spider species

occurring in fewer than 5% of the quadrats were deleted, along with arthropod orders and

plant species occurring in only a single quadrat.  Two different criteria were used because

there were many more spider species than either plant species or arthropod orders, and

higher numbers of entities/species affects the ability of NMS to accurately represent the

data in lower dimensions.  It was therefore necessary to use a more stringent standard to

achieve reasonable ordinations of the spiders.  For the spider, arthropod, and habitat

architecture matrices individual species or variables were relativized with respect to their

maximum value to account for the fact that species abundances varied widely, and the

architecture variables were not measured on the same scale.  Plant percent cover was

arcsine square root transformed (McCune and Grace 2002).  The Sørenson distance

measure was used for all NMS ordinations, and final configurations were selected using

PC-ORD's autopilot mode set on “medium”, which performs 15 runs with the raw data

and 30 runs with randomized data using a random starting configuration each time to

determine the best configuration.

Data analysis

The resulting spider, arthropod, plant and architecture axes, along with

temperature and biomass data, were z-transformed so each variable had a mean of zero

and variance of one (recommended by Grace in prep).  A nominal variable (C/T) was

included in analyses to represent the control and treatment quadrats.  To investigate both

the direct and indirect influences of the arthropod and plant communities, vegetation

architecture, biomass, and temperature on spider species composition I used the structural
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equation modeling (SEM) software program AMOS (Arbuckle 1999).  SEM analyses are

an extension of path analysis (Wootton 2002, McCune and Grace 2002, Tomer 2003) that

typically include latent, or unmeasured variables, which are indicated by the measured

observed variables (Shipley 2000, Grace 2003, Tomer and Pugesek 2003).  In its broadest

definition, however, it tests hypotheses about the direct and indirect relationships

between independent and dependent variables that can be either latent or observed

(Shipley 2000, Hershberger et al. 2003).  Latent variables are theoretical constructs that

cannot be measured directly but can be represented by one or more indicator variables

(Hershberger et al. 2003, Pugesek 2003a).  Body size, for example, is a latent variable

that can be represented by measuring an organism’s length, weight, and circumference.

These measured variables are indicators of the abstract concept of “body size.”

Because my variables were primarily NMS axes, I employed observed variable

SEM or “modern path analysis”, sensu Grace (in prep), which was necessitated by two

issues, one conceptual and one technical.  First, the NMS axes themselves are abstract

constructs derived from the observed data matrices; for example, the spider axes

represent the concept of the spider community, but are not observed variables.  Second,

and more importantly, the indicators of a latent variable are required to covary in some

way or they cannot be considered as joint indicators of a single latent variable.  While

NMS analyses do not necessarily produce strictly orthogonal axes (McCune and Grace

2002), for a given data matrix here they are insufficiently correlated with one another to

be used as indicators of a latent variable.

Grace’s use of the terminology “modern path analysis” and “observed variable

SEM” serves to distinguish between this approach and path analysis as traditionally
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implemented by ecologists.  Traditional path analysis either uses the correlation matrix

among variables to test models with direct and indirect effects (e.g., Wrightian path

analysis) (Pugesek 2003a, Grace in prep), or uses a series of regression equations to

estimate direct path coefficients between variables, using the partial regression

coefficients to estimate indirect effects (McCune and Grace 2002; see, for example

Wootton 1994b).  In the SEM framework, the path coefficients are estimated

simultaneously, with the goal of optimizing the fit between the observed covariance

matrix and the covariance matrix implied by the path model being tested (Pugesek 2003,

Grace in prep).  In other words, in addition to simultaneously testing the significance of

individual path coefficients, the power of SEM methods stems in part from the inherent

capability to test whether the model, in its entirety, provides a reasonable fit to the data

(Pugesek 2003a, Grace in prep).

Three general approaches to SEM have been discussed: confirmatory, alternate

model testing, and exploratory or model generating (McCune and Grace 2002,

Hershberger et al. 2003, Arhonditsis et al. 2006).  In a confirmatory approach, a single

theoretical model, specified a priori on the basis of existing theory or prior knowledge, is

tested against the data and either rejected or accepted based on absolute measures of fit.

Alternate model testing extends this approach to the testing of two or more models

(again, specified a priori on the basis of theory or previous results).  In this approach,

competing models may be rejected or accepted either on the basis of absolute measures of

fit or relative measures of fit.  Relative fit measures select the best model in terms of

general fit and parsimony regardless of whether the absolute measures indicate adequate

fit.  Thus, even if none of the alternate models fit well, one can still select the “best”
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model from this group.  Finally, in the exploratory or model generating approach a

researcher develops one or more potential models based on the patterns in the data

themselves.  This can be done, for example, by specifying a model based on correlations

among the variables.  More commonly, models are generated following the rejection of

an a priori model by modifying the path model based on theory, modification indices,

and/or significance of individual path coefficients.  Because a generated or modified

model is tested against the data used to develop it, the final model is generally considered

a new hypothesis requiring further testing (McCune and Grace 2002).

I used two of these SEM approaches to assess the relationships between biomass,

temperature, and the arthropod, plant and spider communities.  I began by testing two

alternative models of the data specified a priori (illustrated in Figure 3.1).  These

competing models were developed based on my previous work (Beals 2006), which

indicated that plant species composition predicted spider species composition and

community structure as well as or better than did vegetation architecture.  The first

hypothesized model (Figure 3.1A) posits an indirect influence of plants through their

effects on the arthropod community, vegetation architecture, and vegetation biomass.

The second model (Figure 3.1B) additionally includes a direct effect of plants on spiders.

I used a suite of commonly reported fit measures to assess both the absolute and relative

fits of these models (global model chi-square, CMIN/DF, CFI, and RMSEA for absolute

fit, AIC and CAIC for relative fit) (Tomer and Pugesek 2003).  The chi-square test for the

overall model will be rejected when the fit of the model is poor, so p-values greater than

0.05 indicate adequate fit between the model and the data.  CMIN/DF is the chi-square

statistic scaled by degrees of freedom, with values less than 2 indicating good fit.  CFI is
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the comparative fit index.  Unlike the other absolute fit measures described here, CFI

compares the fit of the specified model to the independence model, in which there are no

relationships (paths) between the variables, rather than the saturated model in which all

variables are related through direct paths.  CFI values greater than 0.90 are generally

considered an indication of adequate fit.  RMSEA is the root-mean-square error of

approximation; values less than or equal to 0.08 indicate adequate fit, with values less

than 0.05 suggesting very good fit.  Each of the absolute fit measures has strengths and

weaknesses.  Tomer and Pugesek (2003) recommend always reporting the global model

chi-square, and CMIN/DF accounts for lack of parsimony based on the ratio of this chi-

square value to degrees of freedom.  The global chi-square, however, is conservative with

small sample sizes, making a rejection of the hypothesis that the model fits less likely.

CFI behaves well with small sample sizes, but because it compares the specified model to

the perhaps unrealistic independence model it tends to overestimate the goodness-of-fit of

the specified model.  RMSEA performs less well with small sample sizes, but because it

has a known sampling distribution one can test whether a value greater than the standard

cut-off is significantly large.

The relative fit measures were AIC (Akaike Information Criterion) and CAIC

(Consistent Akaike Information Criterion).  These measures incorporate both the fit of

the model to the data and a penalty term that increases as model complexity increases, so

that models with lower values for these measures are considered better.  AIC is familiar

to ecologists, but the criterion CAIC, developed by Bozdogan (citation in Bozdogan

1986), is rarely used.  CAIC extends AIC in such a way as to provide a more consistent

penalty for over-fitting a model that takes sample size into account, always choosing the
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simplest of the “true” models (Bozdogan 1986, 1987).  For all models, path coefficients

were estimated using maximum likelihood.

Following testing of the a priori models, I used an exploratory approach to refine

and simplify them.  I was specifically interested in what factors either directly or

indirectly influenced the spiders, and whether there was an effect of the manipulation of

Desmodium in treatment quadrats.  Paths were deleted from the models one at a time

based on the highest p-value (Hershberger et al. 2003); after each deletion I re-ran the

model and checked the fit indices and modification indices (MIs; AMOS calculates these

as paths that are absent from the model that would significantly improve the fit if they

were included).  Models were pruned and un-pruned in this way until the measures of

absolute fit indicated poor fit after the removal of a path, or until all paths were

significant at α=0.05.  I then evaluated the models having good absolute fit (those with

and without non-significant paths) using the relative fit measures to select the final

models.

Finally, to assess the influence of non-spider arthropods on spider communities, I

used NMS analyses to reduce the variables for a data matrix of herbivores and scavengers

(potential spider prey) and a data matrix of predators/parasites (potential spider predators

and/or competitors).  The spider NMS axes were regressed on the NMS axes for both of

these data matrices using SAS PROC REG (SAS 9.1, 2001, Sas Institute Inc., Cary,

North Carolina).  A nominal variable (C/T) that identified control and treatment quadrats,

and the interaction terms between this variable and each NMS axis, were also included in

the regressions.  Predictor variables for the final models were selected using all possible

subsets regression in SAS.
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Results

Variable reduction

NMS ordination of these data resulted in three axes (dimensions) for each of the

original data matrices (spider, arthropod, plant, habitat structure, herbivore/scavenger and

predator/parasite).  Details of the NMS analyses (stress, instability, and proportion

variance explained by each axis) are given in Table 3.1.  Although the stress values (a

“badness of fit” measure) for the spider, arthropod and herbivore/scavenger data are

somewhat high (>15), an over-reliance on stress has been cautioned against by Clarke

(1993) and discussed in McCune and Grace (2002), since stress increases as number of

sample units and/or number of entities (e.g., species) increases.  Correlations between the

NMS axes and the original variables are in Table 3.2.  These can be used to interpret

response directions among the original variables following analyses using the NMS axes

(see Beals 2006).  Axes are referred to below using S for spiders, Arth for arthropods, P

for plants, and Struct for habitat structure.  This notation is followed by a number

indicating the axis being considered:  For the species (or order) data, each axis represents

a measure of community composition.

A priori path models

Both of the a priori models tested exhibited poor absolute fit.  The relative

measure (CAIC), however, indicated that the model without direct pathways between

plants and spiders (Model A) fit better than the model that included direct plant-spider

pathways (Model B) (Table 3.3).  For all spider axes, CAIC selected the independence
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model (with no paths) over the specified model, likely as a result of the poor absolute fit

of the specified model.  The lack of parsimony due to the inclusion of many hypothetical

paths also contributed to the selection of the independence model over the specified

model; the saturated model, which includes all possible paths, was always rejected by

CAIC.

For comparison I also include AIC values in Table 3.3.  Like CAIC, AIC is

minimized for Model A for S1 and S2.  For S3, AIC indicates equivalence between the

two models, although it is minimally lower for Model B (i.e., the model with the

additional plant-spider paths).  In contrast to CAIC, when comparing the independence

model with the specified and saturated models, AIC always rejects the independence

model.  These results illustrate the tendency of AIC to over-fit and suggest that CAIC is

to be preferred, particularly in the case of complex models.

Reduced path models

All final path models for each spider axis exhibited adequate fit based on standard

fit measures (Table 3.4).  All global p-values were greater than 0.05, indicating that the

covariance structure implied by the final models was not significantly different from the

covariance structure of the data.  All models had CMIN/DF values less than 2 and CFI

values of 1.00 (CFI should be ≥0.90; 1.00 is the maximum), indicating good fit.  The

RMSEA values also indicated very good fit in all three models.  Graphical

representations of the path models indicate the significance of each path but not the sign

of the path coefficient, since the direction of the effects depends on the sign of the

correlation coefficients of the original variables (Figures 3.2-3.4).  Covariances between
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the errors for Struct1 and Struct2, Struct1 and Struct3, and Struct2 and Struct3 were

included in the models to improve fit (based on the modification indices provided by

AMOS), but are omitted from the figures for clarity.

Coefficients of multiple determination (R2) indicate varying amounts of variation

explained in the models (Table 3.5).  The model for S3 explained the greatest variation in

spider species composition (46%), followed by the model for S2 (31%).  These two

spider axes reflected two to three times the variation in species composition than did S1

(Table 3.1).  In the general model (i.e., excluding the spider variables) the greatest

variation explained was for Struct3 (83%), followed by Struct2 (42%) and Arth2 (38%).

Struct3 and Arth2 accounted for the greatest variation in the original data matrices in

their respective NMS ordinations (Table 3.1).  Biomass and Arth3 had the lowest R2

values.  It should be noted that these R2 values are unadjusted, and therefore may be

slightly inflated for variables with more predictors (R2 naturally increases with increasing

number of predictor variables even if these variables are not significant [Neter et al.

1996]).

Interpretation of these path models is facilitated by investigation of how the direct

and indirect effects interact with one another.  The total effect between two variables is

calculated by adding the coefficient for the direct effect to the product of the two

coefficients along an indirect or compound pathway (Grace in prep).  The total effects for

variables that only influence a variable of interest in one way or the other are the same as

these component parts, but the total effects of variables that exert influence both directly

and indirectly may be amplified or reduced compared to the direct and indirect effects.

The total effects of each predictor variable in the general model are presented in Table
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3.6.  Control versus treatment (C/T) affected all three arthropod axes and Struct3,

although the only direct effects were on Arth2 and Struct3 (Figures 3.2-3.4).  Biomass,

P1 and Struct3 each had effects on two to four variables, while P2 and P3 each affected

six variables directly.  P3 had indirect effects only on two additional variables (Arth1 and

Arth3 through Struct3) (Figures 3.2-3.4).  The strongest total effects in the general model

were the effects of C/T on Arth2, P2 on Arth2 and Struct2, and P3 on Struct3 (Table 3.6).

All three spider axes were directly predicted by two to three variables (Figures

3.2-3.4).  S1 responded directly to Arth1, Struct2 and temperature (Figure 3.2) and was

indirectly influenced by P2 and Struct3 (through Arth1), by P2 and P3 (through Struct 2),

and by P3 and biomass (through temperature).  The effect on S1 of C/T was indirect

through the compound pathway C/T → Struct3 → Arth1 → S1.  S2 was directly

predicted by two arthropod axes (Arth1 and Arth2), with indirect effects of P2 and

Struct3 (through Arth1) and P2, P3 and C/T (through Arth2) (Figure 3.3).  S3 was

directly predicted by Arth1, P2 and C/T, with indirect effects of P2 and Struct3 through

Arth1 (Figure 3.4).

The total, direct and indirect effects of predictor variables on each spider NMS

axis are presented in Table 3.7.  All three spider axes were influenced (either directly,

indirectly, or in the case of S3 both) by C/T, Arth1, biomass, P1, P2, P3 and Struct3.  S1

was additionally influenced by Struct2 and temp, and S2 was influenced by Arth2.  The

strongest effects on S1 were the direct effects of Arth1, Struct2 and temperature.  The

strongest effects on S2 were either direct (Arth1, Arth2) or indirect (C/T, P2).  S3 was

strongly influenced by C/T, Arth1 and P2, with C/T and P2 having both direct and



77

indirect effects with opposite signs.  The indirect effects were small enough, however,

that they did not reduce the direct effects by much.

Responses of individual spider species

Responses of individual spider species associated with S1 (i.e., those with

correlations where τ≥|0.30|) to the original variables associated with NMS axes, as well

as biomass and temperature, are shown in Table 3.8 as positive or negative.  The

direction of response is based on the signs of the correlations of a given spider species

and original predictor variable translated through the sign of the path coefficient (see

Beals 2006).  For example, if the correlation of the response variable (spider species) is

positive and that of the predictor variable negative, a positive path coefficient indicates

that the spider responds negatively to the predictor, while a negative path coefficient

indicates a positive response.  The effect of the variable C/T was indirect and cannot be

interpreted for individual spider species; therefore it is omitted from this table.

For S1, the hunting spider species (Clubiona abbotti) responded oppositely to the

three web building species (Eperigone trilobata, Florinda coccinea and Theridion

frondeum) (Table 3.8).  In terms of the arthropods, C. abbotti responded positively to

Orthoptera (Family Gryllidae, Subfamily Nemobiinae [ground crickets] with a single

exception), while the web building species responded positively to Diplura and

Opiliones.  Clubiona abbotti responded negatively to biomass and temperature, and

positively to horizontal heterogeneity, vine cover, density, grass cover and glabrous

cover.  Web builders associated with this axis responded in the opposite direction to these

variables.
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Responses to plant species were more difficult to interpret, as these sometimes

conflicted in different plant dimensions (Table 3.8).  For example, C. abbotti responded

positively to Desmodium with P2, but negatively with P3; this conflict was found in

responses to Toxicodendron radicans and Calystegia sepium (P1 and P2) and Dactylis

glomerata (P1, P2 and P3) as well.  (Similar conflicts occurred for all spider axes and are

discussed below.)  The total effects of plant species NMS axes, however, were fairly

weak for this spider axis (Table 3.7).

The two spiders associated with S2 (the hunting spider Pisaurina undulata and

the web builder Theridion cheimatos) also responded in opposite directions to one

another (Table 3.9).  Pisaurina undulata, like C. abbotti on S1, responded positively to

Orthoptera, as well as Isopoda, and negatively to Diplura, Opiliones, Diptera,

Hymenoptera, Hemiptera and Acari.  Unlike C. abbotti, this hunting spider responded

positively to biomass and showed no response to temperature.  Theridion cheimatos

responded in the opposite direction to these variables.  For S2, the total effect of P2 was

strong relative to the other plant axes (Table 3.7).  Pisaurina undulata responded

negatively to Desmodium sp. and C. sepium, and positively to the remaining plant species

associated with P2, while T. cheimatos responded positively to Desmodium sp. and C.

sepium (Table 3.9).  As in Table 3.8, the C/T variable is omitted here.

Spiders associated with S3 were directly affected by the Desmodium treatment

(C/T); the web builder Bathyphantes pallida was relatively less abundant in treatment

quadrats, while the web builder Eridantes erigonoides and the hunting spider Oxyopes sp.

were relatively more abundant (Table 3.10).  Here, the two web builders responded in

opposite directions to one another, and one (E. erigonoides) responded in the same
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direction as the hunting spider.  Like the hunting spiders associated with S1 and S2

(Table 3.8 and 3.9), Oxyopes sp. responded positively to Orthoptera and negatively to

Diplura and Opiliones.  Oxyopes sp. responded positively to biomass (like P. undulata)

and to density, grass cover and glabrous cover (like both C. abbotti and P. undulata).

The two web builders associated with this axis belong to the same family (Linyphiidae)

and responded oppositely to one another; B. pallida tended to respond in the same

direction as the two Linyphiids associated with S1, with the exception of its response to

biomass.

Regression models

Regression models of the influence of herbivore/scavenger and predator/parasite

arthropods on spiders were non-significant for S1 but highly significant for S2 and S3

(p<0.0001 for both) (Table 3.15).  S2 was strongly predicted by Herb2 (p<0.0001) and

C/T (control/treatment; p=0.009) but there was no interaction between the two.  The

effect (slope) of Herb2 was the same in both control and treatment plots, but C/T was

significant because the intercept in the control quadrats was lower (Figure 3.8).  The

model for S3 showed significant main effects for Herb2 and Herb3, but there were also

interactions between C/T and Herb2 and C/T and Pred3.  In both cases, these NMS axes

were only significant in treatment quadrats, and did not affect S3 in control quadrats.

Herb3 had a significant effect in both groups of quadrats.  Spider species responses to the

original variables associated with Herb2, Herb3 and Pred3 are shown in Table 3.16.
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Discussion

A priori path models

My previous work (Beals 2006) indicated a strong role for plant species

composition, and in particular Desmodium, in influencing spider communities.  I

hypothesized that this relationship might be due to indirect effects of the plants through

their direct effects on either arthropods or vegetation structure.  Testing of the a priori

models, which either omitted or included direct paths between plant species and spider

species, indicated that in general the model without direct plant pathways fit the data

relatively better (or in one case equivalently), providing support for my initial hypothesis.

Reduced path models

The subsequent generation of reduced models with improved fit provided a more

detailed understanding of spider community structure.  In the models for S1 and S2

(Figures 3.2 and 3.3) the direct relationship between plant species and spider species

disappeared when other variables were taken into account.  Both the plant NMS axes and

Desmodium manipulation (represented by C/T) acted indirectly on S1 and S2 through

their effects on both arthropod composition and habitat architecture.  Habitat architecture

(and plant species composition) additionally had an indirect effect through its effects on

the arthropods.  These results provide further support for my initial hypothesis.

The reduced path model for S3, like those for S1 and S2, included a direct effect

of the arthropods and indirect effects of plants and architecture through Arth1 (Figure

3.4).  Additionally in this model, Desmodium manipulation had a strong direct effect on

spider species composition.  That changes in Desmodium architecture (and consequent
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changes in biomass and cover) directly influenced spider species composition also

provides support for my hypothesis that the finer-scale architecture of plants may help

explain the influence of plant species composition on spiders found in Beals 2006.

Overall plant species composition (P2), however, also had a direct effect on this spider

axis.  This effect may potentially be explained by finer-scale architecture of the plant

species as well; P2 was associated with Desmodium (i.e., the architecturally manipulated

species) and even more strongly with Calystegia sepium (bindweed), whose twining

growth form changes the architecture of other plant species (pers. obs.).

The direct effect of habitat architecture on S1 is congruent with previous research.

Vegetation growth form (e.g., grasses or herbs) has been shown to influence the types of

prey captured by webs built on one type of growth form or the other (McReynolds 2000).

In this study, grass cover, vine cover and cover of plants with glabrous leaves influenced

the spider axes (Tables 3.8-3.10).  Horizontal heterogeneity predicted one spider axis

(S1), and density influenced all three axes.  More complex and/or dense vegetation has

been observed to support greater numbers of spiders (Rypstra 1986; Gunnarsson 1990;

Halaj et al. 1998) or spider species (Hatley and MacMahon 1980) as well as other

arthropod groups (reviewed in Langellotto and Denno 2004).  For S1, the effect of habitat

architecture was somewhat stronger than that of the arthropods (Table 3.7).  Previous

work in spiders has generally shown that vegetation architecture is a more important

determinant of spider communities than prey availability (e.g., Greenstone 1984, de

Souza and Martins 2004).  Even in studies that have found a significant influence of prey

availability, vegetation architecture has explained more of the variation in spider

communities (e.g., Rypstra 1986, Halaj et al. 1998).



82

S1, however, explained the least variation in spider species composition of the

three spider NMS axes (Table 3.1).  Neither S2 nor S3 were directly predicted by

vegetation architecture axes; S2 was predicted solely by arthropod axes (Figure 3.3) and

S3, in addition to P2 and C/T, was predicted by Arth1 (Figure 3.4).  The apparent

discrepancy between these results and those of previous studies may reflect different

approaches to representing the spider and prey communities.  Greenstone (1984) and

Halaj et al. (1998), for example, used diversity or abundance of spiders and prey, while

here I used taxonomic composition.  For the data here, there were only weak correlations

between number of arthropod individuals and spider individuals, and arthropod diversity

and spider diversity.

The effects of Desmodium manipulation, then, appear to affect overall

spider species composition (represented by the three NMS axes) in several ways, both

indirect and direct.  It may be that the manipulation of Desmodium and accompanying

changes in overall vegetation structure changed the dynamics of spider interactions with

their prey and their potential predators or competitors.  Differences in the structural

complexity of vegetation have been shown to affect the susceptibility of prey to their

predators (Gilinsky 1984, Schmitz et al. 2006).  Further, interactions between habitat

architectural complexity and prey availability affect not only the relationship between

predators and prey, but the also the relationship among predators themselves (e.g.,

intraguild predation) (Hughes and Grabowski 2006, Finke and Denno 2006).  The path

model for S3, however, suggests that the effects on arthropods and vegetation

architecture of manipulated Desmodium were not sufficient to account for the influence

of plant species composition on the spider community.  As discussed above and
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previously (Beals 2006), the direct importance of C/T and P2 may reflect the influence of

the finer-scale architecture of individual plant species.

One issue here involves the necessarily a priori decisions about the direction of

the arrows in the initial models that were used to develop the reduced models.  There is

an extensive body of literature on the top-down effects of spiders in food webs (see, for

example, Schmitz 1998, Schmitz and Suttle 2001, etc.), and it could be argued that some

of the arrows in these models might just as easily be specified in the opposite direction

(e.g., spider → arthropod → biomass).  To ascertain whether a bottom-up or top-down

model fit the data here better, I attempted to compare a model with effects of spiders on

arthropods (and arthropods on both plant composition and biomass), with the two

specified a priori models (Model A and Model B [Figure 3.1]).

Reversing the direction of only these arrows, however, resulted in a non-recursive

model.  A non-recursive model is one in which a variable can have an indirect influence

on itself; for example, the path spider → arthropod → plant → architecture → spider

would be non-recursive.  Here, non-recursiveness resulted in under-identified models,

which require imposing additional constraints (e.g., freeing up degrees of freedom by

deleting paths) in order to achieve stable parameter estimates (Hershberger et al. 2003).

Because all paths in the initial model were theoretically justified, there was no

justification for the removal of one over another.  Further, removing any paths would

have resulted in a model that was not strictly comparable to the initial bottom-up model.

Although I was unable to compare the relative fits of bottom-up versus top-down models,

Schmitz (pers. comm.) has suggested that in systems that are not dominated by leaf-

chewing orthopterans or coleopterans, such as this one, the bottom-up direction of the
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arrows in the path models here is appropriate.  That distinct changes in spider responses

were evidenced in the plots in which a plant species was manipulated provides additional

support to the idea of bottom-up influences in this community (see also Halaj et al. 2000,

Moran and Scheidler 2002).

Responses of individual spider species

Individual spider responses to original variables were more difficult to interpret

than the overall path models, in part because the direction of influence of variables

associated with predictor axes was not always the same within a model for a given spider

axis.  For example, Desmodium was positively correlated with P2 and negatively

correlated with P3 (Table 3.2).  Because both axes were included in each model, and the

total effects of these two axes had the same sign, the interpretation of the response

direction of the spider species was different, depending on the plant axis (Tables 3.8-

3.10).  This apparent contradiction is initially perplexing, but it is important to understand

that each NMS axis represents a different dimension of the underlying (e.g., plant) data

matrix.  As with the direct and indirect effects, which can have opposite signs, it may be

that spider responses to a given variable differ in different dimensions.  These differing

responses may be analogous to interaction effects, in that the suite of species (or other

variables) defining variation in one dimension of a predictor axis may result in a different

response to one of those species than when that species is defining variation with a

different suite of species in another dimension.  In other words, the response of the spider

community to a variable on a given axis may depend on the other variables associated

with that axis.  The total effects of P2 and P3 were weak for S1, while for S2 and S3 the
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magnitude of the total effect of P2 was greater than that of P3 (Table 3.7); these effects

should perhaps be given more weight.

Patterns of responses of individual spider species within guilds or families varied

across path models.  The three hunting spider species (C. abbotti, P. undulata and

Oxyopes sp.) did not always respond in the same direction.  The web building spiders in

the genus Theridion associated with S1 and S2 responded similarly to some predictors

(Arth1, P1 and Struct3) but not others (biomass, P2 and P3) (Tables 3.8 and 3.9).  Two of

the web building species associated with S1 belonged to the same family (Linyphiidae)

and responded in the same direction as one another, but did not always respond in the

same direction as the two Linyphiids associated with S3, which always responded in

opposite directions to one another (Tables 3.8 and 3.10).  The differing responses within

guilds and families support the idea that organisms within the same trophic level do not

necessarily exhibit the same influences or responses in the context of community

dynamics (Schmitz and Suttle 2001, Rosenheim and Corbett 2003), implying that the

incorporation of species composition in analyses, as I have done here and in Beals

(2006), may be necessary to truly understand community structure.

Regression models

In addition to the path model analyses, I also regressed the spider NMS axes on

axes for herbivore/scavenger and predator/parasite individuals.  Both significant models

(for S2 and S3) included effects of the variables associated with potential prey (i.e., the

herbivores and scavengers).  S2 responded similarly to the one predictor axis (Herb2) in

both control and treatment quadrats, although the intercepts varied.  S3 responded to
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Herb3 in the same way in both groups of quadrats, but only responded to Herb2 and

Pred3 in treatment quadrats.  As mentioned above, changes in architecture can affect

interactions between predators and prey, and among predators.  Changes in Desmodium

biomass may also have had a direct effect on the herbivore species.  Spider species

associated with S3 responded in the same direction to the non-predatory and predatory

dipterans, but in opposite directions to two groups of hemipterans.  There was a single

family of Diptera classified as a predator (Ephydridae), but some members of this family

are scavengers, so perhaps should have been classified with the non-predatory dipterans.

The families of Hemiptera classified as predators (Anthocoridae and Reduviidae), on the

other hand, are dominated by predaceous species.  Arthropods associated with Pred3 may

interact with spiders in the treatment quadrats in several ways; they may compete with

spiders for other arthropod prey, they may prey on spiders, or they may serve as potential

prey for the spiders.  Intraguild predation, as in the latter two examples, has been well

documented in spiders, involving both predation among spider taxa (e.g., Balfour et al.

2003, Denno et al. 2004) and with other predatory arthropod taxa (e.g., Finke and Denno

2002, Rosenheim et al. 2004).

Conclusions

Clearly the manipulation of Desmodium caused changes in the way various

aspects of this community influenced spider species, but the exact mechanisms by which

this occurred are not entirely clear.  My goal in this study was to determine whether the

previously observed effect of plant species on spiders (Beals 2006) was due to indirect

effects through arthropods and architecture or the direct effects of the architecture of a
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particular plant species (Desmodium).  The effects of overall plant species composition

and the manipulation of Desmodium architecture were indirect for two dimensions of the

spider community (S1 and S2).  The direct effects exhibited in the path model for S3,

however, suggest that the finer-scale architecture Desmodium and other plant species also

have a direct influence on the spider community.

I used path analysis in an SEM framework to a) test a priori hypotheses about the

different factors influencing spider community structure, and b) generate new models to

provide insights into the relative strengths of these factors.  Path modeling approaches,

particularly in an SEM framework, are powerful methods for testing and developing

complicated multivariate hypotheses (Grace and Pugesek 1998, Hershberger et al. 2003,

Grace in prep).  A further advantage of the approach here, in which NMS axes

incorporating information about species composition are used in path analysis, is that it

allows a more complete understanding of real-world community interactions than that

obtained by analyses of species pairs.  Theoretical and empirical work that considers only

two-species interactions fails to account for the variety of more complicated dynamics

that can arise when multiple species and trophic levels are considered (Sih et al. 1985,

Wootton 1994a).  The use of modern path analysis with species composition data permits

an evaluation of the different ways in which species respond both directly and indirectly

to other species and environmental factors.
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CONCLUSIONS

The three chapters of this dissertation combine to further our understanding of

spider communities by investigating the evidence for species interactions among spiders,

and spider responses to other arthropod and plant species within and across trophic levels,

as well as to the physical structure of the habitat.  The research presented here not only

addresses community structure in this important group of terrestrial arthropod predators,

but also contributes a suite of statistical approaches that can be used by community

ecologists in other systems.  A novel contribution in all three chapters is the use of

nonmetric multidimensional scaling (NMS) axes to represent the spider community as a

whole (as well as other variables), and the use of these axes in subsequent analyses.

Compared to other ordination techniques, NMS has shown superior performance in

recovering the underlying gradients of ecological data matrices.  Representing spider

species composition in this way, and using NMS axes for both predictor and response

variables, creates a more complete picture of the spider community and the influences of

other arthropods, plant species and physical structure on it.  Additionally, in Chapter 3 I

employ path analysis in a structural equation modeling (SEM) framework, which has

seen limited use in community ecology.

Chapter 1 examines patterns of spider species co-occurrence using two

approaches.  The first approach, analyzing species presence/absence matrices, has been

used extensively in ecology, although comparatively few studies have investigated

terrestrial invertebrate communities and even fewer have involved spiders.  Further, the

standard metric used in these analyses (the C-score) has been misinterpreted in much of
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the literature; a significant C-score calculated for an entire matrix when row and column

sums are fixed in the randomization runs (generally recommended and the default in the

software EcoSim [Gotelli and Entsminger 2001]) can only indicate nonrandom patterns,

not whether species distributions are exclusive or congruent (Stone and Roberts 1992,

Collins and Simberloff in prep).  Interestingly, despite citing Stone and Robert’s 1992

paper, most authors fail to acknowledge this and conclude that a significantly high C-

score is evidence for exclusive distributions.  Calculating the C-score (and T- or

Togetherness score) for submatrices within the entire randomized matrix allows more

meaningful interpretations of significant nonrandom patterns.

I used C++ code provided by M. Collins to analyze patterns of species co-

occurrence in three spider communities.  At the community-wide level (i.e., the entire

matrix) spider species overall appeared to be distributed randomly with respect to one

another, although somewhat paradoxically a significant number of species pairs exhibited

perfectly exclusive distributions in one community (and evidenced a weak tendency in

this direction in a second).  At the guild and family levels (i.e., submatrices within the

entire matrix) most species within these groups showed random patterns, but a few

groups showed patterns of positive association, which is consistent with a hypothesis of

shared habitat preferences.  The significant exclusive distributions at the community-

wide level then may reflect differences in the habitat preferences of some guilds or

families, rather than interspecific interactions.  The conclusions that these communities

are structured randomly with respect to species interactions among spiders, while habitat

affinities may explain patterns within some groups is consistent with previous work.

Competitive interactions among spiders are generally thought to be fairly weak (reviewed
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in Wise 1993), while the importance of habitat features (specifically habitat architecture)

has been well-documented (reviewed in Uetz 1991).  It should be noted that other

possible explanations of patterns of positive and negative co-occurrence have been

proposed, such as differences or similarities in dispersal routes or abilities, colonization

histories and speciation, particularly for species on islands.  These processes, however,

are unlikely to be operating at the spatial scale of this study.  The second null model

approach in Chapter 1 investigates patterns of species responses to underlying

environmental variables based on individual species’ correlations with NMS axes.

Although species pairs within guilds often showed opposite responses to the underlying

variables, reflecting differing spatial distributions within the habitat, these results too

were generally consistent with a habitat preference hypothesis (in this case, a hypothesis

of differing habitat preferences).

Chapters 2 and 3 address the question of what aspects of the biotic and physical

environment influence spider community structure.  Chapter 2 represents a first attempt

at addressing this question by introducing the use of NMS axes as predictor and response

variables in a multiple regression analysis to distinguish between the influences of plant

species composition and vegetation architecture.  Although habitat architecture predicted

some of the variation in spider species composition, consistent with a large body of

literature on spider communities, the important role of plant species composition was

unexpected.  In particular, the legume Desmodium sp. appeared to be strongly associated

with spider composition.  The role of plant species composition per se has never been

directly investigated in spider communities.  I suggest in Chapter 2 that this relationship

may be a result of either fine-grained architectural features that are confounded with plant
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species composition or an indirect effect of plants through the association of non-spider

arthropods with them.  Multiple regression analyses are not amenable to the examination

of these indirect effects.  Multiple regression accounts for the partial effects of one

predictor on a response variable given the other predictors in the model, but cannot

explicitly incorporate indirect effects.

Chapter 3 expands on the work of Chapter 2 in several ways.  First, it includes

additional potential influences on the spider community such as non-spider arthropods,

total plant biomass and temperature.  Second, the influence of the plant Desmodium sp.

was examined further through manipulation of its architecture.  Finally, a statistical

analysis was employed that tested multivariate hypotheses, thus allowing an assessment

of the roles of indirect effects in structuring a spider community.  This analytical

approach yielded insights into the complicated relationships across trophic levels in this

system.  Overall, models that included only indirect paths between plants and spiders fit

better than or as well as models that included direct effects.  This result supported my

hypothesized explanation for the results from the regression analyses presented in

Chapter 2.  In two of the simplified models the effect of plant species composition on

spider composition was indirect, operating through the plants’ effects on both habitat

structure and non-spider arthropod composition.  The strong responses of spider species

to Desmodium in Chapter 2 may, in part, have reflected its influence on these other

variables.

In the third model, both plant species composition and Desmodium manipulation

had direct effects on spider species composition.  This result suggested that the finer scale

architecture of Desmodium and other plant species themselves influenced spider
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community structure.  It seems reasonable, then, to conclude that the manipulation of

Desmodium architecture affected the role of plant species composition on spider

community structure in three ways: indirectly though the effects on both arthropods and

coarse-grained architecture, and directly through the changes in the fine-grained

architecture of Desmodium itself.  Finally in Chapter 3, I show that spider composition,

while predicted by the arthropod community in general, specifically responds to

components of the non-predatory arthropod community (i.e., potential prey) and in one

case also responds to the composition of predatory arthropods.

The use of NMS axes in all of these analyses represents a data-driven approach

that facilitates an understanding of community structure by allowing the information in

the data to determine which of the original variables (spider species or architectural

measurements, for example) contribute to the overall variation in species composition (or

architectural configuration).  This approach also permits the analysis of complicated,

otherwise statistically intractable, data matrices.  The use of path analytic methods to

both test hypothesized models specified a priori and develop new reduced models using

NMS axes as variables further refines our understanding of community structure.  The

development and testing of complicated multivariate hypotheses represents an important

advance in community ecology (Grace in prep).  This method permits a confrontation of

models with data (Hilborn and Mangel 1997), asking whether a proposed model is

consistent with the data rather than asking whether the data are consistent with a model.

This shift from a more traditional univariate frequentist approach to hypothesis testing to

one in which multiple models incorporating multivariate hypotheses can be entertained
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and evaluated (based on maximum likelihood and/or information criteria) is made

possible with the use of SEM-related procedures.
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Table 1.1  Spider species associated with NMS ordination axes and their correlations
with NMS axes for each site (SF=sloped field, TGF=tussock grass field, DW=deciduous
woodland).  Guild classifications: W=web builders, H=hunters, A=ambushers/stalkers.

Site Axis Species Family Guild τ

SF S1 Clubiona abbotti Clubionidae H 0.45

Rabidosa rabida Lycosidae H 0.36

Neoantistea agilis Hahniidae W 0.33

S2 Bathyphantes pallida Linyphiidae W 0.60

Clubiona abbotti Clubionidae H -0.37

Gea heptagon Araneidae W -0.36

S3 Pardosa milvina Lycosidae H 0.56

Gea heptagon Araneidae W -0.32

TGF S1 Pardosa milvina Lycosidae H 0.35

Clubiona abbotti Clubionidae H -0.35

Pisaurina undulata Pisauridae H -0.32

Tetragnatha laboriosa Tetragnathidae W -0.31

S2 Pardosa milvina Lycosidae H -0.48

Hogna helluo Lycosidae H -0.39

Bathyphantes pallida Linyphiidae W 0.35

Clubiona abbotti Clubionidae H 0.34

S3 Tetragnatha laboriosa Tetragnathidae W -0.47

DW S1 Theridion frondeum Theridiidae W 0.59

S2 Habrocestum parvulum Salticidae A 0.39

Mangora maculata Araneidae W -0.38

Bathyphantes pallida Linyphiidae W -0.35

Lepthyphantes nebulosa Linyphiidae W 0.34

S3 Lepthyphantes nebulosa Linyphiidae W -0.48

Theridion frondeum Theridiidae W 0.39

Cicurina arcuata Agelenidae W 0.31
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Table 1.2  Results of community-wide analyses and analyses of guilds and families
within species co-occurrence matrices in the Sloped Field.  Simulated values are means
of all randomized matrices, prop ≥ obs is p-value, C is C-score, T is T-score, and
CHECKER is the number of perfect checkerboards.  C- and T-scores are given as totals
rather than averages.  SES is the standardized effect size.  P-values less than or equal to
0.05 are highlighted in bold.

Matrix Measure Observed Simulated Prop ≥ obs SES
Community-wide C 83079 82375.77 0.11 1.23

T 97833 97129.77 0.11 1.23
CHECKER 1200 1189.56 0.24 0.72

Guilds
  Web-builder C 13317 13458.70 0.62 -0.31

T 15849 15927.35 0.51 -0.08
  Hunter C 12312 12413.11 0.58 -0.19

T 14438 14465.33 0.50 -0.03
  Ambusher C 2346 2476.28 0.85 -1.02

T 3842 2966.31 0.05 1.79
Families
  Araneidae C 94 78.29 0.33 0.95

T 104 93.61 0.30 0.12
  Clubionidae C 420 406.86 0.52 0.15

T 448 478.21 0.67 -0.23
  Linyphiidae C 2198 2374.47 0.83 -0.94

T 3258 2808.25 0.14 1.07
  Lycosidae C 4665 4905.46 0.75 -0.67

T 6304 5673.07 0.10 1.33
  Salticidae C 552 597.47 0.96 -1.91

T 1282 722.31 0.03 2.10
  Tetragnathidae C 24 30.80 0.95 -1.11

T 96 37.70 0.34 1.03
  Theridiidae C 403 401.45 0.50 0.02

T 394 477.63 0.73 -0.57
  Thomisidae C 63 65.77 0.79 -0.16

T 86 79.95 0.64 0.08
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Table 1.3  Results of community-wide analyses and analyses of guilds and families
within species co-occurrence matrices in the Tussock Grass Field.  Simulated values are
means of all randomized matrices, prop ≥ obs is p-value, C is C-score, T is T-score, and
CHECKER is the number of perfect checkerboards.  C- and T-scores are given as totals
rather than averages.  SES is the standardized effect size.  P-values less than or equal to
0.05 are highlighted in bold.

Matrix Measure Observed Simulated Prop ≥ obs SES
Community-wide C 51082 52031.12 0.99 -2.06

T 72274 73223.12 0.99 -2.06
CHECKER 1391 1354.10 0.007 2.50

Guilds
  Web-builder C 9801 10075.39 0.78 -0.75

T 14036 14253.03 0.57 -0.23
  Hunter C 7150 6749.39 0.16 1.01

T 8379 9404.78 0.96 -1.62
  Ambusher C 1317 1391.63 0.78 -0.77

T 2105 1967.60 0.33 0.37
Families
  Araneidae C 61 54.66 0.39 0.93

T 0 77.12 1 -0.96
  Clubionidae C 158 207.62 0.77 -0.87

T 344 288.69 0.27 0.52
  Linyphiidae C 2012 1998.37 0.47 0.11

T 2517 2835.50 0.75 -0.71
  Lycosidae C 2035 2152.00 0.69 -0.51

T 3061 2973.00 0.37 0.28
  Pisauridae C 51 38.04 0.44 1.00

T 0 53.35 1 -0.97
  Salticidae C 308 300.00 0.40 0.35

T 242 423.10 0.89 -0.97
  Tetragnathidae C 72 64.25 0.60 0.32

T 67 89.89 0.81 -0.36
  Theridiidae C 461 550.89 0.83 -0.96

T 948 782.05 0.18 0.87
  Thomisidae C 40 45.33 0.86 -0.71

T 178 63.35 0.05 1.62
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Table 1.4  Results of community-wide analyses and analyses of guilds and families
within species co-occurrence matrices in the Deciduous Woodland.  Simulated values are
means of all randomized matrices, prop ≥ obs is p-value, C is C-score, T is T-score, and
CHECKER is the number of perfect checkerboards.  C- and T-scores are given as totals
rather than averages.  SES is the standardized effect size.  P-values less than or equal to
0.05 are highlighted in bold.

Matrix Measure Observed Simulated Prop ≥ obs SES
Community-wide C 28697 28781.30 0.63 -0.35

T 31624 31708.30 0.63 -0.35
Checker 1054 1041.00 0.09 1.39

Guilds
  Web-builder C 10521 10712.69 0.76 -0.69

T 13024 11793.13 0.03 1.99
  Hunter C 1425 1496.27 0.84 -0.99

T 1948 1651.22 0.16 1.01
  Ambusher C 421 433.40 0.62 -0.25

T 533 478.15 0.32 0.36
Families
  Agelenidae C 16 39.80 0.99 -1.70

T 120 43.23 0.14 1.74
  Araneidae C 21 53.65 0.99 -2.67

T 192 58.62 0.05 2.34
  Clubionidae C 260 264.90 0.61 -0.22

T 261 291.49 0.61 -0.23
  Linyphiidae C 1888 1926.23 0.67 -0.41

T 2446 2126.16 0.16 1.00
  Lycosidae C 153 140.23 0.33 0.48

T 117 155.77 0.65 -0.46
  Salticidae C 22 30.90 0.92 -0.66

T 58 34.58 0.50 0.61
  Tetragnathidae C 9 11.49 0.99 -2.04

T 76 13.14 0.16 2.01
  Theridiidae C 425 575.07 0.94 -1.55

T 921 631.19 0.03 2.05
  Thomisidae C 60 71.77 0.91 -1.12

T 134 79.48 0.32 0.79
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Table 1.5  P-values generated by Monte Carlo resampling for differences in correlation coefficients for spider species pairs associated
with NMS axes in each site (SF=sloped field, TGF=tussock grass field, DW=deciduous woodland).  Values ≤0.05 are highlighted in
bold.  Guild classifications: W=web builders, H=hunters, A=ambushers/stalkers.

NMS Axis Species Pair Guild Obs. difference Prop. ≥ obs.

S1 (SF) Clubiona abbotti v. Rabidosa rabida H 0.09 0.80

S2 (SF) Bathyphantes pallida v. Gea heptagon W 0.96 0.03
S1 (TGF) Pardosa milvina v. C. abbotti H 0.70 0.05

P. v. Pisaurina undulata H 0.68 0.09

C. abbotti v. P. undulata H 0.03 0.95

S2 (TGF) P. milvina v. C. abbotti H 0.82 0.05
P. milvina v. Hogna helluo H 0.09 0.91

C. abbotti v. H. helluo H 0.73 0.09

S2 (DW) Mangora maculata v. B. pallida W 0.03 0.98

M. maculata v. Lepthyphantes nebulosa W 0.71 0.02

B. pallida v. L. nebulosa W 0.69 0.03
S3 (DW) L. nebulosa v. Theridion frondeum W 0.87 0.02

L. nebulosa v. Cicurina arcuata W 0.79 0.02

T. frondeum v. C. arcuata W 0.09 0.89
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Figure 1.1  Example of null distribution of pairwise differences between correlation coefficients.  “Observed” is the actual difference
for the species pair Bathyphantes pallida and Gea heptagon associated with NMS axis 1 (S1) in the sloped field.
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Table 2.1  Final regression models for general spider community structure in each site
(number of individuals, species richness, and species diversity).  Predictor variables are
plant ordination axes (P_) and architecture ordination axes (A_).

Site Response F-value P-value R2 Predictor Estimate T-value P-value

Sloped Field
Individuals
(no.) 8.22 <.0001 0.19 P1 -3.52 -2.97 0.004

N=108 P2 2.90 2.57 0.01
 A2 3.20 3.35 0.001
 Richness 10.18 0.002 0.09 A2 1.10 3.19 0.002
 Diversity 5.77 0.0042 0.10 P1 0.07 2.73 0.007
 A2 0.04 2.04 0.04
  
Tussock Grass
Field

Individuals
(no.) NS  

N=100 Richness 4.52 0.04 0.04 P1 -1.00 -2.03 0.04
 Diversity 4.86 0.03 0.05 P1 -0.10 -2.20 0.03
  
Deciduous
Woodland

Individuals
(no.) 9.77 0.0002 0.22 P1 2.26 4.07 0.0001

N=80 P3 -1.14 -1.96 0.05
Richness 7.54 0.008 0.10 P1 1.07 2.75 0.008
Diversity NS
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Table 2.2  Positive and negative responses of general community structure variables to original plant and habitat architecture variables
based on regression models (Table 1). Correlation coefficients (Kendall’s τ) for each variable are given in parentheses.  Response
signs were derived from signs of the correlation coefficients and regression parameters. Predictor variables are abbreviated as
described in Table 2.1.

Response
variables by site  Predictor NMS axes and associated variables  
Sloped
Field P1 P2 A2

Microstegium
vimineum

(0.57)

Dactylis
glomerata

(-0.47)

Desmodium
sp.

(-0.58)

Dactylis
glomerata

(0.43)

Vertical
heterogeneity (1)

(0.57)

Vegetation
density
(0.56)

Horizontal
heterogeneity

(-0.52)

Maximum
 height
(0.44)

Herb
cover
(0.30)

 Individuals (no.) – + – + + + – + +

 Richness + + – + +

 Diversity (D’) + – + + – + +

Tussock Grass
Field P1

Lysimachia
 nummularia

(0.69)

Glechoma
hederacea

(-0.68)
Polygonum sp.

(0.39)

Impatiens
capensis
(-0.37)

Solidago
 canadensis

(-0.33)
 Richness – + – + +

 Diversity (D’) – + – + +

Deciduous
Woodland

P1 P3

Toxicodendron
radicans
(-0.56)

Microstegium
vimineum

(0.34)

Pilea
pumila
(0.32)

Pilea
pumila
(0.55)

Waldsteinia
fragarioides

(0.37)

Euonymous
sp.

(-0.35)

Acer
sp.

(0.31)
 Individuals (no.) – + + – – + –

 Richness – + +
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Table 2.3  Final regression models for spider species composition in each site.  Response
variables are spider ordination axes (S_).  Predictor variables are as described in Table 1.

Site Response F-value P-value R2 Predictor Estimate T-value P-value
Sloped
Field S1 4.08 0.05 0.04 A1 0.15 2.02 0.05
N=106 S2 9.01 0.0002 0.15 P2 -0.24 -2.57 0.01
 P3 0.31 3.01 0.003
 S3 NS  
  
Tussock Grass
Field S1 6.71 0.01 0.07 A1 0.26 2.59 0.01
N=95 S2 20.28 <.0001 0.18 P1 -0.40 -4.50 <.0001
 S3 NS  
  
Deciduous
Woodland S1 9.46 0.003 0.11 A1 0.30 3.08 0.003
N=76 S2 6.97 0.01 0.09 P1 -0.28 -2.64 0.01
 S3 7.14 0.009 0.10 P3 0.32 2.67 0.009
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Table 2.4  Responses of individual spider species to original plant and habitat architecture variables based on regression models for
the Sloped Field (SF) (Table 3).  Correlation coefficients (Kendall’s τ) for each variable are given in parentheses. See Table 2 for
explanation of response signs. Predictor variables are plant ordination axes (P_) and architecture ordination axes (A_); response
variables are spider ordination axes (S_).  Numbers in parentheses for Vertical heterogeneity indicate which of the two variables
(NMS axes) were associated with the predictor.

Response NMS axes and associated
variables by site Predictor NMS axes and associated variables

S1 (SF) A1
Maximum

height
(-0.80)

Vertical
heterogeneity (1)

(-0.47)

Herb
cover

(-0.32)

Vertical
heterogeneity (2)

(-0.32)

Vegetation
density
(-0.30)

Clubiona abboti (Clubionidae) (-0.45) + + + + +
Rabidosa rabida (Lycosidae) (-0.36) + + + + +
Neoantistea agilis (Hahniidae) (-0.33) + + + + +

S2 (SF) P2   P3      

Desmodium sp.
(-0.58)

Dactylis
glomerata

(-0.43)

Microstegium
vimineum

(-0.44)

Convolvulus
arvensis
(-0.41)

Diodia
 virginiana

(-0.33)
Verbesina sp.

(-0.30)
Bathyphantes pallida (Linyphiidae) (-0.60) + – – – + +
Clubiona abboti (Clubionidae) (-0.37) – + + + – –
Gea heptagon (Araneidae) (-0.36) – + + + – –
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Table 2.5  Responses of individual spider species to original plant and habitat architecture variables based on regression models for
the Tussock Grass Field (TGF) (Table 3).  Correlation coefficients (Kendall’s τ) for each variable are given in parentheses. See Table
2 for explanation of response signs. Predictor variables are plant ordination axes (P_) and architecture ordination axes (A_); response
variables are spider ordination axes (S_). Numbers in parentheses for Vertical heterogeneity indicate which of the two variables (NMS
axes) were associated with the predictor.

Response NMS axes and associated variables
by site Predictor NMS axes and associated variables

S1 (TGF) A1
Horizontal

heterogeneity
(-0.73)

Vertical
heterogeneity (1)

(-0.41)

Vegetation
density
(-0.39)

Herb cover
(-0.33)

Pardosa milvina (Lycosidae) (-0.35) + – – –
Clubiona abboti (Clubionidae) (-0.35) – + + +

Pisaurina undulata (Pisauridae) (-0.32) – + + +
Tetragnatha laboriosa (Tetragnathidae) (-0.31) – + + +

S2 (TGF) P1
Lysimachia
nummularia

(-0.69)

Glechoma
hederacea

(-0.68)
Polygonum sp.

(-0.39)

Impatiens
capensis
(-0.37)

Solidago
canadensis

(-0.33)
Pardosa milvina (Lycosidae) (-0.48) + – + – –
Hogna helluo (Lycosidae) (-0.39) + – + – –
Bathyphantes pallida (Linyphiidae) (-0.35) – + – + +
Clubiona abboti (Clubionidae) (-0.34) – + – + +
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Table 2.6  Responses of individual spider species to original plant and habitat architecture variables based on regression models for
the Deciduous Woodland (DW) (Table 3).  Correlation coefficients (Kendall’s τ) for each variable are given in parentheses. See Table
2 for explanation of response signs. Predictor variables are plant ordination axes (P_) and architecture ordination axes (A_); response
variables are spider ordination axes (S_). Numbers in parentheses for Vertical heterogeneity indicate which of the two variables (NMS
axes) were associated with the predictor.

Response NMS axes and associated variables
by site Predictor NMS axes and associated variables

S1 (DW) A1
Horizontal

heterogeneity
(-0.91)

Vertical
heterogeneity (2)

(-0.37)

Theridion frondeum (Theridiidae) (-0.59) – –

S2 (DW) P1

 

Toxicodendron
radicans
(-0.56)

Microstegium
vimineum

(-0.34)

Pilea
pumila
(-0.32)

Habrocestum parvulum (Salticidae) (-0.39) + – –
Mangora maculata (Araneidae) (-0.38) – + +
Bathyphantes pallida (Linyphiidae) (-0.35) – + +
Lepthyphantes nebulosa (Linyphiidae) (-0.34) + – –

S3 (DW) P3
Pilea
pumila
(-0.55)

Waldsteinia
fragaroides

(-0.37)
Euonymous sp.

(-0.35)
Acer sp.
(-0.31)

Lepthyphantes nebulosa (Linyphiidae) (-0.48) – – + –
Theridion frondeum (Theridiidae) (-0.39) + + – +
Cicurina arcuata (Agelenidae) (-0.31) + + – +
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A)

B)

Figure 3.1  Graphical models of a priori hypotheses.  Plants influence spiders indirectly
(A) or directly (B).  Variables in all capitals were represented by multiple NMS
ordination axes in analyses (see text).
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Table 3.1  Stress values for NMS configurations and proportion variation explained by
each axis for spider, arthropod, plant, and vegetation structure data.

Data matrix Stress   Variation explained

Axis 1 Axis 2 Axis 3 Cumulative

Spiders 20.00 9.60% 32.40% 23.40% 65.50%

Arthropods 18.31 22.20% 36.20% 14.40% 72.80%

Plants 13.03 19.00% 48.20% 21.50% 88.60%

Structure 14.54 19.80% 21.70% 44.30% 85.70%

Herbivore/scavenger 18.41 14.60% 31.20% 27.30% 73.10%

Predator/parasite 13.76 25.50% 28.10% 28.00% 81.60%
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Table 3.2  Correlations between NMS axes and original variables for all data matrices.
Variables with correlations (Kendall’s τ) τ≥|0.30| are listed.  See Methods for explanation
of variables associated with Structure NMS axes.

NMS axes and
associated variables

Correlation
with NMS
axis

NMS axes and
associated variables

Correlation
with NMS
axis

Spider 1 Plant 1
Clubiona abbotii (Clubionidae) 0.56 Calystegia sepium -0.38
Eperigone trilobata (Linyphiidae) -0.38 Dactylis glomerata 0.35
Florinda coccinea (Linyphiidae) -0.48 Polygonum caespitosum -0.40
Theridion frondeum (Theridiidae) -0.31 Toxicodendron radicans 0.32

Spider 2 Solanum ptychanthemum 0.40
Pisaurina undulata (Pisauridae) 0.31 Stellaria media 0.37
Theridion cheimatos (Theridiidae) -0.36 Plant 2

Spider 3 Desmodium sp. 0.47
Bathyphantes pallida (Linyphiidae) 0.37 Calystegia sepium 0.64
Eridantes erigonoides (Linyphiidae) -0.45 Dactylis glomerata -0.37
Oxyopes sp. (Oxyopidae) -0.45 Glechoma hederacea -0.58

Arthropod 1 Toxicodendron radicans -0.32
Orthoptera -0.61 Pilea pumila -0.35
Diplura 0.31 Plant 3
Opiliones 0.31 Desmodium sp. -0.41

Arthropod 2 Dactylis glomerata 0.60
Diptera -0.31 Stellaria media 0.30
Hymenoptera -0.48 Structure 1
Hemiptera -0.37 Herb cover -0.63
Acari -0.33 Glabrous cover -0.39
Isopoda 0.42 Structure 2

Arthropod 3 Horizontal heterogeneity -0.41
Hymenoptera -0.35 Vine cover -0.63
Collembola -0.36 Structure 3
Diplopoda -0.39 Density -0.39
Homoptera -0.40 Grass cover -0.76
Opiliones -0.35 Glabrous cover -0.50
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Table 3.3  Model selection criteria for comparison of two a priori models of spider
community structure for each spider NMS axis.  Model A contains no direct paths from
plants to spiders, while Model B incorporates these (see Figure 3.1).  The specified model
is the a priori model, the saturated model contains all possible paths between variables,
and the independence model contains no paths.  AIC and CAIC are discussed in text.

Spider axes Model A Model B
AIC CAIC AIC CAIC

Spider 1
Specified
 model 196.65 432.78 200.80 445.89
Saturated
 model 182.00 454.00 182.00 454.00
Independence
 model 327.20 366.05 327.20 366.05

Spider 2
Specified
 model 196.14 432.27 200.80 445.89
Saturated
 model 182.00 454.00 182.00 454.00
Independence
 model 337.38 376.23 337.38 376.23

Spider 3
Specified
 model 202.64 438.77 200.80 445.89
Saturated
 model 182.00 454.00 182.00 454.00
Independence
 model 347.63 386.49 347.63 386.49
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Table 3.4  Measures of absolute fit for final path models.  See text for explanations of
CMIN/DF, CFI and RMSEA.

Final path
model χ2

df
Global
p-value CMIN/DF CFI RMSEA

Spider 1 43.44 53 0.82 0.82 1.00 <0.01
Spider 2 46.16 54 0.77 0.86 1.00 <0.01
Spider 3 46.15 53 0.74 0.87 1.00 <0.01
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Figure 3.2  Final path model for Spider 1.  Differing significance levels for each path
coefficient are indicated by the thickness of the arrows.  Unexplained error variances for
each variable are omitted from the figure for clarity.  Path coefficients are not included in
this and following figures because the direction of their effects depends on the sign of the
correlations between original variables and the NMS axes (see text).
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Figure 3.3  Final path model for Spider 2.  Differing significance levels for each path
coefficient are indicated by the thickness of the arrows.  Unexplained error variances for
each variable are omitted from the figure for clarity.
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Figure 3.4  Final path model for Spider 3.  Differing significance levels for each path
coefficient are indicated by the thickness of the arrows.  Unexplained error variances for
each variable are omitted from the figure for clarity.
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Table 3.5  Coefficients of multiple determination for variables from path models for all
spider NMS axes.

Spider 1
model R2

Spider 2
model R2

Spider 3
model R2

Spider 1 0.20 Spider 2 0.31 Spider 3 0.46
Arth 1 0.33 Arth 1 0.33 Arth 1 0.33
Arth 2 0.38 Arth 2 0.38 Arth 2 0.38
Arth 3 0.16 Arth 3 0.16 Arth 3 0.16
Biomass 0.13 Biomass 0.13 Biomass 0.13
Struct 1 0.31 Struct 1 0.31 Struct 1 0.31
Struct 2 0.42 Struct 2 0.42 Struct 2 0.42
Struct 3 0.83 Struct 3 0.83 Struct 3 0.83
Temp 0.23 Temp 0.23 Temp 0.23
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Table 3.6  Total effects for all predictor variables in path models for spider NMS axes
(Figures 3.2-3.4).  Effects of predictors on non-spider variables were identical across path
models.

Variable C/T Biomass Plant 1 Plant 2 Plant 3 Struct3
Arth1 0.15 -0.08 -0.10 0.44 -0.28 0.41
Arth2 -0.61 0 0 -0.50 -0.26 0
Arth3 0.11 -0.06 -0.07 -0.31 -0.20 0.30
Biomass 0 0 0 0 0.34 0

Struct1 0 0 0 0.42 0.40 0
Struct2 0 0 0 -0.60 -0.30 0
Struct3 0.36 -0.19 -0.25 0.36 -0.68 0
Temp 0 0.31 0 0 0.38 0
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Table 3.7  Total, direct and indirect effects of predictor variables on spider NMS axes (Figures 3.2-3.4).  C/T is the nominal variable
for control versus treatment quadrats.  Effects are unstandardized.

Effects C/T Arth 1 Arth 2 Biomass Plant 1 Plant 2 Plant 3 Struct 2 Struct 3 Temp
Spider 1
   Total Effects -0.04 -0.26 0 -0.07 0.03 0.09 0.07 -0.34 -0.11 -0.27
   Direct Effects 0.00 -0.26 0 0.00 0.00 0.00 0.00 -0.34 0.00 -0.27
   Indirect Effects -0.04 0.00 0 -0.07 0.03 0.09 0.07 0.00 -0.11 0.00
Spider 2
   Total Effects -0.31 -0.26 0.44 0.02 0.03 -0.34 -0.04 0 -0.11 0
   Direct Effects 0.00 -0.26 0.44 0.00 0.00 0.00 0.00 0 0.00 0
   Indirect Effects -0.31 0.00 0.00 0.02 0.03 -0.34 -0.04 0 -0.11 0
Spider 3
   Total Effects -0.80 0.26 0 -0.02 -0.03 -0.53 -0.07 0 0.11 0
   Direct Effects -0.84 0.26 0 0.00 0.00 -0.64 0.00 0 0.00 0
   Indirect Effects 0.04 0.00 0 -0.02 -0.03 0.11 -0.07 0 0.11 0
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Table 3.8  Responses of individual spider species associated with spider NMS axis 1
(S1).  Original variables are grouped by the sign of their correlation with their respective
NMS axes; in the case of Struct 2 and Struct 3, all associated variables had negative
correlations.  Response directions are based on total effects (Table 3.6).  See Figure 3.2
for path model.

Predictors

Variables
associated with
NMS axes S1    

C. abbotti E. trilobata F. Coccinea T. frondeum
Arth 1 (+) Diplura

Opiliones –† +† +† +†

Arth 1 (–) Orthoptera +† –† † –†

Biomass – + + +
Plant 1 (+) D. glomerata

T. radicans
S. ptychanthemum
S. media

+ – – –

Plant 1 (–) C. sepium
P. caespitosum – + + +

Plant 2 (+) Desmodium sp.
C. sepium  + – – –

Plant 2 (–) D. glomerata
 G. hederacea
T. radicans
P. pumila

– + + +

Plant 3 (+) D. glomerata
S. media + – – –

Plant 3 (–) Desmodium sp. – + + +
Struct 2 Horizontal

    heterogeneity
Vine cover

+† –† –† –†

Struct 3 Density
Grass cover
Glabrous cover

+ – – –

Temp  –† +† +† +†

† Effects greater than or equal to 0.20.
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Table 3.9  Responses of individual spider species associated with spider NMS axis 2
(S2).  Original variables are grouped by the sign of their correlation with their respective
NMS axes; in the case of Struct 3, all associated variables had negative correlations.
Response directions are based on total effects (Table 3.6).  See Figure 3.3 for path model.

Predictors

Variables
associated with
NMS axes S2  

  P. undulata T. cheimatos
Arth 1 (+) Diplura

Opiliones –† +†

Arth 1 (–) Orthoptera +† –†

Arth 2 (+) Isopoda + –
Arth 2 (–) Diptera

Hymenoptera
Hemiptera
Acari

– +

Biomass + –
Plant 1 (+) D. glomerata

T. radicans
S. ptychanthemum
S. media

+ –

Plant 1 (–) C. sepium
P. caespitosum – +

Plant 2 (+) Desmodium sp.
C. sepium –† +†

Plant 2 (–) D. glomerata
G. hederacea
T. radicans
P. pumila

+† –†

Plant 3 (+) D. glomerata
S. media – +

Plant 3 (–) Desmodium sp. + –
Struct 3 Density

Grass cover
Glabrous cover

+ –

† Effects greater than or equal to 0.20.
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Table 3.10  Responses of individual spider species associated with spider NMS axis 3
(S3).  Original variables are grouped by the sign of their correlation with their respective
NMS axes; in the case of Struct 3, all associated variables had negative correlations.
Response directions are based on total effects (Table 3.6).  See Figure 3.4 for path model.

Predictors

Variables
associated with
NMS axes S3   

B. pallida E. erigonoides Oxyopes sp.
C/T –‡ +‡ +‡

Arth 1 (+) Diplura
Opiliones

+† –† –†

Arth 1 (–) Orthoptera –† +† +†

Biomass – + +
Plant 1 (+) D. glomerata

T. radicans
S. ptychanthemum
S. media

– + +

Plant 1 (–) C. sepium
P. caespitosum + – –

Plant 2 (+) Desmodium sp.
C. sepium  –‡ +‡ +‡

Plant 2 (–) D. glomerata
G. hederacea
T. radicans
P. pumila

+‡ –‡ –‡

Plant 3 (+) D. glomerata
S. media – + +

Plant 3 (–) Desmodium sp. + – –
Struct 3 Density

Grass cover
Glabrous cover

– + +

† Effects greater than or equal to 0.20.
‡ Effects greater than or equal to 0.50.
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 Table 3.11  Final regression models for spider NMS axes.  Spider axes were regressed
on herbivore/scavenger NMS axes (Herb_) and predator/parasite NMS axes (Pred_), with
control/treatment (C/T) as a nominal variable.

Response F-value P-value R2 (adj) Predictor Estimate T-value P-value
S1 ns
S2 17.67 <0.0001 0.39 Herb2 -0.68 -5.90 <0.0001

C/T -0.31 -2.70 0.009

S3 9.69 <0.0001 0.50 Herb2 -0.50 -4.27 <0.0001
Herb3 0.25 2.29 0.03
Pred3 0.13 1.05 0.30

C/T 0.20 1.82 0.07
C/T x Herb2 0.47 3.88 0.0003

    C/T x Pred3 -0.26 -2.19 0.03
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Figure 3.5  Final regression model for spider NMS axis 2 (S2). Regression lines illustrate
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Table 3.12  Responses of individual spider species to herbivore/scavenger and
predator/parasite orders based on regression models (Table 3.12).

NMS axes
and
associated
variables

Species
associated
with S2  

Species
associated
with S3   

 P. undulata T. cheimatos B. pallida E. erigonoides Oxyopes sp.
Herb 2

Diptera – + –† +† +†

Isopoda + – +† –† –†

Herb 3
Hemiptera – + +
Opiliones – + +

Pred 3
Diptera –† +† +†

Hemiptera +† –† –†

Acari –† +† +†

Diplura –† +† +†

† Responses only significant in treatment quadrats
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APPENDIX B

Spider species list by family
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Agelenidae
Cicurina arcuata
Wadotes sp.

Amaurobiidae
Amaurobius sp.

Antrodiaetidae
Antrodiaetus unicolor

Anyphaenidae
Anyphaena pectorosa

Araneidae
Acanthepeira sp.
Araneus sp.
Argiope aurantia
Argiope trifasciata
Gea heptagon
Mangora maculata
Neoscona hentzii
Nuctenea sp.
Verrucosa arenata

Clubionidae
Castianeira gertschi
Chiracanthium sp.
Clubiona abbotti
Clubionoides sp.
Phrurolithus fratrellus
Phrurotimpus alarius
P. borealis
Trachelas similis

Gnaphosidae
Drassylus eremitus
Zelotes sp.

Hahniidae
Neoantistea agilis

Leptonetidae
Leptoneta gertschi

Linyphiidae
Bathyphantes pallida
Centromerus cornupalpis
Ceraticelus fissiceps
C. laetabilis
Ceratinopsis laticeps
Eperigone maculata
E. tridentata
E. trilobata
Eridantes erigonoides
Florinda coccinea
Frontinella communis
Grammonota ornata
G. pictilis
Graphomoa theridioides
Islandia flaveola
Lepthyphantes nebulosa
Meioneta longipes

Meioneta micaria
Meioneta picta
M. unimaculata
M. zygia
Microneta viaria
Neriene clathrata
N. maculata
Origanates rostratus
Walckenaeria spiralis
species A (Erigoninae)
species B (Erigoninae)
species C (Erigoninae)

Lycosidae
Allocosa funerea
Hogna helluo
Pardosa milvina
Pirata arenicola
P. insularis
P. sylvanus
Rabidosa rabida
Rabidosa punctulata
Schizocosa crassipes
Trabea aurantiaca
Trochosa sp.

Mimetidae
Ero pensacolae

Oxyopidae
Oxyopes sp.

Philodromidae
Philodromus sp.

Pisauridae
Dolomedes sp.
Pisaurina undulata
Pisaurina sp.

Salticidae
Ballus sp.
Eris militaris
Habrocestum parvulum
Habronattus coronatus
Maevia sp.
Marpissa lineata
Phiddipus audax
Sitticus floridanus
Thiodina sylvana
Zygoballus bettini
Zygoballus nervosus

Tetragnathidae
Leucauge venusta
Pachygnatha autumnalis
Tetragnatha sp.

Theridiidae
Euryopis funebris
Robertus sp.

Steatoda sp.
Theridion albidum
T. cheimatos
T.  frondeum
T. neshamini
Theridula opulenta
species A
species B

Thomisidae
Misumena vatia
Misumenoides formosipes
Misumenops sp.
Ozyptila monroensis
Synema sp.
Tmarus sp.
Xysticus ferox

Zoridae
Zora pumilis



145

APPENDIX C

Use of multisample cluster analysis to examine relationships between three sites

based on three types of data
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Introduction and problem statement

Traditional multiple comparison procedures are limited to pairwise comparisons

of the K groups or samples that comprise a data set.  The basis of these comparisons is

typically an F-statistic chosen based on a level of alpha determined to represent an

acceptable risk of Type I error by the researcher.  While there are “rules of thumb”

regarding this selection, the choice of alpha is ultimately an arbitrary one, and in the case

of multiple comparisons it is difficult to be certain that the nominal alpha level actually

corresponds to the overall error rate of the test (Bozdogan 1986).  Moreover, because

these procedures only examine relationships between two samples at a time, they

preclude the possibility of uncovering potential homogeneous clusters of more than two

samples.  They also tend to assume homogeneity of variance (Bozdogan 1986; Cox and

Cowpertwait 1992).

Multiple comparison procedures have also largely been limited to the univariate

case, and few procedures are available for dealing with multivariate data (Bozdogan,

1986).  Ecological data are rarely univariate; the complexity of natural systems and their

interacting components often require that large numbers of variables be measured.

However, we frequently wish to be able to compare samples or treatments to determine

which can be reasonably assumed to have come from the same population.  There is also

considerable interest in determining whether multiple groups are homogeneous (rather

than just comparing them two at a time), and a robust method is needed that takes into

account the complexity (e.g., number of parameters or covariance structure) of the

models.
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Many authors have argued against the use of multiple comparison procedures in

general (Nelder 1971; Plackett 1971) or against specific procedures (Saville 1990).

Concerns include the utility of these procedures (Nelder 1971), the problems of testing

multiple hypotheses simultaneously without being able to reliably control the experiment-

wise error rate (Nelder 1971; Plackett 1971; Bozdogan 1986), and the lack of consistency

of many of the procedures (Saville 1990).  However, the comparison of groups or

treatments is a critical question in many research programs. Plackett, in his discussion of

O'Neill and Wetherill (1971), suggested abandoning traditional methods in favor of

cluster analysis, and this approach was taken by Scott and Knott as early as 1974.

However, until the work of Bozdogan (1986) these approaches still relied on more

traditional methods of model selection (likelihood ratio test).

Statistical method

Multisample Cluster Analysis (Bozdogan 1986) clusters K groups or samples into

k homogeneous groups (where k≤K) using a clustering algorithm in which all possible

partitions of the K groups are formed.  The different partitioning schemes are compared

using Bozdogan’s information complexity criterion, ICOMP (Bozdogan 1988, 1990,

1993, 1994) and Akaike’s information criterion, AIC (Akaike 1973, 1974).  Three

possible models are evaluated for each partition scheme:  Model 1 (varying means and

varying variance/covariance), Model 2 (varying means and common

variance/covariance), and Model 3 (common means and common variance/covariance).

These model selection criteria seek the most parsimonious model by penalizing models

for either the number of  parameters (AIC) or the complexity of the model (ICOMP).
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Both criteria have two components: lack of fit of the model, and a penalty term.  The

model with the smallest value of either AIC and/or ICOMP is considered the best model.

Unlike the frequentist approach, criteria using information theory allow one to compare

multiple models simultaneously and don’t rely on an arbitrarily chosen level of alpha.

Analyses were performed using MATLAB code (MATLAB 6.5.1, 1984-2000, The

Mathworks, Inc., Natick, Massachusetts) provided by H. Bozdogan of the University of

Tennessee’s Department of Statistics.

Data collection

The data used for this project are from Beals 2006.  Three adjacent sites at the

University of Tennessee’s Cherokee Woodlot were sampled in 1997 and 1998.  The

Sloped Field (site 1) is a grassy area maintained by periodic mowing throughout the

summer.  The Tussock Grass Field (site 2) lies to the southeast of the Sloped Field, and is

separated from it by a band of shrubs approximately five meters wide.  This site is

maintained as a field by flooding in the spring and early summer.  The Deciduous

Woodland (site 3) is a forested area located to the southwest of the Sloped Field.

Circular quadrats (0.1 m2) were located in each site using the random walk method based

on Catana, 1955 (n=108 in Sloped Field, n=100 in Tussock Grass Field, n=80 in

Deciduous Woodland, and total n=288).  Within each quadrat, data were recorded for the

plant species (percent of the quadrat covered by each species) and the architecture or

structure of the plants/habitat.  Following these measurements, spiders were collected

from each quadrat and subsequently identified to species.
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Eleven variables were measured for the habitat architecture, including the density

of the vegetation, the amount of open space in the quadrat, and the growth forms of the

plants.  Sixty-eight plant species and 103 spider species were observed.  To achieve

variable reduction I used nonmetric multidimensional scaling (NMS) as implemented by

the software program PC-ORD (PC-ORD 4, 1999, MjM Software Design, Gleneden

Beach, Oregon).  PC-ORD’s NMS performs multiple runs with real data followed by

multiple runs with randomized data to select the best dimensionality for the data based on

minimizing stress (stress is a measure of lack of fit [McCune and Grace 2002]).  For both

the plant and spider species a three-dimensional solution was recommended and these

axes were then used as the variables for the Multisample Cluster Analysis.

Results

Results for the plant species data are presented in Table C.1.  The lowest ICOMP

(428.2) and AIC (439.4) scores occurred for Model 1 (varying means and varying

variance/covariance) and the fifth partition scheme (k=3).  The optimal decision tree

classifier is shown in Figure C.1.  The next best score is for k=2, and the best partition

scheme combines sites 1 and 3 (Sloped Field and Deciduous Woodland) based on the

plant species data.  The worst of these three partition schemes is the one in which k=1

(ICOMP=1389.4, AIC=1406.2).
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Table C.1  ICOMP and AIC values for plant species data.  Subscripts indicate different
models:  Model 1 (varying means and varying variance/covariance), Model 2 (varying
means and common variance/covariance), and Model 3 (common means and common
variance/covariance).

Partition
Scheme

ICOMP1 AIC1 ICOMP2 AIC2 ICOMP3 AIC3

(1, 2, 3) 1389.4 1406.2 1389.4 1406.2 1389.4 1406.2
(1, 2) (3) 921.5 937.2 988.5 983.4 1382.3 977.4
(1, 3) (2) 739.0 751.2 922.5 918.2 1383.0 912.2
(1) (2, 3) 886.7 905.3 998.2 996.3 1383.1 990.2
(1) (2) (3) 428.2* 439.4* 556.3 521.9 1375.2 509.9

k ICOMP AIC
Stage 1 ( 1,2,3 ) 1 1389.4 1406.2

   
   

Stage 2 ( 1, 3 ) ( 2 ) 2 739 751.2
   
   

Stage 3 ( 1 ) ( 3 ) ( 2 ) 3* 428.2* 439.4*

Figure C.1  Optimal decision tree classifier for plant species data.  ICOMP and AIC
values for stages two and three are based on the model with varying means and varying
variance/covariance (Model 1).

For the habitat architecture data ICOMP and AIC did not choose the same

partition scheme, although they did select the same model (Model 1 [varying means and

varying variance/covariance]) (Table C.2).  ICOMP (-2235.1) selected the partition

scheme in which k=2, with the two grassy fields clustered together and the forested area

separate.  This makes intuitive sense.  AIC’s first choice (AIC=-5018.2) is the partition

with k=3 groups, but the next smallest score (-4741.1) is for the same partition as

ICOMP.  The optimal decision tree classifier (Figure C.2) suggests that a partition of k=1

(i.e., no partitioning) is the next best choice (ICOMP=-1917.1, AIC=-3146.0), followed

by k=3 (ICOMP=-1279.4, AIC=-5018.2).
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Table C.2  ICOMP and AIC values for habitat architecture data.  Subscripts indicate
different models:  Model 1 (varying means and varying variance/covariance), Model 2
(varying means and common variance/covariance), and Model 3 (common means and
common variance/covariance).

Partition
Scheme

ICOMP1 AIC1 ICOMP2 AIC2 ICOMP3 AIC3

(1, 2, 3) -1917.1 -3146.0 -1917.1 -3146.0 -1917.1 -3146.0
(1, 2) (3) -2235.1* -4741.1 -1696.0 -3508.9 -1942.4 -3530.9
(1, 3) (2) -1370.5 -3806.3 -1604.5 -3409.5 -1941.1 -3431.5
(1) (2, 3) -1336.4 -3883.4 -1504.3 -3371.7 -1940.7 -3393.7
(1) (2) (3) -1279.4 -5018.2* -1300.9 -3730.5 -1968.9 -3774.5

k ICOMP AIC
Stage 1 ( 1,2,3 ) 1 -1917.1 -3146.0

   
   

Stage 2 ( 1, 2 ) ( 3 ) 2* -2235.1* -4741.1
   
   

Stage 3 ( 1 ) ( 2 ) ( 3 ) 3 -1279.4 -5018.2*

Figure C.2  Optimal decision tree classifier for habitat architecture data.  ICOMP and
AIC values for stages two and three are based on the model with varying means and
varying variance/covariance (Model 1).

For the spider species data, ICOMP and AIC again both selected Model 1 (Table

C.3).  The partition scheme chosen was k=3 (ICOMP=1080.6, AIC=1113.5).  The

optimal decision tree classifier (Figure C.3) suggests that the next best model is partition

scheme two (Sloped Field and Tussock Grass Field together, with Deciduous Woodland

separate) (ICOMP=1119.8, AIC=1143.8), and the worst of these three is k=1

(ICOMP=1429.5, AIC=1446.5).
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Table C.3  ICOMP and AIC values for spider species data.  Subscripts indicate different
models:  Model 1 (varying means and varying variance/covariance), Model 2 (varying
means and common variance/covariance), and Model 3 (common means and common
variance/covariance).

Partition
Scheme

ICOMP1 AIC1 ICOMP2 AIC2 ICOMP3 AIC3

(1, 2, 3) 1429.5 1446.5 1429.5 1446.5 1429.5 1446.5
(1, 2) (3) 1119.8 1143.8 1139.9 1140.5 1422.6 1134.5
(1, 3) (2) 1315.5 1342.3 1377.8 1384.8 1422.9 1378.8
(1) (2, 3) 1295.2 1322.2 1364.0 1371.2 1423.1 1365.2
(1) (2) (3) 1080.6* 1113.5* 1125.7 1114.1 1415.4 1102.1

k ICOMP AIC
Stage 1 ( 1,2,3 ) 1 1429.5 1446.5

   
   

Stage 2 ( 1, 2 ) ( 3 ) 2 1119.8 1143.8
   
   

Stage 3 ( 1 ) ( 2 ) ( 3 ) 3* 1080.6* 1113.5*

Figure C.3  Optimal decision tree classifier for spider species data.  ICOMP and AIC
values for stages two and three are based on the model with varying means and varying
variance/covariance (Model 1).

Conclusions and discussion

The Multisample Cluster Analysis approach of Bozdogan (1986) is an effective

method for elucidating parsimonious structure in multivariate data sets.  The method

produces similar results to those of traditional ordination analyses such as Bray-Curtis (or

Polar) ordination, which has been used extensively in the plant ecology literature.

However, the advantages of this new approach are that 1) the results provide information

about the means and variance/covariance of the groups, 2) the model selection method

(information criteria) can be relied on to choose the most parsimonious structure for the

data, taking both lack of fit and model complexity into account, and 3) this approach
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produces an easily interpretable decision tree classifier.  For example, in the case where

k=2, both the habitat architecture data and the spider species data cluster sites 1 and 2 (the

two grassy fields) together, suggesting a possible relationship between spider species and

the architecture of their environment and therefore potential future research directions.  In

the case of the plant species, the clustering for k=2 groups sites 1 and 3 (one of the grassy

fields and the forested area) separately from the other grassy field.  Although all three

sites are adjacent, there is a gradation between sites 1 and 3 (the edge of the woods is

distinct, but there are forest plant species in the Sloped Field near the edges, and some of

the Sloped Field species are found a little ways into the Deciduous Woodland), while the

Tussock Grass Field is more disjunct (it is separated from the Sloped Field by a band of

shrubs about five to ten meters wide).  The results therefore agree with empirical

observations.
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