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Abstract 

High performance actuation is a key factor in the industrial robot area. The 

transmission based servo actuator system (TBA) is a new type of robot actuator 

with a brushless DC servo motor and a three speed discrete variable 

transmission (DVT). The proposed TBA design can match the performance of a 

typical hydraulic actuator with compact size and weight.  

The TBA is a typical hybrid dynamic system consisting of three continuous 

dynamic systems and a discrete state controller. This dissertation addresses the 

fundamental problems associated with the TBA system control from a hybrid 

system point of view.  

A detailed dynamic model of the TBA is developed. Due to the complexity 

of the TBA system, an exact model is unwieldy for control design and analysis 

purposes. In this research, the TBA system is simplified into a hybrid system with 

three second order linear time invariant systems, on which all the controls are 

developed.Dynamic stability of the TBA is critical for its function as a 

servoactuator. For a hybrid system, the stability problem has much broader 

range of issues than a purely continuous system.  

In general, the plant stability and the subsystem stability are independent. 

For example, a hybrid system with stable subsystems can be unstable for certain 

switch sequences; on the other hand, a hybrid system with unstable subsystems 

can be stabilized by proper switch signals. In this dissertation, a sufficient 

condition is established for stability of the TBA system. It is proven that the hybrid 

system is stable under asynchronous switching if there exists a common 
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Lyapunov function for all subsystems. It is proven that the TBA subsystems can 

have a common Lypunov function by designing appropriate feedback controller. 

The feedback controller to stabilize the TBA can be transformed into a PID 

equivalent controller because the subsystems are second order linear time 

invariant systems (LTI). The PID controller was then implemented and high 

performance in terms of position error and transient suppression has been 

achieved. The discrete state controller should be stable, which means that its 

output should be consistent if the hybrid system is subjected to disturbances. A 

common phenomenon is that the state changes back and forth very frequently 

near the switch boundary, which is referred to as transition instability. This 

research proposes a switch strategy consisting of two boundaries to achieve the 

transition stability, and it is proved that the proposed switch strategy is transition 

stable.  

An optimal controller is designed and difficulties associated with 

implementation are generated.  

Based on the proposed control methods, a multithread real time control 

software has been developed to achieve a deterministic control loop sampling. 

The control software is developed in C/C++ under Real Time Application 

Interface (RTAI), which provides a real time programming environment in a 

normal Linux operating system. 

With the proposed controller and a prototype TBA test system, TBA 

stability and control performance was demonstrated and evaluated. The following 

results were observed: 



 vi

1. Steady state error of 0.005 degrees at the emulated robust manipulator 

shoulder pitch joint 

2. Control loop sampling period of 1 millisecond with negligible delay 

3. Transient disturbances associated with the gear shifting of ~20% in most 

cases. 

4. The methods and applications used in this dissertation can be extended to 

a large range of hybrid dynamic systems in terms of control system 

design, analysis and implementation. 

This research contributes to the literature and research knowledge base in 

the following ways: 

1. Exploration and solution of the control problems of TBA’s in the hybrid 

system control context. 

2. Expansion of the fundamental understanding of the practical control 

issues of TBA’s.  

3. Analysis, design, and implementation of a real time TBA control system, 

and identification of the most suitable control strategy for the TBA. 

4. The development of analysis and control methods that can be extended to 

a much broader range of hybrid dynamic systems. 
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CHAPTER 1  

Background and Introduction 

History of Industry Robot –Actuator and Control 

Actuation of robot manipulators has been a driving factor in industrial robot 

research and applications; its impact can be found in both the expansion of the 

areas of application and in performance improvements. For example, if an 

electrically driven robot had not been invented, robot applications in the food 

industry and medical practice would have been unlikely. This advancement 

allowed both accuracy and repeatability to be achieved at levels as small as tens 

of micrometers.  

The first industrial robot, a UNIMATE robot, was put into an assembly line 

by General Motors in 1961. It was purely hydraulic driven, and hydraulic servo-

actuators were the most common actuator type in the decade that followed. The 

first UNIMATE had a successful life as a die-caster until it was retired after more 

than ten years of service, and it is now on display in the Smithsonian Institute in 

Washington.   

Despite the success of hydraulic actuators in the early period, they have 

long been known to have problems like complexity, poor maintainability, low 

accuracy, and some environmental issues. Today, hydraulic actuator driven 

robots can only be found in application areas where high payloads or other 
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considerations must be addressed, such as undersea exploration, underground 

waste storage tanks, and deactivation and decommissioning (D&D) projects [1]. 

The Titan II and Titan III robot manipulators from Schilling Robotics are designed 

for these types of applications and are proven to be adequate and successful. 

An electric motor driven robot does not have many of the problems of a 

hydraulic actuation. Around 1974, researchers started to build a pure electric 

motor driven robot, and fast growth occurred in this research area in the years 

that followed. Today, the electric motor driven robot prevails in almost all 

industrial robot applications. 

Electric motors can be divided into two major categories: direct current 

(DC) and alternating current (AC) motors. The DC motor is characterized by an 

evenly distributed magnetic field in the air gap. It is known for its ease of use by 

simply supplying a DC voltage to the rotor windings.  DC motors are widely used 

in robot design applications, especially small ones. Large DC motors are difficult 

to make; the challenges are management of the heat generated in the rotor 

windings and wearing of the mechanical brushes, etc. Like other electric motors, 

DC motor operation principles can be represented by an equivalent electrical 

circuit and a dynamic mechanical system as shown in Figure 1.1.  The 

mathematical model of a DC motor is shown in Equation ( 1.1 ). 

 

Figure 1.1, DC motor equivalent model 
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e R

R
t m R s load

diL V K iR
dt
dJ K i b f T
dt

ω

ω ω

= − −

= − − −
         ( 1.1 ) 

When DC motors are operated at steady state, the left sides of the equations are 

very small and can be treated as zero; thus, the relation between motor speed 

and supply voltage is linear if the load torque is constant, which makes it possible 

to use open loop speed control. Similarly, it is also possible to have open loop 

torque control if the motor speed is constant. But closed loop control is generally 

used in practice in order to achieve the desired servo performance.   

Figure 1.2 shows a simple DC motor closed loop position control in 

voltage mode with a PID controller. 

In order to achieve continuous rotation, some devices must be used to 

change the current direction in the rotor windings, which is called commutation. 

For example, for a two-pole DC motor with a permanent magnet stator and a 

wound rotor, the rotor current must commute every 180 degrees.  

  

Figure 1.2, DC motor closed loop position control 
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Conventionally, the commutation is achieved using mechanical brushes, 

generally made from carbon material. The main problems associated with 

brushes are arcing and brush wear, which not only limits its application areas, but 

also increases maintenance costs. By turning the conventional DC motor inside 

out, and using a wound stator and a permanent rotor, researchers created 

another version of the electric motor. It is known as a Brushless DC Motor, or 

simply a BLDC. For this type of motor to be continuously rotating, the 

commutation on the stator current is achieved electronically with the aid of a 

motor drive, thus avoiding the use of mechanical brushes. By eliminating the 

mechanical brushes, the BLDC reliability is vastly improved. Figure 1.3 shows a 

schematic diagram of a BLDC system. A BLDC motor generally has the following 

characteristics: 

1. It has multiphase stator windings, usually three. 

2. It has a multi-pole permanent magnet rotor. 

3. Correct operation requires correct commutation of the stator current, 

generally by a pulse width modulation (PWM) drive; thus, the current in a 

phase winding is alternating. 

4. Combined with its drives and an appropriate controller, the BLDC can be 

controlled as if it were a regular DC motor [2]. Figure 1.4 shows a typical 

BLDC servo motor control diagram. 

Unlike a DC motor, an AC motor has a sinusoidally wound stator, which 

generates a sinusoidal distributed and rotating magnetic field in the air gap as the 

current in the stator windings alternates. Based on the rotor type, AC motors can 

be divided into synchronous and asynchronous motors.  
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Figure 1.3, BLDC system setup 

 

 

 

Figure 1.4, BLDC servo control diagram 
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A synchronous motor is characterized by the capability of being operated 

with the same speed for the rotor and the stator in steady state operation.  

The torque on the rotor is generated by the direction difference between 

the stator and rotor magnetic fields. The rotor of a synchronous motor can be a 

permanent magnet or winding. For a wound rotor, the current in the rotor must be 

kept constant in order to be operated as a synchronous motor, which generally 

requires a constant current power source.  

An asynchronous motor, on the other hand, needs a speed difference, 

which is called slip, between the rotor and stator magnetic fields in order to 

generate torque. The rotor does not have an external power source, so it is also 

called induction motor. 

An induction motor only needs an AC power source to be operated, is 

virtually maintenance free and can accommodate a large range of loads.  

Because of its simplicity to use, it is the best choice for applications where no 

servo performance is required.  

The reason an induction motor cannot be used as a servo motor is that 

the speed of the rotor is fixed by the AC power source and the motor 

construction. 

With the help of a power electronic drive, an induction motor can be 

controlled as a servo motor. A typical control system configuration is shown in 

Figure 1.5.  

Even though an induction motor can be used as servo motor, it generally 

has a large power-weight ratio when compared with the BLDC servo motor.  
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Figure 1.5, AC servo control system diagram 

Because of advancements in permanent magnet material science, the 

BLDC motors have higher power output with more compact size, which is a 

critical constraint in applications with stringent size and weight limits, for 

example, in industrial robot actuation applications.  

Figure 1.6 shows a survey of the power-weight ratios of midsize electric 

motors (2 hp to 5hp power) from some of the major manufacturers in industry: 

Allen-Bradley, Reliance Electronic, Danaher, Baldor and Bayside. Figure 1.6 also 

shows that BLDCs have about half of the weight of a normal AC motor with 

similar power output.   

Even though a BLDC motor provides adequately large power with a 

compact size, it cannot be used in a robot actuator directly. The reason is that it 

generally has a high rated speed and a low rated torque.  
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Figure 1.6, AC, BLDC power-weight curve 

For example, the Allen Bradley MPL-420P-M BLDC motor has a rated 

speed of 5000 rpm and a rated torque of 4 N-m.  However, a robot arm with a 

similar power rating has a relatively low speed and high torque. For example, the 

ABB IRB6400/3.0-100 industrial robot has a load capacity of 100 kg with speed 

of about 20 rpm, and the torque output is about 3500 N-m. The Titan II hydraulic 

manipulator is capable of handling about 100 kg load with a speed of about 3.5 

rpm, and the corresponding torque requirement is about 3000 N-m.  

The speed and torque incompatibility between high speed electric motor 

and low speed robot joints must be resolved in order to use these electric motors. 

The conventional solution is to attach a fixed ratio gear box to the motor output 

shaft, and thus expand the torque capability of the motor with the penalty of 

decreased speed. By using an appropriate motor and gear box, an electric motor 

driven robot can handle a relatively large load at a low speed; for example, the 

ABB IRB6400R can handle up to 500 kg with 2.3 m reach.  
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A technical limitation of this approach occurs when the robot is used to 

handle small weight. It cannot make full use of the motor power because the 

maximum speed of the manipulator is determined by the gear box and motor 

maximum speeds unless a motor magnetic field weakening technique is used. 

Other problems include maintenance of the gearbox, gear backlash, and gear 

tooth wear, which generate noise, vibration and performance degradation.    

In order to eliminate a gear box in the robot design, researchers have 

been trying to design a high torque, low speed servo motor; such motors are 

called direct drive rotary (DDR) motors. DDR motors generally have large 

diameters due to the need for multiple stator phases, and the weight is generally 

much higher than BLDC and induction motors. Good examples of DDR motors 

are Danaher’s Kollmorgen direct drive rotary D-series motors, which were 

selected as Products-of-the-Year by Electronics Products magazine. Figure 1.7 

shows the power-weight relation for BLDC, AC, and DDR motors.  
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Figure 1.7, AC, BLDC, DDR power-weight curve 
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Even though the DDR motor has a higher weight than both the BLDC and 

AC motors; because of the high torque and low speed capability, the gear box 

can be small or even eliminated, which causes the system weight to decrease. 

For example, with a similar power rating as the 2 KW Allen Bradley motor 

mentioned earlier, the Kollmorgen DDR motor has a torque of 56 N-m and speed 

of 250 rpm. In order to achieve the 3000N-m torque of the Titan II, the required 

gear ratio is about 54, whereas for the BLDC motor, the required gear ratio is 

750; this is more than 15 times the requirement for the DDR motor.  

It is not easy to tell which system has the large total weight by only 

comparing the motor weight, but existing DDR motors generally have a larger 

overall size compared with BLDC motors with the same power rating. For 

example, the Allen Bradley BLDC motor, MPL-420P-M, has an envelope 

diameter of about 6 inches, whereas the Kollmorgen DDR of similar power rating 

has an envelope diameter of about 11 inches. In summary, hydraulic actuators 

are still used despite their obvious disadvantages. Electric motors are the most 

widely used actuators in the industrial robot applications.  With same power 

rating, a BLDC actuator provides more compact design than an induction motor 

design because the BLDC has a higher power to weight ratio.  

An Introduction of TBA – Ideas, Design, and Integration 

As discussed in the previous section, combined with a fixed ratio gearbox, 

a BLDC can expand its torque range with the penalty of reduced speed. By using 

an appropriate gearbox, a BLDC can often match necessary payload 
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requirements,   even these in the range of hydraulics.  The feasibility of TBA has 

been proven by an early project funded by DOE under grant # DE-AC26-

01NT41309. The TBA (Transmission based servo-actuator system) extends the 

idea by using a multi-ratio gearbox to replace the single ratio gearbox.  

An obvious argument about this idea is that the TBA increases system 

complexity, which may decrease reliability. But further analysis shows that the 

TBA has advantages compared with a single fixed ratio gearbox in terms of 

operation efficiency, which can be illustrated by the design example introduced 

later in this section.  Before design of a TBA system, a baseline has to be 

established. The Titan II hydraulic actuator at the shoulder pitch is taken as the 

baseline actuator. A major consideration to use the Titan II as a baseline actuator 

is that it provides enough load capability to cover most D&D tasks. Table 1.1 

shows the performance specifications of a Titan II manipulator. When the Titan II 

is at full reach, it can be modeled as a simple beam as shown in Figure 1.8, 

where T is torque, θ is angular position, ω is angular velocity, α is angular 

acceleration, L is the manipulator length, Ma is the manipulator mass, Mp is the 

load mass and g is the gravity constant.  

Table 1.1, Titan II performance specifications 

Maximum reach 1915 mm 75.4 in 

Maximum payload at full reach 113 Kg 250 lb 

Manipulator mass 103 Kg 225 lb 

Manipulator center of gravity 1000 mm 39.27 in

Maximum angular velocity (zero load) 0.73 rad/s (42º/s, 7rpm) same 

Maximum angular velocity (half load) 0.52 rad/s (30º/s, 5rpm) same 

Maximum angular velocity (full load) 0.35 rad/s (20º/s, 3.3rpm) same 
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Figure 1.8, Titan II equivalent model 

 

 

Figure 1.9, Baseline torque speed curve 

When the manipulator is at a horizontal position as in Figure 1.8, if 

acceleration is zero, the relationship between the hydraulic actuator torque 

output and the manipulator angular velocity can be shown in Figure 1.9.  

It is assumed that the hydraulic actuator is able to be operated at rated 

power between full load and zero load. Notice that at zero load, the required 

torque is not zero because of the manipulator weight.  The power output of the 

baseline hydraulic actuators can be calculated as in Equation ( 1.2 ).  

minimum is  torqueload when speed maximum
maximum is  torqueload when speed maximum

   

max2

max1

2maxminmax1maxtitan

−
−

==

ω
ω

ωω
where

TTP

      ( 1.2 ) 
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After the baseline is established, the design example can be formulated. 

Suppose an electric motor actuator is to be used to match the baseline hydraulic 

actuator’s performance, the following design questions are apparent: 

1. Between a single fixed ratio gear box and a multiple ratio gearbox, which 

is a better solution?  

2. If a multiple ratio gear box is better, what is the best number of gear 

ratios?  

3. Is it possible to find a single quantitative parameter which can be used to 

compare different designs? 

First, let’s look at a typical BLDC motor torque speed curve, which can be 

shown as the shaded area in Figure 1.10. For simplicity, a rectangular shape is 

used for analysis as in Figure 1.10. 

 

Figure 1.10, Typical BLDC torque speed curve 
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Before comparing the different design options, it is useful to define some 

dimensionless indices that characterize the sizing properties of the actuators. 

Definition 1.1: Power index 

Power index ( )pζ  - The ratio between required power rating and the power 

of the baseline hydraulic actuator.  

titan

Titan

    Required power of a design (rated power)
P  Baseline power

r

r
p

P

P
P

ζ

−

−

=

      ( 1.3 ) 

An immediate observation is that a design must provide at least the power 

of the Titan II manipulator in order to match its torque and speed capability.   

Therefore, by obvious assumption, the optimal value of power index is 1.  

A desired design should have a power index close to 1, and a design with 

a power index greater than 1 is called power over-designed. 

Definition 1.2: Load region index ( )aζ  - The ratio between area covered by a 

new design in the torque speed curve and the area of the baseline 

hydraulic actuator torque speed curve.  

titan

Titan

 Area covered by the torque speed curve for a design

Area covered by the torque speed curve for the baseline
r

r
a

A

A

A
A

ζ

−

−

=

        ( 1.4 )  

A desirable design will have a large load region index. Again, a similar 

assumption as the previous one is used, that is, the optimal load region index is 1. 
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Therefore, a design should have a load region index close to 1, and a load region 

index greater than 1 is over designed.  

Definition 1.3 : Load matching index (ζ ) - The summation of equally 

weighted power index and load region index.  

0.50.5 pa ζζ ζ +=        ( 1.5 ) 

The load matching index is relevant because, conceivably, the design 

objective of the TBA system is to achieve a large load region index with a small 

power index, which is equivalent to achieve large area coverage of the baseline 

torque speed curve without going beyond the region.  A design should have an 

ζ  close to 1, and a design with an ζ  greater than 1 is over designed. 

In this research, four designs are evaluated based on the load matching 

index. The four designs are fixed gear reduction, two speed DVT, three speed 

DVT, and four speed DVT.   

Now, let’s first look at the design of a BLDC combined with a fixed ratio 

gear box. In order to meet the torque and speed requirements simultaneously, a 

BLDC motor must provide a rating power of at least 2maxmax ω×T  as in Figure 1.10, 

which is about two times of the power output of hydraulic actuator as described in 

Equation ( 1.2 ).  

The increased power rating generally means increased motor weight 

and/or size. For this design, the load region index is ~2 and the power index is 2, 

so the load match index is ~2. For all other three designs, the power indexes are 

the same, since they use the same BLDC motor. In this analysis, the power index 
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is 1 because the motor is selected to match the Titan II power rating. When 

combining a BLDC with a two speed DVT, the gear ratios are chosen such that 

the high torque region and the load torque region on the baseline torque speed 

curve are covered.  

Specifically, the lower ratio is chosen to match the maximum speed at 

lowest load, the area covered by the torque speed curve associated with the low 

ratio can be represented approximately by the region is 0-4-5-6-0 in Figure 1.11; 

the high ratio is chosen to match the maximum speed at the highest load, such 

that the area covered by torque speed curve associated with the high ratio can 

be represented approximately by the region is 0-1-2-3-0 in Figure 1.11.  As a 

result, the area covered by the torque speed of this two speed DVT system has a 

torque speed curve as shown in Figure 1.11, which is overlaid with the baseline 

torque speed curve as in Figure 1.9. The torque speed curve for low ratio is the 

rectangular area enclosed by lines 0-1-2-3-0, and 0-4-5-6-0 for high ratio; thus, 

the total area for the two speed design is enclosed by 0-1-2-7-5-6-0. 

Even though this design matches the performance specification for the 

maximum load and minimum load, and power requirement for the above design 

is similar to that of the baseline actuator as calculated in Equation ( 1.2 ). 

One problem still exists: the area enclosed by 2-5-7-2 is not reachable by 

this two speed design, which means this two speed design cannot work in the 

region enclosed by 2-5-7-2, and the load matching index is 0.943. By adding one 

more gear ratio between the high and low ratio to the two speed DVT, a three 

speed DVT is formed.  
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Figure 1.11, BLDC with two speed DVT torque speed curve 

The new added gear ratio is chosen such that the load region index is 

maximized. The torque speed curve for the high and low ratios are the same as 

those of two speed DVT, and the area covered by torque speed curve associated 

with the middle ratio is the enclosed rectangle area 0-8-9-10-0 in Figure 1.12.  

The total covered area for this three speed design is an enclosure of 0-1-

2-11-9-12-5-6-0. The torque speed curve of this three ratio design overlaid on the 

baseline torque speed curve can be shown in Figure 1.12. The power index of 

the three speed DVT is the same as the two speed DVT, but the load region 

index is larger. Thus, the load matching index is larger and is closer to 1, the 

actual value of the load matching index is 0.968.When another gear ratio is 

added, a four speed DVT is formed. The high ratio and the low ratio are the same 

as the two speed and three speed DVT. 

The two ratios between the high and low ratio are chosen such that the 

load region index is maximized. The four speed DVT has a load matching index 

of 0.975. 
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Figure 1.12, BLDC with three speed gear box torque speed curve 

 

If more intermediate gear ratios are added, more area will be covered, 

thus increasing the load matching index, we can say that the design matches the 

baseline hydraulic actuator better. Ideally, if the number of gear ratios could be 

infinitely large, as in a continuously variable transmission, the load matching 

index would become closer to 1. However, as the number of gear ratios 

increases, the complexity of the gear box increases as well. There is a tradeoff 

between number of gears and the complexity of the system. A heuristic rule is 

that a design should have load matching index closer to 1 with less gear ratios.  

Based on the above analysis, the load matching index for different designs 

can be calculated by Equation ( 1.5 ). These results are shown in Table 1.2.  

From Table 1.2, fixed ratio gear box is greatly over designed and thus 

demonstrated the issues with fixed ratio electrical servo-actuators. The other 

three designs are candidates for further comparison. Two speed DVT is 

eliminated because it is significantly under designed, which can be verified by 

examining the torque speed curve as shown in Figure 1.11.  
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Table 1.2, Load matching index for different TBA design 

Design No. Name Load matching index 

Baseline Baseline hydraulic actuator 1 

1 Fixed ratio gear box  ~2 

2 Two-speed DVT 0.943 

3 Three-speed DVT 0.968 

4 Four-speed DVT 0.975 
 
 
Three speed DVT increases the load matching index by 0.025 by adding 

one more gear ratio on two speed DVT.Four speed DVT increases the load 

matching index by 0.007 by adding one more gear ratio on three speed DVT. 

Three speed DVT was chosen against four speed DVT because the three speed 

DVT has a larger increase on the load matching index by adding only one more 

gear ratio.   

Following the same analysis, if the TBA has infinitely many gear ratios, or 

if it can change gear ratios continuously, the TBA can match the baseline 

hydraulic actuator torque speed curve with high accuracy. In principle, this can 

be achieved with a continuously variable transmission (CVT) design. A big 

advantage associated with gear variation of CVT is that the gear shifting is 

essentially continuous and the transient disturbance should be negligible. This 

design is not the focus of this research, and more information can be found in [1]. 

TBA Prototype and the Experimental System  

The TBA prototype and associated experimental system includes four 

subsystems: a PC, a BLDC servo, a DVT, and a load dynamometer (DM). The 

whole system is shown in Figure 1.13.  
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 Figure 1.13, TBA system hardware layout 

The PC is used to control the BLDC servo and DVT shifting. The PC hosts 

all the control software and data acquisition hardware for D/A, A/D, encoder, and 

digital I/O.   

The BLDC has a rated power of ~2 KW with a rated torque of ~4 N-m.  

The dynamometer is used to emulate the load torque produced by the robot arm. 

The torque generated by the dynamometer is determined by the input speed and 

the reference voltage. One limitation of this dynamometer is that it cannot 

generate any load when the speed input is zero, and the torque generated at low 

speed is limited. In this research, experimental result showed that the 

dynamometer can track the desired load torque when the input speed is 

adequate. The experimental results will be shown in Chapter 5.  

The three speed DVT is the core design of the TBA prototype. It has three 

planetary gear sets serially connected together. The three speed DVT 

mechanical construction diagram is shown in Figure 1.14. The mechanical 

connection relationship of the three planetary gear sets is: 
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Figure 1.14, Three speed DVT  

1. The carrier, or arm, of the previous planetary gear set is rigidly connected 

to the ring gear of the next planetary gear set (a3 to A2, and a2 to A1);  

2. All sun gears are rigidly connected with each other (S3 to S2 to S1).  

This configuration was used mainly because it provides the required gear 

ratios with three almost identical planetary gear sets. The three gear ratios are 

2.8, 4, and 7.  The similar size of all three planetary gear sets makes the brake 

band and the DVT housing design easier. Figure 1.14 shows the layout of the 

three speed DVT design.   

The three speed DVT always functions under the condition that only one 

brake is engaged. When one of the three brakes is engaged, it becomes a one 

degree of freedom mechanism, and an output torque can be generated with the 

input torque and the brake torque. While no brake is engaged, the DVT is a 

mechanism with two degrees of freedom, which means that applying a single 

input cannot produce an output torque to carry the load. When more than two 

brakes are engaged, it is over constrained, and this condition causes abnormal 

brake wearing, and thus should be avoided.   
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By energizing a particular brake, thus locking the corresponding ring gear, 

the DVT functions as a gear box with a fixed gear ratio. Therefore, the DVT can 

function as three different gearboxes when different brakes are engaged, thus 

providing multiple-speed operation and corresponding expansion of the torque 

speed curve of the actuator.  

Scope and Organization of the Dissertation 

The main purpose of this research is to explore various control issues of 

the TBA system, including control algorithms and their digital implementation.  

The fundamental goal is to identify control methods that provide high 

performance servo control while attenuating the disturbances due to discrete 

gear shifting action.  In association with this research, a PC-based control 

software platform which provides the real time performance required by TBA 

control is developed. The remainder of this dissertation is organized as follows: 

In Chapter 2, the TBA prototype overview will be given and mathematical 

models of TBA system will be derived in a modular fashion. In Chapter 3, TBA 

system stability is discussed, necessary conditions for the TBA system stability 

are established and proofs are given. A stable switch strategy is analyzed and 

the proof of its transition stability is given. In the last part of Chapter 3, a 

feedback based controller design is also presented and its equivalent PID 

controller is given. In Chapter 4, TBA control software design is discussed in 

detail; implementation issues using a real time operating system - Linux/RTAI is 

analyzed. In Chapter 5, Matlab/Simulink simulations of various controllers are 
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developed, and simulation results analyzed. Experimental results are also 

presented and analysis of the control system performance is given. In Chapter 6, 

major contributions and conclusions are given based on the experimental and 

simulation results. Future research needs are also listed in this chapter. This 

research contributes to the literature and research knowledge base in the 

following ways: 

1. Exploration and solution of the control problems of the TBA in the hybrid 

system control context. 

2. Expansion of the fundamental understanding of the practical control 

issues in TBA.  

3. Design, analysis, and real time implementation of the TBA control system 

and identification of the most suitable control strategy for the TBA. 

4. Methods that can be extended to use in a much broader range of hybrid 

dynamic systems. 
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CHAPTER 2   

Mathematical Modeling 

The TBA prototype system, which is composed of a BLDC motor, a three 

speed DVT and a robot arm, is a nonlinear dynamic system. An exact 

mathematic model would be very complicated because of the nonlinear 

properties such as saturation, backlash, and coulomb friction. This research 

represents the first level of investigation into TBA control and as a result these 

nonlinear properties will be ignored. It is assumed that a simplified model is 

sufficient for the initial controller design. 

The purpose of this chapter is to derive a mathematical model which can 

represent the main dynamic properties of the TBA and yet is convenient for the 

controller design and analysis. The process used is a bottom up procedure; 

specifically, three component models, a BLDC servo model, a three speed DVT 

model, and a robot arm model, are derived and simplified individually. In the end, 

a simplified form of a final TBA dynamic equation is given. 

BLDC Model 

As mentioned in Chapter 1, a BLDC motor has a permanent magnet rotor 

and a stator winding. By alternating the electrical current direction in the stator 

winding, a rotating magnetic field is generated in the air gap, thus leading to the 

rotational motion of the motor shaft. Compared with a regular DC servo motor, a 

BLDC servo motor has a number of advantages, including a higher power to 
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weight ratio, smaller friction, less maintenance, non arcing commutation, and 

better heat dissipation. 

Even though commercial BLDCs share the same operation methods in 

high performance practice, the construction details are treated as proprietary 

information, and are different from manufacturer to manufacturer. The 

performance of a BLDC also depends on its construction. Some commonly used 

design parameters are: permanent magnet properties, number of pole pairs and 

the stator winding technique.  A general comparison of BLDC performance with 

respect to magnet material, number of poles and physical dimensions can be 

found in [3]. As a general rule, as the number of pole pairs increases, the motor 

torque to weight ratio and efficiency increase as well. 

Despite the rich diversity of BLDC motor configurations, a functional 

construction diagram can be represented as in Figure 2.1. This construction has 

three phase uniformly distributed windings and four pole pairs. Hall-effect 

sensors are used to measure the rotor position for correct commutation. 

 

Figure 2.1, A functional BLDC construction diagram with four pole pairs 
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Figure 2.2, Trapezoidal back EMF 

In general, a BLDC has a uniformly distributed stator winding, which has a 

trapezoidal shaped back electromagnetic force (EMF) as shown in Figure 2.2. 

In order to have a stable steady state power output, current in the stator 

winding must alternated according to the rotor position[2]. The stator winding of a 

BLDC can also be sinusoidally distributed. The operation and control of this type 

of machine is essentially the same as a regular AC synchronous machine as 

discussed in Chapter 1. 

This section presents the derivation of a unified simplified model for both 

types of BLDC motors, such that it is unnecessary to know the detailed 

construction of the BLDC motor in use. It is also assumed that this simplified 

model is sufficient for controller design and analysis. For a sinusoidally wound 

stator, the dynamic equation of this type of BLDC motor, when expressed in the 

rotor reference frame, can be simply represented as shown in Equation ( 2.1 ). 

( )

( )

( )( )3
2 ( )

Resisitance, n- number of pole pairs

q
q d R d e R q q

d
d q R q d d

R
e q d q q d load m R

di
Ri nL i nk v L

dt
di Ri nL i v L
dt
d n k i L L i i T b J
dt

R

ω ω

ω

ω ω

= − − − +

= − − +

= + − − −

−

     ( 2.1 ) 
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Equation ( 2.1 ) is a nonlinear dynamic system because of the product 

terms of speed and current. 

 The following four relations can be used to simplify the model to obtain a 

simplified linear model of the motor:  

1. Employing a high gain PI current feedback controller [4] forces the 

currents in Equation ( 2.1 ) to follow the reference currents promptly. 

d drefi i=    ( 2.2 ) 

2. The reference current in d-axis is controlled to zero. 

0dref di i= =                                ( 2.3 ) 

3. When the air gap is uniform, the following relation holds. 

d qL L L= =                           ( 2.4 ) 

4. For the d-q voltage, the following relation holds. 

3
2d qv v V= =                         ( 2.5 ) 

By substituting Equation ( 2.2 ) through Equation ( 2.5 ) to Equation ( 2.1 ). 

The final simplified form of the dynamic equations is: 

( )
( )

( )

3
2

3
2

3
2

0

 

q
q e R

q R q

R
e q load m R

di
Ri nk V L

dt
nL i V L

d n k i T b J
dt

ω

ω

ω ω

= − − +

= − +

= − −

                   ( 2.6 ) 

The first and third equations in Equation ( 2.6 ) can be solved independ-

ently, which can be rewritten in the following form, shown in Equation ( 2.7 ). 
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≡ ≡

                               ( 2.7 ) 

Equation ( 2.7 ) is in the same form as a regular DC motor model as 

shown in Equation ( 1.1 ).   

For a trapezoidal back EMF type BLDC, the general form of a three 

phase, single pole pair BLDC motor model can be found in [2].  A three phase, 

multi pole pair BLDC motor model is given by the following:  
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 It is shown that, combined with a motor drive, the dynamic equation can 

be simplified into this form [2]: 
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,
 - magnitude of the field current.

  - torque constant,  - friction coefficient

R
t p load m R

p

t m

dJ k I T b
dt

where
I

k b

ω ω= − −

          ( 2.9 ) 

Notice that Equation ( 2.9 ) has the same form as the second equation in 

Equation ( 2.7 ), so the two types of BLDC motors have the same mechanical 

dynamic equation, which is similar as a regular DC motor shown in Equation( 1.1 

). The construction of a BLDC resembles an inside out regular DC motor, while 

the control of a BLDC requires an electronic device that can alternate the current 

in the stator windings in order to obtain proper commutation. This device is 

generally referred to as a BLDC drive.  With a motor drive, the BLDC motors of 

either type can be represented by Equation ( 2.9 ), and this simplified model will 

be used to represent the motor in the TBA prototype. 

Three Speed DVT Model - A Hybrid Dynamic System  

The three speed DVT is composed of three planetary gear sets. The 

connection between adjacent gear sets is the previous carrier gear messed to 

the next ring gear as shown in Figure 1.14. This configuration provides three 

desired gear ratios with identical ring diameters, which is proven to be a 

significant advantage for the braking system mechanical design, and the overall 

TBA design. 

The mathematical model of a DVT can be derived using Newton’s second 

law [1], which produces two coupled second order systems that can be 
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expressed in a single fourth order differential equation. In order to solve this 

equation, all braking torques must be known, which is only true when there is a 

slip between the braking band and the ring gear.  

When the brake is fully engaged and the ring gear is locked, the braking 

force is a static friction whose magnitude and direction are determined by the 

servo motor input torque and the load torque, which can not be treated as known 

torques.  

In this dissertation, a new DVT model is derived based on the Lagrange’s 

equation of motion by assuming that the braking torque is large enough such that 

the ring gear can stop in a very short time and thus slip can be neglected. The 

following assumptions are also used to derive the mathematic model: 

1. Backlash is neglected. 

2. Gears and shafts are treated as rigid bodies. 

3. Friction effects have the form: 

F bx= − &                                 ( 2.10 ) 

The modeling process starts with a single planetary gear set with the ring 

gear locked, and then a full DVT model is derived by following a similar 

procedure. In supplement of the development of the DVT model, it is useful to 

review a number of concepts and definitions [5]. 

Pfaffian form - virtual displacement 

( , , , ) ( , , , ) ( , , , ) 0

( , , , ), ( , , , ), ( , , , ) - contraints

, ,  - virtual displacements

x x y y z z

x y z

x y z

a x y z t a x y z t a x y z t

a x y z t a x y z t a x y z t

δ δ δ

δ δ δ

+ + =

                     ( 2.11 ) 

Holonomic and scleronomic constraints 
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When Equation ( 2.11 ) is time integrable, the constraint equation can be 

reduced to the holonomic constraint given in Equation ( 2.12 ).  

( , , , ) 0f x y z t =                                         ( 2.12 ) 

When there is no explicit time variable in the holonomic form, the new 

form is called a scleronomic constraint as shown in Equation ( 2.13 ). 

( , , ) 0f x y z =                                           ( 2.13 ) 

Rayleigh’s dissipation function 
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Lagrange’s Equation of Motion 
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                      ( 2.15 ) 

When the constraints are sceleronomic as shown in Equation ( 2.13 ), alk 

in Equation ( 2.15 ) can be calculated with Equation ( 2.16 ). 
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q
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∂
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=
                                                 ( 2.16 ) 

Hybrid Dynamic System (HDS)  
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HDS - A dynamic system which has both continuous dynamics and 

discrete dynamics. The mathematical representation is given by Equation (2.17).  

A three speed DVT is a hybrid dynamic system in the sense of Equation    

( 2.17 ). When the DVT stays in one gear, it is one continuous dynamic system; 

after the shift, it is another continuous dynamic system.  

0 0 0( ( ), ( , ), ( )),  with (0) , ( ,0)

( )  n 1 state vector
u(t) -   m 1 control vector

( , )  an m 1 discrete event vector
: ( , , ) ,  D is a set of all possible discrete eventsn m m n

x f x t x t u t x x x
where
x t

x t
f R D R R

σ σ σ

σ

= = =

− ×
×

− ×

→

&

      ( 2.17 ) 

The state change is a discrete action that switches one continuous 

dynamic system into another continuous dynamic system. This switching action 

can cause instability and performance degradation, as will be discussed in 

Chapter 3. As far as the modeling is concerned, the hybrid system can be treated 

as several independent continuous dynamic systems supervised by a high level 

discrete state regulator; the behavior of this regulator can be modeled as a finite 

state machine shown in Figure 2.3.  

 

Figure 2.3, The gear shift system modeled as a finite state machine 
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The input alphabet is 1, 2 and 3, and the input word can be any 

combination of 1, 2 or 3. This finite state machine actually plays a core role in a 

discrete state generator, and the detailed TBA implementation will be introduced 

in Chapter 3.  

Definition 2.1: TBA gear numbers 

1st gear (δ1):  

The DVT is said to be in the 1st gear if the ring gear A1 in Figure 1.14 is locked 

by engaging brake B1 as in Figure 1.14.  

2nd gear (δ2): 

The DVT is said to be in the 2nd gear when the ring gear A2 in Figure 1.14 is 

locked by engaging brake B2 as in Figure 1.14. 

3rd gear (δ3): 

The DVT is said to be in the 3rd gear when the ring gear A3 in Figure 1.14  is 

locked by engaging brake B3 as in Figure 1.14.  

The convention for TBA gear definition follows that of an automobile 

transmission. The 3rd gear corresponds to the lowest gear ratio, and the 1st gear 

corresponds to the highest gear ratio.  

Therefore, when the BLDC is operating at a constant speed and torque, 

the 3rd gear produces the highest output speed and lowest output torque, and the 

1st gear produces the lowest speed and highest torque.  

A Single Planetary Gear Model 

A single planetary gear set is a mechanism with two degrees of freedom. 

A functional diagram of a single planetary gear set is given in Figure 2.4.  
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Figure 2.4, A single planetary gear set 

By locking the ring gear, the planetary set becomes a one degree of 

freedom mechanism.  

A dynamic model for the single planetary gear set is presented with the 

ring gear locked, for complete derivation of the model, please see the Appendix. 

The energy terms of the planetary gear set are given in Equation ( 2.18 ). 

( )( )

( )

2 2 2 2 2 21
2

2 2 2 21
2

3

0

3

s s c c p p p c c r r

s s c c p p r r

K J J J m r J

V

F b b b b

θ θ θ θ θ

θ θ θ θ

= + + + +

=

= + + +

& & & & &

& & & &

                 ( 2.18 ) 

With constraints given as follows: 

( )
( )

0

0
s s c s c p p

r r c r s s s

r r r

r r r r

θ θ θ θ

θ θ θ

− + − + =

− + + =

& & & &

& & &
                                                 ( 2.19 ) 

The following generalized coordinates and forces are defined: 

1 2 3 4

1 2 3 4

,  ,   ,  

,  Q ,   Q 0,   Q
s c p r

in out b

q q q q

Q T T T

θ θ θ θ≡ ≡ ≡ ≡

≡ ≡ − ≡ ≡ −
                                ( 2.20 ) 
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By substituting Equation ( 2.19 ) into Equation ( 2.16 ), the Lagrange 

multipliers can be calculated. Then substitute these results along with Equation   

( 2.18 ) and Equation ( 2.20 ) into Equation ( 2.15 ), and the dynamic equations of 

a single planetary gear set can be given in Equation ( 2.21 ). 

( )
( ) ( )

1 2

2
1 2

1

3

3

                                                

                 

                                                     

in s

p c c c c c out s r

p p p p p

s s s s
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T r

m r J b T r r r

J b r

J b λ λ

θ θ λ λ

θ θ λ

θ θ = + −

+ + = − − + +

+ =

+
&& &

&& &

&& &

2

        

      r r r r b rJ b T rθ θ λ+ = − −&& &

   ( 2.21 ) 

In steady state, the static braking torque is large enough such that the ring 

gear is stopped, and Equation ( 2.21 ) can be further simplified as Equation         

( 2.22 ). 

( ) ( ) ( ) ( )2+ + +
3 - 3 =s r s r s rr

s s s s p c c c c c p p p p in out
s s p s

r r r r r rr
J m r J b J b T T

r r r r
bθ θ θ θ θ θ+ + + + + −&& & && & && &     ( 2.22 ) 

Combined with Equation ( 2.19 ), the dynamic equation of motion of the 

planetary gear set in final form can be represented as a second order differential 

equation: 

( ) ( )( ) ( ) ( )( )

( )2

-3 2 1 2 1 =  

, , 3

s p eq s s c p s in out

s s
eq p c c

p r s

J J J b b b T T

where
r r J m r J
r r r

μ μ γ γ γ θ γ μ μ γ γ θ γ

μ γ

+ − + + + − + − −

≡ ≡ ≡ +
+

&& &

    ( 2.23 ) 

The coefficient of the acceleration term in Equation ( 2.23 ) is a constant 

determined by the gear geometry and inertial properties, thus, it can be simplified: 

( ) ( )
( ) ( )

=
,

2 1

-3 2 1

s s in out

s c p

s p eq

J b T T
where
b b b b

J J J J

θ θ γ

γ μ μ γ γ

μ μ γ γ γ

+ −

≡ + − + −

≡ + − +

&& &

      ( 2.24 ) 
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A Three Speed DVT Model 

As a single planetary gear set, a three speed DVT is a mechanism with 

two degrees of freedom when no brake is engaged, and it becomes a one 

degree of freedom mechanism when one of the three ring gears is locked.  

The model process for a three speed DVT is similar except that the inertia 

and friction properties are different. Dynamic models for the three speed DVT are 

presented with different brakes engaged.  

For complete derivation of the model, please see the Appendix.  

The energy terms of the DVT are given as: 
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    ( 2.25 ) 

Due to the fact that all three sun gears are rigidly connected, and the 

carrier is rigidly connected with the next adjacent ring gear, the following 

kinematic constraints result: 

1 2 3

1 2

2 3

s s s s
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c r

θ θ θ θ

θ θ

θ θ

= = ≡
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=
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    ( 2.26 ) 

Substitution of Equation ( 2.26 ) into Equation ( 2.25 ) produces the 

simplified energy term expression given as: 
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      ( 2.27 ) 

By using the same argument as in the single planetary gear modeling, the 

dissipation energy can be neglected, and a single equivalent dissipation term can 

be added in the final dynamic equation afterwards.  

Equation ( 2.25 ) can be further simplified as shown as: 
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The constraints of the DVT system can be shown as: 
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          ( 2.29 ) 

The same relationships exist among the angular positions and among the 

angular accelerations as well. The general coordinates and general forces are: 

 1 2 1 3 2 4 1 5 2 6 3 7 3 4 3

1 2 3 2 4 1 5 6 3 7 8

,  , ,   ,    , ,    ,

,Q 0,  Q ,Q , 0,   Q ,Q 0,   Q
s p r r p r p c
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Q T T T Q T T

θ θ θ θ θ θ θ θ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡

≡ ≡ ≡ − ≡ − ≡ ≡ − ≡ ≡ −
    ( 2.30 ) 
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Substitution of Equation ( 2.28 ), Equation ( 2.29 ), and Equation ( 2.30 ) 

into Equation ( 2.15 ) gives the overall form dynamic equations of  the DVT as 

follows: 

( ) ( ) ( )

( ) ( ) ( )
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    ( 2.31 ) 

Now, let’s derive the dynamic model for each of the three DVT gear ratios. 

When the DVT is in the 3rd gear, which is equivalent to locking the 1st ring gear, 

and constraints are given as: 

1

2 3

0
0

r

b bT T
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= =

&&
   ( 2.32 ) 

When Equation ( 2.32 ) is substituted into Equation ( 2.31 ), the dynamic 

equations for the DVT with the first ring gear locked are then given by: 
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The final form of the dynamic equations for the DVT in 3rd gear is a second 

order ordinary differential equations (Equation ( 2.34 )). Notice that a dissipation 

term has been added. 
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Similarly, the dynamic equation of the DVT in the 2nd gear is given by: 
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And the dynamic equation of the DVT in the 1st gear is given by: 
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Equations ( 2.34 ), ( 2.35 ) and ( 2.36 ) can be expressed in a unified form 

as: 

( )( ) ( ), ,  , ( 1,2,3),
where,
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    ( 2.37 ) 

Since at any time, only one brake is engaged, only one of the three 

dynamic equations is the governing equation. For example, when DVT is in 3rd 

gear with the first brake (B1 in Figure 1.14) engaged, the DVT system’s motion is 

governed by Equation ( 2.34 ), other two dynamic equations as Equation ( 2.35 ) 

and ( 2.36 ) are in an inactive state. By engaging a different brake, the governing 

dynamic equation of the DVT changes accordingly. The three brakes are 

controlled by a high level gear shift control strategy, or supervisory control 

strategy, which will be discussed in detail in Chapter 3. The addition of this 

supervisory action to the dynamic model as given in Equation ( 2.37 ) allows a 

unified form of the DVT dynamic equation to be: 

( )( )( ) ( ), , ( ) , ,in outx t f x t t x t T Tδ=&       ( 2.38 ) 

Equation ( 2.38 ) is an exact form of a hybrid dynamic system. Hence, this 

DVT model is a hybrid dynamic system with three subsystems that can be 

individually expressed as 2nd order ODEs. 

A Robot Arm Model 

A prototype robot manipulator, the Titan II manufactured by Schilling 

Robotics, is used as the design baseline. The robot manipulation can be 
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modeled as a rigid robot arm with a simple support on one end and a load 

attached on the other, as shown in Figure 2.5. 

The dynamic equation is given as: 

21 1
3 2

a

a p

( ) ( ) cos

   torque input, b  friction
M arm mass , M load mass

l arm length,g   gravity constant, 
  angular position with respect to horizontal orientation

p a p a aT M M l M M lg b

where
T

θ θ θ

θ

= + + + +

− −

− −

− −
−

&& &

       ( 2.39 ) 

This is a nonlinear system, and the output feedback linearization method 

was used to generate a linear model as will be discussed in the following section. 

The TBA Prototype Model 

The TBA model can be derived based on the dynamic equations of the 

three modules: the BLDC servo, the DVT and the robot arm. Since the DVT is a 

hybrid system, the TBA system as a whole is also a hybrid system, which 

includes three continuous dynamic systems with discrete state changes. When 

no state change occurs, the continuous dynamic system models of different 

modules as given in Equation ( 2.9 ), ( 2.34 ), ( 2.35 ), ( 2.36 ) and ( 2.39 ) can be 

summarized as:    

 

Figure 2.5, A prototype robot arm 
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           ( 2.40 ) 

The motor shaft is rigidly attached to the DVT input shaft, and the output 

shaft is rigidly attached to the robot arm through a fixed gear reduction 200 to 1. 

This final gear is not included in the TBA prototype, but in fact would be present 

in the robot shoulder pitch axis design. The final gear box ratio is chosen based 

on the load and speed requirements of the TBA and the robot joint [1].  For a final 

gear ratio of 200, the following relations hold: 
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             ( 2.41 ) 

Thus, Equation ( 2.40 ) can be simplified into the following form: 
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If the mass of the load and the arm, the length of the arm, and the joint 

position can be measured with high accuracy, Equation ( 2.42 ) can be simplified 

as a linear model by using the feedback linearization [6-8].  Let  
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   ( 2.43 ) 

The robot arm angular position is in fact limited within the range of [ ]0, 2π . 
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A prerequisite condition for a feedback linearization to be valid is that the 

control input cannot reach the physical limitation. In this project, the control signal 

is the current of the BLDC servo, as shown in Equation ( 2.43 ). The feedback is 

adequately scaled down to avoid the saturation as shown in Equation ( 2.43 ). 

With the new feedback controller, Equation ( 2.42 ) can be further simplified as: 
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The corresponding state space form is: 
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     ( 2.45 ) 

Again, this can fit in an hybrid dynamic system expression as: 
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In summary, the TBA model can be simplified into a hybrid system with 

three subsystems, which can be modeled as a 2nd order ODE given by Equation  

( 2.45 ) or in a more compact form as shown in Equation ( 2.46 ).  
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CHAPTER 3   

TBA Controls 

Background 

The TBA prototype system is a hybrid dynamic system, which is 

composed of three “switchable” continuous dynamic systems. A high level 

supervisory controller is used for gear shift control to achieve a discrete state 

change. In general, the continuous dynamic subsystems can be linear or 

nonlinear systems. In this research, only the linear subsystems are considered 

since the TBA model can be linearized as discussed in Chapter 2.  

The state space model for a general hybrid system involving linear 

continuous dynamic subsystems is given as: 

( ) ( ) ( )
( ) ( )

i i i

i

x t A x t B u t

y t C x t

= +

=

&
     ( 3.1 ) 

As shown in Chapter 2, iB  is same for all three states of the TBA system. 

The control problem of a hybrid system has drawn great attention in the 

past decade [9-19]. For a hybrid system, there are three requirements for the 

controller: 

1. The hybrid system must be stable. 

2. The switch strategy must be transition stable. 

3. Performance requirements must be satisfied. 
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In this research, the first two requirements are analyzed in detail, and the 

third requirement is obtained by a feedback controller. 

In a continuous dynamic control system, when systems are unstable, 

various techniques can be used to make them stable, such as PID, feedback 

control, etc. In a hybrid system, because of the discrete state change, the system 

stability does not solely depend on the subsystem stability. Two important 

situations exist: on one hand, the state changes could potentially make a stable 

system unstable with an inappropriate shift [15], while on the other hand, a 

proper state change could stabilize a hybrid system involving unstable 

continuous subsystems.  

A commonly used method to verify the stability of a shift system is the 

Lyapunov function based method [14, 18, 20-24]. A Linear Matrix Inequality 

technique has also been used to analyze the stability of a hybrid system [17] [25]. 

Another issue associated with a hybrid system is the transient disturbance 

due to the state change.  

Supervisory control has been used to synchronize gear shifts vs. engine 

speed to achieve a smooth shift transition [26]. An optimization method has been 

used on an automotive gear box to achieve some optimal control index [27]. 

Another optimal control method based on linear quadratic optimization, so called 

“bumpless transfer”, has been used in a helicopter control to achieve smooth 

control signal transition under state change [28]. An optimization based method 

has been also used to solve a system with a varying sample rate [29]. 

Other techniques, like robust control and dynamic programming, have also 

been used for specific hybrid systems [1, 18, 19, 22, 30]. 
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By constructing a completely discrete abstraction using hybrid automata 

theory or other pure logic based theories [31-33], various techniques have been 

developed to study the hybrid system for stability, reachability and controller 

synthesis based on automata theory on a discretized hybrid system. 

From a continuous dynamic system point of view, a general hybrid 

dynamic closed loop control system can be represented by Figure 3.1. This 

diagram can be divided into three major blocks: a hybrid plant, a supervisory 

controller, and a closed loop controller. 

The hybrid plant is the system to be controlled; it has continuous dynamics 

and discrete state changes. Some examples of uses of these types of hybrid 

plants are: a furnace oven to maintain a constant temperature by turning on and 

off the heaters, a chemical reactor container to keep the right amount of 

reactants by turning on and off the valves, and, in this research, a TBA to match 

the load requirement by shifting gears. A hybrid system block accepts inputs from 

the controllers and generates outputs to be used as the input to the event 

generator block. 

 

Figure 3.1, A typical hybrid dynamic system control block diagram 
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The supervisory controller block can be divided into three sections: an 

event generator, a discrete state generator, and a state change actuator. The 

event generator takes the input from the hybrid system and generates 

meaningful event signals to the discrete state generator. In the oven example, 

the event generator takes the temperature measurement as input and generates 

a high, normal or low temperature event as output. In the chemical reactor, it 

takes the amount of reactant measurement as input, and generates a more, 

normal, or less reactant event. In the TBA, the event generator takes the position 

and torque measurements as inputs and generates a switch event when the 

system trajectory crosses a certain switch boundary as discussed later in the 

chapter. In the above examples, only one event is generated at a time, but in 

more complicated systems, multiple events can be generated.  

The discrete state generator takes three inputs: the events generated by 

the event generator, a timer input, and the current system state. Then it uses an 

intelligent procedure to determine what the new state of the system will be, and 

to generate state control actions.  This block is a pure discrete system, so all of 

the discrete theory can be readily used for its analysis. In the oven example, the 

discrete state generator generates a command to turn on or off the heater based 

on the events from the event generator. In the chemical reactor example, it 

generates a command to turn on or off the valves based on the event generator. 

In the TBA, the function of this block is a little more complex; it takes three inputs: 

the event, the timer, and the current state. Multiple actions are generated since 

the engagement of a gear requires the disengagement of a currently engaged 

gear.  
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The output of the discrete state generator includes the disengagement of 

the current gear, engagement of the new gear, and no change in the other gear 

state. In summary, the state change generator generates all the actions 

associated with a certain state change and sends its output to the state change 

actuator block. 

The state change actuator takes the output of the discrete state generator 

block as commands and translates them into meaningful control signals to fulfill 

the state change action. The commonly used control signals can be either analog 

or digital. For example, in the chemical reactor example, if a control valve is the 

actuator, an analog signal is used to control the amount the valve is opened; if it 

is an on-off type valve, a simple digital signal is enough.  

In the TBA example, three digital signals are used to control the braking 

actions. Specifically, when the digital line voltage is low, the associated brake 

motor is idle, and no torque is applied to the brake band; when it is high, the 

brake motor is activated, and the prescribed torque is applied to the brake band 

so that the corresponding ring gear is stopped.      The closed loop controller is 

used to improve system stability and performance including during state 

changes. In this research, for each individual state, linear system based theory 

can be used since the TBA system can be linearized as shown in Chapter 2. 

In general, three basic problems of hybrid dynamic system control are 

formulated as follows [15]: 

Problem 1. Find conditions that guarantee that the switched system is 

asymptotically stable for any switched signals. 
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Problem 2. Describe those classes of switched signals for which the switched 

system is asymptotically stable. 

Problem 3. Construct a switching signal for which the switched system is 

asymptotically stable. 

These three problems deal with different types of hybrid systems, and the 

focuses of the problems are different.   

Problem 1 generally deals with a hybrid dynamic system with continuous 

dynamics that are asymptotically stable by open loop or closed loop control.  The 

focus is to find a condition such that the hybrid system is guaranteed to be 

asymptotically stable for all switched signals. The results of Problem 1 can be 

found in many publications, and many hybrid dynamic system problems have this 

property. A commonly used method is to find a common Lyapunov function. A 

gradient based technique to find the common Lyapunov function is presented in  

[20, 34]. In this research, Problem 1 is applicable and is first investigated, for the 

purpose of examining the conditions under which the TBA is guaranteed to be 

stable for any gear shift sequence. 

Problem 2 deals with a larger range of hybrid systems which cannot be 

stabilized by arbitrary switch signals. This raises the following questions: 

1. Is there a specific switch signal sequence that can stabilize the system? 

2. How can such a shifting sequence be found? 

3. Given a switch signal sequence, is the hybrid system stable?  

The first question is an analysis problem. Different Lyapunov-based 

methods have been used to find an answer to the first question [12, 19-21, 23, 
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24, 35]. The second question relates to design. A technique to design such a 

switch sequence is reported in [35]. The third question relates to verification, and 

it is valid when a class of predefined switch signals is available for analysis. A 

trial and error method is generally used to find a suitable switch sequence from 

the predefined signals. The predefined class is obtained based on a good 

understanding of the specific hybrid system.   

 Problem 2 can be divided into the following categories: a) The continuous 

dynamic systems are stable individually; b) The continuous dynamic systems are 

not stable individually. Because the hybrid system stability and the stability of its 

continuous subsystems are independent [12], the subsystem stability is neither 

sufficient nor a necessary condition of the hybrid system stability.  

One interesting example is that certain switch signals can make a hybrid 

system with stable continuous subsystems unstable. In this case, only proper 

switch signals can make the hybrid system stable.  

Let’s look at an example. Suppose a hybrid system is composed of two 

stable second order ODEs, and further assume the trajectory or phase portraits 

of the subsystems are shown as the top two curves in Figure 3.2.   

 

Figure 3.2, Unstable hybrid system with stable dynamic subsystems 
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The trajectory of the hybrid system is shown as the bottom curve in Figure 

3.2 by overlaying the two subsystems trajectories. This example does not give 

any specific mathematic equations for the two subsystems; instead, it only 

intends to show that inappropriate state changes can make hybrid systems 

unstable even though the continuous subsystems are stable.  

  The first observation from Figure 3.2 is that the two continuous dynamic 

subsystems are stable, with subsystem 1 on the left and subsystem 2 on the 

right. 

On the bottom overlaying hybrid system trajectory in Figure 3.2, the circle 

stands for the system initial condition, which is put on the intersection of the two 

subsystem trajectories. Suppose subsystem 2 is initially active, if there is no 

switch signal, the phase portrait of the hybrid system will be the same as that of 

the subsystem 2.  The hybrid system is stable, since the hybrid system is 

essentially the continuous dynamic subsystem 2. 

If the switch signals happen at the locations marked with triangles as 

shown in the bottom figure, the state variables of the system quickly grow, and 

the system is said to be unstable. A common property of these switch signals is 

that they all happen at locations where, after each switch, the system trajectory is 

further away from the origin.  

If the switch signals happen at the locations marked with crosses, the 

system is stable since the state variables quickly approach the origin from the 

initial condition. Compared with the unstable system, the stable system has all 

switches occurred at locations where, after the switch, the trajectory is closer to 

the origin.  
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Based on the above analysis, in order to obtain a stable hybrid system, a 

proper switch signal must be used even the subsystems are stable. A common 

method to evaluate a switch signal is the energy based method, such as a 

quadratic form Lyapunov function [24].   

The second category is an open question. The necessary and sufficient 

condition for the existence of a switch signal that stabilizes this type of hybrid 

system is only proven for certain cases. A necessary and sufficient condition for 

a hybrid system with multiple 2nd order LTI systems is established in [24], and a 

sufficient condition for a simpler system is reported in [23].     

Problem 3 is a design problem, which is the most challenging problem 

among the three basic problems for hybrid systems. In general, even though 

significant results have been reported in [9-11, 17-19, 22, 25, 27], this problem is 

essentially an open problem. Specific solutions can be found for certain 

applications. Different hybrid system simulation frameworks have been 

established to analyze hybrid systems. Hybrid automata based discrete 

abstractions of hybrid systems are reported in [9, 10, 31, 36]; linear system 

theory, affine system theory, and optimal control theory based analyses are 

reported in [11, 12, 22, 37, 38].   

The remainder of this chapter will first discuss issues related with the 

supervisory controller. Then, a stability analysis in terms of hybrid system stability 

and switch signal transition stability will be given for the TBA system. In the last 

part, closed loop controller design methods will be analyzed. Finally, a suitable 

TBA control method which guarantees system stability and switch transition 

stability will be given. 
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Supervisory Control 

The study of the hybrid system is essential in designing supervisory 

controllers for a continuous system [36]. The essential issue in designing a 

supervisory controller is to design an appropriate switch strategy. The following 

are necessary components in the evaluation of a switch strategy 

1. Switch signal transition stability 

2. Hybrid system stability 

The first component is the evaluation of the stability of the switch signals. 

Basically, one must find conditions such that the switch signal is invariant under 

disturbances. Due to the absence of a general solution, this research adopts a 

heuristic approach in order to evaluate the transition stability of the switching 

signals. The second component falls into one of the three problems of a hybrid 

system. In this research, stability analysis is developed by attacking Problems 1 

and 2 as presented earlier in this chapter, and the goal is to find the switch 

signals such that the TBA system is stable. 

Switch Strategy- Transition Stability 

The switch strategy controls the ways in which the switch signals are 

generated. Switch signals can be divided into three categories: time based, state 

variable based (or simply state based) and hybrid. Other categorization methods 

are possible; for example, in [19], the switch signals are divided into time based 

and event based.  The following definitions are useful for development of the 

supervisory controller. 
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Definition 3.1: Time-based switch signal [19] 

Time-based switch signal - A switch signal is called a time based switch 

signal if it is a function of time: 

( ) ( )t tδ = Δ         ( 3.2 ) 

This type of shift signal is usually adopted when all the dynamics and 

control signals are known a priori, such that the states of the system can be 

calculated beforehand. Generally speaking, systems that can be controlled in an 

open loop scheme can use this type of switch signal.  

In fact, a time based switch law can be treated as one of the other two 

categories. It is separated because it is the simplest switch law, and it is always 

transition stable. But the real world applications of a time based switch law are 

limited, since it is very difficult to find a system whose state variables only 

depend on time. So, strictly speaking, a time based switch signal can only 

achieve the least approximate result among the three.          

Definition 3.2: State-based switch signal 

State-based switch signal - A switch signal is state-based if it only 

depends on the state variables of the continuous subsystems, the first derivative 

of these state variables and/or the output of the system. The time variable does 

not explicitly appear in the state based switch signal function. The state based 

switch signal can be shown as: 

( ) ( ) ( )( )( ) , ,t x t x t y tδ = Δ &       ( 3.3 ) 

This type of switch law is the widely used in the literature, and it works well 

in many real applications. The three examples introduced early in this chapter all 
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use state based switch signals. There is one limitation; the state based switch 

law is not guaranteed to be transition stable. The reason is that the variations in 

system state variables might generate unwanted switch signals, especially near 

the switch boundaries.  

Definition 3.3: Hybrid switch signal 

Hybrid switch signal - If the shift signal is based on both time and state 

of the system, it is called hybrid switch signal. The function of the switch signal 

can be represented as: 

( ) ( ) ( )( )( ) , , ,t t x t y t x tδ = Δ &        ( 3.4 ) 

A broader definition of the hybrid switch signal is: any switch signal that 

does not fit the first two definitions.  

As we can see, the hybrid switch law definition implies the first two 

definitions and, thus, can be treated as a general form of a switch signal. 

Properties of a switch signal: 

Time invariant:  

A switch signal function of the type shown in Equation      ( 3.4 ) is said to 

be time invariant in the specified ranges if the following condition is satisfied.  

( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) [ ]

( ) ( ) ( )( ) ( ) ( ) ( )( )

There exists a T > 0, 
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l h
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This property defines an invariant set for the ideal dynamic system model. 

State space invariant:  

A switch signal of the type shown in Equation ( 3.4 ) is said to be state 

space invariant in the specified ranges if the following conditions are satisfied: 

( ) ( ) ( )
( ) ( ) ( ) [ ]
( ) ( ) ( ) [ ]
( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

1 2

1 2

1 2

There exists  

> 0, 

, , ,

, , ,    

, ,

0, 0

such that

, , , , , ,

x t x t x t x x

y t y t y t y y and

x t x t x t x x

x t y t x t

t x t x t y t y t x t x t t x t y t x t

∈

∈

∈

Δ Δ > Δ >

+ Δ

+ Δ

+ Δ

Δ + Δ + Δ + Δ = Δ
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This property defines an invariant set for a dynamic system under state 

perturbation. 

Theorem 3.1: 

A switch signal of the form as shown in Equation ( 3.4 ) is said to be 

transition stable on certain ranges of the time and state variables if it is 

both time invariant and state space invariant on the same ranges. 

Proof: The proof of this theorem is trivial since there are only two factors 

that will cause a switch signal as defined in Equation ( 3.4 ) to be transition 

unstable. These two factors are the time variable and the state space variables, 

so if the signal is both time invariant and state space invariant, it is guaranteed to 

be invariant on the specified time and state ranges; in other words, it is transition 

stable.                  ٱ 

Transition stability is very important for the implementation of a switch 

signal, or switch strategy for the TBA system.  
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TBA switch signals design 

The TBA system involves three subsystems governed by 2nd order ODE, 

and the two state variables of the TBA are position and velocity. This section 

analyzes switch signal designs for all three types of switch signals, and, in the 

end, a suitable switch signal for the TBA is given. The TBA must shift gears to 

accommodate a varying load torque. In determining the shift strategy for the TBA 

system, a heuristic rule can be used as follows: when the torque is high, the TBA 

should shift to a lower gear with a higher ratio; otherwise, it should shift to a 

higher gear with a lower ratio. Using this heuristic rule, three different shift 

strategies were developed and tested; a time based strategy, a state space 

based strategy and a hybrid based strategy. The first method uses a time based 

shift signal. A time based switch signal is only valid with complete a priori 

knowledge of TBA system and the load properties. In this case, a time based 

switch signal is guaranteed to be transition stable.  Even though uncertainty 

associated with the real trajectory and real load certainly exists, the time based 

switch signals can still have good performance if such uncertainty is within a 

reasonable range. Again, in order to use the time based switch signals in the 

TBA, the system parameters should be clearly defined, which generally requires 

a smooth trajectory design, an accurate load estimation method, and a simulation 

model. The second shift strategy is torque based. Since the equation for the 

torque, shown in Equation ( 2.39 ), depends on the state variables and their 

derivatives, this strategy can be treated as a state based switch signal strategy. 

Three variables are considered in the TBA shifting signal expression: position, 

velocity, and acceleration. So, the shift signal can be expressed as: 
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( ) ( ) ( ) ( )( ), ,t t t tδ θ θ θ= Δ & &&        ( 3.5 ) 

For simplicity, let’s look at an example of a shift signal with only two state 

variables: angular position and velocity.  

A two dimensional (2-D) state space trajectory with a shift boundary is 

shown in Figure 3.3. The shift boundary curve is shown as: 

( ) ( )( ) ( ){ }2: 0,sb sbC x t f x t x t R= = ∈       ( 3.6 ) 

The shift boundary curve divides the state space into two adjacent regions 

as shown as: 

( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }

2

2

= : 0, , 

: 0,

a sb

b sb

S x t f x t x t R

S x t f x t x t R

< ∈

= > ∈
     ( 3.7 ) 

Suppose the system trajectory moves upward along the trajectory curve 

as defined by: 

( ) ( ) ( ) ( )( ) ( )( ) ( ){ }2: , , , ,tr i iC x t x t f t x t y t x t x t Rδ= = ∈&     ( 3.8 ) 

Further, suppose the trajectory intersects with the shift boundary at point 

sP  as shown in Figure 3.3. Before the intersection, the system is in state aS  with 

switch signal aδ ; after the intersection, the system enters a new state bS  with a 

new shift signal bδ . 

 

Figure 3.3, Two dimensional switch curve  
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Although the above switch strategy appears to be valid and convenient, it 

has a potential problem. The switch signal is not transition stable. To prove this, 

Theorem 3.2 and Theorem 3.3 are formulated. 

Theorem 3.2: 

A shift signal generated on a shift boundary as Equation ( 3.6 ), which 

divides the state space as Equation ( 3.7 ), is not state space invariant in 

the ranges including the shift boundary.  

Proof: 

Suppose a range is defined as follows. 

( ) ( )( ){ }2: 0, , 0sbx t f x t Rτ τ≤ ≤ ∈ <    

At the lower bound, the system is in state aS  with switch signal aδ , after a 

state change ( ) 0x tΔ >  towards the boundary. No matter how small ( )x tΔ  is, 

there exists a corresponding small τ , such that the system crosses the boundary 

and enters a new state aS  with a new switch signal bδ  ٱ                                       .

Theorem 3.3: A shift signal generated on shift boundary as in Equation ( 3.6 

), which divides the state space as Equation ( 3.7 ), is not time invariant on 

the ranges including the shift boundary, unless the system dwells on the 

boundary.  

Proof: Suppose a range defined as follows, 

( ) ( )( ){ }2: 0, , 0sbx t f x t Rτ τ≤ ≤ ∈ <    

At the lower bound, the system is in state aS  with switch signal aδ , after a 

time increase 0T > . Suppose the trajectory moves towards the boundary, and 
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the system does not dwell on the boundary. No matter how small T is, there 

exists a corresponding small τ , such that the system crosses the boundary and 

enters a new state bS  with a new switch signal bδ  ٱ                                              .

The unstable transition actions of the switch signal near the switch 

boundary can be shown in Figure 3.4. Because the system trajectory has some 

perturbations in the vicinity of the shift boundary, the switch signal will change 

back and forth as the trajectory crosses the shift boundary from different 

directions. This phenomenon is often referred to as limit cycle behavior of the 

switch signal.  In the TBA system, this will cause the brake to engage and 

disengage frequently, thus generating unwanted disturbances. A new shift 

strategy, illustrated in Figure 3.5, is designed to solve this problem. 

In this new shift strategy, another shift boundary is added such that the 

state space is divided into three regions with two states. The states and switch 

signal for the TBA system are now defined as follows: 

 

Figure 3.4, Two dimensional switch curve with disturbance 
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Figure 3.5, A shift strategy with two shift boundaries  

Below the lower boundary sblC , system is in state aS  with switch signal aδ . 

Above the upper boundary, system is in state bS with switch signal bδ . Between 

the two boundaries, the system state and switch signal are the same as those 

before the crossing of the boundaries; therefore, the system may have different 

states in this region determined by how the trajectory enters the region. This 

region is called a grey region. For example, if the trajectory crosses the lower 

boundary into the grey region, the state is aS  with switch signal aδ ; if the 

trajectory crosses the upper boundary into the grey region, the state is bS  with 

switch signal bδ .    

The two shift boundaries are defined by: 

( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }

2

2

: 0, ,

: 0,

sbl sbl

sbh sbh

C x t f x t x t R

C x t f x t x t R

= = ∈

= = ∈
     ( 3.9 ) 

A new switch signal is generated only if the trajectory enters the grey 

region by crossing one shift boundary and leaves the region by crossing the 

other boundary.  
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By the new control strategy, for the trajectory shown in Figure 3.5, only 

one switch signal is generated. The trajectory starts in state aS  with switch signal 

aδ , and then it crosses the lower bound from below the boundary. By the new 

control strategy, no new switch signal is generated since the system is still in the 

state aS . Similarly, no new switch signal is generated in the subsequent 

intersections between the trajectory and the lower boundary. 

A new switch signal is generated when the trajectory leaves the grey 

region by crossing the upper shift boundary; after the crossing, the system enters 

into the new state bS  with switch signal bδ .  

Only one new switch signal is generated in Figure 3.5; thus, the limit cycle 

behavior is avoided. Now, let’s formulate a theorem to prove that this is 

universally true. 

Theorem 3.4: 

A shift signal generated based on the shift strategy described as Figure 3.5 

with shift boundary as Equation ( 3.9 ), is transition stable.  

Proof: 

This proof is carried out on three regions: the region below and including 

the lower boundary, the region above and including the upper boundary, and the 

grey region. 

In the region below and including the lower boundary, first let’s examine 

the time invariant property.   Suppose a range is defined as follows, 

( ) ( )( ){ }2: 0, , 0sbx t f x t Rτ τ≤ ≤ ∈ <    
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At the lower boundary, the system is in state aS  with switch signal aδ . 

After a time increase 0T > , suppose the trajectory moves towards the lower 

boundary. No matter how small τ is, there exists a corresponding T such that the 

system crosses the lower boundary, and no new switch signal is generated.  

Next, let’s examine the state space invariant property.   

Suppose a range defined as follows, 

( ) ( )( ){ }2: 0, , 0sblx t f x t Rτ τ≤ ≤ ∈ <    

At the lower bound, the system is in state aS  with switch signal aδ . After a 

state change ( ) 0x tΔ >  toward the boundary, no matter how small τ  is, there 

exists a corresponding ( )x tΔ , such that the system crosses the lower boundary, 

and no new switch signal is generated.  

In the region above and including the upper boundary, an approach similar 

to that of the lower region can be used to show that the shift strategy is both time 

invariant and state space invariant in this region.  

The difference is that the trajectory enters the grey region from the upper 

boundary, and the range is defined as: 

( ) ( )( ){ }2: 0 , , 0sbux t f x t Rτ τ≤ ≤ ∈ >    ( 3.10 ) 

Inside the grey region, according to the definition, no new shift signal will 

be generated, so it is transition stable.   The conclusion is that the shift strategy is 

transition stable in all three regions; thus, it is transition stable for the hybrid 

system.                    ٱ 
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A final observation for this shift strategy is that the two boundaries are 

parallel to each other, and the width of the grey region depends on heuristic 

results based on the properties of the hybrid system. Even though the new state 

space based switch signal established a transition stable shift strategy, it has a 

problem. The width of the grey region must be large enough to accommodate all 

of the disturbances. In the TBA system, because of the large load torque 

disturbance in the vicinity of the shift time, the grey region width is too large to be 

of any practical use. For example, in order to accommodate the disturbance by 

the above shift strategy, the width of the grey region is about 4 N-m out of a 12 

N-m range. This large grey region width causes a long shift delay.  

In this research, a hybrid switch strategy is used to design a transition 

stable strategy with a relatively narrow grey region. Specifically, a time constraint 

between adjacent shifts is added to the switch signal expression. In other words, 

no shift is allowed for a specified amount of time after the start of the previous 

shift. This time constraint is determined by the time required to finish the shift 

action, which can be obtained by actually running the system. The final choice of 

this time constraint is 0.5 seconds.  There is another benefit to having this time 

constraint. That is, any shift close to the commanded position can be avoided, 

since these types of shifts generate unwanted disturbances.   

Hybrid system stability - TBA 

A hybrid system differs significantly from a continuous dynamic system 

with respect to stability issues. The commonly used terminologies in continuous 
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dynamic systems are: Lyapunov stable, asymptotically stable, and exponentially 

stable. These are still valid in a hybrid system, while the definitions are a little 

different in the sense that the state switch should be included in the definitions. 

Consider a hybrid system in the form of Equation ( 3.11 ), 

( ) ( )( ) ( )( ) ( )( ) ( )0 0 0 0 0, , ,   , ,x t f t x t x t t x t x t xδ δ δ= = =&     ( 3.11 ) 

with a solution, 

( ) ( )( )0 0 0, , ,x t t t xψ δ=       ( 3.12 ) 

and an equilibrium point, 

( )( ), , 0e e ef t x xδ = .          ( 3.13 ) 

For the switch signal ( )( ) 0,  with initial conditon t x tδ δ , the following stability 

definitions of the system are given.  

Definitions 3.4: Stabilities: The system is said to be stable under the switch 

signal at the equilibrium point if, for each 0ε > , there is a ( )0 , , 0tσ ε τ ≥ , 

such that, ( ) ( )( )0 0 0 0 0 0, , , ,e ex x t t t x xσ ε ψ τ δ ε− < ⇒ + − < . 

The system is said to be uniformly stable under the switch signal at the 

equilibrium point if, for each 0ε > , there is a ( ) , 0σ ε τ ≥ , such that,  

( ) ( )( )0 0 0 0 0 0, , , ,e ex x t t t x xσ ε ψ τ δ ε− < ⇒ + − < . 

The system is said to be asymptotically stable under the switch signal at 

the equilibrium point if it is uniformly stable and, there exists, the following 

condition holds: 
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 ( ) ( )( )0 0 0 0 0 0, lim , , , 0e ex x t t t x x
τ

σ ε ψ τ δ
→∞

− < ⇒ + − = . 

The system is said to be exponentially stable under the switch signal at the 

equilibrium point if it is uniformly stable and, for each 0ε > , there exists a 

0σ >  ,such that, 

( )( ) 0( )
0 0 0 0 0, , , , 0t

e ex x t t x x e ε τσ ψ τ δ τ− +− < ⇒ + − ≤ ≥  

The asymptotic and exponential stabilities are the most desired stability 

types for a hybrid system.  

Let’s look at the Lyapunov stability theorem for a continuous dynamic 

system.  For a continuous dynamic system given by Equation ( 3.14 ), 

( ) 0 0,  ( )

: n n

x f x x t x

f R R

= =

→

&
    ( 3.14 ) 

Let 0ex =  be an equilibrium point of Equation ( 3.14 ), and ( ) : nV x R R→  

be a continuous differentiable function. 

Theorem 3.5: Lyapunov stable [39] - Under the above conditions, if 

                                              
  )    (0) 0

)   ( ) 0, 0
)   ( ) 0, 0

i V
ii V x x

iii V x x

=
> ≠

≤ ≠&

   

                  Then the equilibrium point is Lyapunov stable. 

Theorem 3.6: Asymptotically stable [39] - Under the same conditions as 

Theorem 3.5, if  

                          
  )    (0) 0
 )   ( ) 0, 0

)   ( ) 0, 0

i V
ii V x x

iii V x x

=
> ≠

< ≠&

   

                  Then the equilibrium point is asymptotically stable. 
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The above two theorems establish a method to test the stability of a 

continuous dynamic system as given by Equation ( 3.14 ).  

A hybrid system involves several such continuous dynamic systems; 

therefore, new theorems are presented to test the stability [14, 15, 20, 24]. These 

theorems are included here for completeness.  

First, let’s check if the TBA system is quadratically stablizable under 

certain switch signals. Let’s look at other supporting theorems[19]. 

Lemma 5.5 [19]: 

System (5.1) is quadratically stablizable if there exist gain matrices Fi such 

that the matrix pencil ( ) : 0, 1i i i i i i
i M

A B Fϖ ϖ ϖ
∈

+ ≥ =⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑ contains a Hurwitz 

matrix.  

The following definition is provided for Lemma 5.5. 

( ) ( ) ( )
( ) ( )

 (5.1) is 

i i i

i

System
x t A x t B u t

y t C x t

= +

=

&
 

Theorem 3.7: If hybrid system as Equation ( 3.15 )  has controllable 

continuous subsystems, 

( ) ( ) ( )
( ) ( )

i i

i

x t A x t Bu t

y t C x t

= +

=

&
     ( 3.15 ) 

Furthermore, if there exists a single state feedback which can stabilize all 

subsystems, then the hybrid system is quadratically stable using the same 

state feedback. 



 69

Proof:  

( ) ( )

By Lemma 5.5 [11],  has to be stable for some i.

In order to show that at least one of the above expressions is stable,

we only need to show that there ex

i i i i i i i i
i M i M i M

i i
i M

A B F A BF A BF

A BF

ϖ ϖ ϖ

ϖ
∈ ∈ ∈

∈

+ = + = +

+

∑ ∑ ∑

∑

1 1

ists a special i, such that ,

is controllable. In fact,  such case is easy to find by setting only one 

to 1, say, =1, and the rest to 0s; then, ,  becomes (A ,B), which

i i
i M

i

i i
i M

A B

A B

ϖ

ϖ

ϖ ϖ

∈

∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
is controllable by the theorem condition.                                                          �

 

The TBA prototype has three continuous dynamic subsystems, and a 

common feedback controller can be found to stabilize all three subsystems. 

According to Theorem 3.7, the TBA system is stable under synchoronous switch 

signal. The above theorem succefully proven that the TBA system is 

quadratically stablizable. But in practice, the gear shift is determined on the load 

toruque, which limits the use of this synchronous switch stabliltiy.  

Now let’s check if the TBA system is stable under asynchoronous switch, 

the following theorems in literature are provided for proving this stability.  

Theorem III.1 [14]: Let D be a compact linear polysystem, the following are 

equivalent: 

1. The origin is a uniformly exponentially stable equilibrium, 
2. The origin is a uniformly asymptotically stable equilibrium, 
3. There exists a 1C positive definite function : nV R R→ , homogeneous 

of degree two, such that ( )x V x Ax∇a is negative definite for 
all A D⊂ , 

4.  There exists a C∞ positive definite function : nV R R→ , such that 
( )V x Ax∇  is negative definite for all A D⊂ . 
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Notice that condition 3 is equivalent to stating that there exists a common 

Lyaponov function, because, 

( )
T

( )

let V=x 0,  P>0

( )

       
       
       ( )
       0

, ,  0

T

T T T

T T T

T T

T

V VV x x Ax VAx
x x
Px

d x Px
V x

dt
x Px x Px x Px
x A Px x PAx
x A P PA x

or A P PA Q Q

∂ ∂
= = ≡ ∇
∂ ∂

>

≡

= + +

= +

= +
<

+ = − >

& &

&

&& &
 

Theorem 3.1 [24]: A necessary and sufficient condition for the dynamic 

systems 1 2 and A A∑ ∑ to have a CQLF (Common Quadratic Lyapunov 

Function) is that the pencils [ ] 1
1 2 1 2, ,  ,a aA A A Aσ σ −⎡ ⎤⎣ ⎦  are both Hurwitz. 

The following definitions apply to Theorem 3.1. 

[ ] [ ]
1 1

1 2 1 2

 : ( ) ( )

, (1 ) , 0,1
common quadratic Lyapunov function

a

A x t A x t

A A A A
CQLF
σ α α α

=

≡ + − ∈

−

∑ &

 

Lemma 3.1 [24]: Let 1 2 3, ,  and A A A∑ ∑ ∑ be stable second order LTI 

systems that pairwise satisfy the conditions of Theorem 3.1 [24], and, with 

{ }21 0, 1, 2,3ia i≠ ∈ , let Ai Ajε ε = ∅I  for some { }, 1, 2,3 ,i j i j∈ ≠ . Then a 

symmetric positive definite matrix P exists such that ( ) TV x x Px=  is a CQLF 

for all three systems 1 2 3, ,  and A A A∑ ∑ ∑ . 

The following definitions apply to Lemma 3.1. 
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{ }
nd st

21 i is the element of matrix A  on the 2  row, and 1  column 

: det( ) 0

0

i

T
Ai i i i i i

T
i i

a

P A P PA

P P

ε = + >

= >
 

Theorem III.1 establishes an equivalent relation between exponential and 

asymptotic stability and the existence of a common Lyapunov type equation.  

Theorem 3.1[24] and Lemma 3.1[24] together give a sufficient condition for a 

CQLF for a hybrid system involving three 2nd order LTI systems, which is exactly 

the configuration of the TBA model.  

Equipped with the above three theorems, let’s look at the TBA example. 

The TBA subsystem dynamic equations are given by Equation ( 3.16 ). 

( ) ( )

1 2 3

1 2 3

0 1 0 1 0 1
, ,

0.4262 0.0062 0.3123 0.0084 0.1828 0.0142

0 1 0 1 0 1
, ,

0.3159 0.0013 0.2315 0.0018 0.1359 0.0031

when load is zero

when load is maximum

ix t Ax t

A A A

A A A

=

= = =
− − − − − −

= = =
− − − − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

 ( 3.16 ) 

It is trivial to show that all the above systems are stable and controllable, 

and they also satisfies the conditions of Theorem 3.1 [24]. Due to the small 

damping coefficient (0.001), the conditions specified in Lemma 3.1 [24] are not 

satisfied.  Therefore, the open loop system is not guaranteed to be stable under 

any switching signals. One remedy to the above problem is to design different 

controller for different subsystem such that the following two conditions hold: 

a) The closed loops are stable; b) The closed loop transfer functions share the 

same expression.  
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The state feedback control system diagram is given in Figure 3.6. 

The new system dynamic equation is given by: 

( ) ( ) ( )

[ ]

1 2 3

1 2

,

0
1

x t A bF x t

b B B B

F f f

= −

⎡ ⎤
= = = = ⎢ ⎥

⎣ ⎦
=

&

       ( 3.17 ) 

If the above two conditions hold, the conditions in Lemma 3.1 [24] are 

satisfied, thus the hybrid system is stable under asynchorounous switch.   

Controller Design and Implementation 

The purpose of this section is to find a suitable and practical controller for 

the TBA and to design it such a controller that satisfies the conditions in Theorem 

3.7. In addition, this controller must be able to attenuate the transient response 

caused by the mismatch between the motor speed and the DVT speed before 

and after a specific gear shift.  

Such transient disturbances could lead to high accelerations of the 

manipulator that would be detrimental to precise manipulator motion, and they 

could also cause some difficulties in gear shift control [25, 26].  

 

Figure 3.6, State feedback control diagram 
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Our approach is focused on state feedback control, which can then be 

transformed into an equivalent proportional-integral-derivative (PID) controller. 

Other controller design techniques such as optimal control and robust control will 

be introduced and analyzed. Like most control system applications, the TBA 

control design starts with design requirements. 

TBA control design requirements 

Due to the complexity of this system, some of the requirements are 

quantitative, while others are qualitative, and the main requirements are: 

1. The shift strategy must be transition stable. 

2. The hybrid system must be stable. 

3. The transient response due to the gear shift should be adequately 

attenuated. 

4. Steady state errors should be less than 1 degree (the resolution of the 

encoder is ~0.36 degree) for compatibility with manipulator control. 

5. The servo control loop sample rate should be no less than 1000Hz (the 

bandwidth of the TBA prototype is about 1500Hz). 

6. The gear shift should be finished in no less than 30 ms (the time constant   

of the brake action is about 30 ms).   

State Feedback Control 

As discussed in the previous section, a common state feedback controller 

for all three subsystems of the TBA must be found in order to achieve stability 

under asynchronous switch signals. 
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The subsystems are controllable, so the closed loop gain can be arbitrarily 

set. Suppose a pair of complex numbers 5 3j− ±  is arbitrarily selected as the 

closed loop poles. Then the required closed loop characteristic equation is given 

by: 

2 10 34 0s s+ + =      ( 3.18 ) 

The resulting feedback controllers are given by: 

[ ] [ ] [ ]

[ ] [ ] [ ]

2 31

1 2 3

1 2 3

, ,33.5738 9.9938 33.6877 9.9916 33.8172 9.9858

33.6841 9.9987 , 33.7685 9.9912 , 33.8541 9.9969
where

, ,  feedback controller as F in Figure 3.6

when load is zero,

when load is maximum,
F F F

F F F

F F F

= ==

= = =

−

  ( 3.19 ) 

The resulting subsystems share the same characteristic equations. 

Although this approach is effective in eliminating the differences among the 

systems, it has an obvious drawback: an infinite number of feedback controllers 

are required to accommodate various loads.   

Further examination of the feedback controllers as shown in Equation ( 

3.19 ) reveals that that the feedback controllers for all three systems vary little 

from zero load to maximum load. By using a single feedback controller designed 

on a single load, i.e. zero load, it is easy to show that all the subsystems are 

stable under different loads. By Theorem 3.7, using this feedback controller for all 

three subsystems will guarantee TBA system stability. Under the feedback 

controller 1F  described in Equation ( 3.19 ) for zero load, the systems are given 

by Equation ( 3.20 ). 
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( ) ( )

1 2 3

1 2 3

0 1 0 1 0 1
, ,

34.0000 9.9999 33.8861 10.0022 33.7566 10.0080

0 1 0 1 0 1
, ,

33.8897 9.9951 33.8053 9.9956 33.7

when load is zero,

when load is maximum,

f f f

f f f

fi

A A A

A A A

x t A x t

= = =
− − − − − −

= = =
− − − − −

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

&

1

097 9.9969

,

fi i

where
A A BF

−

⎡ ⎤
⎢ ⎥⎣ ⎦

= +

 ( 3.20 ) 

By using the state feedback, a common Lyapunov function does exist by 

using the method in [24]. The Lyapunov function sets are given in Figure 3.7  and  

Figure 3.8. A quick look at the A matrices with the state feedback reveals that all 

the subsystems have similar A matrices.  

 

Figure 3.7, Lyapunov function sets for zero load 
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 Figure 3.8, Lyapunov function sets for maximum load 

Based on Figure 3.7 and  Figure 3.8, it is clear that all three Lyapunov 

sets share a common area (inside the ellipsis) for both zero and maximum load.  

The system shown in Figure 3.9 is equivalent to Figure 3.6, because the 

TBA system involves three 2nd order continuous subsystems.   

For the TBA prototype used in this research, only position feedback is 

available and thus F is equivalent to a PD controller. The PID controller has 

several design conveniences based on the following considerations: 

1. A majority of servo motor control applications use PID control [40]. 

2. Small calculation overhead makes it suitable for real time control.  

3. Practice and  theory show that PID servo motor control can achieve 

position and velocity tracking simultaneously [2].  

The third result is very important since it provides a solution to the 

transient response issues that result from the speed mismatch before and after 

the shift. 
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Figure 3.9, Equivalent control subsystem diagram 

If the output speed can be tracked well enough, the transient response 

can be suppressed by designing a smooth speed trajectory.  

The detailed implementation of the PID control top level diagram is given 

in Figure 3.10.  

A continuous time PID controller algorithm is shown in Equation ( 3.21 ).  

dt
tdeKdeKteKtu D

t

IP
)()()()(

0

++= ∫ ττ                 ( 3.21 ) 

lyrespectiveoutput  and reference, control, y(t) r(t), u(t),
error y(t)-r(t)e(t)

gains ,,

=
DKIKPK

where

 

There are two digital implementation forms for the continuous PID 

controller [41]: a position form and a velocity form.  A position form and a velocity 

form are given in Equation ( 3.22 )  and  ( 3.23 ) respectively. 

1

 -s

, ,  -gains

e(k) r(k)-y(k) -error
u(k), r(k), y(k) -control, reference, and output respectively
T sample period

( ) ( 1)( ) (0)  ( ) ( )
k

p i s d
i s

P I DK K K

e k e ku k u K e k K T e i K
T=

=

− −
= + + +∑

       ( 3.22 ) 

sdsip TkekekeKkeTKkekeKkuku /))2()1(2)(()())1()((  )( )1( −+−−++−−+=+   ( 3.23 ) 



 78

 

Figure 3.10, Top level control system diagram 

It is easy to see that the number of additions at a single step is linearly 

increased with time for the position form, while for the velocity form, it is constant. 

The velocity PID form is used in the research. 

Due to the existence of the integral term and the servo motor 

speed/current limit, windup situations need to be avoided. In this research, 

conditional integration is used. The analysis of this saturation effect is not the 

interest of the research; interested readers are encouraged to find reference in 

[42]. Other anti-windup methods can be found in [40]. As mentioned previously, it 

is proven that a servo motor with a PID controller can achieve position tracking 

and velocity tracking simultaneously [2, 40]. This research extends the theory in 

[2] by closing the loop at the DVT output instead of the servo motor output. The 

idea is that if the DVT position and speed can be tracked well enough, the 

transient disturbance due to the state change can be attenuated as well.  A TBA 

prototype servo and DVT control system diagram is shown in Figure 3.11. In this 

research, the dynamic payload experienced by the robot arm is emulated by a 

dynamometer.  
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Figure 3.11, Servo motor control diagram 

 

Figure 3.12, Dynamometer torque control diagram 

However, the static gravity of the robot arm load cannot be emulated 

because the particular dynamometer used cannot generate torque output when 

the speed is zero.  The dynamometer output torque is a nonlinear function of 

speed and reference voltage. Open loop control of the dynamometer would 

require a complete calibration of the dynamometer.  

In this research, a closed loop design is adopted to track the reference 

torque, which is generated based on the trajectory and load model.  

Thus, a full calibration of the load cell attached to the dynamometer is 

adequate. The control system diagram is shown in Figure 3.12. 

In summary, the proposed PID control system for the TBA is proven to be 

stable (including transition stable). 

It is also proven that this proposed controller can suppress the transient 

disturbances expected from the gear shifting.   
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The final TBA control system diagram based on PID control is given in 

Figure 3.13.  

As in Figure 3.13, the proposed TBA control system includes a trajectory 

generator, a supervisory controller, and two closed loop control subsystems: 

servo motor control and dynamometer control. 

The trajectory generator takes a position (set point) as input, and 

generates a trapezoidal type trajectory, the output of the trajectory generator is 

the position command sent to the servo control (r(t)), and position, acceleration 

commands sent to dynamometer control (r'(t)). The servo motor closed loop 

control takes the generated trajectory as input, and tracks the commanded 

trajectory. The dynamometer closed loop control generates the load torque 

profile based on the generated trajectory, and the load profile is calculated based 

on Equation ( 2.39 ). The actual torque is measured by a load cell and sent to the 

supervisory controller to determine the appropriate gear shift. 

 

Figure 3.13, TBA Control System Diagram 
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The TBA supervisory controller has three blocks: an event generator, a 

discrete state generator and a state change generator. The supervisory controller 

takes a clock signal and the torque generated by the dynamometer as input, and 

sends out explicit shifting commands to engage/disengage brakes based on the 

proposed control strategy as shown in the next paragraph.  Before introducing 

the individual blocks, the TBA control strategy is first presented: 

1. The TBA shift strategy has two shift interfaces:  

Interface 1: gear shift between 3rd gear and 2nd gear.  

Interface 2: gear shift between 2nd gear and 1st gear.  

2. Each shift interface has two shift boundaries: 

Interface 1: 5 , and 4 Nmload loadT T≥ ≤  

Interface 2: 8 , and 6 Nmload loadT T≥ ≤  

3. Time between adjacent gear shifts must be greater than 0.5 seconds. 

The shift strategy is shown in Figure 3.14. 

 

Figure 3.14, TBA gear shift strategy (prototype) 
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There are a couple of clarifications need to be made here: first, the shift 

boundaries and Δt are chosen by experiments. There may be other different set 

of values under which the TBA system functions normally. Second, the TBA 

prototype could potentially have six different gear shift actions: 1->2,2->1,2->3,3-

>2, 3->1,and1->3.  

In this research, direct shifts between 1st gear and 3rd gear are not 

considered since there will be no such gear shifts in the prototype. In real TBA 

application, such shifts are possible due to the inertia load induced by large load 

accelerations. The shift strategy is shown in Figure 3.15.  

By using the shift strategy shown in Figure 3.14, and a single PID 

controller for the TBA control, by Theorem 3.4: and Theorem 3.7:, the TBA 

control strategy as shown in Figure 3.14 is transition stable, and the TBA system 

is guaranteed to be stable under asynchronous shifts. 

 

Figure 3.15, TBA gear shift strategy (real system)  
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Now, let’s have a close look at the individual blocks in the supervisory 

controller.  The event generator takes the actual load torque generated by the 

dynamometer and generates shift boundary crossing events based on the gear 

shift strategy shown in Figure 3.14.   

The crossing events are only generated when the load torque crosses the 

boundary in certain direction. For example, when the load torque crosses the 4N-

m boundary from below, no crossing event will be generated; while it crosses the 

same boundary from above, a crossing event will be generated and sent to the 

discrete state generator.  

The discrete state generator takes two inputs: the crossing events, and 

the time, and determines the next TBA gear state. The process to determine the 

next TBA gear can be described as: If either no crossing event is received or the 

time from the previous shift is less than 0.5 seconds, the output of the discrete 

state is the current state; if both a crossing event is received and the time 

condition are satisfied, it generates a new state signal, which is then sent to the 

state change generator. 

The state change generator receives the state signal from the discrete 

state generator, and generates all the control commands for the three brake 

motors.  

The process can be described as: Once it receives a state signal, it 

compares the state signal with the current state of the TBA. If the two are same, 

no control command will be sent; if they are different, new shift commands will be 

generated and sent to the brake motors.  
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The control of the engage/disengage action is achieved by sending digital 

signal to the amplifiers of the motors. As presented in Chapter 1, only one brake 

can be engaged at a time, so every gear shifting action involves three different 

brake actions: disengaging the current brake, engaging the objective brake, and 

keeping the other brake disengaged. 

The above control strategy can be explained more clearly by using a 

design example as follows: 

1. The robot arm is in a vertical down position initially.  

2. The robot arm moves up from the initial vertical down position to a final 

vertical up position following a trapezoidal shaped trajectory. 

Under the above two conditions, the rotational load torque is zero initially, 

as the robot arm moves up to the horizontal position, the load torque increases 

from zero to the maximum; then as the arm continues to move up to the vertical 

up position, the load torque decreases from the maximum to zero. The functions 

of the proposed control strategy can be described as follows: 

1. Initially, the load torque is less than 5 N-m, and TBA is in the 3rd gear with 

the lowest ratio.  

2. When load torque is greater than or equals to 5 N-m, and the time since 

the previous shift is greater than 0.5 seconds, TBA shift to the 2nd gear. 

3. When load torque is greater or equals to 8 N-m, and the time since the 

previous shift is greater than 0.5 seconds, TBA shift to the 1st gear. 

4. When load torque is less than or equals to 6 N-m, and the time since the 

previous shift is greater than 0.5 seconds, TBA shift to the 2nd gear. 
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5. When load torque is less than or equals to 4 N-m, and the time since the 

previous shift is greater than 0.5 seconds, TBA shift to the 3rd gear. 

6. The TBA will stays in the 3rd gear until the robot arm is vertical up. 

The above gear shift strategy is shown in Figure 3.14. The experimental 

results of the above design example are given in Chapter 5. 

Optimal Control and Robust Control Discussion 

At the outset of this research, a key objective was to investigate various 

control approaches and to investgate their applicability to TBA control.  The 

following discussion presents the results of looking at optimal and robust control 

theories. 

Optimal Control 

The analysis in this section serves as an initial investigation into the 

application of optimal control theory to the TBA control problem. Due to the fact 

that a hybrid system includes both continuous dynamics and discrete dynamics, 

the optimal control problem has much richer contents compared with a 

continuous dynamic system.  Two types of optimal problems have drawn special 

interests: optimal performance by optimal switching signals and optimal 

performance in terms of disturbance rejection and tracking error. The first 

problem has been successfully applied in some applications. For example, in a 

launch vehicle control system, the optimal fuel consumption is achieved by 

turning on and off the rocket engine at the right time. In the automotive engine, 

the optimal controller changes the engine working regions to achieve minimum 
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fuel consumption [43]. In a helicopter control example [37, 38], a linear quadratic 

regulator is used to achieve “bumpless transfer” while the helicopter undergoes a 

controller switch.  In the TBA, two types of optimal control are valid and have 

practical uses. These two optimization problems are: 

1. Maximize the servo motor power to achieve the fastest possible operation. 

2. Minimize the transient response during the gear shift. 

This research only focused on the design of an optimal controller. For 

stability issues of a general hybrid system optimal control  problem, see [19, 22]. 

In this research, the second optimization problem is formulated and a solution is 

given.  First, let’s have a look at the general optimal control TBA system diagram 

shown in Figure 3.16. 

The control objective is to find an optimal controller Fo to obtain the 

minimal control index. Since every gear shift includes two TBA gear states, it is 

valid to study a system with any two of the three states of the TBA first, and then 

use a similar approach to design optimal controllers for all other state changes.  

  

Figure 3.16, General TBA optimal control diagram 
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The control diagram with two states is shown in Figure 3.17. An optimal 

control problem is, 

( ) ( ) ( )

( ) ( )( ) ( )

1 1

1 1

22 2
1 1 2 2 1 2 3 1 2

0
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f f
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=

= − + − + −∫

&

( 3.24 ) 

The index objective is, 
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The optimal solution conditions are given in Equation ( 3.26 ). 
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Figure 3.17, Second optimal control problem system diagram 
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From ( )
( )1

0
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∂
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%
, the function of 1( )u t can be expressed as in Equation       

( 3.27 ). 
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The co-state ( )tλ can be solved by a state space formulation given in 

Equation ( 3.25 ). 
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This is the so-called two point boundary problem; the solution of this 

problem is related to a Riccati differential equation and another differential 

function after using a technique called a “sweep” [44]. These equations are : 
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In Equation ( 3.29 ), ( )tλ  can be solved in a backward iteration, although 

the control signal ( )2u t and ( )2x t  must be known, which limits the use of this 

method.  
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In summary, a global optimization problem results in a two point boundary 

problem, which can not be solved in this application. However, it is possible to 

find a class of suboptimal solutions by using some assumptions. For example, if 

assuming ft →∞ , the optimization problem is referred to as an infinite time 

horizon problem, and the solution can be solved without using a co-state variable 

[37].  This infinite time horizon assumption can be treated as a relaxation of the 

global optimization conditions. The solution of suboptimal problems presents a 

set of completely different problems for the TBA system, which is not the thrust of 

this reseach due to the hardware limitation in the TBA prototype system and will 

be left for future research. Even though the suboptimal solution could produce a 

solvable optimization problem, some practical problems need further 

investigation: 

1. The resulting control is generally high order, and digital implementation of 

the high order controller generates big error while using the approximation 

method to change transfer function from s domain to z domain. 

2. Large calculation overhead needs special attention in applications 

requiring real time performance. 

Robust Control 

Robust control method offers a viable approach to DVT controller design. 

In this research, the robust control serves as an initial investigation of the robust 

control problems in the TBA prototype.  

Specifically, robust controller design to achieve input disturbance rejection 

is presented and analyzed, even though in general, robust control method may 
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used to solve two types of problems: disturbance rejection and reduced 

sensitivity to parameter uncertainty. The system diagram of input disturbance 

rejection problem using robust control method is shown in Figure 3.18.  

As shown in Chapter 2, TBA system has three 2nd order subsystems. The 

plant (P) in Figure 3.18 is one of the three TBA subsystem models. In the 

following design example, the controller design is accomplished by using Matlab 

μ-synthesis toolbox. In this specific case, the plant is the TBA in its 2nd gear with 

the dynamic equation shown in Equation ( 2.35 ), K is the controller to be 

designed. Other signal names and weighting matrices in Figure 3.18 are:  

1. nt - sensor noise 

2. ut - weighted control signal 

3. dt - disturbance 

4. Wu - input weighting function, a high pass filter, 

5. Wd, Wn – disturbance, noise weighting function, high pass filters 

6. We – output weighting function, a low pass filter 

 

Figure 3.18, TBA robust for disturbance attenuation 
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The output weighting function (We) specifies the system performance, that 

is, at low frequency, the open loop system have much larger gains than at the 

high frequency, such that the Matlab H∞ algorithm only needs to take care of the 

low frequency response. Other weighting functions (Wu, Wd, and Wn) specify the 

interested bands for different inputs and output. A general explanation on how to 

select the weighting functions can be found in [45].  The sigma values of the We 

and Wu (Wd, Wn) are shown in Figure 3.19. Notice that the sigma value is the 

same as Bode magnitude for the above matrices, the Matlab μ-synthesis toolbox 

uses sigma value instead of Bode plots in order to deal with the multi Inputs multi 

outputs system. The open loop system is formed when the controller (K) is 

removed from the closed loop system shown in Figure 3.18. The open loop 

system has four inputs and three outputs. The inputs are u, r, dt, nt and the 

output are y, et, and ut. The open loop system has six simple poles and is not 

stable: 
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Figure 3.19, Open and closed loop magnitudes 
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o1 o2

o3 o4 o6

oi

p =-39.7116, p =-7786.731,
p =-39.738, p ~p =-1000.000
where, p  open loop poles (i=1,2,...,6)−

 

By using the Matlab μ-synthesis toolbox, a sixth-order controller was 

designed, and has the following transfer function: 

2

2 6

(s+0.012)(s+39.738)(s+1000.000) (s+1000.189) 
(s+0.0001)(s-591.540)(s+991.924) (s+1002.994)(s+1.249*10 )

 

The resulting closed loop system has the following twelve simple poles:  

c1 c2 c3

c4 c5 c6

c7 c8 c9

c10 c12

ci

p =-1240862.662,  p =-7786.731,  p =-39.738,
p =-3.000,             p =-0.030,        p =-0.0001, 
p =-993.216,         p =-1006.337,  p =-1003.955,
p ~p =-1000.000
where, p  closed loop po− les (i=1,2,...,12)

 

Figure 3.20 shows the open and closed loop magnitude respectively.  
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Figure 3.20, Open and closed loop magnitudes 



 93

Based on the above results and Figure 3.20, the following can be 

concluded: 

1. Open loop system is unstable, its bandwidth is small, open loop gain is 

larger than 1 at high frequency. 

2. Closed loop system is stable, its bandwidth is wider, and system output 

rolls off at high frequency.  

Even though the robust control method successfully produced a stable 

closed loop system that satisfied the performance and disturbance rejection 

requirements, some practical problems need further investigation as in the 

optimal control problem: 

1. Digital implementation of the high order controller generates big error 

while using the approximation method to change transfer function from s 

domain to z domain. 

2. Large calculation overhead needs special attention in applications 

requiring real time performance. 

Summary 

This chapter studied the control problems associated with the TBA 

prototype and its experimental system using hybrid supervisory control theory.  

The proposed PID based controller is proven to be stable under 

asynchronous gear shift. The proposed control strategy is transition stable under 

load torque disturbances. The proposed control system is implemented in a PC-

based real time control framework, which will be discussed in detail in Chapter 4. 
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The experimental results in Chapter 5 will verify the correctness of the TBA 

control system framework and the controller design methodology presented here 

above.  

Initial studies of optimal control and robust control for the TBA system are 

also presented in this chapter, these studies and results provide useful reference 

for future work about control of the TBA. 
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CHAPTER 4   

Control System Software 

In the software development, the TBA prototype and its experimental 

system is divided into four subsystems. These subsystems are the servo motor 

control (SMC), DVT, dynamometer control (DMC), and PC controller/data 

acquisition system (PCC). The SMC, the DVT, and the DMC subsystems are 

functionally independent of each other in the sense that each of them can be 

individually controlled with a PC.   

On the top level, these subsystems need communication and coordination 

in order to fulfill the functionality requirements of the TBA system. Figure 4.1 

shows the TBA subsystems and their interconnection relations. 

 

Figure 4.1, TBA subsystems interconnection relation 
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There are two closed loop control subsystems in the system: the SMC and 

the DMC.  The PCC subsystem, equipped with a serial port, Ethernet, A/D, D/A, 

a timer/counter, and computation power, plays a central role in the TBA control 

system design, which can be shown in the following TBA system function flow 

during a single control step. 

In each control step, the PCC first reads the real time clock ticks to 

determine the current loop start time. If the timer satisfies the commanded 

system loop period condition, the PCC generates a desired trajectory to send to 

the SMC to control the BLDC servo motor.  

The PCC reads the position of the DVT output shaft and uses it as the 

feedback signal to generate the BLDC and dynamometer control signal in order 

to track the trajectory and the desired load profile.  

The PCC also reads the actual torque output from the dynamometer in 

order to generate the next gear shift signal. At the same time, the PCC reads 

other relevant system information such as the BLDC torque and position, and it 

also sends the experimental data to a high level control PC for data display over 

a dedicated local area network (LAN).  

The high level control computer is a Linux PC and is not shown in the 

system diagram. 

TBA Design Requirement 

Like most practical control system software implementation, the TBA 

control software design starts with a requirement analysis.  Due to the complexity 
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of this system, some of the requirements are quantitative, while others can only 

be given as qualitative constraints.  The main requirements and constraints are: 

1. The servo control loop must be able to run at a rate no less than 1000Hz, 

and the deterministic loop period should be guaranteed with admissible 

delay. 

2. Multithread architecture should be adopted for parallel execution. 

3. The software should be capable of setting different threads to different 

priority levels as required by the task.  

4. The system should have adequate flexibility, be easy to maintain, and 

provide friendly documentation measures.  

5. The system should provide most commonly used PC hardware support.  

6. The system should have C/C++ programming support. 

7. The system should have Ethernet communications. 

8. The system overall price should be within reasonable limits. 

The control sample rate is determined based on the time constant of the 

TBA. The calculations show that the TBA time constant is in the range of 

0.0020~0.0025 seconds, which correlated with the dynamic bandwidth of the 

system. Generally, high sample rates have positive effects like reduced 

quantization error, but noise captured by high sample rates must be attenuated, 

usually with a low pass filter.  

Due to requirement 1, a Real Time System (RTS) is required for TBA 

control. The core of a RTS is a real time operating system (RTOS) environment 

where real time constraints can be met.   
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Operating System - Introduction 

In a real world control system with a PC, the operating system plays a 

very important role. It not only provides the computation power for any algorithm, 

but it also manages all the hardware drivers and user applications to make them 

work together seamlessly, sharing computer resources like memory, I/O, 

interrupts, etc. 

A PC operating system can be divided into two major categories: a real 

time operating system (RTOS) and a general purpose operating system (GPOS). 

They can be differentiated by the following features:  preemptive kernel, priority 

scheduling, interrupt handling, etc.   

GPOS and RTOS 

A generally accepted definition of a GPOS states that the correct result 

depends only on the logical correctness of the computation.  

For example, for a printer connected to a PC, it generally does not matter 

whether it takes 50 or 100 milliseconds to start the printing job, as long as all the 

text and graphics are printed correctly.  

In this type of situation, a general purpose operating system (GPOS) is 

adequate.  

On the top level, the different types of GPOS are similar, although they 

can be vastly different in the implementation.  

Figure 4.2 shows the three layer architecture model for a standard Linux 

operating system. 
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Figure 4.2, Standard Linux three layer model 

One common feature of GPOS is that it is interrupt driven [46], or event 

driven. Specifically, when an interrupt line is raised, the operating system sees it 

immediately and responds to it in a timely manner, which generally involves 

stopping the current process or waiting until the current interrupt is handled.  

PC GPOS can be further divided into three main categories: Microsoft 

Windows family operating systems, various Unix flavored operating systems, and 

different Linux implementations, which are all delivered as GPOS. As will be 

discussed later, a Linux operating system can be adapted into an RTOS, thus 

allowing a fair competition for system time between interrupt handling and user 

applications. 

Compared with the GPOS, a definition of an RTOS can be conceivably 

expressed as the following.  

Definition 4.1:  RTOS - the correct result not only depends on the logical 

correctness of the computation, but also on the time required for the result 

to be generated.  

The following two examples are typical applications where an RTOS is 

required. The first example is a computer controlled radar tracking system. In this 
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system, the position of a target must be calculated accurately and the result must 

be obtained in a timely manner, otherwise, the tracking information is not very 

useful.  

Another example is a computer controlled robot arm emergency stop 

function. It monitors the status of prescribed safety rules, and if any of the rules 

are violated, the robot arm is shut down.  

Suppose that during a robot arm operation, someone accidentally enters 

the restricted area, thus triggering the safety rule violation condition. Then the 

control software sends out a command to shut down the arm actuator, and 

probably applies the brakes, also.  

If this command is not sent out and executed quickly enough, the person 

may be struck and injured by the robot arm. Under GPOS, there is one solution 

to this example, which is to assign an interrupt handler to any safety violation.  

But this approach is generally not recommended since there is a limited 

number of interrupt lines, most of which have already been occupied by 

commonly used hardware.    

Generally, in these situations, control software developed in a GPOS 

cannot perform the tasks well simply because the time of execution of any 

instruction is unpredictable or non-deterministic.  

Let’s take the standard Linux kernel as an example to see why a GPOS is 

not suitable for this type of application.  

In a GPOS, a task can only have two states: stopped or running. One 

clarification must be made here. In a multitask GPOS, all of the running tasks 
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could have a third state while waiting for their time slice to come; this state is 

generally not treated as a new state because the user program does not have 

control over it. Figure 4.3 shows the task status in Linux. 

As mentioned earlier in this section, interrupts are handled first, before any 

user programs, because the GPOS generally gives higher priority to hardware 

interrupts than to the user program. Therefore, the user program can be 

executed only when all interrupt lines are inactive. 

Furthermore, there is no way to predict when an interrupt line will be 

raised, which makes any user software with high time constraints subject to non-

deterministic time delays in applications with a large number of hardware 

interrupt routines. Another limitation is that a user program does not have direct 

control of the CPU clock or the system timer under a GPOS. It is the kernel that 

has exclusive control over these two high accuracy clocks, even in a multitask 

system.  For example, Linux has a multitask kernel which is attained by splitting 

the system time into time slices by using a clock interrupt, and the kernel assigns 

the highest priority to the system clock interrupt. One dedicated time slice is 

assigned to one task only. A task can only be executed in its assigned time slice, 

during which other tasks are either suspended or waiting to start execution.  

 

Figure 4.3, GPOS task status 
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In Linux, the time slice is generally on the order of tens of milliseconds 

[47], which means that any task with a deadline that occurs before its predefined 

time slice will be executed too late or not at all.   

A GPOS uses the time sharing policy to guarantee that all tasks have 

some system time to be executed. This feature of a GPOS is referred as a fair 

scheduling policy. In a GPOS, features like the fair scheduling policy and the 

non-preemptive kernel can lead to non-deterministic time delays [48]. On the 

other hand, an RTOS is capable of meeting the deadline requirements, as in the 

radar tracking and robot emergency stop examples shown earlier in the chapter.  

On the top level, an RTOS provides a priority based scheduling policy and 

a preemptive kernel, and these two features together ensure that the higher 

priority tasks are executed promptly, with some jitter delays resulting from the 

context switch. The low priority tasks are put in the suspended state (or ready 

state), and their execution is resumed after all higher priority tasks are finished. 

So, a task in an RTOS has one more state compared with that in a GPOS, and 

this additional state is called the block state. Figure 4.4 shows the task states in 

an RTOS. 

 

Figure 4.4, Process state diagram in an RTOS  
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In an RTOS, when a process is activated, it is first put in a ready state in a 

waiting queue. If there is no other equal or higher priority process in the queue, it 

is put in the first place. If there is no other equal or higher priority process running 

in the processor, it is in the running state immediately. All lower priority 

processes currently running will be preempted and put back in the ready state 

while waiting for the higher priority process to release the processor.  

There is one problem, however. If a higher priority process happens to 

share a resource which is locked by a lower priority process, the higher priority 

process can not be executed right away, and it must wait until the lower priority 

process frees the resource, thus causing the higher priority process to suffer from 

a time delay.   

This situation can be worse when the lower priority process is preempted 

by other higher priority processes, no matter whether these processes have 

higher or lower priority than the previous higher priority process. The higher 

priority process, which shares the resource locked by a lower priority process, 

suffers from a non-deterministic time delay. The reason for this delay is that the 

resource could never be released since the lower priority process is preempted 

by other higher priority processes, which then cause the higher priority process to 

wait on the resource and miss its deadline. This situation is known as priority 

inversion.  

Generally, two POSIX protocols [49] can be adopted to deal with the 

priority inversion. One is known as priority inheritance, a protocol that allows two 

processes which share the same resource to be treated with same priority during 
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the resource synchronization period; thus, the only time missed by the higher 

priority process is a single resource access time from the lower priority thread. 

This time is generally sufficiently small in an RTOS.  

The other protocol is known as priority protection, which changes the 

processes priority to the highest priority of all the resource locks it has, such that 

multiple processes sharing a common resource have the same priority. However, 

the small block of time still exists in this protocol as in the first protocol.By having 

a preemptive kernel, priority based scheduling and some priority inversion 

avoidance protocol, the RTOS can meet most stringent real time system 

constraints. There are cases where a PC-based RTOS is not sufficient.  

The reason is that all preemptive and rescheduling actions need some 

CPU time, which is known as context switch time, or jitter. During the context 

switch time, the processor will store the memory to be preempted and used for 

later process reentry. Typical jitter time for a PC based RTOS is in the magnitude 

of several microseconds [50]. In the TBA projects, since the control loop time 

period is in the milliseconds level, a PC based RTOS is adequate. VxWorks, 

QNX, RTAI, RtLinux and INtime are some examples of commonly used RTOS for 

PC based control system.  

The first two are true RTOS in the sense that they are delivered as RTOS; 

the last three, however, are patched RTOS based on a GPOS. RtLinux and RTAI 

are based on Linux, and INtime is based on Microsoft Windows.  Even though 

different types of RTOS are different in implementation, they all provide the same 

satisfactory real time performance. In this research, RTAI/Linux is used. 
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RTAI/Linux 

The Real Time Application Interface is a hard real time extension to the 

Linux kernel, contributed in accordance with the Free Software guidelines. It 

provides the features of an industrial grade RTOS and is seamlessly accessible 

from the powerful and sophisticated GNU/Linux environment.  

This project has been founded by the Department of Aerospace 

Engineering of Politecnico di Milano (DIAPM). Over the years, it has become a 

community effort involving international developers, coordinated by DIAPM's 

Prof. Paolo Mantegazza [51]. 

RTAI uses a Linux patch which enables the GPOS Linux to fulfill tasks 

with real time constraints when the RTAI is loaded.  

There are two patches that have been used. The first one is called the 

Real Time Hardware Abstraction Layer (RTHAL), which is developed for 

RTLinux. The second one is called the Adaptive Domain Environment for 

Operating Systems (ADEOS), which is developed under the GNU General Public 

License (GPL) to provide a flexible environment for sharing hardware resources 

among multiple operating systems, or among multiple instances of a single OS. 

New versions of RTAI have been ported from RTHAL to ADEOS.     

RTAI/Linux Architecture 

RTAI can be treated as a GPOS Linux kernel module. When it is loaded, 

the system is an RTOS; otherwise, the system is just a Linux GPOS. The 

Linux/RTAI system architecture can be shown in Figure 4.5.  
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Figure 4.5, RTAI/Linux system architecture 

On the lowest level are the hardware interrupt and the RTHAL or ADEOS 

patch. The patch collects all the pointers to the internal data structures and 

functions that affect the real time operation into a single structure (rt_hal), traps 

all these function calls to the member of rt_hal data structure, and makes the 

pointers in rt_hal point to the redefined RTAI functions.  

A definition of rt_hal data structure is as shown as follows [52]: 

struct rt_hal { 

struct desc_struct *idt_table; 

void (*disint)(void); 

void (*enint)(void); 

unsigned int (*getflags)(void); 

void (*setflags)(unsigned int flags); 

void (*mask_and_ack_8259A)(unsigned int irq); 

void (*unmask_8259A_irq)(unsigned int irq); 

void (*ack_APIC_irq)(void); 

void (*mask_IO_APIC_irq)(unsigned int irq); 

void (*unmask_IO_APIC_irq)(unsigned int irq); 

unsigned long *io_apic_irqs; 
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void * irq_controller_lock; 

void *irq_desc; 

int *irq_vector; 

void *irq_2_pin; 

void *ret_from_irq; 

}; 

The middle level is a coexisting Linux kernel and RTAI environment. The 

user program can be developed in the kernel space and loaded into the kernel as 

a module, like a hardware driver, such that hard real time (HRT) can be achieved 

with optimal performance.The highest level is the user space, where all user 

programs can use the standard library functions.  

The RTAI provides a symmetric real time programming environment in 

kernel space and user space. The user space real time program environment is 

called LXRT, an extension on RTAI, which provides good average real time 

performance with some unbearable spikes [53].   

In this project, RTAI 3.0 and Linux 2.4.25 kernel with RTHAL patch are 

used. 

LXRT 

LXRT enables a symmetric use of RTAI functions in the user space and 

kernel space, both HRT and soft real time (SRT). With LXRT, it is very 

convenient for any C programmer to implement and test a real time control 

system in the user space without dealing with the kernel space problems. It is 

convenient also because most of the GNU standard library, for example, math 

library functions as defined in math.h, can be called in the user application.  
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For HRT in user space, there is one constraint: any call to a Linux kernel 

service should be avoided. For example, the POSIX file operation functions as 

defined in stdio.h should not be called. These Linux services will cause a context 

switch between the RTAI and the Linux kernel. In a control system with a high 

control loop rate, for example ~20 KHz, the context switch time might violate the 

real time constraints. The worst case occurs when the Linux kernel service is 

blocked; then the HRT task will certainly miss the deadline.  

So, as a rule of thumb, Linux kernel service calls should be avoided inside 

a HRT task. One way to use service call is to have a server – client configuration 

by using the IPC calls provided by RTAI/LXRT, for example, RTAIFIFO, RTAI 

shared memory, etc.  Another advantage of LXRT is that the user space real time 

program can be ported into kernel space real time fairly easy because all the 

RTAI/LXRT function calls have the same names and definitions as the ones in 

the kernel space.  

Programming languages and tools 

The programming languages utilized in this research are C and C++. The 

control system software is strictly C style programming simply because the RTAI 

and LXRT are both written in C, and our DAQ drivers are also written in C. The 

high level GUI is based on QT and QWT, which are both written in C++. 

The drivers package for the A/D, D/A boards’ used in this research is 

called Linux control and measurement device interface (Comedi) [54], which is 

developed and maintained by a group of free software enthusiasts including 

David Schleef, and Frank Mori Hess.   
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 Comedi is a collection of drivers for a variety of common data acquisition 

plug-in boards. The drivers are implemented as a core Linux kernel module 

providing common functionality and individual low-level driver modules. The 

Comedi project develops open-source drivers, tools, and libraries for data 

acquisition. The drivers provide features like integrated real time support for most 

hardware, a high-level library (comedilib), application-level device independence, 

and compatibility with Linux 2.0, 2.2, 2.4, 2.6 kernels, and support RTAI. 

The source code is managed by Concurrent Version Systems (CVS), 

which provides remote check in, check out source codes and user privilege 

management. CVS is an open source software package and can be downloaded 

free of charge from http://ftp.gnu.org/non-gnu/cvs/.  Doxygen, which is used as 

the software documentation tool, is an open source software package developed 

under a GPL license. Doxygen can be downloaded at www.doxygen.org.   

TBA Software Design 

In this section, the detailed design of the TBA control software is 

introduced and analyzed. The proposed control software has a multithread 

framework under a real time operating system. As discussed earlier, RTAI/Linux 

is used as the real time operating system.  Even though RTAI/Linux is claimed to 

be hard real time operating system, it still has an overhead for context switches 

in a PC environment. For example, a sampling rate of 10 kHz can be subject to 

as much as a 30% time delay [55]. This also justifies the chosen sample rate of 

1000 Hz, which has a 3% time delay at most. 
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A Windows/LabVIEW Implementation 

A LabVIEW implementation under Windows XP was used earlier in the 

TBA project to establish the technical feasibility of the TBA [1, 2], and the 

functional diagram of this implementation is shown in Figure 4.6.  

Although this implementation was sufficient to prove the functional 

feasibility of the TBA, it has several drawbacks:  

1. LabVIEW control software is developed under Windows XP, which is a 

GPOS. 

2. The BLDC servo motor control is restricted with serial port only. 

3. The control program is a single thread design. 

A non-deterministic and long control loop sample time (~100ms), as well 

as the non-deterministic control loop time, violated the constant control loop time 

assumption in the controller digital implementation. For example, a digital form 

PID is shown in Equation ( 3.23 ).  Experimental results showed that, with the 

LabVIEW implementation, a maximum servo control loop rate of 10 Hz can be 

used. Considering that the servo motor has a rated speed of 5000 rpm, the servo 

control loop frequency is far too low. The long sample rate will introduce large 

quantization error and performance degradation [56].  

 

Figure 4.6, Windows/LabVIEW diagram 
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As a result of the above drawbacks, the performance of the TBA system 

could not satisfy the design requirements. For example, the steady state position 

error is about 4 degrees, and the transient response from the gear shift is too 

large.  

The DVT output velocity is subject to up to 50% change in about 30~50 

milliseconds in all the gear shift actions [1]. In order to achieve better 

performance and shorter control loop time, a real time multithread design is 

adopted in this research. 

Multithread Design with RTAI  

A multithread design is used since there are several subsystems and each 

has a different real time requirement. The TBA real time control software 

structure is shown in Figure 4.7. 

 

Figure 4.7, TBA real time control software implementation diagram 
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Two Linux PCs are used. One is a low level control PC (LLPC) with the 

RTAI, Comedi and all control algorithms. The other is a high level GUI PC 

(HLPC), which does not have the RTAI, and is used for data display and some 

system initialization.  

There are three layers in LLPC software. The lowest level consists of the 

Operating System (OS), RTAI, and Comedi drivers; the serial port driver is 

essentially a part of the Comedi driver. The middle level consists of user libraries 

and hardware driver APIs developed on top of Comedi and the RTAI; new control 

algorithms can be added in the user library. 

The highest level in the LLPC is the user applications. There are four 

threads that run simultaneously in the LLPC: servo motor control (SMC), shift 

control (SHC), dynamometer torque control (DMC), and output (OPT) thread. 

The DAQ block is not a thread, but in fact is embedded in a corresponding 

thread. Preemptive priority scheduling is used to guarantee the real time 

constraint of the SMC. The SMC runs at priority 99 with a hard real time 

constraint; the other three threads run at priority 98 with a soft real time 

constraint. Other scheduler schemes are also possible [15].  

The SMC is a closed loop thread which controls the servo motor; it also 

receives load torque data from the DMC and, combined with its own feedback 

data, determines the gear number and load torque profile and sends these 

commands to the SHC and SMC.  

The SHC receives commands from the SMC and takes the action to 

engage or disengage gears.  
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The DMC receives torque commands from the SMC and closed loop 

control dynamometer torque, and it also sends the data to the SMC.Due to the 

sharing of data structures among the threads, the RTAI semaphore is used for 

collision avoidance.  

Another functionality of the software is to save and display experimental 

data. The data are sent to three different blocks: data file, LLPC GUI and 

Ethernet for HLPC GUI. 

The saving of data to files is achieved by calling the function write(), which 

is inside the SMC block; this violates the HRT constraint [15], but experiments 

show satisfactory results. An alternative solution could be to send data using a 

RTAI FIFO, then write to a file in another thread, which requires synchronization 

between fast and slow threads.  

In the LLPC, there is a GUI block which is essentially same as that in the 

HLPC. The reason to use a GUI in the LLPC is for data display convenience 

without considering the various issues related to Ethernet.  

A Graphical User Interface 

A graphical user interface is implemented for displaying the experimental 

data. It has been decided that the GUI does not need to be real time, and all the 

real time data must be retrievable from the data stored in the LLPC. 

The open source software, Qt Widgets for Technical Applications (QWT), 

which is developed on top of QT/X11, is used in this research.  

QWT is maintained by Josef Wilgen et al., and the latest version is 4.2.0. 

A screenshot of the GUI is shown in Figure 4.8. 
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Figure 4.8, Screen shot of GUI 

The GUI provides several features: 

1. Real time display of six experimental data. 

2. An interface to a RTAI FIFO. 

3. The ability to dynamically zoom in and out a curve. 

4. Arbitrary selection of a curve to be displayed. 

5. Fast data display by updating only the new data in the picture.  

In summary, the software design meets all of the stated requirements and 

provides a flexible structure for new controller implementation. It is designed as a 

HLPC and LLPC configuration, which makes it possible to separate the 

development system and low level control PC.    

Furthermore, compared with the LabVIEW/Windows implementation, the 

new RTAI real time multithread implementation improves system performance 

significantly as will be discussed in Chapter 5.  
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CHAPTER 5  

SIMULATIONS AND EXPERIMENTS  

In this chapter, the simulation and experimental results using the proposed 

TBA control and real time implementation will be presented and analyzed.  The 

Matlab/Simulink model simulation serves to evaluate TBA performance under the 

proposed control method. The experiments serve to evaluate the performance of 

the TBA prototype under the control method and software implementation. At the 

end of the chapter, a conclusion of the proposed control for the TBA is given. 

Matlab/Simulation 

The Simulink models were built on a modular basis as shown in Figure 

5.1. There are six blocks in the model: a trajectory block, a controller block, a 

motor block, a DVT block, an arm block, and a data output block.  

BLDC Motor  

The parameters of the BLDC motor used in the simulation are listed in Table 5.1. 

 

Figure 5.1, Top level Simulink model (Linear Model) 
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Table 5.1, Motor parameters 

Parameters  BLDC motor 

Rated Speed 5000 rpm 

Rated Torque 4.36 N-m 

Rated Power 2829 

Torque Constant 0.274 N-m/amp 

Resistance 4.511Ω 

Inductance 12mH 

DC-Link Voltage 250Vdc 

Rs 0.242Ω 

Ld,Lq 5.5 mH 

d-q Model 

Kt 0.11 N-m/amp 

No. of Pole pairs 4 

Rotor Moment of Inertia 172.9×10-6 kgm2 

Viscous Damping 8.5944×10-5 kgm2/s 

Static Friction 0.1 N-m 
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DVT 

In the TBA prototype, a three speed DVT is used.  A final gear reduction is 

also used in the simulation to accommodate the real application of the TBA.  

The final gear reduction has a ratio of 200, and is installed between the 

DVT output shaft and the baseline load. The parameters of the DVT are shown in 

Table 5.2. 

Simulation Results 

The simulation results presented in this research can be differentiated by 

trajectory and load. Two trajectories and three loads were simulated in the 

research, and the values of these two design parameters are given as follows: 

1. Trajectory:  

a. Robot arm rotates 150° from horizontal position (0°).  

b. Robot arm move 90° from horizontal position (0°), then pauses for 2 

seconds, then continues to rotate for 60° and stops at 150°. 

2. Load:  full load,  50% load ,and 10% load 

Based on the different DVT types, trajectory types, and load types, there 

are eighteen different simulation parameter combinations. The test combinations 

are shown in Table 5.3. 

Table 5.2, DVT parameters and motor-DVT combinations 

Final Gearbox DVT DVT Type 

Ratio Efficiency Ratio Efficiency 

three speed 200 0.90 7/3.8/3.16 0.80 
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Table 5.3, Test combinations 

No. Motor DVT Trajectory (deg) Load 

1 KM B204C three speed 0~150 Full 

2 KM B204C three speed 0~90~150 Full 

3 KM B204C three speed 0~150 Half 

4 KM B204C three speed 0~90~150 Half 

5 KM B204C three speed 0~150 10% 

6 KM B204C three speed 0~90~150 10% 
 

Table 5.4, Simulation results (Full load) 

DVT Type Settling Time 
(seconds) 

Steady State Error 
(deg) 

Tracking Error 
(deg) 

three speed  4.21 0.38 ~65 
 

The evaluations of the TBA performance are carried out in terms of 

settling time, tracking error, and steady state error.  The settling time is defined 

as the time required for the arm to move into a region within ± 2% of the set 

point.  Figure 5.2 shows TBA performance with a full load and a 0°~ 150 ° 

trajectory. The simulation results of TBA performance with full load are 

summarized in Table 5.4, where large tracking error is observed.  

A closer look at the speed curves in Figure 5.2 reveals that the tracking 

error is mainly a result of the inappropriate command speed, or an inappropriate 

trajectory design. The purpose is to evaluate the maximum speed capability of 

the TBA system. At full load, the steady state error is 0.38 degree, and the speed 

of the TBA is about 35.6 degree/second, which over match the baseline actuator 

specification shown in Table 1.1. 
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Figure 5.2, Three speed DVT with full load 
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An immediate solution to the large tracking error is to design a new 

trajectory with a lower command speed and an appropriate position controller. 

The result of the new trajectory is shown in Figure 5.3.   

By designing a new trajectory, the system has a good tracking ability with 

a maximum tracking error of ~5 degrees.  

The settling time and steady state error are similar as those in the 

previous trajectory. The new trajectory is used for both half load and 10% load in 

the rest of the simulations.  

The purpose is to examine the control strategy and consistency of the 

performance with same controller parameters and same trajectory.  

The performances for the 50% and 10% load are summarized in Table 5.5. 

In summary, the proposed control method meets the TBA control 

requirement in terms of settling time, steady state error, and tracking error.  

The proposed TBA design can match the torque speed requirement of the 

basleine actuator.  

The lacks of the ability to evaluate the shift strategy transition stability 

under load torque disturbance in this simulation model will be verified by the 

experiments.  

Table 5.5, simulation result (half load) 

DVT Type Settling Time 
(seconds) 

Steady State Error
(deg) 

Tracking Error 
(deg) 

Half load  2.45 0.38 ~5  

10% load 2.44 0.36 ~5 
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Figure 5.3, Simulation results with new trajectory design
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Real Time Control Experimental Results 

The experimental results for the TBA prototype presented in this section 

are for verification of the correctness of the control method presented in Chapter 

3 and the effectiveness of the real time software design presented in Chapter 4, 

thus they are only parts of the complete experimental results, full experimental 

results are listed in the Appendix.  The figures of the experimental results are 

produced by using Matlab on the actual experimental data generated by the real 

time control software implementation, and several things need to be clarified in 

order to fully understand the results: 

1. The trajectory is selected such that the robot arm will move from a vertical 

down to a vertical up position.   

2. Position error is evaluated at the DVT output shaft and then converted to 

the arm joint by dividing the position error by the final gear with a ratio of 

200.  

3. The three states of the TBA are separated by 5.0 N-m and 8.0 N-m 

dynamometer torques, which are equivalent to a state based switch signal 

with a two dimensional shift boundary because the dynamometer torque 

depends on angular position and acceleration.  

4. There are two curves in each figure: the x axis is time in seconds, the left 

y axis is the TBA gears (1st, 2nd, or 3rd), and the right y axis is the data. 

5. The final gear reduction is 200, and errors associated with the final gear 

box are neglected.   
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6. The curves in the text are only shown for a full load, for curves of all other 

loads, please see the appendix. 

The results are presented in the following categories: 

1. Transition unstable vs. stable switch signals  

2. Position errors 

3. DVT speed (disturbance suppression) 

4. Real time performance measured by difference between required 

sampling period and the actual period. 

5. Load torques 

Transition Unstable vs. Stable Switch Signals 

The experiment is first carried out to study the transition stability of the 

switch strategy. As proven in Chapter 3, a shift strategy based on a single shift 

boundary is not transition stable. The results of transition unstable switch signal 

based on a single shift boundary are shown in Figure 5.4 and Figure 5.5.  

 

Figure 5.4, Single boundary, state based shift strategy (half load) 
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Figure 5.5, Single boundary, state based shift strategy (full load)  

From these two figures, we can see that unwanted shifting commands 

have been generated during the gear shift period for both half load and full load. 

We can also see that torque disturbances are generated during the shift. As a 

result, many unwanted shift commands have been generated, which makes the 

switch signal unstable. 

As discussed in the Chapter 3, two measures are adopted in this research 

to prevent these unwanted shift signals. The first one is to set the grey region 

width to 1 N-m equivalent of dynamometer torque. The second one is to set the 

minimal time between adjacent shifts to 0.5 seconds. 

After implementing the above measures into the software, new results 

show that the switch signals are transition stable, which is consistent with the 

analysis in the Chapter 3. Figure 5.6 and Figure 5.7 show the transition stable 

results corresponding to the unstable results in Figure 5.4 and Figure 5.5 

respectively. Remember that the choice of the width of the grey region and the 

time constraint in the two measures are not unique.  
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Figure 5.6, Two boundaries, hybrid switch signal (half load) 

 

 

Figure 5.7, Two boundaries, hybrid switch signal (full load) 
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Position Error 

Five different load conditions are tested using the proposed control 

schemes to evaluate the system performance in terms of steady state position 

error. The load conditions are zero load, 25% load, half load, 75% load and full 

load. The load conditions are emulated by the dynamometer.  The steady state 

position error and tracking error curve for full load is given in Figure 5.8. From 

this figure, the maximum tracking error is about 44 degrees when the TBA is 

shifting from the 2nd to the 1st gear. And the steady state position error of the TBA 

is zero degrees. The position is transformed from the encoder reading, and the 

encoder output resolution is 1024 counts/revolution, so strictly speaking, the 

steady state position error is less than one count of the encoder reading, which is 

about 0.35 degrees.  The position errors for all load conditions are summarized in 

Table 5.6, and tracking errors are summarized in Table 5.7.  

DVT Speed and Disturbances 

Due to the unmatched speed between the BLDC and the load, significant 

speed disturbances are observed. This phenomenon can be found in the speed 

curve of the BLDC and the load.  When the load has its maximum value, the 

speed curves for the BLDC and the DVT are shown in Figure 5.9 and Figure 5.10 

respectively.   

The maximum disturbance of the DVT speed happens when the DVT 

shifts from the 2nd gear to the 1st gear. This effect is more clearly shown in Figure 

5.11, which is a locally amplified version of Figure 5.10. 
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Figure 5.8, Position error with full load 

 

Table 5.6, Position errors for different loads 

Load Angular Position 
Error at DVT 

(counts)  

Angular Position 
Error at DVT 

(deg) 

Angular Position 
Error at arm 

(deg) 

Position Error at 
arm end (mm) 

0 3 <1.06 <0.0053 <0.17 

25% 3 <1.06 <0.0053 <0.17 

50% 3 <1.06 <0.0053 <0.17 

75% 0 <0.35 <0.0018 <0.06 

100% 0 <0.35 <0.0018 <0.06 

 

Table 5.7, Maximum tracking errors for different loads 

Load Tracking Error at 
DVT (counts)  

Tracking Error at 
DVT (deg) 

Tracking Error at 
arm (deg) 

Tracking Error at  
arm end (mm) 

0 40 <14.07 <0.0704 <2.22 

25% 61 <21.45 <0.1073 <3.38 

50% 71 <24.97 <0.1249 <3.93 

75% 122 <42.90 <0.2145 <6.75 

100% 125 <43.95 <0.2198 <6.92 
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Figure 5.9, BLDC speed with full load 

 

 

Figure 5.10, DVT speed with full load  
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Figure 5.11, DVT speed disturbance near gear change from 2nd gear to 1st 

From Figure 5.10 and Figure 5.11, when the TBA shifts from 2nd gear to 

the 1st gear, a large disturbance is observed; much smaller disturbances are 

observed for all three other shift actions.  

Even though the magnitude of the disturbance is high, the system is still 

able to recover from the disturbance quick enough and still tracks both the 

velocity and position after the shift.  

The cause of this abnormally large disturbance is probably related to the 

mechanical design of the DVT gears, since the last stage of the DVT is vastly 

different from the first two in terms of bearing support. Notice that a much smaller 

disturbance is observed when the shift is from 1st to 2nd gear. This shift has a 

speed difference that is comparable to the previous shift, which can serve as 

support for the above conclusion that the abnormally large disturbance results 

from the mechanical design of the system. 
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One can also observe Figure 5.11 from that there is a ~0.05 second lag 

between the shift command and the shift action. We can conclude that the shift 

action can be executed in about 0.05 seconds after the command is sent out. 

This delay adds an additional shift disturbance to the TBA the system. 

Real Time Performance 

As mentioned in Chapter 3 and Chapter 4, the servo control loop runs at 

1000Hz, which is critical for the validity of the digital PID controller.  

In this research, the real time performance is evaluated based on the 

measured jitter values. The jitter is defined as the difference between the 

commanded sample period and the actual sample period. Table 5.8 shows the 

jitter values from the results of two consecutive tests. From the table, we can see 

that the average loop period is almost exactly the same as the commanded loop 

period (1milliseconds). The maximum absolute value of the jitter is 40 

microseconds, which is about 4% of the commanded period.  In conclusion, the 

sample period requirement is met with a negligible time delay. 

Load Torques 

Since the load torque is used in the shift strategy, a close look at the 

torque curve gives better understanding of the shift strategy. 

Table 5.8, Real time performance and jitter results 

Test Mean 
(microsecond) 

Standard deviation 
(microseconds) 

Maximum 
(microseconds) 

Minimum 
(microseconds) 

No.1 -0.0019 2.5948 13 -33 

No.2 -0.0024 2.5730 13 -40 
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BLDC torque and dynamometer torque curves for full load are shown in 

Figure 5.12. There are three curves in the figure: the dashed line is the gear 

number, the upper curve is BLDC torque, and the lower curve is dynamometer 

torque. As can be observed from the curves, the load torque was tracked very 

well, and the shift actions can be explained more clearly by the following: 

1. The DVT starts from 3rd gear with the lowest ratio, with the arm vertical 

down; 

2. The DVT shifts to 2nd gear when the load torque goes above 5 N-m. 

3. The DVT shifts to 1st gear when the load torque goes above 8 N-m. 

4. The DVT shifts to 2nd gear when the load torque goes below 6 N-m. 

5. The DVT shifts to 3rd gear when the load torque goes below 4 N-m. 

6. The TBA tracks the trajectory and stops with arm at a vertical up position. 

Experimental Results Summary 

Based on the experimental results, the following conclusions can be 

drawn: 

1. The prototype TBA system dynamic performance is stable and suitable for 

precise servo control such as that used in robotic systems. 

2. The shift strategy, or switch signal, is transition stable.  

3. The proposed control system design and implementation meets all the 

TBA control system performance requirements. 

4. The experimental results also suggest that a further examination of the 

effects of DVT mechanical design on the transient disturbances is 

necessary.  
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Figure 5.12, BLDC servo motor and dynamometer load torque (full load) 

load torque

motor torque
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CHAPTER 6  

Contributions and Future Work 

Contributions 

In this dissertation, a number of fundamental problems associated with the 

TBA prototype and its dynamic operation were studied analytically and 

experimentally.  

1. A hybrid dynamic system model was set up for the TBA system, refer to 

Chapter 2, which is a set of three 2nd order linear time invariant systems; 

the model is the first example of the hybrid system theory applied to the 

TBA system in literature.  

2. A supervisory controller was developed for the TBA system. A transition 

stable switch strategy was identified analytically by finding time invariant 

and state space invariant switch signals as shown in Chapter 3, and it was 

demonstrated experimentally as reported in Chapter 5. By doing this, this 

dissertation addresses the essential hybrid problem which is the design of 

the associated supervisory controller for continuous systems [36]. 

3. The control strategy successfully achieved switch signal transition stability. 

The approach is to find a control strategy whose switch signal is both time 

invariant and state space invariant. In this research, a heuristic method 

was adopted to generate a transition stable switch signal. First, a two shift 

boundary scheme was used such that up and down shift signals are 
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generated on different conditions; thus, a state space stable switch signal 

can be found by using properly tuned shift boundaries. Second, a time 

invariant switch signal was found by limiting the time between two 

adjacent switch signals. By using a control strategy involving two shift 

boundaries and a time constraint, a transition stable signal was achieved, 

which was shown analytically and experimentally.  

4. A sufficient condition for TBA stability was also established by solving the 

second of the three fundamental problems of hybrid control systems 

formulated in [15]. The method and results can be extended to a wide 

range of electrical and mechanical systems involving multiple continuous 

systems and discrete state changes. The sufficient condition for plant 

stability was established by finding a common feedback controller to 

stabilize all three subsystems. Under this condition, it was shown that a 

common Lyapunov function exists for the TBA; thus, stability under 

asynchronous switching is achieved for the TBA.  

5. A PC based real time control software platform was also established for 

the class of mechanical systems that includes TBA’s. The real time control 

software was set up using RTAI, which provides a real time patch for 

general Linux and user space real time programming. The software used 

a multithread design in order to meet the real time performance 

requirement of different subtasks. The experimental results showed that 

the proposed software meets all the system design requirements and yet 

is sufficiently flexible for future controller upgrades.  With the proposed 

real time control software framework, significant performance 
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improvements were achieved compared with a LabVIEW / Windows XP 

implementation during the TBA feasibility test [1, 57] .  

6. The particular real time control software framework developed here is 

based on open source software and is the first in literature and is 

expressly designed to fit the needs for high bandwidth mechanical 

systems R&D. The multi-thread real time control software framework, by 

providing deterministic time, task scheduling, inter process 

communications, Ethernet, and a GUI, can be used as a reference 

framework for a wide range of PC based control problems where real time 

performance is required. 

In summary, the research successfully addressed the most fundamental 

control issues associated with the TBA prototype including modeling, control, 

simulation, and experiment verification. It has expanded the fundamental 

understanding of the TBA system control and similar hybrid dynamic systems. 

The methods and results of this dissertation will contribute to the hybrid system 

control knowledge base and the real time control software design practice in 

many applications.  

Future Work 

Although fundamental problems associated with the TBA control were 

addressed in this dissertation, much research remains pertaining to theoretical 

and implementation issues. Specially, future works should: 

1. Explore other optimal or suboptimal control scheme. One optimal based 

control scheme for minimal transient response was formulated in this 
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research. Another possible objective for optimization can be to maximize 

servo power output control. One of the challenges of these optimal control 

methods lies in the existence of plant constraints. For example, the servo 

motor has speed and torque saturations. Another difficulty is to sustain 

real time loop speeds in the presence of the large calculation overhead of 

more complex control algorithm. 

2. Analyze and evaluate the effects of the parameter uncertainty of the TBA 

on the system performance.  In this research, a conservative approach 

was used to design the feedback controller. For example, all the closed 

loop poles not only have negative real parts, but these poles are far away 

from the origin. This conservative approach can maintain system stability 

and keep system performance within an acceptable range under 

parameter uncertainty. An alternative approach is to design a controller 

using robust control theory, which usually gives a high order controller. In 

addition to design controller for system with parameter uncertainty, robust 

control theory can also be used to attack plant disturbance, sensor noise 

rejection.  

3. Asymmetric transient responses were observed in experiments when 

shifting into and out of the 1st gear. A further examination of the 

mechanical design of the TBA will be helpful to identify the cause of this 

problem. The compliance characteristics of the bearing and shaft 

structures the planetary gears should definitely be studied further. 
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APPENDIX 
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2nd gear derivation (brake #2, middle ratio) 
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1st gear derivation (brake #3, highest ratio) 
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A planetary gear with ring gear locked: 
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Experimental results 
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25% load 
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50% load 
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75% load 
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TBA low level control software source code 

tbacontrol.c 

/* Transmission based servo actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file tbacontrol.c 
 This is the main function of the TBA control software 
 It does the following tasks by calling specific function calls: 
 
-# Initialize servo 
-# Clibrate NI-6023e  
-# Initialize the braking motors 
-# Startup TBA GUI interface 
-# Manage all the task threads 
 
*/ 
 
#include <stdio.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <getopt.h> 
#include <ctype.h> 
#include <signal.h> 
#include <comedilib.h> 
#include <pthread.h> 
 
#define KEEP_STATIC_INLINE 
#include <rtai_lxrt_user.h> 
#include <rtai_lxrt.h> 
#include <rtai_fifos.h> 
#include <rtai_msg.h> 
  
#include "ni6711.h" 
#include "ni6023e.h" 
#include "common.h" 
#include "setmode.h" 
#include "control.h" 
 
int quit=0; 
 
int main() 
{ 
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int drive_mode,controller_id,to_gear; 
 
pid_t pid; 
int status; 
 
 
drive_mode=2; 
controller_id=2; 
to_gear=1; 
 
 
if(init_hrt()==ERROR) 
{ 
printf("hard real timer initilization failed!\n"); 
exit(0); 
} 
 
 
//initialize NI-6711 
 
if(!(ni6711.ni_daq=init_6711())) 
 { 
  printf("NI6711 initializtion failed!\n"); 
  exit(ERROR); 
  } 
   
 
//initilize NI-6023e 
  
 
if(!(ni6023e.ni_daq=init_6023e())) 
 { 
  printf("NI6023e initializtion failed!\n"); 
  exit(ERROR); 
  } 
printf("\n\n*********************************************************\n"); 
printf("\nwait for analog input calibaration finshed!\n"); 
printf("\n*********************************************************\n"); 
sleep(5); 
 
 
//initialize rtai fifo 
 
if (!(rtfifo = rtf_open_sized("/dev/rtf0", O_RDWR, 2000))) { 
  printf("ERROR OPENING FIFO0\n"); 
  exit(ERROR); 
   } 
 
//start gui 
 
pid=fork(); 
  
if (pid==-1) 
{ 
printf("fork failed!\n"); 
exit(0); 
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} 
 
if(pid==0) 
{ 
execv("/home/robin/Dissertation/src/qtgui/realtime",""); 
_exit (EXIT_FAILURE); 
} 
 
if (pid==1) 
{ 
printf("I am parent, waiting\n"); 
waitpid(pid,&status,0); 
} 
 
printf("\n\n*********************************************************\n"); 
printf("\nWait for gui to start,click 'START' button on the gui!\n"); 
printf("\n*********************************************************\n"); 
sleep(3); 
 
 
//set drive mode 
 
setMode(drive_mode); 
printf("\n\n*********************************************************\n"); 
printf("\nwait for u3k initialization ...\n"); 
printf("\n*********************************************************\n"); 
 
 
printf("Done!\n"); 
 
 
 
pthread_create(&shift_thrd,NULL,setGear,(void*)mbxgear); 
pthread_create(&stdout_thrd,NULL,stdOut,(void*)mbxstdout);        
 
 
motorControl(controller_id,drive_mode); 
quit=1; 
 
 
pthread_join(shift_thrd,NULL); 
pthread_join(stdout_thrd,NULL); 
 
 
//clean up before termination 
 
close(rtfifo); 
 
return;  
} 
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common.h 

/* Transmission based servo actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file common.h 
  
 
*/  
#ifndef _COMMONMETRIC_ 
 #define _COMMONMETRIC_ 
  
 #include "ni6023e.h" 
 #include "ni6711.h" 
 #include "control.h" 
  
#include <rtai_lxrt_user.h> 
#include <rtai_lxrt.h> 
#include <rtai_fifos.h> 
#include <rtai_mbx.h>  
#include <pthread.h> 
 
 
 #define PI 3.1415926 
 #define rev2cnt(x) ((x)*1024) //counter resolution 1024 counts per revolution 
 #define cnt2rev(x) ((x)/1024) 
 #define rev2deg(x) ((x)*360) 
 #define deg2rev(x) ((x)/360) 
 #define cnt2rad(x) ((x)/1024*2*PI) 
 #define deg2rad(x) ((x)*PI/180) 
 #define rad2cnt(x) ((x)/2/PI*1024) 
  
 #define rpm2rps(x) ((x)*2*PI/60) //rev/min to rad/sec 
  
 #define sec2nsec(x) ((x)*1000000000) 
 #define sec2usec(x) ((x)*1000000) 
 #define sec2msec(x) ((x)*1000) 
 #define msec2nsec(x) ((x)*1000000) 
 #define msec2usec(x) ((x)*1000) 
 #define usec2nsec(x) ((x)*1000) 
 #define ENGAGE 0 
 #define DISENGAGE 1 
  
 #define MAFPNT 20 
  
 //control loop 
  
 #define PERIOD      0.001 //control loop time (second) 
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 //return status 
 #define ERROR 0 
 #define OK    1 
  
 //verbose output mode 
 #define VERBOSE 
  
  
 //ultra 3000-030x 
  
 #define SYSAMPS 30 //drive peak current 
 #define AOSCALE 0x7FFF //analog current output scale 0x7FFF 
 #define AOCONST (8191*128) //a constant as in AOSCALE/AOCONST*SYSAMPS (amps/volt) 
  
 //loadcell calibration 
 #define  N-M_PER_VOLT 3.53698 
  
 //motor parametrs 
 #define MOTOR_TORQUE_CONSTANT 0.414 
  
 //load and arm 
 #define ARMWEIGHT 90.71847 //Kg=200lb 
 #define ARMLENGTH 1.8288   //m=72inch 
  
  
  
 //rtai fifo handle 
 int rtfifo; 
  
 unsigned int ticks_per_second; 
  
 //int quit; 
  
 typedef struct  
 { 
 comedi_t *ni_daq; //handle for DAQ 
 int n_subdev; //number of subdevices 
 int n_ranges;//number of channel for specific subdevice 
 int n_channels; 
 comedi_range *rng;//range information of channel 
 lsampl_t maxdata;//maximum data value for specific channel 
 lsampl_t offset; //sample value corresponding to physical zero volt 
 }analogDev; 
  
 analogDev ni6711; 
 analogDev ni6023e; 
 /* 
 typedef struct 
 { 
 double time; 
 int dvt_position; 
 int motor_position; 
 int gear_current; 
 int command_position; 
 double motor_speed; 
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 double dvt_speed; 
 double load; 
 //double motor_torque; 
  }stdoutMsg; 
*/  
 typedef struct 
 { 
 float time; 
 int dvt_position; 
 int motor_position; 
 int gear_current; 
 int command_position; 
 float motor_speed; 
 float dvt_speed; 
 float load; 
 float motor_torque; 
  }stdoutMsg; 
 
MBX *mbxstdout;  
MBX *mbxgear; 
 
pthread_t shift_thrd; 
pthread_t stdout_thrd; 
  
 void endme(int); 
 void motorControl(int,int); 
 void*setGear(void *); 
 int init_hrt(void); 
 double readLoadcell(void); 
 void dynaControl(tbaPID *,float); 
 void *stdOut(void *); 
 //char* openDataFile(int, int); 
  
#endif
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common.c 

/* Transmission based servo actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file common.c 
 This file defines functions to initialize a real time task and RTAI mailboxes: 
  
  
 
*/ 
 
 #include "common.h" 
 #include <stdlib.h> 
 #include <rtai_shm.h> 
  
 
 extern int quit; 
  
/** \function 
 initilize a real time task and two mailboxes 
  
 
*/ 
 
 int init_hrt(void){ 
   
  struct sched_param mysched; 
  RT_TASK *hrttsk; 
  unsigned long hrttsk_name; 
      
  rt_allow_nonroot_hrt(); 
   
  mysched.sched_priority = sched_get_priority_max(SCHED_FIFO)-4; 
   
  if( sched_setscheduler( 0, SCHED_FIFO, &mysched ) == -1 ) { 
    puts("ERROR IN SETTING THE SCHEDULER"); 
    perror("errno"); 
    return 0; 
  } 
    
  hrttsk_name = nam2num("HRTTSK"); 
     
  if(!(hrttsk = rt_task_init(hrttsk_name, 1, 0 ,0 ))) { 
  puts("Can't Init Hard Real Time TASK\n"); 
  return 0; 
  } 
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  rt_set_oneshot_mode(); 
     
  ticks_per_second = (unsigned int)nano2count((RTIME)(1000000000)); 
   
  printf("Ticks per second: %u\n",ticks_per_second); 
 
  rt_task_use_fpu(hrttsk,1);  
   
  rt_linux_use_fpu(1);  
   
   
  // make a mailbox for shift controller  use 
  if((mbxgear=rt_mbx_init(nam2num("SHFTCTR"),2048))==0)  
   
  { 
    puts("Couldn't create shiftcontrol mailbox.\n"); 
    exit(4); 
  } 
   
  // make a mailbox for shift controller  use 
  if((mbxstdout=rt_mbx_init(nam2num("STDOUT"),2048))==0)  
   
  { 
    puts("Couldn't create stdout mailbox.\n"); 
    exit(4); 
  } 
   
  
  start_rt_timer(0); 
   
  rt_task_delete(hrttsk); 
   
  return 1; 
 } 
 
  
/** \function 
 receive messages from a mailbox and send them out to a real time FIFO 
  
 
*/ 
  
 void* stdOut(void*pmbx) 
{ 
  RT_TASK *stdtsk; 
  struct sched_param mysched; 
  mysched.sched_priority = 98; 
  int nbyte; 
   
   
  stdoutMsg *msg_rcv; 
   
  msg_rcv=(stdoutMsg *)malloc(sizeof(stdoutMsg)); 
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  if( sched_setscheduler( 0, SCHED_FIFO, &mysched ) == -1 )  
   
  { 
    puts(" ERROR IN SETTING THE SCHEDULER UP"); 
    perror( "errno" ); 
    exit( 0 ); 
 
  }        
   
  if(!(stdtsk = rt_task_init(nam2num("STDTSK"), 1 , 0 ,0))) 
 
  { 
    puts("CANNOT INIT STDOUT TASK\n"); 
    exit(3); 
  } 
 
  rt_task_use_fpu(stdtsk,1); // floating point for real time task "stdtsk" 
  rt_linux_use_fpu(1); // floating point for foreground Linux processes 
 
  while(!quit) { 
    nbyte=rt_mbx_receive_timed(pmbx,msg_rcv,sizeof(stdoutMsg),(RTIME)100000000); 
     
    write(rtfifo,(void *)msg_rcv,sizeof(stdoutMsg)); 
    
  } 
  free((void *)msg_rcv); 
  rt_mbx_delete(mbxstdout); 
   
 
} 
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control.h 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file control.h 
  
*/  
 
#ifndef _CONTROLLER_H 
#define _CONTROLLER_H 
 
 
//data structure for PID control 
typedef struct 
{ 
double Kp,Ki,Kd;//gains 
 
double Ts;//sample time 
char flag;//with or without windup,("w" or "n") 
double e[3],u[2];//error and control signal 
double ra[4]; //reference and actual (position and velocity) 
}tbaPID; 
 
typedef struct 
{ 
 
double t[3]; 
double c[2]; 
double omegaMax; 
double thetaCommandDVT; 
double loadTorque; 
double alphaRef; 
double omegaRef; 
double thetaRef; 
}tbaTrj; 
 
void positionalPID2D(tbaPID *);//2-D positional PID 
void velocityPID2D(tbaPID *);//2-D velocity PID 
 
void positionalPID1D(tbaPID *);//1-D positional PID 
void velocityPID1D(tbaPID *);//1-D velocity PID 
 
void trajectoryParams(tbaTrj *); 
 
void tbaFeedbackControl(tbaPID *); 
 
void initPID(tbaPID *); //initialization of PID stucture 
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void trajectoryRef(tbaTrj *,double); 
 
#endif 
/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file control.c 
 This file defines the all the controller functions 
 
 
*/ 
 
#include "control.h" 
#include "common.h" 
#include <math.h> 
 
/** \function  
 *Position PID control algorithm, 2-D design\n 
    *                        
 *u[k]=Kp*e[k] + Ki*Ts* sum(e[i]) + Kd/Ts*(e[k]-e[k-1]) + u[0]\n 
    *                       
*/ 
                         
void positionalPID2D(tbaPID *pPID) 
{ 
double Pk,Ik,Dk; 
 
pPID->e[0]=pPID->ra[0]-pPID->ra[1];//initial error 
 
pPID->e[2]=pPID->e[2]+pPID->e[0];//sum of errors 
 
Pk=pPID->Kp*pPID->e[0]; 
Ik=pPID->Ki*pPID->Ts*pPID->e[2]; 
Dk=pPID->Kd/pPID->Ts*(pPID->e[0]-pPID->e[1]); 
 
 
pPID->u[0]=pPID->u[1]+Pk+Ik+Dk;//u[1] is the initial control command 
 
pPID->e[1]=pPID->e[0]; 
 
//printf("%f %f %f\n",Pk,Ik,Dk); 
 
} 
 
 
/** \function 
Velocity PID control algorithm, 2-D design 
 
                         
u[k]=u[k-1] + Kp*(e[k]-e[k-i]) + Ki*Ts*e[k] + Kd/Ts*(e[k]-2*e[k-1]+e[k-2]) 
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*/                         
 
void velocityPID2D(tbaPID *pPID) 
{ 
double Pk,Ik,Dk; 
 
pPID->e[0]=pPID->ra[0]-pPID->ra[1];//initial error 
 
Pk=pPID->Kp*(pPID->e[0]-pPID->e[1]); 
Ik=pPID->Ki*pPID->Ts*pPID->e[0]; 
Dk=pPID->Kd/pPID->Ts*(pPID->e[0]-2*pPID->e[1]+pPID->e[2]); 
 
pPID->u[0]=pPID->u[1]+Pk+Ik+Dk;//u[1] is the previous control command 
 
pPID->u[1]=pPID->u[0]; 
 
pPID->e[2]=pPID->e[1]; 
 
pPID->e[1]=pPID->e[0]; 
 
} 
 
 
/** \function 
Position PID control algorithm, 1-D design 
                         
u[k]=-Kp*(x[k]-x[]) + Ki*Ts* sum (e[i]) + Kd/Ts*(e[k]-e[k-1]) + u[0] 
                       
*/ 
 
 
 
void positionalPID1D(tbaPID *pPID) 
{ 
double Pk,Ik,Dk; 
 
pPID->e[0]=pPID->ra[0]-pPID->ra[1];//initial error 
 
pPID->e[2]=pPID->e[2]+pPID->e[0];//sum of errors 
 
Pk=pPID->Kp*pPID->e[0]; 
Ik=pPID->Ki*pPID->Ts*pPID->e[2]; 
Dk=pPID->Kd/pPID->Ts*(pPID->e[0]-pPID->e[1]); 
 
 
pPID->u[0]=pPID->u[1]+Pk+Ik+Dk;//u[1] is the initial control command 
 
pPID->e[1]=pPID->e[0]; 
 
//printf("%f %f %f\n",Pk,Ik,Dk); 
 
} 
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/** \function 
Velocity PID control algorithm, 1-D design 
 
                         
u[k]=u[k-1] + Kp*(e[k]-e[k-i]) + Ki*Ts*e[k] + Kd/Ts*(e[k]-2*e[k-1]+e[k-2]) 
 
                       
*/                         
 
void velocityPID1D(tbaPID *pPID) 
{ 
double Pk,Ik,Dk; 
 
pPID->e[0]=pPID->ra[0]-pPID->ra[1];//initial error 
 
Pk=pPID->Kp*(pPID->e[0]-pPID->e[1]); 
Ik=pPID->Ki*pPID->Ts*pPID->e[0]; 
Dk=pPID->Kd/pPID->Ts*(pPID->e[0]-2*pPID->e[1]+pPID->e[2]); 
 
pPID->u[0]=pPID->u[1]+Pk+Ik+Dk;//u[1] is the previous control command 
 
pPID->u[1]=pPID->u[0]; 
 
pPID->e[2]=pPID->e[1]; 
 
pPID->e[1]=pPID->e[0]; 
 
} 
 
 
/** 
set up PID default initial value 
*/ 
 
void initPID(tbaPID *pPID) 
{ 
pPID->Kp=0; 
pPID->Ki=0; 
pPID->Kd=0; 
 
pPID->Ts=PERIOD; 
 
pPID->u[1]=0; 
 
pPID->e[1]=0; 
 
pPID->e[2]=0; 
 
} 
 
/** \function 
symmetric trajectory generation parameters:(static) 
*/ 
/* 
Final position (thetaCommandDVT), time (t[3]) required, and maximum speed (omegaMax) are 
prescribed.  
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t[1]=2*thetaCommandDVT/omegaMax 
 
t[0]=t[3]-t[2] 
 
c[0]=3*omegaMax/t[0]^2 
 
c[1]=-2*omegaMax/t[0]^3 
 
*/ 
 
void trajectoryParams(tbaTrj *ptbaTrj) 
{ 
 
ptbaTrj->t[1]=ptbaTrj->thetaCommandDVT/ptbaTrj->omegaMax; 
 
ptbaTrj->t[0]=ptbaTrj->t[2]-ptbaTrj->t[1]; 
 
ptbaTrj->c[0]=3*ptbaTrj->omegaMax/(ptbaTrj->t[0]*ptbaTrj->t[0]); 
 
ptbaTrj->c[1]=-2*ptbaTrj->omegaMax/pow(ptbaTrj->t[0],3); 
 
//printf("c[0]=%f  c[1]=%f  t[0]=%f  t[1]=%f t[2]=%f \n",ptbaTrj->c[0],ptbaTrj->c[1],ptbaTrj-
>t[0],ptbaTrj->t[1],ptbaTrj->t[2]); 
 
} 
 
/** \function 
symmetric trajectory generation reference with time (time varying) 
*/ 
/* 
                    /  c[0]*t^3/3+c[1]*t^4/4                                               t=[0,t[0]) 
                    | 
thetaRef(t) =|  omegaMax*t[0]/2+ omegaMax*(t-t[0])                    t=[t[0],t[1]) 
        | 
        |  omegaMax*t[1]-c[0]*(t[2]-t)^3/3-c[1]*(t[2]-t)^4/4      t=[t[1],t[2]) 
        | 
        \  thetaCommandDVT               else 
 
                        /  c[0]*t^2+c[1]*t^3                   t=[0,t[0]) 
                       | 
omegaRef(t) =|  omegaMax                            t=[t[0],t[1]) 
           | 
           |  c[0]*(t[2]-t)^2+c[1]*(t[2]-t)^3   t=[t[1],t[2]) 
           | 
            \  0      else 
             
 
                     /  2*c[0]*t+3*c[1]*t^2                    t=[0,t[0]) 
                     | 
alphaRef(t) =|  0                                               t=[t[0],t[1]) 
         | 
         |  -2*c[0]*(t[2]-t)-3*c[1]*(t[2]-t)^2   t=[t[1],t[2]) 
         | 
         \  0                else 
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iRef(t) = (J*alpharef(t)+f*omegaRef(t))/KT 
*/ 
 
 
void trajectoryRef(tbaTrj *ptbaTrj,double rt_time) 
{ 
 
    if(rt_time<=ptbaTrj->t[0]) 
     { 
     ptbaTrj->thetaRef=ptbaTrj->c[0]*pow(rt_time,3.0)/3.0+ptbaTrj->c[1]*pow(rt_time,4.0)/4.0; 
      
     ptbaTrj->omegaRef=ptbaTrj->c[0]*pow(rt_time,2.0)+ptbaTrj->c[1]*pow(rt_time,3.0); 
      
     ptbaTrj->alphaRef=2.0*ptbaTrj->c[0]*rt_time+3.0*ptbaTrj->c[1]*pow(rt_time,2.0); 
      
     } 
      
     if(rt_time>ptbaTrj->t[0]&&rt_time<=ptbaTrj->t[1]) 
     { 
      
     ptbaTrj->thetaRef=ptbaTrj->omegaMax*(-ptbaTrj->t[0]/2.0+rt_time); 
      
     ptbaTrj->omegaRef=ptbaTrj->omegaMax; 
      
     ptbaTrj->alphaRef=0.0; 
      
     } 
      
     if(rt_time>ptbaTrj->t[1]&&rt_time<=ptbaTrj->t[2]) 
     { 
      
     ptbaTrj->thetaRef=ptbaTrj->omegaMax*ptbaTrj->t[1]-ptbaTrj->c[0]*pow(ptbaTrj->t[2]-
rt_time,3.0)/3.0-ptbaTrj->c[1]*pow(ptbaTrj->t[2]-rt_time,4.0)/4.0; 
      
     ptbaTrj->omegaRef=ptbaTrj->c[0]*pow(ptbaTrj->t[2]-rt_time,2)+ptbaTrj->c[1]*pow(ptbaTrj-
>t[2]-rt_time,3.0); 
      
     ptbaTrj->alphaRef=-2.0*ptbaTrj->c[0]*(ptbaTrj->t[2]-rt_time)-3.0*ptbaTrj->c[1]*pow(ptbaTrj-
>t[2]-rt_time,2.0); 
      
      
     } 
      
     if(rt_time>ptbaTrj->t[2]) 
     { 
      
        
     ptbaTrj->omegaRef=0.0; 
      
     ptbaTrj->alphaRef=0.0; 
      
     } 
} 
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/** 
feedback control 
 
*/ 
void tbaFeedbackControl(tbaPID *ptbaPID) 
{ 
 
ptbaPID->e[0]=ptbaPID->ra[0]-ptbaPID->ra[1];//position error 
 
 
ptbaPID->e[1]=ptbaPID->ra[2]-ptbaPID->ra[3];//velocity error 
 
ptbaPID->e[2]=ptbaPID->e[2]+ptbaPID->e[0]*ptbaPID->Ts;//sum of position errors, Forward Eular 
 
ptbaPID->u[0]=ptbaPID->Ki*ptbaPID->e[2]+ptbaPID->Kp*ptbaPID->e[0]+ptbaPID->Kd*ptbaPID-
>e[1]; 
 
} 
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loadcell.c 

/* Transmission based servo actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file loadcell.c 
 This file defines the functions associated with the dynamomater and control 
  
 
*/ 
 
#include <stdio.h> 
#include <comedilib.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <getopt.h> 
#include <ctype.h> 
#include "common.h" 
#include "ni6023e.h" 
#include "ni6711.h" 
 
/** \function 
 read the loadcell voltage  
 
*/ 
double readLoadcell() 
{ 
 lsampl_t data; 
 double voltage,torque; 
         
 comedi_data_read(ni6023e.ni_daq,AI_DEVICE,0,0,AI_REF,&data); 
 voltage=comedi_to_phys(data,ni6023e.rng,ni6023e.maxdata); 
 torque=voltage*N-M_PER_VOLT; 
  
 return torque; 
} 
 
/** \function 
 dynamomater close loop control 
  
 
*/ 
 
void dynaControl(tbaPID *pPID,float dvt_speed) 
{ 
 int ret; 
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 int voltage_command; 
  
          
 pPID->Kp=1000.0; 
 pPID->Ki=00.0; 
 pPID->Kd=00.0; 
 //set torque output limit 
  
 if(pPID->ra[0]>20.0) 
 { 
 pPID->ra[0]=20.0; 
 printf("Warning :voltage command exceeds upper limit\n"); 
 } 
  
  
 //read dynamometer current toruqe   
 pPID->ra[1]=readLoadcell(); 
  
   
 //PID procedure 
 velocityPID2D(pPID); 
         
  
 //command to ni6711 AO_3 
 voltage_command=-(int)pPID->u[0]+AO_ZERO; 
   
  
 if(dvt_speed==0.0) 
 { 
 voltage_command=AO_ZERO; 
  
 } 
  
  
 //set voltage output limit 
 if(voltage_command<0) 
 { 
 voltage_command=0; 
 //printf("Warning :voltage command exceeds lower limit\n"); 
 } 
 if(voltage_command>2024) 
 { 
 voltage_command=2024; 
 //printf("Warning :voltage command exceeds upper limit\n"); 
 } 
         
 ret=comedi_data_write(ni6711.ni_daq,AO_DEVICE,AO_2,AO_RANGE,AO_REF,voltage
_command); 
        if(ret<0){ 
  comedi_perror(NI6711); 
  } 
 
} 
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motorcontrol.c 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file motorcontrol.c 
 This file defines the main motor control routines 
             */ 
 #include <stdio.h>    
 #include <string.h>   
 #include <unistd.h>   
 #include <fcntl.h>    
 #include <sys/types.h> 
 #include <sys/mman.h> 
 #include <sys/stat.h> 
 #include <stdlib.h> 
 #include <pthread.h> 
 #include <signal.h> 
 #include <math.h> 
  
 #define KEEP_STATIC_INLINE 
 #include <rtai_lxrt_user.h> 
 #include <rtai_lxrt.h> 
 #include <rtai_fifos.h> 
 #include <rtai_sem.h> 
 #include <rtai_msg.h> 
 #include <rtai_shm.h> 
  
 #include "ni6023e.h" 
 #include "ni6711.h" 
 #include "common.h" 
 #include "control.h" 
  
 extern int quit; 
 
 void motorControl(int c_id, int drv_mod) 
  { 
    
    unsigned long testcnttsk_name = nam2num("PIDVEL"); 
     
    RT_TASK *testcnttsk; 
             
    int i,j,ret; 
     
    int doPrintPID=1,isFirstPosition=1; 
     
    double ior=0.0002618,cof=0.0;//inertia of rotor and coefficient of friction, should be put in 
motor.h 
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    char drive_mode[256]; 
    char control_method[256]; 
    char data_file_name[256]; 
    char time_buffer[256]; 
     
    double Mp; 
     
    //Mp=240.; 
    //Mp=0.0; 
    //Mp=120.0; 
    //Mp=60.0; 
    Mp=180.0; 
     
    double Ma=200.; 
    double L=71.0; 
    double g; 
    double Meq; 
     
    Mp=Mp*0.454; 
    Ma=Ma*0.454; 
    L=L*0.0254; 
    g=9.81; 
     
    Meq=(Mp+Ma/2.0)*L*g; 
       
    FILE *fp; 
         
   // double motor_speed,dvt_speed,ratio; 
    double pos_com_deg; 
     
    int pos_com_count,pos_act_count,vel_com_rpm,u=0,pos[3]; 
     
    int to_gear,nbyte,gear_cur=3,gear_prev=3; 
     
    double shift_bound[2]={5.0,8.0}; 
     
    double grey_region=1.0;//grey region width, N-m 
     
    double shift_time[2]={0.0,0.0}; 
     
     
        
    struct sched_param mysched; 
    stdoutMsg *msg_send; 
     
    tbaPID *pDynaPID,*pMotorPID; 
     
    tbaTrj *ptbaTrj; 
     
         
    quit=0; 
    j=0; 
         
    double dvt_disp,dvt_disp_abs,motor_disp; 
    double motor_speed[MAFPNT],dvt_speed[MAFPNT],sum_speed,dvt_acc; 



 186

     
    lsampl_t data; 
     
    double motor_current,voltage,load; 
  
    double rt_time,rt_time_current,rt_time_init,rt_time_temp; 
     
     
     
     
    time_t curtime; 
     
    struct tm *loctime; 
      
    //Get the current time.  
    curtime = time (NULL); 
      
    // Convert it to local time representation.  
    loctime = localtime (&curtime); 
     
    // Print it out in a nice format.  
    strftime (time_buffer, 256, "%B_%d_%Y_%kh%Mm", loctime); 
     
    switch(c_id) 
    { 
     case 1: //P 
     strcpy(control_method,"PControl_"); 
     break; 
       
     case 2: //PID 
     strcpy(control_method,"PIDControl_"); 
                 
     break; 
          
    } 
     
    switch(drv_mod) 
    { 
     case 1: //velocity mode 
     strcpy(drive_mode,"VMode_"); 
     break; 
       
     case 2: //current mode 
     strcpy(drive_mode,"CMode_"); 
     break; 
    } 
     
    strcpy(data_file_name,"../../result/"); 
    strcat(data_file_name,control_method); 
    strcat(data_file_name,drive_mode); 
    strcat(data_file_name,time_buffer); 
    strcat(data_file_name,".txt"); 
         
    fp = fopen(data_file_name, "w+"); 
    if(fp==NULL) 
    printf("tba data file open failed!\n"); 
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fprintf(fp,"#####################################################################
#############################################\n\n"); 
    fprintf(fp,"#                   Transmission based Servo Actuator system control\n\n"); 
    fprintf(fp,"#                   "); 
    fprintf(fp,data_file_name); 
     
     
     
     
    pDynaPID=(tbaPID*)malloc(sizeof(tbaPID)); 
    if(pDynaPID==NULL) 
    printf("PID malloc failed\n"); 
     
    pMotorPID=(tbaPID*)malloc(sizeof(tbaPID)); 
    if(pMotorPID==NULL) 
    printf("PID malloc failed\n"); 
     
    //initialization of PID algorithm 
    initPID(pDynaPID); 
         
    initPID(pMotorPID); 
     
     
    ptbaTrj=(tbaTrj*)malloc(sizeof(tbaTrj)); 
    if(ptbaTrj==NULL) 
    printf("tbatrj malloc failed\n"); 
     
     
    //initialization of TBA trajectory 
     
    //position command 
    //TODO : need user interaction and/or automatic updated feature 
                     
    pos_com_deg=36000.; 
     
    vel_com_rpm=300.0; 
     
    pos_com_count=(int)rev2cnt(deg2rev(pos_com_deg)); 
     
     
    //unit conversion     
    ptbaTrj->thetaCommandDVT=(double)deg2rad(pos_com_deg);  //radian 
    ptbaTrj->omegaMax=rpm2rps(vel_com_rpm);         //rad/sec 
    ptbaTrj->t[2]=22.00;                     //seconds 
     
     
     
    //calculate trajectory parameters 
    trajectoryParams(ptbaTrj); 
         
     
     
    //initialize motor and dvt speed vector 
    for(i=0;i<MAFPNT;i++) 
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    { 
    dvt_speed[i]=0.0; 
    motor_speed[i]=0.0; 
    }  
     
     
    // memory allocation 
    msg_send=(stdoutMsg *)rtai_malloc(nam2num("stdMSG"),sizeof(stdoutMsg));     
         
     
    //set priority and real time task 
    mysched.sched_priority = 99; 
        
         
    if (!(testcnttsk = rt_task_init_schmod(testcnttsk_name, 1, 0, 0,SCHED_FIFO,1))) { 
  printf("CANNOT INIT MASTER TASK\n"); 
  exit(1); 
   } 
            
   if( sched_setscheduler( 0, SCHED_FIFO, &mysched ) == -1 )  
 { 
 puts(" ERROR IN SETTING THE SCHEDULER UP"); 
  perror( "errno" ); 
  exit( 0 ); 
  }        
   
    // make task periodic excution             
    rt_task_make_periodic(testcnttsk, 
rt_get_time()+(RTIME)(PERIOD*ticks_per_second+1.0),(RTIME)(PERIOD*ticks_per_second)); 
       
    //read initial motor and DVT encoder count 
    lsampl_t motor_pos_first= counterRead(ni6023e.ni_daq,CNT_DEVICE,1); 
    lsampl_t dvt_pos_first= counterRead(ni6023e.ni_daq,CNT_DEVICE,0); 
     
    lsampl_t motor_pos_last= motor_pos_first; 
    lsampl_t dvt_pos_last= dvt_pos_first; 
     
     
    //initialize timers            
    rt_time_init=1.0*rt_get_time(); 
    rt_time_temp=rt_time_init; 
     
    //make hard real time  
    rt_make_hard_real_time(); 
     
     
    // main control loop   
    while(1) 
     
      { 
        
      // get time, absolute and relative              
      rt_time_current=1.0*rt_get_time(); 
       
      rt_time=rt_time_current-rt_time_init; 
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      //get position, motor and DVT 
                         
      lsampl_t motor_pos_current= counterRead(ni6023e.ni_daq,CNT_DEVICE,1); 
      lsampl_t dvt_pos_current= counterRead(ni6023e.ni_daq,CNT_DEVICE,0); 
       
       
      //initialize position array to the same first encoder reading 
      if(isFirstPosition) 
      { 
      for(j=0;j<3;j++) 
      pos[j]=dvt_pos_current; 
      isFirstPosition=0; 
      } 
       
      //shift array element to the left by 1 position 
      if(!isFirstPosition) 
      { 
      for(i=0;i<2;i++) 
      pos[i]=pos[i+1]; 
      pos[2]=dvt_pos_current; 
      } 
          
       
      //printf("motor position: %d (%d, abs: %d)\n", motor_pos_current,motor_pos_current-
motor_pos_last,motor_pos_current-motor_pos_first); 
      //printf("%d (%d, abs: %d)\n", dvt_pos_current,dvt_pos_current-
dvt_pos_last,dvt_pos_current-dvt_pos_first); 
      //printf("command motor speed= %.2f, DVT output speed=%.2frpm, gear 
ratio=%f\n\n",motor_speed, dvt_speed,ratio); 
             
      pos_act_count=dvt_pos_current-dvt_pos_first; 
       
       
      //read loadcell voltage  
       
       
      comedi_data_read(ni6023e.ni_daq,AI_DEVICE,AI_1,0,AI_REF,&data); 
       
      voltage=comedi_to_phys(data,ni6023e.rng,ni6023e.maxdata); 
       
      load=voltage*N-M_PER_VOLT; 
       
       
       
      //read motor current from pin 22 and 23 (Analog Current out) 
      
       
      comedi_data_read(ni6023e.ni_daq,AI_DEVICE,AI_2,0,AI_REF,&data); 
       
      voltage=comedi_to_phys(data,ni6023e.rng,ni6023e.maxdata); 
       
      motor_current=voltage;//zero reading when motor is at rest, will vary, this is not a solution.  
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      //calculate dvt angular position 
      dvt_disp_abs=cnt2rad((double)dvt_pos_current-(double)dvt_pos_first); 
       
      gear_cur=0;   
       
      pDynaPID->ra[0]=Meq*sin(dvt_disp_abs/200.)/200.; //reference torque input 
       
      //printf("torque=%f\n", pDynaPID->ra[0]); 
      
     /* 
      //send out gear command to mailbox (time based switch signal)  
       
      if(msg_send->time>=0.0) 
      to_gear=1; 
       
      if(msg_send->time>=5.0) 
      to_gear=2; 
       
      if(msg_send->time>=10.0) 
      to_gear=3; 
       
      if(msg_send->time>=20.0) 
      to_gear=0; 
      */ 
       
       //send out gear command to mailbox (state-based switch signal) 
      /* 
      if(pDynaPID->ra[0]>=0.0&&pDynaPID->ra[0]<=5.0) 
      { 
      to_gear=3; 
      if(gear_cur==to_gear) 
      to_gear=0; 
      } 
       
      if(pDynaPID->ra[0]>5.0&&pDynaPID->ra[0]<=8.0) 
      { 
      to_gear=2; 
      if(gear_cur==to_gear) 
      to_gear=0; 
      } 
       
      if(pDynaPID->ra[0]>8.0) 
       
      { 
      to_gear=1; 
      if(gear_cur==to_gear) 
      to_gear=0; 
      } 
      */ 
       
      //state based switch signal- one boundary 
      /* 
      if(load<=5.0) 
      { 
      to_gear=3; 
      if(gear_cur==to_gear) 
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      to_gear=0; 
      } 
       
      if(load>5.0&&load<=8.0) 
      { 
      to_gear=2; 
      if(gear_cur==to_gear) 
      to_gear=0; 
      } 
       
      if(load>8.0) 
       
      { 
      to_gear=1; 
      if(gear_cur==to_gear) 
      to_gear=0; 
      } 
      */ 
       
      //hybrid switch signal- two boundaries 
       
      //3rd gear 
       
      if((load<=shift_bound[0])) 
      { 
      if(gear_prev==3) 
      to_gear=3;//stay put 
       
      if(load<=(shift_bound[0]-grey_region)&&(gear_prev==2)) 
      { 
      shift_time[0]=shift_time[0]+0.001; 
      if(shift_time[0]>=0.5) 
      { 
      to_gear=3;//new shift signal 
      shift_time[0]=0.0; 
      } 
      }       
             
      gear_prev=to_gear;//save previous gear 
       
      if(gear_cur==to_gear) 
      { 
      to_gear=0; 
      } 
      } 
      //2nd gear 
      else if((load>shift_bound[0])&&(load<=shift_bound[1])) 
      { 
      if(gear_prev==2||(gear_prev==3)) 
      to_gear=2;//new signal if previous gear is 1 
       
             
      if(load<=(shift_bound[1]-grey_region)&&(gear_prev==1)) 
      { 
      shift_time[1]=shift_time[1]+0.001; 
      if(shift_time[1]>=0.5) 
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      { 
      to_gear=2;//new shift signal 
      shift_time[1]=0.0; 
      } 
      } 
      gear_prev=to_gear;//save previous gear 
       
      if(gear_cur==to_gear) 
      { 
      to_gear=0; 
      } 
            
      } 
       
      //third gear 
      else if(load>shift_bound[1]) 
      { 
      
      to_gear=1; 
      gear_prev=to_gear;//save previous gear 
      if(gear_cur==to_gear) 
      { 
      to_gear=0; 
      } 
      } 
            
       
      
      //send out gear shift command 
      nbyte=rt_mbx_send_if(mbxgear,(void*)&to_gear,sizeof(int)); 
      if(nbyte) 
      { 
 printf("%d unsent bytes\n",nbyte); 
  
      } 
       
      //save current gear 
      gear_cur=gear_prev; 
       
     //calculate dvt speed using MAFPNT point moving average 
      dvt_disp=cnt2rad((double)dvt_pos_current-(double)dvt_pos_last); 
       
       
      sum_speed=0.0; 
      for(i=0;i<MAFPNT-1;i++) 
      { 
      dvt_speed[i]=dvt_speed[i+1]; 
      sum_speed=sum_speed+dvt_speed[i]; 
      } 
      dvt_speed[MAFPNT-1]=dvt_disp/((rt_time_current-rt_time_temp)/ticks_per_second); 
      sum_speed=sum_speed+dvt_speed[4]; 
      msg_send->dvt_speed=sum_speed/MAFPNT; 
       
       
      dvt_acc=msg_send->dvt_speed/((rt_time_current-rt_time_temp)/ticks_per_second); 
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      //calculate motor speed using MAFPNT point moving average 
      motor_disp=cnt2rad((double)motor_pos_current-(double)motor_pos_last); 
       
      sum_speed=0.0; 
      for(i=0;i<MAFPNT-1;i++) 
      { 
      motor_speed[i]=motor_speed[i+1]; 
      sum_speed=sum_speed+motor_speed[i]; 
      } 
      motor_speed[MAFPNT-1]=motor_disp/((rt_time_current-rt_time_temp)/ticks_per_second); 
      sum_speed=sum_speed+motor_speed[MAFPNT-1]; 
      msg_send->motor_speed=sum_speed/MAFPNT; 
       
       
     //controller setup 
       
     //new controller can be added here;  
      
     //pMotorPID->ra[0]=(double)pos_com_count; 
     //pMotorPID->ra[1]=(double)pos_act_count;  
      
      
     //trajectory reference position, velocity, and acceleration 
     trajectoryRef(ptbaTrj,rt_time/ticks_per_second); 
      
          
      
      
     // initialize PID entry value 
     pMotorPID->ra[0]=ptbaTrj->thetaRef; 
     pMotorPID->ra[2]=ptbaTrj->omegaRef; 
      
     //pMotorPID->ra[1]=cnt2rad(pos_act_count); 
      
     pMotorPID->ra[1]=cnt2rad((double)pos_act_count); 
      
     pMotorPID->ra[3]=(double)msg_send->dvt_speed; 
      
     switch(c_id) 
     { 
     case 1: //P 
       
      pMotorPID->Kp=0.1; 
      pMotorPID->Kd=0.0; 
      pMotorPID->Ki=0.0; 
      
       
      tbaFeedbackControl(pMotorPID); 
       
      //positionalPID2D(pMotorPID); 
       
     //u=Kp*(-pos_err+AO_ZERO);//zero offset 
      
      u=-(int)pMotorPID->u[0]+AO_ZERO; 
     
      //positive satuation, 12 bit D/A 
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      if (u>2*AO_ZERO) 
      { 
        u=4096; 
        } 
  
      //negative satuation, 12 bit D/A  
      if (u<0) 
      { 
        u=0; 
        } 
      
      break; 
           
     
      case 2: //PID 
       
      pMotorPID->Kp=1800.5; 
       
       
      if((ptbaTrj->thetaCommandDVT-ptbaTrj->thetaRef)<=0.0005) 
      { 
      //pMotorPID->Kp=950.5; 
      //pMotorPID->Ki=500.0; 
      //pMotorPID->Kd=1000.0; 
       
      //printf("%f %f %f %f %d \n",pMotorPID->e[0],pMotorPID->u[0],pMotorPID->ra[0],pMotorPID-
>ra[1],pos_act_count); 
      //printf("%f %f \n",ptbaTrj->thetaCommandDVT, ptbaTrj->thetaRef); 
      } 
       
      pMotorPID->Ki=0.0; 
      pMotorPID->Kd=45.0; 
       
       
      tbaFeedbackControl(pMotorPID);        
      //positionalPID2D(pMotorPID); 
       
      u=-(int)((ior*ptbaTrj->alphaRef+cof*ptbaTrj-
>omegaRef)/MOTOR_TORQUE_CONSTANT+pMotorPID->u[0])+AO_ZERO;      
      
      
      //u=-(int)pMotorPID->u[0]+AO_ZERO; 
       
      //printf("%d\n",u); 
       
      //positive satuation, 12 bit D/A 
      if (u>2*AO_ZERO) 
      { 
        u=4096; 
        } 
  
      //negative satuation, 12 bit D/A  
      if (u<0) 
      { 
        u=0; 
        } 
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      break; 
       
          
      } 
      
      // send analog velocity referent voltage 
        
      ret=comedi_data_write(ni6711.ni_daq,AO_DEVICE,AO_4,AO_RANGE,AO_REF,u); 
       
      if(ret<0){ 
  comedi_perror(NI6711); 
  //exit(0); 
      } 
 
      
       
      
       
       
      //frequency=ticks_per_second/(rt_time-rt_time_temp); 
       
       
      //send out standard output data to mailbox 
      
       
      msg_send->time=rt_time/ticks_per_second; 
       
      msg_send->dvt_position=dvt_pos_current-dvt_pos_first; 
       
      msg_send->command_position=(int)rad2cnt(ptbaTrj->thetaRef); 
             
      msg_send->motor_position=motor_pos_current-motor_pos_first; 
       
      msg_send->gear_current=to_gear; 
       
      msg_send->load=load; 
       
      msg_send->motor_torque=motor_current*MOTOR_TORQUE_CONSTANT; 
       
       
       
       
      //nbyte=rt_mbx_send_timed(mbxstdout,(void 
*)msg_send,sizeof(stdoutMsg),(RTIME)10000000); 
      //nbyte=rt_mbx_send_if(mbxstdout,(void*)msg_send,sizeof(stdoutMsg)); 
      nbyte=rt_mbx_send_if(mbxstdout,(void*)msg_send,sizeof(stdoutMsg)); 
 if(nbyte) 
 { 
 //printf("%d unsent bytes\n",nbyte); 
  
 } 
       
       
      if(doPrintPID) 
      { 
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      fprintf(fp, "\n\n# Kp=%f Ki=%f Kd=%f #\n",pMotorPID->Kp,pMotorPID->Ki,pMotorPID-
>Kd); 
      doPrintPID=0; 
       
      fprintf(fp,"\n#       time         motor_spd      dvt_spd        load_tor       motor_tor  com_pos   
dvt_pos  motor_pos  gear\n"); 
      fprintf(fp,"#     (seconds)      (rad/sec)     (rad/sec)        (N-m)          (N-m)     (count)   (count)  
(count)\n\n"); 
      
fprintf(fp,"#####################################################################
#############################################\n\n"); 
      } 
       
      if(msg_send->time<=35.)     
       
      fprintf(fp,"%14f %14f %14f %14f %14f %8d %8d %8d %8d \n",msg_send->time,msg_send-
>motor_speed,msg_send->dvt_speed,msg_send->load, msg_send->motor_torque,msg_send-
>command_position,msg_send->dvt_position, msg_send->motor_position,msg_send-
>gear_current);                 
       
       
      //dynamometer toruqe command 
             
      dynaControl(pDynaPID,msg_send->dvt_speed); 
  
                   
      rt_time_temp=rt_time_current; 
       
      motor_pos_last= motor_pos_current; 
      dvt_pos_last= dvt_pos_current; 
       
      rt_task_wait_period(); 
            
      } 
     
    counterDisarm(ni6023e.ni_daq,CNT_DEVICE,0); 
    counterDisarm(ni6023e.ni_daq,CNT_DEVICE,1); 
     
    rt_make_soft_real_time(); 
     
    //comedi_close(ni6023e.ni_daq); 
     
    rtai_free(nam2num("stdMSG"),(void *)msg_send); 
     
     
    rt_task_delete(testcnttsk); 
     
    free(pMotorPID); 
    free(pDynaPID); 
    fclose(fp); 
    return; 
     
} 
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ni6023e.h 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file ni6023e.h 
  
 
*/  
#ifndef _NI6023E_H 
#define _NI6023E_H 
 
#include <comedilib.h> 
 
 
//device name 
#define NI6023E "/dev/comedi0" 
 
/*Analog input*/ 
 
//subdevice number 
#define AI_DEVICE 0 
 
//channel list (16 SE/8 DI) 
#define AI_1 0 
#define AI_2 1 
#define AI_3 2 
#define AI_4 3 
#define AI_5 4 
#define AI_6 5 
#define AI_7 6 
#define AI_8 7 
 
#define AI_OFFSET 0.610 
 
 
//reference type, range, requency, etc. 
#define AI_REF AREF_DIFF 
 
#define AI_RANGE 0 
#define AI_CHANNEL 8; 
#define AI_FREQ 1000.0 
#define AI_SCAN 1000 
 
 
/*Counter*/ 
 
//subdevice number 
#define CNT_DEVICE 4 
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//channel list 
#define CNT_1 0 
#define CNT_2 1 
 
/** 
 * Definitions of some of the common code. 
 */ 
 
comedi_t *init_6023e(); 
 
int counterReset(comedi_t *dev, int subdev, int channel); 
 
int counterSetSource(comedi_t *dev, int subdev, int channel, int SrcType); 
 
int counterSetGate(comedi_t *dev, int subdev, int channel, int GateType); 
 
int counterSetDirection(comedi_t *dev, int subdev, int channel, int Direction); 
 
int counterSetOperation(comedi_t *dev, int subdev, int channel, int Operation, int OptParam); 
 
int counterArm(comedi_t *dev, int subdev, int channel); 
 
int counterDisarm(comedi_t *dev, int subdev, int channel); 
 
lsampl_t counterRead(comedi_t *dev, int subdev, int channel); 
 
#endif 
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ni6023e.c 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file ni6023e.c 
 This file defines the function acssociated with the NI-PCI6023E data acquisition board 
   
  
 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> //fork() 
#include <sys/types.h>//pid_t * 
#include <sys/wait.h> 
#include "ni6023e.h" 
#include "common.h" 
 
 
  
/** \function 
 initilize ni-pci6023e 
  
 
*/ 
 
comedi_t *init_6023e() 
{ 
 int stype; 
        int i; 
 pid_t pid; 
 int status; 
 //char *cmd[]={"/usr/local/comedilib/comedi_calibrate/comedi_calibrate","",(char *)0}; 
   
 comedi_t *device; 
  
  
 //open NI-6023E 
 device=comedi_open(NI6023E); 
 if(!device){ 
  comedi_perror(NI6023E); 
  printf("%s open fail\n",NI6023E); 
  exit(0); 
 } 
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 //check analog out availability 
 stype = comedi_get_subdevice_type(device,AI_DEVICE); 
 if(stype!=COMEDI_SUBD_AI){ 
  printf("%d is not an analog input subdevice\n",AI_DEVICE); 
  exit(0); 
 } 
  
 //calibrate AI device 
  
 pid=fork(); 
  
 if (pid==-1) 
 { 
 printf("fork failed!\n"); 
 exit(0); 
 } 
  
 if(pid==0) 
 { 
 execv("/usr/local/comedilib/comedi_calibrate/comedi_calibrate",""); 
 _exit (EXIT_FAILURE); 
 } 
  
 if (pid==1) 
 { 
 printf("I am parent, waiting\n"); 
 waitpid(pid,&status,0); 
 } 
  
 //wait for calibration finish 
 //sleep(20); 
  
 //get some parameters 
        ni6023e.n_ranges=comedi_get_n_ranges(device,AI_DEVICE,AI_1); 
 ni6023e.maxdata=comedi_get_maxdata(device,AI_DEVICE,AI_1); 
        ni6023e.rng = comedi_get_range(device,AI_DEVICE,AI_1,0); 
 ni6023e.n_channels=comedi_get_n_channels(device,AI_DEVICE); 
 ni6023e.offset=comedi_from_phys(0.0,ni6023e.rng,ni6023e.maxdata); 
  
  
        printf("n_ranges=%d, maxdata=%d 
offset=%d\n",ni6023e.n_ranges,ni6023e.maxdata,ni6023e.offset); 
   
  
   
 //check counter availability 
  
 stype = comedi_get_subdevice_type(device,CNT_DEVICE); 
 if(stype!=COMEDI_SUBD_COUNTER){ 
  printf("%d is not a counter subdevice\n",CNT_DEVICE); 
  exit(0); 
 } 
  
  
 //configure counter device, ready to read count 
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 for(i=0;i<=1;i++) 
     { 
         counterReset(device,CNT_DEVICE,i); 
  counterSetSource(device,CNT_DEVICE,i,GPCT_EXT_PIN); 
  counterSetGate(device,CNT_DEVICE,i,GPCT_NO_GATE); 
  counterSetDirection(device,CNT_DEVICE,i,GPCT_HWUD); 
  counterSetOperation(device,CNT_DEVICE,i,GPCT_SIMPLE_EVENT,-1); 
  counterArm(device,CNT_DEVICE,i); 
  } 
  
 /* 
 if(verbose) 
 {  
        printf("writing %d to device=%s subdevice=%d channel=%d range=%d analog 
reference=%d\n", 
 maxdata,NI6711,AO_DEVICE,i,AO_RANGE,AO_REF); 
 } 
 */ 
  
   
 return device; 
  
} 
 
  
/** \function 
 reset counter for new task 
  
 
*/ 
 
int counterReset(comedi_t *dev, int subdev, int channel) 
  { 
    comedi_insn insn; 
    lsampl_t params[]= { GPCT_RESET };  // the config subcommand: reset counter 
 
    insn.insn= INSN_CONFIG;   // it is a configuration sub-command 
    insn.n= 1;                // the parameter-array contains 1 element 
    insn.data= params;        // pass parameters 
    insn.subdev= subdev;      // which subdevice controls the counter? 
    insn.chanspec= channel; // tell which counter to use 
 
    return comedi_do_insn(dev, &insn); 
  }   
 
  
/** \function 
 set a counter source 
  
 
*/ 
 
int counterSetSource(comedi_t *dev, int subdev, int channel, int SrcType) 
  { 
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    comedi_insn insn; 
    lsampl_t params[]= { GPCT_SET_SOURCE, SrcType };  // the config subcommand: set 
source, and the add. param.: type of the source 
 
    insn.insn= INSN_CONFIG;   // it is a configuration sub-command 
    insn.n= 2;                // the parameter-array contains 2 elements 
    insn.data= params;        // pass parameters 
    insn.subdev= subdev;      // which subdevice controls the counter? 
    insn.chanspec= channel;   // tell which counter to use 
 
    return comedi_do_insn(dev, &insn); 
  } 
 
  
/** \function 
 set counter gate type 
 
*/   
 
int counterSetGate(comedi_t *dev, int subdev, int channel, int GateType) 
  { 
    comedi_insn insn; 
    lsampl_t params[]= { GPCT_SET_GATE, GateType };  // the config subcommand: set source, 
and the add. param.: type of the gate 
 
    insn.insn= INSN_CONFIG;   // it is a configuration sub-command 
    insn.n= 2;                // the parameter-array contains 2 elements 
    insn.data= params;        // pass parameters 
    insn.subdev= subdev;      // which subdevice controls the counter? 
    insn.chanspec= channel;   // tell which counter to use 
 
    return comedi_do_insn(dev, &insn); 
  }  
  
/** \function 
 set counter direction-following edge, rising edge or both  
 
*/ 
 
  int counterSetDirection(comedi_t *dev, int subdev, int channel, int Direction) 
  { 
    comedi_insn insn; 
    lsampl_t params[]= { GPCT_SET_DIRECTION, Direction };  // the config subcommand: set 
direction, and the add. param.: direction 
 
    insn.insn= INSN_CONFIG;   // it is a configuration sub-command 
    insn.n= 2;                // the parameter-array contains 2 elements 
    insn.data= params;        // pass parameters 
    insn.subdev= subdev;      // which subdevice controls the counter? 
    insn.chanspec= channel;   // tell which counter to use 
 
    return comedi_do_insn(dev, &insn); 
  } 
 
    
/** \function 
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 set counter operations 
  
 
*/ 
   
  int counterSetOperation(comedi_t *dev, int subdev, int channel, int Operation, int OptParam) 
  { 
    comedi_insn insn; 
    lsampl_t params[]= { GPCT_SET_OPERATION, Operation, OptParam };  // the config 
subcommand: set source, and the add. param.: operation 
 
    insn.insn= INSN_CONFIG;   // it is a configuration sub-command 
    insn.n= OptParam == -1 ? 2 : 3;  // the parameter-array contains 2 or 3 elements 
    insn.data= params;        // pass parameters 
    insn.subdev= subdev;      // which subdevice controls the counter? 
    insn.chanspec= channel;   // tell which counter to use 
 
    return comedi_do_insn(dev, &insn); 
  } 
 
    
/** \function 
 arm a counter 
  
 
*/ 
   
int counterArm(comedi_t *dev, int subdev, int channel) 
  { 
    comedi_insn insn; 
    lsampl_t params[]= { GPCT_ARM };  // the config subcommand: arm 
 
    insn.insn= INSN_CONFIG;   // it is a configuration sub-command 
    insn.n= 1;                // the parameter-array contains 1 element 
    insn.data= params;        // pass parameters 
    insn.subdev= subdev;      // which subdevice controls the counter? 
    insn.chanspec= channel;   // tell which counter to use 
 
    return comedi_do_insn(dev, &insn); 
  } 
  
/** \function 
 disarm a counter 
  
 
*/ 
   
int counterDisarm(comedi_t *dev, int subdev, int channel) 
  { 
    comedi_insn insn; 
    lsampl_t params[]= { GPCT_DISARM };  // the config subcommand: disarm 
 
    insn.insn= INSN_CONFIG;   // it is a configuration sub-command 
    insn.n= 1;                // the parameter-array contains 1 element 
    insn.data= params;        // pass parameters 
    insn.subdev= subdev;      // which subdevice controls the counter? 
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    insn.chanspec= channel;   // tell which counter to use 
 
    return comedi_do_insn(dev, &insn); 
  } 
 
  
/** \function 
 read a counter value 
  
 
*/ 
   
lsampl_t counterRead(comedi_t *dev, int subdev, int channel) 
  { 
    comedi_insn insn; 
    lsampl_t value= 0; 
 
    insn.insn= INSN_READ;     // it is a read command 
    insn.n= 1;                // the size of the parameter array is 1 (1 value is passed back, more is not 
supported by this instruction) 
    insn.data= &value;        // pass destination "array" (or simple pointer to a single tsampl_t) 
    insn.subdev= subdev;      // which subdevice controls the counter? 
    insn.chanspec= channel;   // tell which counter to use 
 
    if (comedi_do_insn(dev, &insn) < 0) 
      printf("[Warning] comedi_do_insn failed.\n          ComediCounterRead: returned value is not 
valid.\n"); 
 
    return value; 
  }        
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ni6711.h 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file ni6711.h 
  
 
*/  
#ifndef _NI6711_H 
#define _NI6711_H 
 
#include <comedilib.h> 
 
//device name 
#define NI6711 "/dev/comedi1" 
 
/*Analog out*/ 
 
//subdevice number 
#define AO_DEVICE 1 
 
//channel list 
#define AO_1 0 
#define AO_2 1 
#define AO_3 2 
#define AO_4 3 
 
//reference type, range, requency, etc. 
#define AO_REF AREF_GROUND 
 
#define AO_RANGE 0 
#define AO_CHANNEL 4; 
#define AO_FREQ 1000.0 
#define AO_SCAN 1000 
 
 
/*Digital Input/Out*/ 
 
//subdevice number 
#define DIO_DEVICE 2 
 
//channel list 
#define DIO_1 0 
#define DIO_2 1 
#define DIO_3 2 
#define DIO_4 3 
#define DIO_5 4 
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#define DIO_6 5 
#define DIO_7 6 
#define DIO_8 7 
 
/* 
//brake engage/disengae 
#define ENGAGE 1 
#define DISENGAGE 0 
*/ 
//input/output 
#define DO COMEDI_OUTPUT 
#define DI COMEDI_INPUT 
 
//number of DIO channels 
#define DIO_CHANNEL 8; 
 
//zero analog output 
 
#define AO_ZERO 2024 
 
 
comedi_t *init_6711(); 
 
#endif 
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ni6711.c 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file ni6711.c 
 This file defines the function acssociated with the NI-PCI6023E data acquisition board 
   
*/ 
 
 
#include <stdlib.h> 
#include "ni6711.h" 
#include "common.h" 
 
/** \function 
 initilize ni-pci6711 
  
*/ 
comedi_t *init_6711() 
{ 
  
 int ret; 
 int stype; 
 int i; 
  
 comedi_t *device; 
  
 int amplitude; 
  
  
 //open NI-6711 
 device=comedi_open(NI6711); 
 if(!device){ 
  comedi_perror(NI6711); 
  printf("%s open fail\n",NI6711); 
  exit(ERROR); 
 } 
  
        //check digital io availability 
 stype = comedi_get_subdevice_type(device,DIO_DEVICE); 
 if(stype!=COMEDI_SUBD_DIO){ 
  printf("%d is not a digital I/O subdevice\n",DIO_DEVICE); 
  exit(ERROR); 
 } 
         
 //configure digital i/o for output 
 for (i=0;i<7;i++) 
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 { 
 ret=comedi_dio_config(device,DIO_DEVICE,i,DO); 
 if(ret<0) 
 { 
 printf("channel %d of %d configure fail!\n ",i,DIO_DEVICE); 
 exit(ERROR); 
 } 
 } 
  
 //check Analog out availability and initialize to zero 
  
 stype = comedi_get_subdevice_type(device,AO_DEVICE); 
 if(stype!=COMEDI_SUBD_AO){ 
  printf("%d is not a analog output subdevice\n",AO_DEVICE); 
  exit(ERROR); 
 } 
  
 //configure analog device 
 for (i=0;i<=3;i++) 
 { 
  
 ni6711.maxdata= comedi_get_maxdata(device,AO_DEVICE,i); 
  
 ni6711.rng = comedi_get_range(device,AO_DEVICE,i,AO_RANGE); 
  
 ni6711.offset=comedi_from_phys(0.0,ni6711.rng,ni6711.maxdata); 
 amplitude = comedi_from_phys(1.0,ni6711.rng,ni6711.maxdata) - ni6711.offset; 
   
  
 } 
 //rt_sleep(nano2count(10000000000)); 
        //printf("writing %d to device=%s subdevice=%d offset=%d analog 
reference=%d\n",ni6711.maxdata,NI6711,AO_DEVICE,ni6711.offset,amplitude); 
 //printf("device=%s subdevice=%d offset=%d analog 
reference=%d\n",NI6711,AO_DEVICE,ni6711.offset,2048); 
  
 //set brake motor current limit reference voltage (10 V is about 3Amps) 
 ret=comedi_data_write(device,AO_DEVICE,0,AO_RANGE,AO_REF,1300); 
        if(ret<0){ 
  comedi_perror(NI6711); 
  exit(0); 
 } 
  
 //set BLDC motor speed/current refernce to zero 
 ret=comedi_data_write(device,AO_DEVICE,3,AO_RANGE,AO_REF,2024); 
        if(ret<0){ 
  comedi_perror(NI6711); 
  exit(0); 
 } 
  
 //configure digital I/O for output only 
 comedi_dio_config(device,DIO_DEVICE,DIO_1,COMEDI_OUTPUT); 
 comedi_dio_config(device,DIO_DEVICE,DIO_2,COMEDI_OUTPUT);  
 comedi_dio_config(device,DIO_DEVICE,DIO_3,COMEDI_OUTPUT); 
 return device; 
}
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setmode.h 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file setmode.h 
  
 
*/  
 
#ifndef _SETMODE 
#define _SETMODE 
#define OPERAND_cc 256 
#define WAITDONE  rt_sleep(nano2count(50000000)); 
#define GIGA 1000000000 
     
void checkSum(char *,int); 
void analog_velocity_mode(void); 
void *setMode(int mode); 
#endif 
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setmode.c 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file setmode.c 
 This file defines the function acssociated with servo BLDC configuration through a serial 
port 
   
  
 
*/ 
    #include <stdio.h>    
    #include <string.h>      
    #include <unistd.h>   
    #include <fcntl.h>    
 
    #include <sys/types.h> 
    #include <sys/mman.h> 
    #include <sys/stat.h> 
     
    #include <rtai_lxrt_user.h> 
    #include <rtai_lxrt.h> 
    #include <rtai_serial.h> 
    #include <rtai_shm.h> 
     
    #include "setmode.h" 
     
extern int quit; 
 
/** \function 
 caculate the command string 
  
 
*/ 
 
void u3kSerCom(char *com_str,int str_len){ 
   
  int i; 
  int a_sum; 
  int c_sum; 
  char *ctemp; 
  char *com_init; 
     
   
 //printf("\n\n%s \n",com_str); 
   
 if( (ctemp=(char*)rtai_malloc(nam2num("tempString"),str_len+4))==0) 
 { 
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 printf("malloc failed!\n"); 
 exit(0); 
 } 
    
  if( (com_init=(char *)rtai_malloc(nam2num("commandString"),str_len+4))==0) 
 { 
 printf("malloc failed!\n"); 
 exit(0); 
 } 
  
   
 strcpy(com_init,":");//insert ":" as the first element of the array 
   
 //printf("%d %s\n",str_len,com_init); 
   
  //calculate checksum 
  a_sum=0; 
          
  for(i=0;i<str_len;i++) 
 
 { 
    a_sum+=com_str[i]; 
 } 
 c_sum=OPERAND_cc-a_sum; 
  
 sprintf(ctemp,"%X",c_sum); 
 
    //printf("ctemp=%s\n",ctemp); 
     
    //append command, HEX checksum and a carriage return 
       
    ctemp[0]=ctemp[strlen(ctemp)-2]; 
    ctemp[1]=ctemp[strlen(ctemp)-1]; 
    ctemp[2]='\r'; 
     
    //printf(" %s\n",ctemp); 
     
    strcat(com_init,com_str); 
 
    strncat(com_init,ctemp,3); 
 
    //printf("sizes %d  %d\n",strlen(com_str),strlen(ctemp)); 
    //printf("%s\n",com_init); 
     
     
    rt_spwrite(COM1, com_init,strlen(com_str)+4); 
    WAITDONE     
    rtai_free((void *)ctemp,str_len+4); 
    rtai_free((void *)com_init,str_len+4); 
           
} 
 
/*! 
 
*/ 
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/** \function 
 set up BLDC drive mode to analog velocity mode 
  
u3000 serial command format:(see u3k host command-2098-RM003A-EN-P-October 2001.pdf)\n 
---------------------------------------------------------------------------------------------\n 
start address  parameter function  data  checksum end\n 
----- -------  --------- -------- ------  --------- ----\n 
  :    aa    ppp     f  d...d     cc  <CR>\n 
---------------------------------------------------------------------------------------------\n 
*/ 
     
void analog_velocity_mode(void) 
{ 
   
  char disableDrive[]="0006B100"; //disable drive 
  char analogVelMode[]="0005A100"; //set analog velocity mode 
  char analogVelScale[]="0011810020";//set analog velocity scale, in units of percentage of motor 
maximum speed per 10 volts. 
  char analogVelOffset[]="000471FFFB";//set analog velocity offset in units of millivolts 
  char enableDrive[]="0006B101"; //enable drive 
  char velocityLoopPgain[]="0001F1020";//velocity loop proportional gain=32d 
  char velocityLoopIgain[]="000201020";//velocity loop integral gain=32d 
  char velocityLoopDgain[]="0002110000";//velocity loop differentilal gain=0d 
  char forwardCurrentLimit[]="0002F160"; //forward current limit, in unit of percentage of motor 
interrim current or drive interim current  
  char reverseCurrentLimit[]="00030160"; //reverse current limit, in unit of percentage of motor 
interrim current or drive interim current  
   
  //char read_buff[256]; 
   
    
  /* 
  if( (commandString=malloc(50))==NULL) 
 { 
 printf("malloc failed!\n"); 
 exit(0); 
 } 
  */ 
    
  u3kSerCom(disableDrive,strlen(disableDrive)); 
  //printf("Disable drive..."); 
  //rt_spwrite(COM1, commandString,strlen(disableDrive)+4); 
  //WAITDONE 
  //printf("Done!\n"); 
  //rt_spread(COM1,read_buff,18); 
  //WAITDONE 
  //printf("Response is %s\n",read_buff); 
  //printf("%s\n",disableDrive); 
   
  
  u3kSerCom(forwardCurrentLimit,strlen(forwardCurrentLimit)); 
  /* 
  //printf("Setting forward current limit..."); 
  rt_spwrite(COM1, commandString,strlen(forwardCurrentLimit)+4); 
  WAITDONE 
  rt_spread(COM1,read_buff,18); 
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  WAITDONE 
  //printf("Response is %s\n",read_buff); 
  printf("      %s\n",forwardCurrentLimit); 
  //printf("Done!\n"); 
  */ 
   
   
  u3kSerCom(reverseCurrentLimit,strlen(reverseCurrentLimit)); 
  /* 
  //printf("Setting reverse current limit..."); 
  rt_spwrite(COM1, commandString,strlen(reverseCurrentLimit)+4); 
  WAITDONE 
  rt_spread(COM1,read_buff,18); 
  WAITDONE 
  //printf("Response is %s\n",read_buff); 
  //printf("%s\n",commandString); 
  //printf("Done!\n"); 
  */ 
     
  //printf("Setting analog velocity mode..."); 
  u3kSerCom(analogVelMode,strlen(analogVelMode)); 
  /* 
  rt_spwrite(COM1, commandString,strlen(analogVelMode)+4); 
  WAITDONE 
  rt_spread(COM1,read_buff,18); 
  WAITDONE 
  //printf("Response is %s\n",read_buff); 
  //printf("%s\n",commandString); 
  //printf("Done!\n"); 
  */ 
   
  //printf("Setting analog velocity scale..."); 
  u3kSerCom(analogVelScale,strlen(analogVelScale)); 
  /*/ 
  rt_spwrite(COM1, commandString,strlen(analogVelScale)+4); 
  WAITDONE 
  rt_spread(COM1,read_buff,18); 
  WAITDONE 
  //printf("Response is %s\n",read_buff); 
  //printf("%s\n",commandString); 
  //printf("Done!\n"); 
  */ 
   
  //printf("Setting analog velocity offset..."); 
  u3kSerCom(analogVelOffset,strlen(analogVelOffset));   
  /* 
  rt_spwrite(COM1, commandString,strlen(analogVelOffset)+4);   
  WAITDONE 
  rt_spread(COM1,read_buff,18); 
  WAITDONE 
  //printf("Response is %s\n",read_buff); 
  //printf("%s\n",commandString); 
  //printf("Done!\n"); 
 */ 
  
  //printf("Setting velocity loop PID gains..."); 
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  u3kSerCom(velocityLoopPgain,strlen(velocityLoopPgain)); 
  /* 
  rt_spwrite(COM1, commandString,strlen(velocityLoopPgain)+4); 
  WAITDONE 
  rt_spread(COM1,read_buff,18); 
  WAITDONE 
  //printf("Response is %s\n",read_buff); 
  //printf("%s\n",commandString); 
  */  
   
  u3kSerCom(velocityLoopIgain,strlen(velocityLoopIgain)); 
  /*  
  rt_spwrite(COM1, commandString,strlen(velocityLoopIgain)+4); 
  WAITDONE 
  rt_spread(COM1,read_buff,18); 
  WAITDONE 
  //printf("Response is %s\n",read_buff); 
  //printf("%s\n",commandString); 
  */ 
  u3kSerCom(velocityLoopDgain,strlen(velocityLoopDgain)); 
  /* 
  rt_spwrite(COM1, commandString,strlen(velocityLoopDgain)+4); 
  WAITDONE 
  rt_spread(COM1,read_buff,18); 
  //printf("Response is %s\n",read_buff); 
  //printf("Done!\n"); 
  //printf("%s\n",commandString); 
  */ 
   
  //printf("Enable Drive...");   
  u3kSerCom(enableDrive,strlen(enableDrive)); 
  /* 
  rt_spwrite(COM1, commandString,strlen(enableDrive)+4); 
  WAITDONE 
  rt_spread(COM1,read_buff,18); 
  //WAITDONE 
 // printf("Response is %s\n",read_buff); 
    //printf("Done!\n"); 
  //printf("%s\n",commandString); 
   
  */ 
} 
 
/** \function 
 set up BLDC drive mode to analog current mode 
 
*/ 
 
void analog_current_mode(void) 
{ 
   
  //disable drive 
  char disableDrive[]="0006B100"; 
      
  //analog velocity mode 
  char analogCurMode[]="0005A101"; 
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  //analog current scale, in units of percentage of minimum of the motor \ 
  //intermittent current rating and drive intermittent current rating, per 10 volts. 
  char analogCurScale[]="0011910030"; 
   
  //analog current offset in units of millivolts 
  char analogCurOffset[]="000491FFFB"; 
   
  //enable drive 
  char enableDrive[]="0006B101";  
   
   
   
  //forward current limit, in unit of percentage of motor interrim current or drive interim current 
  char forwardCurrentLimit[]="0002F120";   
   
  //reverse current limit, in unit of percentage of motor interrim current or drive interim current 
  char reverseCurrentLimit[]="00030120";   
   
  //set speed limit,counts/sec 
  char setSpeedLimit[]="00025100100000"; 
   
  //Disable drive 
  u3kSerCom(disableDrive,strlen(disableDrive)); 
   
    
  //Setting forward current limit 
  u3kSerCom(forwardCurrentLimit,strlen(forwardCurrentLimit)); 
   
  //Setting reverse current limit   
  u3kSerCom(reverseCurrentLimit,strlen(reverseCurrentLimit)); 
       
  //Setting analog current mode 
  u3kSerCom(analogCurMode,strlen(analogCurMode)); 
     
  //Setting analog current scale 
  u3kSerCom(analogCurScale,strlen(analogCurScale)); 
     
  //Setting analog current offset 
  u3kSerCom(analogCurOffset,strlen(analogCurOffset)); 
   
  //set speed limit,counts/sec 
  u3kSerCom(setSpeedLimit,strlen(setSpeedLimit));     
      
  //Enable Drive 
  u3kSerCom(enableDrive,strlen(enableDrive)); 
   
} 
 
/** \function 
 set BLDC drive mode to analog out to torque output 
 
*/ 
 
 
void analog_out(void) 
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{ 
     
  //disable drive 
  char disableDrive[]="0006B100"; 
   
      
  //analog current feedback output 
  char analogOutCurFed[]="0004B124"; 
     
  //analog current output scale 
  char analogOutCurFedScale[]="0004D10111"; //1 amps/volts 
   
  //analog current outptu offset in units of millivolts 
  char analogOutCurFedOffset[]="0004910000"; 
        
  //Disable drive 
  u3kSerCom(disableDrive,strlen(disableDrive)); 
      
  //Setting analog current feedback output 
  u3kSerCom(analogOutCurFed,strlen(analogOutCurFed)); 
   
  //Setting analog current output scale   
  u3kSerCom(analogOutCurFedScale,strlen(analogOutCurFedScale)); 
       
  //Setting analog current outptu offset in units of millivolts 
  u3kSerCom(analogOutCurFedOffset,strlen(analogOutCurFedOffset)); 
   
   
  /* 
  //analog output---position 
  char analogOutCurFed[]="0004B101"; 
   
  //analog position output scale, counts/volts 
  char analogOutCurFedScale[]="0004D17FFF"; 
   
  //analog current outptu offset in units of millivolts 
  char analogOutCurFedOffset[]="0004910252"; 
        
  //Disable drive 
  u3kSerCom(disableDrive,strlen(disableDrive)); 
   
      
  //Setting analog current feedback output 
  u3kSerCom(analogOutCurFed,strlen(analogOutCurFed)); 
   
  //Setting analog current output scale   
  u3kSerCom(analogOutCurFedScale,strlen(analogOutCurFedScale)); 
       
  //Setting analog current outptu offset in units of millivolts 
  u3kSerCom(analogOutCurFedOffset,strlen(analogOutCurFedOffset)); 
  */ 
} 
 
/** \function 
 send BLDC drive mode through RTAI serial port 
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*/ 
void *setMode(int mode) 
{ 
 unsigned long serialTaskName = nam2num("TESTCOM"); 
 RT_TASK *serialTask; 
 RTIME rtTime; 
        struct sched_param mysched; 
 mysched.sched_priority = 90; 
  
 if( sched_setscheduler( 0, SCHED_FIFO, &mysched ) == -1 )  
 { 
 puts(" ERROR IN SETTING THE SCHEDULER UP"); 
  perror( "errno" ); 
  exit( 0 ); 
  }        
 
  if (!(serialTask = rt_task_init(serialTaskName, 1, 0, 0))) { 
  printf("CANNOT INIT MASTER TASK\n"); 
  exit(0); 
 } 
  
 rt_task_use_fpu(serialTask,1); // floating point for real time task "stdtsk" 
 rt_linux_use_fpu(1); // floating point for foreground Linux processes 
 
      //rt_make_hard_real_time(); 
       //printf("open serial port ... "); 
       if (rt_spopen(COM1, 38400, 8, 1, RT_SP_PARITY_NONE, 
RT_SP_NO_HAND_SHAKE,RT_SP_FIFO_SIZE_1)) { 
        printf("serial port open failed!\n"); 
 exit(0); 
        } 
   //printf("Done!\n"); 
  
 rtTime=rt_get_time_ns();  
  
 //set up analog output 
 analog_out(); 
  
 //chose bldc motor mode 
 switch(mode) 
 { 
 case 1:   
 analog_velocity_mode();//velocity command mode 
 break; 
 case 2: 
 analog_current_mode();// 
 break; 
 default: 
 break; 
 } 
  
  
   rtTime=rt_get_time_ns()-rtTime; 
   //printf("time spending is %f seconds\n",(float)(rtTime)/GIGA); 
  
   rt_spclose(COM1); 
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 //rt_make_soft_real_time(); 
 
   rt_task_delete(serialTask); 
  
 return; 
 //exit(1); //program only run once 
} 
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shiftcontrol.h 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file shiftcontrol.h 
  
 
*/  
#ifndef _SHIFTCONTROL_H 
#define _SHIFTCONTROL_H 
 
#include <stdio.h> 
#include <comedilib.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <getopt.h> 
#include <ctype.h> 
#include "examples.h" 
#define WAITTIME 4000000 
 
int setGear(void); 
#endif 
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shiftcontrol.c 

/* Transmission based servo actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file shiftcontrol.c 
 This file defines the function acssociated with send the gear control action 
   
  
 
*/ 
#include <stdio.h> 
#include <comedilib.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <getopt.h> 
#include <ctype.h> 
 
#define KEEP_STATIC_INLINE 
#include <rtai_lxrt_user.h> 
#include <rtai_lxrt.h> 
#include <rtai_fifos.h> 
#include <rtai_msg.h> 
 
#include "common.h" 
#include "ni6711.h" 
 
 
extern int quit; 
 
/** \function 
 send a gear action command through NI-PCI6711 digital out 
  
 
*/ 
 
void *setGear(void *pmbx) 
{ 
 struct sched_param mysched; 
 int to_gear; 
 RT_TASK *gearshift_tsk; 
  
   
 mysched.sched_priority = 98; 
   
 if( sched_setscheduler( 0, SCHED_FIFO, &mysched ) == -1 ) 
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 { 
 puts(" ERROR IN SETTING THE SCHEDULER UP"); 
 perror( "errno" ); 
 exit( 0 ); 
 } 
  
 if(!(gearshift_tsk = rt_task_init(nam2num("GEARSHIFT"), 1 , 0 ,0))) 
 { 
 puts("CANNOT INIT GEAR SHIFT TASK\n"); 
 exit(0); 
 } 
  
 //rt_task_make_periodic(gearshift_tsk,(RTIME)(PERIOD*ticks_per_second+1.0),(RTIME)
(PERIOD*ticks_per_second)); 
  
 rt_task_use_fpu(gearshift_tsk ,1); 
 rt_linux_use_fpu(1);  
  
 //set gear to default(1st gear ) 
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,ENGAGE);  
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,DISENGAGE); 
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,DISENGAGE); 
  
  
  
 while(!quit) 
 {  
 //printf("quit=%d\n",quit); 
 rt_mbx_receive_timed(pmbx,(void*)&to_gear,sizeof(int),(RTIME)1000000000); 
 //rt_mbx_receive_if(pmbx,(void*)&to_gear,sizeof(int)); 
   
 //printf("gear= %d ",to_gear); 
         
 //printf("quit=%d\n",quit); 
 //printf("gear shiftpriority=%d\n",mysched.sched_priority); 
 switch(to_gear) 
 { 
  
 case 3:  
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,ENGAGE);  
 //printf("engage 3rd gear\n"); 
 
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,DISENGAGE); 
 //printf("disengage 2nd gear\n");  
 
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,DISENGAGE); 
 //printf("disengage 1st gear\n");  
 break; 
  
  
 case 2: 
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,ENGAGE);  
 //printf("engage 2nd gear\n"); 
 
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,DISENGAGE); 
 //printf("disengage 3rd gear\n");  
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 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,DISENGAGE); 
 //printf("disengage 1st gear\n");  
  
 break; 
  
  
 case 1: 
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,ENGAGE);  
 //printf("engage 1st gear\n"); 
  
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,DISENGAGE); 
 //printf("disengage 2nd gear\n");  
 
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,DISENGAGE); 
 //printf("disengage 3st gear\n");  
 break; 
  
 case 0: 
  
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_1,DISENGAGE);  
 //printf("engage 1st gear\n"); 
  
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_2,DISENGAGE); 
 //printf("disengage 2nd gear\n");  
 
 comedi_dio_write(ni6711.ni_daq,DIO_DEVICE,DIO_3,DISENGAGE); 
 //printf("disengage 3st gear\n");  
  
 default: 
  
 break; 
  
 } 
  
 } 
  
//rt_task_wait_period(); 
 
rt_mbx_delete(mbxgear); 
rt_task_delete(gearshift_tsk); 
return 1; 
} 
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tbacontrol.c 

/* Transmission based servor actuator system control  
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file tbacontrol.c 
 This is the main function of the TBA control software 
 It does the following tasks by calling specific function calls: 
 
-# Initialize servo 
-# Clibrate NI-6023e  
-# Initialize the braking motors 
-# Startup TBA GUI interface 
-# Manage all the task threads 
 
*/ 
 
#include <stdio.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <getopt.h> 
#include <ctype.h> 
#include <signal.h> 
#include <comedilib.h> 
#include <pthread.h> 
 
#define KEEP_STATIC_INLINE 
#include <rtai_lxrt_user.h> 
#include <rtai_lxrt.h> 
#include <rtai_fifos.h> 
#include <rtai_msg.h> 
  
#include "ni6711.h" 
#include "ni6023e.h" 
#include "common.h" 
#include "setmode.h" 
#include "control.h" 
 
int quit=0; 
 
int main() 
{ 
 
int drive_mode,controller_id,to_gear; 
 
pid_t pid; 
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int status; 
 
 
drive_mode=2; 
controller_id=2; 
to_gear=1; 
 
 
if(init_hrt()==ERROR) 
{ 
printf("hard real timer initilization failed!\n"); 
exit(0); 
} 
 
 
//initialize NI-6711 
 
if(!(ni6711.ni_daq=init_6711())) 
 { 
  printf("NI6711 initializtion failed!\n"); 
  exit(ERROR); 
  } 
   
 
//initilize NI-6023e 
  
 
if(!(ni6023e.ni_daq=init_6023e())) 
 { 
  printf("NI6023e initializtion failed!\n"); 
  exit(ERROR); 
  } 
printf("\n\n*********************************************************\n"); 
printf("\nwait for analog input calibaration finshed!\n"); 
printf("\n*********************************************************\n"); 
sleep(5); 
 
 
//initialize rtai fifo 
 
if (!(rtfifo = rtf_open_sized("/dev/rtf0", O_RDWR, 2000))) { 
  printf("ERROR OPENING FIFO0\n"); 
  exit(ERROR); 
   } 
 
//start gui 
 
pid=fork(); 
  
if (pid==-1) 
{ 
printf("fork failed!\n"); 
exit(0); 
} 
 
if(pid==0) 
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{ 
execv("/home/robin/Dissertation/src/qtgui/realtime",""); 
_exit (EXIT_FAILURE); 
} 
 
if (pid==1) 
{ 
printf("I am parent, waiting\n"); 
waitpid(pid,&status,0); 
} 
 
printf("\n\n*********************************************************\n"); 
printf("\nWait for gui to start,click 'START' button on the gui!\n"); 
printf("\n*********************************************************\n"); 
sleep(3); 
 
 
//set drive mode 
 
setMode(drive_mode); 
printf("\n\n*********************************************************\n"); 
printf("\nwait for u3k initialization ...\n"); 
printf("\n*********************************************************\n"); 
 
 
printf("Done!\n"); 
 
 
 
pthread_create(&shift_thrd,NULL,setGear,(void*)mbxgear); 
pthread_create(&stdout_thrd,NULL,stdOut,(void*)mbxstdout);        
 
 
motorControl(controller_id,drive_mode); 
quit=1; 
 
 
pthread_join(shift_thrd,NULL); 
pthread_join(stdout_thrd,NULL); 
 
//clean up before termination 
close(rtfifo); 
 
return;  
} 
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TBAGUI 

realtime.c 

/* Transmission based servo actuator system control - GUI 
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file realtime.c 
 This file defines the function acssociated with send the gear control action 
   
  
 
*/ 
 
 
#include <qapp.h> 
#include "mainwindow.h" 
 
int main(int argc, char **argv) 
{ 
    QApplication a(argc, argv); 
 
    MainWindow w; 
    w.show(); 
    a.setMainWidget(&w); 
 
    return a.exec(); 
} 
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mainwidow.h 

/* Transmission based servo actuator system control - GUI 
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file mainwidow.h 
 Class definition for the mainwindow 
*/ 
#ifndef _MAINWINDOW_H_ 
#define _MAINWINDOW_H_ 1 
#include <qapp.h> 
#include <qmainwindow.h> 
#include <qtoolbutton.h> 
#include <qcombobox.h> 
 
class QSpinBox; 
class QPushButton; 
class RandomPlot; 
 
/** 
A mainwindow layout 
*/ 
class MainWindow: public QMainWindow 
{ 
    Q_OBJECT 
public: 
  
    MainWindow(); 
         
private slots: 
    void showRunning(bool); 
    void appendPoints(bool); 
     
private: 
    QToolBar *toolBar(); 
    void initWhatsThis(); 
     
private: 
    QSpinBox *d_randomCount; 
    QSpinBox *d_timerCount; 
    QToolButton *d_startBtn; 
    QToolButton *d_clearBtn; 
    QString str; 
    QComboBox *cb; 
    RandomPlot *d_plot; 
}; 
 
#endif 
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mainwindow.cpp 

/* Transmission based servo actuator system control - GUI 
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file mainwindow.cpp 
 This file is the main window layout 
*/ 
 
#include <qlabel.h> 
#include <qhbox.h> 
#include <qstatusbar.h> 
#include <qtoolbar.h> 
#include <qtoolbutton.h> 
#include <qspinbox.h> 
#include <qwhatsthis.h> 
#include <qcombobox.h> 
#include "randomplot.h" 
#include "mainwindow.h" 
#include "start.xpm" 
#include "clear.xpm" 
 
class MyToolBar: public QToolBar 
{ 
public: 
    MyToolBar(MainWindow *); 
    void addSpacing(int); 
    void addStretch(); 
}; 
 
MyToolBar::MyToolBar(MainWindow *parent): 
    QToolBar(parent) 
{ 
} 
 
void MyToolBar::addSpacing(int spacing) 
{ 
    QLabel *label = new QLabel(this); 
    label->setFixedWidth(spacing); 
} 
 
void MyToolBar::addStretch() 
{ 
    QLabel *label = new QLabel(this); 
    setStretchableWidget(label); 
} 
 
MainWindow::MainWindow() 
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{ 
    setDockEnabled(DockTornOff, TRUE); 
    setRightJustification(TRUE); 
 
    (void)toolBar(); 
    (void)statusBar(); 
                 
    d_plot = new RandomPlot(this); 
         
    d_plot->setMargin(4); 
     
    setCentralWidget(d_plot); 
        
    connect(d_startBtn, SIGNAL(toggled(bool)), this, SLOT(appendPoints(bool))); 
    connect(d_clearBtn, SIGNAL(clicked()), d_plot, SLOT(clear())); 
    connect(d_plot, SIGNAL(running(bool)), this, SLOT(showRunning(bool))); 
    connect(cb,SIGNAL(activated(int)),d_plot,SLOT(toggleCurve(int))); 
 
    initWhatsThis(); 
} 
 
QToolBar *MainWindow::toolBar() 
{ 
    MyToolBar *toolBar = new MyToolBar(this); 
 
    d_startBtn = new QToolButton(toolBar); 
    d_startBtn->setUsesTextLabel(TRUE); 
    d_startBtn->setPixmap(QPixmap(start_xpm)); 
    d_startBtn->setToggleButton(TRUE); 
 
    d_clearBtn = new QToolButton(toolBar); 
    d_clearBtn->setUsesTextLabel(TRUE); 
    d_clearBtn->setPixmap(QPixmap(clear_xpm)); 
    d_clearBtn->setTextLabel("Clear", FALSE); 
 
    QToolButton *helpBtn = QWhatsThis::whatsThisButton(toolBar); 
    helpBtn->setUsesTextLabel(TRUE); 
    helpBtn->setTextLabel("Help", FALSE); 
 
  
    // Create a non-editable Combobox and a label below... 
    toolBar->addSpacing(20); 
    toolBar->addStretch(); 
     
    cb = new QComboBox( FALSE, toolBar); 
     
    //...and insert 5 items into the Combobox 
    str = QString( "Motor Speed" ); 
    cb->insertItem( str ); 
    str = QString( "DVT Output Speed" ); 
    cb->insertItem( str ); 
    str = QString( "Motor Torque" ); 
    cb->insertItem( str ); 
    str = QString( "Dynamometer Torque" ); 
    cb->insertItem( str ); 
    str = QString( "DVT Position" ); 
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    cb->insertItem( str ); 
    str = QString( "COM Position" ); 
    cb->insertItem( str ); 
 
    toolBar->addSpacing(10); 
 
    showRunning(FALSE); 
 
    d_startBtn->setMinimumWidth(helpBtn->sizeHint().width() + 20); 
    d_clearBtn->setMinimumWidth(helpBtn->sizeHint().width() + 20); 
    helpBtn->setMinimumWidth(helpBtn->sizeHint().width() + 20); 
 
    return toolBar; 
} 
 
void MainWindow::appendPoints(bool on) 
{ 
    if ( on ) 
        d_plot->append(); 
    else 
        d_plot->stop(); 
} 
 
void MainWindow::showRunning(bool running) 
{ 
     
    d_startBtn->setOn(running); 
    d_startBtn->setTextLabel(running ? "Stop" : "Start", FALSE); 
} 
 
void MainWindow::initWhatsThis() 
{ 
    QWhatsThis::add(d_plot, 
        "Zooming is enabled until the selected area gets " 
        "too small for the significance on the axes.\n\n" 
        "You can zoom in using the left mouse button.\n" 
        "The middle mouse button is used to go back to the " 
        "previous zoomed area.\n" 
        "The right mouse button is used to unzoom completely." 
    ); 
     
    QWhatsThis::add(d_startBtn, 
        "Start generation of random points.\n\n" 
        "The intention of this example is to show how to implement " 
        "growing curves. The points will be generated and displayed " 
        "one after the other.\n" 
        "To check the performance, a small delay and a large number " 
        "of points are useful. To watch the curve growing, a delay " 
        " > 300 ms and less points are better.\n" 
        "To inspect the curve, stacked zooming is implemented using the " 
        "mouse buttons on the plot." 
    ); 
    QWhatsThis::add(d_clearBtn, 
        "Remove all points." 
    ); 
} 
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randomplot.h 

/* Transmission based servo actuator system control - GUI 
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file randomplot.h 
 class definition of the data curve plot 
*/ 
#ifndef _RANDOMPLOT_H_ 
#define _RANDOMPLOT_H_ 1 
#include "incrementalplot.h" 
#define UPDATERATE 10; //ms 
 
class QTimer; 
 
/** 
A plot area to hold all data curves 
*/ 
class RandomPlot: public IncrementalPlot 
{ 
    Q_OBJECT 
 
public: 
 
    RandomPlot(QWidget *parent); 
 
    virtual QSize sizeHint() const; 
     
    enum tbaData 
    { 
        MOTORSPEED, 
        DVTSPEED, 
        MOTORTORQUE, 
        NYNATORQUE, 
        DVTPOSITION, 
        COMPOSITION, 
        NTbaData 
    }; 
     
    int cmbIndex;   
 
signals: 
    void running(bool); 
    void timeout(); 
     
public slots: 
    void clear(); 
    void stop(); 
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    void append(); 
    void toggleCurve(int); 
 
private slots: 
    void appendPoint(); 
    
 
private: 
 
    void initCurve(); 
 
    long d_curveId; 
 
    QTimer *d_timer; 
    int d_timerCount; 
    int fd; 
    int len; 
     
    /*     
    struct datapack{ 
    double time; 
    int dvt_position; 
    int motor_position; 
    int gear_current; 
    int command_position; 
    double motor_speed; 
    double dvt_speed; 
    double load; 
    //double motor_torque; 
    }; 
    */ 
    struct datapack{ 
    float time; 
    int dvt_position; 
    int motor_position; 
    int gear_current; 
    int command_position; 
    float motor_speed; 
    float dvt_speed; 
    float load; 
    float motor_torque; 
    }; 
     typedef struct datapack Datapack; 
     
    Datapack data_pack; 
    double x,y; 
     
    struct 
    { 
        long curve; 
        double data[100000]; 
    } data[NTbaData]; 
     
    }; 
 
#endif // _RANDOMPLOT_H_ 
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mainwindow.cpp 

/* Transmission based servo actuator system control - GUI 
 * 
 * Renbin Zhou <zhourb@gmail.com> 
 * 
 * This file may be freely modified, distributed, and combined with 
 * other software, as long as proper attribution is given in the 
 * source code. 
 */ 
 
/** \file mainwindow.cpp 
 This file is the data curve plot  
*/ 
 
#include <stdlib.h> 
#include <qtimer.h> 
#include <fcntl.h> //open() 
#include <unistd.h> //close() 
#include "scrollzoomer.h" 
#include "randomplot.h" 
 
const unsigned int c_rangeMax = 10; 
 
RandomPlot::RandomPlot(QWidget *parent): 
    IncrementalPlot(parent), 
    d_curveId(0), 
    d_timer(0), 
    d_timerCount(0) 
{ 
    setFrameStyle(NoFrame); 
    setLineWidth(0); 
    setCanvasLineWidth(2); 
 
    enableGridX(TRUE); 
    enableGridY(TRUE); 
    setGridMajPen(QPen(gray, 0, DotLine)); 
 
    //setCanvasBackground(QColor(29, 100, 141)); // nice blue 
    setCanvasBackground(QColor(255, 255, 255)); 
     
    setAxisScale(xBottom, 0, 100); 
    setAxisScale(yLeft, -50, 300); 
     
 
    for ( int i = 0; i < QwtPlot::axisCnt; i++ ) 
        setAxisLabelFormat(i, 'g', 8); 
 
    // enable zooming 
 
    ScrollZoomer *zoomer = new ScrollZoomer(canvas()); 
    zoomer->setRubberBandPen(QPen(Qt::red, 0, Qt::DotLine)); 
    zoomer->setCursorLabelPen(QPen(Qt::yellow)); 
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    initCurve(); 
    replot(); 
     
         
    fd=open("/dev/rtf0",O_RDWR,O_NDELAY); 
     
    //printf("fd=%d\n",fd); 
     
    if (fd==-1) { 
    printf("fifo open failed!"); 
    exit(1); 
    } 
     
} 
 
QSize RandomPlot::sizeHint() const 
{ 
    return QSize(600,450); 
} 
 
void RandomPlot::initCurve() 
{  
    /* 
    if ( d_curveId > 0 ) 
    { 
        removeCurveData(d_curveId); 
        removeCurve(d_curveId); 
    } 
 
    d_curveId = insertCurve("Motor speed curve"); 
     
    setCurveStyle(d_curveId, QwtCurve::Lines); 
    setTitle("Realtime TBA control"); 
     
    //long line_marker=insertLineMarker("",QwtPlot::yLeft); 
    //setMarkerYPos(line_marker,0.0); 
     
    //const QColor &c=black; 
    
//setCurveSymbol(d_curveId,QwtSymbol(QwtSymbol::XCross,QBrush(c),QPen(c),QSize(2,2))); 
     
    setAxisTitle(xBottom, "Time (second)"); 
    setAxisTitle(yLeft, "Speed (radius/second)"); 
    setAxisAutoScale(xBottom); 
    //replot(); 
    */ 
     
    //plotLayout()->setAlignCanvasToScales(TRUE); 
    //setCanvasBackground(Qt::darkGray); 
 
    //setAutoLegend(TRUE); 
    //setLegendPos(Qwt::Right); 
     
    setAutoLegend(TRUE); 
    setLegendPos(Qwt::Bottom); 
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    setTitle("Realtime TBA control"); 
 
    setAxisTitle(QwtPlot::xBottom, " Time (seconds)"); 
    setAxisScale(QwtPlot::xBottom, 0, 100); 
           
 
    setAxisScale(QwtPlot::yLeft, -50, 300); 
     
 
    data[MOTORSPEED].curve = insertCurve("Motor Speed"); 
    setCurvePen(data[MOTORSPEED].curve, QPen(black)); 
    setCurveStyle(data[MOTORSPEED].curve, QwtCurve::Lines); 
     
     
    data[DVTSPEED].curve = insertCurve("DVT Speed"); 
    setCurvePen(data[DVTSPEED].curve, QPen(green)); 
    setCurveStyle(data[DVTSPEED].curve, QwtCurve::Lines); 
 
    data[MOTORTORQUE].curve = insertCurve("Motor Torque"); 
    setCurvePen(data[MOTORTORQUE].curve, QPen(blue)); 
    setCurveStyle(data[DVTSPEED].curve, QwtCurve::Lines); 
 
    data[NYNATORQUE].curve = insertCurve("Dyna Torque"); 
    setCurvePen(data[NYNATORQUE].curve, QPen(red)); 
    setCurveStyle(data[NYNATORQUE].curve, QwtCurve::Lines); 
 
     
    data[DVTPOSITION].curve = insertCurve("DVT Position"); 
    setCurvePen(data[DVTPOSITION].curve, QPen(gray)); 
    setCurveStyle(data[DVTPOSITION].curve, QwtCurve::Lines); 
     
    data[COMPOSITION].curve = insertCurve("Command Position"); 
    setCurvePen(data[COMPOSITION].curve, QPen(black)); 
    setCurveStyle(data[COMPOSITION].curve, QwtCurve::Lines); 
        
     
    //toggleCurve(1); 
     
     
    replot();  
     
} 
 
void RandomPlot::appendPoint() 
{ 
   /* 
    x = rand() % c_rangeMax; 
    x += ( rand() % 100 ) / 100; 
 
    printf("x=%.2f ",x ); 
     
     
    y = rand() % c_rangeMax; 
    y += ( rand() % 100 ) / 100; 
    printf("y=%.2f \n",y ); 
   */  
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   len=read(fd,(void*)&data_pack,sizeof(data_pack)); 
   
   if (len == 0) { 
      printf("buffer empty\n"); 
 return; 
   } 
    
  else if(len==sizeof(data_pack)) 
    
  { 
          
   x=data_pack.time; 
    
   y=data_pack.load; 
    
   //printf("time= %.4f\n",x); 
                
  }   
    
  //printf("cmbIndex = %d",cmbIndex); 
   
  //switch (cmbIndex) 
  //{ 
  //case 0: 
   appendCurvePoint(data[MOTORSPEED].curve, x, data_pack.motor_speed); 
 //  break; 
 // case 1:  
   appendCurvePoint(data[DVTSPEED].curve, x, data_pack.dvt_speed); 
 //  break; 
 // case 2: 
   appendCurvePoint(data[MOTORTORQUE].curve, x, data_pack.motor_torque); 
 //  break; 
 // case 3:  
   appendCurvePoint(data[NYNATORQUE].curve, x, data_pack.load); 
//  break; 
 // case 4:  
   appendCurvePoint(data[DVTPOSITION].curve, x, 
(double)data_pack.dvt_position/1024./*2.*3.1415926*/); 
 //  break; 
//  default: 
//  break; 
   appendCurvePoint(data[COMPOSITION].curve, x, 
(double)data_pack.command_position/1024.); 
 // } 
     //    stop(); 
} 
 
void RandomPlot::append() 
{ 
        
  if ( !d_timer ) 
    { 
        d_timer = new QTimer(this); 
        connect(d_timer, SIGNAL(timeout()), SLOT(appendPoint())); 
    } 
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    emit running(TRUE); 
     
    d_timer->start(10); //qt timer update rate ms 
       } 
 
void RandomPlot::stop() 
{ 
    if ( d_timer ) 
    { 
        d_timer->stop(); 
        emit running(FALSE); 
    } 
} 
 
void RandomPlot::clear() 
{ 
    removeCurves(); 
    initCurve(); 
    //removeCurves(); 
    //replot(); 
} 
 
void RandomPlot::toggleCurve(int cmbBoxId) 
{    
    cmbIndex=cmbBoxId; 
     
    //printf("cmbbox ID=%d \n",cmbBoxId); 
     
    QwtPlotCurve *c1=curve(data[MOTORSPEED].curve); 
    QwtPlotCurve *c2=curve(data[DVTSPEED].curve); 
    QwtPlotCurve *c3=curve(data[MOTORTORQUE].curve); 
    QwtPlotCurve *c4=curve(data[NYNATORQUE].curve); 
    QwtPlotCurve *c5=curve(data[DVTPOSITION].curve); 
    QwtPlotCurve *c6=curve(data[COMPOSITION].curve); 
     
     
    switch (cmbBoxId) 
    { 
    case 0:  
     
    if (c1) 
    {      
    c1->setEnabled(TRUE); 
    } 
     
    if (c2) 
    { 
    c2->setEnabled(FALSE); 
    } 
     
    if (c3) 
    { 
    c3->setEnabled(FALSE); 
    } 
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    if (c4) 
    { 
    c4->setEnabled(FALSE); 
    } 
     
    if (c5) 
    { 
    c5->setEnabled(FALSE); 
    } 
     
    if (c6) 
    { 
    c6->setEnabled(FALSE); 
    } 
     
    replot(); 
    break; 
     
    case 1:  
     
    if (c1) 
    {      
    c1->setEnabled(FALSE); 
    } 
    if (c2) 
    { 
    c2->setEnabled(TRUE); 
    } 
    if (c3) 
    { 
    c3->setEnabled(FALSE); 
    } 
    if (c4) 
    { 
    c4->setEnabled(FALSE); 
    } 
    if (c5) 
    { 
    c5->setEnabled(FALSE); 
    } 
    if (c6) 
    { 
    c6->setEnabled(FALSE); 
    } 
     
    replot(); 
    break; 
     
    case 2:  
     
    if (c1) 
    {      
    c1->setEnabled(FALSE); 
    } 
    if (c2) 
    { 
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    c2->setEnabled(FALSE); 
    } 
    if (c3) 
    { 
    c3->setEnabled(TRUE); 
    } 
    if (c4) 
    { 
    c4->setEnabled(FALSE); 
    } 
    if (c5) 
    { 
    c5->setEnabled(FALSE); 
    } 
    if (c6) 
    { 
    c6->setEnabled(FALSE); 
    } 
     
    replot(); 
    break; 
     
      case 3:  
     
    if (c1) 
    {      
    c1->setEnabled(FALSE); 
    } 
    if (c2) 
    { 
    c2->setEnabled(FALSE); 
    } 
    if (c3) 
    { 
    c3->setEnabled(FALSE); 
    } 
    if (c4) 
    { 
    c4->setEnabled(TRUE); 
    } 
    if (c5) 
    { 
    c5->setEnabled(FALSE); 
    } 
    if (c6) 
    { 
    c6->setEnabled(FALSE); 
    } 
     
    replot(); 
    break; 
     
      case 4:  
     
    if (c1) 
    {      
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    c1->setEnabled(FALSE); 
    } 
    if (c2) 
    { 
    c2->setEnabled(FALSE); 
    } 
    if (c3) 
    { 
    c3->setEnabled(FALSE); 
    } 
    if (c4) 
    { 
    c4->setEnabled(FALSE); 
    } 
    if (c5) 
    { 
    c5->setEnabled(TRUE); 
    } 
    if (c6) 
    { 
    c6->setEnabled(FALSE); 
    } 
    replot(); 
    break; 
     
      case 5:  
     
    if (c1) 
    {      
    c1->setEnabled(FALSE); 
    } 
    if (c2) 
    { 
    c2->setEnabled(FALSE); 
    } 
    if (c3) 
    { 
    c3->setEnabled(FALSE); 
    } 
    if (c4) 
    { 
    c4->setEnabled(FALSE); 
    } 
    if (c5) 
    { 
    c5->setEnabled(FALSE); 
    } 
    if (c6) 
    { 
    c6->setEnabled(TRUE); 
    } 
    replot(); 
    break; 
     
    default: 
    replot(); 
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    break; 
    } 
} 
 
#ifndef _INCREMENTALPLOT_H_ 
#define _INCREMENTALPLOT_H_ 1 
 
#include <qintdict.h> 
#include <qwt_array.h> 
#include <qwt_plot.h> 
 
class CurveData 
{ 
    // A container class for growing data 
public: 
 
    CurveData(); 
 
    void append(double *x, double *y, int count); 
 
    int count() const; 
    int size() const; 
    double *x() const; 
    double *y() const; 
 
private: 
    int d_count; 
    QwtArray<double> d_x; 
    QwtArray<double> d_y; 
}; 
 
class IncrementalPlot : public QwtPlot 
{ 
    Q_OBJECT 
public: 
    IncrementalPlot(QWidget *parent = 0, const char *name = 0); 
    virtual ~IncrementalPlot(); 
 
    void appendCurvePoint(long curveId, double x, double y); 
    void appendCurveData(long curveId, 
        double *x, double *y, int size); 
 
    void removeCurveData(long curveId); 
private: 
 
    QIntDict<CurveData> d_curveDictionary; 
}; 
 
#endif // _INCREMENTALPLOT_H_ 
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incrementalplot.cpp 

/** incrementalplot.cpp 
*/ 
 
#include <qwt_plot.h> 
#include <qwt_plot_dict.h> 
#include "incrementalplot.h" 
 
CurveData::CurveData(): 
    d_count(0) 
{ 
} 
 
void CurveData::append(double *x, double *y, int count) 
{ 
    int newSize = ( (d_count + count) / 1000 + 1 ) * 1000; 
         
    if ( newSize > size() ) 
    { 
        d_x.resize(newSize); 
        d_y.resize(newSize); 
    } 
 
    for ( register int i = 0; i < count; i++ ) 
    { 
        d_x[d_count + i] = x[i]; 
        d_y[d_count + i] = y[i]; 
    } 
    d_count += count; 
} 
 
int CurveData::count() const 
{ 
    return d_count; 
} 
 
int CurveData::size() const 
{ 
    return d_x.size(); 
} 
 
double *CurveData::x() const 
{ 
    return d_x.data(); 
} 
 
double *CurveData::y() const 
{ 
    return d_y.data(); 
} 
 
IncrementalPlot::IncrementalPlot(QWidget *parent, const char* name):  
    QwtPlot(parent, name) 
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{ 
    d_curveDictionary.setAutoDelete(TRUE); 
} 
 
IncrementalPlot::~IncrementalPlot() 
{ 
    removeCurves(); 
} 
 
void IncrementalPlot::appendCurvePoint(long curveId, double x, double y) 
{ 
    appendCurveData(curveId, &x, &y, 1); 
} 
 
void IncrementalPlot::appendCurveData(long curveId,  
    double *x, double *y, int size) 
{ 
    QwtPlotCurve *curve = IncrementalPlot::curve(curveId); 
    if ( curve == 0 || size <= 0 ) 
        return; 
     
    CurveData *curveData = d_curveDictionary.find(curveId); 
    if ( curveData == 0 ) 
    { 
        curveData = new CurveData(); 
        d_curveDictionary.insert(curveId, curveData); 
    } 
 
    curveData->append(x, y, size); 
    curve->setRawData(curveData->x(), curveData->y(), curveData->count()); 
     
    drawCurve(curveId, curve->dataSize() - size, curve->dataSize() - 2); 
    setAutoLegend(TRUE); 
    //legendEnabled(data[DVTPOSITION].curve); 
} 
 
void IncrementalPlot::removeCurveData(long curveId) 
{ 
    d_curveDictionary.remove(curveId); 
} 
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scrollbar.h 

/** scrollbar.h 
*/ 
 
#ifndef _SCROLLBAR_H 
#define _SCROLLBAR_H 1 
 
#include <qscrollbar.h> 
 
class ScrollBar: public QScrollBar 
{ 
    Q_OBJECT 
 
public: 
    ScrollBar(QWidget *parent = NULL, const char *name = NULL); 
    ScrollBar(Qt::Orientation,  
        QWidget *parent = NULL, const char *name = NULL); 
    ScrollBar(double minBase, double maxBase,        
        Orientation o, QWidget *parent = NULL, const char *name = NULL); 
    void setInverted(bool); 
    bool isInverted() const; 
    double minBaseValue() const; 
    double maxBaseValue() const; 
    double minSliderValue() const; 
    double maxSliderValue() const; 
 
    int extent() const; 
 
signals: 
    void sliderMoved(Qt::Orientation, double, double); 
    void valueChanged(Qt::Orientation, double, double); 
 
public slots: 
    virtual void setBase(double min, double max); 
    virtual void moveSlider(double min, double max); 
 
protected: 
    void sliderRange(int value, double &min, double &max) const; 
    int mapToTick(double) const; 
    double mapFromTick(int) const; 
private slots: 
    void catchValueChanged(int value); 
    void catchSliderMoved(int value); 
private: 
    void init(); 
 
    bool d_inverted; 
    double d_minBase; 
    double d_maxBase; 
    int d_baseTicks; 
}; 
 
#endif 
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scrollbar.cpp 

/** scrollbar.cpp 
*/ 
#include <qstyle.h> 
#include "scrollbar.h" 
 
ScrollBar::ScrollBar(QWidget * parent, const char *name): 
    QScrollBar(parent, name) 
{ 
    init(); 
} 
 
ScrollBar::ScrollBar(Qt::Orientation o,  
        QWidget *parent, const char *name): 
    QScrollBar(o, parent, name) 
{ 
    init(); 
} 
 
ScrollBar::ScrollBar(double minBase, double maxBase,  
        Orientation o, QWidget *parent, const char *name): 
    QScrollBar(o, parent, name) 
{ 
    init(); 
    setBase(minBase, maxBase); 
    moveSlider(minBase, maxBase); 
} 
 
void ScrollBar::init() 
{ 
    d_inverted = orientation() == Qt::Vertical; 
    d_baseTicks = 1000000; 
    d_minBase = 0.0; 
    d_maxBase = 1.0; 
    moveSlider(d_minBase, d_maxBase); 
 
    connect(this, SIGNAL(sliderMoved(int)), SLOT(catchSliderMoved(int))); 
    connect(this, SIGNAL(valueChanged(int)), SLOT(catchValueChanged(int))); 
} 
 
void ScrollBar::setInverted(bool inverted) 
{ 
    if ( d_inverted != inverted ) 
    { 
        d_inverted = inverted; 
        moveSlider(minSliderValue(), maxSliderValue()); 
    } 
} 
 
bool ScrollBar::isInverted() const 
{ 
    return d_inverted; 
} 



 246

void ScrollBar::setBase(double min, double max) 
{ 
    if ( min != d_minBase || max != d_maxBase ) 
    { 
        d_minBase = min; 
        d_maxBase = max; 
 
        moveSlider(minSliderValue(), maxSliderValue()); 
    } 
} 
 
void ScrollBar::moveSlider(double min, double max) 
{ 
    const int sliderTicks = qRound((max - min) /  
        (d_maxBase - d_minBase) * d_baseTicks); 
 
    // setRange initiates a valueChanged of the scrollbars 
    // in some situations. So we block 
    // and unblock the signals. 
 
    blockSignals(TRUE); 
 
    setRange(sliderTicks / 2, d_baseTicks - sliderTicks / 2); 
    int steps = sliderTicks / 200; 
    if ( steps <= 0 ) 
        steps = 1; 
 
    // setPageStep, setLineStep ??? 
 
    setSteps(steps, sliderTicks); 
 
    int tick = mapToTick(min + (max - min) / 2); 
    if ( isInverted() ) 
        tick = d_baseTicks - tick; 
 
    directSetValue(tick); 
    blockSignals(FALSE); 
 
    rangeChange(); 
} 
 
double ScrollBar::minBaseValue() const 
{ 
    return d_minBase; 
} 
 
double ScrollBar::maxBaseValue() const 
{ 
    return d_maxBase; 
} 
 
void ScrollBar::sliderRange(int value, double &min, double &max) const 
{ 
    if ( isInverted() ) 
        value = d_baseTicks - value; 
    const int visibleTicks = pageStep(); 
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    min = mapFromTick(value - visibleTicks / 2); 
    max = mapFromTick(value + visibleTicks / 2); 
} 
 
double ScrollBar::minSliderValue() const 
{ 
    double min, dummy; 
    sliderRange(value(), min, dummy); 
 
    return min; 
} 
 
double ScrollBar::maxSliderValue() const 
{ 
    double max, dummy; 
    sliderRange(value(), dummy, max); 
 
    return max; 
} 
 
int ScrollBar::mapToTick(double v) const 
{    
    return (int) ( ( v - d_minBase) / (d_maxBase - d_minBase ) * d_baseTicks ); 
} 
 
double ScrollBar::mapFromTick(int tick) const 
{    
    return d_minBase + ( d_maxBase - d_minBase ) * tick / d_baseTicks; 
} 
 
void ScrollBar::catchValueChanged(int value) 
{ 
    double min, max; 
    sliderRange(value, min, max); 
    emit valueChanged(orientation(), min, max); 
} 
 
void ScrollBar::catchSliderMoved(int value) 
{ 
    double min, max; 
    sliderRange(value, min, max); 
    emit sliderMoved(orientation(), min, max); 
} 
 
int ScrollBar::extent() const 
{ 
    int dim; 
#if QT_VERSION >= 300 
    dim = style().pixelMetric(QStyle::PM_ScrollBarExtent, this); 
#else 
    const QSize sz = style().scrollBarExtent(); 
    dim = (orientation() == Qt::Horizontal) ? sz.height() : sz.width(); 
#endif 
    return dim; 
} 
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scrollzoomer.h 

/**scrollzoomer.h 
*/ 
 
#ifndef _SCROLLZOOMER_H 
#define _SCROLLZOOMER_H 
 
#include <qscrollview.h> 
#include <qwt_plot_zoomer.h> 
 
class ScrollData; 
class ScrollBar; 
 
class ScrollZoomer: public QwtPlotZoomer 
{ 
    Q_OBJECT 
public: 
    enum ScrollBarPosition 
    { 
        AttachedToScale, 
        OppositeToScale 
    }; 
 
    ScrollZoomer(QwtPlotCanvas *, const char *name = 0); 
    virtual ~ScrollZoomer(); 
 
    ScrollBar *horizontalScrollBar() const; 
    ScrollBar *verticalScrollBar() const; 
 
    void setHScrollBarMode(QScrollView::ScrollBarMode); 
    void setVScrollBarMode(QScrollView::ScrollBarMode); 
 
    QScrollView::ScrollBarMode vScrollBarMode () const; 
    QScrollView::ScrollBarMode hScrollBarMode () const; 
 
    void setHScrollBarPosition(ScrollBarPosition); 
    void setVScrollBarPosition(ScrollBarPosition); 
 
    ScrollBarPosition hScrollBarPosition() const; 
    ScrollBarPosition vScrollBarPosition() const; 
 
    QWidget* cornerWidget() const; 
    virtual void setCornerWidget(QWidget *);  
     
    virtual bool eventFilter(QObject *, QEvent *); 
 
    virtual void rescale(); 
 
protected: 
    virtual ScrollBar *scrollBar(Qt::Orientation); 
    virtual void updateScrollBars(); 
    virtual void layoutScrollBars(const QRect &); 
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private slots: 
    void scrollBarMoved(Qt::Orientation o, double min, double max); 
 
private: 
    bool needScrollBar(Qt::Orientation) const; 
    int oppositeAxis(int) const; 
 
    QWidget *d_cornerWidget; 
 
    ScrollData *d_hScrollData; 
    ScrollData *d_vScrollData; 
}; 
             
#endif 
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scrollzoomer.cpp 

/**scrollzoomer.cpp 
*/ 
 
#include "qwt_plot_canvas.h" 
#include "qwt_plot_layout.h" 
#include "scrollbar.h" 
#include "scrollzoomer.h" 
 
class ScrollData 
{ 
public: 
    ScrollData(): 
        scrollBar(NULL), 
        position(ScrollZoomer::OppositeToScale), 
        mode(QScrollView::Auto) 
    { 
    } 
 
    ~ScrollData() 
    { 
        delete scrollBar; 
    } 
 
    ScrollBar *scrollBar; 
    ScrollZoomer::ScrollBarPosition position; 
    QScrollView::ScrollBarMode mode; 
}; 
 
ScrollZoomer::ScrollZoomer(QwtPlotCanvas *canvas, const char *name): 
    QwtPlotZoomer(canvas, name), 
    d_cornerWidget(NULL), 
    d_hScrollData(NULL), 
    d_vScrollData(NULL) 
{ 
    if ( !canvas ) 
        return; 
 
    d_hScrollData = new ScrollData; 
    d_vScrollData = new ScrollData; 
} 
 
ScrollZoomer::~ScrollZoomer() 
{ 
    delete d_cornerWidget; 
    delete d_vScrollData; 
    delete d_hScrollData; 
} 
 
void ScrollZoomer::rescale() 
{ 
    QwtPlotZoomer::rescale(); 
    updateScrollBars(); 
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} 
 
ScrollBar *ScrollZoomer::scrollBar(Qt::Orientation o) 
{ 
    ScrollBar *&sb = (o == Qt::Vertical)  
        ? d_vScrollData->scrollBar : d_hScrollData->scrollBar; 
 
    if ( sb == NULL ) 
    { 
        sb = new ScrollBar(o, canvas()); 
        sb->hide(); 
        connect(sb, 
            SIGNAL(valueChanged(Qt::Orientation, double, double)), 
            SLOT(scrollBarMoved(Qt::Orientation, double, double))); 
    } 
    return sb; 
} 
 
ScrollBar *ScrollZoomer::horizontalScrollBar() const 
{ 
    return d_hScrollData->scrollBar; 
} 
 
ScrollBar *ScrollZoomer::verticalScrollBar() const 
{ 
    return d_vScrollData->scrollBar; 
} 
     
void ScrollZoomer::setHScrollBarMode(QScrollView::ScrollBarMode mode) 
{ 
    if ( hScrollBarMode() != mode ) 
    { 
        d_hScrollData->mode = mode; 
        updateScrollBars(); 
    } 
} 
 
void ScrollZoomer::setVScrollBarMode(QScrollView::ScrollBarMode mode) 
{ 
    if ( vScrollBarMode() != mode ) 
    { 
        d_vScrollData->mode = mode; 
        updateScrollBars(); 
    } 
} 
 
QScrollView::ScrollBarMode ScrollZoomer::hScrollBarMode() const 
{ 
    return d_hScrollData->mode; 
} 
 
QScrollView::ScrollBarMode ScrollZoomer::vScrollBarMode () const 
{ 
    return d_vScrollData->mode; 
} 
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void ScrollZoomer::setHScrollBarPosition(ScrollBarPosition pos) 
{ 
    if ( d_hScrollData->position != pos ) 
    { 
        d_hScrollData->position = pos; 
        updateScrollBars(); 
    } 
} 
 
void ScrollZoomer::setVScrollBarPosition(ScrollBarPosition pos) 
{ 
    if ( d_vScrollData->position != pos ) 
    { 
        d_vScrollData->position = pos; 
        updateScrollBars(); 
    } 
} 
 
ScrollZoomer::ScrollBarPosition ScrollZoomer::hScrollBarPosition() const 
{ 
    return d_hScrollData->position; 
} 
 
ScrollZoomer::ScrollBarPosition ScrollZoomer::vScrollBarPosition() const 
{ 
    return d_vScrollData->position; 
} 
 
void ScrollZoomer::setCornerWidget(QWidget *w) 
{ 
    if ( w != d_cornerWidget ) 
    { 
        if ( canvas() ) 
        { 
            delete d_cornerWidget; 
            d_cornerWidget = w; 
            if ( d_cornerWidget->parent() != canvas() ) 
                d_cornerWidget->reparent(canvas(), QPoint(0, 0)); 
 
            updateScrollBars(); 
        } 
    } 
} 
 
QWidget *ScrollZoomer::cornerWidget() const 
{ 
    return d_cornerWidget; 
} 
 
bool ScrollZoomer::eventFilter(QObject *o, QEvent *e) 
{ 
    if (  o == canvas() ) 
    { 
        switch(e->type()) 
        { 
            case QEvent::Resize: 
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            { 
                const int fw = ((QwtPlotCanvas *)canvas())->frameWidth(); 
 
                QRect rect; 
                rect.setSize(((QResizeEvent *)e)->size()); 
                rect.setRect(rect.x() + fw, rect.y() + fw, 
                    rect.width() - 2 * fw, rect.height() - 2 * fw); 
 
                layoutScrollBars(rect); 
                break; 
            } 
            case QEvent::ChildRemoved: 
            { 
                const QObject *child = ((QChildEvent *)e)->child(); 
                if ( child == d_cornerWidget ) 
                    d_cornerWidget = NULL; 
                else if ( child == d_hScrollData->scrollBar ) 
                    d_hScrollData->scrollBar = NULL; 
                else if ( child == d_vScrollData->scrollBar ) 
                    d_vScrollData->scrollBar = NULL; 
                break; 
            } 
            default: 
                break; 
        } 
    } 
    return QwtPlotZoomer::eventFilter(o, e); 
} 
 
bool ScrollZoomer::needScrollBar(Qt::Orientation o) const 
{ 
    QScrollView::ScrollBarMode mode; 
    double zoomMin, zoomMax, baseMin, baseMax; 
 
    if ( o == Qt::Horizontal ) 
    { 
        mode = d_hScrollData->mode; 
        baseMin = zoomBase().x1(); 
        baseMax = zoomBase().x2(); 
        zoomMin = zoomRect().x1(); 
        zoomMax = zoomRect().x2(); 
    } 
    else 
    { 
        mode = d_vScrollData->mode; 
        baseMin = zoomBase().y1(); 
        baseMax = zoomBase().y2(); 
        zoomMin = zoomRect().y1(); 
        zoomMax = zoomRect().y2(); 
    } 
 
    bool needed = FALSE; 
    switch(mode) 
    { 
        case QScrollView::AlwaysOn: 
            needed = TRUE; 



 254

            break; 
        case QScrollView::AlwaysOff:     
            needed = FALSE; 
            break; 
        case QScrollView::Auto: 
        default: 
        { 
            if ( baseMin < zoomMin || baseMax > zoomMax ) 
                needed = TRUE; 
            break; 
        } 
    } 
    return needed; 
} 
 
void ScrollZoomer::updateScrollBars() 
{ 
    if ( !canvas() ) 
        return; 
 
    const int xAxis = QwtPlotZoomer::xAxis(); 
    const int yAxis = QwtPlotZoomer::yAxis(); 
 
    int xScrollBarAxis = xAxis; 
    if ( hScrollBarPosition() == OppositeToScale ) 
        xScrollBarAxis = oppositeAxis(xScrollBarAxis); 
 
    int yScrollBarAxis = yAxis; 
    if ( vScrollBarPosition() == OppositeToScale )  
        yScrollBarAxis = oppositeAxis(yScrollBarAxis);  
 
 
    QwtPlotLayout *layout = plot()->plotLayout(); 
 
    bool showHScrollBar = needScrollBar(Qt::Horizontal); 
    if ( showHScrollBar ) 
    { 
        ScrollBar *sb = scrollBar(Qt::Horizontal); 
 
        sb->setPalette(plot()->palette()); 
        sb->setInverted(plot()->axisOptions(xAxis) & QwtAutoScale::Inverted); 
        sb->setBase(zoomBase().x1(), zoomBase().x2()); 
        sb->moveSlider(zoomRect().x1(), zoomRect().x2()); 
 
        if ( !sb->isVisibleTo(canvas()) ) 
        { 
            sb->show(); 
            layout->setCanvasMargin(layout->canvasMargin(xScrollBarAxis)  
                + sb->extent(), xScrollBarAxis); 
        } 
    } 
    else 
    { 
        if ( horizontalScrollBar() ) 
        { 
            horizontalScrollBar()->hide(); 
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            layout->setCanvasMargin(layout->canvasMargin(xScrollBarAxis)  
                - horizontalScrollBar()->extent(), xScrollBarAxis); 
        } 
    } 
 
    bool showVScrollBar = needScrollBar(Qt::Vertical); 
    if ( showVScrollBar ) 
    { 
        ScrollBar *sb = scrollBar(Qt::Vertical); 
 
        sb->setPalette(plot()->palette()); 
        sb->setInverted(!(plot()->axisOptions(yAxis) & QwtAutoScale::Inverted)); 
        sb->setBase(zoomBase().y1(), zoomBase().y2()); 
        sb->moveSlider(zoomRect().y1(), zoomRect().y2()); 
 
        if ( !sb->isVisibleTo(canvas()) ) 
        { 
            sb->show(); 
            layout->setCanvasMargin(layout->canvasMargin(yScrollBarAxis)  
                + sb->extent(), yScrollBarAxis); 
        } 
    } 
    else 
    { 
        if ( verticalScrollBar() ) 
        { 
            verticalScrollBar()->hide(); 
            layout->setCanvasMargin(layout->canvasMargin(yScrollBarAxis)  
                - verticalScrollBar()->extent(), yScrollBarAxis); 
        } 
    } 
 
    if ( showHScrollBar && showVScrollBar ) 
    { 
        if ( d_cornerWidget == NULL ) 
        { 
            d_cornerWidget = new QWidget(canvas()); 
            d_cornerWidget->setPalette(plot()->palette()); 
        } 
        d_cornerWidget->show(); 
    } 
    else 
    { 
        if ( d_cornerWidget ) 
            d_cornerWidget->hide(); 
    } 
 
    layoutScrollBars(((QwtPlotCanvas *)canvas())->contentsRect()); 
} 
 
void ScrollZoomer::layoutScrollBars(const QRect &rect) 
{ 
    int hPos = xAxis(); 
    if ( hScrollBarPosition() == OppositeToScale ) 
        hPos = oppositeAxis(hPos); 
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    int vPos = yAxis(); 
    if ( vScrollBarPosition() == OppositeToScale ) 
        vPos = oppositeAxis(vPos); 
 
    ScrollBar *hScrollBar = horizontalScrollBar(); 
    ScrollBar *vScrollBar = verticalScrollBar(); 
 
    const int hdim = hScrollBar ? hScrollBar->extent() : 0; 
    const int vdim = vScrollBar ? vScrollBar->extent() : 0; 
     
    if ( hScrollBar && hScrollBar->isVisible() ) 
    { 
        int x = rect.x(); 
        int y = (hPos == QwtPlot::xTop)  
            ? rect.top() : rect.bottom() - hdim + 1; 
        int w = rect.width(); 
 
        if ( vScrollBar && vScrollBar->isVisible() ) 
        { 
            if ( vPos == QwtPlot::yLeft ) 
                x += vdim; 
            w -= vdim + 1; 
        } 
 
        hScrollBar->setGeometry(x, y, w, hdim); 
    } 
    if ( vScrollBar && vScrollBar->isVisible() ) 
    { 
        int pos = yAxis(); 
        if ( vScrollBarPosition() == OppositeToScale ) 
            pos = oppositeAxis(pos); 
 
        int x = (vPos == QwtPlot::yLeft) 
            ? rect.left() : rect.right() - vdim; 
        int y = rect.y(); 
 
        int h = rect.height(); 
 
        if ( hScrollBar && hScrollBar->isVisible() ) 
        { 
            if ( hPos == QwtPlot::xTop ) 
                y += hdim; 
                 
            h -= hdim; 
        } 
 
        vScrollBar->setGeometry(x, y, vdim, h); 
    } 
    if ( hScrollBar && hScrollBar->isVisible() && 
        vScrollBar && vScrollBar->isVisible() ) 
    { 
        if ( d_cornerWidget ) 
        { 
            QRect cornerRect( 
                vScrollBar->pos().x(), hScrollBar->pos().y(), 
                vdim, hdim); 
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            d_cornerWidget->setGeometry(cornerRect); 
        } 
    } 
} 
 
void ScrollZoomer::scrollBarMoved(Qt::Orientation o, double min, double) 
{ 
    if ( o == Qt::Horizontal ) 
        move(min, zoomRect().y1()); 
    else 
        move(zoomRect().x1(), min); 
 
    emit zoomed(zoomRect()); 
} 
 
int ScrollZoomer::oppositeAxis(int axis) const 
{ 
    switch(axis) 
    { 
        case QwtPlot::xBottom: 
            return QwtPlot::xTop; 
        case QwtPlot::xTop: 
            return QwtPlot::xBottom; 
        case QwtPlot::yLeft: 
            return QwtPlot::yRight; 
        case QwtPlot::yRight: 
            return QwtPlot::yLeft; 
        default: 
            break; 
    } 
 
    return axis; 
} 
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