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Abstract 
 

Over the last several years, Vorticity Confinement has been shown to be a very 

efficient method to simulate the vortex-dominated flows over complex configurations. To 

calculate these flows, no high-order numerical scheme and body conforming grids are 

required for this method and only a fixed, uniform Cartesian grid is employed.  

 

First, an overall description of the original Vorticity Confinement method (VC1) is 

presented, followed by an introduction of the newly developed Vorticity Confinement 

method (VC2). The advantage of VC2 over VC1 is the ability to conserve the Momentum. 

Two different numerical schemes are shown for VC1 and VC2. The one for VC2 is much 

simpler than that of VC1. Results of VC1 and VC2 for convecting vortices and scalars in 

1-D and 2-D will be presented.  

 

Numerical results are presented for the three dimensional flow over a 

surface-mounted cube. Comparisons have been made with experimental and Large Eddy 

Simulation (LES) data. It is observed that with a coarse uniform Cartesian grid, Vorticity 

Confinement is able to get results in better agreement with the experimental results than the 

LES simulation results on a fine grid. This method is shown to be more effective than trying 

to model and discretize more complex system of equations in the traditional methods, when 

solving complex high Reynolds number flow problems. 
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Chapter 1 Introduction 

 
1.1 Background 
 

The establishment of the theory of fluid dynamics and the practical application of 

that science has been under way since the age of Newton. Over the last 250 years, fluid 

dynamics has been studied from two main approaches: theoretical analysis and 

experimental observation. The modern theoretical development of fluid dynamics focuses 

(initiated by Euler [1]) mainly on the construction and resolution of the governing 

equations for different types of flow problems and the study of various approximations to 

these equations. On the other hand, experimental fluid dynamics has played an important 

role in providing reliable measurement data to validate and delineate the limits of the 

various approximations to the governing equations. It was realized a long time ago that 

there were a large number of complex flow problems which were not amenable to 

theoretical solutions; indeed the known exact solutions available for the governing 

equations are of little practical application. At the same time, experimental measurements, 

though very effective and accurate, may take a significant amount of time and resources, 

such as the equipment and personnel, etc. In addition, many important quantities are very 

difficult to measure.  

 

 1

The era of Computational Fluid Dynamics (CFD) began with the advent of high 

speed and large-memory computers. Since the early 1960s, as computers became fast and 

large enough to make it possible to perform direct numerical simulation of complex flow 



problems, more and more scientific research effort was focused upon the development of 

advanced numerical algorithms for solving real-world problems. By the early 1970s, the 

computation of fluid problems were undertaken, which has led to CFD becoming the 

third division of simple fluid dynamic research combined with the expeditious 

development of large computers. As a new branch of fluid mechanics, CFD complements 

experimental and theoretical fluid dynamics by providing an alternative cost-effective 

tool to simulate real flows, focusing on the development and employment of 

computer-based tools to solve the partial differential equations (pde’s), which describe 

the fluid flow. Over the past four decades, CFD has been developed to become a 

broadly-used practical means employed by engineers in virtually every industry. It is now 

becoming a significant method in the industry application, such as design and analysis of 

the performance of aircraft, flow machinery and, to a lesser extent, in the automobile 

industries.  

 2

  In retrospect the beginning of CFD as an independent science was in 1928 with 

the precursory work of Courant, Friedrich and Lewy [2] who introduced the concept of 

the stability requirement (CFL condition) for hyperbolic partial differential equations. In 

1950, Von Neumann [3] further developed the stability criteria for parabolic 

time-marching problems. With the exponential growth of high-speed computers and 

considerable fundamental research, tremendous progress was witnessed in the 1950s and 

1960s towards the numerical simulations of inviscid compressible flow problems. 

Starting with the shock-capturing technique of Lax [4], a great many methods have been 

developed and the most important and fundamental two are finite difference methods 

(FDM) and finite elements methods (FEM). These basic schemes used in the numerical 

simulations of pde’s are based upon different concepts. Earlier publications of FDM 

include Courant, Friedrichs and Lewy [2], Godunov [5], Lax and Wendroff [6], 

McCormack [7], and many others. Earlier research work on FEM include Zienkiewicz 

and Cheung [8], Baker [9], and Pepper and Heinrich [10]. In the late 1970s and 1980s 



extensive interest has been evinced on the techniques for simulating flows over arbitrary 

shaped geometries. Methods for transforming complex geometries into simple ones have 

been proposed and excellent discussion on these methods are provided in the book by 

Thompson, Warsi and Mastin [11]. 

Considering two essential characteristics of CFD, the economy and ability of 

handling complex geometry, it is very important to develop methods that are cost 

effective and easy to adapt for various problems across different areas [12]. However, 

most of the conventional CFD methods typically require large computer resources and 

difficult grid generation when dealing with complex flow situations. Meanwhile, most of 

the real-world flows are at high Reynolds numbers and turbulent. This implies that they 

are characterized by concentrated vorticity, which can convect over long distance, either 

as thin vortex filaments or as blunt body wakes. Due to lack of sufficient computer 

resources and adequate mathematical model support, complex flow problems can only be 

simulated through some approximate models. As a result, conventional CFD methods 

involve first formulating the pde’s and modeling turbulence in turbulent flow regions. 

These modeled pde’s are then discretized in the turbulent regions and solved. The 

problem is that resolving even the modeled pde’s requires very fine computational grids, 

which must conform to the body geometry to capture the boundary layer. Further, these 

methods typically dissipate thin filaments and vortical structures as they are convected in 

the wake. The problem is intrinsic to the discretization of the convective terms and made 

worse by use of the dissipative terms to model turbulence and to present numerical 

stability. 
   

 3

Turbulence, one of the most exciting research topics in modern science, has most 

of its solution procedures using turbulence models which are approximations of the real 

physical phenomena and the success of such models depends on the choice of some 



empirical coefficients. Accuracy of the results will definitely depend on the correctness 

of the models. In recent time there is an approach, which is known as Direct Numerical 

Simulation (DNS) of the Navier-Stokes equation for turbulence (Rai and Moin [13]) and 

provides us direct insight into turbulence if a fine enough grid can be used. LES is 

another modeling technique intermediate between DNS and turbulence models. In the 

LES method, the contribution of small scales is modeled while that of large scales is 

computed accurately [13]. Computers in the foreseeable future do not have the capacity 

for DNS due to small scales inherent to turbulence. Thus, although conventional methods 

may be efficient for some flows with relatively low Reynolds numbers or simple body 

geometries, they are inefficient and sometimes not even feasible for flows with multiple 

thin vortices convecting over long distances. The same is true for high Reynolds number 

flows over complicated bodies [11][14][15].  
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The main objective of this thesis is to describe the theory of an entirely new and 

more advanced CFD methodology, which is called the Vorticity Confinement method 

and was first developed by Steinhoff and his associates [16]. During the past sixteen 

years, Vorticity Confinement has already been demonstrated to be a very efficient and 

economical method to compute vortex dominated flows [14][15][17][18][19]. The basic 

idea behind the Vorticity Confinement method is similar to that of the shock-capturing 

method (Lax [4]). In the shock-capturing method, shocks are treated as thin features of 

only a few grid cells convecting in the computational domain and obeying discretized 

nonlinear equations. The theory of shock capturing can, in retrospect, be traced to as 

early as 1940s when Von Neumann brought forward a central difference scheme to treat 

the shock problems. Though efficient at keeping the shock features, there were numerical 

oscillations. To prevent these oscillations, Von Neumann and Richtmyer [3] in 1950 

introduced a totally new methodology by adding a numerical viscous term to the 



discretized equations of the shock problems. This added term was of the same order as 

the truncation error of the discretized equations and the oscillations were eliminated by 

adding this artificial viscosity. Like the shock-capturing method, Vorticity Confinement 

treats the thin vortical regions as a small flow feature spread over only a few grid cells on 

a coarse Cartesian grid. Hence, the main point of Vorticity Confinement is to model the 

internal structures of the vortical regions directly on the grids using nonlinear pde's. This 

contrasts with the conventional CFD methods, which model the governing pde’s first and 

then discretize the modeled pde’s and attempt to approximately resolve the modeled 

equations using finite difference methods. It should be mentioned that the 

shock-capturing method is much simpler than the Vorticity Confinement method due to 

the natural compressive action of shocks. After nearly two decades of investigation and 

endeavor, Vorticity Confinement has been proven to be more effective than trying to 

model and discretize the governing pde’s when solving complex high Reynolds number 

flow problems.  
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As in the shock capturing method, the most prominent feature of Vorticity 

Confinement is the introduction of a nonlinear diffusion term to the governing pde’s, 

which is negative, or “compressive”. With this added term, the complex flow problems 

can be solved on coarse, uniform Cartesian grids and the thin vortical regions can convect 

without spreading over large distances. These modeled pde’s can capture small vortical 

features with only two to three grid cells. But when treating the large scale features of the 

flow, this method works like conventional CFD methods and the confinement term 

disappears outside of the thin vortical regions. Therefore, the Vorticity Confinement 

method has not only the generality of standard CFD methods, but also treats vortical 

regions without numerical diffusion as they convect through flows even in regions where 

the computational grid is relatively coarse. The most advanced feature of this method is 



that it is employed only on a fixed, uniform Cartesian grid without the need for a 

body-fitted grid or any other special arrangement to treat the thin vortical regions. 

Compared with the conventional CFD methods, the required computer resource and 

computational time are much less when Vorticity Confinement is applied. There is no 

need to make assumptions in order to model the governing pde’s as in typical CFD 

methods, and the numerical algorithms employed in Vorticity Confinement are much 

simpler. Nowadays, Vorticity Confinement has grown to become a common numerical 

method, and it is not limited to complex fluid problems. A significant number of 

scientific problems, where the numerical spreading of small flow features is one of the 

major concerns, can be treated by this method. Acoustics wave problems are another area 

of application. One of the most exciting applications of the Vorticity Confinement 

method is in the movie industry to simulate smoke or tornados. Examples include <Harry 

Potter II>, <The Core>, <Terminator III>,<The Day after Tomorrow> and many others. 
 

1.2 Objectives and Structure 
 

1.2.1 Motivation 
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Early research on turbulent boundary layer flow first considered such flow as 

containing random fluctuations superimposed upon an otherwise mean flow. From the 

late 50’s to the early 60’s, experiments [20] revealed that the near-wall regions are 

dominated by organized coherent structures and since then much effort has been spent to 

identify these structures. Both experimental observations and numerical simulations have 

been used to illustrate these flow features. Theodorsen [21] was one of the first to identify 

the presence of these coherent structures. The hydrogen bubble studies Kline [20] showed 

that there were low-speed stream-wise streaks in the sub-layer and these low-speed 

streaks lift up and interacted with the outer-layer, in a “bursting process” and this was 



originally believed to be a single process. The Flow visualization studies of Head and 

Bandyopadhyay [22] revealed that in the near wall region there existed a forest of 

hairpin-like or horseshoe-like structures inclining along the stream-wise direction and 

interacting with the outer region of the boundary layer. Nishioka [23] investigated the 

evolution of these hairpin-like structures and found that these vortices played an essential 

role in the turbulence and momentum transfer in the near wall regions. As the hairpin 

vortices were lifted they gave rise to the development of new hairpin vortices. This 

continuous process conforms to the self-sustaining characteristic of the turbulent 

boundary layer.  
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The review by Robinson [24] has summarized these coherent structures into eight 

categories: low-speed steaks in the near wall regions, ejections, sweeps, vortical 

structures, near-wall shear layers, near-wall pockets, large-scale motions in the outer 

regions and shear layer “backs” of large scale motions. The structure of Robinson’s 

hairpin vortex is shown in Fig.1-1. These eight elements provide basic insight into the 

coherent structure of a turbulent boundary layer and have been widely accepted 

nowadays. However, the number of constituting elements was deceptively large and 

many experiments were done to extract a much simpler structure to combine these eight 

elements. Recent experiments performed by Meinhart [25] and Meinhart and Adrian [26] 

have revealed the existence of inclined hairpin vortices in the wall turbulent layer. Many 

numerical simulations were performed to reveal the formation and development of 

hairpin vortices. Recent numerical results obtained by Zhou [27] offered strong insights 

of the mechanism of the formation of the new hairpin vortex and the development of a 

hairpin vortices packet. The initial flow field was a viscous, hairpin-like structure, which 

was referred as the parent vortex. In his results, new hairpin vortices were generated both 

downstream and upstream of the parent vortex, and after a certain time, a packet of 

hairpin vortices was formed. 



 
 

Figure 1-1: Vortical structures in a low Re flat plate boundary layer  

 

Acarlar and Smith [28] gave a schematic of the formation of the hairpin vortex, 

which is shown in Fig.1-2. Above a height, fluid approaching the hemisphere from 

upstream will whirl around the core of two-counter-rotating vortex legs of the hairpin 

vortices and be convected downstream, as shown in Fig.1-2. Fluid particles under this 

height will pass into the formed standing vortex, the horseshoe vortex around the 

hemisphere, and are then convected downstream.   

 

1.2.2 Objective 
 

A numerical investigation of the flow over a surface-mounted cube has been 

undertaken using the Vorticity Confinement method. The result will be compared with 

that of the experimental study. 
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Fig. 1-2 Schematic of near-wake structure in the hemisphere wake  

 

1.2.3 Organization 
 
The dissertation is organized into five main chapters. The first Chapter is the 

review of the background of the current study. Some of the conventional CFD methods 

are briefly described.   

  

The second Chapter is the summary of the current numerical method of Vorticity 

Confinement. The detailed numerical scheme is there presented. The third Chapter is 

dedicated to a thorough analysis of 2-D flow simulation results by Vorticity Confinement. 

Flow over a surface-mounted cube is investigated in a 3-D domain in Chapter 4. The 

results are presented and discussed in detail. Comparisons with experimental results are 

made whenever possible.  
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Some final remarks and recommendations for future studies conclude the 

dissertation in Chapter 5.  



 

 
Chapter 2 Vorticity Confinement 

 
Over the last few years, Vorticity Confinement has been proven to be a very 

efficient and effective method to simulate high Reynolds number flows and significant 

work has been done as reported in [30][31][32][33][34]. It is well-known that the 

governing pde’s for fluid flow problems are the Navier-Stokes equations. In traditional 

CFD simulations, it is usual to use modeled dissipative terms to approximate high 

Reynolds number flows problems. When the Navier-Stokes equations are discretized, 

there is usually significant numerical diffusion beyond the natural viscous diffusion no 

matter what kind of numerical schemes is employed. To get accurate computational 

results, it is very important to reduce this diffusion so that viscous flow regions retain 

their correct length scales. Normally very fine grids must be used to achieve this, often 

with extensive refinement near the body surface, or adaptive grids with extensive 

refinement within shed vortex sheets and filaments. To do so, no doubt, will significantly 

increase both the computing time and the necessary computing storage.    
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In this chapter, a much simpler but more robust numerical method, Vorticity 

Confinement, will be introduced to compute high Reynolds number flows, including 

attached boundary layers or separating vortex sheets and filaments. Since first developed 

by Steinhoff [16], Vorticity Confinement has been studied and developed extensively 

during the past two decades and there are a large number of successful applications of 



this method. Nevertheless, with the latest development of the new formulation for 

Vorticity Confinement, it is very important to have an organized description of this 

method. The present chapter is dedicated to such a full description of both the earlier 

aspect and the latest development of Vorticity Confinement.  

 

In sections 2.2.1~2.2.2, the original Vorticity Confinement method, which is also 

called VC1, will be introduced; afterwards, the new Vorticity Confinement method, 

which is also known as the conservative confinement or VC2, will be presented. VC2 

involves a better-founded mathematical and physical basis, using simpler but more 

accurate schemes and is proven to be conservative. A detailed study of some important 

features of Vorticity Confinement will be given later in this chapter.   

   

2.1 The Governing Partial Differential Equations 
   

The fundamental governing equations of fluid dynamics are based on the 

conservation laws of mass, momentum and energy. The most famous governing partial 

differential equations for general unsteady incompressible flows are the Navier-Stokes 

equations, which include the continuity and momentum equations. For unsteady 

incompressible flow these equations are: 

 

Continuity Equation:  

                               0=⋅∇ qr                               ( )1.2            

Momentum equation: 

                       ( ) qPqqqt
rrrr 2/)( ∇+∇−∇⋅−=∂ µρ                  ( )2.2  
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in which q  defines the velocity vector;  is time; ,t p ρ  and µ  represent the pressure, 



the constant density and the viscous diffusion coefficient respectively.  

  
In a Cartesian coordinate system for 3-D flows, if ,  and  represent the 

, , components of the velocity vector 

u v w

x y z q  respectively, then qr  is given by  

 

                             kwjviuq
rrrr

++=                          ( )3.2  

 

2.2 The Vorticity Confinement Method 
 

The primary objective of the Vorticity Confinement method is to model thin 

vortical regions, such as the thin boundary layers or separating vortex filaments, by using 

only a few grid points in the cross-section. Traditional CFD methods simulate complex 

flow problems, for instance turbulence, by first hypothesizing a turbulence model. Such 

models are based on the governing pde’s and the properties of turbulence, and then 

numerically discretize and solve these equations. On the contrary, Vorticity Confinement 

models the internal structures of the vortical regions directly on the grids using the 

nonlinear terms. This contrasts with the conventional CFD methods, which use finite 

difference discretizations of the pde’s to resolve modeled equations [34].  
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The basic theory behind Vorticity Confinement is to modify the conventional 

Navier-Stokes equations by adding a simple term to the momentum equation. When 

discretized and solved, these modified equations convect concentrated vortices which 

maintain a fixed size and do not spread over the flow field even with huge numerical 

diffusion in the discretized equations. By using Vorticity Confinement, a low order 

numerical scheme can be used to compute complex flow problems even on a coarse 

Cartesian grid and the thin vortex regions can be convected over long distance without 



spreading. This approach is similar to the shock capturing method [3], in which the 

detailed internal structures of the shock waves are not computed; rather their positions and 

strength are determined. One of the advanced features of Vorticity Confinement is that it 

basically works as a velocity correction at each time step, so that it can be embedded into 

any conventional CFD method which will work as the basic solver.   

 

For 3-D unsteady incompressible flows, the modified momentum equation for 

Vorticity Confinement is: 

 

                    ( ) sqPqqqt
rrrrr εµρ −∇+∇−∇⋅−=∂ 2/)(                 ( )4.2  

 
For the last term srε , ε  is a numerical coefficient that is called the confinement 

coefficient. In Equation (2.4), the last two terms, qr2∇µ  and srε , control the size and 

time scales of the convecting vortical regions. Normally, the last term is referred to as the 

“confinement term”.  

 

This section includes two parts. First, an extensive development of the original 

Vorticity Confinement method (or VC1), will be presented, and afterwards, the newly 

developed Vorticity Confinement method, which is also known as conservative 

confinement or VC2, will be considered.   

 

2.2.1 VC1 formulation 
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VC1 has been developed for about sixteen years and has already been proven to be 

a very robust numerical method for computing vortical flows. The only difference 



between VC1 and VC2 is in the definition of the confinement term. This difference will be 

made clear below. 

 

In VC1, the confinement term is defined as, 

                              ωrr
×= ns ˆ                               ( )5.2  

in which ω
r

 is the local vorticity vector given by  

                              qrr
×∇=ω                              ( )6.2  

and  is a unit vector, the definition of which depends on whether the confinement is 

applied in the field or at a surface. For the field confinement, the definition of  is 

presented as 

n̂

n̂

 

                              
ω
ω
r

r

∇

∇
=n̂                               ( )7.2  

where ω
r

 is the magnitude of the vector ω
r

. 

 

Since ω
r

 is defined as the local vorticity vector, the definition of  represents 

the normalized gradient of the local vorticity magnitude and normalized vector  points 

toward the centroid of the local vortical region. The main function of the field 

confinement is to convect vorticity 

n̂

n̂

ω
r

 back towards the centroid as it is diffused away by 

the  term and by any other numerical diffusion that may be present.   2qµ∇ r

 
When the surface confinement is applied on the body geometry,  is defined as 

the unit vector to the solid surfaces of the bluff bodies as below, 

n̂
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η
η

∇
∇

=n̂                               ( )8.2  



where F=η , with  defining the surface.  outside the bluff body, and 

 inside the body. The detailed definition for  will be given in section 2.4.2. 

0=F 0>F

0<F F

 

To understand the property of the surface confinement, we consider it as a simple 

turbulent boundary layer model. The reason is that the surface confinement acts by 

controlling the separation characteristics of the flow near the bluff body by adjusting the 

confinement coefficient [34]. It is important to realize that just setting  to zero inside 

will result in large, diffusing boundary layers that are not related to physical high Re ones. 

Vorticity Confinement keeps these thin and realistic.  

qr

 

2.2.2 Important features of VC1 
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Most flow fields can be divided into inner and outer flows. The inner flows are 

referred to small vortical regions, such as turbulent boundary layers or vortex sheets and 

filaments, which are only about several grid cells thick. The outer flows are flow fields 

outside of the small vortical regions. Outside of the vortical region, since the vorticity 

vector 0=ω
r

 the added extra confinement term, 0=srε . Also the diffusion 

term, , vanishes outside of the inner flow. Thus, the outer flows are 

not sensitive to the values of the parameters 

0)(2 =×∇−=∇ ωµµ
rrq

ε  and µ  over a wide range since both the 

added extra confinement term and the diffusion term vanish outside the inner flow regions. 

The correction of the velocity vector field takes effect only in the small vortical regions. 

The parameters of Vorticity Confinement, ε  and µ , work like some numerical 

coefficients in many convectional CFD methods. The confined vortex core size, which 

may be only ~2 or 3 grid cells in diameter, depends on the values of ε  and µ  selected, 

within a range and the value approximately equal to εµ . The detailed analysis will be 

given below. 



To illustrate some prominent features of VC1, an analytical solution of an isolated 

axi-symmetric vortex (Fig. 2-1) in a two-dimensional domain is considered. The 

momentum equations for the two dimensional incompressible flows are 
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where  and  are velocity components of velocity vector qu v r  along the  and  

coordinates respectively.  

x y

 

In polar coordinates, with r , which is the position vector defined with respect to 

the center of the vortex, and the polar angle θ  , the above equations can be written as 

 

    
 

Fig. 2-1 The isolated axi-symmetric vortex 
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For an isolated vortex in a uniform flow, we have 

 

                             

0

0

0

=
∂
∂

=
∂
∂

=

θ

θ
θ

p

q
qr

                              ( )2.11  

 

The above equations can be simplified to the following forms 

 

                        

2

2
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θ
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µ

∂
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q
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                   ( )2.12  

            

 

For Equation (2-12), the solution is  

 

                            ( ) ˆ,q q T r t eθ∞= +
r r                         ( )13.2  

where  is defined as ( trT , )
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 17

 



and is the velocity of the uniform flow at the far field and  is the unit vector in the 

azimuthal direction. This solution identifies a continually spreading vortical region with 

radius ~ 

∞q θê

tµ2  and no nontrivial steady state solution. 

 

With Vorticity Confinement added to the momentum equation, we have, in the 

frame convecting with the vortex, 

                         ωεµ
rrrr

×−∇=∂ nqqt
2                          ( )15.2  

 

When 0>ε , the steady solution for Equation(2.9) with 0=∂ qt
r  is  

 

                      [ ] ( )( )arearrTT /
0 /11 −+−=                   ( )16.2  

 

where εµ /=a  is the length scale for the motion. The existence of the steady solution 

shows that the added confinement term effectively balances the diffusion by convecting 

vorticity back toward the vortex center. 

 

      It is important to consider the conservative feature of the Vorticity Confinement 

method. That is, whether mass, vorticity and momentum are conserved or not after the 

velocity correction due to the extra confinement term. As discussed in the beginning of 

this section, the velocity correction srε  vanishes outside the vortical region. Mass is 

conserved due to pressure correction and vorticity is conserved because of the vanishing 

of the velocity correction outside the vortical region [34].  
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In general 3-D flows 

                      
∫
∫

=×∇=
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εδ

εδ

ω

                            ( )17.2  

where ωδδ II m , are the total change of mass and vorticity integrated over the vortical 

region respectively. The correction of the velocity effectively convects vorticity back 

towards the local maximum of the vortical region and therefore the total vorticity is 

conserved.   

 

To discuss the total change of momentum induced by Vorticity Confinement, a 

simple 2-D thin vortical tube of slowly-varying cross section is considered. The total 

change of the momentum induced by the added confinement term is 
 

                          dAndAsI M ∫∫ ×== ωεεδ
rr ˆ                    ( )18.2  

 

in which A is a 2-D cross section of the vortical tube. MIδ  will not be zero in general. 

But in some cases, where the distribution of ω
r

 is symmetric in this 2-D cross section, 

MIδ  will reduce to zero due to the symmetry. In many computational flow fields where 

the confinement term has been used, the viscous term is intended to symmetrize the 

distribution of ω
r

 due to the basic numerical convection process or added explicitly. 

Hence, though the momentum is not conserved the total change of the momentum is 

expected to be small. The new Vorticity Confinement formulation, VC2, which is 

developed most recently, explicitly conserves the momentum in a simpler way and will be 

discussed below in section 2.2.3. 
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2.2.3 VC2 formulation 

 

As mentioned in section 2.2.2, though proven to be a very successful method to 

compute some complex flow problems, such as flow over complex configurations, 

turbulent boundary layers, and the basic free vortices, VC1 conserves mass and vorticity, 

and approximately conserves momentum. But VC2 conserves mass, vorticity and 

momentum exactly and the formulation of VC2 is much simpler than that of VC1.  

 

This section will present a detailed description of the formulation of VC2. The 

basic idea of VC2 is based on the mathematical concept of a harmonic mean. A harmonic 

mean  of  discrete Φ N lφ (where Nl ,...,2,1= ) is defined as 
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where the coefficients  can be varied and allow a weighted average. lC

 

      To illustrate the mathematical and numerical properties of the formulation for VC2, 

a simple iteration for a single-signed 2-D passive scalar will be discussed first without the 

convection. The iteration for a scalar φ  with “harmonic mean” Vorticity Confinement is 

 

                                      Φ∇⋅∆−∇⋅∆+=+ 2
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2
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1
, εφµφφ tt n
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ji ( )20.2  

 
where  is a “harmonic mean” confinement term and can be defined as  Φ
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where  

                             δφφ += ||~
,,
n

ji
n
ji                           ( )22.2  

 
and N is the total number of the surrounding nodes which are taken to compute the 

harmonic mean ;Φ δ  is a small positive constant (~ ) to prevent numerical 

singularities and  is the iteration time step. The sum is taken over a set of grid points 

in the neighborhood of the grid node , including the node  itself. It is 

important to know that all the terms in the iteration, Equation (2-20), are homogenous of 

degree 1 so that Vorticity Confinement works without any scaling concerns.  

810 −

n

),( ji ),( ji

 

To extend the concept to the governing flow equations, let the scalar φ  be 

replaced by the vorticity magnitude so that the harmonic mean of the vorticity magnitude 

is defined as    
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where δωω +=
r~ , ω

r
 is the vorticity vector of the corresponding flow field and δ  is a 

small positive constant (~ ). 810 −
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To match with the vorticity vector field, the harmonic mean vector W
r

 can be 

defined as     
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The new Vorticity Confinement term is presented as  

                            Ws
rr

×∇= εε                             ( )25.2  

Substituting Equation  into the momentum equation, the governing partial 

differential equation for VC2 is 

( 252 − )

 

                ( ) WqPqqqt

rrrrr
×∇−∇+∇−∇⋅−=∂ εµρ 2/)(                ( )26.2  

 

For the diffusion term , since qr2∇µ 0=⋅∇ qr , then 

                           )(2 qq rr
×∇×∇=∇ µµ ,                     ( )27.2  

since 

qr
r

×∇=ω  

The diffusion term can be written as 

                             ωµµ
rr

×∇=∇ q2                         ( )28.2             

Substituting Equation (  into Equation)28.2 ( )26.2 , yields:  

                ( ) )(/)( WPqqqt

rrrrr εωµρ −×∇+∇−∇⋅−=∂                ( )29.2  
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or, in iteration form,  



        ( ) )(/)(1 WtPtqqtqq nn
rrrrrr εωµρ −×∇⋅∆+∇⋅∆−∇⋅⋅∆−=+            ( )30.2  

 

Together, with the continuity Equation ( )1.2 , Equation ( )30.2 constitutes the governing 

pde’s for VC2.  

 

From Equation , it can be concluded that the added new Vorticity 

Confinement term conserves momentum. The new confinement term convects vorticity to 

a thin vortical region. The use of the harmonic mean function as the form for the new 

Vorticity Confinement term makes the system a stable anti-diffusion mechanism, and 

convects vorticity stably over long distances without diffusion and retains the shape of the 

vortical regions [33]. Compared with VC1, which only conserves mass and vorticity, VC2 

conserves mass and vorticity, and momentum [16][33].   

( 26.2 )

)

 

2.3 Analysis of VC2 
 

2.3.1 Analysis of zero convection form 

 

      Equation  is considered with a zero convection formulation with only 

diffusion and confinement and, but no pressure term. The diffusion term and confinement 

term can be combined into the following discretized form: 

(2.20

 

                                         )( ,
2

,
1

, Φ−∇⋅∆+=+ εµφφφ n
ji

n
ji

n
ji t ( )31.2  

       

  It is important to analyze the above formulation. Assuming as ∞→n , the 

equation achieves convergence, so that the following equilibrium is obtained: 
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                                                     0)(2 =Φ−∇ εµφ ( )32.2  

 

   For the Laplace equation , it is known that if the function is zero on the 

boundary, it is zero everywhere. Then, according to this principle, since 

02 =∇ φ

φ  (and hence 

) vanishes outside the flow feature of interest, we have  Φ

                              0=Φ− εµφ                           ( )33.2  

Thus  

                               µφε =Φ                             ( )34.2  

 

Considering a 2-D problem, let 1=lC  and 0, =ji , then the harmonic mean term Φ  

is,  

                       

11 −−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=Φ
∑

N
l

lφ
                        ( )35.2  

Substituting Equation (  into Equation)35.2 ( )34.2 , we have 

                           011
0 =− ∑ −−

l
lN

φ
ε
µφ                        ( )36.2  

A solution for Equation can be presented as 

 

( 36.2 )

             ]([sec)]([sec
4
1

00 yyhxxhA jiij −−= ααφ              ( )37.2  

 

in which A, and  are arbitrary constants and 0x 0y ihxi = , jhy j = , h is the grid cell 

size [35]. 
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Since  

                      zz eez
zh −+

==
2

)cosh(
1)(sec                     ( )38.2  

Then, we have  

                      1 1
ij i jA X Yφ− −=                            ( )39.2  

where       

                                         
0 0

0 0

hi x hi x
i

hj y hj y
j

X e e

Y e e

α α α α

α α α α

− − +

− − +

= +

= +
( )40.2  

 

Substituting Equation into Equation( 37.2 ) ( )36.2 , rearrange and combine some terms, the 

following equation is obtained: 

                 0))(( 1111 =−++++ −+−+ jijjjiii YXNYYYXXX
µ
ε          ( )41.2  

or          

                  0)1)(1( =−++++ −−

µ
εαααα Neeee hhhh                  ( )42.2  

Hence,  

                      ]1)[(
2
1)( 2

1

−=
µ
εα Nhch                           ( )43.2  

which determines α . This implies that there is only one solution for µε > , since 

 here. Again, similar to the solution for a concentrated vortex, the width of the 

resulting pulse is determined by the ratio of 

9=N

µε /=a [40]. 
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2.3.2 Convection of the centroid 

 

VC2 not only conserves mass, vorticity and momentum exactly, but also the 

centroid of the confined properties. This is easy to demonstrate since the confinement 

term is given in terms of second derivatives (or differences).  

 

 For the convecting passive scalar φ ,  

 

              ( ) thq n
jit ∆Φ−∇+⋅−∇=∂ /)( ,

22 εµφφφ r                 ( )44.2  

 

From the continuity equation, it is known that 0=⋅∇ qv
v

 . Then Equation ( )2.44  can be 

written in the discretized form 

 

                   )()( 221 Φ−∇+⋅∇∆−=+ εµφφφφ hqtnn v                ( )45.2  

 

Define the total amplitude of the scalar φ  as  

 

                          ∑>≡Ψ<
ji

n
ji

,
,φ                            ( )46.2  

 
where represents the sum over all grid nodes in the computational domain. Since 

VC2 conserves exactly mass, vorticity and momentum, the sum  should be 

independent of the iteration step . 

∑
ji ,

>Ψ<

n

 

 26

  The centroid of the confined scalar φ  is defined as,  



 

                      >Ψ<≡>< ∑ /
,

,,
ji

n
ji

n
ji

n xX φvv
                    ( )47.2  

where n
jix ,

r  is referred to the position vector of a given node  at time step . 

Define the weighted mean velocity as 

),( ji n

 

                       >Ψ<≡>< ∑ /
,

,,
ji

n
ji

n
ji

n qQ φrr
                     ( )48.2  

where n
jiq ,

v  is the velocity at that node , then the centroid evolves according to: ),( ji

 

                        nnn QtXX ><∆+>=<>< +
rvv 1                   ( )49.2  

 
For vortices, the self-induced velocity which is included in the above sum exactly cancels 

and, as in the passive scalar case, the ijqv  can be taken to be an externally applied 

(irrotational) velocity. The above result then still holds. 

 

 27

 Since we are, at this point, only interested in the “expectation values” of scalars 

or vorticity for thin features and that the features remain compact, spread over only a few 

cells, this relation is exactly what is needed. Only the variables of importance are, 

effectively, solved for. This shows that the features, when isolated, evolve as particles 

with essentially no internal dynamics. However, we keep the very important Eulerian 

feature that the number of features is not fixed. We could, for example, create additional 

solitary waves by inserting a source: No additional computational markers need be 

created, as in Lagrangian schemes. For this study, it is shown that features can 

automatically merge and reduce in number. This will be seen in the results of Chapter 3. 

As for the earlier Vorticity Confinement method, this property is crucial for the general 

treatment of interacting vortical regions, especially in 3-D [15][16][30][32]. 



2.4 Numerical Approach 

2.4.1 F function 

 

Vorticity Confinement has already been proven to be a very robust numerical 

scheme for computing complex flows, especially flows over bluff bodies. When treating 

flows with solid surfaces, no specific logic to determine the solid surfaces is required. In 

this method, the solid surfaces involved are specified by a scalar function , which is 

defined on the fixed Cartesian grid to specify the surfaces as different “level sets”. This 

function,

F

( )xF r
, is computed on the each grid node of a regular Cartesian computational 

domain and the value of it can be first generated from the given body configurations, such 

as negative inside the body surface, positive outside the body surface and zero on the body 

surface. Several numerical methods can be used to decide the distribution of this function 

to define the body configurations. One if them is to take the distance from the grid node to 

the body surface as the value of the function, ( )xF r
. Thus, ( ) 0=xF r

 implicitly defines the 

solid surface over which the fluid is flowing.  

 

According to the definition above, at each grid point, the level set ( )xF r
 can be 

defined as 

                                     
⎪
⎩

⎪
⎨

⎧

<
=
>

body     theinside nodesfor  0,F
     surface on the nodesfor  ,0

body  theoutside nodesfor  ,0
F
F

( )2.50  

 

Simultaneously, based on the definition of ( )xF r
 above, a filter function defined for the 

velocity damping, )(Fλ , can be written as  
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                                                     ( )
⎩
⎨
⎧

≤
>

=
0F 0,
0F ,1

Fλ ( )2.51  

which is sufficient to satisfy the continuity and no-slip boundary condition as shown 

before. 

 

2.4.2 The fractional-step method 

 

Time integration of the Navier-Stokes equations is often carried out by means of 

the fractional-step procedure, which was first adopted by Harlow and Welch [36] and 

Chorin [37] and approximately solved the momentum equation. With the Chorin’s method 

at each time step an incompressible form of the momentum equation is integrated to yield 

an approximate velocity vector field, which in general will not be divergence free, then a 

correction will be applied to that velocity vector field to yield a divergence free flow field. 

The correction of the flow field is an orthogonal projection in the sense that it projects the 

initial flow field onto the divergence free flow field without changing vorticity. The step is 

called the projection step, and schemes that use this approach are often called projection 

methods. The original Chorin method was modified for use with the finite volume method 

defined on a staggered grid by Kim and Moin [38], and has since been used by many 

researchers for the simulation of unsteady flows.  

 

The fractional-step method has been used with VC1 to solve incompressible flow 

problems on uniform Cartesian grids for several years. The steps involve convection, 

confinement and diffusion followed by the pressure correction. The three main steps are 

described as follows. 
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Starting with the governing equations for the incompressible flow with Vorticity 



Confinement,  

                ( ) [ ]sqPqqqt
rrrrr εµρ −∇+∇−∇⋅−=∂ 2/)(               ( )2.52  

 
The first order forward difference operator representing the time derivative is used for the 

time discretization. For convection, the computation based on the following space 

discretized formulation is performed to simulate the convection step. For each time-step 

(identified by the index ( )), the following computations are executed: n

 

1. Velocity damping in body 

  First, the “level set” F function is defined, then the velocity, , is multiplied by a 

function of F; 

qv

)(Fλ , such that it is reduced for F < 0. This factor increases to 1 near the 

surface and no reduction is made in the new velocity at further distances: 

 

                              nqFq rr )(λ=′                          ( )2.53  

 
2. Convection 

  In the fractional-step method, the velocity convection is computed separately on the 

Cartesian grid in this form: 

                          qqtqq ′∇⋅′⋅∆−′=′′
rrrr )(                       ( )2.54  

where  is the velocity vector field after the convection and "qr q′r  is the velocity vector 

field at the previous step. There are many existing accurate numerical convection schemes 

that can be applied to compute the above equation. A simple, first order scheme in space is 

used here. 
 

3. Velocity diffusion and Vorticity Confinement 
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  To capture vorticity and overcome the effects of numerical diffusion in the convection 



step, Vorticity Confinement is employed next and calculated from the equation:  
 

                     )( 2 sqtqq rrrr εµ −′′∇∆+′′=′′′                  ( )2.55  

where  is the velocity after the confinement correction. q′′′r

 

A standard central difference scheme will be used for the diffusion term q ′′∇
r2 on 

the right hand side but the numerical scheme for VC1 and VC2 will be different and the 

details of both schemes will be given in section 2.5 when discussing the numerical 

procedure.  

 

4. Mass balance   

  The above computation steps will not initially satisfy continuity and a correction must 

be applied to the velocity vector field to produce a divergence free flow field.  

 

                                1nq q φ+ ′′′= +∇
r r                       ( )2.56  

where  

                                Ptφ
ρ

= −∆                         ( )2.57  

The conservation law of mass requires 

                                01 =⋅∇ +nqr                          ( )2.58  

Substituting Equation (  into Equation)2.56 ( )2.58 , we get a Poisson equation 

 

                               2 qφ ′′′∇ = −∇⋅
r                         ( )2.59  
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To solve the above Poisson equation for φ , any existing Poisson solver can be used. A 



Cartesian grid Poisson solver, which includes two FORTRAN subprograms, HW3CRT 

and HWSCRT of FISHPAK [39], was used in the present study for the 2-D and 3-D 

Poisson equations respectively.  

 
2.4.3 Boundary conditions 
 
1. No-slip boundary condition for the velocity on the solid surface. 
  On the solid body surface, a no-slip boundary condition is used, that is, 
 

                               0=
s

qr                              ( )2.60  

 

where  indicates the solid body surface. When employed into the computational code, 

the no-slip boundary condition can be applied by the filter function 

S

)(Fλ  as described in 

section 2.4.1, which defines )(Fλ  = 0 inside the solid surface. Thus, after multiplied by 

the filter function )(Fλ , the velocity goes to zero on the solid surface.          

 

2. Far field boundary conditions 

  At the far field, the flow velocity and the pressure are set to be equal to the free stream 

flow, that is,  

                              ∞= qq
f

rr                              ( )2.61  

                             ∞= PP
f

                             ( )2.62  

Where  indicates the far field boundary and f ∞qr  is the free stream velocity and  

indicates the pressure at the far field.  

∞P

 

3. The inlet boundary conditions 
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  On the inlet, the velocity is specified as, 
 



                                     
⎩
⎨
⎧

=
∞  velocitystream free     the,q

surface solid on the            ,0
r

r
inq ( )2.63  

On the inlet boundaries, the pressure is specified to be the pressure at infinity to ensure a 

correct free stream pressure input: 

                               ∞= PPin                             ( )2.64  

 
4. The outlet boundary condition 

  On the outlet boundaries, the velocity is extrapolated from the inner velocity vector 

field by specifying 

 

                               0=
∂
∂

outn
qr                            ( )2.65  

 

On the outlet boundary condition, the following condition is imposed to insure that there 

is no pressure constraints enforced by the free boundaries: 

 

                              0=
∂
∂

outn
P                             ( )2.66  

 

2.5 Numerical Scheme of VC1 and VC2 
 

2.5.1 Velocity convection and diffusion 
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The continuity and momentum equations can be described in their conservative 

forms as   



      

2 2

2 2 2

2 2 2

2 2 2

2 2 2 2

2 2 2

0

1

1

1

u v w
x y z

u u uv uw p u u w
t x y z x x y z

v vu v vw p v v v
t x y z y x y z

w wu vw w p w w w
t x y z z x y z

µ
ρ

µ
ρ

µ
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

2 2

2
               ( )2.67  

 

Here the velocity vector  after the velocity damping is  q′r

 

                           kwjviuq
rrrr ′+′+′=′                         ( )2.68  

 

The velocity after the convection is q ′′r  and is derived from  

 

                         qqtqq ′∇⋅′⋅∆−′=′′
rrrr )(                       ( )2.69  

The above equation can be written in the  components forms as wvu ,,
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)(

)(

2

2

2

z
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y
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x
uwtww

z
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y
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x
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z
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y
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              ( )2.70  
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To discretize Equation ( )2.70 , a second order central difference scheme is used to 

preserve the stability of the numerical scheme. The discretizated equations used here for 

the convection step are 
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     ( )2.71  

 

where  are the velocity components of the convected velocity kjikjikji wvu ,,,,,, ,, ′′′′′′ q ′′r  along 

the zyx ,,  directions. 

 

In 2-D flow problems, a much simpler first order, but very robust numerical scheme 

has been used to compute the convection step, which is called image point method [41]. 

The velocity vector field  after time step qr t∆  and at node can be interpolated 

from the current flow field. Assume 

),( ji

t∆  is small enough, then the flow particle, which is 

convected to the node , is at point ),( ji ( )o  originally as shown in Fig. 2-2. The areas 

 is used to determine the weighting parameters, which are derived as 4~1),( =iiA

 

                      )1)(1()1( yx SSA −−=  

yx SSA )1()2( −=                          ( )2.72  

)1()3( yx SSA −=  

 (4) x yA S S=  

where  

 35

                            



 

Fig. 2-2 The diagram for the image point location and weighting 

                            

                           xtuS x ∆∆= /  

                           ytvS y ∆∆= /  

 

The convected velocity  is derived from  

 

q ′′r

               ( ) ( ) ( ) 1,1,11,,, 432)1( −−−− ′+′+′+′=′′ jijijijiji qAqAqAqAq rrrrr            ( )2.73  

 
This is a type of explicit first-order upwind scheme that is unconditionally stable [41]. 

This image point method is seldom used nowadays because of its low order characteristic. 

It’s been used in some 2-D flow problems in this thesis. After the convection step, a 

diffusion step is applied to the velocity vector field to compute the physical diffusion of 

the flow, that is,  

                         qtqq ′′∇⋅∆+′′=′′
rrr 2µ                          ( )2.74  
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        A standard second order central differential scheme is used to discretize the 



second derivative . The discretization equations to compute the diffusion for each 

grid node are 

 

q ′′∇
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          ( )2.75  

 

2.5.2 Velocity correction by VC1 and VC2 

       

   After the convection and diffusion steps, a velocity correction by Vorticity 

Confinement is applied to convect vorticity back toward the vortical region. The 

numerical scheme of the VC1 and VC2 will be discussed separately below. 

 

1. Numerical scheme of VC1  

  The vorticity vector field ω
r

 is given from the definition, 

q ′′×∇=
rr

ω          

where  is the velocity vector field after the convection and diffusion steps and is 

defined in terms of its components as: 

qr ′′

 

                             kwjviuq
rrrr ′′+′′+′′=′′                      ( )2.76  

 

Thus, the components of the vorticity vector ω
r

 in three directions are 
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where wvu ′′′′′′ ,,  are obtained from Equation ( )2.71 .   

 

Discretizing Equation (  in a 3-D Cartesian grid on each cell center, we have )2.78
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The original vorticity confinement term is defined in section 2.2.1 as 
 

ω
rr

×= ns ˆ   
 

where the norm of  is represented by n̂

 

ω
ω
r

r

∇

∇
=n̂  

The magnitude of the vorticity vector ω
r

 is 
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Or, in discretization form, 
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The vector  represents the unit vector of the gradient of the scalar field n̂ ω
r

 and points 

toward to centroid of the local vortical region.  

 

A scalar field η  is defined as 

η ω=
r  

Thus, the unit vector  can be written as nr

ηη ∇∇= /nr      

The gradient η∇  is presented as  
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and the magnitude of the η∇  is  
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The components of η∇ , that is,
zyx ∂

∂
∂
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∂
∂ ηηη ,,  can be discretized as 
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The magnitude of η∇  , η∇ , is  
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Since the definition of  is nr ηη ∇∇= /nr , nr  is computed as 
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For the surface confinement, the definition of the unit vector  is  n̂

η
η

∇
∇

=n̂  

where F=η . 

 

F  is defined as the distance from the grid node to the body surface. The value of 

 is defined at the cell center as, F

 

++++= ++++ 1,1,1,,,1,,,,, (
8
1

kjikjikjikjikjiC FFFFF  

                         )1,1,11,,1,1,1,,1 ++++++++ +++ kjikjikjikji FFFF           ( )2.86  

Since, 

                                 kjiCkji F ,,,, =η                       ( )2.87  

        
Then, the unit vector of the surface confinement is  
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The confinement term is defined as ω

rr
×= ns ˆ  and the components of  are  sr
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where  are computed by kjizkjiykjix sss ,,,,,, ,,

kjixkjiykjiykjixkjix nns ,,,,,,,,,, ωω −=  

                       kjixkjizkjizkjixkjiy nns ,,,,,,,,,,
ωω −=                  ( )2.90  

kjiykjixkjiykjixkjiz nns
,,,,,,,,,, ωω −=  

 

The velocity correction added to the velocity vector field by VC1 is   

                              satq l
rr εδ ⋅∆−=′′                         ( )2.91  

and then,  

                               qqq rrr ′′+′′=′′′ δ                         ( )2.92  

where  is the velocity after the confinement correction, qr ′′′ ε  is a confinement 

coefficient, and  is the weight number defined as la

                                 l
l

ll

aa
a
′

=
′∑
                        ( )2.93  

where 

   ( )ηη −=′ lla ,0min  
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Where η  is the averaged value of lη  over the neighboring grid nodes.  



The average value η of η  is derived from 

++++= ++++ 1,1,1,,,1,,,,, (
8
1

kjikjikjikjikji ηηηηη  

                       )1,1,11,,1,1,1,,1 ++++++++ +++ kjikjikjikji ηηηη            ( )2.94  

 
and weighting factors are: 

 ( )kjikjia ,,1,1,11 ,0min ηη −=′ +++  

( )kjikjia ,,,1,12 ,0min ηη −=′ ++  

                          ( )kjikjia ,,,,13 ,0min ηη −=′ +  

                          ( )kjikjia ,,1,,14 ,0min ηη −=′ ++                   ( )2.95  

( )kjikjia ,,1,1,5 ,0min ηη −=′ ++  

                          ( )kjikjia ,,,1,6 ,0min ηη −=′ +  

                          ( )kjikjia ,,,,7 ,0min ηη −=′  

                          ( )kjikjia ,,1,,8 ,0min ηη −=′ +  

` 

The weighting factors  are calculated by  la

       
δ+′

′
=

∑
=

8

1l
l

l
l

a

a
a  for 8,1=l  

 

where, again, δ  is a small constant added to avoid computation overflow. 
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Then the velocity corrections at this numerical step, for the grid nodes around each 

cell center, is 



                             satqq l
rrr  ε⋅∆−′′=′′′                      ( )2.96  

 

where  is the computation time step. t∆

 

2. Numerical scheme of VC2 

The equation of VC2 is presented as  
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and normally good results are obtained by simply setting  to 1. Discretizing the above 

harmonic mean equation in the 

lC
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( ) ( ) ( ) ( ) ( ) ( ) 11

1,,

1

1,,

1

,1,

1

,1,

1

,,1

1

,,1

,,

,,
,, 6

−−

−

−

+

−

−

−

+

−

−

−

+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ +++++

+
=

kjikjikjikjikjikji

kji

kjix
kjixW

ωωωωωω

δω

ω
rrrrrr

r
 

( ) ( ) ( ) ( ) ( ) ( ) 11

1,,

1

1,,

1

,1,

1

,1,

1

,,1

1

,,1

,,

,,

,, 6

−−

−

−

+

−

−

−

+

−

−

−

+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ +++++

+
=

kjikjikjikjikjikji

kji

kjiy

kjiyW
ωωωωωω

δω

ω rrrrrr

r
     ( )2.97  

( ) ( ) ( ) ( ) ( ) ( ) 11

1,,

1

1,,

1

,1,

1

,1,

1

,,1

1

,,1

,,

,,
,, 6

−−

−

−

+

−

−

−

+

−

−

−

+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ +++++

+
=

kjikjikjikjikjikji

kji

kjiz
kjizW

ωωωωωω

δω

ω
rrrrrr

r
 

 

Taking the curl of W
r
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Discretizing  on the grid center using the second order center difference scheme, 

the confinement correction to the flow field is calculated by 

wr×∇

 

                               nWq
rr

×∇=′′ εδ                       ( )2.99  

 

Then the corrected velocity can be written as: 

 

                               qtqq ′′∆+′′=′′′
rrr δ                      ( )2.100  

 

2.5.3 Mass balance 
 

A potential φ  is solved on the Cartesian grid so that the sum of the gradient of the 

potential and with corrections the convected velocity enforces mass conservation.   
 

                               φ∇+′′′=+ qq n rr 1                       ( )2.101  

For the equation of continuity, 1+nqr  must satisfy  

                                01 =⋅∇ +nqr                         ( )2.102  

Thus, the potential, φ∇ , satisfied the Poisson equation 

 

                               q ′′′⋅−∇=∇
rφ2                        ( )2.103  
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where  
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r  

The right-hand-side of the Poisson equation is evaluated at the cell centers. 

 

  Again, the Cartesian grid Poisson solver from the FISHPAK [39], was used as 

indicated above for both 2-D and 3-D Poisson equations. The Neumann boundary 

condition, 0=
∂
∂

n
φ , was imposed on each boundary of the computational domain. 
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Chapter 3 Verification of Vorticity 
Confinement 

 

     Numerical experiments on the two-dimensional flow problems will be presented 

in this chapter to demonstrate the ability of the Vorticity Confinement method to convect 

thin vortex regions over long distances without spreading. Three fundamental numerical 

experiments will be presented to test the salient features of the Vorticity Confinement 

method to indefinitely conserve thin vortical features without spreading the vortical 

region due to diffusion. These three cases include: a single stationary point vortex, a free 

single vortex moving with a uniform free stream, and a pair of vortices of either opposite 

signs or the same signs convecting in their own induced velocity vector field. The 

incompressible fluid dynamic equations with Vorticity Confinement, Equation (2.4), were 

discretized and solved using the fractional-step method described in Section . 

Results presented here are two dimensional.  

(2.4.1)

 

3.1 A Single Stationary Point Vortex 
 

To illustrate the most important ability of the Vorticity Confinement method to 

indefinitely preserve small vortical features, a single stationary vortex is simulated. 

Fig.3-1I shows the initial velocity vector field for the stationary vortex. Fig.3-2 shows the 

initial vorticity contours distribution for the stationary vortex. The computational domain 
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I All the figures in Chapter 3 are located in the Appendix  



is  grid resolution and the single vortex is located at the center of the domain, 

where  and . The cell size is 

129 129×

0, =jix 0, =jiy 1 1×  and the initial velocity induced by 

the single stationary vortex is specified as  

2

2

/
          r>1

/
u y r

for
v x r

⎧ = −
⎨

=⎩
                   ( )  3.1

  
 

,           1
u y

for r
v x
= −⎧

≤⎨ =⎩
 

where  are velocity components along the vu, yx,  directions respectively and r  

represents the distance from the center of the domain (also the vortex center 0,0 == yx ) 

to the given node.  

 

In the figures, the vorticity contour levels extend from about one fourth of the 

maximum initial value to the maximum so that the size of the confined region can be 

determined. Results are presented after 100 and 1000 time iterations, for vorticity and 

velocity in two dimensions. The value of the diffusion and confinement coefficients used 

were 0.2µ = , 0=ε  and µε 5.1=  for both VC1 and VC2.  

 

 47

Fig.3-3 and Fig.3-4 show velocity vector field and vorticity contours after 100 

time iterations without Vorticity Confinement. As expected, the velocity vector field 

diffuses rapidly and the vortex core spreads to over 14 grid cells. The maximum vorticity 

value of the core has been reduced to about 1% of the initial maximum vorticity value. 

Instead, Fig.3-5 and Fig.3-6 show the velocity vector field and vorticity contours after 

100 iterations by using VC2. It can be seen that after 100 iterations the velocity vector 

field still keeps the shape and the vortex core has only spread about 4 grid cells. The 

maximum vorticity value of the vortex core keeps above 50% of the initial maximum 

value. The results of the velocity vector field and vorticity contours shown in Fig.3-7 and 



Fig.3-8 are the results after 1000 iterations obtained by VC2. It clearly shows that even 

after 1000 iterations, the vortex core is still preserved with the added Vorticity 

Confinement term despite the huge numerical diffusion.  

 

  The results presented in Fig.3-9 – Fig.3-12 are the velocity vector field and 

vorticity contours obtained by using VC1 after 100 and 1000 time iterations. Though 

different confinement terms are used the results still strongly illustrate the ability of the 

Vorticity Confinement method to preserve small vortical features and cancel self-induced 

motions. Fig.3-13 shows the initial velocity magnitude distribution with respect to the 

radius r , which is defined as the distance from the given node to the vortex center. The 

magnitude of the velocity is normalized as, 

 

                          
       1

/         1
q r if r
q r if r

⎧ ⋅ >⎪
⎨ ≤⎪⎩

r

r                        ( )3.2  

 

Fig.3-14 and Fig.3-15 show the velocity magnitude distribution after 100 and 1000 

time iterations without Vorticity Confinement. The radius of the vortex is defined up to 

the points whose magnitude of the velocity is 0.9 of the maximum velocity magnitude. It 

can be seen that the radius of the vortex core is spreading to nearly 10 grid cells after 100 

time iterations and 30 grid cells after 1000 time iterations. Fig.3-16 and Fig.3-17 show 

the velocity magnitude distribution after 100 and 1000 time iterations by adding VC2. 

The radius of the stationary single vortex is confined to only about 4 grid cells even after 

1000 time iterations. The results in Fig.3-18 and Fig.3-19 are obtained by using VC1, 

which are same as those obtained by VC2.  
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So it can be concluded that small scales are confined and Vorticity Confinement 

is very robust and stable for an isolated vortex.  

 

3.2 A Single Vortex Moving with a Free Stream 
 

In this section, a single vortex moving with a weak uniform flow will be 

considered. The computational domain is the square with 128 128×  grid size. This single 

initial vortex is the same as the single stationary vortex presented in the section 3.2.1. But 

it is imposed on a uniform weak free stream, and the center of the vortex is located 

at , the left low corner of the computational domain. The center of the domain 

is ( .  

( 50, 50− − )

)

06
5

0,0

 

The velocity of the free weak stream flow is defined as, 

/ 0.
/ 0.0

u U
v U

∞

∞

=
=

 

in which  and  are the velocities along the  and  directions respectively, and 

 is the uniform flow and set to 1. To set the free stream flow much smaller than the 

dominant velocity induced by the convecting single vortex is a good numerical 

experiment to determine the accuracy of the Vorticity Confinement method. A small 

iteration step is taken with =0.4.  

u v x y

U∞

t∆
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      Without Vorticity Confinement the convecting single vortex will diffuse very 

quickly. The velocity vector field after 500 time iterations, compared to the initial 

velocity vector field in Fig.3-20, is shown on Fig.3-22. The velocity vector has diffused 

expeditiously and became trivial.  



To analyze the velocity magnitude distribution with regard to the radius r , which 

is defined as the distance from the given node to the moving vortex center, whose 

centroid of the vortical region is defined as  

                           

∑
∑
∑
∑
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ω
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                             ( )3.3  

with being the ωω yx , yx,  coordinates of the centroid of the vortical region after  

time steps. Thus, the radius 

n

r  is computed by 

 

                    ( ) ( )( ) 2/12
,

2
,, ωω yyxxr jijiji −+−=                    ( )3.4  

 

In Fig.3-23, the simulation result of the velocity magnitude distribution is plotted 

vs. radius . The analytical distribution of the velocity magnitude, which is derived from 

Equation ( , is shown in the same figure. According to Equation ( , after 500 time 

iterations, the vortex core will spread about 13~14 grid cells, which is clearly shown in 

the Fig.3-23. It can also be observed that the numerical result is in accordance with the 

analytical result approximately and after 500 time iterations the vortex core spreads about 

to a width of 13 cells. Fig.3-22 shows the velocity vector field after 500 time iterations 

and it can be seen that the whole field diffuses extensively compared with the initial 

velocity vector field shown in Fig.3-20. Therefore, it can be concluded that the 

convecting vortical region diffuses rapidly without Vorticity Confinement. 

r

) )13.2 9.3
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Then to demonstrate the effect of the Vorticity Confinement method, first, VC1 is 

applied to compute the convecting single vortex. Fig.3-24~Fig.3-27 show the velocity 

vector field and vorticity contours of the single convecting vortex after 500 and 3000 

time iterations. It can be seen that the vortex keeps its shape and vorticity magnitude and 



moves along with the weak stream. In Fig.3-28, the trajectory of the moving vortex is 

given by recording the vortex position every 500 time steps. After 3000 time steps, the 

centroid of the vortex moves to 12,27 == yx  which is about a 7 grid cell error 

compared with the analytical trajectory in the  direction and 8 grid cells in the y 

direction. Such a deviation is expected since VC1 can’t conserve the total momentum and 

thus the centroid of the vortex can not be preserved. As mentioned in section 2.2.2, the 

non-conservative nature of VC1 has been a most disappointing feature and restricted it 

from being further applied. This is the main reason why the VC2 methodology was 

introduced.  

x

 

When VC2 is used to replace VC1 the results are presented in Fig.3-29 ~Fig.3-34. 

Fig.3-33 gives the trajectory of the convecting vortex every 500 time steps compared 

with the analytical trajectory. The movement of the vortex is consistent with the 

analytical trajectory exactly, which demonstrates the conservative characteristic of VC2. 

Fig.3-34~Fig.3-37 shows the normalized velocity distributions after 500 and 3000 time 

iterations with VC1 and VC2 respectively. Trajectories obtained from VC2 are much 

smoother than the ones obtained from VC1. 

 

3.3 Paired Vortices of the Opposite Signs 
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In this section, a pair of vortices with opposite signs are investigated to illustrate the 

mutual effect between these two vortices under the condition of no free stream flow. Two 

vortices will convect under their own induced velocities. The results are presented for a 

sequence of time steps to demonstrate the movements of two vortices. Different cases will 

be considered as the distance between two vortices varies. Both VC1 and VC2 methods will 

be investigated. 



 First, two opposite sign vortices are set 8 cells apart and VC2 is employed. Fig.3-38 

shows the movement of two vortices and the analytical trajectory. For the analytical 

trajectory, the centroids of the two vortices will convect under the mutually induced 

velocities  along the x, y directions. After 3000 time steps, the two 

vortices should move from 

088.0,088.0 == ∞∞ VU

33,27 11 −=−= yx  and 27,33 22 −=−= yx to 20,25 11 == yx  

and , in which 25,20 22 == yx 2.0=∆t . But the motion of the centroids of the two 

vortices obtained by computation shown in Fig.3-38 does not exactly agree with the 

analytical trajectory. The main reason for this disparity is that though VC2 can conserve the 

total momentum the distance between the two vortices is too small and there will be some 

mutual interaction between them. In Fig.3-47, the result of two 8-cell-apart vortices obtained 

by VC1 is shown. Since this method is not able to conserve the momentum two vortices 

interact with each other and vorticity is exchanged only after 1000 time steps and eventually 

the two vortices lose their individualities and begin to merge.  

 

Fig.3-39 and Fig.3-40 present the results of two vortices of 16-cell-apart and 

32-cell-apart with VC2. Since the total momentum is conserved and the distance between 

the two vortices is large enough, the movement of the centroid of the two vortices agree 

exactly with the analytical trajectory. The self-induced velocity of each vortex, although 

several times the convecting velocity of the centroid, automatically cancels and has no effect 

because the method conserves momentum.  
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Even as the distance between the two vortices is increased, the movement of the 

vortices will not agree with the analytical trajectory if VC1 is employed. This is due to 

the non-conservative characteristic of the total momentum intrinsic in this method. 

Results presented in Fig.3-45 and Fig.3-46 demonstrate exactly this. With two vortices 



set 16 cells apart and 32 cells apart, the movement of the two vortices greatly deviates 

from the expected trajectory. 

 

3.4 Paired Vortices of the Same Signs 
 

 It is interesting to trace the movement of a pair of vortices with the same sign. What 

is expected is that the two vortices will rotate around each other under their induced 

velocities if the distance between the two vortices is sufficient. Otherwise the two vortices 

will merge.   

 

First, the vortices are set 8 cells apart and the initial vorticity contours are shown in 

Fig.3-48. Fig.3-49 presents the vorticity contours after 1000 time steps with VC2 and it can 

be seen that two vortices have already begun to merge. After 3000 time steps, the vortices 

totally mix together and become one vortex.  

 

Then, the vortices are initially separated by 16 cells, which are shown in Fig.3-51. 

After 3000 time steps, the two vortices keep their shapes and rotate around each other. The 

results shown in Fig.3-52. Fig.3-53 and Fig.3-54 present the results of two vortices rotating 

around each other in the 1st loop and 2nd loop. The positions of the paired vortices in these 

loops are recorded every 900 time iterations and they will form a circle as shown in Fig.3-53 

and Fig.3-54. The vortices can be seen to be essentially the same at the end (after 7,200 time 

steps) as initially.  
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Chapter 4 Flow over a Surface-Mounted Cube 
 

From the discussion in Chapter 1 and Chapter 2, we already know that large 

coherent vortical structures exist in near wall regions of turbulent boundary layers and 

that these vortical structures play a crucial role in generating, sustaining and developing 

the energy and momentum of the turbulence. In the wall turbulence study, great 

importance is attributed to the horseshoe vortices for the maintenance of the turbulence.  

 

4.1 Background 
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Over the past forty years, enormous experimental results provide strong evidence 

that there are thickly populated inclined hairpin or horseshoe vortices in the wall of the 

turbulent boundary layer. These have been observed by using either oil visualization or 

particle image velocimetry (PIV). However, due to the lack of either advanced 

experimental or proper numerical techniques, it is hard to identify and track a single 3-D 

horseshoe vortex in the turbulent boundary layer. Research work had to turn to the 

generation of horseshoe vortices by small perturbation, such as hemisphere or small fluid 

injection to investigate the development of such vortices. Experimental results shown in 

Fig.4-1 were obtained in the Fluid Dynamics Laboratory of Eindhoven University of 

Technology, Netherlands [29] by -bubble visualization, and in these pictures a street 

of hairpin vortices was clearly shown, which were generated by the protuberance of a 

hemisphere and are shedding and convecting downstream in the flow. These horseshoe  

2H



 

Fig. 4-1 Experimental observation of horseshoe vortices by -bubble visualization  2H

 

vortices are not perfectly symmetric, but they show the characteristic of the arches and 

heads, which make them more like horseshoe vortices rather than the inclined 

quasi-stream-wise vortices. 
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At the same time, many numerical simulations were performed to reveal the 

artificial generation and subsequent development of hairpin vortices. Recent numerical 

results obtained by Zhou [27] using DNS offer strong insights of the mechanism of the 

formation of the new hairpin vortex and the development of a hairpin-vortex packet. The 

initial flow field of his computation is a viscous, hairpin-like structure, which is referred 

to as the parent vortex. In his computation, a stretched grid was employed in the vertical 

direction, with about 0.096 grid spacing close to the wall and 5.96 in the center of the 

computational domain. New hairpin vortices were generated both downstream and 

upstream of the parent vortex, and after a certain time, a packet of hairpins was formed. 

To identify the hairpin vortex in the boundary layer, Zhou employed the imaginary part 

of the eigenvalue of the velocity gradient tensor. The numerical result obtained for the 

iso-surface of the hairpin vortices street is shown in Fig.4-2, which looks similar to the 

packet of the hairpin vortices shown in Fig. 4-1. 



 

 
 

Fig. 4-2 Computational result of Zhou, the iso-surface of the hairpin vortices street  
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Other researchers have stimulated the study of hairpin vortices by means of small 

perturbations in the channel or flat-plate flows. Tufo [42] used DNS to compute the 

interaction between a flat-plate boundary flow and a hemispherical roughness element. 

The mechanism associated with the artificially generated hairpin vortices in the near 

wake region could then be studied. These studies were interested in the formation of 

hairpin-like vortices which are generated in the wake of a hemisphere and lift away from 

the wall. Schematic of the numerical results obtained by Visualization Toolkit (VTK) in 

Fig.4-3 show clearly the formation and development of a street of hairpin vortices, which 

is in agreement with experimental observation in Fig.4-2. Though these results were 

obtained for a surface-mounted hemisphere, one can get strong insights from them about 

the evolution of the hairpin vortices. 



 
 

        Fig. 4-3 Key vortices structure from Tufo: standing hairpin vortex(a), interlaced 

tails(b), hairpin head(c), and bridge(d). Vorticity iso-surface 

 

   To better understand the dynamics of coherent vortical structures in the turbulent 

boundary layer, flow over a surface-mounted cube is simulated in this thesis to study the 

structure of the shedding hairpin vortex and its development in the wake region. 

Although the geometry looks simple, the flow over a surface-mounted cube has been a 

long-lasting topic not only for academic research but also for industry applications. This 

three-dimensional sharp-edged cube produces complicated flow separation, and 

especially in the wake region, an intense turbulent wake is created. Flow is characterized 

by periodic shedding of vortices and experiences different separations at different 

locations. These include the corner in front of the cube, the top surface of the cube and 

back face of the cube.  
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Due to the complexity of the flow properties, most of the research work 

performed on vortical structures of flow over a surface-mounted cube has concentrated 

on the region very near the back face of the cube and little work has been done on the 

generation of hairpin vortices and the development of the hairpin vortex street. In this 

thesis, the interest is in the large-scale and small-scale vortical structures near the back 

face of the cube and in the wake of the cube. In particular the details of the formation of 



hairpin vortices and thereafter the development of the hairpin vortices packet will be 

revealed. There are very few simulation results that have revealed the formation of the 

hairpin vortices packet even using DNS or LES [42] with higher order resolution. A 

strong packet of hairpin vortices behind the back face of the cube will be observed in the 

thesis. This is achieved, for the first time by using only a very coarse uniform Cartesian 

grid, which demonstrates the efficiency and power of the Vorticity Confinement method. 

 

4.2 Flow Structures 
 

  The vortical structure in the wake region is very complicated. The flow 

experiences multiple separations, reattachments and recirculations. As the flow reaches 

the cube, the main separation vortex and secondary ones are formed in front of the cube. 

Due to the adverse pressure gradient caused by the blockage effect of the three 

dimensional cube and the lower wall, the main flow experiences separation near the 

junction of the lower wall and the base of cube. Therefore, the boundary layer separates 

and forms a vortex, which wraps around the cube and convects to the downstream of the 

flow. The overall shape of the formed vortex is bent like a horseshoe or hairpin vortex, 

which is originally observed by Theodorsen [21] and called horseshoe or hairpin vortex 

due to its shape.  
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Based on the distance to the back face of the cube, the weak region, downstream of 

the cube, can be divided into two regions: first, the near-wake region, where the boundary 

layer separates from the surface of the obstacle and the horseshoe vortices are generated; 

second, a far-wake region, which is the zone after the near-wake region where generated 

horseshoe vortices are convected further down stream of the obstacles and a packet of 

horseshoe vortices is formed. As the velocity of the main flow increases, the structure of 



the horseshoe vortex system becomes unsteady and complicated. The hairpin-like 

vortices keep shedding from the cube, and are convected downstream and form a street of 

hairpin vortices, as shown in Fig.4-2. The region downstream of the cube contains 

various flow phenomena, such as a free-shear layer, re-circulating flow and redeveloping 

turbulent boundary layer, etc. The hairpin vortices behind the cube are characterized with 

the regeneration and mutual merging of hairpin vortices. According to Acarlar and Smith 

[28], the main mechanism of the formation of the horseshoe vortex is based on the 

interaction between the separated boundary layer and the base pressure (the low pressure 

region behind the back face of the cube). When the main flow separates from the top of 

the cube, there is a low pressure region right downstream of the cube and the separated 

boundary layer will pull the flow downstream. The streamlines will be forced to curve 

inward as the region between the lower wall and the separated boundary layer is reduced 

by the outer region flow. As the streamlines are curved, a centrifugal force field will be 

developed to resist the pressure across the curved streamlines and the vortex lines spiral 

inwards and concentrate to form the horseshoe vortices. The formation of horseshoe 

vortices is a process of build-up and release of concentrated vorticity. Once horseshoe 

vortices are formed and separated from the cube, they will be convected downstream and 

a street of horseshoe vortices will be formed.  

 

 59

As mentioned before, little research work has been done on the formation and 

development of the horseshoe vortices and their mutual interaction downstream of the 

cube either by experimental observations or numerical simulations. In this thesis, the 

generation and subsequent development of the horseshoe vortices, which are produced by 

the rolling-up of the shedding vortex yielded from the three-dimensional flow separation 

at the back face of the cube, are discussed in detail. The numerical work is carried out on 

a very coarse and uniform Cartesian grid and Vorticity Confinement is applied.    



4.3 Numerical Geometry and Boundary Conditions  
  

The geometrical model for the flow over a cube is shown in Fig 4-4. H  in the 

schematic figures is the dimensional size of the cube. To simulate the formation and 

development of the horseshoe vortices, two grid resolutions are employed to test the 

ability of the Vorticity Confinement method to conserve the vortical structure. First, a 

uniform Cartesian grid resolution of 161 61 61× ×  along the x, y and z directions 

respectively is used, which is referred as the case of the large cube. The 161 grid points 

are distributed within 8 times of the cube dimension H  in the stream-wise direction; the 

61 grid points were dispersed about 3 times cube dimension H  along the span-wise and 

vertical direction. So, there are 20 grid cells along each side of the large cube. Then, we 

attempt to simulate the flow field within a grid resolution of 91 31 31× × , where the 91 

grid points are arranged within 15 times of the cube dimension H  in the stream-wise 

direction; 31 grid points were dispersed about 5 times cube dimension H  along the 

span-wise and vertical direction. The second case is referred as the case of the small cube 

or 6x6x6 cube since the number of grid cells along each side of the small cube is 6. Both 

grids are uniform, coarse Cartesian grids, that is, 1x y z∆ = ∆ = ∆ = . The sufficiency of 

such a coarse grid resolution has been verified by comparing the results with those 

obtained by LES simulations. Comparison with experimental data will also be made. For 

both cases, the cube is located near the front of the computational domain.  
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The flow field is investigated mainly for two different grid sizes for the 

surface-mounted sharp- edged cubes to illustrate the whole process of generation and 

evolution of horseshoe vortices. The large cube is set between x=20~40, y=20~40 and 

z=0~20 along the x,y,z directions and the small cube is located between 

,  and 19~13=x 19~13=y 6~0=z  along the x,y,z directions.         



 

Cube 

Fig 4-4 Geometry of the computation domain 

 

The initial velocity vector field was set to 0 0 0, 0, 0U U V W∞= = = along the x,y,z 

directions respectively everywhere, except on the flat-plate and cube surfaces where the 

velocity is set to zero according to the no-slip boundary condition.  is the free stream 

flow velocity and set to 1. Different values of the numerical diffusion and confinement 

coefficients, 

U∞

µ  and ε , are used to study the ability of Vorticity Confinement to control 

the size and time scales of the convecting vortical regions or vortical boundary layer. 

Results without Vorticity Confinement are compared with those simulated with Vorticity 

Confinement. The most often used diffusion coefficient and confinement coefficients are 

set as 4.0=µ  and 0.2 and 0.4fε = . The time step is 2.0=∆t  and the CFL number is 

. Periodic boundary conditions are applied in the span-wise direction. The pressure at 

the exit boundary is extrapolated from the closest interior points and the no-slip boundary 

conditions are employed on the wall of the cube and the floor of the plate. Most of the 

results are obtained by VC1. Further research work on VC2 is still under the way, and will 

be mentioned in Chapter 5.  

0.2

Cube 

X 
Y 

H
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4.4 Results  
 

4.4.1 Directly upstream and downstream of the cube 

 

Directly downstream of the cube, a three-dimensional wake is formed. Due to the 

blockage influence of the cube, the main flow is separated. One part of fluid travels 

against the adverse pressure gradient and rolls up to form vortices against the front wall of 

the cube. Another part of the fluid goes downstream of the cube to form the horseshoe 

vortices around the cube or the street of horseshoe vortices in the wake.   

 

Fig.4-5 shows the experimental results [43][44] of the streamlines distributions on 

the symmetry plane and on the flat plate. In Fig.4-5(a), clearly seen is that there is a 

separation point upstream of the cube, which is often called a saddle point. The streamline 

passes through the saddle point and wraps around the cube, forming a horseshoe vortex. The 

streamline distributions on the floor plane in Fig.4-5(b) show this horseshoe vortex around 

the cube and trailing downstream.       

 

Fig.4-72 II  presents the simulation results of streamline distributions on the 

symmetry zx − plane ( at 6=y ) obtained by VC1 after 50 time steps for the small cube. 

What can be observed is that upstream of the cube the main flow experiences separation 

and a saddle point exists in front of the cube, which is in correspondence with the 

experimental result shown in Fig.4-5(a). A part of the fluid experiences an adverse 

pressure gradient and rolls up to form a vortex against the cube wall. There is an 

attachment point in front of the cube. 
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II Fig.4-6 – Fig.4-124 in Chapter 4 are located in the Appendix  



 

   

            (a)                                  (b) 

Fig. 4-5 Experimental distributions of streamlines on the symmetry plane and on the floor 

of the channel 

 

Upstream of the cube, the flow separates and the follow-up vortex roll-up are essential 

for the formation of the horseshoe vortex which wraps around the cube. Directly 

downstream of the cube, the approaching flow reaches the sharp edge of the cube, moves 

upwards, accelerates towards the sharp edge and then separates from the edge. The 

separated shear layer descends towards the flat plate while moving downstream and 

another separation zone is formed behind the cube. It can be seen in Fig.4-72 that the 

present computed length of the separation zones in front of the cube and behind the cube 

are close to the experimental ones compared with the cube sizes in the simulation results 

and in the experimental observation. The separation on the roof of the cube is not shown 

in Fig.4-72 and the possible reason is due to the limitation of the coarse grid resolution: 

the very small features can not be captured.  
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Directly downstream of the cube, two corner vortices are formed by the two sides 

of the cube and join on the symmetric plane to form an arch behind the back face of the 

cube. A three-dimensional iso-surface of the vorticity magnitude is shown in Fig.4-60 

and Fig.4-64 in different views and an arch, which is clearly shown behind the back face 

of the cube can be observed from three views (top, end and side views) in Fig.4-68 (a), 



Fig.4-69(a) and Fig.4-50(a). Two corner vortices are formed at the junction of the 

channel floor and the base of the cube due to the interaction of the mounted cube and the 

surface. These vortices will join at the symmetry plane and be connected by a narrow 

bridge to form a closed arch behind the cube. Fig.4-6 and Fig.4-17 present 

three-dimensional iso-surfaces of the vorticity magnitude for the large cube after 50 time 

steps from different viewing angles and this arch structure is perfectly shown behind the 

cube.  

 

Fig.4-71 presents instantaneous velocity vector field and contours of the 

magnitude on the central plane at 50 time steps for the small cube. It can be seen that 

there are vortices shedding from the leading lateral edges of the cube. Upstream of the 

small cube, the blockage effect of the cube produces an adverse pressure gradient which 

forces the main flow to separate and wrap around the cube, creating a horseshoe vortex 

around the cube. In Fig.4-73(b), contours of the magnitude of vorticity on the lower level 

(at ) after 50 time steps are presented and it’s easy to identify the horseshoe-shaped 

region of strong vorticity around the cube.        

2=z
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4.4.2 Formation of the hairpin vortices 

 

The low pressure region at the back face of the cube will cause the vortex lines to 

move inwards and the vortex lines will converge to form a vortex tube, which will shed 

from the downstream face of the cube as a single hairpin vortex. Once one hairpin vortex 

is generated and convected downstream, a second hairpin vortex will be formed in a 

similar sequence of events. Both instantaneous contours of the vorticity magnitude and 

velocity vector field on the symmetry plane are presented for a sequence of times for the 
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large cube and the small cube to illustrate the dynamics of vortex generation from the 

cube.  

 

In Fig.4-39 the velocity vector field is presented for the large cube after 120 time 

steps. It can be seen that beyond the rear edge of the large cube, the shear layer becomes 

disturbed and a new vortex head is born and will be shed from the rear edge of the large 

cube. After 300 time steps, this new-born vortex is convected downstream, as shown in 

Fig.4-40 both for vorticity contours and velocity vector field. Then, after 400 time steps, 

this vortex is convected further downstream and after 600 time steps, another new vortex 

head is born right near the rear edge of the large cube just as the first vortex is moving 

away, as  shown in Fig.4-41(a) and Fig.4-42(a).  

 

After a sequence of times, it turns out that this process is repeated periodically. As 

the old vortices are convected away downstream, the new vortices will be born right near 

the rear edge of the cube and thus form a sequence of the vortex heads, as shown in 

Fig.4-48(a) and (b). This sequence of vortex heads demonstrates the existence of the 

coherent structure in the wake region due to the effect of the cube and the plate. The flow 

field near the front edge of the cube is nearly steady. For the small cube, the same 

procedure can be observed from the vorticity magnitude contours and velocity vector 

field for a sequence of times in Fig.4-71, Fig.4-74, Fig.4-75 and Fig.4-76.    

 

Wang [45] used hotwire and PIV techniques to investigate the flow over a 

finite-length square prism. Though the geometry is different from the present study, 

strong insights can still be drawn from these experimental results. Fig 4-83 shows the 

instantaneous contours of the  component of the vorticity vector at the different  

locations in the span-wise plane (

x x

1/ =dx  and 3/ =dx , where  is the dimension of d



the prism along the  direction). The experimental results display a pair of 

counter-rotating vortices near the prism base at 

x

1/ =dx  in Fig.4-83(a). At 3/ =dx , a 

pair of counter-rotating vortices appear near the top edge of the prism, which show the 

characteristic of the horseshoe vortices.   

 

We return to the present study where it is formed that the vorticity distribution near 

the free end of the cube is quite symmetrical and the upper vortex pair, with a peak 

vorticity of - 0.1 and 0.13, in Fig.4-82(a) is attributed to the free shear layer separating at 

the leading edge and rolling up to form the horseshoe vortices. The two counter-rotating 

vortices in Fig.4-82(b) are consistent with the horseshoe vortical structure, as illustrated 

in Fig.4-51(b). Fig.4-50 presents the instantaneous velocity vector field for the span-wise 

plane at  after 120 time steps for the large cube, and a pair of counter-rotating 

vortices can be observed near the cube base, which is consistent with the experimental 

observation in Fig.4-82(a). After 400 time steps, two symmetric vortices appear near the 

top edge of the cube, which reveal the generation of a horseshoe vortex. The sequence of 

times sequences for the span-wise plane at 

1/ =dx

1/ =dx  reveal some structure information 

about the generation of the horseshoe vortices can be found in Fig.4-49~Fig.4-59. For the 

small cube case, similar numerical results were obtained. 

 

4.4.3 Evolution and development of the hairpin vortices 
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While the instantaneous contours of the vorticity magnitude and the velocity 

vector field in both ream-wise and span-wise planes can provide a fair amount of 

information about the hairpin vortex evolution, they fail to reveal any three-dimensional 

details. A series of iso-surfaces for the vorticity magnitude are shown, as a sequence in 



time, to illustrate the formation of the horseshoe vortices and the street of the horseshoe 

vortices. From the discussion above, we observed several vortical structures, some of 

which had not been identified prior to viewing the corresponding three-dimensional 

iso-surface of the vorticity magnitude. Fig.4-14, Fig.4-25 and Fig.4-32 present the 

iso-surface of the vorticity magnitude after 1600 time steps for the large cube. These are 

shown from different viewing angles. Fig.4-14 clearly shows a packet of classic 

horseshoe vortices downstream of the cube. From Fig.4-35(i), the top view of the 

iso-surface at 1600 time steps, it can be seen that there is an interlacing of the hairpin 

vortex tails. This was also observed by Acalar and Smith [28]; the hairpin heads, and 

vortex bridges, look similar to the numerical simulation results presented in Fig.4-2 and 

Fig.4-3. As the main flow separates from the rear edge of the cube, it drags fluid 

downstream with it. The streamlines will be curved since the outer region flow field tries 

to narrow the region between the plate wall and the separated boundary layer, and there is 

a low pressure region at the back face of the cube. The low-pressure region will cause the 

vortex lines to whirl inwards. As a result of the separated boundary layer and subsequent 

vortex lines spiraling inward, the concentrated vortex tubes will be discharged into the 

downstream direction as discrete single hairpin vortices. A subsequent horseshoe vortex 

system then develops in the wake region of the cube. The details of the horseshoe vortex 

formation and development will be discussed in the following. First, the formation of the 

primary horseshoe vortex is investigated.  
 

 a. Formation of primary hairpin vortex 
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In Fig.4-6, due to the adverse pressure gradient and the intersection of the flat plate 

with the base of the cube, the free shear layer separates from the rear edge of the cube 

and forms a horseshoe-like vortex at the back face of the cube. This initial separated flow 

evolves into a hairpin-like vortical structure as shown in Fig.4-10, Fig.4-21 and Fig.4-28. 

These plots are from different viewing angles and are after 600 time steps. This structure 



will be referred to as the primary hairpin vortex. The top view, side view and end view 

for the vorticity iso-surface in Fig.4-35(e), Fig.4-36(e) and Fig.4-37(e) clearly show the 

structure of the horseshoe vortex: the head, the inclined stream-wise leg and the bridge. 

The geometry of the generated horseshoe vortex resembles the instantaneous hairpin 

vortex structure obtained in both experiments and computations results [28] [42]. 

 

We first consider the formation of the primary hairpin vortex for the large cube. 

At the beginning, the free-shear layer separates from both the rear edge of the cube and 

the two lateral faces of the cube, and forms an arch-like vortex as in Fig.4-6 (after 50 

time steps). The initial quasi-stream-wise vortices lift away from the wall and the 

resulting vortical structure is curved upwards. As the quasi-stream-wise vortices lift up, 

the span-wise distance between them decreases. The magnitude of the vorticity of this 

vortex pair is stronger near the downstream end and thus the mutual interaction is 

stronger there. Therefore the downstream end of the vortex pair lifts up more rapidly than 

the upstream end. As the flow structure is convected further downstream, the upstream 

end of the lift-up process is strongly stretched because of the mean shear layer. At the 

same time, there is a low-speed fluid shear layer, which is pumped up and back from the 

wall as the vortex is meeting the high-speed mean flow. The two counter-rotating 

quasi-stream-wise vortices are curled further and the two legs of the horseshoe vortices 

have been extended further along the downstream; and the shear layer has further 

intensified, particularly near the top of the circled region. At this stage, the primary 

hairpin vortex structure is formed as shown in Fig.4-10, Fig.4-21 and Fig.4-28. From 

Fig.4-35(e), the top view of the iso-surface of the vorticity magnitude clearly shows a 

generated classic hairpin vortex, with identified vortex head, the inclined stream-wise leg 

and narrow bridge.    

 68

 



b. Formation of the secondary hairpin vortex 

The formation of the secondary hairpin vortex is very like the formation of the 

primary hairpin vortex described above. As shown in Fig.4-12 and Fig.4-35(g), the 

second hairpin vortex is formed right after the primary hairpin vortex as the primary 

vortex is convected downstream. The previous discussion regarding the mutual 

interaction and vortex curvature can be extended to investigate the generation of the 

secondary hairpin vortex.  
 

As the primary hairpin vortex is developed from the quasi-stream-wise vortices 

form to an  shaped vortex, a second hairpin vortex is produced upstream of the 

primary vortex. As shown in Fig.4-13, the downstream section of the primary vortex legs 

are about 40 grid cells long and have an approximate inclination of 20 degrees. The 

primary horseshoe vortex and the secondary horseshoe vortex are not perfectly 

symmetric as shown in Fig.4-13. The line joining the head of the primary and secondary 

vortices, which roughly characterize the envelop of the vortical packet formed by the 

primary and secondary vortices, has a characteristic slope of 20 degree. 

Ω

 
For the small cube, the process of the formation and development of the primary 

and secondary horseshoe vortices not as clear as for the large cube. But still, from a series 

of iso-surface figures for a sequence of times several horseshoe-like vortices can be seen 

in Fig.4-60~ Fig.4-63.  
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c. Formation of a packet of vortices 

With the formation of the primary and secondary hairpin vortices, a series of 

hairpin vortices will be generated downstream of the cube consistently and form a packet 

of hairpin vortices. The structure of the later born hairpin vortices is similar to the 

previously formed primary and secondary hairpin vortices. To see this packet of hairpin 



vortices, significant resolution in space and time is required. It is quite important to 

carefully select the simulation results at the right time steps in order to present the 

completed street of hairpin vortices. After reviewing the iso-surface of the vorticity 

magnitude in a sequence of times, results at time step 1600, 1800 and 3000 are selected to 

present the formation of the packet of vortices from the different viewing angles.  
 

In Fig.4-14, Fig.4-25 and Fig.4-32, the iso-surface of the vorticity magnitude is 

presented from different viewing angles at time step 1600 for the large cube. A clearly 

formed packet of horseshoe vortices can be seen in Fig.4-35(i) from the top view for the 

vorticity iso-surface. In the downstream region, three horseshoe vortices are convected 

downstream, which are connecting as a horseshoe loop. In the region near the cube, a 

new horseshoe vortex is being generated. As the horseshoe loop is convected downstream, 

the preceding vortices are stretching and disappearing as the result of the 

stretching-induced dissipation. In Fig.4-36(i), the side view of the iso-surface of the 

vorticity magnitude is consistent with the numerical simulation results obtained by DNS 

presented in Fig.4-2.  
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As the horseshoe loop is convected further downstream, after 1800 time steps, the 

primary vortex is diffusing and the legs and the heads of the hairpin vortices within the 

loop are stretched and diffused. The vortex becomes longer and thinner, as shown in 

Fig.4-15, Fig.4-26 and Fig.4-33 from different viewing angles. In Fig.4-16, Fig.4-27 and 

Fig.4-34, it can be seen that after 3000 time steps, the primary vortex has disappeared and 

only left are two stretched legs in the downstream end. The two legs of the hairpin 

vortices have the opposite signs. They are close to each other and not well resolved so 

that they will merge. At the same time, the heads of the hairpin vortices are all of the 

same signs and they remain. At the same time, a new born horseshoe vortex is appearing 

near the rear edge of the cube. Thus, it is demonstrated that the whole horseshoe vortex 



generation system is characterized by a repeated pattern of generation, translation, and 

merging of the vortices. Four movie clips (1.avi~4.avi) are attached with this dissertation, 

which are made for the vorticity iso-surface for both the small cube and the large cube in 

a sequence of time steps. 1.avi and 2.avi are for the large cube and 3.avi and 4.avi are for 

the small cube. These movie clips clearly show the formation and development of 

hair-pin vortices from different viewing angles. 
  

4.4.4 Comparison with experimental and LES results 
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To compare with the experimental and LES results, mean velocity profiles for the 

stream-wise velocity component and, a component of the mean turbulent stress, 2u′ , 

profiles are computed for several sequences of the hair-pin vortex shedding process. 

Fig.4-83~ Fig.4-85 show the comparison among VC1, LES [46] and the experiment 

results [43][44] for the profile of the mean velocity component U at several locations on 

the symmetry plane for the large size cube. The experimental and LES results were 

obtained in a channel so that there will be expected difference between the computational 

results in this thesis and the experimental and LES results near the upper wall. The 

Reynolds number for the experiment is about . In Fig.4-83, the result with VC1 

shows there is a back flow region on the roof region of the cube which is similar to the 

LES and experimental results. The results with VC1 shown in Fig.4-83 and Fig.4-84 are 

in good agreement with the experimental and LES results, but further downstream, at the 

location , the result with VC1 deviates from the LES result. Most of the LES 

results for flow over a surface-mounted cube can’t get the street of the hair-pin vortices 

as shown in Fig.4-16 even through very fine grids and complicated numerical schemes 

were taken. The comparison for mean turbulent stress (

510

/ 2.x h = 5

2u′ ) on the symmetry plane 

between VC1, experiments and LES are shown in Fig.4-86~Fig.4-89 at different 



locations downstream of the cube. Fair agreement between the results with VC1 and 

experimental results can be observed.  
 

Comparison of the mean velocity component with the experimental and LES 

results for the small cube are shown in Fig.4-90~Fig.4-92. In Fig.4-90, there is no back 

flow on the roof region, as shown in Fig.4-83 for the large cube, since a very coarse grid 

is employed near the cube. Nevertheless, further downstream of the cube, at the location 

, the mean velocity profile for the component  shows better agreement with 

the experimental results than does the LES result. The profiles of mean turbulent stress 

U

/ 1.3x h = U

2u′  for the small cube are shown in Fig.4-93~Fig.4-96. Though a very coarse grid is 

employed, the agreement with the experimental results is still good.  

 

The results without Vorticity Confinement for the large cube case are also shown 

In Fig.4-83~Fig.4-85 and poor agreement with both experimental results and LES results 

can be seen. Through the comparison with the experimental and LES results, the ability 

of the Vorticity Confinement method to capture thin vortical features without numerical 

spreading has been demonstrated.  
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4.4.5 Different diffusion and confinement coefficients 
 

The diffusion and confinement coefficients are the two of the most important 

parameters used in the Vorticity Confinement method to control the size of vortical 

structures. The most used values in the computation of this thesis are 2.0=µ  and 

4.0=ε . Different values of µ  and ε  are used to test the efficiency of the Vorticity 

Confinement method. For the large cube case, the proper value of the field confinement 

coefficient is from 0.1~1. For the surface confinement coefficient, the proper value is 

<0.1. When the field confinement coefficient is bigger then 1 or the surface confinement 



is larger than 0.1, the vorticity that has been added to the field is too strong and the flow 

field reduces to chaos. At the same time, if the field confinement coefficient is smaller 

then 1 or the surface confinement is smaller than 0.1, the whole flow field will diffuse 

and there will be no flow separation in the back face of the cube. The conditions for the 

small cube are the same as those of the large cube. 
 

To better understand the effect of the confinement coefficient, the comparison has 

been made among different values of ε  for mean velocity component U and mean 

turbulent stress ( 2u′ ) at the several locations in Fig.4-97 ~ Fig.4-109 for both the large 

and small cubes. The selected values of the confinement coefficients are 0.2,0.4fε = and 

. From the mean velocity component profiles shown in Fig.4-97 ~ Fig.4-99, the 

results of

0.8

0.4fε =  are obviously better than 0.2,0.8fε = . The same conclusion can be 

made for the small cube. It is important to define the most appropriate range of values of 

the confinement coefficient ε . This is, of course, also true in the development of any 

LES or RANS model.  
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4.4.6 Grid dependence 
 
To consider the grid effect for the computation of flow over a surface-mounted 

cube, three difference scales of cubes in relative smaller computational domains are 

selected in the code. The computational domain are set as, 6 times of the cube dimension 

H  in the stream-wise direction and 3 times cube dimension H  along the span-wise 

and vertical direction respectively and the grid cells along each side of the cube are set to 

6, 20 and 40.  

 

Fig.4-110, Fig.4-111 and Fig.4-112 present the comparison of the mean velocity 

profiles for the different scales of cubes on the symmetry plane at different locations. The 



results for 40x40x40 cube are in better agreement with the experimental results than 

6x6x6 cube and 20x20x20 cube due to the finer grid employed. The proper range of 

values for the coefficient of the field confinement fε  is  for all three cubes, 

and the proper values for the coefficient of surface 

0.1~ 1.0

sε  decreases as the size of the cube 

increases. For 6x6x6 cube, the value of sε  is around 0.1  and as the cube size increase 

to 20x20x20 cube, the value of sε  is about 0.01. As the size of the cube increase, it is 

easier for the flow to roll-up and separate from the cube so that the coefficient of the 

surface confinement decreases.  
 

4.5 Boundary Layer with a Small, Single Cell Cross-section 

Obstacle 
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     A small aspect ratio obstacle is set in the front of the computation domain with 1x1 

in the symmetrical plane ( x z−  plane) and full size along the span-wise direction ( y  

direction). The computational domain is set as 161 61 61× ×  and again a uniform 

Cartesian grid is employed. The numerical parameters and coefficients are the same as in 

the above cases. The inlet velocity is 0,0,1 000 === WVU along the x,y,z directions 

respectively everywhere, except on the flat-plate. Vorticity iso-surfaces and vorticity 

contours for the symmetry plane are presented in a sequence of time steps. Fig.4-117 

presents the vorticity iso-surface after 350 time steps. It can be seen that a huge amount 

of vorticity has been stimulated by Vorticity Confinement and resembles turbulence. If 

no Vorticity Confinement is employed, the flow will remain laminar for the coarse grids 

employed. Several vorticity iso-surfaces and vorticity contours for the symmetry plane 

are presented in different time steps on Fig.4-119 to Fig.4-124 and it is clearly seen that 

the strong vortices are stimulated and convected downstream of the rib and these vortices 

are very like the vortices in the turbulent boundary layer. Further work on Vorticity 

Confinement for the simulation of turbulent boundary layer flows has to be done in the 

near future.   



4.6 Discussion 
 

The main point of VC is to efficiently simulate complex incompressible flows 

with complicated vortical structures that can convect over long distances without 

diffusion. In this chapter, numerical simulations were performed to investigate the 

formation of the characteristics of the vortical structures for flow over a surface-mounted 

cube. Little work has been done to study the formation and development of the primary 

horseshoe vortex and the packet of the horseshoe vortices due to its complexity and there 

are very few simulation results that have revealed the hairpin vortices packet. In this 

chapter, the flow field is investigated both upstream and downstream in a sequence of 

times. The formed horseshoe vortex upstream of the cube and the hairpin vortices 

downstream of the cube and its formation to a packet of horseshoe vortices were studied 

in detail.  
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As the flow approaches the obstacle, it experiences separation and rolls up to form 

a vortex against the upstream of the cube. A subsequent horseshoe vortex is developed 

and wrapped around the cube. Downstream of the cube, the results are presented in a 

sequence of times to show the generation of the primary horseshoe vortex, the secondary 

horseshoe vortex and thereafter the street of horseshoe vortices. After a certain time of 

development (time steps 3000), a street of horseshoe vortices is clearly seen, which is in 

agreement with the experimental observation. The unsteady horseshoe vortex systems, 

characterized by a repeated pattern of generation, translation, and merging of the vortices, 

will be obtained in the wake region of the cube. The horseshoe vortices formed are not 

strictly symmetric and are clearly seen to have the long quasi-stream-wise legs and the 

span-wise heads. All these results are obtained on uniform Cartesian grids, which proves 

the power and robustness of the Vorticity Confinement method.  



 
 

Chapter 5 Conclusion 
 

 
Compared with the traditional CFD method, an entirely new but more efficient 

and economical methodology has been investigated and tested. This new method, which 

is called Vorticity Confinement and originally developed by Steinhoff [16]. After more 

than sixteen years’ research, Vorticity Confinement has proven to be a very robust 

scheme to compute vortex dominated flows. Due to the non-conservative constriction of 

the original Vorticity Confinement method (VC1), which has been used for many years, a 

new conservative scheme is developed and studied in this thesis mainly in 2D flow 

problems. The most important features and the schemes of both VC1 and VC2 have been 

discussed in detail. Some numerical simulation of the one dimensional wave equation and 

two dimensional vortices have been done to test the efficiency of both VC1 and VC2. 

The comparison is made among the results obtained by the two different schemes. VC2, 

which is simpler and more efficient than VC1, is proven to be a robust scheme for vortex 

dominant flows.   
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The flow over a three-dimensional surface-mounted cube has been simulated and 

comparison was made with both experimental results and simulation results by DNS 

using VC1. These results show that Vorticity Confinement can efficiently simulate very 

complex flows using only uniform, coarse Cartesian grids, while other traditional 

methods have to use non-uniform stretched grids and complex numerical schemes. 

Vorticity Confinement is able to convect the vortex downstream and confine the 



concentrated vorticity within a few grid cells in spite of numerical diffusion. Due to the 

limitation of the very coarse grid used, the very small features can’t be captured. But the 

main characteristics of the flow phenomena are simulated reliably and the complex flow 

problems can be solved economically and reliably. 

 

For future work, further study on VC1 and VC2 should be performed and more 

work on turbulent boundary layer will be expected.  
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Fig. 3-1 Initial velocity vector field for a single stationary point vortex 
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Fig. 3-2 Initial vorticity contours for a single stationary point vortex 



 
Fig. 3-3 Velocity vector field after 100 time iterations without Vorticity Confinement 
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Fig. 3-4 Vorticity contours after 100 time iterations without Vorticity Confinement 



 
Fig. 3-5 Velocity vector field after 100 time iterations with VC2 
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Fig. 3-6 Vorticity contours after 100 time iterations with VC2 



 
Fig. 3-7 Velocity vector field after 1000 time iterations with VC2 
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Fig. 3-8 Vorticity contours after 1000 time iterations with VC2 



 
Fig. 3-9 Velocity vector field after 100 time iterations with VC1 
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Fig. 3-10 Vorticity contours after 100 time iterations with VC1 



 
Fig. 3-11 Velocity vector field after 1000 time iterations with VC1 

 

 89

Fig. 3-12 Vorticity contours after 1000 time iterations with VC1 



 
Fig. 3-13 Initial velocity magnitude distribution for the stationary vortex, q*r denotes the 

normalized velocity  
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Fig. 3-14 Velocity magnitude distribution for the stationary vortex after 100 time iterations 
without Vorticity Confinement 



 
Fig. 3-15 Velocity magnitude distribution for the stationary vortex after 1000 time 

iterations without Vorticity Confinement 

 

 91

Fig. 3-16 Velocity magnitude distribution for the stationary vortex after 100 time iterations 
with VC2 



 
Fig. 3-17 Velocity magnitude distribution for the stationary vortex after 1000 time 

iterations with VC2 
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Fig. 3-18 Velocity magnitude distribution for the stationary vortex after 100 time iterations 
with VC1 



 
Fig. 3-19 Velocity magnitude distribution for the stationary vortex after 1000 time 

iterations with VC1 
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Fig. 3-20 Initial velocity vector field for the free convecting single vortex 
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Fig 3-21 Initial vorticity contours for the free convecting single vortex 



 
Fig. 3-22 Velocity vector field after 500 time iterations without Vorticity Confinement 

 
Fig. 3-23 Velocity magnitude distribution after 500 time iterations without Vorticity 

Confinement 
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Fig.3-24 Velocity vector field after 500 time iterations with VC1 
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Fig. 3-25 Vorticity contours after 500 time iterations with VC1 



 
Fig.3-26 Velocity vector field after 3000 time iterations with VC1 
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Fig. 3-27 Vorticity contours after 3000 time iterations with VC1 



 
Fig. 3-28 Trajectory for a single free convecting vortex with VC1 
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Fig. 3-29 Velocity vector field after 500 time iterations with VC2 
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Fig. 3-30 Vorticity contours after 500 time iterations with VC2 



 
Fig. 3-31 Velocity vector field after 3000 time iterations with VC2 

 
Fig.3-32 Vorticity contours after 3000 time iterations with VC2 
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Fig. 3-33 Trajectory of a single free convecting vortex with VC2 
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Fig. 3-34 Velocity magnitude distribution for a single convecting vortex after 500 time 
iterations with VC2 
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Fig. 3-35 Velocity magnitude distribution for a single convecting vortex after 3000 time 
iterations with VC2 
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Fig.3- 36 Velocity magnitude distribution for a single convecting vortex after 500 time 
iterations with VC1 
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Fig.3-37 Velocity magnitude distribution for a single convecting vortex after 3000 time 
iterations with VC1 



 
Fig. 3-38 Trajectory of paired vortices of the opposite signs with VC2, 8 cells apart 
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Fig. 3-39 Trajectory of paired vortices of the opposite signs with VC2, 16 cells apart 
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Fig. 3-40 Trajectory of paired vortices of the opposite signs withVC2, 32 cells apart 
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Fig. 3-41 Initial velocity vector field of paired vortices of the opposite signs 

 

 
Fig. 3-42 Velocity vector field of paired vortices of the opposite signs after 500 time 

iterations without Vorticity Confinement 
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Fig. 3-43 Velocity vector field of paired vortices of the opposite signs after 500 time 

iterations with VC2 

 

 110

Fig. 3-44 Velocity vector field of paired vortices of the opposite signs after 3000 time 
iterations with VC2 



 
Fig. 3-45 Trajectory of paired vortices of the opposite signs withVC1, 32 cells apart 
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Fig.3-46 Trajectory of paired vortices of the opposite signs withVC1, 16 cells apart 
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Fig. 3-47 Trajectory of paired vortices of the opposite signs withVC1, 8 cells apart 
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Fig. 3-48 Initial positions of paired vortices of the same signs, 8 cells apart 
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Fig. 3-49 Paired vortices of the same signs becoming merging after 1000 time iterations, 8 
cells apart 
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Fig. 3-50 Paired vortices of the same signs totally merge after 3000 time iterations, 8 cells 
apart 
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Fig. 3-51 Initial position of paired vortices of the same signs, 16 cells apart 
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Fig. 3-52 Vorticity contours after 3000 time iterations, 16 cells apart 
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Fig. 3-53 Vorticity contours after 1st loop 
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Fig. 3-54 Vorticity contours after 2nd loops 
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Fig. 4-6 Vorticity iso-surface, after 50 time steps 
 

 
Fig 4-7 Vorticity iso-surface, after 120 time steps 

 121



 
 

Fig 4-8 Vorticity iso-surface, after 300 time steps 
 

 
Fig 4-9 Vorticity iso-surface, after 400 time steps 
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Fig 4-10 Vorticity iso-surface, after 600 time steps 
 

 
Fig 4-11 Vorticity iso-surface, after 700 time steps 
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Fig 4-12 Vorticity iso-surface, after 900 time steps 
 

 
 

Fig 4-13 Vorticity iso-surface, after 1200 time steps 
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Fig.4-14 Vorticity iso-surface, after 1600 time steps 
 

 
 

Fig 4-15 Vorticity iso-surface, after 1800 time steps 
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Fig 4-16 Vorticity iso-surface, after 3000 time steps 
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Fig 4-17 Vorticity iso-surface from the different viewing angle, after 50 time steps 
 

 

 
Fig 4-18 Vorticity iso-surface from the different viewing angle, after 120 time steps 
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Fig 4-19 Vorticity iso-surface from the different viewing angle, after 300 time steps 

 

 
 

Fig 4-20 Vorticity iso-surface from the different viewing angle, after 400 time steps 
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Fig 4-21 Vorticity iso-surface from the different viewing angle, after 600 time steps 
 

 
 

Fig 4-22 Vorticity iso-surface from the different viewing angle, after 700 time steps 
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Fig 4-23 Vorticity iso-surface from the different viewing angle, after 900 time steps 
 

 
Fig 4-24 Vorticity iso-surface from the different viewing angle, after 1200 time steps 
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Fig 4-25 Vorticity iso-surface from the different viewing angle, after 1600 time steps 
 

 
 

Fig 4-26 Vorticity iso-surface from the different viewing angle, after 1800 time steps 
 

 131



 
 

Fig 4-27 Vorticity iso-surface from the different viewing angle, after 3000 time steps 
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Fig 4-28 Vorticity iso-surface from the different viewing angle, after 600 time steps 

 

 
Fig 4-29 Vorticity iso-surface from the different viewing angle, after 700 time steps 
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Fig 4-30 Vorticity iso-surface from the different viewing angle, after 900 time steps 

 

 
 

Fig 4-31 Vorticity iso-surface from the different viewing angle, after 1200 time steps 
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Fig 4-32 Vorticity iso-surface from the different viewing angle, after 1600 time steps 

 

 
 

Fig 4-33 Vorticity iso-surface from the different viewing angle, , after 1800 time steps 
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Fig 4-34 Vorticity iso-surface from the different viewing angle, after 3000 time steps 
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(a) 50 time steps 

 

 
(b) 120 time steps 

 

 
(c) 300 time steps 
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Fig. 4-35 Vorticity iso-surface from the different viewing angle, top views in a sequence 
of time steps 



 
(d) 400 time steps 

 

 
(e)600 time steps 

 

 
(f) 700 time steps 
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Fig. 4-35 Continued 



 
(g) 900 time steps 

 

 
(h) 1200 time steps 

 

 
(i) 1600 time steps 

 
Fig. 4-35 Continued 
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(j) 1800 time steps 

 

 
(k) 3000 time steps 

 
Fig. 4-35 Continued 
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(a) 50 time steps 

 

 
(b) 120 time steps 

 

 
(c) 300 time steps 
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Fig. 4-36 Vorticity iso-surface from the different viewing angle, side views in a sequence 
of time steps 



 
(d) 400 time steps 

 

 
(e) 600 time steps 

 

 
(f)700 time steps 
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Fig. 4-36 Continued 



 
(g) 900 time steps 

 

 
(h) 1200 time steps 

 

 
(i) 1600 time steps 
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Fig. 4-36 Continued 



 

 
(j) 1800 time steps 

 

 
(k) 3000 time steps 

 
Fig. 4-36 Continued 
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(a) 50 time steps 

 
(b) 120 time steps 

 
(c) 300 time steps 
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Fig. 4-37 Vorticity iso-surface from the different viewing angle, end views in a sequence 
of time steps 



 
(d) 400 time steps 

 
(e) 600 time steps 

 
(f) 700 time steps 
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Fig. 4-37 Continued  



 
(g) 900 time steps 

 

 
(h) 1200 time step 

 
(i) 1600 time steps 

 
Fig. 4-37 Continued  
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(j) 1800 time steps 

 

 
(k) 3000 time steps 

 
Fig. 4-37 Continued  
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Fig 4-38 Velocity vector field for the symmetry plane after 50 time steps 
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Fig 4-39 Velocity vector field for the symmetry plane, after 120 time steps 



 

 
(a) Velocity vector field 

 

 
(b)Vorticity contours 
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Fig. 4-40 Velocity vector field and vorticity contours for the symmetry plane, 300 time steps  



 
(a) Velocity vector field 

 

 
(b)Vorticity contours 
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Fig. 4-41 Velocity vector field and vorticity contours for the symmetry plane, 400 time steps 



 
(a) Velocity vector field 

 

 
(b) Vorticity contours 
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Fig. 4-42 Velocity vector field and vorticity contours for the symmetry plane, 600 time steps 



 
(a) Velocity vector field 

 

 
 (b) Vorticity contours 

 

 153

Fig. 4-43 Velocity vector field and vorticity contours for the symmetry plane,700 time steps;  



 
(a) Velocity vector field 

 
(b) Vorticity contours 
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Fig. 4-44 Velocity vector field and vorticity contours for the symmetry plane after 900 
time steps  



 
(a) Velocity vector field 

 
(b) Vorticity contours 

 
Fig. 4-45 Velocity vector field and vorticity contours for the symmetry plane after 1200 

time steps 
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(a) Velocity vector field 

 

 
(b) Vorticity contours 

 
Fig. 4-46 Velocity vector field and vorticity contours for the symmetry plane after 1600 

time steps 
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(a) Velocity vector field, 

 
(b) Vorticity contours 

Fig. 4-47 Velocity vector field and vorticity contours for the symmetry plane after 1800 
time steps  
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(a) Velocity vector field 

 
(b) Vorticity contours 

Fig. 4-48 Velocity vector field and vorticity contours for the symmetry plane, 3000 time steps  
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Fig. 4-49 Velocity vector field for the span-wise plane, x=50, after 50 time steps 
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Fig. 4-50 Velocity vector field for the span-wise plane, x=50, after 120 time steps 
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(a) Velocity vector field 
Fig. 4-51 Velocity vector field and vorticity contours for the span-wise plane, x=50, after 

300 time steps 
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(b) Vorticity contours 
Fig. 4-51 Continued 
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(a) Velocity vector field 
Fig. 4-52 Velocity vector field and vorticity contours for the span-wise plane, x=50, after 

400 time steps 
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(b) Vorticity contours 
Fig. 4-52 Continued 
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(a) Velocity vector field 
Fig. 4-53 Velocity vector field and vorticity contours for the span-wise plane, x=50, after 

600 time steps 
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(b) Vorticity contours 

Fig. 4-53 Continued 
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(a) Velocity vector field 
Fig. 4-54 Velocity vector field and vorticity contours for the span-wise plane, x=50, after 

700 time steps 
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(b) Vorticity contours 
Fig. 4-54 Continued 
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(a) Velocity vector field 
Fig. 4-55 Velocity vector field and vorticity contours for the span-wise plane, x=50, after 

900 time steps 
 



 
(b) Vorticity contours 
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Fig. 4-55 Continued 
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(a) Velocity vector field 
Fig. 4-56 Velocity vector field and vorticity contours for the span-wise plane, x=50, after 

1200 time steps 
 



 
(b) Vorticity contours 
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Fig. 4-56 Continued  
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(a) Velocity vector field 
Fig. 4-57 Velocity vector field and vorticity contours for the span-wise plane, x = 50, after 

1600 time steps 
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(b) Vorticity contour 
Fig. 4-57 Continued  
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(a) Velocity vector field 
Fig. 4-58 Velocity vector field and vorticity contours for the span-wise plane, x=50, after 

1800 time steps 
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(b) Vorticity contours 
Fig. 4-58 Continued  
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(a) Velocity vector field 
Fig. 4-59 Velocity vector field and vorticity contours for the span-wise plane, x=50, after 

3000 time steps 
 



 
(b) Vorticity contours 
Fig. 4-59 Continued  
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Fig. 4-60 Vorticity iso-surface, after 50 time steps, 6x6x6 cube 
 
 

 
 

Fig. 4-61 Vorticity iso-surface, after 100 time steps, 6x6x6 cube 

 179



 
 

Fig. 4-62 Vorticity iso-surface, after 400 time step, 6x6x6 cube 
 
 

 
 

Fig. 4-63 Vorticity iso-surface, after 950 time step, 6x6x6 cube 
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Fig. 4-64 Vorticity iso-surface from the different viewing angle, after 50 time steps 

 

 
Fig. 4-65 Vorticity iso-surface from the different viewing angle, after100 time steps 
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Fig. 4-66 Vorticity iso-surface from the different viewing angle, after 400 time steps 
 

 
Fig. 4-67 Vorticity iso-surface from the different viewing angle, after 950 time steps 
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(a) 50 time steps 

 

 
(b) 100 time steps 

Fig. 4-68 Vorticity iso-surface, top views in a sequence of time steps 
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(c) 400 time steps 

 
 

 
(d)950 time steps 
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Fig. 4-68 Continued 



 
(a) 50 time steps 

 
(b) 100 time steps 

Fig. 4-69 Vorticity iso-surface, side- views in a sequence of time steps 
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(c) 400 time steps 

 
(d) 950 time steps 

Fig. 4-69 Continued 
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(a) 50 time step 

 
(b) 100 time steps 

 
(c) 400 time steps 

Fig. 4-70 Vorticity iso-surface, end-views in a sequence of time steps 
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(d)950 time steps 

 
Fig. 4-70 Continued  
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(a) Velocity vector field 

 
 

 
(b) Vorticity contours 
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Fig. 4-71 Velocity vector field and vorticity contours for the symmetry plane after 50 time 
steps  



 
 
 
 
 

 
Fig. 4-72 Velocity streamlines for the symmetry plane after 50 time steps 
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(a) Velocity vector field 

 

 
(b) Vorticity contours  

 191

Fig. 4-73 Velocity vector field and vorticity contours for the plane parallel to the surface, 
z=2, after 50 time steps;  



(a) Velocity vector field, 
 

(b) Vorticity contours 
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Fig. 4-74 Velocity vector field and vorticity contours for the symmetry plane, 100 time steps;  



 
(a) Velocity vector field, 

 
 
 

 
(b)Vorticity contours  

Fig. 4-75 Velocity vector field and vorticity contours for the symmetry plane 400 time 
steps 
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(a) Velocity vector field, 

 

 
(c) Vorticity contours  

Fig. 4-76 Velocity vector field and vorticity contours for the symmetry plane, 950 time 
steps;  
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(a) 1200 time steps 

 
(b) 1220 time steps 

 
(c)1240 time steps 

Fig. 4-77 Voticity iso-surface, the development of the hairpin vortex in a sequence of 
time steps 
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(d) 1260 time steps 

 

 
(e) 1280 time steps 

 
(f)1300 time steps 

 
Fig. 4-77 Continued 
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(a) 1200 time steps 

 
(b) 1220 time steps 

 
(c)1240 time steps 

Fig. 4-78 Voticity iso-surface from the different viewing angle, the development of the 
hairpin vortex in a sequence of time steps 
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(d) 1260 time steps 

 
(e) 1280 time steps 

 
(f)1300 time steps 

Fig. 4-78 Continued 
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(a) 1200 time steps 

 
(b) 1220 time steps 

 
(c)1240 time steps 
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Fig. 4-79 Vorticity iso-surface, top views in a sequence of time steps 



 

 
(d) 1260 time steps 

 
(e) 1280 time steps 

 
(f)1300 time steps 
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Fig. 4-79 Continued  



 
(a) 1200 time step 

 
(b) 1220 time steps 

 
(c)1240 time steps 
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Fig. 4-80 Vorticity iso-surface, side views in a sequence of time steps 



 

 
(d) 1260 time step 

 
(e) 1280 time steps 

 
(f)1300 time steps 
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Fig. 4-80 Continued 



 
(a) 1200 time steps 

 
(b) 1220 time steps 

 
(c)1240 time steps 
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Fig. 4-81 Vorticity iso-surface, end views in a sequence of time steps 



 

 
(d) 1260 time steps 

 
(e) 1280 time steps 

 
(f)1300 time steps 
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Fig. 4-81 Continued 



 
Fig. 4-82 Experimental result of the instantaneous contours of the  component of the 

vorticity vector 
x

 
 

 
Fig. 4-83 Mean velocity component U at X/H=0.5 (20x20x20 cube) 
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Fig. 4-84 Mean velocity component U at X/H=1.3 (20x20x20 cube) 
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Fig. 4-85 Mean velocity component U at X/H=2.5 (20x20x20 cube) 
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Fig. 4-86 Mean turbulent stress ( 2u′ ) at X/H=0.5 (20x20x20 cube) 
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Fig. 4-87 Mean turbulent stress ( 2u′ ) at X/H=1.0 (20x20x20 cube) 
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Fig. 4-88 Mean turbulent stress ( 2u′ ) at X/H=1.5 (20x20x20 cube) 
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Fig. 4-89 Mean turbulent stress ( 2u′ ) at X/H=2.5 (20x20x20 cube) 
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Fig. 4-90 Mean velocity component U at X/H=0.5 (6x6x6 cube) 
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Fig. 4-91 Mean velocity component U at X/H=1.3 (6x6x6 cube) 
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Fig. 4-92 Mean velocity component U at X/H=2.5 (6x6x6 cube) 
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Fig. 4-93 Mean turbulent stress ( 2u′ ) at X/H=0.5 (6x6x6 cube) 
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Fig. 4-94 Mean turbulent stress ( 2u′ ) at X/H=1.0 (6x6x6 cube) 
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Fig. 4-95 Mean turbulent stress ( 2u′ ) at X/H=1.5 (6x6x6 cube) 
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Fig. 4-96 Mean turbulent stress ( 2u′ ) at X/H=2.5 (6x6x6 cube) 
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Fig. 4-97 the comparison of mean velocity component U for the different confinement 

coefficients at X/H=0.5 (20x20x20 cube) 
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Fig. 4-98 the comparison of mean velocity component U for the different confinement 

coefficients at X/H=1.3 (20x20x20 cube) 
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Fig. 4-99 the comparison of mean velocity component U for the different confinement 

coefficients at X/H=2.5 (20x20x20 cube) 
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Fig. 4-100 Comparison of mean turbulent stress ( 2u′ ) for different confinement 

coefficients at X/H=0.5 (20x20x20 cube) 
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Fig. 4-101 Comparison of mean turbulent stress ( 2u′ ) for different confinement 

coefficients at X/H=1.0 (20x20x20 cube) 
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Fig. 4-102 Comparison of mean turbulent stress ( 2u′ ) for different confinement 

coefficients at X/H=1.5 (20x20x20 cube) 
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Fig. 4-103 Comparison of mean turbulent stress ( 2u′ ) for different confinement 

coefficients at X/H=2.5 (20x20x20 cube) 
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Fig. 4-104 Comparison of mean velocity component U for the different confinement 

coefficients at X/H=0.5(6x6x6 Cube) 
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Fig. 4-105 Comparison of mean velocity component U for the different confinement 
coefficients at X/H=1.3 (6x6x6 Cube) 
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Fig. 4-106 Comparison of mean velocity component U for the different confinement 
coefficients at X/H=2.5 (6x6x6 Cube) 
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Fig. 4-107 Comparison of mean turbulent stress ( 2u′ ) for different confinement 

coefficients at X/H=0.5 (6x6x6 cube) 
 

 229



 

Fig. 4-108 Comparison of mean turbulent stress ( 2u′ ) for different confinement 

coefficients at X/H=1.0 (6x6x6 cube) 
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Fig. 4-109 Comparison of mean turbulent stress ( 2u′ ) for different confinement 

coefficients at X/H=1.5 (6x6x6 cube) 
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Fig. 4-110 comparison of mean velocity component U for different cube size at X/H=0.5 
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Fig. 4-111 comparison of mean velocity component U for different cube size at X/H=1.3 

 
 
 
 
 
 

 233

 



 
Fig. 4-112 comparison of mean velocity component U for different cube size at X/H=2.5 
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Fig. 4-113 Vorticity iso-surface, after 100 time steps 

 

 
 

Fig. 4-114 Vorticity iso-surface, after 150 time steps 
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Fig. 4-115 Vorticity iso-surface, after 200 time steps 

 

 
Fig. 4-116 Vorticity iso-surface, after 250 time steps 
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Fig. 4-117 Vorticity iso-surface, after 350 time steps 

 

 
Fig. 4-118 Vorticity iso-surface, after 1000 time steps 
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Fig. 4-119 Vorticity contours for the symmetry plane after 100 time steps 
 
 
 

 
Fig. 4-120 Vorticity contours for the symmetry plane after 150 time steps 
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Fig. 4-121 Vorticity contours for the symmetry plane after 200 time steps 

 
 

 
Fig. 4-122 Vorticity contours for the symmetry plane after 250 time steps 
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Fig. 4-123 Vorticity contours for the symmetry plane after 350 time steps 

 
 
 

 
Fig. 4-124 Vorticity contours for the symmetry plane after 1000 time steps 
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