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Abstract

Modern methods of statistical and computational analysis offer solutions to dilemmas
confronting researchers in physical science. Although the ideas behind modern sta-
tistical and computational analysis methods were originally introduced in the 1970’s,
most scientists still rely on methods written during the early era of computing. These
researchers, who analyze increasingly voluminous and multivariate data sets, need
modern analysis methods to extract the best results from their studies.

The first section of this work showcases applications of modern linear regression.
Since the 1960’s, many researchers in spectroscopy have used classical stepwise re-
gression techniques to derive molecular constants. However, problems with thresholds
of entry and exit for model variables plagues this analysis method. Other criticisms
of this kind of stepwise procedure include its inefficient searching method, the order
in which variables enter or leave the model and problems with overfitting data. We
implement an information scoring technique that overcomes the assumptions inher-
ent in the stepwise regression process to calculate molecular model parameters. We
believe that this kind of information based model evaluation can be applied to more
general analysis situations in physical science.

The second section proposes new methods of multivariate cluster analysis. The
K-means algorithm and the EM algorithm, introduced in the 1960’s and 1970’s re-
spectively, formed the basis of multivariate cluster analysis methodology for many
years. However, several shortcomings of these methods include strong dependence on
initial seed values and inaccurate results when the data seriously depart from hyper-
sphericity. We propose new cluster analysis methods based on genetic algorithms that
overcomes the strong dependence on initial seed values. In addition, we propose a gen-
eralization of the Genetic K-means algorithm which can accurately identify clusters
with complex hyperellipsoidal covariance structures. We then use this new algorithm
in a genetic algorithm based Expectation-Maximization process that can accurately
calculate parameters describing complex clusters in a mixture model routine. Using
the accuracy of this GEM algorithm, we assign information scores to cluster calcula-
tions in order to best identify the number of mixture components in a multivariate
data set. We will showcase how these algorithms can be used to process multivariate
data from astronomical observations.
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Chapter 1

Introduction

Recent decades witnessed the emergence of modern methods in statistical analysis and

a dramatic increase in computational power. At the same time, almost every field of

science and engineering experienced an explosion in the amount of data collected from

experiments and observational studies. In many disciplines, the rate at which data is

being collected and warehoused continues to accelerate. In astronomy, for instance,

due to improvements in detector and storage technology, vast amounts of astronomical

data are being archived each year. Szalay (2002) writes that astronomers will have

to surmount terabytes, and soon petabytes, of data. Other experts point out that

there are currently more than 100 terabytes archived in astronomical databases, with

the amount continuously growing. By comparison, the size of the human genome is

about 1 gigabyte, and size of the Library of Congress is about 20 terabytes (Babu

and Djorgovski 2004).

New methods of analysis have been developed to deal with this onslaught of data

(Bozdogan 2004). This dissertation will explore how some of these modern statis-

tical and computational methods can provide insight into the analysis of physical

1



data. This is an interdisciplinary endeavor, drawing on topics from physical science,

statistics, and computational methods.

This work is divided into two sections. The first section addresses modern mul-

tivariate regression techniques. Multivariate regression is a data processing method

that attempts to find the best equation that describes how some observed indepen-

dent variables are related to one or more dependent variables. Although regression

methods currently used by most researchers utilize stepwise analysis, this method

suffers some fundamental handicaps. Stepwise regression analysis has little basis in

statistical theory. It also requires that the user specify thresholds for classical F tests

to calculate the significance of variables. This approach to regression generally yields

models that generalize poorly. Moreover, the order in which variables are processed

in a stepwise procedure generally affects the computed model. Even for the same

data set, different orders of entry and exit of the variables can yield significantly dif-

ferent final models. The compounded effect of these problems can cast doubt on the

reliability of subsequent physical interpretations.

Regression analysis based on information theory offers solutions that overcome

the inherent shortcomings of classical regression. Instead of relying on arbitrary F

test thresholds, information scores are calculated for different combinations of para-

meters. These scoring functions try to find the most parsimonious model that best

describes the system under study. Moreover, unlike the ad hoc stepwise method,

regression analysis based on information scores is well grounded in statistical theory.

The benefits of information based regression become especially important with in-

creasing numbers of variables. Since its introduction in the early 1970’s until now,

information based statistical analysis has been applied in economics and social sci-

ence, but has remained mostly unknown to researchers in physical science. This is
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especially true of regression using ICOMP as a scoring function (Bozdogan 2004). Be-

cause of its relatively recent introduction, multivariate regression scored with ICOMP

has not been applied to analysis of physical data until this work.

Chapters 2 through 7 of this dissertation introduce the benefits of using multivari-

ate regression in physical science. Chapter 2 reviews methods of classical multivariate

regression, while Chapter 3 shows the development of information based multivariate

regression. As the number of possible variables increases, computational shortcuts

may be necessary to effectively reap the benefits of multivariate regression with infor-

mation scores. Chapter 4 shows how binary genetic algorithms can be implemented

in a multivariate regression situation to deal with a large number of possible vari-

ables. The power series representation of the vibration-rotation Hamiltonian (Blass

and Nielsen 1974) forces researchers to consider different orders of magnitude when

applying multivariate regression analysis to the analysis of molecular spectra. Chap-

ter 5 reviews the development of the theory of molecular spectra. Chapter 6 then

introduces a new method of implementing information scored regression when ana-

lyzing data from an expanded power series model. Chapter 7 showcases examples of

this new method in the analysis of molecular spectra.

The second section of this work is about methods of cluster analysis. Cluster

analysis classifies data into categories according to some rule or property. Processing

ever-growing data sets necessitates new methods to handle such data. Researchers

using cluster analysis have historically relied on seed based methods to calculate clus-

ter partitions. The results of seed based cluster algorithms depend strongly on initial

values. Traditionally, the K-means algorithm has supplied the basis of these cluster

calculations. The K-means method computes clusters based on their Euclidean dis-

tance from seed values, and iteratively recalculates cluster memberships and centroids

until no change occurs. Krishna and Murty (1999) proposed a method of overcoming
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dependence on initial seed values when they introduced the Genetic K-means algo-

rithm. The Genetic K-means algorithm represents cluster assignments as strings of

integers. The population of these strings undergoes genetic operations, searching for

the minimum value in cluster variance.

Although the K-means algorithm partitions the data into a given number of clus-

ters, it can only accurately partition hyperspherical data whose clusters do not over-

lap. For data that have hyperellisoidal structure that may overlap, researchers must

implement more advanced methods. The Expectation-Maximization (EM) algorithm

(McLachlan and Krishnan 1997) tries to maximize the posterior probabilities of group

membership in clustered data. The EM algorithm calculates the mixture of finite

distributions model of the clustered data by computing the maximum likelihood esti-

mates of parameters describing the components. The traditional EM algorithm uses

a K-means initialization to calculate initial cluster assignments and cluster parameter

estimations. It then iteratively recalculates cluster probabilities and parameter esti-

mates using a gradient ascent method. Bozdogan (1994) proposed combining the EM

algorithm with information scoring to identify the best number of clusters present in

a multivariate data set. This information scoring method depends heavily on how

accurately the algorithm models cluster means and covariances.

In order to overcome the strong dependence on initialization of the traditional EM

algorithm, we propose a new Genetic Expectation Algorithm (GEM). This algorithm

can accurately model cluster parameters without relying heavily on initialization. We

will show how this algorithm can accurately estimate cluster parameter values, even

in situations where clusters overlap and depart strongly from hypersphericity.

Chapters 8 through 11 of this dissertation propose new methods of cluster analysis.

We show how the Genetic K-means algorithm (Krishna and Murty 1999) representa-

tion can be used in an Expectation-Maximization context. Chapter 8 will show how
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the Genetic K-means algorithm can be generalized to hyperellisoidal data. Chapter 9

proposes the multivariate EM algorithm for clustering which uses GA strings, while

Chapter 10 implements this new method in an information scoring routine that can

identify the best number of clusters in a multivariate data set. Chapter 11 demon-

strates how these Genetic Expectation Maximization (GEM) methods can process

astronomical data. The dissertation will conclude with Chapter 12.

Some readers may have the impression that this dissertation contains some lengthy

discussions of statistical theory. They might also observe that some theoretical devel-

opments and algorithmic descriptions are repeated in multiple chapters. The reasons

this author elected to structure the material in this way are two-fold. The first is

that, currently, there are few widely-published works that describe the advantages of

using modern data analysis methods, especially as applied to physical science. We

hope that this dissertation can introduce the benefits of these new methods to a

wider audience of researchers. The second is that, if the reader is mainly interested

in applications of the methods, the material in those sections is self-contained. These

readers can treat the theoretical sections lightly and regard the application chapters

as independent works.

Any interested reader that has questions or comments about this work can contact

the author at jewicker@gmail.com.
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Chapter 2

Classical Linear Regression

2.1 Introduction

Linear regression is a data analysis method that explores linear relationships between

measurable or observable quantities. Montgomery et al. (2001, page 1) states the

definition of regression analysis to be as follows: “Regression analysis is a statistical

technique for investigating and modeling the relationship between variables. Applica-

tions of regression are numerous and occur in almost every field, including engineering,

the physical and chemical sciences, .... In fact, regression may be the most widely

used statistical technique.”

According to the Montgomery definition of regression, there are two main moti-

vations for using regression analysis. The first is where researchers try to decide if

there is a relationship between one or more independent variables and at least one

dependent variable. After they have satisfied the first goal, they can turn to the

second motivation, which is to decide which variables best describe the observed re-

lationship. One example of this case was in material science, where researchers had

over 100 possible variables that described a material under study. These researchers
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were interested in which subset of variables were best to describe the material under

study. From the large number of possible variables, they found a subset to include in

the model, which helped guide their future study of this material (Bozdogan, private

communication).

We can again reference Montgomery for the definition of a simple linear regression

model (Montgomery et al. 2001, page 13): “...the simple linear regression model, that

is, a model with a single regressor x that has a relationship with a response y that is

a straight line. This linear regression model is

y = β0 + β1x + ε (2.1)

where the intercept β0 and the slope β1 are unknown constants and ε is a random

error component.” In most regression modeling situations, the random error ε has an

average value of zero. Montgomery also gives a description of the independent and

dependent variables as (Montgomery et al. 2001, page 3): “Customarily x is called

the independent variable and y is called the dependent variable. In case this causes

confusion with the concept of statistical independence, we can also refer to x as the

predictor or regressor variable, and y as the response variable.”

Often times, there are many possible measurable or observable quantities that

may be related to a response. Deciding the best variables to include in the regression

equation leads to multiple linear regression. According to Montgomery et al. (2001,

page 6): “In general, the response variable may be related to k regressor variables,

x1, x2, . . . , xk, so that

y = β0 + β1x1 + β2x2 . . . + βkxk + ε (2.2)
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This is called a multiple linear regression model because more than one regressor is

involved. The adjective linear is employed to indicate that the model is linear in the

parameters β0, β1, β2, . . . βk, not because y is a linear function of x.”

Researchers can use regression analysis to connect experimental data with the-

oretical model equations. We can again reference the textbook description of this

process (Montgomery et al. 2001, page 6): “An important application of regression

analysis is to estimate the unknown parameters in the regression model. This process

is also called fitting the model to the data.” If theoretical equations can be written as

linear equations in the parameters, then the regression constants become parameter

estimates derived from experimental data. We must be mindful that, if the researcher

is engaged in exploratory data analysis, the first motivation described by Montgomery

et al. (2001), then the regression coefficients do not necessarily correspond with a

physical model, so it may be misleading to call them “parameters.” They are para-

meters in the sense that they define slopes in some high dimensional measurement

space, but unless these equations are in the form of physical laws, the “parameters”

do not correspond to physical quantities. Only if the equations follow the form of a

physical law do the calculated regression parameters correspond to physical quanti-

ties. An example where the “model parameters” correspond to physical quantities is

the equation describing the acceleration of gravity y = 1
2
gx2, where x2 is the regressor

variable and y is the response variable, and 1
2
g is the coefficient to the calculated.

The ideas behind linear regression started with the investigation of relationships

in astronomy (Babu and Djorgovski 2004), and linear regression has enjoyed wide

application in physical science. An example involves the analysis of Hubble’s redshift

data. Plotting the observed redshift of a galaxy against its distance revealed a linear

relationship indicating that the farther the distance between galaxies, the faster they

are receding from each other (see figure 2.1) (Hubble 1929).
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Hubble used regression analysis to derive the relationship that we know today as

Hubble’s law.

V = H0D (2.3)

The inverse of H0 (usually with units of years), is the age of the Universe.

Much of the data collected and stored from modern science and engineering studies

are multivariate. The data compiled by Zhang and Zhao from sources like the US

Naval Observatory and the Sloan Digital Sky Survey has 10 variables, and a similar

archive has 109 measured quantities (Zhang and Zhao 2003). This can be an example

of exploratory data analysis, where deciding which quantities best describe a process

is an empirical exercise, but the calculated slope “parameters” do not necessarily

correspond to physical quantities. Trying to find linear relationships between these

observed measurements not only requires slope and intercept calculations, but also

variable selection methods offered by linear regression methodology.

Methods of deciding which variables are most important is a contentious debate

between the different statistical schools-of-thought. Classical statistics, which has

historically been used by researchers in physical science, emphasizes a frequentist

interpretation of data analysis. Frequentist interpretation regards probabilities to

be average long-run limits of repeated experiments, and performs hypothesis tests

to make decisions about data results. Other major factions of modelers include the

Bayesian school and the Information theory school. The Bayesian school considers

prior knowledge to be important while the Information theory school draws from both

the classical and Bayesian perspectives, and is considered to be the most modern form

of statistical modeling.

The debate about which interpretation of statistics is best has started to diffuse

into other areas of science. In his article “Why isn’t every physicist a Bayesian,”

Cousins (1995) describes how the underlying assumptions of data analysis can lead
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to different results for the same data set. Cousins points out that most researchers

in his field of particle physics rely on frequentist data analysis methodology, but that

Bayesian methodology has been making inroads into published work. In his abstract,

he states, “... many other particle physicists may frequently think in a Bayesian

manner without realizing it.” He goes on to show how different data analysis methods

can lead to different results, later stating that “...some of the most common analysis

problems in particle physics go straight to the core of the classical Bayesian debate

in a way that cannot be avoided.”

Methods of statistical modeling allow a researcher to test variables that the re-

searcher hypothesizes may be related to observed responses. Many texts have been

written that describe statistical modeling methodologies, including Draper and Smith

(1966) and Montgomery et al. (2001). The goal of statistical modeling is to produce

an equation that best summarizes the observed data and can be used to make predic-

tions about future observations. The model attempts to reach a compromise between

including enough variables so that the observed phenomenon can be adequately de-

scribed and overfitting the model by including unnecessary variables. Overfitting

not only complicates the physical interpretation of the data, but also may include

correlated variables that exaggerate error estimates of the study.

In order to understand the contrasts between the different statistical modeling

methodologies, we first need to review classical linear regression. Classical regression

methods rely on hypothesis testing and minimizing the error variances. This chap-

ter shall outline classical methods of statistical modeling using linear least-squares

analysis. We will concentrate on parametric statistical modeling, where the observed

variables are assumed to arise from analytic probability distributions whose para-

meters can be estimated. Parametric modeling methods start by assuming the data
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follow some probability distribution, and then derives methods to estimate parame-

ters based on this distribution. This contrasts with non-parametric methods that

do not assume a probability distribution, but rather use other numerical properties

to estimate parameters. This chapter will show the theoretical development of the

least-squares estimators, methods of testing statistical significance in a model, and a

discussion of modeling assumptions associated with linear least-squares.

2.2 Linear Least Squares

Classical linear statistical modeling is based on least-squares normal equations. These

equations are derived such that the sum of squared differences between observations

and a straight line in measurement space is minimized and the parameters of the line

are estimated. We will follow the convention that a hat over a symbol denotes the

estimator of that quantity. Let us assume that we have k regressor variables and one

response variable. We would like to calculate a linear least-squares equation such as

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi (2.4)

= β0 +
k∑

j=1

βjxij + εi

The least-squares function is

S(β0, β1, . . . , βk) =
n∑

i=1

ε2
i (2.5)

=
n∑

i=1

(
yi − β0 −

k∑
j=1

βjxij

)2
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The least-squares function must be minimized with respect to the βi regression coef-

ficients, so the equations must satisfy the following conditions:

∂S

∂β0 β̂0,β̂1,...,β̂k

= −2
n∑

i=1

(
yi − β̂0 −

k∑
j=1

β̂jxij

)
= 0 (2.6)

∂S

∂βj β̂0,β̂1,...,β̂k

= −2
n∑

i=1

(
yi − β̂0 −

k∑
j=1

β̂jxij

)
xij = 0, j = 1, . . . , k

Simplifying these equations leads to the least-squares normal equations

nβ̂0 + β̂1

n∑
j=1

xi1 + · · ·+ β̂k

n∑
j=1

xik =
n∑

i=1

yi (2.7)

β̂0

n∑
i=1

xi1 + β̂1

n∑
j=1

x2
i1 + · · ·+ β̂k

n∑
j=1

xi1xik =
n∑

i=1

xi1yi

...

β̂0

n∑
i=1

xik + β̂1

n∑
j=1

xikxi1 + · · ·+ β̂k

n∑
j=1

x2
ik =

n∑
i=1

xikyi

There are p = k + 1 least-squares normal equations, one for each of the β̂j least-

squares regression estimators. It is convenient to express the least-squares modeling

equations as matrix equations. We can say that

y = Xβ + ε (2.8)
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where

y =




y1

y2

...

yn




(2.9)

X =




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
...

1 xn1 xn2 · · · xnk




(2.10)

β =




β0

β1

...

βk




(2.11)

ε =




ε1

ε2

...

εn




(2.12)

In general, y is an n × 1 vector of observations of the dependent variable, X is

an n × p matrix of observations of the regressor variables, β is a p × 1 vector of

the regression coefficients, and ε is an n× 1 vector of random errors, assumed to be

normally and independently distributed with mean 0 and constant variance. In terms

of matrix notation, the least-squares procedure seeks to minimize the sum of squared

error:
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S(β) =
n∑

i=1

ε2
i = ε′ε = (y − β)′(y − β) (2.13)

The least squares estimator of the regression coefficients β is given by.

β̂ = (X′X)−1X′y (2.14)

This equation is true as long as the (X′X)−1 exists. This will be the case when the

regressor variables included in the model do not show strong linear dependencies.

The fitted linear regression model that arises from this least-squares analysis is

ŷ = x′β̂ = β̂0 +
k∑

j=1

β̂jxj (2.15)

In terms of physical interpretation, the β̂j values represent parameter coefficients

that connect physical theory to experimental data. For example, in the molecular

spectroscopy paper by Kurlat et al. (1971), the β̂j are correspond to the molecular

Hamiltonian parameter values retrieved from the analysis of observed spectral data.

2.3 Error Estimation

The vector of fitted values ŷi that corresponds to the observed values yi is

ŷ = Xβ = X(X′X)−1Xy = Hy (2.16)

The n× n matrix H = X(X′X)−1X is called the hat matrix, which maps the vector

of fitted values into a vector of observed values.

The difference between an observed value yi and the corresponding fitted value ŷi

is called the residual ei = yi − ŷi. The n residuals can be written as a column vector
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e = y − ŷ (2.17)

We note that there are several other ways of expressing the residuals, as shown

below.

e = y −Xβ̂ = y −Hy = (I−H)y (2.18)

We can now understand some statistical properties of the least-squares estimator

β̂. Let us compute the expected value of β̂.

E(β̂) = E
[
(X′X)−1X′y

]
(2.19)

= E
[
(X′X)−1X′(Xβ + ε)

]

= E
[
(X′X)−1X′β + (X′X)−1X′ε

]

= β̂

This result follows because (X′X)−1X′X = I and E(ε) = 0. Hence, we can see that β̂

is an unbiased estimator of β. Furthermore, it can be proved via the Gauss-Markov

theorem that β̂ is the best unbiased linear estimator of β by showing that β̂ has

the smallest variance of all unbiased estimators that are linear combinations of the

data. The relationships between the regression coefficients β̂ can be expressed as a

covariance matrix

Cov(β̂) = E

[(
β̂ − E(β̂)

)(
β̂ − E(β̂)

)′]
(2.20)

= σ2(X′X)−1
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This is a p × p symmetric matrix where the diagonal elements are the variances of

the respective estimators β̂ and the off-diagonal elements are the covariances between

the respective estimators.

In order to obtain an estimate of σ2, we can define a quantity call the residual

sum of squares.

SSRes =
n∑

i=1

(yi − ŷi)
2 (2.21)

=
n∑

i=1

e2
i

= e′e

The residual sum of squares becomes

SSRes = y′y − β̂
′
X
′
y (2.22)

It can be shown that the residual sum of squares has n−p degrees of freedom when

we estimate p regression coefficients. This follows from the fact that the maximum

number of regression coefficients (counting the intercept term) is equal to the number

of data points. If the number of regression coefficients is equal to the number of data

points, then this is the case where the fitted curve snakes through all of the data

points and there is no estimation of error. The researcher generally tries to calculate

fewer regression coefficients than there are data points, and the difference between

these values defines the number of degrees of freedom for error.

We can define the residual mean square as

MSRes =
SSRes

n− p
(2.23)
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It can be shown that MSRes is an unbiased estimator of σ2 so that we have

σ̂2 = MSRes (2.24)

2.4 Regression Modeling Assumptions

After researchers calculate a model that they believe adequately describes the system

under study, they must ensure that the modeling assumptions have been satisfied.

When researchers use regression, they implicitly assume the following:

1. The errors in the regression model follow a normal distribution.

2. The errors have a constant variance σ2.

3. The errors are uncorrelated.

These assumptions should be checked after every regression model is calculated,

giving confidence to the conclusions of the analysis procedure.

In order to check if the residuals are normally distributed, we can plot the residuals

on a normal probability plot. If we let e1 < e2 < · · · < en be the residuals ranked by

increasing order, then we can plot ei against the cumulative probability probability

Pi = (i− 1
2
)/n, i = 1, 2, . . . , n. If the residuals are normally distributed, then this plot

will be approximately a straight line. The analyst can visually inspect the normal

probability plot to check deviations from normality. Gross departures from normality

appear as “S” shapes in the plot and nonlinearities near the ends of the plotted line.

The constant variance assumption and autocorrelation assumption can be in-

spected by plotting the residuals ei against the corresponding fitted values ŷi. In

the ideal case, this plot should resemble points that are uniformly distributed around

the zero centerline. No trends should appear in this plot. Problems with nonconstant
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variance appear as funnel shapes, bows or arches, while autocorrelations show signif-

icantly more positive than negative values, or vise-versa. This type of plot can also

identify outliers as isolated points that are unusually far from the centerline. If we

transform the residuals as

ri =
ei√

MSRes(1− hii)
(2.25)

where hii is the ith diagonal element of the of the hat matrix H, then these values

are the studentized residuals, which have units of standard deviation. Problems with

nonconstant variance often are more striking when plotted using studentized residuals.

A value of ri greater than approximatly 2.5 to 3 should be examined as an outlier.

Some problems with assumptions can often be corrected by performing a transfor-

mation. A logarithmic transformation or weighting scheme can correct for problems

in the assumptions. Issues related to nonadherence to assumptions can be found in

the literature.

2.5 Confidence Interval Estimation

In addition to estimating the values of the regression coefficients and associated vari-

ances, the researcher often needs to construct confidence intervals for the parameters.

To this end, we continue to assume that the errors are normally and independently

distributed. Let Cjj be the jth diagonal element of (X′X)−1. It can be shown via

sampling theory that the value

β̂j − βj√
σ̂2Cjj

, j = 0, 1, . . . , k (2.26)
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has a t distribution with n − p degrees of freedom. This allows us to construct a

100(1− α) confidence interval for the regression coefficient βj.

β̂j − tα/2,n−p

√
σ̂2Cjj ≤ βj ≤ β̂j + tα/2,n−p

√
σ̂2Cjj (2.27)

Note that statisticians often call the quantity
√

σ̂2Cjj the standard error of the

regression coefficient β̂j.

se(β̂j) =
√

σ̂2Cjj (2.28)

The procedure using the t distribution works well if the researcher is only interested

in estimating confidence intervals for one regression coefficient at a time. Often,

the researcher would like to estimate simultaneous confidence intervals for several

regression coefficients. We can again appeal to sampling theory to construct such

simultaneous confidence intervals. It can be shown that the 100(1− α) percent joint

confidence region for all of the β parameters is:

(β̂ − β)
′
X′X(β̂ − β)

pMSRes

≤ Fα,p,n−p (2.29)

Geometrically, this inequality defines ellipsoids or hyperellipsoids centered on the

regression coefficients β. The ellipsoids are nested for decreasing values of the α

parameter. This means the 99% confidence region encompasses more volume than

the 95% confidence region, which itself surrounds the 90% confidence region, and so

on. Most researchers regard an α value of 0.05 as a normal level of confidence in the

process of statistical analysis. An α value of 0.01 is considered a strict threshold,

while α = 0.10 is a liberal value. Classically speaking, the α parameter defines the

threshold of confidence that the researcher accepts or rejects hypotheses about the

phenomenon under study.
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We should remark that, while confidence intervals carry a frequentist interpreta-

tion, they are, strictly speaking, not probabilities. In a classical interpretation, if we

repeat an experiment n times, the estimated parameter should fall within the calcu-

lated confidence interval n(1 − α) times on average. However, the probability that

the parameter is actually within this interval is either 0 or 1.

2.6 Sum of Squares

Let us define the total sum of squares as

SST =
n∑

i=1

y2
i −

(
∑n

i=1 yi)
2

n
(2.30)

= y′y − (
∑n

i=1 yi)
2

n

We can also define the regression sum of squares as

SSR = β̂
′
X′y − (

∑n
i=1 yi)

2

n
(2.31)

It can be proved by a Pythagorean Theorem type argument that in a regression

context, the total sum of squares can be partitioned into the regression sum of squares

and the residual sum of squares.

SST = SSR + SSRes (2.32)

This equation provides some guidance about how to judge the quality of a model.

The total sum of squares is conserved in a data set, but a model that accounts for

more of the total in the regression sum of squares might be superior to another model
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that has a smaller value for the regression sum of squares. We can also interpret it

as follows; The total variance in the data set is constant, but the error variance can

range from almost the entire variance to zero. The error variance can be visualized as

the distribution of points surrounding the fitted line. A small error variance appears

as a cigar shaped distribution hugging the fitted line while a larger error variance

becomes a cloud of points drifting far away from it.

The question can be raised about how to judge competing models which may

include different combinations of variables. We could use the relative sizes of SSR

and SSRes as a guide rate the quality of the model. One criterion is R2, which is the

ratio of the regression sum of squares to the total sum of squares. Another criterion

is adjusted R2, which is corrected for error degrees of freedom. These values can be

summarized as:

R2 =
SSR

SST

(2.33)

= 1− SSRes

SST

R2
adj = 1− SSRes/(n− p)

SST/(n− 1)
(2.34)

We note that R2 can assume values from 0 to 1. This might be regarded as a

measure of the quality of the regression equation, with higher values of R2 denoting

better models.

2.7 Significance of Regression

After the regression coefficients have been estimated, the researcher would like to test

if there is a linear relationship between the response variable y and any regressor

variables x1, x2, . . . , xk. Many statisticians call this testing the “significance of the
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regression.” In this sense, the relationship is significant if the statistical analysis

shows that it does not occur by chance alone. In a classical statistical framework,

testing significance means calculating a hypothesis test, where the null hypothesis is

denoted H0 and the alternative hypothesis is denoted H1. In order to test the overall

significance of a model, we can state the hypothesis as:

H0 : β1 = β2 = · · · = βk = 0

H1 : βj 6= 0 for at least one j

We can interpret this test in terms of a logical argument. The null hypothesis

states that all β values are equal to 0. The logical negation of this statement is

that at least one β value is nonzero. Rejecting the null hypothesis and accepting the

alternative hypothesis means that at least one of the regressor variables contributes

to a linear relationship with the response variable. Classical statistics has a proce-

dure called Analysis of Variance or ANOVA, that tests the overall significance of the

regression model.

Continuing the argument of testing significance of an overall model, if the null

hypothesis is correct, then it can be shown that the test statistic

F0 =
SSR/k

SSRes/(n− k − 1)
(2.35)

=
MSR

MSRes

∼ Fk,n−k−1

where MSR and MSRes are the regression mean square and the residual mean square

respectively. Hence, we can use this value to perform an overall test of significance.

If F0 > Fα,k,n−k−1, then we reject the null hypothesis and conclude that at least
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one of the regressor variables contributes significantly to a linear relationship with

the response y. The Fα,k,n−k−1 values can be found in common tables of the F

distribution for given values of α.

2.8 Variable Selection

In addition to testing the overall significance of the model, the researcher would like

to know which regressor variables are related to the response. We can recall that

one of the main goals of statistical modeling is to decide which variables are most

important in describing a phenomenon under study. As a first attempt at variable

selection, classical statistical methodology advocates hypothesis testing on individual

coefficients. The researcher can perform hypothesis tests on individual regression

coefficients such that

H0 : βj = 0

H1 : βj 6= 0

If the null hypothesis is rejected, then we can add the regressor xj to the model.

To accomplish this hypothesis test, we can compute the test statistic

t0 =
β̂j√
σ̂2Cjj

=
β̂j

se(β̂j)
(2.36)

and reject the null hypothesis H0 : βk = 0 if |t0| > tα/2,n−k−1.

While this appears to be a simple procedure for computing which variables to in-

clude in the model, there are many subtleties implicit in this process. The multivariate

least-squares equations were derived assuming that the columns in the (X′X)−1 were

linearly independent. The researcher must realize that, unless the data comes from a
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designed experiment with orthogonal variables, the data will exhibit some linear de-

pendence. However, the degree to which the variables are linearly dependent greatly

affects the conclusions reached by least-squares analysis. In statistics, this linear de-

pendence is called multicollinearity. Including variables with multicollinearity leads

to problems that include inflated variance estimates of the regressor variables and in-

stabilities in hypothesis test values. In many physical and astronomical data analysis

situations, the observed data does not come from an orthogonal experiment. There-

fore, the t-test procedure is actually a partial t test because, in general, the regression

coefficient β̂j depends on which variables are already included in the model. This is

a test of the amount variable xj contributes to the model given the other regressors

in the model.

Another obstacle for researchers is how to choose the best model as the number

of possible variables grows. One way to find the best model is to produce all com-

binations of the possible variables for a regression model, and rank the models by

some criterion, like R2. We can observe that for k regressor variables, the number

of possible models grows like 2k, so combinatorial all-regressions analysis becomes

impractical even for modest values of k.

Another method of searching for a good model is to use stepwise regression. The

algorithm that is called “stepwise regression” was introduced by Efroymson (1960).

This stepwise regression, or slight modifications of it, have historically been the

method of choice among researchers modeling highly multivariate phenomena (Boyd

1963, Blass 1963, M. Kurlat 1969, H. Kurlat 1970, Hafford 1972). Before the step-

wise regression loop begins, the user defines Fin and Fout. Efroymson states that Fout

should be greater than Fin. At each iteration, the algorithm computes an F value for

variables to enter and an F value for variables to leave. For residual sum of squares
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SSRes and a model with p parameters, the F to enter value is

F =
SSRes,p − SSRes,p+1

SSRes,p+1/(n− p− 1)
(2.37)

Likewise, the F to leave value is

F =
SSRes,p-1 − SSRes,p

SSRes,p/(n− p)
(2.38)

Miller (1996) reconsidered Efroymson’s stepwise algorithm, critically examining

its convergence properties. Miller summarizes the stepwise regression algorithm as

follows:

1. Insert variables that the researcher believes are important. These variables are

forced to be in the model at each iteration of the algorithm.

2. Find the variable that is not currently in the model that has the largest F

statistic value to enter. If there are no variables in the model that have an F

value as large as the Fin value, then stop.

3. Find the variable in the model, other than those forced to be in, that has the

smallest F statistic value to remove. If this value is less than Fout, then remove

this variable from the model. Repeat this procedure until no more variables are

dropped, then go to step 2.

The advantage of this stepwise procedure is that it can efficiently process a large

number of possible models. The process where no variables are initially in the model

is called forward stepwise regression, while the process where all variables are initially

in the model is called backwards stepwise regression.
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2.9 Regression Through the Origin

Some modeling situations do not have an intercept term. Hahn (1977) describes

several situations where the interpretation of the model does not require adding an

intercept term. Neter et al. (1990) defines the regression through the origin model as

yi = βxi + εi (2.39)

The regression function in this case is

E(y) = βx (2.40)

We then minimize the Sum of Squared Error to be

SSRes =
n∑

i=1

(yi − βxi)
2 (2.41)

which leads to the least squares normal equation

n∑
i=1

xi (yi − βxi) = 0 (2.42)

with regression contant estimate

β =

∑
i xiyi∑
i x

2
i

(2.43)

The mean squared error estimate of σ2 then becomes

σ̂2 = MSRes (2.44)

=

∑n
i=1 (yi − βxi)

2

n− 1
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The development of regression without an intercept easily generalizes to the mul-

tivariate case.

2.10 Relation to Chi-squared Analysis

The method of linear regression can also be derived from the perspective of chi-squared

analysis. In general, the chi-squared test is used to compare theoretical predictions to

observed data points. A commonly used test to compare observed data to expected

data is Pearson’s chi-squared statistic. If the physical model has observed count data

O and expected count data E, then the goodness-of-fit test (Rice 1995) is for n data

points is

χ2 =
n∑

i=1

(Oi − Ei)

Ei

(2.45)

Let a set of measurements yi have variances σ2
i . In terms of comparing departures of

data points from their mean value µ, we have that

χ2 (µ) =
n∑

i=1

(yi − µ)2

σ2
i

(2.46)

A change in the the fit of the data by one standard deviation corresponds to a change

in the chi-squared statistic of 1, as we can show.

χ2 (µ + σµ) =
n∑

i=1

(yi − (µ± σµ))2

σ2
i

(2.47)

=
n∑

i=1

(yi − µ)2 ± 2σµ (yi − µ) + σ2
µ

σ2
i

= χ2(µ) + σµ

n∑
i=1

1

σ2
i
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By the definition of variance, we also have

σµ =
1

n∑
i=1

1
σ2

i

(2.48)

Hence, we have the result

χ2 (µ + σµ) = χ2 (µ) + 1 (2.49)

Turning to the case of simple regression, let f(x) fit dependent measurements

{yi} with independent measurements {xi}. For n measurements, each with standard

deviation σ, then the variance of the best-fit relationship is

V =
1

n

n∑
i=1

(yi − f(x)) (2.50)

=
1

n
σ2χ2

For multiple linear regression, if there are p parameters to estimate, then the expected

value of the variance of errors is

〈V 〉 = σ2 n

n− p
(2.51)

It can be shown that this relationship follows a chi-squared distribution with n−p

degrees of freedom.
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These properties allow us to relate the χ2 distribution to the F distribution. The

sample standard deviation of the fit with ν degrees of freedom is

s2 =
1

ν

n∑
i=1

(yi − f(xi))
2 (2.52)

=
σ2

ν
χ2

For two samples from the same population that have variance σ2, the F distribu-

tion is

F =
s2
1

s2
2

(2.53)

=
χ2

1/ν1

χ2
2/ν2

In multiple linear regression, we can define the function f(x) with parameters

{βk}.
f(xi) = ȳ +

∑

k

βk(Xki − X̄k) (2.54)

here, Xki is the kth function of x evaluated at xi. We can define the χ2 for this

function to be

χ2 =
n∑

i=1

(
yi − ȳ −∑

k

βk(Xki − X̄k)

)2

σ2
i

(2.55)

which has a least-squares solution of

∂χ2

∂βk

= −2
∑

i

(
yi − ȳ −∑

k

βk(Xki − X̄k)

)
(Xki − X̄k)

σ2
i

(2.56)
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we also have

∑
i

(yi − ȳ) (Xki − X̄k)

σ2
i

=
∑

i,k

βk(Xki − X̄k)(Xki − X̄k)

σ2
i

(2.57)

The chi-squared function at the best-fit solution then is

χ2 =
n∑

i=1

(yi − ȳ)2

σ2
i

−
n∑

i=1

(yi − ȳ)
∑

k βk(Xki − X̄k)

σ2
i

(2.58)

Under the chi-squared derivation, we can define R2 to be

R2 =

∑
k βk

∑
i

(yi−ȳ)βk(Xki−X̄k)

σ2
i∑

i
(yi−ȳ)2

σ2
i

(2.59)

The chi-squared test statistic then becomes

χ2 =
n∑

i=1

(yi − ȳ)2

σ2
i

(1−R2) (2.60)

In linear regression, the error variance is constant, so the chi-squared becomes

χ2 =
1

σ2
i

n∑
i=1

(yi − ȳ)2 (1−R2) (2.61)

2.11 Conclusion

This chapter summarized methods of classical statistical regression, which rely on

hypothesis tests and levels of significance to compute model equations. This chapter

did not address some issues encountered in regression modeling, including how to deal

with multicollinearity, calculating P-values, and optimizing experimental design. The

interested reader can consult many texts and other published works on these topics.
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Chapter 3

Linear Regression with

Information Scores

3.1 Introduction

One of the main goals of scientific study is to analyze data and determine which

measurable quantities are related to other measurable quantities. Statistical methods

must be used to analyze these relationships. Linear regression is one tool that studies

relationships between variables. If the researcher has at k regressor variables and

one response variable, linear regression calculates parameters of an equation with the

form

y = β0 + β1x1 + β1x1 + . . . + βkxk (3.1)

Classical linear regression has historically been a favorite method among researchers.

However, some subtleties are implicit in the classical regression method. In order to

illustrate some of these inherent assumptions, consider a published example where

Jefferys and Berger (1992) described the situation of Galileo analyzing data from a
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falling body. Galileo introduced the equation describing the distance s that a body

falls during a specified time t as

s = a + ut +
1

2
gt2 (3.2)

where constants a, u and g can be assigned empirically from data. This expression

describes the observed relationship well and is able to predict new observations from

future experiments. However, from the perspective of data analysis, if the goal of

the model is to reduce the sum of squared error between the observed data and the

statistical model, there is no reason to stop with this equation. An equation of the

form

s = a + ut +
1

2
gt2 + bt3 (3.3)

has a smaller sum of squared error than the previous equation. In fact, the classical

statistical test of R2 regards this as a better description of the data than the second-

order law. Fourth or sixth order polynomials account for even more error than the

third-order polynomial. This process begs the question: Why do physicists prefer the

second-order law?

William of Ockham might answer this question with “Pluralitas non est ponenda

sine necessitate”, which translates as “Plurality must not be posited without neces-

sity” (Jefferys and Berger 1992). Ockham’s razor is the principle that, given com-

peting models that describe a process under study, the simplest one that adequately

explains the phenomenon is the best. Some scientists might consider this to be a

philosophical statement rather than a scientific principle. Ockham’s razor, however,

leads to the very practical and important Principle of Parsimony in scientific data

analysis. The Principle of Parsimony restates Ockham’s razor as a way of selecting
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competing statistical models of the same data set. The least complex statistical model

is the best one that describes the system under study.

The example of Galileo’s falling body illustrates a dilemma of using classical re-

gression methods. Classical regression is based on reducing the sum of squared error

in a statistical model. This strategy works well for univariate modeling situations.

The goal of univariate regression modeling is to calculate a slope and intercept that

minimizes error variance. However, in a multivariate modeling situation, reducing

the sum of squared error can lead to ambiguity in model selection. Researchers may

use R2 as a basis for comparing model quality. However, adding more variables to

a regression model only increases R2. The value of R2 will generally sharply rise as

the first few variables are added to the model, and then flattens into a gently-sloping

plateau. Researchers using classical regression might try to find the point where R2

plateaus. This analysis is a subjective exercise, where different researchers will dis-

agree about the best model. In addition, in cases with a large number of variables,

many combinations of variables can make R2 exhibit this kind of behavior, and the

analyst must rely on their own judgement to find the best model.

Another issue confronting classical regression is overfitting. Overfitting involves

the inclusion of redundant variables, which leads to models that do not generalize well

and cannot adequately describe new data points from the same process. Overfitting

goes against the Principle of Parsimony by including unnecessary variables. The

methods used by classical regression seek to minimize sum of squared error, which

generally overfit the computed models.

The problem of selecting an optimal model becomes a bigger challenge as the

number of variables increases. For decades, researchers have called this the “Curse of

Dimensionality” (Bellman 1961). The total number of models for k possible regression
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variables is 2k − 1. This large number makes evaluating all combinations impractical

even for relatively small values of k.

Historically, researchers used stepwise regression to process a large number of vari-

ables. Efroymson’s algorithm, introduced in 1960, was one of the first widely used

stepwise regression procedures. Efroymson’s (1960) procedure was a forward step-

wise procedure. However, within 10 years of its publication, some major criticisms

appeared in statistical literature. Mantel (1970) evaluates the merits of backward

regression as opposed to forward regression. It is easy to demonstrate that forward

stepwise regression and backward stepwise regression generally give different results

even though they operate on the same data set. Other authors (Boyce et al. 1974,

Wilkinson 1989, pg 177-178) criticize stepwise regression because of the arbitrary

thresholds of variables to enter or leave the model. Efroymson suggests a value of 4.0

for both Fin and Fout, but does not comment on why this value has merit or how it

affects the termination criterion (Miller 1996). Blass (private communication) uses

a value of approximately 3 in his stepwise algorithm. Changing the entry or exit

threshold values generally changes the final model computed by the stepwise proce-

dure. Boyce and Wilkinson continue by writing that there is little to no theoretical

justification for using any form of stepwise regression. Mantel (1970), Hocking (1976)

and Moses (1986) level further criticisms against stepwise regression by saying that

it rarely finds the optimal model even when restricted to a subset of variables. Per-

haps the most serious shortcoming of stepwise regression is its localized searching

method. Sokal and Rolf (1981, pg 668) write that its limited searching area generally

produces only “adequate” models. The compounded effect of all these issues leads to

doubt about how reliably researchers can draw physical interpretations from stepwise

analysis. Some researchers may justify why they set the thresholds as some level or
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have some predefined order for variable selection, but nothing fundamental about the

stepwise process justifies these choices.

To address these inherent flaws in classical statistical regression, Akaike (1973) in-

troduced a penalized scoring function to evaluate models. Called Akaike Information

Criteria (AIC), it is expressed as

AIC = −2logL(Θk) + 2m(k) (3.4)

where logL(Θk) is the maximized log likelihood of the regression and m(k) is the

number of free parameters in the model. These two terms have opposite signs and

act like opposing forces during the modeling process. AIC assigns scores to different

combinations of parameters. The combination that achieves the best balance between

accounting for error and including enough terms in the model has the lowest score.

Since Akaike’s landmark paper, researchers have introduced other penalized mea-

sures to calculate parsimonious regression models. Some of these include Rissa-

nen’s (1978, 1986) Minimum Description Length (MDL), Schwartz’s (1978) Bayesian

Information Criterion (BIC), Bozdogan’s (Consistent AIC with Fisher information

(CAICF) (1987) and Bozdogan’s (1988, 1990a, 2000, 2004) ICOMP. All of these cal-

culate scores for different combinations of model parameters, trying to include enough

model parameters to accurately describe the systems under study while guarding

against overfitting.

ICOMP extends AIC from simply subtracting the number of included terms to

analyzing interactions of the included components. Quantifying the interactions of

the included model terms gives a measure of the complexity of the system. ICOMP

measures the structural complexity of the system by estimating a loss function of the

form

Loss = Lack of Fit + Lack of Parsimony + Profusion of Complexity
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This expression generalizes Van Emden’s (1971) information based covariance

complexity index. Using this definition, we can derive a numerical score that quan-

tifies the amount of complexity in a statistical model. Bozdogan (1988) proposed

ICOMP to be

ICOMP = −2logL(Θk) + 2C1(ΣModel) (3.5)

The first component is the log-likelihood of the model, identical to the first term

in AIC. The second component, however, measures the covariance complexity of a

model by calculating a scaler index for the covariance matrix ΣModel. These two

terms counteract each other when scoring model combinations. The model with the

minimum ICOMP score is the most parsimonious that adequately describes the sys-

tem under study. In addition, because AIC penalizes only the number of included

components, but does not consider their interactions, it has been shown that AIC

can overfit models. ICOMP overcomes the overfitting problem of AIC, and is consid-

ered by experts to be the most modern and accurate method of statistical modeling

(Bozdogan, private communication).

The remainder of this chapter derives ICOMP as a regression model scoring func-

tion. We start by reviewing the method of maximum likelihood estimation which

is used in the first term of both AIC and ICOMP. Later, we develop the concept of

complexity from a set-theoretic perspective, and then apply this to Fisher information

scoring as an index of covariance complexity.

3.2 Maximum Likelihood Estimation

Maximum likelihood plays a central role in information based statistics. In evalu-

ation functions like AIC and ICOMP, maximum likelihood acts as the Lack of Fit

component of the equation. Modeling based on maximum likelihood estimation can
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be more general than least-squares methods because it can incorporate many different

error distributions, and it can be implemented in complex modeling situations. Sup-

pose that random variables X = (X1, X2, . . . , Xn) have joint density function f(x; θ),

where x is an observed data point and θ is a parameter that should be estimated.

Given the data set X = (x1, x2, . . . , xn), we can define the likelihood function as

L(θ|x) =
n∏

i=1

f(xi; θ) (3.6)

Note that the likelihood function is a real-valued function for every possible data

sample x = (x1, x2, . . . , xn).

It is generally more convenient to work with the natural logarithm of the likelihood

instead of the likelihood itself. Because log is a monotonic function, the log-likelihood

can also be used to estimate parameters. The log-likelihood is defined as

l(θ) =
n∑

i=1

ln f(xi; θ) (3.7)

Both the likelihood and log-likelihood measure the plausibility of estimating unknown

parameters of a data set. Likelihood and probability are closely related, but have

different interpretations. Probability estimates what data will be produced given a

set of parameters, while likelihood estimates what parameters will arise from a given

data set.

Once the likelihood or log-likelihood function has been defined, we can turn to

maximum likelihood estimation. The maximum likelihood estimate gives the value of

the parameter that has the highest probability of yielding the observed data set. The

maximum likelihood estimate of parameter θ̂ can be derived as the stationary value

of θ such that

dl(θ)

dθ
= 0 (3.8)
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We can illustrate maximum likelihood estimation with a few examples. Consider

data observed from an exponential distribution where X1, X2, . . . Xn ∼ Exp(λ = θ).

In this case, the observations Xi follow the distribution

f(xi | θ) = θe−θxi , (xi > 0) (3.9)

We can derive the likelihood as

L(θ) =
n∏

i=1

θe−θxi (3.10)

and the log-likelihood

l(θ) = ln L(θ) (3.11)

= −n ln θ + θ

n∑
i=1

xi

the stationary point becomes

dl(θ)

dθ
=

n

θ
−

n∑
i=1

xi = 0 (3.12)

θ̂ =
n∑n

i=1 xi

=
1

x̄
(3.13)

where x̄ is the mean of the data set

Next, we can examine data that arise from a Poisson distribution. Suppose that

observations x1, x2,...,xn come from the Poisson distribution X1 , X2, . . . , Xn ∼ P (λ =

θ).

f(xi | θ) =
θxie−θ

x!
, x = 0, 1, 2, . . . (3.14)
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Then the analysis is as follows. We may disregard any constant multiplier that does

not depend on θ

L(θ) =
n∏

i=1

θxie−θ, (xi > 0) (3.15)

l(θ) = ln L(θ) (3.16)

= −nθ +
n∑

i=1

xi ln(θ)

dl(θ)

dθ
= −n +

∑n
i=1 xi

θ
= 0 (3.17)

which yields the Maximum Likelihood Estimate (MLE) of

θ̂ =

∑n
i=1 xi

n
= x̄ (3.18)

In most regression modeling situations, we consider data that follow a normal

distribution. Suppose that a data set x1, x2, . . . , xn ∼ N(θ, 1), and we would like

to estimate the mean θ. We can derive the MLE of normally distributed data in a

similar way.

f(xi | θ) =
1√
2π

exp

(
−1

2
(xi − θ)2

)
(3.19)

Then

L(θ) ∝
n∏

i=1

exp

(
−1

2
(xi − θ)2

)
(3.20)

l(θ) = ln L(θ) (3.21)

= −1

2

n∑
i=1

(xi − θ)2
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dl(θ)

dθ
=

n∑
i=1

(xi − θ) = 0 (3.22)

So

θ̂ =

∑n
i=1 xi

n
= x̄ (3.23)

Maximum likelihood estimation can be applied to regression modeling and to esti-

mating multiple parameters simultaneously. If we consider a simple linear regression

where we have data points (yi, xi), i = 1, 2, . . . , n, and we assume that the errors are

normally and independently distributed (NID), and we would like to estimate the

slope β0, the intercept β1 and the variance σ2. The likelihood function then is

L(yi, xi|β0, β1, σ
2) =

n∏
i=1

1√
2πσ

exp

(
− 1

2σ2
(yi − β0 − β1xi)

2

)
(3.24)

=
1√
2πσ

exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

)

We can write the log-likelihood function that estimates parameter values β̂0, β̂1, and

σ̂2.

ln L(yi, xi|β0, β1, σ
2) = −n

2
ln 2π − n

2
ln σ2 (3.25)

− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

The MLE must satisfy the simultaneous stationary points such that

∂ ln L

∂β0 β̂0,β̂1,σ̂2

=
1

σ̂2

n∑
i=1

(
yi − β̂0 − β̂1xi

)
= 0 (3.26)

∂ ln L

∂β1 β̂0,β̂1,σ̂2

=
1

σ̂2

n∑
i=1

(
yi − β̂0 − β̂1xi

)
xi = 0

∂ ln L

∂σ2 β̂0,β̂1,σ̂2
= − n

2σ̂2
+

1

σ̂4

n∑
i=1

(
yi − β̂0 − β̂1xi

)2

= 0
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We can solve these equations to yield the MLE for the parameters:

β̂0 = ȳ − β̂1x̄ (3.27)

β̂1 =

∑n
i=1 yi(xi − x̄)∑n
i=1(xi − x̄)2

σ̂2 =

∑n
i=1(yi − β̂0 − β̂1xi)

2

n

The generalization of MLE for multivariate regression modeling is straightforward

and proceeds in the same way.

3.3 Fisher Information in Linear Regression

In order to understand the statistical properties of MLE’s, we can define the Fisher

information. Fisher information studies the variance of terms in a model, and is

related to the amount of information contained in a data set. Consider variables

X = (X1, X2, . . . , Xn) with joint probability function f(x | θ). We can then define a

score function as

S(θ) =
df(x | θ)

dθ
=

dl(θ)

dθ
(3.28)

This score function is the gradient of the log-likelihood function. By the definition of

MLE, we know that S(θ̂) = 0. We can think of θ as the true value of the parameter.

S(θ) will be negative if θ̂ underestimates θ and S(θ) will be positive if θ̂ overestimates

θ. It can be shown that

E [S(θ)] = 0 (3.29)

V ar (S(θ)) = E

[
−dl(θ)

dθ

]
(3.30)
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The quantity F(θ) = E
[
−dl(θ)

dθ

]
is called the expected information or the Fisher

information, and it measures the expected curvature of the log-likelihood function at

the true parameter value. We can prove that MLE’s have minimum variance among

all unbiased estimators by appealing to the Cramer-Rao theorem, which states that

if θ̂ is an estimator of θ, then V ar(θ̂) ≥ F(θ)−1. We can illustrate this property

with an example. Suppose that we have a data set that comes from an exponential

distribution. The log-likelihood function is

l(θ) = ln L(θ) (3.31)

= n ln θ − θ

n∑
i=1

xi

The derivative then is

dl(θ)

dθ
=

n

θ
−

n∑
i=1

xi (3.32)

and

d2l(θ)

dθ2
= − n

θ2
(3.33)

so that

F(θ) = E

[
−dl(θ)

dθ

]
(3.34)

= E
[ n

θ2

]

=
n

θ2

Then the Cramer-Rao bound for θ is

CRB(θ) = F−1(θ) =
θ2

n
(3.35)
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The sample estimate is given by

Esimated IFIM = F̂−1(θ̂) =
θ̂2

n
(3.36)

It can be shown that as n −→∞

θ̂ ∼ N(θ,F−1(θ)) (3.37)

As a result, we can show that the MLE is an unbiased, normally distributed estimator.

It is also fully efficient in the sense that it reaches the Cramer-Rao lower bound.

Sometimes, it is more convenient to use the observed information defined as

Fobs(θ) =

[
−dl(θ)

dθ

]

θ=θ̂

(3.38)

which is the observed curvature evaluated at the MLE. This lets us calculate confi-

dence intervals for our regression.

θ̂ − θ√
1

Fobs(θ)

∼ N(0, 1) (3.39)

To calculate the approximate 95% confidence interval for θ, we can use the observed

Fisher information. The value 1.96 comes from the value of a standardized normal

distribution evaluated at the 95% confidence limits.

θ ± 1.96
√

F−1(θ) (3.40)
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3.4 Information Scores in Regression Modeling

Using the machinery of maximum likelihood estimation, we can now analyze model

selection by information criteria. Akaike (1973) introduced a penalized score function

to evaluate the quality of proposed models. This function has a term that rewards

the model for including terms that account for an observed relationship, but punishes

the model for including extraneous terms. Akaike Information Criteria (AIC) can be

written as

AIC = −2 log L(θ̂) + 2k (3.41)

In the AIC function, the log L(θ̂) term is the maximized log-likelihood that acts

as a lack of fit term, while k is the number of free parameters in the model, and

acts as the penalty that guards against overfitting. AIC seeks a compromise between

these competing terms. The model that has the minimum AIC score is the most

parsimonious in describing the phenomenon under study.

As an example, we can list the AIC expressions for common distributions. The

number of unknown parameters come from the respective distributions. The normal

distribution, for example, has two unknown parameters (mean and variance) while

the exponential distribution has only one unknown parameter λ. To calculate the

value of AIC, the researcher would estimate the terms (like σ̂2 and x̄) from their data

set and substitute these terms into the expression for AIC.

AIC(Normal) = n ln(2π) + n ln(σ̂2) + n + 2(2) (3.42)

AIC(Exponential) = 2n + 2n ln(x̄) + n + 2
n∑

i=1

ln(xi) + 2(1) (3.43)

While AIC was a departure in the methodology used in statistical modeling, it does

not always perform optimally in some modeling situations. It has been shown that
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AIC tends to overfit data by including unnecessary terms. Bozdogan formulated the

Consistent AIC (abbreviated CAIC) in 1987. In this work, the penalty term was

modified to depend on the sample size n. CAIC can be defined as:

CAIC = −2 log L(θ̂) + k(log n + 1) (3.44)

ICOMP was developed to deal with complex multivariate modeling situations.

ICOMP is written as

ICOMP = −2logL(Θk) + 2C(ΣModel) (3.45)

where the maximized log-likelihood term performs the same role as in AIC. The com-

plexity term computes a scaler measure of the interactions between the components

in the model. The remaining parts of the chapter develop the notion of complex-

ity and show the full derivation of the complexity operation for normal regression

modeling. Pragmatically, in order to use ICOMP in a regression context, the re-

searcher can simply implement the final derived expressions for ICOMP(REG) and

ICOMP(IFIM):

ICOMP (REG) = n log(2π) + n log(σ̂2) + n + 2C1((X
′X)−1) (3.46)

with

C1((X
′X)−1) =

q

2
log

[
tr((X′X)−1)

q

]
− 1

2
log

[
det((X′X)−1)

]
(3.47)
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Here, q = rank((X′X)−1).

ICOMP (IFIM) = n log(2π) + (n− 1

2
) log(σ̂2) + n (3.48)

+(q + 1) log

[
tr((X′X)−1) + 2σ̂2

n

q + 1

]

− log
(
det

(
(X′X)−1

))− log
(n

2

)

The regression algorithm assigns ICOMP scores to different combinations of parame-

ters. The model that achieves the lowest score is the best to describe the system.

3.5 Measuring Complexity in Statistics

Information based statistics starts with an understanding of the concept of complexity.

A general definition of complexity can be written as (Van Emden 1971): “Complexity

of a system (of any type) is a measure of the degree of interdependency between the

whole system and a simple enumerative composition of its subsystems or parts.” This

means that if we can decompose a system into subsystems and assign a score to each

of the subsystems, we can gain a better understanding of how each part is related

to the entire system. In this vein, we can recall a property of decomposition of sets.

For a set that contains k members, there are 2k possible subsets (including the empty

set). If we apply this idea to linear statistical modeling, we can perform a power

set decomposition on a set of variables, and assign a score to each possible subset

to measure the complexity of the system. However, generally, we do not include the

empty set in linear regression, so there are 2k−1 variable combinations for k possible

variables.

In order to calculate an information complexity score for a statistical system,

we can appeal to information theory. Information theory arose from the study of
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digital communication, where researchers tried to understand how information can

be represented and reconstructed from digital signals. Information theory seeks to

optimize the amount of information that can be transmitted in the fewest bits of

signal. We can start with the definition of entropy of information. For probability

distribution p(x), a measure of the uncertainty of the probability distribution is the

entropy, which is defined as

H(X) = −
∑
x∈Ψ

p(x) log(p(x)) = E

[
log

(
1

p(x)

)]
(3.49)

We note that since 0 < p(x) < 1, then the log(p(x)) is negative, so the entropy is

positive. Entropy provides a measure of the sharpness of the probability distribution

p(x), which gives a notion of the uncertainty involved. If the entropy H(X) = 0,

then this corresponds to a deterministic process with only one outcome. By contrast,

the maximum entropy is achieved by a uniform distribution. It can be shown that a

uniform distribution contains the maximum amount of uncertainty about a random

variable.

If we have a pair of random variables X and Y , defined over domains Ψ and Φ

respectively, then the joint probability p(x, y) gives rise to joint entropy H(X,Y ).

H(X, Y ) = −
∑

x

∑
y∈Φ

p(x, y) log(p(x, y)) (3.50)

= E

[
log

(
1

p(x, y)

)]
(3.51)

The conditional entropy comes from the conditional probability distribution p(y |
x), which gives a measure of the average degree of uncertainty in Y for all possible
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outcomes of X.

H(Y |X) =
∑
x∈Ψ

p(x)H(Y | X = x) = −
∑
x∈Ψ

∑
y∈Φ

p(x, y) log(p(y | x)) (3.52)

We can now define a measure of the difference between two distributions called

the called the Kullback-Leibler Entropy (1951), also called the Kullback-Leibler Diver-

gence or Kullback-Leibler Distance. The Kullback-Leibler (K-L) entropy is a measure

of how similar two distributions are to each other. Two distributions that are sim-

ilar have small K-L distance. The K-L entropy K(p, q) is similar to the distance

between two distributions defined in the context of the Riemann metric in the space

of distributions.

K(p, q) =
∑
x∈Ψ

p(x) log(
p(x)

q(x)
) (3.53)

Although K(p, q) carries the interpretation of the distance between two distributions,

it is not a true distance because of the asymmetry between p(x) and q(x).

K(p, q) 6= K(q, p) (3.54)

The K-L entropy is always positive and is zero if and only if p(x) = q(x).

We can measure the statistical independence between two random variables X

and Y by introducing the mutual information I(X, Y ). Let the random variables

have distributions p(x) and q(x). Then the mutual information between X and Y is

I(X, Y ) = K(p(x, y), p(x)p(y)) (3.55)

=
∑
x∈Ψ

∑
y∈Φ

p(x, y) log

(
p(x, y)

p(x)p(y)

)
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The mutual information is symmetric so that I(X,Y ) = I(Y,X) and I(X,X) =

H(X). The mutual information measures the amount of information that Y conveys

about X or vice-versa, and so it measures the degree of statistical correlation between

X and Y . I(X, Y ) is zero if and only if X and Y are mutually independent.

Using set theory, it can be shown that the following are true

I(X,Y ) = H(X)−H(X | Y ) (3.56)

I(X,Y ) = H(Y )−H(Y | X) (3.57)

I(X,Y ) = H(X) + H(Y )−H(X, Y ) (3.58)

The preceding information theoretic definitions can be cast into forms of continu-

ous random variables. For continuous random variable X with associated probability

density function f(x), the entropy is

h(X) = −
∫

A

f(x) log(f(x))dx (3.59)

where A is the domain of the continuous variable x. The K-L entropy of two contin-

uous distributions f(x) and g(x) is defined analogously.

K(f, g) =

∫
f(x) log

(
f(x)

g(x)

)
dx (3.60)

Likewise, the mutual information between continuous variables X and Y is given

by

I(X,Y ) =

∫
f(x, y) log

(
f(x, y)

f(x)f(y)

)
dxdy (3.61)

We can define the complexity of a random vector as a measure of the interdepen-

dency of the different components. If we consider a p-variate distribution with joint

density function f(x) = f(x1, x2, . . . , xp) and whose marginal densities are fj(xj),
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then we can write the information measure of dependence between random variables

x1, x2, . . . , xp as

I(x) = I(x1, x2, . . . , xp) (3.62)

= E

[
log

f(x1, x2, . . . , xp)

f1(x1)f2(x2) . . . fp(xp)

]

=

∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, x2, . . . , xp) log

f(x1, x2, . . . , xp)

f1(x1)f2(x2) . . . fp(xp)
dx1...dxp

Here, I(x) is the K-L information divergence, which measures the expected dependen-

cies between the component variables. This is also known as the expected information

or mutual information. It can be shown that I(x) is nonnegative. We can also note

that if f(x1, x2, . . . , xp) = f1(x1)f2(x2) . . . fp(xp) for every p-tuple (x1, x2, . . . , xp),

then the the random variables x1, x2, . . . , xp are mutually independent. In this case,

then f(x1,x2,...,xp)

f1(x1)f2(x2)...fp(xp)
= 1, so the log in this case is zero. If I(x) > 0, then there is

some dependence between at least two of the variables.

We can find a relationship between the K-L divergence and Shannon’s (1948)

entropy by

I(x) = I(x1, x2, . . . , xp) (3.63)

=

p∑
j=1

H(xj)−H(x1, x2, . . . , xp)

where H(xj) is the marginal entropy and H(x1, x2, . . . , xp) is the global or joint en-

tropy

Let us define a multivariate normal density function f(x) by

f(x) = f(x1, x2, . . . , xp) (3.64)

= (2π)−p/2 | Σ |−p/2 exp

(
−1

2
(x− µ)′Σ−1 (x− µ)

)
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where µ=(µ1, . . . , µp) and Σ is the covariance matrix.

We can write x ∼ Np(µ,Σ). The joint entropy H(x) = H(x1, x2, . . . , xp) in the

case where µ = 0 is

H(x) = H(x1, x2, . . . , xp) (3.65)

= −
∫

f(x) log f(x)dx

=

∫
f(x)

[
p

2
log(2π) | Σ | +1

2
x′Σ−1x

]
dx

=
p

2
log(2π) | Σ | +1

2
tr

[∫
f(x)Σ−1x′xdx

]

Note that E [x′x] = Σ, so that

H(x) = H(x1, x2, . . . , xp) (3.66)

=
p

2
log(2π) +

p

2
+

1

2
log | Σ |

=
p

2
[log(2π) + 1] +

1

2
log | Σ |

The marginal entropy of a given variable is

H(xj) = −
∫ ∞

−∞
f(xj) log f(xj)dxj (3.67)

=
1

2
log(2π) +

1

2
+

1

2
log(σ2

j ) , j = 1, . . . , p
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3.6 Developing Information Complexity

We can now examine the complexity of a covariance matrix Σ for the multivariate

normal distribution. Van Emden (1971) gave an initial definition of complexity. Sub-

stituting the expression for entropy gives

I(x1, x2, . . . , xp) =

p∑
j=1

H(xj)−H(x1, x2, . . . , xp) (3.68)

=

p∑
j=1

[
1

2
log(2π)− 1

2
log(σjj) +

1

2

]

=
p

2
log(2π)− 1

2
log | Σ | − p

2

This expression reduces to

C0(Σ) =
1

2

p∑
j=1

log(σjj)− 1

2
log | Σ | (3.69)

Here, σjj = σ2
j is the variance of the jth variable. This is also the jth diagonal

element of Σ. Van Emden (1971) demonstrates that the preceding result is not the

best measure of complexity of covariance matrix Σ because C0(Σ) depends on the

marginal distributions of the variables, and because the first term of C0(Σ) changes

under orthonormal transformations. To improve on the initial definition C0(Σ), we

can define the maximal covariance complexity. It can be shown (Van Emden 1971)

that the maximal covariance complexity of Σ for a multivariate normal distribution

is

C1(Σ) = max [H(x1) + . . . + H(xp)−H(x1, . . . , xp)] (3.70)

=
p

2
log

[
tr(Σ)

p

]
− 1

2
log | Σ |
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where the maximum is evaluated over orthogonal transformation T of the overall

coordinate systems x1, . . . , xp. C1(Σ) measures both the inequalities between the

variances and the contribution of the covariances in Σ. This measure is independent

of the coordinate system of the variances σ2
j , j = 1, . . . , p.

The complexity can be written as

C1(Σ) =
1

2
log

(
tr(Σ)

p

)p

| Σ | (3.71)

which can be interpreted as the complexity between the geometric mean of the average

total variation and the generalized variance, where trace(Σ) is the total variation in

the system and | Σ | is the expression for generalized variance. These quantities are

measures of multivariate scatter. In general, the value of complexity is proportional

to the amount of interaction among the variables. Large values of complexity reveal

many interactions, while low values show less interactions.

3.7 Developing ICOMP for Linear Regression

We can show the theoretical development for ICOMP for a multiple regression model

based on the complexity operation. We take the linear regression model

y = Xβ + ε (3.72)

where

y is a (n× 1) vector of values of the response value

X is a (n× q) is a model or design matrix with rank(X) = q = k + 1

β is a (q × 1) vector of unknown coefficients

ε is a (n× 1) vector of random errors
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We make the normal model assumption that ε ∼ N(0,σ2I). We know that the

maximum likelihood estimates of β and σ2 are

β̂ = (X′X)−1X′y (3.73)

σ̂2 = s2 (3.74)

=
1

n
(y − y)′(y − y)

=
1

n
ε′ε

From properties of finite sampling, we have that

β̂ ∼ N(β,σ2(X′X)−1) (3.75)

By the modeling assumptions, we know that the distribution of ε̂ is multivariate

normal with mean E [ε̂] = 0 and Cov(ε̂) = σ2(I−H) = σ2(I−X(X′X)−1X). Since

σ2 is an unknown parameter, it can be estimated by sample variance s2, so we have

Estimated Cov(β̂) = σ̂2(X′X)−1 = s2(X′X)−1 (3.76)

and

Estimated Cov(ε̂) = σ̂2(I−H) = s2(I−H) (3.77)

We can now derive ICOMP by using finite sampling distributions of parameter

estimates. For the multivariate regression obeying the usual assumptions, ICOMP is

defined by

ICOMP (β̂, (ε̂|β̂)) = −2 log L(β̂, σ̂2) + 2[C1(Cov(β̂)) + C1(Cov(ε̂))] (3.78)

This expression for ICOMP has the following components:
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1. The first component comes from maximizing the log-likelihood of the model.

As previously shown, we can express this as

−2 log L(β̂, σ̂2) = n log(2π) + n log(σ̂2) + n (3.79)

where σ̂2 = SSres

n

2. The second component is the complexity of the β̂ term

C1(Cov(β̂)) =
q

2
log

[
tr(σ̂2(X′X)−1)

q

]
− 1

2
log

[
det(σ̂2(X′X)−1)

]

= Ċ1((X
′X)−1)

Here, q = rank((X′X)−1)

Because Ċ1(· · · ) is scale invariant, σ̂2 can be factored out

3. For the third component, let

M = (I−H) = I−X(X′X)−1X′ (3.80)

It can be shown that, under normal modeling assumptions M = (I−H)

C∗
1(M) = 0 (3.81)

As long as ε ∼ N(0, σ̂2I), then the third component of ICOMP will equal 0.

We can therefore write ICOMP for multivariate regression as

ICOMP (REG) = n log(2π) + n log(σ̂2) + n + 2Ċ1((X
′X)−1) (3.82)
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In addition, we can also derive ICOMP by using the inverse of the Fisher infor-

mation matrix. For the multivariate regression model previously given

y = Xβ + ε (3.83)

we have the covariance matrix equal to the inverse Fisher information matrix of

Cov(β̂, σ̂2) = F−1 =




σ̂2(X′X)−1 0

0′ 2σ̂2

n


 (3.84)

We can again consider ICOMP as composed of several parts. The first part is

the log-likelihood evaluated at the maxima points, and the second component is the

complexity of the inverse Fisher information matrix.

ICOMP (IFIM) = −2 log L(β̂,σ̂2) + 2C1(F
−1) (3.85)

= n log(2π) + n log(σ̂2) + n +

(q + 1) log

[
tr(σ̂2(X′X)−1) + 2σ̂4

n

q + 1

]

− log
(
det

(
σ̂2(X′X)−1

))− log

(
2σ̂4

n

)

We can again factor out σ̂2 from the complexity term since it is scale invariant, which

yields

ICOMP (IFIM) = n log(2π) + n log(σ̂2) + n + (3.86)

(q + 1) log

[
tr((X′X)−1) + 2σ̂2

n

q + 1

]
−

log
(
det

(
(X′X)−1

))− log

(
2σ̂2

n

)
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Further simplification yields the expression

ICOMP (IFIM) = n log(2π) + (n− 1

2
) log(σ̂2) + n (3.87)

+(q + 1) log

[
tr((X′X)−1) + 2σ̂2

n

q + 1

]

− log
(
det

(
(X′X)−1

))− log
(n

2

)

3.8 Conclusion

This concludes our derivation of ICOMP and an overview of information based sta-

tistics. In summary, we can say that information based statistical methods removes

the ambiguity and subjectivity found in classical statistics, and provides a framework

for statistical analysis that is more general than that of classical statistics. For more

information about the development of information scored regression, the interested

reader can consult the text edited by Bozdogan (2004).
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Chapter 4

Modeling with Genetic Algorithms

4.1 Introduction

Genetic Algorithms are optimization methods. They form a branch of evolutionary

computation and contribute to the field of Artificial Intelligence. The traditional Ge-

netic Algorithm (GA) paradigm represents possible solutions to a problem by binary

strings. The collection of strings, called the population, uses principles of Darwinian

evolution to mimic organisms in an environment adapting to changing environmental

conditions, with members of the population mating and reproducing. The proba-

bility of reproduction is proportional to how well the population member solves the

problem, giving the most well-adapted organisms the highest probability of reproduc-

tion. Through many generations of this process, members evolve optimal solutions.

By cleverly implementing GA’s, researchers can find solutions to complex, sometimes

previously intractable, problems. GA’s are especially well-suited to problems with

vast, nonlinear search spaces where gradient based algorithms can become trapped

in local optima. GA’s do not rely on local slope calculations, but instead, use GA

operations to globally search the solution space.
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Because GA’s are efficient searching algorithms, they can be implemented as a

tool for statistical model selection. Modern data analysis must process large numbers

of variables. Researchers must implement effective methods to model complex mul-

tivariate data. While classical statistical methods use stepwise regression to select

the best model, ambiguities in model selection probabilities and levels of significance

grows with the number of model variables. Classical regression methods try to min-

imize the sum of squared error between observed data and a statistical model. This

approach generally overfits multivariate regression models. In addition, according

the published literature (Sokal and Rolf 1981, pg 668), stepwise regression cannot

adequately search highly multivariate parameter space and it generally calculates

suboptimal models.

Since Akaike (1973) introduced information scoring as a way to select parsimonious

models, the field of information scored statistics has continued to expand. Informa-

tion based statistics assigns scores to different combinations of model parameters,

trying to find a balance between Lack of Fit and Lack of Parsimony. Akaike Infor-

mation Criteria (AIC) was the first example of a regression scoring function. ICOMP

(Bozdogan 1988, 1990a) is a more modern measure of regression model quality. In-

formation scored regression regards the combination of variables that achieves the

lowest score as the best for describing the observed data set. However, in order to

find the best model score, we may have to process a large number of model combina-

tions. The number of possible models for k variables is 2k − 1. For a relatively small

number of variables (less than approximately 15), researchers can calculate every

combination of variables to find the best model on a common computer. For a larger

number of variables, this subsetting scheme becomes impractical because the number

of variable combinations that must be evaluated doubles for each added variable. To

overcome this handicap, Bearse and Bozdogan (2002) implemented GA’s in model
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selection, using ICOMP as the measure model quality. In this way, the GA acts as

a computational shortcut. Instead of scoring every possible combination of model

parameters, the GA samples a small subset of all of the model combinations. The

best model, which is the parameter combination with the smallest ICOMP score,

naturally evolves in the GA framework. This innovation combines the discrimination

ability of information based statistics with the efficiency of the GA data structure.

During the 1950’s and 1960’s, a number of computer scientists considered how

optimization problems in engineering could be tackled by implementing programs

that simulate biological evolution. In these simulations, a population of candidate

solutions could interact and reproduce, yielding optimal results to complex prob-

lems. Evolutionary computing was introduced in the 1970’s by Rechenberg (1973)

in his work “Evolution strategies” (Evolutionsstrategie in original form). Continuing

this work, the modern form of GA’s was invented by John Holland (1975) and his

students and colleagues. This lead to Holland’s 1975 book “Adaptation in Natural

and Artificial Systems.” Since then, GA’s have been widely studied and applied in

many fields of science and engineering. Not only do GA’s provide alternative meth-

ods to solving problems, but they also consistently outperform other methods used

in searching highly nonlinear spaces in terms of speed and efficiency. Researchers

have demonstrated that many of the real world problems that involve finding optimal

combinations of parameters which might prove difficult for traditional methods are

ideal for GA’s.

The traditional way of approaching optimization problems is to use the gradient

ascent/decent method. In a gradient based approach, the researcher gives some ed-

ucated guess about the optimal values of a system. The program then iteratively

adjusts these initial values according to the local gradient of the “parameter land-

scape.” When the values stop changing significantly or the gradient is near zero,
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this algorithm terminates at an optimal point. By contrast, a GA does not rely on

gradient calculations or initial starting points. Each of the strings in the GA popula-

tion independently tries to find the maximum value of the search space, creating an

implicitly parallel search process. Consequently, the GA has a much higher probabil-

ity of finding a global maximum because its search process is driven by competition

among the members and, unlike a gradient based algorithm, does not generally get

stuck in local optima.

A closely related concept to GA optimization is the fitness landscape of a problem.

The biologist Sewell Wright (1931) defined the term fitness landscape to describe the

representation of how biological organisms adapt to an environment. This landscape

has peaks, valleys, ridges, and similar landscape terrain. According to Wright, evo-

lution forces succeeding generations of organisms to move along the fitness landscape

in such a way that they try to find local peaks. This can explain why different species

that had a common ancestor diverge. As different populations of the progenitor specie

migrated to different environments, each group tried to find a local maximum in the

fitness landscape. As the different populations became more isolated, the populations

became stuck in their own local peaks and lost contact with the other populations,

causing them to evolve into different organisms.

The computational analogy of this biological concept causes the GA to adapt to

changes within its own fitness landscape. If a researcher can cast a problem into

a framework where different parameter combinations can be represented as genetic

strings, and there is a way to translate the quality of the solution into a kind of fitness

representation, then the researcher can employ the GA as an accurate and efficient

way to find solutions to these kinds of complex problems.
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This chapter will outline the development of GA’s by introducing the theory and

terminology. The chapter will then demonstrate how researchers can structure re-

gression routines as GA’s using ICOMP as a measure of model quality.

4.2 Genetic Algorithm Theory

In order to implement a GA in numerical optimization problems, we must invent a way

to convert the variables to be optimized into representation of GA chromosomes. In

the traditional GA representation, chromosomes are strings of binary numbers. The

set of chromosomes that the algorithm uses is called the population and each position

in the string that can assume a value of 0 or 1 is a gene. One of the advantages of

the GA optimization process is its ability to find optimal solutions using only a small

subset of possible gene combinations in the search space.

The GA optimizes the solution of a problem by allowing the population of chro-

mosomes to interact with each other, exchange genetic information and reproduce.

The strategy used in optimization is analogous to that employed by species trying

to maximize their position in a fitness landscape. The algorithm must incorporate a

fitness function that assigns a score to each chromosome based on its ability solve the

problem under consideration. At each iteration of the GA process, the chromosomes

in the population are ranked according to their fitness.

The definition of a fitness function is problem-specific with no general guidelines

or methods. The fitness can be normalized to relative values or unnormalized natural

values, and the quality can be increasing or decreasing. In a business management

situation, the fitness function can be the amount of predicted profits given a possible

set of business conditions. The fitness function in this case is obviously maximized.

In an aerospace engineering firm, variables related to aircraft construction could be
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chosen to minimize weight. The usefulness of the GA lies in the clever definition of a

fitness function applied to some optimization context.

4.3 Implementing Binary Genetic Algorithms

In order to use a binary GA in problem solving, the researcher must find a way to

represent possible solutions to a problem by binary bits. The GA process starts with

a randomly initialized population of binary chromosomes. The GA loop then forces

chromosomes to evolve using the GA operations of selection, crossover, and mutation.

We shall describe each of these operations in turn.

Selection is the when the program chooses high-ranking chromosomes for repro-

duction. At each iteration, chromosomes are ranked by the fitness function. Those

chromosomes with good fitness values are given a higher probability of reproduction

than those with poorer fitness values. There are a number of strategies for using a

selection operation, most of which involve some proportionality between fitness and

reproduction probability. A popular selection method is the roulette wheel sampling

(Goldberg 1989) which is analogous to assigning ranked probabilities to proportion-

ate areas of a roulette wheel. Using this method, the relative probabilities of the

chromosomes are mapped onto a probability distribution, with the highest-ranking

probabilities assigned the largest probability. The algorithm is iterated until a sin-

gle chromosome dominates the population or the ranks of the chromosomes do not

change over several iterations. Some researchers plot the average fitness and the best

fitness as the iterations progress, tracking the convergence of population. These plots

generally appear as exponentially increasing or decreasing functions that asymptoti-

cally approach an optimum value. In addition, some researchers advocate elitism in
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the reproduction operation. An elitist reproductive strategy forces the best ranking

members of each generation into subsequent generations.

Some researchers elect to kill the lowest ranking members of the population of

chromosomes at each iteration of the algorithm. While this greedy selection speeds

the convergence of the algorithm, there can be loss of valuable genetic material if

regular mass extinctions occur in the population. Many researchers prefer a modest

extinction rate of perhaps 10% balanced by the same amount of randomly reinitialized

chromosomes. If a new random chromosome happens to be close to an optimal

solution, then it will naturally migrate to one of the highest-ranking slots at the next

iteration.

The crossover operation allows chromosomes to exchange genetic information,

producing two offspring chromosomes. In this operation, two chromosomes are ran-

domly selected for mating, and then the crossover point within these chromosomes

is randomly selected. The parts of the binary strings after the crossover point are

exchanged between the parent chromosomes to produce offspring chromosomes. For

example, suppose that the two parent chromosomes are

010111010

111110100

Suppose also that the fourth gene is selected as the crossover point, so that genetic

material after the fifth gene is exchanged. The resulting offspring would be

010110100

111111010
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The crossover operation drives the chromosomes to produce high-ranking off-

spring. This is especially true of pairs of chromosomes that are already quite fit.

The offspring of two highly fit chromosomes can produce the best combination of

genes, yielding a child that is the optimal solution. A theory of GA’s called the

building block hypothesis states that substrings of chromosomes that individually

contribute to an optimal solution can combine through crossover to build the best

string (Mitchell 1998). Some judgement is required in selecting a crossover rate. Too

high of a crossover rate tends disassociate too many highly-fit chromosomes, resulting

in a population that never converges. Many researchers consider a crossover rate of

5% to 10% adequate to force the population to evolve optimal solutions.

Mutation produces changes in gene sequences by randomly turning a 1 into a 0 and

vice-versa. Mutation is the most passive GA operation because it only produces minor

changes the population. Many researchers agree that a small mutation probability of

between 1% and 5% suffices to randomly vary highly-ranked chromosomes. Mutation

can be regarded as “fine tuning” the fittest chromosomes to yield the best solutions

to complex problems.

The GA process can be summarized as follows. A fitness function is used to

evaluate candidate solutions, and reproductive success varies with fitness. The GA

then incorporates an iterative loop as shown (Mitchell 1998).

1. Generate an initial population M0.

2. Compute the fitness u(m) for each individual m in the current population Mt.

3. Define selection probabilities p(m) for each individual m in Mt so that p(m) is

proportional to u(m).

4. Generate Mt+1 by probabilistically selecting individuals from Mt to produce

offspring via genetic operators.
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5. Repeat step 2 until a satisfying solution is obtained.

4.4 Binary GA Used in Statistical Modeling

We can now turn our attention to applying GA’s to multivariate linear regression.

Selecting the best regressor variables that summarize and describe a data set is the

main goal of statistical modeling. This process progressively becomes more difficult

as the possible number of variables grows. Information based modeling provides a

good framework in which to implement the GA for model selection.

Bearse and Bozdogan (2002) made an insightful analogy between linear models

and GA chromosomes. A binary GA string can represent the inclusion or exclusion

of variables from a linear regression model. We can demonstrate this correspondence

as follows. A linear regression model is represented as a linear equation as:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk (4.1)

= β0 +
k∑

j=1

βjxj

The GA string can represent which variables are included in the current model, with 1

representing inclusion and 0 representing exclusion. For example, suppose that there

are 5 possible variables that can be used to build a regression model. Then there are

25 possible combinations of models. These range from only the constant term

yi = β0 (4.2)

to the saturated model that contains all variables

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 (4.3)
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There is a one-to-one correspondence between every possible chromosome of length 5

and every possible linear model that can be constructed with 5 variables. Take some

examples

y = β0 + β1x1 + β4x4 + β5x5 10011

y = β0 + β2x2 + β4x4 01010

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 11111

y = β0 + β2x2 + β3x3 01100

This analogy between variables included in the model and bits in binary strings

can be extended to a large numbers of variables. In fact, there is no theoretical limit

to the number of variables that can be represented by binary strings.

In order to rank the quality of candidate solutions, the GA needs some fitness

function. The information measure of complexity ICOMP qualifies as a fitness func-

tion because it gives a score to models based on their ability to describe a data set.

Moreover, the smaller the ICOMP score, the better a model describes the data, so we

can employ ICOMP as a measure of fitness by minimizing ICOMP, or equivalently,

maximizing the negative of ICOMP. For data whose errors are normally distributed,

we can use ICOMP derived from the finite sampling properties or ICOMP derived

from the inverse Fisher information matrix. That is, assuming that

ε ∼ N(0, σ2I) (4.4)

we can write the ICOMP based on finite sampling as

ICOMP (REG) = n log(2π) + n log(σ̂2) + n + 2C1((X
′X)−1) (4.5)
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with

C1((X
′X)−1) =

q

2
log

[
tr((X′X)−1)

q

]
− 1

2
log

[
det((X′X)−1)

]
(4.6)

Here, q = rank((X′X)−1). Likewise, under the assumption of normality, the Inverse

Fisher information matrix is

Cov(β̂, σ̂2) = F−1 =




σ̂2(X′X)−1 0

0′ 2σ̂2

n


 (4.7)

Using this expression, we can derive the Inverse Fisher Information Matrix version of

ICOMP as

ICOMP (IFIM) = n log(2π) + (n− 1

2
) log(σ̂2) + n (4.8)

+(q + 1) log

[
tr((X′X)−1) + 2σ̂2

n

q + 1

]

− log
(
det

(
(X′X)−1

))− log
(n

2

)

Published literature (Bozdogan 2004) demonstrates that ICOMP achieves the most

parsimonious model by controlling the risk of insufficient and overparameterized

models. The complexity term balances these competing forces and guards against

collinearity.

A minor point regarding the number of possible models is that in the standard

GA population, all possible set decompositions are possible, including the empty set.

However, ICOMP suffers a singularity when evaluating the empty set model, and

regression modelers generally do not consider it as a viable solution. Therefore, in

our GA implementation, if the GA generates an empty set (all zeros) solution, we

randomly mutate one of the entries to give it a non empty solution.
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The strategy of implementing a GA in a regression modeling context is as follows.

1. The algorithm randomly initializes a population of chromosomes that represents

possible models.

2. The algorithm applies mutation and recombination operations to the popula-

tion.

3. The algorithm then evaluates ICOMP for each chromosome, thereby assigning

it a rank.

4. It gives models that have better (lower) ICOMP scores a higher probability of

reproduction than those with a poorer ICOMP score.

5. Continue this GA the loop until it converges to a dominate member of the

population.

4.5 Conclusion

This concludes our discussion of the theory of binary GA’s. We introduced ideas

behind GA operation and their related terminology. The interested reader can find

more discussion in the texts by Mitchell (1998) and Koza (1992). For more informa-

tion specifically about using GA’s in linear regression models, the reader can consult

Bozdogan (2004).
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Chapter 5

Molecular Spectroscopy Theory

5.1 Introduction

Molecular vibration-rotation spectroscopy infers properties of molecules from study-

ing their spectra. Molecules generally absorb and emit vibrational and rotational

energy in the microwave and infrared regions of the electromagnetic spectrum. Re-

searchers derive many properties of molecules from studying their spectra, including

isotopic masses and molecular structure. In addition, by comparing catalogs of lab-

oratory spectra with spectra observed by terrestrial or astronomical observations,

researchers can derive temperatures, pressures, and relative abundances of molecular

species observed to be at remote locations.

The study of infrared spectroscopy can be traced back to a publication from 1800

when Sir William Hershel observed that thermometers measured higher temperatures

near the red end of the spectrum, indicating that some unknown radiation transmitted

heat to the thermometer. In 1840, Sir John Hershel (son of William) observed that

black alcohol-soaked paper dried more quickly when exposed to certain spectral re-

gions. Many historical names contributed to the development of infrared spectroscopy,
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including Kirchhoff, Bunsen, Coblentz, Wood, Pfund, and many others. Later, 1942

saw the development of modern automatically-recording prism spectrometers, which

grew from the wartime campaign to construct infrared detectors. Subsequently, sci-

entists recorded and studied numerous spectra of organic and inorganic compounds

(Blass and Nielsen 1974).

The energies generated by motions of molecules can range from 4000 Angstroms

to 1000 microns. Energies arising from electronic motions of molecules generally fall

in the ultraviolet and visible regions. If the emitted energy comes from molecular

vibrations, it will range from about 1 micron to 25 microns, while molecular rotations

generate energy with wavelengths longer than 25 microns (Blass and Nielsen 1974).

This chapter will review the background development of molecular vibration-

rotation theory. Starting from the analytically simple diatomic molecule, it will then

generalize the derived expression to more complex molecules. The end of the chapter

will show how the derived complex expressions can be used in least-squares regression

to calculate molecular constant values.

5.2 Diatomic Molecular Vibration

As a first example of applying analytical vibration-rotation equations to a molecule,

we will examine the development of a diatomic molecule. This is a good paradigm

for the development of vibration-rotation equations because it is generalizable to

more complex situations. We will first examine the vibration and rotation dynamics

separately before we consider the vibration-rotation interactions.

Suppose that two atoms are distance r apart and that the force between them is the

algebraic sum of attractive and repulsive electromagnetic forces. Let the equilibrium

distance between the two atoms be re. The potential energy function approaches
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infinity as r → 0, and it approaches a fixed value as r → ∞. The energy required

to move the nuclei from r = re to r = ∞ is the dissociation energy of the molecule

(Blass and Nielsen 1974).

Because we are considering small amplitude vibrations of the molecule, a good

approximation of the restoring force between the nuclei is a Hooke’s law force, with

the force taken as proportional to displacement from equilibrium. Therefore, the

potential energy takes the form V = 1
2
kx2, where k is a force constant which is

connected to the frequency of vibration by

ωe =

(
1

2
πc

) √
k√
µ

(5.1)

where ωe is the frequency of small amplitude vibrations and µ is the reduced mass

with the form

µ =
m1m2

m1 + m2

(5.2)

As a result of this definition, we can see that changing the atomic mass of a component

of the molecule changes the corresponding vibration frequency. Hence, from this

property, isotopic dependencies of vibration frequencies can be derived.

While the Hooke’s law potential is a good starting point for modeling atomic

interaction forces, the study of molecular spectra shows that more complex potential

functions better model real molecules. We can expand the potential function as a

Taylor series (Blass and Nielsen 1974)

H =
1

2
kx2 + k111x

3 + k1111x
4 + . . . (5.3)
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Turning to the quantum mechanical description of the molecular vibration prob-

lem, the Hamiltonian for a diatomic molecule becomes

H = − ~2

2m1

d2

dx2
1

− ~2

2m2

d2

dx2
2

+
1

2
kx2 (5.4)

or defining effective mass µ gives

H = − ~
2

2µ

d2

dx2
+

1

2
kx2 (5.5)

We can see that, since this expression of the Hamiltonian is in the form of a harmonic

oscillator, solutions have energies of

Eν =

(
ν +

1

2

)
~ω (5.6)

where ω =
(

k
µ

)1/2

and ν = 0, 1, 2, . . . . The energies form a ladder of possible energy

states, with step separation ~ω, while the corresponding wavefunctions have Gaussian

shapes multiplied by Hermite polynomials (Blass and Nielsen 1974).

As in the classical case, a more realistic quantum mechanical description of the

molecular vibrator must include anharmonic terms in the potential energy. The

potential can be expanded in a Taylor series. The corresponding Schodinger equation

must then be solved to give a description of the molecular wavefunctions. This process

must use numerical solution techniques because no analytical solutions can be derived.

The vibration selection rule implies that the transition matrix element is

µνν
′ = 〈ν | µ | ν ′〉 (5.7)
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We can express the change in dipole moment from equilibrium as:

µ = µ0 +

(
dµ

dx

)

0

x +
1

2

(
d2µ

dx2

)

0

x2 + . . . (5.8)

The transition matrix element then becomes:

µνν′ = µ0〈ν | ν ′〉+

(
dµ

dx

)

0

〈ν | x | ν ′〉+
1

2

(
d2µ

dx2

)

0

〈ν | x2 | ν ′〉+ . . . (5.9)

=

(
dµ

dx

)

0

〈ν | x | ν ′〉+
1

2

(
d2µ

dx2

)

0

〈ν | x2 | ν ′〉+ . . .

For small amplitude oscillations in the harmonic potential, we have

µνν′ ≈
(

dµ

dx

)

0

〈ν | x | ν ′〉 (5.10)

This leads to the selection rule for electric dipole transitions for harmonic vibrations:

∆ν = ±1 (5.11)

When it is necessary to include anharmonicity terms in the potential function,

higher order terms must be included in the transition matrix. Therefore, the selection

rule becomes

∆ν = ±2 (5.12)

for x2 terms and so on for higher order contributions. These electrical anharmonicities

allow transitions from the ground vibrational state to higher overtone states.
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5.3 Diatomic Molecular Rotation

In addition to considering molecular vibrations, we would like to analyze the dynamics

of molecular rotation. We can again consider a diatomic molecule as a good paradigm

for starting the analysis. First, consider the molecule as a nonvibrating rigid rotor.

If the molecule has reduced mass µ and equilibrium distance re, then the classical

kinetic energy of the molecule is ER = P 2

2Ic
, where P is the total angular momentum

and Ie = µr2
e is the moment of inertia.

When we transform to the quantum mechanical description of the rotating di-

atomic molecule, we can replace P 2 by J(J+1)h2

2π
, where J takes values 0, 1, 2, .... The

rotational energy is usually expressed as

ER

hc
(cm−1) = J(J + 1)Be (5.13)

Be is the equilibrium rotational constant defined as

Be =
h

8π2Iec
(5.14)

It can be shown that the dipole selection rule is ∆J = ±1. These properties cause

pure rotational transitions to appear at predictable intervals of 0, 2Be, 6Be, 12Be,

etc. (Blass and Nielsen 1974).

While the rigid rotator is a good first approximation to a rotating diatomic mole-

cule, in reality, the atoms experience centrifugal forces that stretch the bonds. These

centrifugal forces increase the average internuclear separation. Analysts account for

this interaction by adding a centrifugal distortion constant. The rotational energy for
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the ν = 0 vibrational state then becomes:

ER

hc
(cm−1) =

[
Be − 1

2
α−

(
De − 1

2
β

)
J (J + 1)

]
(J + 1) (5.15)

= B0J (J + 1)−D0J
2 (J + 1)2

where B0 is the ground vibrational state rotational constant and D0 is the centrifugal

distortion constant. Hence, in some vibrational state ν, the associated energy levels

are

ER

hc
(cm−1) = BνJ(J + 1)−DνJ

2(J + 1)2 (5.16)

with

Bν = Be − α(v +
1

2
) (5.17)

Dν = De − β(v +
1

2
) (5.18)

Further corrections can be added in the same way that include J3(J+1)3 terms (Blass

and Nielsen 1974).

5.4 Diatomic Molecular Vibration-Rotation

We can combine the anharmonic vibrator with a nonrigid rotator. Classical mechani-

cal considerations predict absorption frequencies at ωe±ωR. Combining the quantum

mechanical expressions for energy gives

EV R = ωe(ν +
1

2
)− xeωe

(
ν +

1

2

)2

+ yeωe

(
ν +

1

2

)3

+ . . . + (5.19)

BνJ(J + 1)−DνJ
2(J + 1)2 + HνJ

3(J + 1)3
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where

Bν = Be − α(ν +
1

2
) + γ(ν +

1

2
)2 (5.20)

= B0 − αν + γ(ν + ν2)

Dν = De − β(ν +
1

2
) (5.21)

= De − βν

Hν = He − δ

(
ν +

1

2

)
(5.22)

= H0 − δν

We can now consider vibration-rotation transitions as transitions from the ground

state, so that the observed energies will be the difference between the ground state

and an excited state. Hence, we can express the energy differences as EV R(∆ν, J +

∆J)− EV R(0, J) = ∆EV R

∆EV R = ωe∆ν − xeωe (∆ν + 1) ∆ν + (5.23)

yeωe

(
∆ν +

3

2
∆ν +

3

4
∆ν

)
∆ν + . . . +

B0 (2J + 1 + ∆J) ∆J − α∆ν(J + ∆J)(J + 1 + ∆J) +

γ(∆ν + 1)∆ν (J + ∆J) (J + 1 + ∆J)−

D0

[
(J + ∆J)2 (J + 1 + ∆J)2 − J2 (J + 1)2] +

β∆ν (J + ∆J)2 (J + 1 + ∆J)2 +

H0

[
(J + ∆J)3 (J + 1 + ∆J)3 − J3 (J + 1)3]
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Transitions for which ∆J = 1 lead to the R-branch of the spectrum while transitions

where ∆J = −1 gives rise to the P-branch. Identifying these spectral components is

an important step in analyzing the data. Furthermore, the energy equations become

a starting point for a least squares treatment of the spectral data in order to recover

numerical parameter estimates for a given molecule.

5.5 Polyatomic Molecular Rotation

The theory of molecular rotation begins with defining the moment of inertia. We can

write the moment of inertia of a molecule rotating about axis q as

Iqq =
∑

i

mix
2
i (q) (5.24)

where xi(q) is the perpendicular distance of the atom i with mass mi from axis q.

Using this definition, we can write the classical kinetic energy of the rotating molecule

as

T =
1

2

∑
q

Iqqω
2
q =

∑
q

J2
q

2Iqq

(5.25)

where ωq is the angular frequency about axis q. If there is no potential term in this

context, then the Hamiltonian is the sum of the rotational kinetic energies of the

molecule.

T =
J2

x

2Ixx

+
J2

y

2Iyy

+
J2

z

2Izz

(5.26)

We can specialize this expression to specific types of molecules. A symmetric rotor has

a symmetry axis where two of the moments of inertia are equal. Let I⊥ = Ixx = Iyy

and let I‖ = Izz. We then have

H =
J2

x + J2
y

2I⊥
+

J2
z

2I‖
(5.27)
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We can rewrite this Hamiltonian in terms of the magnitude of the total angular

momentum J2 = J2
x + J2

y + J2
z as

H =
J2

2I⊥
+

(
1

2I‖
+

1

2I⊥

)
J2

z (5.28)

In a quantum mechanical situation, we regard J2 and Jz as operators with correspond-

ing eigenvalues. Letting K represent the quantum number of angular momentum of

the internal symmetry axis of the molecule and MJ be the quantum number of the

component of angular momentum in the laboratory’s z-axis, we have

E (J,K, MJ) =
J (J + 1)

2I⊥
~2 +

(
1

2I‖
+

1

2I⊥

)
K2~2 (5.29)

Here, the range of values for the quantum numbers are

J = 0, 1, 2, . . . (5.30)

K = J, J − 1, . . . ,−J (5.31)

MJ = J, J − 1, . . . ,−J (5.32)

Although the quantum number MJ does not explicitly appear in the energy ex-

pression, we must include it in order to have a complete description of the energy state

of the molecule. We can understand this in the sense that, if there is no external field

applied to the molecule, then there is no preferred direction for the molecule to orient

itself. The quantum number K describes the distribution of angular momenta over

the molecule. If |K| ≈ J , then almost all of the molecule’s angular momenta is around

its symmetry axis, while if |K| ≈ 0, almost all of the molecule’s angular momentum

is around an axis perpendicular to the symmetry axis. We can also observe that since

the energy depends on K2, the energy does not depend on the direction of rotation
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around the symmetry axis. This is consistent with the physical interpretation of the

quantum numbers.

We can also define rotational constants A and B to be

A =
~

4πcI‖
(5.33)

B =
~

4πcI⊥
(5.34)

Then the energy E is related to transition frequency F (cm−1) as

E (J,K,MJ) = hcF (J,K, MJ) (5.35)

so we can write

F (J,K, MJ) = BJ(J + 1) + (A−B)K2 (5.36)

Each K level with K 6= 0 is 2 (2J + 1) fold degenerate because each MJ can

assume 2(J +1) different values for a given value of J . If K = 0, then the degeneracy

of MJ is 2J + 1 because K takes only a single value. Limiting cases of the energy are

as follows. For K = 0, the energy is

F (J, 0,MJ) = BJ(J + 1) (5.37)

This is the situation where all of the kinetic energy comes from the molecule rotating

about an axis perpendicular to the symmetry axis. For the maximum K value of

|K| = J , the energy is

F (J,±J,MJ) = AJ2 + BJ (5.38)

Here, most of the energy comes from rotation about the symmetry axis.
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Some special cases arise from the energy expression. A spherical rotor is one

where all three moments of inertia are equal. In this case, A = B so the frequency

expression becomes

F (J,K,MJ) = BJ(J + 1) (5.39)

Here, the transition frequency shows no dependency on both K and MJ . This agrees

with our concept of spherical symmetry in which no direction is preferred over any

other. However, each level is now (2J + 1)2 degenerate because of the multitude of

states available for K and MJ for each value of J .

A linear rotor is one that has only two moments of inertia. In this case, K ≡ 0,

so the transition equation becomes

F (J,MJ) = BJ(J + 1) (5.40)

and shows no K dependency. The degeneracy for each level is 2(J + 1) because the

K value is fixed at 0.

5.6 Polyatomic Molecular Vibrations

In order to account for degrees of freedom, without the center of mass translation, we

have 3N−3 degrees of freedom. Of these, 3 degrees of freedom are taken by the Euler

angles to describe rotations, so the remaining 3N −6 degrees of freedom must go into

vibrational modes of the molecule. We can define a coordinate system whose origin

is at the center of mass of the molecule, and atoms are connected by a framework of

Hooke’s law forces, with small displacements for equilibrium. We can then generalize
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the expression for potential energy as a sum over all 3N displacements.

V = V (0) +
∑

i

(
∂V

∂xi

)

0

xi +
1

2

∑
i,j

(
∂2V

∂xi∂xj

)

0

xixj + . . . (5.41)

For small displacements, we can define V (0) = 0. In addition, the first derivative

terms will be 0 at the minimum of potential, and we can define

V =
1

2

∑
i,j

ki,jxixj (5.42)

kij =

(
∂2V

∂xi∂xj

)

0

(5.43)

where kij is the generalized force constant. In order to simplify this problem, we

introduce mass-weighted coordinates qi = m
1/2
i xi, where m

1/2
i is the mass of the atom

being displaced by distance xi. We can then write the potential energy as

V =
1

2

∑
i,j

Kijqiqj (5.44)

Kij =
kij

(mimj)
1/2

=

(
∂2V

∂qi∂qj

)

0

(5.45)

This expression gives the total kinetic energy to be

T =
1

2

∑
i

m2
i ẋ

2
i =

1

2

2∑
i

q̇2
i (5.46)

The classical total energy expression then becomes

E =
1

2

∑
i

q̇2
i +

1

2

∑
i

Kijqiqj (5.47)
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Complications arise when there are cross-terms in the potential energy function.

We can use normal mode analysis to identify linear combinations Qi of the coordinates

that are free of cross-terms so that the total energy becomes

E =
1

2

∑
i

Q̇2
i +

1

2

∑
i

κiQ
2
i (5.48)

When we consider the quantum mechanical description of a polyatomic molecule, the

Hamiltonian becomes a sum of terms expressed as

H =
∑

i

Hi (5.49)

where

Hi = −1

2
~2 ∂2

∂Q2
i

+
1

2
κiQ

2
i (5.50)

To simplify the analysis of this problem, we can observe that the Hamiltonian is

a sum of terms, so the vibrational wavefunction becomes a product of the individual

wavefunctions:

ψ = ψν1(Q1)ψν2(Q2) . . . =i ψνi
(Qi) (5.51)

Each of the terms in the total wavefunction is the solution of the Schodinger equation

−1

2
~2∂2ψ(Qi)

∂Q2
i

+
1

2
κiQ

2
i ψ(Qi) = Eψ(Qi) (5.52)

We can solve this equation with harmonic oscillator wavefunctions whose energy levels

are

Eνi
=

(
vi +

1

2

)
~ωi (5.53)
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where

ωi = κ
1/2
i (5.54)

vi = 0, 1, 2, . . . (5.55)

The corresponding wavefunctions are

ψvi
= Nvi

Hvi
(yi) e−y2

i /2 (5.56)

yi =

(
ωi

hbar

)1/2

Qi (5.57)

Here, Nv i
is a normalization constant and Hvi

is a Hermite polynomial. Therefore,

the total vibrational energy of the molecule is

E =
∑

i

(
νi +

1

2

)
~ω (5.58)

5.7 Polyatomic Molecular Vibration-Rotation

In order to consider the normal-mode aspect of the development of the vibration-

rotation Hamiltonian, let us assume harmonic vibrations such that a transformation

can be defined from the 3N mass-adjusted Cartesian nuclear displacements,
√

Mi∆αi,

to the 3N − 6 normal coordinates Qsσ :

Qsσ =
N∑

i=1

∑
α

(lαisσ)−1
(√

Mi∆αi

)
(5.59)

or
√

Mi∆αi =
∑
sσ

lαisσQsσ (5.60)
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Here, the subscript s denotes the sth normal mode with frequency ωs = λ
1/2
s /2πc,

and σ describes the degree of degeneracy of mode s. For example, if a mode is not

degenerate, then σ = 1; if the mode is doubly degenerate, σ = 2; if the mode is triply

degenerate, σ = 3.

The momentum conjugate to normal coordinate Qsσ is:

psσ = −i~
∂

∂Qsσ

(5.61)

The components of internal angular momentum p associated with vibration are de-

fined by

p =
∑
sσ

∑

s′σ′
ζα
sσs′σ′QsσQs′σ′ (5.62)

Here, ζα
sσs′σ′ is the Coriolis coupling constant that links vibrations sσ to s′σ′. The

coupling constant depends on the geometry of the molecule and is defined as:

ζα
sσs′σ′ =

N∑
i=1

(
lβisσl

γ
is′σ′ − lγisσl

β
is′σ′

)
(5.63)

In this equation, α, β, and γ are cyclic.

In our analysis, P is the total angular momentum and p is the angular momentum

of vibration, so P − p is the angular momentum of rotation. The rotation angular

momentum related to the angular velocity is

ω = µ · (P − p) (5.64)

or

ωα =
∑

β

µαβ(Pα − pα) (5.65)
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Here, µ is the reciprocal of the inertia tensor. This formulation of the vibration-

rotation energy can now be written as a Hamiltonian:

E =
1

2

∑

αβ

µαβ(Pα − pα)(Pβ − pβ) +
1

2

∑
sσ

p∗2sσ + V (5.66)

The potential term V can be expanded as a Taylor series in normal coordinates Qsσ:

V =
1

2

∑
sσ

λsQ
2
sσ +

∑
sσ

∑

s′σ′

∑

s′′σ′′
Ksσs′σ′s′′σ′′QsσQs′σ′Qs′′σ′′ + . . . (5.67)

It can be shown that directly substituting the quantum mechanical operators into

the classical Hamiltonian leads to a Hamiltonian that is not Hermitian. Darling and

Dennison showed that the quantum mechanical Hamiltonian can be expressed in a

Hermitian form as

H =
1

2
µ1/4

∑

αβ

(Pα−pα)µ−1/2 µαβ (Pβ−pβ)µ−1/4+
1

2
µ1/4

∑
sσ

p∗sσ µ−1/2µαβ p∗sσ µ−1/4+V

(5.68)

where µ = det(µαβ). Later, Watson used the commutation relations to show that the

Hamiltonian can be reduced to

H =
1

2

∑

αβ

(Pα − pα)µαβ(Pβ − pβ) +
1

2

∑
sσ

p∗2sσ + U + V (5.69)

where U is a complicated arrangement of commutators that is a function only of

coordinates but not momenta.

The resulting Schrodinger equation from both the Darling and Dennison (1940)

form and the Watson form cannot be solved analytically, so approximations have

to be made that can be compared with experimental results. The strategy is to

expand the Hamiltonian in normal coordinates so that consecutive terms change by
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approximately one order of magnitude. Then, contact transformations are applied

in order to more easily obtain energies to orders higher than the first. This type of

analysis was pioneered by Amat, Nielsen, and Goldsmith, and subsequently applied

to molecules with 3-fold symmetry by Tarrago (Amat et al. 1971).

The lowest-order terms in the analysis should meet the following conditions:

1. The equation should be simple enough that it can be analyzed

2. The lowest-order results should explain overall features in experimental data

The approximation that regards the molecule as a rigid rotor plus a set of un-

coupled harmonic oscillators satisfies these conditions. Furthermore, the rigid-rotor,

harmonic oscillator representation can be expanded to higher-order terms by express-

ing µαβ in terms of normal coordinates:

µαβ =
1

IαIβ

[
Ω(0)αβ +

∑
sσ

Ω(1)αβ
sσ Qsσ +

∑
sσ

∑

s′σ′
Ω

(2)αβ
sσs′σ′QsσQs′σ′ + . . .

]
(5.70)

The Ω
(n)αβ
sσs′σ′··· terms are complex functions of molecular parameters. We note, however,

that the principal axis system is used for the inertia tensor, so

Ω(0)αβ = Iαδαβ (5.71)

where Iα is the equilibrium moment of inertia about the αth axis. Hence,

µαβ =
1

Iα

δαβ (5.72)

We can now examine how molecular vibration-rotation theory can be translated

into a form that is useful for least-squares regression analysis.
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5.8 Analysis of Vibration-Rotation Spectra

While the proceeding formalism is correct, it is not necessarily practically useful for

analyzing real molecular data. Following the strategy of Amat and Nielsen (1958,

1961, 1962), we can derive equations that describe vibration-rotation energy levels

of a polyatomic molecule. We start with a Hamiltonian that is expanded in a power

series .

H = h0 + H1 + H2 + H3 + . . . (5.73)

This Hamiltonian is diagonal with respect to quantum numbers J and M , but not

necessarily diagonal with respect to νs, ls, ms, and K. We can then make a con-

tact transformation, which results in a Hamiltonian expression that is diagonal with

respect to all quantum numbers for an axially symmetric molecule.

H = H0 + h
′
1 + h

′
2 + h

′
3 + . . . (5.74)

We can then perform a second contact transformation, yielding

h+ = H0 + h
′
1 + h+

2 + h+
3 + . . . (5.75)

This Hamiltonian expression is diagonal with respect to all quantum numbers through

h′1 for axially symmetric molecules. In the absence of accidental resonances, off diag-

onal terms in h+
2 generally do not contribute to energy before the fourth order, and

off diagonal terms in h+
3 do not contribute to energy before the sixth order.

From the transformed Hamiltonian expression, we can derive equations that cal-

culate all vibration-rotation transitions for a symmetric top molecule. The analyst

can then use this generalized transition frequency expression to subject observed un-

perturbed spectral data to least-squares analysis methods. Moreover, in the presence
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of perturbations, any subset of unperturbed lines can be analyzed in the same way

using the simultaneous transition frequency expressions.

If the energy levels of an axially-symmetric molecule are denoted by quantum

numbers

{νn, νn+1, . . . , νt, lt, . . . , J,K,M}

then the transition

{νn + ∆νn, . . . , νt + ∆νt, lt + ∆lt, . . . , J + ∆J,K + ∆K, M + ∆M}

⇐ {νn, . . . , νt, lt, . . . , J,K, M}

is a change from the lower state to the upper state with a corresponding energy change

energy change E
′
V R ⇒ E

′′
V R. The transition frequency expression will be

(νn, νn+1, . . . , νt, lt, . . . , ∆νn, . . . , ∆νt, ∆lt, . . . , ∆K, ∆J,K, J)

= (νn, νn+1, . . . , νt, lt, . . . , ∆νn, . . . , ∆νt, ∆lt, . . .) ∆K∆JK
(J)

= E
′
V R − E

′′
V R

The generalized transition frequency is derived from subtracting the differences in

energy. Expressions for specific cases of vibrational bands are given in the tables at

the end Blass’ 1976 paper. The major constants found in the energy expression are

given as follows.

B0 = B′′ = Be −
∑

s

gs

2
αB

s +

s≤s′∑
s,s

gs′gs

4
γB

ss′ + ∆Be (5.76)
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Bν = B′ = B0 −
∑

s

νsα
B
s +

s≤s′∑

s,s′

(
νsνs′ +

νsgs′

2
+

νs
′gs

2

)
γB

ss′ + (5.77)

t≤t′∑

t,t
′

γB
ltlt′ ltlt′

A0 = A′′ = Ae −
∑

s

gs

2
αA

s +

s≤s′∑
s,s

gs′gs

4
γA

ss′ + ∆Ae (5.78)

Aν = A′ = A0 −
∑

s

νsα
A
s +

s≤s′∑

s,s
′

(
νsνs′ +

νsgs′

2
+

νs′gs

2

)
γA

ss′ + (5.79)

t≤t′∑

t,t′
γA

ltlt′ ltlt′

Dm
0 = D

′′
m = Dm

e −
∑

s

gs

2
βm

s (5.80)

Dm
ν = D′

m = Dm
0 −

∑
s

νsβ
m
s (5.81)

In order to use the simultaneous frequency expressions, we can regard quantum

numbers {νn, νn+1, . . . , νt, lt, . . . , ∆νn, . . . , ∆νt, ∆lt, . . . , ∆K, ∆J, K, J} as regressor

variables in a linear regression equation. The transition frequency then becomes the

response variable in this analysis scheme.
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5.9 Other Considerations

In addition to analyzing the transition frequencies in spectral data, the researcher

may wish to account for other observed effects. In order for a molecule to absorb or

emit electromagnetic radiation, at least one component of

µ = 〈ψ′ | µi | ψ′′〉 (5.82)

must be nonzero, where µi is the electric dipole moment. Symmetry properties of

zero-order wavefunctions lead to the following selection rules. For parallel bands:

∆K = 0, ∆J = 0,±1 (5.83)

if K 6= 0 and

∆J = ±1 (5.84)

if K = 0. For perpendicular bands

∆K = ±1, ∆J = 0,±1 (5.85)

When effects of higher-order terms take effect, a more complete set of selection can

be derived. Following Amat et al. (1971), a symmetry-adapted set of wavefunctions

become

| + 〉 =| {νs} , {ls} , K, J 〉 + | {νs} , {−ls} ,−K, J 〉

| − 〉 =| {νs} , {ls} , K, J 〉 − | {νs} , {−ls} ,−K, J 〉
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The intensities of spectral lines are can be calculated from transition moments. If

F (K, J, ∆K, ∆J) defines the transition moment, then the intensity of the line becomes

νGF (K, J, ∆K, ∆J) exp

[
−E0(J,K)

kT

]
(5.86)

where ν is the transition frequency, G is a statistical factor that depends on the spin

of the nuclei and the degeneracy of the ground state, E0(J,K) is the ground state

energy, k is the Boltzman constant and T is the absolute temperature.

Previously, transition moment integrals have been calculated. The results can be

given as follows. For the case that ∆K = ±1, If ∆J = 1 :

F (K, J, ∆K, ∆J) =
(J + 2 + K∆K) (J + 1 + K∆K)

(J + 1) (2J + 1)
(5.87)

If ∆J = 0 :

F (K, J, ∆K, ∆J) =
(J + 2 + K∆K) (J + K∆K)

J (J + 1)
(5.88)

If ∆J = −1 :

F (K, J, ∆K, ∆J) =
(J − 1−K∆K) (J −K∆K)

2 (2J + 1)
(5.89)

While for the case that ∆K = 0, If ∆J = 1 :

F (K, J, 0, ∆J) =
(J + 1)2 −K2

(J + 1) (2J + 1)
(5.90)

If ∆J = 0 :

F (K, J, 0, ∆J) =
K2

J (J + 1)
(5.91)
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If ∆J = −1 :

F (K, J, 0, ∆J) =
J2 −K2

2J (2J + 1)
(5.92)

The proceeding equations allow us to determine the systematic structure of vibration-

rotation bands. Historical convention denotes ∆K and ∆J transitions of −1,0, and

1 as P ,Q, and R, respectively. Transitions are symbolized in the form ∆K∆JK (J).

Hence, the label RQK (J) signifies a transition from the K, J level of the ground vi-

brational state to the K +1, J level of an excited vibrational state. The consequence

of the intensity equations is that, for a fixed K value, the intensity of the spectral

lines is the product of a linearly increasing function of J with an exponentially de-

creasing function of J (Blass and Nielsen 1974). This causes the intensity to grow

with increasing J , reach a maximum, and then decrease. The maximum progressively

approaches J = K as K increases.

The positions of lines are also affected by sequential K and J values. The sepa-

ration of adjacent lines in a K-subband is

∆ν = 2
[
B0∆J −

∑
αsνs (J + ∆J + 1)

]
− (5.93)

4DJ
0

[
(J + ∆J + 1)3 − (J + 1)3]−

2DJK
0

[
(K + ∆K)2 (J + ∆J)−K2 (J + 1)

]

This equation implies that the separation between adjacent lines varies approx-

imately linearly with J (Blass and Nielsen 1974). These properties, combined with

intensity structures, can be aids in the assignment of subbands as researchers try to

match observed transition lines to quantum numbers.
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5.10 Conclusion

This chapter developed the equations that describe vibration-rotation spectra. It

then showed how these Hamiltonian expressions can be put into forms that are prac-

tically useful for data analysis. In order to use the transition expressions in regression

analysis, they can be put into a form that minimizes linear dependencies (Blass 1976).

Blass’ 1976 paper lists a catalog of equations for specific cases of axially-symmetric

molecules where transition expressions can be used for regression analysis. The in-

terested reader can consult this paper for more information about the relationship

between molecular theory and regression analysis.
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Chapter 6

Regression of Power Series

6.1 Introduction

Many physical processes are modeled as Taylor or power series expansions. Oscillatory

motion in classical and quantum physics often are expanded Taylor series around

the minimum of some potential function. While this power series approach can be

useful for developing theoretical models from first principles, how can researchers

use observed data to subject these derived models to statistical analysis? Variable

selection in multivariate regression offers one way of testing which variables are most

important in describing some physical process.

Variable selection in classical multivariate regression has been popular since the

1960’s. Efroymson (1960) proposed one of the first stepwise regression analysis proce-

dures, where variables in a regression model are iteratively added and tested for their

significance. Under the classical paradigm, variable significance is tested by the re-

duction in sum of squared residual error. Blass (1963) and Boyd (1963) implemented

Efroymson’s procedure to test a power series expansion in molecular models. Kurlat

(1969) revised this analysis system and applied it to axially symmetric molecules.
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This system was also used by Kurlat et al. (1971) to analyze CD3I. Hafford (1972)

implemented this stepwise regression analysis system with iteratively recomputed

weights.

Although implementing the multivariate regression analysis as a forward stepwise

process was a great advance, by 1970, some criticisms appears in the literature. Man-

tel (1970) remarked that the order of the stepwise process generally affects the final

model. Others (Boyce et al. 1974, Wilkinson 1989, pg 177-178) criticized the arbi-

trary levels of significance for variables entering or leaving the model. The stepwise

process is an ad hoc analysis system with little basis in statistical theory. Changing

the order in which the variables enter the model equation or changing the thresholds

for variable entry or exit can cause the algorithm to compute radically different final

models for the same data set. In addition, because classical regression methods try

to minimize squared residual error, it generally overfits data, computing models that

generalize poorly.

In order to address these issues, Akaike (1973) introduced a new way of judging

models computed in the regression process. Instead of relying on levels of significance,

different combinations of model parameters are assigned a score. The scoring function,

called Akaike Information Criterium (AIC) is expressed as

AIC(m) = −2 log(θ) + 2m (6.1)

where the first term is double the maximized log-likelihood estimate of the regression

and the second term is twice the number of free parameters. AIC is a penalized cost

function. The two terms counteract each other, trying to find the optimal balance

between lack of fit and lack of parsimony in the regression analysis. Later, Bozdogan

(1988, 1990a, 2000, 2004) proposed a different scoring function called ICOMP , which
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is given as

ICOMP = −2logL(Θk) + 2C(ΣModel) (6.2)

The first term in ICOMP accounts for lack of fit in the same way as the first term

in AIC does. The second term, however, measures the complexity of terms included

in the regression model. While AIC only penalizes twice the number of included

parameters, ICOMP penalizes for interactions between model parameters in the re-

gression model. ICOMP is currently considered by specialists to be the most correct

scoring function in statistical model selection (Bozdogan, private communication)

We propose using these scoring functions to find the best model in a power-series

modeling scenario. Instead of using the F test based stepwise procedure, we will assign

combinations of model terms complexity scores. The model combination that achieves

the minimum score is the best for describing the system under study. Section 2 of

this chapter will review stepwise analysis of power series while section 3 will introduce

the information scoring method of analyzing power series. Section 4 will show how

we can implement a Beaton-Tukey (1974) weighting technique in information scored

regression. The chapter will conclude in section 5. The next chapter will highlight

examples of data sets processed with this new algorithm.

6.2 Stepwise Regression and Power Series

Regression analysis of power series differs from the general problem of regression

because of the different orders of magnitude of the variables. Although in general

regression studies, every variable combination is a potential model, the power series

regression requires that lower order terms be in the model if higher order terms are in

it. Beaton and Tukey (1974) give a good description of this problem in their paper.

As an example, they describe the process of analyzing the spectrum of diatomic
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molecules used by Mann et al. (1961). In this process, the vibrational energies E of

the molecule are given by

E = ν0 + B(J(J + 1)−D(J(J + 1))2 + H(J(J + 1))3 (6.3)

+I1(J(J + 1))4 + I2(J(J + 1))5 + I3(J(J + 1))6 + . . .

where J is the rotation quantum number of the molecule and the coefficients are

the molecular constants. The researcher must use a regression analysis procedure

to calculate values for these molecular constants. Depending on the complexity of

the molecule, there may be many terms in the respective orders of magnitude, and

some variable selection method is required to give the best equation that describes

the observed molecular spectrum.

Stepwise regression is a classical procedure for selecting variables in a regression

equation. Stepwise regression iteratively adds or deletes variables to a model and

tests the resulting reduction in sum of squared error. In order to use stepwise regres-

sion, variable entry and exit thresholds must be defined. There are several versions

of stepwise regression procedures. Forward stepwise regression successively adds vari-

ables to an equation while backwards stepwise regression successively deletes them.

In mixed stepwise regression, the user starts with a preset number of variables and

the algorithm iteratively adds or deletes them until no change occurs. In all of the

stepwise procedures, the candidate variable’s F ratio for entry is computed. If the F

ratio is above the threshold, the variable enters, otherwise, it does not. Likewise, for

variable deletion, a similar F test is performed. If the F value is below the threshold,

it is deleted, otherwise, it remains in the regression equation.
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Efroymson (1960) originally proposed a forward procedure that successively eval-

uates the F ratios of each variable. Blass (1963) and Boyd (1963) were among the

first to implement a modified version of this procedure for analysis of quantum me-

chanical power series expressions. Their regression analysis examined contributions

of terms in the power series expansion. The independent variables were functions of

molecular quantum numbers and the dependent variable was the observed transition

frequency. Kurlat et al. (1971) used a similar approach in their analysis system. The

implementation of their algorithm is as follows:

1. Insert variables that the researcher believes are important. These may be the

lowest order terms for which the researcher already has good parameter esti-

mations. These terms are forced to be in the model at each iteration of the

algorithm.

2. Find the variable that is not currently in the model that has the largest F statis-

tic value to enter. The stepwise algorithm used by Blass and others sequentially

adds variables based on their order in the power series expression. If there are

no variables in the model that have an F value as large as the Fin value, then

stop.

3. Find the variable in the model, other than those forced to be in, that has the

smallest F statistic value to remove. If this value is less than Fout, then remove

this variable from the model. Repeat this procedure until no more variables are

dropped, then go to step 2.

Because these procedures analyze power series expansions, generally only the high-

est order terms need to be tested for significance. The modified forward stepwise

strategy was that the researcher could force lower order terms to be in the model and

successively add higher order terms. We propose implementing a structure that uses
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information scoring and includes lower order terms but tests combinations of high

order terms. The next section describes this new approach.

6.3 Information Scoring in Power Series

Since its introduction, researchers have enjoyed the benefits of using information

scores in regression studies. Instead of defining a hypothesis based test statistic, under

the information based regression paradigm, the analysis algorithm assigns scores that

judge the quality of the regression model. AIC (Akaike 1973) was the first example

of a regression scoring function, and it is expressed as

AIC(m) = −2 log(θ) + 2m (6.4)

For n data points having normally and independently distributed errors with residual

variance σ̂2, AIC is given as

AIC(m) = n log(2π) + n log(σ̂2) + n + 2(m + 1) (6.5)

ICOMP is another scoring function that is used in statistical model selection. The

ICOMP scoring function is given as

ICOMP = −2 log(θ) + 2C(F−1) (6.6)

Likewise, under the same residual assumptions, we have

ICOMP (REG) = n log(2π) + n log(σ̂2) + n + 2C1((X
′X)−1) (6.7)
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Here, the complexity operation is defined as

C1((X
′X)−1) =

q

2
log

[
tr((X′X)−1)

q

]
− 1

2
log

[
det((X′X)−1)

]
(6.8)

with q = rank((X′X)−1).

In order to use these scoring functions, we must compute the scores for differ-

ent combinations of regression equations. However, unlike general regression studies

where researchers consider every possible combination of model parameters, we only

want to consider combinations of model parameters that obey power series expan-

sions. If the researcher knows that some low order terms must be included in the

model, but wants to test the contributions of higher order terms, then under the in-

formation scoring paradigm, we want to assign scores to these combinations of model

parameters.

Under the general information based regression method, subsetting generates

every possible combination of model parameters. There are 2k − 1 possible com-

binations of model equations for k variables. However, in a power series analysis

situation, we always include low order terms. We can therefore devise a scheme that

only tests combinations of higher-order terms. Under our power series subsetting

scheme, we always include terms 1 through m and test all combinations of model

parameters m + 1 through k. This approach applies the discrimination ability of

information scoring to the special considerations of modeling under a power series

expansion. This process is summarized as follows:

1. Generate a sequence of regression model equations that include lower order

terms 1 through m but has every combination of higher order variables m + 1

through k.
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2. Assign each of these combinations an information score with one of the defined

scoring functions. Under normal regression modeling assumptions, ICOMP is

considered to be the best choice.

3. The model combination with the minimum ICOMP score is the best to describe

the system.

Although the subsetting paradigm works well in finding the minimum information

scores, the number of models that need to be scored grows quickly with k. Even

for a moderate value of k, the number of possible model calculations that must be

evaluated quickly becomes impractically large for most computers. As an alternative

to subsetting, Bearse and Bozdogan (2002) proposed implementing information scored

regression as a binary genetic algorithm (GA). Under this method, binary strings

represent possible combinations of model parameters, with 1 denoting inclusion and 0

denoting exclusion. The populations of strings undergoes standard genetic operations

of mutation and recombination, and the scoring function ICOMP acts as the fitness

function that ranks the quality of possible model combinations. The probability

of reproduction varies with fitness. Bearse and Bozdogan demonstrated that their

method could quickly find optimal models for regression cases with over 100 model

variables, a task that currently is virtually impossible under the standard scored

subsetting method (Bearse and Bozdogan 2002).

We propose that the power series regression can be implemented in a GA frame-

work in an analgous way as the power series subsetting method. Our proposed method

constructs a model where low order terms are forced to be in the model, but higher

order terms are represented in the GA method. This applies the efficient searching

capability of the GA to the analysis of power series. A description of our method

follows:
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1. Generate a population of binary strings that include lower order terms 1 through

m but has different combinations of higher order variables m + 1 through k.

2. Assign each of these combinations an information score with one of the defined

scoring functions. Rank the members of this population according to fitness

by an information score. ICOMP is generally regarded to be the best scoring

function under standard modeling assumptions.

3. Apply the GA operations of mutation, recombination, and reproduction to this

population. Continue this loop until convergence of the GA population.

4. The model combination that converges to the minimum ICOMP score is the

best to describe the system

6.4 Weighting in Scored Regression

Beaton and Tukey (1974) described a method of modeling perturbed spectra with

weighted regression. While the power series expression (6.3) describes the predicted

energies of molecular transitions, this type of power series expansion ignores inter-

actions between molecular states. When perturbations are not a serious problem,

the transition frequencies predicted by the power series model follow a regression line

well. Perturbed points, however, can cause transition energies to fall far away from

the regression line. In order to reduce the effects of these perturbations, Beaton and

Tukey defined the least squares regression estimates to be

β̂ = (X′WX)−1X′Wy (6.9)

here, the weight matrix W is a diagonal matrix whose elements are iteratively re-

calculated. Let εi be the standardized residual value of the ith data point. Under
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the Beaton-Tukey method, a limit smax of residuals from the regression line defines

the maximum distance from the regression line. The weights are then recalculated at

each iteration.

Wii =
(

1
(1−εi)

2

)2

for |εi| < smax

Wii = 0 for |εi| > smax

We implemented this type of weighting scheme in our scored information regres-

sion. However, we defined two limits smin and smax in our method, so that our weights

are updated as:

Wii = 1 for |εi| < smin

Wii =
(

1
(1−εi)

2

)2

for smin < |εi| < smax

Wii = 0 for |εi| > smax

These weights are updated for the best model at each iteration of the algorithm.

The points with residual values greater than smax are considered to be outliers. The

scored subset analysis algorithm is given by:

1. Generate a sequence of regression model equations that include lower order

terms 1 through m but has every combination of higher order variables m + 1

through k. Initialize all weight values to 1

2. Assign each of these combinations an information score with one of the defined

scoring functions. Update the weight values according to the model with the

best information score. Continue the process of reweighting and finding the

best information score until there is no change in the outlier assignments.

3. The model combination with the minimum ICOMP score is the best to describe

the system.

Similarly, the scored GA regression analysis algorithm is given by
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1. Generate a population of binary strings that includes lower order terms 1

through m but has different combinations of higher order variables m+1 through

k. Initialize all weight values to 1.

2. Assign each of these combinations an information score with one of the defined

scoring functions. Rank the members of this population according to fitness by

an information score. Update the weight values according to the model with

the best information score.

3. Apply the GA operations of mutation, recombination, and reproduction to this

population. Continue the process of reweighting and finding the best informa-

tion score until there is no change in the outlier assignments.

4. The model combination that converges under the GA process to the minimum

ICOMP score is the best to describe the system

6.5 Conclusion

This chapter reviewed power series regression based on classical regression, and also

showed how we can cast power series regression into a modern information scoring

framework. The interested reader can consult Beaton and Tukey’s 1974 paper for

more information about weighted regression and Bozdogan’s 2004 text for more in-

formation about information scoring in regression.
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Chapter 7

Scored Regression in Spectroscopy

7.1 Introduction

For the past four decades, spectroscopists have relied on regression analysis method-

ology to interpret and analyze molecular spectra (Blass 1963, Boyd 1963). Initially,

graph paper and hand calculators were used in the numerical analysis. As the reso-

lution and quantity of data increased, digital computers were employed to speed the

process of spectral data interpretation. The computerized method of spectral analysis

used stepwise multivariate linear regression to perform the analysis (M. Kurlat 1969,

H. Kurlat 1970, Hafford 1972). This method attempts to find the best terms to in-

clude in a molecular Hamiltonian equation by casting the equations in a form where

the terms of the equation are linearly independent and can be analyzed by linear

regression methodology (Blass 1976). This method was used effectively through the

1960’s and 1970’s. The terms in the molecular Hamiltonian arose form a power series

expansion of the twice-transformed Hamiltonian (Blass and Nielsen 1974). During

the 1960’s and 70’s, the resolution of the data was sufficient that Hamiltonian terms
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through second order were resolvable. The observed effects led to molecular Hamil-

tonian equations with up to approximately 15 terms that adequately described the

molecules under study. These terms included the main effects of the band origin

and the second order distortion constants. The data sets generally had hundreds of

identifiable transitions, and researchers analyzed the spectroscopic data using least-

squares analysis methods to calculate molecular constants appropriate to multiple

bands simultaneously.

This chapter will compare the historical stepwise results with analysis based on

modern regression methodology. For relatively low resolution data, the regression

analysis is sufficient for calculating all spectral parameters. For more modern, higher

resolution data, the regression analysis would be the initial step in the analysis. The

researcher would then iteratively analyze perturbations and recalculate molecular

parameters.

7.2 Boyd/Kurlat CD3I 2ν4 Spectrum

The first data set that we compared was the 2ν4 spectral band of CD3I. This data was

was originally analyzed by Boyd (1963) in his Ph.D. dissertation, and then reanalyzed

by Kurlat et al. (1971). This set was acquired from a Littrow grating spectrometer

at Michigan State University in the 1960’s. These data had a resolution of ∼0.06

cm-1 and were calibrated against argon emission lines in the third and fourth order.

When the data were recorded, the pressure was ∼40 Torr and the absorbing path

length was approximately 8m (Kurlat et al. 1971). This data set was ideal for a

first test case because at this resolution, it is almost unperturbed and is a textbook

example of a statistical analysis of a molecular spectrum. This data set had 310

transitions. We used the same variable definitions as Kurlat et al., and applied the
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Table 7.1: Definition of Molecular Parameters for 2ν4

Variable Parameter Quantum Dependency
1 ν4 + x44 + xl4l4 ∆ν4

2 A0 + 2Aeζ4 (2K + ∆K) ∆K

3 DK
0 K4 − (K + ∆K)4

4 αA
4 −∆ν4 (K + ∆K)2

5 αB
4 −∆ν4[(J + ∆J) (J + ∆J + 1)− (K + ∆K)2]

6 xl4l4 + (1/4)Aeζ4 ∆l24

subset analysis method to this data. We used the same values of B0, DJ
0 , and DJK

0

as the original authors. These values are set by microwave spectral studies which

return much more precise parameter estimates. The values quoted by the original

authors are B0 = 0.201482 cm-1, DJ
0 = 1.19× 10−7cm-1 and DJK

0 = 1.612× 10−6cm-1.

Because of the physical interpretation of molecular constants, we forced the first three

terms to be in the model, and let the algorithm select the remaining terms. Table 7.1

shows the respective molecular parameters in this analysis. Note that there is a sign

correction in the αB
4 terms as compared with the Kurlat et al. paper.

The result of the subset analysis gave almost the same results as the Kurlat et al.

analysis, both in numerical parameter values and in variables selected as meaningful

in the regression. Table 7.2 gives the results from the unweighted regression. The

numerical values have units of cm−1 and the confidence intervals are simultaneous

confidence regions for all the given parameters. Table 7.3 shows the results of the

weighted regression using our modified Beaton-Tukey scheme. For both calculations,

we used 3.0 standard deviations as the outlier deletion limit, and in the weighted case,

we used 1.0 standard deviations as the inner weight limit. The residuals for both

regression cases showed no unusual features and had nearly ideal normal quantile

plots.
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Table 7.2: Unweighted Regression Estimates of Molecular Parameters of 2ν4

Variable Kurlat et al. Value 95% CI Wicker Value 95% CI
1 2273.069 0.001 2273.070 0.001
2 3.4723 0.0002 3.4721 0.0003
3 3.81×10−5 5×10−7 3.77×10−5 9×10−7

4 0.01283 1×10−5 0.01284 2×10−5

5 8.7×10−5 2×10−6 8.7×10−5 1×10−6

6 8.8136 8×10−4 8.8140 1×10−3

Table 7.3: Weighted Regression Estimates of Molecular Parameters of 2ν4

Variable Kurlat et al. Value 95% CI Wicker Value 95% CI
1 2273.069 0.001 2273.069 0.001
2 3.4723 0.0002 3.4720 0.0003
3 3.81×10−5 5×10−7 3.75×10−5 9×10−7

4 0.01283 1×10−5 0.01284 2×10−5

5 8.7×10−5 2×10−6 8.7×10−5 1×10−6

6 8.8136 8×10−4 8.8144 1×10−3

We can see that the information based subset analysis gave almost the same

parameter estimates as the sum of squared error based analysis on this data set. The

modern analysis gave a mean squared error value of 1.1×10−4cm−1. The results of

this case confirm that in the low variable limit, the classical stepwise regression and

the modern scored regression return nearly the same results.

7.3 Kurlat CD3I ν4 + ν5 Spectrum

The next data set that provides a good test case is the ν4 + ν5 combination band of

Methyl Iodide, measured from the Michigan State Littrow spectrometer. The data

set had 389 transitions. We again subjected this data set to the information based
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Table 7.4: Definition of Molecular Parameters for ν4 + ν5

Variable Parameter Quantum Dependency
1 ν4 + ν5 + Ae(ζ4 + ζ4) + ... ∆ν4

2 A0 + Ae(ζ4 + ζ4) (2K + ∆K) ∆K

3 DK
0 K4 − (K + ∆K)4

4 αA
4 + αA

5 −∆ν4 (K + ∆K)2

5 αB
4 + α5

5 −∆ν4[(J + ∆J)(J + ∆J + 1)− (K + ∆K)2]

subset analysis. The results of the analysis follow. The numerical values have units

of cm−1 and the confidence intervals are simultaneous confidence regions for all the

given parameters. We note a sign correction in variable 5 that differs from the Kurlat

et al. paper. The molecular parameter definitions are given in table 7.4. We again

included the first three terms in the model, and let the algorithm select the remaining

terms.

We can see that both the weighted and unweighted regression analysis returned

values that were very close to the values calculated by the original authors. The

mean squared error of both regression cases was 0.0015. Tables 7.5 and 7.6 show the

results from the respective analysis trials. The reason for this difference comes from

the final points identified as outliers. This data set showed perturbations, so we used

the outlier limit of 2.0 standard deviations for both the weighted and unweighted

analysis, and 1.0 standard deviations for the inner weight limit of the weighted trial.

The residual plots did not show any unusual patterns and the residual quantile plots

showed no problems with normality.

These results again verify that the information based analysis give almost the

same results as the sum of squared error based analysis method. The same variables

were selected using the different methods and the numerical parameter values agree

well.
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Table 7.5: Unweighted Regression Estimates of Molecular Parameters for ν4 + ν5

Variable Kurlat et al. Value 95% CI Wicker Value 95% CI
1 3337.494 0.005 3337.494 0.005
2 2.2097 0.0004 2.2095 0.0005
3 3.4×10−5 1.5×10−6 3.4×10−5 2.5×10−6

4 0.02818 8×10−5 0.02821 1×10−4

5 -3.6×10−4 2×10−5 -3.6×10−4 1×10−5

Table 7.6: Weighted Regression Estimates of Molecular Parameters for ν4 + ν5

Variable Kurlat et al. Value 95% CI Wicker Value 95% CI
1 3337.494 0.005 3337.499 0.005
2 2.2097 0.0004 2.2095 0.0005
3 3.4×10−5 1.5×10−6 3.4×10−5 2.5×10−6

4 0.02818 8×10−5 0.02825 1×10−4

5 -3.6×10−4 2×10−5 -3.5×10−4 1×10−5

7.4 Kurlat CD3I 2ν4, ν4 + ν5 and ν2 + ν4 Spectrum

For the next example, we examined the simultaneous analysis of the combination

band of the Methyl Iodide data and compared the information scored analysis with

the results from the Kurlat et al. paper. These data contain the data from the 2ν4

and ν4 + ν5 bands plus the ν2 + ν4 combination band, for a total of 940 transitions.

Table 7.7 shows the first and second order molecular parameters with their quantum

dependencies. To save space, only the leading term is given in the table. We note

sign corrections identified in the Kurlat et al. paper.

Tables 7.8 and 7.9 show the weighted and unweighted information scored analysis

through second order. In this case, we forced the first order terms and the DK
0

in the model, and let the subsetting algorithm select the second order terms. The
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Table 7.7: Definition of Molecular Parameters for Combination Band to Second Order

Variable Parameter Quantum Dependency
1 ν2 + ... ∆ν2

2 ν4 + ... ∆ν4

3 ν5 + ... ∆ν5

4 A0 (2K + ∆K) ∆K
5 Aeζ

z
4 −2∆l4 (K + ∆K)

6 Aeζ
z
5 −2∆l5 (K + ∆K)

7 DK
0 K4 − (K + ∆K)4

8 αA
2 −∆ν2 (K + ∆K)2

9 αA
4 −∆ν4 (K + ∆K)2

10 αA
5 −∆ν5 (K + ∆K)2

11 αB
2 −∆ν2

[
(J + ∆J) (J + ∆J + 1)− (K + ∆K)2]

12 αB
4 −∆ν4

[
(J + ∆J) (J + ∆J + 1)− (K + ∆K)2]

13 αB
5 −∆ν5

[
(J + ∆J) (J + ∆J + 1)− (K + ∆K)2]

14 xl4l4 ∆l24

Table 7.8: Unweighted Regression Estimates of Molecular Parameters for Combina-
tion Band to Second Order

Number Kurlat et al. Value 95% CI Wicker Value 95% CI
1 961.797 0.009 961.792 0.006
2 2273.071 0.003 2273.070 0.003
3 1056.201 0.007 1056.204 0.006
4 2.5792 0.0003 2.5792 0.0004
5 0.4461 0.0005 0.4463 0.0002
6 -0.815 0.0005 -0.816 0.0003
7 0.000036 0.00001 0.000036 1×10−6

8 -0.0042 0.0003 -0.0042 0.0002
9 0.01287 0.00003 0.01287 0.00004
10 0.0153 0.0001 0.0154 0.0001
11 0.00178 0.00003 0.00175 0.00002
12 0.000086 0.000004 0.000086 0.000002
13 -0.00044 0.00002 -0.00044 0.00001
14 8.592 0.002 8.592 0.001
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Table 7.9: Weighted Regression Estimates of Molecular Parameters for Combination
Band to Second Order

Number Kurlat et al. Value 95% CI Wicker Value 95% CI
1 961.797 0.009 961.790 0.006
2 2273.071 0.003 2273.070 0.003
3 1056.203 0.007 1056.203 0.005
4 2.5792 0.0003 2.5787 0.0004
5 0.4461 0.0005 0.4465 0.0002
6 -0.815 0.0005 -0.815 0.0003
7 0.000036 0.00001 0.000036 1×10−6

8 -0.0042 0.0003 -0.0040 0.0002
9 0.01287 0.00003 0.01287 0.00004
10 0.0153 0.0001 0.0154 0.0001
11 0.00178 0.00003 0.00175 0.00002
12 0.000086 0.000004 0.000086 0.000002
13 -0.00044 0.00002 -0.00045 0.00001
14 8.592 0.002 8.592 0.001

numerical values have units of cm−1 and the confidence intervals are simultaneous

confidence regions for all the given parameters. We used 2.5 standard deviations as

the outlier limit in both cases, and 1.0 standard deviations for the inner weight limit

in the weighted regression. The mean squared error of both regression calculations

was 0.0004. The residual plots for both showed no unusual features, and the normal

quantile plots showed that the residuals followed normal distributions well.

We can see that both the weighted and unweighted results choose all of the possible

variables. Both regression procedures also calculated numerical values that were all

statistically equal to the stepwise procedure.

Another trial using this data set was the regression analysis of these data with

the model expanded the third order. The possible model terms are given in table

7.10. For this trial, we forced the first 7 variables to be in the model, and used

an ICOMP scored subset selection to identify the other terms. The results of the

unweighted analysis are in table 7.11. For this trial, we used 2.5 standard deviations
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Table 7.10: Definition of Molecular Parameters for Combination Band to Third Order

Variable Parameter Quantum Dependency
1 ν2 + ... ∆ν2

2 ν4 + ... ∆ν4

3 ν5 + ... ∆ν5

4 A0 (2K + ∆K) ∆K
5 Aeζ

z
4 −2∆l4 (K + ∆K)

6 Aeζ
z
5 −2∆l5 (K + ∆K)

7 DK
0 K4 − (K + ∆K)4

8 αA
2 −∆ν2 (K + ∆K)2

9 αA
4 −∆ν4 (K + ∆K)2

10 αA
5 −∆ν5 (K + ∆K)2

11 αB
2 −∆ν2

[
(J + ∆J) (J + ∆J + 1)− (K + ∆K)2]

12 αB
4 −∆ν4

[
(J + ∆J) (J + ∆J + 1)− (K + ∆K)2]

13 αB
5 −∆ν5

[
(J + ∆J) (J + ∆J + 1)− (K + ∆K)2]

14 xl4l4 + ... ∆l24(J + ∆J + 1)− (K + ∆K)2

15 ηJ
5 −2∆l5 (K + ∆K) (J + ∆J) (J + ∆J + 1)

16 ηK
4 ∆l4 (K + ∆K)3

17 ηK
5 ∆l5 (K + ∆K)3

18 ηJ
4 ∆l4 (K + ∆K) (J + ∆J) (J + ∆J + 1)
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Table 7.11: Unweighted Regression Estimates of Molecular Parameters for Combina-
tion Band to Third Order

Number Kurlat et al. Value 95% CI Wicker Value 95% CI
1 961.799 0.009 961.793 0.006
2 2273.071 0.003 2273.0696 0.003
3 1056.202 0.007 1056.206 0.005
4 2.5797 0.0003 2.5791 0.0004
5 0.4461 0.0005 0.4464 0.0002
6 -0.816 0.0005 -0.818 0.0005
7 Not Sig 0.000037 1×10−6

8 -0.0042 0.0003 -0.0040 0.0002
9 0.01287 0.00003 0.01285 0.00004
10 0.0153 0.0001 0.0154 0.0001
11 0.00178 0.00003 0.00175 0.00002
12 0.000086 0.000004 0.000086 0.000002
13 -0.00044 0.00002 -0.00042 0.00001
14 8.592 0.002 8.592 0.001
15 -4×10−6 3×10−6 -1×10−5 2×10−6

16 4×10−6 2×10−6 Not Sig
17 -0.00001 0.00001 Not Sig
18 Not Sig Not Sig

as the outlier limit. Our diagnostic plots showed no problems with normality and no

strange patterns. The mean squared error of the unweighted regression analysis was

0.0004.

When we applied the genetic algorithm version of the analysis algorithm, we

retrieved the same results as the subsetting algorithm. This is consistent with the

proper application of information scored regression analysis.

7.5 Guelachvili et al. CD3I ν4 Spectrum

This data set represents a modern study with high spectral resolution from Guelachvili

et al. (1984). The resolution of this data set was 5.4 × 10−3 cm−1 with over 2100

identified transitions. The original authors do not explain what possible terms are
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Table 7.12: Unweighted Regression Estimates of Molecular Parameters for ν4 Spec-
trum

Constant Guelachvili et al. Value Wicker Value
ν0 2298.54431 2298.54369
A4 2.5825779 2.5960037
B4 0.20139595 0.201406187
Aζ4 0.463800 0.463952

in the model, but only state the final numerical results of their analysis. In order to

reanalyze this data set, we derived a regression model using the appropriate expression

from Blass’ 1976 paper. The original authors state that in their initial fit, they

used 740 lines that they regarded as mostly unperturbed. We applied our regression

analysis program with outlier deletion with the minimum number of data points

set to be 740. We constrained the ground state constants to be the same as the

original authors: A0 = 2.59608 cm-1, B0 = 0.2014825 cm-1, DJ
0 = 0.1244× 10−7cm-1,

DJK
0 = 1.611 × 10−6cm-1 , and DK

0 = 19.8 × 10−6cm-1. Our analysis represents the

initial values in what would be an iterative perturbation analysis. We can compare

our initial values to the authors final values. Tables 7.12 and 7.13 show the results

of the unweighted and weighted regressions respectively. The original authors state

that their initial fit had a standard deviation of 9×10−4. The standard deviation of

our weighted and unweighted fits were 8×10−4 and 6×10−4 respectively, a bit smaller

than the original authors. Our method required no preselection of points, but rather

automatically selected the points to be included in the initial fit.

7.6 Conclusion

This chapter compared the results of some historical data sets using stepwise regres-

sion against modern information scored regression. Our results indicated that the
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Table 7.13: Weighted Regression Estimates of Molecular Parameters ν4 Spectrum

Constant Guelachvili et al. Value Wicker Value
ν0 2298.54431 2298.54397
A4 2.5825779 2.5826756
B4 0.20139595 0.201404898
Aζ4 0.463800 0.464011

data sets with relatively few variables gave practically identical results as the classi-

cal stepwise results, whereas the more complex cases with a larger number of possible

variables showed some differences. This is consistent with the expected behavior of

the classical verses modern analysis algorithms. We believe that this method can

be used in more complex analysis cases and also in more general studies in physical

science.
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Chapter 8

Genetic Algorithms for

Hyperellipsoidal Clustering

8.1 Introduction

In automated classification, we consider the problem of partitioning the data based

only on observed values. The problem of automated clustering of data is important in

many fields, such as multivariate image analysis (Mao and Jain 1996), astronomical

survey data (Roeder and Wasserman 1997, Zhang and Zhao 2004) and geographic

climatology (Hoffman et al. 2005). Clustering methods try to find some underlying

structure in the data, relying on a measure of similarity to judge how similar data

points are to one another. The K-means algorithm (Macqueen 1967) has been widely

used in pattern recognition problems, with the user only defining the number of

clusters K. Under the K-means scheme, seed values or initial cluster centroids are

calculated, which are initial points chosen that may be representative of some feature

or have some special qualities with respect to cluster membership. The algorithm then

assigns data points to clusters based on their Euclidean distance from the seeds. After
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the user specifies seed values, the identified cluster assignments and calculated cluster

centroids iterate until the number of data points that change between iterations falls

below a threshold. Many variants of the traditional K-means algorithm (Jain and

Dubes 1989) try to minimize a metric with respect to some cluster property, such as

the number of data points in the cluster or the within cluster variance.

We can formalize the description of partitioned cluster analysis as follows. We

want to partition d dimensional data vectors into K groups. Let {xi, i = 1, 2, . . . n}
be a set of n data vectors, and let xij be the jth value of vector xi. Let i = 1, 2, . . . , n

and k = 1, 2, . . . , K. Then, if the ith pattern is in the kth cluster,

wik = 1 (8.1)

else

wik = 0 (8.2)

The matrix of these values, W = [wij] has the attributes

wij ∈ {0, 1} (8.3)

and
K∑

j=1

wij = 1 (8.4)

The question of how best to choose centroid seed values and the choice of metric

minimization has always plagued researchers using the K-means algorithm. Under

the traditional paradigm, choosing different seed values generally yields different par-

titions of the same data set. In addition, the metric spaces of cluster cost functions

are generally complex, multivariate and nonlinear, and under the traditional K-means

paradigm, there is no guarantee that the iterative method optimizes the metric chosen.
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Krishna and Murty (1999) addressed the issue of optimizing cluster calculations while

simultaneously overcoming the issue of initial choice of cluster seeds by introducing

a version of the K-means algorithm based on Genetic Algorithm (GA) strings. The

user randomly initializes a population of strings, with the strings denoting the cluster

assignments for each data point. For example, if we want to partition a data set with

100 observations into 5 clusters, each entry in the string {x1, x2, . . . , x100} can assume

integer values 1 to 5, and there is one string entry for each data point. The strings in

the Genetic K-Means algorithm represent candidate solutions to the problem under

study. Using a GA population, the strings undergo genetic-type operations, where

values in the string undergo random changes and recombinations.

An extension of the K-Means method occurs in Hyperellipsoidal Clustering (HEC).

In HEC, clusters generally have different variances in different directions. This is like

having clusters with football or cigar shapes, which contrasts with the K-means clus-

tering process, where clustering based on Euclidean distance leads to hyperspherical

clusters (Wang et al. 1997, Wang and Xia 1997). One is handicapped when using

K-Means in HEC because of the more complex covariance structure. In the mid

1990’s, Mao and Jain (1996) proposed handling the HEC problem by using a version

of Mahalanobis distance as the metric to be minimized. They implemented a regular-

ized Mahalanobis metric in a two-layer self-organizing neural network that identifies

departures from sphericity in a clustered data set. Later, Wang and Xia showed that

Mahalanobis distance has problems with minimization in HEC (Wang and Xia 1997).

Wang et al. (1997) echoed this argument and proposed a different metric for HEC.

In this chapter, we propose a new GA based algorithm for HEC. Our algorithm,

called Genetic Algorithm with Regularized Mahalanobis (GARM) combines the op-

timization properties and rapid convergence of the Genetic K-Means algorithm with

the classification accuracy of the Wang et al. method. Section 2 will review properties
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of GA’s and other hybrid algorithms, while Section 3 will review the development of

Regularized Mahalanobis distance. Section 4 will introduce our GARM algorithm

and Section 5 will demonstrate its performance on simulated data, and compare

GARM’s classification accuracy with the Genetic K-Means (GKM) algorithm. These

differences are striking in data sets with complex covariance structure. The chapter

concludes in Section 6 with a summary and discussion.

8.2 Genetic Algorithms in Cluster Analysis

First pioneered in the 1960’s, GA’s have been widely studied and applied in many

fields of science and engineering (Holland 1975). Not only do GA’s provide an alterna-

tive method to solving optimization problems, but they also consistently outperform

gradient-based methods in many multi-valued optimization problems. Many of the

real world problems that involve finding optimal combinations of parameters which

might prove difficult for traditional methods are ideal for GA’s. Some applications of

GA’s have included problems in engineering, economics, and game theory (Holland

1992), as well as computational sciences (Forrest 1993), and biology (Sumida et al.

1990). GA’s were introduced as a computational analogy of adaptive systems. They

are modeled on the principles of evolution via natural selection, employing a pop-

ulation of individuals that undergoes selection in the presence of variation-inducing

operators such as mutation and recombination. The GA represents candidate solu-

tions to a problem as strings of numbers. It then ranks the quality of the string

solutions with a fitness function, and forces the strings to change by applying genetic

operations. The strings adapt through many iterations, searching for an optimal so-

lution to the problem. The function that ranks the quality of candidate solutions is

called the fitness function. Generally speaking, the kind of fitness function that is used
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in a GA depends on the problem at hand and reproductive success is proportional to

fitness.

A number of researchers have implemented GA’s in cluster methodology (Bhuyan

et al. 1991, Jones and Beltramo 1991). Because it relies on a GA type evolution

process, the GKM algorithm must define a fitness function to guide the optimization

process. For K clusters, each with nk data points, Krishna and Murty (1999) used the

total within cluster variance W =
∑K

k=1 Wk where Wk =
∑nk

i=1(xi−µk)
T (xi−µk)

as the fitness function. Here, µk is the centroid of cluster k. Their idea was that

one measure of the quality of a clustered data set is the sum of the variances of the

clusters, with smaller values denoting better clusterings. Their algorithm utilizes the

global optimization properties of the genetic algorithm to find the combination of

cluster assignments that minimizes the sum of cluster variances. Krishna and Murty

demonstrated that their GKM algorithm calculates clusters with smaller total within

cluster variance values than the traditional K-Means algorithm (Krishna and Murty

1999), leading to more compact computed clusters. The GA-string representation

and associated operations efficiently searches for a global minimum in the value of

total within cluster variance.

Although their method is based on GA’s, Krishna and Murty do not use the

standard GA operations of crossover and mutation. It is known that implementing

the crossover operation in some clustering routines can be computationally expensive,

especially when the fitness function depends on using the crossover operation (Bhuyan

et al. 1991, Jones and Beltramo 1991). Instead of the standard random mutation

operation, Krishna and Murty introduce a biased mutation operation. In their biased

mutation operation, the probability of mutating to a cluster is related to the distance

from the data point to the center of the cluster. The closer a data point is to a

cluster center, the higher the probability of mutating to this cluster. This innovation
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transformed the mutation operation from a random process into a guided search

that can rapidly find the optimal combination of cluster assignments. Krishna and

Murty also appealed to Markov chain theory to show that their process asymptotically

converges to a global optimum in fitness value.

In addition to the reproduction and modified mutation operations, the GKM

algorithm incorporates another strategy that speeds the convergence of the cluster

solution, called the Genetic K-means operation. In the Genetic K-means operation,

strings from the population are randomly selected and each entry in the string is

assigned to the cluster with the nearest (Euclidean distance) centroid. The algorithm

then recalculates the cluster centroids and reinserts the mutated strings into the pop-

ulation. Because the strings that undergo the Genetic K-means operation generally

have among the smallest total within cluster variation, they propagate on to sub-

sequent generations, replacing those strings whose initial assignments were far from

optimal. We found that incorporating the Genetic K-means operation in the GKM

clustering process can dramatically shorten the convergence time.

Another issue that arises in the GKM algorithm is that of illegal strings that are

missing datapoints from one or more clusters. This leads to singular values in the

definition of cluster centroids and problems with computational overhead. The GKM

algorithm checks each string to see if it is illegal, and replaces empty clusters with

randomly generated singleton clusters when one is found, ensuring that each of the

K clusters contain at least one data point.

We can summarize of GKM clustering process as follows (Krishna and Murty

1999):

1. Initialize the population of strings that represents cluster assignments.

2. Start the reproduction loop.

124



3. Perform the biased mutation operation on the population of strings.

4. Perform the Genetic K-means operation on the population of strings.

5. Update the population mean values and calculate fitness scores for each string.

6. Reproduce the population based on fitness.

7. Repeat steps 3 through 6 until convergence or the maximum number of gener-

ations.

In section 4, we will show how this process and the associated operations can be

adapted for HEC.

8.3 Regularized Mahalanobis Distance

Algorithms based on minimizing Euclidean distance generally compute hyperspherical

clusters (Wang et al. 1997). However, many data sets have a more complex structure.

Euclidean distance-based algorithms generally split elongated clusters, which leads to

a higher rate of misclassification (Mao and Jain 1996). To improve their accuracy, Mao

and Jain (1996) and Wang et al. (1997) used Mahalanobis distance, or its variant, in

clustering algorithms. Mahalanobis distance is a generalization of Euclidean distance

between two points that takes account of direction. Suppose that cluster k in a data

set has centroid µk and covariance matrix Σk. Given an observation in the data set

xi, we can calculate its Mahalanobis distance to the cluster’s centroid as

DMD(xi, µk) = [(xi − µk)
TΣ−1

k (xi − µk) ]1/2 (8.5)

Mao and Jain (1996) implemented a two-layer self-organizing network to identify

hyperellipsoidal clusters. The first layer had a PCA subnetwork that identifies the
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hyperellipsoidal shapes, and a second layer uses a self-organizing competitive learning

algorithm to refine the shape estimation. Their algorithm also relies on a Kolmogorov-

Smirnov statistic to test the significance of normality in the identified clusters. Mao

and Jain use Regularized Mahalanobis distance, defined as:

DRMD(xi,µk) = (xi − µk)
T [(1− λ)(Σk + εI)−1 + λI ](xi − µk) (8.6)

This definition is a compromise between Mahalanobis distance and Euclidean

distance, with the degree of each controlled by the parameter λ. When λ = 1,

the DRMD is the squared Euclidean distance and when λ = 0, it is purely squared

Mahalanobis distance. The ε term adds a small diagonal component to the covariance

matrix to protect it from singularities in the matrix inversion. In their neural network,

Mao and Jain use ε = 10−6, while λ decreases during the training process. The

network starts the calculation with mostly Euclidean distance and gradually decreases

the Euclidean component while protecting the covariance inversion.

Although it can identify complex structures, the Mao and Jain process is com-

plicated and computationally intensive (Wang et al. 1997). Later, Wang and Xia

(1997) critically reexamined Mao and Jain’s metric definition. They argued that

clustering algorithms based on Euclidean distance can reach a unique minimum be-

cause of the homogeneity with respect to direction, but Mahalanobis distance does

not have the same unique minimum property. Wang and Xia proved that if the Sum

of Squared Mahalanobis distances is used as a cost function to be minimized, then

it is equal to a constant: Given a set of n patterns that belong to a cluster in d-

dimensional space, if the covariance matrix Σ is invertible, for a cluster with mean

µ, then
∑n

i=1(xi−µ)TΣ−1(xi−µ) = d (n− 1)

In fact:

126



n∑
i=1

(xi − µk)
TΣ−1

k (xi − µk) (8.7)

=
n∑

i=1

Trace[(xi − µk)
TΣ−1

k (xi − µk)]

= Trace

[
Σ−1

k

n∑
i=1

(xi − µk)(xi − µk)
T

]

= Trace
[
Σ−1

k (n− 1)Σk

]

= d (n− 1)

Let Mik be a matrix of cluster assignments for the data set such that {Mik ∈
{0, 1} : i = 1, 2, . . . , n; k = 1, 2, . . . , K}. The squared Mahalanobis distance between

data point xi and cluster mean µk is given as

DMD(xi, µk) = (xi − µk)
TΣ−1

k (xi − µk) (8.8)

The cost function in the clustering process is is given by

Ek =
n∑

i=1

K∑

k=1

MikDMD(xi, µk) (8.9)

By the previous theorem, we have that

n∑
i=1

MikDMD(xi,µk) = d(n− 1) (8.10)
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So then

Ek =
n∑

i=1

K∑

k=1

MikDMD(xi, µk)

=
K∑

k=1

d(n− 1)

= d(n−K)

Wang and Xia go on to write that the results from Mao and Jain mainly come

from the Euclidean component of the distance metric during the training process, with

some hyperellipsoidal structure arising in the transition from Euclidean distance to

Mahalanobis distance. In addition, Wang et al. (1997) put forth a new expression for

Regularized Mahalanobis distance that overcomes the unique minimization problem.

DW (xi,µk) = |Σk|c(xi − µk)
TΣ−1

k (xi − µk) (8.11)

where c is a scale factor greater than zero. They show that this function is not equal

to a constant, and that this expression minimizes cluster variance in all directions.

Wang et al. implemented this expression as a fitness function in a GA population.

They use the traditional GA operations of mutation and crossover, demonstrating

that their method accurately classifies hyperellipsoidal clusters.

8.4 Genetic Algorithm with Regularized

Mahalanobis Distance (GARM)

This section describes our new algorithm which can accurately and efficiently classify

hyperellipsoidal data. We will describe a new regularization for the Mahalanobis dis-

tance and also propose a different fitness function based on the sum of the Regularized
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Mahalanobis distances between the cluster centers and the data points. We will also

show that our algorithm asymptotically converges to a global minimum.

8.4.1 Regularized Mahalanobis Distance

In their paper, Wang et al. (1997) proposed (8.11) as their Regularized Mahalanobis

distance and used it as an objective function to be minimized. However, Wang et al.

do not explain why this works as a metric that can identify hyperellipsoidal clusters.

They also state that the exponent of the determinant c must be greater than zero,

but they do not explain how this affects the outcome of the algorithm.

Another issue that Wang et al. do not address is singularities in the covariance

matrix. Mao and Jain (1996) add a small regularization parameter ε to the diagonal

of their cluster covariance matrix Σk to prevent singularites in the inversion process.

Wang et al. do not include such a protection factor, making (8.11) susceptible to

singularities in the covariance inversion.

We propose a new regularization for the Squared Mahalanobis distance between

data point xi and cluster mean µk to be

DWB(xi, µk)= |Σk|
1
2 (xi − µk)

T (Σk+εI)−1(xi − µk) (8.12)

where µk and Σk are the mean and covariance matrix of cluster k respectively, and ε

is a small value that protects the inversion process from singularities. We choose the

exponent of the covariance determinant to be 1
2

because |Σ| 12 is the square root of the

generalized variance of multivariate data set. Our numerical trials have shown that

this exponent accurately classified complex hyperellisoidal data, while other values

gave less favorable results. In addition, in equation (8.12), since (Σk+εI) is invertible,

our expression for the Regularized Mahalanobis distance is a special case of (8.11).

129



Therefore, it is not equal to a constant and can be used as a minimized objective

function.

Using the Woodbury formula for matrices A,U, and V:

(
A + UVT

)−1
= A−1−

[
A−1U

(
I + VTA−1U

)−1
VTA−1

]
(8.13)

If we let A = Σ, U = εI, and V = I, then we have the following:

(Σ+εI)−1 =
(
Σ + (εI)IT

)−1

(8.14)

= Σ−1 −
[
Σ−1(εI)

(
I + ITΣ−1(εI)

)−1
ITΣ−1

]

= Σ−1 −
[
Σ−1ε

(
I + εΣ−1

)−1
Σ−1

]

We also note that

(
I+εΣ−1

)−1
= (I (1 + ε)Σ−1)−1 (8.15)

= ((1 + ε) IΣ−1)−1

=
1

1 + ε
Σ

So, that gives

(Σ+εI)−1 = Σ−1 −
[
Σ−1 ε

1 + ε
ΣΣ−1

]
(8.16)

= Σ−1 −
[

ε

1 + ε
Σ−1

]

=

(
1− ε

1 + ε

)
Σ−1

So for ε → 0, then
(
1− ε

1+ε

)
Σ−1 ≈ Σ−1
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In order to use our Regularized Mahalonobis expression in a clustering algorithm,

we need to define a cost function to be minimized. Let Mik be a matrix of cluster

assignments for the data set such that {Mik ∈ {0, 1} : i = 1, 2, . . . , n; k = 1, 2, . . . , K}.
Let nk =

n∑
i=1

Mik be the sum of patterns in the ith cluster. We can express the

Regularized Mahalanobis distance between data point xi and associated cluster mean

by

DGARM(xi,µk) = |Σk| 12 (xi − µk)
T (Σk + εI)−1(xi − µk) (8.17)

The cost function in the clustering process is defined by

Ek =
n∑

i=1

K∑

k=1

MikDGARM(xi,µk) (8.18)

This function becomes the Sum of Within Cluster Generalized Variances of the cluster

set. Our clustering algorithm will try to iteratively minimize this expression with

respect to cluster assignments.

8.4.2 Clustering with the Genetic Algorithm

In order to use (8.18) in a clustering algorithm, we must search for a minimum

in the metric. Clustering metrics generally have high dimensionality and are non-

linear, so one should implement a method that quickly searches for a global mini-

mum. Following the example of Krishna and Murty (1999), we structured our clus-

tering algorithm as a GA. For the nk points that belong to cluster k, let Wk =
∑nk

i=1 |Σk| 12 (xi − µk)
T (Σk + εI)−1(xi − µk). We then defined the fitness function of

the GA to be W =
∑K

k=1 Wk. This fitness function is the sum of generalized vari-

ances of the clusters. We use this sum of regularized Mahalanobis distances in the

same way that Krishna and Murty use the Total Within Cluster Variance in GKM.
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Our GARM algorithm relies on analogous GA-hybrid operations as the GKM

method, giving our algorithm the same level of computational complexity as Krishna

and Murty’s. This implementation is an improvement over the method proposed

by Wang et al. (1997). Wang et al. relied on the traditional GA operations of

crossover, mutation, and reproduction. Not only do the crossover operations increase

the computational complexity of their algorithm, but clustering with the Wang et al.

implementation can take hundreds to thousands of iterations to converge. Simulations

will later show that our method quickly converges to a global optimum.

We wrote the algorithm in the MATLAB language and ran trials on a Pentium

III computer with Windows XP. Parameters that the user can control are the size of

the population, the mutation probability, and the termination criterion. We used the

string-of-group numbers coding (Jones and Beltramo 1991) where each data point in

the chromosome string can assume values {1, 2, . . . , K}, denoting the cluster to which

the data point belongs. While the population undergoes genetic operations, illegal

strings can be formed that are missing data points from one or more clusters. We

handled illegal strings by randomly inserting singleton clusters to ensure that each

string has at least one data point assigned to each cluster.

Let the algorithm have n data points to be partitioned into K clusters, and muta-

tion probability mutprob. The following describes the steps in our GARM algorithm

along with the pseudocode for each step.

1. Initialization: GARM first randomly generates cluster assignments in each

string. The initial random cluster assignments are drawn from a uniform prob-

ability distribution, so each string has approximately n
K

members assigned to

each clusters.

Pseudocode:

Start
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for i = 1 to N

for j = 1 to n

population(i, j) = integer(rand ∗K)

end

end

end

2. Mutation: In a GA framework, mutation introduces random variability into a

population that mimics random changes in genetic structure found in organisms.

In a GA based clustering situation, the mutation operation changes the value of

a cluster assignment according to some probability distribution. Our mutation

operation is analogous to the GKM biased mutation operation, except that

we use the Regularized Mahalanobis metric to gauge the distance from the

cluster centroid to the data point. The algorithm randomly selects population

strings and data points to undergo mutation. After making the selection, the

probability of a point mutating into a given cluster assignment is related to the

distance between the data point and the cluster centroid. The closer a data

point is to a cluster centroid, the higher the probability that it will mutate into

that cluster. Let dj = d(xi,µk) denote our Regularized Mahalanobis distance

from data point xi to cluster center cj. The probability of mutating into the

respective cluster assignments is given by

pj =
cmdmax − dj

K∑
i=1

(cmdmax − di)

where cm is a constant and dmax = max{dj}. In our case, we set cm = 1.
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Pseudocode:

Start

Randomly Select population member

Randomly generate points {x1, x2, . . . , xr} that undergo mutation by using

mutprob

For i = 1 to r

For j = 1 to K

compute dj

end

pj =
cmdmax−dj

KP
i=1

(cmdmax−di)

Generate new cluster assignments for xi according to probabilities pj.

end

Check to see if string is illegal.

Insert mutated string into population.

end

3. Mahalanobis Operation: This operation randomly selects a string from the

population and then assigns each point in the string to the cluster that has

the closest Regularized Mahalanobis distance. This operation is analogous to

the K-means Operation in the GKM algorithm. Because strings that undergo

this Mahalanobis operation generally have among the lowest Sum of General-

ized Variance in the population, they propagate on to subsequent generations.

Including this operation greatly speeds convergence of the algorithm to a solu-

tion. Let dj = d(xi, cj) denote our Regularized Mahalanobis distance from data
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point xi to cluster center cj. We can summarize this Mahalanobis operation as

follows.

Pseudocode:

Start

Randomly Select population member

For i = 1 to n

for j = 1 to K

dj = d(xi, cj)

end

xi = find(dj = min(dj))

end

Check to see if string is illegal.

Insert mutated string into population.

end

4. Selection: GARM uses the same kind of reproduction strategy as GKM. The

Sum of Generalized Variance becomes the fitness of the string F (si). The prob-

ability of reproduction then is given by

P (si) =
F (si)∑N

j=1 F (sj)

Members of the next generation are selected according to their relative fitness

values in a roulette wheel selection method. We include the same kind of σ-

truncation method as Krishna and Murty (1999).

Pseudocode:
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Start

for i = 1 to N

P (si) = F (si)PN
j=1 F (sj)

Check σ-truncation of fitness values

end

Select member of next generation according to probabilities P (si)

end

8.4.3 Convergence

Rudolph (1997) proved that the canonical GA converges to a global optimum in

the fitness value. Krishna and Murty (1999) also proved that the GKM algorithm

converges to a global minimum in the total within cluster variance. Our GARM al-

gorithm, which uses the same GA structure, also converges to a global optimum in

fitness. GARM uses the mutation and Genetic Mahalanobis operation in the same

way that Krishna and Murty use their operations. The only difference is the fitness

definition and the metric used to measure the distance between the observations and

the means of the clusters. The algorithm converges in a similar way as Krishna and

Murty’s algorithm since the fitness function and the metric used in GARM does not

affect the behavior of the Markov chain established in the state space. The state

space describes the populations containing legal strings, that is strings representing

partitions with K nonempty clusters. From the definition of GARM, P (t + 1) can

be determined completely by P (t), where {P (t)}t=0 represents the population main-

tained by GARM at generation t, so {P (t)}t=0 is a Markov chain. The transition

probabilities pij(t) = P (P (t) = pj|P (t−1) = pi) are independent of time. This shows
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that {P (t)}t=0 is a time-homogeneous finite Markov Chain and that the transition

matrix (pij) is the stochastic matrix of the Markov chain.

8.5 Analysis

In this section, we compared the performance of our GARM algorithm with GKM on

simulated data of increasing complexity. For the simulated data, we choose different

schemes, where clusters are ellipsoidal and may overlap. The automated clustering

process becomes especially challenging when clusters overlap. In the plots for these

examples, different colors and symbols denote cluster memberships. Black plus signs

(+) mark the positions of the respective cluster means.

8.5.1 Example 1

The first example of the algorithm used 5 simulated normally-distributed bivariate

clusters. This data set had 500 data points, with 100 data points assigned to each

cluster. The true classification of the simulated data is given in figure 8.1.

When we applied our GARM algorithm to this data set, the successful classifica-

tion rate was 95.2%. Figure 8.2 gives the classification results of our GARM algorithm

on this data set.

As a comparison, we also classified the same simulated data set with GKM. Figure

8.3 shows the classification results of this trial. The classification accuracy rate for

GKM was 90.2%.

Tables 8.1 and 8.2 compare the means and covariance estimates of the clusters

processed with GARM and GKM respectively.
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Figure 8.1: True Classification of Simulated Data Set 8-1.
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Figure 8.2: Classification Results of GARM on Simulated Data Set 8-1.
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Figure 8.3: Classification Results of GKM on Simulated Data Set 8-1.
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Table 8.1: Comparisons of the Mean Estimations of GARM and GKM for Different
Clusters in Simulated Data Set 8-1.

Cluster Original GARM GKM
1 (−0.1,−0.4) (−0.1,−0.4) (0.0,−0.5)
2 (0.7, 0.0) (0.7, 0.0) (0.9, 0.1)
3 (−0.5,−2.0) (−0.5,−2.0) (−0.7,−2.1)
4 (2.5, 0.7) (2.5, 0.7) (2.5, 0.7)
5 (2.0,−1.4) (2.0,−1.4) (2.0,−1.4)

Table 8.2: Comparisons of the Covariance Estimations of GARM and GKM for Dif-
ferent Clusters in Simulated Data Set 8-1.

Cluster Original GARM GKM

1

(
0.1 −0.1
−0.1 0.1

) (
0.1 −0.1
−0.1 0.1

) (
0.1 −0.1
−0.1 0.1

)

2

(
0.2 0.1
0.1 0.1

) (
0.2 0.1
0.1 0.1

) (
0.1 0.0
0.1 0.1

)

3

(
0.3 0.2
0.2 0.2

) (
0.3 0.2
0.2 0.2

) (
0.2 0.1
0.1 0.1

)

4

(
0.2 0.0
0.0 0.1

) (
0.2 0.0
0.0 0.1

) (
0.2 0.0
0.0 0.1

)

5

(
0.1 0.0
0.0 0.2

) (
0.1 0.0
0.0 0.2

) (
0.1 −0.1
−0.1 0.1

)

We can also compare the convergence rates of the Wang et al. method and GARM

on this data set. Figures 8.4 and 8.5 show the respective convergence rates of these

algorithms.

The clusters in this data are not strongly overlapped and not all of the clusters

show strong ellipsoidal shapes. Because of the relatively simple structure of this data

set, this case is not especially difficult to cluster. These results show that, even on

this simple data set, GARM had a higher correct classification rate than GKM. In

addition, GARM gave estimations of the cluster means and covariances closer to the

true values than GKM. In addition, GARM converged after only 7 iterations to obtain
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Figure 8.4: Convergence of Wang et al. Method for Simulated Data Set 8-1.
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Figure 8.5: Convergence of GARM for Simulated Data Set 8-1.
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an optimal classification, while the Wang et al. method took thousands of iterations

to converge to a similar cluster calculation with this data set.

8.5.2 Example 2

The second simulated data are 500 bivariate points expressed in three clusters. The

first cluster has 150 data points while the second cluster has 250 data points and the

third cluster has 100 data points. These clusters do not overlap, but they show strong

ellipsoidal structure, making Euclidian distance based classification difficult. Figure

8.6 shows the original classification of this data set.

When we applied our GARM algorithm to this data set, the successful classifica-

tion rate was 100%. Figure 8.7 gives the classification results of GARM algorithm on

this data set.

As a comparison, we also applied GKM to this data set. Figure 8.8 shows the

classification results of this trial. The accuracy rate of GKM was 80.2%.

Tables 8.3 and 8.4 show the cluster means and covariance estimations for the

respective algorithms.

We can also compare the convergence rates of the Wang et al. method and GARM

on this data set. Figures 8.9 and 8.10 show the respective convergence of these

algorithms.

Table 8.3: Comparisons of the Mean Estimations of GARM and GKM for Different
Clusters in Simulated Data Set 8-2.

Cluster Original GARM GKM
1 (2.1, 2.1) (2.1, 2.1) (2.1, 2.1)
2 (-4.0, -2.0) (-4.0, -2.0) (-3.1, -3.7)
3 (-3.0, 2.9) (-3.0, 2.9) (-4.2, 2.0)
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Figure 8.6: True Classification of Simulated Data Set 8-2.
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Figure 8.7: Classification Results of GARM on Simulated Data Set 8-2.
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Figure 8.8: Classification Results of GKM on Simulated Data Set 8-2.
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Figure 8.9: Convergence of Wang et al. Method for Simulated Data Set 8-2.
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Figure 8.10: Convergence of GARM for Simulated Data Set 8-2.
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Table 8.4: Comparisons of the Covariance Estimations of GARM and GKM for Dif-
ferent Clusters in Simulated Data Set 8-2.

Cluster Original GARM GKM

1

(
2.2 1.9
1.9 1.7

) (
2.2 1.9
1.9 1.7

) (
2.1 1.7
1.7 1.6

)

2

(
2.5 −4.4
−4.4 8.4

) (
2.5 −4.4
−4.4 8.4

) (
1.2 −2.0
−2.0 4.0

)

3

(
0.4 −0.4
−0.4 1.7

) (
0.4 −0.4
−0.4 1.7

) (
2.3 0.4
0.4 2.7

)

These results demonstrate that GARM is more well-suited to classifying this hy-

perellipsoidal data. GARM retrieved exact values of cluster means and covariances.

This again showed that GARM converged quickly, after only 7 iterations, while the

Wang et al. method took much longer converge to a similar cluster calculation.

8.5.3 Example 3

For the next trial, we used a simulated data set that was not so well separated,

making the classification process a bigger challenge. This was again a 500 point

bivariate data set expressed in three clusters. The clusters had 150, 250, and 100

data points respectively.

These clusters overlap and show strong ellipsoidal structure. The true classifi-

cation of the simulated data is given in figure 8.11. When we applied our GARM

algorithm to this data set, the successful classification rate was 93.2%. Figure 8.12

gives the classification results of GARM algorithm on this data set. Figure 8.13

shows the classification results of GKM trial. The GKM classification accuracy rate

was 48.8%.

Tables 8.5 and 8.6 show the cluster means and covariance estimations from GARM

and GKM.
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Figure 8.11: True Classification of Simulated Data Set 8-3.
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Figure 8.12: Classification Results of GARM on Simulated Data Set 8-3.
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Figure 8.13: Classification Results of GKM on Simulated Data Set 8-3.
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Table 8.5: Comparisons of the Mean Estimations of GARM and GKM for Different
Clusters in Simulated Data Set 8-3.

Cluster Original GARM GKM
1 (0.7, 1.0) (0.7, 1.0) (1.7, 0.4)
2 (1.0, 0.6) (1.0, 0.6) (0.4, 1.0)
3 (0.3, -0.5) (0.3, -0.5) (-0.6, -0.2)

Table 8.6: Comparisons of the Covariance Estimations of GARM and GKM for Dif-
ferent Clusters in Simulated Data Set 8-3.

Cluster Original GARM GKM

1

(
2.3 0.5
0.5 0.1

) (
2.2 0.5
0.5 0.1

) (
0.4 0.2
0.2 0.4

)

2

(
0.4 −0.3
−0.3 0.2

) (
0.4 −0.3
−0.3 0.2

) (
0.2 0.0
0.0 0.1

)

3

(
1.1 0.1
0.1 0.1

) (
1.1 0.1
0.1 0.1

) (
0.8 −0.2
−0.2 0.3

)

We can again compare the convergence rates of the Wang et al. method and

GARM on this data set. Figures 8.14 and 8.15 show the respective convergences of

these algorithms.

This example shows a drastic difference in the classification accuracy of GARM

and GKM, confirming that our algorithm is well suited to clustering these complex

hyperellipsoidal data. The classification accuracy of GARM led to good cluster mean

and covariance estimations, whereas GKM gives poor estimates of the means and co-

variance matrices. This example again demonstrated that GARM converged quickly,

after only 13 iterations.

8.6 Conclusion

In this chapter, we proposed a GA clustering method based on a new Regular-

ized Mahalanobis metric and demonstrated that the algorithm can separate complex
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Figure 8.14: Convergence of Wang et al. Method on Simulated Data Set 8-3.
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Figure 8.15: Convergence of GARM on Simulated Data Set 8-3.
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structures. Numerical simulation trials tested the effectiveness of our GA clustering

method. We demonstrated how this algorithm can separate more complex struc-

tures than the Genetic K-Means algorithm, and converges much faster than Maha-

lanobis distance-based methods using traditional GA opertations. This is especially

true when the clusters overlap or show complex structures. Because of its accuracy,

GARM gave better estimations of the means and covariance matrices of the identified

clusters than GKM. We also demonstrated that GARM converges quickly to an opti-

mal solution. The convergence properties of GARM are much better than the Wang

et al. method. We believe that this algorithm can be implemented in data mining

applications and in complex pattern recognition problems.
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Chapter 9

Genetic Expectation-Maximization

for Multivariate Mixture Modeling

9.1 Introduction

The problem of classifying data according to definable distributions is important in

many fields. The number of ways that n data points can be divided into p partitions

is
(

n
p

)
. Because of this large number of combinations, accurately modeling the distri-

butions of data as finite mixtures can be an almost intractable problem. According

to Bozdogan (1994), “Analysis of clusters by means of mixture distributions, called

mixture model cluster analysis, has been one of the most difficult problems in sta-

tistics.” Efficient and accurate methods must be developed to deal with the flood of

data from ever-expanding databases.

One of the tools used by researchers to model structure in data is by using finite

mixtures of distributions. The mixture modeling process estimates parameters that

describe distributions of data. Mixture modeling can be applied to both univariate
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and multivariate data that follow any distribution with definable parameters, includ-

ing mixtures of binomial, exponential, and Poisson data. Suppose that we have n

observations of dimension p so that {x1, x2, . . . , xn} ∈ Rp. We assume that these ob-

servations follow probability density g with parameters θ̂, and that each observation

xi has probability πk of belonging to the kth cluster. The sample of observations can

be described as arising from the mixture of probability densities

f(x, θ) =
K∑

k=1

πkg(θ̂) (9.1)

where π1, π2, . . . , πK are the mixture proportions, with 0 ≤ πk ≤ 1, k = 1, 2, . . . , K,

and
∑K

k=1 πk = 1.

For data that follow normal distributions if cluster k has mean µk and covariance

matrix Σk, then the probability density is written as

gk(x; µk,Σk) = (2π)−
p
2 |Σk|−

1
2 exp

[
−1

2
(x− µk)

T Σ−1
k (x− µk)

]
(9.2)

The finite mixture of normals has the form

f(x; π,µ,Σ) =
K∑

k=1

πkgk(x; µk,Σk) (9.3)

From this, we can derive the log-likelihood function of the data to be

l(π, µ,Σ)=
n∑

i=1

log

[
K∑

k=1

πk(2π)−
p
2 |Σk|−

1
2 exp

[
−1

2
(xi − µk)

T Σ−1
k (xi − µk)

]]
(9.4)

The mixture modeling process estimates parameters describing the mixture of

distributions. For a mixture of normal distributions, for example, we seek parame-

ter estimations that describe the clustered data set. To this end, researchers have
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implemented the Expectation-Maximization (EM) Algorithm. Dempster, Laird, and

Rubin (1977) proposed the EM algorithm as a general parameter estimation method,

while Peters and Walker (1978) applied the EM algorithm to mixture modeling. This

method has been widely applied in data analysis problems. Under the EM paradigm,

the researcher initializes parameter estimates, and the algorithm sequentially updates

estimates of the model parameters while also iteratively updating cluster assignments

according to calculated parameters. A good tutorial on the traditional EM algorithm

is in Chapter 8 of the text by Martinez and Martinez (2002).

While the EM algorithm proved to be a great advance in cluster analysis, some

shortcomings are inherent in the method. In order to start the EM process, the

researcher must have initial estimates of parameter values. However, the search space

for cluster problems is generally highly nonlinear with many local maxima. The

iterative algorithm can also have a very slow convergence rate. In addition, many

researchers advocate the K-means algorithm as an initialization scheme (Bozdogan

1994). The K-means algorithm assumes that data are hyperspherical, and it can only

accurately calculate diagonal entries in cluster covariance matrices. Many data show

more complex structure, so it can be a tedious task to find good starting values for

the traditional EM algorithm using K-means. Perhaps the most serious shortcoming

of the traditional EM algorithm is that it is guaranteed to only find a local maximum

in the log-likelihood with the quality of the final solution dependent on the initial

parameter estimates.

In order to overcome the handicaps of the traditional EM algorithm, we propose

a new Expectation-Maximization algorithm for mixture models based on genetic al-

gorithms (GA’s). Our algorithm, called Genetic Expectation-Maximization (GEM),

implements an efficient method to search for optimal cluster assignments as measured

by the log-likelihood function. Rather than using a gradient based searching method,
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our new technique relies on optimization properties of GA’s to search for a global

maximum in the cluster log-likelihood value. It implements the same kind of data

structure as the Genetic K-means (GKM) algorithm (Krishna and Murty 1999) and

the GARM algorithm, making it efficient and accurate in the cluster analysis cal-

culations. Our calculations show that this method can accurately classify data even

though different trials of the algorithm may have different initialization schemes. The

global optimization properties make our algorithm less sensitive to starting values

than the traditional EM method.

This chapter will introduce our new GEM algorithm in the context of mixture

model cluster analysis. Section 2 will review the traditional EM algorithm for finite

mixture models. Section 3 will introduce the theory behind our GA-based EM algo-

rithm and section 4 will enumerate the new method. Section 5 will give examples of

our method applied to simulated data. The chapter will conclude in section 6.

9.2 Traditional EM algorithm

The EM algorithm is currently the standard method for estimating parameters that

describe distributions. This method tries to calculate parameters that maximize

the log-likelihood of the mixture of distributions. These parameters are used to

calculate optimal cluster assignments for a mixture of distributions, generating the

Maximum Likelihood Estimate (MLE) of the data set. Under the assumption of

normally distributed data, the log-likelihood function of the data with n observations

and k clusters is given by

l(π, µ,Σ)=
n∑

i=1

log

[
K∑

k=1

πk(2π)−
p
2 |Σk|−

1
2 exp

[
−1

2
(xi − µk)

T Σ−1
k (xi − µk)

]]
(9.5)
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Under the traditional paradigm, we compute approximations coming from the

partial derivatives of the log-likelihood with respect to the cluster parameters. This

process derives iterative estimations of the respective parameters and the estimated

posterior probability of cluster membership P (k|xi) as given by

P̂ (k|xi) =
π̂kgk(xi; µ̂k, Σ̂k)∑K
k=1 π̂kgk(xi; µ̂k, Σ̂k)

(9.6)

π̂k =
1

n

n∑
i=1

P̂ (k|xi) (9.7)

µ̂k =
1

nπ̂k

n∑
i=1

xiP̂ (k|xi) (9.8)

Σ̂k =
1

nπ̂k

n∑
i=1

P̂ (k|xi) (x− µ̂k) (x− µ̂k)
T (9.9)

Using the traditional method, we must first restrict attention to some part of the

search space and give estimates of the starting values for the respective parame-

ters. The algorithm then iteratively maximizes the log-likelihood and updates the

respective estimates for the cluster partitions. We can summarize the traditional EM

iteration loop as follows:

1. Initialize estimates of the parameters according to some partition scheme. Re-

searchers most commonly advocate K-means as a way to find starting values

for the EM algorithm.

2. Calculate the posterior probabilities for each data point P̂ (k|xi).

3. Update the values of π̂k, µ̂k, and Σ̂k according to the new cluster memberships.

4. Continue this process until there is no significant increase in the log-likelihood

value.
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At the end of the EM loop, data points xi are assigned to clusters which have the

highest posterior probability such that

π̂lgl(xi; µ̂l, Σ̂l) ≤ π̂kgk(xi; µ̂k, Σ̂k) (9.10)

for all l 6= k. Hence, points are assigned to clusters that have the highest posterior

probability of cluster membership. The parameters πk, µk, and Σk are likewise

calculated as the MLE’s of the parameters describing the cluster partitions.

While this derivative-based EM procedure has enjoyed wide applicability, it has

some shortcomings. In many cases, the EM algorithm converges slowly, taking hun-

dreds to thousands of iterations. It is also a local maximizer. Depending on the

starting values, the iterative EM algorithm can return different, possibly suboptimal,

estimations of cluster parameters. This becomes especially problematic with high-

dimensional data that shows complex covariance structure. The parameter space in

these cases is generally nonlinear with many local maxima.

Another dilemma to using the traditional EM algorithm comes from data that

show hyperellisoidal covariance structure. With the traditional EM method, if the

researcher uses the K-means algorithm to initialize parameters, then they may have

poor initial estimates of the covariance values. The K-means algorithm can only

identify hyperspherical clusters that do not overlap. At best, the K-means algorithm

can only accurately estimate diagonal elements of a cluster’s covariance matrix. In

some hyperellisoidal data sets, initial parameter values derived from the K-means

procedure are far from optimal. In these cases, it may be difficult for the traditional

EM method to find good starting values for cluster estimates, making accurate cluster

parameter estimations nearly impossible.

In order to overcome the handicaps of the traditional EM algorithm, we propose a

new GA-based method. This method accurately and efficiently searches for a global
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maximum in the log-likelihood value. Numerical trials show that our method is less

sensitive to initialization, so that our method can use GKM or GARM to compute the

initial cluster parameters, with little difference in the final results. These innovations

allow our algorithm to find optimal parameter estimates of complex hyperellisoidal

clusters.

9.3 Genetic Algorithms in Mixture Models

Since the early 1990’s, researchers have used GA’s in cluster analysis studies. Jones

and Beltramo (1991) pioneered the string-of-group numbers representation, where

data points are represented as strings of integers which denote their cluster assign-

ments. The collection of strings forms a population that can undergo evolutionary

operations. Krishna and Murty (1999) continued this approach by developing the

GKM algorithm. Their GA loop incorporates biased mutation and the Genetic K-

means operation, using these operations to search for the set of cluster assignments

that minimizes the Total Within Cluster Variance. Krishna and Murty demonstrated

that their method generally outperforms the traditional K-means algorithm by cal-

culating clusters that have smaller variances.

We expanded the GKM algorithm to be applicable to hyperellisoidal clusters.

Our algorithm, called Genetic Algorithm with Regularized Mahalanobis (GARM)

combined the accuracy of other Hyperellisoidal clustering algorithms (Wang and Xia

1997, Wang et al. 1997) with the efficiency of GKM. Both GKM and GARM optimize

fitness functions describing the quality of cluster solutions. The GKM algorithm

calculates the Total Within Cluster Variation W =
∑K

k=1 Wk where Wk =
∑nk

i=1(xi−
µk)

T (xi − µk). GARM calculates the fitness as follows: For the nk points that

belong to cluster k, Wk =
∑nk

i=1 |Σk| 12 (xi−µk)
T (Σk + εI)−1(xi−µk). It then figures
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the fitness function of the GA to be W =
∑K

k=1 Wk, with µk and Σk defined as

the mean and covariance matrix of cluster k respectively, and ε is a small value

that protects the inversion process from singularities. GKM and GARM incorporate

genetic operations that obey Markov chain properties, causing these processes to

asymptotically approach a global optimum in the fitness value. Moreover, both GKM

and GARM do not rely on traditional GA operations of mutation and crossover, but

rather incorporate biased mutation operations. It has been shown (Bhuyan et al.

1991, Jones and Beltramo 1991) that crossover can be computationally expensive

in cluster analysis problems. We demonstrated that hyperellisoidal clustering with

traditional GA operations can take hundreds to thousands of iterations to converge,

while the new operations caused the algorithm to quickly converge to an optimal

solution.

Our proposed algorithm implements a mixture model calculation in the same kind

of GA framework as GKM and GARM. The user initializes the cluster calculations by

a GA based variance minimization like GKM or GARM. Our numerical trials show

that the final outcome of our algorithm shows little difference between the different

initialization methods, confirming the global search ability of our method. After the

minimized sum of cluster variances has converged, the algorithm starts the GA loop

based on the log-likelihood values for each string. The population of strings undergo

GA-type operations that seek optimum values in the cluster assignments.

GEM uses analogous GA-type operations as GKM and GARM. After the mini-

mized variance initialization, we start a loop with the genetic operations. The fitness

function of the GA is the log-likelihood for the cluster with given cluster assignments

of the GA string. In the GA loop, reproductive success varies with fitness.
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The first genetic-type operation is the Genetic Posterior Probability operation.

This operation sequentially takes each data point and calculates the posterior prob-

abilities of group membership for each cluster. It then assigns each data point to

the cluster that has the highest posterior probability of group membership. There-

fore, each string that undergoes the Genetic Posterior Probability operation has the

maximized log-likelihood value given the observed means and covariance values.

The other genetic-type operation is the biased string mutation operation. In this

operation, the algorithm randomly selects strings and data points to undergo the

mutation operation. For the chosen data points, it then calculates the posterior

probability of group membership. The relative mutation probabilities are then biased

so that the probability of a data point mutating to a given cluster is proportional

to its posterior probability of group membership. We found that a small mutation

probability worked best for fast convergence. In our numerical trials, we used a

mutation probability of 0.01.

It is possible that our biased GA operation can assign points to clusters that

are far outside of the defined limits of the clusters. In our implementation, after

each string undergoes any mutation operation, we force the algorithm to check for

possible points assigned to a cluster that are outside of cluster’s boundary. In our

implementation, we used 3.5 standard deviations greater than the mean Mahalanobis

distance from the cluster centroid as the outlier limit. If a point if found belonging to

some cluster that is outside of this limit, then it is reassigned to the cluster with the

highest probability of membership. Our numerical trials showed that this strategy

helps to speed convergence of the algorithm to an optimized solution.

Our process may also generate illegal strings that are missing points from one or

more clusters. This causes problems with singularities in the inversion of the cluster

covariance matrix. If any strings are found to be illegal, we randomly mutate points
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to form singleton clusters. This handles illegal strings in an analogous way as Krishna

and Murty (1999) in the GKM algorithm. The algorithm updates all of the string

mixture proportions, mean values, and variance/covariance values at each iteration.

It also updates the strings affected by the respective genetic operations after each

calculation.

The following lists the pseudocode for the Genetic Expectation-Maximization al-

gorithm.

1. Initialization: The population of strings is initialized by the a GA based vari-

ance minimization. For data that show hyperspherical distributions, we used the

GKM to initialize the parameter estimates and initial cluster assignments. Sim-

ilarly, for hyperellisoidal data, we use GARM to calculate initial assignments.

However, our trials indicated that the final results show little dependence on

the initial cluster calculations.

2. Mutation: Mutation mimics random variability in a population like the random

changes in genetic structure found in organisms. Our mutation operation is

analogous to the GKM and GARM biased mutation operations, except that

we use the posterior probability of cluster membership P (k|xi). The algorithm

randomly selects population strings and data points to undergo mutation. After

making the selection, the probability of a point mutating into a given cluster

assignment is related to the probability of that data point belonging to the

cluster as computed by Bayes rule. The higher the posterior probability of

cluster membership for a data point, higher the probability that it will mutate

into that cluster. Let P (k|xi) denote the posterior probability of data point xi

belonging to cluster k. The probability of mutating to the respective cluster
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assignments is given by

pj =
cmPmax − Pj

K∑
i=1

(cmPmax − Pi)

where cm is a constant and Pmax = max{Pj}. In our case, we set cm = 1.

Our algorithm also checks for cluster outliers at the end of this operation and

updates the cluster parameter estimates.

Pseudocode:

Start

Randomly select population member.

Randomly generate points {x1, x2, . . . , xr} that undergo mutation by using

mutprob.

For i = 1 to r

For j = 1 to K

Pj = πkgk(x;µk,Σk)PK
k=1 πkgk(x;µk,Σk)

end

pj =
cmPmax−Pj

KP
i=1

(cmPmax−Pi)

Generate new cluster assignments for xi according to probabilities.

pj.

end

Check to see if string is illegal.

Check for outlier points.

Insert mutated string into population.

Update cluster parameter values.
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end

3. Posterior Probability Operation: This operation randomly selects a string from

the population and then assigns each point in the string to the cluster that has

the highest Posterior Probability of group membership. This operation is anal-

ogous to the K-means Operation in the GKM algorithm and the Mahalanobis

operation of GARM. Because strings that undergo this Posterior Probability

operation generally have among the highest log-likelihood values in the popu-

lation, they propagate on to subsequent generations. Including this operation

greatly speeds convergence of the algorithm to a solution. Let P (k|xi) denote

our posterior probability of data point xi belonging to cluster k. We can sum-

marize this Posterior Probability operation as follows.

Pseudocode:

Start

Randomly select population member.

For i = 1 to n

for j = 1 to K

Pj = πkgk(xi;µk,Σk)PK
k=1 πkgk(xi;µk,Σk)

end

xi = find(Pj = max(Pj))

end

Check to see if string is illegal.

Insert mutated string into population.

Update cluster parameter values.

end
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4. Selection: GEM uses the same kind of reproduction strategy as GKM and

GARM. The log-likelihood value becomes the fitness of the string F (si). The

probability of reproduction then is given by

P (si) =
F (si)∑N

j=1 F (sj)

Members of the next generation are selected according to their relative fitness

values in a roulette wheel selection method. We include the same kind of σ-

truncation method as Krisha and Murty (1999).

Pseudocode:

Start

for i = 1 to N

P (si) = F (si)PN
j=1 F (sj)

Check σ-truncation of fitness values

end

Select members of the next generation according to probabilities P (si) .

end

9.4 Analysis

In this section, we compared the performance of our GEM algorithm on simulated

data. We tested both data that show spherical symmetry and the more general case of

ellipsoidal data. In the plots for these examples, different colors and symbols denote

cluster membership. Black plus signs (+) mark the positions of the respective cluster

means.
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Table 9.1: Comparisons of the Mean Estimations of GKM and GEM for Different
Clusters in Simulated Data Set 9-1.

Cluster Original GEM GKM
1 (8.9,8.9) (8.9, 8.9) (8.8, 8.9)
2 (1.1,-0.7) (1.1, -0.8) (0.9, -1.3)
3 (6.1, 0.7) (6.1, 0.8) (5.6, 0.9)

9.4.1 Example 1

The first example of the algorithm used 3 simulated normally-distributed bivariate

clusters. This data set was spherical. It had 500 data points, with 200 data points

assigned to two clusters and 100 data points assigned to one cluster. The true clas-

sification of the simulated data is given in figure 9.1.

When we applied our GEM algorithm with GKM initialization to this data set,

the successful classification rate was 94.8%. Figure 9.2 gives the classification results

of our GARM algorithm on this data set.

As a comparison, we also classified the same simulated data set with GKM. Many

researchers advocate using K-means in classification problems for data that shows

spherical symmetry. Figure 9.3 shows the classification results of this trial. The

classification accuracy rate for GKM was 91.0%.

We can compare the parameter estimates from GKM and GEM on this data set.

The following tables compare the parameter estimates of the two methods. We can

see from tables 9.1 and 9.2 that the GEM algorithm calculated better mean and

covariance estimations than GKM.

Figure 9.4 shows the convergence of GEM on this data set. We can see that,

starting from the GKM initialization, GEM converged to the optimum fitness value

within 9 iterations.
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Figure 9.1: True Classification of Simulated Data Set 9-1.
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Figure 9.2: Classification Results of GEM on Simulated Data Set 9-1.
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Figure 9.3: Classification Results of GKM on Simulated Data Set 9-1.
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Figure 9.4: Convergence of GEM Results on Simulated Data Set 9-1.
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Table 9.2: Comparisons of the Covariance Estimations of GEM and GKM for Different
Clusters in Simulated Data Set 9-1.

Cluster Original GEM GKM

1

(
0.7 0.0
0.0 4.0

) (
0.7 0.0
0.0 4.0

) (
1.5 0.2
0.2 3.8

)

2

(
2.3 0.2
0.2 9.0

) (
2.1 0.2
0.2 9.0

) (
2.2 −1.0
−1.0 7.6

)

3

(
2.2 0.0
0.0 10.0

) (
1.5 −0.8
−0.8 8.9

) (
3.6 −1.9
−1.9 5.9

)

9.4.2 Example 2

The second example of the algorithm used 3 simulated normally-distributed bivariate

clusters. This data set had 500 data points, with 200 data points assigned to two

clusters and 100 data points assigned to one cluster. The distributions in this data

set departed from being hyperspherical, but not strongly so. Two of the three clusters

were nearly spherical, with one showing more strong ellipsoidal character. The true

classification of the simulated data is given in figure 9.5.

When we applied our GEM algorithm with GARM initialization to this data set,

the successful classification rate was 97.8%. Figure 9.6 gives the classification results

of our GARM algorithm on this data set.

Figure 9.7 shows the convergence of GEM on this data set. Starting from the

GARM initialization, GEM converged to the optimum fitness value after 23 iterations.

As a comparison, we also tried GEM with the GKM initialization. The classifica-

tion accuracy of this trial was 98.2%. This classification accuracy is almost equal to

that with GARM initialization. Figure 9.8 shows a plot of the classification results

of this trial.

The final log-likelihood value of the GARM initialization trial was −1803.2. The

final log-likelihood value of the GKM initialization trial was −1804.0. The trial with

the GARM initialization calculated a slightly higher log likelihood value.
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Figure 9.5: True Classification of Simulated Data Set 9-2.
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Figure 9.6: Classification Results of GEM on Simulated Data Set 9-2.
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Figure 9.7: Convergence of GEM Results with GARM Initialization on Simulated
Data Set 9-2.

179



−8 −6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
Bivariate Plot of Classification Results of GEM

Variable 1

V
a

ri
a

b
le

 2

Figure 9.8: Classification Results of GEM with GKM Initialization on Simulated
Data Set 9-2.
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Tables 9.3 and 9.4 compare the parameter estimates of GEM with GARM initial-

ization and GEM with GKM initialization to the true cluster parameter. The results

show that GEM returned accurate parameter estimations with both initialization

methods.

Figure 9.9 shows the convergence of GEM using GKM initialization on this data

set. The algorithm quickly converged to an optimum in only 2 iterations after the

GKM initialization.

9.4.3 Example 3

The third demonstration of GEM used 3 simulated normally-distributed bivariate

clusters. This data set was ellipsoidal. This data set had 500 data points. The clusters

had 150 points, 250 points, and 100 points respectively. The true classification of the

simulated data is given in figure 9.10.

When we applied GEM with GARM initialization, the successful classification

rate was 92.4%. Figure 9.11 gives the classification results of our GARM algorithm

on this data set.

Figure 9.12 shows the convergence of GEM in this case. We can see that the

algorithm converged from the GARM initialization after 120 iterations.

Table 9.3: Comparisons of the Mean Estimations of GEM with GARM Initialization
and GEM with GKM Initialization for Different Clusters in Simulated Data Set 9-2.

Cluster Original GEM/GARM GEM/GKM
1 (0.1,0.0) (0.2, 0.1) (0.3, 0.2)
2 (-4.0,-2.0) (-4.0, -2.0) (-4.0, -2.0)
3 (-2.9, 3.1) (-2.9, 3.2) (-2.9, 3.1)
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Figure 9.9: Convergence of GEM results with GKM Initialization on Simulated Data
Set 9-2.
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Figure 9.10: True Classification of Simulated Data Set 9-3.
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Figure 9.11: Classification Results of GEM on Simulated Data Set 9-3.
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Figure 9.12: Convergence of GEM Results with GARM Initialization on Simulated
Data Set 9-3.
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Table 9.4: Comparisons of the Covariance Estimations of GEM with GARM Initial-
ization and GEM with GKM Initialization for Different Clusters in Simulated Data
Set 9-2.

Cluster Original GEM/GARM GEM/GKM

1

(
3.7 2.0
2.0 1.6

) (
3.7 2.0
2.0 1.4

) (
3.3 1.6
1.6 1.3

)

2

(
1.1 −1.3
−1.3 1.7

) (
1.1 −1.3
−1.3 1.7

) (
1.1 −1.3
−1.3 1.7

)

3

(
1.0 0.4
0.4 1.1

) (
0.9 0.3
0.3 1.0

) (
1.0 0.4
0.4 1.1

)

As a comparison, we also applied GEM with GKM initialization to this data set.

The successful classification rate in this case was also 92.4%, demonstrating the global

optimization property of GEM. Figure 9.13 shows the results of this calculation.

Our calculations showed that the final log-likelihood value of the GARM initial-

ization trial was −761.6. The final log-likelihood value of the GKM initialization

trial was −762.1. Again, the trial with the GARM initialization calculated a slightly

higher log-likelihood value.

We can see the parameter estimates of GEM with GARM initialization and GEM

with GKM initialization in Tables 9.5 and 9.6. This case again shows that GEM

returned accurate parameter estimations with both initialization methods.

Figure 9.14 shows the convergence of this trial. We can see that GEM converged

to the final value after 140 iterations from the GKM initialization.

9.5 Conclusion

This chapter introduced a new GA based method for calculating mixture models and

MLE’s of cluster parameters. Our numerical trials showed that the new method had

high rates of correct classifications and returned good cluster parameter estimations.

Although our numerical trials showed little difference in the accuracies between the
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Figure 9.13: Classification Results of GEM with GKM Initialization on Simulated
Data Set 9-3.
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Figure 9.14: Convergence of GEM Results with GKM Initialization on Simulated
Data Set 9-3.
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Table 9.5: Comparisons of the Mean Estimations of GEM with GARM Initialization
and GEM with GKM Initialization for Different Clusters in Simulated Data Set 9-3.

Cluster Original GEM/GARM GEM/GKM
1 (0.7,1.1) (0.7, 1.0) (0.7, 1.1)
2 (1.0,0.6) (1.0, 0.6) (1.0, 0.6)
3 (0.3, -0.5) (0.3, -0.5) (0.3, -0.5)

Table 9.6: Comparisons of the Covariance Estimations of GEM with GARM Initial-
ization and GEM with GKM Initialization for Different clusters in Simulated Data
Set 9-3.

Cluster Original GEM/GARM GEM/GKM

1

(
2.3 0.5
0.5 0.1

) (
2.3 0.5
0.5 0.1

) (
2.4 0.5
0.5 0.1

)

2

(
0.4 −0.3
−0.3 0.2

) (
0.4 −0.3
−0.3 0.2

) (
0.4 −0.3
−0.3 0.2

)

3

(
1.1 0.1
0.1 0.1

) (
1.1 0.1
0.1 0.1

) (
1.0 0.1
0.1 0.1

)

GKM and GARM initialization, the GARM initialization generally calculated higher

log-likelihood values. This difference may become more significant in analysis cases

that have a larger number of clusters. We believe that this new algorithm can be

used in many multivariate classification studies and that is can be implemented as a

tool for data mining.
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Chapter 10

Cluster Analysis with Information

Scores

10.1 Introduction

Cluster analysis tries to categorize unknown data into a number of definable classes.

Modern data analysis methods must find ways of processing increasingly voluminous

data sets. The issue of finding the best number of clusters is an important one

with applications in many fields. Initially, the researcher only has values from some

experiment or observational study. Cluster analysis tries to partition the observed

data according to some metric or property in the data, or tries to find some structure

in the data. Not only does cluster analysis calculate parameters that describe the

data, but it can also reveal structure in the data that may not be apparent otherwise.

Mixture modeling has been a favorite method for estimating parameters that de-

scribe distributions of data. Mixture models regard data as arising from distributions

with definable parameters. Each data point has some posterior probability of belong-

ing to each cluster, defined by Bayes rule. For example, with normally distributed
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data with cluster means µk, cluster covariances Σk, and mixture proportions πk, the

posterior probability of cluster membership for each data point xi is

P (k|xi) =
πkgk(xi; µk,Σk)∑K
k=1 πkgk(xi; µk,Σk)

(10.1)

An added complication arises when the researcher tries to find the best number of

clusters in a given data set. The problem of simultaneously deciding the best number

of cluster assignments and the best number of clusters has been addressed by many au-

thors including Beale (1969), Marriot (1971), Calinski and Harabasz (1969), Maronna

and Jacovkis (1974), Hartigan (1975), Matusita and Ohsumi (1980) and Bozdogan

(1994). While many methods simply give empirical guidelines, Akaike (1973) in-

troduced information scoring as a way to remove subjectivity in statistical analysis.

Bozdogan (1994) proposed implementing information scoring as an objective method

for calculating the best number of clusters in a multivariate data set. Information

scoring functions use penalized maximum likelihood estimation techniques. Improved

methods of classification and cluster analysis must be found to handel ever-growing

data sets. In addition to accurately classifying the data, such methods must be able to

accurately uncover the covariance structure of the data and estimate the best number

of component clusters.

We propose implementing the Genetic Expectation Maximization (GEM) algo-

rithm into a framework that can identify the best number of clusters in a multivariate

data set using measures of information complexity. GEM uses the efficient searching

properties of genetic algorithms (GA’s) to calculate maximum likelihood estimates

of a data set. Because of its accuracy, GEM can return optimal estimates of cluster

parameters. Its fast convergence also makes it ideal for complex clustering problems.

By combining GEM with information based scoring, we can have an accurate and

efficient tool for analyzing complex multivariate data. Section 2 of this chapter will
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review the EM clustering process, while section 3 will show the development of in-

formation based methods to decide the best number of clusters. Section 4 will then

propose a new way of integrating GA based clustering methodology with informa-

tion complexity scoring. The advantage of this approach to that the accuracy and

efficiency of GA based clustering is combined with the discriminative power of in-

formation scoring. Section 5 will show examples of our new clustering method on

simulated data. The chapter will conclude in section 6.

10.2 Mixture Model Cluster Analysis

Mixture modeling tries to assign the highest probability of membership for all data

points in the set, yielding the Maximum Likelihood Estimate (MLE) of the data.

The EM algorithm (Dempster et al. 1977, Peters and Walker 1978) has historically

provided a framework for cluster parameter estimation. For normally distributed

data, parameters that describe cluster k are the mean µk and covariance matrix Σk.

The mixture modeling process regards each observation as having probability πk of

coming from class k, with k ∈ {1, 2, . . . , K}. Observation vectors x1,x2, . . . ,xn form

a sample of the mixture

f(x; π, µ,Σ) =
K∑

k=1

πkgk (x; µk,Σk) (10.2)

Here, π = (π1, π2, . . . , πK) are the mixture proportions such that

0 ≤ πk ≤ 1 for k = 1, 2, . . . , K and πK = 1−
K−1∑

k=1

πk (10.3)
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Here, gk (x; µk,Σk) is the multivariate normal density function

gk(x; µk,Σk) = (2π)−
p
2 |Σk|−

1
2 exp

[
−1

2
(x− µk)

T Σ−1
k (x− µk)

]
(10.4)

Under the traditional EM paradigm, the data set is first partitioned according to some

clustering process, such as K-means (Bozdogan 1994). The initial cluster partitions

give the starting values for cluster parameter estimates. These parameter estimates

and posterior probabilities are then iteratively recalculated by a gradient ascent type

process until convergence occurs.

While the traditional EM algorithm has enjoyed wide application in many mixture

modeling scenarios, it has some shortcomings. The traditional EM algorithm is guar-

anteed only to be a local maximizer. The iterative nature of the EM algorithm can

have a slow rate of convergence. Given initial estimates of distribution parameters,

the EM algorithm converges to a local maximum in the parameter values. However,

cluster parameter space is generally highly nonlinear with many local optima. It can

be very difficult for the traditional EM algorithm to find a global maximum due to

the complex parameter structure.

To overcome these limitations, we proposed a mixture modeling process based on

GA strings. Our algorithm, called Genetic Expectation Maximization (GEM), uses

the global search properties of GA’s to maximize the log-likelihood of the data set.

We demonstrated that our GEM algorithm can accurately model multivariate data

with complex covariance structure.

Because it can accurately model the covariance structure of multivariate data, we

propose using GEM in an information scoring cluster analysis algorithm. Accurately

modeling cluster covariance structure becomes especially important when the data

is overlapped or seriously departs from being hyperspherical. In order to best use
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information scoring functions to identify the best number of clusters in a data set,

the algorithm must accurately model the covariance structure of the data.

10.3 Information Scoring in Cluster Analysis

Deciding the number of clusters in a multivariate data set has historically been a

challenging endeavor. With data having three dimensions or less, plots of the data set

may reveal structure from visual inspection. There are also some published “rules of

thumb” that provides guidance for deciding the best number of cluster. For example,

some researchers advocate using the property that the number of data points n must

be greater than the number of parameters p (Henna 1985, 1986) so that

K <
2n

(p + 1) (p + 2)
(10.5)

Another rule of thumb says K ≈ (
n
2

)1/2
(Mardia et al., 1979). Wong (1982) suggests

using K ≈ n0.3 based on empirical evidence. These guidelines involve subjectivity of

the researcher in judging the number of clusters.

Since 1973, information scoring in statistics has allowed researchers to reduce or

eliminate the guesswork involved in statistical methodology (Akaike 1973, 1974, 1978,

1981, 1985). The first information scoring function, Akaike Information Criterium

(AIC), defines the measure of quality of a model as

AIC = −2 log L
(
Θ̂

)
+ 2m (10.6)
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where logL
(
Θ̂

)
is the maximized log-likelihood term and m is the number of free

parameters. Later, Bozdogan (1987) modified AIC into CAIC

CAIC = −2 log L
(
Θ̂

)
+ m (log(n) + 1) (10.7)

In order to use these measures of complexity in determining the number of clusters,

we must analyze both the maximized log-likelihood term and the number of free

parameters in the cluster analysis framework. Bozdogan (1981, 1983) shows that the

number of free parameters depends on the structure of the different covariance cases.

The most general case is where each cluster has a different covariance matrix, and

the covariance matrices have off-diagonal elements. The number of free parameters

in this case is

m = kp + (k − 1) + kp (p + 1) /2 (10.8)

where k is the number of clusters and p is the number of variables. Using this

expression, we can combine the parameter counts for the covariance structure with

the maximized log-likelihood values to give an expression for AIC (Bozdogan 1994):

AIC = −2
n∑

i=1

log

[
K∑

k=1

π̂kgk

(
xi; µ̂k, Σ̂k

)]
+ 3 [kp + (k − 1) + kp (p + 1) /2] (10.9)

We can also derive an expressions for CAIC in the same way. For the general

cluster covariance case, we have (Bozdogan 1994):

CAIC = −2
n∑

i=1

log

[
K∑

k=1

π̂kgk

(
xi; µ̂k, Σ̂k

)]
+ m [log(n) + 1] (10.10)

A more modern measure of information complexity was developed by Bozdogan

(1988, 1990a, 1990b) that more accurately discriminates the best model for a given
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data set. Called ICOMP, this measure of information complexity can be written as:

ICOMP = −2 log L
(
Θ̂

)
+ 2C1

(
F̂−1

)
(10.11)

where log L
(
Θ̂

)
is the maximized log-likelihood function and C1

(
F̂−1

)
is the com-

plexity of the Fisher information matrix, defined as

C1

(
F̂−1

)
=

s

2
log

(
trace

(
F̂−1

)
/s

)
− 1

2
log

(
det

(
F̂−1

))
(10.12)

where s = dim(F̂−1) = rank(F̂−1).

Bozdogan (1994) showed that ICOMP has several advantages over other informa-

tion criteria. ICOMP controls the risk of both underfitting and overfitting models. It

data adaptively finds a balance between lack of fit and model complexity. In addition,

ICOMP automatically takes account of sample size. The model with the minimum

ICOMP score is the best among all competing models for a given data set. Bozdogan

(1994) derived ICOMP in a form that is useful for scoring cluster combinations under

the different types of covariance structures. The basis of these ICOMP expressions is

the complexity of the Fisher information matrix for cluster analysis (Bozdogan 1994):

C∗
1

(
F̂−1

)
= (kp + kp(p + 1)/2) log [M] (10.13)

−
{

(p + 2)
K∑

k=1

log(det(Σ̂k))−
K∑

k=1

log (π̂kn)

}
− (kp) log (2n)

where

M =

∑K
k=1

{
1
π̂k

trace
(
Σ̂k

)
+ 1

2
trace

(
Σ̂2

k

)
+ 1

2
trace

(
Σ̂k

)2

+
∑P

j=1 (σ̂kjj)
2

}

kp + kp (p + 1) /2

(10.14)
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Inserting this expression into the definition of ICOMP yields the scoring function for

the most general covariance structure:

ICOMP = −2
n∑

i=1

log

[
K∑

k=1

π̂kgk

(
xi; µ̂k, Σ̂k

)]
+ C∗

1

(
F̂−1

)
(10.15)

Expressions of ICOMP for more specific covariance structures can be found in Boz-

dogan (1994).

While the preceeding expressions for information based scoring functions are true,

but they are only useful if we can find a way to partition a data set while accurately

estimating the means and covariances of the resulting clusters. The next section

addresses this problem of simultaneously calculating cluster assignments and using

the resulting means and covariances to score the number of clusters.

10.4 Information Scoring Combined with GA Clus-

tering

In order to use these measures of information complexity, the researcher must have a

way to estimate the means and covariances for a given number of clusters. They then

use these estimates to calculate the score functions for different numbers of clusters.

The number of clusters that achieves the minimum score value is the best in terms

of fitting a normally-distributed mixture model to the observed data set.

We propose a new method of cluster analysis that can accurately and efficiently

give the best number of clusters for a given data set. This new method combines

the GEM Mixture Model cluster assignments with information based scoring. Pre-

vious methods of using information based scoring have used traditional seed-based
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clustering methods, like K-means, to calculate the cluster assignments. The tradi-

tional seed-based methods depend on initial cluster assignments and generally return

suboptimal cluster partitions of the data. Because of its suboptimal properties, the

traditional K-means algorithm can return poor estimates of the clusters’ means and

covariances, as well as poor estimates of the log-likelihood sums used in the scor-

ing functions. By contrast, GEM does not rely on seeds or initial assignments and

generally returns more accurate cluster partitions. Consequently, the GEM cluster

assignments generally give more accurate means and covariance estimates.

We propose a new algorithm that combines the accuracy and efficiency of GEM

with the discriminative ability of information scoring. The algorithm can be stated

as follows:

1. Start a loop that covers the desired range of cluster tests. For example, if the

researcher believes that the best number of clusters is between nmin = 10 and

nmax = 20, these become the limits of the scoring tests.

2. For each number of clusters n in the test loop, use GEM to calculate the mixture

model components.

3. Assign a score to the clustering by using an information based measure like

AIC or ICOMP. ICOMP is considered the most accurate measure of information

complexity. In cases where some clusters may have fewer points than the number

of variables, a covariance estimator can be used to control possible singularities.

4. After the end of the scoring loop, the number of clusters n that achieves the

minimum information score is the best to describe the data set under study.

We will next demonstrate examples of using this method on simulated data.
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Table 10.1: ICOMP and AIC Scores for the Mixture Models in Simulated Data Set
10-1.

Number of Clusters ICOMP Score AIC Score
1 5435.7 5435.6
2 4988.8 4998.8
3 4918.1 4936.1
4 4935.6 4967.6
5 4932.9 4978.4
6 4933.2 4987.9
7 4948.2 5011.8
8 4936.4 4996.0
9 4952.2 5017.9
10 4966.9 5004.4

10.5 Analysis

This section will demonstrate the new cluster analysis method on simulated data.

The data show increasingly complex covariance structure, which tests how accurately

the new cluster analysis method can model the cluster structure. A discussion of the

results accompanies the numerical results.

10.5.1 Example 1

This trial used 500 simulated data points in 3 clusters. Two of the clusters contain 200

data points, while one contains 100. Figure 10.1 shows the three respective clusters

which are denoted by different symbols and colors.

We applied the the information scoring algorithm to this data set. We used the

GEM algorithm with GKM initialization. A listing of the information scores for the

respective number of clusters is given in table 10.1.

The respective information scores for the different numbers of clusters indicate

that the minimum of both AIC and ICOMP occurs at n = 3. This result confirms

that this information based scoring method accurately identified the correct number
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Figure 10.1: True Classification of Simulated Data Set 10-1.
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Table 10.2: ICOMP and AIC Scores for the Mixture Models in Simulated Data Set
10-2.

Number of Clusters ICOMP Score AIC Score
1 2932.4 2939.4
2 2585.3 2591.2
3 2173.9 2173.8
4 1901.5 1900.9
5 1798.3 1802.8
6 1906.9 1794.6
7 1835.3 1819.6
8 1840.0 1819.6
9 1855.0 1822.5
10 1874.8 1844.4

of component clusters. The algorithm was able to do this automatically with no

seeds or prior knowledge about the clusters. Figures 10.2 and 10.3 show plots of the

ICOMP and AIC scores respectively.

10.5.2 Example 2

This trial used 500 simulated data points in 5 clusters. Each cluster had 100 points,

and the clusters showed ellipsoidal structure. Figure 10.4 shows the clusters denoted

by different symbols and colors.

We applied the information scoring algorithm to this data set. We used the

GEM algorithm with GARM initialization. A listing of the information scores for the

respective number of clusters is given in table 10.2.

The scoring results showed that the minimum value of ICOMP occurred at 5

clusters, but the minimum AIC score appeared at 6 clusters. ICOMP was able to

discriminate the correct number of clusters. This example confirms how the GA based

clustering can model the covariance structure of the data set, and the complexity term
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Figure 10.2: Plot of ICOMP Scores for Simulated Data Set 10-1.
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Figure 10.3: Plot of AIC Scores for Simulated Data Set 10-1.
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Figure 10.4: True Classification of Simulated Data Set 10-2.
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Table 10.3: ICOMP and AIC Scores for the Mixture Models in Simulated Data Set
10-3.

Number of Clusters ICOMP Score AIC Score
1 2473.1 2480.5
2 2313.8 2360.1
3 1572.1 1556.1
4 1577.8 1558.7
5 1614.3 1591.8
6 1635.6 1607.2
7 1644.6 1606.0
8 1682.2 1642.4
9 1703.7 1640.8
10 1698.2 1617.6

in the ICOMP expression can use these estimates to give accurate scores. Figures

10.5 and 10.6 show plots of the ICOMP and AIC scores for this data set respectively.

10.5.3 Example 3

This trial used 500 simulated data points in 3 clusters which overlap and are ellip-

soidal. The first cluster has 150 data points while the second cluster has 250 data

points and the third cluster has 100 data points. Figure 10.7 shows the different

clusters.

We used the GEM algorithm with GARM initialization to analyze this data set. A

listing of the information scores for the respective number of clusters is given in table

10.3. Figures 10.8 and 10.9 show the plots of the ICOMP and AIC scores respectively.

The results of this trial found that both ICOMP and AIC identified n = 3 as

the correct number of clusters. Because these clusters overlap and show ellipsoidal

covariance structure, we believe that it would be difficult to reach these correct results

with a seed-based analysis algorithm.
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Figure 10.5: Plot of ICOMP Scores for Simulated Data Set 10-2.
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Figure 10.6: Plot of AIC Scores for Simulated Data Set 10-2.

207



−4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5
Bivariate Plot of Original Data

Variable 1

V
a

ri
a

b
le

 2

Figure 10.7: True Classification of Simulated Data Set 10-3.
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Figure 10.8: Plot of ICOMP Scores for Simulated Data Set 10-3.
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Figure 10.9: Plot of AIC Scores for Simulated Data Set 10-3.
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10.6 Conclusion

This chapter showed how the GEM algorithm can be used in an information scoring

routine. It also showed how this method can correctly identify the best number of

cluster components in a multivariate mixture modeling study. We believe that this

new method can be applied to many complex data analysis and pattern recognition

studies.

211



Chapter 11

Mixture Models in Astronomy

11.1 Introduction

In recent years, due to improvements in detector and telescope technology, there

has been an explosion of data generated in astronomical research (Szalay and Gray

2001). In order to manage this flood of information, data mining methods have be-

come indispensable tools in astronomical research. Vast amounts of astronomical

data are being archived each year. Efficient and accurate data mining methods must

be developed and implemented to deal with the onslaught of astronomical data. An

important problem emerging from astronomical sky surveys is classification. For ex-

ample, Zhang and Zhao (2003) describe the problem of classifying stars, galaxies, and

active galactic nuclei based on their photometric parameters. Accurate, automated

methods of classifying these kinds of objects select candidates for future scrutiny and

can identify patterns and relationships among the targets being studied that may not

be apparent to human researchers (Zhang and Zhao 2003).

The last decade saw the rise of astronomical survey data. Projects like the Sloan

Digital Sky Survey (SDSS), the Two-Micron All Sky Survey (2MASS), the Digitized
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Palomar Sky Survey, as well as catalogs from facilities like the U.S. Naval Observa-

tory (USNO), generated terabytes of information automatically recorded by robotic

telescopes. With the exponential increase in computing power, during the last two

decades, researchers have implemented statistical algorithms in astronomical research.

One of the primary data processing methods is Principle Component Analysis (PCA).

Mathematically, principle components (PC’s) are eigenvectors of the covariance ma-

trix, which form orthogonal linear combinations of the parameters. PCA takes an ob-

served set of data and returns a linear combination of uncorrelated variables (Kendall

1957, Kendall and Stewart 1966). PCA can be used for both data compression and

classification (Murtagh and Heck 1987). Most of the variance of a data set is usu-

ally contained in relatively few PC’s, so many PC’s can be deleted with little loss

of information. Lawrence (1987) states that one of the main uses of PCA is to find

correlations between the input parameters of a data set, which acts to compress the

data set and reduce the dimensionality.

During the last decade, methods of classification in astronomy based on artifi-

cial intelligence have also been explored. Artificial Neural Networks (ANN’s) have

been used for star/galaxy classification (Odewahn et al. 1992), galaxy morphology

(Storrie-Lombardi et al. 1992) and classification of stellar spectra (Bailer-Jones et

at. 1998). More recently, Support Vector Machines (SVM) have been implemented

in astronomical research (Wozniac et al. 2001, Humphreys et al. 2001). This type

of classification separates classes of objects using hyperplanes in high-dimensional

space (Vapnik 1995). Likewise, Learning Vector Quantization (LVQ) is a supervised

version of Kohonen’s Self-Organizing map, where input vectors are mapped into a set

of weightvectors so that topology is preserved. LVQ is especially useful for reducing

the dimensionality of data. Bazell and Peng (1998) pioneered the use of LVQ in

astronomical data.
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Implementing classification algorithms in a multi-stage process can improve their

accuracy. Zhang and Zhao used PCA as a preprocessing method for both SVM and

LVQ. In their studies, they collected data from sources like USNO and 2MASS to form

a 10-variable data set of stars, galaxies, and active galactic nuclei (AGN) with 5547

observations. They first applied PCA to this data set, deleting PC’s that contained

little information. The preprocessed data then became the input to LVQ and SVM.

Using this two-step process, Zhang and Zhao achieved classification accuracies above

89% for both LVQ and SVM. Their numerical trials tried to separate stars from

galaxies and AGN’s, and also AGN’s from normal galaxies (Zhang and Zhao 2003).

In order to complement the artificial intelligence analysis methods, we processed

some astronomical data sets with the information scored GEM algorithm. This

method not only finds near-optimal cluster assignments for the data sets under the

mixture modeling paradigm, but also uses information criteria scoring functions to

calculate the best number of mixture components. Information scored analysis pro-

vides an objective criteria to judge the best mixture model for a data set, overcoming

any possible subjective bias of human researchers. In addition, unlike the artificial

intelligence approaches, mixture modeling does not need to be trained. Whereas the

artificial intelligence methods focuses on matching data points to prototype exam-

ples, the mixture modeling approach analyzes the covariance structure of the data

set. This chapter will present the results of the scored mixture model analysis of two

astronomical data sets. Section 2 will show the results from the analysis of stellar

kinematic data of Soubiran (1993). The stellar kinematic data set examined velocities

of stars in our galaxy relative to the galactic center. Using our scored mixture mod-

eling analysis, we will analyze this data set, testing the hypothesis about how many

populations of stars inhabit the Milky Way. In Section 3, we apply our information

scored GEM algorithm to the Zhang and Zhao (2003) data set. We will analyze the
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scored cluster calculations of the different components, looking for the best number

of clusters within this data set. The chapter concludes in Section 4.

11.2 Stellar Kinematic Data

The first data set that we processed was the stellar kinematic data set of Soubiran

(1993). This data set studied the proper motions of stars in our galaxy. Soubi-

ran collected data about the motion of stars towards the poles of our galaxy (the

V component) and the motion of stars about the eventual radial velocities (the U

component). These data come from a survey of 7 square degrees near the globular

cluster M3. Soubiran studied proper motions of stars from Schmidt photographic

plates that spanned 40 years. She then used the small changes in positions of these

stars to calculate the components of velocities relative to the galactic center.

Although the historical paradigm of galactic structure has two populations of stars,

which are the disk and the halo, since the 1990’s, researchers have found evidence of

three populations. These three populations are the thin disk, the thick disk, and the

halo stars, which differ in in their spatial distributions, metallicities, and kinematics.

A bivariate plot of the Soubiran data set (figure 11.1) does not show any strong

tendency towards two or three components. Bensmail et al. (1997) applied a Bayes

factor analysis method to this data set. The conclusion of that study was that there

are three populations of stars in this data set instead of two.

As another test of the possible number of stellar components, we applied our

GEM algorithm with information scores. We calculated the information scores for two

components and three components. Table 11.1 shows the score results. Figures 11.2

and 11.3 show the classifications of this data set with the respective number of mixture

components, where different colors and symbols denote different classifications.
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Figure 11.1: Plot of Stellar Kinematic Components.
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Figure 11.2: Plot of 2 Mixture Components of Stellar Kinematic Data.
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Figure 11.3: Plot of 3 Mixture Components of Stellar Kinematic Data.
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Table 11.1: ICOMP and AIC Scores for the Stellar Kinematic Data with Different
Numbers of Clusters.

Number of Clusters ICOMP Score AIC Score
2 51044.2 51024.4
3 51025.5 51007.6

We can see that the minimum information scores for both ICOMP and AIC occurs

at 3 clusters. This result gives further evidence that there are in fact 3 populations

of stars in our galaxy instead of 2 populations.

11.3 Astronomical Survey Data

The next data set that we considered was from Zhang and Zhao (2003). These authors

explored how automated classification methods can be used to classify astronomical

data. They are especially interested in classification methods in astronomy because of

the upcoming survey telescope LAMOST. The Large Area Multi-Object Spectroscopic

Telescope (LAMOST) is currently being constructed in China and is scheduled to

begin operation in 2007. LAMOST will be one of the largest survey telescopes ever

built and it is expected to produce over ten-million spectra of a wide variety of objects,

including quasars, galaxies and stars. The data archive, expected to exceed 1 terabyte

in size, will join other data already housed at the National Astronomical Observatory

of China (NAOC) as part of the Virtual Observatory of China (Luo et al. 2004).

Zhang kindly gave us a copy of this data while I was visiting NAOC under the 2004

NSF Summer Institute in China exchange program.

In order to deal with the volume of data that will be generated by LAMOST,

accurate and efficient algorithms need to be implemented. The survey studies con-

ducted by LAMOST will rely on classification methods developed in statistical and

computational research. LAMOST is one of the major scientific projects undertaken
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by the Chinese Academy of Science. It will be a spectroscopic telescope with a 5

degree field of view that will be able to record up to 4000 spectra simultaneously.

LAMOST will be a quasi-meridian transit telescope employing a 4 meter mirror that

can record spectra as faint as magnitude 20. It is estimated that LAMOST will record

one-dimensional spectra for 106 stars, 107 galaxies, and 106 QSO’s, with a spectral

range of 3700 to 9000 Angstroms. Because of its unique design and large field of

view, LAMOST will have one of the fastest data acquisition rates of any spectral

telescope in the world. Although LAMOST sits atop a remote mountain at the Xin-

glong observing station, the generated data will be stored and processed at NAOC

in Beijing, where it will be made available to the scientific public via a user-friendly

web interface. LAMOST will be a world-class observing facility that will make major

contributions to wide-field astronomy (Luo et al. 2004).

The Zhang and Zhao data set consisted of 5547 datapoints with 10 dimensions that

are parameters describing the objects in the X-ray, optical, and infrared bands. The

X-Ray sources were compiled from the ROSAT All-Sky Survey (RASS) Bright Source

Catalog, and the RASS Faint Source Catalog. The optical band observations came

from the USNO-A2.0 catalog, while the infrared band was taken from the 2MASS

database. The parameters used in this study denote the intensities of the sources

in the different wavelengths. These authors also show that PCA preprocessing is an

effective way to reduce the dimensionality of this data set by calculating numerical

trials with 3, 4, 5, and 6 PC’s. In their trials that try to separate stars from AGN’s and

galaxies, they show that using from 3 to 6 PC’s of the data still allows classification

accuracies of 94.9% and above.

We applied the information scored GEM algorithm to both the entire data set

and to the stars, galaxies, and AGN subsets separately. Like the original authors, we

used PCA preprocessing. In our trials we used only the first 3 principle components
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of the data set. These three principal components contain 86.35% of the variance of

the data, so there is little loss of information with the reduced dimensionality. We ran

scoring trials with increasing numbers of cluster components in these data sets until

we were satisfied that we found the minimum information scores for each case. We

used the scoring criteria with Maximum Likelihood/Emperical Bayes covariance esti-

mator regularization to prevent possible singularities. This let us assign information

scores to the different mixture model cases, with the only condition on the cluster

component being that each cluster must have at least one assignment. The results of

the respective scoring trials follow.

11.3.1 Galaxy Data Subset

The galaxy data subset had only 173 data points. The results of the scored the GEM

mixture model trials are given in table 11.2. Plots of these scores are given in figures

11.4 and 11.5. We can see that ICOMP showed a minimum score at 3 clusters,

whereas AIC showed a minimum at 12 clusters. We can see from the plots that

ICOMP shows a distinct minimum score at 3 clusters. We believe that this strong

difference between the different scoring functions indicates very complex covariance

structure in this data subset. Because ICOMP is better able to capture the complex

interactions between covariance parameters, we believe that the ICOMP score of 3

indicates the best number of mixture model components in this data subset.

11.3.2 Active Galactic Nuclei (AGN) Data Subset

The AGN data subset has 1656 data points. Zhang and Zhao (2003) indicate that

this sample contains 909 quasars, 135 BL Lac objects, and 612 active galaxies. Our

calculations show that the minimum ICOMP score occurs at 13 cluster components,

and the minimum AIC score is at 19. We again believe that this data set has a
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Figure 11.4: Plot of ICOMP Scores for Galaxy Data Subset.
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Figure 11.5: Plot of AIC Scores for Galaxy Data Subset.
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Table 11.2: ICOMP and AIC Scores for the Galaxy Data Subset with Different Num-
bers of Clusters.

Number of Clusters ICOMP Score AIC Score
1 4127.9 4102.4
2 1392.1 1214.5
3 1231.8 992.4
4 1328.1 942.0
5 1368.3 897.3
6 1589.6 860.1
7 1776.1 875.1
8 1832.5 743.3
9 1955.4 759.6
10 2144.1 978.2
11 2140.5 613.9
12 2082.0 542.3
13 2654.7 730.8
14 2609.0 611.9
15 2505.0 568.6
16 2530.5 554.4

complex covariance structure, but that the minimum score indicated by ICOMP of

13 is the correct number of mixture components. Our information scoring trial results

are given in table 11.3. Figures 11.6 and 11.7 show the ICOMP and AIC scores for

this data set respectively.

11.3.3 Star Data Subset

This data set had 3718 star observations, which included normal stars, cataclysmic

variables, and white dwarfs. Table 11.4 shows the information scores for the respective

number of mixture components in this data set. We can see that the minimum ICOMP

score occurs at 15 clusters, while the minimum AIC score is at 24 clusters. Figures

11.8 and 11.9 show plots of these scores for the cluster trials. On close examination,

the ICOMP scores show a slight upward trend after the minimum, whereas AIC

does not really show any trend. We believe that ICOMP returns the best mixture
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Table 11.3: ICOMP and AIC Scores for the AGN Data Subset with Different Numbers
of Clusters.

Number of Clusters ICOMP Score AIC Score
1 29936.4 29931.5
2 11632.4 11523.0
3 9029.7 8874.9
4 8437.2 8224.5
5 8412.9 8154.7
6 8585.1 8087.1
7 9009.7 8601.1
8 6215.9 5643.1
9 8511.3 7944.3
10 6262.3 5513.0
11 6459.8 5467.4
12 6384.9 5519.4
13 5925.0 4628.0
14 6084.4 4950.7
15 6687.6 5501.6
16 6866.8 5397.1
17 7536.7 5912.0
18 6272.2 4645.8
19 6467.0 4435.5
20 7065.6 5488.7
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Figure 11.6: Plot of ICOMP scores for AGN data subset.
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Figure 11.7: Plot of AIC Scores for AGN Data Subset.
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Table 11.4: ICOMP and AIC Scores for the Star Data Subset with Different Numbers
of Clusters.

Number of Clusters ICOMP Score AIC Score
1 98919.5 98912.3
2 56971.1 56881.0
3 55157.1 55014.6
4 41638.7 41288.8
5 25611.0 25091.6
6 23619.0 23109.7
7 23666.3 22885.5
8 22471.1 21914.3
9 20980.6 20291.5
10 21993.0 20968.0
11 22301.9 20882.5
12 22292.9 21100.5
13 22171.9 20756.5
14 19862.4 18300.1
15 19756.0 18259.6
16 22592.4 20624.0
17 21165.0 19133.5
18 23048.1 20549.7
19 23275.2 20608.7
20 22851.4 20489.4
21 21282.0 18695.5
22 23720.5 20757.9
23 23390.7 20430.0
24 21080.0 17800.2
25 23923.5 20596.1
26 24564.1 20950.3
27 23623.1 19914.5
28 22773.5 19061.2
29 22848.4 19588.8
30 25079.6 20518.3
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Figure 11.8: Plot of ICOMP Scores for Star Data Subset.
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Figure 11.9: Plot of AIC Scores for Star Data Subset.
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component calculation, so we regard 15 components as the best number of clusters

for this data set.

11.3.4 Complete Dataset

We applied our scored mixture model analysis to the entire data set that included

stars, galaxies, and AGN’s. Table 11.5 lists the respective information scores for this

data set, and figures 11.10 and 11.11 show plots of ICOMP and AIC for this data set

respectively. We expected that the optimum number of clusters might be 31 because

this is the sum of all of the individual components, but we found that according to

the ICOMP scores, the optimal number of components was 17. Interestingly, AIC

returned a minumum score of 29, which is much closer to the sum of the components

from the other cases. We believe that, because this data set is so complex, ICOMP

identified 17 components by merging some of the previously identified components.

Considered together, there is no mathematical reason to expect that the number of

components will add because the log-likelihoods of the merged data set is distinctly

different from those of the data subsets. We believe that this kind of analysis can

provide a good starting point for future studies that may try to characterize such

complex data.

11.4 Conclusion

In this chapter, we showed how the information scored GEM algorithm can be applied

to complex, multivariate astronomical data. The clusters in these data sets overlap

and show highly complex structure. We believe that this analysis is the first step in a

more detailed study of mixture model cluster analysis in astronomy. Future research

will focus on better characterizing the properties of objects identified in the different
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Table 11.5: ICOMP and AIC Scores for the Complete Data Set with Different Num-
bers of Clusters.

Number of Clusters ICOMP Score AIC Score
1 145080.0 145075.7
2 81019.0 80933.3
3 82399.7 82270.1
4 75883.9 75584.9
5 75070.3 74737.9
6 56753.8 56169.7
7 54976.0 54388.8
8 52642.6 51987.1
9 47222.3 46443.3
10 48718.1 47820.1
11 49315.0 48176.0
12 42772.0 41720.9
13 45326.3 44324.0
14 43091.2 41342.9
15 53483.3 51436.2
16 43707.3 42288.1
17 42017.9 40572.5
18 48295.1 46065.6
19 46510.1 44051.6
20 47853.0 45063.8
21 45898.5 43546.6
22 47390.4 44630.7
23 46961.5 44084.6
24 42715.3 39661.5
25 48049.6 44459.7
26 45052.4 41555.7
27 46432.9 42957.5
28 45974.0 42314.4
29 42664.0 38840.1
30 46384.0 42182.8
31 47514.1 43768.2
32 44212.0 40109.7
33 44292.8 40045.5
34 44651.6 39674.6
35 48952.7 44400.4
36 49614.4 44222.5
37 45060.4 39656.8
38 45372.5 39998.5
39 49296.3 43450.8
40 46440.4 40587.5
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Figure 11.10: Plot of ICOMP Scores for Complete Data Set.

233



0 5 10 15 20 25 30 35 40 45
2

4

6

8

10

12

14

16
x 10

4

Number of Clusters

A
IC

 s
c
o

re

AIC Scores for Entire Dataset
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clusters. Another avenue of future research would be to identify clusters that have few

members. These would be unusual objects in parameter space, which would signal

objects that need closer scrutiny.
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Chapter 12

Conclusion

This dissertation showed how modern analysis methods can be used to process phys-

ical data. The first section reviewed classical and modern regression methods, fo-

cusing on how modern methods resolve problems inherent to the classical methods.

It also reviewed developments in genetic algorithms and the theory behind molec-

ular vibration-rotation spectroscopy. It then showcased examples of using modern

regression methods in the analysis of molecular spectra. We believe that modern

regression methods can find general applicability in physical science studies that use

multivariate linear regression.

The second section explored ways that genetic algorithms can be used in cluster

analysis. The results of traditional seed-based methods depend strongly on starting

values, whereas genetic algorithm based methods overcome this dilemma. We gen-

eralized the Genetic K-means algorithm into GARM, which can accurately identify

hyperellipsoidal clusters. In addition, we used the new genetic algorithm based cluster

approach in an Expectation-Maximization routine that accurately calculated para-

meters in multivariate mixture models. We showed how these accurate values can be

used in an information scoring method that identifies the best number of components

236



in a mixture modeling situation. Later, we applied these new analysis algorithms

to process multivariate astronomical data. We believe that the genetic algorithm

based cluster analysis methodology can be used in many log-likelihood maximization

methods and can be implemented in complex data mining and pattern recognition

problems.

We hope that other researchers can apply the methods developed in this disserta-

tion to many useful and interesting studies.
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