
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2006

High Performance Control of a Transmission Based Servo High Performance Control of a Transmission Based Servo

Actuator System Actuator System

Renbin Zhou
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Zhou, Renbin, "High Performance Control of a Transmission Based Servo Actuator System. " PhD diss.,
University of Tennessee, 2006.
https://trace.tennessee.edu/utk_graddiss/1903

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268767176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1903&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1903&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Renbin Zhou entitled "High Performance

Control of a Transmission Based Servo Actuator System." I have examined the final electronic

copy of this dissertation for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in

Mechanical Engineering.

William R. Hamel, Major Professor

We have read this dissertation and recommend its acceptance:

Vijay S. Chellaboina, John Chiasson, Seddik M. Djouadi, Lynne E. Parker, Gary V. Smith

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Renbin Zhou entitled “High
Performance Control of a Transmission Based Servo Actuator System.” I have
examined the final electronic copy of this dissertation for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Mechanical Engineering.

William R. Hamel
Major Professor

We have read this dissertation
and recommend its acceptance:

Vijay S. Chellaboina

John Chiasson

Seddik M. Djouadi

Lynne E. Parker

Gary V. Smith

Acceptance for the Council:

Anne Mayhew
Vice Chancellor and
Dean of Graduate Studies

(Original signatures are on file with official student records.)

High Performance Control of a Transmission

Based Servo Actuator System

A Dissertation

Presented for the Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Renbin Zhou

May, 2006

 ii

Copyright © 2006, by Renbin Zhou

All rights reserved

 iii

Acknowledgement

I would like to thank Dr. William R. Hamel for his support and guidance

throughout my graduate study in the Robotics and Electromechanical Systems

Laboratory of the Department of Aerospace, Mechanical, and Biomedical

Engineering at the University of Tennessee, Knoxville. I would like to thank him

for his help in rewrite most of the dissertation draft, it is a rewarding experience

which I will benefit from for the years ahead.

I would like to thank our TBA team, of which I was a member. It is this

team’s work that built the TBA prototype, on which my dissertation research is

developed. The TBA team includes Dr. William Hamel, Dr. Arnold Lumsdaine,

Dr. Spivey Douglass, Dr. Sewoong Kim, Kelley P. Brown, Sriram Sridharan,

Kalyana Ganti, and many others.

I would like to thank Heather Humphreys for her kind help to edit the first

draft of the dissertation. I would like to thank Ge Zhang for the technical

discussions during my initial transition to real time Linux world. I would like to

thank Dr. Reid Kress for his help during my initial transition to the university. I

would also like to thank my committee members for their time and guidance in

making this dissertation possible.

My greatest thanks go to my family: my parents, my wife and my daughter.

It is their love that leads me through all the difficulties and makes all my effort

meaningful, and here I humbly dedicate this work to them.

 iv

Abstract

High performance actuation is a key factor in the industrial robot area. The

transmission based servo actuator system (TBA) is a new type of robot actuator

with a brushless DC servo motor and a three speed discrete variable

transmission (DVT). The proposed TBA design can match the performance of a

typical hydraulic actuator with compact size and weight.

The TBA is a typical hybrid dynamic system consisting of three continuous

dynamic systems and a discrete state controller. This dissertation addresses the

fundamental problems associated with the TBA system control from a hybrid

system point of view.

A detailed dynamic model of the TBA is developed. Due to the complexity

of the TBA system, an exact model is unwieldy for control design and analysis

purposes. In this research, the TBA system is simplified into a hybrid system with

three second order linear time invariant systems, on which all the controls are

developed.Dynamic stability of the TBA is critical for its function as a

servoactuator. For a hybrid system, the stability problem has much broader

range of issues than a purely continuous system.

In general, the plant stability and the subsystem stability are independent.

For example, a hybrid system with stable subsystems can be unstable for certain

switch sequences; on the other hand, a hybrid system with unstable subsystems

can be stabilized by proper switch signals. In this dissertation, a sufficient

condition is established for stability of the TBA system. It is proven that the hybrid

system is stable under asynchronous switching if there exists a common

 v

Lyapunov function for all subsystems. It is proven that the TBA subsystems can

have a common Lypunov function by designing appropriate feedback controller.

The feedback controller to stabilize the TBA can be transformed into a PID

equivalent controller because the subsystems are second order linear time

invariant systems (LTI). The PID controller was then implemented and high

performance in terms of position error and transient suppression has been

achieved. The discrete state controller should be stable, which means that its

output should be consistent if the hybrid system is subjected to disturbances. A

common phenomenon is that the state changes back and forth very frequently

near the switch boundary, which is referred to as transition instability. This

research proposes a switch strategy consisting of two boundaries to achieve the

transition stability, and it is proved that the proposed switch strategy is transition

stable.

An optimal controller is designed and difficulties associated with

implementation are generated.

Based on the proposed control methods, a multithread real time control

software has been developed to achieve a deterministic control loop sampling.

The control software is developed in C/C++ under Real Time Application

Interface (RTAI), which provides a real time programming environment in a

normal Linux operating system.

With the proposed controller and a prototype TBA test system, TBA

stability and control performance was demonstrated and evaluated. The following

results were observed:

 vi

1. Steady state error of 0.005 degrees at the emulated robust manipulator

shoulder pitch joint

2. Control loop sampling period of 1 millisecond with negligible delay

3. Transient disturbances associated with the gear shifting of ~20% in most

cases.

4. The methods and applications used in this dissertation can be extended to

a large range of hybrid dynamic systems in terms of control system

design, analysis and implementation.

This research contributes to the literature and research knowledge base in

the following ways:

1. Exploration and solution of the control problems of TBA’s in the hybrid

system control context.

2. Expansion of the fundamental understanding of the practical control

issues of TBA’s.

3. Analysis, design, and implementation of a real time TBA control system,

and identification of the most suitable control strategy for the TBA.

4. The development of analysis and control methods that can be extended to

a much broader range of hybrid dynamic systems.

 vii

TABLE OF CONTENTS

CHAPTER 1 BACKGROUND AND INTRODUCTION.. 1

HISTORY OF INDUSTRY ROBOT –ACTUATOR AND CONTROL................... 1

AN INTRODUCTION OF TBA – IDEAS, DESIGN, AND INTEGRATION 10

TBA Prototype and the Experimental System 19

SCOPE AND ORGANIZATION OF THE DISSERTATION............................. 22

CHAPTER 2 MATHEMATICAL MODELING .. 24

BLDC MODEL ... 24

THREE SPEED DVT MODEL - A HYBRID DYNAMIC SYSTEM 29

A Single Planetary Gear Model .. 33

A Three Speed DVT Model .. 36

A ROBOT ARM MODEL ... 40

THE TBA PROTOTYPE MODEL.. 41

CHAPTER 3 TBA CONTROLS... 45

BACKGROUND ... 45

SUPERVISORY CONTROL.. 54

Switch Strategy- Transition Stability 54

HYBRID SYSTEM STABILITY - TBA.. 65

CONTROLLER DESIGN AND IMPLEMENTATION 72

State Feedback Control.. 73

Optimal Control and Robust Control Discussion 85

SUMMARY ... 93

CHAPTER 4 CONTROL SYSTEM SOFTWARE.. 95

TBA DESIGN REQUIREMENT... 96

OPERATING SYSTEM - INTRODUCTION ... 98

GPOS and RTOS ... 98

RTAI/Linux.. 105

TBA SOFTWARE DESIGN.. 109

A Windows/LabVIEW Implementation.............................. 110

Multithread Design with RTAI ... 111

 viii

A Graphical User Interface ... 113

CHAPTER 5 SIMULATIONS AND EXPERIMENTS ... 115

MATLAB/SIMULATION ... 115

BLDC Motor.. 115

DVT .. 117

Simulation Results.. 117

REAL TIME CONTROL EXPERIMENTAL RESULTS 122

Transition Unstable vs. Stable Switch Signals.................. 123

Position Error.. 126

DVT Speed and Disturbances .. 126

Real Time Performance.. 130

Load Torques ... 130

Experimental Results Summary 131

CHAPTER 6 CONTRIBUTIONS AND FUTURE WORK................................... 133

CONTRIBUTIONS .. 133

FUTURE WORK.. 135

LIST OF REFERENCES .. 137

APPENDIX ... 142

DVT MODEL .. 143

3rd gear derivation: (Brake #1, lowest ratio)..................... 143

2nd gear derivation (brake #2, middle ratio) 147

1st gear derivation (brake #3, highest ratio) 151

A planetary gear with ring gear locked: 156

EXPERIMENTAL RESULTS.. 158

Zero load .. 158

25% load .. 160

50% load .. 162

75% load .. 164

TBA LOW LEVEL CONTROL SOFTWARE SOURCE CODE 166

tbacontrol.c... 166

common.h... 169

 ix

common.c... 172

control.h.. 175

loadcell.c .. 182

motorcontrol.c... 184

ni6023e.h.. 197

ni6023e.c.. 199

ni6711.h.. 205

ni6711.c.. 207

setmode.h... 209

setmode.c... 210

shiftcontrol.h ... 219

shiftcontrol.c ... 220

tbacontrol.c... 223

TBAGUI... 226

realtime.c.. 226

mainwidow.h... 227

mainwindow.cpp... 228

randomplot.h .. 231

mainwindow.cpp... 233

incrementalplot.cpp .. 242

scrollbar.h... 244

scrollbar.cpp ... 245

scrollzoomer.h .. 248

scrollzoomer.cpp .. 250

VITA ... 258

 x

LIST OF TABLES

Table 1.1, Titan II performance specifications .. 11

Table 1.2, Load matching index for different TBA design 19

Table 5.1, Motor parameters .. 116

Table 5.2, DVT parameters and motor-DVT combinations............................... 117

Table 5.3, Test combinations.. 118

Table 5.4, Simulation results (Full load) ... 118

Table 5.5, simulation result (half load).. 120

Table 5.6, Position errors for different loads... 127

Table 5.7, Maximum tracking errors for different loads..................................... 127

Table 5.8, Real time performance and jitter results .. 130

 xi

LIST OF FIGURES

Figure 1.1, DC motor equivalent model .. 2

Figure 1.2, DC motor closed loop position control .. 3

Figure 1.3, BLDC system setup.. 5

Figure 1.4, BLDC servo control diagram .. 5

Figure 1.5, AC servo control system diagram... 7

Figure 1.6, AC, BLDC power-weight curve... 8

Figure 1.7, AC, BLDC, DDR power-weight curve ... 9

Figure 1.8, Titan II equivalent model .. 12

Figure 1.9, Baseline torque speed curve .. 12

Figure 1.10, Typical BLDC torque speed curve.. 13

Figure 1.11, BLDC with two speed DVT torque speed curve 17

Figure 1.12, BLDC with three speed gear box torque speed curve 18

Figure 1.13, TBA system hardware layout.. 20

Figure 1.14, Three speed DVT ... 21

Figure 2.1, A functional BLDC construction diagram with four pole pairs 25

Figure 2.2, Trapezoidal back EMF.. 26

Figure 2.3, The gear shift system modeled as a finite state machine 32

Figure 2.4, A single planetary gear set ... 34

Figure 2.5, A prototype robot arm... 41

Figure 3.1, A typical hybrid dynamic system control block diagram.................... 47

Figure 3.2, Unstable hybrid system with stable dynamic subsystems 51

Figure 3.3, Two dimensional switch curve.. 59

 xii

Figure 3.4, Two dimensional switch curve with disturbance 61

Figure 3.5, A shift strategy with two shift boundaries.. 62

Figure 3.6, State feedback control diagram.. 72

Figure 3.7, Lyapunov function sets for zero load .. 75

Figure 3.8, Lyapunov function sets for maximum load 76

Figure 3.9, Equivalent control subsystem diagram... 77

Figure 3.10, Top level control system diagram... 78

Figure 3.11, Servo motor control diagram .. 79

Figure 3.12, Dynamometer torque control diagram .. 79

Figure 3.13, TBA Control System Diagram .. 80

Figure 3.14, TBA gear shift strategy (prototype)... 81

Figure 3.15, TBA gear shift strategy (real system) ... 82

Figure 3.16, General TBA optimal control diagram... 86

Figure 3.17, Second optimal control problem system diagram........................... 87

Figure 3.18, TBA robust for disturbance attenuation .. 90

Figure 3.19, Open and closed loop magnitudes ... 91

Figure 3.20, Open and closed loop magnitudes ... 92

Figure 4.1, TBA subsystems interconnection relation... 95

Figure 4.2, Standard Linux three layer model... 99

Figure 4.3, GPOS task status... 101

Figure 4.4, Process state diagram in an RTOS .. 102

Figure 4.5, RTAI/Linux system architecture.. 106

Figure 4.6, Windows/LabVIEW diagram... 110

 xiii

Figure 4.7, TBA real time control software implementation diagram 111

Figure 4.8, Screen shot of GUI ... 114

Figure 5.1, Top level Simulink model (Linear Model).. 115

Figure 5.2, Three speed DVT with full load .. 119

Figure 5.3, Simulation results with new trajectory design 121

Figure 5.4, Single boundary, state based shift strategy (half load) 123

Figure 5.5, Single boundary, state based shift strategy (full load) 124

Figure 5.6, Two boundaries, hybrid switch signal (half load) 125

Figure 5.7, Two boundaries, hybrid switch signal (full load) 125

Figure 5.8, Position error with full load ... 127

Figure 5.9, BLDC speed with full load .. 128

Figure 5.10, DVT speed with full load... 128

Figure 5.11, DVT speed disturbance near gear change from 2nd gear to 1st 129

Figure 5.12, BLDC servo motor and dynamometer load torque (full load)........ 132

 xiv

 LIST OF DEFINITIONS

Power index.. 14

Load region index ... 14

Load matching index .. 15

TBA gear numbers ... 33

Time-based switch signal [19] .. 55

State-based switch signal ... 55

Hybrid switch signal.. 56

Stabilities .. 66

RTOS ... 99

 xv

LIST OF SYMBOLS

max1

max 2

maximum velocity at the maximum load

maximum velocity at the minimum load

 motor moment of inertia

, , motor inductances

, ,

d q

d q

J

L L L

i i i

ω
ω

motor currents(average, d-axis, q-axis)

, , motor voltages(average, d-axis, q-axis)

, motor back emf constant and torque constant

, motor rotor angul

d q

e t

R R

v v v

k k

θ ω ar position and velocity

, coeffients of friction

static friction

, motor phase currents and voltages

, , , load, input, output, and br

i m

s

si si

load in out b

b b

f

i u

T T T T

titan

si ci pi ri

ake torque

, baseline and required torques

, , , moments of inertia of sun, carrier, planetary, and ring gears

, , , angular positions of sun, carrier, planeta

r

si ci pi ri

P P

J J J J

θ θ θ θ ry, and ring gears

 TBA states (i=1,2,3)

 set of TBA states, D={ (i=1,2,3)}

 inverse of TBA gear ratios (i=1,2,3)

 TBA b

i

i

i

bi

D

T

δ

δ

γ

k

rake torque (i=1,2,3)

 TBA equivalent moment of inertia (i=1,2,3)

, , , radii of sun,carrier,planetory,ring gear (i=1,2,3)

 Lagrange multipliers (k=1

eqi

si ci pi ri

J

r r r r

λ ,2,...,6)

, , kinetic, potential, and dissipation energyK V F

 1

CHAPTER 1

Background and Introduction

History of Industry Robot –Actuator and Control

Actuation of robot manipulators has been a driving factor in industrial robot

research and applications; its impact can be found in both the expansion of the

areas of application and in performance improvements. For example, if an

electrically driven robot had not been invented, robot applications in the food

industry and medical practice would have been unlikely. This advancement

allowed both accuracy and repeatability to be achieved at levels as small as tens

of micrometers.

The first industrial robot, a UNIMATE robot, was put into an assembly line

by General Motors in 1961. It was purely hydraulic driven, and hydraulic servo-

actuators were the most common actuator type in the decade that followed. The

first UNIMATE had a successful life as a die-caster until it was retired after more

than ten years of service, and it is now on display in the Smithsonian Institute in

Washington.

Despite the success of hydraulic actuators in the early period, they have

long been known to have problems like complexity, poor maintainability, low

accuracy, and some environmental issues. Today, hydraulic actuator driven

robots can only be found in application areas where high payloads or other

 2

considerations must be addressed, such as undersea exploration, underground

waste storage tanks, and deactivation and decommissioning (D&D) projects [1].

The Titan II and Titan III robot manipulators from Schilling Robotics are designed

for these types of applications and are proven to be adequate and successful.

An electric motor driven robot does not have many of the problems of a

hydraulic actuation. Around 1974, researchers started to build a pure electric

motor driven robot, and fast growth occurred in this research area in the years

that followed. Today, the electric motor driven robot prevails in almost all

industrial robot applications.

Electric motors can be divided into two major categories: direct current

(DC) and alternating current (AC) motors. The DC motor is characterized by an

evenly distributed magnetic field in the air gap. It is known for its ease of use by

simply supplying a DC voltage to the rotor windings. DC motors are widely used

in robot design applications, especially small ones. Large DC motors are difficult

to make; the challenges are management of the heat generated in the rotor

windings and wearing of the mechanical brushes, etc. Like other electric motors,

DC motor operation principles can be represented by an equivalent electrical

circuit and a dynamic mechanical system as shown in Figure 1.1. The

mathematical model of a DC motor is shown in Equation (1.1).

Figure 1.1, DC motor equivalent model

 3

e R

R
t m R s load

diL V K iR
dt
dJ K i b f T
dt

ω

ω ω

= − −

= − − −
 (1.1)

When DC motors are operated at steady state, the left sides of the equations are

very small and can be treated as zero; thus, the relation between motor speed

and supply voltage is linear if the load torque is constant, which makes it possible

to use open loop speed control. Similarly, it is also possible to have open loop

torque control if the motor speed is constant. But closed loop control is generally

used in practice in order to achieve the desired servo performance.

Figure 1.2 shows a simple DC motor closed loop position control in

voltage mode with a PID controller.

In order to achieve continuous rotation, some devices must be used to

change the current direction in the rotor windings, which is called commutation.

For example, for a two-pole DC motor with a permanent magnet stator and a

wound rotor, the rotor current must commute every 180 degrees.

Figure 1.2, DC motor closed loop position control

 4

Conventionally, the commutation is achieved using mechanical brushes,

generally made from carbon material. The main problems associated with

brushes are arcing and brush wear, which not only limits its application areas, but

also increases maintenance costs. By turning the conventional DC motor inside

out, and using a wound stator and a permanent rotor, researchers created

another version of the electric motor. It is known as a Brushless DC Motor, or

simply a BLDC. For this type of motor to be continuously rotating, the

commutation on the stator current is achieved electronically with the aid of a

motor drive, thus avoiding the use of mechanical brushes. By eliminating the

mechanical brushes, the BLDC reliability is vastly improved. Figure 1.3 shows a

schematic diagram of a BLDC system. A BLDC motor generally has the following

characteristics:

1. It has multiphase stator windings, usually three.

2. It has a multi-pole permanent magnet rotor.

3. Correct operation requires correct commutation of the stator current,

generally by a pulse width modulation (PWM) drive; thus, the current in a

phase winding is alternating.

4. Combined with its drives and an appropriate controller, the BLDC can be

controlled as if it were a regular DC motor [2]. Figure 1.4 shows a typical

BLDC servo motor control diagram.

Unlike a DC motor, an AC motor has a sinusoidally wound stator, which

generates a sinusoidal distributed and rotating magnetic field in the air gap as the

current in the stator windings alternates. Based on the rotor type, AC motors can

be divided into synchronous and asynchronous motors.

 5

Figure 1.3, BLDC system setup

Figure 1.4, BLDC servo control diagram

 6

A synchronous motor is characterized by the capability of being operated

with the same speed for the rotor and the stator in steady state operation.

The torque on the rotor is generated by the direction difference between

the stator and rotor magnetic fields. The rotor of a synchronous motor can be a

permanent magnet or winding. For a wound rotor, the current in the rotor must be

kept constant in order to be operated as a synchronous motor, which generally

requires a constant current power source.

An asynchronous motor, on the other hand, needs a speed difference,

which is called slip, between the rotor and stator magnetic fields in order to

generate torque. The rotor does not have an external power source, so it is also

called induction motor.

An induction motor only needs an AC power source to be operated, is

virtually maintenance free and can accommodate a large range of loads.

Because of its simplicity to use, it is the best choice for applications where no

servo performance is required.

The reason an induction motor cannot be used as a servo motor is that

the speed of the rotor is fixed by the AC power source and the motor

construction.

With the help of a power electronic drive, an induction motor can be

controlled as a servo motor. A typical control system configuration is shown in

Figure 1.5.

Even though an induction motor can be used as servo motor, it generally

has a large power-weight ratio when compared with the BLDC servo motor.

 7

Figure 1.5, AC servo control system diagram

Because of advancements in permanent magnet material science, the

BLDC motors have higher power output with more compact size, which is a

critical constraint in applications with stringent size and weight limits, for

example, in industrial robot actuation applications.

Figure 1.6 shows a survey of the power-weight ratios of midsize electric

motors (2 hp to 5hp power) from some of the major manufacturers in industry:

Allen-Bradley, Reliance Electronic, Danaher, Baldor and Bayside. Figure 1.6 also

shows that BLDCs have about half of the weight of a normal AC motor with

similar power output.

Even though a BLDC motor provides adequately large power with a

compact size, it cannot be used in a robot actuator directly. The reason is that it

generally has a high rated speed and a low rated torque.

 8

5 10 15 20 25 30 35 40 45 50 55
1.5

2

2.5

3

3.5

4

4.5

5

po
w

er
(h

p)

weight (lbs)

AC, BLDC power-weight curve

AC
BLDC

Figure 1.6, AC, BLDC power-weight curve

For example, the Allen Bradley MPL-420P-M BLDC motor has a rated

speed of 5000 rpm and a rated torque of 4 N-m. However, a robot arm with a

similar power rating has a relatively low speed and high torque. For example, the

ABB IRB6400/3.0-100 industrial robot has a load capacity of 100 kg with speed

of about 20 rpm, and the torque output is about 3500 N-m. The Titan II hydraulic

manipulator is capable of handling about 100 kg load with a speed of about 3.5

rpm, and the corresponding torque requirement is about 3000 N-m.

The speed and torque incompatibility between high speed electric motor

and low speed robot joints must be resolved in order to use these electric motors.

The conventional solution is to attach a fixed ratio gear box to the motor output

shaft, and thus expand the torque capability of the motor with the penalty of

decreased speed. By using an appropriate motor and gear box, an electric motor

driven robot can handle a relatively large load at a low speed; for example, the

ABB IRB6400R can handle up to 500 kg with 2.3 m reach.

 9

A technical limitation of this approach occurs when the robot is used to

handle small weight. It cannot make full use of the motor power because the

maximum speed of the manipulator is determined by the gear box and motor

maximum speeds unless a motor magnetic field weakening technique is used.

Other problems include maintenance of the gearbox, gear backlash, and gear

tooth wear, which generate noise, vibration and performance degradation.

In order to eliminate a gear box in the robot design, researchers have

been trying to design a high torque, low speed servo motor; such motors are

called direct drive rotary (DDR) motors. DDR motors generally have large

diameters due to the need for multiple stator phases, and the weight is generally

much higher than BLDC and induction motors. Good examples of DDR motors

are Danaher’s Kollmorgen direct drive rotary D-series motors, which were

selected as Products-of-the-Year by Electronics Products magazine. Figure 1.7

shows the power-weight relation for BLDC, AC, and DDR motors.

0 20 40 60 80 100 120 140
1

1.5

2

2.5

3

3.5

4

4.5

5

po
w

er
(h

p)

weight (lbs)

AC, BLDC,DDR power-weight curve

AC
BLDC
DDR

Figure 1.7, AC, BLDC, DDR power-weight curve

 10

Even though the DDR motor has a higher weight than both the BLDC and

AC motors; because of the high torque and low speed capability, the gear box

can be small or even eliminated, which causes the system weight to decrease.

For example, with a similar power rating as the 2 KW Allen Bradley motor

mentioned earlier, the Kollmorgen DDR motor has a torque of 56 N-m and speed

of 250 rpm. In order to achieve the 3000N-m torque of the Titan II, the required

gear ratio is about 54, whereas for the BLDC motor, the required gear ratio is

750; this is more than 15 times the requirement for the DDR motor.

It is not easy to tell which system has the large total weight by only

comparing the motor weight, but existing DDR motors generally have a larger

overall size compared with BLDC motors with the same power rating. For

example, the Allen Bradley BLDC motor, MPL-420P-M, has an envelope

diameter of about 6 inches, whereas the Kollmorgen DDR of similar power rating

has an envelope diameter of about 11 inches. In summary, hydraulic actuators

are still used despite their obvious disadvantages. Electric motors are the most

widely used actuators in the industrial robot applications. With same power

rating, a BLDC actuator provides more compact design than an induction motor

design because the BLDC has a higher power to weight ratio.

An Introduction of TBA – Ideas, Design, and Integration

As discussed in the previous section, combined with a fixed ratio gearbox,

a BLDC can expand its torque range with the penalty of reduced speed. By using

an appropriate gearbox, a BLDC can often match necessary payload

 11

requirements, even these in the range of hydraulics. The feasibility of TBA has

been proven by an early project funded by DOE under grant # DE-AC26-

01NT41309. The TBA (Transmission based servo-actuator system) extends the

idea by using a multi-ratio gearbox to replace the single ratio gearbox.

An obvious argument about this idea is that the TBA increases system

complexity, which may decrease reliability. But further analysis shows that the

TBA has advantages compared with a single fixed ratio gearbox in terms of

operation efficiency, which can be illustrated by the design example introduced

later in this section. Before design of a TBA system, a baseline has to be

established. The Titan II hydraulic actuator at the shoulder pitch is taken as the

baseline actuator. A major consideration to use the Titan II as a baseline actuator

is that it provides enough load capability to cover most D&D tasks. Table 1.1

shows the performance specifications of a Titan II manipulator. When the Titan II

is at full reach, it can be modeled as a simple beam as shown in Figure 1.8,

where T is torque, θ is angular position, ω is angular velocity, α is angular

acceleration, L is the manipulator length, Ma is the manipulator mass, Mp is the

load mass and g is the gravity constant.

Table 1.1, Titan II performance specifications

Maximum reach 1915 mm 75.4 in

Maximum payload at full reach 113 Kg 250 lb

Manipulator mass 103 Kg 225 lb

Manipulator center of gravity 1000 mm 39.27 in

Maximum angular velocity (zero load) 0.73 rad/s (42º/s, 7rpm) same

Maximum angular velocity (half load) 0.52 rad/s (30º/s, 5rpm) same

Maximum angular velocity (full load) 0.35 rad/s (20º/s, 3.3rpm) same

 12

Figure 1.8, Titan II equivalent model

Figure 1.9, Baseline torque speed curve

When the manipulator is at a horizontal position as in Figure 1.8, if

acceleration is zero, the relationship between the hydraulic actuator torque

output and the manipulator angular velocity can be shown in Figure 1.9.

It is assumed that the hydraulic actuator is able to be operated at rated

power between full load and zero load. Notice that at zero load, the required

torque is not zero because of the manipulator weight. The power output of the

baseline hydraulic actuators can be calculated as in Equation (1.2).

minimum is torqueload when speed maximum
maximum is torqueload when speed maximum

max2

max1

2maxminmax1maxtitan

−
−

==

ω
ω

ωω
where

TTP

 (1.2)

 13

After the baseline is established, the design example can be formulated.

Suppose an electric motor actuator is to be used to match the baseline hydraulic

actuator’s performance, the following design questions are apparent:

1. Between a single fixed ratio gear box and a multiple ratio gearbox, which

is a better solution?

2. If a multiple ratio gear box is better, what is the best number of gear

ratios?

3. Is it possible to find a single quantitative parameter which can be used to

compare different designs?

First, let’s look at a typical BLDC motor torque speed curve, which can be

shown as the shaded area in Figure 1.10. For simplicity, a rectangular shape is

used for analysis as in Figure 1.10.

Figure 1.10, Typical BLDC torque speed curve

 14

Before comparing the different design options, it is useful to define some

dimensionless indices that characterize the sizing properties of the actuators.

Definition 1.1: Power index

Power index ()pζ - The ratio between required power rating and the power

of the baseline hydraulic actuator.

titan

Titan

 Required power of a design (rated power)
P Baseline power

r

r
p

P

P
P

ζ

−

−

=

 (1.3)

An immediate observation is that a design must provide at least the power

of the Titan II manipulator in order to match its torque and speed capability.

Therefore, by obvious assumption, the optimal value of power index is 1.

A desired design should have a power index close to 1, and a design with

a power index greater than 1 is called power over-designed.

Definition 1.2: Load region index ()aζ - The ratio between area covered by a

new design in the torque speed curve and the area of the baseline

hydraulic actuator torque speed curve.

titan

Titan

 Area covered by the torque speed curve for a design

Area covered by the torque speed curve for the baseline
r

r
a

A

A

A
A

ζ

−

−

=

 (1.4)

A desirable design will have a large load region index. Again, a similar

assumption as the previous one is used, that is, the optimal load region index is 1.

 15

Therefore, a design should have a load region index close to 1, and a load region

index greater than 1 is over designed.

Definition 1.3 : Load matching index (ζ) - The summation of equally

weighted power index and load region index.

0.50.5 pa ζζ ζ += (1.5)

The load matching index is relevant because, conceivably, the design

objective of the TBA system is to achieve a large load region index with a small

power index, which is equivalent to achieve large area coverage of the baseline

torque speed curve without going beyond the region. A design should have an

ζ close to 1, and a design with an ζ greater than 1 is over designed.

In this research, four designs are evaluated based on the load matching

index. The four designs are fixed gear reduction, two speed DVT, three speed

DVT, and four speed DVT.

Now, let’s first look at the design of a BLDC combined with a fixed ratio

gear box. In order to meet the torque and speed requirements simultaneously, a

BLDC motor must provide a rating power of at least 2maxmax ω×T as in Figure 1.10,

which is about two times of the power output of hydraulic actuator as described in

Equation (1.2).

The increased power rating generally means increased motor weight

and/or size. For this design, the load region index is ~2 and the power index is 2,

so the load match index is ~2. For all other three designs, the power indexes are

the same, since they use the same BLDC motor. In this analysis, the power index

 16

is 1 because the motor is selected to match the Titan II power rating. When

combining a BLDC with a two speed DVT, the gear ratios are chosen such that

the high torque region and the load torque region on the baseline torque speed

curve are covered.

Specifically, the lower ratio is chosen to match the maximum speed at

lowest load, the area covered by the torque speed curve associated with the low

ratio can be represented approximately by the region is 0-4-5-6-0 in Figure 1.11;

the high ratio is chosen to match the maximum speed at the highest load, such

that the area covered by torque speed curve associated with the high ratio can

be represented approximately by the region is 0-1-2-3-0 in Figure 1.11. As a

result, the area covered by the torque speed of this two speed DVT system has a

torque speed curve as shown in Figure 1.11, which is overlaid with the baseline

torque speed curve as in Figure 1.9. The torque speed curve for low ratio is the

rectangular area enclosed by lines 0-1-2-3-0, and 0-4-5-6-0 for high ratio; thus,

the total area for the two speed design is enclosed by 0-1-2-7-5-6-0.

Even though this design matches the performance specification for the

maximum load and minimum load, and power requirement for the above design

is similar to that of the baseline actuator as calculated in Equation (1.2).

One problem still exists: the area enclosed by 2-5-7-2 is not reachable by

this two speed design, which means this two speed design cannot work in the

region enclosed by 2-5-7-2, and the load matching index is 0.943. By adding one

more gear ratio between the high and low ratio to the two speed DVT, a three

speed DVT is formed.

 17

Figure 1.11, BLDC with two speed DVT torque speed curve

The new added gear ratio is chosen such that the load region index is

maximized. The torque speed curve for the high and low ratios are the same as

those of two speed DVT, and the area covered by torque speed curve associated

with the middle ratio is the enclosed rectangle area 0-8-9-10-0 in Figure 1.12.

The total covered area for this three speed design is an enclosure of 0-1-

2-11-9-12-5-6-0. The torque speed curve of this three ratio design overlaid on the

baseline torque speed curve can be shown in Figure 1.12. The power index of

the three speed DVT is the same as the two speed DVT, but the load region

index is larger. Thus, the load matching index is larger and is closer to 1, the

actual value of the load matching index is 0.968.When another gear ratio is

added, a four speed DVT is formed. The high ratio and the low ratio are the same

as the two speed and three speed DVT.

The two ratios between the high and low ratio are chosen such that the

load region index is maximized. The four speed DVT has a load matching index

of 0.975.

 18

Figure 1.12, BLDC with three speed gear box torque speed curve

If more intermediate gear ratios are added, more area will be covered,

thus increasing the load matching index, we can say that the design matches the

baseline hydraulic actuator better. Ideally, if the number of gear ratios could be

infinitely large, as in a continuously variable transmission, the load matching

index would become closer to 1. However, as the number of gear ratios

increases, the complexity of the gear box increases as well. There is a tradeoff

between number of gears and the complexity of the system. A heuristic rule is

that a design should have load matching index closer to 1 with less gear ratios.

Based on the above analysis, the load matching index for different designs

can be calculated by Equation (1.5). These results are shown in Table 1.2.

From Table 1.2, fixed ratio gear box is greatly over designed and thus

demonstrated the issues with fixed ratio electrical servo-actuators. The other

three designs are candidates for further comparison. Two speed DVT is

eliminated because it is significantly under designed, which can be verified by

examining the torque speed curve as shown in Figure 1.11.

 19

Table 1.2, Load matching index for different TBA design

Design No. Name Load matching index

Baseline Baseline hydraulic actuator 1

1 Fixed ratio gear box ~2

2 Two-speed DVT 0.943

3 Three-speed DVT 0.968

4 Four-speed DVT 0.975

Three speed DVT increases the load matching index by 0.025 by adding

one more gear ratio on two speed DVT.Four speed DVT increases the load

matching index by 0.007 by adding one more gear ratio on three speed DVT.

Three speed DVT was chosen against four speed DVT because the three speed

DVT has a larger increase on the load matching index by adding only one more

gear ratio.

Following the same analysis, if the TBA has infinitely many gear ratios, or

if it can change gear ratios continuously, the TBA can match the baseline

hydraulic actuator torque speed curve with high accuracy. In principle, this can

be achieved with a continuously variable transmission (CVT) design. A big

advantage associated with gear variation of CVT is that the gear shifting is

essentially continuous and the transient disturbance should be negligible. This

design is not the focus of this research, and more information can be found in [1].

TBA Prototype and the Experimental System

The TBA prototype and associated experimental system includes four

subsystems: a PC, a BLDC servo, a DVT, and a load dynamometer (DM). The

whole system is shown in Figure 1.13.

 20

 Figure 1.13, TBA system hardware layout

The PC is used to control the BLDC servo and DVT shifting. The PC hosts

all the control software and data acquisition hardware for D/A, A/D, encoder, and

digital I/O.

The BLDC has a rated power of ~2 KW with a rated torque of ~4 N-m.

The dynamometer is used to emulate the load torque produced by the robot arm.

The torque generated by the dynamometer is determined by the input speed and

the reference voltage. One limitation of this dynamometer is that it cannot

generate any load when the speed input is zero, and the torque generated at low

speed is limited. In this research, experimental result showed that the

dynamometer can track the desired load torque when the input speed is

adequate. The experimental results will be shown in Chapter 5.

The three speed DVT is the core design of the TBA prototype. It has three

planetary gear sets serially connected together. The three speed DVT

mechanical construction diagram is shown in Figure 1.14. The mechanical

connection relationship of the three planetary gear sets is:

 21

Figure 1.14, Three speed DVT

1. The carrier, or arm, of the previous planetary gear set is rigidly connected

to the ring gear of the next planetary gear set (a3 to A2, and a2 to A1);

2. All sun gears are rigidly connected with each other (S3 to S2 to S1).

This configuration was used mainly because it provides the required gear

ratios with three almost identical planetary gear sets. The three gear ratios are

2.8, 4, and 7. The similar size of all three planetary gear sets makes the brake

band and the DVT housing design easier. Figure 1.14 shows the layout of the

three speed DVT design.

The three speed DVT always functions under the condition that only one

brake is engaged. When one of the three brakes is engaged, it becomes a one

degree of freedom mechanism, and an output torque can be generated with the

input torque and the brake torque. While no brake is engaged, the DVT is a

mechanism with two degrees of freedom, which means that applying a single

input cannot produce an output torque to carry the load. When more than two

brakes are engaged, it is over constrained, and this condition causes abnormal

brake wearing, and thus should be avoided.

 22

By energizing a particular brake, thus locking the corresponding ring gear,

the DVT functions as a gear box with a fixed gear ratio. Therefore, the DVT can

function as three different gearboxes when different brakes are engaged, thus

providing multiple-speed operation and corresponding expansion of the torque

speed curve of the actuator.

Scope and Organization of the Dissertation

The main purpose of this research is to explore various control issues of

the TBA system, including control algorithms and their digital implementation.

The fundamental goal is to identify control methods that provide high

performance servo control while attenuating the disturbances due to discrete

gear shifting action. In association with this research, a PC-based control

software platform which provides the real time performance required by TBA

control is developed. The remainder of this dissertation is organized as follows:

In Chapter 2, the TBA prototype overview will be given and mathematical

models of TBA system will be derived in a modular fashion. In Chapter 3, TBA

system stability is discussed, necessary conditions for the TBA system stability

are established and proofs are given. A stable switch strategy is analyzed and

the proof of its transition stability is given. In the last part of Chapter 3, a

feedback based controller design is also presented and its equivalent PID

controller is given. In Chapter 4, TBA control software design is discussed in

detail; implementation issues using a real time operating system - Linux/RTAI is

analyzed. In Chapter 5, Matlab/Simulink simulations of various controllers are

 23

developed, and simulation results analyzed. Experimental results are also

presented and analysis of the control system performance is given. In Chapter 6,

major contributions and conclusions are given based on the experimental and

simulation results. Future research needs are also listed in this chapter. This

research contributes to the literature and research knowledge base in the

following ways:

1. Exploration and solution of the control problems of the TBA in the hybrid

system control context.

2. Expansion of the fundamental understanding of the practical control

issues in TBA.

3. Design, analysis, and real time implementation of the TBA control system

and identification of the most suitable control strategy for the TBA.

4. Methods that can be extended to use in a much broader range of hybrid

dynamic systems.

 24

CHAPTER 2

Mathematical Modeling

The TBA prototype system, which is composed of a BLDC motor, a three

speed DVT and a robot arm, is a nonlinear dynamic system. An exact

mathematic model would be very complicated because of the nonlinear

properties such as saturation, backlash, and coulomb friction. This research

represents the first level of investigation into TBA control and as a result these

nonlinear properties will be ignored. It is assumed that a simplified model is

sufficient for the initial controller design.

The purpose of this chapter is to derive a mathematical model which can

represent the main dynamic properties of the TBA and yet is convenient for the

controller design and analysis. The process used is a bottom up procedure;

specifically, three component models, a BLDC servo model, a three speed DVT

model, and a robot arm model, are derived and simplified individually. In the end,

a simplified form of a final TBA dynamic equation is given.

BLDC Model

As mentioned in Chapter 1, a BLDC motor has a permanent magnet rotor

and a stator winding. By alternating the electrical current direction in the stator

winding, a rotating magnetic field is generated in the air gap, thus leading to the

rotational motion of the motor shaft. Compared with a regular DC servo motor, a

BLDC servo motor has a number of advantages, including a higher power to

 25

weight ratio, smaller friction, less maintenance, non arcing commutation, and

better heat dissipation.

Even though commercial BLDCs share the same operation methods in

high performance practice, the construction details are treated as proprietary

information, and are different from manufacturer to manufacturer. The

performance of a BLDC also depends on its construction. Some commonly used

design parameters are: permanent magnet properties, number of pole pairs and

the stator winding technique. A general comparison of BLDC performance with

respect to magnet material, number of poles and physical dimensions can be

found in [3]. As a general rule, as the number of pole pairs increases, the motor

torque to weight ratio and efficiency increase as well.

Despite the rich diversity of BLDC motor configurations, a functional

construction diagram can be represented as in Figure 2.1. This construction has

three phase uniformly distributed windings and four pole pairs. Hall-effect

sensors are used to measure the rotor position for correct commutation.

Figure 2.1, A functional BLDC construction diagram with four pole pairs

 26

Figure 2.2, Trapezoidal back EMF

In general, a BLDC has a uniformly distributed stator winding, which has a

trapezoidal shaped back electromagnetic force (EMF) as shown in Figure 2.2.

In order to have a stable steady state power output, current in the stator

winding must alternated according to the rotor position[2]. The stator winding of a

BLDC can also be sinusoidally distributed. The operation and control of this type

of machine is essentially the same as a regular AC synchronous machine as

discussed in Chapter 1.

This section presents the derivation of a unified simplified model for both

types of BLDC motors, such that it is unnecessary to know the detailed

construction of the BLDC motor in use. It is also assumed that this simplified

model is sufficient for controller design and analysis. For a sinusoidally wound

stator, the dynamic equation of this type of BLDC motor, when expressed in the

rotor reference frame, can be simply represented as shown in Equation (2.1).

()

()

()()3
2 ()

Resisitance, n- number of pole pairs

q
q d R d e R q q

d
d q R q d d

R
e q d q q d load m R

di
Ri nL i nk v L

dt
di Ri nL i v L
dt
d n k i L L i i T b J
dt

R

ω ω

ω

ω ω

= − − − +

= − − +

= + − − −

−

 (2.1)

 27

Equation (2.1) is a nonlinear dynamic system because of the product

terms of speed and current.

 The following four relations can be used to simplify the model to obtain a

simplified linear model of the motor:

1. Employing a high gain PI current feedback controller [4] forces the

currents in Equation (2.1) to follow the reference currents promptly.

d drefi i= (2.2)

2. The reference current in d-axis is controlled to zero.

0dref di i= = (2.3)

3. When the air gap is uniform, the following relation holds.

d qL L L= = (2.4)

4. For the d-q voltage, the following relation holds.

3
2d qv v V= = (2.5)

By substituting Equation (2.2) through Equation (2.5) to Equation (2.1).

The final simplified form of the dynamic equations is:

()
()

()

3
2

3
2

3
2

0

q
q e R

q R q

R
e q load m R

di
Ri nk V L

dt
nL i V L

d n k i T b J
dt

ω

ω

ω ω

= − − +

= − +

= − −

 (2.6)

The first and third equations in Equation (2.6) can be solved independ-

ently, which can be rewritten in the following form, shown in Equation (2.7).

 28

()

()
3 3
2 2

,

q
q e R e

R
e q load m R

e e e

di
Ri nk V L

dt
d K i T b J
dt

V V K n k

ω

ω ω

= − − +

= − −

≡ ≡

 (2.7)

Equation (2.7) is in the same form as a regular DC motor model as

shown in Equation (1.1).

For a trapezoidal back EMF type BLDC, the general form of a three

phase, single pole pair BLDC motor model can be found in [2]. A three phase,

multi pole pair BLDC motor model is given by the following:

[]

1 1 1

2 2 2

3 3 3

1 2 2

()
1(2 / 3)

(4 / 3)

() (2 / 3) (4 / 3)
2

s R s s
p s

s R R s s
s s s

s R s s

t load
r R s R s R s

R R

i e n i u
e Ri e n i u

L M L M L M
i e n i u

k Tn e n i e n i e n i
J J

θ
θ π ω
θ π

ω θ θ π θ π

θ ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

= − + − + − −

=

&

&

&

&

&

 (2.8)

1 2 3

1 2 3

()
()

flux linkage, motor torque

, , stator votage
, , stator cuurent
, self and mutual inductance
, rotor angular position and velocity

stator resistence,

R

R

R
R

e

s s s

s s s

s

R R

s

where

e

T

u u u
i i i
L M

R T

θ

θ

λ
θ

θ
λ

θ ω

∂
=

∂
− −

−

−
−

−
−

p

load torque
torque constant, n number of pole pairs

load

τ
−

− −

 It is shown that, combined with a motor drive, the dynamic equation can

be simplified into this form [2]:

 29

,
 - magnitude of the field current.

 - torque constant, - friction coefficient

R
t p load m R

p

t m

dJ k I T b
dt

where
I

k b

ω ω= − −

 (2.9)

Notice that Equation (2.9) has the same form as the second equation in

Equation (2.7), so the two types of BLDC motors have the same mechanical

dynamic equation, which is similar as a regular DC motor shown in Equation(1.1

). The construction of a BLDC resembles an inside out regular DC motor, while

the control of a BLDC requires an electronic device that can alternate the current

in the stator windings in order to obtain proper commutation. This device is

generally referred to as a BLDC drive. With a motor drive, the BLDC motors of

either type can be represented by Equation (2.9), and this simplified model will

be used to represent the motor in the TBA prototype.

Three Speed DVT Model - A Hybrid Dynamic System

The three speed DVT is composed of three planetary gear sets. The

connection between adjacent gear sets is the previous carrier gear messed to

the next ring gear as shown in Figure 1.14. This configuration provides three

desired gear ratios with identical ring diameters, which is proven to be a

significant advantage for the braking system mechanical design, and the overall

TBA design.

The mathematical model of a DVT can be derived using Newton’s second

law [1], which produces two coupled second order systems that can be

 30

expressed in a single fourth order differential equation. In order to solve this

equation, all braking torques must be known, which is only true when there is a

slip between the braking band and the ring gear.

When the brake is fully engaged and the ring gear is locked, the braking

force is a static friction whose magnitude and direction are determined by the

servo motor input torque and the load torque, which can not be treated as known

torques.

In this dissertation, a new DVT model is derived based on the Lagrange’s

equation of motion by assuming that the braking torque is large enough such that

the ring gear can stop in a very short time and thus slip can be neglected. The

following assumptions are also used to derive the mathematic model:

1. Backlash is neglected.

2. Gears and shafts are treated as rigid bodies.

3. Friction effects have the form:

F bx= − & (2.10)

The modeling process starts with a single planetary gear set with the ring

gear locked, and then a full DVT model is derived by following a similar

procedure. In supplement of the development of the DVT model, it is useful to

review a number of concepts and definitions [5].

Pfaffian form - virtual displacement

(, , ,) (, , ,) (, , ,) 0

(, , ,), (, , ,), (, , ,) - contraints

, , - virtual displacements

x x y y z z

x y z

x y z

a x y z t a x y z t a x y z t

a x y z t a x y z t a x y z t

δ δ δ

δ δ δ

+ + =

 (2.11)

Holonomic and scleronomic constraints

 31

When Equation (2.11) is time integrable, the constraint equation can be

reduced to the holonomic constraint given in Equation (2.12).

(, , ,) 0f x y z t = (2.12)

When there is no explicit time variable in the holonomic form, the new

form is called a scleronomic constraint as shown in Equation (2.13).

(, ,) 0f x y z = (2.13)

Rayleigh’s dissipation function

()2 2 2

1

, ,

1
2

If dissipation force can be expressed in the following form

then dissipation energy can be expressed as follows
i i i i i i

i i i

x x i y y i z z i

n

x i y i z i
i

F b x F b y F b z

F b x b y b z
=

= − = − = −

= + +∑

& & &

& & &

 (2.14)

Lagrange’s Equation of Motion

1
, (1, 2,...,)

, K-kinetic energy, V - potential energy
 - dissipation energy
 - generalized coordinate
 -generalized force
 -Lagrange's multiplier

M

k lk k
lk k k

k

k

k

l

d L L F Q a k N
dt q q q
L K V
F
q
Q

a

λ

λ

=

⎛ ⎞∂ ∂ ∂
− + = + =⎜ ⎟∂ ∂ ∂⎝ ⎠

≡ −

∑
& &

- Lagrange's multiplier coeefficient k

 (2.15)

When the constraints are sceleronomic as shown in Equation (2.13), alk

in Equation (2.15) can be calculated with Equation (2.16).

constraintth - ll

k

l
lk

f
q
fa

∂
∂

=
 (2.16)

Hybrid Dynamic System (HDS)

 32

HDS - A dynamic system which has both continuous dynamics and

discrete dynamics. The mathematical representation is given by Equation (2.17).

A three speed DVT is a hybrid dynamic system in the sense of Equation

(2.17). When the DVT stays in one gear, it is one continuous dynamic system;

after the shift, it is another continuous dynamic system.

0 0 0((), (,), ()), with (0) , (,0)

() n 1 state vector
u(t) - m 1 control vector

(,) an m 1 discrete event vector
: (, ,) , D is a set of all possible discrete eventsn m m n

x f x t x t u t x x x
where
x t

x t
f R D R R

σ σ σ

σ

= = =

− ×
×

− ×

→

&

 (2.17)

The state change is a discrete action that switches one continuous

dynamic system into another continuous dynamic system. This switching action

can cause instability and performance degradation, as will be discussed in

Chapter 3. As far as the modeling is concerned, the hybrid system can be treated

as several independent continuous dynamic systems supervised by a high level

discrete state regulator; the behavior of this regulator can be modeled as a finite

state machine shown in Figure 2.3.

Figure 2.3, The gear shift system modeled as a finite state machine

 33

The input alphabet is 1, 2 and 3, and the input word can be any

combination of 1, 2 or 3. This finite state machine actually plays a core role in a

discrete state generator, and the detailed TBA implementation will be introduced

in Chapter 3.

Definition 2.1: TBA gear numbers

1st gear (δ1):

The DVT is said to be in the 1st gear if the ring gear A1 in Figure 1.14 is locked

by engaging brake B1 as in Figure 1.14.

2nd gear (δ2):

The DVT is said to be in the 2nd gear when the ring gear A2 in Figure 1.14 is

locked by engaging brake B2 as in Figure 1.14.

3rd gear (δ3):

The DVT is said to be in the 3rd gear when the ring gear A3 in Figure 1.14 is

locked by engaging brake B3 as in Figure 1.14.

The convention for TBA gear definition follows that of an automobile

transmission. The 3rd gear corresponds to the lowest gear ratio, and the 1st gear

corresponds to the highest gear ratio.

Therefore, when the BLDC is operating at a constant speed and torque,

the 3rd gear produces the highest output speed and lowest output torque, and the

1st gear produces the lowest speed and highest torque.

A Single Planetary Gear Model

A single planetary gear set is a mechanism with two degrees of freedom.

A functional diagram of a single planetary gear set is given in Figure 2.4.

 34

Figure 2.4, A single planetary gear set

By locking the ring gear, the planetary set becomes a one degree of

freedom mechanism.

A dynamic model for the single planetary gear set is presented with the

ring gear locked, for complete derivation of the model, please see the Appendix.

The energy terms of the planetary gear set are given in Equation (2.18).

()()

()

2 2 2 2 2 21
2

2 2 2 21
2

3

0

3

s s c c p p p c c r r

s s c c p p r r

K J J J m r J

V

F b b b b

θ θ θ θ θ

θ θ θ θ

= + + + +

=

= + + +

& & & & &

& & & &

 (2.18)

With constraints given as follows:

()
()

0

0
s s c s c p p

r r c r s s s

r r r

r r r r

θ θ θ θ

θ θ θ

− + − + =

− + + =

& & & &

& & &
 (2.19)

The following generalized coordinates and forces are defined:

1 2 3 4

1 2 3 4

, , ,

, Q , Q 0, Q
s c p r

in out b

q q q q

Q T T T

θ θ θ θ≡ ≡ ≡ ≡

≡ ≡ − ≡ ≡ −
 (2.20)

 35

By substituting Equation (2.19) into Equation (2.16), the Lagrange

multipliers can be calculated. Then substitute these results along with Equation

(2.18) and Equation (2.20) into Equation (2.15), and the dynamic equations of

a single planetary gear set can be given in Equation (2.21).

()
() ()

1 2

2
1 2

1

3

3

in s

p c c c c c out s r

p p p p p

s s s s

s

T r

m r J b T r r r

J b r

J b λ λ

θ θ λ λ

θ θ λ

θ θ = + −

+ + = − − + +

+ =

+
&& &

&& &

&& &

2

 r r r r b rJ b T rθ θ λ+ = − −&& &

 (2.21)

In steady state, the static braking torque is large enough such that the ring

gear is stopped, and Equation (2.21) can be further simplified as Equation

(2.22).

() () () ()2+ + +
3 - 3 =s r s r s rr

s s s s p c c c c c p p p p in out
s s p s

r r r r r rr
J m r J b J b T T

r r r r
bθ θ θ θ θ θ+ + + + + −&& & && & && & (2.22)

Combined with Equation (2.19), the dynamic equation of motion of the

planetary gear set in final form can be represented as a second order differential

equation:

() ()() () ()()

()2

-3 2 1 2 1 =

, , 3

s p eq s s c p s in out

s s
eq p c c

p r s

J J J b b b T T

where
r r J m r J
r r r

μ μ γ γ γ θ γ μ μ γ γ θ γ

μ γ

+ − + + + − + − −

≡ ≡ ≡ +
+

&& &

 (2.23)

The coefficient of the acceleration term in Equation (2.23) is a constant

determined by the gear geometry and inertial properties, thus, it can be simplified:

() ()
() ()

=
,

2 1

-3 2 1

s s in out

s c p

s p eq

J b T T
where
b b b b

J J J J

θ θ γ

γ μ μ γ γ

μ μ γ γ γ

+ −

≡ + − + −

≡ + − +

&& &

 (2.24)

 36

A Three Speed DVT Model

As a single planetary gear set, a three speed DVT is a mechanism with

two degrees of freedom when no brake is engaged, and it becomes a one

degree of freedom mechanism when one of the three ring gears is locked.

The model process for a three speed DVT is similar except that the inertia

and friction properties are different. Dynamic models for the three speed DVT are

presented with different brakes engaged.

For complete derivation of the model, please see the Appendix.

The energy terms of the DVT are given as:

()
()
()

()

2 2 2 2 21
1 1 1 1 1 1 1 1 12

2 2 2 2 21
2 2 2 2 2 2 2 2 22

2 2 2 2 21
3 3 2 3 3 3 3 3 32

2 2 2 21
1 1 1 1 1 1 1 12

1
22

3 3

 3 3

 3 3

0

3

s s r r p p p c c

s s r r p p p c c

s s r r p p p c c

s s c c p p r r

s

K J J J m r

J J J m r

J J J m r

V

F b b b b

b

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

= + + + +

+ + + +

+ + +

=

= + + + +

& & & &

& & & &

& & & &

& & & &

()
()

2 2 2 2
2 2 2 2 2 2 2

2 2 2 21
3 3 3 3 3 3 3 32

3

 3

s c c p p r r

s s c c p p r r

b b b

b b b b

θ θ θ θ

θ θ θ θ

+ + + +

+ + +

& & & &

& & & &

 (2.25)

Due to the fact that all three sun gears are rigidly connected, and the

carrier is rigidly connected with the next adjacent ring gear, the following

kinematic constraints result:

1 2 3

1 2

2 3

s s s s

c r

c r

θ θ θ θ

θ θ

θ θ

= = ≡

=

=

& & & &

& &

& &

 (2.26)

Substitution of Equation (2.26) into Equation (2.25) produces the

simplified energy term expression given as:

 37

()
()
()

()

2 2 2 2 21
1 1 1 1 1 1 1 22

2 2 2 2 21
2 2 2 2 2 2 2 32

2 2 2 2 21
3 2 3 3 3 3 3 32

2 2 2 21
1 1 2 1 1 1 12

21
22

3 3

 3 3

 3 3

0

3

s s r r p p p c r

s s r r p p p c r

s s r r p p p c c

s s c r p p r r

s s

K J J J m r

J J J m r

J J J m r

V

F b b b b

b

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ

= + + + +

+ + + +

+ + +

=

= + + + +

& & & &

& & & &

& & & &

& & & &

&()
()

2 2 2
2 3 2 2 2 2

2 2 2 21
3 3 3 3 3 3 32

3

 3

c r p p r r

s s c c p p r r

b b b

b b b b

θ θ θ

θ θ θ θ

+ + + +

+ + +

& & &

& & & &

 (2.27)

By using the same argument as in the single planetary gear modeling, the

dissipation energy can be neglected, and a single equivalent dissipation term can

be added in the final dynamic equation afterwards.

Equation (2.25) can be further simplified as shown as:

() ()()
()()

()

2 2 2 2 21
1 2 3 1 1 1 1 2 1 1 22

2 2 21
2 2 3 2 2 32

2 2 21
3 3 3 3 32

3 3

 3 3

 3 3

0, 0

s s s s r r p p r p c r

p p r p c r

p p p c c

K J J J J J J m r

J J m r

J m r

V F

θ θ θ θ

θ θ

θ θ

= + + + + + + +

+ + +

+

= =

& & & &

& &

& &
 (2.28)

The constraints of the DVT system can be shown as:

()
()
()
()
()
()

1 2 1 1 1 1

1 2 1 1 1 1

2 3 2 2 2 2

2 3 2 2 2 2

3 3 3 3 3 3

3 3 3 3 3 3

 0

0

 0

0

 0

0

s s r c p p p

s s r r s r r

s s r c p p p

s s r r s r r

s s c c p p p

s s c r s r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

− − + =

− + + − =

− − + =

− + + − =

− − + =

− + + − =

& & &

& & &

& & &

& & &

& & &

& & &

 (2.29)

The same relationships exist among the angular positions and among the

angular accelerations as well. The general coordinates and general forces are:

 1 2 1 3 2 4 1 5 2 6 3 7 3 4 3

1 2 3 2 4 1 5 6 3 7 8

, , , , , , ,

,Q 0, Q ,Q , 0, Q ,Q 0, Q
s p r r p r p c

in b b b out

q q q q q q q q

Q T T T Q T T

θ θ θ θ θ θ θ θ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡

≡ ≡ ≡ − ≡ − ≡ ≡ − ≡ ≡ −
 (2.30)

 38

Substitution of Equation (2.28), Equation (2.29), and Equation (2.30)

into Equation (2.15) gives the overall form dynamic equations of the DVT as

follows:

() () ()

() () ()

51 1 1 2 2 3 2 4 3 3 6

1 1 1 1

2
1 1 1 2 2 1 1 1 1 1 2 2 42

1 1 1 21

2 2 2 3

2
2 2 2 3 3 2 2 3 2 2 4 3 63

3

3

3

3

3

s s in s s s s s s

p p p

p c c r r c p s r rb

r r rb

p p p

p c c r r c p s r rb

J T r r r r r r
J r

m r J J T r r r r r

J T r
J r

m r J J T r r r r r

θ λ λ λ λ λ λ
θ λ

θ λ λ λ

θ λ

θ λ

θ λ λ λ

= + − + − + −

=

+ + = − − − + + −

= − −

=

+ + = − − − + + −

&&

&&

&&

&&

&&

&&

() () ()
53 3 3

2
53 3 3 3 3 3 3 3 63

p p p

ou tp c c c c p s r

J r

m r J T r r r r

θ λ

θ λ λ

=

+ = − − − + +

&&

&&

 (2.31)

Now, let’s derive the dynamic model for each of the three DVT gear ratios.

When the DVT is in the 3rd gear, which is equivalent to locking the 1st ring gear,

and constraints are given as:

1

2 3

0
0

r

b bT T
θ =

= =

&&
 (2.32)

When Equation (2.32) is substituted into Equation (2.31), the dynamic

equations for the DVT with the first ring gear locked are then given by:

() () ()

() () ()

1 1 1 2 2 3 2 4 3 5 3 6

1 3
1 1 3 5

1 3

2
1 1 1 2 2 1 1 1 1 1 2 2 4

21
2 2 3

1 2

2
2 2 2 3 3 2 2 3 2 2 4 3 6

3 3
,

3

3
,

3

3

s s in s s s s s s

p p
p p

p p

p c c r r c p s r r

pb
p

r p

p c c r r c p s r r

J T r r r r r r
J J
r r

m r J J r r r r r

JT
r r

m r J J r r r r r

θ λ λ λ λ λ λ

θ λ θ λ

θ λ λ λ

λ θ λ

θ λ λ λ

= + − + − + −

= =

+ + = − − + + −

− = =

+ + = − − + + −

&&

&& &&

&&

&&

&&

() () ()2
3 3 3 3 3 3 5 3 3 6p c c c out c p s rm r J T r r r rθ λ λ+ = − − − + +&&

 (2.33)

 39

The final form of the dynamic equations for the DVT in 3rd gear is a second

order ordinary differential equations (Equation (2.34)). Notice that a dissipation

term has been added.

()() ()
()

() () ()(
() () ())

1 1 2 1 2 1 2 1 1 1 1 1 2 1 2 2

3 3 1 3 3 2 1 1 1 3 1 2 1 3 1 2

1
1

1 1 1

1 2 2
3 3

1 1 2 2 2 2
1

3 3

1 3 1 3 1

3 1 1 /()

,

s eq p p

p eq eq

s

s s in out

s r s
s r

r s r s r s

r s

J p p J p p J p J J

p m J p p J p p p J p p

r r
p

J b T T
where

r r rr r
r r r r r r

r r

α μ β μ μ α μ

μ γ β γ

θ θ γ

γ

≡ − + − + − + − +

− + − + − −

+
≡

+ = −

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠≡

+

&& &

() ()
()

1 2 2 3 1 2 3
2 3 1 2 3

1 2 3 3 1 2 3

2 2 2
1 1 1 1 2 2 2 2 2 3 3 3 3 3

1

, , , ,

3 , 3 , 3

,

equivalent coefficient of friction

r s r r s s s

r r s r p p p

eq p c c r eq p c c r eq p c c

r r r r r r
p p

r r r r r r r

J m r J J J m r J J J m r J

b

μ μ μ
+

≡ ≡ ≡ ≡ ≡
+

≡ + + ≡ + + ≡ +

−

 (2.34)

Similarly, the dynamic equation of the DVT in the 2nd gear is given by:

() () ()

()

() ()

2

3
2 1 2 1 2 2 2 3

2 2

2 23
1 1 2 2 2 3 2 3

2 2

2

,2 2

2 3 3

2 2 3 3 3 3

2

1
1 1

2

1

3
 3 1 3 1

equivalent coefficient of friction

,

s r eq eq

p p p

s s in out

s r s

r s r s r s

p

p p
J J p J J J

p
J J J

p p

b

J b T T where
r r r

r r r r r r

β α γ

α γ

θ θ

γ

μ μ μ

γ

− −≡ + − + +

− −

=

≡

−

+ −

+
+ + +

⎛ ⎞ ⎛ ⎞ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −

&& &

 (2.35)

And the dynamic equation of the DVT in the 1st gear is given by:

()
()() () ()

() ()
3 1 2 3 1 1 2 3 1 3 3 3

2 2

1 1 3 1 2 2 3 3 3 3

3 2
3 3

3 3 2

3 3 3

3

2

2

1 1 1

 3 1 3 3 1

, ,

, , equivalent coefficient of friction

s r eq eq

p p p

s s

r s r

s s in out

J J p p p J p J p J

p J J p J

r r
r r r

J b T T where

b

α β α γ

α γ

γ α

μ μ μ

θ θ γ

≡ + − + − + − −

− − −

≡ ≡ −
+

+ = −

−

+

+

&& &

 (2.36)

 40

Equations (2.34), (2.35) and (2.36) can be expressed in a unified form

as:

()() (), , , (1,2,3),
where,

()
()

()

i in out

s

s

x t f x t T T i

t
x t

t
θ
θ

= =

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

&

&

 (2.37)

Since at any time, only one brake is engaged, only one of the three

dynamic equations is the governing equation. For example, when DVT is in 3rd

gear with the first brake (B1 in Figure 1.14) engaged, the DVT system’s motion is

governed by Equation (2.34), other two dynamic equations as Equation (2.35)

and (2.36) are in an inactive state. By engaging a different brake, the governing

dynamic equation of the DVT changes accordingly. The three brakes are

controlled by a high level gear shift control strategy, or supervisory control

strategy, which will be discussed in detail in Chapter 3. The addition of this

supervisory action to the dynamic model as given in Equation (2.37) allows a

unified form of the DVT dynamic equation to be:

()()() (), , () , ,in outx t f x t t x t T Tδ=& (2.38)

Equation (2.38) is an exact form of a hybrid dynamic system. Hence, this

DVT model is a hybrid dynamic system with three subsystems that can be

individually expressed as 2nd order ODEs.

A Robot Arm Model

A prototype robot manipulator, the Titan II manufactured by Schilling

Robotics, is used as the design baseline. The robot manipulation can be

 41

modeled as a rigid robot arm with a simple support on one end and a load

attached on the other, as shown in Figure 2.5.

The dynamic equation is given as:

21 1
3 2

a

a p

() () cos

 torque input, b friction
M arm mass , M load mass

l arm length,g gravity constant,
 angular position with respect to horizontal orientation

p a p a aT M M l M M lg b

where
T

θ θ θ

θ

= + + + +

− −

− −

− −
−

&& &

 (2.39)

This is a nonlinear system, and the output feedback linearization method

was used to generate a linear model as will be discussed in the following section.

The TBA Prototype Model

The TBA model can be derived based on the dynamic equations of the

three modules: the BLDC servo, the DVT and the robot arm. Since the DVT is a

hybrid system, the TBA system as a whole is also a hybrid system, which

includes three continuous dynamic systems with discrete state changes. When

no state change occurs, the continuous dynamic system models of different

modules as given in Equation (2.9), (2.34), (2.35), (2.36) and (2.39) can be

summarized as:

Figure 2.5, A prototype robot arm

 42

21 1
3 2() () cos

t load

p a p a

R
m R

R
R

a a a a

i s i s in outi

d
J K i b T

dt

T M M l M M lg

d
dt

b

J b T T

ω
ω

ω

θ θ

θ θ θ

θ

γ

= − −

=

= + + +

=

+

+ −&& &

&& &

 (2.40)

The motor shaft is rigidly attached to the DVT input shaft, and the output

shaft is rigidly attached to the robot arm through a fixed gear reduction 200 to 1.

This final gear is not included in the TBA prototype, but in fact would be present

in the robot shoulder pitch axis design. The final gear box ratio is chosen based

on the load and speed requirements of the TBA and the robot joint [1]. For a final

gear ratio of 200, the following relations hold:

200

200

200

/ 200

s a i

s a i

s a i

load in

out

m R R

m

m

T T

T T

θ θ ω θ θ γ

θ θ θ γ

θ θ θ γ

= = = =

= =

= =

=

=

& & & &

&& && &&

 (2.41)

Thus, Equation (2.40) can be simplified into the following form:

1
2

21
3 ()

cos
()

200 200 200 200
p a

t

p a i i
i i i a im

M M lg
K i

M M l
J J b b bθ θ θ γ

γ γ
γ

+
+ = −

+
+ + + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

&& & (2.42)

If the mass of the load and the arm, the length of the arm, and the joint

position can be measured with high accuracy, Equation (2.42) can be simplified

as a linear model by using the feedback linearization [6-8]. Let

() () () ()1
2()

cos
200 200 2

p a
t

i
i i

M M lg
u t K i

t
t tγ θ

θγ
π

+
= −

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.43)

The robot arm angular position is in fact limited within the range of []0, 2π .

 43

A prerequisite condition for a feedback linearization to be valid is that the

control input cannot reach the physical limitation. In this project, the control signal

is the current of the BLDC servo, as shown in Equation (2.43). The feedback is

adequately scaled down to avoid the saturation as shown in Equation (2.43).

With the new feedback controller, Equation (2.42) can be further simplified as:

1
2

21
3

() () () ()

()

400

()
200

200
p a

Ti Ti i i

i p a
Ti i

i
Ti m i a

i
i

J t B t M t u t

J

B

M M lg
M

where
M M l

J J

b b b

θ θ θ

π

γ

γ

γ

+ + =

+
≡

+
≡ + +

≡ + +

&& &

 (2.44)

The corresponding state space form is:

() () ()
() ()

() ()
()

[]

() ()
() () ()

()

1 2

1 1

2 2

() (), () (),

()

0
1

,

0 1
, , 0

,

i i i

i

s s

a

i i i ii Ti

Ti Ti

x t x

A

t t t t t

y t

A B
J

x t x t
x t x t

x t x t B u t

y t C x t
where

t

B CM
J

x t x t

θ θ θ θ

θ

γ

≡ = ≡ =

= +

=

≡

⎡ ⎤
⎧ ⎫⎢ ⎥≡ ≡ ≡⎨ ⎬⎢ ⎥− − ⎩ ⎭⎢ ⎥⎣ ⎦

⎧ ⎫ ⎧ ⎫
≡ ≡⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

& &

&

&

&

&

&

 (2.45)

Again, this can fit in an hybrid dynamic system expression as:

()()

()

() (), , () , ()

() 2 1 continuous state vector
, () a discrete state variable

() a scalar control input

x t f x t t x t u t

where
x t

t x t
u t

δ

δ

=

− ×

−

−

&

 (2.46)

 44

In summary, the TBA model can be simplified into a hybrid system with

three subsystems, which can be modeled as a 2nd order ODE given by Equation

(2.45) or in a more compact form as shown in Equation (2.46).

 45

CHAPTER 3

TBA Controls

Background

The TBA prototype system is a hybrid dynamic system, which is

composed of three “switchable” continuous dynamic systems. A high level

supervisory controller is used for gear shift control to achieve a discrete state

change. In general, the continuous dynamic subsystems can be linear or

nonlinear systems. In this research, only the linear subsystems are considered

since the TBA model can be linearized as discussed in Chapter 2.

The state space model for a general hybrid system involving linear

continuous dynamic subsystems is given as:

() () ()
() ()

i i i

i

x t A x t B u t

y t C x t

= +

=

&
 (3.1)

As shown in Chapter 2, iB is same for all three states of the TBA system.

The control problem of a hybrid system has drawn great attention in the

past decade [9-19]. For a hybrid system, there are three requirements for the

controller:

1. The hybrid system must be stable.

2. The switch strategy must be transition stable.

3. Performance requirements must be satisfied.

 46

In this research, the first two requirements are analyzed in detail, and the

third requirement is obtained by a feedback controller.

In a continuous dynamic control system, when systems are unstable,

various techniques can be used to make them stable, such as PID, feedback

control, etc. In a hybrid system, because of the discrete state change, the system

stability does not solely depend on the subsystem stability. Two important

situations exist: on one hand, the state changes could potentially make a stable

system unstable with an inappropriate shift [15], while on the other hand, a

proper state change could stabilize a hybrid system involving unstable

continuous subsystems.

A commonly used method to verify the stability of a shift system is the

Lyapunov function based method [14, 18, 20-24]. A Linear Matrix Inequality

technique has also been used to analyze the stability of a hybrid system [17] [25].

Another issue associated with a hybrid system is the transient disturbance

due to the state change.

Supervisory control has been used to synchronize gear shifts vs. engine

speed to achieve a smooth shift transition [26]. An optimization method has been

used on an automotive gear box to achieve some optimal control index [27].

Another optimal control method based on linear quadratic optimization, so called

“bumpless transfer”, has been used in a helicopter control to achieve smooth

control signal transition under state change [28]. An optimization based method

has been also used to solve a system with a varying sample rate [29].

Other techniques, like robust control and dynamic programming, have also

been used for specific hybrid systems [1, 18, 19, 22, 30].

 47

By constructing a completely discrete abstraction using hybrid automata

theory or other pure logic based theories [31-33], various techniques have been

developed to study the hybrid system for stability, reachability and controller

synthesis based on automata theory on a discretized hybrid system.

From a continuous dynamic system point of view, a general hybrid

dynamic closed loop control system can be represented by Figure 3.1. This

diagram can be divided into three major blocks: a hybrid plant, a supervisory

controller, and a closed loop controller.

The hybrid plant is the system to be controlled; it has continuous dynamics

and discrete state changes. Some examples of uses of these types of hybrid

plants are: a furnace oven to maintain a constant temperature by turning on and

off the heaters, a chemical reactor container to keep the right amount of

reactants by turning on and off the valves, and, in this research, a TBA to match

the load requirement by shifting gears. A hybrid system block accepts inputs from

the controllers and generates outputs to be used as the input to the event

generator block.

Figure 3.1, A typical hybrid dynamic system control block diagram

 48

The supervisory controller block can be divided into three sections: an

event generator, a discrete state generator, and a state change actuator. The

event generator takes the input from the hybrid system and generates

meaningful event signals to the discrete state generator. In the oven example,

the event generator takes the temperature measurement as input and generates

a high, normal or low temperature event as output. In the chemical reactor, it

takes the amount of reactant measurement as input, and generates a more,

normal, or less reactant event. In the TBA, the event generator takes the position

and torque measurements as inputs and generates a switch event when the

system trajectory crosses a certain switch boundary as discussed later in the

chapter. In the above examples, only one event is generated at a time, but in

more complicated systems, multiple events can be generated.

The discrete state generator takes three inputs: the events generated by

the event generator, a timer input, and the current system state. Then it uses an

intelligent procedure to determine what the new state of the system will be, and

to generate state control actions. This block is a pure discrete system, so all of

the discrete theory can be readily used for its analysis. In the oven example, the

discrete state generator generates a command to turn on or off the heater based

on the events from the event generator. In the chemical reactor example, it

generates a command to turn on or off the valves based on the event generator.

In the TBA, the function of this block is a little more complex; it takes three inputs:

the event, the timer, and the current state. Multiple actions are generated since

the engagement of a gear requires the disengagement of a currently engaged

gear.

 49

The output of the discrete state generator includes the disengagement of

the current gear, engagement of the new gear, and no change in the other gear

state. In summary, the state change generator generates all the actions

associated with a certain state change and sends its output to the state change

actuator block.

The state change actuator takes the output of the discrete state generator

block as commands and translates them into meaningful control signals to fulfill

the state change action. The commonly used control signals can be either analog

or digital. For example, in the chemical reactor example, if a control valve is the

actuator, an analog signal is used to control the amount the valve is opened; if it

is an on-off type valve, a simple digital signal is enough.

In the TBA example, three digital signals are used to control the braking

actions. Specifically, when the digital line voltage is low, the associated brake

motor is idle, and no torque is applied to the brake band; when it is high, the

brake motor is activated, and the prescribed torque is applied to the brake band

so that the corresponding ring gear is stopped. The closed loop controller is

used to improve system stability and performance including during state

changes. In this research, for each individual state, linear system based theory

can be used since the TBA system can be linearized as shown in Chapter 2.

In general, three basic problems of hybrid dynamic system control are

formulated as follows [15]:

Problem 1. Find conditions that guarantee that the switched system is

asymptotically stable for any switched signals.

 50

Problem 2. Describe those classes of switched signals for which the switched

system is asymptotically stable.

Problem 3. Construct a switching signal for which the switched system is

asymptotically stable.

These three problems deal with different types of hybrid systems, and the

focuses of the problems are different.

Problem 1 generally deals with a hybrid dynamic system with continuous

dynamics that are asymptotically stable by open loop or closed loop control. The

focus is to find a condition such that the hybrid system is guaranteed to be

asymptotically stable for all switched signals. The results of Problem 1 can be

found in many publications, and many hybrid dynamic system problems have this

property. A commonly used method is to find a common Lyapunov function. A

gradient based technique to find the common Lyapunov function is presented in

[20, 34]. In this research, Problem 1 is applicable and is first investigated, for the

purpose of examining the conditions under which the TBA is guaranteed to be

stable for any gear shift sequence.

Problem 2 deals with a larger range of hybrid systems which cannot be

stabilized by arbitrary switch signals. This raises the following questions:

1. Is there a specific switch signal sequence that can stabilize the system?

2. How can such a shifting sequence be found?

3. Given a switch signal sequence, is the hybrid system stable?

The first question is an analysis problem. Different Lyapunov-based

methods have been used to find an answer to the first question [12, 19-21, 23,

 51

24, 35]. The second question relates to design. A technique to design such a

switch sequence is reported in [35]. The third question relates to verification, and

it is valid when a class of predefined switch signals is available for analysis. A

trial and error method is generally used to find a suitable switch sequence from

the predefined signals. The predefined class is obtained based on a good

understanding of the specific hybrid system.

 Problem 2 can be divided into the following categories: a) The continuous

dynamic systems are stable individually; b) The continuous dynamic systems are

not stable individually. Because the hybrid system stability and the stability of its

continuous subsystems are independent [12], the subsystem stability is neither

sufficient nor a necessary condition of the hybrid system stability.

One interesting example is that certain switch signals can make a hybrid

system with stable continuous subsystems unstable. In this case, only proper

switch signals can make the hybrid system stable.

Let’s look at an example. Suppose a hybrid system is composed of two

stable second order ODEs, and further assume the trajectory or phase portraits

of the subsystems are shown as the top two curves in Figure 3.2.

Figure 3.2, Unstable hybrid system with stable dynamic subsystems

 52

The trajectory of the hybrid system is shown as the bottom curve in Figure

3.2 by overlaying the two subsystems trajectories. This example does not give

any specific mathematic equations for the two subsystems; instead, it only

intends to show that inappropriate state changes can make hybrid systems

unstable even though the continuous subsystems are stable.

 The first observation from Figure 3.2 is that the two continuous dynamic

subsystems are stable, with subsystem 1 on the left and subsystem 2 on the

right.

On the bottom overlaying hybrid system trajectory in Figure 3.2, the circle

stands for the system initial condition, which is put on the intersection of the two

subsystem trajectories. Suppose subsystem 2 is initially active, if there is no

switch signal, the phase portrait of the hybrid system will be the same as that of

the subsystem 2. The hybrid system is stable, since the hybrid system is

essentially the continuous dynamic subsystem 2.

If the switch signals happen at the locations marked with triangles as

shown in the bottom figure, the state variables of the system quickly grow, and

the system is said to be unstable. A common property of these switch signals is

that they all happen at locations where, after each switch, the system trajectory is

further away from the origin.

If the switch signals happen at the locations marked with crosses, the

system is stable since the state variables quickly approach the origin from the

initial condition. Compared with the unstable system, the stable system has all

switches occurred at locations where, after the switch, the trajectory is closer to

the origin.

 53

Based on the above analysis, in order to obtain a stable hybrid system, a

proper switch signal must be used even the subsystems are stable. A common

method to evaluate a switch signal is the energy based method, such as a

quadratic form Lyapunov function [24].

The second category is an open question. The necessary and sufficient

condition for the existence of a switch signal that stabilizes this type of hybrid

system is only proven for certain cases. A necessary and sufficient condition for

a hybrid system with multiple 2nd order LTI systems is established in [24], and a

sufficient condition for a simpler system is reported in [23].

Problem 3 is a design problem, which is the most challenging problem

among the three basic problems for hybrid systems. In general, even though

significant results have been reported in [9-11, 17-19, 22, 25, 27], this problem is

essentially an open problem. Specific solutions can be found for certain

applications. Different hybrid system simulation frameworks have been

established to analyze hybrid systems. Hybrid automata based discrete

abstractions of hybrid systems are reported in [9, 10, 31, 36]; linear system

theory, affine system theory, and optimal control theory based analyses are

reported in [11, 12, 22, 37, 38].

The remainder of this chapter will first discuss issues related with the

supervisory controller. Then, a stability analysis in terms of hybrid system stability

and switch signal transition stability will be given for the TBA system. In the last

part, closed loop controller design methods will be analyzed. Finally, a suitable

TBA control method which guarantees system stability and switch transition

stability will be given.

 54

Supervisory Control

The study of the hybrid system is essential in designing supervisory

controllers for a continuous system [36]. The essential issue in designing a

supervisory controller is to design an appropriate switch strategy. The following

are necessary components in the evaluation of a switch strategy

1. Switch signal transition stability

2. Hybrid system stability

The first component is the evaluation of the stability of the switch signals.

Basically, one must find conditions such that the switch signal is invariant under

disturbances. Due to the absence of a general solution, this research adopts a

heuristic approach in order to evaluate the transition stability of the switching

signals. The second component falls into one of the three problems of a hybrid

system. In this research, stability analysis is developed by attacking Problems 1

and 2 as presented earlier in this chapter, and the goal is to find the switch

signals such that the TBA system is stable.

Switch Strategy- Transition Stability

The switch strategy controls the ways in which the switch signals are

generated. Switch signals can be divided into three categories: time based, state

variable based (or simply state based) and hybrid. Other categorization methods

are possible; for example, in [19], the switch signals are divided into time based

and event based. The following definitions are useful for development of the

supervisory controller.

 55

Definition 3.1: Time-based switch signal [19]

Time-based switch signal - A switch signal is called a time based switch

signal if it is a function of time:

() ()t tδ = Δ (3.2)

This type of shift signal is usually adopted when all the dynamics and

control signals are known a priori, such that the states of the system can be

calculated beforehand. Generally speaking, systems that can be controlled in an

open loop scheme can use this type of switch signal.

In fact, a time based switch law can be treated as one of the other two

categories. It is separated because it is the simplest switch law, and it is always

transition stable. But the real world applications of a time based switch law are

limited, since it is very difficult to find a system whose state variables only

depend on time. So, strictly speaking, a time based switch signal can only

achieve the least approximate result among the three.

Definition 3.2: State-based switch signal

State-based switch signal - A switch signal is state-based if it only

depends on the state variables of the continuous subsystems, the first derivative

of these state variables and/or the output of the system. The time variable does

not explicitly appear in the state based switch signal function. The state based

switch signal can be shown as:

() () ()()() , ,t x t x t y tδ = Δ & (3.3)

This type of switch law is the widely used in the literature, and it works well

in many real applications. The three examples introduced early in this chapter all

 56

use state based switch signals. There is one limitation; the state based switch

law is not guaranteed to be transition stable. The reason is that the variations in

system state variables might generate unwanted switch signals, especially near

the switch boundaries.

Definition 3.3: Hybrid switch signal

Hybrid switch signal - If the shift signal is based on both time and state

of the system, it is called hybrid switch signal. The function of the switch signal

can be represented as:

() () ()()() , , ,t t x t y t x tδ = Δ & (3.4)

A broader definition of the hybrid switch signal is: any switch signal that

does not fit the first two definitions.

As we can see, the hybrid switch law definition implies the first two

definitions and, thus, can be treated as a general form of a switch signal.

Properties of a switch signal:

Time invariant:

A switch signal function of the type shown in Equation (3.4) is said to

be time invariant in the specified ranges if the following condition is satisfied.

() () []
() () []
() () []

() () ()() () () ()()

There exists a T > 0,

, , ,

, , ,

, ,

such that

, , , , , ,

l h

l h

l h

x t x t T x x

y t y t T y y and

x t x t T x x

t T x t T y t T x t T t x t y t x t

+ ∈

+ ∈

+ ∈

Δ + + + + = Δ

& & & &

& &

 57

This property defines an invariant set for the ideal dynamic system model.

State space invariant:

A switch signal of the type shown in Equation (3.4) is said to be state

space invariant in the specified ranges if the following conditions are satisfied:

() () ()
() () () []
() () () []
() () () []

() () () () () ()() () () ()()

1 2

1 2

1 2

There exists

> 0,

, , ,

, , ,

, ,

0, 0

such that

, , , , , ,

x t x t x t x x

y t y t y t y y and

x t x t x t x x

x t y t x t

t x t x t y t y t x t x t t x t y t x t

∈

∈

∈

Δ Δ > Δ >

+ Δ

+ Δ

+ Δ

Δ + Δ + Δ + Δ = Δ

& & & & &

&

& & &

This property defines an invariant set for a dynamic system under state

perturbation.

Theorem 3.1:

A switch signal of the form as shown in Equation (3.4) is said to be

transition stable on certain ranges of the time and state variables if it is

both time invariant and state space invariant on the same ranges.

Proof: The proof of this theorem is trivial since there are only two factors

that will cause a switch signal as defined in Equation (3.4) to be transition

unstable. These two factors are the time variable and the state space variables,

so if the signal is both time invariant and state space invariant, it is guaranteed to

be invariant on the specified time and state ranges; in other words, it is transition

stable. ٱ

Transition stability is very important for the implementation of a switch

signal, or switch strategy for the TBA system.

 58

TBA switch signals design

The TBA system involves three subsystems governed by 2nd order ODE,

and the two state variables of the TBA are position and velocity. This section

analyzes switch signal designs for all three types of switch signals, and, in the

end, a suitable switch signal for the TBA is given. The TBA must shift gears to

accommodate a varying load torque. In determining the shift strategy for the TBA

system, a heuristic rule can be used as follows: when the torque is high, the TBA

should shift to a lower gear with a higher ratio; otherwise, it should shift to a

higher gear with a lower ratio. Using this heuristic rule, three different shift

strategies were developed and tested; a time based strategy, a state space

based strategy and a hybrid based strategy. The first method uses a time based

shift signal. A time based switch signal is only valid with complete a priori

knowledge of TBA system and the load properties. In this case, a time based

switch signal is guaranteed to be transition stable. Even though uncertainty

associated with the real trajectory and real load certainly exists, the time based

switch signals can still have good performance if such uncertainty is within a

reasonable range. Again, in order to use the time based switch signals in the

TBA, the system parameters should be clearly defined, which generally requires

a smooth trajectory design, an accurate load estimation method, and a simulation

model. The second shift strategy is torque based. Since the equation for the

torque, shown in Equation (2.39), depends on the state variables and their

derivatives, this strategy can be treated as a state based switch signal strategy.

Three variables are considered in the TBA shifting signal expression: position,

velocity, and acceleration. So, the shift signal can be expressed as:

 59

() () () ()(), ,t t t tδ θ θ θ= Δ & && (3.5)

For simplicity, let’s look at an example of a shift signal with only two state

variables: angular position and velocity.

A two dimensional (2-D) state space trajectory with a shift boundary is

shown in Figure 3.3. The shift boundary curve is shown as:

() ()() (){ }2: 0,sb sbC x t f x t x t R= = ∈ (3.6)

The shift boundary curve divides the state space into two adjacent regions

as shown as:

() ()() (){ }
() ()() (){ }

2

2

= : 0, ,

: 0,

a sb

b sb

S x t f x t x t R

S x t f x t x t R

< ∈

= > ∈
 (3.7)

Suppose the system trajectory moves upward along the trajectory curve

as defined by:

() () () ()() ()() (){ }2: , , , ,tr i iC x t x t f t x t y t x t x t Rδ= = ∈& (3.8)

Further, suppose the trajectory intersects with the shift boundary at point

sP as shown in Figure 3.3. Before the intersection, the system is in state aS with

switch signal aδ ; after the intersection, the system enters a new state bS with a

new shift signal bδ .

Figure 3.3, Two dimensional switch curve

 60

Although the above switch strategy appears to be valid and convenient, it

has a potential problem. The switch signal is not transition stable. To prove this,

Theorem 3.2 and Theorem 3.3 are formulated.

Theorem 3.2:

A shift signal generated on a shift boundary as Equation (3.6), which

divides the state space as Equation (3.7), is not state space invariant in

the ranges including the shift boundary.

Proof:

Suppose a range is defined as follows.

() ()(){ }2: 0, , 0sbx t f x t Rτ τ≤ ≤ ∈ <

At the lower bound, the system is in state aS with switch signal aδ , after a

state change () 0x tΔ > towards the boundary. No matter how small ()x tΔ is,

there exists a corresponding small τ , such that the system crosses the boundary

and enters a new state aS with a new switch signal bδ ٱ .

Theorem 3.3: A shift signal generated on shift boundary as in Equation (3.6

), which divides the state space as Equation (3.7), is not time invariant on

the ranges including the shift boundary, unless the system dwells on the

boundary.

Proof: Suppose a range defined as follows,

() ()(){ }2: 0, , 0sbx t f x t Rτ τ≤ ≤ ∈ <

At the lower bound, the system is in state aS with switch signal aδ , after a

time increase 0T > . Suppose the trajectory moves towards the boundary, and

 61

the system does not dwell on the boundary. No matter how small T is, there

exists a corresponding small τ , such that the system crosses the boundary and

enters a new state bS with a new switch signal bδ ٱ .

The unstable transition actions of the switch signal near the switch

boundary can be shown in Figure 3.4. Because the system trajectory has some

perturbations in the vicinity of the shift boundary, the switch signal will change

back and forth as the trajectory crosses the shift boundary from different

directions. This phenomenon is often referred to as limit cycle behavior of the

switch signal. In the TBA system, this will cause the brake to engage and

disengage frequently, thus generating unwanted disturbances. A new shift

strategy, illustrated in Figure 3.5, is designed to solve this problem.

In this new shift strategy, another shift boundary is added such that the

state space is divided into three regions with two states. The states and switch

signal for the TBA system are now defined as follows:

Figure 3.4, Two dimensional switch curve with disturbance

 62

Figure 3.5, A shift strategy with two shift boundaries

Below the lower boundary sblC , system is in state aS with switch signal aδ .

Above the upper boundary, system is in state bS with switch signal bδ . Between

the two boundaries, the system state and switch signal are the same as those

before the crossing of the boundaries; therefore, the system may have different

states in this region determined by how the trajectory enters the region. This

region is called a grey region. For example, if the trajectory crosses the lower

boundary into the grey region, the state is aS with switch signal aδ ; if the

trajectory crosses the upper boundary into the grey region, the state is bS with

switch signal bδ .

The two shift boundaries are defined by:

() ()() (){ }
() ()() (){ }

2

2

: 0, ,

: 0,

sbl sbl

sbh sbh

C x t f x t x t R

C x t f x t x t R

= = ∈

= = ∈
 (3.9)

A new switch signal is generated only if the trajectory enters the grey

region by crossing one shift boundary and leaves the region by crossing the

other boundary.

 63

By the new control strategy, for the trajectory shown in Figure 3.5, only

one switch signal is generated. The trajectory starts in state aS with switch signal

aδ , and then it crosses the lower bound from below the boundary. By the new

control strategy, no new switch signal is generated since the system is still in the

state aS . Similarly, no new switch signal is generated in the subsequent

intersections between the trajectory and the lower boundary.

A new switch signal is generated when the trajectory leaves the grey

region by crossing the upper shift boundary; after the crossing, the system enters

into the new state bS with switch signal bδ .

Only one new switch signal is generated in Figure 3.5; thus, the limit cycle

behavior is avoided. Now, let’s formulate a theorem to prove that this is

universally true.

Theorem 3.4:

A shift signal generated based on the shift strategy described as Figure 3.5

with shift boundary as Equation (3.9), is transition stable.

Proof:

This proof is carried out on three regions: the region below and including

the lower boundary, the region above and including the upper boundary, and the

grey region.

In the region below and including the lower boundary, first let’s examine

the time invariant property. Suppose a range is defined as follows,

() ()(){ }2: 0, , 0sbx t f x t Rτ τ≤ ≤ ∈ <

 64

At the lower boundary, the system is in state aS with switch signal aδ .

After a time increase 0T > , suppose the trajectory moves towards the lower

boundary. No matter how small τ is, there exists a corresponding T such that the

system crosses the lower boundary, and no new switch signal is generated.

Next, let’s examine the state space invariant property.

Suppose a range defined as follows,

() ()(){ }2: 0, , 0sblx t f x t Rτ τ≤ ≤ ∈ <

At the lower bound, the system is in state aS with switch signal aδ . After a

state change () 0x tΔ > toward the boundary, no matter how small τ is, there

exists a corresponding ()x tΔ , such that the system crosses the lower boundary,

and no new switch signal is generated.

In the region above and including the upper boundary, an approach similar

to that of the lower region can be used to show that the shift strategy is both time

invariant and state space invariant in this region.

The difference is that the trajectory enters the grey region from the upper

boundary, and the range is defined as:

() ()(){ }2: 0 , , 0sbux t f x t Rτ τ≤ ≤ ∈ > (3.10)

Inside the grey region, according to the definition, no new shift signal will

be generated, so it is transition stable. The conclusion is that the shift strategy is

transition stable in all three regions; thus, it is transition stable for the hybrid

system. ٱ

 65

A final observation for this shift strategy is that the two boundaries are

parallel to each other, and the width of the grey region depends on heuristic

results based on the properties of the hybrid system. Even though the new state

space based switch signal established a transition stable shift strategy, it has a

problem. The width of the grey region must be large enough to accommodate all

of the disturbances. In the TBA system, because of the large load torque

disturbance in the vicinity of the shift time, the grey region width is too large to be

of any practical use. For example, in order to accommodate the disturbance by

the above shift strategy, the width of the grey region is about 4 N-m out of a 12

N-m range. This large grey region width causes a long shift delay.

In this research, a hybrid switch strategy is used to design a transition

stable strategy with a relatively narrow grey region. Specifically, a time constraint

between adjacent shifts is added to the switch signal expression. In other words,

no shift is allowed for a specified amount of time after the start of the previous

shift. This time constraint is determined by the time required to finish the shift

action, which can be obtained by actually running the system. The final choice of

this time constraint is 0.5 seconds. There is another benefit to having this time

constraint. That is, any shift close to the commanded position can be avoided,

since these types of shifts generate unwanted disturbances.

Hybrid system stability - TBA

A hybrid system differs significantly from a continuous dynamic system

with respect to stability issues. The commonly used terminologies in continuous

 66

dynamic systems are: Lyapunov stable, asymptotically stable, and exponentially

stable. These are still valid in a hybrid system, while the definitions are a little

different in the sense that the state switch should be included in the definitions.

Consider a hybrid system in the form of Equation (3.11),

() ()() ()() ()() ()0 0 0 0 0, , , , ,x t f t x t x t t x t x t xδ δ δ= = =& (3.11)

with a solution,

() ()()0 0 0, , ,x t t t xψ δ= (3.12)

and an equilibrium point,

()(), , 0e e ef t x xδ = . (3.13)

For the switch signal ()() 0, with initial conditon t x tδ δ , the following stability

definitions of the system are given.

Definitions 3.4: Stabilities: The system is said to be stable under the switch

signal at the equilibrium point if, for each 0ε > , there is a ()0 , , 0tσ ε τ ≥ ,

such that, () ()()0 0 0 0 0 0, , , ,e ex x t t t x xσ ε ψ τ δ ε− < ⇒ + − < .

The system is said to be uniformly stable under the switch signal at the

equilibrium point if, for each 0ε > , there is a () , 0σ ε τ ≥ , such that,

() ()()0 0 0 0 0 0, , , ,e ex x t t t x xσ ε ψ τ δ ε− < ⇒ + − < .

The system is said to be asymptotically stable under the switch signal at

the equilibrium point if it is uniformly stable and, there exists, the following

condition holds:

 67

 () ()()0 0 0 0 0 0, lim , , , 0e ex x t t t x x
τ

σ ε ψ τ δ
→∞

− < ⇒ + − = .

The system is said to be exponentially stable under the switch signal at the

equilibrium point if it is uniformly stable and, for each 0ε > , there exists a

0σ > ,such that,

()() 0()
0 0 0 0 0, , , , 0t

e ex x t t x x e ε τσ ψ τ δ τ− +− < ⇒ + − ≤ ≥

The asymptotic and exponential stabilities are the most desired stability

types for a hybrid system.

Let’s look at the Lyapunov stability theorem for a continuous dynamic

system. For a continuous dynamic system given by Equation (3.14),

() 0 0, ()

: n n

x f x x t x

f R R

= =

→

&
 (3.14)

Let 0ex = be an equilibrium point of Equation (3.14), and () : nV x R R→

be a continuous differentiable function.

Theorem 3.5: Lyapunov stable [39] - Under the above conditions, if

) (0) 0

) () 0, 0
) () 0, 0

i V
ii V x x

iii V x x

=
> ≠

≤ ≠&

 Then the equilibrium point is Lyapunov stable.

Theorem 3.6: Asymptotically stable [39] - Under the same conditions as

Theorem 3.5, if

) (0) 0
) () 0, 0

) () 0, 0

i V
ii V x x

iii V x x

=
> ≠

< ≠&

 Then the equilibrium point is asymptotically stable.

 68

The above two theorems establish a method to test the stability of a

continuous dynamic system as given by Equation (3.14).

A hybrid system involves several such continuous dynamic systems;

therefore, new theorems are presented to test the stability [14, 15, 20, 24]. These

theorems are included here for completeness.

First, let’s check if the TBA system is quadratically stablizable under

certain switch signals. Let’s look at other supporting theorems[19].

Lemma 5.5 [19]:

System (5.1) is quadratically stablizable if there exist gain matrices Fi such

that the matrix pencil () : 0, 1i i i i i i
i M

A B Fϖ ϖ ϖ
∈

+ ≥ =⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑ contains a Hurwitz

matrix.

The following definition is provided for Lemma 5.5.

() () ()
() ()

 (5.1) is

i i i

i

System
x t A x t B u t

y t C x t

= +

=

&

Theorem 3.7: If hybrid system as Equation (3.15) has controllable

continuous subsystems,

() () ()
() ()

i i

i

x t A x t Bu t

y t C x t

= +

=

&
 (3.15)

Furthermore, if there exists a single state feedback which can stabilize all

subsystems, then the hybrid system is quadratically stable using the same

state feedback.

 69

Proof:

() ()

By Lemma 5.5 [11], has to be stable for some i.

In order to show that at least one of the above expressions is stable,

we only need to show that there ex

i i i i i i i i
i M i M i M

i i
i M

A B F A BF A BF

A BF

ϖ ϖ ϖ

ϖ
∈ ∈ ∈

∈

+ = + = +

+

∑ ∑ ∑

∑

1 1

ists a special i, such that ,

is controllable. In fact, such case is easy to find by setting only one

to 1, say, =1, and the rest to 0s; then, , becomes (A ,B), which

i i
i M

i

i i
i M

A B

A B

ϖ

ϖ

ϖ ϖ

∈

∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
is controllable by the theorem condition. �

The TBA prototype has three continuous dynamic subsystems, and a

common feedback controller can be found to stabilize all three subsystems.

According to Theorem 3.7, the TBA system is stable under synchoronous switch

signal. The above theorem succefully proven that the TBA system is

quadratically stablizable. But in practice, the gear shift is determined on the load

toruque, which limits the use of this synchronous switch stabliltiy.

Now let’s check if the TBA system is stable under asynchoronous switch,

the following theorems in literature are provided for proving this stability.

Theorem III.1 [14]: Let D be a compact linear polysystem, the following are

equivalent:

1. The origin is a uniformly exponentially stable equilibrium,
2. The origin is a uniformly asymptotically stable equilibrium,
3. There exists a 1C positive definite function : nV R R→ , homogeneous

of degree two, such that ()x V x Ax∇a is negative definite for
all A D⊂ ,

4. There exists a C∞ positive definite function : nV R R→ , such that
()V x Ax∇ is negative definite for all A D⊂ .

 70

Notice that condition 3 is equivalent to stating that there exists a common

Lyaponov function, because,

()
T

()

let V=x 0, P>0

()

 ()
 0

, , 0

T

T T T

T T T

T T

T

V VV x x Ax VAx
x x
Px

d x Px
V x

dt
x Px x Px x Px
x A Px x PAx
x A P PA x

or A P PA Q Q

∂ ∂
= = ≡ ∇
∂ ∂

>

≡

= + +

= +

= +
<

+ = − >

& &

&

&& &

Theorem 3.1 [24]: A necessary and sufficient condition for the dynamic

systems 1 2 and A A∑ ∑ to have a CQLF (Common Quadratic Lyapunov

Function) is that the pencils [] 1
1 2 1 2, , ,a aA A A Aσ σ −⎡ ⎤⎣ ⎦ are both Hurwitz.

The following definitions apply to Theorem 3.1.

[] []
1 1

1 2 1 2

 : () ()

, (1) , 0,1
common quadratic Lyapunov function

a

A x t A x t

A A A A
CQLF
σ α α α

=

≡ + − ∈

−

∑ &

Lemma 3.1 [24]: Let 1 2 3, , and A A A∑ ∑ ∑ be stable second order LTI

systems that pairwise satisfy the conditions of Theorem 3.1 [24], and, with

{ }21 0, 1, 2,3ia i≠ ∈ , let Ai Ajε ε = ∅I for some { }, 1, 2,3 ,i j i j∈ ≠ . Then a

symmetric positive definite matrix P exists such that () TV x x Px= is a CQLF

for all three systems 1 2 3, , and A A A∑ ∑ ∑ .

The following definitions apply to Lemma 3.1.

 71

{ }
nd st

21 i is the element of matrix A on the 2 row, and 1 column

: det() 0

0

i

T
Ai i i i i i

T
i i

a

P A P PA

P P

ε = + >

= >

Theorem III.1 establishes an equivalent relation between exponential and

asymptotic stability and the existence of a common Lyapunov type equation.

Theorem 3.1[24] and Lemma 3.1[24] together give a sufficient condition for a

CQLF for a hybrid system involving three 2nd order LTI systems, which is exactly

the configuration of the TBA model.

Equipped with the above three theorems, let’s look at the TBA example.

The TBA subsystem dynamic equations are given by Equation (3.16).

() ()

1 2 3

1 2 3

0 1 0 1 0 1
, ,

0.4262 0.0062 0.3123 0.0084 0.1828 0.0142

0 1 0 1 0 1
, ,

0.3159 0.0013 0.2315 0.0018 0.1359 0.0031

when load is zero

when load is maximum

ix t Ax t

A A A

A A A

=

= = =
− − − − − −

= = =
− − − − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

 (3.16)

It is trivial to show that all the above systems are stable and controllable,

and they also satisfies the conditions of Theorem 3.1 [24]. Due to the small

damping coefficient (0.001), the conditions specified in Lemma 3.1 [24] are not

satisfied. Therefore, the open loop system is not guaranteed to be stable under

any switching signals. One remedy to the above problem is to design different

controller for different subsystem such that the following two conditions hold:

a) The closed loops are stable; b) The closed loop transfer functions share the

same expression.

 72

The state feedback control system diagram is given in Figure 3.6.

The new system dynamic equation is given by:

() () ()

[]

1 2 3

1 2

,

0
1

x t A bF x t

b B B B

F f f

= −

⎡ ⎤
= = = = ⎢ ⎥

⎣ ⎦
=

&

 (3.17)

If the above two conditions hold, the conditions in Lemma 3.1 [24] are

satisfied, thus the hybrid system is stable under asynchorounous switch.

Controller Design and Implementation

The purpose of this section is to find a suitable and practical controller for

the TBA and to design it such a controller that satisfies the conditions in Theorem

3.7. In addition, this controller must be able to attenuate the transient response

caused by the mismatch between the motor speed and the DVT speed before

and after a specific gear shift.

Such transient disturbances could lead to high accelerations of the

manipulator that would be detrimental to precise manipulator motion, and they

could also cause some difficulties in gear shift control [25, 26].

Figure 3.6, State feedback control diagram

 73

Our approach is focused on state feedback control, which can then be

transformed into an equivalent proportional-integral-derivative (PID) controller.

Other controller design techniques such as optimal control and robust control will

be introduced and analyzed. Like most control system applications, the TBA

control design starts with design requirements.

TBA control design requirements

Due to the complexity of this system, some of the requirements are

quantitative, while others are qualitative, and the main requirements are:

1. The shift strategy must be transition stable.

2. The hybrid system must be stable.

3. The transient response due to the gear shift should be adequately

attenuated.

4. Steady state errors should be less than 1 degree (the resolution of the

encoder is ~0.36 degree) for compatibility with manipulator control.

5. The servo control loop sample rate should be no less than 1000Hz (the

bandwidth of the TBA prototype is about 1500Hz).

6. The gear shift should be finished in no less than 30 ms (the time constant

of the brake action is about 30 ms).

State Feedback Control

As discussed in the previous section, a common state feedback controller

for all three subsystems of the TBA must be found in order to achieve stability

under asynchronous switch signals.

 74

The subsystems are controllable, so the closed loop gain can be arbitrarily

set. Suppose a pair of complex numbers 5 3j− ± is arbitrarily selected as the

closed loop poles. Then the required closed loop characteristic equation is given

by:

2 10 34 0s s+ + = (3.18)

The resulting feedback controllers are given by:

[] [] []

[] [] []

2 31

1 2 3

1 2 3

, ,33.5738 9.9938 33.6877 9.9916 33.8172 9.9858

33.6841 9.9987 , 33.7685 9.9912 , 33.8541 9.9969
where

, , feedback controller as F in Figure 3.6

when load is zero,

when load is maximum,
F F F

F F F

F F F

= ==

= = =

−

 (3.19)

The resulting subsystems share the same characteristic equations.

Although this approach is effective in eliminating the differences among the

systems, it has an obvious drawback: an infinite number of feedback controllers

are required to accommodate various loads.

Further examination of the feedback controllers as shown in Equation (

3.19) reveals that that the feedback controllers for all three systems vary little

from zero load to maximum load. By using a single feedback controller designed

on a single load, i.e. zero load, it is easy to show that all the subsystems are

stable under different loads. By Theorem 3.7, using this feedback controller for all

three subsystems will guarantee TBA system stability. Under the feedback

controller 1F described in Equation (3.19) for zero load, the systems are given

by Equation (3.20).

 75

() ()

1 2 3

1 2 3

0 1 0 1 0 1
, ,

34.0000 9.9999 33.8861 10.0022 33.7566 10.0080

0 1 0 1 0 1
, ,

33.8897 9.9951 33.8053 9.9956 33.7

when load is zero,

when load is maximum,

f f f

f f f

fi

A A A

A A A

x t A x t

= = =
− − − − − −

= = =
− − − − −

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

&

1

097 9.9969

,

fi i

where
A A BF

−

⎡ ⎤
⎢ ⎥⎣ ⎦

= +

 (3.20)

By using the state feedback, a common Lyapunov function does exist by

using the method in [24]. The Lyapunov function sets are given in Figure 3.7 and

Figure 3.8. A quick look at the A matrices with the state feedback reveals that all

the subsystems have similar A matrices.

Figure 3.7, Lyapunov function sets for zero load

 76

 Figure 3.8, Lyapunov function sets for maximum load

Based on Figure 3.7 and Figure 3.8, it is clear that all three Lyapunov

sets share a common area (inside the ellipsis) for both zero and maximum load.

The system shown in Figure 3.9 is equivalent to Figure 3.6, because the

TBA system involves three 2nd order continuous subsystems.

For the TBA prototype used in this research, only position feedback is

available and thus F is equivalent to a PD controller. The PID controller has

several design conveniences based on the following considerations:

1. A majority of servo motor control applications use PID control [40].

2. Small calculation overhead makes it suitable for real time control.

3. Practice and theory show that PID servo motor control can achieve

position and velocity tracking simultaneously [2].

The third result is very important since it provides a solution to the

transient response issues that result from the speed mismatch before and after

the shift.

 77

Figure 3.9, Equivalent control subsystem diagram

If the output speed can be tracked well enough, the transient response

can be suppressed by designing a smooth speed trajectory.

The detailed implementation of the PID control top level diagram is given

in Figure 3.10.

A continuous time PID controller algorithm is shown in Equation (3.21).

dt
tdeKdeKteKtu D

t

IP
)()()()(

0

++= ∫ ττ (3.21)

lyrespectiveoutput and reference, control, y(t) r(t), u(t),
error y(t)-r(t)e(t)

gains ,,

=
DKIKPK

where

There are two digital implementation forms for the continuous PID

controller [41]: a position form and a velocity form. A position form and a velocity

form are given in Equation (3.22) and (3.23) respectively.

1

 -s

, , -gains

e(k) r(k)-y(k) -error
u(k), r(k), y(k) -control, reference, and output respectively
T sample period

() (1)() (0) () ()
k

p i s d
i s

P I DK K K

e k e ku k u K e k K T e i K
T=

=

− −
= + + +∑

 (3.22)

sdsip TkekekeKkeTKkekeKkuku /))2()1(2)(()())1()(()()1(−+−−++−−+=+ (3.23)

 78

Figure 3.10, Top level control system diagram

It is easy to see that the number of additions at a single step is linearly

increased with time for the position form, while for the velocity form, it is constant.

The velocity PID form is used in the research.

Due to the existence of the integral term and the servo motor

speed/current limit, windup situations need to be avoided. In this research,

conditional integration is used. The analysis of this saturation effect is not the

interest of the research; interested readers are encouraged to find reference in

[42]. Other anti-windup methods can be found in [40]. As mentioned previously, it

is proven that a servo motor with a PID controller can achieve position tracking

and velocity tracking simultaneously [2, 40]. This research extends the theory in

[2] by closing the loop at the DVT output instead of the servo motor output. The

idea is that if the DVT position and speed can be tracked well enough, the

transient disturbance due to the state change can be attenuated as well. A TBA

prototype servo and DVT control system diagram is shown in Figure 3.11. In this

research, the dynamic payload experienced by the robot arm is emulated by a

dynamometer.

 79

Figure 3.11, Servo motor control diagram

Figure 3.12, Dynamometer torque control diagram

However, the static gravity of the robot arm load cannot be emulated

because the particular dynamometer used cannot generate torque output when

the speed is zero. The dynamometer output torque is a nonlinear function of

speed and reference voltage. Open loop control of the dynamometer would

require a complete calibration of the dynamometer.

In this research, a closed loop design is adopted to track the reference

torque, which is generated based on the trajectory and load model.

Thus, a full calibration of the load cell attached to the dynamometer is

adequate. The control system diagram is shown in Figure 3.12.

In summary, the proposed PID control system for the TBA is proven to be

stable (including transition stable).

It is also proven that this proposed controller can suppress the transient

disturbances expected from the gear shifting.

 80

The final TBA control system diagram based on PID control is given in

Figure 3.13.

As in Figure 3.13, the proposed TBA control system includes a trajectory

generator, a supervisory controller, and two closed loop control subsystems:

servo motor control and dynamometer control.

The trajectory generator takes a position (set point) as input, and

generates a trapezoidal type trajectory, the output of the trajectory generator is

the position command sent to the servo control (r(t)), and position, acceleration

commands sent to dynamometer control (r'(t)). The servo motor closed loop

control takes the generated trajectory as input, and tracks the commanded

trajectory. The dynamometer closed loop control generates the load torque

profile based on the generated trajectory, and the load profile is calculated based

on Equation (2.39). The actual torque is measured by a load cell and sent to the

supervisory controller to determine the appropriate gear shift.

Figure 3.13, TBA Control System Diagram

 81

The TBA supervisory controller has three blocks: an event generator, a

discrete state generator and a state change generator. The supervisory controller

takes a clock signal and the torque generated by the dynamometer as input, and

sends out explicit shifting commands to engage/disengage brakes based on the

proposed control strategy as shown in the next paragraph. Before introducing

the individual blocks, the TBA control strategy is first presented:

1. The TBA shift strategy has two shift interfaces:

Interface 1: gear shift between 3rd gear and 2nd gear.

Interface 2: gear shift between 2nd gear and 1st gear.

2. Each shift interface has two shift boundaries:

Interface 1: 5 , and 4 Nmload loadT T≥ ≤

Interface 2: 8 , and 6 Nmload loadT T≥ ≤

3. Time between adjacent gear shifts must be greater than 0.5 seconds.

The shift strategy is shown in Figure 3.14.

Figure 3.14, TBA gear shift strategy (prototype)

 82

There are a couple of clarifications need to be made here: first, the shift

boundaries and Δt are chosen by experiments. There may be other different set

of values under which the TBA system functions normally. Second, the TBA

prototype could potentially have six different gear shift actions: 1->2,2->1,2->3,3-

>2, 3->1,and1->3.

In this research, direct shifts between 1st gear and 3rd gear are not

considered since there will be no such gear shifts in the prototype. In real TBA

application, such shifts are possible due to the inertia load induced by large load

accelerations. The shift strategy is shown in Figure 3.15.

By using the shift strategy shown in Figure 3.14, and a single PID

controller for the TBA control, by Theorem 3.4: and Theorem 3.7:, the TBA

control strategy as shown in Figure 3.14 is transition stable, and the TBA system

is guaranteed to be stable under asynchronous shifts.

Figure 3.15, TBA gear shift strategy (real system)

 83

Now, let’s have a close look at the individual blocks in the supervisory

controller. The event generator takes the actual load torque generated by the

dynamometer and generates shift boundary crossing events based on the gear

shift strategy shown in Figure 3.14.

The crossing events are only generated when the load torque crosses the

boundary in certain direction. For example, when the load torque crosses the 4N-

m boundary from below, no crossing event will be generated; while it crosses the

same boundary from above, a crossing event will be generated and sent to the

discrete state generator.

The discrete state generator takes two inputs: the crossing events, and

the time, and determines the next TBA gear state. The process to determine the

next TBA gear can be described as: If either no crossing event is received or the

time from the previous shift is less than 0.5 seconds, the output of the discrete

state is the current state; if both a crossing event is received and the time

condition are satisfied, it generates a new state signal, which is then sent to the

state change generator.

The state change generator receives the state signal from the discrete

state generator, and generates all the control commands for the three brake

motors.

The process can be described as: Once it receives a state signal, it

compares the state signal with the current state of the TBA. If the two are same,

no control command will be sent; if they are different, new shift commands will be

generated and sent to the brake motors.

 84

The control of the engage/disengage action is achieved by sending digital

signal to the amplifiers of the motors. As presented in Chapter 1, only one brake

can be engaged at a time, so every gear shifting action involves three different

brake actions: disengaging the current brake, engaging the objective brake, and

keeping the other brake disengaged.

The above control strategy can be explained more clearly by using a

design example as follows:

1. The robot arm is in a vertical down position initially.

2. The robot arm moves up from the initial vertical down position to a final

vertical up position following a trapezoidal shaped trajectory.

Under the above two conditions, the rotational load torque is zero initially,

as the robot arm moves up to the horizontal position, the load torque increases

from zero to the maximum; then as the arm continues to move up to the vertical

up position, the load torque decreases from the maximum to zero. The functions

of the proposed control strategy can be described as follows:

1. Initially, the load torque is less than 5 N-m, and TBA is in the 3rd gear with

the lowest ratio.

2. When load torque is greater than or equals to 5 N-m, and the time since

the previous shift is greater than 0.5 seconds, TBA shift to the 2nd gear.

3. When load torque is greater or equals to 8 N-m, and the time since the

previous shift is greater than 0.5 seconds, TBA shift to the 1st gear.

4. When load torque is less than or equals to 6 N-m, and the time since the

previous shift is greater than 0.5 seconds, TBA shift to the 2nd gear.

 85

5. When load torque is less than or equals to 4 N-m, and the time since the

previous shift is greater than 0.5 seconds, TBA shift to the 3rd gear.

6. The TBA will stays in the 3rd gear until the robot arm is vertical up.

The above gear shift strategy is shown in Figure 3.14. The experimental

results of the above design example are given in Chapter 5.

Optimal Control and Robust Control Discussion

At the outset of this research, a key objective was to investigate various

control approaches and to investgate their applicability to TBA control. The

following discussion presents the results of looking at optimal and robust control

theories.

Optimal Control

The analysis in this section serves as an initial investigation into the

application of optimal control theory to the TBA control problem. Due to the fact

that a hybrid system includes both continuous dynamics and discrete dynamics,

the optimal control problem has much richer contents compared with a

continuous dynamic system. Two types of optimal problems have drawn special

interests: optimal performance by optimal switching signals and optimal

performance in terms of disturbance rejection and tracking error. The first

problem has been successfully applied in some applications. For example, in a

launch vehicle control system, the optimal fuel consumption is achieved by

turning on and off the rocket engine at the right time. In the automotive engine,

the optimal controller changes the engine working regions to achieve minimum

 86

fuel consumption [43]. In a helicopter control example [37, 38], a linear quadratic

regulator is used to achieve “bumpless transfer” while the helicopter undergoes a

controller switch. In the TBA, two types of optimal control are valid and have

practical uses. These two optimization problems are:

1. Maximize the servo motor power to achieve the fastest possible operation.

2. Minimize the transient response during the gear shift.

This research only focused on the design of an optimal controller. For

stability issues of a general hybrid system optimal control problem, see [19, 22].

In this research, the second optimization problem is formulated and a solution is

given. First, let’s have a look at the general optimal control TBA system diagram

shown in Figure 3.16.

The control objective is to find an optimal controller Fo to obtain the

minimal control index. Since every gear shift includes two TBA gear states, it is

valid to study a system with any two of the three states of the TBA first, and then

use a similar approach to design optimal controllers for all other state changes.

Figure 3.16, General TBA optimal control diagram

 87

The control diagram with two states is shown in Figure 3.17. An optimal

control problem is,

() () ()

() ()() ()

1 1

1 1

22 2
1 1 2 2 1 2 3 1 2

0

1 1() () () () () ()
2 2

ft

f f

x t Ax t Bu t
y C x

J w y t y t w u t u t dt w y t y t

= +

=

= − + − + −∫

&

(3.24)

The index objective is,

() () ()() ()()

() ()() () () ()() ()()

()

()

2 2

1 1 2 2 2 1 2 1 1

0

2

3 1 2 2

1 1
0

1
 () () () ()

2

1
 () ()

2

ft

f f

ft
T

w C x t C x t w u t u t t A x t Bu t x t dt

w C x t C x t

t

J J t A x t Bu t x t dt

Lagrange multiplier or co state

λ

λ

λ

= − + − + + −

+ −

= + + −

⎛ ⎞
⎜ ⎟
⎝ ⎠

− −

∫

∫

&

% &

 (3.25)

The optimal solution conditions are given in Equation (3.26).

()
()

()
()

()
()

()
()

() () () ()

1

2

3 1 2 2
0

0, 0,

0, 0,

1
() ()

2

f

f

t

f f

J t J t
u t x t

t J t
where

x t t

t w C x t C x t t x t dt

φ
λ

φ λ

∂ ∂
= =

∂ ∂

∂ ∂
= =

∂ ∂

≡ − + ∫

% %

%

&

 (3.26)

Figure 3.17, Second optimal control problem system diagram

 88

From ()
()1

0
J t
u t
∂

=
∂

%
, the function of 1()u t can be expressed as in Equation

(3.27).

()
2

1
2

()
() 1

T u tBu t
tw λ

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3.27)

The co-state ()tλ can be solved by a state space formulation given in

Equation (3.25).

()
()

()
() () ()

()

1
2 22

1 1 2
1 1 1 1

0

3 1 1 2 2

0
0

() =x

() () ()

T

T
T T

o

T
f f f

B BAx t x t B
u t x tw

t t w C C
w C C A

x t

t w C C x t C x t

λ λ

λ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥− −⎣ ⎦

= −

&
&

 (3.28)

This is the so-called two point boundary problem; the solution of this

problem is related to a Riccati differential equation and another differential

function after using a technique called a “sweep” [44]. These equations are :

() () () () ()

() () () ()

() ()
() ()
() () () ()

1 1 1 1 1
2

1 1 2 2 2

3 1 1

3 1 2 2

T
T T

T

T
f f

T
f f

B BM t M t A A M t M t M t w C C
w

g t w C C x t M t Bu t
with

M t w C C x t

g t w C C x t

t M t x t g tλ

− = + − +

− = +

=

=

= −

&

&

 (3.29)

In Equation (3.29), ()tλ can be solved in a backward iteration, although

the control signal ()2u t and ()2x t must be known, which limits the use of this

method.

 89

In summary, a global optimization problem results in a two point boundary

problem, which can not be solved in this application. However, it is possible to

find a class of suboptimal solutions by using some assumptions. For example, if

assuming ft →∞ , the optimization problem is referred to as an infinite time

horizon problem, and the solution can be solved without using a co-state variable

[37]. This infinite time horizon assumption can be treated as a relaxation of the

global optimization conditions. The solution of suboptimal problems presents a

set of completely different problems for the TBA system, which is not the thrust of

this reseach due to the hardware limitation in the TBA prototype system and will

be left for future research. Even though the suboptimal solution could produce a

solvable optimization problem, some practical problems need further

investigation:

1. The resulting control is generally high order, and digital implementation of

the high order controller generates big error while using the approximation

method to change transfer function from s domain to z domain.

2. Large calculation overhead needs special attention in applications

requiring real time performance.

Robust Control

Robust control method offers a viable approach to DVT controller design.

In this research, the robust control serves as an initial investigation of the robust

control problems in the TBA prototype.

Specifically, robust controller design to achieve input disturbance rejection

is presented and analyzed, even though in general, robust control method may

 90

used to solve two types of problems: disturbance rejection and reduced

sensitivity to parameter uncertainty. The system diagram of input disturbance

rejection problem using robust control method is shown in Figure 3.18.

As shown in Chapter 2, TBA system has three 2nd order subsystems. The

plant (P) in Figure 3.18 is one of the three TBA subsystem models. In the

following design example, the controller design is accomplished by using Matlab

μ-synthesis toolbox. In this specific case, the plant is the TBA in its 2nd gear with

the dynamic equation shown in Equation (2.35), K is the controller to be

designed. Other signal names and weighting matrices in Figure 3.18 are:

1. nt - sensor noise

2. ut - weighted control signal

3. dt - disturbance

4. Wu - input weighting function, a high pass filter,

5. Wd, Wn – disturbance, noise weighting function, high pass filters

6. We – output weighting function, a low pass filter

Figure 3.18, TBA robust for disturbance attenuation

 91

The output weighting function (We) specifies the system performance, that

is, at low frequency, the open loop system have much larger gains than at the

high frequency, such that the Matlab H∞ algorithm only needs to take care of the

low frequency response. Other weighting functions (Wu, Wd, and Wn) specify the

interested bands for different inputs and output. A general explanation on how to

select the weighting functions can be found in [45]. The sigma values of the We

and Wu (Wd, Wn) are shown in Figure 3.19. Notice that the sigma value is the

same as Bode magnitude for the above matrices, the Matlab μ-synthesis toolbox

uses sigma value instead of Bode plots in order to deal with the multi Inputs multi

outputs system. The open loop system is formed when the controller (K) is

removed from the closed loop system shown in Figure 3.18. The open loop

system has four inputs and three outputs. The inputs are u, r, dt, nt and the

output are y, et, and ut. The open loop system has six simple poles and is not

stable:

10
-3

10
-2

10
-1

10
0

10
1

10
2

-20

0

20

40

10
0

10
1

10
2

10
3

10
4

10
5

-40

-35

-30

-25

-20

We sigma value

Frequency (rad/sec)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

Wu, Wd, Wn sigma value

Frequency (rad/sec)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

Figure 3.19, Open and closed loop magnitudes

 92

o1 o2

o3 o4 o6

oi

p =-39.7116, p =-7786.731,
p =-39.738, p ~p =-1000.000
where, p open loop poles (i=1,2,...,6)−

By using the Matlab μ-synthesis toolbox, a sixth-order controller was

designed, and has the following transfer function:

2

2 6

(s+0.012)(s+39.738)(s+1000.000) (s+1000.189)
(s+0.0001)(s-591.540)(s+991.924) (s+1002.994)(s+1.249*10)

The resulting closed loop system has the following twelve simple poles:

c1 c2 c3

c4 c5 c6

c7 c8 c9

c10 c12

ci

p =-1240862.662, p =-7786.731, p =-39.738,
p =-3.000, p =-0.030, p =-0.0001,
p =-993.216, p =-1006.337, p =-1003.955,
p ~p =-1000.000
where, p closed loop po− les (i=1,2,...,12)

Figure 3.20 shows the open and closed loop magnitude respectively.

10
-4

10
-2

10
0

10
2

10
4

0

2

4

6

8

10

12

14
Open and closed loop magnitude

Frequency (Hz)

M
an

gn
itu

de

open loop
closed loop

Figure 3.20, Open and closed loop magnitudes

 93

Based on the above results and Figure 3.20, the following can be

concluded:

1. Open loop system is unstable, its bandwidth is small, open loop gain is

larger than 1 at high frequency.

2. Closed loop system is stable, its bandwidth is wider, and system output

rolls off at high frequency.

Even though the robust control method successfully produced a stable

closed loop system that satisfied the performance and disturbance rejection

requirements, some practical problems need further investigation as in the

optimal control problem:

1. Digital implementation of the high order controller generates big error

while using the approximation method to change transfer function from s

domain to z domain.

2. Large calculation overhead needs special attention in applications

requiring real time performance.

Summary

This chapter studied the control problems associated with the TBA

prototype and its experimental system using hybrid supervisory control theory.

The proposed PID based controller is proven to be stable under

asynchronous gear shift. The proposed control strategy is transition stable under

load torque disturbances. The proposed control system is implemented in a PC-

based real time control framework, which will be discussed in detail in Chapter 4.

 94

The experimental results in Chapter 5 will verify the correctness of the TBA

control system framework and the controller design methodology presented here

above.

Initial studies of optimal control and robust control for the TBA system are

also presented in this chapter, these studies and results provide useful reference

for future work about control of the TBA.

 95

CHAPTER 4

Control System Software

In the software development, the TBA prototype and its experimental

system is divided into four subsystems. These subsystems are the servo motor

control (SMC), DVT, dynamometer control (DMC), and PC controller/data

acquisition system (PCC). The SMC, the DVT, and the DMC subsystems are

functionally independent of each other in the sense that each of them can be

individually controlled with a PC.

On the top level, these subsystems need communication and coordination

in order to fulfill the functionality requirements of the TBA system. Figure 4.1

shows the TBA subsystems and their interconnection relations.

Figure 4.1, TBA subsystems interconnection relation

 96

There are two closed loop control subsystems in the system: the SMC and

the DMC. The PCC subsystem, equipped with a serial port, Ethernet, A/D, D/A,

a timer/counter, and computation power, plays a central role in the TBA control

system design, which can be shown in the following TBA system function flow

during a single control step.

In each control step, the PCC first reads the real time clock ticks to

determine the current loop start time. If the timer satisfies the commanded

system loop period condition, the PCC generates a desired trajectory to send to

the SMC to control the BLDC servo motor.

The PCC reads the position of the DVT output shaft and uses it as the

feedback signal to generate the BLDC and dynamometer control signal in order

to track the trajectory and the desired load profile.

The PCC also reads the actual torque output from the dynamometer in

order to generate the next gear shift signal. At the same time, the PCC reads

other relevant system information such as the BLDC torque and position, and it

also sends the experimental data to a high level control PC for data display over

a dedicated local area network (LAN).

The high level control computer is a Linux PC and is not shown in the

system diagram.

TBA Design Requirement

Like most practical control system software implementation, the TBA

control software design starts with a requirement analysis. Due to the complexity

 97

of this system, some of the requirements are quantitative, while others can only

be given as qualitative constraints. The main requirements and constraints are:

1. The servo control loop must be able to run at a rate no less than 1000Hz,

and the deterministic loop period should be guaranteed with admissible

delay.

2. Multithread architecture should be adopted for parallel execution.

3. The software should be capable of setting different threads to different

priority levels as required by the task.

4. The system should have adequate flexibility, be easy to maintain, and

provide friendly documentation measures.

5. The system should provide most commonly used PC hardware support.

6. The system should have C/C++ programming support.

7. The system should have Ethernet communications.

8. The system overall price should be within reasonable limits.

The control sample rate is determined based on the time constant of the

TBA. The calculations show that the TBA time constant is in the range of

0.0020~0.0025 seconds, which correlated with the dynamic bandwidth of the

system. Generally, high sample rates have positive effects like reduced

quantization error, but noise captured by high sample rates must be attenuated,

usually with a low pass filter.

Due to requirement 1, a Real Time System (RTS) is required for TBA

control. The core of a RTS is a real time operating system (RTOS) environment

where real time constraints can be met.

 98

Operating System - Introduction

In a real world control system with a PC, the operating system plays a

very important role. It not only provides the computation power for any algorithm,

but it also manages all the hardware drivers and user applications to make them

work together seamlessly, sharing computer resources like memory, I/O,

interrupts, etc.

A PC operating system can be divided into two major categories: a real

time operating system (RTOS) and a general purpose operating system (GPOS).

They can be differentiated by the following features: preemptive kernel, priority

scheduling, interrupt handling, etc.

GPOS and RTOS

A generally accepted definition of a GPOS states that the correct result

depends only on the logical correctness of the computation.

For example, for a printer connected to a PC, it generally does not matter

whether it takes 50 or 100 milliseconds to start the printing job, as long as all the

text and graphics are printed correctly.

In this type of situation, a general purpose operating system (GPOS) is

adequate.

On the top level, the different types of GPOS are similar, although they

can be vastly different in the implementation.

Figure 4.2 shows the three layer architecture model for a standard Linux

operating system.

 99

Figure 4.2, Standard Linux three layer model

One common feature of GPOS is that it is interrupt driven [46], or event

driven. Specifically, when an interrupt line is raised, the operating system sees it

immediately and responds to it in a timely manner, which generally involves

stopping the current process or waiting until the current interrupt is handled.

PC GPOS can be further divided into three main categories: Microsoft

Windows family operating systems, various Unix flavored operating systems, and

different Linux implementations, which are all delivered as GPOS. As will be

discussed later, a Linux operating system can be adapted into an RTOS, thus

allowing a fair competition for system time between interrupt handling and user

applications.

Compared with the GPOS, a definition of an RTOS can be conceivably

expressed as the following.

Definition 4.1: RTOS - the correct result not only depends on the logical

correctness of the computation, but also on the time required for the result

to be generated.

The following two examples are typical applications where an RTOS is

required. The first example is a computer controlled radar tracking system. In this

 100

system, the position of a target must be calculated accurately and the result must

be obtained in a timely manner, otherwise, the tracking information is not very

useful.

Another example is a computer controlled robot arm emergency stop

function. It monitors the status of prescribed safety rules, and if any of the rules

are violated, the robot arm is shut down.

Suppose that during a robot arm operation, someone accidentally enters

the restricted area, thus triggering the safety rule violation condition. Then the

control software sends out a command to shut down the arm actuator, and

probably applies the brakes, also.

If this command is not sent out and executed quickly enough, the person

may be struck and injured by the robot arm. Under GPOS, there is one solution

to this example, which is to assign an interrupt handler to any safety violation.

But this approach is generally not recommended since there is a limited

number of interrupt lines, most of which have already been occupied by

commonly used hardware.

Generally, in these situations, control software developed in a GPOS

cannot perform the tasks well simply because the time of execution of any

instruction is unpredictable or non-deterministic.

Let’s take the standard Linux kernel as an example to see why a GPOS is

not suitable for this type of application.

In a GPOS, a task can only have two states: stopped or running. One

clarification must be made here. In a multitask GPOS, all of the running tasks

 101

could have a third state while waiting for their time slice to come; this state is

generally not treated as a new state because the user program does not have

control over it. Figure 4.3 shows the task status in Linux.

As mentioned earlier in this section, interrupts are handled first, before any

user programs, because the GPOS generally gives higher priority to hardware

interrupts than to the user program. Therefore, the user program can be

executed only when all interrupt lines are inactive.

Furthermore, there is no way to predict when an interrupt line will be

raised, which makes any user software with high time constraints subject to non-

deterministic time delays in applications with a large number of hardware

interrupt routines. Another limitation is that a user program does not have direct

control of the CPU clock or the system timer under a GPOS. It is the kernel that

has exclusive control over these two high accuracy clocks, even in a multitask

system. For example, Linux has a multitask kernel which is attained by splitting

the system time into time slices by using a clock interrupt, and the kernel assigns

the highest priority to the system clock interrupt. One dedicated time slice is

assigned to one task only. A task can only be executed in its assigned time slice,

during which other tasks are either suspended or waiting to start execution.

Figure 4.3, GPOS task status

 102

In Linux, the time slice is generally on the order of tens of milliseconds

[47], which means that any task with a deadline that occurs before its predefined

time slice will be executed too late or not at all.

A GPOS uses the time sharing policy to guarantee that all tasks have

some system time to be executed. This feature of a GPOS is referred as a fair

scheduling policy. In a GPOS, features like the fair scheduling policy and the

non-preemptive kernel can lead to non-deterministic time delays [48]. On the

other hand, an RTOS is capable of meeting the deadline requirements, as in the

radar tracking and robot emergency stop examples shown earlier in the chapter.

On the top level, an RTOS provides a priority based scheduling policy and

a preemptive kernel, and these two features together ensure that the higher

priority tasks are executed promptly, with some jitter delays resulting from the

context switch. The low priority tasks are put in the suspended state (or ready

state), and their execution is resumed after all higher priority tasks are finished.

So, a task in an RTOS has one more state compared with that in a GPOS, and

this additional state is called the block state. Figure 4.4 shows the task states in

an RTOS.

Figure 4.4, Process state diagram in an RTOS

 103

In an RTOS, when a process is activated, it is first put in a ready state in a

waiting queue. If there is no other equal or higher priority process in the queue, it

is put in the first place. If there is no other equal or higher priority process running

in the processor, it is in the running state immediately. All lower priority

processes currently running will be preempted and put back in the ready state

while waiting for the higher priority process to release the processor.

There is one problem, however. If a higher priority process happens to

share a resource which is locked by a lower priority process, the higher priority

process can not be executed right away, and it must wait until the lower priority

process frees the resource, thus causing the higher priority process to suffer from

a time delay.

This situation can be worse when the lower priority process is preempted

by other higher priority processes, no matter whether these processes have

higher or lower priority than the previous higher priority process. The higher

priority process, which shares the resource locked by a lower priority process,

suffers from a non-deterministic time delay. The reason for this delay is that the

resource could never be released since the lower priority process is preempted

by other higher priority processes, which then cause the higher priority process to

wait on the resource and miss its deadline. This situation is known as priority

inversion.

Generally, two POSIX protocols [49] can be adopted to deal with the

priority inversion. One is known as priority inheritance, a protocol that allows two

processes which share the same resource to be treated with same priority during

 104

the resource synchronization period; thus, the only time missed by the higher

priority process is a single resource access time from the lower priority thread.

This time is generally sufficiently small in an RTOS.

The other protocol is known as priority protection, which changes the

processes priority to the highest priority of all the resource locks it has, such that

multiple processes sharing a common resource have the same priority. However,

the small block of time still exists in this protocol as in the first protocol.By having

a preemptive kernel, priority based scheduling and some priority inversion

avoidance protocol, the RTOS can meet most stringent real time system

constraints. There are cases where a PC-based RTOS is not sufficient.

The reason is that all preemptive and rescheduling actions need some

CPU time, which is known as context switch time, or jitter. During the context

switch time, the processor will store the memory to be preempted and used for

later process reentry. Typical jitter time for a PC based RTOS is in the magnitude

of several microseconds [50]. In the TBA projects, since the control loop time

period is in the milliseconds level, a PC based RTOS is adequate. VxWorks,

QNX, RTAI, RtLinux and INtime are some examples of commonly used RTOS for

PC based control system.

The first two are true RTOS in the sense that they are delivered as RTOS;

the last three, however, are patched RTOS based on a GPOS. RtLinux and RTAI

are based on Linux, and INtime is based on Microsoft Windows. Even though

different types of RTOS are different in implementation, they all provide the same

satisfactory real time performance. In this research, RTAI/Linux is used.

 105

RTAI/Linux

The Real Time Application Interface is a hard real time extension to the

Linux kernel, contributed in accordance with the Free Software guidelines. It

provides the features of an industrial grade RTOS and is seamlessly accessible

from the powerful and sophisticated GNU/Linux environment.

This project has been founded by the Department of Aerospace

Engineering of Politecnico di Milano (DIAPM). Over the years, it has become a

community effort involving international developers, coordinated by DIAPM's

Prof. Paolo Mantegazza [51].

RTAI uses a Linux patch which enables the GPOS Linux to fulfill tasks

with real time constraints when the RTAI is loaded.

There are two patches that have been used. The first one is called the

Real Time Hardware Abstraction Layer (RTHAL), which is developed for

RTLinux. The second one is called the Adaptive Domain Environment for

Operating Systems (ADEOS), which is developed under the GNU General Public

License (GPL) to provide a flexible environment for sharing hardware resources

among multiple operating systems, or among multiple instances of a single OS.

New versions of RTAI have been ported from RTHAL to ADEOS.

RTAI/Linux Architecture

RTAI can be treated as a GPOS Linux kernel module. When it is loaded,

the system is an RTOS; otherwise, the system is just a Linux GPOS. The

Linux/RTAI system architecture can be shown in Figure 4.5.

 106

Figure 4.5, RTAI/Linux system architecture

On the lowest level are the hardware interrupt and the RTHAL or ADEOS

patch. The patch collects all the pointers to the internal data structures and

functions that affect the real time operation into a single structure (rt_hal), traps

all these function calls to the member of rt_hal data structure, and makes the

pointers in rt_hal point to the redefined RTAI functions.

A definition of rt_hal data structure is as shown as follows [52]:

struct rt_hal {

struct desc_struct *idt_table;

void (*disint)(void);

void (*enint)(void);

unsigned int (*getflags)(void);

void (*setflags)(unsigned int flags);

void (*mask_and_ack_8259A)(unsigned int irq);

void (*unmask_8259A_irq)(unsigned int irq);

void (*ack_APIC_irq)(void);

void (*mask_IO_APIC_irq)(unsigned int irq);

void (*unmask_IO_APIC_irq)(unsigned int irq);

unsigned long *io_apic_irqs;

 107

void * irq_controller_lock;

void *irq_desc;

int *irq_vector;

void *irq_2_pin;

void *ret_from_irq;

};

The middle level is a coexisting Linux kernel and RTAI environment. The

user program can be developed in the kernel space and loaded into the kernel as

a module, like a hardware driver, such that hard real time (HRT) can be achieved

with optimal performance.The highest level is the user space, where all user

programs can use the standard library functions.

The RTAI provides a symmetric real time programming environment in

kernel space and user space. The user space real time program environment is

called LXRT, an extension on RTAI, which provides good average real time

performance with some unbearable spikes [53].

In this project, RTAI 3.0 and Linux 2.4.25 kernel with RTHAL patch are

used.

LXRT

LXRT enables a symmetric use of RTAI functions in the user space and

kernel space, both HRT and soft real time (SRT). With LXRT, it is very

convenient for any C programmer to implement and test a real time control

system in the user space without dealing with the kernel space problems. It is

convenient also because most of the GNU standard library, for example, math

library functions as defined in math.h, can be called in the user application.

 108

For HRT in user space, there is one constraint: any call to a Linux kernel

service should be avoided. For example, the POSIX file operation functions as

defined in stdio.h should not be called. These Linux services will cause a context

switch between the RTAI and the Linux kernel. In a control system with a high

control loop rate, for example ~20 KHz, the context switch time might violate the

real time constraints. The worst case occurs when the Linux kernel service is

blocked; then the HRT task will certainly miss the deadline.

So, as a rule of thumb, Linux kernel service calls should be avoided inside

a HRT task. One way to use service call is to have a server – client configuration

by using the IPC calls provided by RTAI/LXRT, for example, RTAIFIFO, RTAI

shared memory, etc. Another advantage of LXRT is that the user space real time

program can be ported into kernel space real time fairly easy because all the

RTAI/LXRT function calls have the same names and definitions as the ones in

the kernel space.

Programming languages and tools

The programming languages utilized in this research are C and C++. The

control system software is strictly C style programming simply because the RTAI

and LXRT are both written in C, and our DAQ drivers are also written in C. The

high level GUI is based on QT and QWT, which are both written in C++.

The drivers package for the A/D, D/A boards’ used in this research is

called Linux control and measurement device interface (Comedi) [54], which is

developed and maintained by a group of free software enthusiasts including

David Schleef, and Frank Mori Hess.

 109

 Comedi is a collection of drivers for a variety of common data acquisition

plug-in boards. The drivers are implemented as a core Linux kernel module

providing common functionality and individual low-level driver modules. The

Comedi project develops open-source drivers, tools, and libraries for data

acquisition. The drivers provide features like integrated real time support for most

hardware, a high-level library (comedilib), application-level device independence,

and compatibility with Linux 2.0, 2.2, 2.4, 2.6 kernels, and support RTAI.

The source code is managed by Concurrent Version Systems (CVS),

which provides remote check in, check out source codes and user privilege

management. CVS is an open source software package and can be downloaded

free of charge from http://ftp.gnu.org/non-gnu/cvs/. Doxygen, which is used as

the software documentation tool, is an open source software package developed

under a GPL license. Doxygen can be downloaded at www.doxygen.org.

TBA Software Design

In this section, the detailed design of the TBA control software is

introduced and analyzed. The proposed control software has a multithread

framework under a real time operating system. As discussed earlier, RTAI/Linux

is used as the real time operating system. Even though RTAI/Linux is claimed to

be hard real time operating system, it still has an overhead for context switches

in a PC environment. For example, a sampling rate of 10 kHz can be subject to

as much as a 30% time delay [55]. This also justifies the chosen sample rate of

1000 Hz, which has a 3% time delay at most.

 110

A Windows/LabVIEW Implementation

A LabVIEW implementation under Windows XP was used earlier in the

TBA project to establish the technical feasibility of the TBA [1, 2], and the

functional diagram of this implementation is shown in Figure 4.6.

Although this implementation was sufficient to prove the functional

feasibility of the TBA, it has several drawbacks:

1. LabVIEW control software is developed under Windows XP, which is a

GPOS.

2. The BLDC servo motor control is restricted with serial port only.

3. The control program is a single thread design.

A non-deterministic and long control loop sample time (~100ms), as well

as the non-deterministic control loop time, violated the constant control loop time

assumption in the controller digital implementation. For example, a digital form

PID is shown in Equation (3.23). Experimental results showed that, with the

LabVIEW implementation, a maximum servo control loop rate of 10 Hz can be

used. Considering that the servo motor has a rated speed of 5000 rpm, the servo

control loop frequency is far too low. The long sample rate will introduce large

quantization error and performance degradation [56].

Figure 4.6, Windows/LabVIEW diagram

 111

As a result of the above drawbacks, the performance of the TBA system

could not satisfy the design requirements. For example, the steady state position

error is about 4 degrees, and the transient response from the gear shift is too

large.

The DVT output velocity is subject to up to 50% change in about 30~50

milliseconds in all the gear shift actions [1]. In order to achieve better

performance and shorter control loop time, a real time multithread design is

adopted in this research.

Multithread Design with RTAI

A multithread design is used since there are several subsystems and each

has a different real time requirement. The TBA real time control software

structure is shown in Figure 4.7.

Figure 4.7, TBA real time control software implementation diagram

 112

Two Linux PCs are used. One is a low level control PC (LLPC) with the

RTAI, Comedi and all control algorithms. The other is a high level GUI PC

(HLPC), which does not have the RTAI, and is used for data display and some

system initialization.

There are three layers in LLPC software. The lowest level consists of the

Operating System (OS), RTAI, and Comedi drivers; the serial port driver is

essentially a part of the Comedi driver. The middle level consists of user libraries

and hardware driver APIs developed on top of Comedi and the RTAI; new control

algorithms can be added in the user library.

The highest level in the LLPC is the user applications. There are four

threads that run simultaneously in the LLPC: servo motor control (SMC), shift

control (SHC), dynamometer torque control (DMC), and output (OPT) thread.

The DAQ block is not a thread, but in fact is embedded in a corresponding

thread. Preemptive priority scheduling is used to guarantee the real time

constraint of the SMC. The SMC runs at priority 99 with a hard real time

constraint; the other three threads run at priority 98 with a soft real time

constraint. Other scheduler schemes are also possible [15].

The SMC is a closed loop thread which controls the servo motor; it also

receives load torque data from the DMC and, combined with its own feedback

data, determines the gear number and load torque profile and sends these

commands to the SHC and SMC.

The SHC receives commands from the SMC and takes the action to

engage or disengage gears.

 113

The DMC receives torque commands from the SMC and closed loop

control dynamometer torque, and it also sends the data to the SMC.Due to the

sharing of data structures among the threads, the RTAI semaphore is used for

collision avoidance.

Another functionality of the software is to save and display experimental

data. The data are sent to three different blocks: data file, LLPC GUI and

Ethernet for HLPC GUI.

The saving of data to files is achieved by calling the function write(), which

is inside the SMC block; this violates the HRT constraint [15], but experiments

show satisfactory results. An alternative solution could be to send data using a

RTAI FIFO, then write to a file in another thread, which requires synchronization

between fast and slow threads.

In the LLPC, there is a GUI block which is essentially same as that in the

HLPC. The reason to use a GUI in the LLPC is for data display convenience

without considering the various issues related to Ethernet.

A Graphical User Interface

A graphical user interface is implemented for displaying the experimental

data. It has been decided that the GUI does not need to be real time, and all the

real time data must be retrievable from the data stored in the LLPC.

The open source software, Qt Widgets for Technical Applications (QWT),

which is developed on top of QT/X11, is used in this research.

QWT is maintained by Josef Wilgen et al., and the latest version is 4.2.0.

A screenshot of the GUI is shown in Figure 4.8.

 114

Figure 4.8, Screen shot of GUI

The GUI provides several features:

1. Real time display of six experimental data.

2. An interface to a RTAI FIFO.

3. The ability to dynamically zoom in and out a curve.

4. Arbitrary selection of a curve to be displayed.

5. Fast data display by updating only the new data in the picture.

In summary, the software design meets all of the stated requirements and

provides a flexible structure for new controller implementation. It is designed as a

HLPC and LLPC configuration, which makes it possible to separate the

development system and low level control PC.

Furthermore, compared with the LabVIEW/Windows implementation, the

new RTAI real time multithread implementation improves system performance

significantly as will be discussed in Chapter 5.

 115

CHAPTER 5

SIMULATIONS AND EXPERIMENTS

In this chapter, the simulation and experimental results using the proposed

TBA control and real time implementation will be presented and analyzed. The

Matlab/Simulink model simulation serves to evaluate TBA performance under the

proposed control method. The experiments serve to evaluate the performance of

the TBA prototype under the control method and software implementation. At the

end of the chapter, a conclusion of the proposed control for the TBA is given.

Matlab/Simulation

The Simulink models were built on a modular basis as shown in Figure

5.1. There are six blocks in the model: a trajectory block, a controller block, a

motor block, a DVT block, an arm block, and a data output block.

BLDC Motor

The parameters of the BLDC motor used in the simulation are listed in Table 5.1.

Figure 5.1, Top level Simulink model (Linear Model)

 116

Table 5.1, Motor parameters

Parameters BLDC motor

Rated Speed 5000 rpm

Rated Torque 4.36 N-m

Rated Power 2829

Torque Constant 0.274 N-m/amp

Resistance 4.511Ω

Inductance 12mH

DC-Link Voltage 250Vdc

Rs 0.242Ω

Ld,Lq 5.5 mH

d-q Model

Kt 0.11 N-m/amp

No. of Pole pairs 4

Rotor Moment of Inertia 172.9×10-6 kgm2

Viscous Damping 8.5944×10-5 kgm2/s

Static Friction 0.1 N-m

 117

DVT

In the TBA prototype, a three speed DVT is used. A final gear reduction is

also used in the simulation to accommodate the real application of the TBA.

The final gear reduction has a ratio of 200, and is installed between the

DVT output shaft and the baseline load. The parameters of the DVT are shown in

Table 5.2.

Simulation Results

The simulation results presented in this research can be differentiated by

trajectory and load. Two trajectories and three loads were simulated in the

research, and the values of these two design parameters are given as follows:

1. Trajectory:

a. Robot arm rotates 150° from horizontal position (0°).

b. Robot arm move 90° from horizontal position (0°), then pauses for 2

seconds, then continues to rotate for 60° and stops at 150°.

2. Load: full load, 50% load ,and 10% load

Based on the different DVT types, trajectory types, and load types, there

are eighteen different simulation parameter combinations. The test combinations

are shown in Table 5.3.

Table 5.2, DVT parameters and motor-DVT combinations

Final Gearbox DVT DVT Type

Ratio Efficiency Ratio Efficiency

three speed 200 0.90 7/3.8/3.16 0.80

 118

Table 5.3, Test combinations

No. Motor DVT Trajectory (deg) Load

1 KM B204C three speed 0~150 Full

2 KM B204C three speed 0~90~150 Full

3 KM B204C three speed 0~150 Half

4 KM B204C three speed 0~90~150 Half

5 KM B204C three speed 0~150 10%

6 KM B204C three speed 0~90~150 10%

Table 5.4, Simulation results (Full load)

DVT Type Settling Time
(seconds)

Steady State Error
(deg)

Tracking Error
(deg)

three speed 4.21 0.38 ~65

The evaluations of the TBA performance are carried out in terms of

settling time, tracking error, and steady state error. The settling time is defined

as the time required for the arm to move into a region within ± 2% of the set

point. Figure 5.2 shows TBA performance with a full load and a 0°~ 150 °

trajectory. The simulation results of TBA performance with full load are

summarized in Table 5.4, where large tracking error is observed.

A closer look at the speed curves in Figure 5.2 reveals that the tracking

error is mainly a result of the inappropriate command speed, or an inappropriate

trajectory design. The purpose is to evaluate the maximum speed capability of

the TBA system. At full load, the steady state error is 0.38 degree, and the speed

of the TBA is about 35.6 degree/second, which over match the baseline actuator

specification shown in Table 1.1.

 119

0 2 4 6 8 10
0

50

100

150

200

P
os

iti
on

 D
es

ire
d(

D
eg

)

0 2 4 6 8 10
0

50

100

150

200

Desired and Actual Position vs. time

time(s)

P
os

iti
on

 A
ct

ua
l(D

eg
)

0 2 4 6 8 10
-2

0

2

4

6

8

10

12

14

V
el

oc
ity

 D
es

ire
d(

rp
m

)

0 2 4 6 8 10
-2

0

2

4

6

8

10

12

14

Desired and Actual Velocity vs. time

time(s)

V
el

oc
ity

 A
ct

ua
l(r

pm
)

0 2 4 6 8 10
-2000

-1000

0

1000

2000

3000

4000

5000

Lo
ad

 T
or

qu
e(

N
-m

)

0 2 4 6 8 10
500

600

700

800

900

1000

1100

1200
Load torque and XM Ratio vs. time

time(s)

X
M

 R
at

io

0 2 4 6 8 10
-4

-2

0

2

4

6

8

M
ot

or
 T

or
qu

e(
N

-m
)

0 2 4 6 8 10
500

600

700

800

900

1000

1100

1200
Motor torque and XM Ratio vs. time

time(s)

X
M

 R
at

io

kd31f---1/2

Ratio

Torque

Ratio

torque

VelAct

VelDes

PosAct

PosDes

Figure 5.2, Three speed DVT with full load

 120

An immediate solution to the large tracking error is to design a new

trajectory with a lower command speed and an appropriate position controller.

The result of the new trajectory is shown in Figure 5.3.

By designing a new trajectory, the system has a good tracking ability with

a maximum tracking error of ~5 degrees.

The settling time and steady state error are similar as those in the

previous trajectory. The new trajectory is used for both half load and 10% load in

the rest of the simulations.

The purpose is to examine the control strategy and consistency of the

performance with same controller parameters and same trajectory.

The performances for the 50% and 10% load are summarized in Table 5.5.

In summary, the proposed control method meets the TBA control

requirement in terms of settling time, steady state error, and tracking error.

The proposed TBA design can match the torque speed requirement of the

basleine actuator.

The lacks of the ability to evaluate the shift strategy transition stability

under load torque disturbance in this simulation model will be verified by the

experiments.

Table 5.5, simulation result (half load)

DVT Type Settling Time
(seconds)

Steady State Error
(deg)

Tracking Error
(deg)

Half load 2.45 0.38 ~5

10% load 2.44 0.36 ~5

 121

0 2 4 6 8 10
0

50

100

150

200
P

os
iti

on
 D

es
ire

d(
D

eg
)

0 2 4 6 8 10
0

50

100

150

200

Desired and Actual Position vs. time

P
os

iti
on

 A
ct

ua
l(D

eg
)

0 2 4 6 8 10
0

5

10

15

V
el

oc
ity

 D
es

ire
d(

rp
m

)

0 2 4 6 8 10
0

5

10

15

Desired and Actual Velocity vs. time

V
el

oc
ity

 A
ct

ua
l(r

pm
)

0 2 4 6 8 10

-2000

0

2000

4000

6000

Lo
ad

 T
or

qu
e(

N
-m

)

0 2 4 6 8 10
400

600

800

1000

1200

Load torque and XM Ratio vs. time

X
M

 R
at

io
0 2 4 6 8 10

-15

-10

-5

0

5

10

15

M
ot

or
 T

or
qu

e(
N

-m
)

0 2 4 6 8 10
400

600

800

1000

1200

Motor torque and XM Ratio vs. time

X
M

 R
at

io

0 2 4 6 8 10
-4

-2

0

2

4

6

M
ot

or
 P

ow
er

(K
w

)

0 2 4 6 8 10
400

600

800

1000

1200

X
M

 R
at

io

Motor Power and XM Ratio vs. time

0 2 4 6 8 10
-50

0

50

100

150

200

P
os

iti
on

 A
ct

ua
l (

D
eg

)

0 2 4 6 8 10
400

600

800

1000

1200

X
M

 R
at

io

Actual Position and XM Ratio vs. time

0 2 4 6 8 10
-5

0

5

10

15

time(s)

V
el

oc
ity

 A
ct

ua
l (

rp
m

)

0 2 4 6 8 10
400

600

800

1000

1200

time(s)

X
M

 R
at

io

Actual Velocity and XM Ratio vs. time

0 2 4 6 8 10
-20

-10

0

10

20

time(s)

A
cc

el
er

at
io

n
A

ct
ua

l (
ra

d/
s2)

0 2 4 6 8 10
400

600

800

1000

1200

time(s)

X
M

 R
at

io

Actual Acceleration and XM Ratio vs. time

Motor-k, 3-spd dvt,Traj-1,Load-f

Ratio

AccAct

Ratio

VelAct

Ratio

PosAct

Ratio

Power

Ratio

Torque

Ratio

torque

VelAct

VelDes

PosAct

PosDes

Figure 5.3, Simulation results with new trajectory design

 122

Real Time Control Experimental Results

The experimental results for the TBA prototype presented in this section

are for verification of the correctness of the control method presented in Chapter

3 and the effectiveness of the real time software design presented in Chapter 4,

thus they are only parts of the complete experimental results, full experimental

results are listed in the Appendix. The figures of the experimental results are

produced by using Matlab on the actual experimental data generated by the real

time control software implementation, and several things need to be clarified in

order to fully understand the results:

1. The trajectory is selected such that the robot arm will move from a vertical

down to a vertical up position.

2. Position error is evaluated at the DVT output shaft and then converted to

the arm joint by dividing the position error by the final gear with a ratio of

200.

3. The three states of the TBA are separated by 5.0 N-m and 8.0 N-m

dynamometer torques, which are equivalent to a state based switch signal

with a two dimensional shift boundary because the dynamometer torque

depends on angular position and acceleration.

4. There are two curves in each figure: the x axis is time in seconds, the left

y axis is the TBA gears (1st, 2nd, or 3rd), and the right y axis is the data.

5. The final gear reduction is 200, and errors associated with the final gear

box are neglected.

 123

6. The curves in the text are only shown for a full load, for curves of all other

loads, please see the appendix.

The results are presented in the following categories:

1. Transition unstable vs. stable switch signals

2. Position errors

3. DVT speed (disturbance suppression)

4. Real time performance measured by difference between required

sampling period and the actual period.

5. Load torques

Transition Unstable vs. Stable Switch Signals

The experiment is first carried out to study the transition stability of the

switch strategy. As proven in Chapter 3, a shift strategy based on a single shift

boundary is not transition stable. The results of transition unstable switch signal

based on a single shift boundary are shown in Figure 5.4 and Figure 5.5.

Figure 5.4, Single boundary, state based shift strategy (half load)

 124

Figure 5.5, Single boundary, state based shift strategy (full load)

From these two figures, we can see that unwanted shifting commands

have been generated during the gear shift period for both half load and full load.

We can also see that torque disturbances are generated during the shift. As a

result, many unwanted shift commands have been generated, which makes the

switch signal unstable.

As discussed in the Chapter 3, two measures are adopted in this research

to prevent these unwanted shift signals. The first one is to set the grey region

width to 1 N-m equivalent of dynamometer torque. The second one is to set the

minimal time between adjacent shifts to 0.5 seconds.

After implementing the above measures into the software, new results

show that the switch signals are transition stable, which is consistent with the

analysis in the Chapter 3. Figure 5.6 and Figure 5.7 show the transition stable

results corresponding to the unstable results in Figure 5.4 and Figure 5.5

respectively. Remember that the choice of the width of the grey region and the

time constraint in the two measures are not unique.

 125

Figure 5.6, Two boundaries, hybrid switch signal (half load)

Figure 5.7, Two boundaries, hybrid switch signal (full load)

 126

Position Error

Five different load conditions are tested using the proposed control

schemes to evaluate the system performance in terms of steady state position

error. The load conditions are zero load, 25% load, half load, 75% load and full

load. The load conditions are emulated by the dynamometer. The steady state

position error and tracking error curve for full load is given in Figure 5.8. From

this figure, the maximum tracking error is about 44 degrees when the TBA is

shifting from the 2nd to the 1st gear. And the steady state position error of the TBA

is zero degrees. The position is transformed from the encoder reading, and the

encoder output resolution is 1024 counts/revolution, so strictly speaking, the

steady state position error is less than one count of the encoder reading, which is

about 0.35 degrees. The position errors for all load conditions are summarized in

Table 5.6, and tracking errors are summarized in Table 5.7.

DVT Speed and Disturbances

Due to the unmatched speed between the BLDC and the load, significant

speed disturbances are observed. This phenomenon can be found in the speed

curve of the BLDC and the load. When the load has its maximum value, the

speed curves for the BLDC and the DVT are shown in Figure 5.9 and Figure 5.10

respectively.

The maximum disturbance of the DVT speed happens when the DVT

shifts from the 2nd gear to the 1st gear. This effect is more clearly shown in Figure

5.11, which is a locally amplified version of Figure 5.10.

 127

Figure 5.8, Position error with full load

Table 5.6, Position errors for different loads

Load Angular Position
Error at DVT

(counts)

Angular Position
Error at DVT

(deg)

Angular Position
Error at arm

(deg)

Position Error at
arm end (mm)

0 3 <1.06 <0.0053 <0.17

25% 3 <1.06 <0.0053 <0.17

50% 3 <1.06 <0.0053 <0.17

75% 0 <0.35 <0.0018 <0.06

100% 0 <0.35 <0.0018 <0.06

Table 5.7, Maximum tracking errors for different loads

Load Tracking Error at
DVT (counts)

Tracking Error at
DVT (deg)

Tracking Error at
arm (deg)

Tracking Error at
arm end (mm)

0 40 <14.07 <0.0704 <2.22

25% 61 <21.45 <0.1073 <3.38

50% 71 <24.97 <0.1249 <3.93

75% 122 <42.90 <0.2145 <6.75

100% 125 <43.95 <0.2198 <6.92

 128

Figure 5.9, BLDC speed with full load

Figure 5.10, DVT speed with full load

 129

Figure 5.11, DVT speed disturbance near gear change from 2nd gear to 1st

From Figure 5.10 and Figure 5.11, when the TBA shifts from 2nd gear to

the 1st gear, a large disturbance is observed; much smaller disturbances are

observed for all three other shift actions.

Even though the magnitude of the disturbance is high, the system is still

able to recover from the disturbance quick enough and still tracks both the

velocity and position after the shift.

The cause of this abnormally large disturbance is probably related to the

mechanical design of the DVT gears, since the last stage of the DVT is vastly

different from the first two in terms of bearing support. Notice that a much smaller

disturbance is observed when the shift is from 1st to 2nd gear. This shift has a

speed difference that is comparable to the previous shift, which can serve as

support for the above conclusion that the abnormally large disturbance results

from the mechanical design of the system.

 130

One can also observe Figure 5.11 from that there is a ~0.05 second lag

between the shift command and the shift action. We can conclude that the shift

action can be executed in about 0.05 seconds after the command is sent out.

This delay adds an additional shift disturbance to the TBA the system.

Real Time Performance

As mentioned in Chapter 3 and Chapter 4, the servo control loop runs at

1000Hz, which is critical for the validity of the digital PID controller.

In this research, the real time performance is evaluated based on the

measured jitter values. The jitter is defined as the difference between the

commanded sample period and the actual sample period. Table 5.8 shows the

jitter values from the results of two consecutive tests. From the table, we can see

that the average loop period is almost exactly the same as the commanded loop

period (1milliseconds). The maximum absolute value of the jitter is 40

microseconds, which is about 4% of the commanded period. In conclusion, the

sample period requirement is met with a negligible time delay.

Load Torques

Since the load torque is used in the shift strategy, a close look at the

torque curve gives better understanding of the shift strategy.

Table 5.8, Real time performance and jitter results

Test Mean
(microsecond)

Standard deviation
(microseconds)

Maximum
(microseconds)

Minimum
(microseconds)

No.1 -0.0019 2.5948 13 -33

No.2 -0.0024 2.5730 13 -40

 131

BLDC torque and dynamometer torque curves for full load are shown in

Figure 5.12. There are three curves in the figure: the dashed line is the gear

number, the upper curve is BLDC torque, and the lower curve is dynamometer

torque. As can be observed from the curves, the load torque was tracked very

well, and the shift actions can be explained more clearly by the following:

1. The DVT starts from 3rd gear with the lowest ratio, with the arm vertical

down;

2. The DVT shifts to 2nd gear when the load torque goes above 5 N-m.

3. The DVT shifts to 1st gear when the load torque goes above 8 N-m.

4. The DVT shifts to 2nd gear when the load torque goes below 6 N-m.

5. The DVT shifts to 3rd gear when the load torque goes below 4 N-m.

6. The TBA tracks the trajectory and stops with arm at a vertical up position.

Experimental Results Summary

Based on the experimental results, the following conclusions can be

drawn:

1. The prototype TBA system dynamic performance is stable and suitable for

precise servo control such as that used in robotic systems.

2. The shift strategy, or switch signal, is transition stable.

3. The proposed control system design and implementation meets all the

TBA control system performance requirements.

4. The experimental results also suggest that a further examination of the

effects of DVT mechanical design on the transient disturbances is

necessary.

 132

Figure 5.12, BLDC servo motor and dynamometer load torque (full load)

load torque

motor torque

 133

CHAPTER 6

Contributions and Future Work

Contributions

In this dissertation, a number of fundamental problems associated with the

TBA prototype and its dynamic operation were studied analytically and

experimentally.

1. A hybrid dynamic system model was set up for the TBA system, refer to

Chapter 2, which is a set of three 2nd order linear time invariant systems;

the model is the first example of the hybrid system theory applied to the

TBA system in literature.

2. A supervisory controller was developed for the TBA system. A transition

stable switch strategy was identified analytically by finding time invariant

and state space invariant switch signals as shown in Chapter 3, and it was

demonstrated experimentally as reported in Chapter 5. By doing this, this

dissertation addresses the essential hybrid problem which is the design of

the associated supervisory controller for continuous systems [36].

3. The control strategy successfully achieved switch signal transition stability.

The approach is to find a control strategy whose switch signal is both time

invariant and state space invariant. In this research, a heuristic method

was adopted to generate a transition stable switch signal. First, a two shift

boundary scheme was used such that up and down shift signals are

 134

generated on different conditions; thus, a state space stable switch signal

can be found by using properly tuned shift boundaries. Second, a time

invariant switch signal was found by limiting the time between two

adjacent switch signals. By using a control strategy involving two shift

boundaries and a time constraint, a transition stable signal was achieved,

which was shown analytically and experimentally.

4. A sufficient condition for TBA stability was also established by solving the

second of the three fundamental problems of hybrid control systems

formulated in [15]. The method and results can be extended to a wide

range of electrical and mechanical systems involving multiple continuous

systems and discrete state changes. The sufficient condition for plant

stability was established by finding a common feedback controller to

stabilize all three subsystems. Under this condition, it was shown that a

common Lyapunov function exists for the TBA; thus, stability under

asynchronous switching is achieved for the TBA.

5. A PC based real time control software platform was also established for

the class of mechanical systems that includes TBA’s. The real time control

software was set up using RTAI, which provides a real time patch for

general Linux and user space real time programming. The software used

a multithread design in order to meet the real time performance

requirement of different subtasks. The experimental results showed that

the proposed software meets all the system design requirements and yet

is sufficiently flexible for future controller upgrades. With the proposed

real time control software framework, significant performance

 135

improvements were achieved compared with a LabVIEW / Windows XP

implementation during the TBA feasibility test [1, 57] .

6. The particular real time control software framework developed here is

based on open source software and is the first in literature and is

expressly designed to fit the needs for high bandwidth mechanical

systems R&D. The multi-thread real time control software framework, by

providing deterministic time, task scheduling, inter process

communications, Ethernet, and a GUI, can be used as a reference

framework for a wide range of PC based control problems where real time

performance is required.

In summary, the research successfully addressed the most fundamental

control issues associated with the TBA prototype including modeling, control,

simulation, and experiment verification. It has expanded the fundamental

understanding of the TBA system control and similar hybrid dynamic systems.

The methods and results of this dissertation will contribute to the hybrid system

control knowledge base and the real time control software design practice in

many applications.

Future Work

Although fundamental problems associated with the TBA control were

addressed in this dissertation, much research remains pertaining to theoretical

and implementation issues. Specially, future works should:

1. Explore other optimal or suboptimal control scheme. One optimal based

control scheme for minimal transient response was formulated in this

 136

research. Another possible objective for optimization can be to maximize

servo power output control. One of the challenges of these optimal control

methods lies in the existence of plant constraints. For example, the servo

motor has speed and torque saturations. Another difficulty is to sustain

real time loop speeds in the presence of the large calculation overhead of

more complex control algorithm.

2. Analyze and evaluate the effects of the parameter uncertainty of the TBA

on the system performance. In this research, a conservative approach

was used to design the feedback controller. For example, all the closed

loop poles not only have negative real parts, but these poles are far away

from the origin. This conservative approach can maintain system stability

and keep system performance within an acceptable range under

parameter uncertainty. An alternative approach is to design a controller

using robust control theory, which usually gives a high order controller. In

addition to design controller for system with parameter uncertainty, robust

control theory can also be used to attack plant disturbance, sensor noise

rejection.

3. Asymmetric transient responses were observed in experiments when

shifting into and out of the 1st gear. A further examination of the

mechanical design of the TBA will be helpful to identify the cause of this

problem. The compliance characteristics of the bearing and shaft

structures the planetary gears should definitely be studied further.

 137

LIST OF REFERENCES

 138

REFERENCES

[1] W. R. Hamel, D. A. Lumsdaine, D. S. Douglass, D. S. Kim, K. P. Brown, S.
Sridharan, R. Zhou, K. Ganti, and A. Srikantaiah, "Transmission-based
eletrical servoactuators," 2003.

[2] J. Chiasson, Modeling and High Performance Control of Electric
Machines: Wiley-IEEE Press, 2005.

[3] R. Qu, M. Aydin, and T. A. Lipo, "Performance Comparison of Dual-rotor
Radial-flux and Axial-flux Permanent Magnet BLDC Machines " presented
at Electrical Machines and Drives Conference, 2003.

[4] M. Bodson and J. Chiasson, "A systematic approach to selecting flux
references for torque maxmization in induction motors," Control System
Magzine, IEEE, vol. 3, pp. 388-397, 1995.

[5] H. Baruh, Analytical Dynamics: McGraw-Hill Science/Engineering/Math,
1998.

[6] M. Bugeja, "Non-Linear Swing-Up and Stabilization Control of and
Inverted Pendulum System," presented at EUROCON, Ljubljana,Slovenia,
2003.

[7] K. J. Aström and K. Furuta, "Swing up a pendulum by energy control,"
presented at 13th IFAC World Congress, San Francisco, CA, 1996.

[8] K. Yoshida, "Swing-up Control of an Inverted Pendulum by Energy
Methods " presented at American Control Conference, San Diego, CA,
1999.

[9] R. Alur, C. A. Courcoubetis, T. A. Henzinger, and P.-H. Ho, "Hybrid
automata: An algorithmic approach to specification and verification of
hybrid systems," in Lecture Notoes in Computer Science, vol. 736, 1993,
pp. 209-229.

[10] P. J. Antsaklis, "A brief introduction to the theory and applications of hybrid
systems," presented at IEEE, Special Issue on Hybrid Systems: Theory
and Applications, 2000.

[11] A. Bemporad, A. Giua, and C. Seatzu, "Synthesis of state-feedback
optimal controllers for switched linear systems," presented at 41th IEEE
Conference on Decision and Control, 2002.

[12] M. S. Branicky, "Stability of Switched and Hybrid Systems," presented at
33rd Conference on Decision and Control, Lake Buena Vista, FL, 1994.

[13] M. S. Branicky, "Multiple Lyapunov Functions and Other Analysis Tools for
Switched and Hybrid Systems " IEEE Transaction Automatic Control, vol.
43, pp. 475-482, 1998.

[14] W. P. Dayawansa and C. F. Martin, "A converse lyapunov theorem for a
class of dynamical sysytems which undergo switching," IEEE Transaction
Automatic Control, vol. 44, pp. 751-760, 1999.

[15] D. Liberzon and A. S. Morse, "Basic Problems in Stability and Design of
Switched systems," Control System Magazine, IEEE, vol. 19, pp. 59-70,
1999.

 139

[16] E. Litsyn, Y. V. Nepomnyashchikh, and A. Ponosov, "Hybrid dynamic
systems vs. ordinary differential equations: Examples of "pathlogical"
behavior," in Electronic Journal of Qualitative Theory of Differential
Equations 2000, pp. 1-10.

[17] D. Mignone, G. Ferrari-Trecate, and M. Morari, "Stability and Stabilization
of Piecewise Affine and Hybrid Systems: an LMI Approach," presented at
Decision and Control, IEEE, Sydney, NSW Australia, 2000.

[18] S. Pettersson and B. Lennartson, "Stability and Robustness for hybrid
systems," presented at IEEE conference on Decision and Control, Kobe,
1996.

[19] Z. Sun and S. S. Ge, Switched Linear Systems. London: Springer-Verlag
London Limited, 2005.

[20] K. S. Narendra and J. Balakrishnan, "A common lyapunov function for
stable LTI systems with commuting A-matrices," IEEE Transaction
Automatic Control, vol. 39, pp. 2469-2471, 1994.

[21] T. Ooba and Y. Funahashi, "Two conditions concerning common quadratic
lyapunov functions for linear systems," IEEE Transaction Automatic
Control, vol. 42, pp. 719-721, 1997.

[22] A. V. Savkin and R. J. Evans, Hybrid Dynamical Systems. Boston:
Birkhaüser Boston, 2002.

[23] R. N. Shorten and K. S. Narendra, "A sufficient condition for the existense
of a common lyapunov function for two second order linear systems,"
presented at IEEE Conference on Decision and Control, San Diago,
California, 1997.

[24] R. N. Shorten and K. S. Narendra, "Necessary and sufficient conditions for
the existence of a common quadratic lyapunov function for M stable
second order linear time invariant systems," presented at American
Control Conference, Chicago, Illinois, 2000.

[25] S. Pettersson and B. Lennartson, "Stabiltiy of Hybrid System Using LMIs-
A Gear-Box Application," Lecture Notes in Computer Science, vol. 1790,
pp. 381, 2000.

[26] S.-t. Cho, S. Jeon, H.-S. Jo, J.-M. Lee, and Y.-I. Park, "A development of
shift control algorithm for improving the shift characteristics of the
automated manual transmission in the hybrid drivetrain," Int. J. of Vehicle
Design, vol. 26, pp. 469-486, 2001.

[27] A. Bemporad, P. Borodani, and M. Mannelli, "Hybrid control of an
automotive robotized gearbox for reduction of consumptions and
emmission," Lecture Notes in Computer Science, pp. 81-96, 2003.

[28] M. C. Turner and D. J. Walker, "Linear quadratic bumpless transfer,"
Automatica, vol. 36, pp. 1089-1101, 2000.

[29] M. Schinkel, W.-H. Chen, and A. Rantzer, "Optimal control for systems
with varying sampling rate," presented at American Control Conference,
2002.

[30] T. Minowa, T. Ochi, H. Kuroshi, and K.-Z. Liu, "Smooth gear shift control
technology for clutch-to-clutch shifting," SAE Paper, vol. 1999-01-1054,
1999.

 140

[31] A. Bemporad, "Modeling, control, and reachability analysis of discrete time
hybrid systems," 2003.

[32] T. A. Henzinger, "The theory of hybrid automata," 11th Annual IEEE
Symposium on Logic in Computer Science, pp. 278-292, 1996.

[33] J. M. Davoren and A. Nerode, "Logics for hybrid automata," proceedings
of the IEEE, vol. 88, pp. 985-1010, 2000.

[34] D. Liberzon and R. Tempo, "Gradient algorithms for finding common
lyaponov functions," presented at IEEE Conference on Decision and
Control, Maui,Hawaii, 2003.

[35] X. Xu and P. J. Antsaklis, "Stability of Second-order LTI Switched
Systems," ISIS Group at the University of Nortre Dame 1999 1999.

[36] X. D. Koutsoukos, P. J. Antsaklis, J. A. Stiver, and M. D. Lemmon,
"Supervisory Control of Hybrid Systems," Proceedings of the IEEE, vol.
88, pp. 1026-1049, 2000.

[37] M. C. Turner and D. J. Walker, "Linear Quadratic Bumpless Transfer,"
Automatica, vol. 36, pp. 1089-1101, 2000.

[38] M. C. Turner and D. J. Walker, "Modified Linear Quadratic Bumpless
Transfer," American Control Conference, vol. 4, pp. 2285-2289, 1999.

[39] J. V. d. Vegte, Feedback Control Systems, 3rd ed: Prentice Hall, Inc.,
1994.

[40] K. J. Åström and T. Hägglund, "PID control," in The Control Handbook, W.
S. levine, Ed.: CRC press, IEEE press, 1996, pp. 198-208.

[41] K. J. Aström and T. Hägglund, "PID control," in The Control Handbook, W.
S. levine, Ed.: CRC press, IEEE press, 1996, pp. 198-208.

[42] T. Hu and Z. Lin, Control Systems with Actuator Saturation: Birkhaüser
Boston, 2001.

[43] M. Masatoshi and Y. Tomoshige, "Research of Engine Optimal Control,"
IHI Engineering Review, vol. 38, pp. 70-73, 2005.

[44] F. L. Lewis and V. L. Syrmos, Optimal control, 2 ed. New York: Wiley-
Interscience, 1995.

[45] K. Zhou and J. C. Doyle, Essentials of Robust Control. Upper Saddle
River, NJ: Prentice-Hall, 1998.

[46] M. J. Bach, The design of the unix operating system 1ed: Prentice Hall
PTR, 1986.

[47] D. P. Bovert and M. Cesati, Understanding the Linux Kernel, 2nd ed:
O'Reilly, 2002.

[48] P. N. Leroux, "RTOS versus GPOS," Embedde Computing Design, 2005.
[49] I. Sun Microsystems, "Multithreaded Programming Guide," 2002.
[50] B. Ip, "Performance analysis of VxWorks and RTLinux," presented at the

First Embedded Software Contest, Korea, 2003.
[51] RTAI, "www.rtai.org."
[52] P. Cloutier, "DIAPM-RTAI position paper," RTSS 2000-Real Time

Operating Systems Workshop, 2000.
[53] P. Mantegazza, "DIAPM RTAI for Linux: WHYs, WHATs, and HOWs,"

presented at Real Time Linux Workshop, Vienna University of
Technology, 1999.

 141

[54] Comedi, "www.comedi.org."
[55] L. Dozio and P. Mantegazza, "Real Time Distributed Control Systems

using RTAI," presented at IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 2003.

[56] M. S. Santina, A. R. Stubberud, and G. H. Hostetter, "Sample-Rate
Selection," in The Control Handbook, W. S. Levine, Ed.: CRC Press, IEEE
Press, 1996, pp. 313-321.

[57] W. R. Hamel, S. Kim, R. Zhou, and A. Lumsdaine, "Design and testing of
a prototype transmission-based robot servoactuator," presented at 2004
IEEE Conference on Robotics and Automation, 2004.

 142

APPENDIX

 143

APPENDIX

DVT model

3rd gear derivation: (Brake #1, lowest ratio)

() () ()

() () ()

1 1 1 2 2 3 2 4 3 5 3 6

1 1 1 1

2
1 1 1 2 2 2 1 1 1 1 1 2 2 4

1 1 1 1 2

2 2 2 3

2
2 2 2 3 3 3 2 2 3 2 2 4 3 6

3

3

3

3

3

s s in s s s s s s

p p p

p c c r r b c p s r r

r r b r

p p p

p c c r r b c p s r r

J T r r r r r r

J r

m r J J T r r r r r

J T r

J r

m r J J T r r r r r

θ λ λ λ λ λ λ

θ λ

θ λ λ λ

θ λ

θ λ

θ λ λ λ

= + − + − + −

=

+ + = − − − + + −

= − −

=

+ + = − − − + + −

&&

&&

&&

&&

&&

&&

() () ()

() () ()

1 2 3 1
1 1 2 2 3 3 1 2 4 3 6

1 2 3 1

12 1
1 1 1 2 2 1 1 1 1 1 2

1 1

3 3 3 5

2
3 3 3 3 3 3 5 3 3 6

3 3 3
(1)

3
3

3

p p p b
s s s p s p s p in s s s

p p p r

p b
p c c r r c p p s r r

p r

p p p

p c c c out c p s r

J J J T
J r r r T r r r

r r r r

J T
m r J J r r r r r

r r

J r

m r J T r r r r

θ θ θ θ λ λ

θ θ

θ λ

θ λ λ

− − − = + − −

+ + + − = − + −

=

+ = − − − + +

&& && && &&

&& &&

&&

&&

() () ()

() () ()

4

22

2 2 2 3 3 2 2 2 2 2 4 3 6

2

32

3 3 3 3 3 3 3 3 3 6

3

1 2 3 2

1 1 2 2 3 3 1 1

1 2 3

(2)

3
3 (3)

3
3 (4)

(1) (2) (3) (4)

3 3 3
3

p

p c c r r c p p s r r

p

p

p c c c c p p out s r

p

p p p

s s s p s p s p p c

p p p

J
m r J J r r r r r

r

J
m r J r r T r r

r

J J J
J r r r m r

r r r

λ

θ θ λ λ

θ θ λ

θ θ θ θ

+ + + − = + −

+ + − = − + +

+ + +

− − − + +

&& &&

&& &&

&& && && && () ()

() () () ()

() () ()

1

1 2 2 1 1 1

1

2 32 2

2 2 2 3 3 2 2 2 3 3 3 3 3 3 3

2 3

1 1
1 1 1 2 4 2 4 2 2 4 3 3 6 3 6 3 6

1 1

2

3

3 3
3 3

3

p

c r r c p p

p

p p

p c c r r c p p p c c c c p p

p p

b b
in s s r out r s s r s r s r

r r

s s p

J
J J r r

r

J J
m r J J r r m r J r r

r r

T T
T r r r T r r r r r r r r

r r

J m

θ θ

θ θ θ θ

λ λ λ λ λ λ

θ

+ + − +

+ + + − + + + − =

+ − + − − − + + + + − −

+

&& &&

&& && && &&

&& () () ()
() () ()

2 2 2
2 2 3 3 1 1 1 2 2 3 3 3 3 1

2 2 2
1 2 2 2 3 3 1 1 1 2 2 3 3 3 3

3 3

3 3 3 (*)

c c r r p c c r r p c c c in b out

b in out s s p c c r r p c c r r p c c c

r J J m r J J m r J T T T

T T T J m r J J m r J J m r J

θ θ θ

θ θ θ θ

+ + + + + + + = − −

= − − − + + − + + − +

&& && &&

&& && && &&

 144

() () ()

() () ()

()

6

32
3 3 3 3 3 3 3

3 3 3

12 1
4 1 1 1 2 2 1 1 1 1 1

2 1 1

4 6

2
2 2 2 3 3

1
from (4),

3
3

31
from (2), 3

substitute and into (3)

3

p
p c c c c p p out

s r p

p b
p c c r r c p p s r

r p r

p c c r r

J
m r J r r T

r r r

J T
m r J J r r r r

r r r

m r J J

λ θ θ

λ θ θ

λ λ

θ

= + + − +
+

= − + + + − + +

+ + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

&& &&

&& &&

&& () ()

() ()
() ()

()
() () ()

() ()

2
2 2 2 2 2 4 3 6

2

2 22 23
2 2 2 3 3 2 2 3 3 3 3

2 3 3

3 3 22 23
3 3 1 1 1 2 2

3 3 3 2

1 12 2
1 1

2 1

3
(3)

3 3 3

3 3

3

p
c p p s r r

p

c p r
p c c r r p p p c c c

p s r

c p s rr
p p p c c r r

s r p r

c ps r
p p

r p

J
r r r r r

r

r r r
m r J J J m r J

r r r

r r r rr
J m r J J

r r r r

r rr r
J

r r

θ λ λ

θ θ θ

θ θ

θ

− = + −

−
+ + + + + +

+

− +
+ + +

+

−+
+ =

&&

&& && &&

&& &&

&& () ()
()

() () ()

() () () ()

2 2 1 1 3
1

2 1 3 3

2 2 2
1 2 2 2 3 3 1 1 1 2 2 3 3 3 3

2 2 1 1 2 2 1 1
1

2 1 2 1

(6)

3 3 3 (*)

substitute (*) into (6)

s r s r r
b out

r r s r

b in out s s p c c r r p c c r r p c c c

s r s r s r s r
b in

r r r r

r r r r r
T T

r r r r

T T T J m r J J m r J J m r J

r r r r r r r r
T T

r r r r

θ θ θ θ

+ +
− −

+

= − − − + + − + + − +

+ + + +
− = − +

&& && && &&

() ()

() () () () ()

() () () () () ()

()

2 2 1 1

2 1

22 2 1 1 2 2 1 1
2 2 2 3 3

2 1 2 1

2 22 2 1 1 2 2 1 1
1 1 1 2 2 3 3 3 3

2 1 2 1

22
2 2 2 3 3

3

3 3

3

s r s r
out

r r

s r s r s r s r
s s p c c r r

r r r r

s r s r s r s r
p c c r r p c c c

r r r r

c
p c c r r

r r r r
T

r r

r r r r r r r r
J m r J J

r r r r

r r r r r r r r
m r J J m r J

r r r r

r r
m r J J

θ θ

θ θ

θ

+ +
+

+ + + +
+ + + +

+ + + +
+ + + +

−
+ + +

&& &&

&& &&

&& ()
() ()

()
() () () () ()

() () () () ()

2 23
2 2 3 3 3 3

2 3 3

3 3 1 122 2 2 23
3 3 1 1 1 2 2 1 1

3 3 3 2 2 1

2 2 1 1 2 2 1 1 2 2 1

2 1 2 1 2

3 3

3 3 3

p r
p p p c c c

p s r

c p c ps r s rr
p p p c c r r p p

s r p r r p

s r s r s r s r s r s
in out

r r r r r

r
J m r J

r r r

r r r rr r r rr
J m r J J J

r r r r r r

r r r r r r r r r r r r
T T

r r r r r

θ θ

θ θ θ

+ + +
+

− −+ +
+ + + +

+

+ + + + + +
= − + +

&& &&

&& && &&

()

() () () () () ()

() () () ()

1

1

2 22 2 1 1 2 2 1 1
2 2 2 3 3 1 1 1 2 2

2 1 2 1

22 2 1 1 3
3 3 3 3

2 1 3 3

3 3

3

r
s s

r

s r s r s r s r
p c c r r p c c r r

r r r r

s r s r r
p c c c out

r r s r

J
r

r r r r r r r r
m r J J m r J J

r r r r

r r r r r
m r J T

r r r r

θ

θ θ

θ

+

+ + + +
+ + + + + +

+ +
+ −

+

&&

&& &&

&&

 145

() ()

() () () ()

() () ()
()

()

() ()

2 2 1 1

2 1

2 22 2 1 1
2 2 2 3 3 2 2 2 3 3

2 1

1 1 2 2 3 32 2 3
1 1 2 2 3 3

2 1 2 3 3 3

22 2
1 1 1 2

2

3 3

3 3 3

3

s r s r
s s

r r

s r s r
p c c r r p c c r r

r r

c p c p c ps r r
p p p p p p

r p p s r p

s r
p c c r

r

r r r r
J

r r

r r r r
m r J J m r J J

r r

r r r r r rr r r
J J J

r r r r r r

r r
m r J J

r

θ

θ θ

θ θ θ

+ +
−

+ +
+ + + − + +

− − −+
+ + +

+

+
+ + +

&&

&& &&

&& && &&

&& () () ()

() () () () ()

() () () ()
()

() ()

22 2 1 1
2 1 1 1 2 2

2 1

2 22 2 1 13
3 3 3 3 3 3 3 3

3 3 2 1

2 2 1 1 2 2 1 1 3

2 1 2 1 3 3

2 2 1 1

2 1

3

3 3

s r s r
r p c c r r

r r

s r s rr
p c c c p c c c

s r r r

s r s r s r s r r
in out

r r r r s r

s r s r

r r

r r r r
m r J J

r r

r r r rr
m r J m r J

r r r r

r r r r r r r r r
T T

r r r r r r

r r r r
J

r r

θ θ

θ θ

+ +
− + +

+ +
+ + − +

+

+ + + +
= − + −

+

+ +
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

&&

&& &&

() () ()

()
()

() () () ()

()

22 2 1 1
2 2 2 3 3

2 1

2 2 1 2 3 3
1 1 2 2 3 3

2 1 2 3 3 3

22 2 2 2 1 1
1 1 1 2 2

2 2 1

23

3 3

1 3

3 3 3

3

s s

s r s r
p c c r r

r r

s r s s r s
p p p p p p

r p p s r p

s r s r s r
p c c r r

r r r

s rr

s r

r r r r
m r J J

r r

r r r r r r
J J J

r r r r r r

r r r r r r
m r J J

r r r

r rr
r r

θ

θ

θ θ θ

θ

+ +
+ − + +

+
+ + +

+

+ + +
+ − + +

+
+ −

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

&&

&&

&& && &&

&&

() () ()

() () () ()
()

22 1 1
3 3 3 3

2 1

2 2 1 1 2 2 1 1 3

2 1 2 1 3 3

3s r
p c c c

r r

s r s r s r s r r
in out

r r r r s r

r r
m r J

r r

r r r r r r r r r
T T

r r r r r r

θ
+

+

+ + + +
= − + −

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

&&

 146

()
() () ()

() ()
()

1 2 1 2 2 3 1 1 1 1 2 2 2 3 3 3 3

2 1 1 2 3 1 2 3 3 1 2 1 2 3

1 1 2 2 3
1 2 3

1 2 3 3

1 2 3
1 2 3

1 2 3

2
1 1

1 3 3 3

1

, ,

, ,

3

s s eq r p p p p p p

eq r eq c in out

s r s r r

r r s r

s s s

p p p

p c

p p J p p J p m J m J p m J

p p J p p p J p p T p p p T

r r r r r
p p p

r r r r

r r r
m m m

r r r

m r

θ θ θ θ θ

θ θ

− + − + + + +

− + − = − + −

+ +
≡ ≡ ≡

+

≡ ≡ ≡

+

&& && && && &&

&& &&

() () ()

()

()
()

()

2 2
1 2 1 2 2 2 3 2 3 3 3 3

1
1 2 1 1 1 1 1

1

1
1 2 1 1 2 1

1 1

2
2 3 2 2 2 2 1

2

2 3

, 3 , 3

0 1

0

0 1

c r eq p c c r eq p c c eq

s
s s r s p p p s

p

s
s s r r s r s s

r s

s
s s r s p p p s

p

s s r

J J J m r J J J m r J J

r
r r r

r

r
r r r

r r

r
r r r

r

r r

θ θ θ θ β θ

θ θ θ θ β θ

θ θ θ θ α θ

θ θ

+ ≡ + + ≡ + ≡

− + = => = −

− + + = => = ≡
+

− + = => = −

− +

& & & & &

& & & & &

& & & & &

& & () ()
()

()
() ()

()

()

1
2 2

1 1
2 2 2 2 3

2 2

1
2

1 1 2
3 1

2 2 2 2

3
3 3 3 3 3 3 1

3

1
2

1
3

3 3 3 3 3 3 3

0

0 1

0

s
r s

r s
r s r r r s

r s

s
r

r s s
r s s

r s r s

s
s s c s p p p s

p

s
r

r
s

s s c r s r r c

r
r r

r r
r r

r r

r
r

r r r
r r r r

r
r r r

r

r
r

r
r

r r r r

θ θ θ

θ θ α θ

θ θ θ θ γ θ

θ θ θ θ

+
+

+ − = ⇒ = ⇒
+

+
= + ≡

+ +

− + = => = −

+

− + + − = => =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

& & &

& & &

& & & & &

& & & &

()
() ()

()

() () ()
() () ()

()

1 2
3

2 2 2 2

1
3 3

1 2 1 2 1 2 1 1 1 1 1 2 1 2 2

3 3 1 3 3 2 1 1 1 3 1 2 1 3

1 2 1 2 3

1 3 1 3 1

3 1 1

s s
r

r s r s

s s
r s

s eq p p

s
p eq eq

in out

r r
r

r r r r

r r

p p J p p J p m m J m m J

p m m J p p J p p p J

p p T p p p T

θ γ θ

α β α
θ

γ β γ

+
+

+ +

≡
+

− + − + − + − +

− + − + −

= − + −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

& &

&&

 147

2nd gear derivation (brake #2, middle ratio)

() ()

() () ()

()

1 1 1 2 2 3 2 4 3 5 3 6

1
1 1

1

2 1 1 1 1 1 2 2 4

1
1 2

1

2
2 3

2

2
2 2 2 3 3 2 2 3 2 2 4 3 6

3
3 5

3

2
3 3 3

3

0

3

3

3

3

s s in s s s s s s

p
p

p

b c p s r r

r
r

r

p
p

p

p c c r r c p s r r

p
p

p

p c c

J T r r r r r r
J
r

T r r r r r

J
r

J
r

m r J J r r r r r

J
r

m r J

θ λ λ λ λ λ λ

θ λ

λ λ λ

θ λ

θ λ

θ λ λ λ

θ λ

= + − + − + −

=

= − − − + + −

− =

=

+ + = − − + + −

=

+

&&

&&

&&

&&

&&

&&

&& () ()3 3 3 5 3 3 6c out c p s rT r r r rθ λ λ= − − − + +

()

()

1 1 2 3
1 1 1 1 2 2 2 4 3 3 3 6

1 1 2 3

1 1 1
1

1 11
2 1 1 1 1 2 4

1 1

1 1 2
1

2 2 3
2

2
2 2 2 3

3 3 3

1 3

0 3

1

1 3

3

s s s s
s s in p p r r p p s p p s

p r p p

p p
p

s rs
b p p r r r

p r

r r
r

p p
p

p c c r r

r r r rJ T J J J r J r
r r r r

J
r

r rrT J J r
r r

J
r

J
r

m r J J

θ θ θ θ λ θ λ

θ λ

θ θ λ

θ λ

θ λ

θ

= + + + − + −

=

+
= − − − −

− =

=

+ +

&& && && && &&

&&

&& &&

&&

&&

&& ()

() ()

2
3 2 2 2 2 4 3 6

2

3 3 5
3

2 3
3 3 3 3 3 3 3 3 6

3

3

1 3

3 3

s
p p s r r

p

p p
p

s
p c c c out p p s r

p

r J r r r
r

J
r

rm r J T J r r
r

θ λ λ

θ λ

θ θ λ

= − + + −

=

+ = − − + +

&&

&&

&& &&

 148

()

() ()

1 1 2 3
1 1 1 1 2 2 3 3 2 4 3 6

1 1 2 3

1 11
1 1 1 1 2 42

1 1

2 2
2 2 2 3 3 2 2 2 2 4 3 6

2

2
3 3

3 3 3 (1)

3 (2)

3 3 (3)

3

s s s s
s s inp p r r p p p p s s

p r p p

s rs
p p r r rb

p r

s
p c c r r p p s r r

p

p c

r r r rJ J J J J T r r
r r r r

r rr J J T r
r r

rm r J J J r r r
r

m r

θ θ θ θ θ λ λ

θ θ λ

θ θ λ λ

− − − − = − −

+
+ = − −

+ + + = + −

&& && && && &&

&& &&

&& &&

() ()

()

()

3
3 3 3 3 3 3 6

3

1 11 1 2 3 1
1 1 1 1 2 2 3 3 1 1 1 1

1 1 2 3 1 1

2
2 2 2 3 3

3 (4)

 all the above equations

3 3 3 3

3

s
outc c p p s r

p

s rs s s s s
s s p p r r p p p p p p r r

p r p p p r

s
p c c r r

rJ J T r r
r

add
r rr r r r rJ J J J J J J

r r r r r r
rm r J J

θ θ λ

θ θ θ θ θ θ θ

θ

+ + = − + +

+
− − − − + + +

+ + +

&& &&

&& && && && && && &&

&& ()

() ()
()

()

22 3
2 2 3 3 3 3 3 3 2

2 3

2 2
1 1 2 2 2 3 3 3 3 3 3 2

2 3
3 3 3 3 3 3

3
6

3 3

3 3 3

3 3 (5)

3 3
(4) =

from (2)

s
in outp p p c c c p p b

p p

s s in outr r p c c r r p c c c b

s
outp c c c p p

p

s r

rJ m r J J T T T
r r

J J m r J J m r J T T T

rm r J J T
r

from
r r

θ θ θ

θ θ θ θ

θ θ
λ

+ + + = − −

+ + + + + + = − −

+ + +

+

&& && &&

&& && && &&

&& &&

()

() ()

()

()
()

1 11
1 1 1 1 2

1 1

2

4 6

1 11
1 1 1 1 2

1 1

2

4

2 2
2 2 2 3 3 2 2 2 2

2

2 3
3 3 3 3 3 3

3
3

3 3

3

, into (3)

3

3 3

3 3

s rs
p p r r b

p r

r

s rs
p p r r b

p r

r

eq

s
p c c r r p p s r

p

s
outp c c c p p

p
r

s r

r rr J J T
r r

r

r rr J J T
r r

r
rm r J J J r r
r

rm r J J T
r

r
r r

J

θ θ

λ

θ θ

λ

λ

θ θ

θ θ

+
+ +

= −

+
+ +

+ + + = − + −

+ + +

+

⇒

&& &&

&& &&

&& &&

&& &&

()
() () ()

()()

2 2 3 3 3 3 3 2 1 1 1 2 2 23 2 2 3 3 3 1 1 1

1 1 21 22 2
1 1 1 1 2 2 2 3 3 2 2

1 1 2 2 2 2 2

2 3

2 2 3 3

3 3 3

3 3 3

3

eq out p tbr p p c p p p r r

s rs sr r
p p r r p c c r r p p

p r s r s r p

r r

s r s r

m p J p p T p m J p p p TJ m J J

r rr rr rJ J m r J J J
r r r r r r r

r r
r r r r

θ θ θ θ θ θ

θ θ θ θ

+ + + + + + = −

+
+ + + + + +

+ +

+ +

&& && && && && &&

&& && && &&

()2 3
3 3 3 3 3 3 2

3
3s

outp c c c p p b
p

rm r J J T T
r

θ θ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

+ + + = −&& &&

 149

()

() ()

1 1 2 3
1 1 1 1 2 2 3 3 2 4 3 6

1 1 2 3

1 11
1 1 1 1 2 42

1 1

2 2
2 2 2 3 3 2 2 2 2 4 3 6

2

2
3 3

3 3 3 (1)

3 (2)

3 3 (3)

3

s s s s
s s inp p r r p p p p s s

p r p p

s rs
p p r r rb

p r

s
p c c r r p p s r r

p

p c

r r r rJ J J J J T r r
r r r r

r rr J J T r
r r

rm r J J J r r r
r

m r

θ θ θ θ θ λ λ

θ θ λ

θ θ λ λ

− − − − = − −

+
+ = − −

+ + + = + −

&& && && && &&

&& &&

&& &&

() ()

()

()

3
3 3 3 3 3 3 6

3

1 11 1 2 3 1
1 1 1 1 2 2 3 3 1 1 1 1

1 1 2 3 1 1

2
2 2 2 3 3

3 (4)

 all the above equations

3 3 3 3

3

s
outc c p p s r

p

s rs s s s s
s s p p r r p p p p p p r r

p r p p p r

s
p c c r r

rJ J T r r
r

add
r rr r r r rJ J J J J J J

r r r r r r
rm r J J

θ θ λ

θ θ θ θ θ θ θ

θ

+ + = − + +

+
− − − − + + +

+ + +

&& &&

&& && && && && && &&

&& ()

() ()
()

()

22 3
2 2 3 3 3 3 3 3 2

2 3

2 2
1 1 2 2 2 3 3 3 3 3 3 2

2 3
3 3 3 3 3 3

3
6

3 3

3 3 3

3 3 (5)

3 3
(4) into (3)

3

s
in outp p p c c c p p b

p p

s s in outr r p c c r r p c c c b

s
outp c c c p p

p

s r

rJ m r J J T T T
r r

J J m r J J m r J T T T

rm r J J T
r

from
r r

m

θ θ θ

θ θ θ θ

θ θ
λ

+ + + = − −

+ + + + + + = − −

+ + +
=

+

&& && &&

&& && && &&

&& &&

()
()

()
()

()
() ()

2 3
3 3 3 3 3 3

32 2
2 2 2 3 3 2 2 3

2 3 3
4

2 2

1 1 21 22
1 1 1 1 2 2 2 3 3 2 22

1 1 2 2 2

3

3 3
3

into (2)

3 3 3

s
outp c c c p p

ps
p c c r r p p r

p s r

s r

s rs sr
p p r r p c c r r p pb

p r s r p

r

s

rm r J J T
rrr J J J r

r r r
r r

r rr rrJ J T m r J J J
r r r r r

r
r

θ θ
θ θ

λ

θ θ θ θ
⎛
⎜⎜
⎝

+ + +
+ + + +

+
=

+

+
+ = − − + + + +

+

&& &&

&& &&

&& && && &&

() ()

()
() () ()

()() ()

2 3
3 3 3 3 3 3

3 3 3

1 1 21 22 2
1 1 1 1 2 2 2 3 3 2 2

1 1 2 2 2 2 2

22 3 3
3 3 3 3 3

2 2 3 3 3

3 3

3 3 3

3 3

s
outp c c c p p

r p

s rs sr r
p p r r p c c r r p p

p r s r s r p

r r s
p c c c p

s r s r p

rm r J J T
r r

r rr rr rJ J m r J J J
r r r r r r r

r r rm r J J
r r r r r

θ θ

θ θ θ θ

θ θ

⎞⎛ ⎞
⎟⎜ ⎟⎜ ⎟⎟⎝ ⎠⎠

+ + +
+

⇒
+

+ + + + + +
+ +

+ +
+ +

&& &&

&& && && &&

&& &&
3 2outp bT T

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

+ = −

 150

()
() ()

() () ()

()

1 1 21 2
1 1 1 1 2 2 2 3 3

1 1 2 2

2 32 2
2 2

2 2 2 2 2 3 3

2 3
3 3 3 3 3 3 2

3

2
1 1 2 2

3 3

3

3 3 (*) into (5)

3

s rs r
p p r r p c c r r

p r s r

s rr r
p p

s r p s r s r

s
outp c c c p p b

p

s s r r p c

r rr rJ J m r J J
r r r r

r rr rJ
r r r r r r r

rm r J J T T
r

J J m r

θ θ θ

θ

θ θ

θ θ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

+
+ + + + +

+

+
+ + +

+ + + = −

+ +

&& && &&

&&

&& &&

&& && () ()
()

() () ()

() () ()

2
2 3 3 3 3 3 3

1 1 21 2 2
1 1 1 1 2 2 2 3 3

1 1 2 2 2 2

22 3 32
2 2 3 3 3 3 3 3

2 2 2 3 3 3

3

3 3

3 3 3

c r r p c c c

s rs r r
in p p r r p c c r r

p r s r s r

s r sr
out outp p p c c c p p

p s r s r p

J J m r J

r rr r rT J J m r J J
r r r r r r

r r rrJ m r J J T T
r r r r r r

θ θ

θ θ θ

θ θ θ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

+ + + + =

+
+ + + + + +

+ +

+ + + + −
+ +

&& &&

&& && &&

&& && &&

() 3
1 1 1 2 3 3 3 1 1 1

2 2

3 3
2 2 2 3 3 3

2 2 2

1
1 1

1

1
1 1 1 1 2

1

2 3

11 1 1 3

1 3 3 1

0

s s r r eq r eq c p p

in outp p p p

s
s sp

p

s
s s ss r r r

r

s s r s

pJ p J J J m J
p p

p pm J m J T T
p p p

r m
r

rr r
r

r r

θ θ θ θ θ

θ θ

θ θ θ

θ θ θ θ β θ

θ θ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ − + − + − − −

− = − −

= − ≡ −

− − = ⇒ = − ≡

−

&& && && && &&

&& &&

& & &

& & & & &

& & ()

() ()

() ()
()

()

2 2 2 2 2 2

2
2 3 2 2 3 2

2 2

2
2 3 2 2 3 2

2 2

3 3 3 3 3 3 3 2

2
3 3 3 3 3 3 3

2

0 1

0

0

0 1

0

sp p p

s
s s ss r r s r

r s

s
s s ss r r s r

r s

s ss c s p p p

s
s s c r s r r c

r

r m
rr r r

r r
rr r r

r r

r r r m

rr r r r
r

θ θ α θ

θ θ θ θ α θ

θ θ θ θ α θ

θ θ θ θ γ θ

θ θ θ θ

+ = => = −

− + + = ⇒ = ≡
+

− + + = ⇒ = ≡
+

− + = ⇒ = −

− + + − = ⇒ =
+

& & &

& & & & &

& & & & &

& & & & &

& & & &
() () ()

() ()

()

3
1 1 2 2 2 3 2 1 1 2 2 2 2

2 2 2

3 3
3 3 3 2

2 2

3 3
2

2 3 3 3 3

21 11 1 1 3 3 1

3 1 1

s r eq eq p p

p s in out

r s
s s

s r s r s

pJ p J J J m J m J m
p p p

p pm J m T T
p p

r r
r r r r r

β α γ α

γ θ

θ γ θ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎛ ⎞ ⎛ ⎞
+ − + − + − + −⎜ ⎜ ⎟ ⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝

⎞ ⎛ ⎞
− = − −⎟ ⎜ ⎟

⎠ ⎝ ⎠

+ ≡
+ +

− −

&&

& &

 151

1st gear derivation (brake #3, highest ratio)

() () ()

() () ()

1 1 1 2 2 3 2 4 3 5 3 6

1 1 1 1

2
1 1 1 2 2 2 1 1 1 1 1 2 2 4

1 1 1 1 2

2 2 2 3

2
2 2 2 3 3 3 2 2 3 2 2 4 3 6

3

3

3

3

3

s s in s s s s s s

p p p

p c c r r b c p s r r

r r b r

p p p

p c c r r b c p s r r

J T r r r r r r

J r

m r J J T r r r r r

J T r

J r

m r J J T r r r r r

θ λ λ λ λ λ λ

θ λ

θ λ λ λ

θ λ

θ λ

θ λ λ λ

= + − + − + −

=

+ + = − − − + + −

= − −

=

+ + = − − − + + −

&&

&&

&&

&&

&&

&&

() () ()

() () ()

3 3 3 5

2
3 3 3 3 3 3 5 3 3 6

1 1 1 2 2 3 2 4 3 5 3 6

1 1 1 1

2
1 1 1 2 2 1 1 1 1 1 2 2 4

1 1 1 2

2 2 2 3

3

3

3

3

0

p p p

p c c c out c p s r

s s in s s s s s s

p p p

p c c r r c p s r r

r r r

p p p

J r

m r J T r r r r

J T r r r r r r

J r

m r J J r r r r r

J r

J r

θ λ

θ λ λ

θ λ λ λ λ λ λ

θ λ

θ λ λ λ

θ λ

θ λ

=

+ = − − − + +

⇒

= + − + − + −

=

+ + = − − + + −

= −

=

= −

&&

&&

&&

&&

&&

&&

&&

() ()

() () ()

3 2 2 3 2 2 4 3 6

3 3 3 5

2
3 3 3 3 3 3 5 3 3 6

3

3

b c p s r r

p p p

p c c c out c p s r

T r r r r r

J r

m r J T r r r r

λ λ λ

θ λ

θ λ λ

− − + + −

=

+ = − − − + +

&&

&&

 152

() () ()

1 1 2 3
1 1 1 1 2 2 3 3 2 4 3 6

1 1 2 3

1 1 1
1

1 12 1 1
1 1 1 2 2 1 1 1 1 2 4

1 1

1 1 2
1

2 2 3
2

3 3 3

1
3

3 3

1

1
3

s s s s
s s in p p r r p p p p s s

p r p p

p p
p

c p s r
p c c r r p p r r r

p r

r r
r

p p
p

r r r r
J T J J J J r r

r r r r

J
r

r r r r
m r J J J J r

r r

J
r

J
r

θ θ θ θ θ λ λ

θ λ

θ θ θ λ

θ λ

θ λ

= + + + + − −

=

− +
+ + = − − −

− =

=

&& && && && &&

&&

&& && &&

&&

&&

() ()

() () ()

2 2
3 2 2 2 2 4 3 6

2

3 3 5
3

3 32
3 3 3 3 3 3 3 3 6

3

0 3

1
3

3 3

c p
b p p s r r

p

p p
p

c p
p c c c out p p s r

p

r r
T J r r r

r

J
r

r r
m r J T J r r

r

θ λ λ

θ λ

θ θ λ

−
= − − + + −

=

−
+ = − − + +

&&

&&

&& &&

() () ()

() ()

1 1 2 3
1 1 1 1 2 2 3 3 2 4 3 6

1 1 2 3

1 12 1 1
1 1 1 2 2 1 1 1 1 2 4

1 1

2 2
2 2 3 2 2 4 3 6

2

3 3 3 (1)

3 3 (2)

3 (3

s s s s
s s p p r r p p p p in s s

p r p p

c p s r
p c c r r p p r r r

p r

c p
p p b s r r

p

r r r r
J J J J J T r r

r r r r

r r r r
m r J J J J r

r r

r r
J T r r r

r

θ θ θ θ θ λ λ

θ θ θ λ

θ λ λ

− − − − = − −

− +
+ + + + = −

−
= − + + −

&& && && && &&

&& && &&

&&

() () ()

() ()

()

3 32
3 3 3 3 3 3 3 3 6

3

2 1 11
1 1 1 1 1 2 2 1 1

1 1

2
3 3 3 3 3

)

3 3 (4)

add all four equations

3

3 (5)

c p
p c c c p p out s r

p

s rs
s s r r p c c r r r r

r r

p c c c in b out

r r
m r J J T r r

r

r rr
J J m r J J J

r r

m r J T T T

θ θ λ

θ θ θ θ

θ

−
+ + = − + +

+
− + + + + +

+ = − −

&& &&

&& && && &&

&&

 153

() () ()

() ()

1 1 2 3
1 1 1 1 2 2 3 3 2 4 3 6

1 1 2 3

1 12 1 1
1 1 1 2 2 1 1 1 1 2 4

1 1

2 2
2 2 3 2 2 4 3 6

2

3 3 3 (1)

3 3 (2)

3 (3

s s s s
s s p p r r p p p p in s s

p r p p

c p s r
p c c r r p p r r r

p r

c p
p p b s r r

p

r r r r
J J J J J T r r

r r r r

r r r r
m r J J J J r

r r

r r
J T r r r

r

θ θ θ θ θ λ λ

θ θ θ λ

θ λ λ

− − − − = − −

− +
+ + + + = −

−
= − + + −

&& && && && &&

&& && &&

&&

() () ()

() ()

() () ()

3 32
3 3 3 3 3 3 3 3 6

3

2 1 11
4 1 1 1 2 2 1 1 1 1

2 1 1

3 32
6 3 3 3 3 3 3

3 3 3

)

3 3 (4)

from (2)

1
3 3

 from (4)

1
3 3

c p
p c c c p p out s r

p

s rs
p c c r r p p r r

r p r

c p
p c c c p p out

s r p

r r
m r J J T r r

r

r rr
m r J J J J

r r r

r r
m r J J T

r r r

θ θ λ

λ θ θ θ

λ θ θ

−
+ + = − + +

+
= − + + + +

−
= + + +

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎞
⎟
⎠

&& &&

&& && &&

&& &&

() () ()

() ()

22 2 1 12 1
3 2 2 1 1 1 2 2 1 1 1 1

2 2 1 1

23 3
3 3 3 3 3 3

3 3 3

into (3)

3 3 3

3 3 (*)

s r s rs s
b p p p c c r r p p r r

p r p r

r s
p c c c p p out

s r p

r r r rr r
T J m r J J J J

r r r r

r r
m r J J T

r r r

θ θ θ θ

θ θ

+ +
= − − + + + + −

+ + +
+

⎛
⎜ ⎟⎜
⎝

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎠⎝

&& && && &&

&& &&

 154

() () ()

() ()

() ()

22 2 1 12 1
3 2 2 1 1 1 2 2 1 1 1 1

2 2 1 1

23 3
3 3 3 3 3 3

3 3 3

2 1 11
1 1 1 1 1 2 2

1

3 3 3

3 3

3

s r s rs s
b p p p c c r r p p r r

p r p r

r s
p c c c p p out

s r p

s rs
s s r r p c c r r

r

r r r rr r
T J m r J J J J

r r r r

r r
m r J J T

r r r

r rr
J J m r J J

r

θ θ θ θ

θ θ

θ θ θ

+ +
= − − + + + + −

+ + +
+

+
− + + + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎠⎝

&& && && &&

&& &&

&& && &&

()

() () ()

() ()

1 1
1

2 2
3 3 3 3 2 2

2

22 2 1 11
1 1 1 2 2 1 1 1 1

2 1 1

23 3
3 3 3 3 3 3

3 3 3

1 1

3 3

3 3

3 3

r r
r

s
p c c c in p p

p

s r s rs
p c c r r p p r r

r p r

r s
p c c c p p out out

s r p

s s r r

J
r

r
m r J T J

r

r r r rr
m r J J J J

r r r

r r
m r J J T T

r r r

J J

θ

θ θ

θ θ θ

θ θ

θ θ

+

+ = + +

+ +
+ + + + +

+ + + −
+

⇒

+ +

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟⎜ ⎠⎝

&&

&& &&

&& && &&

&& &&

&& && () ()

() () () () ()

() () ()

2 2 2
1 1 1 2 2 3 3 3 3 2 2

2

22 2 2 2 2 2 1 11
1 1 1 2 2 1 1 1 1

2 2 1 2 1

23 3 3
3 3 3 3 3 3

3 3 3 3 3

3 3 3

3 3

3 3

s
p c c r r p c c c p p

p

s r s r s r s rs
p c c r r p p r r

r r p r r

r r s
p c c c p p

s r s r p

in

r
m r J J m r J J

r

r r r r r r r rr
m r J J J J

r r r r r

r r r
m r J J

r r r r r

T

θ θ θ

θ θ θ

θ θ

+ + + + − −

+ + + +
+ + − − −

+ −
+ +

=

&& && &&

&& && &&

&& &&

()

() () () ()

() () ()
()

3

3 3

22 2 1 1 2 2
1 1 1 1 1 2 2

2 1 2

2 2 23 1 2 3 3
3 3 3 3 1 1 2 2

3 3 2 1 2 3 3 3

1 1 3

1 3 3 3 3

r
out out

s r

s r s r s r
s s r r p c c r r

r r r

s rr s s r s
p c c c p p p p

s r r p p s r p

r
T T

r r

r r r r r r
J J m r J J

r r r

r rr r r r r
m r J J J

r r r r r r r r

θ θ θ

θ θ θ

+ −
+

⇒

+ + +
+ − + − + + +

+
− + − − −

+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

&& && &&

&& && &&

()

3 3

3

3 3

p p

s
in out

s r

J

r
T T

r r

θ

= −
+

&&

 155

() () ()
()

() ()
()

()

1 2 1 1 2 1 2 3 3 3

2 1 1 1 2 2 2 3 3 3 3 3

1 1 2 2 3
1 2 3

1 2 3 3

1 2 3
1 2 3

1 2 3

2
1 1 1 2 1 2

1 1 1

3 3 3 1

, ,

, ,

3 , 3

s s r r eq r eq c

p p p p p p in out

s r s r r

r r s r

s s s

p p p

p c c r eq p c

J p p J p J p J

p m J m J p m J T p T

r r r r r
p p p

r r r r

r r r
m m m

r r r

m r J J J m r

θ θ θ θ

θ θ θ

+ − + − + −

− − − = − −

+ +
≡ ≡ ≡

+

≡ ≡ ≡

+ + ≡

&& && && &&

&& && &&

() ()

() () ()(
() () ())

() ()

2 2
2 2 3 2 3 3 3 3

1 2 3 1 2 1 2 3 1

2 2
3 3 3 1 1 3 1 2 2 3 3 3 3

3

1 1
1 2 1 1 1 1 3 3

1 1

1

2

, 3

1 1

1 3 1 3 3 1

0 1 1

c r eq p c c eq

s r eq

eq p p p s

in out

s s
s s r s p p p s s

p p

s s

J J J m r J J

J p p p J p J

p J p m J m J p m J

T T

r r
r r r

r r

r

α β α

γ α γ θ

γ

θ θ θ θ α θ α θ

θ θ

+ + ≡ + ≡

+ − + − +

− − − − −

= −

− + = ⇒ = − = −

− +

+

+ &&

&& && && && && &&

&& && () ()

()

1 3 1 1
2 1 1 1 1 1

1

2
2 2 2 2

2

2
2 2 2 2 3

2

3
3 3 3 3 3 3 3

3

3 3

2

0

0

0

0 1

s r s
r r s r r r s

r

s
s s p p p s s

p

s
s s r r r s s

r

s
s s c s p p p s

p

s s c r

r r r
r r r

r

r
r r m

r

r
r r

r

r
r r r

r

r r

α
θ θ θ

θ θ θ θ θ

θ θ θ θ α θ

θ θ θ θ γ θ

θ θ

− + +
+ − = ⇒ =

+ = ⇒ = − ≡ −

− − = ⇒ = − ≡

− + = ⇒ = −

− +

&& && &&

&& && && && &&

&& && && && &&

&& && && && &&

&& && ()
()

3
3 3 3 3

3 3

0 s
s c s s

r s

r
r

r r
θ θ γ θ+ = ⇒ = ≡

+
&& && &&

 156

A planetary gear with ring gear locked:

()
() ()

1 2

2

1 2

1

3

3

 (1)

 (2)

in s

p c c c c c out s r

p p p p p

s s s s

s

T r

m r J c T r r r

J c r

J c λ λ

θ θ λ λ

θ θ λ

θ θ = + −

+ + = − − + +

+ =

+
&& &

&& &

&& &

()

2

2

1

when the ring gear is blocked, 0,

(1) (2) (4)

3

 (3)

 (4)

0
r r r r b r

r r

s s s s p c c c c c in

J c T r

J c m r J c T

θ θ λ

θ θ

θ θ θ θ λ λ

+ = − −

=

+ +

+ + + + −

=

+ =

&& &

&& &

&& & && & () ()

()
()

2 1 2 2

2

2

1 2

1 2

3

3

3
(3)

 substitute

 (*)

, (4)

, in

=

s out s r b r

s s p c c c s s c c in out b

b in out s s p c c c s s c c

p p p p b

p r

sr T r r r T r

J m r J c c T T T

T T T J m r J c c

J c T
from

r r
from

λ λ λ

θ θ θ θ

θ θ θ θ

θ θ
λ λ

λ λ

− − + + − −

⇒

+ + + − −

− + − −

+
= = −

+ =

⇒ − −

&& && & &

&& && & &

&& &

()

() ()()

()

2

to (1)

3 (5)

(*) into (5)

3 3

 3

s

p

s

p

s s
s s s s in b

p r

s
s s s s in

r

s
s s s s in

r

p p p p

p p p p in out s s p c c c s s c c

p p p p in out s

r

r

r

r

r r
J c T T

r r

r
J c T

r

r
J c T

r

J c

J c T T J m r J c c

J c T T J

θ θ

θ θ

θ θ

θ θ

θ θ θ θ θ θ

θ θ θ

−

+ = + +

+

⇒

+

+

= + − − − + − −

= + + + − −

+

&& &

&& &

&& &

&& &

&& & && && & &

&& & && ()()

() () () ()2

2

+ + +
3 - 3 = (6)

3

s r s r s rr
s s s s p c c c c c p p p p in out

s s p s

s p c c c s s c c

r r r r r rr
J c m r J c J c T T

r r r r

m r J c c

θ θ θ θ θ θ

θ θ θ

⇒

+ + + + + −

− + − −

&& & && & && &

&& & &

 157

() ()

() ()

()

()
() ()

2

2

3 - 3 = (6)

0 1 1

0

3

-3 2 1

p p

s s s sr
s s s s p c c c c c p p p p in out

r s r s r s p r s

s
s s c s p s s

p

s
r r c r s s s c s s

r s

p c c eq

s

r r r rr
J c m r J c J c T T

r r r r r r r r r

r
r r r m

r

r
r r r r

r r

m r J J

J m m J

θ θ

θ θ θ θ θ θ

θ θ γ θ γ θ

θ θ θ θ θ γθ

γ γ

+ + + + + −
+ + + +

− + = ⇒ = − ≡ −

− + + = ⇒ = ≡
+

+ ≡

+ −

& &

&& & && & && &

& & & &

& & & & & &

() () ()()2 1 =p eq s s c p s in outJ c c c m m T Tγ θ γ γ γ θ γ+ + + − + − −&& &

 158

Experimental results

Zero load

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25

0

50

100

150

200

250

300
Motor speed vs. time

time(s)

M
ot

or
 S

pe
ed

 (r
pm

)

motor-spd

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25
-10

0

10

20

30

40

50
DVT Speed vs. time

time(s)

D
V

T
S

pe
ed

 (r
pm

)
dvt-spd

 159

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25
-2

0

2

4

6

8

10

12

14

16
DVT position error vs. time

D
V

T
po

si
tio

n
er

ro
r (

de
g)

time(s)

pos-error

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
Torque vs. time

time(s)

M
ot

or
 a

nd
 D

yn
am

om
et

er
 T

or
qu

e
(N

-m
)

dyna-torque
motor-torque

 160

25% load

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
ge

ar
 N

o.

gn

0 5 10 15 20 25

0

50

100

150

200

250

300
Motor speed vs. time

time(s)

M
ot

or
 S

pe
ed

 (r
pm

)

motor-spd

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25
-10

0

10

20

30

40

50
DVT Speed vs. time

time(s)

D
V

T
S

pe
ed

 (r
pm

)

dvt-spd

 161

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25
-5

0

5

10

15

20

25
DVT position error vs. time

D
V

T
po

si
tio

n
er

ro
r (

de
g)

time(s)

pos-error

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25
-2

-1

0

1

2

3

4

5

6
Torque vs. time

time(s)

M
ot

or
 a

nd
 D

yn
am

om
et

er
 T

or
qu

e
(N

-m
)

dyna-torque
motor-torque

 162

50% load

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
ge

ar
 N

o.

gn

0 5 10 15 20 25 30

0

50

100

150

200

250

300
Motor speed vs. time

time(s)

M
ot

or
 S

pe
ed

 (r
pm

)

motor-spd

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25 30
-10

0

10

20

30

40

50
DVT Speed vs. time

time(s)

D
V

T
S

pe
ed

 (r
pm

)

dvt-spd

 163

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25 30
0

5

10

15

20

25
DVT position error vs. time

D
V

T
po

si
tio

n
er

ro
r (

de
g)

time(s)

pos-error

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25 30
-1

0

1

2

3

4

5

6

7

8
Torque vs. time

time(s)

M
ot

or
 a

nd
 D

yn
am

om
et

er
 T

or
qu

e
(N

-m
)

dyna-torque
motor-torque

 164

75% load

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
ge

ar
 N

o.

gn

0 5 10 15 20 25

0

50

100

150

200

250

300
Motor speed vs. time

time(s)

M
ot

or
 S

pe
ed

 (r
pm

)

motor-spd

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25
-10

0

10

20

30

40

50
DVT Speed vs. time

time(s)

D
V

T
S

pe
ed

 (r
pm

)

dvt-spd

 165

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25
-5

0

5

10

15

20

25

30

35

40

45
DVT position error vs. time

D
V

T
po

si
tio

n
er

ro
r (

de
g)

time(s)

pos-error

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

ge
ar

 N
o.

gn

0 5 10 15 20 25
-2

0

2

4

6

8

10

12
Torque vs. time

time(s)

M
ot

or
 a

nd
 D

yn
am

om
et

er
 T

or
qu

e
(N

-m
)

dyna-torque
motor-torque

 166

TBA low level control software source code

tbacontrol.c

/* Transmission based servo actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file tbacontrol.c
 This is the main function of the TBA control software
 It does the following tasks by calling specific function calls:

-# Initialize servo
-# Clibrate NI-6023e
-# Initialize the braking motors
-# Startup TBA GUI interface
-# Manage all the task threads

*/

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <getopt.h>
#include <ctype.h>
#include <signal.h>
#include <comedilib.h>
#include <pthread.h>

#define KEEP_STATIC_INLINE
#include <rtai_lxrt_user.h>
#include <rtai_lxrt.h>
#include <rtai_fifos.h>
#include <rtai_msg.h>

#include "ni6711.h"
#include "ni6023e.h"
#include "common.h"
#include "setmode.h"
#include "control.h"

int quit=0;

int main()
{

 167

int drive_mode,controller_id,to_gear;

pid_t pid;
int status;

drive_mode=2;
controller_id=2;
to_gear=1;

if(init_hrt()==ERROR)
{
printf("hard real timer initilization failed!\n");
exit(0);
}

//initialize NI-6711

if(!(ni6711.ni_daq=init_6711()))
 {
 printf("NI6711 initializtion failed!\n");
 exit(ERROR);
 }

//initilize NI-6023e

if(!(ni6023e.ni_daq=init_6023e()))
 {
 printf("NI6023e initializtion failed!\n");
 exit(ERROR);
 }
printf("\n\n***\n");
printf("\nwait for analog input calibaration finshed!\n");
printf("\n***\n");
sleep(5);

//initialize rtai fifo

if (!(rtfifo = rtf_open_sized("/dev/rtf0", O_RDWR, 2000))) {
 printf("ERROR OPENING FIFO0\n");
 exit(ERROR);
 }

//start gui

pid=fork();

if (pid==-1)
{
printf("fork failed!\n");
exit(0);

 168

}

if(pid==0)
{
execv("/home/robin/Dissertation/src/qtgui/realtime","");
_exit (EXIT_FAILURE);
}

if (pid==1)
{
printf("I am parent, waiting\n");
waitpid(pid,&status,0);
}

printf("\n\n***\n");
printf("\nWait for gui to start,click 'START' button on the gui!\n");
printf("\n***\n");
sleep(3);

//set drive mode

setMode(drive_mode);
printf("\n\n***\n");
printf("\nwait for u3k initialization ...\n");
printf("\n***\n");

printf("Done!\n");

pthread_create(&shift_thrd,NULL,setGear,(void*)mbxgear);
pthread_create(&stdout_thrd,NULL,stdOut,(void*)mbxstdout);

motorControl(controller_id,drive_mode);
quit=1;

pthread_join(shift_thrd,NULL);
pthread_join(stdout_thrd,NULL);

//clean up before termination

close(rtfifo);

return;
}

 169

common.h

/* Transmission based servo actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file common.h

*/
#ifndef _COMMONMETRIC_
 #define _COMMONMETRIC_

 #include "ni6023e.h"
 #include "ni6711.h"
 #include "control.h"

#include <rtai_lxrt_user.h>
#include <rtai_lxrt.h>
#include <rtai_fifos.h>
#include <rtai_mbx.h>
#include <pthread.h>

 #define PI 3.1415926
 #define rev2cnt(x) ((x)*1024) //counter resolution 1024 counts per revolution
 #define cnt2rev(x) ((x)/1024)
 #define rev2deg(x) ((x)*360)
 #define deg2rev(x) ((x)/360)
 #define cnt2rad(x) ((x)/1024*2*PI)
 #define deg2rad(x) ((x)*PI/180)
 #define rad2cnt(x) ((x)/2/PI*1024)

 #define rpm2rps(x) ((x)*2*PI/60) //rev/min to rad/sec

 #define sec2nsec(x) ((x)*1000000000)
 #define sec2usec(x) ((x)*1000000)
 #define sec2msec(x) ((x)*1000)
 #define msec2nsec(x) ((x)*1000000)
 #define msec2usec(x) ((x)*1000)
 #define usec2nsec(x) ((x)*1000)
 #define ENGAGE 0
 #define DISENGAGE 1

 #define MAFPNT 20

 //control loop

 #define PERIOD 0.001 //control loop time (second)

 170

 //return status
 #define ERROR 0
 #define OK 1

 //verbose output mode
 #define VERBOSE

 //ultra 3000-030x

 #define SYSAMPS 30 //drive peak current
 #define AOSCALE 0x7FFF //analog current output scale 0x7FFF
 #define AOCONST (8191*128) //a constant as in AOSCALE/AOCONST*SYSAMPS (amps/volt)

 //loadcell calibration
 #define N-M_PER_VOLT 3.53698

 //motor parametrs
 #define MOTOR_TORQUE_CONSTANT 0.414

 //load and arm
 #define ARMWEIGHT 90.71847 //Kg=200lb
 #define ARMLENGTH 1.8288 //m=72inch

 //rtai fifo handle
 int rtfifo;

 unsigned int ticks_per_second;

 //int quit;

 typedef struct
 {
 comedi_t *ni_daq; //handle for DAQ
 int n_subdev; //number of subdevices
 int n_ranges;//number of channel for specific subdevice
 int n_channels;
 comedi_range *rng;//range information of channel
 lsampl_t maxdata;//maximum data value for specific channel
 lsampl_t offset; //sample value corresponding to physical zero volt
 }analogDev;

 analogDev ni6711;
 analogDev ni6023e;
 /*
 typedef struct
 {
 double time;
 int dvt_position;
 int motor_position;
 int gear_current;
 int command_position;
 double motor_speed;

 171

 double dvt_speed;
 double load;
 //double motor_torque;
 }stdoutMsg;
*/
 typedef struct
 {
 float time;
 int dvt_position;
 int motor_position;
 int gear_current;
 int command_position;
 float motor_speed;
 float dvt_speed;
 float load;
 float motor_torque;
 }stdoutMsg;

MBX *mbxstdout;
MBX *mbxgear;

pthread_t shift_thrd;
pthread_t stdout_thrd;

 void endme(int);
 void motorControl(int,int);
 void*setGear(void *);
 int init_hrt(void);
 double readLoadcell(void);
 void dynaControl(tbaPID *,float);
 void *stdOut(void *);
 //char* openDataFile(int, int);

#endif

 172

common.c

/* Transmission based servo actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file common.c
 This file defines functions to initialize a real time task and RTAI mailboxes:

*/

 #include "common.h"
 #include <stdlib.h>
 #include <rtai_shm.h>

 extern int quit;

/** \function
 initilize a real time task and two mailboxes

*/

 int init_hrt(void){

 struct sched_param mysched;
 RT_TASK *hrttsk;
 unsigned long hrttsk_name;

 rt_allow_nonroot_hrt();

 mysched.sched_priority = sched_get_priority_max(SCHED_FIFO)-4;

 if(sched_setscheduler(0, SCHED_FIFO, &mysched) == -1) {
 puts("ERROR IN SETTING THE SCHEDULER");
 perror("errno");
 return 0;
 }

 hrttsk_name = nam2num("HRTTSK");

 if(!(hrttsk = rt_task_init(hrttsk_name, 1, 0 ,0))) {
 puts("Can't Init Hard Real Time TASK\n");
 return 0;
 }

 173

 rt_set_oneshot_mode();

 ticks_per_second = (unsigned int)nano2count((RTIME)(1000000000));

 printf("Ticks per second: %u\n",ticks_per_second);

 rt_task_use_fpu(hrttsk,1);

 rt_linux_use_fpu(1);

 // make a mailbox for shift controller use
 if((mbxgear=rt_mbx_init(nam2num("SHFTCTR"),2048))==0)

 {
 puts("Couldn't create shiftcontrol mailbox.\n");
 exit(4);
 }

 // make a mailbox for shift controller use
 if((mbxstdout=rt_mbx_init(nam2num("STDOUT"),2048))==0)

 {
 puts("Couldn't create stdout mailbox.\n");
 exit(4);
 }

 start_rt_timer(0);

 rt_task_delete(hrttsk);

 return 1;
 }

/** \function
 receive messages from a mailbox and send them out to a real time FIFO

*/

 void* stdOut(void*pmbx)
{
 RT_TASK *stdtsk;
 struct sched_param mysched;
 mysched.sched_priority = 98;
 int nbyte;

 stdoutMsg *msg_rcv;

 msg_rcv=(stdoutMsg *)malloc(sizeof(stdoutMsg));

 174

 if(sched_setscheduler(0, SCHED_FIFO, &mysched) == -1)

 {
 puts(" ERROR IN SETTING THE SCHEDULER UP");
 perror("errno");
 exit(0);

 }

 if(!(stdtsk = rt_task_init(nam2num("STDTSK"), 1 , 0 ,0)))

 {
 puts("CANNOT INIT STDOUT TASK\n");
 exit(3);
 }

 rt_task_use_fpu(stdtsk,1); // floating point for real time task "stdtsk"
 rt_linux_use_fpu(1); // floating point for foreground Linux processes

 while(!quit) {
 nbyte=rt_mbx_receive_timed(pmbx,msg_rcv,sizeof(stdoutMsg),(RTIME)100000000);

 write(rtfifo,(void *)msg_rcv,sizeof(stdoutMsg));

 }
 free((void *)msg_rcv);
 rt_mbx_delete(mbxstdout);

}

 175

control.h

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file control.h

*/

#ifndef _CONTROLLER_H
#define _CONTROLLER_H

//data structure for PID control
typedef struct
{
double Kp,Ki,Kd;//gains

double Ts;//sample time
char flag;//with or without windup,("w" or "n")
double e[3],u[2];//error and control signal
double ra[4]; //reference and actual (position and velocity)
}tbaPID;

typedef struct
{

double t[3];
double c[2];
double omegaMax;
double thetaCommandDVT;
double loadTorque;
double alphaRef;
double omegaRef;
double thetaRef;
}tbaTrj;

void positionalPID2D(tbaPID *);//2-D positional PID
void velocityPID2D(tbaPID *);//2-D velocity PID

void positionalPID1D(tbaPID *);//1-D positional PID
void velocityPID1D(tbaPID *);//1-D velocity PID

void trajectoryParams(tbaTrj *);

void tbaFeedbackControl(tbaPID *);

void initPID(tbaPID *); //initialization of PID stucture

 176

void trajectoryRef(tbaTrj *,double);

#endif
/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file control.c
 This file defines the all the controller functions

*/

#include "control.h"
#include "common.h"
#include <math.h>

/** \function
 *Position PID control algorithm, 2-D design\n
 *
 *u[k]=Kp*e[k] + Ki*Ts* sum(e[i]) + Kd/Ts*(e[k]-e[k-1]) + u[0]\n
 *
*/

void positionalPID2D(tbaPID *pPID)
{
double Pk,Ik,Dk;

pPID->e[0]=pPID->ra[0]-pPID->ra[1];//initial error

pPID->e[2]=pPID->e[2]+pPID->e[0];//sum of errors

Pk=pPID->Kp*pPID->e[0];
Ik=pPID->Ki*pPID->Ts*pPID->e[2];
Dk=pPID->Kd/pPID->Ts*(pPID->e[0]-pPID->e[1]);

pPID->u[0]=pPID->u[1]+Pk+Ik+Dk;//u[1] is the initial control command

pPID->e[1]=pPID->e[0];

//printf("%f %f %f\n",Pk,Ik,Dk);

}

/** \function
Velocity PID control algorithm, 2-D design

u[k]=u[k-1] + Kp*(e[k]-e[k-i]) + Ki*Ts*e[k] + Kd/Ts*(e[k]-2*e[k-1]+e[k-2])

 177

*/

void velocityPID2D(tbaPID *pPID)
{
double Pk,Ik,Dk;

pPID->e[0]=pPID->ra[0]-pPID->ra[1];//initial error

Pk=pPID->Kp*(pPID->e[0]-pPID->e[1]);
Ik=pPID->Ki*pPID->Ts*pPID->e[0];
Dk=pPID->Kd/pPID->Ts*(pPID->e[0]-2*pPID->e[1]+pPID->e[2]);

pPID->u[0]=pPID->u[1]+Pk+Ik+Dk;//u[1] is the previous control command

pPID->u[1]=pPID->u[0];

pPID->e[2]=pPID->e[1];

pPID->e[1]=pPID->e[0];

}

/** \function
Position PID control algorithm, 1-D design

u[k]=-Kp*(x[k]-x[]) + Ki*Ts* sum (e[i]) + Kd/Ts*(e[k]-e[k-1]) + u[0]

*/

void positionalPID1D(tbaPID *pPID)
{
double Pk,Ik,Dk;

pPID->e[0]=pPID->ra[0]-pPID->ra[1];//initial error

pPID->e[2]=pPID->e[2]+pPID->e[0];//sum of errors

Pk=pPID->Kp*pPID->e[0];
Ik=pPID->Ki*pPID->Ts*pPID->e[2];
Dk=pPID->Kd/pPID->Ts*(pPID->e[0]-pPID->e[1]);

pPID->u[0]=pPID->u[1]+Pk+Ik+Dk;//u[1] is the initial control command

pPID->e[1]=pPID->e[0];

//printf("%f %f %f\n",Pk,Ik,Dk);

}

 178

/** \function
Velocity PID control algorithm, 1-D design

u[k]=u[k-1] + Kp*(e[k]-e[k-i]) + Ki*Ts*e[k] + Kd/Ts*(e[k]-2*e[k-1]+e[k-2])

*/

void velocityPID1D(tbaPID *pPID)
{
double Pk,Ik,Dk;

pPID->e[0]=pPID->ra[0]-pPID->ra[1];//initial error

Pk=pPID->Kp*(pPID->e[0]-pPID->e[1]);
Ik=pPID->Ki*pPID->Ts*pPID->e[0];
Dk=pPID->Kd/pPID->Ts*(pPID->e[0]-2*pPID->e[1]+pPID->e[2]);

pPID->u[0]=pPID->u[1]+Pk+Ik+Dk;//u[1] is the previous control command

pPID->u[1]=pPID->u[0];

pPID->e[2]=pPID->e[1];

pPID->e[1]=pPID->e[0];

}

/**
set up PID default initial value
*/

void initPID(tbaPID *pPID)
{
pPID->Kp=0;
pPID->Ki=0;
pPID->Kd=0;

pPID->Ts=PERIOD;

pPID->u[1]=0;

pPID->e[1]=0;

pPID->e[2]=0;

}

/** \function
symmetric trajectory generation parameters:(static)
*/
/*
Final position (thetaCommandDVT), time (t[3]) required, and maximum speed (omegaMax) are
prescribed.

 179

t[1]=2*thetaCommandDVT/omegaMax

t[0]=t[3]-t[2]

c[0]=3*omegaMax/t[0]^2

c[1]=-2*omegaMax/t[0]^3

*/

void trajectoryParams(tbaTrj *ptbaTrj)
{

ptbaTrj->t[1]=ptbaTrj->thetaCommandDVT/ptbaTrj->omegaMax;

ptbaTrj->t[0]=ptbaTrj->t[2]-ptbaTrj->t[1];

ptbaTrj->c[0]=3*ptbaTrj->omegaMax/(ptbaTrj->t[0]*ptbaTrj->t[0]);

ptbaTrj->c[1]=-2*ptbaTrj->omegaMax/pow(ptbaTrj->t[0],3);

//printf("c[0]=%f c[1]=%f t[0]=%f t[1]=%f t[2]=%f \n",ptbaTrj->c[0],ptbaTrj->c[1],ptbaTrj-
>t[0],ptbaTrj->t[1],ptbaTrj->t[2]);

}

/** \function
symmetric trajectory generation reference with time (time varying)
*/
/*
 / c[0]*t^3/3+c[1]*t^4/4 t=[0,t[0])
 |
thetaRef(t) =| omegaMax*t[0]/2+ omegaMax*(t-t[0]) t=[t[0],t[1])
 |
 | omegaMax*t[1]-c[0]*(t[2]-t)^3/3-c[1]*(t[2]-t)^4/4 t=[t[1],t[2])
 |
 \ thetaCommandDVT else

 / c[0]*t^2+c[1]*t^3 t=[0,t[0])
 |
omegaRef(t) =| omegaMax t=[t[0],t[1])
 |
 | c[0]*(t[2]-t)^2+c[1]*(t[2]-t)^3 t=[t[1],t[2])
 |
 \ 0 else

 / 2*c[0]*t+3*c[1]*t^2 t=[0,t[0])
 |
alphaRef(t) =| 0 t=[t[0],t[1])
 |
 | -2*c[0]*(t[2]-t)-3*c[1]*(t[2]-t)^2 t=[t[1],t[2])
 |
 \ 0 else

 180

iRef(t) = (J*alpharef(t)+f*omegaRef(t))/KT
*/

void trajectoryRef(tbaTrj *ptbaTrj,double rt_time)
{

 if(rt_time<=ptbaTrj->t[0])
 {
 ptbaTrj->thetaRef=ptbaTrj->c[0]*pow(rt_time,3.0)/3.0+ptbaTrj->c[1]*pow(rt_time,4.0)/4.0;

 ptbaTrj->omegaRef=ptbaTrj->c[0]*pow(rt_time,2.0)+ptbaTrj->c[1]*pow(rt_time,3.0);

 ptbaTrj->alphaRef=2.0*ptbaTrj->c[0]*rt_time+3.0*ptbaTrj->c[1]*pow(rt_time,2.0);

 }

 if(rt_time>ptbaTrj->t[0]&&rt_time<=ptbaTrj->t[1])
 {

 ptbaTrj->thetaRef=ptbaTrj->omegaMax*(-ptbaTrj->t[0]/2.0+rt_time);

 ptbaTrj->omegaRef=ptbaTrj->omegaMax;

 ptbaTrj->alphaRef=0.0;

 }

 if(rt_time>ptbaTrj->t[1]&&rt_time<=ptbaTrj->t[2])
 {

 ptbaTrj->thetaRef=ptbaTrj->omegaMax*ptbaTrj->t[1]-ptbaTrj->c[0]*pow(ptbaTrj->t[2]-
rt_time,3.0)/3.0-ptbaTrj->c[1]*pow(ptbaTrj->t[2]-rt_time,4.0)/4.0;

 ptbaTrj->omegaRef=ptbaTrj->c[0]*pow(ptbaTrj->t[2]-rt_time,2)+ptbaTrj->c[1]*pow(ptbaTrj-
>t[2]-rt_time,3.0);

 ptbaTrj->alphaRef=-2.0*ptbaTrj->c[0]*(ptbaTrj->t[2]-rt_time)-3.0*ptbaTrj->c[1]*pow(ptbaTrj-
>t[2]-rt_time,2.0);

 }

 if(rt_time>ptbaTrj->t[2])
 {

 ptbaTrj->omegaRef=0.0;

 ptbaTrj->alphaRef=0.0;

 }
}

 181

/**
feedback control

*/
void tbaFeedbackControl(tbaPID *ptbaPID)
{

ptbaPID->e[0]=ptbaPID->ra[0]-ptbaPID->ra[1];//position error

ptbaPID->e[1]=ptbaPID->ra[2]-ptbaPID->ra[3];//velocity error

ptbaPID->e[2]=ptbaPID->e[2]+ptbaPID->e[0]*ptbaPID->Ts;//sum of position errors, Forward Eular

ptbaPID->u[0]=ptbaPID->Ki*ptbaPID->e[2]+ptbaPID->Kp*ptbaPID->e[0]+ptbaPID->Kd*ptbaPID-
>e[1];

}

 182

loadcell.c

/* Transmission based servo actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file loadcell.c
 This file defines the functions associated with the dynamomater and control

*/

#include <stdio.h>
#include <comedilib.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <getopt.h>
#include <ctype.h>
#include "common.h"
#include "ni6023e.h"
#include "ni6711.h"

/** \function
 read the loadcell voltage

*/
double readLoadcell()
{
 lsampl_t data;
 double voltage,torque;

 comedi_data_read(ni6023e.ni_daq,AI_DEVICE,0,0,AI_REF,&data);
 voltage=comedi_to_phys(data,ni6023e.rng,ni6023e.maxdata);
 torque=voltage*N-M_PER_VOLT;

 return torque;
}

/** \function
 dynamomater close loop control

*/

void dynaControl(tbaPID *pPID,float dvt_speed)
{
 int ret;

 183

 int voltage_command;

 pPID->Kp=1000.0;
 pPID->Ki=00.0;
 pPID->Kd=00.0;
 //set torque output limit

 if(pPID->ra[0]>20.0)
 {
 pPID->ra[0]=20.0;
 printf("Warning :voltage command exceeds upper limit\n");
 }

 //read dynamometer current toruqe
 pPID->ra[1]=readLoadcell();

 //PID procedure
 velocityPID2D(pPID);

 //command to ni6711 AO_3
 voltage_command=-(int)pPID->u[0]+AO_ZERO;

 if(dvt_speed==0.0)
 {
 voltage_command=AO_ZERO;

 }

 //set voltage output limit
 if(voltage_command<0)
 {
 voltage_command=0;
 //printf("Warning :voltage command exceeds lower limit\n");
 }
 if(voltage_command>2024)
 {
 voltage_command=2024;
 //printf("Warning :voltage command exceeds upper limit\n");
 }

 ret=comedi_data_write(ni6711.ni_daq,AO_DEVICE,AO_2,AO_RANGE,AO_REF,voltage
_command);
 if(ret<0){
 comedi_perror(NI6711);
 }

}

 184

motorcontrol.c

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file motorcontrol.c
 This file defines the main motor control routines
 */
 #include <stdio.h>
 #include <string.h>
 #include <unistd.h>
 #include <fcntl.h>
 #include <sys/types.h>
 #include <sys/mman.h>
 #include <sys/stat.h>
 #include <stdlib.h>
 #include <pthread.h>
 #include <signal.h>
 #include <math.h>

 #define KEEP_STATIC_INLINE
 #include <rtai_lxrt_user.h>
 #include <rtai_lxrt.h>
 #include <rtai_fifos.h>
 #include <rtai_sem.h>
 #include <rtai_msg.h>
 #include <rtai_shm.h>

 #include "ni6023e.h"
 #include "ni6711.h"
 #include "common.h"
 #include "control.h"

 extern int quit;

 void motorControl(int c_id, int drv_mod)
 {

 unsigned long testcnttsk_name = nam2num("PIDVEL");

 RT_TASK *testcnttsk;

 int i,j,ret;

 int doPrintPID=1,isFirstPosition=1;

 double ior=0.0002618,cof=0.0;//inertia of rotor and coefficient of friction, should be put in
motor.h

 185

 char drive_mode[256];
 char control_method[256];
 char data_file_name[256];
 char time_buffer[256];

 double Mp;

 //Mp=240.;
 //Mp=0.0;
 //Mp=120.0;
 //Mp=60.0;
 Mp=180.0;

 double Ma=200.;
 double L=71.0;
 double g;
 double Meq;

 Mp=Mp*0.454;
 Ma=Ma*0.454;
 L=L*0.0254;
 g=9.81;

 Meq=(Mp+Ma/2.0)*L*g;

 FILE *fp;

 // double motor_speed,dvt_speed,ratio;
 double pos_com_deg;

 int pos_com_count,pos_act_count,vel_com_rpm,u=0,pos[3];

 int to_gear,nbyte,gear_cur=3,gear_prev=3;

 double shift_bound[2]={5.0,8.0};

 double grey_region=1.0;//grey region width, N-m

 double shift_time[2]={0.0,0.0};

 struct sched_param mysched;
 stdoutMsg *msg_send;

 tbaPID *pDynaPID,*pMotorPID;

 tbaTrj *ptbaTrj;

 quit=0;
 j=0;

 double dvt_disp,dvt_disp_abs,motor_disp;
 double motor_speed[MAFPNT],dvt_speed[MAFPNT],sum_speed,dvt_acc;

 186

 lsampl_t data;

 double motor_current,voltage,load;

 double rt_time,rt_time_current,rt_time_init,rt_time_temp;

 time_t curtime;

 struct tm *loctime;

 //Get the current time.
 curtime = time (NULL);

 // Convert it to local time representation.
 loctime = localtime (&curtime);

 // Print it out in a nice format.
 strftime (time_buffer, 256, "%B_%d_%Y_%kh%Mm", loctime);

 switch(c_id)
 {
 case 1: //P
 strcpy(control_method,"PControl_");
 break;

 case 2: //PID
 strcpy(control_method,"PIDControl_");

 break;

 }

 switch(drv_mod)
 {
 case 1: //velocity mode
 strcpy(drive_mode,"VMode_");
 break;

 case 2: //current mode
 strcpy(drive_mode,"CMode_");
 break;
 }

 strcpy(data_file_name,"../../result/");
 strcat(data_file_name,control_method);
 strcat(data_file_name,drive_mode);
 strcat(data_file_name,time_buffer);
 strcat(data_file_name,".txt");

 fp = fopen(data_file_name, "w+");
 if(fp==NULL)
 printf("tba data file open failed!\n");

 187

fprintf(fp,"###
###\n\n");
 fprintf(fp,"# Transmission based Servo Actuator system control\n\n");
 fprintf(fp,"# ");
 fprintf(fp,data_file_name);

 pDynaPID=(tbaPID*)malloc(sizeof(tbaPID));
 if(pDynaPID==NULL)
 printf("PID malloc failed\n");

 pMotorPID=(tbaPID*)malloc(sizeof(tbaPID));
 if(pMotorPID==NULL)
 printf("PID malloc failed\n");

 //initialization of PID algorithm
 initPID(pDynaPID);

 initPID(pMotorPID);

 ptbaTrj=(tbaTrj*)malloc(sizeof(tbaTrj));
 if(ptbaTrj==NULL)
 printf("tbatrj malloc failed\n");

 //initialization of TBA trajectory

 //position command
 //TODO : need user interaction and/or automatic updated feature

 pos_com_deg=36000.;

 vel_com_rpm=300.0;

 pos_com_count=(int)rev2cnt(deg2rev(pos_com_deg));

 //unit conversion
 ptbaTrj->thetaCommandDVT=(double)deg2rad(pos_com_deg); //radian
 ptbaTrj->omegaMax=rpm2rps(vel_com_rpm); //rad/sec
 ptbaTrj->t[2]=22.00; //seconds

 //calculate trajectory parameters
 trajectoryParams(ptbaTrj);

 //initialize motor and dvt speed vector
 for(i=0;i<MAFPNT;i++)

 188

 {
 dvt_speed[i]=0.0;
 motor_speed[i]=0.0;
 }

 // memory allocation
 msg_send=(stdoutMsg *)rtai_malloc(nam2num("stdMSG"),sizeof(stdoutMsg));

 //set priority and real time task
 mysched.sched_priority = 99;

 if (!(testcnttsk = rt_task_init_schmod(testcnttsk_name, 1, 0, 0,SCHED_FIFO,1))) {
 printf("CANNOT INIT MASTER TASK\n");
 exit(1);
 }

 if(sched_setscheduler(0, SCHED_FIFO, &mysched) == -1)
 {
 puts(" ERROR IN SETTING THE SCHEDULER UP");
 perror("errno");
 exit(0);
 }

 // make task periodic excution
 rt_task_make_periodic(testcnttsk,
rt_get_time()+(RTIME)(PERIOD*ticks_per_second+1.0),(RTIME)(PERIOD*ticks_per_second));

 //read initial motor and DVT encoder count
 lsampl_t motor_pos_first= counterRead(ni6023e.ni_daq,CNT_DEVICE,1);
 lsampl_t dvt_pos_first= counterRead(ni6023e.ni_daq,CNT_DEVICE,0);

 lsampl_t motor_pos_last= motor_pos_first;
 lsampl_t dvt_pos_last= dvt_pos_first;

 //initialize timers
 rt_time_init=1.0*rt_get_time();
 rt_time_temp=rt_time_init;

 //make hard real time
 rt_make_hard_real_time();

 // main control loop
 while(1)

 {

 // get time, absolute and relative
 rt_time_current=1.0*rt_get_time();

 rt_time=rt_time_current-rt_time_init;

 189

 //get position, motor and DVT

 lsampl_t motor_pos_current= counterRead(ni6023e.ni_daq,CNT_DEVICE,1);
 lsampl_t dvt_pos_current= counterRead(ni6023e.ni_daq,CNT_DEVICE,0);

 //initialize position array to the same first encoder reading
 if(isFirstPosition)
 {
 for(j=0;j<3;j++)
 pos[j]=dvt_pos_current;
 isFirstPosition=0;
 }

 //shift array element to the left by 1 position
 if(!isFirstPosition)
 {
 for(i=0;i<2;i++)
 pos[i]=pos[i+1];
 pos[2]=dvt_pos_current;
 }

 //printf("motor position: %d (%d, abs: %d)\n", motor_pos_current,motor_pos_current-
motor_pos_last,motor_pos_current-motor_pos_first);
 //printf("%d (%d, abs: %d)\n", dvt_pos_current,dvt_pos_current-
dvt_pos_last,dvt_pos_current-dvt_pos_first);
 //printf("command motor speed= %.2f, DVT output speed=%.2frpm, gear
ratio=%f\n\n",motor_speed, dvt_speed,ratio);

 pos_act_count=dvt_pos_current-dvt_pos_first;

 //read loadcell voltage

 comedi_data_read(ni6023e.ni_daq,AI_DEVICE,AI_1,0,AI_REF,&data);

 voltage=comedi_to_phys(data,ni6023e.rng,ni6023e.maxdata);

 load=voltage*N-M_PER_VOLT;

 //read motor current from pin 22 and 23 (Analog Current out)

 comedi_data_read(ni6023e.ni_daq,AI_DEVICE,AI_2,0,AI_REF,&data);

 voltage=comedi_to_phys(data,ni6023e.rng,ni6023e.maxdata);

 motor_current=voltage;//zero reading when motor is at rest, will vary, this is not a solution.

 190

 //calculate dvt angular position
 dvt_disp_abs=cnt2rad((double)dvt_pos_current-(double)dvt_pos_first);

 gear_cur=0;

 pDynaPID->ra[0]=Meq*sin(dvt_disp_abs/200.)/200.; //reference torque input

 //printf("torque=%f\n", pDynaPID->ra[0]);

 /*
 //send out gear command to mailbox (time based switch signal)

 if(msg_send->time>=0.0)
 to_gear=1;

 if(msg_send->time>=5.0)
 to_gear=2;

 if(msg_send->time>=10.0)
 to_gear=3;

 if(msg_send->time>=20.0)
 to_gear=0;
 */

 //send out gear command to mailbox (state-based switch signal)
 /*
 if(pDynaPID->ra[0]>=0.0&&pDynaPID->ra[0]<=5.0)
 {
 to_gear=3;
 if(gear_cur==to_gear)
 to_gear=0;
 }

 if(pDynaPID->ra[0]>5.0&&pDynaPID->ra[0]<=8.0)
 {
 to_gear=2;
 if(gear_cur==to_gear)
 to_gear=0;
 }

 if(pDynaPID->ra[0]>8.0)

 {
 to_gear=1;
 if(gear_cur==to_gear)
 to_gear=0;
 }
 */

 //state based switch signal- one boundary
 /*
 if(load<=5.0)
 {
 to_gear=3;
 if(gear_cur==to_gear)

 191

 to_gear=0;
 }

 if(load>5.0&&load<=8.0)
 {
 to_gear=2;
 if(gear_cur==to_gear)
 to_gear=0;
 }

 if(load>8.0)

 {
 to_gear=1;
 if(gear_cur==to_gear)
 to_gear=0;
 }
 */

 //hybrid switch signal- two boundaries

 //3rd gear

 if((load<=shift_bound[0]))
 {
 if(gear_prev==3)
 to_gear=3;//stay put

 if(load<=(shift_bound[0]-grey_region)&&(gear_prev==2))
 {
 shift_time[0]=shift_time[0]+0.001;
 if(shift_time[0]>=0.5)
 {
 to_gear=3;//new shift signal
 shift_time[0]=0.0;
 }
 }

 gear_prev=to_gear;//save previous gear

 if(gear_cur==to_gear)
 {
 to_gear=0;
 }
 }
 //2nd gear
 else if((load>shift_bound[0])&&(load<=shift_bound[1]))
 {
 if(gear_prev==2||(gear_prev==3))
 to_gear=2;//new signal if previous gear is 1

 if(load<=(shift_bound[1]-grey_region)&&(gear_prev==1))
 {
 shift_time[1]=shift_time[1]+0.001;
 if(shift_time[1]>=0.5)

 192

 {
 to_gear=2;//new shift signal
 shift_time[1]=0.0;
 }
 }
 gear_prev=to_gear;//save previous gear

 if(gear_cur==to_gear)
 {
 to_gear=0;
 }

 }

 //third gear
 else if(load>shift_bound[1])
 {

 to_gear=1;
 gear_prev=to_gear;//save previous gear
 if(gear_cur==to_gear)
 {
 to_gear=0;
 }
 }

 //send out gear shift command
 nbyte=rt_mbx_send_if(mbxgear,(void*)&to_gear,sizeof(int));
 if(nbyte)
 {
 printf("%d unsent bytes\n",nbyte);

 }

 //save current gear
 gear_cur=gear_prev;

 //calculate dvt speed using MAFPNT point moving average
 dvt_disp=cnt2rad((double)dvt_pos_current-(double)dvt_pos_last);

 sum_speed=0.0;
 for(i=0;i<MAFPNT-1;i++)
 {
 dvt_speed[i]=dvt_speed[i+1];
 sum_speed=sum_speed+dvt_speed[i];
 }
 dvt_speed[MAFPNT-1]=dvt_disp/((rt_time_current-rt_time_temp)/ticks_per_second);
 sum_speed=sum_speed+dvt_speed[4];
 msg_send->dvt_speed=sum_speed/MAFPNT;

 dvt_acc=msg_send->dvt_speed/((rt_time_current-rt_time_temp)/ticks_per_second);

 193

 //calculate motor speed using MAFPNT point moving average
 motor_disp=cnt2rad((double)motor_pos_current-(double)motor_pos_last);

 sum_speed=0.0;
 for(i=0;i<MAFPNT-1;i++)
 {
 motor_speed[i]=motor_speed[i+1];
 sum_speed=sum_speed+motor_speed[i];
 }
 motor_speed[MAFPNT-1]=motor_disp/((rt_time_current-rt_time_temp)/ticks_per_second);
 sum_speed=sum_speed+motor_speed[MAFPNT-1];
 msg_send->motor_speed=sum_speed/MAFPNT;

 //controller setup

 //new controller can be added here;

 //pMotorPID->ra[0]=(double)pos_com_count;
 //pMotorPID->ra[1]=(double)pos_act_count;

 //trajectory reference position, velocity, and acceleration
 trajectoryRef(ptbaTrj,rt_time/ticks_per_second);

 // initialize PID entry value
 pMotorPID->ra[0]=ptbaTrj->thetaRef;
 pMotorPID->ra[2]=ptbaTrj->omegaRef;

 //pMotorPID->ra[1]=cnt2rad(pos_act_count);

 pMotorPID->ra[1]=cnt2rad((double)pos_act_count);

 pMotorPID->ra[3]=(double)msg_send->dvt_speed;

 switch(c_id)
 {
 case 1: //P

 pMotorPID->Kp=0.1;
 pMotorPID->Kd=0.0;
 pMotorPID->Ki=0.0;

 tbaFeedbackControl(pMotorPID);

 //positionalPID2D(pMotorPID);

 //u=Kp*(-pos_err+AO_ZERO);//zero offset

 u=-(int)pMotorPID->u[0]+AO_ZERO;

 //positive satuation, 12 bit D/A

 194

 if (u>2*AO_ZERO)
 {
 u=4096;
 }

 //negative satuation, 12 bit D/A
 if (u<0)
 {
 u=0;
 }

 break;

 case 2: //PID

 pMotorPID->Kp=1800.5;

 if((ptbaTrj->thetaCommandDVT-ptbaTrj->thetaRef)<=0.0005)
 {
 //pMotorPID->Kp=950.5;
 //pMotorPID->Ki=500.0;
 //pMotorPID->Kd=1000.0;

 //printf("%f %f %f %f %d \n",pMotorPID->e[0],pMotorPID->u[0],pMotorPID->ra[0],pMotorPID-
>ra[1],pos_act_count);
 //printf("%f %f \n",ptbaTrj->thetaCommandDVT, ptbaTrj->thetaRef);
 }

 pMotorPID->Ki=0.0;
 pMotorPID->Kd=45.0;

 tbaFeedbackControl(pMotorPID);
 //positionalPID2D(pMotorPID);

 u=-(int)((ior*ptbaTrj->alphaRef+cof*ptbaTrj-
>omegaRef)/MOTOR_TORQUE_CONSTANT+pMotorPID->u[0])+AO_ZERO;

 //u=-(int)pMotorPID->u[0]+AO_ZERO;

 //printf("%d\n",u);

 //positive satuation, 12 bit D/A
 if (u>2*AO_ZERO)
 {
 u=4096;
 }

 //negative satuation, 12 bit D/A
 if (u<0)
 {
 u=0;
 }

 195

 break;

 }

 // send analog velocity referent voltage

 ret=comedi_data_write(ni6711.ni_daq,AO_DEVICE,AO_4,AO_RANGE,AO_REF,u);

 if(ret<0){
 comedi_perror(NI6711);
 //exit(0);
 }

 //frequency=ticks_per_second/(rt_time-rt_time_temp);

 //send out standard output data to mailbox

 msg_send->time=rt_time/ticks_per_second;

 msg_send->dvt_position=dvt_pos_current-dvt_pos_first;

 msg_send->command_position=(int)rad2cnt(ptbaTrj->thetaRef);

 msg_send->motor_position=motor_pos_current-motor_pos_first;

 msg_send->gear_current=to_gear;

 msg_send->load=load;

 msg_send->motor_torque=motor_current*MOTOR_TORQUE_CONSTANT;

 //nbyte=rt_mbx_send_timed(mbxstdout,(void
*)msg_send,sizeof(stdoutMsg),(RTIME)10000000);
 //nbyte=rt_mbx_send_if(mbxstdout,(void*)msg_send,sizeof(stdoutMsg));
 nbyte=rt_mbx_send_if(mbxstdout,(void*)msg_send,sizeof(stdoutMsg));
 if(nbyte)
 {
 //printf("%d unsent bytes\n",nbyte);

 }

 if(doPrintPID)
 {

 196

 fprintf(fp, "\n\n# Kp=%f Ki=%f Kd=%f #\n",pMotorPID->Kp,pMotorPID->Ki,pMotorPID-
>Kd);
 doPrintPID=0;

 fprintf(fp,"\n# time motor_spd dvt_spd load_tor motor_tor com_pos
dvt_pos motor_pos gear\n");
 fprintf(fp,"# (seconds) (rad/sec) (rad/sec) (N-m) (N-m) (count) (count)
(count)\n\n");

fprintf(fp,"###
###\n\n");
 }

 if(msg_send->time<=35.)

 fprintf(fp,"%14f %14f %14f %14f %14f %8d %8d %8d %8d \n",msg_send->time,msg_send-
>motor_speed,msg_send->dvt_speed,msg_send->load, msg_send->motor_torque,msg_send-
>command_position,msg_send->dvt_position, msg_send->motor_position,msg_send-
>gear_current);

 //dynamometer toruqe command

 dynaControl(pDynaPID,msg_send->dvt_speed);

 rt_time_temp=rt_time_current;

 motor_pos_last= motor_pos_current;
 dvt_pos_last= dvt_pos_current;

 rt_task_wait_period();

 }

 counterDisarm(ni6023e.ni_daq,CNT_DEVICE,0);
 counterDisarm(ni6023e.ni_daq,CNT_DEVICE,1);

 rt_make_soft_real_time();

 //comedi_close(ni6023e.ni_daq);

 rtai_free(nam2num("stdMSG"),(void *)msg_send);

 rt_task_delete(testcnttsk);

 free(pMotorPID);
 free(pDynaPID);
 fclose(fp);
 return;

}

 197

ni6023e.h

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file ni6023e.h

*/
#ifndef _NI6023E_H
#define _NI6023E_H

#include <comedilib.h>

//device name
#define NI6023E "/dev/comedi0"

/*Analog input*/

//subdevice number
#define AI_DEVICE 0

//channel list (16 SE/8 DI)
#define AI_1 0
#define AI_2 1
#define AI_3 2
#define AI_4 3
#define AI_5 4
#define AI_6 5
#define AI_7 6
#define AI_8 7

#define AI_OFFSET 0.610

//reference type, range, requency, etc.
#define AI_REF AREF_DIFF

#define AI_RANGE 0
#define AI_CHANNEL 8;
#define AI_FREQ 1000.0
#define AI_SCAN 1000

/*Counter*/

//subdevice number
#define CNT_DEVICE 4

 198

//channel list
#define CNT_1 0
#define CNT_2 1

/**
 * Definitions of some of the common code.
 */

comedi_t *init_6023e();

int counterReset(comedi_t *dev, int subdev, int channel);

int counterSetSource(comedi_t *dev, int subdev, int channel, int SrcType);

int counterSetGate(comedi_t *dev, int subdev, int channel, int GateType);

int counterSetDirection(comedi_t *dev, int subdev, int channel, int Direction);

int counterSetOperation(comedi_t *dev, int subdev, int channel, int Operation, int OptParam);

int counterArm(comedi_t *dev, int subdev, int channel);

int counterDisarm(comedi_t *dev, int subdev, int channel);

lsampl_t counterRead(comedi_t *dev, int subdev, int channel);

#endif

 199

ni6023e.c

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file ni6023e.c
 This file defines the function acssociated with the NI-PCI6023E data acquisition board

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> //fork()
#include <sys/types.h>//pid_t *
#include <sys/wait.h>
#include "ni6023e.h"
#include "common.h"

/** \function
 initilize ni-pci6023e

*/

comedi_t *init_6023e()
{
 int stype;
 int i;
 pid_t pid;
 int status;
 //char *cmd[]={"/usr/local/comedilib/comedi_calibrate/comedi_calibrate","",(char *)0};

 comedi_t *device;

 //open NI-6023E
 device=comedi_open(NI6023E);
 if(!device){
 comedi_perror(NI6023E);
 printf("%s open fail\n",NI6023E);
 exit(0);
 }

 200

 //check analog out availability
 stype = comedi_get_subdevice_type(device,AI_DEVICE);
 if(stype!=COMEDI_SUBD_AI){
 printf("%d is not an analog input subdevice\n",AI_DEVICE);
 exit(0);
 }

 //calibrate AI device

 pid=fork();

 if (pid==-1)
 {
 printf("fork failed!\n");
 exit(0);
 }

 if(pid==0)
 {
 execv("/usr/local/comedilib/comedi_calibrate/comedi_calibrate","");
 _exit (EXIT_FAILURE);
 }

 if (pid==1)
 {
 printf("I am parent, waiting\n");
 waitpid(pid,&status,0);
 }

 //wait for calibration finish
 //sleep(20);

 //get some parameters
 ni6023e.n_ranges=comedi_get_n_ranges(device,AI_DEVICE,AI_1);
 ni6023e.maxdata=comedi_get_maxdata(device,AI_DEVICE,AI_1);
 ni6023e.rng = comedi_get_range(device,AI_DEVICE,AI_1,0);
 ni6023e.n_channels=comedi_get_n_channels(device,AI_DEVICE);
 ni6023e.offset=comedi_from_phys(0.0,ni6023e.rng,ni6023e.maxdata);

 printf("n_ranges=%d, maxdata=%d
offset=%d\n",ni6023e.n_ranges,ni6023e.maxdata,ni6023e.offset);

 //check counter availability

 stype = comedi_get_subdevice_type(device,CNT_DEVICE);
 if(stype!=COMEDI_SUBD_COUNTER){
 printf("%d is not a counter subdevice\n",CNT_DEVICE);
 exit(0);
 }

 //configure counter device, ready to read count

 201

 for(i=0;i<=1;i++)
 {
 counterReset(device,CNT_DEVICE,i);
 counterSetSource(device,CNT_DEVICE,i,GPCT_EXT_PIN);
 counterSetGate(device,CNT_DEVICE,i,GPCT_NO_GATE);
 counterSetDirection(device,CNT_DEVICE,i,GPCT_HWUD);
 counterSetOperation(device,CNT_DEVICE,i,GPCT_SIMPLE_EVENT,-1);
 counterArm(device,CNT_DEVICE,i);
 }

 /*
 if(verbose)
 {
 printf("writing %d to device=%s subdevice=%d channel=%d range=%d analog
reference=%d\n",
 maxdata,NI6711,AO_DEVICE,i,AO_RANGE,AO_REF);
 }
 */

 return device;

}

/** \function
 reset counter for new task

*/

int counterReset(comedi_t *dev, int subdev, int channel)
 {
 comedi_insn insn;
 lsampl_t params[]= { GPCT_RESET }; // the config subcommand: reset counter

 insn.insn= INSN_CONFIG; // it is a configuration sub-command
 insn.n= 1; // the parameter-array contains 1 element
 insn.data= params; // pass parameters
 insn.subdev= subdev; // which subdevice controls the counter?
 insn.chanspec= channel; // tell which counter to use

 return comedi_do_insn(dev, &insn);
 }

/** \function
 set a counter source

*/

int counterSetSource(comedi_t *dev, int subdev, int channel, int SrcType)
 {

 202

 comedi_insn insn;
 lsampl_t params[]= { GPCT_SET_SOURCE, SrcType }; // the config subcommand: set
source, and the add. param.: type of the source

 insn.insn= INSN_CONFIG; // it is a configuration sub-command
 insn.n= 2; // the parameter-array contains 2 elements
 insn.data= params; // pass parameters
 insn.subdev= subdev; // which subdevice controls the counter?
 insn.chanspec= channel; // tell which counter to use

 return comedi_do_insn(dev, &insn);
 }

/** \function
 set counter gate type

*/

int counterSetGate(comedi_t *dev, int subdev, int channel, int GateType)
 {
 comedi_insn insn;
 lsampl_t params[]= { GPCT_SET_GATE, GateType }; // the config subcommand: set source,
and the add. param.: type of the gate

 insn.insn= INSN_CONFIG; // it is a configuration sub-command
 insn.n= 2; // the parameter-array contains 2 elements
 insn.data= params; // pass parameters
 insn.subdev= subdev; // which subdevice controls the counter?
 insn.chanspec= channel; // tell which counter to use

 return comedi_do_insn(dev, &insn);
 }

/** \function
 set counter direction-following edge, rising edge or both

*/

 int counterSetDirection(comedi_t *dev, int subdev, int channel, int Direction)
 {
 comedi_insn insn;
 lsampl_t params[]= { GPCT_SET_DIRECTION, Direction }; // the config subcommand: set
direction, and the add. param.: direction

 insn.insn= INSN_CONFIG; // it is a configuration sub-command
 insn.n= 2; // the parameter-array contains 2 elements
 insn.data= params; // pass parameters
 insn.subdev= subdev; // which subdevice controls the counter?
 insn.chanspec= channel; // tell which counter to use

 return comedi_do_insn(dev, &insn);
 }

/** \function

 203

 set counter operations

*/

 int counterSetOperation(comedi_t *dev, int subdev, int channel, int Operation, int OptParam)
 {
 comedi_insn insn;
 lsampl_t params[]= { GPCT_SET_OPERATION, Operation, OptParam }; // the config
subcommand: set source, and the add. param.: operation

 insn.insn= INSN_CONFIG; // it is a configuration sub-command
 insn.n= OptParam == -1 ? 2 : 3; // the parameter-array contains 2 or 3 elements
 insn.data= params; // pass parameters
 insn.subdev= subdev; // which subdevice controls the counter?
 insn.chanspec= channel; // tell which counter to use

 return comedi_do_insn(dev, &insn);
 }

/** \function
 arm a counter

*/

int counterArm(comedi_t *dev, int subdev, int channel)
 {
 comedi_insn insn;
 lsampl_t params[]= { GPCT_ARM }; // the config subcommand: arm

 insn.insn= INSN_CONFIG; // it is a configuration sub-command
 insn.n= 1; // the parameter-array contains 1 element
 insn.data= params; // pass parameters
 insn.subdev= subdev; // which subdevice controls the counter?
 insn.chanspec= channel; // tell which counter to use

 return comedi_do_insn(dev, &insn);
 }

/** \function
 disarm a counter

*/

int counterDisarm(comedi_t *dev, int subdev, int channel)
 {
 comedi_insn insn;
 lsampl_t params[]= { GPCT_DISARM }; // the config subcommand: disarm

 insn.insn= INSN_CONFIG; // it is a configuration sub-command
 insn.n= 1; // the parameter-array contains 1 element
 insn.data= params; // pass parameters
 insn.subdev= subdev; // which subdevice controls the counter?

 204

 insn.chanspec= channel; // tell which counter to use

 return comedi_do_insn(dev, &insn);
 }

/** \function
 read a counter value

*/

lsampl_t counterRead(comedi_t *dev, int subdev, int channel)
 {
 comedi_insn insn;
 lsampl_t value= 0;

 insn.insn= INSN_READ; // it is a read command
 insn.n= 1; // the size of the parameter array is 1 (1 value is passed back, more is not
supported by this instruction)
 insn.data= &value; // pass destination "array" (or simple pointer to a single tsampl_t)
 insn.subdev= subdev; // which subdevice controls the counter?
 insn.chanspec= channel; // tell which counter to use

 if (comedi_do_insn(dev, &insn) < 0)
 printf("[Warning] comedi_do_insn failed.\n ComediCounterRead: returned value is not
valid.\n");

 return value;
 }

 205

ni6711.h

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file ni6711.h

*/
#ifndef _NI6711_H
#define _NI6711_H

#include <comedilib.h>

//device name
#define NI6711 "/dev/comedi1"

/*Analog out*/

//subdevice number
#define AO_DEVICE 1

//channel list
#define AO_1 0
#define AO_2 1
#define AO_3 2
#define AO_4 3

//reference type, range, requency, etc.
#define AO_REF AREF_GROUND

#define AO_RANGE 0
#define AO_CHANNEL 4;
#define AO_FREQ 1000.0
#define AO_SCAN 1000

/*Digital Input/Out*/

//subdevice number
#define DIO_DEVICE 2

//channel list
#define DIO_1 0
#define DIO_2 1
#define DIO_3 2
#define DIO_4 3
#define DIO_5 4

 206

#define DIO_6 5
#define DIO_7 6
#define DIO_8 7

/*
//brake engage/disengae
#define ENGAGE 1
#define DISENGAGE 0
*/
//input/output
#define DO COMEDI_OUTPUT
#define DI COMEDI_INPUT

//number of DIO channels
#define DIO_CHANNEL 8;

//zero analog output

#define AO_ZERO 2024

comedi_t *init_6711();

#endif

 207

ni6711.c

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file ni6711.c
 This file defines the function acssociated with the NI-PCI6023E data acquisition board

*/

#include <stdlib.h>
#include "ni6711.h"
#include "common.h"

/** \function
 initilize ni-pci6711

*/
comedi_t *init_6711()
{

 int ret;
 int stype;
 int i;

 comedi_t *device;

 int amplitude;

 //open NI-6711
 device=comedi_open(NI6711);
 if(!device){
 comedi_perror(NI6711);
 printf("%s open fail\n",NI6711);
 exit(ERROR);
 }

 //check digital io availability
 stype = comedi_get_subdevice_type(device,DIO_DEVICE);
 if(stype!=COMEDI_SUBD_DIO){
 printf("%d is not a digital I/O subdevice\n",DIO_DEVICE);
 exit(ERROR);
 }

 //configure digital i/o for output
 for (i=0;i<7;i++)

 208

 {
 ret=comedi_dio_config(device,DIO_DEVICE,i,DO);
 if(ret<0)
 {
 printf("channel %d of %d configure fail!\n ",i,DIO_DEVICE);
 exit(ERROR);
 }
 }

 //check Analog out availability and initialize to zero

 stype = comedi_get_subdevice_type(device,AO_DEVICE);
 if(stype!=COMEDI_SUBD_AO){
 printf("%d is not a analog output subdevice\n",AO_DEVICE);
 exit(ERROR);
 }

 //configure analog device
 for (i=0;i<=3;i++)
 {

 ni6711.maxdata= comedi_get_maxdata(device,AO_DEVICE,i);

 ni6711.rng = comedi_get_range(device,AO_DEVICE,i,AO_RANGE);

 ni6711.offset=comedi_from_phys(0.0,ni6711.rng,ni6711.maxdata);
 amplitude = comedi_from_phys(1.0,ni6711.rng,ni6711.maxdata) - ni6711.offset;

 }
 //rt_sleep(nano2count(10000000000));
 //printf("writing %d to device=%s subdevice=%d offset=%d analog
reference=%d\n",ni6711.maxdata,NI6711,AO_DEVICE,ni6711.offset,amplitude);
 //printf("device=%s subdevice=%d offset=%d analog
reference=%d\n",NI6711,AO_DEVICE,ni6711.offset,2048);

 //set brake motor current limit reference voltage (10 V is about 3Amps)
 ret=comedi_data_write(device,AO_DEVICE,0,AO_RANGE,AO_REF,1300);
 if(ret<0){
 comedi_perror(NI6711);
 exit(0);
 }

 //set BLDC motor speed/current refernce to zero
 ret=comedi_data_write(device,AO_DEVICE,3,AO_RANGE,AO_REF,2024);
 if(ret<0){
 comedi_perror(NI6711);
 exit(0);
 }

 //configure digital I/O for output only
 comedi_dio_config(device,DIO_DEVICE,DIO_1,COMEDI_OUTPUT);
 comedi_dio_config(device,DIO_DEVICE,DIO_2,COMEDI_OUTPUT);
 comedi_dio_config(device,DIO_DEVICE,DIO_3,COMEDI_OUTPUT);
 return device;
}

 209

setmode.h

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file setmode.h

*/

#ifndef _SETMODE
#define _SETMODE
#define OPERAND_cc 256
#define WAITDONE rt_sleep(nano2count(50000000));
#define GIGA 1000000000

void checkSum(char *,int);
void analog_velocity_mode(void);
void *setMode(int mode);
#endif

 210

setmode.c

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file setmode.c
 This file defines the function acssociated with servo BLDC configuration through a serial
port

*/
 #include <stdio.h>
 #include <string.h>
 #include <unistd.h>
 #include <fcntl.h>

 #include <sys/types.h>
 #include <sys/mman.h>
 #include <sys/stat.h>

 #include <rtai_lxrt_user.h>
 #include <rtai_lxrt.h>
 #include <rtai_serial.h>
 #include <rtai_shm.h>

 #include "setmode.h"

extern int quit;

/** \function
 caculate the command string

*/

void u3kSerCom(char *com_str,int str_len){

 int i;
 int a_sum;
 int c_sum;
 char *ctemp;
 char *com_init;

 //printf("\n\n%s \n",com_str);

 if((ctemp=(char*)rtai_malloc(nam2num("tempString"),str_len+4))==0)
 {

 211

 printf("malloc failed!\n");
 exit(0);
 }

 if((com_init=(char *)rtai_malloc(nam2num("commandString"),str_len+4))==0)
 {
 printf("malloc failed!\n");
 exit(0);
 }

 strcpy(com_init,":");//insert ":" as the first element of the array

 //printf("%d %s\n",str_len,com_init);

 //calculate checksum
 a_sum=0;

 for(i=0;i<str_len;i++)

 {
 a_sum+=com_str[i];
 }
 c_sum=OPERAND_cc-a_sum;

 sprintf(ctemp,"%X",c_sum);

 //printf("ctemp=%s\n",ctemp);

 //append command, HEX checksum and a carriage return

 ctemp[0]=ctemp[strlen(ctemp)-2];
 ctemp[1]=ctemp[strlen(ctemp)-1];
 ctemp[2]='\r';

 //printf(" %s\n",ctemp);

 strcat(com_init,com_str);

 strncat(com_init,ctemp,3);

 //printf("sizes %d %d\n",strlen(com_str),strlen(ctemp));
 //printf("%s\n",com_init);

 rt_spwrite(COM1, com_init,strlen(com_str)+4);
 WAITDONE
 rtai_free((void *)ctemp,str_len+4);
 rtai_free((void *)com_init,str_len+4);

}

/*!

*/

 212

/** \function
 set up BLDC drive mode to analog velocity mode

u3000 serial command format:(see u3k host command-2098-RM003A-EN-P-October 2001.pdf)\n
---\n
start address parameter function data checksum end\n
----- ------- --------- -------- ------ --------- ----\n
 : aa ppp f d...d cc <CR>\n
---\n
*/

void analog_velocity_mode(void)
{

 char disableDrive[]="0006B100"; //disable drive
 char analogVelMode[]="0005A100"; //set analog velocity mode
 char analogVelScale[]="0011810020";//set analog velocity scale, in units of percentage of motor
maximum speed per 10 volts.
 char analogVelOffset[]="000471FFFB";//set analog velocity offset in units of millivolts
 char enableDrive[]="0006B101"; //enable drive
 char velocityLoopPgain[]="0001F1020";//velocity loop proportional gain=32d
 char velocityLoopIgain[]="000201020";//velocity loop integral gain=32d
 char velocityLoopDgain[]="0002110000";//velocity loop differentilal gain=0d
 char forwardCurrentLimit[]="0002F160"; //forward current limit, in unit of percentage of motor
interrim current or drive interim current
 char reverseCurrentLimit[]="00030160"; //reverse current limit, in unit of percentage of motor
interrim current or drive interim current

 //char read_buff[256];

 /*
 if((commandString=malloc(50))==NULL)
 {
 printf("malloc failed!\n");
 exit(0);
 }
 */

 u3kSerCom(disableDrive,strlen(disableDrive));
 //printf("Disable drive...");
 //rt_spwrite(COM1, commandString,strlen(disableDrive)+4);
 //WAITDONE
 //printf("Done!\n");
 //rt_spread(COM1,read_buff,18);
 //WAITDONE
 //printf("Response is %s\n",read_buff);
 //printf("%s\n",disableDrive);

 u3kSerCom(forwardCurrentLimit,strlen(forwardCurrentLimit));
 /*
 //printf("Setting forward current limit...");
 rt_spwrite(COM1, commandString,strlen(forwardCurrentLimit)+4);
 WAITDONE
 rt_spread(COM1,read_buff,18);

 213

 WAITDONE
 //printf("Response is %s\n",read_buff);
 printf(" %s\n",forwardCurrentLimit);
 //printf("Done!\n");
 */

 u3kSerCom(reverseCurrentLimit,strlen(reverseCurrentLimit));
 /*
 //printf("Setting reverse current limit...");
 rt_spwrite(COM1, commandString,strlen(reverseCurrentLimit)+4);
 WAITDONE
 rt_spread(COM1,read_buff,18);
 WAITDONE
 //printf("Response is %s\n",read_buff);
 //printf("%s\n",commandString);
 //printf("Done!\n");
 */

 //printf("Setting analog velocity mode...");
 u3kSerCom(analogVelMode,strlen(analogVelMode));
 /*
 rt_spwrite(COM1, commandString,strlen(analogVelMode)+4);
 WAITDONE
 rt_spread(COM1,read_buff,18);
 WAITDONE
 //printf("Response is %s\n",read_buff);
 //printf("%s\n",commandString);
 //printf("Done!\n");
 */

 //printf("Setting analog velocity scale...");
 u3kSerCom(analogVelScale,strlen(analogVelScale));
 /*/
 rt_spwrite(COM1, commandString,strlen(analogVelScale)+4);
 WAITDONE
 rt_spread(COM1,read_buff,18);
 WAITDONE
 //printf("Response is %s\n",read_buff);
 //printf("%s\n",commandString);
 //printf("Done!\n");
 */

 //printf("Setting analog velocity offset...");
 u3kSerCom(analogVelOffset,strlen(analogVelOffset));
 /*
 rt_spwrite(COM1, commandString,strlen(analogVelOffset)+4);
 WAITDONE
 rt_spread(COM1,read_buff,18);
 WAITDONE
 //printf("Response is %s\n",read_buff);
 //printf("%s\n",commandString);
 //printf("Done!\n");
 */

 //printf("Setting velocity loop PID gains...");

 214

 u3kSerCom(velocityLoopPgain,strlen(velocityLoopPgain));
 /*
 rt_spwrite(COM1, commandString,strlen(velocityLoopPgain)+4);
 WAITDONE
 rt_spread(COM1,read_buff,18);
 WAITDONE
 //printf("Response is %s\n",read_buff);
 //printf("%s\n",commandString);
 */

 u3kSerCom(velocityLoopIgain,strlen(velocityLoopIgain));
 /*
 rt_spwrite(COM1, commandString,strlen(velocityLoopIgain)+4);
 WAITDONE
 rt_spread(COM1,read_buff,18);
 WAITDONE
 //printf("Response is %s\n",read_buff);
 //printf("%s\n",commandString);
 */
 u3kSerCom(velocityLoopDgain,strlen(velocityLoopDgain));
 /*
 rt_spwrite(COM1, commandString,strlen(velocityLoopDgain)+4);
 WAITDONE
 rt_spread(COM1,read_buff,18);
 //printf("Response is %s\n",read_buff);
 //printf("Done!\n");
 //printf("%s\n",commandString);
 */

 //printf("Enable Drive...");
 u3kSerCom(enableDrive,strlen(enableDrive));
 /*
 rt_spwrite(COM1, commandString,strlen(enableDrive)+4);
 WAITDONE
 rt_spread(COM1,read_buff,18);
 //WAITDONE
 // printf("Response is %s\n",read_buff);
 //printf("Done!\n");
 //printf("%s\n",commandString);

 */
}

/** \function
 set up BLDC drive mode to analog current mode

*/

void analog_current_mode(void)
{

 //disable drive
 char disableDrive[]="0006B100";

 //analog velocity mode
 char analogCurMode[]="0005A101";

 215

 //analog current scale, in units of percentage of minimum of the motor \
 //intermittent current rating and drive intermittent current rating, per 10 volts.
 char analogCurScale[]="0011910030";

 //analog current offset in units of millivolts
 char analogCurOffset[]="000491FFFB";

 //enable drive
 char enableDrive[]="0006B101";

 //forward current limit, in unit of percentage of motor interrim current or drive interim current
 char forwardCurrentLimit[]="0002F120";

 //reverse current limit, in unit of percentage of motor interrim current or drive interim current
 char reverseCurrentLimit[]="00030120";

 //set speed limit,counts/sec
 char setSpeedLimit[]="00025100100000";

 //Disable drive
 u3kSerCom(disableDrive,strlen(disableDrive));

 //Setting forward current limit
 u3kSerCom(forwardCurrentLimit,strlen(forwardCurrentLimit));

 //Setting reverse current limit
 u3kSerCom(reverseCurrentLimit,strlen(reverseCurrentLimit));

 //Setting analog current mode
 u3kSerCom(analogCurMode,strlen(analogCurMode));

 //Setting analog current scale
 u3kSerCom(analogCurScale,strlen(analogCurScale));

 //Setting analog current offset
 u3kSerCom(analogCurOffset,strlen(analogCurOffset));

 //set speed limit,counts/sec
 u3kSerCom(setSpeedLimit,strlen(setSpeedLimit));

 //Enable Drive
 u3kSerCom(enableDrive,strlen(enableDrive));

}

/** \function
 set BLDC drive mode to analog out to torque output

*/

void analog_out(void)

 216

{

 //disable drive
 char disableDrive[]="0006B100";

 //analog current feedback output
 char analogOutCurFed[]="0004B124";

 //analog current output scale
 char analogOutCurFedScale[]="0004D10111"; //1 amps/volts

 //analog current outptu offset in units of millivolts
 char analogOutCurFedOffset[]="0004910000";

 //Disable drive
 u3kSerCom(disableDrive,strlen(disableDrive));

 //Setting analog current feedback output
 u3kSerCom(analogOutCurFed,strlen(analogOutCurFed));

 //Setting analog current output scale
 u3kSerCom(analogOutCurFedScale,strlen(analogOutCurFedScale));

 //Setting analog current outptu offset in units of millivolts
 u3kSerCom(analogOutCurFedOffset,strlen(analogOutCurFedOffset));

 /*
 //analog output---position
 char analogOutCurFed[]="0004B101";

 //analog position output scale, counts/volts
 char analogOutCurFedScale[]="0004D17FFF";

 //analog current outptu offset in units of millivolts
 char analogOutCurFedOffset[]="0004910252";

 //Disable drive
 u3kSerCom(disableDrive,strlen(disableDrive));

 //Setting analog current feedback output
 u3kSerCom(analogOutCurFed,strlen(analogOutCurFed));

 //Setting analog current output scale
 u3kSerCom(analogOutCurFedScale,strlen(analogOutCurFedScale));

 //Setting analog current outptu offset in units of millivolts
 u3kSerCom(analogOutCurFedOffset,strlen(analogOutCurFedOffset));
 */
}

/** \function
 send BLDC drive mode through RTAI serial port

 217

*/
void *setMode(int mode)
{
 unsigned long serialTaskName = nam2num("TESTCOM");
 RT_TASK *serialTask;
 RTIME rtTime;
 struct sched_param mysched;
 mysched.sched_priority = 90;

 if(sched_setscheduler(0, SCHED_FIFO, &mysched) == -1)
 {
 puts(" ERROR IN SETTING THE SCHEDULER UP");
 perror("errno");
 exit(0);
 }

 if (!(serialTask = rt_task_init(serialTaskName, 1, 0, 0))) {
 printf("CANNOT INIT MASTER TASK\n");
 exit(0);
 }

 rt_task_use_fpu(serialTask,1); // floating point for real time task "stdtsk"
 rt_linux_use_fpu(1); // floating point for foreground Linux processes

 //rt_make_hard_real_time();
 //printf("open serial port ... ");
 if (rt_spopen(COM1, 38400, 8, 1, RT_SP_PARITY_NONE,
RT_SP_NO_HAND_SHAKE,RT_SP_FIFO_SIZE_1)) {
 printf("serial port open failed!\n");
 exit(0);
 }
 //printf("Done!\n");

 rtTime=rt_get_time_ns();

 //set up analog output
 analog_out();

 //chose bldc motor mode
 switch(mode)
 {
 case 1:
 analog_velocity_mode();//velocity command mode
 break;
 case 2:
 analog_current_mode();//
 break;
 default:
 break;
 }

 rtTime=rt_get_time_ns()-rtTime;
 //printf("time spending is %f seconds\n",(float)(rtTime)/GIGA);

 rt_spclose(COM1);

 218

 //rt_make_soft_real_time();

 rt_task_delete(serialTask);

 return;
 //exit(1); //program only run once
}

 219

shiftcontrol.h

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file shiftcontrol.h

*/
#ifndef _SHIFTCONTROL_H
#define _SHIFTCONTROL_H

#include <stdio.h>
#include <comedilib.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <getopt.h>
#include <ctype.h>
#include "examples.h"
#define WAITTIME 4000000

int setGear(void);
#endif

 220

shiftcontrol.c

/* Transmission based servo actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file shiftcontrol.c
 This file defines the function acssociated with send the gear control action

*/
#include <stdio.h>
#include <comedilib.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <getopt.h>
#include <ctype.h>

#define KEEP_STATIC_INLINE
#include <rtai_lxrt_user.h>
#include <rtai_lxrt.h>
#include <rtai_fifos.h>
#include <rtai_msg.h>

#include "common.h"
#include "ni6711.h"

extern int quit;

/** \function
 send a gear action command through NI-PCI6711 digital out

*/

void *setGear(void *pmbx)
{
 struct sched_param mysched;
 int to_gear;
 RT_TASK *gearshift_tsk;

 mysched.sched_priority = 98;

 if(sched_setscheduler(0, SCHED_FIFO, &mysched) == -1)

 221

 {
 puts(" ERROR IN SETTING THE SCHEDULER UP");
 perror("errno");
 exit(0);
 }

 if(!(gearshift_tsk = rt_task_init(nam2num("GEARSHIFT"), 1 , 0 ,0)))
 {
 puts("CANNOT INIT GEAR SHIFT TASK\n");
 exit(0);
 }

 //rt_task_make_periodic(gearshift_tsk,(RTIME)(PERIOD*ticks_per_second+1.0),(RTIME)
(PERIOD*ticks_per_second));

 rt_task_use_fpu(gearshift_tsk ,1);
 rt_linux_use_fpu(1);

 //set gear to default(1st gear)
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,ENGAGE);
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,DISENGAGE);
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,DISENGAGE);

 while(!quit)
 {
 //printf("quit=%d\n",quit);
 rt_mbx_receive_timed(pmbx,(void*)&to_gear,sizeof(int),(RTIME)1000000000);
 //rt_mbx_receive_if(pmbx,(void*)&to_gear,sizeof(int));

 //printf("gear= %d ",to_gear);

 //printf("quit=%d\n",quit);
 //printf("gear shiftpriority=%d\n",mysched.sched_priority);
 switch(to_gear)
 {

 case 3:
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,ENGAGE);
 //printf("engage 3rd gear\n");

 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,DISENGAGE);
 //printf("disengage 2nd gear\n");

 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,DISENGAGE);
 //printf("disengage 1st gear\n");
 break;

 case 2:
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,ENGAGE);
 //printf("engage 2nd gear\n");

 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,DISENGAGE);
 //printf("disengage 3rd gear\n");

 222

 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,DISENGAGE);
 //printf("disengage 1st gear\n");

 break;

 case 1:
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,ENGAGE);
 //printf("engage 1st gear\n");

 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,DISENGAGE);
 //printf("disengage 2nd gear\n");

 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,DISENGAGE);
 //printf("disengage 3st gear\n");
 break;

 case 0:

 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,DISENGAGE);
 //printf("engage 1st gear\n");

 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,DISENGAGE);
 //printf("disengage 2nd gear\n");

 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,DISENGAGE);
 //printf("disengage 3st gear\n");

 default:

 break;

 }

 }

//rt_task_wait_period();

rt_mbx_delete(mbxgear);
rt_task_delete(gearshift_tsk);
return 1;
}

 223

tbacontrol.c

/* Transmission based servor actuator system control
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file tbacontrol.c
 This is the main function of the TBA control software
 It does the following tasks by calling specific function calls:

-# Initialize servo
-# Clibrate NI-6023e
-# Initialize the braking motors
-# Startup TBA GUI interface
-# Manage all the task threads

*/

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <getopt.h>
#include <ctype.h>
#include <signal.h>
#include <comedilib.h>
#include <pthread.h>

#define KEEP_STATIC_INLINE
#include <rtai_lxrt_user.h>
#include <rtai_lxrt.h>
#include <rtai_fifos.h>
#include <rtai_msg.h>

#include "ni6711.h"
#include "ni6023e.h"
#include "common.h"
#include "setmode.h"
#include "control.h"

int quit=0;

int main()
{

int drive_mode,controller_id,to_gear;

pid_t pid;

 224

int status;

drive_mode=2;
controller_id=2;
to_gear=1;

if(init_hrt()==ERROR)
{
printf("hard real timer initilization failed!\n");
exit(0);
}

//initialize NI-6711

if(!(ni6711.ni_daq=init_6711()))
 {
 printf("NI6711 initializtion failed!\n");
 exit(ERROR);
 }

//initilize NI-6023e

if(!(ni6023e.ni_daq=init_6023e()))
 {
 printf("NI6023e initializtion failed!\n");
 exit(ERROR);
 }
printf("\n\n***\n");
printf("\nwait for analog input calibaration finshed!\n");
printf("\n***\n");
sleep(5);

//initialize rtai fifo

if (!(rtfifo = rtf_open_sized("/dev/rtf0", O_RDWR, 2000))) {
 printf("ERROR OPENING FIFO0\n");
 exit(ERROR);
 }

//start gui

pid=fork();

if (pid==-1)
{
printf("fork failed!\n");
exit(0);
}

if(pid==0)

 225

{
execv("/home/robin/Dissertation/src/qtgui/realtime","");
_exit (EXIT_FAILURE);
}

if (pid==1)
{
printf("I am parent, waiting\n");
waitpid(pid,&status,0);
}

printf("\n\n***\n");
printf("\nWait for gui to start,click 'START' button on the gui!\n");
printf("\n***\n");
sleep(3);

//set drive mode

setMode(drive_mode);
printf("\n\n***\n");
printf("\nwait for u3k initialization ...\n");
printf("\n***\n");

printf("Done!\n");

pthread_create(&shift_thrd,NULL,setGear,(void*)mbxgear);
pthread_create(&stdout_thrd,NULL,stdOut,(void*)mbxstdout);

motorControl(controller_id,drive_mode);
quit=1;

pthread_join(shift_thrd,NULL);
pthread_join(stdout_thrd,NULL);

//clean up before termination
close(rtfifo);

return;
}

 226

TBAGUI

realtime.c

/* Transmission based servo actuator system control - GUI
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file realtime.c
 This file defines the function acssociated with send the gear control action

*/

#include <qapp.h>
#include "mainwindow.h"

int main(int argc, char **argv)
{
 QApplication a(argc, argv);

 MainWindow w;
 w.show();
 a.setMainWidget(&w);

 return a.exec();
}

 227

mainwidow.h

/* Transmission based servo actuator system control - GUI
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file mainwidow.h
 Class definition for the mainwindow
*/
#ifndef _MAINWINDOW_H_
#define _MAINWINDOW_H_ 1
#include <qapp.h>
#include <qmainwindow.h>
#include <qtoolbutton.h>
#include <qcombobox.h>

class QSpinBox;
class QPushButton;
class RandomPlot;

/**
A mainwindow layout
*/
class MainWindow: public QMainWindow
{
 Q_OBJECT
public:

 MainWindow();

private slots:
 void showRunning(bool);
 void appendPoints(bool);

private:
 QToolBar *toolBar();
 void initWhatsThis();

private:
 QSpinBox *d_randomCount;
 QSpinBox *d_timerCount;
 QToolButton *d_startBtn;
 QToolButton *d_clearBtn;
 QString str;
 QComboBox *cb;
 RandomPlot *d_plot;
};

#endif

 228

mainwindow.cpp

/* Transmission based servo actuator system control - GUI
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file mainwindow.cpp
 This file is the main window layout
*/

#include <qlabel.h>
#include <qhbox.h>
#include <qstatusbar.h>
#include <qtoolbar.h>
#include <qtoolbutton.h>
#include <qspinbox.h>
#include <qwhatsthis.h>
#include <qcombobox.h>
#include "randomplot.h"
#include "mainwindow.h"
#include "start.xpm"
#include "clear.xpm"

class MyToolBar: public QToolBar
{
public:
 MyToolBar(MainWindow *);
 void addSpacing(int);
 void addStretch();
};

MyToolBar::MyToolBar(MainWindow *parent):
 QToolBar(parent)
{
}

void MyToolBar::addSpacing(int spacing)
{
 QLabel *label = new QLabel(this);
 label->setFixedWidth(spacing);
}

void MyToolBar::addStretch()
{
 QLabel *label = new QLabel(this);
 setStretchableWidget(label);
}

MainWindow::MainWindow()

 229

{
 setDockEnabled(DockTornOff, TRUE);
 setRightJustification(TRUE);

 (void)toolBar();
 (void)statusBar();

 d_plot = new RandomPlot(this);

 d_plot->setMargin(4);

 setCentralWidget(d_plot);

 connect(d_startBtn, SIGNAL(toggled(bool)), this, SLOT(appendPoints(bool)));
 connect(d_clearBtn, SIGNAL(clicked()), d_plot, SLOT(clear()));
 connect(d_plot, SIGNAL(running(bool)), this, SLOT(showRunning(bool)));
 connect(cb,SIGNAL(activated(int)),d_plot,SLOT(toggleCurve(int)));

 initWhatsThis();
}

QToolBar *MainWindow::toolBar()
{
 MyToolBar *toolBar = new MyToolBar(this);

 d_startBtn = new QToolButton(toolBar);
 d_startBtn->setUsesTextLabel(TRUE);
 d_startBtn->setPixmap(QPixmap(start_xpm));
 d_startBtn->setToggleButton(TRUE);

 d_clearBtn = new QToolButton(toolBar);
 d_clearBtn->setUsesTextLabel(TRUE);
 d_clearBtn->setPixmap(QPixmap(clear_xpm));
 d_clearBtn->setTextLabel("Clear", FALSE);

 QToolButton *helpBtn = QWhatsThis::whatsThisButton(toolBar);
 helpBtn->setUsesTextLabel(TRUE);
 helpBtn->setTextLabel("Help", FALSE);

 // Create a non-editable Combobox and a label below...
 toolBar->addSpacing(20);
 toolBar->addStretch();

 cb = new QComboBox(FALSE, toolBar);

 //...and insert 5 items into the Combobox
 str = QString("Motor Speed");
 cb->insertItem(str);
 str = QString("DVT Output Speed");
 cb->insertItem(str);
 str = QString("Motor Torque");
 cb->insertItem(str);
 str = QString("Dynamometer Torque");
 cb->insertItem(str);
 str = QString("DVT Position");

 230

 cb->insertItem(str);
 str = QString("COM Position");
 cb->insertItem(str);

 toolBar->addSpacing(10);

 showRunning(FALSE);

 d_startBtn->setMinimumWidth(helpBtn->sizeHint().width() + 20);
 d_clearBtn->setMinimumWidth(helpBtn->sizeHint().width() + 20);
 helpBtn->setMinimumWidth(helpBtn->sizeHint().width() + 20);

 return toolBar;
}

void MainWindow::appendPoints(bool on)
{
 if (on)
 d_plot->append();
 else
 d_plot->stop();
}

void MainWindow::showRunning(bool running)
{

 d_startBtn->setOn(running);
 d_startBtn->setTextLabel(running ? "Stop" : "Start", FALSE);
}

void MainWindow::initWhatsThis()
{
 QWhatsThis::add(d_plot,
 "Zooming is enabled until the selected area gets "
 "too small for the significance on the axes.\n\n"
 "You can zoom in using the left mouse button.\n"
 "The middle mouse button is used to go back to the "
 "previous zoomed area.\n"
 "The right mouse button is used to unzoom completely."
);

 QWhatsThis::add(d_startBtn,
 "Start generation of random points.\n\n"
 "The intention of this example is to show how to implement "
 "growing curves. The points will be generated and displayed "
 "one after the other.\n"
 "To check the performance, a small delay and a large number "
 "of points are useful. To watch the curve growing, a delay "
 " > 300 ms and less points are better.\n"
 "To inspect the curve, stacked zooming is implemented using the "
 "mouse buttons on the plot."
);
 QWhatsThis::add(d_clearBtn,
 "Remove all points."
);
}

 231

randomplot.h

/* Transmission based servo actuator system control - GUI
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file randomplot.h
 class definition of the data curve plot
*/
#ifndef _RANDOMPLOT_H_
#define _RANDOMPLOT_H_ 1
#include "incrementalplot.h"
#define UPDATERATE 10; //ms

class QTimer;

/**
A plot area to hold all data curves
*/
class RandomPlot: public IncrementalPlot
{
 Q_OBJECT

public:

 RandomPlot(QWidget *parent);

 virtual QSize sizeHint() const;

 enum tbaData
 {
 MOTORSPEED,
 DVTSPEED,
 MOTORTORQUE,
 NYNATORQUE,
 DVTPOSITION,
 COMPOSITION,
 NTbaData
 };

 int cmbIndex;

signals:
 void running(bool);
 void timeout();

public slots:
 void clear();
 void stop();

 232

 void append();
 void toggleCurve(int);

private slots:
 void appendPoint();

private:

 void initCurve();

 long d_curveId;

 QTimer *d_timer;
 int d_timerCount;
 int fd;
 int len;

 /*
 struct datapack{
 double time;
 int dvt_position;
 int motor_position;
 int gear_current;
 int command_position;
 double motor_speed;
 double dvt_speed;
 double load;
 //double motor_torque;
 };
 */
 struct datapack{
 float time;
 int dvt_position;
 int motor_position;
 int gear_current;
 int command_position;
 float motor_speed;
 float dvt_speed;
 float load;
 float motor_torque;
 };
 typedef struct datapack Datapack;

 Datapack data_pack;
 double x,y;

 struct
 {
 long curve;
 double data[100000];
 } data[NTbaData];

 };

#endif // _RANDOMPLOT_H_

 233

mainwindow.cpp

/* Transmission based servo actuator system control - GUI
 *
 * Renbin Zhou <zhourb@gmail.com>
 *
 * This file may be freely modified, distributed, and combined with
 * other software, as long as proper attribution is given in the
 * source code.
 */

/** \file mainwindow.cpp
 This file is the data curve plot
*/

#include <stdlib.h>
#include <qtimer.h>
#include <fcntl.h> //open()
#include <unistd.h> //close()
#include "scrollzoomer.h"
#include "randomplot.h"

const unsigned int c_rangeMax = 10;

RandomPlot::RandomPlot(QWidget *parent):
 IncrementalPlot(parent),
 d_curveId(0),
 d_timer(0),
 d_timerCount(0)
{
 setFrameStyle(NoFrame);
 setLineWidth(0);
 setCanvasLineWidth(2);

 enableGridX(TRUE);
 enableGridY(TRUE);
 setGridMajPen(QPen(gray, 0, DotLine));

 //setCanvasBackground(QColor(29, 100, 141)); // nice blue
 setCanvasBackground(QColor(255, 255, 255));

 setAxisScale(xBottom, 0, 100);
 setAxisScale(yLeft, -50, 300);

 for (int i = 0; i < QwtPlot::axisCnt; i++)
 setAxisLabelFormat(i, 'g', 8);

 // enable zooming

 ScrollZoomer *zoomer = new ScrollZoomer(canvas());
 zoomer->setRubberBandPen(QPen(Qt::red, 0, Qt::DotLine));
 zoomer->setCursorLabelPen(QPen(Qt::yellow));

 234

 initCurve();
 replot();

 fd=open("/dev/rtf0",O_RDWR,O_NDELAY);

 //printf("fd=%d\n",fd);

 if (fd==-1) {
 printf("fifo open failed!");
 exit(1);
 }

}

QSize RandomPlot::sizeHint() const
{
 return QSize(600,450);
}

void RandomPlot::initCurve()
{
 /*
 if (d_curveId > 0)
 {
 removeCurveData(d_curveId);
 removeCurve(d_curveId);
 }

 d_curveId = insertCurve("Motor speed curve");

 setCurveStyle(d_curveId, QwtCurve::Lines);
 setTitle("Realtime TBA control");

 //long line_marker=insertLineMarker("",QwtPlot::yLeft);
 //setMarkerYPos(line_marker,0.0);

 //const QColor &c=black;

//setCurveSymbol(d_curveId,QwtSymbol(QwtSymbol::XCross,QBrush(c),QPen(c),QSize(2,2)));

 setAxisTitle(xBottom, "Time (second)");
 setAxisTitle(yLeft, "Speed (radius/second)");
 setAxisAutoScale(xBottom);
 //replot();
 */

 //plotLayout()->setAlignCanvasToScales(TRUE);
 //setCanvasBackground(Qt::darkGray);

 //setAutoLegend(TRUE);
 //setLegendPos(Qwt::Right);

 setAutoLegend(TRUE);
 setLegendPos(Qwt::Bottom);

 235

 setTitle("Realtime TBA control");

 setAxisTitle(QwtPlot::xBottom, " Time (seconds)");
 setAxisScale(QwtPlot::xBottom, 0, 100);

 setAxisScale(QwtPlot::yLeft, -50, 300);

 data[MOTORSPEED].curve = insertCurve("Motor Speed");
 setCurvePen(data[MOTORSPEED].curve, QPen(black));
 setCurveStyle(data[MOTORSPEED].curve, QwtCurve::Lines);

 data[DVTSPEED].curve = insertCurve("DVT Speed");
 setCurvePen(data[DVTSPEED].curve, QPen(green));
 setCurveStyle(data[DVTSPEED].curve, QwtCurve::Lines);

 data[MOTORTORQUE].curve = insertCurve("Motor Torque");
 setCurvePen(data[MOTORTORQUE].curve, QPen(blue));
 setCurveStyle(data[DVTSPEED].curve, QwtCurve::Lines);

 data[NYNATORQUE].curve = insertCurve("Dyna Torque");
 setCurvePen(data[NYNATORQUE].curve, QPen(red));
 setCurveStyle(data[NYNATORQUE].curve, QwtCurve::Lines);

 data[DVTPOSITION].curve = insertCurve("DVT Position");
 setCurvePen(data[DVTPOSITION].curve, QPen(gray));
 setCurveStyle(data[DVTPOSITION].curve, QwtCurve::Lines);

 data[COMPOSITION].curve = insertCurve("Command Position");
 setCurvePen(data[COMPOSITION].curve, QPen(black));
 setCurveStyle(data[COMPOSITION].curve, QwtCurve::Lines);

 //toggleCurve(1);

 replot();

}

void RandomPlot::appendPoint()
{
 /*
 x = rand() % c_rangeMax;
 x += (rand() % 100) / 100;

 printf("x=%.2f ",x);

 y = rand() % c_rangeMax;
 y += (rand() % 100) / 100;
 printf("y=%.2f \n",y);
 */

 236

 len=read(fd,(void*)&data_pack,sizeof(data_pack));

 if (len == 0) {
 printf("buffer empty\n");
 return;
 }

 else if(len==sizeof(data_pack))

 {

 x=data_pack.time;

 y=data_pack.load;

 //printf("time= %.4f\n",x);

 }

 //printf("cmbIndex = %d",cmbIndex);

 //switch (cmbIndex)
 //{
 //case 0:
 appendCurvePoint(data[MOTORSPEED].curve, x, data_pack.motor_speed);
 // break;
 // case 1:
 appendCurvePoint(data[DVTSPEED].curve, x, data_pack.dvt_speed);
 // break;
 // case 2:
 appendCurvePoint(data[MOTORTORQUE].curve, x, data_pack.motor_torque);
 // break;
 // case 3:
 appendCurvePoint(data[NYNATORQUE].curve, x, data_pack.load);
// break;
 // case 4:
 appendCurvePoint(data[DVTPOSITION].curve, x,
(double)data_pack.dvt_position/1024./*2.*3.1415926*/);
 // break;
// default:
// break;
 appendCurvePoint(data[COMPOSITION].curve, x,
(double)data_pack.command_position/1024.);
 // }
 // stop();
}

void RandomPlot::append()
{

 if (!d_timer)
 {
 d_timer = new QTimer(this);
 connect(d_timer, SIGNAL(timeout()), SLOT(appendPoint()));
 }

 237

 emit running(TRUE);

 d_timer->start(10); //qt timer update rate ms
 }

void RandomPlot::stop()
{
 if (d_timer)
 {
 d_timer->stop();
 emit running(FALSE);
 }
}

void RandomPlot::clear()
{
 removeCurves();
 initCurve();
 //removeCurves();
 //replot();
}

void RandomPlot::toggleCurve(int cmbBoxId)
{
 cmbIndex=cmbBoxId;

 //printf("cmbbox ID=%d \n",cmbBoxId);

 QwtPlotCurve *c1=curve(data[MOTORSPEED].curve);
 QwtPlotCurve *c2=curve(data[DVTSPEED].curve);
 QwtPlotCurve *c3=curve(data[MOTORTORQUE].curve);
 QwtPlotCurve *c4=curve(data[NYNATORQUE].curve);
 QwtPlotCurve *c5=curve(data[DVTPOSITION].curve);
 QwtPlotCurve *c6=curve(data[COMPOSITION].curve);

 switch (cmbBoxId)
 {
 case 0:

 if (c1)
 {
 c1->setEnabled(TRUE);
 }

 if (c2)
 {
 c2->setEnabled(FALSE);
 }

 if (c3)
 {
 c3->setEnabled(FALSE);
 }

 238

 if (c4)
 {
 c4->setEnabled(FALSE);
 }

 if (c5)
 {
 c5->setEnabled(FALSE);
 }

 if (c6)
 {
 c6->setEnabled(FALSE);
 }

 replot();
 break;

 case 1:

 if (c1)
 {
 c1->setEnabled(FALSE);
 }
 if (c2)
 {
 c2->setEnabled(TRUE);
 }
 if (c3)
 {
 c3->setEnabled(FALSE);
 }
 if (c4)
 {
 c4->setEnabled(FALSE);
 }
 if (c5)
 {
 c5->setEnabled(FALSE);
 }
 if (c6)
 {
 c6->setEnabled(FALSE);
 }

 replot();
 break;

 case 2:

 if (c1)
 {
 c1->setEnabled(FALSE);
 }
 if (c2)
 {

 239

 c2->setEnabled(FALSE);
 }
 if (c3)
 {
 c3->setEnabled(TRUE);
 }
 if (c4)
 {
 c4->setEnabled(FALSE);
 }
 if (c5)
 {
 c5->setEnabled(FALSE);
 }
 if (c6)
 {
 c6->setEnabled(FALSE);
 }

 replot();
 break;

 case 3:

 if (c1)
 {
 c1->setEnabled(FALSE);
 }
 if (c2)
 {
 c2->setEnabled(FALSE);
 }
 if (c3)
 {
 c3->setEnabled(FALSE);
 }
 if (c4)
 {
 c4->setEnabled(TRUE);
 }
 if (c5)
 {
 c5->setEnabled(FALSE);
 }
 if (c6)
 {
 c6->setEnabled(FALSE);
 }

 replot();
 break;

 case 4:

 if (c1)
 {

 240

 c1->setEnabled(FALSE);
 }
 if (c2)
 {
 c2->setEnabled(FALSE);
 }
 if (c3)
 {
 c3->setEnabled(FALSE);
 }
 if (c4)
 {
 c4->setEnabled(FALSE);
 }
 if (c5)
 {
 c5->setEnabled(TRUE);
 }
 if (c6)
 {
 c6->setEnabled(FALSE);
 }
 replot();
 break;

 case 5:

 if (c1)
 {
 c1->setEnabled(FALSE);
 }
 if (c2)
 {
 c2->setEnabled(FALSE);
 }
 if (c3)
 {
 c3->setEnabled(FALSE);
 }
 if (c4)
 {
 c4->setEnabled(FALSE);
 }
 if (c5)
 {
 c5->setEnabled(FALSE);
 }
 if (c6)
 {
 c6->setEnabled(TRUE);
 }
 replot();
 break;

 default:
 replot();

 241

 break;
 }
}

#ifndef _INCREMENTALPLOT_H_
#define _INCREMENTALPLOT_H_ 1

#include <qintdict.h>
#include <qwt_array.h>
#include <qwt_plot.h>

class CurveData
{
 // A container class for growing data
public:

 CurveData();

 void append(double *x, double *y, int count);

 int count() const;
 int size() const;
 double *x() const;
 double *y() const;

private:
 int d_count;
 QwtArray<double> d_x;
 QwtArray<double> d_y;
};

class IncrementalPlot : public QwtPlot
{
 Q_OBJECT
public:
 IncrementalPlot(QWidget *parent = 0, const char *name = 0);
 virtual ~IncrementalPlot();

 void appendCurvePoint(long curveId, double x, double y);
 void appendCurveData(long curveId,
 double *x, double *y, int size);

 void removeCurveData(long curveId);
private:

 QIntDict<CurveData> d_curveDictionary;
};

#endif // _INCREMENTALPLOT_H_

 242

incrementalplot.cpp

/** incrementalplot.cpp
*/

#include <qwt_plot.h>
#include <qwt_plot_dict.h>
#include "incrementalplot.h"

CurveData::CurveData():
 d_count(0)
{
}

void CurveData::append(double *x, double *y, int count)
{
 int newSize = ((d_count + count) / 1000 + 1) * 1000;

 if (newSize > size())
 {
 d_x.resize(newSize);
 d_y.resize(newSize);
 }

 for (register int i = 0; i < count; i++)
 {
 d_x[d_count + i] = x[i];
 d_y[d_count + i] = y[i];
 }
 d_count += count;
}

int CurveData::count() const
{
 return d_count;
}

int CurveData::size() const
{
 return d_x.size();
}

double *CurveData::x() const
{
 return d_x.data();
}

double *CurveData::y() const
{
 return d_y.data();
}

IncrementalPlot::IncrementalPlot(QWidget *parent, const char* name):
 QwtPlot(parent, name)

 243

{
 d_curveDictionary.setAutoDelete(TRUE);
}

IncrementalPlot::~IncrementalPlot()
{
 removeCurves();
}

void IncrementalPlot::appendCurvePoint(long curveId, double x, double y)
{
 appendCurveData(curveId, &x, &y, 1);
}

void IncrementalPlot::appendCurveData(long curveId,
 double *x, double *y, int size)
{
 QwtPlotCurve *curve = IncrementalPlot::curve(curveId);
 if (curve == 0 || size <= 0)
 return;

 CurveData *curveData = d_curveDictionary.find(curveId);
 if (curveData == 0)
 {
 curveData = new CurveData();
 d_curveDictionary.insert(curveId, curveData);
 }

 curveData->append(x, y, size);
 curve->setRawData(curveData->x(), curveData->y(), curveData->count());

 drawCurve(curveId, curve->dataSize() - size, curve->dataSize() - 2);
 setAutoLegend(TRUE);
 //legendEnabled(data[DVTPOSITION].curve);
}

void IncrementalPlot::removeCurveData(long curveId)
{
 d_curveDictionary.remove(curveId);
}

 244

scrollbar.h

/** scrollbar.h
*/

#ifndef _SCROLLBAR_H
#define _SCROLLBAR_H 1

#include <qscrollbar.h>

class ScrollBar: public QScrollBar
{
 Q_OBJECT

public:
 ScrollBar(QWidget *parent = NULL, const char *name = NULL);
 ScrollBar(Qt::Orientation,
 QWidget *parent = NULL, const char *name = NULL);
 ScrollBar(double minBase, double maxBase,
 Orientation o, QWidget *parent = NULL, const char *name = NULL);
 void setInverted(bool);
 bool isInverted() const;
 double minBaseValue() const;
 double maxBaseValue() const;
 double minSliderValue() const;
 double maxSliderValue() const;

 int extent() const;

signals:
 void sliderMoved(Qt::Orientation, double, double);
 void valueChanged(Qt::Orientation, double, double);

public slots:
 virtual void setBase(double min, double max);
 virtual void moveSlider(double min, double max);

protected:
 void sliderRange(int value, double &min, double &max) const;
 int mapToTick(double) const;
 double mapFromTick(int) const;
private slots:
 void catchValueChanged(int value);
 void catchSliderMoved(int value);
private:
 void init();

 bool d_inverted;
 double d_minBase;
 double d_maxBase;
 int d_baseTicks;
};

#endif

 245

scrollbar.cpp

/** scrollbar.cpp
*/
#include <qstyle.h>
#include "scrollbar.h"

ScrollBar::ScrollBar(QWidget * parent, const char *name):
 QScrollBar(parent, name)
{
 init();
}

ScrollBar::ScrollBar(Qt::Orientation o,
 QWidget *parent, const char *name):
 QScrollBar(o, parent, name)
{
 init();
}

ScrollBar::ScrollBar(double minBase, double maxBase,
 Orientation o, QWidget *parent, const char *name):
 QScrollBar(o, parent, name)
{
 init();
 setBase(minBase, maxBase);
 moveSlider(minBase, maxBase);
}

void ScrollBar::init()
{
 d_inverted = orientation() == Qt::Vertical;
 d_baseTicks = 1000000;
 d_minBase = 0.0;
 d_maxBase = 1.0;
 moveSlider(d_minBase, d_maxBase);

 connect(this, SIGNAL(sliderMoved(int)), SLOT(catchSliderMoved(int)));
 connect(this, SIGNAL(valueChanged(int)), SLOT(catchValueChanged(int)));
}

void ScrollBar::setInverted(bool inverted)
{
 if (d_inverted != inverted)
 {
 d_inverted = inverted;
 moveSlider(minSliderValue(), maxSliderValue());
 }
}

bool ScrollBar::isInverted() const
{
 return d_inverted;
}

 246

void ScrollBar::setBase(double min, double max)
{
 if (min != d_minBase || max != d_maxBase)
 {
 d_minBase = min;
 d_maxBase = max;

 moveSlider(minSliderValue(), maxSliderValue());
 }
}

void ScrollBar::moveSlider(double min, double max)
{
 const int sliderTicks = qRound((max - min) /
 (d_maxBase - d_minBase) * d_baseTicks);

 // setRange initiates a valueChanged of the scrollbars
 // in some situations. So we block
 // and unblock the signals.

 blockSignals(TRUE);

 setRange(sliderTicks / 2, d_baseTicks - sliderTicks / 2);
 int steps = sliderTicks / 200;
 if (steps <= 0)
 steps = 1;

 // setPageStep, setLineStep ???

 setSteps(steps, sliderTicks);

 int tick = mapToTick(min + (max - min) / 2);
 if (isInverted())
 tick = d_baseTicks - tick;

 directSetValue(tick);
 blockSignals(FALSE);

 rangeChange();
}

double ScrollBar::minBaseValue() const
{
 return d_minBase;
}

double ScrollBar::maxBaseValue() const
{
 return d_maxBase;
}

void ScrollBar::sliderRange(int value, double &min, double &max) const
{
 if (isInverted())
 value = d_baseTicks - value;
 const int visibleTicks = pageStep();

 247

 min = mapFromTick(value - visibleTicks / 2);
 max = mapFromTick(value + visibleTicks / 2);
}

double ScrollBar::minSliderValue() const
{
 double min, dummy;
 sliderRange(value(), min, dummy);

 return min;
}

double ScrollBar::maxSliderValue() const
{
 double max, dummy;
 sliderRange(value(), dummy, max);

 return max;
}

int ScrollBar::mapToTick(double v) const
{
 return (int) ((v - d_minBase) / (d_maxBase - d_minBase) * d_baseTicks);
}

double ScrollBar::mapFromTick(int tick) const
{
 return d_minBase + (d_maxBase - d_minBase) * tick / d_baseTicks;
}

void ScrollBar::catchValueChanged(int value)
{
 double min, max;
 sliderRange(value, min, max);
 emit valueChanged(orientation(), min, max);
}

void ScrollBar::catchSliderMoved(int value)
{
 double min, max;
 sliderRange(value, min, max);
 emit sliderMoved(orientation(), min, max);
}

int ScrollBar::extent() const
{
 int dim;
#if QT_VERSION >= 300
 dim = style().pixelMetric(QStyle::PM_ScrollBarExtent, this);
#else
 const QSize sz = style().scrollBarExtent();
 dim = (orientation() == Qt::Horizontal) ? sz.height() : sz.width();
#endif
 return dim;
}

 248

scrollzoomer.h

/**scrollzoomer.h
*/

#ifndef _SCROLLZOOMER_H
#define _SCROLLZOOMER_H

#include <qscrollview.h>
#include <qwt_plot_zoomer.h>

class ScrollData;
class ScrollBar;

class ScrollZoomer: public QwtPlotZoomer
{
 Q_OBJECT
public:
 enum ScrollBarPosition
 {
 AttachedToScale,
 OppositeToScale
 };

 ScrollZoomer(QwtPlotCanvas *, const char *name = 0);
 virtual ~ScrollZoomer();

 ScrollBar *horizontalScrollBar() const;
 ScrollBar *verticalScrollBar() const;

 void setHScrollBarMode(QScrollView::ScrollBarMode);
 void setVScrollBarMode(QScrollView::ScrollBarMode);

 QScrollView::ScrollBarMode vScrollBarMode () const;
 QScrollView::ScrollBarMode hScrollBarMode () const;

 void setHScrollBarPosition(ScrollBarPosition);
 void setVScrollBarPosition(ScrollBarPosition);

 ScrollBarPosition hScrollBarPosition() const;
 ScrollBarPosition vScrollBarPosition() const;

 QWidget* cornerWidget() const;
 virtual void setCornerWidget(QWidget *);

 virtual bool eventFilter(QObject *, QEvent *);

 virtual void rescale();

protected:
 virtual ScrollBar *scrollBar(Qt::Orientation);
 virtual void updateScrollBars();
 virtual void layoutScrollBars(const QRect &);

 249

private slots:
 void scrollBarMoved(Qt::Orientation o, double min, double max);

private:
 bool needScrollBar(Qt::Orientation) const;
 int oppositeAxis(int) const;

 QWidget *d_cornerWidget;

 ScrollData *d_hScrollData;
 ScrollData *d_vScrollData;
};

#endif

 250

scrollzoomer.cpp

/**scrollzoomer.cpp
*/

#include "qwt_plot_canvas.h"
#include "qwt_plot_layout.h"
#include "scrollbar.h"
#include "scrollzoomer.h"

class ScrollData
{
public:
 ScrollData():
 scrollBar(NULL),
 position(ScrollZoomer::OppositeToScale),
 mode(QScrollView::Auto)
 {
 }

 ~ScrollData()
 {
 delete scrollBar;
 }

 ScrollBar *scrollBar;
 ScrollZoomer::ScrollBarPosition position;
 QScrollView::ScrollBarMode mode;
};

ScrollZoomer::ScrollZoomer(QwtPlotCanvas *canvas, const char *name):
 QwtPlotZoomer(canvas, name),
 d_cornerWidget(NULL),
 d_hScrollData(NULL),
 d_vScrollData(NULL)
{
 if (!canvas)
 return;

 d_hScrollData = new ScrollData;
 d_vScrollData = new ScrollData;
}

ScrollZoomer::~ScrollZoomer()
{
 delete d_cornerWidget;
 delete d_vScrollData;
 delete d_hScrollData;
}

void ScrollZoomer::rescale()
{
 QwtPlotZoomer::rescale();
 updateScrollBars();

 251

}

ScrollBar *ScrollZoomer::scrollBar(Qt::Orientation o)
{
 ScrollBar *&sb = (o == Qt::Vertical)
 ? d_vScrollData->scrollBar : d_hScrollData->scrollBar;

 if (sb == NULL)
 {
 sb = new ScrollBar(o, canvas());
 sb->hide();
 connect(sb,
 SIGNAL(valueChanged(Qt::Orientation, double, double)),
 SLOT(scrollBarMoved(Qt::Orientation, double, double)));
 }
 return sb;
}

ScrollBar *ScrollZoomer::horizontalScrollBar() const
{
 return d_hScrollData->scrollBar;
}

ScrollBar *ScrollZoomer::verticalScrollBar() const
{
 return d_vScrollData->scrollBar;
}

void ScrollZoomer::setHScrollBarMode(QScrollView::ScrollBarMode mode)
{
 if (hScrollBarMode() != mode)
 {
 d_hScrollData->mode = mode;
 updateScrollBars();
 }
}

void ScrollZoomer::setVScrollBarMode(QScrollView::ScrollBarMode mode)
{
 if (vScrollBarMode() != mode)
 {
 d_vScrollData->mode = mode;
 updateScrollBars();
 }
}

QScrollView::ScrollBarMode ScrollZoomer::hScrollBarMode() const
{
 return d_hScrollData->mode;
}

QScrollView::ScrollBarMode ScrollZoomer::vScrollBarMode () const
{
 return d_vScrollData->mode;
}

 252

void ScrollZoomer::setHScrollBarPosition(ScrollBarPosition pos)
{
 if (d_hScrollData->position != pos)
 {
 d_hScrollData->position = pos;
 updateScrollBars();
 }
}

void ScrollZoomer::setVScrollBarPosition(ScrollBarPosition pos)
{
 if (d_vScrollData->position != pos)
 {
 d_vScrollData->position = pos;
 updateScrollBars();
 }
}

ScrollZoomer::ScrollBarPosition ScrollZoomer::hScrollBarPosition() const
{
 return d_hScrollData->position;
}

ScrollZoomer::ScrollBarPosition ScrollZoomer::vScrollBarPosition() const
{
 return d_vScrollData->position;
}

void ScrollZoomer::setCornerWidget(QWidget *w)
{
 if (w != d_cornerWidget)
 {
 if (canvas())
 {
 delete d_cornerWidget;
 d_cornerWidget = w;
 if (d_cornerWidget->parent() != canvas())
 d_cornerWidget->reparent(canvas(), QPoint(0, 0));

 updateScrollBars();
 }
 }
}

QWidget *ScrollZoomer::cornerWidget() const
{
 return d_cornerWidget;
}

bool ScrollZoomer::eventFilter(QObject *o, QEvent *e)
{
 if (o == canvas())
 {
 switch(e->type())
 {
 case QEvent::Resize:

 253

 {
 const int fw = ((QwtPlotCanvas *)canvas())->frameWidth();

 QRect rect;
 rect.setSize(((QResizeEvent *)e)->size());
 rect.setRect(rect.x() + fw, rect.y() + fw,
 rect.width() - 2 * fw, rect.height() - 2 * fw);

 layoutScrollBars(rect);
 break;
 }
 case QEvent::ChildRemoved:
 {
 const QObject *child = ((QChildEvent *)e)->child();
 if (child == d_cornerWidget)
 d_cornerWidget = NULL;
 else if (child == d_hScrollData->scrollBar)
 d_hScrollData->scrollBar = NULL;
 else if (child == d_vScrollData->scrollBar)
 d_vScrollData->scrollBar = NULL;
 break;
 }
 default:
 break;
 }
 }
 return QwtPlotZoomer::eventFilter(o, e);
}

bool ScrollZoomer::needScrollBar(Qt::Orientation o) const
{
 QScrollView::ScrollBarMode mode;
 double zoomMin, zoomMax, baseMin, baseMax;

 if (o == Qt::Horizontal)
 {
 mode = d_hScrollData->mode;
 baseMin = zoomBase().x1();
 baseMax = zoomBase().x2();
 zoomMin = zoomRect().x1();
 zoomMax = zoomRect().x2();
 }
 else
 {
 mode = d_vScrollData->mode;
 baseMin = zoomBase().y1();
 baseMax = zoomBase().y2();
 zoomMin = zoomRect().y1();
 zoomMax = zoomRect().y2();
 }

 bool needed = FALSE;
 switch(mode)
 {
 case QScrollView::AlwaysOn:
 needed = TRUE;

 254

 break;
 case QScrollView::AlwaysOff:
 needed = FALSE;
 break;
 case QScrollView::Auto:
 default:
 {
 if (baseMin < zoomMin || baseMax > zoomMax)
 needed = TRUE;
 break;
 }
 }
 return needed;
}

void ScrollZoomer::updateScrollBars()
{
 if (!canvas())
 return;

 const int xAxis = QwtPlotZoomer::xAxis();
 const int yAxis = QwtPlotZoomer::yAxis();

 int xScrollBarAxis = xAxis;
 if (hScrollBarPosition() == OppositeToScale)
 xScrollBarAxis = oppositeAxis(xScrollBarAxis);

 int yScrollBarAxis = yAxis;
 if (vScrollBarPosition() == OppositeToScale)
 yScrollBarAxis = oppositeAxis(yScrollBarAxis);

 QwtPlotLayout *layout = plot()->plotLayout();

 bool showHScrollBar = needScrollBar(Qt::Horizontal);
 if (showHScrollBar)
 {
 ScrollBar *sb = scrollBar(Qt::Horizontal);

 sb->setPalette(plot()->palette());
 sb->setInverted(plot()->axisOptions(xAxis) & QwtAutoScale::Inverted);
 sb->setBase(zoomBase().x1(), zoomBase().x2());
 sb->moveSlider(zoomRect().x1(), zoomRect().x2());

 if (!sb->isVisibleTo(canvas()))
 {
 sb->show();
 layout->setCanvasMargin(layout->canvasMargin(xScrollBarAxis)
 + sb->extent(), xScrollBarAxis);
 }
 }
 else
 {
 if (horizontalScrollBar())
 {
 horizontalScrollBar()->hide();

 255

 layout->setCanvasMargin(layout->canvasMargin(xScrollBarAxis)
 - horizontalScrollBar()->extent(), xScrollBarAxis);
 }
 }

 bool showVScrollBar = needScrollBar(Qt::Vertical);
 if (showVScrollBar)
 {
 ScrollBar *sb = scrollBar(Qt::Vertical);

 sb->setPalette(plot()->palette());
 sb->setInverted(!(plot()->axisOptions(yAxis) & QwtAutoScale::Inverted));
 sb->setBase(zoomBase().y1(), zoomBase().y2());
 sb->moveSlider(zoomRect().y1(), zoomRect().y2());

 if (!sb->isVisibleTo(canvas()))
 {
 sb->show();
 layout->setCanvasMargin(layout->canvasMargin(yScrollBarAxis)
 + sb->extent(), yScrollBarAxis);
 }
 }
 else
 {
 if (verticalScrollBar())
 {
 verticalScrollBar()->hide();
 layout->setCanvasMargin(layout->canvasMargin(yScrollBarAxis)
 - verticalScrollBar()->extent(), yScrollBarAxis);
 }
 }

 if (showHScrollBar && showVScrollBar)
 {
 if (d_cornerWidget == NULL)
 {
 d_cornerWidget = new QWidget(canvas());
 d_cornerWidget->setPalette(plot()->palette());
 }
 d_cornerWidget->show();
 }
 else
 {
 if (d_cornerWidget)
 d_cornerWidget->hide();
 }

 layoutScrollBars(((QwtPlotCanvas *)canvas())->contentsRect());
}

void ScrollZoomer::layoutScrollBars(const QRect &rect)
{
 int hPos = xAxis();
 if (hScrollBarPosition() == OppositeToScale)
 hPos = oppositeAxis(hPos);

 256

 int vPos = yAxis();
 if (vScrollBarPosition() == OppositeToScale)
 vPos = oppositeAxis(vPos);

 ScrollBar *hScrollBar = horizontalScrollBar();
 ScrollBar *vScrollBar = verticalScrollBar();

 const int hdim = hScrollBar ? hScrollBar->extent() : 0;
 const int vdim = vScrollBar ? vScrollBar->extent() : 0;

 if (hScrollBar && hScrollBar->isVisible())
 {
 int x = rect.x();
 int y = (hPos == QwtPlot::xTop)
 ? rect.top() : rect.bottom() - hdim + 1;
 int w = rect.width();

 if (vScrollBar && vScrollBar->isVisible())
 {
 if (vPos == QwtPlot::yLeft)
 x += vdim;
 w -= vdim + 1;
 }

 hScrollBar->setGeometry(x, y, w, hdim);
 }
 if (vScrollBar && vScrollBar->isVisible())
 {
 int pos = yAxis();
 if (vScrollBarPosition() == OppositeToScale)
 pos = oppositeAxis(pos);

 int x = (vPos == QwtPlot::yLeft)
 ? rect.left() : rect.right() - vdim;
 int y = rect.y();

 int h = rect.height();

 if (hScrollBar && hScrollBar->isVisible())
 {
 if (hPos == QwtPlot::xTop)
 y += hdim;

 h -= hdim;
 }

 vScrollBar->setGeometry(x, y, vdim, h);
 }
 if (hScrollBar && hScrollBar->isVisible() &&
 vScrollBar && vScrollBar->isVisible())
 {
 if (d_cornerWidget)
 {
 QRect cornerRect(
 vScrollBar->pos().x(), hScrollBar->pos().y(),
 vdim, hdim);

 257

 d_cornerWidget->setGeometry(cornerRect);
 }
 }
}

void ScrollZoomer::scrollBarMoved(Qt::Orientation o, double min, double)
{
 if (o == Qt::Horizontal)
 move(min, zoomRect().y1());
 else
 move(zoomRect().x1(), min);

 emit zoomed(zoomRect());
}

int ScrollZoomer::oppositeAxis(int axis) const
{
 switch(axis)
 {
 case QwtPlot::xBottom:
 return QwtPlot::xTop;
 case QwtPlot::xTop:
 return QwtPlot::xBottom;
 case QwtPlot::yLeft:
 return QwtPlot::yRight;
 case QwtPlot::yRight:
 return QwtPlot::yLeft;
 default:
 break;
 }

 return axis;
}

 258

Vita

Renbin Zhou was born in Feburary 4, 1971 in a village Northeast China to

Delin Zhou and Shuhua Dai. Hs sister, Renying Zhou, was born two years later.

He attended school in Donggang Second High School, and got high school

diploma in 1990. Then he went to Harbin Institute of Technology and got a

Bchaler of Enginnering in 1994. He had worked for six years as a mechanical

engineer in China until in 2000, when he got admission to the Aerospace,

Mechanical and Biomedical Engineering Department in the University of

Tennessee, Knoxville with a graduate teaching assistant. In 2002, he got a

Master of Science in Mechnical Engineering with a concentration in Robotics and

Controls. In 2001, he passed the Ph.D. qualification exam and then started his

Ph.D. study in the Robotics and Eletromechanical Systems Laboratory after the

Master degree, and his graduate teaching assistant changed to a graduate

research assistant. He completed his Ph.D. work in the field of control of a

transmission based servo actuator system using hybrid dynamic system theory.

He got his Ph.D. degree in May, 2006. He is trying to land his career in the

robotics research and industry after the graduation.

	High Performance Control of a Transmission Based Servo Actuator System
	Recommended Citation

	Dissertation_approvalsheet.pdf
	Dissertation_ch_1.pdf
	Dissertation_ch_2.pdf
	Dissertation_ch_3.pdf
	Dissertation_ch_4.pdf
	Dissertation_ch_5.pdf
	Dissertation_ch_6.pdf
	references-appendix.pdf

