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ABSTRACT 

 

Air toxics are important health concern. The purpose of this research was to develop a 

protocol to predict exposure concentrations of air toxics and inhalation cancer and non-

cancer risk that come from different gasoline and diesel-fueled sources. The protocol was 

developed by linking the U.S. EPA’s Models-3/CMAQ model as the exposure model and 

toxicological and epidemiological evidence functions. The NEI version 3 for the year 

1999 was used in this analysis for point, area, and non-road sources, whereas NMIM was 

used to create the on-road emissions. The year 2003 was used for meteorological data and 

as reference to compare the monitored concentrations to model performance. The 

modeling domain consisted of a 36 km domain. To demonstrate the system’s 

effectiveness, this study was performed on priority mobile sources air toxics (1, 3-

butadiene, benzene, formaldehyde, acetaldehyde, acrolein, and DPM), and was applied to 

Nashville, Tennessee using available air toxics monitored data. Ten emissions scenarios 

were selected in this study to compare the main results. 

 

This research on air toxics emission scenarios was based on relative analyses and 

estimates of absolute exposure concentrations and health risk values. The proposed 

protocol was demonstrated and can be used for decision makers in the quantitative 

assessment of new policies that will affect the public health and the air quality by air 

toxics. Eliminating emission source categories is clearly not a policy option, but rather 

helps gain a better understanding of the total magnitude of the health effects associated 

with these major sources of air toxics, principally of DPM. Higher formaldehyde and 



 v

acetaldehyde exposure concentrations occurred in the summer season, while benzene and 

1,3-butadiene occurred in winter. DPM did not show a strong seasonality exposure during 

the year 2003 in Nashville. DPM generated the higher lifetime cancer risk excess among 

the other air toxics in Nashville, posing a cancer risk that was 4.2 times higher than the 

combined total cancer risk from all other air toxics. Those high cancer risk levels were 

due mainly to non-road sources (57.9%). For the on-road diesel fueled sources (DFS), the 

principal reductions were due to the DPM contributions generated by HDDVs rather than 

LDDVs. An evident positive synergism in the cancer risk reduction occurred when 

reducing diesel on-road and non-road source emissions simultaneously. The main cancer 

risk reductions from acetaldehyde, benzene, 1,3-butadiene, and formaldehyde (4HAPs) 

were due to the contribution of biogenic sources with 32.2%. This condition was 

followed for the scenario that did not consider on-road sources with a 27.5% of reduction. 

For non-road sources, the main reductions were due to the air toxics contributions 

generated by gasoline LDVs, principally benzene and 1,3-butadiene. The scenario 2020 

showed a DPM and 4HAPs health effect reductions of approximately 32.8 and 19.4 %, 

respectively in Nashville. Higher cancer and non-cancer risks occurred on Southeastern 

urban areas due to long-term exposure to DPM, principally in Atlanta, GA, followed by 

Nashville, TN, Birmingham, AL, Raleigh, NC, and Memphis, TN. This research 

provided strong evidence that reducing ambient DPM concentrations will lead to 

improvement in human health more than other air toxics in Nashville, indicating that 

better technologies and regulations must be applied to mobile diesel engines, principally, 

over non-road diesel sources. 
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 1

1.0      INTRODUCTION 

 

Air toxics, which are also called hazardous air pollutants or HAPs, are those pollutants 

known or suspected to cause cancer and other serious health or environmental effects. 

They include pollutants like volatile organic compounds (VOCs), metals, semi-volatile 

organic compounds (SVOCs), organochlorine compounds, diesel particulate matter 

(DPM), and others HAPs. While the harmful effects of air toxics are of particular concern 

in areas closest to where they are emitted, they can also be transported and affect the 

health and welfare of populations in other geographic areas. Once HAPs enter to the 

body, some persistent air toxics accumulate in body tissues. Predators, such as fish, 

typically bioaccumulate even greater pollutant concentrations than their contaminated 

prey. As a result, people and other animals at the top of the food chain are exposed to 

concentrations that are much higher than the concentrations in the water, air, or soil. 

 

Scientists estimate that millions of tons of toxic pollutants are released into the air each 

year in the world. Most HAPs originate from anthropogenic sources, including point, 

area, and mobile sources. These mobile sources contribute approximately 50 percent of 

the total urban HAPs in the U.S. In addition, some air toxics are released in major 

amounts from natural sources, called biogenic sources, such as trees.  

 

Because it has not been feasible to attempt to do controlled or epidemiological studies of 

these many air toxics on humans, the U.S. Environmental Protection Agency (U.S. EPA) 

regulation required sources to keep the emissions levels as low as possible using 
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Maximum Available Control Technology (MACT) on point sources, and of existing and 

newly promulgated mobile source control programs, including its reformulated gasoline 

(RFG) program, its national low emissions vehicle (NLEV) standards, its Tier 2 motor 

vehicle emissions standards and gasoline sulfur control requirements, and its 2007 heavy-

duty engine, and vehicle standards and on-highway diesel fuel sulfur control 

requirements (U.S. EPA, 2001a). 

 

However, the fast growth of the mobile sources indicates that some HAPs would increase 

if the community does not improve the fuels or does not use cleaner vehicle technologies. 

The American Cancer Society (ACS) estimated that the number of new U.S. cancer cases 

increased 3.8 percent, to a record of 1.33 million for 2003, where some percentage could 

be due to air toxics (ATSDR, 2003). ACS estimated that 171,900 cases corresponded to 

lung cancer, accounting for 13% of all new cancer cases. Also, 30,500 new cancer cases 

occurred for Tennessee in 2003, of which 4,500 correspond to lung cancer, accounting 

for 15% of all new cancer cases. The average annual age-adjusted mortality rates for lung 

cancer deaths per 100,000 persons were 68.9 for Tennessee and 56.8 for Nationwide from 

1996 to 2000 (American Cancer Society, 2003). On the other hand, it is estimated that 

approximately 30,800 individuals were diagnosed with leukemia in the U.S. and 21,700 

will die of the disease annually (Xie et al., 2003).  

 

Cardio-respiratory non-cancer diseases also have been significant in the U.S. due to air 

pollution, mainly in urban areas (American Lung Association, 2003). The most important 

have been asthma, chronic obstructive pulmonary disease (COPD), and cardiovascular 
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disease (CVD). Asthma is a chronic illness that has been increasing in prevalence in the 

U. S. since 1980 by 75%. In 1999, it was estimated that 24.7 million Americans have 

been diagnosed with asthma in their lifetime (National Center for Health Statistics, 1999). 

In 2000, asthma accounted for 4,487 deaths, almost 465,000 hospitalizations, 1.8 million 

emergency department visits, and approximately 10.4 million physician-office visits 

among persons of all ages (CDC, 2001a and 2001b; Brugge et al., 2003).  

 

COPD includes emphysema and chronic bronchitis diseases that are characterized by 

obstruction to air flow. Emphysema and chronic bronchitis frequently coexist. According 

to a report of the American Lung Association in 2003, COPD claimed the lives of 

117,522 Americans. Approximately 80 to 90 percent of COPD cases have been due to 

smoking; a smoker is ten times more likely than a nonsmoker to die of COPD. An 

estimated of 11 million people were diagnosed with chronic bronchitis in 2001 and 3 

million Americans have been diagnosed with emphysema sometime in their life 

(American Lung Association, 2003).  

 

Finally, CVD is the leading cause of death in the U.S. According to the American Heart 

Association’s Heart Disease and Stroke Statistics 2003 Update, in 2000 CVD caused 

nearly 40% of all deaths. Traditional risk factors for CVD include lifestyle (such as 

smoking, physical inactivity, and diet), serum lipids, gender, race, and family history 

(genetics), which account by almost 80% of the total risk factors. However, these risk 

factors do not fully explain the etiology or incidence of CVD, and recent data have 
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indicated that exposure to air pollutants such as particulate matter and diesel exhaust are 

also risk factors (Oftedal et al., 2003; Lin et al., 2003).  

 

Since 1987, U.S. EPA has sponsored the Urban Air Toxics Monitoring Program 

(UATMP) to characterize the composition and magnitude of urban air pollution through 

an extensive ambient air monitoring network (U.S., EPA, 2004a). Currently, there are 

about 59 air toxics monitoring sites in operation, which include 37 urban locations. Some 

of this data has been used to assess health risk for particular areas (Tam and Neumann, 

2004; Partt et al., 2000). However, this strategy is too expensive to monitor for every 

pollutants everywhere.  

 

Air quality models are valuable air quality management tools. They estimate the HAPs 

concentrations at many locations and the number of the locations in a model far exceeds 

the number of monitors in a typical ambient monitoring network, such as the UATMP. 

Therefore, the integration of air quality modeling methodologies and health risk 

assessment techniques is extremely powerful to air quality management, policy, and 

rulemaking issues, principally to analyze emission scenarios, new strategies, and future 

growth effects over a wide spatial area where the complex terrain and meteorology 

factors could be important. 

 

Currently, the U.S. EPA uses a Gaussian plume model and an exposure model to estimate 

the annual HAPs concentrations (chronic exposure) to assess health risk for cancer and 

non-cancer effects (U.S. EPA, 2002a). The model has been accurate for local scale 
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effects on ambient concentrations from emitted HAPs that have short atmospheric 

lifetimes, slow loss rates, and no photochemical production. For HAPs such as 

formaldehyde, acetaldehyde, 1,3-butadiene, acrolein, and benzene, several of the 

assumptions fail.  

 

Air toxics in the atmosphere are difficult to model because they have half-lives varying 

from a few minutes to over two years. They can be produced in the atmosphere from 

other HAPs and non-HAPs, for example isoprene. They are temporally variable having 

large diurnal variations such as secondary formaldehyde and acetaldehyde. Some HAPs 

are produced and destroyed in a cyclical set of chemical reactions involving VOC, OH•, 

NO3•, O3, and sunlight. They are spatially variable, both vertically and horizontally. 

Finally, they exit as gases, particles, both gases and particles, or in aqueous phase. As a 

result, differences in some HAPs and VOC emissions and weather patterns contribute to 

hourly, daily, seasonal, and annual differences in HAPs concentrations from urban to 

urban area. 

 

The HAPs ambient concentrations and the health risk assessment can be improved by 

using a model that better simulates the transport and fate of these compounds, such as the 

state-of-art Community Multi-scale Air Quality model (Models-3/CMAQ) (Byun and 

Ching, 1999).   
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1.1 OBJECTIVE 

 

The overall objective of this study was to develop a model protocol to assess the public 

health risk caused by the chronic exposure to the mobile source air toxics (MSATs) on an 

urban to regional area, based on different emissions scenarios by linking the annual air 

toxics concentrations predicted by the advanced air quality model Models-3/CMAQ, with 

the risk factors associated to cancer and non-cancer effects. 

 

To demonstrate the system’s effectiveness, this study was done on 1, 3-butadiene, 

benzene, formaldehyde, acetaldehyde, acrolein, and DPM, and was applied to Nashville, 

Davidson County, Tennessee, using available urban air toxics monitoring data. 

 

The advantage of the proposed modeling approach is that it can be used as a predictive 

tool to help air quality policy and decision-making. For example, this protocol can be 

applied to estimate the effect of the new non-road diesel regulations over future 

scenarios, the effect to use hybrid vehicles, and the emission reduction strategies of open 

burning sources, among other air quality strategies. 
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2.0 LITERATURE REVIEW 

 
2.1 AIR TOXICS 

 

2.1.1 Overview 

 

The U.S. EPA classifies pollutants present in the ambient air in two parts; criteria 

pollutants and HAPs.  The 1990 Clean Air Act Amendment (CAAA) defines 188 

chemicals as HAP (U.S. EPA, 2002d). According to the CAAA, these HAPs “present, or 

may present, through inhalation or other routes of exposure, a threat of adverse human 

health effects (including, but not limited to, substances which are known to be, or may 

reasonably be anticipated to be, carcinogenic, mutagenic, teratogenic, neurotoxic, which 

cause reproductive dysfunction, or which are acutely or chronically toxic) or adverse 

environmental effects whether through ambient concentrations, bioaccumulation, 

deposition, or otherwise….” They include pollutants like volatile organic compounds 

(VOCs), metals, other particles, gases adsorbed onto particles, diesel particulate matter 

(DPM), semi-volatile organic compounds (SVOCs), organochlorine compounds, and 

others HAPs. About 70% of the pollutants classified as HAPs fall into the category of 

VOCs (Suh et al., 2000). These compounds are the main components in atmospheric 

reactions that form ozone and other secondary pollutants, like formaldehyde and 

acetaldehyde (Seinfeld and Pandis, 1998; Woodruff et al., 1998 and 2000; Atkinson, 

2000 and 2003; Pratt et al., 2000; Tam and Neumann 2004; Bloss et al., 2005). While the 

harmful effects of air toxics are of particular concern in areas closer to where they are 
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emitted, they can also be transported and affect the ecosystem, the health, and welfare of 

populations in other geographic areas (Seigneur et al., 2003; Chenier, 2003; Efroymson 

and Murphy, 2001). Some can persist for considerable time in the environment and/or 

bioaccumulate through the food chain. This kind of process also affects other organisms, 

generating a sequence of bioaccumulation steps that occur along a food web, called 

biomagnification (Offenberg et al., 2005; Baird 2001). 

 

U.S. EPA identified 33 of the 188 air toxics listed in the CAAA, called urban air toxics 

(UATs), that present the greatest threat to public health in the largest number of urban 

areas (U.S. EPA, 1999a). At the same time, the agency compared the lists of compounds 

identified in the motor vehicle emission databases and studied them with the toxic 

compounds listed in the Integrated Risk Information System, IRIS. Thus, U.S. EPA 

identified 21 MSATs (U.S. EPA, 2000 and 2001a), each of which has the potential to 

cause serious adverse health effects as reflected in IRIS and in the ongoing agency 

scientific assessments. This list, shown in Table 2-1, includes various volatile organic 

compounds, VOCs, and metals, as well as diesel particulate matter, and diesel exhaust 

organic gases, collectively called DPM + DEOG.  

 

Mobile sources are one category of air toxic emission sources most relevant to human 

activities in industrialized societies. According to the U.S. EPA definition for emission 

inventory purposes, mobile sources include highway vehicles, non-road mobile sources, 

aircraft, and locomotives. Recreational marine equipment and commercial marine vessels 

are also classified as non-road mobile sources (U.S. EPA, 2005a).  
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Table 2-1. List of EPA Mobile Source Air Toxics (Reprinted from U.S EPA, 2001a) 

Acetaldehyde Diesel Particulate Matter + Diesel 

Exhaust Organic Gases (DPM + 

DEOG) 

MTBE 

Acrolein Ethylbenzene Naphthalene 

Arsenic Compounds Formaldehyde Nickel Compounds 

Benzene n–Hexane POM * 

1,3-Butadiene Lead Compounds Styrene 

Chromium Compounds Manganese Compounds Toluene 

Dioxin/Furans Mercury Compounds Xylene 

*  Polycyclic Organic Matter includes organic compounds with more than one 

benzene ring, and which have a boiling point greater than or equal to 100°C. 

 

 

Concern about mobile source emissions has been expressed since the 1950s. Hundreds of 

chemical compounds have been identified in mobile source emissions. Since the mid 

1980s, a variety of studies have documented toxic air emissions from mobile sources as a 

major contributor to overall health risk (U.S. EPA, 1990). 

 

2.1.2 Air Toxics and Health Problems of Concern 

 

People who are exposed to toxic air pollutants at sufficient concentrations and for enough 

time may increase their risk of getting cancer (Tam and Neumann, 2004; Reynolds et al, 

2003; Lloyd and Cackette, 2001; Partt et al, 2000; Morello-Frosch et al., 2000; Woodruff 

et al., 1998) or experiencing other serious health effects or premature mortality, such as 
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asthma (Kleeberger and Peden, 2005; Dolinoy and Miranda, 2004; Leikauf, 2002; 

Weisel, 2002; Delfino, 2002; Peden, 2002) chronic obstructive pulmonary disease 

(COPD) (Biswas and Wu, 2005; Groneberg and Chung, 2004; White et al., 2003), and 

cardiovascular disease (CVD) (Krewski et al, 2005a; Delfino et al., 2005; Sioutas et al., 

2005; Mills et al., 2005; Zanobetti and Schwartz, 2005; Pope et al., 2002, 2004a and 

200b; Brunekreef and Holgate, 2002), among others. Depending upon which air toxics an 

individual is exposed to, these health effects can include damage to the immune system, 

as well as neurological, reproductive, developmental, and cardio respiratory problems. 

The evidence indicates that some air toxics may disturb the endocrine system; in some 

cases this happens by pollutants either changing or blocking the action of natural 

hormones. Health effects associated with endocrine disruption include reduced male 

fertility, birth defects, and breast cancer (Baird, 2001). The evidence continues to 

associate air pollution with numerous adverse health effects, including mortality and 

morbidity, especially DPM. Altered respiratory symptoms, altered pulmonary function, 

bronchodilator usage, school or work absence, and hospital admissions increase in 

association with exposures to air pollution (U.S. EPA, 2005b). Although local sources are 

difficult to evaluate rigorously, and long-range transport is recognized to influence 

ambient concentrations, local sources can augment adverse effects. For example, the 

Harvard Six-Cities study and its reanalysis found higher mortality in Steubenville, Ohio, 

and St. Louis, Missouri, locations where the air quality is influenced more by regional 

stationary sources mixed with long-range transport processes, than in Watertown, 

Massachusetts, or Kingston/Harriman, Tennessee, locations influenced almost solely by 

long-range transport processes (Krewski et al., 2005b and 2005c; Dockery et al., 1993).  
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Because air pollution is a complex mixture, several investigators have postulated that any 

single exposure variable cannot be solely responsible for observed adverse effects 

(Williams, 2004; Carpenter et al., 2002; Leikauf, 2002). In fact, people are exposed to 

mixtures in the real world, not single chemicals, and to multiple exposure pathways. 

Although several air toxics may have totally independent effects, in many cases two 

compounds may act at the same site in ways that could be either additive or non-additive 

impacts (Carpenter et al., 2002), and complex interactions or synergistic effects may 

occur where the effects of two or more substances together are higher than the sum of 

either effect alone (Kinney et al., 2002). So far, scientists have not estimated the effects 

or cancer risk of the HAPs mixtures on human health, which is the reason why in most of 

the research an additive effect has been assumed (U.S. EPA, 2005b); Tam and Neumann, 

2004; Sapkota et al., 2003; Leikauf et al., 2002; Winebrake et al., 2001; Pratt et al., 2000; 

Woodruff et al., 2000; Morello-Frosch et al., 2000; U.S. EPA, 1990). 

  

Congress did expect that U.S. EPA would be able to estimate the risk to public health 

from air toxics, mainly for urban areas. However, data on outdoor concentrations of air 

toxics are not available for many communities. Of the 188 HAPs, only a handful have 

information on human health effects, derived primarily from animal and occupational 

studies, except fine particulate matter, to which several epidemiological studies have 

demonstrated strong linkage with lung cancer, COPD, CVD, asthma, and premature 

deaths (Krewski et al., 2005a; Delfino et al., 2005; Zanobetti and Schwartz, 2005; Sioutas 

et al., 2005; Schultz et al., 2005; Riedl et al., 2005; Pope et al., 2004a; Adonis et al., 

2003a and 2003b; Pandya et al., 2002; Lloyd and Cackette, 2001; Castranova et al., 2001; 
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Lipsett and Campleman, 1999; CalEPA, 1998; Steenland et al., 1998). Lack of consistent 

monitoring data on ambient air toxics makes it difficult to assess the extent of low-level, 

chronic, ambient exposures to HAPs that could affect human health, and limits attempts 

to prioritize and evaluate policy initiatives for emissions reduction. One study did attempt 

to estimate the public health risk from these air toxics (Woofruft et al., 1998), in which 

approximately 10% of all census tracts had estimated concentrations of one or more 

carcinogenic urban air toxics greater than 1 in 10,000 risk level. 

 

2.1.2.1 Cancer Risk 

 

Cancer describes a group of related diseases that affect a variety of organs and tissues.  

Cancer results from a combination of genetic damage and non-genetic factors that favor 

the growth of damaged cells. The U.S. EPA’s 2005 Guidelines for Carcinogen Risk 

Assessment (U.S. EPA, 2005b) provides guidance on hazard identification for 

carcinogens. The approach recognizes three broad categories of data: (1) human data 

(primarily epidemiological); (2) results of long-term experimental animal bioassays; and 

(3) supporting data, including a variety of short-term tests for genotoxicity and other 

relevant properties. In hazard identification of carcinogens under the 2005 guidelines, the 

human data, animal data, and "other" evidence are combined to characterize the weight of 

evidence regarding the agent’s potential as a human carcinogen into one of several 

hierarchic categories (U.S. EPA, 2005b): 
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Group A (human carcinogen): These are HAPs compounds for which human data are 

sufficient to demonstrate a cause and effect relationship between exposure and cancer 

incidence (rate of occurrence) in humans. In the national-scale assessment, the 7 air 

toxics classified as human carcinogens are: arsenic compounds, benzene, 1,3-butadiene, 

chromium compounds (VI), coke oven emissions, nickel compounds, and vinyl chloride.  

Group B (probable human carcinogen):  

• Group B1: These are HAPs compounds for which limited human data suggest a 

cause and effect relationship between exposure and cancer incidence (rate of 

occurrence) in humans. In the national-scale assessment, the 5 air toxics classified as 

probable (B1) human carcinogens are: acrylonitrile, beryllium compounds, cadmium 

compounds, ethylene oxide, and formaldehyde. 

• Group B2: These are HAPs compounds for which animal data are sufficient to 

demonstrate a cause-and-effect relationship between exposure and cancer incidence 

(rate of occurrence) in animals, and human data are inadequate or absent. In the 

national-scale assessment, the 15 air toxics classified as probable (B2) human 

carcinogens are: acetaldehyde, carbon tetrachloride, chloroform, 1,3-dichloropropene, 

ethylene dibromide, ethylene dichloride, hexachlorobenzene (HCB), hydrazine, lead 

compounds, methylene chloride, PCBs, polycyclic organic matter (POM), 

perchloroethylene, propylene dichloride, trichloroethylene.  

Group C (possible human carcinogen): These are HAPs compounds for which animal 

data are suggestive to demonstrate a cause-and-effect relationship between exposure and 
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cancer incidence (rate of occurrence) in animals. In the national-scale assessment, the 4 

air toxics classified as possible human carcinogens are: acrolein, mercury compounds, 

quinoline and 1,1,2,2-tetrachloroethane. Because unit risk estimates have not been 

developed for acrolein and mercury compounds, EPA has not estimated cancer risk for 

these pollutants.  

 

Group D (not classifiable as to human carcinogenicity): These are HAPs compounds 

for which human and animal data are inadequate to either suggest or refute a cause-and-

effect relationship for human carcinogenicity. In the national-scale assessment, only 

manganese compounds were considered to be not classifiable as to human 

carcinogenicity.  

 

Group E (evidence of noncarcinogenicity): These are HAPs compounds for which 

animal data are sufficient to demonstrate the absence of a cause-and-effect relationship 

between exposure and cancer incidence (rate of occurrence) in animals. In the national-

scale assessment, no air toxics were classified as having evidence of noncarcinogenicity.  

 

Air toxics contribute to cancer risk (Tam and Neumann, 2004; Reynolds et al., 2003; 

Lloyd and Cackette, 2001; Partt et al.,, 2000; Morello-Frosch et al., 2000; Woodruff et 

al., 1998; U.S. EPA, 2002c), where the main kinds of cancer are lung cancer, leukemia, 

and nasal cancer. A San Francisco Bay Area Air Toxics study by the Bay Area Air 

Quality Management District (BAAQMD) estimated that 1,3-butadiene, benzene, 

formaldehyde, and diesel exhaust particulate matter are responsible for more than 90% of 
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the potential excess cancer risk associated with urban air toxics  (U.S. EPA, 2001a). U.S. 

EPA and other agencies have conducted a number of air toxics exposures and risk 

assessment screening studies in the last decade, as well as compiled and analyzed 10 

reports, 14 studies, and 2 databases in a document entitled Cancer Risk from Outdoor 

Exposure to Air Toxics (U.S.EPA, 1990). These reports and studies included a total of 65 

source categories, 90 different pollutants, and covered varying geographic areas, ranging 

from city-specific to nationwide. The results of the U.S.EPA’s analysis showed that many 

types of sources contribute to annual cancer incidence, but the largest contributor found 

in the document was the motor vehicle source category. According to the U.S. EPA’s 

estimation, 56% of the total cancer cases were attributed to direct emissions from motor 

vehicles. In addition to the direct emissions, motor vehicles contributed another 2% of the 

cancer incidences from secondary formaldehyde. It should be noted that approximately 

35% of the contribution of secondary formaldehyde was from motor vehicles. Therefore, 

motor vehicles contributed approximately 58% of the total nationwide annual cancer 

incidence from exposure to outdoor air toxics (U.S.EPA, 1990). In contrast to motor 

vehicles, point sources were only estimated to contribute approximately 25% to the total 

annual cancer incidence. 

 

A preoccupation with the special vulnerability of children to pollutants in the 

environment has grown over the last decade. According to the body weight, children 

breath more air, drink more water, and eat more food than adults, increasing relative 

exposure to pollutants such as air toxics. The risk assessment for children from birth to 

age one and from birth to age 18 for 10 air toxics in California (Reynolds et al., 2003) 
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indicated that in all studied places it exceeded the recommended maximum of one-in-one 

million cancer risk by age one for three pollutants; 1,3-butadiene, benzene, and diesel 

particulates.  

 

A. Lung Cancer 

 

There are two major types of lung cancer: small cell lung cancer (SCLC) and non-small 

cell lung cancer (NSCLC). Sometimes a lung cancer may have characteristics of both 

types, which are known as mixed cell/large cell carcinoma (American Lung Association, 

2005) The incidence and mortality attributed to lung cancer has been rising steadily since 

the 1930’s in the U.S., mainly due to the increasing popularity of cigarette smoking, 

which causes between 85 and 90% of lung cancer cases, and therefore, lung cancer has 

become the leading cause of cancer mortality and morbidity in the U.S. It is estimated 

that these were 169,400 new cases of lung cancer with 154,900 deaths in 2002, 

accounting for 28% of all cancer deaths (American Lung Association, 2005). 

 

During a typical day, the average adult inhales about 10,000 L air (Alberg et al., 2003). 

Consequently, even the carcinogens that are present in the air at low concentrations are of 

concern as a risk factor for lung cancer. Extrapolation of the risks associated with 

occupational exposures to the lower concentration of carcinogens in polluted ambient air 

leads to the conclusion that a small proportion (1-2%) of lung cancer cases could be due 

to air pollution. Thus, air pollution could cause in the U.S. an estimated of 3,388 new 

cases of lung cancer and 3,098 deaths in 2002 (American Lung Association, 2005). 
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In considering respiratory carcinogenesis, the constituents of air pollution will vary by 

locale and over time depending on the pollution sources (Alberg et al., 2003). Thus, 

epidemiologic investigations of air pollution and lung cancer have been limited by the 

difficulty of estimating exposure. Nevertheless, descriptive evidence is consistent with a 

role for air pollution in causing lung cancer. Urbanization and lung cancer mortality are 

linked (Buffler et al., 1988; Short et al., 2002; Alberg et al., 2003). This association could 

increase from differences in the distributions of other lung cancer risk factors, such as 

smoking and occupational exposures, by degree of urbanization. Adjustment for these 

factors may considerably attenuate the effect of urban location, but an urban effect 

persists in a number of studies (Samet et al., 1999). Air pollution has been assessed as a 

risk factor for lung cancer in both case-control and cohort studies, especially for 

particulate matter. These studies have been reviewed in detail elsewhere (Krewski et al., 

2005a; Lipsett and Campleman, 1999; Samet et al., 1999; CalEPA, 1998; Steenland et al., 

1998; Speizer et al., 1994).  

 

B. Leukemia 

 

With the exception of a few established risk factors including benzene and alkylating 

agents, which account for a fraction of cases, little is known about the causes of 

leukemia. It is estimated that each year, approximately 30,800 individuals will be 

diagnosed with leukemia in the United States and 21,700 will die of the disease (Xie et 

al., 2003). 
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It has been suggested that these may be an association between increased childhood 

leukemia rates and high HAPs exposure (Reynolds et al., 2003), but studies involving 

more comprehensive exposure assessment and individual-level exposure data will be 

important for elucidating this relationship. Reynolds evaluated the relationship between 

childhood cancer rates and exposure scores for 25 potentially carcinogenic HAPs emitted 

from mobile, area, and point sources and from all sources combined in California. Using 

Poisson regression Reynolds found elevated rate ratios RRs and a significant trend with 

increasing exposure level for childhood leukemia in tracts ranked highest for exposure to 

the combined group of 25 HAPs (RR = 1.21; 95% confidence interval, 1.03, 1.42) and in 

tracts ranked highest for point-source HAP exposure (RR = 1.32; 95% confidence 

interval, 1.11, 1.57).  According to U.S. EPA, benzene and 1,3-butadiene produce 

leukemia (U.S.EPA, 1998 and 2002e).  

 

2.1.2.2 Non-Cancer Risk 

 

Cancer is commonly used in risk assessment modeling and allows mathematical 

comparisons of risk estimates among compounds; non-cancer risks also are used in 

modeling and include reproductive, neurotoxic, and cardio respiratory effects. Among the 

cardio respiratory effects, the most important chronic diseases are asthma, COPD, and 

CVD (Delfino et al., 2005; Krewski et al., 2005a; Zanobetti and Schwartz, 2005; Sioutas 

et al., 2005; Schultz et al., 2005; Riedl et al., 2005; Pope et al., 2004a; Leikauf et al 2002; 

Delfino et al., 2002). 
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A. Asthma 

 

Asthma has a high prevalence in the United States (Delfino et al., 2005; Leikauf et al., 

2002), and persons with asthma may be at added risk from the adverse effects of HAPs 

(Luttinger et al., 2003). Complex mixtures, fine particulate matter, and tobacco smoke 

have been associated with respiratory symptoms and hospital admissions for asthma. The 

toxic ingredients of these mixtures are HAPs. Certain air toxics are occupational asthma 

precursors, whereas others may act as adjuncts during sensitization. HAPs may 

exacerbate asthma because, once sensitized, individuals can respond to remarkably low 

concentrations, and irritants lower the bronchoconstrictive threshold to respiratory 

antigens (Leikauf et al., 2002).  

 

Adverse responses after ambient exposures to complex mixtures often occur at 

concentrations below those producing effects in controlled human exposures to a single 

compound. In addition, certain HAPs that have been associated with asthma in 

occupational settings may interact with criteria pollutants in ambient air to aggravate 

asthma (Leikauf et al., 2002). Based on these observations and past experience with 188 

HAPs, a list of 19 compounds that could have the highest impact on the induction or 

exacerbation of asthma was developed by Leikauf.  

 

Nine additional compounds were identified that might intensify asthma based on their 

irritancy, respirability, or ability to react with biological macromolecules. Although the 

ambient levels of these twenty-eight compounds are largely unknown, estimated 
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exposures from emissions inventories and limited air monitoring suggest that aldehydes, 

especially acrolein and formaldehyde, and metals, especially nickel and chromium 

compounds, may have possible health risk indices sufficient for additional attention.  

According to Leikauf, the most important HAPs that are suspected of inducing or 

exacerbating asthma are acetaldehyde, acrolein, benzene, cadmium compounds, 

chromium compounds, coke oven emissions, ethylene oxide, formaldehyde, hydrazine, 

manganese compounds, and nickel compounds. According to the National Center for 

Health Statistics (CDC, 2003), in 2000 there were 10.4 million outpatient asthma visits to 

private physician offices and hospital clinics, or 379 per 10,000 people (Figure 2.1).  

 

Children aged from newborn to seventeen years had 4.6 million visits and an outpatient 

visit rate of 649 per 10,000, and adults eighteen years and over had a rate of 285 per 

10,000. Blacks had an office visit rate 40% higher than whites, and females a 10% higher 

visit rate compared to males. There were 1.8 million visits to emergency departments 

(EDs) or 67 per 10,000 people (Figure 2.2).  Children aged from newborn to seventeen 

years had over 728,000 ED visits, a rate of 104 per 10,000. The ED visit rate was highest 

among children aged from newborn to four years, at 180 per 10,000. Adults 18 years and 

over had 54 ED visits per 10,000. The ED visit rate for blacks was 125% higher than that 

for whites, and for females, about 30% higher than for males. There were 465,000 asthma 

hospitalizations or 17 per 10,000 people (Figure 2.3).  
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Asthma outpatient visits, 2000
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Figure 2.1. Asthma Outpatient Visits, 2000 (Reprinted from CDC, 2001a) 
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Figure 2.2. Asthma ED visits, 2000 (Reprinted from CDC, 2001a) 
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Asthma hospitalizations, 2000
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Figure 2.3. Asthma Hospitalizations, 2000 (Reprinted from CDC, 2001a) 

 

Among children from newborn to seventeen years, there were 214,000 hospitalizations 

(30 per 10,000). Hospitalizations were highest among children from newborn to four 

years who had 67 hospitalizations per 10,000 populations. The asthma hospitalization 

rate for blacks was 220% higher than for whites. Females had a hospitalization rate 25% 

higher than males. In 2000, 4,487 people died from asthma, or 1.6 per 100,000 people 

(Figure 2.4). Among children, asthma deaths are rare. In that year, 223 children aged 

from newborn to seventeen years died from asthma, or 0.3 deaths per 100,000 children, 

compared to 2.1 deaths per 100,000 adults aged 18 and over. Non-Hispanic blacks were 

the most likely to die from asthma and had an asthma death rate over 200% higher than 

non-Hispanic whites and 160% higher than Hispanics. Females had an asthma death rate 

about 40% higher than males. 

 



 23

Asthma deaths, 2000
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Figure 2.4. Asthma Deaths, 2000 (Reprinted from CDC, 2001a) 

 

In addition, the average annual rates for asthma cases per 100,000 populations were 7,648 

for Tennessee and 7,573 nationwide in 2000. Over 301,000 adults and over 71,000 

children suffer from asthma every year in Tennessee (American Lung Association, 2003). 

Direct health care costs for asthma in the United States total more than $8.1 billion 

annually; indirect costs (lost productivity) add another $4.6 billion for a total of $12.7 

billion (American Lung Association, 2005). Pharmaceutical costs, or medications, 

represent the largest direct cost (Cisternas, 2003). Thus, asthma is in the top tier of 

diseases targeted for disease management by managed care organizations because of its 

high cost, and persons with asthma could be at added risk from the adverse effects of 

hazardous air pollutants (HAPs) (Luttinger et al., 2003). 
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B. Chronic Obstructive Pulmonary Disease 

 

Another important chronic disease in the United States is COPD, the fourth leading cause 

of death, illness, and disability (Figure 2.5). COPD includes emphysema and chronic 

bronchitis diseases that are characterized by obstruction to air flow. Emphysema and 

chronic bronchitis frequently coexist. COPD does not include other obstructive diseases 

such as asthma. According to the Centers for Disease Control and Prevention (CDC) and 

the National Center for Health Statistics (Anderson, 2002), COPD claimed the lives of 

119,000 deaths, 726,000 hospitalizations, and 1.5 million hospital emergency department 

visits in the United States during 2000. Anderson indicated that in Tennessee COPD also 

is fourth leading cause of death (Figure 2.6).  

 

Leading Causes of Deaths in US,
2000

Adults Aged 25 Years and Older

Other causes 28.0%

Diabetes 3.0%
COPD 4.0%

Cancer 24.0%

CVD 41.0%

 

Figure 2.5 Leading Causes of Deaths in US, 2000 (Anderson, 2002) 
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Leading Causes of Deaths in
Tennessee, 2000

Adults Aged 25 Years and Older

Other causes 29.0%

Diabetes 3.0%
COPD 4.0%

Cancer 23.0%

CVD 41.0%

 

Figure 2.6. Leading Causes of Deaths in Tennessee, 2000 (Anderson, 2002) 

 

Smoking causes approximately 80 to 90 percent of COPD cases; a smoker is 10 times 

more likely than a nonsmoker to die of COPD. The American Lung Association in 2003 

published that the occupational exposure to certain industrial pollutants and urban 

exposure to certain air pollutants increases the odds for COPD. This report indicated that 

a recent study found that the fraction of COPD attributed to work was estimated as 

19.2%, while the fraction for air toxics was unknown. An estimated 11 million people 

were diagnosed with chronic bronchitis in 2001. Females have significantly higher rates 

of chronic bronchitis than males. In 2001, 3.7 million males had a diagnosis of chronic 

bronchitis compared to 7.5 million females. Finally, an estimated 3 million Americans 

have been diagnosed with emphysema sometime in their life. Of the emphysema 

sufferers, 57 percent are male and 43 percent are female (American Lung Association, 

2003). According to the Heart, Lung, and Blood Institute (U.S. DHHS, 2003), Tennessee 



 26

experienced high death rates from 1996 to 1998, between 41.6 and 45.5 per 100,000 

people (Figure 2.7). The annual cost to the nation for COPD is approximately $32.1 

billion, including healthcare expenditures of $18.0 billion and indirect costs of $14.1 

billion (Anderson, 2002). 

 

C. Cardiovascular Disease 

 

CVD is the leading cause of death in the United Stated. According to the American Heart 

Association’s Heart Disease and Stroke Statistics 2003 Update, in 2000 CVD caused 

nearly 40% of all deaths (Figures 2.5 and 2.6), and was listed as primary or contributing 

cause in about 60%. Furthermore, although overall death rates from heart disease and 

stroke declined in the 1980s and 1990s, heart failure emerged as a major chronic disease 

for older adults. According to the American Heart Association, 61,800,000 Americans 

had one or more forms of CVD in 2000, 50,000,000 high blood pressure, 12,900,000 

coronary heart disease, 7,600,000 myocardial infarction, 6,600,000 angina pectoris, and 

stroke 4,700,000. Cardiovascular diseases claimed 945,836 lives in 2000.  

 

Almost 150,000 Americans killed by CVD were under age 65. From 1990 to 2000 death 

rates from CVD declined 17.0 percent. Despite this decline in the death rate, in the same 

10-year period the actual number of deaths declined only 2.5 percent.  

Also, heart disease is the leading cause of death in Tennessee, which accounted for 

16,174 deaths or approximately 29% of the state’s deaths in 2000. The death rate was 

292.3 per 100,000 of people (CDC, 2003). 
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Figure 2.7. Age-Adjusted Death Rates* for COPD by State, U.S., 1996-1998 

(Reprinted from U.S. DHHS, 2003) 
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In addition to age, traditional risk factors for CVD include lifestyle (such as smoking, 

physical inactivity, and diet), serum lipids, gender, race, and family history (genetics). 

However, these risk factors do not fully explain the etiology or incidence of CVD. Recent 

and strong evidence have indicated that exposure to air pollutants is also a CVD risk 

factor (Riedl et al., 2005; Delfino et al., 2005; Peters, 2000, 2001 and 2002; Lee et al., 

2002; Oftedal et al., 2003; Lin et al., 2003; Nemmar et al., 2002; Le Tertre et al., 2002; 

Yoshizawa et al., 2002; Brunekreef, 2002; Brook et al., 2002; Donaldson et al., 2001; 

Ghio and Devlin, 2001; Dockery, 2001; Morris, 2001; Braga, 2001; Schwartz, 1999 and 

2001; Moolgavkar, 2000; Peters et al., 2000).  

 

The strongest and most consistent association between air pollution exposure and 

cardiovascular morbidity and mortality has been seen for ambient particulate matter (PM) 

and diesel exhaust (DE). DE consists of a complex mixture of gaseous and particle-bound 

chemicals. Chemicals present in the gaseous portion of DE include carbon monoxide and 

dioxide, nitrogen monoxide and dioxide, aldehydes, benzene, and polycyclic aromatic 

hydrocarbons (PAHs) (Madl et al., 2002). The particulate phase of diesel exhaust called 

DPM is composed of a solid carbonaceous core with PAHs, nitr-PAHs, and 

approximately 1800 other chemicals adsorbed to the surface of particles such as benzene, 

formaldehyde, and etc. (U.S. EPA, 2002c; Madl et al., 2002). 

 

Large prospective epidemiologic studies have shown that living in areas with higher 

levels of ambient PM is associated with an increased risk of premature cardiopulmonary 

death, (Delfino et al., 2005; Zanobetti and Schwartz, 2005; Sioutas et al., 2005; Schultz et 
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al., 2005; Riedl et al., 2005; Pope et al., 2004a; Oftedal et al., 2003; Lin et al., 2003; Le 

Tertre et al., 2002; Yoshizawa et al., 2002; Brunekreef, 2002; U.S. EPA, 2002b; Brook et 

al., 2002; Dockery, 2001; Morris, 2001; Braga, 2001; Schwartz, 1999 and 2001; 

Moolgavkar, 2000; Peters et al., 2000). Likewise, PAHs such as benzo(a)pyrene have 

been shown in vitro to alter the redox environment in vascular walls, activating signaling 

pathways that can lead to proliferation of vascular smooth muscle cells, one of the 

hallmarks of atherosclerotic changes in the vessel wall. In addition, certain aldehydes, 

such as acrolein and 1, 3-butadiene, are cardiovascular toxicants and have been shown to 

induce proliferation of vascular smooth muscle cells as well. 

 

2.1.3 Air Toxics and Confounders 

 

Because cancer, asthma, COPD, and CVD are not single diseases, they do not have a 

single cause. Many causes or risk factors can contribute to a person’s chance of getting 

those diseases. Risk factors can include such things as age, race, sex, genetic factors, life 

style, diet, virus, and exposure to chemicals, radiation, and tobacco. Genetic plays a large 

role for many cancers, such as breast and colon cancer, as well as on asthma and CVD. 

This means that a family’s health history can be a risk factor for some types of cancers. 

The same occurs for asthma and CVD (Leikauf et al., 2002; Alberg et al., 2003). 

 

Chronic lung cancer and respiratory diseases are due mainly to tobacco smoking, 

environmental tobacco smoke (ETS), HAPs, particulate matter, radon, ozone, and genetic 

problems (Leikauf et al., 2002; Beeson et al., 1998; U.S. EPA, 2001a; Wu et al., 2001; 
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Pope at al., 2002; Alberg et al., 2003; Delfino, 2002; Cohen, 2000; American Lung 

Association, 2005). For this reason it is necessary to know which is the contribution of 

HAPs or MSATs on those diseases. There is enough evidence that indicates that the 

overall contribution of HAPs on total cancers is 0.2% (ACS, 2003), and for lung cancer 

HAPs contribute between 1 and 2% (Alberg et al., 2003), however, for asthma, COPD, 

and CDV it is not clear how much is an air toxics contribution (Delfino, 2002; Leikauf, 

2002). Analyzing some air toxics, it is possible to establish that for the total HAPs, DPM 

and 1, 3-butadiene are more important for cancer development (Woodruff, 2000; 

CalEPA, 1998). Whereas, acrolein, formaldehyde, and DPM are more important for 

asthma (Table 2-2) (Leikauf et al., 2002). One of the most important confounders for 

lung cancer is ETS, which is a mixture of exhaled mainstream and side-stream smoke 

consisting of over 4,000 chemicals. 

 

Table 2-2. HAPs Contribution on Asthma and Total Cancer Cases 

Contribution Air Toxic 

Asthma1 Cancer2

Benzene 1% 7% 

1,3-Butadiene N/A 17% 

Formaldehyde 14% 8% 

Acetaldehyde 3%  N/A 

DPM 13% 40% 

Acrolein 61%  N/A 

(1): Leikauf et al., 2002 
(2): Woodruff, 2000; CalEPA, 1998 
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ETS contains several human respiratory carcinogens (including benzo[a]pyrene, 

benz[a]anthracene, other polycyclic aromatic hydrocarbons, 4-aminobiphenyl, and 

nitrosadimethylamine) and irritants (including formaldehyde, acrolein, other aldehydes, 

cadmium, and other metals) (Leaderer et al., 1990). Twenty-nine of the 49 major 

components in ETS are HAPs (Leikauf, 2002). Although combustion is a major source of 

compounds in both ETS and HAPs, the physical and chemical properties of ETS differ 

from those of the ambient mixture of gaseous and particulate HAPs. Air toxics account 

for most of the toxicity of ETS because most respiratory irritants that are contained in 

ETS are HAPs (Leikauf, 2002). The levels of air toxics present in ETS are greater than in 

urban air. 

 

2.1.4 Air Toxics Emissions and Ambient Concentrations 

 

2.1.4.1 Air Toxics Emissions in the U.S. 

 

The U.S. EPA compiles a HAPs inventory called the National Emissions Inventory (NEI) 

each 3 years, which has quantitative information concerning the emissions mass of air 

toxics emitted into the atmosphere from major (sources that emit or have the potential to 

emit 10 tons per year or more of any listed HAP or 25 tons per year or more of a 

combination of listed HAPs), area (sources that emit or have the potential to emit less 

than 10 tons per year of a single HAP and less than 25 tons per year of all HAPs 

combined), on-road, and non-road sources (U.S. EPA, 2005a) U.S. EPA has compiled 
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both a baseline period (1990–1993), as well as 1996 and 1999 emissions estimates for the 

188 air toxics as defined in the Clean Air Act (CAA). Actually, the U.S. EPA is 

compiling the NEI 2002. The NEI 1999 version 3 contains the most complete, up-to-date 

air toxics emissions estimates available. These emission summaries do not include diesel 

particulate matter (U.S. EPA, 2005a).  

 

Based on NEI 1999 version 3, the nation wide 188 HAPs and 33 UATs emissions are 

relatively equally divided between the four types of sources, where the mobile sources 

account by the 43.8 and 45% respectively (Figures 2.8 and 2.9).  However, this 

distribution varies from state to state and city to city (U.S. EPA, 2005a). 

 

188 HAPs Emissions, 1999

10,170 Mlbs

Major 25.0%

Area 31.2%

Onroad 28.5%

Nonroad 15.3%

 

 

Figure 2.8. 188 National HAPs Emissions, 1999 (U.S. EPA, 2005a) 



 33

33 UATs Emissions, 1999

2,103 Mlbs
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Area 43.3%
Onroad 29.5%

Nonroad 15.5%

 

Figure 2.9. 33 National UATs Emissions, 1999 (U.S. EPA, 2005a) 

 

Mobile sources account by 36.5 and 56.8% on the 188 HAPs and 33 UATs respectively 

in Tennessee, as shown in Figures 2.10 and 2.11 (U.S. EPA, 2005a). While mobile 

sources account by 49 and 54.4 % on the 188 HAPs and 33 UATs respectively for 

Davidson County, as illustrated in Figures 2.12 and 2.13 (U.S. EPA, 2005a). It indicates 

that strong regulations and cleaner technologies on mobile sources is the main challenge 

to reduce those UATs. 

 

The relative importance of on-road emissions as a participant in air pollutants formation 

depends in large part on the total vehicle miles traveled (VMT) per day in a given area 

(Davis et al., 2002), since VMT growth rate is higher than the nationwide annual 

population growth 1970-1999, as shown in Figures 2.14 and 2.15 (U.S. DOT, 2005).  
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188 TN HAPs Emissions, 1999
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Figure 2.10. 188 Tennessee HAPs Emissions, 1999 (U.S. EPA, 2005a) 

33 TN UATs Emissions, 1999
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Figure 2.11. 33 Tennessee UATs Emissions, 1999 (U.S. EPA, 2005a) 
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188 Davidson County HAPs
Emissions, 1999
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Figure 2.12. 188 Davidson County HAPs Emissions, 1999 (U.S. EPA, 2005a) 

 

33 Davidson County UATs
Emissions, 1999
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Nonroad 14.0%

 

Figure 2.13. 33 Davidson County UATs Emissions, 1999 (U.S. EPA, 2005a) 
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Percentage of Change (1970-99)
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Figure 2.14. Percentage of Change (1970-99) (Reprinted from U.S. DOT, 2005) 
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Travel, Economic Growth and Population (1970-99)
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Figure 2.15. VMTs, Economic Growth (GDP), and Population (1970-99) (Reprinted 

from U.S. DOT, 2005) 

 

In the future, the relative importance of on-road emissions will be affected by the growth 

in VMT, which results in increased emissions, and the implementation of motor vehicle 

emissions controls or the use of new fuels, which will reduce the emissions associated 

with each mile traveled (U.S. EPA, 2001a).  

 

Current VMT data compiled by the U.S. Department of Transportation, DOT, provides 

the basis for estimating current emissions, and some states have estimated the growth in 

VMT in order to predict future on-road emissions, as is the case in Tennessee (Davis et 
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al., 2002), where the statewide annual VMT growth rate was estimated to be 3.9% from 

1990 to 1999, which is higher than the statewide annual population growth.  

 

This is consistent with the fact that the state of Tennessee was the thirteenth and 

fourteenth in on-road 188 HAPs and 33 UATs emissions respectively of the U.S. in 1999 

NEI version 3. Whereas, Tennessee was the fifth and fourteenth in major sources 188 

HAPs and 33 UATs emissions respectively of the U.S. (U.S. EPA, 2005a). 

 

2.1.4.2 Air Toxics Monitoring Network in the U.S. 

 

The estimated air toxics concentrations in urban areas are typically twice as high as in 

rural areas (Axelrad et al., 1999), however, as air toxics have been of major concern only 

recently, limited monitoring data is available.  

 

A. Urban Air Toxics Monitoring Program 

 

Since 1987, U.S. EPA has sponsored the Urban Air Toxics Monitoring Program 

(UATMP) to characterize the composition and magnitude of urban air pollution through 

extensive ambient air monitoring (U.S. EPA, 2004a). The original intent of UATMP was 

to screen ambient air samples for concentrations of toxics VOCs. The UATMP is a year-

round sampling program collecting 24-hr integrated ambient air samples every 6 or 12 

days at urban sites in the contiguous U.S. and its territories.  
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The 6- or 12-day sampling schedule permits cost-effective data collection for 

characterization (annual-average concentrations) of toxic compounds in ambient air and 

ensures that sampling days are evenly distributed among the 7 days of the week to allow 

comparison of air quality on weekdays to air quality on weekends. Currently, there are 

about 59 air toxics monitoring sites in operation, which include 37 urban locations as 

shown in Figure 2.16 (U.S. EPA, 2004a).  Some monitors were placed near the centers of 

heavily populated cities (e.g., Denver, CO and Phoenix, AZ), while others were placed in 

moderately populated areas (e.g., Beulah, ND and Des Moines, IA). 

 

 

Figure 2.16. UATMP Network, 2003. (Reprinted from U.S EPA, 2004a) 
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In 1999, the U.S. EPA expanded the UATMP to provide for the measurement of 

additional HAPs to support Government Performance Results Act (GPRA) and the 

National Air Toxics Trends Stations (NATTS) (U.S. EPA, 2005c). The central goal of the 

NATTS network is to detect trends in high-risk air toxics. Among the 33 UATs, 25 

pollutants have sufficient historical data for 6-year trends assessment in some urban 

areas. Although these ambient air toxics data are only available for a limited number of 

urban areas, the results generally reveal downward trends for most monitored air toxics 

(U.S. EPA, 2002d and 2004a). The most consistent improvements are apparent for 

benzene (Fruin et al., 2001).  

 

All UATMP samples are analyzed in a central laboratory for concentrations of selected 

hydrocarbons, halogenated hydrocarbons, and polar compounds from the canister 

samples, carbonyl compounds from the cartridge samples, semivolatiles from the XAD-

2® thimbles, hexavalent chromium from pre-treated filters, and metal compounds from 

filters. At every UATMP monitoring location, the air sampling equipment is installed in a 

small temperature-controlled enclosure (usually a trailer or a shed) with the sampling 

inlet probe protruding through the roof. With this common setup, every UATMP monitor 

sampled ambient air at heights approximately 5 to 20 feet above local ground level. As 

part of the sampling schedule, site operators are instructed to collect duplicate samples 

(U.S. EPA, 2004a). 

 

In Tennessee, Nashville is the urban area included in the UATMP, which measures 33 

UATs in two monitors, East Nashville Health Clinic (EATN) and Lockeland Middle 
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School (LOTN), working since May and April of 2002 respectively (Figure 2.17). The 

EATN (47-037-0011) site is located on the roof of East Health Center, which is north 

(predominately downwind) of downtown Nashville and is a population-oriented site 

predominantly influenced by primarily commercial and mobile sources. Population 

residing within 10 miles of the monitoring station is 518,357.  

 

The LOTN (47-037-0023) site is a core site located on the roof of Lockland School, 

which is in the heart of downtown Nashville. This is also a population-oriented site 

influenced primarily by commercial and mobile sources. Population residing within 10 

miles of the monitoring station is 552,749. These sites were selected for the following 

reasons: these provided secure locations with the necessary electrical service, represented 

areas that were not in the immediate vicinity of large air pollution sources, and these were 

in the proximity and down wind from areas with the highest population density in 

metropolitan area. It is important to note that these sites are near substantial interstate 

routes and local traffic corridors, such as I-40. Air toxics concentrations at these sites 

would not be indicative of average concentrations throughout Nashville nor could 

specific conclusions be drawn from concentrations at these sites concerning 

concentrations at any other location. Actual concentrations may be higher adjacent to 

industrial facilities and may be lower in less densely populated areas. However, the 

results of the ambient monitoring at these sites provides concentrations to which the 

majority of the Nashville population would be exposed because monitoring occurred near 

areas with the densest population in Nashville, as shown in Figure 2.17 (Hissam, 2003). 
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Figure 2.17. Population Density and the Locations of Two Air Toxics Monitors in 

Davidson County, Tennessee (Reprinted from Hissam, 2003) 
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Since EATN and LOTN sites are relatively close each other, the UATMP monitoring 

data can be merged to represent the air toxics concentrations in Nashville. The available 

2002-2003 daily HAPs concentrations for benzene, formaldehyde, and acetaldehyde are 

illustrated in the Figures 2.18, 2.19, and 2.20, respectively (Source: Metropolitan Public 

Health Department of Nashville and Davidson County, 2004).  

 

These figures show seasonal effect on formaldehyde and acetaldehyde, whose 

concentrations are higher in summer season (June, July, August, and September). 

Benzene did not show a seasonal pattern. 
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Figure 2.18. 24-hr Benzene Concentration in Nashville, TN. From May 2002 to 

December 2003 
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Figure 2.19. 24-hr Formaldehyde Concentration in Nashville, TN. From May 2002 

to December 2003 
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Figure 2.20. 24-hr Acetaldehyde Concentration in Nashville, TN. From May 2002 to 

December 2003 
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B. Photochemical Assessment Monitoring Stations 

 

In accordance with the 1990 CAAA, the U.S. EPA has required more extensive 

monitoring of ozone and its precursors in areas with persistently high ozone levels 

(mostly large metropolitan areas). In these areas, the States have established ambient air 

monitoring sites called Photochemical Assessment Monitoring Stations (PAMS) (U.S. 

EPA, 2005d), which collect and report detailed data for VOCs, nitrogen oxides, ozone, 

and meteorological parameters. This program requires routine year-round measurement 

of nine air toxics: acetaldehyde, benzene, ethylbenzene, formaldehyde, n-hexane, styrene, 

toluene, xylenes, and 2, 2, 4-trimethlypentane. At the present time, the collection of 

current state and local air toxics monitoring data and PAMS data is limited in its 

geographic scope and it does not cover many air toxics for most states, including 

Tennessee. In addition, the sites are not necessarily at locations that represent the highest 

area-wide concentrations. Nevertheless, these can still be used to provide useful 

information on the trends in ambient air toxics. 

 

So far, the U.S.EPA is working together with state and local air monitoring agencies to 

build upon these sites to develop a monitoring network with the following objectives: to 

characterize air toxics problems on a national scale; to provide a means to obtain data on 

a more localized basis as appropriate and necessary, and to help evaluate air quality 

models (U.S. EPA, 2005c). However, there are a significant number of the 188 air toxics 

for which U.S. EPA does not yet have a monitoring method developed, like DPM and 

acrolein. For this reason, U.S. EPA is spending its resources on building up the air toxics 
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monitoring network, as is the case of the Air Toxics Data Archive (ATDA) (U.S. EPA, 

2005e). The ATDA web site is sponsored by the STAPPA/ALAPCO/USEPA Air Toxics 

Monitoring Subcommittee and its purpose is to provide users with the capability to 

browse and query existing air toxics monitoring data. Such analyses of these data will 

provide information about the spatial pattern, temporal profile, and general characteristics 

of various air toxic compounds from UATM, PAMs, and others programs (U.S. EPA, 

2005e). 

 

These measurements are used to derive trends in air toxics concentrations to help 

evaluate the effectiveness of air toxics reduction strategies. They also can provide data to 

support and evaluate dispersion and deposition models, one of them has been the 

Assessment System for Population Exposure Nationwide (ASPEN) (U.S. EPA, 2000b 

and 2002a), which has been used to estimate the national air toxics concentrations and to 

gain a greater understanding of the spatial distribution of concentrations of these 33 

UATs resulting from contributions of multiple emissions sources. As an example, the 

predicted 1999 benzene concentration for Tennessee is shown in the Figure 2.21; where it 

is possible see that the maximum benzene concentrations are in the urban areas, such as 

Nashville, Knoxville, Chattanooga, and Memphis. However, ASPEN has under predicted 

HAPs’ concentrations due to a number of limitations of the Gaussian model formulation, 

such as neglect of calm wind conditions, secondary air toxics formation, poor 

representation of stable atmospheric conditions that typically occur at night, and a 50-km 

downwind distance limit. This would require modeling that accounts for large-scale 

dispersion associated with three-dimensional wind fields (Rosenbaum et al., 1999). 
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Figure 2.21. 1996 Estimated County Median Ambient Concentrations. Benzene – 

Tennessee Counties (U.S. EPA, 2002a) 
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Although these ambient air toxics data are only available for a limited number of urban 

areas, the results generally reveal downward trends for most monitored air toxics. The 

most consistent improvements are apparent for benzene, which is predominantly emitted 

by mobile sources, oil refineries, and chemical processes (Fruin et al 2001). The urban 

areas generally have higher levels of benzene than other areas of the country due to the 

motor vehicles, where U.S. EPA has estimated 85% of ambient benzene comes from 

mobile sources: 60% from on-road sources and 25% from off-road sources (U.S. EPA, 

1998). From 1994 to 2000, annual average concentrations for benzene declined 47 % as 

shown in Figure 2.22 (U.S. EPA, 2002d and 2004a). 

 

The change in national benzene emissions is attributed to a combination of new car 

emission standards, use of cleaner fuels in many states, as well as stationary source 

emission reductions. Ambient concentrations of toluene, emitted primarily from mobile 

sources, also show a consistent decrease over most reporting locations. Similar to 

benzene, annual average toluene concentrations dropped 48 % (U.S. EPA, 2002d and 

2004a). 

 

Other air toxics, including 1,3-butadiene, styrene, also reveal air quality improvement, 

but the downward trends are not significant across large numbers of monitoring locations 

(U.S. EPA, 2002d and 2004a). During this period, the U.S. EPA phased in new car 

emission standards called TIER 1; required many cities to begin using cleaner burning 

gasoline; and set standards that required significant reductions in benzene, 1,3-butadiene, 

and other pollutants emitted from oil refineries and chemical processes. 
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Figure 2.22. Ambient Benzene, Annual Average Urban Concentrations, Nationwide, 

1994-2000 (Reprinted from U.S. EPA, 2002d) 

 

The California’s improvements in benzene, 1,3-butadiene, and toluene are primarily 

attributed to the reformulation of gasoline and new-car improvements in terms of 

emission controls (Morrow, 2001). Ambient air toxics data in rural areas are much more 

limited, but the results also indicate widespread air quality improvement for many 

monitored air toxics. Significant downward trends are noted among the few rural sites for 

benzene and several other VOCs. Lead concentrations in rural areas are also down 

(U.S.EPA, 1999b and 1999c). 
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2.1.5 Air Toxics Human Health Risk Assessment 

 

Since most cancer and non-cancer health impacts of air toxics cannot be directly isolated 

and measured, risk assessment methods and tools have been developed to assist in 

evaluating them according to the risk assessment paradigm, base on toxicological 

evidence (U.S. EPA, 2005b; Asante-Duah, 2002; U.S. EPA, 2001c). The risk assessment 

paradigm includes 4 components: hazard identification, dose-response, exposure 

assessment, and risk characterization. 

 

Hazard identification involves characterizing the behavior of a chemical within the body, 

the health effects that may be caused by the chemical, and the exposure conditions 

associated with those health effects. This typically includes the following: physical-

chemical properties, routes and patterns of exposure, metabolic and pharmokinetic data; 

toxicological studies, including short-term (acute effects) tests and long-term (chronic 

effects) animal studies, human studies, and ancillary information, including in vitro 

studies and structure-activity relationships. The availability and accuracy of this 

information varies widely depending on the substance and the adverse health effects such 

as cancer and non-cancer (U.S. EPA, 2005b; Williams, 2004; Tam and Neuman, 2004; 

Asante-Duah, 2002; Teuschler et al., 2001; Partt et al., 2000). All of the information is 

taken together to establish the weight of evidence that a substance is capable of causing a 

particulate effect.  
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Once the potential hazard associated with exposure to a pollutant is established, the dose-

response component projects the potential effects on humans at varying exposure 

concentrations. The nature of quantitative dose-response assessment varies among 

pollutants (Tam and Neuman, 2004; Asante-Duah, 2002; Teuschler et al., 2001). From 

this quantitative dose-response relationship, toxicity values are derived for use in risk 

characterization. Those toxicity values are numerical expressions of the relationship 

between a given level of exposure to an air toxics and adverse health impacts. The two 

most common toxicity values for inhalation exposures are the upper-bound inhalation 

unit risk estimates (IURs) for cancer effects and reference concentrations (RfCs) for non-

cancer effects, which include uncertainty factors (U.S. EPA, 2000b, 2001c, 2005b). 

 

An exposure assessment is the quantitative or qualitative evaluation of contact to a 

specific pollutant of concern and includes such characteristics as magnitude, duration and 

route of exposure of an organism to a pollutant of concern. The numerical output of an 

exposure assessment may be either exposure or dose, depending on the purpose of the 

evaluation and available data (U.S. EPA, 2005b, 2001c; Payne-Sturges et al., 2004). 

Information important to the assessment of exposure to an air toxics includes: the nature 

of the source and the releases, the different pathways by which humans can be exposed, 

transport and fate characterizes of the contaminant, human intake patterns, the number of 

people potentially exposed, the frequency and duration of the exposures, and the location 

and activities of the exposed population. All this information can be explicitly identified 

in an exposure conceptual model (U.S. EPA, 2005b; Payne-Sturges et al., 2004). 
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In general for an air toxics exposure conceptual model (Figure 2.23), HAPs can enter to 

the environment by a number of pathways, including release into the air, soil, or water, 

however, for humans point of view, air and inhalation exposure is the most relevant 

(Leikauf et al 2002). The most important route of entry into the environment is total air 

release, which often is the largest source of release, mainly mobile-source releases. 

Exposure also depends on the intrinsic physical-chemical properties of each compound, 

including vapor pressure and solubility in various media.  

 

In addition, certain attributes of the manufacturing and generating procedures can 

influence chemical speciation of stack releases or engine pipes (U.S. EPA, 2005b). 

Highly volatile substances can more readily escape into the ambient air and thus cause 

added concern. Many of the HAP compounds persist in the air by processes that 

dominate the formation of the urban aerosol (Baird, 2001; Asante-Duah, 2002). Another 

route involves formation through secondary reactions in the atmosphere. For example, 

several reactive hydrocarbons are formed during combustion and can accumulate in the 

atmosphere and react to produce some aldehydes such as formaldehyde, acrolein, and 

acetaldehyde (Baird, 2001).  

 

These compounds are contained in urban photo-oxidant plumes and contribute to ozone 

formation. Because ozone formation depends on reactive hydrocarbon species, the 

continuous measurement of ozone concentrations could be useful in estimating the 

ambient concentrations of precursors that include HAPs (Leikauf et al., 2002). 
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HealthHealth
EndpointsEndpoints

 

Figure 2.23. Air Toxics Exposure Conceptual Model 
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Interestingly, once inhaled, some HAPs are likely to react with unsaturated fatty acids in 

the airway lining fluid or the cell membranes to form aldehydes, hydroxyhydroperoxides, 

and hydrogen peroxide (Leikauf et al., 2002; Delfino, 2002), thus, the source of these 

types of HAPs is mixed. 

 

Besides direct release into the air and secondary formation, volatile HAPs can enter the 

atmosphere through intermediate transport. Even though a chemical is released initially 

into water, soil, sediment, or biota, if volatile it will enter the atmosphere eventually 

through evaporation from water or soil (Baird, 2001; Asante-Duah, 2002). Dominated by 

proximity to mobile sources, intermittent exposure to HAPs mixtures in high 

concentrations can depend on regional meteorology, atmospheric dispersion, transport, 

and removal. However, most research on the effects of chemicals on biologic systems is 

conducted on one chemical at a time. In the real world people are exposed to mixtures, 

not single chemicals (Carpenter et al., 2002; Teuschler et al., 2001). Although various 

substances may have totally independent actions, in many cases two substances may act 

at the same site in ways that can be either additive or non-additive. Many even more 

complex interactions may occur if two chemicals act at different but related targets. In the 

extreme case there may be synergistic effects, where the effects of two substances 

together are greater than the sum of either effect alone. In reality, most persons are 

exposed to many chemicals, not just one or two, and therefore the effects of a chemical 

mixture are extremely complex and may differ for each mixture depending on the 

chemical composition. This complexity is a major reason why mixtures have not been 

well studied (Carpenter et al 2002; Teuschler et al., 2001).  
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In risk characterization, the information from hazard identification, exposure assessment, 

dose-response assessment are summarized and integrated into quantitative and qualitative 

expressions of risk (U.S. EPA, 2005b, 2001c). To estimate potential non-carcinogenic 

effects, comparisons are made between projected intakes of substances and toxicity 

values; to estimate potential carcinogenic effects, probabilities that an individual will 

develop cancer over a lifetime of exposure are determined from projected intakes and 

chemical-specific dose-response information. Major assumptions, scientific judgments, 

and to the extent possible, estimates of the uncertainties embodied in the assessment are 

also presented (U.S. EPA, 2005b, 2001c). 

 

The toxicity values for cancer risk are calculated using unit risk values (Eq. 2-1). The 

annual mean HAPs concentration from a location is multiplied by its unit risk to produce 

a cancer risk. HAPs with cancer risks greater than 1×10−6 are considered a potential 

human health concern (U.S. EPA, 2001c). 
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Assuming an additive air toxics mixture effect, the cumulative cancer risk is defined by 

the equation 2-2. 
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Where, Ci is the annual concentration for a particulate air toxic. 

Hazard ratios for chronic non-carcinogenic HAPs can be calculated using the RfC 

toxicity value (Eq. 2-3). For HAPs at a particulate location, the annual mean 

concentration can be divided by its respective RfC. HAPs with a hazard ratio above 1.0 

can be deemed to pose a potential human health concern (U.S. EPA, 2001c). 
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Hazard ratios for HAPs exceeding 1.0 can be summed to calculate a total hazard index as 

shown in Equation 2-4. 
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From an epidemiological point of view, several long-term exposure epidemiological 

studies have demonstrated strong evidence that changes in fine particulate matter 

concentration result in changes in a number of health effects, such as lung cancer 

mortality, CDV mortality, COPD chronic illness, and asthma hospital admissions, among 

others. That relationship can be expressed through concentration-response (C-R) 

functions. For example, the PM2.5 concentration can be in ug/m3 per day or year, and the 

population response may be the number of premature deaths per 100,000 peoples per day 
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or year. The researcher chooses a function form, and the parameters of the function are 

estimated using data on the PM2.5 and the health response. There are several different 

functional forms that have been used for C-R functions, such as linear models, Poisson 

(log-linear), and logistic regressions, among others. The models most commonly used are 

the Poisson and logistic regression. For the Poisson regression, the natural logarithm of 

the health response is a linear function of the PM2.5 or other pollutant concentration, 

while a logistic regression is used to estimate the probability of an occurrence of an 

adverse health effect, where the natural logarithm of the odds ratio is a linear function of 

PM2.5 or other pollutant concentration. 

However, many epidemiological studies do not report the C-R function, but instead report 

some measure of the change in the population health response associated with a specific 

change in the pollutant concentration. The most common measure reported are the 

relative risk and odds ratio associated with a given change in the pollutant concentration. 

A general relationship between the change in concentration of PM2.5, ΔPM, and the 

corresponding change in the population health response, Δy, can, however, be derived 

from the relative risk or odds ratio. 

For a Poisson regression, the model relationship defines the incidence rate (y) as: 

PM A y ⋅•= βe          Equation 2-5. 

Where the parameter A is the incidence rate of y when the concentration of PM2.5 (PM) is 

zero, the parameter β is the coefficient of PM. 
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The relationship between ΔPM and Δy is: 

oc PMPM AeAeyoycy ⋅⋅ −=−=Δ ββ       Equation 2-6. 

Where yo is the risk (i.e., probability of an occurrence) at the baseline PM2.5 exposure and 

yc is the risk at the control PM2.5 exposure. 

Epidemiological studies often report a relative risk for a given ΔPM, rather than the β 

coefficient. Thus, the relative risk (RR) is simply the ration of two risks: 

PMe
yc
yoRR Δ⋅== β         Equation 2-7 

Taking the natural log of both sites, the coefficient in the Poisson regression can be 

derived as: 
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Δ
=β          Equation 2-8. 

For a logistic regression, the model relationship defines the odds ratio (OR) as: 

β
β

β
⋅Δ==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= PM
PM

PM

e
e
e

yo
yo

yc
yc

ratioodds
o

c

1

1
      Equation 2-9. 

Taking the natural log of both sites, the coefficient in the logistic regression can be 

derived as: 
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( )
PM

ln
Δ

=
odds ratioβ         Equation 2-10. 

Long-term exposure to fine particulate matter, such as DPM, may result in premature 

death. For lung cancer mortality, Pope et al. (2002) performed an analysis that used data 

from the largest available prospective cohort study of mortality collected by the 

American Cancer Society (ACS), which included 116 metropolitan areas, 50 states, and 

about 1.2 million adults (ages 30 and older), from 1982 to the first three quarters of 2000. 

Using Poisson regression, Pope et al., (2002) found robust association between ambient 

PM2.5 and elevated risk (RR) of lung cancer mortality, providing the strongest evidence to 

date that long-term exposure to a change in annual PM2.5 mean average exposure of 10.0 

ug/m3 is an important health risk. Overall, they found a 13.5% (95% CI, 4.4-23.4%) 

increasing risk of lung cancer mortality. The estimated coefficient and standard error for 

PM2.5 from their regression were (Pope et al., 2002):  

Lung cancer mortality: β= 0.012663 and σ= 0.004265 

In 2004, using the same ACS data and Poisson regression, Pope et al. (2004a) found 

strong association between ambient PM2.5 and elevated risk (RR) of CVD (ischemic heart 

disease) mortality among never smokers, providing also the strongest evidence to date 

that long-term exposure to a change in annual PM2.5 mean average exposure of 10.0 

ug/m3 is an important health risk on CVD mortality. Overall, they found a 22.0% (95% 

CI, 14.0-29.0%) increasing risk of ischemic heart disease mortality. The estimated 

coefficient and standard error for PM2.5 from their regression were (Pope et al., 2004a):  
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CVD mortality: β= 0.019885 and σ= 0.002553 

Abbey et al. (1995) examined the relationship between the annual mean PM2.5 

concentration from 1966 to 1977 and the chronic respiratory symptoms in a sample 

population of 1,868 Californian Seventh Day Adventists. The initial survey was 

conducted in 1977 and the final survey in 1987. To ensure a better estimate of exposure, 

the study participants had to have been living in the same area for an extended period of 

time. Using logistic regression, they found strong association between ambient PM2.5 and 

development of COPD (chronic bronchitis) among adults over 27 year old exposed to a 

long-term exposure to a change in annual PM2.5 mean average of 45 ug/m3. Other 

pollutants were not examined. Overall, they found an OR of 1.81 (95% CI, 0.98-3.25) 

increasing risk of chronic illness for COPD. The estimated coefficient and standard error 

for PM2.5 from their regression were (Abbey et al., 1995):  

COPD (chronic bronchitis): β= 0.01370 and σ= 0.00680 

Sheppard et al. (1999) found a significant relation between air pollution in Seattle and 

non-elderly (<65) hospital admissions for asthma from 1987 to 1994. They used air 

quality data for PM2.5, PM10, CO, O3, and SO2 in a Poisson regression model with control 

for time trends, seasonal variations, and temperature-related weather effects. In response 

to concerns that the work by Sheppard et al. (1999) may be biased, Sheppard (2003) 

reanalyzed some of this work. In particular, Sheppard reanalyzed the original study’s 

PM2.5 single pollutant model. He found strong association between ambient PM2.5 and 

hospital admissions for asthma among adults less than 65 year old exposed to a long-term 
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exposure to a change in daily PM2.5 mean average of 11.8 ug/m3. Overall, he found a 

4.0% (95% CI, 1.0-6.0%) increasing risk of hospital admissions for asthma. The 

estimated coefficient and standard error for PM2.5 from their regression were (Sheppard, 

2003):  

Hospital admissions for asthma: β= 0.003324 and σ= 0.001045 

2.1.5.1 Previous Air Toxics Risk Assessment 

In recent times, the U.S. EPA's National-Scale Air Toxics Assessment (NATA) has 

modeled those 33 UATs across the U.S. for 1996 and 1999 (U.S. EPA, 2002a). NATA is 

a nationwide analysis of air toxics and has used a computer modeling called Assessment 

System for Population Exposure Nationwide (ASPEN) of the 1996 and 1999 NEI air 

toxics data as the basis for developing health risk estimates on census tracts (U.S. EPA, 

2002a). Census tracts are land areas defined by the U.S. Bureau of the Census and 

typically contain about 4,000 residents each. Census tracts are usually smaller than 2 

square miles in size in cities, but much larger in rural areas (U.S. EPA, 2002a).  

The NATA is intended to provide state, local, and tribal agencies and others with a better 

understanding of the risks from inhalation exposure to HAPs from outdoor sources. It 

helps U.S. EPA and states prioritize data and research needs to better assess risk in the 

future and provides a baseline to help measure future trends in estimated health risks.  

ASPEN model is based on the U.S. EPA’s Industrial Source Complex Long Term model 

(ISCLT), which simulates the behavior of the pollutants after they are emitted into the 
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atmosphere. ASPEN uses estimates of toxic air pollutant emissions and meteorological 

data from National Weather Service Stations to estimate air toxics concentrations 

nationwide (U.S. EPA, 2000b).  

 

ASPEN model takes into account important determinants of pollutant concentrations, 

such as: rate of release, location of release, the height from which the pollutants are 

released, wind speeds and directions from the meteorological stations nearest to the 

release, breakdown of the pollutants in the atmosphere after being released (i.e., reactive 

decay), and settling of pollutants out of the atmosphere (i.e., deposition). However, 

ASPEN has several limitations mainly in a large scale and a three-dimensional arena and 

chemical reactions, since a Gaussian model is limited for this kind of analysis.  

 

The NATA consists of 4 steps that produce nationwide estimates of: (1) the release of 

these pollutants into the air from various sources, (2) the concentration of these 

compounds in the air,  (3) the exposure of populations to this air, and  (4) the risk of both 

cancer and noncancer health effects resulting from this exposure (U.S. EPA, 2002a).  

 

Rosenbaum et al., (1999) assessed the accuracy of the U.S. EPA's nationwide NATA 

estimates by comparing modeled HAPs concentrations to monitored concentrations. Its 

results indicated that when compared to monitoring data, model estimates underestimated 

HAPs concentrations to both carcinogenic and non-carcinogenic concentrations. 
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Payne-Sturges et al. (2004) examined the extent of exposure misclassification and its 

impact on risk for exposure estimated by the U.S. EPA’s ASPEN model relative to 

monitoring results from a community-based exposure assessment conducted in 

Baltimore, Maryland. They found the ASPEN model estimates were generally lower than 

measured personal exposures and the estimated health risks. ASPEN's lower exposures 

resulted in proportional underestimation of cumulative cancer risk when pollutant 

exposures were combined to estimate cumulative risk.  

 

Median cumulative lifetime cancer risk based on personal exposures was 3-fold greater 

than estimates based on ASPEN-modeled concentrations, demonstrating the significance 

of indoor exposure sources and the importance of indoor and/or personal monitoring for 

accurate assessment of risk. Results from their study concluded that environmental health 

policies may not be sufficient in reducing exposures and risks if these are based solely on 

modeled ambient VOC concentrations, which emphasize the need for a coordinated 

multimedia approach to exposure assessment for setting public health policy (Payne-

Sturges et al., 2004). 

 

In recognition of the limitations of ASPEN to estimate risk and the need to account for 

the time that people spend indoors and outdoors, the U.S. EPA recently developed the 

exposure module Hazardous Air Pollutant Exposure Model  (HAPEM) (U.S. EPA, 

2005f), and included it in the second phase of NATA. The HAPEM model was designed 

to predict the "apparent" inhalation exposure for specified population groups and air 

toxics (U.S., EPA, 2005f and 2002a). The HAPEM exposure model estimates inhalation 
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exposure for selected population groups to various air toxics. Through a series of 

calculation routines, the model makes use of ambient air concentration predicted by 

ASPEN, indoor/outdoor microenvironment concentration relationship data, population 

data, and human activity pattern data to estimate an expected range of inhalation 

exposure concentrations for groups of individuals. It also predicts nationwide census-

tract-level annual average human exposures and is to be used in a screening-level 

inhalation risk assessment.  

 

As the U.S. EPA continues to apply the ASPEN and HAPEM models to identify air 

toxics of greatest public health concern, and assess progress in reducing exposures across 

the United States, comparison of exposure measurements with modeling estimates 

provides the basis for continued model development and refinement. A review of the 

HAPEM data versus ASPEN estimate showed that, for a number of target VOCs, the 

HAPEM estimates were lower than those from ASPEN (Payne-Sturges et al., 2004). The 

authors concluded that risks based on HAPEM would be underestimated compared with a 

measured personal exposure. 

 

With all those limitations and including the second phase of the NATA for 1996 

emissions data set, the highest ranking 20 percent of counties in terms of risk (622 

counties) contained almost three-fourths of the U.S. population. Three air toxics, 

chromium, benzene, and formaldehyde, appeared to pose the greatest nationwide 

carcinogenic risk.  
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Exposure to DPM was widespread, and the U.S. EPA has concluded that DPM is a likely 

human carcinogen and ranks with the other substances that the national-scale assessment 

suggests pose the greatest relative risk, but the U.S. EPA has not defined an inhalation 

cancer risk. In contrast, CalEPA has defined that DPM is a carcinogen (CalEPA, 1998). 

One air toxic, acrolein, was estimated to pose the highest potential nationwide for 

significant chronic adverse effects other than cancer (U.S. EPA, 2002a). This technical 

assessment represented an important step toward characterizing air toxics nationwide. For 

example, a nationwide assessment using NATA modeled HAPs estimated 56,000 excess 

cancer cases or 800 cases annually, based on a 70-year life span (Woodruff et al., 2000). 

 

According to the Clean Air Task Force in its modeling study over the 1999 National 

Emissions Inventory Version 3 and based on the NATA’s modeled concentrations, DPM 

posed a cancer risk that was 7.5 times higher than the combined total cancer risk from all 

other air toxics in the whole U.S. (Conrad et al., 2005). In addition, and based on 

epidemiological evidence (Pope et al., 2002 and 2004a), this study concluded that fine 

particle pollution from diesels shortens the lives of nearly 21,000 people each year. This 

includes almost 3,000 early deaths from lung cancer. Finally, this study indicated that 

tens of thousands of Americans suffer each year from asthma attacks (over 400,000), 

heart attacks (27,000), and respiratory problems associated with fine particles from diesel 

vehicles.  

 

These illnesses result in thousands of emergency room visits, hospitalizations, and lost 

workdays. This important report did not estimate secondary formation of PM that may 
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occur from gaseous diesel exhaust, such as sulfur or nitrogen compounds; instead, it used 

directly emitted DPM simulated by ASPEN (U.S. EPA, 2000b). 

 

According to the U.S. EPA, NATA has been designed to help identify general patterns in 

air toxics exposure and risk across the country and is not recommended as a tool to 

characterize or compare risk at local levels using ASPEN as a dispersion model and 

HAPEM as an exposure model. Figures 2.24, 2.25, 2.26, and 2.27 show a pattern of the 

distribution of relative cancer and noncancer risk across the continental United States and 

Tennessee as estimated by NATA 1996 including all sources except diesel particulate 

matter (U.S. EPA, 2002a).  

 

A number of statewide assessments have been conducted using monitored HAPs 

concentrations and/or NATAs modeling data (Tam and Neumann, 2004; Pratt et al., 

2000; Morello-Frosch et al., 2000). Tam and Neumann (2004) used monitored data to 

assess 43 air toxics in Portland, OR. Seventeen HAPs exceeded a cancer risk level of 1 x 

10-6 at all five monitoring sites. Nineteen HAPs exceeded this level at one or more site.  

 

Carbon tetrachloride, 1,3-butadiene, formaldehyde, and 1,1,2,2-tetrachloroethane 

contributed more than 50% to the cumulative cancer risk. Mobile sources contributed the 

greatest HAPs emissions percentage (68%) (Tam and Neumann, 2004). 
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Figure 2.24. 1996 Estimated County Median Cancer Risk, All Carcinogens - United 

States Counties. (This MAP does not include DPM). 

 



 68

 

Figure 2.25. 1996 Estimated County Median Noncancer Risk, All Noncarcinogens -

United States Counties. (This MAP does not include DPM). 
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Figure 2.26. 1996 Estimated County Median Cancer Risk, All Carcinogens- 

Tennessee Counties. (This MAP does not include DPM). 
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Figure 2.27. 1996 Estimated County Median Noncancer Risk, All Noncarcinogens -

Tennessee Counties. (This MAP does not include DPM). 
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On the other hand, Pratt et al., (2000) used both HAPs modeled data from NATA and 

monitored concentrations to assess air toxics in Minnesota. Eleven pollutants exceeded 

health benchmark concentrations at one or more site by modeling, monitoring, or both. 

These HAPs included acrolein, arsenic, benzene, 1,3-butadiene, carbon tetrachloride, 

chromium, chloroform, ethylene dibromide, formaldehyde, nickel, and polycyclic organic 

matter (POM). Based on NATA data, POM, 1,3-butadiene, chromium, formaldehyde, 

carbon tetrachloride, and benzene contributed approximately 95% to the cumulative 

cancer risk (Pratt et al., 2000). 

In California, NATA modeling data was used to screen for HAPs that exceeded health 

benchmark concentrations, and to identify emission sources (Morello-Frosch et al., 

2000). Five HAPs exceeded a cancer risk level of 1 x 10-5 of all California census tracts. 

Chromium, 1, 3-butadiene, formaldehyde, POM, and benzene contributed more than 75% 

to the cumulative cancer risk. Acrolein and chromium contributed the greatest to the 

hazard indices. Mobile and area sources were estimated to account for the greater part of 

HAPs emissions (Morello-Frosch et al., 2000). 

 

2.1.6 Air Toxics from Mobile Sources 

 

MSATs come from four sources (U.S. EPA, 2001a). First, some air toxics are present in 

fuel and are emitted to the air when the fuel evaporates during refueling operation or 

passes through the engine unburned. Benzene, for example, is a component of gasoline. 

Cars emit small quantities of benzene in unburned fuel, or as vapor when gasoline 
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evaporates. Second, MSATs are formed through engine combustion processes. A 

significant amount of automotive benzene comes from the incomplete combustion of 

compounds in gasoline such as toluene and xylene that are chemically very similar to 

benzene. Like benzene itself, these compounds occur naturally in petroleum and become 

more concentrated when petroleum is refined to produce high-octane gasoline. Diesel 

exhaust emissions, as well as formaldehyde, acrolein, acetaldehyde, and 1, 3-butadiene, 

are also by-products of incomplete combustion. Third, some compounds, like acrolein, 

formaldehyde, and acetaldehyde, are also formed through a secondary process when 

other mobile source pollutants undergo chemical reactions in the atmosphere. Finally, 

metal air toxics result from engine wear or from impurities in oil or gasoline. These can 

also be present in fuel additives (U.S., EPA, 2001a and 2000a). 

 

2.1.6.1 Regulations 

 

In 1993, in compliance with Section 202(l)(1) of the Clean Air Act, the U.S. EPA 

released a study of motor vehicle-related air toxics (U.S. EPA, 1993). The study provided 

estimates of motor vehicle emissions of several pollutants believed to pose the greatest 

risk to public health, including benzene, formaldehyde, and 1,3-butadiene, as required by 

the Act, as well as acetaldehyde, DPM, gasoline particulate matter, and gasoline vapors. 

Exposure and risk were evaluated for four different years: 1990, 1995, 2000, and 2010. A 

total of three scenarios were modeled to explore the exposure and risk attributable to 

motor vehicle emissions: a baseline case reflecting motor vehicle related Clean Air Act 



 73

requirements, expanded use of reformulated gasoline, and expanded adoption of the 

California Low Emissions Vehicles (LEV) standards. The study also explored air toxics 

emissions from alternative fuel vehicles and non-road engines, but for the baseline cases 

only and not for control scenarios (Table 2-3). It should be noted that this study did not 

address whether to promulgate air toxics standards or suggest what those standards 

should be (U.S. EPA, 1993). The U.S. EPA also developed a 1996 inventory estimates 

for several gaseous MSATs (DPM, acetaldehyde, benzene, 1,3-butadiene, formaldehyde, 

MTBE) as part of the 1999 study “Analysis of the Impacts of Control Programs on Motor 

Vehicle Toxic Emissions and Exposure in Urban Areas and Nationwide” (U.S. EPA, 

1999b and 1999c). The pollutants examined in the 1999 study were chosen because U.S. 

EPA had adequate data to perform a rigorous modeling analysis for those pollutants. 

 

Table 2-3. Annual Expected Cancer Deaths due to Exposure to Selected Mobile 

Source Air Toxics in the U.S. 

Annual Expected Cancer Deaths (U.S. Total) 

Pollutant 1990 1995 2000 2010 

Acetaldehyde 5.3 3.6 2.8 3.0

Benzene 70 43 35 35

1,3-Butadiene 304 209 176 204

Formaldehyde 44 28 21 22

Diesel PM 1923 1165 688 476

Total 2,346.3 1,448.6 922.8 740
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The 1999 study examined the impact of a variety of parameters including fuel properties, 

emission control technologies, and type of in-use operation on the 1990 and 1996 

emissions inventories for six pollutants: acetaldehyde, benzene, 1,3-butadiene, DPM, 

formaldehyde, and MTBE. Those selected MSATs shown in Table 2-4 decremented their 

emissions, except MTBE due to the MTBE prohibition in the gasoline. 

 

The 1996 NEI also contained emissions estimates for several other MSATs, and included 

data for non-road as well as on-road sources (Table 2-5). Between the 1999 U.S. EPA’s 

Motor Vehicle Air Toxics Study and the 1996 NEI, U.S. EPA had baseline inventory data 

for all of the 21 MSATs except naphthalene. For DPM + DEOG, U.S. EPA did not have 

inventory data on the DEOG portion. For this analysis, U.S. EPA used DPM as a 

surrogate for DPM + DEOG (U.S. EPA, 1999b and 1999c). 

 

Table 2-4. Annual Emissions from On-Highway Vehicles for Selected Air Pollutants 

[Short tons per year] 

Compound 1990 Emissions 1996 Emissions (a) 

1,3-Butadiene              36,000                    24,000  

Acetaldehyde              41,000                    31,000  

Benzene            257,000                  171,000  

Formaldehyde            139,000                    93,000  

DPM            235,000                  182,000  

MTBE              55,000                    67,000  

(a) The 1996 estimates are based on updated inventories taking into consideration the 

proposed 2007 and later model year heavy-duty engine standards. 
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Table 2-5. On-Road and Non-Road Emission Inventories of Some MSATs from the 1996 NEI in [Short tons] 

On-road Non-Road Mobile Sources Compound 
Tons %  Tons % Tons %  

1,3-Butadiene (a) 23,500 42 9,900 18 33,400 60
Acetaldehyde (a) 28,700 29 40,800 41 69,500 70
Acrolein (a) 5,000 16 7,400 23 12,400 39
Arsenic Compounds (a) 0.25 0.06 2.01 0.51 2.26 0.57
Benzene (a) 168,200 48 98,700 28 266,900 76
Chromium Compounds (a) 14 1.2 35 3 49 4.2
Dioxins/Furans (a, b) 0.0001 0.2 N.A. N.A. 0.0001 0.2
Ethylbenzene 80,800 47 62,200 37 143,000 84
Formaldehyde (a) 83,000 24 86,400 25 169,400 49
Lead Compounds (a) 19 0.8 546 21.8 565 22.6
Manganese Compounds (a) 5.8 0.2 35.5 1.3 41.3 1.5
Mercury Compounds (a) 0.2 0.1 6.6 4.1 6.8 4.2
MTBE 65,100 47 53,900 39 119,000 86
n-Hexane 63,300 26 43,600 18 106,600 44
Naphthalene N.A. N.A. N.A. N.A. N.A. N.A.
Nickel Compounds (a) 10.7 0.9 92.8 7.6 103.5 8.5
POM (as sum of 7 PAH) (a) 42 4 19.3 2 61.3 6
Styrene 16,300 33 3,500 7 19,800 40
Toluene 549,900 51 252,200 23 802,100 74
Xylene 311,000 43 258,400 36 569,400 79
(a) These compounds are also on the list of urban HAPs for the Integrated Urban Air Toxics Strategy. 
(b) Mass given in tons of TEQ (toxic equivalency quotient). The EPA Office of Research and Development (ORD) has recently 

developed an inventory for dioxin and dioxin-like compounds using different methods than those used in the 1996 NTI. For 1995, 
the EPA-ORD estimate of on-highway emissions of dioxin compounds is 0.00005 tons TEQ, comprising 1.5 percent of the 
national inventory in that year. (The TEQ rates the toxicity of each dioxin and furan relative to that of 2,3,7,8-TCDD, which is 
assigned a TEQ of 1.0.) 
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The 1996 inventory data reflected certain interesting characteristics of mobile source air 

toxics emissions. First, mobile sources accounted for the majority of the national 

inventory of three of the gaseous MSATs that are included on the urban HAP list. These 

three were 1, 3-butadiene (60 %), acetaldehyde (70 %), and benzene (76 %). Mobile 

sources accounted for 39 % of the national inventory of acrolein, and 49 % of the 

national inventory of formaldehyde.  

 

All of these MSATs were formed as part of the combustion process except for benzene, 

which is also released through evaporative emissions from gasoline (U.S. EPA, 2001a). 

Second, with regard to the other MSATs that are included on the UATs list, the mobile 

source contribution generally was small (arsenic compounds, chromium compounds, 

manganese compounds, mercury compounds, nickel compounds, POM, and 

dioxins/furans). The sole exception was lead compounds. Mobile sources contributed 23 

% to national inventories of lead emissions, due primarily to non-road sources and, more 

specifically, to the use of a lead additive package used to boost the octane of aviation 

gasoline. The mobile source contribution to the other metals on the UATs list came 

primarily from engine wear, some fuel additives, or impurities in engine oil (U.S. EPA, 

1999b and 1999c).  

 

With regard to the gaseous MSATs that are not included on the UATs list (ethylbenzene, 

MTBE, n-hexane, toluene, and xylene), mobile source contributions were high because of 

the presence of these compounds in gasoline (U.S. EPA, 1999b and 1999c). In addition, 

mobile sources accounted for almost all DPM emissions. 
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A limited number of stationary sources, such as large generators, did operate on diesel 

fuel. Because there were relatively few stationary sources that operated on diesel fuel, 

U.S. EPA believes that DPM from stationary sources is relatively small compared to 

DPM from mobile sources (U.S. EPA, 1999b and 1999c). 

 

From 1990 to 2020, the U.S. EPA’s study projected these programs will reduce the levels 

of on-highway emissions of benzene by 73 %, formaldehyde by 76 %, 1, 3-butadiene by 

72 %, and acetaldehyde by 67 %. In addition, by 2020, on-highway DPM emission 

reductions of 94 % from 1990 levels were projected for heavy-duty engines. This action 

also finalized new gasoline toxic emissions baseline requirements, which require refiners 

to maintain current levels of over-compliance with toxic emissions performance 

standards that apply to reformulated gasoline (RFG) and anti-dumping standards that 

apply to conventional gasoline, (CG).  

 

The new baseline requirements were designed to ensure that existing over compliance 

with current standards continues. The U.S. EPA was not setting additional vehicle-based 

air toxics controls at that time because the technology-forcing Tier 2 light-duty vehicle 

standards and those standards being developed in response to its proposal for heavy-duty 

engine and vehicle standards represented the greatest degree of toxics control achievable 

at that time considering existing standards, the availability and cost of the technology, 

energy, safety factors, and lead time (U.S.EPA, 2001a) 
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Federal and state governments are promoting the use of alternative fuel vehicles and new 

engine technologies as a means to improve local air pollution. So far, the impact of this 

initiative toward alternative fuels with respect to MSATs has been studied for several 

pollutants using emission analysis (Winebrake et al., 2001; Sapkota et al., 2003). To 

alternative fuel, Winebrake found that almost all of the fuels studied reduce 1,3-butadiene 

emissions compared with conventional gasoline; however the use of ethanol in E85 (fuel 

made with 85% ethanol) or reformulated gasoline leads to increased acetaldehyde 

emissions, and the use of methanol, ethanol, and compressed gas natural may result in 

increased formaldehyde emissions, finally, when the modeling resulted for the risk 

factors, all the fuels and vehicle technologies showed air toxic emission reduction 

benefits (Winebrake et al., 2001). 

 

Because of the U.S. EPA’s continuing concern about the potential health impacts of 

public exposure to air toxics, it was appropriate to establish additional mobile source 

controls their fuels that are specifically designed to reduce further or minimize increases 

in national inventories of these pollutants. By 2010, the U.S. EPA's existing programs 

will reduce MSATs by over one million tons from 1996 levels. In addition to controlling 

pollutants such as hydrocarbons, particulate matter, and nitrogen oxides, the U.S. EPA's 

recent regulations controlling emissions from highway vehicles and non-road equipment 

also result in large air toxic reductions. Reformulated gasoline and anti-dumping 

standards (U.S. EPA, 2005h), along with anti-backsliding provisions of the 2001 MSATs 

rule (U.S. EPA, 2001a), the clean diesel trucks and buses rule and (U.S., EPA, 2001b), 

and the clean non-road diesel rule (U.S. EPA, 2004b) also result in large reductions. 
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Today’s action also describes a technical analysis plan through which U.S. EPA will 

continue to improve its understanding of the risk posed by air toxics to public health and 

welfare. 

 

In 1999, the U.S. EPA created the Integrated Urban Air Toxics Strategy (IUATS) (U.S. 

EPA, 1999a). The overarching goal of the IUATS is to reduce cancer and non-cancer 

risks associated with all sources of air toxics in urban areas, principally mobile sources. 

In urban areas, toxic air pollutants raise special concerns because sources of emissions 

and people are concentrated in the same geographic areas, leading to large numbers of 

people being exposed to the emissions of many air toxics from many sources.  

 

The goals of the strategy reflected both the statutory requirements stated in section 112(k) 

of the Act and the goals of the U.S. EPA’s overall air toxics program. These goals consist 

of the following: 

 

 Attain a 75 percent reduction from 1990 incidence of cancer attributable to exposure 

to HAPs emitted by stationary sources. This is relevant to all HAPs from both major 

and area stationary sources, in all urban areas nationwide. Reductions can be the 

result of actions by Federal, State, local and/or Tribal governments, achieved by any 

regulations or voluntary actions. 

 Attain a substantial reduction from 1990 levels in public health risks posed by HAP 

emissions from area sources. This includes health effects other than cancer posed by 

all HAPs (e.g., birth defects and reproductive effects).  Reductions can be the result of 
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actions by Federal, State, local and/or Tribal governments, achieved by any 

regulations or voluntary actions. 

 Address disproportionate impacts of air toxics hazards across urban areas. This will 

necessarily involve consideration of both stationary and mobile source emissions of 

all HAPs, as well as sources of HAPs in indoors air.  The U.S. EPA intends to 

characterize exposure and risk distributions both geographically and 

demographically. This will include particular emphasis on highly exposed individuals 

and specific population subgroups (e.g., children, the elderly, and low-income 

communities). 

 

Summarizing, so far the existing and newly promulgated mobile source control programs 

are the reformulated gasoline (RFG) program, the national low emissions vehicle 

(NLEV) standards, the Tier 2 motor vehicle emissions standards and gasoline sulfur 

control requirements, the 2007 heavy-duty engine, the vehicle standards and on-highway 

diesel fuel sulfur control requirements, and the clean non-road diesel standards (U.S. 

EPA, 2001a, 2001b, and 2004b). 

 

2.1.6.2 Priority Mobile Sources Air Toxics 

 

According to the U.S. EPA’s IUATS and the MSATs regulations, the following 6 air 

toxics can be considered as priority mobile sources air toxics (PMSATs) due to their 

higher risk: acrolein, acetaldehyde, benzene, 1,3-butadiene, formaldehyde, and DPM 
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(U.S. EPA, 2001a). For those HAPs Table 2-6 shows the carcinogenicity classification 

schemes and rankings, Table 2-7 shows their main diseases for cancer and non-cancer 

effects, and Table 2-8 shows the carcinogenicity and chronic effects of PMSATs (U.S. 

EPA, 2001a). The effects on human health and the photochemical mechanism of those 

PMSATs are described as follow: 

 

Table 2-6. Carcinogenicity Classification Schemes and Rankings for the PMSAT’s 

Classification 
Scheme 

Acetaldehyde 
 

Benzene 
 

Acrolein 1,3-
Butadiene 

 

DPM 
 

Formaldehyde 
 

USEPA 
 

B23 

 
A1 

 
C4 A 

 
Not 

available 
 

B12 

 

NIEHS 
 

Reasonably 
Anticipated 

Known 
 

Not 
available 

Known 
 

Reasonably 
Anticipated 

Reasonably 
Anticipated 

IARC 
 

2B7 

 
15 

 
Not 

available 
2A6 

 
2A 

 
2A 

 
NIOSH 
 

Potential 
 

Potential 
 

Not 
available 

Potential 
 

Not 
available 

 

Potential 
 

 

(1): Human carcinogen 

(2): Probable human carcinogen. Limited human data 

(3): Probable human carcinogen. Limited anaimal data 

(4): Possible human carcinogen. 

(5): Human carcinogen 

(6): Probably carcinogenic to humans. 

(7): Possible human carcinogens 
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Table 2-7. PMSATs Health Effects 

Compound Cancer Effects Non-cancer Effects 
Acetaldehyde Nasal and 

nasopharyngeal tumors 
Upper respiratory tract irritation, dysplasia 
and squamous  metaplasia of respiratory and 
olfactory epithelia; papillomas in the 
forestomach of rats, skin irritation at high 
doses. 

Acrolein No effects Asthma, COPD, respiratory tract irritation 
Benzene Acute myeloid 

leukemia 
Hematological effects, effects on red blood 
cells, white blood cells, platelets, bone 
marrow damage leading to a plastic anemia 

1,3-Butadiene Lymphohaematopoietic 
system (leukemia, 
lymph sarcoma, and 
reticular call sarcoma) 

Cardiovascular, hematopoietic reproductive 
and developmental effects, respiratory 
diseases such as asthma and COPD. 

DPM Lung Cancer CVD, asthma, and COPD. 
Formaldehyde Nasal and 

nasopharyngeal tumors 
Upper respiratory tract irritation, dysplasia 
and squamous  metaplasia of respiratory and 
olfactory epithelia; papillomas in the 
forestomach of rats, skin irritation at high 
doses. 

 

 

Table 2-8. Carcinogenicity & Chronic Effects of PMSATs 

MSATs 

  

IURs 

[m3/ug] x 10-6 

RfC 

[ug/m3] 

 Reference 

Acetaldehyde 2.2 9.00 IRIS 

Acrolein Not applicable 0.02 IRIS, NATA 

Benzene 7.8 30.00 IRIS 

1,3-Butadiene 30.0 2.00 IRIS 

Diesel PM 300.0 5.00 CalEPA/IRIS 

Formaldehyde 13.0 4.00 IRIS, ATSDR 
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A. Acrolein 

 

According to the Agency for Toxic Substances and Disease Registry (ATSDR), acrolein 

is primarily used as an intermediate in the manufacture of acrylic acid. It can be formed 

from the photo-oxidation of certain organic pollutants in outdoor air or from burning 

wood, tobacco, gasoline, or diesel (ATSDR, 1999). It is extremely toxic to humans from 

inhalation and dermal exposure. Acute (short-term) inhalation exposure may result in 

upper respiratory tract irritation and congestion; even exposure to high levels (10 parts 

per million [ppm]) of acrolein in humans may result in death. Effects on the lung, such as 

upper respiratory tract irritation and congestion have been noted at acrolein levels ranging 

from 0.17 ppm to 0.43 ppm (U.S. EPA, 2005i). The major effects from chronic (long-

term) inhalation exposure to acrolein in humans consist of general respiratory congestion 

and eye, nose, and throat irritation. The Reference Concentration (RfC) for acrolein is 

0.00002 mg/m3 based on squamous metaplasia and neutrophilic infiltration of nasal 

epithelium in rats (U.S. EPA, 2005i). No information is available on its reproductive, 

developmental, or carcinogenic effects in humans. The animal cancer data are limited, 

with one study reporting an increased incidence of adrenocortical tumors in rats exposed 

to acrolein in the drinking water. U.S. EPA considers acrolein a possible human 

carcinogen (Group C), however, has not estimated an inhalation cancer risk factor 

(ATSDR, 1999; U.S. Department of Health and Human Services, 2005; U.S. EPA, 2005i) 

Acrolein is unlikely to be transported over long distances because of its high reactivity 

and estimated short half-lives in air and water. This HAPs is rapidly metabolized by 
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organisms and does not bioaccumulate. Its chemical formula, Chemical Abstracts Service 

(CAS), and molecular weight are C3H4O, 107-02-8, and 56.06 g/mol respectively 

(ATSDR, 1999). Acrolein belongs to the α,β-Unsatured Carbonyls compounds, which 

are known to react with ozone, with oxygen radical, and with OH radical. Photolysis and 

NO3 radical reaction are of minor importance (Seinfeld and Pandis, 1998). Under 

atmospheric conditions the O3 reactions are also of minor significance, leaving the OH 

radical reaction as the major loss process, principally during summer season. 

Summarizing, the CB-IV photochemical acrolein reactions are: 

 

Acrolein decomposition 

 

OH radical reaction 

ACROLEIN + OH = 0.709*FORM + 0.709*ALD2 + 0.709*XO2 + 0.709*HO2      - 

0.709*PAR + 0.814*C2O3 

 

Ozone reaction 

ACROLEIN + O3 = 10.326*ALD2 + 15.282*FORM + 6.815*CO + 9.087*HO2 + 

4.543*XO2 + 2.065*OH + 4.130*FACD + 4.130*AACD - 20.651*PAR 

 

NO3 radical reaction 

ACROLEIN + NO3 = 1.192*XO2 + 0.118*XO2N + 1.310*FORM + 1.310*ALD2 - 

1.310*PAR + 1.310*NO2 + 0.851*C2O3 + 0.851*HNO3 
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Oxygen atom reaction 

ACROLEIN + O = 0.538*ALD2 + 0.325*HO2 + 0.239*XO2 + 0.257*CO + 

0.171*FORM + 0.017*XO2N + 0.188*PAR + 0.356*OH + 0.185*C2O3 

 

Acrolein photolysis 

ACROLEIN = 6.3*XO2 + 12.6*HO2 +6.3*CO+ 6.3*FORM                           

 

Secondary acrolein formation 

1, 3-BUTADIENE + OH = 0.85*FORM + 0.85*ACROLEIN + 0.85*XO2+ 0.85*HO2 -

0.85*PAR 

 

1, 3-BUTADIENE + O3 = 0.50*ACROLEIN + 2.81*FORM +1.26*CO + 1.67*HO2 + 

0.84*XO2 + 0.38*OH +0.76*FACD + 0.76*AACD -3.8*PAR 

 

1, 3-BUTADIENE + O = 0.230*ACROLEIN + 0.155*HO2 + 0.115*XO2 + 0.123*CO + 

0.082*FORM + 0.008*XO2N +0.090*PAR + 0.082*OH           

 

The species description is illustrated in Table 2-9. 
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Table 2-9. Chemical Species in the CB-IV Mechanism for Air Toxics 

Representation Species Name 
AACD Acetic acid 
ACROLEIN Acrolein 
ALD2 High molecular weight aldehydes 
1,3-BUTADIENE 1, 3-Butadiene 
C2O3 Peroxyacyl radical (CH3C(O)OO•) 
CO Carbon monoxide 
CRO Methylphenoxy radical 
ETH Ethene (CH2=CH2) 
FACD Formic acid 
FORM Formaldehyde (CH2=O) 
HNO3 Nitric acid 
HO2 Hydroperoxy radical 
ISOP Isoprene 
MGLY Methylglyoxal (CH3C(O)C(O)H) 
NO Nitric oxide 
NO2 Nitrogen dioxide 
NO3 Nitrogen trioxide (nitrate radical) 
O Oxygen atom (triplet) 
O3 Ozone 
OH Hydroxyl radical 
OLE Olefinic carbon bond 
OPEN High molecular weight aromatic oxidation ring fragment 
PACD Peroxy acetic acid 
PAN Peroxyacyl nitrate (CH3C(O)OONO2 ) 
PAR Paraffin carbon bond (C-C) 
ROR Secondary organic oxy radical 
XO2 NO-to-NO operation 
XO2N NO-to-nitrate operation 
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B. Acetaldehyde 

 

Acetaldehyde is ubiquitous in the ambient environment. It is mainly used as an 

intermediate in the synthesis of other chemicals, as well as it is an intermediate product of 

higher plant respiration and formed as a product of incomplete wood combustion in 

fireplaces and woodstoves, coffee roasting, burning of tobacco, vehicle exhaust gases, 

coal refining, and waste processing. Hence, many individuals are exposed to 

acetaldehyde by breathing ambient air, principally due to the secondary formation during 

summer season (Seinfeld and Pandis, 1998). Acute exposure to acetaldehyde results in 

effects including irritation of the eyes, respiratory tract, and skin. At higher exposure 

levels, erythema, coughing, pulmonary edema, and necrosis may also occur (U.S. EPA, 

1987).  Symptoms of chronic intoxication of acetaldehyde are similar to those of 

alcoholism, whose Reference Concentration is 0.009 mg/m3 based on degeneration of 

olfactory epithelium in rats (U.S. Department of Health and Human Services, 2005; U.S. 

EPA, 2005j). Acetaldehyde is considered a probable human carcinogen (Group B2) based 

on inadequate human cancer studies and animal studies that have shown nasal tumors in 

rats and laryngeal tumors in hamsters. The U.S. EPA calculated an inhalation unit risk of 

2.2 x 10-6 m3/μg. (U.S. Department of Health and Human Services, 2005; U.S. EPA, 

2005j). 

 

The acetaldehyde lifetime due to reaction with OH radical, NO3 radical, and hv are 11 h, 

17 days, and 5 days respectively (Seinfeld and Pandis, 1998). Its chemical formula, CAS 
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code, and molecular weight are CH3CHO, 75-07-0, and 44.06 g/mol respectively (U.S. 

Department of Health and Human Services, 2005). Acetaldehyde belongs to the aldehyde 

compounds, which are known to decompose by photolysis and react with oxygen atom 

and with OH radical. The NO3 radical reaction is of minor importance (Seinfeld and 

Pandis, 1998). Under atmospheric conditions the oxygen reaction is also of minor 

significance, leaving the photolysis and OH radical reaction as the major loss process, 

principally during summer season. Summarizing, the CB-IV photochemical acetaldehyde 

reactions are: 

 

Acetaldehyde (ALD2) decomposition 

 

Oxygen radical reaction 

ALD2 + O = C2O3 + OH 

 

OH radical reaction 

ALD2 + OH = C2O3   

 

NO3 radical reaction 

ALD2 + NO3 = C2O3 + HNO3 

 

Acetaldehyde photolysis 

ALD2 = XO2 + 2*HO2 + CO + FORM 
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Secondary acetaldehyde formation (ALD2) 

 

PAR + OH= 0.87*XO2 +0.13*XO2N +0.11*HO2 + 0.11* ALD2+ 0.76*ROR - 0.11*PAR 

 

ROR= 1.1* ALD2 + 0.96*XO2 + 0.94*HO2 - 2.10*PAR + 0.04*XO2N + 0.02*ROR 

 

OLE + O= 0.63*ALD2+ 0.38*HO2 + 0.28*XO2+ 0.3*CO+ 0.2*FORM+ 0.02*XO2N+ 

0.22*PAR + 0.2*OH 

 

OLE + OH= FORM+ ALD2+ XO2+ HO2– PAR 

 

OLE + O3= 0.5*ALD2+ 0.74*FORM+ 0.33*CO+ 0.44*HO2+ 0.22*XO2+ 0.1*OH+ 

0.20*FACD+ 0.20*AACD– PAR 

 

OLE + NO3 = 0.91*XO2 + 0.09*XO2N + FORM + ALD2 - PAR + NO2 

 

ETH + OH= XO2 + 1.56*FORM + HO2 + 0.22*ALD2 

           

OPEN + O3 = 0.03*ALD2+ 0.62*C2O3 + 0.7*FORM+ 0.03*XO2 + 0.69*CO+ 0.08*OH 

+ 0.76*HO2 + 0.2*MGLY 

 

ISOP + O3 = 0.65*ISPD+ 0.60*FORM+ 0.20*XO2+ 0.066*HO2+ 0.266*OH+ 

0.20*C2O3+ 0.15*ALD2+ 0.35*PAR + 0.066*CO 
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ISOP+ NO3  = 0.20*ISPD+ 0.80*NTR+ 1.0*XO2+ 0.80*HO2+ 0.20*NO2+ 0.80*ALD2+ 

2.4*PAR 

 

ISPD + OH = 1.565*PAR+ 0.167*FORM+ 0.713*XO2+ 0.503*HO2+ 0.334*CO + 

0.168*MGLY + 0.273*ALD2 + 0.498*C2O3 

 

ISPD + O3 = 0.114*C2O3+ 0.150*FORM+ 0.850*MGLY+ 0.154*HO2+ 0.268*OH+ 

0.064*XO2+ 0.020*ALD2+ 0.360*PAR+ 0.225*CO 

 

ISPD + NO3 = 0.357*ALD2 + 0.282*FORM+ 1.282*PAR+ 0.925*HO2+ 0.643*CO+ 

0.850*NTR+ 0.075*C2O3+ 0.075*XO2 + 0.075*HNO3 

 

ISPD = 0.333*CO+ 0.067*ALD2+ 0.900*FORM+ 0.832*PAR+ 1.033*HO2+ 

0.700*XO2+ 0.967*C2O3 

 

ISOP + NO2 = 0.20*ISPD+ 0.80*NTR+ 1.00*XO2+ 0.80*HO2+ 0.20*NO+ 0.80*ALD2 

+ 2.4*PAR 

 

ACROLEIN + OH = 0.709*FORM+ 0.709*ALD2+ 0.709*XO2+ 0.709*HO2- 

0.709*PAR+ 0.814*C2O3 

 

ACROLEIN + O3 = 10.326*ALD2+ 15.282*FORM+ 6.815*CO+ 9.087*HO2+ 

4.543*XO2+ 2.065*OH+ 4.130*FACD+ 4.130*AACD- 20.651*PAR 
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ACROLEIN + NO3 = 1.192*XO2+ 0.118*XO2N+ 1.310*FORM+ 1.310*ALD2 - 

1.310*PAR+ 1.310*NO2+ 0.851*C2O3+ 0.851*HNO3 

 

ACROLEIN + O = 0.538*ALD2 + 0.325*HO2 + 0.239*XO2 + 0.257*CO + 

0.171*FORM + 0.017*XO2N + 0.188*PAR + 0.356*OH + 0.185*C2O3 

 

1,3-BUTADIENE + NO3 = 0.140*XO2+ 0.014*XO2N+ 0.154*FORM+ 0.154*ALD2 - 

0.154*PAR+ 0.154*NO2 

 

The species description is illustrated in Table 2-9. 

 

C. Benzene 

 

Benzene is found in the air from emissions of burning coal and oil, gasoline service 

stations, and on-road sources. Acute inhalation exposure of humans to benzene may 

cause drowsiness, dizziness, headaches, as well as eye, skin, and respiratory tract 

irritation, and, at high levels, unconsciousness (ATSDR, 1997). Chronic inhalation 

exposure has caused various disorders in the blood, including reduced numbers of red 

blood cells and anemia (ATSDR, 1997). Reproductive effects have been reported for 

women exposed by inhalation to high levels, and adverse effects on the developing fetus 

have been observed in animal tests. The U.S. EPA has not established a Reference 

Concentration, however, the California Environmental Protection Agency (CalEPA) has 
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established a chronic reference exposure level of 0.06 mg/m3 for benzene based on 

hematological effects in humans (CalEPA, 1999).  Increased incidence of leukemia has 

been observed in humans exposed to benzene (ATSDR, 1997).  U.S. EPA has classified 

benzene as a Group A, and calculated a range inhalation cancer risk of 2.2 x 10-6 to 7.8 x 

10-6 as the increase in the lifetime risk of an individual who is continuously exposed to 1 

µg/m3 of benzene in the air over their lifetime (U.S. EPA, 2005k). 

 

Benzene chemical formula, CAS code, and molecular weight are C6H6, 71-43-2, and 

78.11 g/mol (U.S. Department of Health and Human Services, 2005). The atmospheric 

sink for benzene is the reaction with OH radical, whose lifetime is 12 days as shown in 

the following reaction (Seinfeld and Pandis, 1998). 

 

+ OH =   

                           (C(C=CC2C(COO2)O)O[O.]) 

 

+ OH= + HO2 

                          (O=CCC(C=CC=O)O) 

+ OH= + HO2 
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D. 1,3-Butadiene 

 

Mobile sources are the main 1, 3-butadiene emissions. Although 1, 3-butadiene breaks 

down quickly in the atmosphere, it is usually found in ambient air at low levels in urban 

and suburban areas (Seinfeld and Pandis, 1998). Acute exposure to 1 ,3-butadiene by 

inhalation in humans results in irritation of the eyes, nasal passages, throat, and lungs. 

Neurological effects, such as blurred vision, fatigue, headache, and vertigo, have also 

been reported at very high exposure levels (ATSDR, 1995; U.S. Department of Health 

and Human Services, 2005). Epidemiological studies have reported a possible association 

between 1, 3-butadiene exposure and cardiovascular diseases, such as rheumatic and 

arteriosclerotic heart diseases, while other human studies have reported effects on the 

blood (ATSDR, 1995). The U.S.EPA is currently developing a Reference Concentration 

for 1,3-butadiene, while CalEPA has established a chronic reference level of 0.008 

mg/m3 for 1,3-butadiene based on reproductive effects in mice (CalEPA, 1999) 

Epidemiological studies of workers in rubber plants have shown an association between 

1,3-butadiene exposure and increased incidence of leukemia (Delzell et al, 1996; 

Macaluso et al., 1996). U.S. EPA has classified 1,3-butadiene as a Group B2, and 

calculated inhalation cancer risk of 3 × 10-5 m3/μg (U.S. EPA, 2005g). 1, 3-Butadiene 

chemical formula, CAS code, and molecular weight are C4H6, 106-99-0, and 54.09 g/mol 

(U.S. Department of Health and Human Services, 2005). The atmospheric sinks for 1, 3-

butadiene are the reaction with OH radical, oxygen atom, O3, and NO3. NO3 radical 

reaction is of minor importance, and under atmospheric conditions the O3 reactions is 
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also of minor significance, leaving the OH radical and O atom reactions as the major loss 

process, principally during summer season. Summarizing, the CB-IV photochemical 1, 3-

Butadiene reactions are: 

 

1, 3-Butadiene decomposition 

 

OH radical reaction 

1, 3-BUTADIENE + OH = 0.85*FORM + 0.85*ACROLEIN + 0.85*XO2 + 0.85*HO2 -

0.85*PAR 

 

Ozone reaction 

1, 3-BUTADIENE + O3 = 0.50*ACROLEIN + 2.81*FORM + 1.26*CO + 1.67*HO2 + 

0.84*XO2 + 0.38*OH + 0.76*FACD + 0.76*AACD - 3.8*PAR 

 

NO3 radical reaction 

1, 3-BUTADIENE + NO3 = 0.140*XO2   + 0.014*XO2N + 0.154*FORM  + 

0.154*ALD2 - 0.154*PAR + 0.154*NO2 

 

Oxygen atom reaction 

1, 3-BUTADIENE + O = 0.230*ACROLEIN + 0.155*HO2  + 0.115*XO2 + 0.123*CO+ 

0.082*FORM + 0.008*XO2N + 0.090*PAR + 0.082*OH 

 

The species description is illustrated in Table 2-9. 
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E. Formaldehyde 

 

Formaldehyde is used mainly to produce resins and as an intermediate in the synthesis of 

other chemicals. Mobile sources are the main primary formaldehyde emissions (Seinfeld 

and Pandis, 1998). Acute inhalation exposure to formaldehyde in humans can result in 

respiratory symptoms, and eye, nose, and throat irritation. Other effects seen from 

exposure to high levels of formaldehyde in humans are coughing, wheezing, chest pains, 

and bronchitis (U.S. EPA, 1988; WHO, 1989). Chronic exposure to formaldehyde by 

inhalation in humans has been associated with respiratory symptoms and eye, nose, throat 

irritation, asthma (Delfino, 2002; Leikauf, 2002; U.S. EPA, 1988; WHO, 1989). The U.S. 

EPA has not established a Reference Concentration for formaldehyde (U.S. EPA, 2005l) 

Limited human studies have reported an association between formaldehyde exposure and 

lung and nasopharyngeal cancer. Animal inhalation studies have reported an increased 

incidence of nasal squamous cell cancer (U.S. EPA, 2005l). The U.S. EPA considers 

formaldehyde a probable human carcinogen (Group B1) and calculated an inhalation unit 

risk estimate of 1.3 × 10-5 m3/μg (U.S. EPA, 2005l). 

 

The formaldehyde lifetime due to reaction with OH radical, NO3 radical, and hv are 1.5 

days, 80 days, and 4 h respectively (Seinfeld and Pandis, 1998). Its chemical formula, 

CAS code, and molecular weight are CH2O, 50-00-0, and 30.03 g/mol respectively (U.S. 

Department of Health and Human Services, 2005). Formaldehyde is known to be 

decomposed rapidly by photolysis and react with OH radical and with oxygen radical. 



 96

NO3 radical reaction is of minor importance (Seinfeld and Pandis, 1998). Under 

atmospheric conditions the oxygen reaction is also of minor significance, leaving the 

photolysis and OH radical reaction as the major loss process, principally during summer 

season. Summarizing, the CB-IV photochemical acetaldehyde reactions are: 

 

Formaldehyde (FORM) decomposition 

 

OH radical reaction 

FORM + OH= HO2 + CO   

 

Formaldehyde photolysis 

FORM= 2*HO2 + CO 

FORM= CO 

 

Oxygen atom reaction 

FORM + O= OH + HO2 + CO 

 

NO3 radical reaction 

FORM + NO3 = HNO3 + HO2 +CO  

 

Secondary formaldehyde formation (FORM) 

 

ALD2 = XO2+ 2*HO2+ CO+ FORM 
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C2O3 + NO= NO2 + XO2   + FORM + HO2 

 

C2O3 + C2O3 = 2*XO2 + 2*FORM + 2*HO2 

 

C2O3 + HO2= 0.79*FORM + 0.79*XO2 + 0.79*HO2+ 0.79*OH + 0.21*PACD 

 

CH4 + OH= XO2 + FORM + HO2 

 

OLE+ O = 0.63*ALD2+ 0.38*HO2 + 0.28*XO2+ 0.3*CO+ 0.2*FORM + 0.02*XO2N+ 

0.22*PAR + 0.2*OH 

 

OLE + OH= FORM + ALD2 + XO2 + HO2 – PAR 

 

OLE + O3= 0.5*ALD2 + 0.74*FORM + 0.33*CO + 0.44*HO2 + 0.22*XO2 + 0.1*OH + 

0.20*FACD + 0.20*AACD – PAR 

 

OLE + NO3 = 0.91*XO2 + 0.09*XO2N + FORM + ALD2 - PAR + NO2 

 

ETH + O= FORM + 0.7*XO2 + CO + 1.7*HO2+ 0.3*OH 

 

ETH + OH= XO2 + 1.56*FORM + HO2 + 0.22*ALD2 

 

ETH + O3 = FORM + 0.42*CO + 0.12*HO2 + 0.40*FACD 
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OPEN + OH= XO2 + 2*CO + 2*HO2 + C2O3+ FORM  

 

OPEN + O3 = 0.03*ALD2 + 0.62* C2O3 + 0.7*FORM + 0.03*XO2 +0.69*CO + 

0.08*OH + 0.76*HO2 + 0.2*MGLY  

 

ISOP + O = 0.75*ISPD + 0.50*FORM + 0.25*XO2  + 0.25*HO2 + 0.25* C2O3+ 

0.25*PAR 

 

ISOP + OH = 0.912*ISPD + 0.629*FORM + 0.991*XO2+ 0.912*HO2 + 0.088*XO2N 

 

ISOP + O3 = 0.65*ISPD+ 0.60*FORM+ 0.20*XO2+ 0.066*HO2+ 0.266*OH+ 0.20* 

C2O3 + 0.15*ALD2 + 0.35*PAR+ 0.066*CO 

 

ISPD + OH= 1.565*PAR+ 0.167*FORM+ 0.713*XO2+ 0.503*HO2 + 0.334*CO+ 

0.168*MGLY + 0.273*ALD2+ 0.498* C2O3 

 

ISPD + O3 = 0.114* C2O3 + 0.150*FORM + 0.850*MGLY + 0.154*HO2+ 0.268*OH+ 

0.064*XO2 + 0.020*ALD2+ 0.360*PAR+ 0.225*CO 

 

ISPD + NO3 = 0.357*ALD2 + 0.282*FORM + 1.282*PAR+ 0.925*HO2  + 0.643*CO+ 

0.850*NTR  + 0.075* C2O3 + 0.075*XO2+ 0.075*HNO3 
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ISPD= 0.333*CO + 0.067*ALD2 + 0.900*FORM + 0.832*PAR + 1.033*HO2+ 

0.700*XO2 + 0.967* C2O3 

 

ACROLEIN+ OH = 0.709*FORM + 0.709*ALD2 + 0.709*XO2  + 0.709*HO2- 

0.709*PAR  + 0.814* C2O3 

 

ACROLEIN + O3 = 10.326*ALD2 + 15.282*FORM + 6.815*CO+ 9.087*HO2 + 

4.543*XO2+ 2.065*OH + 4.130*FACD+ 4.130*AACD - 20.651*PAR 

 

ACROLEIN + NO3 = 1.192*XO2 + 0.118*XO2N+ 1.310*FORM + 1.310*ALD2 - 

1.310*PAR+ 1.310*NO2+ 0.851* C2O3+ 0.851*HNO3 

 

ACROLEIN + O = 0.538*ALD2 + 0.325*HO2 + 0.239*XO2+ 0.257*CO+ 0.171*FORM     

+ 0.017*XO2N+ 0.188*PAR+ 0.356*OH+ 0.185* C2O3 

 

ACROLEIN = 6.3*XO2 + 12.6*HO2 + 6.3*CO + 6.3*FORM 

 

1, 3-BUTADIENE+ OH = 0.85*FORM + 0.85*ACROLEIN + 0.85*XO2+ 0.85*HO2-

0.85*PAR 

 

1, 3-BUTADIENE+ O3 = 0.50*ACROLEIN+ 2.81*FORM+ 1.26*CO+ 1.67*HO2  

+0.84*XO2+ 0.38*OH+ 0.76*FACD+ 0.76*AACD - 3.8*PAR 
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1, 3-BUTADIENE+NO3 = 0.140*XO2+ 0.014*XO2N + 0.154*FORM  + 0.154*ALD2 - 

0.154*PAR+ 0.154*NO2 

 

1, 3-BUTADIENE+ O = 0.230*ACROLEIN + 0.155*HO2 + 0.115*XO2+ 0.123*CO+ 

0.082*FORM+ 0.008*XO2N + 0.090*PAR+ 0.082*OH 

 

The species description is illustrated in Table 2-9. 

 

F. Diesel Particulate Matter 

 

Diesel particulate matter (DPM) is currently a topic of great concern from both pollution 

and public health standpoints. The U.S. EPA finalized strict new regulations on diesel 

particle emissions, and a number of other countries are considering regulatory action as 

well. Although specific output depends on operating conditions, the largest single 

component of DPM emissions is carbonaceous soot produced by the incomplete 

combustion of diesel fuel. A great research effort is currently being devoted to reducing 

the amount of DPM emissions. These efforts include reducing the diesel fuel sulfur 

content, making the diesel engine combustion process more efficient, as well as removing 

particles from the exhaust stream, such as particle traps and catalytic converters on 

particle properties (Burtscher, 2005; U.S. EPA, 2001b and 2004b).  

 

DPM is part of a complex mixture. The sizes of diesel particulates, which are of greatest 

health concern, are in the categories of fine, ultra fine, and nano particles (Biswas and 
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Wu, 2005; Lloyd and Cackette 2001; Lighty et al., 2000; Kittelson, 1998), as shown in 

Figure 2.28. The mixture of these fine, ultra fine, and nano particles is composed mainly 

of elemental carbon (EC) or black carbon with adsorbed compounds (generally described 

as the soluble organic fraction, SOF), such as organic carbon (OC), sulfate, nitrate, 

metals, and other trace elements (Kleeman et al., 2000; Kittelson, 1998), as illustrated in 

Figure 2.29. The elemental fraction stems from fuel droplet pyrolysis, while the organic 

fraction originates from unburned fuel, lubricating oil, and combustion byproducts (Shah 

et al., 2004).  

 

 

 

Figure 2.28. Typical Engine Exhaust Size Distribution: Both in Mass and in 

Number. (Reprinted from Kittelson et al., 1998) 
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Figure 2.29. Typical Composition and Structure of Engine Exhaust Particles 

(Reprinted from Kittelson et al., 1998) 

 

Many carcinogenic and mutagenic compounds have been measured in the SOF of DPM, 

such as polycyclic aromatic hydrocarbons (PAHs) and nitroarenes, as well as irritants or 

inflammatory agents such as acrolein and other toxins that cause a range of diverse health 

effects (Jasco Inc, 2004; Kittelson, 1998; Rosenkranz, 1996). A diesel particle initially 

consists of an agglomeration of EC spheres coated with organic and inorganic 

compounds that are adsorbed or absorbed at the surface of this agglomerate, as illustrated 

in Figure 2.29 (Vouitsis et al., 2005; Kim et al., 2002a, 2002b; Kittelson, 1998). Diesel 

particles lose their identity rapidly as they coagulate with other particles and act as 

condensation sites for secondary aerosol species (Ning et al., 2004). It may be noted that 

for some time, the diesel exhaust nano-particles are formed in part due to the continuation 

of in-stack coagulation and adsorption, along with the condensation of significant 

quantities of organic and inorganic compounds present in diesel exhaust (Biswas and Wu, 

2005). 
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DPM composition is variable, which typically has a composition of 25-60% of EC 

(Seigneur et al., 2003; Moosmuller et al., 2001; Schauer et al., 1999; Kittelson, 1998) and 

20-50% of OC (Shi et al., 2000). Sulfate and nitrate may account for concentrations 

lower than 4%, depending on the sulfur diesel content and vehicles type (Shi et al., 2000). 

Figure 2.30 shows a typical particle composition for a heavy-duty diesel engine tested in 

a heavy-duty transient cycle published by Kittelson et al., (1998). This composition and 

emissions quantity is strongly dependent of the diesel fuel sulfur content, because the 

lower sulfur concentration is in the fuel, the lower will be the particulate matter emissions 

from the diesel engines (Saiyasitpanich et al., 2005; Liang et al., 2005; U.S. EPA, 2001b 

and 2004b). 

 

Unburned Fuel 7.0%

Unburned Oil 25.0%

Ash and Other 13.0%
Carbon 41.0%

Sulfate and Water 14.0%

 

Figure 2.30. Typical Particle Composition for a Heavy-Duty Diesel Engine Tested in 

a Heavy-Duty Transient Cycle (Reprinted from Kittelson et al., 1998) 
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For this reason, in January 2001 and in June 2004, the U.S. EPA finalized the Clean 

Diesel Trucks and Buses Rule and the Clean Non-road Diesel Rule, respectively, with 

more stringent standards for new diesel engines and fuels. The rules require the use of 

sulfur content as low as 15 ppm beginning in 2006 for highway diesel fuel, and 2007 for 

non-road diesel fuel. The diesel fuel sulfur content was in the range of 500 ppm in 1999 

(U.S. EPA, 2001b). These fuels will enable the use of after treatment technologies for 

new diesel engines, which can reduce harmful emissions by 90 percent or more. After 

treatment technologies will start phasing into the diesel sector beginning in 2007 for 

highway and 2011 for non-road (U.S. EPA, 2001b and 2004b). 

 

The diesel sulfur content is oxidized in the engine combustion chamber to give sulfur 

dioxide vapors, and as the exhaust gases cool in the ambient condenses to form H2SO4 

droplets or nuclei particles (Liang et al., 2005; Kim et al., 2002a and 2002b; Kittelson, 

1998). This sulfuric acid provides the condensation surface to the DPM formation (Kim 

et al., 2002b). However, if lower sulfur content is on the diesel fuel, nano-particle number 

concentrations may increase due to the lower availability of condensation surfaces 

(Biswas and Wu, 2005). 

 

The smallest DPM can deeply penetrate in the lungs and enter the blood stream, carrying  

the toxins in the rest of the body (Nemmar et al., 2002; Donaldson et al., 2001; U.S. EPA, 

2002c) where they can affect the respiratory and cardiovascular systems, and other 

organs, causing a high number of premature deaths (Delfino et al., 2005; Zanobetti and 

Schwartz, 2005; Sioutas et al., 2005; Schultz et al., 2005; Riedl et al., 2005; Pope et al., 
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2004a; Adonis et al., 2003a and 2003b; Pandya et al., 2002; Lloyd and Cackette, 2001; 

Castranova et al., 2001). The fine particles aggravate cardiovascular diseases increasing 

heart and brain attacks, since they invade the blood stream and start an inflammatory 

response, interrupting the heart beats and increasing the sanguineous coagulation (Riedl 

et al., 2005; Delfino et al., 2005; Peters, 2001 and 2002; Lee et al., 2002; Donaldson et 

al., 2001; Ghio and Devlin, 2001; Nemmar et al., 2002). On the other hand, a consistent 

and evident relationship between the exposure to the DPM and lung cancer has been 

published in more than 32 epidemiologic studies in humans (Krewski et al., 2005; 

CalEPA, 1998; Lipsett and Campleman, 1999; Steenland et al., 1998). In 1989, the 

International Agency for Research on Cancer (IARC) concluded that DPM is a probable 

human carcinogen, classifying it in the group 2A. In 1990, California through its 

Environmental Protection Agency (CalEPA) identified the DPM as a chemical that 

causes cancer (CalEPA, 2005) and defined an inhalation cancer risk factor of 3x10-4 

[m3/ug]. The U.S. EPA has not defined an inhalation cancer risk yet because data are not 

sufficient to develop a numerical estimate of carcinogenic potency for this pollutant. 

However, the U.S. EPA has concluded that diesel exhaust ranks with the other substances 

that the national-scale assessment suggests pose the greatest relative risk. In addition to 

the potential for lung cancer risk, the U.S. EPA indicates that there is a significant 

potential for non-cancer health effects as well, based on the contribution of diesel 

particulate matter to ambient levels of fine particles (U.S. EPA, 2000a and 2002c).  

 

High morbidity and mortality levels of respiratory diseases have been reported in 

communities with high DPM concentrations (Krewski et al., 2005; Conrad et al., 2005; 
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Fruin et al., 2004; Adonis et al., 2003a). Adverse effects also are observed when 

breathing airborne particles in controlled acute human exposure studies, including cough, 

respiratory symptoms of asthma, and reduced lung function, especially over susceptible 

groups of the population, such as children and the elderly (Tainio et al., 2005; Pope et al., 

2004b; Schwartz, 2004). The DPM also affects the environment, decreasing visibility 

mainly in urban areas (Lloyd and Cackette, 2001), while EC or black carbon is 

considered one of the more important green house pollutants after carbon dioxide (Figure 

2.31), which is causing as much as a quarter of all observed global warming by reducing 

the ability of snow and ice to reflect sunlight (Conrad et al., 2005; Hansen and Sato, 

2001; Jacobson, 2001). 

 

 

 

Figure 2.31. Radiative Forcing since 1850 due to Changes in Green House Gases, 

Aerosols, Land Use, Solar Activity, and Volcanoes (Reprinted from Hansen and 

Sato, 2001) 
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The cancer risk estimate by Conrad et al., (2005), as explained above, could be higher in 

European urban areas and developing countries, because those countries have higher light 

duty diesel vehicle (LDDV) and diesel buses percentages than the U.S. (Adonis et al., 

2003b; Walker, 2004). In fact, diesel engines are being more popular each day in the 

LDDV sector, principally in Europe and some South American countries, where almost 

30% of the market is diesel-vehicles; this proportion will increase until 50% by 2010 

(Walker, 2004), while in the U.S. the LDDV market will increase only 7% (Greene et al., 

2004). 

 

Because DPM is the major source of EC in the atmosphere (Schauer, 2003) and so far 

there is no analytical method to measure ambient DPM (Lloyd and Cackette, 2001), this 

has led to the use of EC as a marker for assessing human exposure to diesel exhaust, for 

determining the contribution of diesel engines to ambient particulate concentrations, and 

as a surrogate for DPM (Shah et al., 2004; Tamura et al., 2003; Birch et al., 1996; 

Schauer, 2003). The ability to use EC accurately as a tracer for DPM in either the 

environmental or the occupational setting critically relies on a clear understanding of 

relative contributions of other sources to EC concentrations; however, it approximation 

generates important uncertainty, because those studies used an average EC contribution 

to come up the DPM concentration in any place between 50 and 80% (Seigneur et al., 

2003; MATES II, 2000). In addition, EC is not a unique tracer for ambient DPM, and 

efforts to utilize EC as an indicator of DPM must properly address other sources of EC as 

well as utilize a consistent measurement technique for EC when comparing source and 

ambient EC measurements to avoid significant biases. Those sources include gasoline 
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vehicles, heating wood combustion, restaurant kitchens, agriculture biomass burning, and 

forest wildfires (Lloyd and Cackette, 2001). In order to better manage air quality, it is 

important to know the sources or source categories that contribute to the concentrations 

of DPM at a particular area or receptor. Receptor models have been widely used to 

characterize the sources that contribute to specific pollutants, such as PM2.5 and PM10 

(Zheng et al., 2002; Kavouras et al., 2001; Koutrakis et al., 2005). However, they do not 

fully take into account the chemical reactions involved in the formation of secondary fine 

particles nor distinguish among a heavy diesel engine vehicle, a light diesel engine 

vehicle, or a diesel non-road engine (U.S. National Research Council, 1999).  

 

In a CMAQ DPM modeling between August 27th and September 9th, 1999, one of the 

worst ozone episodes that occurred in the Southeast U.S. between 1997 and 2000, Diaz 

estimated that in general the main EC contribution came from goods transportation; 

however, for some particulate urban areas, the main contribution came from construction 

engines and marine vessels, as was the case in Memphis, Tennessee, which is located 

close to the Mississippi river (Diaz et al., 2005). In addition, in this study it was estimated 

that Altanta, GA, presented diesel EC emissions and concentrations 40 and 4 times higher 

than a rural area, respectively. As well as, the sources that use diesel contributed in 

average with a 74% of EC emissions and a 70% in ambient EC concentrations on the 

analyzed geographic area. These contributions were close to the values obtained by 

Zheng et al., 2002, who employed a molecular marker chemical mass balance model to 

apportion the sources of atmospheric particulate matter in eight cities in the Southeastern 

U.S. for one-month of each season between the spring of 1999 and the winter of 2000. 
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The calculated value, for January, April, July, and October were 74, 84, 92, and 85% 

respectively. His results demonstrated the seasonal impact of wood smoke on EC 

concentrations. The differences between the results obtained by Diaz and Zheng could be 

due to Zheng not considering the photochemical reaction’s effect on the SOA formation, 

while the Diaz’s results could be affected by a sub estimation of the emission inventory 

provided for the U.S. EPA (U.S. EPA, 2005a). 

 

 

2.2 AIR TOXICS MODELING APPROACHES 

 

2.2.1 Advanced Air Quality Models 
 
 

The advanced air quality models (Zolghadri et al., 2004; Russell et al., 2000; Byun and 

Ching, 1999) combine and systematize the information and the knowledge of emissions, 

meteorology, and the atmospheric photochemical mechanism to estimate ambient 

concentrations of several pollutants, even over complex terrains. Those models can be 

used to simulate and explain old episode of pollution, to assess the potential effects of 

different strategies of emissions reductions, or to forecast the air quality. The more 

common air quality models are: the Models-3/ Community Multiscale Air Quality 

(CMAQ) model (Byun and Ching, 1999) and the Comprehensive Air quality Model 

(CAMx) model (ENVIRON, 2005). The Models-3/CMAQ model is a third generation 

model able to simulate the tropospheric ozone, acid deposition, particulate matter, air 



 110

toxics, visibility, and other contaminants over one atmosphere context. CMAQ is the 

model used by EPA and has been widely adopted by the expert air quality modeling 

community (CMAS, 2005a). This model is able to execute the following photochemical 

mechanisms: CB-IV (Gery et al., 1989), RADM2 (Stockwell et al., 1990), and SAPRC99 

(Carter, 2000). On the other hand, the CAMx model is based on the old Urban Air-Shed 

Model (UAM) (Reynolds, 1973, 1974) and has been widely used in California and more 

recently in Houston, Texas. These advanced air quality models contain modules to 

secondary organic aerosols (SOA) and inorganic aerosols using modal and sectional 

representations to particle sizes. For inorganic aerosols, the ISORROPIA equilibrium 

model is used by CMAQ and CAMx (Nenes et al., 1998), while CAMx uses the proposed 

model by Koo to simulate the SOA (Koo et al., 2003), and CMAQ uses the formulation 

proposed by Schell (Schell et al., 2001).  

 

2.2.1.1 Models-3/CMAQ 

 

Models-3/CMAQ is designed to be a multipollutant multiscale air quality model that 

incorporates the latest scientific algorithms for simulating all atmospheric and land 

process that affect transport, chemical/physical transformation and deposition of 

atmospheric pollutants both on a regional and urban scale (Byun and Ching, 1999). The 

CMAQ air quality model is driven for the MM5 meteorological model, and the Sparse 

Matrix Operator Kernel Emissions (SMOKE) model (Figure 2.32).  
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Figure 2.32. Models-3/CMAQ Layout 
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In these latest versions of the modeling system, improvements have been made to all 

major components. A new land-surface and soil moisture model was added to the MM5 

version 3.7 meteorological model to produce better representations of the evolution of the 

atmospheric mixed layer containing most of the pollutant burden. Also, a new interface 

processor was created to allow meteorological parameters to pass through directly from 

the MM5 model to the CMAQ air quality model. Previous model versions had required 

some meteorological parameters to be re-derived for CMAQ. A new biogenic emissions 

model, Biogenic Emissions Inventory System-Version 3.09, was included in the SMOKE 

emissions model version 2.0. Emission factors of naturally-occurring hydrocarbons have 

been improved and refined in this model. Within the CMAQ model, a new efficient 

numerical solution routine for the chemical equations was also implemented, resulting in 

faster CMAQ model run times. Refinements in the treatment of particulate matter were 

also included in this model version, including new aerosol yields from organic gas 

species and a new thermodynamics sub-model that has already seen community-wide use 

in other particulate matter models. Finally, a new routine for vertical diffusion, the 

Asymmetric Convective Model, was added as an option to Models-3/CMAQ. Thus, the 

Community Modeling and Analysis System Center, CMAS, in cooperation with USEPA 

Office of Research and Development have developed an air toxics Models-3/CMAQ 

version (Ching et al., 2003). 

 

In the near future, the U.S. EPA and the states will be conducting air quality assessments 

and health risk exposures to a host of semi-volatile toxic compounds, and modeling will 

be a key aspect of these assessments. Extension of CMAQ modeling to the toxics arena 
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will help to provide tools for these assessments over a fine scale, as dioxins and diesel 

exhaust (Ching et al., 2004). The U.S. EPA has planned future work in two areas. First, 

comparisons will be made between model results and observations and atmospheric 

deposition of air toxics. Second, based on the work of extending the CMAQ model to this 

initial toxic compound, other toxic and semi-volatile compounds will be included in 

CMAQ's simulation capabilities, and tested with new ambient toxics monitoring data 

(Cooter et al 2002a and 2002b). These advances air quality models can be integrated with 

health risk assessment techniques (Ching et al., 2004), which together can be a powerful 

and indispensable tool to optimize the air quality management, air pollution control 

policy, and to generate air quality standards, especially on some MSATs, such as DPM 

and benzene (Molina et al., 2004; Lloyd and Cackette, 2001). 

 
 
A. SMOKE and Air Toxics Emissions Processing 
 
 

SMOKE version 2.0 is primarily an emissions processing system designed to create 

gridded, speciated, hourly emissions for input into a variety of air quality models such as 

CMAQ, REMSAD, CAMx, and UAM. SMOKE supports area, biogenic, mobile (both 

onroad and nonroad), and point source emissions processing for criteria, particulate, and 

air toxics (UNC, 2004). For biogenic emissions modeling, SMOKE uses the Biogenic 

Emission Inventory System, version 2.3 (BEIS2) and version 3.09 (BEIS3). SMOKE is 

also integrated with the on-road emissions model MOBILE6.2. The emissions processing 

paradigm implemented in SMOKE is shown in Figure 2.33.  
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Figure 2.33. Serial Approach to Emissions Processing  

 

For each SMOKE processing category (i.e., area, biogenic, mobile, and point sources), 

the following tasks are performed: 

 

 Read emissions inventory data files 

 Optionally grow emissions from the base year to the (future or past) modeled year 

(except biogenic sources) 

 Transform inventory species into chemical mechanism species defined by an air 

quality model 

 Optionally apply emissions controls (except for biogenic sources) 

 Model the temporal distribution of the emissions, including any meteorology effects 

 Model the spatial distribution of the emissions 

 Merge the various source categories of emissions to form input files for the air quality 

model 

 At every step of the processing, perform quality assurance on the input data and the 

results 
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The emissions processing is managed by the core SMOKE programs. Those core 

SMOKE version 2.0 programs are: Cntlmat, Elevpoint, Emisfac, Grdmat, Grwinven, 

Laypoint, Mbsetup, Mrggrid, Normbeis3, Premobl, Rawbio, Smkinven, Smkmerge, 

Spcmat, Temporal, Tmpbeis3, and Tmpbio (Figure 2.34). 

 

The Smkinven program is responsible for importing the stationary area, non-road, on-

road mobile, and point source inventory emissions (Figure 2.35a). The output from 

Smkinven is used as input to nearly every other core SMOKE programs. Grdmat creates 

the gridding matrix for the anthropogenic source categories. 

 

Also, for mobile sources the Grdmat program creates an ungridding matrix used by 

Mbsetup, Premobl, and Emisfac when emission factors are being generated. If 

meteorology data are input for mobile-source processing, Premobl processes these data, 

creating hourly temperature and relative humidity profiles by county that are used by 

Emisfac to compute mobile-source emission factors. Emisfac computes emission factors 

for a variety of emission processes; these factors are needed when VMT data are used as 

input for mobile sources (Figure 2.35b). Mbsetup, Premobl, and Emisfac are skipped if 

only emissions data are imported for mobile sources. 

 

The Temporal program is used to create an hourly emissions file for the anthropogenic 

source categories. It can read in day-specific and hour-specific data, and merge this with 

estimated daily and hourly data created from the annual emissions data using temporal 

profiles. 
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Figure 2.34. Core SMOKE version 2.0 Programs 
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a 

 
b 

 

Figure 2.35. Base Case Sources Processing Steps. Area (a) and Mobile Sources (b) 
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c 

 

 
d 

 

Figure 2.35. Continued. Point (c) and Biogenic Sources (d) 
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For mobile sources, Temporal can compute hourly emissions using the daily VMT, 

temporal factors (monthly, day-of-week, and hourly), and the emission factors from 

Emisfac. If VMT are not used, then the emissions from Smkinven are combined with the 

temporal factors, and the emission factors are not used at all. Elevpoint preprocesses the 

selected Plume-in-grid (PinG) and major point sources (Figure 2.35c). Elevpoint is not 

used when no PinG or major point sources need to be defined. In this case, SMOKE can 

create elevated emissions for all point sources, so there is no need to specifically indicate 

the major point sources. Laypoint computes the plume rise for all point sources based on 

the meteorology data. Spcmat creates the speciation matrices (both mass and molar) for 

the anthropogenic source categories. It uses the user-selected chemical mechanism.  

The Rawbio program imports the county or gridded land use data and computes 

normalized (time-independent) biogenic emissions. As an alternative to BEIS2 

processing using Rawbio, SMOKE is capable of using the BEIS3 model. In this type of 

processing, Normbeis3 creates gridded, normalized biogenic emissions from land use and 

biogenic emissions factors. Tmpbio applies meteorology adjustments to the gridded, 

normalized biogenic emissions from Rawbio. It also applies the speciation factors needed 

for the user-selected chemical mechanism to create gridded, hourly, model-species 

biogenic emission files for use in Smkmerge or Mrggrid. Tmpbeis3 applies meteorology 

adjustments to the normalized emissions created by Normbeis3. Tmpbeis3 also applies 

the speciation profiles needed for the user-selected chemical mechanism to create 

gridded, hourly, model-species biogenic emissions data for use in Smkmerge and 

Mrggrid. The Normbeis3 and Tmpbeis3 programs taken together are the equivalent of 

SMOKE-BEIS3 (Figure 2.35d).  
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Cntlmat creates the growth matrices, multiplicative control matrices, and reactivity 

control matrices for the anthropogenic source categories. This program is not used for 

base-year emissions without controls. Grwinven is used to grow the emissions to past or 

future years using the growth matrix created by Cntlmat and the imported inventory data 

from Smkinven. The output from Grwinven is used in place of the original output from 

Smkinven when processing past or future years. Smkmerge is used to combine all 

emissions and matrices to create the gridded, hourly, model-species emissions needed for 

an advanced air quality model like CMAQ. It can merge for one source category at a time 

or all source categories at once, and it can read in the model-ready biogenic emissions to 

merge with the anthropogenic source categories. It can merge the matrices with the 

inventory data output from Smkinven or the hourly emissions from Temporal, and it can 

optionally merge the speciation, gridding, or control matrices, or any combination. It also 

writes state and county emissions totals. Finally, Mrggrid is used to combine gridded 

emission data files, which can be speciated or non-speciated, and hourly or time-

independent. It can combine a 3-D point source file with any number of 2-D files from 

other source categories. This program is optional and provides a convenient way to merge 

model-ready output files outside of Smkmerge (UNC, 2004). 

 

SMOKE allows integrating high-performance-computing sparse-matrix algorithms. The 

SMOKE system is a significant addition to the available resources for decision-making 

about emissions controls for both urban and regional applications. It provides a 

mechanism for preparing specialized inputs for air quality modeling research, and it 

makes air quality forecasting possible (UNC, 2004). 
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Because of the large amount of computing necessary to calculate a mobile sources 

emission inventory to be processed on SMOKE, the National Mobile Inventory Model 

(NMIM) model was designed by U.S. EPA to utilize multiple computers over a computer 

network (U.S. EPA, 2005m). NMIM develops estimates of current and future emission 

inventories for on-road motor vehicles and non-road equipment. It uses current versions 

of MOBILE6.2 and NONROAD models to calculate emission inventories, based on 

multiple input scenarios to enter into the system, including future scenarios (U.S. EPA, 

2005m). However, there are a number of significant limitations in the MOBILE6.2 and 

NMIM models based highway vehicle HAP inventory for 1999 (Cook et al 2002).  

 

Among these limitations are: 

 

1) The toxic to VOC ratios used to estimate gaseous HAP emissions from heavy-duty 

gasoline and diesel vehicles are based on tests from only a few engines. Thus, 

emission estimates for heavy-duty vehicle classes are highly uncertain. 

2) MOBILE6.2 and NMIM do not account for impacts of fuel formation on toxics to 

VOC ratios for diesel-powered vehicles. 

3) The adjustments to toxic to VOC ratios applied to account for off-cycle emissions are 

based on tests from only 12 vehicles in one study. 

4) Toxic to VOC ratios are assumed to be the same, regardless of speed, due to a lack of 

modal emissions data. 

5) The modeling used default assumptions about the vehicle mix for various roadway 

types. 
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6) All metal emissions estimates are based on only a few tests, and estimates for arsenic 

and mercury were based on one-half of the detection limit used in various studies, 

which measured metal emissions. 

 

B. Description of Models-3 Aerosol Module 
 

The CMAQ version 4.3 aerosol module considers PM2.5 and PM10 and process primary 

and secondary species. CMAQ’s aerosol module adopts a modal approach to represent 

the ambient particles (Binkowski and Roselle, 2003; Mebust et al., 2003). This module 

uses the superposition of 3 lognormal sub-distributions to represent the size distribution 

of these particles. The PM2.5 species are represented by two of these sub-distributions 

called Aitken (i) mode, which are particles have diameters up to 0.1 μm, and the 

Accumulation (j) mode, which are particles have diameters between 0.1 and 2.5 μm. The 

third modal sub-distribution represents particles of the coarse mode, which are particles 

that have diameters between 2.5 to 10 μm.  

 

Aitken mode represents particles recently formed from nucleation or from direct 

emissions that have a short lifetime (few minutes), while Accumulation mode represents 

old particles that have a long lifetime (weeks). Coarse mode represents particles with 

short lifetime (one day or less). The PM2.5 chemical species considered in Aitken and 

Accumulation modes are: sulfate, nitrate, ammonia, primary organics, secondary 

anthropogenic organics, secondary biogenic organics, EC, water, and unspecified 

anthropogenic mass, as shown in Table 2.10. The primary species considered on CMAQ  
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Table 2.10. Speciation and Variable Name Used in CMAQ Aerosol Module 

 
Name Species Description 
ASO4J Accumulation mode sulfate mass 
ASO4I Aitken mode sulfate mass 
ANH4J Accumulation mode ammonium mass 
ANH4I Aitken mode ammonium mass 
ANO3J Accumulation mode nitrate mass 
ANO3I Aitken mode aerosol nitrate mass 
AORGAJ Accumulation mode anthropogenic secondary organic mass 
AORGAI Aitken mode anthropogenic secondary organic mass 
AORGPAJ Accumulation mode primary organic mass 
AORGPAI Aitken mode mode primary organic mass 
AORGBJ Accumulation mode secondary biogenic organic mass 
AORGBI Aitken mode biogenic secondary biogenic organic mass 
AECJ Accumulation mode elemental carbon mass 
AECI Aitken mode elemental carbon mass 
A25J Accumulation mode unspecified anthropogenic mass 
A25I Aitken mode unspecified anthropogenic mass 
ACORS Coarse mode unspecified anthropogenic mass 
ASEAS Coarse mode marine mass 
ASOIL Coarse mode soil-derived mass 
AH2OJ Accumulation mode water mass 
AH2OI Aitken mode water mass 
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module are elemental and organic carbon (AEC and AORGPA), dust and other species 

not further specified (A25). Secondary species considered are sulfate (ASO4), nitrate 

(ANO3), ammonium (ANH4), water (AH2O), and organic from precursors of 

anthropogenic (AORGA) and biogenic (AORGB) sources (Binkowski and Roselle, 

2003). 

 

In general, the CMAQ module includes the coagulation processes, the particles growth 

for the new mass addition, and the particles formation due to the gas-gas interaction. The 

chemical transformations of gaseous emissions and particles are processed by the 

chemical mechanism available on CMAQ.  

 

The aerosols module that considers the nucleation, coagulation, and other phenomena of 

particles growth processes the formed results. The outcomes estimated by CMAQ contain 

the information over the primary and secondary hourly PM2.5 concentrations (Byun and 

Ching, 1999; Binkowski and Roselle, 2003). 

  

According to Binkowski and Roselle, the following is the translation of CMAQ output 

species into PM2.5 (Binkowski and Roselle, 2003): 

 

PM2.5= ASO4I + ASO4J + ANH4I + ANH4J + ANO3I +ANO3J + 
AORGAI + AORGAJ + 1.167*(AORGPAI + AORGPAJ) + 
AORGBI + AORGBJ + AECI + AECJ + A25I + A25J 

Equation 2-11
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C. Description of Models3 Air Toxics Module 

 
 

U.S. EPA's Models-3/CMAQ version Air Toxics (CMAQ-AT) modeling system relates 

source emissions to ambient air concentrations through simulation of the relevant 

physical and chemical processes. It can predict the chemistry and fate of 20 gaseous high 

priority toxic air pollutants. High priority HAPs can exist in the gas phase, aqueous phase 

or aerosol phase, or partially in all of these phases, which makes their behavior in the 

atmosphere difficult to model. The CMAQ-AT, SMOKE version 2.0, and NMIM through 

MOBILE version 6.2 have the capability to model some semi-volatile air toxic 

compounds such as atrazine (Cooter et al, 2002), benzene, MTBE, 1,3-butadiene, and 

primary and secondary formaldehyde, acetaldehyde, and acrolein, among others (Majeed 

et al., 2004; Hutzell et al., 2004; Ching et al., 2004 and 2003; Seigneur et al., 2003). For 

secondary HAPs formation, CMAQ-AT provides two names speciation for acetaldehyde, 

acrolein, and formaldehyde, as shown in Table 2.11. 

 

Table 2.11. Primary and secondary HAPs species on CMAQ-AT 

HAPs Primary Secondary 

Acetaldehyde ALD2_PRIMARY ALD2 

Acrolein ACROLEIN_PRIMARY ACROLEIN 

Formaldehyde FORM_PRIMARY FORM 
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3.0 METHODOLOGY 

 

The methodology explained in this chapter has the objective of giving a structure to the 

development of an analytical protocol to assess the health risk of emission scenarios and 

of regulatory actions over future on-road sources scenarios to reduce HAPs 

concentrations. The overall approach included running CMAQ version 4.3 and CMAQ-

AT models with and without the following sources categories: on-road, light-duty 

vehicles (LDVs), heavy-duty vehicles (HDVs), diesel fueled sources (DFS), on-road 

DFS, and biogenic sources, as well as a future 2020 year with the effects of MSATs 

regulations. This chapter explains the methodology followed to estimate the emissions 

inventory required for the model runs, the base case modeling run, the emissions sources 

scenarios, and the health risk estimations considered in this study. The year 2020 was 

selected as a future scenario to compare the projections estimated by the U.S. EPA in its 

study Analysis of the Impacts of Control Programs on Motor Vehicle Toxic Emissions 

and Exposure Nationwide (U.S. EPA, 1999b and 1999c). 

 

3.1 CONCEPTUAL MODEL’S DEVELOPMENT 

 

The protocol developed here allows the estimation of the chronic health effects based on 

toxicological and epidemiological evidence under different emission scenarios, by taking 

into account the modeled HAPs annual concentrations obtained as output of the Models-

3/CMAQ and linked with toxicological cancer risk and non-cancer risk equations, as well 
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as with C-R functions based on epidemiological studies. With those components, the 

cancer risk, non-cancer risk, premature mortality risk, lung cancer mortality risk, and 

CVD mortality risk, expected in a particular area of the modeling domain can be 

estimated and compared for different emission scenarios. It may be noted that Models-

3/CMAQ was assumed as the inhalation exposure model, i.e., the population is exposed 

to the outdoor ambient HAPs concentrations without taking into account for the time that 

people spend indoors and outdoors. In addition, the risk assessment is designed to be a 

picture for measuring progress in reducing risks from exposure to air toxics. For this 

reason, this study is based on a 1999 inventory of air toxics emissions. It then assumes 

individuals spend their entire lifetimes (70 years) exposed to these air toxics. Therefore, it 

does not account for the reductions in emissions that have occurred since 1999 or those 

that will happen in the near future due to new regulations for mobile and industrial 

sources.  

 

These assumptions could be considered satisfactory to do emission scenarios analysis for 

pollutants, since the analysis approach intended by this proposed modeling involves 

considering the difference in mass concentrations and health risk values among the 

proposed emission scenarios as compared to the base case scenario rather than the 

absolute mass concentration or health risk values. This assumes that the factors that 

contributed to the under and over prediction of those air toxics concentrations would 

contribute similarly in all the scenarios considered in the analysis, causing minimal 

effects on the differences among the scenarios.  
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The 2003 daily and annual ground level diesel aerosols and HAPs concentrations were 

predicted using the advanced air quality model CMAQ version 4.3 and CMAQ-AT, 

respectively, through a 36-km modeling domain and compared with available 2003 

monitored data from Nashville, TN. Those area, point, on-road, non-road, and biogenic 

emissions were temporal and spatially allocated using the advanced emissions model 

SMOKE version 2.0. On-road sources were predicted using NMIM for the whole 

modeling domain, whereas the 1999 UTK emission inventory and the NEI99 were used 

for point, area, and non-road sources for Tennessee and for the rest of the 23 states in the 

modeling domain, respectively. The meteorological variables were generated for March, 

June, September, and December of 2003 through the mesoscale model (MM5) version 

3.7 developed by the National Center for Atmospheric Research (NCAR) at the 

Pennsylvania State University, PSU (PSU/NCAR, 2005) and processed by the 

meteorology-chemistry interface processor (MCIP) version 2.2. This general conceptual 

model is shown in Figure 3.1.  

 

3.2 TIME PERIOD SELECTION 

 

The time period selected for this study consisted of the following months of 2003: March, 

June, September, and December, which were used to estimate an annual concentration for 

the following pollutants: acetaldehyde, acrolein, benzene, 1,3-butadiene, formaldehyde, 

EC, NOx, and DPM (EC and NOx were selected to compare the diesel fueled sources 

emission of DPM). 
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Figure 3.1 Health Risk Conceptual Model 

 

These months were selected because they represented the seasonal concentrations of 

some HAPs for spring, summer, fall, and winter, respectively. In fact, an analysis of the 

daily formaldehyde and acetaldehyde collected at EATN and LOTN monitors in 

Nashville during 2002 and 2003, showed that the formaldehyde and acetaldehyde 

concentrations peaked during the months of June, July, August, and September, and were 

minimum during December, January, and February, as shown in Figures 2.19 and 2.20 

(other pollutants did not show seasonal patterns). Therefore, it was assumed that each 

month represented a season; March represented spring, June represented summer, 

September represented fall, and December represented the winter season. 
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3.3 MODELS-3/CMAQ MODELING DOMAIN 

 

A modeling domain represents the geographical boundaries of the region to be modeled. 

It is selected such that the area of interest is situated at the center of the domain with 

enough area surrounding the analyzed region, to minimize the effect of boundary 

conditions and pollution transport (Doraiswamy, 2004; Sanhueza, 2002). The size of the 

domain of 36-km was selected due to the unavailability of the computer sources required 

and the input data necessary. Since the results of this study were focused principally in 

the Nashville metropolitan area and Tennessee, the domain was selected such that 

Nashville and Tennessee were approximately at the center of the domain surrounded by 

other states.  

 

This domain included most of the central eastern region of the U.S., counting the 

following 24 states: Alabama, Arkansas, Florida, Georgia, Illinois, Indiana, Iowa, 

Kansas, Kentucky, Louisiana, Michigan, Mississippi, Missouri, Nebraska, New York, 

North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, 

Virginia, and West Virginia, as shown in Figure 3.2. This domain had 48x42 grid cells, 

each one with 1,728 km x 1512 km, base on Lambert Conformal map projection. A 

vertical resolution of eleven layers was configured following the sigma-pressure structure 

with denser grids at lower levels in order to better resolve the boundary layer (Sanhueza, 

2002). 
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Figure 3.2  36-km Modeling Domain 

 
 
 
 
3.4 METEOROLOGICAL INPUTS 

 

The meteorological inputs to the SMOKE and CMAQ models were processed by the 

MM5 model version 3.7, which is a mesoscale prognostic meteorological model and a 

limited-area, nonhydrostatic, terrain-following sigma-coordinate model designed to 

simulate or predict mesoscale atmospheric circulation, such as temperature, wind speed, 

wind field, humidity, and planetary boundary layer. The model is supported by several 

pre- and post-processing programs (Figure 3.3), which are referred to collectively as the 

MM5 modeling system (PSU/NCAR, 2005). 
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Figure 3.3 The MM5 Modeling System Flow Chart (PSU/NCAR, 2005) 
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Terrestrial and isobaric meteorological data are horizontally interpolated through the 

programs TERRAIN and REGRID from a latitude-longitude mesh to a variable high-

resolution domain on a Mercator, Lambert conformal, or polar stereographic projection. 

Since the interpolation does not provide mesoscale detail, the interpolated data may be 

enhanced through the programs RAWINS or little_r with observations from the standard 

network of surface and rawinsonde stations. Program INTERPF performs the vertical 

interpolation from pressure levels to the sigma coordinate system of MM5. Sigma 

surfaces near the ground closely follow the terrain, and the higher-level sigma surfaces 

tend to approximate isobaric surfaces. Since MM5 is a regional model, it requires an 

initial condition as well as lateral boundary condition to run. To produce lateral boundary 

condition for a model run, it is necessary to use gridded data to cover the entire time 

period that the model is integrated (PSU/NCAR, 2005). 

 
For this particulate study, the following scheme was used to run MM5:  

TERRAIN → REGRID → LITTLE_R → INTERPF → MM5. 

 

The program TERRAIN is the first program used to run in the suite of MM5 system 

programs, which allows to design the mesoscale model configuration: grid place, grid 

size, and the resolution data to use to generate terrain elevation, landuse category, and 

other datasets to run MM5 with the land-surface model option. This program creates 

meteorological fields on the mesoscale grid designed in program TERRAIN. This is also 

the first place to select the time period of the case (PSU/NCAR, 2005). 
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The program REGRID is the second program in the suite of MM5 system programs. 

REGRID has two sequential programs: pregrid and regridder. The program pregrid pre-

processes gridded, pressure-level meteorological fields from sources such as the NCAR 

archive, and NCEP's ftp server, and it puts the data in an intermediate format. The 

program regridder takes the intermediate-format data and output file from TERRAIN, 

and creates a "first-guess" for subsequent programs. The output file from REGRID has 3-

dimensional meteorological fields of wind, temperature, relative humidity, geopotential 

height, and 2-dimensional fields like sea-level pressure and sea-surface temperature 

(PSU/NCAR, 2005). 

 

The program LITTLE_R is the third program in the suite of MM5 system programs. This 

program reads in output from program REGRID and observations (radiosonde and 

surface reports), performs an objective analysis, which blends first guess with 

observations, and outputs data on pressure levels again. The program functions of 

LITTLE_R are as those in RAWINS, but RAWINS is an older Fortran 77 package. The 

advantages of LITTLE_R are that it is more users friendly and makes meteorological 

observations inputs easier to deal with for users who don't have access to NCAR's 

archived ADP data (PSU/NCAR, 2005). 

 

The program INTERPF is the fourth program in the suite of MM5 system programs. This 

program takes pressure-level meteorological fields produced by LITTLE_R; the user's 

definition of model sigma levels, and interpolates pressure level data to sigma levels 

(PSU/NCAR, 2005). 
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The program MM5 is the last program in the suite of MM5 system programs. This is the 

numerical weather prediction part of the modeling system. MM5 can be used for a broad 

spectrum of theoretical and real-time studies, including applications of both predictive 

simulation and four-dimensional data assimilation to monsoons, hurricanes, and cyclones 

(PSU/NCAR, 2005). 

 

A 36-km domain was used in this study. The model was run in a PSU/NCAR super 

computer called bluesky using the following physics options to get better MM5 

performance:  

 

 An explicit moisture scheme of warm rain for June and September and simple ice 

(Dudhia) for March and December were used. 

 The Planetary Boundar Layer (PBL) scheme and diffusion of Hong-Pan (or MRF) 

was used for all months, which is suitable for high-resolution in PBL (as for 

Blackadar scheme). 

 The cloud-radiation scheme was used for all months, which is sophisticated enough to 

account for long wave and short wave interactions with explicit cloud and clear-air, as 

well as atmospheric temperature tendencies, providing surface radiation fluxes.  

 A five-layer soil model was used for all months. The temperature is predicted in 1, 2, 

4, 8, 16 cm layers (approx.) with fixed substrate below using vertical diffusion 

equation. 

 A non-hydrostatic mode processed with cloud cover was used for all months. The 

Kain-Fritsch convective parameterization scheme accounted for sophisticated cloud 
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mixing schemes to determine entrainment/detrainment, and removing all available 

buoyant energy in the relaxation time. The planetary boundary layer (PBL) 

processing was performed according to the Blackadar scheme that allowed for high 

resolution PBL. 

 

This work also utilized the gridded four-dimensional data assimilation (FDDA) scheme 

available in MM5. The coarse domain consisted of 48 by 42 grid cells with 36 km 

horizontal grid resolution. A vertical resolution of 23 sigma layers was used. Because 

SMOKE 2.0 cannot process a tremendous meteorological input file, like one-month data, 

each month was separated into 4 batches of 10 or 5 days, starting 5 days before the 1st of 

each month to avoid the initial conditions effects on the CMAQ runs, accounting for 16 

runs and outputs generated through MM5 version 3.7. Since the outputs from the MM5 

model cannot be used directly with chemistry and emissions models, they were processed 

using the Meteorology Chemistry Interface Processor (MCIP) version 2.2. The MCIP 

transforms the MM5 output to a form that can be used by the emissions processor and by 

the air quality model. Furthermore, the MCIP processor performs the collapsing of the 

23-vertical layer resolution to an 11-layer resolution used in the CMAQ modeling system 

(Doraiswamy, 2004; Sanhueza, 2002). 

 

3.5 EMISSIONS INVENTORY DEVELOPMENT 

 

Emissions inventories are used as inputs to the advanced air quality models, which 

consist of county-based annual emission estimates based on algorithms developed by the 
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U.S. EPA. The CMAQ model requires speciated, spatial, and temporal emissions for each 

grid cell of the modeling domain and time period being modeled. These emissions can be 

hourly processed through the Sparse Matrix Operated Kernel Emissions processor 

(SMOKE) version 2.0. This section explains the steps followed in the emission inventory 

development and processing.  

 

The emission inventories are usually categorized into four major categories: point, area, 

mobile, and biogenic sources 

 

3.5.1 Point Sources 
 

For criteria pollutants, this category includes all emission sources that can be attributed to 

emissions points, usually a stack. These are identified by name, latitude, and longitude. 

The research group at the University of Tennessee, Knoxville, developed the criteria 

pollutants point source inventory for the state of TN. For other states in the domain, the 

NEI99 version 3 was used (Doraiswamy, 2004). For HAPs, this category is called major 

sources, which emit or have the potential to emit 10 tons per year or more of any listed 

HAP or 25 tons per year or more of a combination of listed HAPs. For the 24 states in the 

domain, the NEI99 version 3 was used. These HAPs emissions inventory were checked 

and fixed carefully for mass units in tons per year, since each state or each county 

provided the annual emissions using the following units: tons, pounds, kilograms, grams, 

and milligrams. To do that, the JMP statistics software version 5.1 was used over the 

NEI99 version 3 for each state and SCC code. 
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3.5.2 Area Sources 
 

For criteria pollutants, this includes emission sources that are spread over an area 

including many small point sources that are not accounted for in the point source 

inventory. This category also includes non-road mobile sources such as airplanes, marine 

vessels, locomotives, etc. The research group at the University of Tennessee, Knoxville, 

developed the ammonia area source inventory and fugitive particulate emissions from 

paved roads for the state of TN (Doraiswamy, 2004). For other states in the domain and 

other pollutants for Tennessee the NEI99 version 2.0 was used (Doraiswamy, 2004). For 

HAPs, they are defined as stationary sources that emit or have the potential to emit less 

than 10 tons per year of a single HAP and less than 25 tons per year of all HAPs 

combined. This category for HAPs does not include non-road sources. The CAA defines 

"area source" as any stationary source of HAPs that does not qualify as a major source 

(U.S. EPA, 1990). For the 24 states in the domain, the NEI99 version 3 for area sources 

was used. Like Point sources, these HAPs emissions inventory were checked and fixed 

carefully for mass units to tons per year using the JMP statistics software version 5.1 over 

the NEI99 version 3 for each state and SCC code. 

 

In addition and since open burning sources are important HAPs emissions contributors, a 

spatial distribution over the modeling domain was performed in SMOKE 2.0 for the 

NEI99 HAPs open burning sources to check for inconsistence between Tennessee and 

surrounding states. 
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3.5.3 Mobile Sources 

 

For criteria pollutants, this category includes all on-road mobile sources. While for 

HAPs, this category is defined as any kind of vehicle or equipment with a gasoline or 

diesel engine, which is subdivided in on-road and non-road sources. The on-road criteria 

pollutants were estimated through NMIM and compared with the NEI99 version 3 and 

the 1999 UTK emission inventory (Doraiswamy, 2004) to get a more realistic and 

accurate on-road emissions inventory. The VMTs used for Tennessee to run NMIM were 

those developed by the research group at the University of Tennessee, Knoxville, (UTK 

Project) for the year 1999 (Davis et al., 2002; Doraiswamy, 2004). Those VMTs were 

adjusted to 28 vehicles types as required on the NMIM model instead of 16 used in the 

UTK project. For the rest of the 23 states the NEI99 version 3’s VMTs were used. The 

diesel sulfur content used on NMIM varied by county, based on fuel survey information 

provided for the U.S. EPA (2005m), which on average were less than the standard of 500 

ppm for 1999. The BAROMETRIC PRES command was always used in NMIM, since 

this value interacts with the relative humidity values. Average speed distributions were 

always specified on NMIM using the SPEED VMT command, rather than the 

AVERAGE SPEED command. Finally, NMIM used hourly relative humidity and hourly 

temperatures for each county provided by the U.S. EPA (2005m).  

 

HAPs emissions for acetaldehyde, acrolein, benzene, 1,3-butadiene, formaldehyde, and 

MTBE were generated through NMIM for the 24 states in the modeling domain using the 

same VMTs and setting used to create the criteria pollutants emissions. However, 
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gasoline and diesel fuel parameters, provided by the U.S. EPA by county for each month 

of each calendar day, required the maximum amount of detail to properly model toxic 

emissions. The OXYGENATE command is required when modeling air toxics, and 

supersedes the OXYGENATED FUELS command used to model winter oxygenate 

programs in MOBILE6. The OXYGENATE command requires that oxygen content be 

expressed as volume percent instead of weight percent, as required by the 

OXYGENATED FUELS command. GAS AROMATIC%, GAS OLEFIN%, GAS 

BENZENE%, E200, and E300 were always specified using the default data provided in 

NMIM. RVP OXY WAIVER command was always set to 1 (no waiver), because Reid 

vapor pressure (RVP) values from the fuel surveys are assumed to already account for 

any RVP effect from oxygenated fuels. The FUEL RVP command was always required. 

The GASOLINE SULFUR command and FUEL PROGRAM command Option 4 were 

always used to explicitly set the default sulfur content of gasoline provided on NMIM for 

1999. For gasoline, Eastern Research Group, Inc., (ERG) determined the fuel properties 

under contract to the U.S. EPA using gasoline survey data (U.S. EPA, 2005m). 

 

The on-road criteria pollutants and HAPs emissions inventories were run on NMIM for 

the year 2020 and for Compressed Natural Gas (CNG) on LDVs and all vehicles over all 

the 24 states in the modeling domain assuming 100% penetration from 1994. The 

Tennessee VMTs growth adjusted to 28 vehicle types for the scenario 2020 was obtained 

from the UTK project (Davis et al, 2002). For the rest of the domain annual VMTs 

growths were used, which were provided by U.S. EPA. For the year 2020, all the in effect 

on-road sources regulations were applied on NMIM, including the reformulated gasoline 
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(RFG) program, national low emission vehicle (NLEV) program, emissions standards for 

passenger vehicles and gasoline sulfur control requirements (Tier 2), and the 2007 heavy-

duty vehicle standards and highway diesel fuel sulfur control requirements, which are 

expected to yield significant reductions of mobile source air toxics (U.S. EPA, 2001a and 

2001b). The non-road HAPs emissions were obtained from the NEI99 version 3. 

 

3.5.4 Biogenic Sources 
 

This includes emissions from natural sources such as vegetation. This inventory was 

created using BEIS 3.09 on SMOKE2.0, base on land use and meteorological data for 

each month analyzed for 1999. 

 

3.6 SMOKE 2.0 MODEL RUNS 

 

The methodology consisted of running the SMOKE 2.0 model with and without the 

source emissions scenarios as illustrated in Table 3-1. The base case was run with all 

sources included. The scenarios NO DFS, NO ONROAD_DFS, NO LDVs, NO HDVs, 

were estimated through control matrices for the corresponding source (s) as described in 

section 2.2.1.1 (A). Those source categories were eliminated using the source 

classification codes (SCC) through a control matrix for each scenario. The scenarios NO 

ONROAD and NO BIO were estimated running the SMOKE 2.0 and merging all the 

emissions sources without on-road and biogenic emissions, respectively. Finally, the 

scenario for the year 2020 was estimated merging the point, area, non-road, and biogenic  
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Table 3-1 Emissions Scenarios on SMOKE 2.0 

Year Emission Scenario Name Scenario Objective 
1999 All Sources Present (Base 

Case) 
BC Base Case 

1999 Base Case Without On-
Road Sources 

NO ONROAD Contribution of on-road 
sources to air toxics, EC, and 
NOx emissions 

1999 Base Case Without DFS NO DFS Contribution of DFS to air 
toxics, EC, DPM, and NOx 
emissions 

1999 Base Case Without On-
Road DFS 

NO 
ONROAD_DFS 

Contribution of on-road DFS 
to air toxics, EC, DPM, and 
NOx emissions 

1999 Base Case Without LDVs NO LDVs Contribution of LDVs 
sources to air toxics, EC, and 
NOx emissions 

1999 Base Case Without HDVs NO HDVs Contribution of HDVs 
sources to air toxics, EC, and 
NOx emissions 

1999 Base Case Without 
Biogenic Emissions 

NO BIO Contribution of biogenic 
sources to air toxics 
emissions 

2020 In effect MSATs 
regulation for 2020 

YEAR 2020 Contribution of in effect 
MSATs regulations to air 
toxics, EC, and NOx 
emissions 

1999 Base Case Without 
HDDVs 

NO HDDVS Contribution of HDVs 
sources to DPM emissions 

1999 Base Case with CNG on 
LDVs 

CNG on LDVs Contribution of CNG on 
LDVs to air toxics emissions 

1999 Base Case with CNG on 
all vehicles 

CNG on All 
Vehicles 

Contribution of CNG on all 
vehicles to air toxics 
emissions 

2020 In effect MSATs 
regulation for 2020 
without DFS 

YEAR 
2020_NODFS 

Contribution of in effect 
MSATs regulations to DPM 
emissions 
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1999 emissions with the 2020 on-road emissions estimated by NMIM. Two extra 

scenarios were run to consider the DPM effect on heavy-duty vehicles and over the year 

2020. Those scenarios included running the base case without heavy-duty diesel vehicles 

(NO HDDVs) and the year 2020 without diesel fueled sources from point, area, and non-

road 1999 emissions, and without diesel fueled sources from the 2020 on-road emissions 

generated by NMIM (YEAR 2020_NODFS). These two scenarios were also estimated 

through control matrices for the corresponding source (s) as described in section 2.2.1.1 

(A). The difference between the base case scenario and the NO DFS scenario were the 

DPM emissions for the base case run, whereas the difference between the scenario YEAR 

2020 and the YEAR 2020_DFS scenario were the DPM emissions for the year 2020. 

Those DPM emissions were estimated considering the addition of following PM2.5 

species defined in SMOKE2.0: Elemental carbon (EC), primary fine particulate matter 

(PMFINE), primary nitrate (PNO3), primary organic aerosols (POA), and primary sulfate 

(PSO4) (UNC, 2004).  

 

The difference between the NO ONROAD DFS scenario and the NO DFS were the DPM 

emissions from the on-road DFS. Whereas, the difference between the NO HDDVs 

scenario and the NO DFS scenario were the DPM emissions from the HDDVs. Finally, 

the Equation 3-1 allows estimating the DPM emissions from LDDVs. 

 

DPM (LDDVs) = [BC – (NO HDDVs-NO ONROAD_DFS)]- NO DFS Equation 3-1 
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Once the base case run was completed, the model results were plotted in order to 

determine the contribution of each scenario for the area analyzed on the modeling 

domain. A future 2020 scenario for non-road, area, and point sources were not simulated 

since no activity growth data were available for the 24 states at the time this study was 

conducted, as well as the in effect non-road regulations on diesel engines were not 

available in the model NMIM or NONROAD by the time when this analysis was 

conducted. Summarizing, batches of 5 days were run for each month of 30 days plus an 

extra batch of 5 days early for each month to avoid the boundary conditions, in other 

words 35 days, doing a total of 7 batches for each scenario. Since this study considered 

10 scenarios (Table 3-1), then the total batches to run for each month were 70 batches. 

Considering that 4 months were analyzed, and then a total of 280 batches were run in 

SMOKE2.0 to merge each point, area, on-road, non-road, and biogenic run scenarios.  

 

3.6.1 Inventory Speciation 

 

SMOKE 2.0 processes criteria pollutants and air toxics inventories. The EPA’s criteria 

pollutants inventory typically includes emissions of carbon monoxide (CO), nitrogen 

oxides (NOx), and volatile organic compounds (VOC) or total organic gases (TOG). 

Particulate inventories contain ammonia (NH3), sulfur dioxide (SO2), particulate matter 

(PM) of size 10 microns or less (PM10), and PM of size 2.5 microns or less (PM2.5). The 

VOC classification is an umbrella for all organic compounds and the NOx is the sum of 

NO and NO2 emissions. 
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The toxics inventories that SMOKE can process are data from the NEI that includes 188 

HAPs. These aggregate emissions need to be broken down into the constituent species for 

the model to process them appropriately in the chemical reactions. For point, nonpoint, 

on-road mobile, and non-road mobile sources, the toxics inventory contains emissions for 

VOC pollutants that are provided as explicit chemical compounds (for example, benzene, 

formaldehyde, etc). These same VOC emissions are also included as an aggregated VOC 

value in the criteria emissions inventory. To use these inventories together, Smkinven 

tool provides the necessary options to ensure that double counting of VOC emissions will 

not occur. These two options are the “integrate” and “no-integrate” options. 

 

The “integrate” option involves subtracting toxic VOC emissions from the criteria VOC 

emissions to avoid double counting of VOC when the emissions are speciated. With this 

option the user must ensure that the sources in the toxics and criteria inventories match 

up one-to-one, so that Smkinven can properly compute the emissions. For this study the 

“integrate” option was used (UNC, 2004). 

 

Only two chemical mechanisms support combining toxics and criteria inventories, and 

both are for the CMAQ model. The first is the “current-CB4” mechanism, which can 

refer to either the released version of CMAQ with CB4, or to an unreleased version that 

includes mercury. The second chemical mechanism is the “toxics-CB4” mechanism, 

which refers to the CMAQ version that includes toxics species that have been integrated 

into the chemical mechanism; these “explicit” toxics species are formaldehyde, 

acetaldehyde, acrolein, and 1,3-butadiene. This CMAQ version also includes benzene as 
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a separate species (UNC, 2004).  For this study the “toxics-CB4” chemical mechanism 

was used. 

 

During import of both toxics and criteria emission inventories, SMOKE matches the area, 

on-road mobile, and nonroad mobile emission inventories by country/state/county code 

and SCC. SMOKE also matches the toxics and criteria records for the point sources, 

provided that the point sources in the two inventories use identical fields for their source 

characteristics. It was necessary to ensure that the source characteristics for all source 

categories match between the two inventories for any sources that were required to have 

matched. Once they were matched, SMOKE had both a criteria VOC emissions value and 

toxics emission values for individual VOC chemical compounds. 

 

To do that, SMOKE can optionally compute a NONHAPVOC value by subtracting the 

sum of toxics VOC from the criteria VOC value. This same approach can be used to 

create a NONHAPTOG value if the inventory uses a TOG value instead of a VOC value. 

The case of computing NONHAPVOC is called the “integrate” case. Likewise, the case 

of not computing NONHAPVOC is called the “no-integrate” case (UNC, 2004).  

 

With the “integrate” approach, the NONHAPVOC mass and the toxics VOC mass are 

independent from one another and will not double count emissions. The calculation must 

be performed for each source, and Smkinven will set the criteria VOC value to zero when 

it computes the NONHAPVOC value. Smkinven determines which pollutants should be 
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subtracted from VOC using the “VOC or TOG” column in the inventory table 

(INVTABLE) file (UNC, 2004). 

 

3.6.2 Spatial Allocation of Emissions 

 

The research group at the University of Tennessee, Knoxville, developed the spatial 

allocation for the state of  Tennessee, whose county-based emissions were allocated to 

each grid cell based on spatial surrogates (Doraiswamy, 2004). For the rest of the 23 

states the default spatial allocations of SMOKE2.0 were used. Spatial surrogates 

represent the percentage of emissions from each county that are allocated to each grid.  

 

The spatial processing operation, or gridding, combines the grid specification for the air-

quality modeling domain with source locations from the SMOKE inventory file. The 

resulting gridding matrix is a sparse matrix that describes in which grid cells the 

emissions for each source occur within the modeling domain. The gridding matrix is 

applied to the inventory emissions to transform source-based inventory emissions to 

gridded emissions. The SMOKE Grdmat program creates the gridding matrix for area, 

mobile, and point sources. The gridding step is different depending on the type of source 

being processed (UNC, 2004).  
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3.6.3 Temporal Processing 

 

The emissions in the inventory were annual emissions fixed to tons/year. These were 

converted to hourly emissions by use of appropriate default profiles within the 

SMOKE2.0 model. The temporal profiles describe the variation in emissions as function 

of time-period for each source category.  Profiles are available for month of the year, day 

of the week, and hour of the day periods in SMOKE2.0. The final processed inventory 

contained hourly emissions for each grid cell in the domain.  This was used as input to 

the CMAQ models.  

 

3.7 INITIAL AND BOUNDARY CONDITIONS 

 

Initial conditions (IC) refer to the concentrations of all the species at the start of the 

simulation. For this study, the following date were set to start five day earlier for March, 

June, September, and December to allow for the “spin-up” period: 

 March; February 24, 2003, 00 hours GMT 

 June; May 27, 2003, 00 hours GMT 

 September; August 27, 2003, 00 hours GMT 

 December; November 26, 2003, 00 hours GMT 

 

Boundary conditions (BC) refer to the concentrations of all species at the boundary of the 

domain for each time step of the air quality simulation. Both IC and BC specific 

conditions are required on the CMAQ modeling system. For the 36-km domain, the IC 
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and BC were generated using the Initial Condition processor (ICON) and the Boundary 

Condition processor (BCON) on CMAQ modeling, respectively. The ICON and BCON 

processors performed the needed spatial interpolation, gridding, species processing, and 

mechanism conversions for each month analyzed. This domain used a set of default time 

invariant concentrations provided as part of the CMAQ 4.3, and zero time invariant 

concentrations for the CMAQ-AT model, representing the background atmosphere (Byun 

and Ching, 1999). IC and BC can have a significant effect on predicted ambient 

concentrations, but it is not expected to significantly affect the results of the emission 

sources scenarios, since the analyzed area is located in the center of the modeling 

domain, the runs were set to start five days early, and the difference approach performed 

in this study allows to have better results. 

 

3.8 PHOTOLYSIS RATES 

 

Many chemical reactions in the atmosphere are initiated by the photodissociation of 

numerous trace gases. In order to accurately model and predict the effects of air pollution, 

good photodissociation reaction rate (or photolysis rate) estimates must be made. 

Photodissociation is the conversion of solar radiation into chemical energy to activate and 

dissociate chemical species. Photolysis reactions play an important role in air quality 

modeling for air toxics, principally on formaldehyde, acetaldehyde, and acrolein. The 

photolysis rates processor (JPROC) in CMAQ calculates the photolysis rates for the 

required species. The extraterrestrial radiation data and the latest available oxygen and 
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ozone absorption cross-section data, which corresponded to the default CMAQ data from 

NASA for the year 1994, were used. The total vertical ozone column depth data for the 

year 2003 was obtained from the Total Ozone Mapping Spectrometer (TOMS) (NASA, 

2005). Then the estimated vertical ozone profiles were normalized and uniformly 

rescaled to match the TOMS total ozone column data through JPROC (Byun and Ching, 

1999).  

 

3.9 CMAQ MODEL RUNS 

 

3.9.1 Base Case Modeling 

 

The methodology consisted of running the CMAQ 4.3 and CMAQ-AT with all sources 

included. The default set of boundary conditions available in CMAQ was used for the 36 

km domain run. Since the first day of each month under consideration was the 1st, the 

model runs were set to start five days earlier to allow for the “spin-up” period over each 

month.  This is to avoid the influence of the initial conditions on the model results. These 

results were used to assess the modeling performance, analyze the spatial distribution in 

the Southeaster of the U.S., and temporal patterns of air toxics and EC exposure in 

Nashville, TN, for 2003. 

 

Since each month included 35 days (5 days for spin-up), the base case runs for CMAQ 

4.3 and CMAQ-AT were 280 runs (35 days x 4 months x 2 models). 
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3.9.2 Model Performance Assessment 

 

Once the base case run was completed, the model results for the BC were compared to 

the monitoring data of acetaldehyde, benzene, 1,3-butadiene, formaldehyde, and EC to 

evaluate the model performance. This performance assessment was conducted base on 

the draft modeling guidance published by the U.S. EPA (U.S., EPA, 2001d). To compare 

the 2003 CMAQ modeled concentrations with the 2003 UATMP’s monitored data for 

Nashville, the cell containing the monitored data was used. 

 

The normalized bias NB of concentrations at the sites EATN and LOTN and the 

temperature at the Nashville International Airport were estimated using the Equation 3-2 

 

∑ ⎥⎦
⎤

⎢⎣
⎡=

Observed
Observed-Predicted

n
1NB        Equation 3-2 

 

Where n is the number of days with monitored data. The predicted concentrations that 

were used in the equation were actually the average 24-hr concentration predicted by the 

models CMAQ 4.3 and CMAQ-AT in the cell  (24, 23) of the 36-km modeling domain. 

While, the predicted temperature that was used in the equation was the hourly 

temperature predicted by MM5 over the same cell. The observed concentrations and 

temperature were the monitored data at those sites. 

 

The normalized gross error NG was estimated through the Equation 3-3. 
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 ∑ ⎥⎦
⎤

⎢⎣
⎡=

Observed
Observed-PredictedABS

n
1NG      Equation 3-3 

 

Where the “ABS” stands for the absolute value of term. 

 

To evaluate the overall model performance, 45° scatter plots and time series of modeled 

and observed daily concentrations were prepared for EATN and LOTN together, and 

hourly temperature for Nashville International Airport. For each month, 30 days were 

evaluated. 

 

3.9.3 Emissions Sources Scenarios 

 

After the model performance evaluation was completed, the specific scenarios from 

Tables 3-1 and 3-2 were modeled. A series of model runs with and without a specific 

source category were performed in order to answer the specific questions listed in the 

objectives. Those scenarios were estimated by SMOKE2.0 according to section 3.6. 

Because of secondary diesel particulate matter is formed when gaseous emissions from 

diesel engines interact with other compounds in the atmosphere (Ning et al., 2004), then 

for a health risk point of view, diesel particulate matter can be estimated base on primary 

PM2.5 (Conrad et al., 2005). Thus, the difference between the BC scenario and the NO 

DFS scenario were the DPM concentrations for the base case run, whereas the difference 

between the scenario YEAR 2020 and the YEAR 2020_DFS scenario were the DPM 

concentrations for the year 2020. The difference between the NO ONROAD_DFS  
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Table 3-2 Emissions Scenarios Run in CMAQ 

Year Emission Scenario Name Scenario Objective 
1999 All Sources Present (Base 

Case) 
BC Base Case air toxics exposure 

and health risk 
1999 Base Case Without On-

Road Sources 
NO ONROAD Contribution of on-road 

sources to air toxics exposure 
and health risk 

1999 Base Case Without DFS NO DFS Contribution of DFS to DPM 
and health risk 

1999 Base Case Without On-
Road DFS 

NO 
ONROAD_DFS 

Contribution of on-road DFS 
to air toxics and DPM 
exposure and health risk 

1999 Base Case Without LDVs NO LDVs Contribution of LDVs 
sources to air toxics exposure 
and health risk 

1999 Base Case Without HDVs NO HDVs Contribution of HDVs 
sources to air toxics exposure 
and health risk 

1999 Base Case Without 
Biogenic Emissions 

NO BIO Contribution of biogenic 
sources to air toxics exposure 
and health risk 

2020 In effect MSATs 
regulation for 2020 

YEAR 2020 Contribution of in effect 
MSATs regulations to air 
toxics exposure and health 
risk 

1999 Base Case Without 
HDDVs 

NO HDDVS Contribution of HDVs 
sources to DPM exposure and 
health risk 

1999 Base Case with CNG on 
LDVs 

CNG on LDVs Contribution of CNG on 
LDVs to air toxics exposure 
and health risk 

1999 Base Case with CNG on 
all vehicles 

CNG on All 
Vehicles 

Contribution of CNG on all 
vehicles to air toxics exposure 
and health risk 

2020 In effect MSATs 
regulation for 2020 
without DFS 

YEAR 
2020_NODFS 

Contribution of in effect 
MSATs regulations to DPM 
exposure and health risk 
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scenario and the NO DFS scenario were the DPM concentrations contributed by the on-

road DFS.  

 

Whereas, the difference between the NO HDDVs scenario and the NO DFS scenario 

were the DPM concentrations contributed by the HDDVs. Finally, the Equation 3-1 

allows estimating the DPM concentrations from the LDDVs. Since those DPM 

concentrations were assumed primary PM2.5, they were estimated considering the 

Equation 2-5 for the following primary PM2.5 Aitken and accumulation mode species 

defined in CMAQ 4.3 (Table 2-10): AECI, ACEJ, A25I, A25J, AORGPAI, and 

AORGPAJ. 

 

DPM= 1.167*(AORGPAI + AORGPAJ) + AECI + AECJ + A25I + 
A25J 

Equation 3-4

 

The factor 1.167 is estimated in CMAQ as the conversion factor between organic carbon 

to organic mass is 1.2 for primary organic aerosol emission. 

 

This approach did not account for the PM sources that are apportioned between primary 

and secondary sulfate and nitrate aerosols, since there currently is no way to determine 

how much of the sulfate and nitrate are primary and how much secondary in the Aitken 

and accumulative modes on CMAQ 4.3. However, the sulfate and nitrate concentrations 

in the DPM emissions modeled by Diaz et al. (2005) on Atlanta, Birmingham, Nashville, 

Memphis, and Knoxville for summer 1999 were in average as low as 1.82% and 0.16%, 

respectively 
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Since the most of the SO2 and part of the NOx from the diesel exhaust engines are 

converted to secondary sulfate and nitrate respectively, it is possible assume that the 

contribution of primary sulfate and nitrate on DPM concentration are approximately 

1.82% and 0.16% also, respectively, depending on the sulfur content in the diesel fuel 

used.  

 

Considering that the primary sulfate and nitrate contributions on DPM concentrations are 

small, the Equation 3-4 can be considered adequate to estimate the health risk effects and 

its reductions generated by the analyzed emission scenarios. In addition, the analysis 

approach involves considering the difference in mass DPM concentrations and health risk 

values among the proposed emission scenarios and the base case scenario rather than the 

absolute mass concentration or health risk value. 

 

Future DPM studies could consider the CMAQ emissions mapping to see which emitted 

pollutants are going into the CMAQ species. One way to do this is to redo the sensitivity 

analysis but only zero out the diesel PM emissions and leave the diesel exhaust gas phase 

constant to account for the secondary sulfate and nitrate formation. 

 

Once the scenarios were run, the model results were plotted in order to determine the 

exposure contribution and seasonal effect of each scenario for the area analyzed on the 

modeling domain. 
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3.9.4 Health Effects Estimation 

 

With the cancer risk and non-cancer risk equations (Equations 2-1, 2-2, 2-3, and 2-4), the 

IUR and RfC values from the Table 2.8 of the Chapter 2, and the annual acetaldehyde, 

acrolein, benzene, 1,3-butadiene, formaldehyde, and DPM concentrations from CMAQ, 

the individual and cumulative cancer risk and non-cancer risk can be estimated for the 

base case and for each analyzed scenario described in Table 3-2. The cumulative cancer 

risk posed by gaseous air toxics (acetaldehyde, benzene, 1,3-butadiene, and 

formaldehyde) was called 4HAPs, and the cumulative cancer risk for those 4 air toxics 

and DPM was called 4HAPs+DPM. The cumulative non-cancer risk (Total Hazard 

Index) was estimated if one individual hazard ratio was higher than 1, as explained in 

section 2.1.5. Those cancer risk and non-cancer risk for the base case and the reductions 

due to the emissions scenarios were estimated for Nashville and were plotted to see the 

spatial distribution in the Southeastern U.S. 

 

With the Equations 2-7 and 2-9 for lung cancer mortality, CDV mortality, and hospital 

admissions for asthma, and COPD chronic illness, respectively, plus their β coefficients 

described in section 2.1.5, and the annual DPM concentrations predicted from CMAQ, 

the respective risks were estimated for the base case and for each analyzed scenario 

described in Table 3-2 for Nashville, TN. In addition, those health risks for the base case 

and the reductions due to the emission scenario of 2020 were estimated and plotted to see 

the spatial distribution in the Southeastern U.S. 
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4.0 RESULTS AND DISCUSSIONS 

 

4.1 EMISSIONS INVENTORY 

 

The 1999 annual emissions for criteria pollutants inventory were obtained from the UTK 

project (Doraiswami, 2004) for point and ammonia area sources. For the rest of the area 

and non-road sources, NEI99 version 3 was used. Moreover, the HAPs emissions for 

major, area, and non-road sources were obtained from the NEI99 version 3. The on-road 

criteria pollutants emissions inventory was developed for the whole modeling domain 

through NMIM using the same 1999 VMTs estimated by the UTK project for Tennessee 

and the NEI99 version 3 VMTs for the rest of the states. The NMIM results were 

compared with the UTK project and NEI99 version 3 to define the best inventory to be 

used as an efficient 1999 base case scenario. Later, the selected criteria emissions 

inventory was used to generate the scenarios for the year 2020 and CNG on-road 

vehicles. The 1999 criteria pollutants emissions for on-road sources for the all states in 

the 36 km domain are shown in Table 4-1 and Table 4-2, which list the NMIM results 

versus the UTK emissions, and the NMIM results versus the NEI99 version 3 emissions 

in TPY respectively before any processing by the emission processor SMOKE2.0.  
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Table 4-1. 1999 UTK Criteria Emission Inventory versus NMIM Emission Inventory for On-Road Sources [TPY] 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
01 Alabama NMIM    1,376,362           5,252       166,345           4,636            3,525           5,215       123,556 
    UTK    1,475,033           5,296       190,680           5,840            4,546           7,348       123,642 
    Error -6.7% -0.8% -12.8% -20.6% -22.5% -29.0% -0.1%

05 Arkansas NMIM       766,692           2,867       102,969           2,963            2,307           3,048         63,414 
    UTK       719,543           2,866       114,645           3,153            2,471           3,857         67,043 
    Error 6.6% 0.0% -10.2% -6.0% -6.6% -21.0% -5.4%

12 Florida NMIM    3,333,569         14,174       415,636         12,307            9,369         17,327       334,396 
    UTK    3,400,235         12,364       360,954         13,201          10,123         17,555       264,744 
    Error -2.0% 14.6% 15.1% -6.8% -7.4% -1.3% 26.3%

13 Georgia NMIM    2,438,883           9,794       317,185           9,119            6,997         10,011       217,035 
    UTK    2,341,646           8,673       311,703           9,767            7,563         12,542       177,760 
    Error 4.2% 12.9% 1.8% -6.6% -7.5% -20.2% 22.1%

17 Illinois NMIM    2,624,416         10,207       339,428           8,861            6,722           9,783       219,201 
    UTK    1,980,899           6,323       237,178           8,964            6,828         12,667       163,610 
    Error 32.5% 61.4% 43.1% -1.2% -1.5% -22.8% 34.0%

18 Indiana NMIM    1,887,019           6,912       247,266           6,796            5,268           8,593       157,635 
    UTK    1,677,721           6,371       238,752           7,160            5,571           9,015       132,012 
    Error 12.5% 8.5% 3.6% -5.1% -5.4% -4.7% 19.4%

19 Iowa NMIM       824,461           2,857       107,850           2,933            2,280           2,826         65,544 
    UTK       789,271           2,925       129,238           3,214            2,519           3,933         65,831 
    Error 4.5% -2.3% -16.5% -8.7% -9.5% -28.2% -0.4%

20 Kansas NMIM       774,719           2,732         97,061           2,664            2,058           2,844         60,022 
    UTK       698,030           2,770       110,646           2,877            2,241           3,612         57,358 
    Error 11.0% -1.4% -12.3% -7.4% -8.2% -21.3% 4.6%

21 Kentucky NMIM    1,241,509           4,705       169,629           4,762            3,706           5,944       100,412 
    UTK    1,097,666           4,245       178,585           4,982            3,884           6,219         88,088 
    Error 13.1% 10.8% -5.0% -4.4% -4.6% -4.4% 14.0%
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Table 4-1. Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
22 Louisiana NMIM    1,050,198           4,059       138,363           4,006            3,100           4,246         93,498 
    UTK    1,093,743           4,128       156,234           4,646            3,662           5,471         99,370 
    Error -4.0% -1.7% -11.4% -13.8% -15.3% -22.4% -5.9%

26 Michigan NMIM    2,931,633           9,497       333,563           8,843            6,810         12,679       222,737 
    UTK     2,002,324           8,050       258,996           8,753            6,629         12,002       141,929 
    Error 46.4% 18.0% 28.8% 1.0% 2.7% 5.6% 56.9%

28 Mississippi NMIM       789,184           3,408       127,375           3,840            3,040           3,521         72,596 
    UTK       897,056           3,481       142,544           3,906            3,069           4,738         86,369 
    Error -12.0% -2.1% -10.6% -1.7% -1.0% -25.7% -15.9%

29 Missouri NMIM     1,723,005           6,606       223,587           6,154            4,716           6,042       139,434 
    UTK    1,173,670           5,887       187,123           5,839            4,414           8,386       101,879 
    Error 46.8% 12.2% 19.5% 5.4% 6.8% -28.0% 36.9%

31 Nebraska NMIM       510,984           1,768         66,152           1,802            1,400           1,802         39,258 
    UTK       444,681           1,785         79,234           1,938            1,517           2,384         36,123 
    Error 14.9% -1.0% -16.5% -7.0% -7.7% -24.4% 8.7%

36 New York NMIM    3,361,830         12,619       408,599         10,651            8,018           9,178       263,869 
    UTK     2,196,577         11,324       293,454         10,085            7,545         15,295       173,980 
    Error 53.0% 11.4% 39.2% 5.6% 6.3% -40.0% 51.7%

37 North Carolina NMIM    2,218,901           8,668       292,084           8,341            6,433           9,147       198,327 
    UTK    1,604,035           8,579       252,681           7,534            5,684         11,192       135,880 
    Error 38.3% 1.0% 15.6% 10.7% 13.2% -18.3% 46.0%

39 Ohio NMIM     2,756,741         10,471       354,599           9,674            7,429         12,495       230,227 
    UTK    2,414,855           9,468       307,473         10,325            7,982         13,345       169,692 
    Error 14.2% 10.6% 15.3% -6.3% -6.9% -6.4% 35.7%

40 Oklahoma NMIM    1,109,143           4,204       144,231           4,094            3,168           5,039         93,968 
    UTK    1,052,960           3,600       143,377           4,443            3,458           5,596         81,143 
    Error 5.3% 16.8% 0.6% -7.8% -8.4% -9.9% 15.8%
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Table 4-1. Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
42 Pennsylvania NMIM    2,668,754         10,100       345,624           9,309            7,114           8,049       210,842 
    UTK    1,975,095           9,440       294,301         10,358            8,058         12,764       158,774 
    Error 35.1% 7.0% 17.4% -10.1% -11.7% -36.9% 32.8%

45 South Carolina NMIM    1,190,876           4,332       157,773           4,454            3,467           4,759         98,351 
    UTK    1,110,152           4,358       159,062           4,744            3,715           5,829       103,975 
    Error 7.3% -0.6% -0.8% -6.1% -6.7% -18.4% -5.4%

47 Tennessee NMIM    1,635,155           6,278       212,291           5,894            4,530           6,478       139,693 
    UTK    1,718,296           6,584       291,976            6,611            5,134           8,433       154,585 
    Error -4.8% -4.7% -27.3% -10.8% -11.7% -23.2% -9.6%

48 Texas NMIM    4,793,542         20,992       648,470         18,552          14,120         21,209       462,675 
    UTK    3,723,477         16,240       515,685         22,211          17,364         26,445       298,176 
    Error 28.7% 29.3% 25.7% -16.5% -18.7% -19.8% 55.2%

51 Virginia NMIM    1,748,204           7,560       203,411           5,225            3,800           6,301       152,087 
    UTK    1,351,135           6,899       235,046           7,508            5,843           9,274       121,018 
    Error 29.4% 9.6% -13.5% -30.4% -35.0% -32.1% 25.7%

54 West Virginia NMIM       486,404           1,887         59,809           1,585            1,205           2,300         38,311 
    UTK       465,908           1,857         81,882           2,106            1,657           2,542         41,648 
    Error 4.4% 1.7% -27.0% -24.7% -27.3% -9.5% -8.0%
  Total NMIM  44,242,184       171,952    5,679,299       157,464        120,584       178,836    3,797,091 
    UTK  37,404,007       153,514    5,271,450       170,165        131,478       220,444    3,044,629 
    Error 18.3% 12.0% 7.7% -7.5% -8.3% -18.9% 24.7%
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Table 4-2. NEI99 version 3 Criteria Emission Inventory versus NMIM Emission Inventory for On-Road Sources [TPY] 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
01 Alabama NMIM    1,376,362           5,252       166,345           4,636           3,525           5,215       123,556 
    NEI-V3    1,412,342           5,247       163,024           4,705           3,591           6,279       121,201 
    Error -2.5% 0.1% 2.0% -1.5% -1.9% -17.0% 1.9%

05 Arkansas NMIM       766,692           2,867       102,969           2,963           2,307           3,048         63,414 
    NEI-V3       798,252           2,863       101,043           3,004           2,348           3,735         64,710 
    Error -4.0% 0.1% 1.9% -1.4% -1.7% -18.4% -2.0%

12 Florida NMIM    3,333,569         14,174       415,636         12,307           9,369         17,327       334,396 
    NEI-V3    3,379,564         14,160       424,968         12,253           9,310         16,581       328,412 
    Error -1.4% 0.1% -2.2% 0.4% 0.6% 4.5% 1.8%

13 Georgia NMIM    2,438,883           9,794       317,185           9,119           6,997         10,011       217,035 
    NEI-V3    2,526,592           9,782       313,568           9,247           7,123         12,027       207,562 
    Error -3.5% 0.1% 1.2% -1.4% -1.8% -16.8% 4.6%

17 Illinois NMIM    2,624,416         10,207       339,428           8,861           6,722           9,783       219,201 
    NEI-V3    2,680,827         10,195       319,326           9,015           6,874         12,085       214,399 
    Error -2.1% 0.1% 6.3% -1.7% -2.2% -19.0% 2.2%

18 Indiana NMIM    1,887,019           6,912       247,266           6,796           5,268           8,593       157,635 
    NEI-V3    1,917,221           6,905       234,672           6,796           5,266           8,677       150,727 
    Error -1.6% 0.1% 5.4% 0.0% 0.0% -1.0% 4.6%

19 Iowa NMIM       824,461           2,857       107,850           2,933           2,280           2,826         65,544 
    NEI-V3       855,171           2,853       102,693           2,985           2,332           3,714         62,442 
    Error -3.6% 0.2% 5.0% -1.7% -2.2% -23.9% 5.0%

20 Kansas NMIM       774,719           2,732         97,061           2,664           2,058           2,844         60,022 
    NEI-V3       768,862           2,727         93,125           2,696           2,089           3,439         58,584 
    Error 0.8% 0.2% 4.2% -1.2% -1.5% -17.3% 2.5%

21 Kentucky NMIM    1,241,509           4,705       169,629           4,762           3,706           5,944       100,412 
    NEI-V3    1,225,414           4,700       162,160           4,760           3,703           6,005         97,287 
    Error 1.3% 0.1% 4.6% 0.0% 0.1% -1.0% 3.2%

 



 162

Table 4-2.  Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
22 Louisiana NMIM   1,050,198          4,059      138,363          4,006          3,100          4,246        93,498 
    NEI-V3   1,077,314          4,055      137,706          4,063          3,156          5,148        91,550 
    Error -2.5% 0.1% 0.5% -1.4% -1.8% -17.5% 2.1%

26 Michigan NMIM   2,931,633          9,497      333,563          8,843          6,810        12,679      222,737 
    NEI-V3   2,845,998          9,487      311,621          8,760           6,725        11,511      212,941 
    Error 3.0% 0.1% 7.0% 0.9% 1.3% 10.2% 4.6%

28 Mississippi NMIM      789,184          3,408      127,375          3,840          3,040          3,521        72,596 
    NEI-V3      830,477          3,403      126,344          3,898          3,095          4,477        74,579 
    Error -5.0% 0.2% 0.8% -1.5% -1.8% -21.4% -2.7%

29 Missouri NMIM   1,723,005          6,606      223,587          6,154          4,716          6,042      139,434 
    NEI-V3   1,670,245          6,597      215,990          6,291          4,852          8,154      138,187 
    Error 3.2% 0.1% 3.5% -2.2% -2.8% -25.9% 0.9%

31 Nebraska NMIM      510,984          1,768         66,152          1,802          1,400          1,802        39,258 
    NEI-V3      519,741          1,764        63,061          1,828          1,426          2,285        38,333 
    Error -1.7% 0.2% 4.9% -1.4% -1.8% -21.2% 2.4%

36 New York NMIM   3,361,830        12,619      408,599        10,651          8,018          9,178      263,869 
    NEI-V3   3,372,453        12,607      388,409        11,050          8,413        14,874      260,299 
    Error -0.3% 0.1% 5.2% -3.6% -4.7% -38.3% 1.4%

37 North Carolina NMIM   2,218,901          8,668      292,084          8,341          6,433          9,147      198,327 
    NEI-V3   2,252,671          8,660      285,380          8,453           6,541        10,829      187,345 
    Error -1.5% 0.1% 2.3% -1.3% -1.6% -15.5% 5.9%

39 Ohio NMIM   2,756,741        10,471      354,599          9,674          7,429        12,495      230,227 
    NEI-V3   2,916,658         10,460      335,490          9,686          7,437        12,714      219,814 
    Error -5.5% 0.1% 5.7% -0.1% -0.1% -1.7% 4.7%

40 Oklahoma NMIM   1,109,143          4,204      144,231          4,094          3,168          5,039        93,968 
    NEI-V3   1,122,894          4,199      139,118          4,104          3,177          5,257        95,342 
    Error -1.2% 0.1% 3.7% -0.2% -0.3% -4.1% -1.4%
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Table 4-2. Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
42 Pennsylvania NMIM   2,668,754        10,100      345,624          9,309          7,114          8,049      210,842 
    NEI-V3   2,754,719        10,091      332,142          9,614          7,413        12,448       211,000 
    Error -3.1% 0.1% 4.1% -3.2% -4.0% -35.3% -0.1%

45 South Carolina NMIM   1,190,876          4,332      157,773          4,454          3,467          4,759        98,351 
    NEI-V3   1,207,337          4,328      153,347          4,510          3,522          5,615        98,010 
    Error -1.4% 0.1% 2.9% -1.2% -1.5% -15.2% 0.3%

47 Tennessee NMIM   1,635,155          6,278      212,291          5,894          4,530          6,478      139,693 
    NEI-V3   1,697,778          6,388      211,133          6,097          4,705          7,876      138,629 
    Error -3.7% -1.7% 0.5% -3.3% -3.7% -17.7% 0.8%

48 Texas NMIM   4,793,542        20,992      648,470        18,552         14,120        21,209      462,675 
    NEI-V3   4,954,993        20,967      647,036        18,807        14,370        25,061      465,254 
    Error -3.3% 0.1% 0.2% -1.4% -1.7% -15.4% -0.6%

51 Virginia NMIM   1,748,204          7,560      203,411          5,225          3,800          6,301      152,087 
    NEI-V3   1,894,832          7,551      195,039          5,329          3,903          7,967      148,112 
    Error -7.7% 0.1% 4.3% -2.0% -2.6% -20.9% 2.7%

54 West Virginia NMIM      486,404          1,887        59,809          1,585          1,205          2,300        38,311 
    NEI-V3      495,400          1,885        56,935          1,566          1,186          2,093         37,034 
    Error -1.8% 0.2% 5.0% 1.2% 1.6% 9.9% 3.4%
 Total NMIM 44,242,184      171,952   5,679,299      157,464      120,584      178,836   3,797,091 
   NEI-V3 45,177,756      171,874   5,513,331      159,520      122,556      208,850   3,721,755 
   Error -2.1% 0.0% 3.0% -1.3% -1.6% -14.4% 2.0%
 

 

 

 



 164

It is important to emphasize that the on-road criteria pollutants emissions from NMIM 

were significantly different than those from UTK emissions, which are shown in Table 4-

1. This difference was mainly because the UTK project used daily ozone season 

emissions to develop the annual emissions and NMIM generated annual emissions 

directly, as well as NMIM used 28 vehicle types instead of 16 used in the UTK project. 

Another difference is that the UTK project used a single diesel sulfur content value of 

500 ppm for all counties, based on federal standards for diesel fuel sulfur content, while 

NMIM was more reasonable and used diesel sulfur values that varied by county, based on 

fuel survey information provided for the U.S. EPA (U.S. EPA, 2005m), which on average 

were less than the standard. Also, UTK project used a single set of temperature min/max 

for all counties and NMIM used hourly temperatures for each county. Finally, NMIM 

used humidity values for each county, which affect NOx significantly (U.S. EPA, 

2005m), while the UTK project used default humidity values for all counties.   

 

In general and according to Table 4-2, the total on-road emissions from NMIM for the 

whole domain were slightly lower than those from the NEI99 version 3, i.e., lower than 

2.1 %, except for NOx and VOCs emissions, which were somewhat higher than NEI99 

version 3 with 3.0 and 2.0 % respectively. In the same way, the emission differences 

between NMIM and NEI99 version 3 in Tennessee were similar to those from the all-

modeling domain. It may be noted that both the NEI99 version 3 and NMIM run on-road 

estimates for every month, however, the difference is that the NEI99 version 3 used a 

single set of temperature min/max for all counties within a state and NMIM used hourly 

temperatures for each county. Another difference is that NMIM used humidity values for 
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each county (U.S. EPA, 2005m), while the NEI99 version 3 used default humidity values 

for all counties. The lowest NMIM emissions were for SO2 emissions, which were 14.4% 

lower than those from the NEI99 version 3 in the whole domain and 17.7 % in 

Tennessee. The reason for this difference is because the SO2 is strictly a function of fuel 

sulfur levels (U.S. EPA, 2002f). The NEI99 version 3 used a single diesel sulfur content 

value of 500 ppm for all counties of each state, based on federal standards for diesel fuel 

sulfur content (U.S. EPA, 2005a), and NMIM now had diesel sulfur values that varied by 

county, based on fuel survey information provided for the U.S. EPA (U.S. EPA, 2005m), 

which on average were less than the standard.  

 

Although NMIM and NEI99 version 3 showed some differences, the on-road criteria 

emissions for the whole domain and Tennessee estimated by NMIM were considered 

accurate and good enough to be used as base case scenario and as inputs to run 

SMOKE2.0.  

 

Since NMIM was estimated for criteria pollutants, it also was used to develop the base 

case for the on-road HAPs emissions for acetaldehyde, acrolein, benzene, 1,3-butadiene, 

and formaldehyde. The NEI99 version 3 was not used for HAPs emissions since they 

were estimated base on season-basis run on MOBILE6.2 (U.S. EPA, 2005a) instead of 

monthly-basis run used in this study through NMIM. In addition, the NEI99 version 3 

used a single diesel sulfur content value of 500 ppm for all counties of each state instead 

of survey values used in NMIM (U.S. EPA, 2005m), as well as NEI99 version 3 used a 

single set of temperature min/max for all counties within each state and NMIM used 
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hourly temperatures for each county (U.S. EPA, 2005m). Finally, NMIM used humidity 

values for each county instead of default humidity values for all counties as used in 

NEI99 version 3. Those on-road HAPs emissions by state estimated by NMIM are shown 

in Table 4-3.  

 

Before running the emission inventories on SMOKE2.0, the relative contribution of the 

criteria pollutants sources classification for Tennessee was similar to that of the emissions 

from all states in the domain with some small differences. However, an adjustment and 

improvement of the open burning area sources was done by Diaz et al., (2005) for 

acetaldehyde, acrolein, benzene, 1,3-butadiene, and formaldehyde in Tennessee before 

doing any emissions apportioning analysis and running SMOKE2.0. 

 

 

4.1.1 Area Sources Improvement in Tennessee 

 

Using more realistic activity data of acres burned, Diaz et al., (2005) found that the main 

open burning area sources emissions improvements in Tennessee were for wildfire 

sources, mainly in rural counties such as Grundy County, because for this county the 

estimated acetaldehyde, acrolein, benzene, 1,3-butadiene, and formaldehyde were 69 

times higher than those estimated in the NEI 1999 version 3, i.e., 43.991 TPY instead of 

0.6381 TPY estimated by NEI99. The information by county is shown in the Figure 4.1 

(Diaz et al., 2005).
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Table 4-3. 1999 HAPs Emission Inventory for On-Road Sources in [TPY] Using 

NMIM Model 

FIPSS State Name Acetaldehyde Acrolein Benzene 1,3-Butadiene Formaldehyde Total 
01 Alabama               513.2         78.1        3,895.0                505.6             1,533.0         6,524.9 
05 Arkansas               280.9         41.9        2,046.4                269.3                830.0         3,468.6 
12 Florida            1,305.3       200.7      10,298.8             1,284.5             3,900.2       16,989.5 
13 Georgia               914.1       138.9        6,604.8                879.2             2,712.8       11,249.8 
17 Illinois            1,931.0       154.0        6,504.8                882.9             3,263.5       12,736.2 
18 Indiana            1,006.0       107.7        5,027.1                630.6             2,215.2         8,986.6 
19 Iowa               439.7         45.0        2,123.7                264.0                920.1         3,792.5 
20 Kansas               290.9         41.8        2,292.1                267.3                831.7         3,723.8 
21 Kentucky               492.2         69.5        3,367.2                422.2             1,449.5         5,800.5 
22 Louisiana               376.6         57.1        2,895.3                360.4             1,116.6         4,805.9 
26 Michigan            1,092.2       150.9        7,830.8                942.6             2,901.0       12,917.5 
28 Mississippi               313.5         46.4        2,246.2                289.7                901.5         3,797.3 
29 Missouri               660.2         95.8        4,720.3                598.9             1,932.8         8,008.0 
31 Nebraska               232.7         27.8        1,405.7                171.9                562.2         2,400.3 
36 New York            1,217.2       183.4        7,825.7             1,185.0             3,909.5       14,320.9 
37 North Carolina               837.6       127.4        6,130.9                795.9             2,474.8       10,366.7 
39 Ohio            1,453.0       148.6        7,054.3                870.9             3,067.5       12,594.3 
40 Oklahoma               429.0         64.5        3,114.3                425.8             1,265.4         5,299.0 
42 Pennsylvania               968.3       146.8        6,276.5                925.7             2,981.0       11,298.3 
45 South Carolina               429.3         64.5        3,092.7                408.5             1,267.7         5,262.7 
47 Tennessee               613.5         92.8        4,552.9                592.9             1,809.2         7,661.2 
48 Texas            1,978.8       280.3      13,504.4             1,776.0             5,978.3       23,517.9 
51 Virginia               962.0         87.6        4,139.8                592.2             2,094.9         7,876.6 
54 West Virginia               152.8         22.9        1,359.7                151.7                457.1         2,144.2 

  Total        18,890.0   2,474.5   118,309.4          15,493.8          50,375.4    205,543.2 
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Changes of the Wildfires-Open Burning HAPs Emissions in TN by County 1999. NEI99 versus 
UTK Study
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Figure 4.1. Changes of the Wildfire Open Burning HAPs Emissions in TN by 

County 1999, NEI99 versus UTK Study (Diaz et al., 2005) 

 

The emissions increment for Municipal Solid Waste open burning of those air toxics 

occurred for rural counties, where the maximum increment was for Hardeman County 

with 1.15 times higher emissions than the NEI99. In general, for urban counties the Diaz 

et al., (2005) emissions were lower than the NEI99, where the maximum difference was 

for Knox County, which was 0.18 times lower than NEI99. The exceptions were for the 

following urban counties: Davidson, Hamilton, and Shelby counties, which showed 

emissions instead of zero emissions in the NEI99 (Figure 4.2). 
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Changes of the MSW-Open Burning Benzene Emissions in TN by County 1999. NEI99 
versus UTK Study
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Figure 4.2. Changes of the MSW Open Burning Benzene Emissions in TN by 

County 1999, NEI99 versus UTK Study (Diaz et al., 2005) 

 

The explanation of this difference is that this study used a fraction of county population 

that was rural from the Census bureau 1990, which was a little different of those used in 

the NEI99. For urban counties, the emissions were lower than those from the NEI99, 

since this study used a more realistic waste generated fraction that is burned of 5% for 

those counties instead of 28% used by NEI99 (Diaz et al., 2005). The total Open Burning 

emissions estimated by Diaz et al., (2005) (Wild Fires and Municipal Solid Waste 

Burnings) increased to 1,186 TPY instead of 833 TPY estimated by NEI99, which was 

42.4 % higher than the NEI99. Important Open Burning sources that generates HAPs as 

yard waste and construction land clearing could be included in future emissions 

inventories, however, the AP-42 database (US EPA, 1996) and its expanded EIIP 

documents (US EPA, 2001e and f) do not have any speciated VOCs, Semi volatile 
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organic compounds (SVOCs), metals, or dioxins and furans (PCDD/F) data. To solve the 

problem, a recent publication “Emissions of organic air toxics from open burning: a 

comprehensive review” written by Lemieux could be used in the future open burning 

emissions inventory development (Lemieux et al., 2004). 

 

4.1.2 Emissions After the Open Burning Improvement 

 

After improving the HAPs open burning emissions, the 1999 HAPs emissions from 

major, area, on-road, and non-road sources for the all States in the 36 km domain for the 

base case are shown in Table 4-4, which lists the emissions in TPY before any processing 

by the emission processor SMOKE2.0.  

 

The emissions for each pollutant were higher in Florida and Georgia than surrounding 

states, which could indicate that those emissions were over estimated for Florida and 

Georgia or under estimated for those surrounding states in the NEI99. The respective 

pollutants and the fraction of emissions classified as major, area, on-road, and non-road 

sources for all the States in the 36 km domain, Tennessee, and improved area sources for 

Tennessee are shown in the Figure 4.3, Figure 4.4, and Figure 4.5.  

 

A majority of the acetaldehyde emissions were contributed by on-road and non-road 

mobile sources for the all States in the domain and Tennessee, which was approximately 

62.0%, followed by area and major sources with 18.8 and 17.6%, respectively. 
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Table 4-4. Total 1999 HAPs Anthropogenic Emissions in [TPY] on the all States in 

the 36-km Domain  

Total Anthropogenic Emissions [TPY] 
State Name State 

Abbr. ACET ACRO BENZ BUTA FORM 188 HAPs 33 HAPs

Alabama AL 1,468 387 6,936 858 4,249 103,856 17,736 
Arkansas AR 1,282 257 3,755 493 2,899 64,331 11,685 
Florida FL 5,337 2,842 23,419 4,284 22,373 275,870 67,819 
Georgia GA 3,213 898 11,414 1,752 8,312 177,221 32,812 
Illinois IL 2,910 332 9,818 1,483 7,320 171,882 30,256 
Indiana IN 1,607 199 7,766 806 3,590 132,589 20,743 
Iowa IA 918 102 3,420 418 2,027 58,138 8,692 
Kansas KS 726 97 3,799 358 2,399 42,988 9,105 
Kentucky KY 1,350 265 5,816 898 5,048 102,319 18,032 
Louisiana LA 2,312 332 6,817 807 9,931 99,919 22,636 
Michigan MI 1,938 314 13,373 1,410 7,382 200,656 34,993 
Mississippi MS 1,221 328 4,308 567 3,520 80,140 14,113 
Missouri MO 1,228 204 7,080 813 3,732 106,122 17,594 
Nebraska NE 628 110 2,145 275 1,884 34,032 5,946 
New York NY 2,140 424 14,743 5,395 6,738 203,535 40,066 
North Carolina NC 2,411 433 10,267 1,197 5,855 164,753 26,277 
Ohio OH 2,485 299 11,577 1,448 5,680 193,782 28,524 
Oklahoma OK 820 176 4,917 628 2,746 58,830 10,947 
Pennsylvania PA 1,739 306 10,768 1,255 5,348 166,124 27,973 
South Carolina SC 1,434 275 5,457 688 3,540 87,214 14,319 
Tennessee TN 1,630 241 7,164 842 3,550 135,250 18,278 
Texas TX 9,532 2,008 28,083 3,849 20,158 340,809 73,721 
Virginia VA 2,068 289 6,710 883 4,448 112,701 18,824 
West Virginia WV 475 84 2,752 241 1,296 59,731 6,187 

Total  50,872 11,203 212,304 31,649 144,023 3,172,790  577,278 
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Figure 4.3. Fraction of Acetaldehyde and Acrolein Emissions from Major, Area, On-Road, and Non-Road Categories 

(36 km Domain and Tennessee Before and After the Open Burning Improvement Emissions) During 1999 
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Benzene - All States in the Domain
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1,3 Butadiene - All States in the Domain
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Figure 4.4. Fraction of Benzene and 1,3 Butadiene Emissions from Major, Area, On-Road, and Non-Road Categories 

(36 km Domain and Tennessee Before and After the Open Burning Improvement Emissions) During 1999 
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Formaldehyde - All States in the Domain
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Figure 4.5. Fraction of Formaldehyde Emissions from Major, Area, On-Road, and Non-Road Categories (36 km 

Domain and Tennessee Before and After the Open Burning Improvement Emissions) During 1999 
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However, after improving open burning emissions, area sources accounted for 4.2% in 

Tennessee, which could indicate that acetaldehyde area emissions were still under 

estimated for Tennessee. Or Florida’s area emissions increased the total area sources 

contribution in the modeling domain, whose contribution value in Florida was as high as 

43.1%. 

 

Emissions of acrolein presented more variability over each analyzed region, whose higher 

contribution were due to area sources for the all States in the domain with 58.3% and 

followed by on-road sources with 22.2%. On the other hand and after improving the open 

burning emissions in Tennessee, the main acrolein sources were area sources followed by 

on-road sources with 38.7 and 37.7% respectively, which were significantly different 

from those before the open burning emissions improvement and significantly different 

from the all States in the domain. 

 

The Florida’s acrolein area emissions influentied the acrolein emissions in the total 24 

states, increasing the total area sources contribution in the modeling domain. The area 

sources contribution on acrolein was as high as 86.6% in Florida. 

 

The relative contribution of the source classifications on benzene for Tennessee was 

similar to that from all States in the domain with some differences, the on-road sources 

contributions were as high as 54.5 and 62.9 % for the whole domain and Tennessee, 

respectively. 
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Emissions of 1,3-butadiene presented different distribution among the analyzed regions, 

whose higher contribution were due to on-road sources on the all States in the domain, 

contributing 48.7 %, followed by area sources with 28.0%. In Tennessee the main 1,3 

butadiene sources were on-road followed by non-road sources with 69.4 and 20.4 % 

respectively after the open burning emissions improvement. This significant distribution 

difference between all States in the domain and the Tennessee area could also indicate 

that the U.S. EPA’s 1,3 butadiene area sources inventory for Tennessee plus the Diaz et 

al., (2005) improvement could still be under estimated.  

 

The on-road sources contributed by 35.0 % of the formaldehyde, followed by area 

sources with 26.8 % and non-road sources with 21.6 % for the all States in the domain. 

This distribution was different from that of the Tennessee area, where the on-road and 

non-road sources contributed 50.2 and 25.2 % respectively and area sources with 12.5 %. 

Although, the formaldehyde area emissions were improved, this difference could indicate 

that U.S. EPA’s formaldehyde area inventory could still be under estimated for 

Tennessee also. In general, the distribution in Davidson County for each pollutant, after 

improving the open burning emissions in Tennessee, was similar to the distribution 

before improving those emissions, since this county is an urban area. It is important to 

give emphasis to the high contribution of on-road and non-road mobile sources to each 

air toxic in all analyzed regions, which were as high as 89.8% for 1,3 butadiene in 

Tennessee, although this value may be not true, since 1,3 butadiene area sources could be 

under estimated in this state. 
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4.1.3 Temporal Distribution of Emissions in Davidson County, 

Tennessee 

 

The following analysis was focused on air toxics and some criteria pollutants species, EC 

and NOx, in order to compare the trends and behavior between HAPs and criteria 

pollutants in the base case. The NOx and EC species were selected because they are 

related to diesel-fueled sources (DFS). Thus, after improving the HAPs open burning 

emissions, processing, and merging the air toxics, criteria pollutants, and biogenic 

emissions by the emission processor SMOKE 2.0, the temporal distribution of area, point, 

on-road, non-road, and biogenic emissions for Davidson County are shown in the Figures 

4.6, 4.7, 4.8, and 4.9 for acetaldehyde. 
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Figure 4.6. Acetaldehyde Emissions for March 1999 
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Figure 4.7. Acetaldehyde Emissions for June 1999 
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Figure 4.8. Acetaldehyde Emissions for September 1999 
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Figure 4.9. Acetaldehyde Emissions for December 1999 

 

Area, point, on-road, and non-road sources data indicated a cyclic weekly pattern, where 

more emissions were generated on weekdays for most of the pollutants. In addition, June 

showed the highest emissions among the other analyzed months, which is explained 

because in the summer season the construction activity is higher than other seasons, as 

well as, more vehicles are on the roads due to the vacation season.  

 

The acetaldehyde biogenic emissions increased as the summer was closer and the daily-

high temperatures were higher, where more foliage there is on trees.  In the same way, 

they declined as the cold months became evident, where most of the foliage was gone 

from the trees. Thus the highest biogenic emissions occurred in June and the lowest in 

December. 
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4.1.4 Spatial Distribution of Air Toxics Emissions 

 

Figures 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16 show the spatial distribution of 

merged annual average acetaldehyde, acrolein, benzene, 1,3 butadiene, formaldehyde, 

elemental carbon, and NOx emissions for 1999.  Each plot shows that the highest 

emissions occurred in the Atlanta metropolitan area, Georgia, followed by Nashville 

(Davidson County), Memphis (Shelby County), Tennessee, and Birmingham (Jefferson 

County), Alabama in the Southeaster of the U.S., which had higher VMTs and non-road 

engines among the analyzed Southeastern counties. In addition, acrolein, 1, 3-butadiene, 

and formaldehyde emissions were clearly high in Florida compared with surrounding 

states. 

 
 

Figure 4.10. Average Acetaldehyde Emissions 
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Figure 4.11. Average Acrolein Emissions 

 

 

Figure 4.12. Average Benzene Emissions 
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 Figure 4.13. Average 1,3 Butadiene Emissions  

 

 

Figure 4.14. Average Formaldehyde Emissions 
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Figure 4.15. Average EC Emissions 

 

 

Figure 4.16. Average NOx Emissions 
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Finally and according to Figure 4.17, acetaldehyde emissions were highly affected by 

biogenic emissions at the Southeastern U.S., which were more significant in the summer 

season, June and September of 1999. 

 

4.1.5 Source Emission Scenarios 

 

The on-road criteria pollutants and HAPs emissions inventories were run on NMIM for 

the year 2020 scenario and the scenarios that used CNG on LDVs and all vehicles over 

all States in the modeling domain. The rest of the scenarios were run on SMOKE2.0 

using control matrices on SCC codes for the whole domain.  

 

The Tennessee VMTs growth adjusted to 28 vehicle types for the scenario 2020 was 

obtained from the UTK project (Davis et al., 2002), which was approximately 3.1% per 

year. For the rest of the domain an annual average VMTs growth of 2.1% was used, 

which were provided by the U.S. EPA (U.S. EPA, 2004c). The VMTs and growth for 

each state in the domain are shown in the Table 4-5. 

 

Each run scenario was estimated on a monthly-basis, where the diesel sulfur values 

varied by county and hourly temperatures and humidity values for each county were used 

(U.S. EPA, 2005m). The annual emissions are shown in Tables 4-6, 4-7, 4-8, and 4-9 for 

2020 criteria pollutant emissions, 2020 HAPs emissions, CNG on LDVs emissions, and 

CNG on all vehicles, respectively. 
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Figure 4.17. Average Merged Acetaldehyde Emissions for March, June, September, 

and December 1999 
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Table 4-5. Annual Million VMTs by State in 1999 and 2020 

FIPS State 19991 20202 Total 
Growth 

Annual 
Growth 

1 Alabama           52,914.0          71,741.1 35.6% 1.6% 
5 Arkansas           29,246.9          42,578.5 45.6% 2.1% 

12 Florida         141,902.8        214,149.3 50.9% 2.3% 
13 Georgia           98,859.1        159,267.1 61.1% 2.8% 
17 Illinois         102,394.2        150,103.4 46.6% 2.1% 
18 Indiana           70,040.6         102,051.2 45.7% 2.1% 
19 Iowa           29,137.7          39,481.7 35.5% 1.6% 
20 Kansas           27,699.1          39,486.7 42.6% 1.9% 
21 Kentucky           47,816.1          67,236.9 40.6% 1.8% 
22 Louisiana           41,204.9          58,346.0 41.6% 1.9% 
26 Michigan           95,643.6        136,636.7 42.9% 1.9% 
28 Mississippi           34,955.0          40,916.7 17.1% 0.8% 
29 Missouri           66,735.4          97,988.1 46.8% 2.1% 
31 Nebraska           18,011.0          25,247.1 40.2% 1.8% 
36 New York         126,491.7        179,801.7 42.1% 1.9% 
37 North Carolina           87,759.3        130,199.5 48.4% 2.2% 
39 Ohio         105,486.4        151,622.7 43.7% 2.0% 
40 Oklahoma           42,569.2          62,050.2 45.8% 2.1% 
42 Pennsylvania         102,013.9        147,508.6 44.6% 2.0% 
45 South Carolina           44,145.7          63,605.0 44.1% 2.0% 
47 Tennessee           64,569.8        108,883.2 68.6% 3.1% 
48 Texas      210,871.1     330,453.5 56.7% 2.6% 
51 Virginia        74,162.4     105,350.6 42.1% 1.9% 
54 West Virginia        18,638.0       20,554.3 10.3% 0.5% 

  Total   1,733,267.8  2,545,260.1 46.8% 2.1% 
 

(1). Source: U.S. EPA, 2005a, except for Tennessee. 

(2). Source: U.S. EPA, 2004c, except for Tennessee. 
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Table 4-6. 2020 NMIM Criteria Emissions Inventory versus 1999 NMIM Emissions Inventory for On-Road Sources [TPY] 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
01 Alabama 1999   1,376,362          5,252       166,345          4,636          3,525          5,215      123,556 
    2020      625,264          7,327        39,804          2,354          1,177             694        39,025 
    Reduction 54.6% -39.5% 76.1% 49.2% 66.6% 86.7% 68.4%

05 Arkansas 1999      766,692          2,867      102,969          2,963          2,307          3,048        63,414 
    2020      365,313          4,297        24,164          1,451             733             414         21,150 
    Reduction 52.4% -49.8% 76.5% 51.0% 68.2% 86.4% 66.6%

12 Florida 1999   3,333,569        14,174      415,636        12,307          9,369        17,327      334,396 
    2020   1,489,377        22,057      107,482           6,950          3,464          2,064      112,683 
    Reduction 55.3% -55.6% 74.1% 43.5% 63.0% 88.1% 66.3%

13 Georgia 1999   2,438,883          9,794      317,185          9,119          6,997        10,011      217,035 
    2020    1,228,045        16,269        79,086          5,273          2,642          1,541        76,544 
    Reduction 49.6% -66.1% 75.1% 42.2% 62.2% 84.6% 64.7%

17 Illinois 1999   2,624,416        10,207      339,428          8,861           6,722          9,783      219,201 
    2020   1,332,153        15,436        74,176          4,888          2,438          1,447        62,607 
    Reduction 49.2% -51.2% 78.1% 44.8% 63.7% 85.2% 71.4%

18 Indiana 1999   1,887,019          6,912      247,266          6,796          5,268          8,593      157,635 
    2020      969,058        10,374        58,739          3,420          1,720             989        50,197 
    Reduction 48.6% -50.1% 76.2% 49.7% 67.4% 88.5% 68.2%

19 Iowa 1999      824,461          2,857      107,850          2,933          2,280          2,826        65,544 
    2020      405,065          3,984        24,165          1,343             679             383        19,963 
    Reduction 50.9% -39.4% 77.6% 54.2% 70.2% 86.4% 69.5%

20 Kansas 1999      774,719          2,732        97,061          2,664          2,058          2,844        60,022 
    2020      380,352          4,009         23,176          1,324             666             382        19,538 
    Reduction 50.9% -46.8% 76.1% 50.3% 67.6% 86.6% 67.4%

21 Kentucky 1999   1,241,509          4,705      169,629          4,762          3,706          5,944       100,412 
    2020      583,306          6,814        36,577          2,268          1,143             652        30,517 
    Reduction 53.0% -44.8% 78.4% 52.4% 69.2% 89.0% 69.6%
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Table 4-6. Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
22 Louisiana 1999   1,050,198          4,059      138,363          4,006          3,100          4,246        93,498 
    2020      482,161          5,919        31,892          1,965             989             566        30,487 
    Reduction 54.1% -45.8% 77.0% 51.0% 68.1% 86.7% 67.4%

26 Michigan 1999   2,931,633          9,497      333,563          8,843          6,810        12,679      222,737 
    2020   1,461,902        13,982         82,102          4,507          2,256          1,321        70,535 
    Reduction 50.1% -47.2% 75.4% 49.0% 66.9% 89.6% 68.3%

28 Mississippi 1999      789,184          3,408      127,375          3,840          3,040          3,521         72,596 
    2020      302,340          3,979        22,141          1,484             769             368        18,270 
    Reduction 61.7% -16.7% 82.6% 61.4% 74.7% 89.6% 74.8%

29 Missouri 1999   1,723,005          6,606      223,587          6,154          4,716          6,042      139,434 
    2020      851,630          9,993        50,826          3,256          1,633             949        44,573 
    Reduction 50.6% -51.3% 77.3% 47.1% 65.4% 84.3% 68.0%

31 Nebraska 1999      510,984          1,768        66,152          1,802          1,400          1,802        39,258 
    2020      251,618          2,538        15,289             852             430             244        12,373 
    Reduction 50.8% -43.6% 76.9% 52.7% 69.3% 86.5% 68.5%

36 New York 1999   3,361,830        12,619      408,599        10,651          8,018          9,178      263,869 
    2020   1,719,041        17,640      173,860           5,839          2,896          1,618        89,945 
    Reduction 48.9% -39.8% 57.4% 45.2% 63.9% 82.4% 65.9%

37 North Carolina 1999   2,218,901          8,668      292,084          8,341          6,433          9,147      198,327 
    2020   1,063,127        13,251        65,959          4,353          2,188          1,262        64,485 
    Reduction 52.1% -52.9% 77.4% 47.8% 66.0% 86.2% 67.5%

39 Ohio 1999   2,756,741        10,471      354,599          9,674           7,429        12,495      230,227 
    2020   1,356,534        15,511        78,596          5,004          2,504          1,466        68,959 
    Reduction 50.8% -48.1% 77.8% 48.3% 66.3% 88.3% 70.0%

40 Oklahoma 1999   1,109,143          4,204      144,231          4,094          3,168          5,039        93,968 
    2020      541,163          6,311        35,339          2,076          1,043             601        31,645 
    Reduction 51.2% -50.1% 75.5% 49.3% 67.1% 88.1% 66.3%
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Table 4-6. Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
42 Pennsylvania 1999   2,668,754        10,100      345,624          9,309          7,114          8,049      210,842 
    2020    1,430,586        15,050      141,085          4,904          2,460          1,428        75,358 
    Reduction 46.4% -49.0% 59.2% 47.3% 65.4% 82.3% 64.3%

45 South Carolina 1999   1,190,876          4,332      157,773          4,454           3,467          4,759        98,351 
    2020      576,312          6,427        36,769          2,165          1,094             619        32,622 
    Reduction 51.6% -48.4% 76.7% 51.4% 68.5% 87.0% 66.8%

47 Tennessee 1999   1,635,155          6,278      212,291          5,894          4,530          6,478      139,693 
    2020      901,912        10,905        60,215          3,767          1,914          1,081        53,442 
    Reduction 44.8% -73.7% 71.6% 36.1% 57.7% 83.3% 61.7%

48 Texas 1999   4,793,542        20,992      648,470        18,552        14,120        21,209      462,675 
    2020   2,377,370        33,906      156,062        10,822          5,403          3,191      157,226 
    Reduction 50.4% -61.5% 75.9% 41.7% 61.7% 85.0% 66.0%

51 Virginia 1999   1,748,204          7,560      203,411          5,225          3,800          6,301      152,087 
    2020   1,003,408        11,071        97,252          3,275          1,599             993        54,998 
    Reduction 42.6% -46.4% 52.2% 37.3% 57.9% 84.2% 63.8%

54 West Virginia 1999      486,404          1,887        59,809          1,585          1,205          2,300         38,311 
    2020      185,921          2,084        10,454             687             345             184          8,859 
    Reduction 61.8% -10.4% 82.5% 56.7% 71.4% 92.0% 76.9%
  Total 1999 44,242,184      171,952   5,679,299      157,464      120,584      178,836   3,797,091 
    2020 21,882,956      259,134   1,525,211        84,224        42,184        24,458   1,246,002 
    Reduction 50.5% -50.7% 73.1% 46.5% 65.0% 86.3% 67.2%
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Table 4-7. 2020 NMIM HAPs Emissions Inventory versus 1999 NMIM Emissions Inventory for On-Road Sources [TPY] 

FIPSS State Name Inventory Acetaldehyde Acrolein Benzene 1,3-Butadiene Formaldehyde Total 
01 Alabama 1999              513.2        78.1      3,895.0                 505.6              1,533.0      6,524.9 
    2020              170.8        22.5      1,280.5                138.7                 468.8      2,081.3 
    Reduction 66.7% 71.2% 67.1% 72.6% 69.4% 68.1%

05 Arkansas 1999              280.9        41.9      2,046.4                269.3                 830.0      3,468.6 
    2020                99.5        13.0         708.3                  78.0                 270.3      1,168.9 
    Reduction 64.6% 69.0% 65.4% 71.1% 67.4% 66.3%

12 Florida 1999           1,305.3      200.7    10,298.8             1,284.5              3,900.2    16,989.5 
    2020              454.3        59.2      3,435.7                359.5              1,256.4      5,565.0 
    Reduction 65.2% 70.5% 66.6% 72.0% 67.8% 67.2%

13 Georgia 1999              914.1      138.9      6,604.8                879.2              2,712.8    11,249.8 
    2020              335.4        43.8      2,327.0                257.0                914.7      3,878.0 
    Reduction 63.3% 68.4% 64.8% 70.8% 66.3% 65.5%

17 Illinois 1999           1,931.0      154.0      6,504.8                882.9              3,263.5    12,736.2 
    2020              490.0        38.7      1,788.5                201.0                 857.4      3,375.7 
    Reduction 74.6% 74.9% 72.5% 77.2% 73.7% 73.5%

18 Indiana 1999           1,006.0      107.7      5,027.1                630.6              2,215.2      8,986.6 
    2020              318.5        31.4      1,648.8                172.6                 665.2      2,836.6 
    Reduction 68.3% 70.8% 67.2% 72.6% 70.0% 68.4%

19 Iowa 1999              439.7        45.0      2,123.7                264.0                 920.1      3,792.5 
    2020              135.1        12.7         688.7                  70.3                 270.6      1,177.5 
    Reduction 69.3% 71.6% 67.6% 73.4% 70.6% 69.0%

20 Kansas 1999              290.9        41.8      2,292.1                267.3                 831.7      3,723.8 
    2020                99.7        12.5         788.7                  75.1                 263.5      1,239.4 
    Reduction 65.7% 70.1% 65.6% 71.9% 68.3% 66.7%

21 Kentucky 1999              492.2        69.5      3,367.2                422.2              1,449.5      5,800.5 
    2020              153.9        19.5      1,038.7                107.7                 415.8      1,735.6 
    Reduction 68.7% 72.0% 69.2% 74.5% 71.3% 70.1%
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Table 4-7. Continued 

FIPSS State Name Inventory Acetaldehyde Acrolein Benzene 1,3-Butadiene Formaldehyde Total 
22 Louisiana 1999              376.6        57.1      2,895.3                360.4             1,116.6      4,805.9 
    2020              134.8        17.8      1,006.8                105.4                 367.1      1,631.9 
    Reduction 64.2% 68.9% 65.2% 70.8% 67.1% 66.0%

26 Michigan 1999           1,092.2      150.9      7,830.8                942.6              2,901.0    12,917.5 
    2020              379.4        44.9      2,663.0                263.6                 913.4      4,264.4 
    Reduction 65.3% 70.3% 66.0% 72.0% 68.5% 67.0%

28 Mississippi 1999              313.5        46.4      2,246.2               289.7                 901.5         3,797 
    2020                97.9        12.7         567.7                 65.1                 268.4         1,012 
    Reduction 68.8% 72.6% 74.7% 77.5% 70.2% 73.4%

29 Missouri 1999              660.2        95.8      4,720.3                598.9              1,932.8      8,008.0 
    2020              218.3        27.7      1,527.1                158.8                 590.1      2,521.9 
    Reduction 66.9% 71.1% 67.6% 73.5% 69.5% 68.5%

31 Nebraska 1999              232.7        27.8      1,405.7                171.9                 562.2      2,400.3 
    2020                75.5          8.2         471.9                  47.3                 172.9         775.7 
    Reduction 67.6% 70.7% 66.4% 72.5% 69.2% 67.7%

36 New York 1999           1,217.2      183.4      7,825.7             1,185.0              3,909.5    14,320.9 
    2020              551.6        56.5      2,790.3                385.9              1,190.1      4,974.4 
    Reduction 54.7% 69.2% 64.3% 67.4% 69.6% 65.3%

37 North Carolina 1999              837.6      127.4      6,130.9                 795.9              2,474.8    10,366.7 
    2020              284.4        37.2      1,938.9                211.8                 771.6      3,243.8 
    Reduction 66.0% 70.8% 68.4% 73.4% 68.8% 68.7%

39 Ohio 1999           1,453.0      148.6      7,054.3                870.9              3,067.5    12,594.3 
    2020              434.2        41.5      2,137.3                222.1                 881.6      3,716.7 
    Reduction 70.1% 72.1% 69.7% 74.5% 71.3% 70.5%

40 Oklahoma 1999              429.0        64.5      3,114.3                425.8              1,265.4      5,299.0 
    2020              149.3        19.4      1,062.8                121.1                 406.0      1,758.5 
    Reduction 65.2% 70.0% 65.9% 71.6% 67.9% 66.8%
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Table 4-7. Continued 

FIPSS State Name Inventory Acetaldehyde Acrolein Benzene 1,3-Butadiene Formaldehyde Total 
42 Pennsylvania 1999              968.3      146.8      6,276.5                925.7              2,981.0    11,298.3 
    2020              365.6        48.3      2,482.0                294.0              1,004.7      4,194.5 
    Reduction 62.2% 67.1% 60.5% 68.2% 66.3% 62.9%

45 South Carolina 1999              429.3        64.5      3,092.7                408.5              1,267.7      5,262.7 
    2020              151.3        19.8      1,067.2                117.8                 409.3      1,765.4 
    Reduction 64.8% 69.2% 65.5% 71.2% 67.7% 66.5%

47 Tennessee 1999              613.5        92.8      4,552.9                592.9              1,809.2      7,661.2 
    2020              240.4        31.3      1,644.6                182.0                 653.8      2,752.1 
    Reduction 60.8% 66.3% 63.9% 69.3% 63.9% 64.1%

48 Texas 1999           1,978.8      280.3    13,504.4             1,776.0              5,978.3    23,517.9 
    2020              679.7        83.7      4,366.8                490.6              1,848.5      7,469.2 
    Reduction 65.7% 70.1% 67.7% 72.4% 69.1% 68.2%

51 Virginia 1999              962.0        87.6      4,139.8                592.2              2,094.9      7,876.6 
    2020              351.7        29.7      1,665.3                196.1                 673.8      2,916.7 
    Reduction 63.4% 66.1% 59.8% 66.9% 67.8% 63.0%

54 West Virginia 1999              152.8        22.9      1,359.7                151.7                 457.1      2,144.2 
    2020                40.8          5.4         316.3                  30.4                 111.5         504.4 
    Reduction 73.3% 76.3% 76.7% 80.0% 75.6% 76.5%
  Total 1999         18,890.0   2,474.5  118,309.4           15,493.8            50,375.4  205,543.2 
    2020           6,412.1      737.2    39,412.8             4,351.9            15,645.4    66,559.5 
    Reduction 66.1% 70.2% 66.7% 71.9% 68.9% 67.6%
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Table 4-8. CNG on LDVs versus 1999 NMIM Emissions for On-Road Sources in [TPY] 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
01 Alabama 1999   1,376,362          5,252      166,345          4,636           3,525          5,215      123,556 
    CNG on LDVs   1,159,296          5,252      155,743          4,544           3,433          3,413      102,582 
    Reduction 15.8% 0.0% 6.4% 2.0% 2.6% 34.5% 17.0%

05 Arkansas 1999      766,692          2,867      102,969          2,963           2,307          3,048        63,414 
    CNG on LDVs      640,391          2,867        97,121          2,915           2,259          2,010        52,465 
    Reduction 16.5% 0.0% 5.7% 1.6% 2.1% 34.1% 17.3%

12 Florida 1999   3,333,569        14,174      415,636         12,307           9,369        17,327      334,396 
    CNG on LDVs   2,760,483        14,174      386,953        11,944           9,006        10,881      271,605 
    Reduction 17.2% 0.0% 6.9% 2.9% 3.9% 37.2% 18.8%

13 Georgia 1999    2,438,883          9,794      317,185          9,119           6,997        10,011      217,035 
    CNG on LDVs   2,052,425          9,794      298,347          8,948           6,827          6,679      179,557 
    Reduction 15.8% 0.0% 5.9% 1.9% 2.4% 33.3% 17.3%

17 Illinois 1999   2,624,416        10,207      339,428          8,861           6,722          9,783      219,201 
    CNG on LDVs   2,165,824        10,207      318,111          8,671           6,532          6,308      183,084 
    Reduction 17.5% 0.0% 6.3% 2.1% 2.8% 35.5% 16.5%

18 Indiana 1999   1,887,019          6,912      247,266          6,796           5,268          8,593      157,635 
    CNG on LDVs   1,554,027           6,912      231,681          6,635           5,107          5,418      129,995 
    Reduction 17.6% 0.0% 6.3% 2.4% 3.1% 37.0% 17.5%

19 Iowa 1999      824,461          2,857      107,850          2,933           2,280          2,826        65,544 
    CNG on LDVs      685,244          2,857      101,715          2,887           2,234          1,870        54,711 
    Reduction 16.9% 0.0% 5.7% 1.6% 2.0% 33.8% 16.5%

20 Kansas 1999      774,719          2,732        97,061          2,664           2,058          2,844        60,022 
    CNG on LDVs      610,335          2,732        85,669          2,457           1,888          1,814        47,049 
    Reduction 21.2% 0.0% 11.7% 7.8% 8.2% 36.2% 21.6%

21 Kentucky 1999   1,241,509          4,705      169,629          4,762           3,706          5,944      100,412 
    CNG on LDVs   1,026,467          4,705      159,448          4,658           3,602          3,781         82,802
    Reduction 17.3% 0.0% 6.0% 2.2% 2.8% 36.4% 17.5%
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Table 4-8. Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
22 Louisiana 1999   1,050,198          4,059      138,363          4,006           3,100          4,246        93,498 
    CNG on LDVs      878,041          4,059      130,368          3,934           3,028          2,796        77,207 
    Reduction 16.4% 0.0% 5.8% 1.8% 2.3% 34.2% 17.4%

26 Michigan 1999   2,931,633          9,497       333,563          8,843           6,810        12,679      222,737 
    CNG on LDVs   2,433,179          9,497      310,923          8,599           6,566          7,978      184,297 
    Reduction 17.0% 0.0% 6.8% 2.8% 3.6% 37.1% 17.3%

28 Mississippi 1999      789,184          3,408      127,375          3,840           3,040          3,521        72,596 
    CNG on LDVs      657,550          3,408      121,090          3,788           2,987          2,427         60,016 
    Reduction 16.7% 0.0% 4.9% 1.4% 1.7% 31.1% 17.3%

29 Missouri 1999   1,723,005          6,606      223,587          6,154           4,716          6,042      139,434 
    CNG on LDVs   1,446,321          6,606      210,801          6,056           4,619          4,080      116,326 
    Reduction 16.1% 0.0% 5.7% 1.6% 2.1% 32.5% 16.6%

31 Nebraska 1999      510,984          1,768        66,152          1,802           1,400          1,802        39,258 
    CNG on LDVs      427,264          1,768        62,377          1,773           1,372          1,217        32,955 
    Reduction 16.4% 0.0% 5.7% 1.6% 2.0% 32.4% 16.1%

36 New York 1999   3,361,830        12,619      408,599        10,651           8,018          9,178      263,869 
    CNG on LDVs   2,793,388        12,619      383,808        10,493           7,860          6,230      223,527 
    Reduction 16.9% 0.0% 6.1% 1.5% 2.0% 32.1% 15.3%

37 North Carolina 1999    2,218,901          8,668      292,084          8,341           6,433          9,147      198,327 
    CNG on LDVs   1,859,298          8,668      275,070          8,187           6,279          6,120      163,403 
    Reduction 16.2% 0.0% 5.8% 1.9% 2.4% 33.1% 17.6%

39 Ohio 1999   2,756,741        10,471      354,599          9,674           7,429        12,495      230,227 
    CNG on LDVs   2,266,083        10,471      331,720          9,434           7,189          7,794      188,866 
    Reduction 17.8% 0.0% 6.5% 2.5% 3.2% 37.6% 18.0%

40 Oklahoma 1999   1,109,143          4,204      144,231          4,094           3,168          5,039        93,968 
    CNG on LDVs      924,636           4,204      135,301          4,004           3,078          3,245        77,688 
    Reduction 16.6% 0.0% 6.2% 2.2% 2.9% 35.6% 17.3%
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Table 4-8. Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
42 Pennsylvania 1999   2,668,754        10,100      345,624          9,309           7,114          8,049      210,842 
    CNG on LDVs   2,240,812        10,100      325,821          9,178           6,982          5,492      176,611 
    Reduction 16.0% 0.0% 5.7% 1.4% 1.8% 31.8% 16.2%

45 South Carolina 1999   1,190,876          4,332      157,773          4,454           3,467          4,759        98,351 
    CNG on LDVs      997,850          4,332      148,937          4,380           3,394          3,230        81,370 
    Reduction 16.2% 0.0% 5.6% 1.6% 2.1% 32.1% 17.3%

47 Tennessee 1999   1,635,155          6,278      212,291          5,894           4,530          6,478      139,693 
    CNG on LDVs   1,418,508          6,278      206,861          5,785           4,422          4,431      118,813 
    Reduction 13.2% 0.0% 2.6% 1.9% 2.4% 31.6% 14.9%

48 Texas 1999   4,793,542        20,992      648,470        18,552         14,120        21,209      462,675 
    CNG on LDVs   3,969,473        20,992      607,509        18,159         13,727        13,579      379,190 
    Reduction 17.2% 0.0% 6.3% 2.1% 2.8% 36.0% 18.0%

51 Virginia 1999   1,748,204          7,560      203,411          5,225           3,800          6,301      152,087 
    CNG on LDVs   1,433,709          7,560      187,649          5,103           3,679          3,871      126,132 
    Reduction 18.0% 0.0% 7.7% 2.3% 3.2% 38.6% 17.1%

54 West Virginia 1999      486,404          1,887        59,809          1,585           1,205          2,300        38,311 
    CNG on LDVs      399,585          1,887        55,903          1,546           1,166          1,423         31,280
    Reduction 17.8% 0.0% 6.5% 2.5% 3.2% 38.1% 18.4%
  Total 1999 44,242,184      171,952   5,679,299      157,464       120,584      178,836   3,797,091 
    CNG on LDVs 36,800,190      171,952   5,328,927      154,077       117,236      116,087   3,141,535 
    Reduction 16.8% 0.0% 6.2% 2.2% 2.8% 35.1% 17.3%
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Table 4-9. CNG on all Vehicles versus 1999 NMIM Emissions for On-Road Sources in [TPY] 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
01 Alabama 1999    1,376,362          5,252      166,345          4,636           3,525          5,215      123,556 
    CNG on AVs   1,148,572          5,252      121,410          4,479           3,367          2,451      101,434 
    Reduction 16.6% 0.0% 27.0% 3.4% 4.5% 53.0% 17.9%

05 Arkansas 1999      766,692          2,867      102,969          2,963           2,307          3,048        63,414 
    CNG on AVs      634,849          2,867        72,705          2,876           2,220          1,427        51,897 
    Reduction 17.2% 0.0% 29.4% 3.0% 3.8% 53.2% 18.2%

12 Florida 1999   3,333,569        14,174      415,636        12,307           9,369        17,327      334,396 
    CNG on AVs   2,730,710        14,174      296,865        11,762           8,824          8,172      268,260 
    Reduction 18.1% 0.0% 28.6% 4.4% 5.8% 52.8% 19.8%

13 Georgia 1999   2,438,883          9,794      317,185          9,119           6,997        10,011      217,035 
    CNG on AVs   1,981,545          9,794      220,731          8,606           6,530          4,586      173,527 
    Reduction 18.8% 0.0% 30.4% 5.6% 6.7% 54.2% 20.0%

17 Illinois 1999   2,624,416        10,207       339,428          8,861           6,722          9,783      219,201 
    CNG on AVs   2,148,827        10,207      248,963          8,555           6,416          4,595      181,094 
    Reduction 18.1% 0.0% 26.7% 3.5% 4.6% 53.0% 17.4%

18 Indiana 1999   1,887,019          6,912      247,266          6,796           5,268          8,593      157,635 
    CNG on AVs   1,540,927          6,912      177,966          6,543           5,015          4,050      128,555 
    Reduction 18.3% 0.0% 28.0% 3.7% 4.8% 52.9% 18.4%

19 Iowa 1999      824,461          2,857      107,850          2,933           2,280          2,826        65,544 
    CNG on AVs      679,850          2,857        77,495           2,849           2,197          1,322        54,142 
    Reduction 17.5% 0.0% 28.1% 2.8% 3.7% 53.2% 17.4%

20 Kansas 1999      774,719          2,732        97,061          2,664           2,058          2,844        60,022 
    CNG on AVs      645,539          2,732        69,909          2,577           1,971          1,323        49,803 
    Reduction 16.7% 0.0% 28.0% 3.2% 4.2% 53.5% 17.0%

21 Kentucky 1999   1,241,509          4,705      169,629          4,762           3,706          5,944      100,412 
    CNG on AVs   1,017,713          4,705      121,075          4,591           3,535          2,798        81,918 
    Reduction 18.0% 0.0% 28.6% 3.6% 4.6% 52.9% 18.4%
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Table 4-9. Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
22 Louisiana 1999   1,050,198          4,059      138,363          4,006           3,100          4,246        93,498 
    CNG on AVs      869,871          4,059        97,526           3,879           2,974          1,989        76,329 
    Reduction 17.2% 0.0% 29.5% 3.2% 4.1% 53.2% 18.4%

26 Michigan 1999   2,931,633          9,497      333,563          8,843           6,810        12,679      222,737 
    CNG on AVs    2,413,294          9,497      243,966          8,465           6,432          5,978      182,366 
    Reduction 17.7% 0.0% 26.9% 4.3% 5.6% 52.9% 18.1%

28 Mississippi 1999      789,184          3,408      127,375          3,840           3,040          3,521        72,596 
    CNG on AVs      652,045          3,408        87,219          3,736           2,936          1,673        59,447 
    Reduction 17.4% 0.0% 31.5% 2.7% 3.4% 52.5% 18.1%

29 Missouri 1999    1,723,005          6,606      223,587          6,154           4,716          6,042      139,434 
    CNG on AVs   1,433,667          6,606      161,701          5,970           4,532          2,816      115,077 
    Reduction 16.8% 0.0% 27.7% 3.0% 3.9% 53.4% 17.5%

31 Nebraska 1999      510,984          1,768        66,152          1,802           1,400          1,802        39,258 
    CNG on AVs      423,815          1,768        47,581          1,748           1,346             840        32,626 
    Reduction 17.1% 0.0% 28.1% 3.0% 3.9% 53.4% 16.9%

36 New York 1999   3,361,830        12,619      408,599        10,651           8,018          9,178      263,869 
    CNG on AVs   2,769,673         12,619      301,442        10,359           7,726          4,276      221,116 
    Reduction 17.6% 0.0% 26.2% 2.7% 3.6% 53.4% 16.2%

37 North Carolina 1999   2,218,901          8,668      292,084          8,341           6,433           9,147      198,327 
    CNG on AVs   1,841,642          8,668      210,451          8,061           6,153          4,275      161,542 
    Reduction 17.0% 0.0% 27.9% 3.4% 4.4% 53.3% 18.5%

39 Ohio 1999   2,756,741        10,471       354,599          9,674           7,429        12,495      230,227 
    CNG on AVs   2,247,769        10,471      256,465          9,306           7,061          5,898      186,757 
    Reduction 18.5% 0.0% 27.7% 3.8% 4.9% 52.8% 18.9%

40 Oklahoma 1999   1,109,143          4,204      144,231          4,094           3,168          5,039        93,968 
    CNG on AVs      916,021          4,204      103,214          3,944           3,018          2,369         76,841
    Reduction 17.4% 0.0% 28.4% 3.7% 4.7% 53.0% 18.2%
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Table 4-9. Continued 

FIPSS State Name Inventory CO NH3 NOX PM10 PM25 SO2 VOC 
42 Pennsylvania 1999   2,668,754        10,100      345,624          9,309           7,114          8,049      210,842 
    CNG on AVs   2,220,963        10,100      250,542          9,058           6,863          3,748      174,626 
    Reduction 16.8% 0.0% 27.5% 2.7% 3.5% 53.4% 17.2%

45 South Carolina 1999   1,190,876          4,332       157,773          4,454           3,467          4,759        98,351 
    CNG on AVs      989,186          4,332      111,413          4,311           3,325          2,219        80,475 
    Reduction 16.9% 0.0% 29.4% 3.2% 4.1% 53.4% 18.2%

47 Tennessee 1999   1,635,155          6,278      212,291          5,894           4,530          6,478      139,693 
    CNG on AVs   1,406,248          6,278      157,161          5,696           4,333          3,132       117,519 
    Reduction 14.0% 0.0% 26.0% 3.4% 4.4% 51.7% 15.9%

48 Texas 1999   4,793,542        20,992      648,470        18,552         14,120        21,209      462,675 
    CNG on AVs   3,840,456        20,992      455,063         17,532         13,192          9,759      366,592 
    Reduction 19.9% 0.0% 29.8% 5.5% 6.6% 54.0% 20.8%

51 Virginia 1999   1,748,204          7,560      203,411          5,225           3,800          6,301      152,087 
    CNG on AVs    1,426,214          7,560      152,823          5,044           3,619          3,000      125,151 
    Reduction 18.4% 0.0% 24.9% 3.5% 4.8% 52.4% 17.7%

54 West Virginia 1999      486,404          1,887        59,809          1,585           1,205          2,300        38,311 
    CNG on AVs      397,103          1,887        42,805          1,525           1,145          1,112        30,988 
    Reduction 18.4% 0.0% 28.4% 3.8% 5.0% 51.6% 19.1%
  Total 1999 44,242,184      171,952   5,679,299      157,464       120,584      178,836   3,797,091 
    CNG on AVs 36,376,499      171,952   4,086,494      151,472       114,731        83,807   3,098,078 
    Reduction 17.8% 0.0% 28.0% 3.8% 4.9% 53.1% 18.4%
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The 2020 on-road criteria pollutants emissions shown in Table 4-6 were significantly 

lower than those of 1999 for the all-domain and Tennessee runs, except ammonia 

emissions, which were 50.7 % higher than the year 1999 for the all States in the domain 

and 73.7 % higher in Tennessee with respect to the year 1999. Those NH3 emissions in 

the year 2020 were higher than those of the year 1999 because the on-road regulations 

consider reducing the NOx emissions through a catalytic system that generates more NH3 

emissions (U.S. EPA, 2004m). Tennessee showed more NH3 emissions increase due 

mainly to the highest VMTs growth in this state compared with the values provided by 

EPA for the rest of the states in the modeling domain. 

 

Although the 2020 VMTs were significantly higher than those of 1999, the effect of the 

on-road regulations will be to reduce those total criteria pollutants emissions by 53.9 % in 

the whole domain and 48.6 % in Tennessee. The main reductions in all 24 states occurred 

for SO2 with 86.3 %, followed by NOx with 73.1 %, VOC with 67.2%, PM2.5 with 65.0 

%, CO with 50.5 %, and PM10 with 46.5 %. For Tennessee, the main reductions were SO2 

with 83.3 %, followed by NOx with 71.6 %, VOC with 61.7 %, PM2.5 with 57.7 %, CO 

with 44.8 %, and PM10 with 36.1 %. The main reduction on the whole domain was SO2 in 

West Virginia with a reduction as high as 92.0 %.  

 

According to Table 4-7, the 2020 HAPs emissions from on-road sources were 

significantly lower than those from 1999, which resulted in a 67.6% reduction in the 

whole domain, and 64.1% in Tennessee. 
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The maximum reduction was for 1,3-butadiene, which accounted for 71.9 % in the whole 

domain and 69.3 % in Tennessee. The reductions in 2020 from 1999 for acetaldehyde, 

acrolein, benzene, 1,3-butadiene, and formaldehyde in the whole domain were 66.1, 70.2, 

66.7, 71.9, and 68.9 % respectively. Those reductions were higher than those estimated 

and proposed by the U.S. EPA from 1996 to 2020 (U.S. EPA, 1999b, 1999c, 2001a), 

which were 57, 60, 57, 64 % for acetaldehyde, benzene, 1,3-butadiene, and formaldehyde 

respectively in the whole nation. 

 

The criteria pollutant emissions from the scenarios that used CNG on LDVs and CNG on 

all vehicles versus the base case scenario are shown in Tables 4-8 and 4-9 respectively. In 

general, the total emissions reductions from those CNG scenarios were not significant in 

the modeling domain, with 15.7 % attributed to the scenario that used CNG on LDVs and 

18.9 % to the scenario that used CNG on all vehicles in 1999. The exception was SO2, 

with total reductions of 35.1 % in the scenario that used CNG on LDVs and of 53.1 % in 

the scenario that used CNG on all vehicles, with behavior similar to Tennessee. This 

significant reduction was because CNG fuel has lower sulfur content than gasoline and 

diesel fuels. Ammonia did not present variations between the base case and the CNG 

scenarios through all states, since NMIM and MOBILE6.2 have not incorporated that 

function, as well as, those models assume similar particulate matter emission factors on 

NGVs as conventional vehicles. MOBILE6.2 and NMIM assume that the exhaust 

particulate emissions of NGVs are the same as gasoline-fueled vehicles operating on very 

low sulfur fuel content. This assumption was based on comparisons between NGV and 

gasoline vehicle hydrocarbon emission test results (U.S. EPA, 2001a). These test results 
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suggested that NGVs generally had equivalent or lower emissions than gasoline vehicles. 

Based on the similarity between hydrocarbon and particulate emission formation, the 

general assumption of rough equivalence between these vehicle types was extended to 

their particulate emission factors. The tire and brake wear emissions of NGVs were 

assumed to be the same as gasoline-fueled vehicles (U.S. EPA, 2002f). This would 

explain why there would be no PM difference between changing vehicles from gasoline 

to CNG in NMIM and why NGVs scenarios showed small PM10 and PM2.5 reductions. 

Finally, particulate matter from diesel vehicles has not been tested when switching to 

NGVs in the model. 

 

The VOC reductions were not significant to the NGVs when compared to the base case 

scenario, with 17.3 % for the scenario that used CNG on LDVs and 18.4 % for the 

scenario that used CNG on all vehicles, reason why it is expectable that the vapor air 

toxics reductions from NGVs are not significant. Unfortunately, NMIM and MOBILE6.2 

do not generate HAPs emissions to NGVs; therefore, it was not possible to model those 

HAPs CNG scenarios on SMOKE2.0 and CMAQ. Finally, it may be noted that CNG on 

HDVs generated lower reductions than use CNG on LDVs, since when subtracting the 

total reductions of the CNG on LDVs scenario from the CNG on all vehicles scenario, the 

CNG on HDVs reductions were as low as 3.2%. All vehicles term includes HDVs and 

LDVs. 

 

The following analysis was focused on air toxics and some criteria pollutants species, 

such us EC and NOx, in order to compare the reductions among HAPs and criteria 
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pollutants. Thus, after running each emission scenario on SMOKE version 2.0, the 

merged daily acetaldehyde, elemental carbon, and benzene emissions from major, area, 

on-road, non-road, and biogenic emissions for March, June, September, and December in 

Davidson County are shown in the Figures 4.18, 4.19, and 4.20. 

 

For the acetaldehyde emissions, a seasonal pattern was evident during the year, since 

biogenic sources generate acetaldehyde as primary pollutant and SMOKE provided a 

temporal profile for those sources according to the daily temperature and the respective 

season. In this particulate case, the acetaldehyde biogenic emissions had a positive trend 

during March and June, a negative trend in September, and were almost constant in 

December in Davidson County, where the biogenic activity decreases in the winter 

season. 

 

Also, without biogenic emissions, the positive or negative trend disappeared for each 

month to each scenario; only a weekly cyclic pattern remained for each time series plot. 

The main daily reductions occurred if there were no on-road sources in the domain, there 

were no LDVs sources in the domain, and the year 2020 scenarios for all months, except 

for June and September, where important reductions occurred if biogenic emissions were 

not in the domain, mainly during the weekends. For the rest of the scenarios small 

reductions occurred in Davidson County.  Daily elemental carbon emissions performed 

differently than acetaldehyde, which did not have positive nor negative trends during 

each month.
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Figure 4.18. Daily Acetaldehyde Emissions in Davidson Co. for March, June, September, and December by each 

Scenario 
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Figure 4-19. Daily EC Emissions in Davidson Co. for March, June, September, and December by each Scenario 
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Figure 4.20. Daily Benzene Emissions in Davidson Co. for March, June, September, and December by each Scenario
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The main reductions occurred when there were no diesel-fueled sources in Davidson 

County and they were similar through each analyzed month, followed by the scenario 

without on-road sources, without HDVs, and the year 2020 scenario. The cyclic SMOKE 

temporal profile showed that during weekends there were less EC emissions than 

weekdays. For the rest of the scenarios small EC emission reductions occurred in 

Davidson County. 

 

Benzene emissions also did not show positive or negative trends during each analyzed 

month. The main reduction occurred when there were no non-road sources in Davidson 

County and they were similar through each month, followed by the scenario without 

LDVs sources, and the year 2020 scenario. For the rest of the scenarios small reductions 

occurred in Davidson County. The benzene time series plots showed similar patterns and 

reductions for acrolein, formaldehyde, 1,3 butadiene, and NOx emissions. However, the 

scenario without diesel-fueled sources achieved the third reduction level after the year 

2020 scenario for NOx emissions. Those time series plots for Davidson County are 

shown in Appendix A.  

 

The maximum daily emissions reduction for each month in Davidson County are shown 

in Figures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, and 4.27 for EC, acetaldehyde, acrolein, 

benzene, 1,3-butadiene, formaldehyde, and NOx respectively, and the annual reductions 

are shown in Table 4-10.   
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Figure 4.21. Maximum Reductions on Daily EC Emissions in Nashville for March, 

June, September, and December 1999 by each Scenario 
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Figure 4.22. Maximum Reductions on Daily Acetaldehyde Emissions in Nashville 

for March, June, September, and December 1999 by each Scenario 
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Max. Reductions on Daily Acrolein Emissions in Nashville
for March, June, September, and December 1999 by Scenarios
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Figure 4.23. Maximum Reductions on Daily Acrolein Emissions in Nashville for 

March, June, September, and December 1999 by each Scenario 

Max. Reductions on Daily Benzene Emissions in Nashville
for March, June, September, and December 1999 by Scenarios
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Figure 4.24. Maximum Reductions on Daily Benzene Emissions in Nashville for 

March, June, September, and December 1999 by each Scenario 
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Max. Reductions on Daily 1,3 Butadiene Emissions in Nashville
for March, June, September, and December 1999 by Scenarios
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Figure 4.25. Maximum Reductions on Daily 1,3 Butadiene Emissions in Nashville 

for March, June, September, and December 1999 by each Scenario 

Max. Reductions on Daily Formaldehyde Emissions in Nashville
for March, June, September, and December 1999 by Scenarios

0%

10%

20%

30%

40%

50%

60%

70%

80%

No On-Road No DFS No OnRoad DFS No LDV No HDV On-Road 2020

R
ed

uc
tio

n 
[%

]

Mar Jun Sep Dec

 

Figure 4.26. Maximum Reductions on Daily Formaldehyde Emissions in Nashville 

for March, June, September, and December 1999 by each Scenario 
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Max. Reductions on Daily NOx Emissions in Nashville
for March, June, September, and December 1999 by Scenarios
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Figure 4.27. Maximum Reductions on Daily NOx Emissions in Nashville for March, 

June, September, and December 1999 by each Scenario 

 

 

Table 4-10. Maximum Reductions on Daily Emissions in Nashville 1999 

Scenario Acrolein Acetaldehyde Benzene 1,3 Butadiene Formaldehyde EC NOx 
No Biogenic   32.0%           
No On-Road 56.3% 69.7% 79.1% 81.8% 70.1% 42.9% 65.6%
No DFS 17.3% 5.4% 2.3% 5.9% 31.3% 79.6% 41.4%
No OnRoad DFS 12.0% 2.7% 1.1% 5.1% 16.9% 37.4% 26.9%
No LDV 35.4% 61.9% 73.5% 71.4% 46.0% 5.6% 35.1%
No HDV 20.9% 7.8% 5.7% 10.6% 24.1% 37.3% 30.4%
On-Road 2020 18.8% 46.0% 60.9% 60.4% 49.8% 27.7% 48.2%
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The maximum daily reduction of EC emissions occurred in June for the hypothetic 

scenario without DFS (Figure 4.21), which generate mainly EC and accounted for 85% of 

reductions. During March and September the maximum reduction was 80% and 

December 73%. That maximum reduction occurred in June, because in the summer 

season construction activity becomes more active in Tennessee and less active in the 

winter season, which includes December when the impact of wood smoke becomes 

important. These DFS contributions were close to the values obtained for Zheng (Zheng 

et al., 2002) where they employed a molecular marker chemical mass balance model to 

apportion the sources of atmospheric particulate matter in eight cities in the Southeastern 

U.S. for one-month of each season between the spring of 1999 and the winter of 2000. 

The calculated value for January, April, July, and October were 74, 84, 92, and 85% 

respectively. Their results demonstrated the seasonal impact of wood smoke on EC 

concentrations. 

 

During June, the maximum EC reduction due to the scenario without non-road sources 

was as high as 50%, and during December only 32%, which were obtained subtracting 

the on-road DFS from the DFS scenario. In addition, that maximum reduction was not 

affected significantly by on-road DFS, since the amount of truck VMTs is similar in each 

season. The maximum EC reduction generated by the scenario without on-road sources 

was similar during each month, which was 43% on average (Table 4-10), followed by the 

scenario without on-road diesel-fueled sources with an average reduction of 37%, the 

scenario without HDVs with 37%, the year 2020 scenario with 28%, and the scenario 

without LDVs with an average reduction of 6%. Although the scenario 2020 included the 



 212

on-road sources regulations only, the EC maximum reductions were important, but not 

enough to achieve a strong reduction compared with the scenario without DFS, which 

were close to 80% on average. In a future 2020 scenario that includes the non-road 

sources with all fuel and technological regulations, the maximum daily EC reduction 

could be important but not strong enough compared with an hypothetic scenario that not 

consider DFS sources.  

 

It may be noted that the maximum reductions of daily acetaldehyde emissions for 

Davidson County were due to the scenario that did not consider on-road sources in the 

modeling domain with an average reduction of 70% (Figure 4.22 and Table 4-10), 

followed by the scenario without LDVs with 62%, the scenario for the year 2020 with 

46%, and the scenario without biogenic emissions with an average reduction of 32%. The 

rest of the scenarios performed a reduction lower than 8%, mainly for those scenarios 

without DFS and on-road DFS, which accounted for 5 and 3% in emission reductions 

respectively. It indicates that LDVs were the main acetaldehyde contributors in Davidson 

County, mainly in March and December, where the biogenic activity is low. In fact, 

during June and September the reduction due to the scenario without on-road sources 

were 60 and 65% respectively. For months in which the reductions due to the scenario 

that did not consider biogenic sources, reductions were higher than March and December 

with 44 and 49% respectively, while March and December performed a daily maximum 

reduction of 22 and 10% respectively for Davidson County. Although the scenario 2020 

included the on-road sources regulations only, the acetaldehyde maximum reductions 
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were important, but not enough to achieve a strong emissions reduction compared with 

the scenario without on-road sources. 

 

The maximum daily reduction of acrolein emissions did not show a significant seasonal 

variation for any scenario as shown in Figure 4.23, and the highest reductions occurred 

for the hypothetic scenario without on-road sources, which accounted on average for 56% 

(Table 4-10), followed by the scenario without LDVs with 35%, the scenario without 

HDVs emissions with 21%, the scenario for the year 2020 with 19%, the scenario without 

DFS with 17%, and the scenario without on-road DFS with 12%. Although the scenario 

2020 included the on-road sources regulations, the acrolein maximum reductions were 

not significant, since the main emissions contribution came from open burning sources, 

which must be strongly controlled for the Southeastern U.S. 

 

According to Figure 4.24, no scenario showed a significant seasonal variation to the 

maximum daily reduction of benzene emissions in Davidson County, and the highest 

reductions occurred for the hypothetic scenario without on-road sources, which 

accounted in average for 79 % (Table 4-10), followed by the scenario without LDVs with 

74 %, and the scenario for the year 2020 with 61 %. The rest of the scenarios showed 

reductions lower than 6 %, including the scenario without on-road DFS, which generated 

a reduction as low as 1 %. The greatest benzene sources were the gasoline LDVs sources 

and therefore, the on-road mobile sources regulations will significantly reduce the 

benzene emissions in 2020. 
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The maximum daily reductions of 1,3 butadiene emissions showed a behavior similar to 

the benzene emissions, where no scenario showed a significant seasonal variation in 

Davidson County (Figure 4.25), and the highest reductions occurred for the hypothetic 

scenario without on-road sources, which accounted on average for 82 % reduction (Table 

4-10), followed by the scenario without LDVs with 71 %, and the scenario for the year 

2020 with 60 %. The rest of the scenarios showed reductions lower than 11 %, including 

the scenario without on-road DFS, which generated a reduction as low as 5 %. The 

greatest 1,3-butadiene sources were the gasoline LDVs sources like benzene and 

therefore, the on-road mobile sources regulations will significantly reduce the 1,3-

butadiene emissions in 2020.  

 

It may be noted that the maximum reductions of daily formaldehyde emissions for 

Davidson County were due to the scenario that did not consider on-road sources in the 

modeling domain with an average reduction of 70% (Figure 4.26 and Table 4-10), 

followed by the scenario for the year 2020 with 50%, the scenario without LDVs with 

46%, the scenario without DFS with 31%, the scenario without HDVs emissions with 

24%, and the scenario without on-road DFS with 17%. It indicates that LDVs were the 

main formaldehyde contributors in Davidson County followed by HDVs, mainly in 

December with 47 and 26 % respectively.  

 

Although the scenario 2020 included the on-road sources regulations only, the 

formaldehyde maximum reductions were significant, but not enough to achieve a strong 

reduction compared with the scenario without on-road sources, which was close to 70% 
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in average. However, it is reasonable to expect that if a future 2020 scenario includes the 

non-road sources with strong fuel and technological regulations, the maximum daily 

formaldehyde reduction could be higher than 50% for Davidson County. When 

subtracting the reductions from the scenario without on-road DFS from the scenario 

without DFS the results were that maximum reductions came from non-road sources, 

which were of 14% for Davidson County. Finally, according to the Figure 4.27, the 

maximum daily NOx reductions showed a slight seasonality, except for the scenario 

without on-road DFS, and the scenario without HDVs.  

 

The maximum daily NOx reductions occurred in June, followed by March, September, 

and December for the scenarios without on-road sources, followed by the scenario for the 

year 2020, the scenario without DFS, and the scenario without LDVs. Those maximum 

daily NOx reductions in June were the highest since in the summer season more light 

duty vehicles are on-road because of vacations, and construction becomes more active at 

this season generating more non-road NOx emissions.  

 

The maximum daily NOx reductions were almost the same for each month for the 

scenario without on-road DFS, with the source mainly by diesel trucks. The maximum 

average daily NOx reductions were performed for the scenario without on-road sources 

with 66% (Table 4-10), followed by the scenario for the year 2020 with 48%, the 

scenario without DFS with 41%, the scenario without LDVs with 35%, the scenario that 

did not consider HDVs with 30%, and the scenario without on-road DFS with an average 

reduction of 27%.  
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4.2 MODELING PERFORMANCE 

 

4.2.1 MM5 Modeling Performance 

 

The MM5 performance for Nashville, TN is shown in Figures 4.28 (a), 4.29, 4.30, 4.31, 

and 4.32. Figures 4.28 (a), 4.29, 4.30, and 4.31 depict the time series of the MM5 

predicted temperature at 10 m and the monitored temperature at Nashville International 

Airport for March, June, September, and December of 2003. Figure 4.32 shows the 

scatter plot of monitored versus modeled temperature for those months, and the 45-

degree line corresponds to points where the predicted values equal the monitored values. 

If the model predicted perfectly, all points would lie on the 45-degree line. Points above 

the line indicate that the model under predicted the results and points below the line 

indicate that the model over predicted the results. Finally, the metrics and statistics are 

tabulated in Table 4-11.  

 

In general, the MM5 model version 7 tracked well with the monitored temperature, 

except the first 15 days of March, as shown in Figure 4.28 (a), which could have been 

affected for the modeling grid size of 36 km and its input data. In fact, the uncertainty 

increases when the grid resolution increases (Majeed et al., 2004), mainly on the input 

information such as land use, land cover, and roughness lengths. 
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(b) 

Figure 4.28. MM5 Modeling Performance in Nashville, TN, Match 2003. (a) MM5 

versus Monitored Temperature (b) 24-hr Average EC Concentration 
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Figure 4.29. MM5 versus Monitored Temperature at Nashville, TN, June 2003 
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Figure 4.30. MM5 versus Monitored Temperature at Nashville, TN, September 2003 
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Figure 4.31. MM5 versus Monitored Temperature at Nashville, TN, December 2003 
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(a) All four months 
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(b) All four months without the first 15 

days of March 

 

Figure 4.32. Observed Versus Predicted Hourly Temperature at Nashville, TN, 2003 
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Table 4-11. Comparison of Hourly Temperature Measured at the Nashville 

International Airport, Nashville, Davidson County, TN, to MM5 (layer 1). 

Mean T [K]  σ T [K] Monitored 

data MM5 Obs. MM5 Obs. 
NB [%] NG [%] R2  

2497 288.3 288.8 8.6 8.9 -0.19 0.55 0.945 

 

 

The patterns and distribution of other meteorological variables, such as incoming 

radiation, air temperature, wind speed, are also affected and differ among different grid 

size resolutions; these different grid sizes impact the modeling of the emission fields and 

the final air quality performance (Majeed et al., 2004). Thus, the modeled temperature 

during the first 15 days of March could wrongly simulate a prolonged inversion and 

therefore, higher pollutant concentrations, mainly on aerosols. In fact, the modeled daily 

EC concentrations in March were considerably higher than the first two monitored values 

at Nashville, as shown in Figure 4.28 (b).  

 

This behavior was not produced on air toxics, since the HAPs emission inventory could 

be underestimated for Tennessee. As result, the correct emissions scenarios analysis were 

considered from March 15 to 30, and the complete June, September, and December for 

the next analyses. For the rest of March and the other months, occasionally the monitored 

daily maximum temperatures were slightly higher than the predicted daily maximum, 

which was considered good enough to be used on air quality modeling as shown in 

Figures 4.29, 4.30, and 4.31.  
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Finally, most of the MM5 predicted temperature were over or close to the 45-degree line 

in the scatter plot as shown in Figure 4.32 (b), and the predicted temperature had a 

normalized bias of –0.19 %, a normalized gross error of 0.55 %, and a linear correlation 

of 0.945, which are statistically very significant. Therefore, although the modeling 

considered a 36-km grid size, the model performance can be considered robust and 

similar to the performance seen by other researchers (Majeed et al., 2004) to model 

CMAQ and emission scenarios analysis for HAPs and criteria pollutants. 

 

4.2.2 CMAQ Modeling Performance 

 

Although detailed field observations for the Nashville modeling domain were lacking, air 

toxics concentration measurements were available from two monitors in downtown, 

EATN and LOTN sites, which are part of EPA’s Urban Air Toxics Monitoring Program 

(UATMP) (U.S. EPA, 1999d). Those two Nashville sites are very close to each other. 

The EATN site is located on the roof of East Health Center, which is north 

(predominately downwind) of downtown Nashville and is a population oriented site 

predominantly influenced by primarily commercial and mobile sources.  

 

The LOTN site is located on the roof of Lockland School, which is located in the heart of 

downtown Nashville. This is also a population-oriented site influenced primarily by 

commercial and mobile sources. Observations taken as part of the UATMP are made over 

a 24-hour period every 6 to 12 days. Additional details on the site and the sampling 
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protocol are available from UATMP. Concentrations from those monitoring sites for a 

few air toxics and EC were compared by matching modeled 2003 concentrations 

simulated with CMAQ-AT for vapor toxics and CMAQ version 4.3 for EC. Comparisons 

for acetaldehyde, benzene, 1,3-butadiene, formaldehyde, and EC are shown in Table 4-12 

and Table C-13 (Appendix C). Scatter plots of predicted and observed 24-hour average of 

those air toxics and EC are shown in Figure 4-33. Finally, the metrics for each pollutant 

are tabulated in Table 4-13, which were calculated for all monitored and modeled days.  

 

In general, the modeled daily mean values compared reasonably well against the 

observed values, mainly for EC and formaldehyde. However, the model did not perform 

reasonably for 1,3-butadiene (Table 4-12). A possible cause is because of the lack of 

monitored data. For EC concentrations, the model performed better, since the 1999 

criteria emissions inventory could be more accurate than the HAPs emission inventory. 

Finally, the highest correlation and metrics for EC may have occurred because the 

pollutant has a relatively long lifetime in the atmosphere and accurately represented 

emissions as well as no aerosol formation. EC is part of the fine particles in the 

accumulation mode that ranges from 0.1 to 1.0 μm particles, which have long lifetimes in 

suspension because both diffusion and inertial removal mechanisms are slowest in this 

size range (Lighty et al., 2000).  On the other hand, EC is part of the ultrafine particles 

also, which have a short lifetime in the atmosphere of typically 15 min for 10-nm, but 

they can become fine particles through nucleation and accumulation mechanisms and can 

be transported over long distances adding regional air quality degradation (Biswas and 

Wu, 2005).  
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Table 4-12. Comparison of Air Toxics and EC Daily Concentrations of 2003 

Measured at the EATN and LOTN sites, Nashville, Davidson County, TN, to 

CMAQ (layer 1). 

Compound 

Monitored 

data Mean [ug/m3] σ [ug/m3] R2 

    CMAQ Obs. CMAQ Obs.   

Acetaldehyde 17           1.12           1.66           0.40           0.61            0.37 

Benzene 18           0.93           1.69           0.53           0.90            0.27 

1,3-Butadiene 4           0.11           0.29           0.06           0.10            0.15 

Formaldehyde 17           1.72           3.20           1.04           1.14            0.62 

EC 17           0.55           0.72           0.20           0.36            0.65 

 

 

Table 4-13. Modeled Performance Metrics for EATN and LOTN sites at Nashville, 

Davidson County, TN, 2003. 

Compound NB (%) NG (%)

Acetaldehyde -25 42

Benzene -39 43

1,3-Butadiene -57 57

Formaldehyde -47 47

EC -13 28
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Figure 4.33. Scatter Plots of Monitored vs. Predicted Daily Acetaldehyde, Benzene, 

1,3-Butadiene, Formaldehyde, and EC in Nashville, Davidson County, TN, 2003. 
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The lack of gravitational settling results in a long lifetime in the air and increases the 

chances of a better modeling performance. The scatter plots also showed that the model 

under predicted the acetaldehyde, benzene, 1,3-butadiene, formaldehyde, and EC daily 

concentrations for most days of 2003, since a majority of the points fell above the 45-

degree line. This can be corroborated in Table 4-13, since the model under predicted 

about 13 to 57% (normalized bias) over those four months. The normalized gross error 

ranged from 28 to 57% for those HAPs.  The U.S. EPA guidance (U.S. EPA, 2001d) 

recommends that the normalized bias has to be less than or equal to 20%, and less or 

equal to 30% for normalized gross error.  As discussed above, a possible cause may have 

been due to the modeling assumed zero boundary conditions in the simulations; however, 

the main errors could have resulted from an inaccurate emissions inventory, that the 

inventory and meteorological data were base on different years, and for the modeling grid 

size of 36 km used.  

 

Modeling MM5 and CMAQ for 36 km grid resolution produces inaccurate meteorology, 

dispersion fields, spatial, and temporal variability of the pollutants; however, this 

assumption is good enough to analyze the proposed emission scenarios on ground level 

concentrations and health risk. In fact, even though the model performance was not very 

strong and similar to the performance seen by other researchers (Ching et al., 2004), it 

could be considered satisfactory to do emission scenarios analysis for those pollutants, 

since the analysis approach involves considering the difference in mass concentrations 

and health risk values among the proposed emission scenarios and the base case scenario 

rather than the absolute mass concentration or health risk value. This assumes that the 
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factors that contributed to the under and over prediction of those air toxics and EC 

concentrations for March, June, September, and December would contribute similarly in 

all the scenarios considered in the analysis, causing minimal effects on the differences 

among the scenarios. Future simulations could include running fine-scale modeling on air 

toxics to better capture spatial and temporal variability, as well as, concentration 

magnitudes, which could help identify and characterize the hot spots of air toxics 

compounds from an exposure point of view. 

 

4.3 BASE CASE CMAQ MODELING RESULTS 

 

The base case CMAQ modeling results are summarized and discussed for Nashville, 

Davidson County, TN, showing the temporal variation for the analyzed months. In 

addition, results are also presented as tile plots to show the spatial variation of March, 

June, September, and December in the whole modeling domain. The 36 km grid size 

almost entirely covered Davidson County and the results were assumed to be 

representative of the concentration in the whole urban area of Nashville.  

 

The column 23 and row 24 of the 36 km grid cell approximately covered all of Nashville. 

For each month under analysis, the model runs were set to start five days earlier to allow 

for the “spin-up” period, which was done to avoid the influence of the initial conditions 

on the model results. 
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4.3.1 Air Toxics Concentrations in Davidson County, Tennessee 

 

4.3.1.1 Acetaldehyde 

 

Hourly acetaldehyde concentrations at Nashville produced similar seasonal patterns for 

most of the 24-hour time periods for each month as shown in Figure 4.34. Maximum 

concentrations occurred between 6 and 9 PM and the minimum concentrations occurred 

between 3 and 6 AM, and a second maximum occurred between 7 and 9 AM. It may be 

noted that acetaldehyde is generated as a primary and secondary pollutant. The 

photochemical reaction at the troposphere for this kind of aldehyde is very complex, 

mainly during summer season, where the high temperatures speed up its overall reaction 

and the overall reaction of its precursors. In fact, the anthropogenic acetaldehyde is a 

primary pollutant generated mainly from mobile sources, whose maximum emissions 

occurred at traffic pick hours in Davidson County, i.e, from 7 AM to 7 PM, with the 

highest emissions at 5 PM as shown in Figure 4.36. This primary acetaldehyde was also 

produced from biogenic sources mainly in spring and summer seasons. Some emitted 

primary acetaldehyde at morning rush-hour traffic in June reacted rapidly with OH• to 

generate CH3CO3 radical. Simultaneously, it was decomposed by potholysis into HCO• 

and CH3
• (alkyl) free radicals, as well as, dispersed due to higher wind speeds during 

afternoon at Davison county as shown in Figures 4.35 (June) and 4.37.  
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Figure 4.34. Box-Plots of the Modeled Hourly Average Acetaldehyde Concentration 

at Nashville, TN, for March, June, September, and December 2003 
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Figure 4.35. Box-Plots of the Monitored Hourly Average Wind Speed at Nashville, 

TN, for March, June, September, and December 2003 
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Figure 4.36. Box-plot of the On-road Hourly Average Acetaldehyde Emissions in 

Nashville, TN, June 2003 
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Figure 4.37. Box-plot of the Primary Hourly Average Acetaldehyde Concentration 

in Nashville, TN, June 2003 
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Those figures show that most of the primary acetaldehyde emitted at morning rush-hour 

traffic was decomposed and dispersed at around 1PM. At night, the acetaldehyde emitted 

during afternoon rush-hour traffic reacted slowly with NO3
• to generate HNO3 and 

CH3CO3 radical, and was slowly dispersed as a result of a greater atmospheric stability as 

shown in Figure 4.35 (June) and 4.37. This chemical mechanism is explained also for 

some authors (Bloss et al., 2005; Seinfeld and Pandis, 1998; Baird, 2001).  

 

On the other hand, at least 136 VOCs are secondary acetaldehyde precursors in the 

troposphere, especially isoprene (Bloss et al., 2005). Most of those reactive VOCs 

emitted into the air by morning and afternoon rush-hour traffic were converted to 

secondary acetaldehyde in summer season, but at the same time, it was dispersed as a 

result of an unstable atmosphere by about noon in Davidson County, as shown in Figure 

4.38.  
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Figure 4.38. Box-plot of the Secondary to Total Acetaldehyde Ratio on Hourly 

Concentrations at Nashville, TN, June 2003 
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This box-plot shows that the maximum secondary acetaldehyde contribution was 98% 

around 1 PM. By the end of the day and at night, an important amount of acetaldehyde 

disappeared, since it was photochemically decomposed into HCO• and CH3
• free radicals, 

as well as, it was dispersed and reacted with OH• radical. The rest of the acetaldehyde 

concentration was primary acetaldehyde emitted from mobile and biogenic sources and 

its decomposition with NO3
• at nighttime. Simultaneously, acetaldehyde was added 

through the secondary formation generated by the oxidation of some VOCs with NO3
• 

rather than OH•, which also was slowly dispersed as a result of a greater atmospheric 

stability, as shown in Figures 4.35 (June) and 4.39. During cold months, a reduced 

amount of secondary acetaldehyde was formed through the reaction of its VOCs 

precursors with less available OH• radical and with NO3
• radical rather than photolysis. 

At the same time, less primary acetaldehyde was decomposed into CH3CO3
•, HCO•, and 

CH3
• radicals, and more acetaldehyde was dispersed due to the higher wind speed during 

December. 
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Figure 4.39. Box-plot of the Secondary to Primary Acetaldehyde Ratio on Hourly 

Concentrations at Nashville, TN, June 2003 



 233

This behavior is observed by the different seasonal patterns in cold months as shown in 

Figures 4.35 (December), 4.40, 4.41, and 4.42. As result, the total acetaldehyde 

concentration during December was lower than June. In fact, the maximum secondary 

acetaldehyde contribution in December was around 85% instead of 98% in June, and the 

maximum mean secondary to primary hourly acetaldehyde ratio was 7 times in December 

instead of 40 times in June, as shown in Figures 4.39 and 4.42. Those secondary 

acetaldehyde contributions and secondary to primary ratio were almost flat during 

December instead of seasonal pattern during June. This explains the importance of the 

overall photolysis and the OH• availability in the secondary acetaldehyde formation and 

primary acetaldehyde decomposition. Wind speed was also important on the 

acetaldehyde dispersion. It may be noted that in the summer season the population of 

Nashville was exposed to slightly higher daily acetaldehyde concentrations, mainly due 

to secondary formation. Finally, the annual modeled acetaldehyde concentration was 1.11 

ug/m3 at Nashville, TN, 2003, as shown in Figure 4.43 and Table 4.14. 
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Figure 4.40. Box-plot of thePprimary Hourly Average Acetaldehyde Concentration 

in Nashville, TN, December 2003 

 



 234

R
at

io
 [S

ec
on

da
ry

/ T
ot

al
]

0.75

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time [hours]

December

 
Figure 4.41. Box-plot of the Secondary to Total Acetaldehyde Ratio on Hourly 

Concentrations at Nashville, TN, December 2003 
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Figure 4.42. Box-plot of the Secondary to Primary Acetaldehyde Ratio on Hourly 

Concentrations at Nashville, TN, December 2003 
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Figures 4.43. Modeled Daily Acetaldehyde Concentration in Nashville, TN, 2003 

 

 

Table 4-14. Modeled Acetaldehyde Concentration at Nashville, Davidson County, 

TN, 2003 

Period 

Concentration 

[ug/m3] 

March 1.09 

June 1.13 

September 1.30 

December 0.91 

Annual 1.11 
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4.3.1.2 Formaldehyde 

 

Hourly formaldehyde concentrations in Nashville where higher in June and September 

than December and March as shown in Figure 4.44, however, it was not easy to see the 

seasonal patterns for the 24-hour time periods for each month, since during some 

particulate days in the summer season, the daily formaldehyde concentration was as high 

as 8 and 7 ug/m3 on June 26th and September 13th 2003, respectively. Those high values 

generated more variability on the box-plots shown in Figure 4.44. To analyze the 

seasonal pattern for each month, those high values were removed. Thus the modified 

modeled hourly average formaldehyde concentration at Nashville is shown in Figure 

4.45. Those concentrations produced similar seasonal patterns for the most of the 24-hour 

time periods for each month as shown in Figure 4.45, whose maximum concentrations 

occurred between 6 and 9 PM and the minimum concentrations occurred between 4 and 7 

AM, with a second maximum occurred between 8 and 10 AM.  

 

Formaldehyde is emitted mainly from mobile sources as shown in Figure 4.5, and also is 

an oxidation product of at least 240 VOCs, especially isoprene (Bloss et al., 2005). It is 

an essential component of tropospheric photochemistry predominantly in the summer 

season. In fact, like acetaldehyde, some emitted anthropogenic primary formaldehyde at 

morning rush-hour traffic reacted rapidly with OH• to generate HCO• radical and H2O 

during the daytime.  
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Figure 4.44. Box-Plots of the Modeled Hourly Average Formaldehyde 

Concentration at Nashville, TN, for March, June, September, and December 2003 
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Figure 4.45. Box-Plots of the Modified Modeled Hourly Average Formaldehyde 

Concentration at Nashville, TN, for March, June, September, and December 2003 
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Simultaneously, it was decomposed photochemically into H• and HCO• free radicals, 

reacted with O2 to generate CO and HO2 radical, as well as, was dispersed due to higher 

wind speeds during afternoon hours at Davidson County, as shown in Figures 4.35 (June) 

and 4.46. Those figures show that most of the primary formaldehyde emitted at morning 

traffic congestion was decomposed and dispersed at noon. At night, the formaldehyde 

emitted at afternoon rush-hour traffic reacted slowly with NO3
• to generate HNO3, CO, 

and HO2 radical, and was slowly dispersed as a result of a greater atmospheric stability, 

as shown in Figures 4.35 (June) and 4.46. This chemical mechanism is explained also for 

some authors (Bloss et al., 2005; Seinfeld and Pandis, 1998; Baird, 2001). 

  

On the other hand and like acetaldehyde, several of those 240 reactive VOCs emitted into 

the air by morning rush-hour traffic were converted to secondary formaldehyde, but at the 

same time, it was dispersed as a result of an unstable atmosphere by about noon in 

Davidson County, as shown in Figures 4.47 and 4.48, where the maximum secondary 

formaldehyde contribution was almost 98%.  By the end of the day and at night, an 

important amount of formaldehyde disappeared, since it was photochemically 

decomposed into HCO• and H• free radicals and later to H2 and CO, as well as, dispersed 

and reacted with OH• radical. 
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Figure 4.46. Box-plot of the Primary Hourly Average Formaldehyde Concentration 

in Nashville, TN, June 2003 
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Figure 4.47. Box-plot of the Secondary to Total Formaldehyde Ratio on Hourly 

Concentrations at Nashville, TN, June 2003 

 

R
at

io
 [S

ec
on

da
ry

/P
rim

ar
y]

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time [hours]

June

 
Figure 4.48. Box-plot of the Secondary to Primary Formaldehyde Ratio on Hourly 

Concentrations at Nashville, TN, June 2003 
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The remaining formaldehyde concentration was contributed by primary acetaldehyde 

emitted from mobile sources and its decomposition with NO3
• at nighttime. Concurrently, 

formaldehyde was contributed through the secondary formaldehyde generated by the 

oxidation of some VOCs with NO3• rather than OH•, which also was slowly dispersed as 

result of a greater atmospheric stability, as shown in Figures 4.35 (June) and 4.48. 

 

During cold months, similar to acetaldehyde, a reduced amount of secondary 

formaldehyde was generated due to the reaction of its VOCs precursors with OH• radical, 

O2, and with NO3
• radical rather than photolysis. Simultaneously, less primary 

formaldehyde was decomposed, and more formaldehyde was dispersed due to the higher 

wind speeds during December.  

 

This performance is represented through the different seasonal patterns in cold months as 

shown in Figures 4.35 (December), 4.49, 4.50, and 4.51. As a result, the total 

formaldehyde concentration during December was lower than June at Nashville. In fact, 

the maximum secondary formaldehyde contribution in December was around 73% 

instead of 98% in June, and the maximum mean secondary to primary hourly 

formaldehyde ratio was 4 times instead of 70 times as in June, as shown in Figures 4.48 

and 4.51. It explains the importance of the overall photolysis and the OH• availability in 

the secondary formaldehyde formation and primary formaldehyde decomposition. Wind 

speed was also an important factor on the formaldehyde dispersion.  
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Figure 4.49. Box-plot of the Primary Hourly Average Formaldehyde Concentration 

in Nashville, TN, December 2003 
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Figure 4.50. Box-plot of the Secondary to Total Formaldehyde Ratio on Hourly 

Concentrations at Nashville, TN, December 2003 
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Figure 4.51. Box-plot of the Secondary to Primary Formaldehyde Ratio on Hourly 

Concentrations at Nashville, TN, December 2003 
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Finally, it may be noted that in the summer season the population was exposed almost 3 

times more to daily formaldehyde concentration than in December, mainly due to 

secondary formation. The annual modeled formaldehyde concentration was 2.25 ug/m3 at 

Nashville, TN, 2003, as shown in Figure 4.52 and Table 4.15. Figures 4.53, 4.54, and 

4.55 compare the secondary contributions of acetaldehyde and formaldehyde for each 

analyzed month. The secondary contribution to total formaldehyde was greater than 

acetaldehyde in June and September, but it was lower than acetaldehyde during March 

and December, mainly in December. Similarly, the secondary contribution on 

formaldehyde and acetaldehyde produced more variability during December, principally 

on formaldehyde. This behavior could indicate that those VOCs precursors of 

formaldehyde react easier than those that generate acetaldehyde in warmer weather, but 

they react slower in cold weather than those that produce secondary acetaldehyde. 
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Figure 4.52. Modeled Daily Formaldehyde Concentration in Nashville, TN, 2003 
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Table 4-15. Modeled Formaldehyde Concentration at Nashville, Davidson County, 

TN, 2003 

Period 

Concentration 

[ug/m3] 

March 1.75 

June 2.97 

September 3.22 

December 1.05 

Annual 2.25 
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Figure 4.53. Secondary to Total Acetaldehyde Ratio on Daily Concentrations at 

Nashville, TN, 2003 
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Figure 4.54. Secondary to Total Formaldehyde Ratio on Daily Concentrations at 

Nashville, TN, December 2003 
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Figure 4.55. Secondary Contribution of Formaldehyde and Acetaldehyde to Total 

Monthly Concentration at Nashville, TN, 2003 

 



 246

4.3.1.3 Acrolein 

 

Acrolein was not well modeled by CMAQ, since it did not generate primary 

concentrations during March, September, and December; all of them were secondary 

acrolein. However, June generated 67% of secondary and 33% of primary acrolein. This 

could indicate that CMAQ does not simulate properly this kind of pollutant and suggests 

that CMAQ should be fixed to solve the problem.  

 

Hourly acrolein concentrations at Nashville performed similar seasonal patterns for most 

of the 24-hour time periods for each month, as shown in Figure 4.56, where maximum 

concentrations occurred between 6 and 9 PM and the minimum concentrations occurred 

between 1 and 2 PM in March, June, and September, and around 5 AM in December. A 

second maximum occurred between 7 and 10 AM.  

 

On the other hand, the daily acrolein concentrations were similar for each analyzed 

month, where the annual concentration was 0.03 ug/m3 as shown in Figure 4.57. This 

concentration could be under estimated because of that CMAQ performance and the 

possible under estimated acrolein emissions for Tennessee discussed in point 4.1. 
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Figure 4.56. Box-Plots of the Modeled Hourly Average Acrolein Concentration at 

Nashville, TN, for March, June, September, and December 2003. 
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Figure 4.57. Modeled Daily Acrolein Concentration in Nashville, TN, 2003 

 

  

4.3.1.4 Benzene and 1,3-Butadiene 

 

Hourly benzene and 1,3-butadiene concentrations at Nashville produced similar seasonal 

patterns for the most of the 24-hour time periods for each month, as shown in Figures 

4.58 and 4.59. The maximum concentrations occurred between 6 and 8 PM and the 

minimum concentrations occurred between 1 and 2 PM in March, June, and September, 

and around 5 AM in December. 

 

A second maximum occurred between 7 and 10 AM. It may be noted that benzene and 

1,3-butadiene are generated as primary pollutants, and the chemical reactions at the 

troposphere for this kind of hydrocarbon are normally slow but higher during the summer 

season, where the high temperatures speed up their overall decomposition. 
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Figure 4.58. Box-Plots of the Modeled Hourly Average Benzene Concentration at 

Nashville, TN, for March, June, September, and December 2003. 
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Figure 4.59. Box-Plots of the Modeled Hourly Average 1,3-Butadiene Concentration 

at Nashville, TN, for March, June, September, and December 2003 



 251

In fact, benzene and 1,3-butadiene are primary pollutants generated mainly from mobile 

sources, whose maximum emissions occur at traffic peak hours in Davidson County, i.e, 

from 7 AM to 7 PM, with the highest emissions at 5 PM. The main sinks of that emitted 

primary benzene during the summer season are the OH• radical and the afternoon 

dispersion.  

 

Primary benzene emitted during morning rush-hour traffic reacted slowly with OH• 

during the daytime and was dispersed at around 1PM because of the wind seed, as shown 

in Figures 4.35 and 4.58. Those box-plots show that a certain amount of the benzene 

emitted at morning rush-hour traffic was decomposed and dispersed at noon (Bloss et al., 

2005; Seinfeld and Pandis, 1998). At night, the benzene emitted during afternoon rush-

hour traffic reacted very slowly with OH• and was slowly dispersed until the new 

benzene was emitted during morning traffic congestion again, as shown in Figures 4.35 

and 4.58 during June and September.  

 

This chemical mechanism is explained also for some authors (Bloss et al., 2005; Seinfeld 

and Pandis, 1998). On the other hand, the 1,3-butadiene emitted during morning rush-

hour traffic reacted rapidly with OH• to generate organic radicals during daytime in the 

summer season, as well as.  It also reacted with ozone and was dispersed principally at 

afternoon hours due to higher wind speeds, as show in Figures 4.35 and 4.59 during June 

and September.  
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Those box-plots show that most of the 1,3-butadiene emitted at morning traffic 

congestion was decomposed and dispersed around 1 PM. At night, the 1,3-butadiene 

emitted during afternoon rush-hour traffic reacted slowly with NO3
• and slowly was 

dispersed, because of a greater atmospheric stability, until the new 1,3-butadiene was 

emitted during morning rush-hour traffic again, as shown in Figures 4.35 and 4.59 for 

June and September (Bloss et al., 2005; Seinfeld and Pandis, 1998).  

 

During cold months, less benzene and 1,3-butadiene were decomposed due to the lack of 

enough OH•. At the same time, more benzene and 1,3-butadiene were dispersed due to 

the higher wind speed during December, as shown in Figures 4.35, 4.58 and 4.59 for 

March and December. As a result, the total benzene and 1,3-butadiene concentrations 

during March and December were higher than June and September. For example, 

benzene concentrations in December were 70% higher than the June concentration as 

shown in Table 4-16.  

 

It may be noted that at daytime in the summer season the population was less exposed to 

benzene and 1,3-butadiene concentrations. Finally, the annual modeled benzene and 1,3-

butadiene concentrations were 0.68 and 0.05 ug/m3 respectively at Nashville, TN, 2003, 

as shown in Figures 4.60 and 4.61 and Table 4.16. 
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Table 4-16. Modeled Benzene and 1,3-Butadiene Concentrations at Nashville, 

Davidson County, TN, 2003 

Period 

Benzene 

[ug/m3] 

1,3-Butadiene 

[ug/m3] 

March          0.69                  0.05 

June          0.51                  0.03 

September          0.64                  0.05 

December          0.88                  0.07 

Annual          0.68                  0.05 
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Figure 4.60. Modeled Daily Benzene Concentration in Nashville, TN, 2003 
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Figure 4.61. Modeled Daily 1,3-Butadiene Concentration in Nashville, TN, 2003 

 

 

4.3.1.5 EC and DPM 

 

The next analysis includes EC and DPM together because EC is the major component of 

DPM (Adones et al., 2003, and Schauer, 2003). This analysis estimated the DPM by 

eliminating diesel-fueled sources on the modeling domain, while EC was estimated using 

all sources in the base case. As a result, hourly EC and DPM concentrations at Nashville 

produced similar seasonal patterns for most of the 24-hour time periods for each month, 

as shown in Figures 4.62 and 4.63. The maximum concentrations occurred between 6 and 

9 PM and the minimum concentrations occurred between 1 and 3 PM. A second 

maximum occurred between 6 and 10 AM. It may be noted that EC and DPM are 

generated as primary pollutants. In fact, EC and DPM in nature are primary pollutants 

generated mainly from diesel mobile sources, whose maximum modeled EC emissions  
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Figure 4.62. Box-Plots of the Modeled Hourly Average EC Concentration at 

Nashville, TN, for March, June, September, and December 2003 
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Figure 4.63. Box-Plots of the Modeled Hourly Average DPM Concentration at 

Nashville, TN, for March, June, September, and December 2003 
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occurred at traffic peak hours in Davidson County, i.e, from 7 AM and 5 PM, with the 

highest emissions at 5 PM. Those temporal results were obtained because SMOKE2.0 

uses a default on-road temporal profile for all vehicles emissions, including diesel truck. 

This could be not be true, since on highways the maximum volume of trucks per hour 

occurs at 3 PM for the most of the days, including weekends (Miller, 2005). This more 

realistic temporal profile for trucks could be incorporated in SMOKE to produce better 

temporal hourly emissions and concentrations of DPM at places close to highways. As in 

Davidson County not only are there heavy-duty diesel trucks, but also there are diesel 

buses, diesel SUVs, and light diesel cars on the roads. The default SMOKE2.0 on-road 

temporal emissions profile can be considered appropriated for this research. 

 

The main factor to dilute the emitted primary EC and DPM is the wind dispersion at 

afternoon hours. Figures 4.35, 4.62, and 4.63 show that an important amount of EC and 

DPM emitted during morning rush-hour traffic were dispersed at around 2 PM as a result 

of the higher wind speeds during afternoon hours. This particulate matter behavior was 

also described by Weber (2003) for Atlanta, GA. At the end of the day and at night, the 

EC and DPM emitted during afternoon rush-hour traffic dropped and dispersed slowly 

until the new EC and DPM were emitted during morning traffic congestion again, as 

shown in Figures 4.62 and 4.63. It can be noted that in general, the population of 

Nashville was more exposed to DPM at morning and afternoon rush-hour traffic. The 

monthly EC and DPM concentrations were almost similar for all months in Davidson 

County, principally for DPM. However, EC showed a slightly difference between hot and 

cold months, since the EC concentration of December was 30% higher than June.  
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It could be because in December more wood is burned in homes, demonstrating the 

seasonal impact of wood smoke on EC concentrations published by Zheng et al., (2002). 

The monitored annual EC concentration was 0.64 ug/m3 (Appendix C), while the annual 

modeled EC and DPM concentrations were 0.57 and 0.55 ug/m3, respectively at 

Nashville, TN, 2003, as shown in Figures 4.64 and 4.65 and Table 4.17. Finally and 

according to Figure 4.66, it may be noted that the mean DPM contribution to the total 

hourly PM2.5 was higher during morning and afternoon rush-hour traffic, i.e., around 7 

AM and 5 PM at Nashville. The minimum was produced around 1 PM. The highest 

hourly contribution was as high as 9.3% on June 13th at 8 AM. Higher hourly 

contribution variability was produced in June than in December, since in the summer 

season there is more variability on the SOA PM2.5 formation due to the high temperature. 

The daily DPM contribution to the total PM2.5 was similar for each month and was 

around 2.6% as shown in Figure 4.67. This figure also shows two high values produced 

on June 10th and 13th, which were around 5%. 

 

Table 4-17. Modeled EC and DPM Concentrations at Nashville, Davidson County, 

TN, 2003 

Period  EC [ug/m3]  DPM [ug/m3] 

March                0.59                   0.52 

June                0.48                   0.53 

September                0.58                   0.58 

December                0.63                   0.55 

Annual                0.57                   0.55 
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Figure 4.64. Modeled Daily EC Concentration in Nashville, TN, 2003 
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Figure 4.65. Modeled Daily DPM Concentration in Nashville, TN, 2003 
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Figure 4.66. Modeled Hourly DPM Contribution to Total PM2.5 in Nashville, TN, 

June and December 2003 
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Figure 4.67. Modeled Daily DPM Contribution to Total PM2.5 in Nashville, TN, 

2003 
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4.3.2 Spatial Distribution of Air Toxics Concentrations 

 

The tile plots from Figures 4.68 to 4.75 show the spatial variation of acetaldehyde, 

formaldehyde, acrolein, benzene, 1,3-butadiene, elemental carbon, diesel particulate 

matter, and NOx for March, June, September, and December. It must be noted that the 

tile plots of monthly average concentrations were generated for 5 am GMT, which 

corresponds to midnight in central daylight savings time (CDT). In general, the plots 

show that higher concentrations occurred on Southeastern urban areas for the most of the 

pollutants, principally at Atlanta, GA, followed by Nashville, TN, Birmingham, AL, 

Raleigh, NC, and Memphis, TN. The exception was on formaldehyde during June and 

September (Figure 4.69), which showed high concentrations in the main part of 

Southeastern U.S. In addition, acrolein concentrations were clearly high in Florida as 

compared with neighbor states, as shown in Figure 4.70.  

 

Acetaldehyde and formaldehyde produced higher concentrations in June and September 

due to the contribution of secondary formation in the Southeastern U.S. The rest of the 

pollutants generated higher concentrations during cold months, i.e., March and 

December, except DPM, which was similar for each month as shown in Figure 4.74. 

Those higher concentrations during those cold months were due mainly to the smaller 

tropospheric photochemical decomposition of those vapor HAPs and NOx, as well as, 

due to the seasonal impact of wood smoke on EC as shown in Figure 4.73. 
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Figure 4.68. Modeled Monthly Acetaldehyde Concentration on the all 36-km 

Modeling Domain 
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Figure 4.69. Modeled Monthly Formaldehyde Concentration on the all 36-km 

Modeling Domain 
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Figure 4.70. Modeled Monthly Acrolein Concentration on the all 36-km Modeling 

Domain 
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Figure 4.71. Modeled Monthly Benzene Concentration on the all 36-km Modeling 

Domain 
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Figure 4.72. Modeled Monthly 1,3-Butadiene Concentration on the all 36-km 

Modeling Domain 
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Figure 4.73. Modeled Monthly EC Concentration on the all 36-km Modeling 

Domain 
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Figure 4.74. Modeled Monthly DPM Concentration on the all 36-km Modeling 

Domain 
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Figure 4.75. Modeled Monthly NOx Concentration on the all 36-km Modeling 

Domain 
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Finally, it can be noted that the population was more exposed to acetaldehyde and 

formaldehyde in June and September due mainly to the secondary contribution. On the 

other hand, the population was more exposed to benzene and 1,3-butadiene in March and 

December due to the reduced primary decomposition. For acrolein, the exposure is not 

clear, since CMAQ did not produce a good simulation for this HAP. Finally, the 

population was almost equally exposed to DPM during March, June, September, and 

December.    

 

4.4 AIR TOXICS CONCENTRATIONS BY EMISSIONS 

SCENARIOS 

 

The maximum reductions of daily concentrations for March, June, September, and 

December are shown from Figures 4-76 to 4.83 for acetaldehyde, formaldehyde, acrolein, 

benzene, 1,3-butadiene, EC, DPM, and NOx respectively at Nashville, TN. The annual 

concentrations and maximum reductions are shown in Table 4-18 and 4-19, respectively. 

It may be noted that the maximum reductions of daily acetaldehyde concentrations for 

Nashville were due to the scenario that did not consider on-road sources in the modeling 

domain with an average reduction of 57% and a maximum of 68% produced in 

December, as shown in Figure 4-76 and Table 4-19. This scenario was followed by the 

scenario without LDVs with an average reduction of 52%, the scenario without biogenic 

emissions with 50%, and the scenario for the year 2020 with 37%.  
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Maximum Reductions on Daily Acetaldehyde Concentrations
Nashville 2003 by Scenarios
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Figure 4.76. Maximum Reductions on Daily Acetaldehyde Concentrations in 

Nashville for March, June, September, and December 2003 by each Scenario 
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Figure 4.77. Maximum Reductions on Daily Formaldehyde Concentrations in 

Nashville for March, June, September, and December 2003 by each Scenario 
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Maximum Reductions on Daily Acrolein Concentrations 
Nashville 2003 by Scenarios
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Figure 4.78. Maximum Reductions on Daily Acrolein Concentrations in Nashville 

for March, June, September, and December 2003 by each Scenario 
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Figure 4.79. Maximum Reductions on Daily Benzene Concentrations in Nashville 

for March, June, September, and December 2003 by each Scenario 
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Maximum Reductions on Daily 1,3-Butadiene Concentrations
Nashville 2003 by Scenarios
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Figure 4.80. Maximum Reductions on Daily 1,3 Butadiene Concentrations in 

Nashville for March, June, September, and December 2003 by each Scenario 
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Figure 4.81. Maximum Reductions on Daily EC Concentrations in Nashville for 

March, June, September, and December 2003 by each Scenario 
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Maximum Reductions on Daily DPM Concentrations
Nashville, TN, 2003 by Scenarios
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Figure 4.82. Maximum Reductions on Daily DPM Concentrations in Nashville for 

March, June, September, and December 2003 by each Scenario 
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Figure 4.83. Maximum Reductions on Daily NOx Concentrations in Nashville for 

March, June, September, and December 2003 by each Scenario 
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Table 4-18. Modeled PMSATs Annual Concentrations in Nashville, 2003 

Annual Concentration [ug/m3] Scenario 
Acetaldehyde Benzene Butadiene Formaldehyde DPM 

Base Case            1.109     0.682       0.050             2.248      0.545 
Non Biogenic            0.753     0.673       0.052             1.356      0.545 
Non On-Road            0.670     0.192       0.010             1.895      0.316 
Non DFS            1.104     0.670       0.046             2.137           -   
Non OnRoad DFS            1.111     0.676       0.047             2.197      0.316 
Non LDV            0.700     0.225       0.015             1.985      0.545 
Non HDV            1.085     0.650       0.044             2.171      0.319 
On-Road 2020            0.825     0.311       0.020             2.013      0.367 
 

 

 

Table 4-19. Maximum Reductions on Daily Concentrations in Nashville 2003 

Scenario Acrolein Acetaldehyde Benzene 1,3-Butadiene Formaldehyde EC DPM NOx 

No Biogenic -28.1% 49.8% 4.6% -10.0% 53.9%     -10.8%

No On-Road 63.9% 56.6% 75.2% 82.7% 33.7% 39.0% 48.3% 64.3%

No DFS -27.6% 4.6% 2.8% 16.0% 12.2% 77.6% 100.0% 46.6%

No OnRoad 

DFS -16.3% 1.9% 1.4% 11.7% 6.9% 34.6% 48.3% 29.9%

No LDV 39.7% 52.2% 70.2% 72.3% 24.6% 4.5% 2.2% 33.6%

No HDV 2.1% 4.8% 5.2% 17.0% 9.5% 34.5% 49.2% 33.2%

On-Road 2020 25.9% 37.1% 57.0% 62.9% 23.2% 26.6% 38.1% 48.5%
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The rest of the scenarios produced a reduction lower than 5%, mainly for those scenarios 

without DFS and without on-road DFS, which accounted for 4.6 and 4.8% of reductions, 

respectively. It indicates that the gasoline LDVs were the main acetaldehyde contributors 

in Nashville, principally in March and December. For the scenarios without on-road 

sources and the year 2020, the main acetaldehyde reductions were produced in March and 

December due to gasoline-fueled vehicles also, showing a seasonal effect. During those 

cold months, the secondary acetaldehyde formation due mainly to biogenic sources was 

lower and the reductions were mainly on primary acetaldehyde. In fact, during June and 

September the reductions due to the scenario without on-road sources were only 47 and 

59% respectively. Thus, for the scenario that did not consider biogenic sources, June and 

September produced higher reductions than March and December, with 62 and 63% 

respectively. Although the scenario 2020 included the on-road sources regulations only, 

the acetaldehyde maximum reductions were slightly significant, but not enough to 

achieve a strong concentration reduction compared with the hypothetic scenario without 

on-road sources.  

 

It may be noted that the maximum reductions of daily formaldehyde concentrations for 

Nashville were due to the scenario that did not consider biogenic sources in the modeling 

domain, with an average reduction of 54% and a maximum of 71% produced in 

September, as shown in Figure 4.77 and Table 4-19. This scenario was followed by the 

base case scenario without on-road sources with 34%, the base case scenario without 

LDVs with 25%, the scenario for the year 2020 with 23%, and the base case scenario 

without DFS with 12%. The rest of the scenarios produced a formaldehyde reduction 
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lower than 10%. It may be noted a seasonal pattern on the reductions for all the scenarios, 

mainly between December and the rest of the months. December showed the highest 

formaldehyde reductions on the anthropogenic source scenarios, but generated the lowest 

formaldehyde reductions in the scenario without biogenic sources. This can be explained 

because the secondary formaldehyde is the result from photochemical reactions, 

especially the reaction of isoprene with the hydroxyl radical. That isoprene was generated 

from biogenic sources mainly during June and September. Therefore, if isoprene was not 

available, then less secondary formaldehyde was generated and the main reductions were 

due to primary formaldehyde, as shown for March, June, and September of Figure 4.77. 

It indicates that biogenic sources were the principal secondary formaldehyde contributors 

in Nashville.  

 

The LDVs were the main formaldehyde contributors from on-road sources at this urban 

area, mainly in December with 47% reduction. Although the scenario 2020 included the 

on-road sources regulations only, the formaldehyde maximum reductions were not 

significant to achieve a strong air quality improvement. Nevertheless, it is expected that if 

a future 2020 scenario includes the non-road sources with strong fuel and technological 

regulations, the maximum daily formaldehyde reduction could be better at Nashville, but 

isoprene will continue as the main formaldehyde precursor. The maximum daily 

reduction of acrolein concentrations were not well produced by CMAQ as discussed on 

section 4.3 and shown in Figure 4.78 and Table 4-19, which is the reason why no analysis 

will be performed at this point.  
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According to Figure 4.79, most of the scenarios indicated a slightly significant seasonal 

variation to the maximum daily reduction of benzene concentrations in Nashville. The 

anthropogenic scenarios produced higher reductions in June and September, especially 

because during those months there were higher benzene emissions also that came from 

gasoline engines, as shown in Figure 4.24. The scenario that did not consider biogenic 

sources produced higher benzene reductions in June and September because more 

hydroxyl radical was available to decompose benzene. That higher hydroxyl 

concentration was available due to the lack of isoprene.  

 

The highest benzene reductions occurred for the hypothetical scenario without on-road 

sources, which accounted on average for 75 % as shown in Figure 4.79 and Table 4-19. It 

was followed by the scenario that did not consider LDVs with 70 %, and the scenario for 

the year 2020 with 57 %. The rest of the scenarios showed benzene reductions lower than 

5 %, mainly for the scenario without on-road DFS, which generated a reduction as low as 

1.4 %. The benzene sources were mainly the gasoline LDVs sources. As a result, the on-

road mobile sources regulations will be strong enough to reduce significantly the benzene 

concentrations in 2020 at Nashville. 

 

The maximum daily reductions of 1,3 butadiene concentrations showed a behavior 

similar to benzene at Nashville, with the exception of the scenario that did not consider 

biogenic sources. The scenarios that did not include DFS, on-road DFS, and HDVs 

showed strong seasonal pattern reductions on 1,3-butadiene concentrations, whose higher 

reductions occurred during December. This higher reduction was because the 
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photochemical decomposition of primary 1,3-butadiene was lower in December and each 

scenario performed greater effect on the reductions, as shown in Figure 4.80 and Table 4-

19. The highest reductions occurred for the hypothetic scenario without on-road sources, 

which accounted on average for 83 %, followed by the scenario without LDVs with 72 

%, and the scenario for the year 2020 with 63 %. The rest of the scenarios showed 

reductions lower than 17 %, mainly for the scenario without on-road DFS, which 

generated a reduction of 12 %. Like benzene, the greatest 1,3-butadiene sources were the 

gasoline LDVs sources. Therefore, the on-road mobile sources regulations will be strong 

enough to reduce significantly the 1,3-butadiene emissions in 2020 by almost 63%.  

 

During June, the maximum daily EC concentration reduction due to the scenario without 

DFS sources was as high as 84% and during December was of 73%, as shown in Figure 

4.81 and Table 4-19. That maximum reduction occurred in June, because in the summer 

season the construction activity becomes more active in Tennessee, as well as, the impact 

of wood smoke becomes less important. These DFS contributions were close to the 

values obtained for Zheng et al., (2002) discussed in section 4.3. The rest of the scenarios 

showed a seasonal pattern concentration reductions, whose maximum reduction was 

produced in December and the minimum in June, as shown in Figure 4.82 and Table 4-

19. That maximum occurred in December because more on-road sources emissions were 

generated during this month as shown in Figure 4.21. The maximum EC reductions due 

to the scenario without non-road sources were 43, 53, 44, and 32% during March, June, 

September, and December, respectively, which were obtained by subtracting on-road 
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DFS from DFS scenario. This variability explains the seasonal construction effect on EC 

concentrations. 

 

On average, the maximum reductions were performed by the scenario that did not 

consider DFS, followed by the scenario without on-road sources, the scenario without on-

road DFS, the scenario without HDVs, and the scenario to the year 2020, with 78, 39, 35, 

35, and 27% respectively. The EC maximum reductions of 27% were not significant 

enough to achieve a strong air quality improvement at Nashville for the year 2020 

compared with the hypothetic scenario without DFS. However, if a future 2020 scenario 

includes the non-road sources with all fuel and technological regulations, the maximum 

daily EC reductions could be better. As result, better DPM reduction strategies must be 

considered on mobile sources. 

 

Finally, according to the Figure 4.83, the maximum daily NOx concentrations reductions 

showed a slight seasonality, except for the scenario without LDVs. The maximum daily 

NOx reductions occurred in December, followed by March, June, and September on the 

most of the scenarios, except the scenarios that did not consider biogenic and LDVs 

sources. Those maximum daily NOx reductions were produced in December, since in 

cold months less photochemical reactions decompose NOx and therefore more NOx is 

reduced if those hypothetical scenarios would occur. The scenario that did not included 

biogenic sources produced higher NOx concentrations than the base case scenario, since 

if there was not isoprene in the atmosphere less VOCs, like formaldehyde and 

acetaldehyde, was generated by its decomposition with ozone, hydroxyl radical, NO3
•, 
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and oxygen. Therefore, if less VOCs were generated, less NOx reacted photochemically 

to generate ozone. In fact, more NOx did not react during June and September, months 

that generate less isoprene as shown in Figure 4.83 and Table 4-19. The maximum 

average daily NOx reductions were produced for the scenario without on-road sources 

with 64 %, followed by the scenario for the year 2020 with 49 %, the scenario without 

DFS with 47 %, the scenario without LDVs with 37 %, the scenario that did not consider 

HDVs with 33 %, and the scenario without on-road DFS with an average reduction of 

30% as shown in Figure 4.83 and Table 4-19. Although the scenario 2020 included the 

on-road sources regulations only, this scenario produced a strong NOx reduction of 49%, 

which was so different than the reductions produced to DPM. 

 

4.5 INHALATION HEALTH RISK 

 

The lifetime excess inhalation cancer risk was estimated for acetaldehyde, benzene, 1,3-

butadiene, formaldehyde, and DPM assuming an additive effect risk assessment. The 

cancer risk for those four vapor air toxics was called 4HAPs, which was the additive 

result of the excess inhalation cancer risk for each of those air toxics. The risk estimates 

in this study were based on annual average exposures for a wide population distribution. 

These estimates assumed continuous exposure over an entire lifetime of 70 years to levels 

estimated for 2003 and did not account for expected changes in exposure over time. 

However, exposures to most air toxics are expected to change over time as a result of 

mobile and stationary source emission control programs, as analyzed in the scenario for 

the year 2020. 
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Table 4-20 and Figures 4.84 and 4.85 show the estimated inhalation cancer risk and the 

reductions performed for each analyzed scenario at Nashville, TN, base on the annual 

concentrations of Table 4-18 and the IURs of Table 2.8. The main reductions on those 

4HAPs were due to the contribution of biogenic sources with 32.2%, which generated 

high secondary acetaldehyde and formaldehyde in the summer season.  

 

This condition was followed for the scenario that did not consider on-road sources with a 

27.5% reduction, where the main reductions were due to the air toxics contributions 

generated by gasoline LDVs.  

 

Table 4-20. Inhalation Cancer Risk by Scenarios for those 4HAPs and DPM at 

Nashville, TN. 

Scenario 4HAPS 

x 10-6 

Reduction 

[%] 

DPM

x 10-6 

Reduction 

[%] 

4HAPS+DP

M 

x 10-6 

Reduction 

[%] 

Base Case     38.5    157.8               196.3   

No Biogenic     26.1  32.2% 157.8 0.0%             183.9 6.3%

No On-road     27.9  27.5% 91.4 42.1%             119.3 39.2%

No DFS     36.8  4.4% 0.0 100.0%               36.8 81.2%

No On-road DFS     37.7  2.1% 91.4 42.1%             129.1 34.2%

No LDV     29.5  23.2% 156.8 0.6%             186.3 5.1%

No HDV     37.0  3.9% 93.2 40.9%             130.2 33.7%

On-road 2020     31.0  19.4% 106.2 32.7%             137.2 30.1%
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Modeled Annual Cancer Risk Reductions by Scenarios at Nashville, TN
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Figure 4.84. Modeled Cancer Risk Reductions by Scenarios at Nashville, TN 

 

 

DPM to Total Cancer Risk Ratio by Scenarios at Nashville, TN

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Base Case No
Biogenic

No On-
Road

No DFS No OnRoad
DFS

No LDV No HDV On-Road
2020

R
at

io
 [D

PM
/T

ot
al

 C
an

ce
r R

is
k]

 

Figure 4.85. DPM to Total Cancer Risk Ratio by Scenarios at Nashville, TN 
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As the scenario 2020 included the on-road sources regulations only, the 4HAPs cancer 

risk showed a reduction as low as 19.4 %, which were not significant to achieve a strong 

air quality improvement at Nashville for the year 2020. If there are no on-road sources or 

DFS in the modeling, the cancer risk reduction is not expected to be reduced significantly 

also for those vapor air toxics, since major sources are important sources of acetaldehyde 

emission, as well as, area and non-road sources are important sources of benzene, 1,3-

butadiene, and formaldehyde, as shown in Figures 4.3, 4.4, and 4.5. For that reason, 

better air toxics reduction strategies must be considered on the other emission sources as 

well, mainly on non-road and open burning sources. The rest of the scenarios showed 

reductions lower than 4.4 %, indicating that DFS and HDVs were not important vapor air 

toxics contributors at Nashville, TN. 

 

It may be noted that DPM posed a cancer risk that was 4.1 times higher than the 

combined total cancer risk from all other air toxics simulated on the base case scenario. 

Those high cancer risk levels were due mainly to the DMP emitted from goods 

transportation and construction engines. This higher DPM cancer risk was also estimated 

by Conrad et al., (2005), who reported that DPM posed a cancer risk that was 7.5 times 

higher than the combined total cancer risk from all those other 33 UATs. The main 

reductions in DPM cancer risk were due, obviously to the contribution of DFS sources 

with 100.0 % reduction followed by the scenario that did not consider on-road DFS 

sources with 42.1% reduction, where the main reductions were due to the DPM 

contributions generated by HDDVs. It may be important indicate that the reduction due to 

a hypothetical scenario without non-road sources would be as high as 57.9%, which is the 
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difference between the scenario without DFS and the scenario without on-road DFS. In 

other words, non-road sources produced the highest contribution on ambient DPM 

concentrations and its associated cancer risk.  

 

As the scenario 2020 included the on-road sources regulations only, the DPM cancer risk 

showed a 32.7 % reduction. If a future 2020 scenario includes the non-road sources with 

all fuel and technological regulations, like on-road sources, the DPM cancer risk 

reduction could be important but not strong enough compared with a hypothetical 

scenario that did not consider DFS sources. Therefore, better DPM reduction strategies 

must be considered on mobile sources to reduce its cancer risk in Nashville TN. The 

cancer risk reductions scenarios associated to 4HAPs plus DPM followed similar trends 

than the reductions that came from DPM. Indicating that DPM generated the higher 

lifetime cancer risk excess among the other air toxics, as shown in Table 4-20, and 

Figures 4.84 and 4.85 for Nashville, TN. 

  

The following series of tile plots, Figures 4.86, 4.87, and 4.88, show the estimated 

lifetime inhalation cancer risk excess from the 4HAPs, DPM, and 4HAPs+DPM, 

respectively, for each analyzed scenario on the whole modeling domain. It must be noted 

that the tile plots were generated assuming an annual concentration base on those 4 

analyzed months. In general, the plots show that no area fulfilled the EPA’s cancer risk 

rule, since the 4HAPs, DPM, and 4HAPs+ DPM exceeded the four, one, and 5 in a 

million risk of cancer over a lifetime of exposure respectively. One-in-a-million is thus 

considered an acceptable risk of cancer for a single pollutant by the U.S. EPA.  
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(a) (b) 

 

(c) (d) 

 

Figure 4.86. Spatial Variation of the 4HAPs Cancer Risk by Scenarios 
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(e) 

 

(f) 

 

(g) 

 

Figure 4.86. Continued 
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(a) (b) 

 

(c) 

 

(d) 

 

Figure 4.87. Spatial Variation of the DPM Cancer Risk by Scenarios 
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(e) 

 

(f) 

 

(g) 

 

Figure 4.87. Continued 
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(a) 

 

(b) 

 

(c) (d) 

 

Figure 4.88. Spatial Variation of the DPM + 4HAPs Cancer Risk by Scenarios 
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(e) (f) 

 

(g) 

 

Figure 4.88. Continued 
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Higher cancer risk occurred on Southeastern urban areas for those 4HAPs and DPM, 

principally at Atlanta, GA, for the 4HAPS as shown in Figure 4.86 (a). For DPM, the 

higher cancer risk occurred in Atlanta, GA, followed by Nashville, TN, Birmingham, AL, 

Raleigh, NC, and Memphis, TN, as shown in Figure 4.87 (a).  

 

The 4HAPs cancer risk was influenced principally for secondary acetaldehyde and 

formaldehyde generated in summer season by the biogenic sources effect, as shown in 

Figure 4.86 (b) and 4.88 (b). 

 

The scenario for the year 2020 showed higher 4HAPs cancer risk reductions in Atlanta 

and Birmingham. On the other hand, the scenario that did not consider on-road DFS 

showed the effect of non-road DFS, as shown in Figure 4.87 (d) and 4.88 (d). In fact, the 

area around the Mississippi river show the impact of diesel marine engines on DPM 

cancer risk, which produced a cancer risk between 37.5 and 75 per million population. 

Finally, it was evident that the population was exposed to greater than 5 in a million level 

of cancer risk in the whole domain, especially due to DPM in urban areas. 

 

The lifetime excess inhalation non-cancer hazard ratio was estimated for acetaldehyde, 

benzene, 1,3-butadiene, formaldehyde, and DPM. The risk estimates in this study also 

were based on annual average exposures for a wide population distribution. These 

estimates assumed continuous exposure over an entire lifetime of 70 years to levels 

estimated for 2003 and did not account for expected changes in exposure over time like 

the cancer risk estimations. 
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Table 4-21 shows the CMAQ modeled hazard ratio for the base case and the hazard ratio 

estimated from the monitored at Nashville, TN. As all hazard ratios were less than one, 

the total hazard index was mot estimated and the emission scenarios analysis was not 

considered also. In addition, it may be noted that the hazard ratio was underestimated for 

all those HAPs, principally for 1,3-butadiene by almost 78%. Formaldehyde was the 

unique PMATs that showed a hazard ratio close to 1, which was allocated in the Atlanta 

metropolitan area (Hazard ratio=0.975), as shown in Figure 4.89. 

 

In opposite to the estimation of non-cancer risk base on toxicological evidence equations 

as shown above, the results from epidemiological functions showed significant non-

cancer risk. In fact, the relative risks (RR) of CVD mortality, lung cancer mortality, and 

asthma hospital admissions, and the odds ratio (OR) of COPD illness were estimated base 

on the C-R functions to DPM described in section 2.1.5 (Pope et al., 2004a and 2002; 

Abbey et al., 1995; and Shepperd et al., 1999 and 2003). The RR and OR estimates in this 

study were based on annual average exposures for a wide population distribution. 

 

Table 4-21. Modeled and from Monitored Data Hazard Ratio in Nashville 

Hazard Ratio Compound 
Modeled From Monitored Data

Error [%] 

Acetaldehyde         0.1232                       0.1802              31.6  
Benzene         0.0227                       0.0457              50.3  
1,3-Butadiene         0.0252                       0.1131              77.7  
Formaldehyde         0.5619                       0.8970              37.4  
DPM         0.1090     
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Figure 4.89. Spatial Variation of the Formaldehyde Hazard Ratio 

 

These estimates assumed continuous long-term exposure to levels estimated for 2003 and 

did not account for expected changes in exposure over time. However, the exposure to 

DPM is expected to change over time as a result of mobile and stationary source emission 

control programs. 

 

Figure 4.90 shows the estimated relative CVD mortality, lung cancer mortality, and 

asthma hospital admissions risk, on the other hand, Figure 4.91 shows the odds ratio of 

the chronic illness for COPD, and Figure 4.92 shows the risk reductions performed for 

each analyzed DPM scenario in Nashville, TN, for CDV and lung cancer mortality, 

asthma hospital admissions, and chronic illness for COPD. Although the RR and OR may 

seem small for the Base Case scenario, when applied to relatively large populations, the 
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Relative Risk of CVD Mortality, Lung Cancer Mortality, and Hospital Admissions for 
Asthma Due to the Long-term Exposure to DPM in Nashville, TN
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Figure 4.90. Relative Risk of CVD Mortality, Lung Cancer Mortality, and Hospital 

Admissions for Asthma Due to the Long-term Exposure to DPM in Nashville, TN 
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Figure 4.91. Odds Ratio of Chronic Illness for COPD Due to the Long-term 

Exposure to DPM in Nashville, TN 
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Modeled CVD Mortality, Lung Cancer Mortality Risk, Hospital Admissions for Asthma, 
and Chronic Illness for COPD Reductions by DPM Scenarios in Nashville, TN
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Figure 4.92. Modeled CVD Mortality, Lung Cancer Mortality Risk, Hospital 

Admissions for Asthma, and Chronic Illness for COPD Reductions by DPM 

Scenarios in Nashville, TN 

 

health impacts can still be large. In this case, the modeled RR of CVD mortality, lung 

cancer mortality, and asthma hospital admissions for Nashville were 1.0109, 1.0069, and 

1.0018, respectively.   

 

In other words, 1 µg/m3 increases in annual DPM exposure was associated with a 1.09% 

increase in the relative risk of CVD mortality, a 0.69% increase in the relative risk of 

lung cancer mortality, and 0.18% increase in the relative risk of hospital admissions for 

asthma in Nashville. Whereas, the modeled OR of chronic illness for COPD for Nashville 

was 1.0075, i.e., the odds of getting a chronic illness for COPD increase by 0.75% with 

each additional annual ug/m3 of DPM. 



 297

The main reductions on DPM relative CVD mortality, lung cancer mortality, hospital 

admissions for asthma risk, and chronic illness for COPD odds ratio were due to the 

scenario that did not consider non-road DFS sources with 57.8% reduction, followed by 

the scenario without on-road DFS with 42.2%, where the main reductions were due to the 

DPM contributions generated by HDDVs. Considering that the scenario 2020 included 

the on-road sources regulations only, the DPM showed a 32.8 % risk reduction. 

 

The following series of tile plots show the spatial variation of the estimated relative CVD 

mortality, lung cancer mortality, and asthma hospital admissions risks, and odds ratio for 

COPD illness due to long-term exposure to DPM for the Base Case and the scenario for 

the year 2020 over the whole modeling domain. Higher relative CVD mortality, lung 

cancer mortality, and asthma hospital admissions risks, and odds ratio for COPD illness 

occurred on Southeastern urban areas due to DPM, principally at Atlanta, GA, followed 

by Nashville, TN, Birmingham, AL, Raleigh, NC, and Memphis, TN, as shown in Figure 

4.93 and 4.94 (a and c). 

 

The scenario for the year 2020 showed some reductions, mainly on the surrounding urban 

areas of Atlanta, Nashville, Memphis, Birmingham, and Raleigh as shown in Figure 4.93 

and 4.94 (b and d). The area around the Mississippi River shows the impact of DFS to the 

relative CVD mortality, lung cancer mortality, and asthma hospital admissions risks, and 

odds ratio for COPD illness in the Figures 4.93 and 4.94 (a and b), respectively. For 

Knoxville, the health risks were almost negligible for 2020.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.93. Spatial Variation of the Relative CVD and Lung Cancer Mortality Risk 

due to Long-term Exposure to DPM (base case and the Scenario 2020) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.94. Spatial Variation of the Relative Hospital Admission for Asthma risk 

and Odds Ratio of Chronic Illness for COPD due to long-term Exposure to DPM 

(base case and the Scenario 2020) 
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4.6 SOURCES OF UNCERTAINTY 

 

The sources of uncertainty in this research can be due to six components: emissions 

inventory, emission speciation, spatial and temporal allocation of emissions, model 

parameters, meteorology, and risk assessment.  

 

The air toxics and criteria pollutants inventories are estimated base on emission factors 

and activities data by the U.S. EPA, using emission models, such as NMIM, NONROAD, 

or getting information directly from industries. Those activity data, models, and emission 

factors inherently are affected by uncertainty. It may be noted that the air toxics area 

sources inventory for 1999 was over estimated for Florida and underestimated for 

Tennessee, comparing with neighbor states. In fact, open burning emission does not have 

to depend of the states border, instead, Figures 4.11, 4.13, and 4.14 showed the wild fires 

in Florida did not affect its neighbor states. In addition, in this research was used different 

years for meteorological data and emission inventories, 2003 and 1999, respectively, 

which generated some uncertainties. 

 

Air toxic emissions from all sources are typically estimated by apportioning total organic 

compounds and particulate matter emissions, base on specific profiles. Those emissions 

are processed using SMOKE 2.0. The model includes an emissions inventory element to 

estimate mass emissions rates, speciation, spatial allocation, and default temporal 

profiles. The speciation mechanism used in this research was the CB-IV, which as some 
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limitations. On the other hand, the default temporal profiles do not account properly for 

some specific sources, such as HDDVs. 

 

Weather conditions and meteorological data sets used to model air toxics exhibit 

variability over time. The application of meteorological data sets from a single location to 

a modeling domain is also uncertain. 

 

Uncertainties in air quality modeling are relatively smaller than emissions uncertainties. 

Studies of the accuracy of air quality models show that these models are more reliable for 

estimating longer time averaged concentrations than for estimating short term 

concentrations at specific locations (Asante-Duah, 2002); and the models are not 

reasonably reliable in estimating the magnitude of highest concentrations occurring some 

time, somewhere within the area, mainly with a terrain area. The chemical mechanism 

used was CB-IV, which has some limitations on VOCs speciation that could affect air 

toxics secondary formation. Finally, the model could not estimate the primary sulfate and 

nitrate species on DPM. 

 

The key uncertainty in the exposure assessments for air toxics is that these are based on 

the worst-case assumption that all individuals are potentially exposed outdoors to air 

toxics at one location for 24 hours/day, 365 days/year for 70 years. The potential 

exposure to air toxics depends upon types of activities performed, locations of those 

activities, and duration of time an individual resides in an urban area. 
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The health risk assessment examines potential cancer risks and risks from other kinds of 

adverse effects. The methods used to evaluate cancer risk are designed to provide the 

highest possible estimate of risk associated with exposure to air toxics. The cancer factors 

used to estimate excess lifetime cancer risks are considered by the U.S. EPA as 

conservative, representing the most plausible upper bound on the risk. These are 

calculated in a manner that provides the largest possible slope factor at low levels of 

exposure, are based on cancer incidence data from the most sensitive animal test species. 

The methods used to evaluate other kinds of adverse effects (non-cancer effects) are 

based on protection of sensitive members of the population. However, for those two 

kinds of risk factor there is a certain uncertainty due to the synergism or antagonism 

effect of the chemical mixture of air toxics. The epidemiological studies are also affected 

by uncertainty, principally due to confounders, such as ETS, genes, etc. 

 

4.7 SUMMARY AND OBSERVATIONS 

 

The summary and observations for the modeling results of emissions and exposure 

concentrations are presented in this section. 

 

4.7.1 Base Case Emissions Inventory  

 

1. The major area source of acetaldehyde, acrolein, benzene, 1,3-butadiene, and 

formaldehyde emissions were municipal solid waste open burnings, wildfires, and 
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prescribed burning in Tennessee for 1999, which accounted for 55.4% of area 

sources. 

2. The main anthropogenic contributions of acetaldehyde, benzene, 1,3-butadiene, and 

formaldehyde emissions were due to the on-road and non-road mobile sources. While 

that the main acrolein sources were the area sources. 

3. The highest HAPs emissions occurred in the Atlanta metropolitan area, Georgia, 

followed by Nashville (Davidson County), Memphis (Shelby County), Tennessee, 

and Birmingham (Jefferson County), Alabama in the Southeaster U.S. The acrolein, 

1,3-butadiene, and formaldehyde emissions were clearly higher in Florida compared 

with surrounding states. 

4. Acetaldehyde emissions were highly affected by biogenic emissions in the 

Southeastern U.S., which were more significant in the summer season, June and 

September of 1999. 

 

4.7.2 Modeling Results on Source Emissions Scenarios  

 

5. The 2020 HAPs emissions from on-road sources were significantly lower than those 

from 1999, which resulted in a 67.6% reduction in the whole domain, and 64.1% in 

Tennessee. The reductions for acetaldehyde, acrolein, benzene, 1,3-butadiene, and 

formaldehyde in the whole domain were 66.1, 70.2, 66.7, 71.9, and 68.9 % 

respectively. Those HAPs reductions were higher than those estimated and proposed 

by the U.S. EPA from 1996 to 2020, whose proposed values were 57, 60, 57, 64 % 
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for acetaldehyde, benzene, 1,3-butadiene, and formaldehyde respectively in the whole 

nation. 

6. The total criteria pollutant emissions reductions from those CNG scenarios were not 

significant in the modeling domain, with 15.7 % attributed to the scenario that used 

CNG on LDVs and 18.9 % to the scenario that used CNG on all vehicles in 1999. 

7. The NMIM and MOBILE6.2 models have not incorporated functions to estimate 

accuratelly emissions for NH3 and particulate matter for diesel vehicles when 

swishing to CNG fuel. 

8. The NMIM and MOBILE6.2 models do not generate HAPs emissions to CNG 

vehicles; therefore, it was not possible to model those HAPs CNG scenarios on 

SMOKE2.0 and CMAQ. 

9. The maximum daily reduction of EC emissions in Nashville occurred in June for the 

hypothetic scenario without DFS, which accounted for 85%. During March and 

September the maximum reductions were 80% and December 73%. That maximum 

reduction occurred in June, because in the summer season construction becomes more 

active in Tennessee. In winter the impact of wood smoke becomes important, 

demonstrating the seasonal impact of wood smoke on EC emissions. 

10. The maximum EC reduction generated by the scenario without on-road sources was 

43% on average, followed by the scenario without on-road diesel-fueled sources with 

37%, the scenario without HDVs with 37%, the year 2020 scenario with 28%, and the 

scenario without LDVs with an average reduction of 6%. Better reduction strategies 

must be considered for mobile sources to reduce future EC emissions.  
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11. The maximum reductions of daily acetaldehyde emissions at Nashville were due to 

the scenario that did not consider on-road sources in the modeling domain with an 

average reduction of 70%, followed by the scenario without LDVs with 62%, the 

scenario for the year 2020 with 46%, and the scenario without biogenic emissions 

with an average reduction of 32%. The rest of the scenarios performed a reduction 

lower than 8%. The biogenic emissions generated a significant seasonal impact on 

acetaldehyde emissions. 

12. The highest acrolein emissions reductions at Nashville occurred for the hypothetic 

scenario without on-road sources, which accounted on average for 56%, followed by 

the scenario without LDVs with 35%, the scenario without HDVs with 21%, the 

scenario for the year 2020 with 19%, the scenario without DFS with 17%, and the 

scenario without on-road DFS with 12%. The main emissions contribution came from 

open burning sources, which must be strongly controlled for the Southeastern U.S. 

13. The highest benzene emissions reductions at Nashville occurred for the hypothetic 

scenario without on-road sources, which accounted in average for 79 %, followed by 

the scenario without LDVs with 74 %, and the scenario for the year 2020 with 61 %. 

The rest of the scenarios showed reductions lower than 6 %. The greatest benzene 

sources were the gasoline LDVs sources and therefore, the on-road mobile sources 

regulations will significantly reduce the benzene emissions in 2020. 

14. The highest 1,3-butadiene emissions reductions at Nashville occurred for the 

hypothetic scenario without on-road sources, which accounted on average for 82 %, 

followed by the scenario without LDVs with 71 %, and the scenario for the year 2020 

with 60 %. The rest of the scenarios showed reductions lower than 11 %. The greatest 
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1,3-butadiene sources were the gasoline LDVs sources like benzene and therefore, the 

on-road mobile sources regulations will significantly reduce the 1,3-butadiene 

emissions in 2020. 

15. The maximum reductions of daily formaldehyde emissions at Nashville were due to 

the scenario that did not consider on-road sources with an average reduction of 70%, 

followed by the scenario for the year 2020 with 50%, the scenario without LDVs with 

46%, the scenario without DFS with 31%, the scenario without HDVs emissions with 

24%, and the scenario without on-road DFS with 17%. It indicated that LDVs were 

the main formaldehyde contributors followed by HDVs. 

16. The maximum average daily NOx reductions at Nashville were performed for the 

scenario without on-road sources with 66 %, followed by the scenario for the year 

2020 with 48 %, the scenario without DFS with 41 %, the scenario without LDVs 

with 35 %, the scenario that did not consider HDVs with 30 %, and the scenario 

without on-road DFS with an average reduction of 27%. It indicated that DFS were 

the main NOx contributors. 

 

4.7.3 Base Case Modeling Performance 

 

17. In general, the MM5 model version 7 tracked well with the monitored temperature for 

the analyzed 4 months, except the first 15 days of March, which were not considered 

in later analysis. 

18. The predicted temperature had a normalized bias of –0.19 %, a normalized gross error 

of 0.55 %, and a linear correlation of 0.945, which were statistically very significant. 
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Therefore, although the modeling considered a 36-km grid size, the MM5 model 

performance was considered robust to run SMOKE and CMAQ scenarios analysis for 

HAPs and criteria pollutants. 

19. The modeled annual mean concentrations compared reasonably well against the 

observed values, mainly for EC and formaldehyde. However, the model did not 

perform reasonably for acetaldehyde, benzene, and 1,3-butadiene. The possible 

causes were the zero concentrations in the boundary conditions, an inaccurate HAPs 

area emissions inventory, the inventory and meteorological data were based on 

different years, and a modeling grid size of 36 km was used. In fact, a perfect 

agreement between the grid average values with monitored measurements is not 

expected. Also, for a long-term health effects point of view, the annual priority 

MSATs concentrations is the relevant measure rather than hourly or daily 

concentrations. 

20. The model under predicted the acetaldehyde, benzene, 1,3-butadiene, formaldehyde, 

and EC daily concentrations for most days of 2003. The normalized bias ranged from 

13 to 57% over those four months, and the normalized gross error ranged from 28 to 

57%.  

21. The CMAQ base case performance was good enough to analyze the proposed 

emission scenarios on ground level concentrations and health risk, because the 

analysis approach considered the difference in mass concentrations and health risk 

values among the proposed emission scenarios and the base case scenario rather than 

the absolute mass concentrations or health risk values. This assumed that the factors 

that contributed to the under and over prediction of those air toxics and EC 
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concentrations for March, June, September, and December contributed similarly in all 

the scenarios considered in this analysis, causing minimal effects on the differences 

among the scenarios. 

 

4.7.4 Base Case CMAQ Modeling Results 

 

22. Maximum PMSATs concentrations occurred between 6 and 9 PM in Nashville, which 

correspond to a period when the low mixing height minimizes dilution of the primary 

emissions. 

23. The urban benzene, 1,3-butadiene, and DPM concentrations decreased rapidly outside 

the source or urban areas to relatively low background concentrations. This behavior 

was different than formaldehyde and acetaldehyde, whose ambient concentrations 

were high in extensive southeastern areas, especially in summer season. 

24. Peoples were more expose to acetaldehyde and formaldehyde at early mornings. 

25. Most of the emitted primary acetaldehyde at morning rush-hour traffic rapidly photo 

reacted and dispersed around 1 PM in summer season in Nashville. At night, the 

acetaldehyde emitted during afternoon rush-hour traffic slowly reacted and was 

dispersed as a result of a greater atmospheric stability.  

26. Most of those VOCs acetaldehyde precursor emitted into the air by morning and 

afternoon rush-hour traffic in summer season were converted to secondary 

acetaldehyde, but at the same time, it was dispersed as a result of an unstable 

atmosphere by about noon in Nashville. During cold months, a reduced amount of 
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secondary acetaldehyde was formed through the reaction of its VOCs precursors. At 

the same time, less primary acetaldehyde was photo chemically decomposed and 

more was dispersed due to the higher wind speed during December.  

27. The total acetaldehyde concentration during December was lower than June. The 

maximum secondary acetaldehyde contribution in December was around 85% instead 

of 98% in June, and the maximum mean secondary to primary hourly acetaldehyde 

ratio was 7 times in December instead of 40 times in June in Nashville. 

28. The population of Nashville was exposed almost 24% higher daily acetaldehyde 

concentrations in the summer than winter season, mainly due to secondary formation. 

The annual modeled acetaldehyde concentration was 1.11 ug/m3 in Nashville, TN, 

2003. 

29. Like acetaldehyde, most of the emitted primary formaldehyde at morning rush-hour 

traffic rapidly photo reacted and dispersed at noon in summer season in Nashville. At 

night, the primary formaldehyde emitted during afternoon rush-hour traffic slowly 

reacted and was dispersed as a result of a greater atmospheric stability. 

30. Most of those VOCs formaldehyde precursor emitted into the air by morning and 

afternoon rush-hour traffic in summer season were decomposed to secondary 

formaldehyde, but at the same time, it was dispersed as a result of an unstable 

atmosphere by about noon at Nashville. During cold months, a reduced amount of 

secondary formaldehyde was formed through the reaction of its VOCs precursors. At 

the same time, less primary formaldehyde was photo chemically decomposed and 

more was dispersed due to the higher wind speed during December.  
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31. The total formaldehyde concentration during December was lower than June. The 

maximum secondary formaldehyde contribution in December was around 73% 

instead of 98% in June, and the maximum mean secondary to primary hourly 

formaldehyde ratio was 4 times in December instead of 70 times in June. 

32. The population of Nashville was exposed almost 183% more to daily formaldehyde 

concentration in June than in December, mainly due to secondary formation. The 

annual modeled formaldehyde concentration was 2.25 ug/m3 at Nashville, TN, 2003. 

33. The secondary contribution to total formaldehyde was greater than acetaldehyde in 

June and September, but it was lower than acetaldehyde during March and December, 

mainly in December. Similarly, the secondary contribution on formaldehyde and 

acetaldehyde produced more variability during December, principally on 

formaldehyde.  

34. CMAQ did not simulate properly acrolein, since it did not produce primary 

concentrations for March, September, and December, except June. 

35. The Nashville population was more expose to benzene and 1,3-butadiene at early 

mornings. 

36. Primary benzene and 1,3-butadiene emitted during morning rush-hour traffic reacted 

slowly during the daytime of summer season and were dispersed at around 1PM 

because of the wind speed in Nashville. At night, the benzene and 1,3-butadiene 

emitted during afternoon rush-hour traffic reacted very slow and were slowly 

dispersed until the new benzene and 1,3-butadiene were emitted during morning 

traffic congestion again. High concentrations of benzene and 1,3-butadiene from 

evening traffics sometimes persisted past midnight. The temporal variability of 
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benzene and 1,3-butadiene were very pronounced in the urban areas, with peak 

concentrations in the mornings and evenings. The peak concentrations during 

commute hours were consistent with a predominance of on-road mobile sources in the 

benzene and 1,3-butadiene emissions. 

37. During cold months, less benzene and 1,3-butadiene were decomposed due to the lack 

of enough OH•. At the same time, more benzene and 1,3-butadiene were dispersed 

due to the higher wind speed during December. As a result, the Nashville population 

was 72 and 133% more expose to benzene and 1,3-butadiene concentrations, 

respectively, during winter than summer season.  

38. The annual modeled benzene and 1,3-butadiene concentrations were 0.68 and 0.05 

ug/m3 respectively in Nashville, TN, 2003. 

39. The highest benzene and 1,3-butadiene concentrations were produced in Atlanta, GA, 

where their concentrations were about a factor of 10 and 26 higher respectively at the 

Atlanta urban location relative to the rural locations.  

40. The Nashville population was more expose to EC and DPM at evening, since the 

maximum hourly EC and DPM concentrations occurred between 6 and 9 PM and the 

minimum concentrations occurred between 1 and 3 PM. A second maximum occurred 

between 6 and 10 AM. 

41. The main factor that reduced the emitted primary EC and DPM was the wind 

dispersion at afternoon hours. An important amount of EC and DPM emitted during 

morning rush-hour traffic were dispersed at around 2 PM as a result of the higher 

wind speed during afternoon hours. At the end of the day and at night, the EC and 
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DPM emitted during afternoon rush-hour traffic dropped and dispersed slowly until 

the new EC and DPM were emitted during morning traffic congestion again. 

42. The highest DPM concentrations were produced in Atlanta, GA. Concentrations of 

DPM were typically a factor of 11 higher at the Atlanta urban site than at the rural 

sites.  

43. More significant temporal fluctuations were seen at the urban areas. The rural areas 

seem less significantly affected by local emissions of DPM than in the case of 

benzene and 1,3-butadiene. The reason was that the on-road sources contributed only 

by about 40% of diesel particulate emissions instead of 60 and 80% for benzene and 

1,3-buadiene, respectively. 

44. The urban benzene, 1,3-butadiene, and DPM concentrations decreased rapidly outside 

the source or urban areas to relatively low background concentrations. This behavior 

was different than formaldehyde and acetaldehyde, whose ambient concentrations 

were high in extensive southeastern areas, especially in summer season. 

45. The Nashville population was exposed to DPM almost similar during each month. 

The EC concentrations showed slightly differences between hot and cold months, 

since the EC concentrations of December were 30% higher than June, demonstrating 

the seasonal impact of wood smoke on EC concentrations. The annual modeled EC 

and DPM concentrations were 0.57 and 0.55 ug/m3 respectively at Nashville, TN, 

2003. 

46. The mean DPM contribution to the total hourly PM2.5 was higher during morning and 

afternoon rush-hour traffic, i.e., around 7 AM and 5 PM at Nashville. The minimum 
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was produced around 1 PM. The daily DPM contribution to the total PM2.5 was 

similar for each month and was around 2.6%. 

47. Acetaldehyde and formaldehyde produced higher concentrations in June and 

September due to the contribution of secondary formation in the Southeastern U.S. 

The rest of the pollutants generated higher concentrations during cold months, i.e., 

March and December, except DPM, which was similar for each month. This 

seasonality was similar in the monitored data, principally on formaldehyde and 

acetaldehyde. 

 

4.7.5 Air Toxics Concentrations by Emissions Scenarios 

 

48. Comparing Tables 4-10 and 4-19, the maximum emission and concentration 

reductions are equivalent to benzene, 1,3-butadiene, EC, and NOx for each scenario 

in Nashville, except for biogenic sources. However, the maximum emission and 

concentration reductions of acetaldehyde and formaldehyde were very different. The 

main reason of this diference is that acetaldehyde and formaldehyde reductions are 

affected significantly by the secondary formation and by biogenic sources. In 

contrast, benzene, 1,3-butadiene, EC, and NOx don’t have secondary formation in the 

troposphere. Therefore, running SMOKE could be enough to see the effects on the 

maximum concentration and health reductions of benzene, 1,3-butadiene, EC, and 

NOx. Finally, CMAQ-AT has to be run to see the maximum concentration reductions 

of acetaldehyde and formaldehyde and their health associated effects. 
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49. The maximum reductions of daily acetaldehyde concentrations for Nashville were 

due to the scenario that did not consider on-road sources in the modeling domain, 

with an average reduction of 57% and a maximum of 68% produced in December. 

This scenario was followed by the scenario without LDVs, with 52%, the scenario 

without biogenic emissions, with 50%, and the scenario for the year 2020, with 37%. 

The rest of the scenarios produced a reduction lower than 5%. It indicated that the 

gasoline LDVs were the main acetaldehyde contributors at Nashville, principally in 

March and December. During those cold months, the secondary acetaldehyde 

formation due mainly to biogenic sources was lower and the reductions were mainly 

on primary acetaldehyde. Better reduction strategies must be considered on LDVs to 

reduce future acetaldehyde concentrations. 

50. The maximum reductions of daily formaldehyde concentrations at Nashville were due 

to the scenario that did not consider biogenic sources in the modeling domain, with an 

average reduction of 54% and a maximum of 71% produced in September. This 

scenario was followed by the scenario without on-road sources with 34%, the without 

LDVs with 25%, the scenario for the year 2020 with 23%, and the base case scenario 

without DFS with 12%. The rest of the scenarios produced a formaldehyde reduction 

lower than 10%. The LDVs were the main formaldehyde contributors from on-road 

sources at this urban area, mainly in December with 47% reduction. 

51. If a future 2020 scenario includes non-road sources with strong regulations, the 

maximum daily formaldehyde reduction could be better in Nashville, but isoprene 

will continue as the main formaldehyde precursor.  
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52. The highest benzene concentration reductions occurred for the hypothetical scenario 

without on-road sources, which accounted on average for 75 %. It was followed by 

the scenario that did not consider LDVs with 70 %, and the scenario for the year 2020 

with 57 %. The rest of the scenarios showed benzene reductions lower than 5 %. The 

greatest benzene sources were the gasoline LDVs sources. As a result, the on-road 

mobile sources regulations will be strong enough to reduce significantly the benzene 

concentrations in 2020 at Nashville. 

53. The highest 1,3-butadiene concentration reductions occurred for the hypothetic 

scenario without on-road sources, which accounted on average for 83 %, followed by 

the scenario without LDVs with 72 %, and the scenario for the year 2020 with 63 %. 

The rest of the scenarios showed reductions lower than 17 %. Like benzene, the 

greatest 1,3-butadiene sources were the gasoline LDVs sources. Therefore, the on-

road mobile sources regulations will be strong enough to reduce significantly the 1,3-

butadiene emissions in 2020 by almost 63%. 

54. The maximum daily EC concentration reductions due to the scenario without DFS 

sources was as high as 84% in June and during December was of 73%. That 

maximum reduction occurred in June due to the higher construction activity in 

Tennessee, as well as, the lower impact of wood smoke. 

55. The maximum reductions were performed by the scenario that did not consider DFS, 

followed by the scenario without on-road sources, the scenario without on-road DFS, 

the scenario without HDVs, and the scenario to the year 2020, with 78, 39, 35, 35, 

and 27% respectively.  
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56. The maximum daily NOx reductions were produced for the scenario without on-road 

sources with 64 %, followed by the scenario for the year 2020 with 49 %, the scenario 

without DFS with 47 %, the scenario without LDVs with 37 %, the scenario that did 

not consider HDVs with 33 %, and the scenario without on-road DFS with an average 

reduction of 30%. Although the scenario 2020 included the on-road sources 

regulations only, this scenario produced a strong NOx reduction of 49%, which was 

so different than the reductions produced on DPM. 

57. A great experience was gained in installing, configuring, and running the following 

models: MM5 version 3.7, NMIM, SMOKE version 2.0, MCIP version 2.2, CMAQ-

AT, CMAQ version 4.3, and PAVE version 2.2. It was possible to perform 

meteorological modeling of selected months that represented an entire year using the 

MM5 version 3.7 on the NCAR super computer center through the bluesky machine. 

All these models applications represent the state-of-the-art in advanced air quality 

modeling and were used to generate the health risk assessment posed by the priority 

MSATs. 

 

4.7.6 Air Toxics Health Effects 

 

58. The modeled 4HAPs, DPM, and 4HAPs+ DPM exceeded four, one, and 5 in a 

million risk of cancer over a lifetime of exposure respectively. 

59. All hazard ratios were less than one in Nashville, indicating no significant risk on 

non-cancer effects base on toxicological evidence functions. 
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60. Formaldehyde was the unique PMATs that showed a hazard ratio close to 1, which 

was allocated in the Atlanta metropolitan area. 

61. The modeled RR of CVD mortality, lung cancer mortality, and asthma hospital 

admissions for Nashville were 1.0109, 1.0069, and 1.0018, respectively. In other 

words, 1 µg/m3 increases in annual DPM exposure was associated with a 1.09% 

increase in the relative risk of CVD mortality, a 0.69% increase in the relative risk of 

lung cancer mortality, and 0.18% increase in the relative risk of hospital admissions 

for asthma in Nashville. 

62. The modeled OR of chronic illness for COPD for Nashville was 1.0075, i.e., the odds 

of getting a chronic illness for COPD increase by 0.75% with each additional annual 

ug/m3 of DPM. 
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5.0      CONCLUSIONS 

 

The overall objective of the study was to develop a computer tool to assess the public 

health risk posed by the MSATs on an urban to regional area scale. The tool was 

developed based on different emissions scenarios and linking the major air toxics 

concentrations predicted by an advanced air quality model with risk factors associated to 

cancer and non-cancer effects. This modeling was accomplished using the U.S. EPA’s 

third generation air quality models, CMAQ-AT and CMAQ version 4.3. To demonstrate 

the system’s effectiveness, an analysis was conducted on acetaldehyde, benzene, 1,3-

butadiene, formaldehyde, and diesel particulate matter. The region of study includes the 

entire Southeastern U.S. The period under consideration was for March, June, September, 

and December 2003. The results were analyzed for the Nashville metropolitan area, 

Davidson County, Tennessee.  

 

Considering that this research on air toxics emission scenarios was based on relative 

analysis rather than estimates of absolute exposure concentrations and health risk values, 

the following conclusions were reached: 

 

5.1     Base Case Inhalation Health Risk 

 

1. The health risk assessment associated with the priority MSATs control will continue 

be one of the most important issues in the U.S. EPA’s air quality rulemaking, 
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principally for DPM. In this context, the proposed protocol through Models-3/CMAQ 

was demonstrated and can be used for decision makers in the quantitative assessment 

of new policies that will affect the public health and the air quality by air toxics. 

Eliminating emission source categories is clearly not a policy option, but rather was 

used to helped gain a better understanding of the total magnitude of the health effects 

associated with these major sources of HAPs, principally of DPM. 

2. For relative basis point of view, the linking of those PMSATs emissions scenarios to 

the health risk effects was demonstrated through use of toxicological evidence 

equations for cancer and non-cancer effects, as well as the use of epidemiological C-

R functions for CVD mortality, lung cancer mortality, hospital admissions for asthma 

risk, and chronic illness for COPD, and the use of an estimation of annual exposure 

concentrations based on four months that represented each season of the year 2003.  

3. Higher formaldehyde and acetaldehyde exposure occurred in the summer season, 

while higher benzene and 1,3-butadiene concentrations occurred in the winter season. 

DPM did not show a strong seasonality exposure during the year 2003 in Nashville. 

4. DPM posed a cancer risk that was 4.2 times higher than the combined total cancer 

risk from all other air toxics simulated in the base case scenario for Nashville. Those 

high cancer risk levels were due mainly to the DPM emitted from goods 

transportation and construction engines.  

5. Higher cancer risk occurred on Southeastern urban areas due to DPM exposure. The 

highest cancer risk from DPM occurred in Atlanta, GA, followed by Nashville, TN, 

Birmingham, AL, Raleigh, NC, and Memphis, TN. The cancer risk from those 

4HAPs was not only higher in urban areas, but also was high over rural areas of the 
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Southeastern U.S., mainly due to secondary formation of acetaldehyde and 

formaldehyde. The 4HAPs+DPM cancer risk was about a factor of 9.2 higher at the 

Atlanta urban location relative to the rural locations. 

6. Higher relative CVD mortality, lung cancer mortality, hospital admissions for asthma 

risk, and chronic illness for COPD odds ratio occurred in Southeastern urban areas 

due to DPM long-term exposure, principally at Atlanta, GA, followed by Nashville, 

TN, Birmingham, AL, Raleigh, NC, and Memphis, TN. 

 

5.2 Inhalation Health Risk by Emission Scenarios 

 

7. The main cancer risk reductions from those 4HAPs were due to the contribution of 

biogenic sources with 32.2%, which generated high secondary acetaldehyde and 

formaldehyde in the summer season. This condition was followed for the scenario 

that did not consider on-road sources with a 27.5% of reduction. The main reductions 

were due to the air toxics contributions generated by gasoline LDVs, principally 

benzene and 1,3-butadiene. As the scenario 2020 included the on-road sources 

regulations only, the 4HAPs cancer risk showed a reduction as low as 19.4. If there 

are no on-road sources or DFS in the modeling, the cancer risk reduction is not 

expected to be reduced significantly for those vapor air toxics, because major sources 

are important sources of acetaldehyde emission. Area and non-road sources are 

important sources of benzene, 1,3-butadiene, and formaldehyde. For that reason, 

better air toxics reduction strategies must be considered on the other emission sources 
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as well, mainly on non-road and open burning sources. The rest of the scenarios 

showed reductions lower than 4.4 %, indicating that DFS and HDVs were not 

important vapor air toxics contributors in Nashville, TN. 

8. The main reductions in DPM cancer risk were due to the contribution of non-road 

DFS sources with 57.9 % reduction, followed by the scenario that did not consider 

on-road DFS sources with 42.1% reduction. For the on-road DFS, the principal 

reductions were due to the DPM contributions generated by HDDVs rather than 

LDDVs. An evident positive synergism in the cancer risk reduction occurred when 

reducing diesel on-road and non-road source emissions simultaneously. 

9. The scenario 2020 showed a DPM cancer risk, RR, and OR reduction of 

approximately 32.8 %. 

10. For a long-term exposure to DPM, the main reductions on RR for CVD mortality, 

lung cancer mortality, hospital admissions for asthma, and OR for COPD chronic 

illness were due to the scenario that did not consider non-road DFS sources with 

57.8% reduction, followed by the scenario without on-road DFS with 42.2% 

11. This research provided strong evidence that reducing ambient DPM concentrations 

will lead to improvement in human health more than other air toxics in Nashville, 

indicating that better technologies and regulations must be applied to the mobile 

diesel engines, principally, over non-road diesel sources in Nashville. 

12. Running SMOKE could enough to see the effects on the maximum concentration 

reductions of benzene, 1,3-butadiene, EC, and NOx and their health associated 

effects. Whereas, CMAQ-AT has to be run to see the maximum concentration 

reductions of acetaldehyde and formaldehyde and their health associated effects. 
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13. This approach has inherent limitations because of inability to simulate some primary 

DPM species, such as sulfate and nitrate. However, their contribution on DPM is 

negligible and did not alter the relative analysis of this research. 
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6.0     RECOMMENDATIONS FOR FUTURE RESEARCH 

 

This research modeled the ambient HAPs and primary DPM concentrations for the 

Southeastern U.S. and Nashville Metropolitan Area through the use of an advanced 

photochemical air quality model and identified the major source categories that 

contributed to the ambient concentrations and the associated inhalation cancer risk. This 

research was limited in certain aspects, and the following recommendations are made for 

further study: 

 

1. In general, the model performance and the source scenarios analysis depend on the 

inventory, the temporal profiles, the meteorological data, and the speciation used. A 

major amount of effort was concentrated at developing an open burning HAPs and an 

on-road HAPs and criteria inventory for this study. However, inventory development 

is based on estimates and is a continual process. Important Open Burning sources that 

generate HAPs, as yard waste and construction land clearing, could be included in the 

emissions inventory; however, the AP-42 database and its expanded EIIP documents 

do not have any speciated VOCs, SVOCs, metals, or PCDD/F data. A recent 

publication, “Emissions of organic air toxics from open burning: a comprehensive 

review.” written by Lemieux et al., (2004) could be used. Future HAPs emission 

inventories may include diesel particulate matter by source categories for mobile 

sources, breaking down diesel emissions by construction, on-road, by vehicle weight, 

non-road, school buses, farm tractors, rail, barge, garbage trucks, etc. Finally, the 

temporal profiles that are used to distribute the average emissions to each hour may 
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also affect the nature of the species predicted and their effect. For example, a more 

realistic temporal profile for trucks could be incorporated in SMOKE to produce 

better temporal hourly emissions and concentrations of DPM at places close to 

highways. 

2. Future simulations could include running fine-scale modeling on air toxics to better 

capture spatial and temporal variability, as well as concentration magnitudes, which 

could help identify and characterize the hot spots of air toxics compounds from an 

exposure point of view. These future simulations could simulate an entire year to see 

with more details the seasonal effects mainly on the coldest and hottest months of the 

year. These simulations could allow estimating an annual concentration more 

accurately.  

3. More research may be needed to look at improving the model performance. This 

study was limited by the lack of enough monitored air toxics concentrations in the 

modeling domain. Modeling may be needed for other urban and rural areas to identify 

factors and trends that may be used to improve the model performance and its 

prediction of the air toxics. This research may be needed to look at improving the 

acrolein performance on CMAQ version 4.5, since this simulation did not produce 

primary acrolein concentration for March, June, and September. 

4. The efficient CB-IV chemical mechanism was developed for high NOx 

concentrations, which occur typically for urban areas; however, for regional areas 

with lower NOx conditions the SAPRC99 gas phase mechanism include a more 

detailed representation of VOC species, the fate of NOx, and of the chemistry of 
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peroxyl radical species, including air toxics, which are important at low NOx levels. 

Therefore, future simulations could use the SAPRC99 photochemical mechanism. 

5. For DPM simulations, future risk assessment research could split the contribution of 

diesel engines, such as solid waste trucks, buses, trucks, marine vessels, and 

locomotives, among others. The research could also include other areas where the 

diesel sulfur content and diesel vehicles market are higher than the U.S.  

6. Future DPM simulations could account for the DPM sources that are apportioned 

between primary and secondary sulfate and nitrate aerosols. One way to do this 

analysis would be to redo this sensitivity study but only zero out the DPM emissions 

and leave the gas phase constant. As result, the gas phase contribution to SO2, NOx, 

secondary sulfate, and secondary nitrate would be estimated, and therefore, the 

primary sulfate and nitrate concentrations on DPM. 

7. Considering that Memphis showed high PMSATs concentrations and their respective 

health effects, it is reasonable to install a HAPs monitoring network in this urban 

area. 

8. The next steps to improve the air quality in Tennessee and its associated health effects 

due to PMSATs is to implement better non-road DPM control technologies and diesel 

fuel regulations, as well as, implement the RVP program on gasoline fuel to low 

benzene, 1,3-butadiene, and other HAPs, mainly in winter season. 
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Figure A-1. Daily Formaldehyde Emissions in Davidson Co. for March, June, September, and December by Each 

Scenario 
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Figure A-2. Daily 1,3 Butadiene Emissions in Davidson Co. for March, June, September, and December by Each 

Scenario 
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Figure A-3. Daily Acrolein Emissions in Davidson Co. for March, June, September, and December by Each Scenario 
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Figure A-4. Daily NOx Emissions in Davidson Co. for March, June, September, and December by Each Scenario 
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APPENDIX B 
 

Time Series Plots of Hourly Modeled HAPs Average Concentrations 
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Figure B.1. Modeled Hourly Average Acetaldehyde Concentration in Nashville, March, June, September, and December 2003 
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Figure B.2. Modeled Hourly Average Benzene Concentration in Nashville, March, June, September, and December 2003 
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Figure B.3. Modeled Hourly Average 1,3-Butadiene Concentration in Nashville, March, June, September, and December 2003 
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Figure B.4. Modeled Hourly Average Formaldehyde Concentration in Nashville, March, June, September, and December 2003 
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Figure B.5. Modeled Hourly Average DPM Concentration in Nashville, March, June, September, and December 2003 
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Figure B.6. Modeled Hourly Average EC Concentration in Nashville, March, June, September, and December 2003 
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Figure B.7. Modeled Hourly Average NOx Concentration in Nashville, March, June, September, and December 2003 
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Figure B.8.  Hourly Ozone and Formaldehyde Concentrations in Nashville, June 2003. (Red color: Ozone)  
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Figure B.9. Hourly Ozone and Acetaldehyde Concentrations in Nashville, June 2003. (Red color: Ozone) 
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Figure B.10. Hourly Ozone and Benzene Concentrations in Nashville, June 2003. (Red color: Ozone) 
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Figure B.11. Hourly Ozone and 1, 3-Butadiene Concentrations in Nashville, June 2003. (Red color: Ozone) 
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Figure B.12. Hourly Ozone and NOx Concentrations in Nashville, June 2003. (Red color: Ozone) 
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Figure B.13. Hourly NOx and 1, 3-Butadiene Concentrations in Nashville, June 2003. (Red color: NOx) 
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Figure B.14. Hourly Benzene and 1, 3-Butadiene Concentrations in Nashville, June 2003. (Red color: Benzene) 
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Figure B.15. Hourly Ozone Concentrations and Temperature in Nashville, June 2003. (Red color: Ozone) 
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Figure B.16. Hourly Formaldehyde Concentrations and Temperature in Nashville, June 2003. (Red color: Formaldehyde) 
 

0

1

2

3

4

5

A
ce

ta
ld

eh
yd

e 
[u

g/
cu

m
]

0 24 48 72 96 120 168 216 264 312 360 408 456 504 552 600 648 696
Time [hour]

285

290

295

300

305

Te
m

pe
ra

tu
re

 [K
]

 
 
Figure B.17. Hourly Acetaldehyde Concentrations and Temperature in Nashville, June 2003. (Red color: Acetaldehyde) 
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Figure B.18. Hourly Benzene Concentrations and Temperature in Nashville, June 2003. (Red color: Benzene) 
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Figure B.19. Hourly NOx Concentrations and Temperature in Nashville, June 2003. (Red color: NOx) 
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Figure B.20. Secondary and Primary Formaldehyde Daily Concentration at Nashville, TN, June 2003 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
on

ce
nt

ra
tio

n 
[u

g/
cu

m
]

0 24 48 72 96 120 168 216 264 312 360 408 456 504 552 600 648 696
Time [days]

Secondary
Primary

 
 
Figure B.21. Secondary and Primary Formaldehyde Daily Concentration at Nashville, TN, December 2003 
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Figure B.22. Secondary to Primary Formaldehyde Ratio on Daily Concentrations at Nashville, TN, June 2003 
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Figure B.23. Secondary to Primary Formaldehyde Ratio on Daily Concentrations at Nashville, TN, December 2003 
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Table C-1. EATN Monitor. Data from May 2002 to December 2002 (VOC) 
SAMPLE 
SITE # 

EATN 
27501 

EATN 
27752 

EATN 
27925 

EATN 
28251 

D1 

EATN 
28251 

R1 

EATN 
28253 

D2 

EATN 
28253 

R2 
EATN 
28624

EATN 
28715

EATN 
28930

EATN 
29100

EATN 
29290

EATN 
29674 

EATN 
30108 

EATN 
30281 

D1 

EATN 
30281 

R1 

EATN 
30283 

D2 

EATN 
30283 

R2 
EATN 
30434 

EATN 
30579 

EATN 
30826 

EATN 
30927 

EATN 
31257 

SAMPLE 
DATE 5/14/02 5/26/02 6/7/02 6/19/02 6/19/02 6/19/02 6/19/02 7/7/02 7/13/02 7/25/02 8/6/02 8/18/02 8/30/02 10/5/02 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/29/0
2 

11/10/0
2 11/22/02 12/4/02 12/16/02

ANALYSIS 
DATE 5/21/02 6/8/02 7/2/02 7/2/02 7/11/02 7/2/02 7/11/02 8/2/02 8/6/02 8/13/02 9/3/02 9/16/02 9/25/02 

10/23/0
2 11/1/02

11/21/0
3 11/1/02

11/21/0
2 12/2/02

12/10/0
2 12/18/02 12/28/02 1/9/03 

FILE 
NAME 

L2ET0
25 

L2FG0
23 

N2GA0
20 

N2GB0
09 

N2GK0
06 

N2GB0
10 

N2GK0
07 

L2HA0
18 

L2HF0
09 

L2HL0
18 

L2IC0
15 

L2IP01
4 

L2IX01
5 

L2JW01
2 

L2J%01
6 

L2KT02
4 

L2J%01
7 

L2KT02
2 

L2LB00
9 

N2LJ00
6 

L2LR00
9 L2L~018

L3AH01
6 

UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 

Acetylene 1.52 1.33 1.84 3.32 3.15 2.86 2.85 1.63 1.13 0.99 0.92 1.30 1.91 0.54 2.76 2.96 1.83 2.46 1.32 0.41 1.19 0.97 4.72 

Propylene 0.58 0.81 1.16 2.19 1.77 1.71 1.30 2.02 0.57 0.68 0.58 0.78 1.00 0.55 1.62 1.88 1.01 1.32 0.68 0.30 0.03 0.75 2.16 
Dichlorodifl
uoromethan
e 0.57 0.61 0.56 0.58 0.54 0.64 0.54 0.65 0.60 0.65 0.64 0.72 0.92 0.74 1.08 1.01 0.86 0.89 0.83 0.55 1.33 0.60 0.59 

Chlorometh
ane 0.54 0.62 0.70 0.64 0.55 0.67 0.51 0.69 0.56 0.62 0.59 0.76 0.92 0.51 0.72 0.86 0.54 0.59 0.55 0.58 1.05 0.52 0.50 
Dichlorotetr
afluoroethan
e ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.04 ND ND ND ND ND ND ND 

Vinyl 
Chloride ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

1,3-
Butadiene ND ND ND 0.17 0.11 ND 0.14 0.05 0.06 0.03 0.03 0.09 0.10 ND ND 0.31 0.13 ND ND ND 0.12 0.06 0.28 

Bromometh
ane ND ND ND ND ND ND ND ND ND ND ND ND 0.07 ND ND ND ND ND ND ND ND ND ND 

Chloroethan
e ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Acetonitrile 1.50 ND ND ND ND 0.79 ND 1.52 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Trichloroflu
oromethane 0.26 0.26 0.24 0.25 0.29 0.25 0.22 0.30 0.29 0.30 0.28 0.31 0.41 0.35 0.46 0.46 0.38 0.40 0.36 0.27 0.60 0.30 0.30 

Acrylonitrile ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-1. Continued 
SAMPLE 
SITE # 

EATN 
27501 

EATN 
27752 

EATN 
27925 

EATN 
28251 

D1 

EATN 
28251 

R1 

EATN 
28253 

D2 

EATN 
28253 

R2 
EATN 
28624

EATN 
28715

EATN 
28930

EATN 
29100

EATN 
29290

EATN 
29674 

EATN 
30108 

EATN 
30281 

D1 

EATN 
30281 

R1 

EATN 
30283 

D2 

EATN 
30283 

R2 
EATN 
30434 

EATN 
30579 

EATN 
30826 

EATN 
30927 

EATN 
31257 

SAMPLE 
DATE 5/14/02 5/26/02 6/7/02 6/19/02 6/19/02 6/19/02 6/19/02 7/7/02 7/13/02 7/25/02 8/6/02 8/18/02 8/30/02 10/5/02 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/29/0
2 

11/10/0
2 11/22/02 12/4/02 12/16/02

ANALYSIS 
DATE 5/21/02 6/8/02 7/2/02 7/2/02 7/11/02 7/2/02 7/11/02 8/2/02 8/6/02 8/13/02 9/3/02 9/16/02 9/25/02 

10/23/0
2 11/1/02

11/21/0
3 11/1/02

11/21/0
2 12/2/02

12/10/0
2 12/18/02 12/28/02 1/9/03 

FILE 
NAME 

L2ET0
25 

L2FG0
23 

N2GA0
20 

N2GB0
09 

N2GK0
06 

N2GB0
10 

N2GK0
07 

L2HA0
18 

L2HF0
09 

L2HL0
18 

L2IC0
15 

L2IP01
4 

L2IX01
5 

L2JW01
2 

L2J%01
6 

L2KT02
4 

L2J%01
7 

L2KT02
2 

L2LB00
9 

N2LJ00
6 

L2LR00
9 L2L~018

L3AH01
6 

UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
1,1-
Dichloroeth
ene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Methylene 
Chloride 0.08 0.13 ND ND 0.05 0.16 ND 0.08 0.13 0.14 0.12 ND 0.15 ND 0.12 ND 0.10 0.27 0.16 ND 0.18 ND 0.20 

Trichlorotrif
luoroethane 0.20 0.24 0.19 0.16 0.15 0.15 0.13 0.30 0.14 0.20 0.19 0.19 0.23 0.14 0.16 0.18 0.10 0.18 0.09 0.10 0.25 0.14 0.17 
trans - 1,2 - 
Dichloroeth
ylene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1 - 
Dichloroeth
ane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Methyl tert-
Butyl Ether ND ND ND ND ND ND ND ND ND 0.05 ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl 
Ethyl 
Ketone ND ND 3.28 2.63 1.32 3.01 2.24 3.33 1.13 1.55 1.42 1.01 2.26 1.08 ND ND ND ND 1.69 ND ND 1.64 0.80 

Chloroprene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
cis-1,2-
Dichloroeth
ylene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Bromochlor
omethane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Chloroform ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Ethyl tert-
Butyl Ether ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-1. Continued 
SAMPLE 
SITE # 

EATN 
27501 

EATN 
27752 

EATN 
27925 

EATN 
28251 

D1 

EATN 
28251 

R1 

EATN 
28253 

D2 

EATN 
28253 

R2 
EATN 
28624

EATN 
28715

EATN 
28930

EATN 
29100

EATN 
29290

EATN 
29674 

EATN 
30108 

EATN 
30281 

D1 

EATN 
30281 

R1 

EATN 
30283 

D2 

EATN 
30283 

R2 
EATN 
30434 

EATN 
30579 

EATN 
30826 

EATN 
30927 

EATN 
31257 

SAMPLE 
DATE 5/14/02 5/26/02 6/7/02 6/19/02 6/19/02 6/19/02 6/19/02 7/7/02 7/13/02 7/25/02 8/6/02 8/18/02 8/30/02 10/5/02 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/29/0
2 

11/10/0
2 11/22/02 12/4/02 12/16/02

ANALYSIS 
DATE 5/21/02 6/8/02 7/2/02 7/2/02 7/11/02 7/2/02 7/11/02 8/2/02 8/6/02 8/13/02 9/3/02 9/16/02 9/25/02 

10/23/0
2 11/1/02

11/21/0
3 11/1/02

11/21/0
2 12/2/02

12/10/0
2 12/18/02 12/28/02 1/9/03 

FILE 
NAME 

L2ET0
25 

L2FG0
23 

N2GA0
20 

N2GB0
09 

N2GK0
06 

N2GB0
10 

N2GK0
07 

L2HA0
18 

L2HF0
09 

L2HL0
18 

L2IC0
15 

L2IP01
4 

L2IX01
5 

L2JW01
2 

L2J%01
6 

L2KT02
4 

L2J%01
7 

L2KT02
2 

L2LB00
9 

N2LJ00
6 

L2LR00
9 L2L~018

L3AH01
6 

UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
1,2 - 
Dichloroeth
ane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1,1 - 
Trichloroeth
ane ND ND ND ND ND ND ND ND ND ND ND 0.03 ND ND ND ND ND ND 0.03 ND 0.07 ND ND 

Benzene 0.48 0.30 0.42 0.68 0.82 0.67 0.79 0.52 0.47 0.50 0.40 0.64 0.78 0.37 1.18 1.08 0.74 0.84 0.55 0.22 0.69 0.39 1.29 
Carbon 
Tetrachlorid
e 0.07 0.08 ND 0.14 ND 0.16 0.14 0.10 0.08 0.07 0.06 0.12 0.12 ND 0.15 0.19 0.11 0.16 0.09 ND 0.21 0.10 0.11 
tert-Amyl 
Methyl 
Ether ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2 - 
Dichloropro
pane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Ethyl 
Acrylate ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Bromodichl
oromethane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Trichloroeth
ylene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl 
Methacrylat
e ND ND 5.65 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
cis -1,3 - 
Dichloropro
pene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl 
Isobutyl 
Ketone ND ND ND 0.27 ND 0.29 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-1. Continued 
SAMPLE 
SITE # 

EATN 
27501 

EATN 
27752 

EATN 
27925 

EATN 
28251 

D1 

EATN 
28251 

R1 

EATN 
28253 

D2 

EATN 
28253 

R2 
EATN 
28624

EATN 
28715

EATN 
28930

EATN 
29100

EATN 
29290

EATN 
29674 

EATN 
30108 

EATN 
30281 

D1 

EATN 
30281 

R1 

EATN 
30283 

D2 

EATN 
30283 

R2 
EATN 
30434 

EATN 
30579 

EATN 
30826 

EATN 
30927 

EATN 
31257 

SAMPLE 
DATE 5/14/02 5/26/02 6/7/02 6/19/02 6/19/02 6/19/02 6/19/02 7/7/02 7/13/02 7/25/02 8/6/02 8/18/02 8/30/02 10/5/02 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/29/0
2 

11/10/0
2 11/22/02 12/4/02 12/16/02

ANALYSIS 
DATE 5/21/02 6/8/02 7/2/02 7/2/02 7/11/02 7/2/02 7/11/02 8/2/02 8/6/02 8/13/02 9/3/02 9/16/02 9/25/02 

10/23/0
2 11/1/02

11/21/0
3 11/1/02

11/21/0
2 12/2/02

12/10/0
2 12/18/02 12/28/02 1/9/03 

FILE 
NAME 

L2ET0
25 

L2FG0
23 

N2GA0
20 

N2GB0
09 

N2GK0
06 

N2GB0
10 

N2GK0
07 

L2HA0
18 

L2HF0
09 

L2HL0
18 

L2IC0
15 

L2IP01
4 

L2IX01
5 

L2JW01
2 

L2J%01
6 

L2KT02
4 

L2J%01
7 

L2KT02
2 

L2LB00
9 

N2LJ00
6 

L2LR00
9 L2L~018

L3AH01
6 

UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
trans - 1,3 - 
Dichloropro
pene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.03 ND ND ND ND ND ND ND 
1,1,2 - 
Trichloroeth
ane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Toluene 1.42 1.05 0.92 1.79 1.80 1.66 1.64 1.26 0.91 1.18 0.97 1.66 1.82 0.98 2.55 1.96 1.87 1.90 1.20 0.34 0.66 0.68 2.34 

Dibromochl
oromethane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2-
Dibromoeth
ane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

N-Octane ND 0.16 ND ND 0.13 ND ND 0.17 0.07 0.08 ND 0.12 0.05 ND 0.19 ND 0.13 0.23 0.13 ND ND ND ND 

Tetrachloroe
thylene 0.15 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.14 

Chlorobenze
ne ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Ethylbenzen
e 0.21 0.12 0.13 0.23 0.29 0.24 0.24 0.26 0.15 0.17 0.18 0.29 0.28 0.12 0.38 0.47 0.35 0.42 0.24 ND 0.19 ND 0.38 

m,p - 
Xylene 0.51 0.34 0.33 0.66 0.65 0.68 0.74 0.71 0.38 0.45 0.46 0.70 0.72 0.31 1.21 0.99 0.90 0.93 0.57 0.15 0.48 0.24 1.11 

Bromoform ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Styrene 0.19 ND ND ND 0.08 ND ND 0.05 ND 0.13 ND 0.16 ND ND 1.31 1.26 1.19 1.09 0.74 ND ND ND 0.71 
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Table C-1. Continued 
SAMPLE 
SITE # 

EATN 
27501 

EATN 
27752 

EATN 
27925 

EATN 
28251 

D1 

EATN 
28251 

R1 

EATN 
28253 

D2 

EATN 
28253 

R2 
EATN 
28624

EATN 
28715

EATN 
28930

EATN 
29100

EATN 
29290

EATN 
29674 

EATN 
30108 

EATN 
30281 

D1 

EATN 
30281 

R1 

EATN 
30283 

D2 

EATN 
30283 

R2 
EATN 
30434 

EATN 
30579 

EATN 
30826 

EATN 
30927 

EATN 
31257 

SAMPLE 
DATE 5/14/02 5/26/02 6/7/02 6/19/02 6/19/02 6/19/02 6/19/02 7/7/02 7/13/02 7/25/02 8/6/02 8/18/02 8/30/02 10/5/02 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/17/0
2 

10/29/0
2 

11/10/0
2 11/22/02 12/4/02 12/16/02

ANALYSIS 
DATE 5/21/02 6/8/02 7/2/02 7/2/02 7/11/02 7/2/02 7/11/02 8/2/02 8/6/02 8/13/02 9/3/02 9/16/02 9/25/02 

10/23/0
2 11/1/02

11/21/0
3 11/1/02

11/21/0
2 12/2/02

12/10/0
2 12/18/02 12/28/02 1/9/03 

FILE 
NAME 

L2ET0
25 

L2FG0
23 

N2GA0
20 

N2GB0
09 

N2GK0
06 

N2GB0
10 

N2GK0
07 

L2HA0
18 

L2HF0
09 

L2HL0
18 

L2IC0
15 

L2IP01
4 

L2IX01
5 

L2JW01
2 

L2J%01
6 

L2KT02
4 

L2J%01
7 

L2KT02
2 

L2LB00
9 

N2LJ00
6 

L2LR00
9 L2L~018

L3AH01
6 

UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
1,1,2,2 - 
Tetrachloroe
thane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

o - Xylene 0.23 0.16 0.17 0.32 0.35 0.36 0.28 0.34 0.20 0.23 0.22 0.35 0.39 0.16 0.52 0.57 0.42 0.51 0.22 ND 0.22 0.10 0.50 
1,3,5-
Trimethylbe
nzene ND ND ND 0.11 0.07 0.09 0.09 0.11 0.07 ND 0.06 0.11 0.06 0.06 0.21 0.28 0.14 0.17 0.06 ND 0.07 ND 0.15 
1,2,4-
Trimethylbe
nzene 0.19 0.14 0.11 0.31 0.29 0.30 0.25 0.33 0.18 0.21 0.18 0.30 0.28 0.11 0.59 0.52 0.43 0.38 0.13 ND 0.18 0.07 0.50 
m - 
Dichloroben
zene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Chlorometh
ylbenzene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
p - 
Dichloroben
zene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
o - 
Dichloroben
zene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2,4-
Trichlorobe
nzene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Hexachloro-
1,3-
Butadiene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-2. EATN Monitor. Data from May 2002 to December 2002 (Carb.) 

SAMPLE DATE 
5/14/0

2 
5/26/0

2 
6/7/0

2 
6/19/0

2 
6/19/0

2 
6/19/0

2 
6/19/0

2 
7/7/0

2 
7/13/0

2 
7/25/0

2 
8/6/0

2 
8/18/0

2 
8/30/0

2 
9/11/0

2 
10/5/0

2 
10/17/0

2 
10/17/0

2 
10/17/0

2 
10/17/0

2 
10/29/0

2 
11/10/0

2 
11/22/0

2 
12/4/0

2 
12/16/0

2 

UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 

Formaldehyde 1.62 2.33 2.61 4.92 4.92 5.03 5.04 5.50 2.11 3.84 4.76 3.44 3.23 6.27 2.16 2.02 2.02 2.03 2.03 1.16 1.73 1.78 0.95 3.73 

Acetaldehyde 0.83 1.05 1.03 1.63 1.63 1.69 1.72 1.52 0.81 0.87 1.12 0.81 1.23 2.24 0.86 0.78 0.78 0.78 0.78 0.62 0.77 0.57 0.71 1.38 

Acetone 1.60 0.53 0.66 0.75 0.74 1.00 0.99 0.68 0.42 0.37 0.62 0.34 0.42 0.82 0.71 2.01 2.04 2.65 2.71 0.60 0.43 0.85 0.90 1.51 

Propionaldehyde 0.15 0.19 0.15 0.35 0.34 0.36 0.36 0.26 0.14 0.19 0.23 0.15 0.25 0.43 0.09 0.08 0.06 0.07 0.09 0.06 0.12 0.05 0.07 0.16 

Crotonaldehyde 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 ND 0.01 0.01 0.01 0.01 0.02 0.005 0.01 0.01 0.01 0.01 0.004 0.003 0.005 0.01 0.02 

Butyr/Isobutyraldehyde 0.23 0.18 0.20 0.15 0.14 0.16 0.16 0.12 0.14 0.13 0.14 0.14 0.16 0.26 0.10 0.13 0.13 0.14 0.13 0.08 0.09 0.09 0.09 0.17 

Benzaldehyde 0.03 0.05 0.05 0.09 0.08 0.08 0.08 0.07 0.04 0.05 0.06 0.06 0.04 0.14 0.02 0.06 0.06 0.06 0.06 0.04 0.03 0.02 0.02 0.07 

Isovaleraldehyde ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Valeraldehyde 0.05 0.06 0.04 0.06 0.06 0.06 0.06 0.05 0.03 0.03 0.04 0.03 0.04 0.08 0.03 0.02 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.04 

Tolualdehydes 0.07 0.04 0.02 0.06 0.06 0.09 0.06 0.08 0.03 0.05 0.07 0.09 0.04 0.10 0.04 0.06 0.06 0.06 0.06 0.02 0.01 0.02 0.01 0.05 

Hexaldehyde 0.05 0.06 0.03 0.08 0.09 0.12 0.08 0.06 0.05 0.06 0.06 0.06 0.05 0.08 0.03 0.04 0.04 0.04 0.03 0.02 0.02 0.02 0.03 0.04 
2,5-
Dimethylbenzaldehyde ND ND ND ND ND 0.03 ND 0.04 ND ND 0.02 ND 0.01 ND ND ND ND ND ND ND ND ND ND ND 
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Table C-3. EATN Monitor. Data from January 2003 to June 2003 (VOC) 
SAMPLE SITE #   

EATN 
31602 

EATN 
31928 

EATN 
32024 

EATN 
32215 

EATN 
32393 

EATN 
32560 D1 

EATN 
32560 R1 

EATN 
32563 D2 

EATN 
32563 R2 

EATN 
32646 

EATN 
32878 

EATN 
33107 

EATN 
33295 D1 

EATN 
33295 R1 

EATN 
33299 D2 

EATN 
33299 R2 

EATN 
33440 

EATN 
33562 

SAMPLE DATE   1/15/2003 2/8/2003 2/20/2003 3/4/2003 3/16/2003 3/28/2003 3/28/2003 3/28/2003 3/28/2003 4/9/2003 4/21/2003 5/3/2003 5/15/2003 5/15/2003 5/15/2003 5/15/2003 5/27/2003 6/8/2003 

ANALYSIS DATE   2/5/2003 2/27/2003 3/12/2003 3/21/2003 3/26/2003 4/15/2003 4/15/2003 4/15/2003 4/15/2003 4/29/2003 5/1/2003 5/24/2003 6/5/2003 6/6/2003 6/5/2003 6/9/2003 6/19/2003 6/27/2003

FILE NAME   N3BD022 N3B~017 N3CK019 L3CT016 N3CY018 L3DN015 L3DO010 L3DN014 L3DO009 N3D#010 N3D$011 L3EW016 N3FE011 N3FF011 N3FE012 N3FI006 N3FS008 L3F~010

UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 

Acetylene 0.08 3.13 3.63 1.28 2.22 3.24 0.80 0.70 0.82 0.71 1.51 0.87 1.68 0.96 1.19 1.13 1.35 1.93 1.08 

Propylene 0.11 1.57 0.81 0.58 1.14 1.60 0.54 0.54 0.45 0.40 0.42 0.28 0.67 0.46 0.57 0.58 0.61 0.93 0.55 

Dichlorodifluorometh
ane 0.15 0.51 0.46 0.44 0.64 0.80 0.70 0.76 0.69 0.80 0.62 0.68 0.57 0.54 0.70 0.64 0.78 0.76 0.37 

Chloromethane 0.10 0.46 0.47 0.43 0.55 0.79 0.70 0.71 0.45 0.80 0.61 0.65 0.59 0.58 0.66 0.69 0.68 0.64 0.28 

Dichlorotetrafluoroeth
ane 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Vinyl Chloride 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

1,3-Butadiene 0.12 0.13 0.09 ND 0.08 0.14 ND ND ND ND 0.02 ND ND 0.06 0.06 0.07 0.07 0.11 ND 

Bromomethane 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Chloroethane 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Acetonitrile 0.43 ND ND ND ND ND ND ND ND ND 0.87 ND ND ND ND ND ND ND ND 

Trichlorofluorometha
ne 0.07 0.25 0.25 0.18 0.30 0.30 0.37 0.39 0.33 0.40 0.28 0.32 0.25 0.22 0.29 0.27 0.34 0.27 0.17 

Acrylonitrile 0.37 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

1,1-Dichloroethene 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Methylene Chloride 0.09 0.04 0.04 ND 0.09 0.08 ND 0.09 ND ND 0.10 0.10 ND 0.06 0.07 0.06 0.08 0.13 ND 

Trichlorotrifluoroetha
ne 0.10 0.12 0.09 0.06 ND 0.09 0.12 0.14 0.11 0.09 0.12 0.15 0.11 0.12 0.14 0.18 0.18 0.11 0.03 

trans - 1,2 - 
Dichloroethylene 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

1,1 - Dichloroethane 0.06 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Methyl tert-Butyl 
Ether 0.16 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.14 ND 

Methyl Ethyl Ketone 0.25 2.42 ND 1.49 ND ND 1.34 1.34 1.39 1.27 0.76 0.23 0.59 ND ND ND ND ND ND 

Chloroprene 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-3. Continued 
SAMPLE SITE #   

EATN 
31602 

EATN 
31928 

EATN 
32024 

EATN 
32215 

EATN 
32393 

EATN 
32560 D1 

EATN 
32560 R1 

EATN 
32563 D2 

EATN 
32563 R2 

EATN 
32646 

EATN 
32878 

EATN 
33107 

EATN 
33295 D1 

EATN 
33295 R1 

EATN 
33299 D2 

EATN 
33299 R2 

EATN 
33440 

EATN 
33562 

SAMPLE DATE   1/15/2003 2/8/2003 2/20/2003 3/4/2003 3/16/2003 3/28/2003 3/28/2003 3/28/2003 3/28/2003 4/9/2003 4/21/2003 5/3/2003 5/15/2003 5/15/2003 5/15/2003 5/15/2003 5/27/2003 6/8/2003 

ANALYSIS DATE   2/5/2003 2/27/2003 3/12/2003 3/21/2003 3/26/2003 4/15/2003 4/15/2003 4/15/2003 4/15/2003 4/29/2003 5/1/2003 5/24/2003 6/5/2003 6/6/2003 6/5/2003 6/9/2003 6/19/2003 6/27/2003

FILE NAME   N3BD022 N3B~017 N3CK019 L3CT016 N3CY018 L3DN015 L3DO010 L3DN014 L3DO009 N3D#010 N3D$011 L3EW016 N3FE011 N3FF011 N3FE012 N3FI006 N3FS008 L3F~010

UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 

cis-1,2-
Dichloroethylene 0.14 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Bromochloromethane 0.21 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Chloroform 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Ethyl tert-Butyl Ether 0.14 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

1,2 - Dichloroethane 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

1,1,1 - 
Trichloroethane 0.10 ND ND ND ND ND 0.03 ND ND ND 0.03 0.03 0.02 0.03 0.02 0.03 0.03 0.05 ND 

Benzene 0.06 0.75 0.65 0.39 0.70 1.06 0.28 0.30 0.27 0.28 0.33 0.23 0.34 0.29 0.32 0.35 0.32 0.43 0.39 

Carbon Tetrachloride 0.08 0.09 0.09 0.04 0.11 0.06 0.09 0.14 0.15 0.12 0.09 0.10 0.06 0.08 0.11 0.10 0.12 0.07 0.05 

tert-Amyl Methyl 
Ether 0.16 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

1,2 - Dichloropropane 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Ethyl Acrylate 0.27 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Bromodichlorometha
ne 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Trichloroethylene 0.17 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Methyl Methacrylate 0.19 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

cis -1,3 - 
Dichloropropene 0.10 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Methyl Isobutyl 
Ketone 0.25 ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.06 ND ND ND 

trans - 1,3 - 
Dichloropropene 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

1,1,2 - 
Trichloroethane 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Toluene 0.06 1.24 1.03 0.56 1.35 1.81 1.19 1.06 1.36 1.08 0.97 0.42 0.71 0.67 0.71 0.83 0.68 1.10 0.90 

Dibromochlorometha
ne 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-3. Continued 
SAMPLE SITE #   

EATN 
31602 

EATN 
31928 

EATN 
32024 

EATN 
32215 

EATN 
32393 

EATN 
32560 D1 

EATN 
32560 R1 

EATN 
32563 D2 

EATN 
32563 R2 

EATN 
32646 

EATN 
32878 

EATN 
33107 

EATN 
33295 D1 

EATN 
33295 R1 

EATN 
33299 D2 

EATN 
33299 R2 

EATN 
33440 

EATN 
33562 

SAMPLE DATE   1/15/2003 2/8/2003 2/20/2003 3/4/2003 3/16/2003 3/28/2003 3/28/2003 3/28/2003 3/28/2003 4/9/2003 4/21/2003 5/3/2003 5/15/2003 5/15/2003 5/15/2003 5/15/2003 5/27/2003 6/8/2003 

ANALYSIS DATE   2/5/2003 2/27/2003 3/12/2003 3/21/2003 3/26/2003 4/15/2003 4/15/2003 4/15/2003 4/15/2003 4/29/2003 5/1/2003 5/24/2003 6/5/2003 6/6/2003 6/5/2003 6/9/2003 6/19/2003 6/27/2003

FILE NAME   N3BD022 N3B~017 N3CK019 L3CT016 N3CY018 L3DN015 L3DO010 L3DN014 L3DO009 N3D#010 N3D$011 L3EW016 N3FE011 N3FF011 N3FE012 N3FI006 N3FS008 L3F~010

UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 

1,2-Dibromoethane 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

N-Octane 0.12 0.08 ND ND 0.09 ND ND ND ND ND 0.08 ND ND 0.04 ND 0.04 ND ND ND 

Tetrachloroethylene 0.10 ND ND ND ND ND ND ND ND ND 0.12 ND ND 0.03 0.02 0.03 0.04 0.07 0.05 

Chlorobenzene 0.10 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Ethylbenzene 0.08 0.23 0.18 0.09 0.22 0.33 ND ND ND ND 0.08 0.05 0.10 0.12 0.12 0.14 0.12 0.16 0.20 

m,p - Xylene 0.08 0.53 0.46 0.28 0.62 0.91 0.40 0.49 0.42 0.41 0.24 0.14 0.22 0.37 0.42 0.42 0.39 0.45 0.44 

Bromoform 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Styrene 0.08 0.10 ND ND ND 0.04 ND ND ND ND 0.02 0.34 ND 0.70 0.71 0.78 0.65 0.59 0.16 

1,1,2,2 - 
Tetrachloroethane 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

o - Xylene 0.06 0.32 0.23 0.15 0.36 0.40 ND 0.15 0.17 ND 0.08 0.07 0.13 0.13 0.14 0.13 0.12 0.19 0.20 

1,3,5-
Trimethylbenzene 0.05 0.09 0.05 ND 0.10 ND ND ND ND ND 0.03 ND ND 0.06 0.05 0.06 0.05 0.07 0.08 

1,2,4-
Trimethylbenzene 0.09 0.25 0.20 0.12 0.33 0.23 0.12 ND 0.14 0.14 0.09 0.07 0.12 0.13 0.15 0.18 0.14 0.17 0.21 

m - Dichlorobenzene 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Chloromethylbenzene 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

p - Dichlorobenzene 0.15 ND ND ND ND ND ND ND ND ND ND ND ND ND 0.02 ND ND 0.03 ND 

o - Dichlorobenzene 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

1,2,4-
Trichlorobenzene 0.16 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

Hexachloro-1,3-
Butadiene 0.20 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-4. EATN Monitor. Data from July 2003 to December 2003 (VOC) 
SAMPLE SITE #   

EATN 
33902 

EATN 
34710 

EATN 
34885  

EATN 
35191 

EATN 
35778 D1 

EATN 
35778 R1 

EATN 
35780 D2 

EATN 
35780 R2 

EATN 
35991 

EATN 
36153 D1 

EATN 
36153 R1 

EATN 
36155 D2 

EATN 
36155 R2 

EATN 
36429 

EATN 
36633 

EATN 
36885 

EATN 
37216 

EATN 
37358 

SAMPLE DATE   6/20/2003 7/26/2003 8/9/2003 8/19/2003 9/12/2003 9/12/2003 9/12/2003 9/12/2003 9/24/2003 10/6/2003 10/6/2003 10/6/2003 10/6/2003 
10/30/200

3 
11/11/200

3 
11/23/200

3 
12/17/200

3 
12/29/200

3 

ANALYSIS DATE   7/12/2003 8/26/2003 9/11/2003 9/17/2003 10/8/2003 10/8/2003 10/8/2003 10/8/2003 10/9/2003 11/5/2003 11/6/2003 11/5/2003 11/6/2003 
11/18/200

3 12/2/2003 12/13/003 1/7/2004 1/14/2004
FILE NAME   N3GK020 L3HZ013 L3IJ014 N3IP018 N3JG020 N3JH008 N3JG021 N3JH009 L3JI008 L3KE008 L3KF005 L3KE009 L3KF006 n3kr007 L3LA029 L3LL020 L4AG011 N4AM016
UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
Acetylene 0.08 0.52 1.89 0.28 0.96 1.74 1.84 1.61 1.69 ND 2.61 2.57 2.41 2.69 1.10 1.17 0.84 1.53 1.02 
Propylene 0.11 0.33 1.08 0.63 0.48 0.78 0.84 0.75 0.79 1.08 1.28 1.17 1.20 1.20 0.54 0.47 0.37 0.67 0.51 
Dichlorodifluoromet
hane 0.15 0.54 0.60 0.58 0.68 0.82 0.86 0.81 0.82 0.61 0.62 0.60 0.61 ND 0.53 0.57 0.62 0.57 0.62 
Chloromethane 0.10 0.61 0.64 0.61 0.59 0.54 0.54 0.52 0.54 0.59 0.67 0.64 0.59 ND 0.54 0.55 0.53 0.51 0.66 
Dichlorotetrafluoroet
hane 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Vinyl Chloride 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,3-Butadiene 0.12 ND ND 0.08 0.03 0.10 0.10 0.10 0.10 0.15 0.17 0.13 0.15 0.14 0.08 ND ND ND 0.04 
Bromomethane 0.13 ND ND ND ND 0.02 ND ND ND 0.02 ND ND 0.16 0.15 0.01 ND ND ND ND 
Chloroethane 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Acetonitrile 0.43 7.41 7.95 4.86 8.78 0.53 0.55 0.65 0.65 ND 5.65 5.17 7.05 7.46 0.46 ND 3.17 ND 4.02 
Trichlorofluorometha
ne 0.07 0.27 0.29 0.30 0.38 0.37 0.39 0.36 0.38 0.29 0.27 0.27 0.27 0.28 0.27 0.21 0.28 0.26 0.26 
Acrylonitrile 0.37 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1-Dichloroethene 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methylene Chloride 0.09 0.18 0.18 0.12 0.14 0.18 0.19 0.17 0.17 0.18 0.17 ND 0.14 ND 0.08 ND ND ND ND 
Trichlorotrifluoroetha
ne 0.10 0.17 0.14 0.13 0.19 0.09 0.10 0.08 0.10 0.11 0.11 0.11 0.15 0.15 0.08 0.06 0.10 ND 0.09 
trans - 1,2 - 
Dichloroethylene 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1 - Dichloroethane 0.06 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl tert-Butyl 
Ether 0.16 ND ND 0.12 0.08 0.16 0.14 0.16 0.15 0.14 0.14 0.14 0.13 0.14 ND ND ND ND ND 
Methyl Ethyl Ketone 0.25 ND 0.51 1.36 1.28 0.95 1.03 0.91 0.88 0.48 0.47 0.39 0.49 0.49 0.43 0.64 1.01 ND ND 
Chloroprene 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
cis-1,2-
Dichloroethylene 0.14 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Bromochloromethane 0.21 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Chloroform 0.09 ND ND 0.03 0.04 0.03 0.03 0.03 0.03 ND ND ND ND 0.03 0.02 ND ND ND ND 
Ethyl tert-Butyl Ether 0.14 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2 - Dichloroethane 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1,1 - 
Trichloroethane 0.10 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.04 ND ND ND ND ND 0.03 ND ND ND ND 
Benzene 0.06 0.16 0.84 0.45 0.31 0.67 0.70 0.68 0.69 0.67 0.69 0.68 0.66 0.68 0.42 0.36 0.28 0.39 0.36 
Carbon Tetrachloride 0.08 0.10 0.10 0.09 0.10 0.12 0.12 0.11 0.11 0.09 0.08 0.08 0.07 0.07 0.10 ND 0.05 0.04 0.09 
tert-Amyl Methyl 
Ether 0.16 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2 - 
Dichloropropane 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Ethyl Acrylate 0.27 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-4. Continued 
SAMPLE SITE #   

EATN 
33902 

EATN 
34710 

EATN 
34885  

EATN 
35191 

EATN 
35778 D1 

EATN 
35778 R1 

EATN 
35780 D2 

EATN 
35780 R2 

EATN 
35991 

EATN 
36153 D1 

EATN 
36153 R1 

EATN 
36155 D2 

EATN 
36155 R2 

EATN 
36429 

EATN 
36633 

EATN 
36885 

EATN 
37216 

EATN 
37358 

SAMPLE DATE   6/20/2003 7/26/2003 8/9/2003 8/19/2003 9/12/2003 9/12/2003 9/12/2003 9/12/2003 9/24/2003 10/6/2003 10/6/2003 10/6/2003 10/6/2003 
10/30/200

3 
11/11/200

3 
11/23/200

3 
12/17/200

3 
12/29/200

3 

ANALYSIS DATE   7/12/2003 8/26/2003 9/11/2003 9/17/2003 10/8/2003 10/8/2003 10/8/2003 10/8/2003 10/9/2003 11/5/2003 11/6/2003 11/5/2003 11/6/2003 
11/18/200

3 12/2/2003 12/13/003 1/7/2004 1/14/2004
FILE NAME   N3GK020 L3HZ013 L3IJ014 N3IP018 N3JG020 N3JH008 N3JG021 N3JH009 L3JI008 L3KE008 L3KF005 L3KE009 L3KF006 n3kr007 L3LA029 L3LL020 L4AG011 N4AM016
UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
Bromodichlorometha
ne 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Trichloroethylene 0.17 ND ND ND ND 0.02 0.01 0.01 0.02 ND ND ND ND ND ND ND ND ND 0.02 
Methyl Methacrylate 0.19 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
cis -1,3 - 
Dichloropropene 0.10 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl Isobutyl 
Ketone 0.25 ND ND ND ND 0.09 0.11 ND 0.08 0.24 ND ND ND ND 0.05 ND ND ND ND 
trans - 1,3 - 
Dichloropropene 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1,2 - 
Trichloroethane 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Toluene 0.06 0.39 2.61 1.04 0.76 1.36 1.37 1.37 1.41 1.80 1.57 1.52 1.57 1.42 0.87 0.60 0.35 0.68 0.50 
Dibromochlorometha
ne 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2-Dibromoethane 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
N-Octane 0.12 ND ND 0.04 ND ND ND ND ND ND 0.07 ND 0.07 0.07 0.02 ND ND ND 0.05 
Tetrachloroethylene 0.10 ND ND ND ND 0.05 0.05 0.05 0.05 ND 0.28 0.24 0.06 0.03 0.05 ND ND ND 0.05 
Chlorobenzene 0.10 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Ethylbenzene 0.08 0.07 0.34 0.20 0.15 0.22 0.22 0.23 0.23 0.28 0.22 0.24 0.22 0.23 0.09 ND 0.05 ND 0.11 
m,p - Xylene 0.08 0.20 0.82 0.44 0.36 0.69 0.69 0.69 0.71 0.79 0.68 0.67 0.65 0.65 0.30 0.21 0.15 0.32 0.28 
Bromoform 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Styrene 0.08 0.06 ND 0.10 0.10 0.05 0.05 0.05 0.05 0.31 0.07 0.08 0.09 ND 0.05 ND ND 0.51 0.07 
1,1,2,2 - 
Tetrachloroethane 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
o - Xylene 0.06 0.07 0.38 0.24 0.15 0.33 0.33 0.33 0.33 0.39 0.34 0.32 0.33 0.32 0.17 0.12 ND 0.13 0.13 
1,3,5-
Trimethylbenzene 0.05 0.05 0.12 0.07 0.03 0.08 0.08 0.08 0.08 0.15 0.11 0.13 0.11 0.12 0.03 ND ND ND 0.05 
1,2,4-
Trimethylbenzene 0.09 0.07 0.35 0.17 0.11 0.29 0.30 0.30 0.30 0.41 0.36 0.38 0.36 0.33 0.12 0.10 0.04 0.13 0.13 
m - Dichlorobenzene 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Chloromethylbenzen
e 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
p - Dichlorobenzene 0.15 ND ND ND ND 0.04 0.04 0.04 0.04 ND ND ND ND ND 0.02 ND ND ND ND 
o - Dichlorobenzene 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2,4-
Trichlorobenzene 0.16 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Hexachloro-1,3-
Butadiene 0.20 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-5. EATN Monitor. Data from January 2003 to June 2003 (Carb.) 
SAMPLE # 31604 31929 32026 32216 32395  32561 D1  32561 R1  32564 D2  32564 R2 32647 32880 33108  33296 D1  33296 R1  33300 D2  33300 R2 33442 33904
SAMPLE DATE 1/15/03 2/8/03 2/20/03 3/4/03 3/16/03 3/28/03 3/28/03 3/28/03 3/28/03 4/9/03 4/21/03 5/3/03 5/15/03 5/15/03 5/15/03 5/15/03 5/27/03 6/20/03
ANALYSIS DATE 2/13/03 3/11/03 3/13/03 4/7/03 4/25/03 5/10/03 5/10/03 5/10/03 5/10/03 5/15/03 5/30/03 6/3/03 6/25/03 6/25/03 6/25/03 6/25/03 7/8/03 7/29/03
FILE NAME V3BL026 V3CJ021  F3CL019 F3DG009 F3DX025 F3EI013  F3EI014  F3EI011  F3EI012  F3EO007  V3E#023 F3FB020 V3FX021 V3FX022 V3FX023 V3FX024 V3GG031 V3G#022 
UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
                                      
Formaldehyde 2.122 2.195 1.008 2.882 2.845 2.589 2.587 2.633 2.628 1.073 2.072 2.470 3.072 3.102 3.151 3.154 2.985 3.512
Acetaldehyde 0.889 0.809 0.493 1.131 1.237 0.942 0.944 0.935 0.936 0.545 0.755 1.019 1.039 1.040 0.973 0.976 0.935 1.033
Acetone 1.342 1.305 0.572 1.880 1.029 0.700 0.698 0.814 0.815 1.377 0.794 0.951 0.493 0.507 0.410 0.413 0.923 0.709
Propionaldehyde 0.091 0.077 0.048 0.118 0.149 0.164 0.165 0.142 0.144 0.064 0.109 0.121 0.203 0.210 0.210 0.210 0.148 0.192
Crotonaldehyde 0.011 0.008 0.003 0.035 0.042 0.023 0.020 0.022 0.028 0.016 0.025 0.042 0.130 0.120 0.123 0.124 0.064 0.057
Butyr/Isobutyraldehyd
e 0.109 0.108 0.077 0.175 0.166 0.173 0.175 0.176 0.181 0.124 0.063 0.162 0.102 0.095 0.094 0.095 0.108 0.093
Benzaldehyde 0.044 0.030 0.018 0.034 0.043 0.027 0.029 0.027 0.027 0.016 0.042 0.031 0.065 0.069 0.066 0.065 0.054 0.023
Isovaleraldehyde ND ND ND 0.010 0.017 ND ND ND ND 0.002 0.007 ND 0.035 0.015 0.014 0.014 0.013 ND 
Valeraldehyde 0.031 0.027 0.014 0.036 0.043 0.043 0.040 0.037 0.043 0.017 0.027 0.032 0.040 0.036 0.035 0.035 0.035 0.037
Tolualdehydes 0.031 0.033 0.010 0.024 0.038 0.018 0.018 0.018 0.018 0.019 0.019 0.031 0.037 0.042 0.037 0.038 0.048 0.026
Hexaldehyde 0.025 0.029 0.017 0.039 0.059 0.035 0.033 0.034 0.035 0.019 0.040 0.045 0.045 0.047 0.042 0.040 0.044 0.042
2,5-
Dimethylbenzaldehyde ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-6. EATN Monitor. Data from July 2003 to December 2003 (Carb.) 
SAMPLE # 34712 34886 35192  35779 D1  35779 R1  35781 D2  35781 R2 35992  36154 D1  36154 R1  36156 D2  36156 R2 36431 36634 36887 37217 37360
SAMPLE DATE 7/26/03 8/9/03 8/19/03 9/12/03 9/12/03 9/12/03 9/12/03 9/24/03 10/6/03 10/6/03 10/6/03 10/6/03 10/30/03 11/11/03 11/23/03 12/17/03 12/29/03
ANALYSIS DATE 9/3/03 9/9/03 9/23/03 10/21/03 10/21/03 10/21/03 10/21/03 11/4/03 11/12/03 11/12/03 11/12/03 11/12/03 12/11/03 12/15/03 12/31/03 1/30/04 2/5/04
FILE NAME V3IB027  V3IH021  F3IV023 F3JT029  F3JT030  F3JT027  F3JT028  F3KC021 V3KK026  V3KK027 V3KK028 V3KK029 F3LJ023 F3LN013 V3L$021 V4A#021 V4BD017 
UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
                                    
Formaldehyde 5.622 3.785 4.636 3.962 3.990 4.009 4.022 3.755 1.958 1.967 2.020 2.010 4.826 3.813 2.922 2.076 0.847
Acetaldehyde 1.225 0.809 0.777 1.365 1.373 1.364 1.366 1.325 0.842 0.835 0.846 0.850 1.491 1.060 0.787 0.613 0.328
Acetone 0.482 0.420 0.303 0.810 0.811 0.835 0.832 1.075 1.108 1.108 1.098 1.100 1.371 0.673 0.415 3.369 0.757
Propionaldehyde 0.314 0.188 0.201 0.252 0.253 0.277 0.256 0.201 0.095 0.088 0.101 0.097 0.169 0.135 0.113 0.087 0.036
Crotonaldehyde 0.193 0.113 0.133 0.048 0.046 0.058 0.048 0.067 0.039 0.046 0.041 0.042 0.046 0.036 0.025 0.024 0.012
Butyr/Isobutyraldehyde 0.142 0.084 0.111 0.132 0.129 0.110 0.136 0.146 0.099 0.099 0.098 0.113 0.149 0.094 0.145 0.124 0.049
Benzaldehyde 0.054 0.023 0.056 0.047 0.044 0.050 0.046 0.055 0.033 0.026 0.028 0.028 0.053 0.037 0.021 0.034 0.014
Isovaleraldehyde ND ND ND ND ND ND ND ND 0.014 0.011 0.013 0.014 ND 0.013 0.005 0.004 0.004
Valeraldehyde 0.050 0.034 0.036 0.052 0.041 0.043 0.052 0.042 0.030 0.030 0.035 0.033 0.035 0.024 0.022 0.015 0.012
Tolualdehydes 0.052 0.040 0.045 0.043 0.042 0.049 0.045 0.052 0.057 0.054 0.053 0.054 0.114 0.064 0.031 0.037 0.017
Hexaldehyde 0.067 0.045 0.037 0.050 0.049 0.047 0.049 0.040 0.037 0.036 0.035 0.036 0.033 0.023 0.023 0.018 0.016
2,5-
Dimethylbenzaldehyde ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-7. LOTN Monitor. Data from May 2002 to December 2002 (VOC) 
SAMPLE 
SITE # 

LOTN 
27024 

LOTN 
27334 

LOTN 
27928 

LOTN 
28255 D1

LOTN 
28255 R1

LOTN 
28257 D2

LOTN 
28257 R2

LOTN 
28621 

LOTN 
28717 

LOTN 
29292 

LOTN 
29668 

LOTN 
29962 

LOTN 
30106 

LOTN 
30285 D1

LOTN 
30581 

LOTN 
30828 

LOTN 
30925 

LOTN 
31255 

SAMPLE 
DATE 

4/20/200
2 5/2/2002 6/7/2002 6/19/2002 6/19/2002 6/19/2002 6/19/2002 7/7/2002

7/13/200
2 

8/18/200
2 

8/30/200
2 

9/23/200
2 

10/5/200
2 

10/17/200
2 

11/10/20
02 

11/22/20
02 

12/4/200
2 

12/16/20
02 

ANALYSIS 
DATE 

4/27/200
2 

5/17/200
2 

6/19/200
2 7/2/2002 7/11/2002 7/2/2002 7/11/2002 8/2/2002 8/6/2002

9/16/200
2 

9/23/200
2 

10/17/20
02 

10/25/20
02 

11/13/200
2 

12/10/20
02 

12/18/20
02 

12/28/20
02 1/9/2003

FILE NAME L2DZ021 L2ER008 
N2FR01

7 N2GB011 N2GK009 N2GB012 N2GK010 L2HA020 L2HF010 L2IP010 L2IV017 L2JQ010 L2JX021 N2KL020 N2LJ007 L2LR010 L2L~019 L3AH017
UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
Acetylene 1.78 1.83 1.05 1.72 1.59 2.12 1.46 0.88 0.67 1.03 1.25 0.36 0.48 3.03 0.37 0.96 0.53 4.04 
Propylene 2.25 1.84 0.46 1.69 1.50 1.58 1.22 0.55 0.37 0.77 0.76 0.20 0.31 1.78 0.14 0.10 0.28 1.09 
Dichlorodifluo
romethane 0.59 0.58 0.67 0.61 0.59 0.55 0.48 0.70 0.61 0.75 0.75 0.77 0.65 0.97 0.56 1.27 0.55 0.49 
Chlorometha
ne 0.65 0.72 0.71 0.68 0.52 0.68 0.42 0.74 0.62 0.80 0.77 0.54 0.52 0.84 0.54 1.05 0.41 0.43 
Dichlorotetrafl
uoroethane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Vinyl Chloride ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,3-
Butadiene 0.04 ND 0.02 0.09 ND ND ND ND ND ND 0.04 ND ND 0.24 ND 0.15 ND 0.14 
Bromometha
ne ND ND ND ND ND ND ND ND ND ND 0.09 ND ND ND ND ND ND ND 
Chloroethane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Acetonitrile ND ND 1.74 3.16 1.69 0.49 0.45 2.83 ND ND ND ND ND ND ND ND ND ND 
Trichlorofluor
omethane 0.25 0.24 0.31 0.26 0.30 0.21 0.21 0.32 0.31 0.32 0.30 0.41 0.34 0.41 0.26 0.61 0.29 0.27 
Acrylonitrile ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1-
Dichloroethen
e ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methylene 
Chloride 0.14 0.07 0.14 ND 0.19 ND 0.06 0.13 0.09 0.09 0.11 ND ND 0.21 ND 0.14 ND ND 
Trichlorotriflu
oroethane 0.21 0.12 0.21 0.15 0.12 0.13 0.08 0.21 0.13 0.23 0.19 ND 0.05 0.13 0.05 0.33 0.13 0.15 
trans - 1,2 - 
Dichloroethyl
ene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1 - 
Dichloroethan
e ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl tert-
Butyl Ether ND ND ND ND ND ND ND ND ND ND ND ND ND 0.44 ND ND ND ND 
Methyl Ethyl 
Ketone 5.47 2.19 1.59 4.00 2.96 4.61 3.80 1.69 0.71 1.76 2.47 ND ND 1.01 ND ND ND 1.25 
Chloroprene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-7. Continued 
SAMPLE 
SITE # 

LOTN 
27024 

LOTN 
27334 

LOTN 
27928 

LOTN 
28255 D1

LOTN 
28255 R1

LOTN 
28257 D2

LOTN 
28257 R2

LOTN 
28621 

LOTN 
28717 

LOTN 
29292 

LOTN 
29668 

LOTN 
29962 

LOTN 
30106 

LOTN 
30285 D1

LOTN 
30581 

LOTN 
30828 

LOTN 
30925 

LOTN 
31255 

SAMPLE 
DATE 

4/20/200
2 5/2/2002 6/7/2002 6/19/2002 6/19/2002 6/19/2002 6/19/2002 7/7/2002

7/13/200
2 

8/18/200
2 

8/30/200
2 

9/23/200
2 

10/5/200
2 

10/17/200
2 

11/10/20
02 

11/22/20
02 

12/4/200
2 

12/16/20
02 

ANALYSIS 
DATE 

4/27/200
2 

5/17/200
2 

6/19/200
2 7/2/2002 7/11/2002 7/2/2002 7/11/2002 8/2/2002 8/6/2002

9/16/200
2 

9/23/200
2 

10/17/20
02 

10/25/20
02 

11/13/200
2 

12/10/20
02 

12/18/20
02 

12/28/20
02 1/9/2003

FILE NAME L2DZ021 L2ER008 
N2FR01

7 N2GB011 N2GK009 N2GB012 N2GK010 L2HA020 L2HF010 L2IP010 L2IV017 L2JQ010 L2JX021 N2KL020 N2LJ007 L2LR010 L2L~019 L3AH017
UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
cis-1,2-
Dichloroethyl
ene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Bromochloro
methane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Chloroform ND ND ND ND ND ND ND ND ND ND ND ND ND 0.03 ND ND ND ND 
Ethyl tert-
Butyl Ether ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2 - 
Dichloroethan
e ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1,1 - 
Trichloroetha
ne ND ND ND ND ND ND ND ND ND ND 0.04 ND 0.02 0.03 ND 0.08 ND ND 
Benzene 0.46 0.34 0.35 0.64 0.67 0.53 0.59 0.49 0.34 0.42 0.64 0.16 0.28 0.84 0.17 0.39 0.27 0.72 
Carbon 
Tetrachloride 0.08 0.09 0.11 0.14 0.10 0.11 ND 0.11 0.09 0.11 0.11 0.09 0.10 0.10 ND 0.24 0.09 0.09 
tert-Amyl 
Methyl Ether ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2 - 
Dichloroprop
ane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Ethyl Acrylate ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Bromodichlor
omethane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Trichloroethyl
ene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl 
Methacrylate ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
cis -1,3 - 
Dichloroprop
ene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl 
Isobutyl 
Ketone ND ND ND 0.27 ND 0.25 ND ND ND ND ND ND ND ND ND ND ND ND 
trans - 1,3 - 
Dichloroprop
ene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-7. Continued 
SAMPLE 
SITE # 

LOTN 
27024 

LOTN 
27334 

LOTN 
27928 

LOTN 
28255 D1

LOTN 
28255 R1

LOTN 
28257 D2

LOTN 
28257 R2

LOTN 
28621 

LOTN 
28717 

LOTN 
29292 

LOTN 
29668 

LOTN 
29962 

LOTN 
30106 

LOTN 
30285 D1

LOTN 
30581 

LOTN 
30828 

LOTN 
30925 

LOTN 
31255 

SAMPLE 
DATE 

4/20/200
2 5/2/2002 6/7/2002 6/19/2002 6/19/2002 6/19/2002 6/19/2002 7/7/2002

7/13/200
2 

8/18/200
2 

8/30/200
2 

9/23/200
2 

10/5/200
2 

10/17/200
2 

11/10/20
02 

11/22/20
02 

12/4/200
2 

12/16/20
02 

ANALYSIS 
DATE 

4/27/200
2 

5/17/200
2 

6/19/200
2 7/2/2002 7/11/2002 7/2/2002 7/11/2002 8/2/2002 8/6/2002

9/16/200
2 

9/23/200
2 

10/17/20
02 

10/25/20
02 

11/13/200
2 

12/10/20
02 

12/18/20
02 

12/28/20
02 1/9/2003

FILE NAME L2DZ021 L2ER008 
N2FR01

7 N2GB011 N2GK009 N2GB012 N2GK010 L2HA020 L2HF010 L2IP010 L2IV017 L2JQ010 L2JX021 N2KL020 N2LJ007 L2LR010 L2L~019 L3AH017
UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
1,1,2 - 
Trichloroetha
ne ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Toluene 1.30 0.61 0.73 1.60 1.67 1.28 1.14 1.07 0.75 0.98 1.40 0.68 0.56 1.60 0.22 0.45 0.35 1.12 
Dibromochlor
omethane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2-
Dibromoetha
ne ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
N-Octane 0.09 0.08 0.05 ND 0.11 ND 0.11 0.08 ND ND 0.09 ND ND 0.07 0.08 ND ND ND 
Tetrachloroet
hylene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Chlorobenze
ne ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Ethylbenzene 0.17 0.09 0.09 0.25 0.25 0.21 0.20 0.19 0.12 0.17 0.18 ND ND 0.34 ND 0.11 ND 0.20 
m,p - Xylene 0.52 0.25 0.30 0.63 0.71 0.63 0.62 0.65 0.27 0.44 0.54 ND 0.28 0.78 ND 0.28 0.12 0.55 
Bromoform ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Styrene ND ND ND ND ND ND ND ND ND ND ND ND ND 0.04 ND ND ND ND 
1,1,2,2 - 
Tetrachloroet
hane ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
o - Xylene 0.23 0.11 0.11 0.30 0.28 0.28 0.30 0.27 0.13 0.23 0.26 ND 0.12 0.37 ND 0.15 ND 0.21 
1,3,5-
Trimethylben
zene 0.07 ND ND 0.07 0.07 0.07 0.06 0.08 ND 0.08 ND ND 0.03 0.13 ND 0.06 ND 0.07 
1,2,4-
Trimethylben
zene 0.21 0.09 0.06 0.22 0.40 0.24 0.30 0.23 0.13 0.21 0.20 ND 0.11 0.43 ND 0.13 ND 0.26 
m - 
Dichlorobenz
ene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Chloromethyl
benzene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
p - 
Dichlorobenz
ene ND ND ND ND ND ND ND ND ND ND ND ND ND 0.02 ND ND ND ND 
o - 
Dichlorobenz
ene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-7. Continued 
SAMPLE 
SITE # 

LOTN 
27024 

LOTN 
27334 

LOTN 
27928 

LOTN 
28255 D1

LOTN 
28255 R1

LOTN 
28257 D2

LOTN 
28257 R2

LOTN 
28621 

LOTN 
28717 

LOTN 
29292 

LOTN 
29668 

LOTN 
29962 

LOTN 
30106 

LOTN 
30285 D1

LOTN 
30581 

LOTN 
30828 

LOTN 
30925 

LOTN 
31255 

SAMPLE 
DATE 

4/20/200
2 5/2/2002 6/7/2002 6/19/2002 6/19/2002 6/19/2002 6/19/2002 7/7/2002

7/13/200
2 

8/18/200
2 

8/30/200
2 

9/23/200
2 

10/5/200
2 

10/17/200
2 

11/10/20
02 

11/22/20
02 

12/4/200
2 

12/16/20
02 

ANALYSIS 
DATE 

4/27/200
2 

5/17/200
2 

6/19/200
2 7/2/2002 7/11/2002 7/2/2002 7/11/2002 8/2/2002 8/6/2002

9/16/200
2 

9/23/200
2 

10/17/20
02 

10/25/20
02 

11/13/200
2 

12/10/20
02 

12/18/20
02 

12/28/20
02 1/9/2003

FILE NAME L2DZ021 L2ER008 
N2FR01

7 N2GB011 N2GK009 N2GB012 N2GK010 L2HA020 L2HF010 L2IP010 L2IV017 L2JQ010 L2JX021 N2KL020 N2LJ007 L2LR010 L2L~019 L3AH017
UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
1,2,4-
Trichlorobenz
ene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Hexachloro-
1,3-
Butadiene ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 

 
 

 
 
 
 
 
 



 406

Table C-8. LOTN Monitor. Data from May 2002 to December 2002 (Carb.) 
SAMPLE # 27384 27751 27930 

28256 
D1 

28256 
R1 

28258 
D2 

28258 
R2 28623 28718 29293 29670 29790 29963 30107 

30286 
D1 

30286 
R1 30433 #30582 #30829 30926 31256 

SAMPLE DATE 5/2/2002 
5/26/200

2 6/7/2002 
6/19/200

2 
6/19/200

2 
6/19/200

2 
6/19/200

2 7/7/2002
7/13/200

2 
8/18/200

2 
8/30/200

2 
9/11/200

2 
9/23/200

2 
10/5/200

2 
10/17/20

02 
10/17/20

02 
10/29/20

02 
11/10/20

02 
11/22/20

02 
12/4/200

2 
12/16/20

02 
ANALYSIS 
DATE 

5/29/200
2 

6/11/200
2 

6/26/200
2 

7/17/200
2 

7/17/200
2 

7/17/200
2 

7/17/200
2 

7/18/200
2 

7/31/200
2 9/5/2002

9/19/200
2 

10/2/200
2 

10/3/200
2 

10/25/20
02 

11/6/200
2 

11/6/200
2 

11/26/20
02 

12/21/20
02 

12/24/20
02 1/9/2003

1/22/200
3 

FILE NAME 
F2E#01

8  F2FJ019 
F2FZ01

4  
F2GP03

4  
F2GP03

5  
F2GP03

6  
F2GP03

7  
V2GQ01

9  
F2G$02

5  
V2ID05

6  
V2IR04

0  
F2JB00

7  
F2JB04

6  V2JX019 
V2KE02

8  
V2KE02

9  
V2KY01

6  
V2LT02

6  
V2LW04

9  
V3AH04

2  
V3AU02

5  
UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
Formaldehyde 2.52 2.72 2.76 5.57 5.55 5.42 5.43 6.39 2.50 3.90 3.68 5.47 2.95 2.57 2.37 2.34 1.61 1.92 1.64 0.95 4.28 
Acetaldehyde 0.80 0.99 0.96 1.55 1.54 1.52 1.52 1.44 0.70 0.73 1.15 1.75 0.75 0.91 0.89 0.89 0.71 0.76 0.51 0.61 1.44 
Acetone 0.57 0.51 0.48 1.20 1.15 1.10 1.11 0.60 0.43 0.29 0.42 0.58 1.04 0.70 1.31 1.31 0.65 0.42 0.83 1.00 1.46 
Propionaldehyde 0.17 0.17 0.13 0.26 0.24 0.33 0.33 0.23 0.12 0.13 0.24 0.36 0.08 0.10 0.09 0.08 0.07 0.14 0.04 0.06 0.15 
Crotonaldehyde 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ND 0.01 0.01 0.02 0.01 0.01 0.004 0.004 0.004 0.003 0.003 0.004 0.01 
Butyr/Isobutyralde
hyde 0.20 0.19 0.21 0.14 0.12 0.14 0.14 0.10 0.10 0.12 0.15 0.21 0.17 0.12 0.14 0.15 0.10 0.11 0.07 0.10 0.20 
Benzaldehyde 0.09 0.05 0.06 0.08 0.06 0.06 0.07 0.09 0.04 0.05 0.04 0.10 0.03 0.04 0.04 0.04 0.03 0.03 0.02 0.01 0.05 
Isovaleraldehyde ND ND ND ND ND ND ND ND ND ND 0.02 ND 0.004 0.01 0.01 0.01 0.01 0.01 ND ND ND 
Valeraldehyde 0.06 0.05 0.04 0.06 0.06 0.06 0.06 0.05 0.02 0.03 0.04 0.06 0.02 0.03 0.03 0.03 0.02 0.04 0.02 0.02 0.04 
Tolualdehydes 0.02 0.03 0.04 0.05 0.05 0.05 0.05 0.06 0.02 0.07 0.04 0.08 0.02 0.03 0.06 0.06 0.02 0.01 0.02 0.01 0.04 
Hexaldehyde 0.07 0.05 0.03 0.07 0.06 0.06 0.06 0.05 0.03 0.03 0.04 0.06 0.02 0.03 0.04 0.04 0.03 0.07 0.03 0.02 0.06 
2,5-
Dimethylbenzalde
hyde ND ND ND ND ND ND ND 0.04 ND 0.01 0.01 ND ND ND ND ND ND ND ND ND ND 
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Table C-9. LOTN Monitor. Data from January 2003 to May 2003 (VOC) 
SAMPLE 
SITE #   

LOTN 
31424 

LOTN 
31599 

LOTN 
31926 

LOTN 
32027 

LOTN 
32217 

LOTN 
32389 

LOTN 
32548 D1

LOTN 
32548 R1

LOTN 
32551 D2

LOTN 
32551 R2 

LOTN 
32644 

LOTN 
32883 

LOTN 
33110 

LOTN 
33289 D1

LOTN 
33289 R1

LOTN 
33293 D2

LOTN 
33293 R2

LOTN 
33445 

SAMPLE 
DATE   1/3/2003 

1/15/200
3 2/8/2003

2/20/200
3 3/4/2003

3/16/200
3 3/28/2003 3/28/2003 3/28/2003 3/28/2003 4/9/2003

4/21/200
3 5/3/2003 5/15/2003 5/15/2003 5/15/2003 5/15/2003

5/27/200
3 

ANALYSIS 
DATE   

1/20/200
3 2/6/2003 

2/27/200
3 

3/13/200
3 

3/21/200
3 

3/26/200
3 4/15/2003 4/23/2003 4/15/2003 4/23/2003 

4/29/200
3 

5/20/200
3 

5/24/200
3 6/5/2003 6/7/2003 6/5/2003 6/7/2003 6/4/2003

FILE NAME   
N3AT01

4 N3BF007 N3B~012
N3CL01

6 L3CT018
N3CY01

9 L3DO007 L3DV014 L3DO008 L3DV015 N3D#011 L3ES024
L3WE01

4 N3FE013 N3FF013 N3FE014 N3FF014 N3FC024
UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
Acetylene 0.08 0.98 2.12 3.13 1.49 2.22 3.27 0.67 0.52 0.63 0.48 1.28 0.89 1.08 1.15 1.26 1.43 1.36 1.59 
Propylene 0.11 0.26 0.41 0.37 0.32 1.21 1.63 0.43 0.25 0.56 0.32 0.34 0.12 0.40 0.45 0.47 0.56 0.53 0.77 
Dichlorodifluo
romethane 0.15 0.47 0.48 0.46 0.64 0.63 0.77 0.77 0.49 0.73 0.41 0.65 0.54 0.53 0.59 0.66 0.60 0.58 0.53 
Chloromethan
e 0.10 0.49 0.48 0.45 0.54 0.54 0.70 0.55 0.59 0.60 0.53 0.66 0.68 0.84 0.66 0.70 0.69 0.64 0.51 
Dichlorotetrafl
uoroethane 0.11 ND ND ND ND ND ND ND ND ND ND ND 0.02 ND ND ND ND ND ND 
Vinyl Chloride 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,3-Butadiene 0.12 ND ND ND ND 0.19 0.10 ND ND ND ND ND ND ND ND ND 0.07 0.04 0.11 
Bromomethan
e 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Chloroethane 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Acetonitrile 0.43 ND 3.64 ND ND ND 5.22 ND ND ND ND ND ND ND ND ND ND ND 3.18 
Trichlorofluor
omethane 0.07 0.29 0.24 0.22 0.26 0.28 0.30 0.33 0.26 0.39 0.25 0.31 0.30 0.24 0.28 0.30 0.28 0.27 0.25 
Acrylonitrile 0.37 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1-
Dichloroethen
e 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methylene 
Chloride 0.09 ND 0.05 ND ND 0.20 0.09 0.08 0.09 ND 0.08 0.09 ND 0.12 0.17 0.20 0.29 0.28 0.11 
Trichlorotriflu
oroethane 0.10 0.10 0.11 0.09 0.07 0.08 0.04 0.11 0.11 0.14 0.09 0.13 0.09 0.06 0.12 0.13 0.11 0.11 0.11 
trans - 1,2 - 
Dichloroethyle
ne 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1 - 
Dichloroethan
e 0.06 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl tert-
Butyl Ether 0.16 ND ND ND ND ND ND ND ND ND ND ND 0.06 ND ND ND ND ND 0.25 
Methyl Ethyl 
Ketone 0.25 ND ND ND 1.00 ND ND 1.33 1.07 ND 0.87 0.82 2.64 19.99 2.32 2.45 12.36 11.18 4.99 
Chloroprene 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
cis-1,2-
Dichloroethyle
ne 0.14 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 



 408

Table C-9. Continued 
SAMPLE 
SITE #   

LOTN 
31424 

LOTN 
31599 

LOTN 
31926 

LOTN 
32027 

LOTN 
32217 

LOTN 
32389 

LOTN 
32548 D1

LOTN 
32548 R1

LOTN 
32551 D2

LOTN 
32551 R2 

LOTN 
32644 

LOTN 
32883 

LOTN 
33110 

LOTN 
33289 D1

LOTN 
33289 R1

LOTN 
33293 D2

LOTN 
33293 R2

LOTN 
33445 

SAMPLE 
DATE   1/3/2003 

1/15/200
3 2/8/2003

2/20/200
3 3/4/2003

3/16/200
3 3/28/2003 3/28/2003 3/28/2003 3/28/2003 4/9/2003

4/21/200
3 5/3/2003 5/15/2003 5/15/2003 5/15/2003 5/15/2003

5/27/200
3 

ANALYSIS 
DATE   

1/20/200
3 2/6/2003 

2/27/200
3 

3/13/200
3 

3/21/200
3 

3/26/200
3 4/15/2003 4/23/2003 4/15/2003 4/23/2003 

4/29/200
3 

5/20/200
3 

5/24/200
3 6/5/2003 6/7/2003 6/5/2003 6/7/2003 6/4/2003

FILE NAME   
N3AT01

4 N3BF007 N3B~012
N3CL01

6 L3CT018
N3CY01

9 L3DO007 L3DV014 L3DO008 L3DV015 N3D#011 L3ES024
L3WE01

4 N3FE013 N3FF013 N3FE014 N3FF014 N3FC024
UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
Bromochloro
methane 0.21 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Chloroform 0.09 ND ND ND ND ND ND ND ND ND ND ND 0.03 ND ND ND ND ND ND 
Ethyl tert-
Butyl Ether 0.14 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2 - 
Dichloroethan
e 0.11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1,1 - 
Trichloroethan
e 0.10 ND ND ND ND ND ND ND ND ND 0.03 0.04 ND 0.06 0.03 0.03 0.04 0.03 0.03 
Benzene 0.06 0.31 0.40 0.44 0.37 0.75 1.07 0.24 0.21 0.19 0.22 0.30 0.31 0.34 0.27 0.26 0.35 0.30 0.47 
Carbon 
Tetrachloride 0.08 0.04 0.06 0.08 0.10 0.08 ND 0.10 0.08 0.11 0.11 0.10 0.11 0.09 0.11 0.11 0.10 0.11 0.10 
tert-Amyl 
Methyl Ether 0.16 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2 - 
Dichloropropa
ne 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Ethyl Acrylate 0.27 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Bromodichlor
omethane 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Trichloroethyl
ene 0.17 ND ND ND ND ND ND ND ND ND ND ND ND ND 0.03 ND 0.03 ND 0.02 
Methyl 
Methacrylate 0.19 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
cis -1,3 - 
Dichloroprope
ne 0.10 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl 
Isobutyl 
Ketone 0.25 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.04 
trans - 1,3 - 
Dichloroprope
ne 0.13 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,1,2 - 
Trichloroethan
e 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Toluene 0.06 0.35 0.54 0.43 0.32 1.35 1.88 0.45 0.39 0.36 0.45 0.48 1.33 8.58 5.66 5.73 7.65 6.64 4.24 
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Table C-9. Continued 
SAMPLE 
SITE #   

LOTN 
31424 

LOTN 
31599 

LOTN 
31926 

LOTN 
32027 

LOTN 
32217 

LOTN 
32389 

LOTN 
32548 D1

LOTN 
32548 R1

LOTN 
32551 D2

LOTN 
32551 R2 

LOTN 
32644 

LOTN 
32883 

LOTN 
33110 

LOTN 
33289 D1

LOTN 
33289 R1

LOTN 
33293 D2

LOTN 
33293 R2

LOTN 
33445 

SAMPLE 
DATE   1/3/2003 

1/15/200
3 2/8/2003

2/20/200
3 3/4/2003

3/16/200
3 3/28/2003 3/28/2003 3/28/2003 3/28/2003 4/9/2003

4/21/200
3 5/3/2003 5/15/2003 5/15/2003 5/15/2003 5/15/2003

5/27/200
3 

ANALYSIS 
DATE   

1/20/200
3 2/6/2003 

2/27/200
3 

3/13/200
3 

3/21/200
3 

3/26/200
3 4/15/2003 4/23/2003 4/15/2003 4/23/2003 

4/29/200
3 

5/20/200
3 

5/24/200
3 6/5/2003 6/7/2003 6/5/2003 6/7/2003 6/4/2003

FILE NAME   
N3AT01

4 N3BF007 N3B~012
N3CL01

6 L3CT018
N3CY01

9 L3DO007 L3DV014 L3DO008 L3DV015 N3D#011 L3ES024
L3WE01

4 N3FE013 N3FF013 N3FE014 N3FF014 N3FC024
UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
Dibromochlor
omethane 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2-
Dibromoethan
e 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
N-Octane 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.04 0.06 
Tetrachloroeth
ylene 0.10 ND ND ND ND ND ND ND ND ND ND 0.04 ND ND 0.02 0.03 0.02 ND 0.06 
Chlorobenzene 0.10 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Ethylbenzene 0.08 ND 0.09 ND ND 0.22 0.31 ND 0.08 ND 0.07 0.06 0.13 0.27 0.21 0.20 0.29 0.25 0.24 
m,p - Xylene 0.08 0.13 0.24 0.19 0.16 0.60 0.86 0.12 0.15 0.21 0.18 0.17 0.22 0.51 0.70 0.76 0.97 0.85 0.79 
Bromoform 0.07 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Styrene 0.08 ND 0.02 ND ND ND ND ND ND ND ND 0.06 ND ND ND ND 0.03 0.03 0.07 
1,1,2,2 - 
Tetrachloroeth
ane 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
o - Xylene 0.06 ND 0.13 0.09 0.08 0.32 0.41 ND 0.05 0.04 0.05 0.06 0.12 0.23 0.22 0.24 0.29 0.26 0.27 
1,3,5-
Trimethylbenz
ene 0.05 ND ND ND ND 0.10 ND ND ND ND ND 0.02 ND ND 0.05 0.04 0.06 0.06 0.10 
1,2,4-
Trimethylbenz
ene 0.09 ND 0.10 0.08 ND 0.30 0.32 ND ND ND ND 0.05 0.12 0.13 0.13 0.12 0.17 0.13 0.25 
m - 
Dichlorobenze
ne 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Chloromethylb
enzene 0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
p - 
Dichlorobenze
ne 0.15 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.03 
o - 
Dichlorobenze
ne 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
1,2,4-
Trichlorobenz
ene 0.16 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
Hexachloro-
1,3-Butadiene 0.20 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-10. LOTN Monitor. Data from July 2003 to December 2003 (VOC) 
SAMPLE SITE #   LOTN 34185 LOTN 34882 LOTN 35194 LOTN 35988 LOTN 36149 LOTN 36520 LOTN 36889 LOTN 37005 LOTN 37093 LOTN 37213 LOTN 37245 LOTN 37351
SAMPLE DATE   7/2/2003 8/9/2003 8/19/2003 9/24/2003 10/6/2003 11/5/2003 11/23/2003 12/5/2003 12/11/2003 12/20/2003 12/23/2003 12/26/2003 
ANALYSIS DATE   8/1/2003 9/11/2003 9/18/2003 10/11/2003 10/17/2003 11/18/2003 12/16/2003 12/30/2003 12/31/2003 1/8/2004 1/8/2004 1/13/2004 
FILE NAME   L3HA008 L3IJ015 N3IQ018 N3JJ015 N3JP020 N3KR018 L3LO019 L3L$014 L3L%006 L4AG020 L4AH006 N4AM010 
UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
Acetylene 0.08 0.36 0.97 0.62 2.00 2.43 0.56 0.58 2.11 2.15 2.70 0.84 3.01 
Propylene 0.11 0.19 0.45 0.29 1.04 1.01 0.59 0.17 0.34 0.35 0.59 0.24 1.50 
Dichlorodifluoromethane 0.15 0.33 0.64 0.69 0.69 0.67 0.47 0.64 0.58 0.61 0.63 0.65 0.64 
Chloromethane 0.10 0.28 0.60 0.63 0.54 0.56 0.65 0.54 0.51 0.53 0.48 0.62 0.49 
Dichlorotetrafluoroethane 0.11 ND ND ND ND ND ND ND ND ND ND ND ND 
Vinyl Chloride 0.13 ND ND ND ND ND ND ND ND ND ND ND ND 
1,3-Butadiene 0.12 ND 0.08 ND 0.14 0.12 0.05 ND ND ND ND ND 0.19 
Bromomethane 0.13 ND ND ND 0.03 ND 0.02 ND ND ND ND ND ND 
Chloroethane 0.13 ND ND ND ND ND 0.30 ND ND ND ND ND ND 
Acetonitrile 0.43 0.94 ND 0.87 8.46 0.28 116.85 18.77 ND ND ND ND 0.39 
Trichlorofluoromethane 0.07 0.17 1.19 0.34 0.36 0.35 0.62 0.27 0.25 0.24 0.25 0.29 0.26 
Acrylonitrile 0.37 ND ND ND ND ND ND ND ND ND ND ND ND 
1,1-Dichloroethene 0.11 ND ND ND ND ND ND ND ND ND ND ND ND 
Methylene Chloride 0.09 ND 0.15 0.08 0.39 0.28 0.12 ND ND ND ND ND 0.14 
Trichlorotrifluoroethane 0.10 ND 0.12 0.16 0.08 0.08 0.09 0.10 0.10 0.09 ND 0.09 0.08 
trans - 1,2 - Dichloroethylene 0.12 ND ND ND ND ND ND ND ND ND ND ND ND 
1,1 - Dichloroethane 0.06 ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl tert-Butyl Ether 0.16 ND 0.16 ND 0.12 0.09 ND ND ND ND ND ND 0.07 
Methyl Ethyl Ketone 0.25 0.64 1.39 1.01 0.52 0.27 ND 0.55 ND ND ND ND ND 
Chloroprene 0.07 ND ND ND ND ND ND ND ND ND ND ND ND 
cis-1,2-Dichloroethylene 0.14 ND ND ND ND ND ND ND ND ND ND ND ND 
Bromochloromethane 0.21 ND ND ND ND ND ND ND ND ND ND ND ND 
Chloroform 0.09 ND ND 0.02 0.05 0.04 0.18 ND ND ND ND ND 0.04 
Ethyl tert-Butyl Ether 0.14 ND ND ND ND ND ND ND ND ND ND ND ND 
1,2 - Dichloroethane 0.11 ND ND ND ND ND ND ND ND ND ND ND ND 
1,1,1 - Trichloroethane 0.10 ND 0.02 ND 0.03 0.03 0.03 ND ND ND ND ND ND 
Benzene 0.06 ND 0.38 0.19 0.72 0.68 0.49 0.19 0.34 0.33 0.43 0.20 0.76 
Carbon Tetrachloride 0.08 0.03 0.09 0.09 0.11 0.11 0.08 0.10 0.09 0.10 0.04 0.04 0.08 
tert-Amyl Methyl Ether 0.16 ND ND ND ND ND ND ND ND ND ND ND ND 
1,2 - Dichloropropane 0.07 ND ND ND ND ND ND ND ND ND ND ND ND 
Ethyl Acrylate 0.27 ND ND ND ND ND ND ND ND ND ND ND ND 
Bromodichloromethane 0.09 ND ND ND ND ND ND ND ND ND ND ND ND 
Trichloroethylene 0.17 ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl Methacrylate 0.19 ND ND ND ND ND ND ND ND ND ND ND ND 
cis -1,3 - Dichloropropene 0.10 ND ND ND ND ND ND ND ND ND ND ND ND 
Methyl Isobutyl Ketone 0.25 ND ND ND ND ND 15.06 ND ND ND ND ND ND 
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Table C-10. Continued 
SAMPLE SITE #   LOTN 34185 LOTN 34882 LOTN 35194 LOTN 35988 LOTN 36149 LOTN 36520 LOTN 36889 LOTN 37005 LOTN 37093 LOTN 37213 LOTN 37245 LOTN 37351
SAMPLE DATE   7/2/2003 8/9/2003 8/19/2003 9/24/2003 10/6/2003 11/5/2003 11/23/2003 12/5/2003 12/11/2003 12/20/2003 12/23/2003 12/26/2003 
ANALYSIS DATE   8/1/2003 9/11/2003 9/18/2003 10/11/2003 10/17/2003 11/18/2003 12/16/2003 12/30/2003 12/31/2003 1/8/2004 1/8/2004 1/13/2004 
FILE NAME   L3HA008 L3IJ015 N3IQ018 N3JJ015 N3JP020 N3KR018 L3LO019 L3L$014 L3L%006 L4AG020 L4AH006 N4AM010 
UNITS MDL ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
trans - 1,3 - Dichloropropene 0.13 ND ND ND ND ND ND ND ND ND ND ND ND 
1,1,2 - Trichloroethane 0.09 ND ND ND ND ND ND ND ND ND ND ND ND 
Toluene 0.06 0.58 1.26 0.41 1.57 1.64 6.00 0.21 0.49 0.48 0.62 0.27 0.96 
Dibromochloromethane 0.07 ND ND ND ND ND ND ND ND ND ND ND ND 
1,2-Dibromoethane 0.07 ND ND ND ND ND ND ND ND ND ND ND ND 
N-Octane 0.12 ND 0.08 ND ND 0.03 1.67 ND ND ND ND ND 0.05 
Tetrachloroethylene 0.10 ND 0.02 ND 0.05 0.06 0.03 ND ND ND ND ND ND 
Chlorobenzene 0.10 ND ND ND ND ND ND ND ND ND ND ND ND 
Ethylbenzene 0.08 ND 0.16 0.06 0.24 0.16 0.47 ND ND ND ND ND 0.17 
m,p - Xylene 0.08 0.13 0.42 0.18 0.83 0.69 2.27 ND 0.20 0.20 0.28 0.10 0.54 
Bromoform 0.07 ND ND ND ND ND ND ND ND ND ND ND ND 
Styrene 0.08 ND 0.03 ND 0.05 0.03 0.46 ND ND ND ND ND 0.07 
1,1,2,2 - Tetrachloroethane 0.09 ND ND ND ND ND ND ND ND ND ND ND ND 
o - Xylene 0.06 ND 0.22 0.06 0.38 0.28 1.03 ND 0.08 0.08 0.12 ND 0.23 
1,3,5-Trimethylbenzene 0.05 ND 0.06 0.02 0.08 0.06 0.81 ND ND ND ND ND 0.08 
1,2,4-Trimethylbenzene 0.09 ND 0.16 0.06 0.33 0.26 2.26 ND 0.07 0.08 0.12 ND 0.23 
m - Dichlorobenzene 0.12 ND ND ND ND ND ND ND ND ND ND ND ND 
Chloromethylbenzene 0.09 ND ND ND ND ND ND ND ND ND ND ND ND 
p - Dichlorobenzene 0.15 ND ND ND 0.07 0.04 0.04 ND ND ND ND ND 0.02 
o - Dichlorobenzene 0.12 ND ND ND ND ND ND ND ND ND ND ND ND 
1,2,4-Trichlorobenzene 0.16 ND ND ND ND ND ND ND ND ND ND ND ND 
Hexachloro-1,3-Butadiene 0.20 ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-11. LOTN Monitor. Data from January 2003 to December 2003 (Carb.) 
SAMPL
E # 31425 31601 31927 32029 32218 32391

32549 
D1 

 32549 
R1 

32552 
D2 

32552 
R2 32645 32885 33111

33290 
D1 

33290 
R1 

33294 
D2 

 33294 
R2 33447 34186 34883 35195 35989 36150 36891 37006 37094 37214 37246 37352

SAMPL
E 
DATE 1/3/03 

1/15/0
3 2/8/03 

2/20/0
3 3/4/03 

3/16/0
3

3/28/0
3

3/28/0
3

3/28/0
3

3/28/0
3 4/9/03

4/21/0
3 5/3/09

5/15/0
3

5/15/0
3

5/15/0
3 

5/15/0
3 

5/27/0
3 7/2/03 8/9/03

8/19/0
3

9/24/0
3

10/6/0
3

11/23/
03

12/5/0
3

12/11/
03

12/20/
03

12/23/
03

12/26/
03

ANAL
YSIS 
DATE 2/6/03 

2/13/0
3 

3/11/0
3 

3/12/0
3 4/7/03 

4/25/0
3 5/9/03

5/10/0
3 5/9/03 5/9/03

5/15/0
3

5/30/0
3 6/3/03

6/25/0
3

6/25/0
3

6/25/0
3 

6/25/0
3 7/8/03 8/7/03 9/8/03

9/23/0
3

11/4/0
3

11/12/
03

12/30/
03

1/11/0
4

1/14/0
4 2/3/04 2/3/04 2/5/04

FILE 
NAME 

V3BE
037  

V3BL
027 

V3CJ
022  

F3CL
014 

F3DG
007  

F3DX
022  

F3EI0
09  

F3EI0
10  

F3EI0
07  

F3EI0
08  

F3EO
008  

V3E#
021  

F3FB
021  

V3FX
025  

V3FX
026  

V3FX
027  

V3FX
028  

V3GG
045  

F3HF
040  

V3IH
020  

F3IV0
24  

F3KC
022  

V3KK
020  

V3L$
019  

V4AK
018  

V4AN
009 

V4BB
038  

V4BB
039  

V4BD
007  

UNITS ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv 
Formal
dehyde 1.196 2.026 2.414 0.909 3.040 3.399 2.862 2.867 2.911 2.882 0.970 2.447 2.956 3.547 3.574 3.278 3.268 3.644 3.746 10.18 5.360 3.610 2.058 2.941 1.217 1.850 2.532 1.987 1.346
Acetald
ehyde 0.489 0.770 0.834 0.441 1.114 1.403 0.824 0.830 0.830 0.828 0.521 0.766 1.124 1.025 1.019 0.917 0.910 1.220 0.730 0.916 0.716 1.180 0.996 0.690 0.516 0.560 0.949 0.535 0.586
Acetone 0.651 1.025 1.083 0.549 2.094 1.112 0.720 0.717 0.697 0.696 1.268 0.768 0.718 0.538 0.532 0.424 0.412 0.762 0.012 0.014 0.013 0.031 0.029 0.017 1.136 1.161 1.110 0.825 0.615
Propion
aldehyd
e 0.052 0.079 0.095 0.056 0.109 0.177 0.108 0.097 0.107 0.104 0.063 0.126 0.179 0.207 0.207 0.197 0.195 0.251 0.005 0.012 0.006 0.005 0.003 0.003 0.059 0.056 0.079 0.047 0.054
Crotona
ldehyde 0.005 0.008 0.008 0.002 0.037 0.043 0.026 0.024 0.024 0.031 0.015 0.033 0.057 0.184 0.186 0.167 0.168 0.093 0.308 0.300 0.259 0.103 0.055 0.025 0.025 0.028 0.048 0.018 0.023
Butyr/Is
obutyral
dehyde 0.097 0.103 0.117 0.088 0.165 0.210 0.188 0.189 0.194 0.208 0.211 0.311 1.149 0.579 0.580 0.442 0.443 0.482 0.113 0.193 0.098 0.135 0.113 0.146 0.102 0.112 0.106 0.070 0.063
Benzald
ehyde 0.018 0.037 0.032 0.012 0.038 0.047 0.019 0.020 0.020 0.032 0.022 0.056 0.135 0.088 0.085 0.082 0.088 0.073 0.052 0.085 0.052 0.044 0.032 0.019 0.022 0.027 0.055 0.017 0.024
Isovaler
aldehyd
e ND ND ND ND ND ND ND ND ND ND ND 0.003 0.021 0.014 0.014 0.014 0.013 0.012 ND 0.029 ND ND 0.011 0.006 0.006 0.004 0.017 0.004 0.008
Valeral
dehyde 0.018 0.031 0.028 0.013 0.033 0.053 0.029 0.029 0.026 0.030 0.017 0.034 0.056 0.046 0.045 0.044 0.043 0.063 0.040 0.087 0.040 0.052 0.036 0.020 0.017 0.015 0.020 0.015 0.015
Toluald
ehydes 0.012 0.021 0.022 0.009 0.040 0.035 0.016 0.018 0.020 0.017 0.014 0.014 0.038 0.041 0.040 0.039 0.031 0.052 0.050 0.086 0.064 0.040 0.027 0.033 0.023 0.036 0.050 0.024 0.027
Hexalde
hyde 0.025 0.024 0.024 0.016 0.036 0.074 0.030 0.029 0.030 0.029 0.019 0.047 0.070 0.063 0.064 0.059 0.050 0.095 0.046 0.111 0.046 0.051 0.051 0.024 0.021 0.020 0.028 0.020 0.017
2,5-
Dimeth
ylbenza
ldehyde ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
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Table C-12. Modeled and monitored PMSATs in Nashville, 2003 
 Benzene [ug/cum]   Formaldehyde [ug/cum]   Acetaldehyde [ug/cum]   1,3 Butadiene [ug/cum]   EC [ug/cum]  Date 2003 

 Modeled   EATN  Modeled   LOTN  Modeled EATN  Modeled LOTN  Modeled EATN  Modeled   LOTN  Modeled EATN  Modeled LOTN  Modeled LOTN 

4-Mar  2.132   2.232   2.132   2.391  1.240   3.533  1.240   3.727  1.580   2.034  1.580   2.003  0.177   0.177  0.177   0.419     

16-Mar  0.934   3.379   0.934   3.411  2.645   3.487  2.645   4.167  1.456   2.225  1.456   2.522  0.059   0.309  0.059   0.221  0.886   1.150 

22-Mar                                  0.610   0.940 

28-Mar  0.442   0.901   0.442   0.685  1.410   3.198  1.410   3.531  0.862   1.690  0.862   1.489          0.343   0.460 

2-Jun                                  0.593   0.812 

6-Jun  0.383   1.243       2.087   4.305                         

8-Jun                                  0.470   0.928 

14-Jun                                  0.241   0.505 

20-Jun  0.312   0.510               0.658   1.858              0.361   0.400 

26-Jun                                  0.735   0.748 

6-Sep                                  0.565   0.440 

12-Sep  0.823   2.199       4.000   4.898      1.709   2.458      0.060   0.215      0.755   1.120 

18-Sep                                  0.630   0.920 

24-Sep  0.935   2.146   0.935   2.282  3.086   4.603  3.086   4.425  1.405   2.384  1.405   2.122  0.071   0.341  0.071   0.319  0.803   1.530 

30-Sep                                  0.813   0.910 

5-Dec      0.942   1.084      0.301   1.491      0.661   0.928          0.348   0.360 

11-Dec      0.556   1.052      0.762   2.268      0.594   1.007          0.453   0.300 

17-Dec  0.518   1.243       0.807   2.545  1.051     0.547   1.102              0.462   0.330 

20-Dec      0.810   1.371      0.741   3.104      0.808   1.707             

23-Dec      0.835   0.638      1.704   2.436      0.828   0.963          0.333   0.330 

26-Dec      1.515   2.423        1.650      1.419   1.054      0.151   0.419     

29-Dec  1.079   1.148       0.941   1.038      1.269   0.591                 

                                      

Mean  0.840   1.667   1.011   1.704  2.027   3.451  1.438   2.978  1.186   1.793  1.068   1.533  0.092   0.261  0.115   0.345  0.553   0.717 

STDEV  0.558   0.889   0.516   0.957  1.138   1.246  0.913   1.070  0.439   0.652  0.389   0.589  0.057   0.077  0.058   0.095  0.197   0.361 
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Table C-13. Daily EC concentrations (Data from January 2003 to December 2003) 
 
Month Day LOTN Month Day LOTN 
    [ug/m3]     [ug/m3]

1 3 0.2600 7 2 0.5700
1 9 0.3900 7 8 0.4300
1 15 0.3500 7 14 0.9300
1 21 0.4400 7 20 0.7700
1 27 0.5300 7 26 0.8000
2 2 0.3300 8 1 0.6500
2 8 0.4400 8 7 0.7300
2 14 0.5600 8 13 0.4100
2 20 0.3200 8 19 0.3900
2 26 0.3800 8 25 1.0400
3 4 0.9700 8 31 0.2800
3 10 0.3700 9 6 0.4400
3 16 1.1500 9 12 1.1200
3 22 0.9400 9 18 0.9200
3 28 0.4600 9 24 1.5300
4 3 0.5000 9 30 0.9100
4 9 0.4700 10 6 1.3200
4 15 1.3700 10 18 0.7800
4 21 0.4700 10 24 0.8000
4 27 0.8100 10 30 0.6500
5 3 0.4600 11 5 0.3300
5 9 0.7000 11 11 0.5300
5 15 0.8000 11 17 0.6500
5 21 0.4200 11 23 0.3800
5 27 0.9500 11 29 0.2800
6 2 0.8100 12 5 0.3600
6 8 0.9300 12 11 0.3000
6 14 0.5100 12 17 0.3300
6 20 0.4000 12 23 0.3300
6 26 0.7500 12 29 1.0500
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