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Abstract

This dissertation develops new computationally efficient algorithms for

identifying the subset of variables that minimizes any desired information

criteria in model selection.

In recent years, the statistical literature has placed more and more empha-

sis on information theoretic model selection criteria. A model selection crite-

rion chooses model that “closely” approximates the true underlying model.

Recent years have also seen many exciting developments in the model se-

lection techniques. As demand increases for data mining of massive data

sets with many variables, the demand for model selection techniques are be-

coming much stronger and needed. To this end, we introduce a new Implicit

Enumeration (IE) algorithm and a hybridized IE with the Genetic Algorithm

(GA) in this dissertation.

The proposed Implicit Enumeration algorithm is the first algorithm that

explicitly uses an information criterion as the objective function. The algo-

rithm works with a variety of information criteria including some for which

the existing branch and bound algorithms developed by Furnival and Wil-

son (1974) and Gatu and Kontoghiorghies (2003) are not applicable. It also

finds the “best” subset model directly without the need of finding the “best”

subset of each size as the branch and bound techniques do.

The proposed methods are demonstrated in multiple, multivariate, logis-

tic regression and discriminant analysis problems. The implicit enumeration

algorithm converged to the optimal solution on real and simulated data sets
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with up to 80 predictors, thus having

280 = 1, 208, 925, 819, 614, 630, 000, 000, 000

possible subset models in the model portfolio. To our knowledge, none of

the existing exact algorithms have the capability of optimally solving such

problems of this size.

Keywords and Phrases: Implicit Enumeration; Branch and Bound;

Variable Selection; Subset Selection; Model Selection; Integer Programming;

Genetic Algorithm; Optimization; and Information Criteria.
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Chapter 1

Introduction

A critical issue in data analysis is to select a good approximating model.

Over the past three decades, a number of criteria that are important for

model selection have come into existence since Akaike’s initial introduction

of the final prediction error criterion (Akaike 1969). In this chapter, we will

examine the importance of model selection in statistical modeling and the

role of information theoretic model selection criteria in this endeavor. We

then discuss the motivation behind this work in section 1.3. The organization

of this dissertation appears in section 1.4. Finally, section 1.5 describes the

contributions of this dissertation to the existing knowledge.
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1.1 On the Importance of Subset Model Se-

lection

Subset model selection arises when one wants to model the relationship be-

tween a variable of interest and a subset of potential explanatory variables or

predictors, but there is uncertainty about which subset to use. It is a central

problem in science as stated in Myung, et. al. 2003: “The question of how

one should choose among competing explanations (models) of observed data

is at the core of science.”

A model is an abstract mechanism that one can imagine as having gener-

ated the data. It is the nearest representation of the observed phenomenon

or the “true situation”. In trying to understand the effect of one variable

on another, it is often desirable to include many variables, which are either

known or believed to have an effect. Given such a set of data, statisticians

may need to select some appropriate model from a set of competing models.

Subset model selection is desired in several situations. In some cases, there

may be substantial extra cost to collect the additional data and measure the

variables. In other cases, inclusion of an extra variable into the model may

have a negative impact on the model complexity and the prediction accuracy.

Decisions based on highly inaccurate prediction and inclusion of irrelevant

variables can be detrimental. Thus, a good parsimonious model is often de-

sirable. Based on the model, interpretations, predictions and decisions can

be made. A good model should give adequate prediction accuracy, easy to

2



interpret and cost reasonably for data measurement.

1.2 Information Theoretic Model Selection and

Information Criteria

The classical model selection method is based on hypothesis testing. Models

are stated as statistical hypotheses. A significance value α is used as a rule

for the acceptance or rejection of the null hypothesis. For example, the

hypothesis testing approach will test the null hypothesis that a certain set

of variables’ coefficients equals 0, i.e. they are not included in the model, at

an arbitrarily specified level of significance.

Many statistical researchers, or other scientists have long been aware

that the so-called significance levels in hypothesis testing are totally without

foundation (Linhart and Zucchini 1986). In recent years, an alternative ap-

proach, the information theoretic approach has been well accepted by both

the researchers and practitioners. Burnham and Anderson (1998) wrote the

following in reference to the criterion based model selection: “Inference from

multiple models, or the selection of a single ‘best’ model, by methods based

on the Kullback-Leibler distance are almost certainly better than other meth-

ods commonly in use now (hypothesis testing of various sorts or merely the

use of just one available model).”

The informational approach selects models based on some information

criterion. A model selection criterion is an objective measure of model per-

3



formance and chooses the model that “closest” approximates the true model.

Information criteria seek a compromise between an adequate goodness

of fit and a small number of parameters by adding a penalty term for over-

parameterization (complexity) to the lack of fit measure. As more parameters

are needed to be estimated, the lack of fit term decreases, but causes the

model to become more complex and may result in over fitting the data.

Information-based criterion provides a trade-off between the ability of the

model to explain the data and the model complexity in order to adhere to

the principle of parsimony when it comes to statistical modeling.

Information criteria can be written in the general form as:

z(w) = f(w) + g(w), (1.1)

where w is a binary vector that indicates which variable is included in the

subset model. wj = 1 if variable j is included in the model. wj = 0 if

variable j is not included in the model. z(w) represents the information

criterion given a sub-model. The first term f(w) is a measure of lack of fit

(the maximized log likelihood or the error sum of squares) between the model

and the data. While the second term g(w) is a “penalty function” associated

with the number of parameters that must be estimated. In general, if we

add another variable to the set defined by a given w, the result would be a

decrease in f(w) and an increase in g(w). That is, in general, both f(w) and

4



g(w) satisfy the monotonic condition:

f(w1) ≤ f(w2) and g(w1) ≥ g(w2), if w1 ≥ w2

Among all information criteria, Bozdogan’s new information theoretic

measure of complexity criterion termed as ICOMP (Bozdogan, 1987, 1988,

1990, 1994, 1996, 2000) has been used extensively in linear and nonlinear

model selection and evaluation. ICOMP is based on entropic or maximal

information theoretic measure of complexity. It has a strong theoretical

foundation and it has been shown to be a powerful tool that is particularly

suited in many application areas including regression analysis.

We introduce several popular information criteria as follows:

1. Akaike’s (1973) information criterion (AIC) is defined as:

AIC = −2
n∑

i=1

logf(xi|θ̂) + 2k = −2logL(θ̂) + 2k, (1.2)

where L(θ̂) is the maximized likelihood function, and k is the number

of free parameters in the model. The model with minimum AIC value

is chosen as the best model to fit the data. In AIC, the compromise

takes place between the maximized log likelihood , i.e., −2logL(θ̂) (the

lack of fit component) and k, the number of free parameters estimated

within the model (the penalty term). See Bozdogan (1987).

2. Schwarz’s (1978) Bayesian information criterion (SBC), also called Bay-
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esian information criterion (BIC) is defined as:

SBC = −2
n∑

i=1

logf(xi|θ̂) + klog(n) = −2logL(θ̂) + klog(n), (1.3)

where n is the number of the observations.

3. Generalized Akaike’s information criterion (GAIC)(Shibata 1989, Boz-

dogan 2000):

GAIC = −2
n∑

i=1

logf(xi|θ̂) + 2tr(F̂−1R̂) = −2logL(θ̂) + 2tr(F̂−1R̂),

(1.4)

where F̂ is the estimated Fisher information in inner product or Hessian

form, and R̂ is the outer product form of the Fisher information matrix

both with dimensions (k × k). tr(F̂−1R̂) is known as the Lagrange

Multiplier Test (LMT) statistic.

4. Bozdogan’s (1987) consistent Akaike’s information criterion (CAIC) is:

CAIC(k) = −2logL(θ̂k) + k(logn + 1), (1.5)

5. After adding more penalty terms, we get Consistent AIC with Fisher

information (CAICF) (Bozdogan 1987):

CAICF (k) = −2logL(θ̂k) + k(logn + 2) + log|F̂ |, (1.6)

6



6. Bozdogan’s (1988, 1994, 1998, 2000) new information measure of com-

plexity (ICOMP) for model selection is defined as:

ICOMP (IFIM) = −2logL(θ̂) + 2C1(F̂−1(θ̂)), (1.7)

where C1 denotes the maximal information complexity of F̂−1, and C1

is defined as

C1(F̂−1) =
s

2
log[

tr(F̂−1)

p
]− 1

2
log|F̂−1|,

where s is the dimension or rank of F̂−1. ICOMP chooses simpler

models that provides more accurate estimates over more complex over-

specified models.

7. Bozdogan’s (2004b) misspecification resistent criterion is defined as:

ICOMPMisspec = −2logL(θ̂) + 2C1( ˆCov
−1

(θ̂)Misspec), (1.8)

where ˆCov
−1

(θ̂)Misspec = F̂−1R̂F̂−1 is the estimate of the covariance

matrix of θ̂ when a model is misspecified. This criterion guards whether

the probability model is misspecified or not as we fit models to the data.

Bozdogan and Haughton (1998) showed that ICOMP class criteria tend

to agree with decisions based on minimizing the Kullback-Leibler distance

between the true model and each estimated model more often than AIC

7



and BIC through simulations. Bozdogan (2000) pointed out that “the dif-

ference between ICOMP class criteria and AIC, SBC/MDL, CAIC is that

with ICOMP we have the advantage of working with both biased as well

as unbiased estimates of the parameters and measure of the complexities of

their covariances to study the robustness properties of different methods of

parameter estimates.” AIC and AIC type criteria are based on maximum

likelihood estimator’s, which are often biased and do not fully take into ac-

count the concept of parameter redundancy, accuracy and the parameter

interdependencies in model fitting and selection process. In a large scale

Monte Carlo misspecification environment, when the true model is not in

the model set, experiments under different configurations with varying sam-

ple sizes and the error variances are demonstrated in Bozdogan (2000) and

(2004b). The numerical results clearly show the excellent performance of the

ICOMP class criteria as compared to AIC and SBC/MDL.

In our computational tests, AIC, ICOMP(IFIM) and ICOMPMisspec are

used to demonstrate the performance of the newly proposed algorithms in

this dissertation.

1.3 Motivation

The existing leaps and bounds procedure implemented in several statistical

software packages is proposed and developed by Furnival and Wilson (1974).

This algorithm finds the smallest sum of squared error (SSE) (also called the

8



residual sum of squares or error sum of squares) for subset of each size. It

is generalized by Narendra and Fukunaga (1977) to the minimization of a

general quadratic form. This algorithm can also be applied with criteria of

goodness-of-fit such as the minimum sum of absolute deviations or maximum

likelihood. As far as information criteria are concerned, the algorithm can

be applied with information criteria, whose second term g(w) depends only

on the number of variables, i.e. g(w) is the same for subsets of the same size.

Some examples of such criteria are Cp (Mallows 1973), AIC (Akaike 1973),

SBC (Schwarz 1978) and HQ (Hannan and Quinn 1979). For criteria whose

second term g(w) does not only depend on the subset size, the branch and

bound algorithm may converge to suboptimal subset model. Such criteria

include GAIC, CAICF, ICOMP, ICOMP(IFIM), ICOMPMisspec etc.

Branch and bound algorithms find the best subset of each size. In most

situations, we do not know what size the best model is. Thus, in order to

find the best subset according to a certain criterion, which is commonly an

objective of the research, the best of each subset size has to be computed. As

pointed out by Hamamoto et. al. (1990), “a disadvantage of the branch and

bound algorithm is that it is computationally expensive when the number of

the features selected is small.”

The drawbacks of the existing branch and bound algorithms call for new,

more effective and efficient procedures that can be applied to a wider range

of information criteria.

9



1.4 Organization of the Dissertation

This dissertation consists of seven chapters. The layout of the dissertation is

as follows: chapter 1 gives an introduction to the topic, motivation and the

expected contribution to the literature. Chapter 2 is an overview of compu-

tational techniques in model selection. It surveys the existing computational

techniques in model selection. Chapter 3 introduces the implicit enumera-

tion algorithm. Chapter 4 gives the computational results of the implicit

enumeration algorithm and compares it with the existing branch and bound

algorithm and the stepwise method. Chapter 5 explores the genetic algo-

rithm and presents certain hybridization of the methods. Chapter 6 gives

examples of several application areas of the algorithms, tested and compared

the performance of the algorithms and the information criteria. Chapter 7

summarizes the major findings, gives future directions of research and some

concluding remarks.

1.5 Contributions to the Literature

This dissertation makes several key contributions to the subset model selec-

tion field.

First, it proposes a new algorithm — the implicit enumeration algorithm

that optimally solves the model selection problem. This algorithm overcomes

the limitations of all the existing exact algorithms and is the first exact algo-

rithm that explores the mathematical structure of the information criteria.

10



Thus, it works with a wide variety of information criteria including some for

which the existing exact algorithms are not applicable.

Second, the performance of the implicit enumeration algorithm is demon-

strated through computational tests with some real and simulated data sets.

This new algorithm has shown to optimally solve problems of up to 80 vari-

ables in size. To our knowledge, none of the existing exact algorithms have

solved problems of this size.

Third, this dissertation introduces a heuristic version of the implicit enu-

meration algorithm that can be used to solve even larger problems. It also

develops a combined methodology of heuristic search and exact algorithm in

model selection. This methodology improves the performance of pure exact

and pure heuristic approaches.

Fourth, this research demonstrates the applications of these new algo-

rithms in several different areas, namely, multiple and multivariate regres-

sion, logistic regression and discriminant analysis.

Finally, this dissertation has presented a unified view of the different

computational techniques in subset model selection. The techniques have in

many cases come to their existence independently in different fields. Their

relatedness and the relative pros and cons are not easy to see. Thus, the aim

of this dissertation is to present the latest developments, highlight their prac-

tical values, provide an understanding of the methods and compare different

methods.

11



Chapter 2

Overview of Subset Model

Selection Techniques

The most straightforward method in subset model selection is to generate

all possible models to find the best one. However, the model portfolio soon

becomes tremendously large and computationally impossible as the number

of models increases exponentially with the number of variables. Thus, vari-

ous optimization techniques have been developed in model selection. Recent

years have seen many exciting developments in the model selection tech-

niques. In this chapter, we survey the existing computational techniques in

model selection.

We classify the algorithms into exact and heuristic algorithms. Section

2.1 discusses the exact algorithms. Exact algorithms guarantee finding the

optimal subset model. Section 2.2 describes the heuristic algorithms. Heuris-

12



tic algorithms do not guarantee finding the optimal subset model.

2.1 Exact Algorithms

Branch and Bound (BB) is a global exhaustive search method. It has been

widely used in the integer programming problems in operations research.

This technique has proven to be reasonably efficient on practical problems.

One cannot talk about a branch-and-bound algorithm that can solve all dis-

crete and combinatorial optimization problems. A specific algorithm has to

be designed for a specific class of problems.

A specific branch and bound procedure was developed and applied in

model selection for the first time by Furnival and Wilson (1974). The ob-

jective is to find the minimum residual sum of squares (RSS) for a model of

a given size. Their algorithm constructs two trees: One regression tree and

one bound tree. The bound tree contains all regressions excluding the last

variable. The regression tree contains all the regressions that includes the

last variable. The bound tree was traversed in a lexicographical order. The

regression tree was traversed in a modified familial order. At each step, two

models are generated simultaneously. The algorithm can be adapted to find

the best subset of each size for some type of information criterion. The first

term of information criteria can be some other goodness-of-fit measure such

as the maximum likelihood. The second term of the information criteria has

to depend only on the subset size, meaning the second term has to be the

13



same for subsets of the same size.

Gatu and Kontoghiorghes (2003) presented a branch and bound algo-

rithm that is designed specifically to find subsets with minimum error sum

of squares for subset of each size. Their tree was built by dropping vari-

ables so that each node contains several evaluations of subsets of different

sizes. QR decomposition and Givens rotation are used to compute the RSS

efficiently. Their algorithm can be adapted to use information criteria that

are functions of error sum of squares. Similar to Furnival and Wilson’s al-

gorithm, their algorithm only finds the minimum of the first term of the

information criteria, f(w), thus requiring the second term, g(w), to be the

same for subset of the same size in order to be able to locate the optimal

model.

In the pattern recognition field, there is a similar problem called feature

selection. Variables are called features in pattern recognition. Many authors

have described branch and bound procedures. All these branch and bound

algorithms consider the problem of selecting the best subset of m features out

of n original features that maximizes some criterion function J . The function

J satisfies the monotonic property, that is, J(w2) ≥ J(w1), if w2 ≥ w1.

Narendra and Fukunaga (1977) was the first to propose a branch and

bound algorithm for feature subset selection in the pattern recognition field.

Since then many researchers have developed different variations of the branch

and bound algorithm. Yu and Yuan (1997) proposed a BAB+ algorithm and

made the first substantial improvement to the original branch and bound
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algorithm proposed by Narendra and Fukunaga (1977). Their modification

recognizes that in selecting a certain number of features, any intermediate

nodes in a single path from the root to the terminal node need not be evalu-

ated and thus, the procedure immediately skips to the terminal node, thereby

saving intermediate evaluations.

Somol et al. (2000) introduced a fast branch and bound (FBB) procedure.

It maintains a prediction mechanism for individual feature and expects that

its contribution to the criterion value do not change much in relation to

different subsets. Thus, nodes in the solution tree that are between the root

and the leaf can be predicted.

Chen (2003) made further improvements to the BAB+ algorithm by uti-

lizing the monotonic conditions of the criterion function. By monoticity, a

subset of the feature set that has previously been evaluated need not be evalu-

ated. He showed that the improved branch and bound algorithm he proposed

outperformed the FBB and BAB+ in terms of number of computations and

computational time.

The previously mentioned feature selection algorithms are based on the

depth first search of the tree. Siedlecki and Sklansky (1988) is the first one

to discuss a best first search strategy. They developed a “beam search”

algorithm. However, the beam search algorithm is suboptimal, and it does

not guarantee to find the optimal subset.

A common characteristic of all proposed branch and bound algorithms is

that they are all based on selecting the best subset that has a specific number
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of variables. They aim to find the minimum of f(w) and can only be adapted

to information criteria where the second term g(w) is the same for subsets

of the same size.

To our knowledge after reviewing the literature, no algorithm has been

given for selection of the optimal model without finding the best of each size

and that also works with all types of information criteria.

In the next section, we give a specific example to illustrate when the

branch and bound algorithm fails to find an optimal model.

2.1.1 Limitations of the Existing Branch and Bound

Algorithms

The existing branch and bound algorithms aim to find the best subset of

each size according to a measure of lack of fit, i.e. f(w). Therefore, it only

works with information criterion where the second term g(w) depends solely

on the subset size, such as AIC, Cp and SBC. For information criteria where

the second term is not a function of the number of variables in the model, the

existing branch and bound algorithm does not guarantee to find the optimal

subset.

Table 2.1 gives an example that the existing branch and bound algorithms

fail to find the optimal subset model. It displays part of the complete enu-

meration of the four variable subsets of the steam data set with 9 variables.

A complete enumeration shows that the best four-variable subset and the
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Table 2.1: ICOMP(IFIM) Values for the Steam Data Set

ICOMP(IFIM) Lackoffit (f(w)) C1ifim (g(w))

6 7 8 9 19.7925 -13.2636 16.5281
5 7 8 9 2.5093 -27.0734 14.7913
4 7 8 9 29.4648 -16.0471 22.756
1 6 7 9 1.1626 -26.6908 13.9267
4 5 7 9 10.0893 -30.6967 20.393
3 5 7 9 -0.483 -26.4595 12.9883
2 5 7 9 -2.1188 -27.3872 12.6342
1 5 7 9 -10.09 -32.0642 10.9871
3 4 7 9 24.4803 -16.133 20.3066

1 2 6 7 5.9566 -25.8418 15.8992
3 4 5 7 12.4014 -31.0731 21.7373
2 4 5 7 6.4702 -31.2534 18.8618
1 4 5 7 9.0488 -32.5412 20.795
2 3 5 7 0.2665 -27.1041 13.6853

Subset
….

….

….

overall “best” subset contains variables {1,5,7,9} according to the informa-

tion criterion ICOMP(IFIM). However, branch and bound algorithm finds

the subset {1,4,5,7} as the best subset for subset of size four because it has

the smallest lack of fit. The assumption that the penalty term depends only

on the size of the subset does not hold true for the ICOMP(IFIM) criterion.

Thus, Branch and Bound algorithms fail to find the “best” subset {1,5,7,9}.
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2.2 Heuristic Algorithms

When a problem size exceeds a certain limit, for example, when the num-

ber of variables is larger than 30, one might begin to think about using a

heuristic method instead of the exact methods. The heuristic algorithms do

not guarantee finding an optimal subset that minimizes a given information

criterion. Stepwise method is perhaps the first of the kind in model selection

and it is sill popular among practitioners. The “stepwise regression” can be

dated back to the algorithm proposed by Efroymson (1960). Miller (2002 p.

49) has a detailed description of this algorithm. An and Gu (1989) developed

a fast stepwise procedure for the selection of variables by using AIC and BIC

(Akaike 1978) criteria, which is similar to the standard stepwise regression

procedure in computing steps, but has a faster rate and can be used for a

large number of candidate variables. With stepwise methods, only a small

number of subsets need to be evaluated. However, the significant levels to

enter and stay for candidate variables have to be specified in advance to use

the stepwise methods. Stepwise methods do not guard presence of multi-

collinearity and they have other drawbacks which are documented well in

the literature.

Other popular heuristics include genetic algorithm (GA), simulated an-

nealing (SA), tabu search (TS) and threshold accepting (TA).

A genetic algorithm (GA) has been widely used in problems where large

numbers of solutions exist. It is an intelligent random search algorithm based
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on evolutionary ideas of natural selection and genetics. It follows the princi-

ples first laid down by Charles Darwin of survival of the fittest. The algorithm

searches within a pre-defined search space to solve a problem. It has out-

standing performance in finding the optimal solution for problems in many

different fields. Siedlecki and Sklansky (1989) first presented the GA in fea-

ture selection. Their experiments indicate that “GA is a powerful tool for

feature selection when the dimensionality of the initial feature set is large”.

Recently, Bearse and Bozdogan (1998) introduced a Genetic Algorithm (GA)

with the Information Complexity (ICOMP) criterion as the fitness function

to select an optimal subset Vector Autoregressive (VAR) model. Choosing

an optimal subset VAR model has been a vexing problem because of its

large search space. Genetic Algorithm provides a computationally feasible

multi-criteria optimization tool that can be exploited to avoid the “curse of

dimensionality” inherent in VAR modeling. Bozdogan and Bearse (2003) ap-

plied the algorithm in detecting the influential observations in VAR models.

Bozdogan (2004a) introduced the genetic algorithm in intelligent data mining

using information complexity in subset selection in linear regression models.

Bao and Bozodgan (2004) used the genetic algorithm in model selection in

kernel regression models. Chatpattananan and Bozdogan (2004) introduced

the genetic algorithm in subset selection of regularized radial basis function

(RBF) regression trees and neural networks.

Most recently, Brooks et. al. (2003) presented a transdimensional simu-

lated annealing algorithm that can be used to locate models and parameters

19



that minimize an information criterion. Their algorithm is an extension to

the traditional simulated annealing algorithm that allows for moves that

not only change parameter values but also move between competing models.

They demonstrated the algorithms through applications to autoregressive

time series, logistics regression and recapture-recovery models.

Winker (2001) introduced a heuristic optimization technique threshold

accepting and applied it in vector autoregressive order selection. Threshold

accepting resembles the simulated annealing. It can also be considered as

a refinement to the standard local search procedure. The standard search

procedure always rejects the new solution if the objective becomes worse.

The threshold acceptance may accept the “worse” solution if the objective

worsens less than a previously set threshold.
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Chapter 3

The Implicit Enumeration

Algorithm

This chapter formally introduces the implicit enumeration algorithm for sub-

set selection. The proposed implicit enumeration algorithm differs and out-

performs the existing branch and bound algorithms for subset selection in a

number of ways. It is the first algorithm that explicitly uses the information

criterion as the objective function. The algorithm works with some infor-

mation criteria for which the existing branch and bound algorithms are not

applicable. It also finds the “best” subset model directly without the need

for finding the “best” subset of each size as the existing branch and bound

algorithms do.

This chapter shows how the mathematical structure of the information

criteria can be exploited to develop an algorithm that is applicable to a wide
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variety of subset selection problems. Section 3.1 describes the implicit enu-

meration algorithm and gives a simple illustrative example. Section 3.2 out-

lines the steps of the algorithm. Section 3.3 shows ways to compute bounds

so that branches that do not contain optimal solutions can be pruned. Dif-

ferent branching strategies are presented in section 3.4. A numerical example

is given to illustrate the computational steps of the algorithm in section 3.5.

Section 3.6 presents a heuristic version of the algorithm. This heuristic ver-

sion does not guarantee the finding of the best subset, but computational

results show that by choosing a good parameter, the algorithm finds the best

subset with a smaller number of model evaluations than the non-heuristic

version. We demonstrate the algorithm through computational results on

some real data sets and compare it with the existing algorithms in chapter

4.

3.1 Implicit Enumeration

Implicit enumeration algorithms have been used to solve linear integer pro-

gramming problems for many years, Trotter and Shetty (1974)’s algorithm

was the first of such algorithms. However, none of these existing algorithms

are applicable to the nonlinear subset selection problem. This section ex-

plains how the mathematical structure of the subset selection problem can

be exploited to develop an algorithm that is applicable to a wide variety of

model selection problems using information criteria.
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3.1.1 Notation and Terminology

Implicit Enumeration (IE) algorithm is a binary branch and bound algorithm.

Variables are coded as either 0 or 1. A variable is coded as 1 if it is in

the model and 0 if out of the model. Let {x1, x2, ..., xJ} denote the set of

candidate variables. A selection of variables is given by w = {w1, w2, ..., wJ},
where wj = 0 if xj is not included in the model and wj = 1 if xj is included

in the model.

Implicit enumeration initiates the construction of an enumeration tree of

all possible solutions, but avoids complete enumeration by identifying and

eliminating branches of the tree that do not contain the optimal solution.

For example, consider a variable selection problem with three candidate in-

dependent variables. Figure 3.1 shows one possible tree that enumerates all

eight possible solutions by first branching on w2, then on w1 and finally on

w3 . Nodes 0-6 of the enumeration tree represent partial solutions. A partial

solution has some of the fixed, either at 0 or 1, while some of the variables

are free. A free variable’s value is undetermined. Nodes 7 through 14 repre-

sent the 8 possible complete solutions. For illustration purposes, we assume

values of f(w), g(w) and z(w) for each complete solution and show these

values in table 3.1.

Let w∗ denote the optimal solution, i.e., w∗ minimizes z(w) and let z∗ =

z(w∗). In the example w∗ = (1, 1, 0) with f(w∗) = 2, g(w∗) = 6 and z∗ =

z(w∗) = 8. This solution is shown at node 13.
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Figure 3.1: An Enumeration Tree

Table 3.1: Values of All the Complete Solutions 
Node 7 8 9 10 11 12 13 14 
w  (0,0,0) (0,0,1) (1,0,0) (1,0,1) (0,1,0) (0,1,1) (1,1,0) (1,1,1) 

)(wf  10 9 7 6 5 4 2 1 
)(wg  2 4 4 6 4 6 6 8 
)(wz  12 13 11 12 9 10 8 9 
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3.1.2 Evaluations of Partial Solutions

Implicit enumeration works with partial solutions. It attempts to discard

as many solutions as possible that cannot lead to the optimal solution. To

represent a partial solution, let S = (j1, j2, ....) contain the indices of those

variables that are currently fixed in the subset in the order in which they

become fixed. And let wS = (wj1 , wj2 , ...) be the partial solution vector that

contains the values assumed by the fixed variables.

A partial solution having i fixed variables represents one of the nodes

in the ith level of an enumeration tree. In figure 3.1 , S = {2, 1} with

wS = {1, 0} represents node 5 at which w2 = 1 and w1 = 0 have been fixed

in that order, and w3 is free.

A completion of a partial solution is a solution w formed by the assign-

ment of values to its free variables. A partial solution will have 2q possi-

ble completions, where q is the number of free variables. The completions

of S = {(2, 1} with wS = {1, 0} in the example are S = {2, 1, 3} with

wS = (1, 0, 1) and S = {2, 1, 3} with wS = {1, 0, 0}. In figure 3.1 these

two completions are represented at node 11, w = {1, 0, 0} and node 12,

w = {1, 0, 1}.

3.1.3 Bounding and Fathoming Partial Solutions

For a given partial solution, let z̄(S,wS) represent an upper bound on z(w)

for the best completion of (S, wS), i.e., there exists at least one completion
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w of (S, wS) such that z(w) ≤ z̄(S,wS). Note that evaluating z(w) for any

completion of (S, wS) provides such a bound.

In the example, an upper bound on the partial solution S = {2}, wS =

{0} (node 1) can be obtained by computing the objective function of any

completion obtained by assigning values to all the free variables. For example,

if all free variables are assigned a value of 0, the resulting completion is

w = {0, 0, 0} with z(w) = 12. Thus z̄({2}, {0}) = 12 is an upper bound

on the z, meaning that at least one completion of S = {2}, w = {1} has a

solution less than or equal to 12.

For a given partial solution let z(S,wS) represent a lower bound on z(w)

for the best completion of (S, wS), i.e., there exists no w which is a completion

of (S,wS) for which z(w) ≤ z(S, wS).

For example, consider the partial solution S = {2}, wS = {0} (node 1). A

crude lower bound can be obtained by combining the smallest possible values

of f(w) and g(w). The smallest value of f(w) for any completion of a partial

solution is obtained by setting all free variables to 1. Hence the smallest

possible value for f(w) for any completion of (S, wS) is f(0, 0, 1) = 9. The

smallest possible value for g(w) for any completion of a partial solution is

obtained by setting all free variables to 0. Hence the smallest value of g(y)

for any completion of (S, wS) is g(0, 0, 0) = 2. Combining these two best

cases tells us that no completion of (S,wS) will have z(w) ≤ 6 + 2 = 8.

A partial solution is fathomed when either (1) it is shown that no com-

pletion can be optimal or (2) it is shown that the best feasible completion
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has been found. In particular, if the lower bound on a particular partial

solution is greater than or equal to the upper bound on another partial solu-

tion already examined, then that partial solution cannot have a completion

that is optimal. Therefore further examination of that partial solution is

unnecessary.

3.1.4 A Simple Example

Table 3.2 shows the iterations for the application to the example in figure 3.1.

The order in which the variables are selected for branching (in step 6 of the

algorithm) was artitrarily chosen to be first w2, then w1 and then w3. Also in

step 6 the variable selected for branching was set to 1. The upper bound in

each iteration (step 2) was computed by arbitrarily setting the free variable

to 0. The lower bound (step 4) was computed by adding the value f(w)

obtained setting all free variables to 1 to the value of g(w) obtained by

setting all free variables to 0.

After evaluating 3 of the 14 nodes in the complete enumeration tree, the

algorithm finds the optimal solution (1,1,0). The algorithm evaluates 7 of

the nodes before it determines that this solution is optimal. In other words,

the algorithm proves the optimality of the solution (1,1,0) after evaluating 7

nodes.

Obviously, for any given problem, the speed of convergence of the algo-

rithm will vary depending on (1) the branching strategy (the order in which

variables are added to the enumeration and whether they are first fixed at
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Table 3.2: Implicit Enumeration Solution to the Example in Figure 3.1
S Sw  Node Upper 

Bound 
Lower Bound In-

cumbent 
*z
 

Next Step 

{} {} 0 z(0,0,0)=12 f(1,1,1)+g(0,0,0)=3 (0,0,0) 12 Branch 

{2} {1} 2 z(1,0,0)=9 f(1,1,1)+g(1,0,0)=5 (1,0,0) 9 Branch 

{2,1} {1,1} 6 z(1,1,0)=8 f(1,1,1)+g(1,1,0)=7 (1,1,0) 8 Branch 

{2,1,3} {1,1,1} 14 z(1,1,1)=9 f(1,1,1)+g(1,1,1)=9 (1,1,0) 8 Fathomed, Backtrack 

{2,1,3} {1,1,0} 13 z(1,1,0)=8 f(1,1,0)+g(1,1,0)=8 (1,1,0) 8 Fathomed, Backtrack 

{2,1} {1,0} 5 z(1,0,0)=9 f(1,0,1)+g(1,0,0)=8 (1,1,0) 8 Fathomed, Backtrack 

{2} {0} 1 z(0,0,0)=12 f(0,1,1)+g(0,0,0)=8 (1,1,0) 8 Fathomed, Backtrack 

 

0 or 1) and (2) the “tightness” of the upper and lower bounds computed.

Bounding procedures and branching strategies are discussed in sections 3.3

and 3.4.

3.2 Algorithm Description

In this section, we formally introduce the implicit enumeration algorithm for

subset selection. At any point in an enumeration, let z̄∗ denote the best

solution found thus far.

We also adopt an underlining notation. Underlining any elements of

S denotes that both values (0 or 1) of the underlined elements have been

enumerated, i.e., a partial solution identical to S but having the opposite

values of wS for the underlined elements has previously been examined. For

example: S = {2, 3} and wS = {1, 0} indicates that wS = {1, 1} has already

been enumerated.

The steps of the implicit enumeration algorithm are as given below:
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1. Initialization: Set S = ∅, wS = ∅ and z̄∗ = ∞. Let the vector w =

{0, 0, ..., 0} represent the incumbent solution.

2. Computing an upper bound: Compute the criterion value for selected

completions (described in section 3.3.1) of (S, wS). Set z̄(S, wS) equal

to the smallest criterion value of these completions. Go to step 3.

3. Updating: If z̄(S, wS) < z̄∗, a solution better than incumbent has been

found. Replace the incumbent solution with the best feasible comple-

tion of (S, wS), and set z̄∗ = z̄(S, wS).

4. Computing a lower bound: Compute z(S, wS). The method for com-

puting the lower bound is described in section 3.3.2.

5. Fathoming: (S, wS) is fathomed if

(a) z̄(S, wS) > z̄∗, indicating that no completion of (S, wS) can be

optimal.

(b) z̄(S, wS) = z̄∗, indicating that the best feasible completion of

(S, wS) has been found.

6. Branching: Add another variable to S and add the corresponding com-

ponent (0 or 1) to wS. The method used to select a variable and to

choose the value of the new component of wS are described in section

3.4.
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7. Backtracking: If all of the elements of S are underlined, the incumbent

represents the optimal solution. Otherwise, choose the right most non-

underlined element of S, underline it and change the corresponding

element of wS (from 0 to 1 or from 1 to 0). Then drop all elements of

S (and the corresponding component of wS) to the right of the newly

underlined element. Go to step 2.

In practice, the success of the algorithm depends on getting good upper

and lower bounds, and on a good branching strategy, i.e., determining the

variable to be added to S in step 6 and determining whether to fix the

corresponding component of wS at 0 or 1. The following sections describe

the bounding and branching methods.

3.3 Bounding Procedures

The efficiency of an implicit enumeration algorithm depends on tight upper

and lower bounds and a good branching strategy. These are the essential

elements that determine the rate of convergence to the optimal solution. In

this section, we will describe the bounding procedures.

3.3.1 The Methods for Computing the Upper Bound

Consider any partial solution (S,wS) and let p denote the number of variables

fixed in the solution (p=Σw) and let q denote the number of free variables.
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Define the completion wc obtained by setting all free variables to zero as

the core solution.

Define the completion wr obtained by setting all of the free variables to

1 as the replete solution. This solution has p + q variables.

Both z(wc) and z(wr) provide upper bounds. However, we can get much

tighter upper bounds by finding two additional completions and choosing the

smallest of the bounds obtained.

One of these two additional completions is the augmented core solu-

tion wac, which is defined as the best completion that can be obtained by

adding exactly one free variable to the core solution. This subset is obtained

by evaluating the q different solutions of p + 1 variables obtained by adding

each of the free variable to and choosing the solution that minimizes z(w).

The other completion examined is the diminished replete solution,

which is the best solution that can be obtained by deleting exactly one free

variable from the replete subset. This variable is obtained by evaluating all

of the q solutions of p+ q− 1 variables obtained by deleting one free variable

from the replete solution and choosing the solution that minimizes z(w).

The upper bound is then computed as:

z̄(S, wS) = min(z(wc), z(wac), z(wr), z(wdr)).
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3.3.2 The Methods for Computing the Lower Bound

The discussion of this section exploits the facts that f(w) and g(w) are

monotonic functions. We write f(w) = l(s) and g(w) = h(s), where s = the

number of variables in the solution defined by w, i.e. Σw.

Two cases are considered to compute a lower bound. The first case is

that when g(w) = h(s) satisfies the condition that: h(s1) ≥ h(s2) if s1 ≥ s2.

That is, when the second term of the criterion function only depends on the

number of variables in the subset, we have the following theorem:

Theorem 1 A lower bound on any completion of (S, wS) can be computed

as:

z(S, wS) = min(z(wc), z(wac), z(wr), z(wdr), z̃),

where z̃ = f(wdr) + h(p + 2).

Proof

First observe that the core solution represents the only (and therefore

the best) completion of (S, wS) having p variables. The augmented core

solution represents the best completion having p + 1 variables. The replete

solution represents the only, and therefore the best completion having p + q

variables. The diminished replete solution represents the best completion

having p + q − 1 variables.

Hence, if we can also obtain a lower bound on those completions having

s variables, where p + 2 ≤ s ≤ p + q − 2, we can compute a lower bound for

all completions.
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Any completion w having s variables, where p+2 ≤ s ≤ p+q−2, will have

f(w) ≥ f(wdr) and will have g(w) ≥ h(p + 2). Therefore, f(wdr) + h(p + 2)

is a lower bound on any completion having s variables, p+2 ≤ s ≤ p+ q−2.

A lower bound on any completion of (S,wS) can be computed as:

z(S, wS) = min(z(wc), z(wac), z(wr), z(wdr), z̃) = min(z̄(S, wS), z̃).

The second case is that when the condition h(s1) ≥ h(s2) if s1 ≥ s2 is

not satisfied. However, the monotonic condition of both l(s) and h(s) still

holds. That is, l(s2) ≥ min(l(s1)) and h(s1) ≥ min(h(s2)) if s1 ≥ s2. In

other words, l(s) of subset of size s2 is greater than the minimum of that of

all subsets having s1 variables. h(s) of subset of size s1 is greater than the

minimum of that of all subsets having s2 variables if s1 ≥ s2. We then have:

Theorem 2 A lower bound on any completion of (S, wS) can be computed

as:

z(S, wS) = min(z(wc), z(wac), z(wr), z(wdr), z̃),

where z̃ = min(l(p + q − 1)) + min(h(p + 1)).

Proof.

From the proof of theorem 1, we only need to obtain a lower bound on

those completions having s variables, where p + 2 ≤ s ≤ p + q − 2.

From the monotonic condition of l(s), l(s) ≥ min(l(p+q−1)). Similarly,

we have h(s) ≥ min(h(p + 1)). It follows that z̃ = min(l(p + q − 1)) +
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min(h(p + 1)) ≤ l(s) + h(s).

Thus, z̃ = min(l(p + q − 1)) + min(h(p + 1)) is a lower bound for any

subsets having s variables.

A lower bound on any completion of (S,wS) can be computed as:

z(S, wS) = min(z(wc), z(wac), z(wr), z(wdr), z̃).

3.4 Branching strategies

In branching it must be decided which free variable to add to S and the value

(0 or 1) to add to the corresponding element of wS. There are two obvious

choices:

1. Choose the free variable that was added to the core solution to form

the augmented core solution. Fix the value of this variable to 1.

2. Choose the free variable that was deleted from the replete solution to

form the diminished replete solution. Fix the value of this variable at

0.

In our computational test with regression problems, we tested three branch-

ing strategies, namely, the greedy, variable augmentation and variable dele-

tion strategy. A recursive procedure is used for all the branching strategies.
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3.4.1 The Greedy Branching Strategy

In the greedy branching strategy, the variable chosen for branching is deter-

mined by comparing the augmented core and diminished replete solutions.

If z(wac) ≤ z(wdr), the free variable that was added to the core solution

to form the augmented core solution will be added to S. The corresponding

element of wS will be set to 1. If z(wac) > z(wdr), the free variable that was

deleted from the core regression to form the diminished core solution will be

added to S. The corresponding element of wS will be set to 0.

3.4.2 The Variable Augmentation Branching Strategy

In the variable augmentation branching strategy, the free variable that was

added to the core solution to form the augmented core solution is added

to S. The corresponding element of wS is set to 1. Bounds in variable

augmentation branching strategy could be computed as shown in section

4.2. We term it Aug1. We can also eliminate the computation of the di-

minished replete solutions. That is, the upper bound can be computed as

z̄(S,wS) = min(z(wc), z(wac), z(wr)). and the lower bound can be computed

as z(S, wS) = min(z(wc), z(wac), z(wr), z̃). where z̃ = f(wr) + h(p + 1) or

min(l(p + q)) + min(h(p + 1)). We term this strategy Aug2. Aug1 provides

tighter bounds than Aug2. However, Aug1 requires more model evaluations

than Aug 2 in order to obtain tighter bounds. Thus, Aug1 strategy may

require more number of model evaluations if there are many competitive

35



models to the best model than Aug2.

3.4.3 The Variable Deletion Branching Strategy

In the variable deletion strategy, the free variable that was deleted from the

replete solution to form the diminished core solution is added to S. The

corresponding value of wS will be set to 0. Similar to the variable aug-

mentation branching strategy, bounds can be computed following section

4.2. We term this strategy Del1. We can also eliminate the computation of

the augmented core solutions. That is, the upper bound can be computed

as z̄(S,wS) = min(z(wc), z(wr), z(wdr)). and the lower bound can be com-

puted as z(S, wS) = min(z(wc), z(wr), z(wdr), z̃). where z̃ = f(wdr)+h(p) or

min(l(p + q − 1)) + min(h(p)). We term this strategy Del2.

3.5 A Numerical Example

The implicit enumeration (IE) algorithm is best illustrated by using an ex-

ample. We use linear multiple regression as an example. In linear multiple

regression, a response variable Y is assumed to be linearly related to the J

predictor variables, X1, X2, ..., XJ thus

Y = β0 + β1X1 + β2X2 + ... + βJXJ + ε
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where the residuals ε are normally and independently distributed with mean

0 and variance σ2. The coefficients β0, β1, ..., βJ are estimated using the

least squares (LS) method. The LS estimates of the regression coefficients,

to be denoted by b’s, are given in matrix notation by

b = (X ′X)−1X ′Y

where b′ = (β0, β1, ..., βJ), X is an n×(J +1) matrix in which row i consists of

a 1 followed by the values of variables X1, X2,...,XJ for the ith observation,

and Y is a vector of length n containing the observed values of the variable to

be predicted. We can predict the response for a given vector x′ = (1, x1, .., xJ)

of the predictor variables, using

Ŷ = X ′b = β0 + β1X1 + ... + βJXJ .

Subset selection in linear multiple regression is to select w variables from J

variables in order to have good prediction accuracy.

The data set used is a sample data set in the statistical software JMP—

fitness data set. This data set is the result of an aerobic fitness study and

has 7 predictor variables. They are sex (X1), age (X2), weight (X3), run-

time (X4), run pulse (X5), maximum pulse (X6) and rest pulse (X7). The

response variable is the oxygen uptake of a person running on a treadmill

for a prescribed distance. In order to find a good oxygen uptake prediction

equation, we try to find the best regression model by using the AIC as the
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model selection function. AIC for linear multiple regression can be computed

as:

AIC = n log

(
SSEw

n

)
+ 2kw

where n is the number of observations, kw is the number of parameters in

the model with variables w and SSEw is the sum of squared errors.

Writing it in the standard format:

AIC = f(w) + g(w)

where f(w) = n log
(

SSEw

n

)
and g(w) = 2kw. We assume that the model

always has an intercept term in it.

3.5.1 Computational Steps of The Variable Augmen-

tation Branching Strategy

The computing steps are depicted in an enumeration tree in figure 3.2. The

numbers listed next to the Iteration numbers are z̄(S, wS) and z(S,wS). If

the z̄∗ < z(S, wS), the branch is fathomed.

It took 9 iterations for the variable augmentation branching strategy to

converge to the optimal solution. Iteration 1 and 2 are given in details in

tables 3.3 and 3.4. IE starts with a null model as the core solution. To

obtain the augmented core model, we compute models by adding variables

to the core one by one. The model that contains variable 4 has the smallest
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Age out Age in 

MaxPulse out MaxPulse in 

Runtime in Runtime out  

Iteration 1   57.77 
                   49.77 
 

Iteration 9    88.24 
                    82.24 
 

Iteration 2    57.77 
                    51.77 
 

Iteration 3    57.77 
                    53.77 
 

Iteration 8    60.64 
                    56.64 
 

Iteration 4    56.76 
                    55.77 
 

RunPulse in 

Iteration 7   63.56 
                   63.56 

RunPulse out  

Iteration 5    56.30 
                    57.76 

Iteration 6    59.28 
                    59.28 

Figure 3.2: Enumeration Tree by Variable Augmentation Branching Strategy.
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Table 3.3: Computational Steps of the Implicit Enumeration with Augmen-
tation Strategy: Iteration 1

Iteration 1: S={}, Ws={}
Model f(M) g(M) z(M) Upper Bound Lower Bound

Core {} 104.7
Augmented {1} 94.4126 4 98.4126
Core {2} 99.5387 4 103.5387

{3} 101.8717 4 105.8717
{4} 60.5424 4 64.5424
{5} 97.3569 4 101.3569
{6} 97.3197 4 101.3197 57.7645 49.7645
{7} 100.9169 4 104.9169

Replete {1,2,3,4,5,6,7} 43.7398 16 59.7398
Diminished {2,3,4,5,6,7} 44.411 14 58.411
Replete {1,3,4,5,6,7} 48.6153 14 62.6153

{1,2,4,5,6,7} 44.2971 14 58.2971
{1,2,3,5,6,7} 75.8764 14 89.8764
{1,2,3,4,6,7} 53.6189 14 67.6189
{1,2,3,4,5,7} 43.7645 14 57.7645
{1,2,3,4,5,6} 49.4353 14 63.4353

=43.7645+2*3

Table 3.4: Computational Steps of the Implicit Enumeration with Augmen-
tation Strategy: Iteration 2

Iteration 2: S={4}, Ws={1}
Model f(M) g(M) z(M) Upper Bound Lower Bound

Core {4} 60.5424 4 64.5424
Augmented {1,4} 58.599 6 64.599
Core {2,4} 57.8503 6 63.8503

{3,4} 60.3527 6 66.3527
{4,5} 58.2785 6 64.2785 57.7645 51.7645
{4,6} 60.524 6 66.524
{4,7} 60.3189 6 66.3189

Replete {1,2,3,4,5,6,7} 43.7398 16 59.7398
Diminished same as iteration 1
Replete

=43.7645+2*4
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criterion value. Thus it is the augmented core solution and the next iteration

will have the model containing only variable 4 as the core solution. Similarly,

adding variable 2 to the core model with variable 4 in the second iteration

gives the smallest criterion value. Thus, model containing variable 2 and 4

will be the core for iteration 3. The rest of the iterations follow the same

procedure.

3.5.2 Computational Steps of The Greedy and The

Variable Deletion Branching Strategies

It took 15 iterations for the variable deletion and greedy branching strategy

to converge to the optimal solution. The iterations of the two strategies are

identical in this case. The details of the computation of the first two steps of

the greedy strategies are the same and they are shown in table 3.5 and 3.6.

Computational steps for all iterations are shown in figure 3.3.

Although the computations of the iterations are the same for both strate-

gies, the notions behind are not the same. For the greedy strategy, we com-

pare the augmented core solution and the diminished replete solution. If

the criterion value of the augmented core solution is smaller than that of

the diminished replete solution, we add the variable that was added to the

core to form the augmented core solution. Otherwise, we add the variable

that was deleted from the replete solution to form the diminished replete

solution and fix it out of the model. In this case, the criterion value of the
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Table 3.5: Computational Steps of the Implicit Enumeration with Greedy
Branching Strategy: Iteration 1

Iteration 1: S={}, Ws={}
Model f(M) g(M) z(M) Upper Bound Lower Bound

Core {} 104.7
Augmented {1} 94.4126 4 98.4126
Core {2} 99.5387 4 103.5387

{3} 101.8717 4 105.8717
{4} 60.5424 4 64.5424
{5} 97.3569 4 101.3569
{6} 97.3197 4 101.3197 57.7645 49.7645
{7} 100.9169 4 104.9169

Replete {1,2,3,4,5,6,7} 43.7398 16 59.7398
Diminished {2,3,4,5,6,7} 44.411 14 58.411
Replete {1,3,4,5,6,7} 48.6153 14 62.6153

{1,2,4,5,6,7} 44.2971 14 58.2971
{1,2,3,5,6,7} 75.8764 14 89.8764
{1,2,3,4,6,7} 53.6189 14 67.6189
{1,2,3,4,5,7} 43.7645 14 57.7645
{1,2,3,4,5,6} 49.4353 14 63.4353

=43.7645+2*3

Table 3.6: Computational Steps of the Implicit Enumeration with Greedy
Branching Strategy: Iteration 2

Iteration 2: S={6}, Ws={0}
Model f(M) g(M) z(M) Upper Bound Lower Bound

Core
Augmented same as iteration 1
Core
Replete {1,2,3,4,5,7} 43.7645 14 57.7645
Diminished {2,3,4,5,7} 44.5231 12 56.5231
Replete {1,3,4,5,7} 48.782 12 60.782 56.2971 50.2971

{1,2,4,5,7} 44.2971 12 56.2971
{1,2,3,5,7} 79.0858 12 91.0858
{1,2,3,4,7} 53.7468 12 65.7468
{1,2,3,4,5} 49.4741 12 61.4741

=44.2971+2*3
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Iteration 2    56.30 
                    50.30 
 

Iteration 1     57.77 
         49.77 

 

Weight in Weight out 

Sex out  
  

RstPulse out 

RstPulse in  

Iteration 3    56.30 
                    52.76 
 

Iteration 6  56.53 
                   52.57 
 

Sex in 

Iteration 4    56.76 
                    56.76 
 

Iteration 9    58.30 
                    52.30 

Iteration 5    56.30 
                    56.30 
 

Sex out  Sex in 

Iteration 7    56.52 
                    56.52 
 

Iteration 8    57.77 
                    57.77 
 

Weight in 
 

Weight out 

Sex out  

Iteration 10  58.30 
                    54.79 
 

Iteration 13  58.41 
                    54.47 
 

Sex in 

Iteration 11  58.73 
                    58.73 
 

Iteration 12  58.30 
                    58.30 
 

Sex out  
  

Sex in 

Iteration 14  58.41 
                    58.41 
 

Iteration 15  59.74 
                    59.74 
 

Figure 3.3: Enumeration Tree by Greedy Branching Strategy.

43



diminished replete solution is 57.7645 and is less than the augmented core

solution 64.5424. Thus, we add variable 6 to S and fix it out of the model by

adding a 0 to the wS. Similarly, we observe that in iteration 2 the diminished

replete solution has a criterion value less than the augmented core solution.

Therefore, in iteration 3 the S set will contain variable 3 and 6 and they will

be fixed out of the model. For the deletion strategy, we do not do any com-

parisons between the augmented core and diminished replete solution. We

always add the variable that was deleted from the replete solution to form

the diminished replete solution and fix it out of the model. In this example,

the diminished replete models have criterion values less than the augmented

core models, thus the deletion and greedy strategy turn out to be the same

for the first 9 iterations.

3.6 Heuristic Implicit Enumeration

The computational efficiency of the implicit enumeration improves when

more branches are cut. The upper bound we computed is exact. However,

the lower bound we obtained is an estimated bound. If we can increase the

lower bound, fewer model evaluations might be needed to find the optimal

solution. In this section, we introduce a method to increase the lower bound

to cut more branches. This method does not guarantee finding the optimal

solution, thus termed heuristic implicit enumeration (HIE).

We introduce a multiplier (1 + τ) to the lower bound we obtained in
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section 4.2.2. That is, the lower bound is computed as:

z(S,wS) = min(z(wc), z(wac), z(wr), z(wdr), (1+τ)z̃) = min(z̄(S,wS), (1+τ)z̃)

where

τ =





0 ≤ τ ≤ 1 z̃ ≥ 0

−1 ≤ τ ≤ 0 z̃ < 0

When τ = 0, z(S, wS) is equal to the lower bound in section 4.2.2 and the

solution is optimal. When τ > 0, z(S, wS) is a bigger value than the original

lower bound value. Thus, this lower bound is able to cut more branches,

that is, to fathom more solutions in the early stages of the execution of the

algorithm. Some branches that were cut may contain the optimal solution.

Therefore, there is no guarantee that the optimal solution can be found.

The HIE algorithm does not guarantee to find the best subset. However,

the model it finds, if it is not the best, is very close to the best. Thus, HIE

can provide some good alternative models for practitioners besides the best

model.
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Chapter 4

Computational Experience with

the Implicit Enumeration

Algorithm

This chapter reports the computational results of a series of experiments

conducted on some real data sets with the implicit enumeration algorithm.

The objectives of this chapter have two fold: First, real world data sets and

AIC and ICOMP criteria are used to demonstrate the performance of the

exact and heuristic implicit enumeration algorithms and compare different

branching strategies. Second, the algorithm is compared with the existing

algorithms.

Section 4.1 gives numerical examples on real data sets. Section 4.2 demon-

strates the performance of the heuristic version of the implicit enumeration
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algorithm. In section 4.3, some numerical examples on information criteria

that the branch and bound algorithms fail to find the optimal model are pro-

vided. Finally, comparisons with the existing branch and bound, stepwise

and all subset methods are made in section 4.4.

4.1 Computational Experience

In this section, we report on a set of examples that we have solved to demon-

strate the algorithm and compare the three branching strategies. The im-

plicit enumeration algorithm was implemented in Matlab. The three differ-

ent branching strategies developed in section 3.4 are tested and compared on

seven real data sets.

4.1.1 Experience on Real Data Sets

The data sets studied are chosen from the literature and are summarized in

table 4.1.

We tried both Aug1 and Aug2 strategies, Del1 and Del2 strategies. Aug2

and Del2 have fewer total number of model evaluations on our test problems.

Thus, the results reported here are from Aug2 and Del2 strategies.

We compared the branching strategies on two criteria: (1) the number of

iterations required to find the optimal solution (but not necessarily proving

optimality) and (2) the number of iterations required to find the optimal

solution and prove its optimality. The variable deletion branching outper-
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Table 4.1: Details of the Studied Data Sets

Data Set # of Var. # Obs Description Source

Belle 7 27

Belle Ayr 
Liquefaction 

Runs
Montgomery&Peck(1992) 
p.491

Fitness 7 31
Aerobic 
Fitness JMP sample dataset

Chemical 7 59
Chemical 

Degrassing Wetherill (1986) p.250

Steam 9 25
Monthly Use 

of Steam Draper&Smith (1998)

Gas 11 30

Gasoline 
Mileage 

Performance
Montgomery&Peck(1992) 
p.489

Bodyfat 13 252
Body Fat 

Percentage
http://lib.stat.cmu.edu/datasets/
bodyfat

Crime 15 47 Crime Rate Raftery (1995)

forms the other branching strategies on criteria (1) on all but one of the data

sets. The variable augmentation branching strategy outperforms the other

branching strategies with respect to the criteria (2) on all data sets.

Based on our limited number of experiments, the variable augmentation

strategy would be considered the best choice, since it consistently converged

to a proven optimal solution in fewer iterations. An exception would be

for very large problems in which the user plans to terminate the iterations

before optimality has been demonstrated. In this case the variable deletion

strategy would be a better choice. The variable deletion strategy has a higher

probability of terminating with the optimal solution as the incumbent, when

enumeration is stopped before proof of optimality has been achieved.

Table 4.2 gives a comparison of the results of the three branching strate-
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Table 4.2: Comparison of The Three Branching Strategies

# of Total
Data Set Var. Models Aug Del Gdy Aug Del Gdy Aug Del Gdy
Belle 7 128 5 11 5 2 5 2 21 36 38
Fitness 7 128 9 15 15 5 2 2 30 47 80
Chemical 7 128 9 19 19 5 10 10 33 55 92
Steam 9 512 25 47 47 13 3 3 103 151 256
Gas 11 2048 57 89 57 53 8 53 229 311 378
Bodyfat 13 8192 43 423 423 8 5 5 199 1510 2598
Crime 15 32768 45 1057 1057 16 7 7 253 4156 7256

Total_Iter Opt_Iter Eval

gies. The first column is the name of the data set. The second column is

the number of candidate independent variables. The third column gives the

total number of all possible subsets. Total Iter represents the total number of

iterations taken to determine the optimal solution (and prove its optimality).

Opt Iter represents the number of iterations taken to first reach the optimal

solution (but not necessarily prove its optimality). Eval gives the number of

models evaluated to find the optimal solution and verify its optimality. The

last column gives the total number of possible models.

The variable augmentation strategy dominates the other two. The num-

ber of models evaluated to find and verify the optimal solution is smallest

for the augmentation for each of the test problems. Figure 4.1 shows the

evaluations required for each of the branching strategies.
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Figure 4.1: Comparison of Augmentation, Deletion and Greedy Branching
Strategies: Number of models evaluated to find and verify optimal solution

4.2 Performance of the Heuristic Implicit Enu-

meration

The performance of the HIE is tested on the seven data sets from the previous

section and the results are shown in table 4.3.

In order to test the effects of a fairly large range of τ values, we choose τ

to be 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1 and 0.2. Tables 4.3 shows that

when τ is greater than or equal to 0.1, the HIE algorithm was not able to

find the optimal solution for any of the test data sets. The algorithm finds

the optimal solution with fewer model evaluations for four out of the seven

data sets. The best case happens to the gas data set, it is able to find the

optimal solution with fewer than half of the model evaluations of the exact

version. For practitioners, we suggest to use a τ value between 0-0.1.
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Table 4.3: Heuristic Implicit Enumeration Performance

0 0.001 0.002 0.005

Belle Subset {6,7}

AIC 126.7495

#Eval 21

Fitness Subset {1,2,4,5,7}

AIC 56.2971

#Eval 30

Chemical Subset {1,3,4,5,7} {1,3,4,5,7} {1,3,4,5,7} {1,3,4,7}

AIC 408.6022 408.6022 408.6022 408.8136

#Eval 33 33 30 26

Steam Subset {1,3,5,7,8,9}

AIC -24.6577

#Eval 103

Gas Subset {5,8,10} {5,8,10}

AIC 68.2899 68.2899

#Eval 229 206

Bodyfat Subset {1,2,4,6,7,8,12,13} {1,2,4,6,7,8,12,13} {1,2,4,6,7,8,12,13} {1,2,4,6,8,12,13}

AIC 741.8514 741.8514 741.8514 741.9088

#Eval 199 179 154 107

Crime Subset {1,3,4,7,10,11,13,14} {1,3,4,7,10,11,13,14} {1,3,4,7,10,11,13,14} {1,3,4,7,10,11,13,14}

AIC 503.9349 503.9349 503.9349 503.9349

#Eval 253 236 194 179

{1,3,5,7,8,9}

-24.6577

{1,2,4,5,7}

56.2971

30

Data Set

21

126.7495

{6,7}

103

217

68.2899

{5,8,10}

ττ
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Table 4.3: Continued Heuristic Implicit Enumeration Performance

0.01 0.02 0.05 0.1 0.2

Belle Subset

AIC

#Eval

Fitness Subset {1,2,4,5,7} {1,2,3,4,5,6,7}

AIC 56.2971 59.7398

#Eval 30 15

Chemical Subset {1,3,4,7} {1,2,3,4,5,6,7}

AIC 408.8136 411.9596

#Eval 26 15

Steam Subset {1,3,5,7,8,9} {1,3,5,7,8,9} {1,3,5,7,8,9} {1,3,5,6,7,8,9} {4,5,7}

AIC -24.6577 -24.6577 -24.6577 -23.6086 -22.6252

#Eval 103 100 82 72 58

Gas Subset {5,8,10} {1,4} {1}

AIC 68.2899 70.1968 70.2349

#Eval 100 50 12

Bodyfat Subset {1,2,4,6,12,13} {2,6,12,13}

AIC 743.6612 745.0747

#Eval 99 50

Crime Subset {1,3,4,11,13,14} {1,3,4,11,13,14}

AIC 504.7859 504.7859

#Eval 141 95

514.6488

31

Data Set

15

126.7495

{6,7}

{1,2,3,4,5,6,7,8,9,10,11,12,13}

749.3574

14

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

8

{5,8,10}

68.2899

187

56.7603

26

{1,2,3,4,5,6,7}

411.9596

{6}

129.9051

8

{2,4,5,7}

τ τ
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4.3 Information Complexity ICOMP Crite-

rion

In this section, we will demonstrate the performance of the implicit enumer-

ation algorithm with the information criteria where the second term g(w) is

not the same for subsets of the same size. IE only requires that g(w2) ≥ g(w1)

if w2 ≥ w1.

Bozdogan has developed a family of criterion that follows the property

mentioned above in a series of papers. The criteria includes CAICF, ICOMP-

(IFIM), ICOMPMisspec etc. The ICOMP criterion family resembles AIC,

but incorporates a measure of the complexity of the model into the penalty

term. ICOMP penalizes the covariance complexity of the model instead of

penalizing the number of free parameters directly.

For general univariate and multivariate models, the ICOMP criterion is

defined by

ICOMP = −2 log(L(θ̂)) + 2C1(F̂−1)

where L(θ̂) is the likelihood function and C1(F̂−1) is the maximal informa-

tional complexity of the estimated IFIM of the model. In particular,

C1(F̂−1) =
s

2
log[

trace(F̂−1)

s
]− 1

2
log |F̂−1|

where s = dim(F̂−1) = rank(F̂−1).

We write ICOMP(IFIM) criterion shown in section 1.2 in a general format
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of the information criterion:

ICOMP (IFIM) = f(w) + g(w)

where

f(w) = −2 log(L(θ̂))

and

g(w) = C1(F̂−1) =
s

2
log[

trace(F̂−1)

s
]− 1

2
log |F̂−1|

f(w) and g(w) follows the monotonic condition. Bozdogan (1990) has the

proof that 2C1(F̂−1) is a monotonic function. Interested readers are referred

to that paper for details of the proof.

We first look at a small example. The data set is the hald data set

(Hald 1952). It has four variables. All possible subsets are computed,

ICOMP(IFIM) criterion value and the value of f(w) and g(w) is listed in

table 4.4.

The results from all possible subsets show that ICOMP(IFIM) achieves its

minimum at subset {1,2} with a value of 32.7304. The C1ifim (C1(F̂−1)) col-

umn clearly indicates that the second term of this criterion varies for subset

of the same size differs. In fact, the second term g(w) does not necessarily

decrease as the number of variables decreases. The C1(F̂−1) of the three-

variable subset {1,3,4} is 10.6824 and is smaller than the two-variable subset

of {2,4}, which has a value of 11.6356. In this case, the branch and bound
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Table 4.4: ICOMP(IFIM) Scores for All Subsets of Hald Data Set

k ICOMP(IFIM) Lackoffit C1ifim
1 1 2 3 4 71.2321 17.1146 27.0587
2 2 3 4 0 56.1833 22.5898 16.7968
3 1 3 4 0 39.2156 17.8508 10.6824
4 1 2 4 0 49.5387 17.136 16.2013
5 1 2 3 0 37.464 17.1916 10.1362
6 3 4 0 0 48.3779 33.8162 7.2809
7 2 4 0 0 77.8703 54.5991 11.6356
8 1 4 0 0 35.7037 22.8636 6.42
9 2 3 0 0 61.8813 44.9898 8.4457

10 1 3 0 0 75.8235 59.084 8.3698
11 1 2 0 0 32.7303 19.5204 6.6049
12 4 0 0 0 67.001 54.8233 6.0888
13 3 0 0 0 76.7967 65.0218 5.8874
14 2 0 0 0 67.3635 55.1439 6.1098
15 1 0 0 0 70.2307 59.4826 5.374

Subset

algorithm is not able to find the optimal subset. The branch and bound

algorithm only finds the smallest f(w) of each size. A smallest value of f(w)

does not often mean a smallest ICOMP(IFIM). For example, subset {1,2,4}
has the smallest f(w) for three variable subset, but its ICOMP(IFIM) value

49.5387 is by no means the smallest among subsets of size 3. The implicit

enumeration is successful in finding the “best” subset {1,2}.
We use the fitness data set as another example. Part of the result of all

possible subsets is shown in table 4.5. By looking at the “C1ifim” column,

we can see that the C1ifim of the six-variable Subset {1,3,4,5,6,7} is 22.6263,

while the C1ifim of the five-variable subset {1,2,3,6,7} is 22.9913. Another

example is that the two-variable subset {1,4} has a C1ifim value of 4.7297,

while the one-variable subset {7} has a C1ifim value of 7.6528. However, in
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Table 4.5: ICOMP(IFIM) Scores for All Subsets of Fitness Data Set

k ICOMP(IFIM) C1Cov AIC
1 1 2 3 4 5 6 7 99.7123 27.9863 59.7398
2 2 3 4 5 6 7 0 96.3492 25.9691 58.411
3 1 3 4 5 6 7 0 92.6707 22.0277 62.6153
4 1 2 4 5 6 7 0 90.7012 23.202 58.2971
5 1 2 3 5 6 7 0 127.68 25.9018 89.8764
6 1 2 3 4 6 7 0 102.9584 24.6697 67.6189
7 1 2 3 4 5 7 0 91.5961 23.9158 57.7645
8 1 2 3 4 5 6 0 97.9333 24.249 63.4353
9 3 4 5 6 7 0 0 90.9931 20.4007 62.1916

10 2 4 5 6 7 0 0 90.2686 21.7678 58.7329
11 1 4 5 6 7 0 0 84.3228 17.8503 60.6222
12 2 3 5 6 7 0 0 125.748 23.8697 90.0086
13 1 3 5 6 7 0 0 122.856 19.9174 95.0212
14 1 2 5 6 7 0 0 118.6078 21.1834 88.2409
15 2 3 4 6 7 0 0 99.8695 22.6592 66.5511
16 1 3 4 6 7 0 0 96.2755 19.0262 70.2231
17 1 2 4 6 7 0 0 93.2655 19.8121 65.6414
18 1 2 3 6 7 0 0 127.9625 22.5038 94.9549
19 2 3 4 5 7 0 0 88.7032 22.0901 56.5231
20 1 3 4 5 7 0 0 85.598 18.408 60.782
21 1 2 4 5 7 0 0 82.9186 19.3107 56.2971
22 1 2 3 5 7 0 0 122.4956 21.7049 91.0858

114 1 5 0 0 0 0 0 108.0043 8.5746 96.8551
115 3 4 0 0 0 0 0 76.5297 8.0885 66.3527
116 2 4 0 0 0 0 0 72.8705 7.5101 63.8503
117 1 4 0 0 0 0 0 67.8408 4.6209 64.599
118 2 3 0 0 0 0 0 117.8641 10.2292 103.4056
119 1 3 0 0 0 0 0 107.932 7.1566 99.6189
120 1 2 0 0 0 0 0 103.1685 6.0901 96.9882
121 7 0 0 0 0 0 0 115.7693 7.4262 104.9169
122 6 0 0 0 0 0 0 107.8595 5.2699 101.3197
123 5 0 0 0 0 0 0 111.8904 7.2668 101.3569
124 4 0 0 0 0 0 0 68.0227 3.7401 64.5424
125 3 0 0 0 0 0 0 113.6997 5.914 105.8717
126 2 0 0 0 0 0 0 110.3462 5.4037 103.5387
127 1 0 0 0 0 0 0 95.246 0.4167 98.4126

Subset

….
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general, C1ifim does decrease as the number of variables decreases.

The implicit enumeration algorithm is run and after 15 iterations and

evaluation of 78 models out of 127 total possible models, it finds the optimal

subset of {1,4} with ICOMP(IFIM) score of 68.0584.

4.4 Comparison with the Existing Methods

In this section, we first compare the implicit enumeration algorithm with the

branch and bound algorithm proposed by Gatu and Kontoghiorghes (2003).

In their paper, they demonstrate that their branch and bound algorithm is

faster than the leaps and bound algorithm by Furnival and Wilson (1974).

Then we will compare IE with the all possible subset method and the stepwise

method.

We note that branch and bound algorithms are not applicable to infor-

mation criteria where the second term is a monotone function, but is not

the same for subsets of the same size. The branch and bound algorithms

need to find the best subset of each size in order to obtain the “best” subset.

The implicit enumeration algorithm, on the other hand, finds the best subset

directly. It is worth noting that although the implicit enumeration algorithm

does not find the best subset of each size, the core subsets in some cases are

the best of that size. If the core subset does not have the best criterion value

of that size, it gives quite competitive subset.

57



4.4.1 Comparison with the Branch and Bound Algo-

rithms

Gatu and Kontoghiorghes (2003) has proposed a branch and bound algorithm

(BBA) that only builds one tree and they showed that the BBA algorithm

has outperformed the Furnival and Wilson’s leaps and bounds algorithm.

They also designed two heuristic versions of the BBA termed HBBA. When

τ = 0, HBBA is equivalent to the exact BBA and HIE is equivalent to the

exact IE.

We use the same experimental data sets as those used in Gatu et al.

(2003). The number of model evaluations and computational time for both

data sets are shown in table 4.6. The ozone data set has 8 variables and 330

observations. The pollute data set has 15 variables and 60 observations.

Table 4.6 gives the comparison on number of node evaluations for HBBA

and model evaluations for HIE. GK’s tree was built so that each node con-

tains evaluations of subsets of different sizes. The actual number of subset

Table 4.6: Comparison with GKBB

HBBA HIE HBBA HIE
Node Eval Subset Eval Node Eval Subset Eval

0 *143 *51 *710 *799
0.01 *130 25 *608 *277

0.025 105 10 *523 95
0.05 90 10 438 59
0.1 60 10 335 17

0.25 21 10 134 17

* optimal solution was found.

Ozone Pollute

τ
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evaluations can be a lot more than the node evaluations. The results are

reproduced from Gatu et al. (2003).

For the pollute data set, HIE with τ value of 0.01 was able to evaluate

277 subsets to find the optimum. The smallest number HBBA needs is 523

node evaluations to find the optimum. HIE seems to be more sensitive to the

τ value in that the number of evaluations decreases more dramatically than

the HBBA does. By looking at both the exact and heuristic version results,

we observe that HIE has the smaller number of subset model evaluations and

much faster convergence overall.

4.4.2 Comparison with All Possible Subsets Method

Table 4.7 showed the time comparison of all possible subsets method and

the implicit enumeration on data sets with 16-30 variables. The all subsets

method is terminated prematurely for data sets with 21-30 variables because

of the substantial computation time required.

Table 4.8 reports the computational time comparison of all possible sub-

sets method and IE algorithm on data sets with various sample sizes. We

simulated seven data sets with 16 variables and with 1000, 5000, 10000,

20000, 50000, 100000 and 500000 observations respectively. The predictor

variables are generated from uniform distributions. The response variable is

generated by using some linear combinations of the predictors.

Both algorithms are implemented and tested on a PC with 3.0 GHz Pen-

tium 4 processor and 1 Gb RAM. The computation time to find the best
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Table 4.7: Comparison with All Possible Subsets

Variables Time #Eval Time #Eval
16 63.10 65,536 0.38 460
17 105.23 131,072 0.34 376
18 274.14 262,144 0.59 688
19 796.19 524,288 3.72 3,918
20 2513.20 1,048,576 1.98 2,040
21 49913* 2,097,152 0.27 230
22 49913* 4,194,304 3.89 3,608
23 49913* 8,388,608 26.02 20,986
24 49913* 16,777,216 1.69 1,278
25 49913* 33,554,432 11.17 8,684
26 49913* 67,108,864 15.92 11,484
27 49913* 134,217,728 5.95 3,896
28 49913* 268,435,456 39.61 24,972
29 49913* 536,870,912 15.70 8,682
30 49913* 1,073,741,824 40.80 23,636

* Computation time of 21-variable data set up to subset size 12;
  All other data sets are terminated before completion

All Subsets IE

Table 4.8: Time Comparison of All Possible Subsets and IE on Simulated
Data Sets

Observations All Subsets IE
1000 49.3 0.3
5000 279.4 3.8

10000 655.8 3.6
20000 1413.0 3.8
50000 3224.1 3.6
100000 5520.8 9.7
500000 28595.0 90.4
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subsets are shown in the table.

The implicit enumeration algorithm clearly outperforms the all possible

subsets method on all simulated data sets.

4.4.3 Comparison with Stepwise Methods

We also ran our test problems using the stepwise regression procedure in SAS.

The results of the stepwise methods depend on the entering and stopping

rules. Different rules often lead to different subsets for the same problem.

We have chosen the entering and staying rules according to SAS default.

That is, the significance level for a variable to enter and stay in the model is

0.15. A variable will not enter the model if the p-value is greater than 0.15.

The stepwise procedure found the optimal solution in one of the seven

test data sets and failed to find the optimal subset in six of the data sets.

These results are shown in table 4.9.

Table 4.9: Results Comparison with Stepwise Procedure in SAS

IE Stepwise IE Stepwise
Belle 6,7 6,7 127 127
Fitness 1,2,4,5,7 2,4,5,7 56 57
Chemical 1,3,4,5,7 1,3,4,7 409 409
Steam 1,3,5,7,8,9 1,4,5,7 -25 -23
Gas 5,8,10 1 68 70
Bodyfat 1,2,4,6,7,8,12,13 1,2,4,6,12,13 742 744
Crime 1,3,4,7,10,11,13,14 1,3,4,11,13,14 504 505

Data Set
Solution AIC
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Chapter 5

Genetic Algorithm and the

Hybrid Approach

Genetic Algorithms (GA) were formally introduced in the 1970s by John

Holland. Goldberg (1989) and many others have popularized the GAs in the

1980s. Since then, GA has been widely used in many different areas to solve

various kinds of problems such as production scheduling problems, traveling

sales man’s problem and circuit layout.

The GA presented in this chapter is based on the work of Luh, Minesky

and Bozdogan (1997), which in turn basically follows Goldberg (1989). A

brief introduction to the genetic algorithm in model selection is given in sec-

tion 5.1. Section 5.2 discusses the advantages and disadvantages of the GAs.

GA is a stochastic search algorithm, which can be applied to huge model se-

lection portfolios. GA does not often guarantee finding the optimal solution,
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but they give near optimal solutions for complex problems. Thus, a hy-

bridization of the genetic algorithm and the implicit enumeration algorithm

is proposed and developed in section 5.3. The hybrid method can be more

efficient in finding the “best” model than the pure exact algorithm, which

greatly improves the performance of the pure exact and heuristic algorithms.

We demonstrate this combinatorial methodology with some numerical exam-

ples in section 5.4.

5.1 Algorithmic Description

Genetic Algorithms were developed to mimic some of the processes observed

in natural evolution. To use a genetic algorithm, the solution of the problem

must be represented as a genome (or chromosome). The genetic algorithm

then creates a population of solutions and applies genetic operators such as

mutation and crossover to evolve the solutions in order to find the best one.

There are three most important aspects of using genetic algorithms: (1) the

definition of the objective function, (2) the definition and implementation of

the genetic coding scheme, and (3) the definition and implementation of the

genetic operators. Once these three have been defined, the generic genetic

algorithm should work fairly well. The algorithm is implemented using the

following steps in model selection:

1. Implementing a genetic coding scheme: The first step of the GA is to

represent each subset model as a binary string. A binary code of 1
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indicating presence and a 0 indicating absence. Every string is of the

same length, but contain different combinations of predictor variables,

for example, a binary string of 10010 represents a model including

variable x1 and x4, but excluding x2, x3 and x5.

2. Generating an initial population of the models: The initial population

consists of randomly selected models from all possible models. We have

to choose an initial population of size p. Our algorithm allows one to

choose any population size. The best population size to choose depends

on many different factors and requires further investigation.

3. Using a fitness function to evaluate the performance of the models in the

population: A fitness function provides a way of evaluating the perfor-

mance of the models. Information criteria are used as the fitness func-

tions. In general, the analyst has the freedom of using any appropriate

model selection criterion as the fitness functions. The comparison of

different model selection criteria’s performances has been reported in

many other literatures, for example, McQuarrie and Tsai (1998).

4. Selecting the parents models from the current population: This step is to

choose models to be used in the next step to generate new population.

The selection of parents’ models is based on the natural selection. That

is, the model with better fitness value has greater chance to be selected

as parents. Let zi denote the information criterion value for the ith

model in the population. Let zMAX denote the maximum criterion
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value of that generation. We calculate the differences:

4z(i) = zMAX − zi

for i = 1, ..., p, where p is the population size. We then average these

differences. The ratio of each model’s difference value to the mean

difference value is then calculated. The chance of a model being used

as parent is proportional to this ratio.

5. Produce offspring models by crossover and mutation process: The se-

lected parents are then used to generate off-springs by performing

crossover and/or mutation processes on them. Both the crossover

and mutation probabilities are determined by the analyst. A higher

crossover probability will introduce more new models into the popu-

lation in each generation. However, it will remove more of the good

models from the previous generation. A mutation probability is a ran-

dom search operator. It helps to jump to another search area within

the solutions’ scope. Lin and Lee (1996) states that mutation should

be used sparingly because the algorithm will become little more than

a random search with a high mutation probability.

There are different ways of performing the crossover, for example, uniform

crossover, single point crossover and two-point crossover. Interested readers

are referred to Goldberg (1989) for more details. The method of crossover is

65



also determined by the analyst.

5.2 Advantages and Disadvantages of Using

Genetic Algorithm

Similar to the problems of applications of genetic algorithms in many differ-

ent fields, the algorithm in the model selection framework does have some

advantages and disadvantages. They are summarized as follows:

Advantages:

1. It can handle data sets of virtually any size.

2. There are no specific requirements on the information criterion func-

tion. The function does not need to be monotone, continuous or differ-

entiable.

3. It can return several good models, instead of a single best model.

Disadvantages:

1. One of the more challenging aspects of using genetic algorithms is to

choose the configuration parameter settings. Discussion of GA theory

provides little guidance for proper selection of the settings. The pa-

rameters include the number of generations, population size, crossover

and mutation probabilities. There are also various ways of perform-

ing the crossover operation and selecting the mating parents. Common
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crossover operations are the uniform, single point, two-point and shuffle

crossover. Common parents selection methods are natural and random

selection. The parameter and operations choices can greatly influence

the performance of the algorithm. Although many researchers have

attempted to use experimental design to assist GA parameters con-

figuration, choosing the optimal combinations of them still remains a

question to be solved.

2. The genetic algorithm does not guaranteed to find the optimal solution.

It only finds a “good” solution. The solution can be optimal sometimes

depending on the various choices of parameters and operations by the

analyst.

5.3 Hybrid of GA and IE

GAs are very effective in high-dimensional search spaces. However, the major

drawback of GA is that there are several parameters need to be set before the

runs. No real guidance to these parameter choices exists and bad parameter

choices can lead to suboptimal solutions. GA does not guarantee to find the

optimal solution because it is a stochastic search algorithm. Different runs

of GA can produce very different solutions.

Due to the drawbacks of the GA, we propose a hybrid of GA and the

implicit enumeration algorithm to find the optimal solution. This hybrid

methodology can be less computationally expensive than using the pure im-
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plicit enumeration algorithm.

The implicit enumeration algorithm is ideal for the hybrid approach. It

can use any solution as a starting point to find the optimal solution. A good

starting point can greatly reduce the computations.

It is worth noting that given a good solution by GA, the existing branch

and bound algorithm can only find the best solution of the size given by the

solution of GA or the solution with sizes greater than that given by the GA.

The size of the solution has to be specified by the researcher.

We propose three ways to implement this:

First, the solution from the GA runs provides a starting point for the

implicit enumeration algorithm. This initial solution provided by the GA is

fixed in the final solution. This approach does not guarantee the finding of

the optimal solution because the initial solution provided by GA may contain

variables that are not present in the optimal solution. The final solution is

optimal when the initial solution provided by GA has less than or has exactly

the same variables as those in the optimal solution. Thus, a criterion that

tends to under-fit a model is used for the initial GA runs. Some examples of

such criteria are CAIC and MDL as suggested by Bozdogan (1994) “CAIC

and MDL penalizes models too stringently, to the point that it under fits

the true model”. We call this approach GAIE-1. Variable augmentation

branching strategy is used with GAIE-1.

Second, the solution from the GA runs is used as a starting point just

as in the first approach. However, the variables that are not in the solution
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are fixed out of the final solution. Variable deletion branching strategy is the

most suitable to be used with this approach. We call this approach GAIE-2.

Like GAIE-1, GAIE-2 does not guarantee the finding of the optimal solution

because the initial solution provided by the GA may exclude some variables

that are in the optimal solution.

GAIE-1 and GAIE-2 could be used parallel to each other. The solution

provided by GA serves as a starting solution for both the variable augmen-

tation and variable deletion strategies. The combined usage of the two ap-

proaches greatly increased the chance of finding the optimal solution. We

will demonstrate this in the next section.

Third, The initial solution provided by the GA is used as an upper bound

in the implicit enumeration instead of being the starting point of the algo-

rithm. The computational savings of this hybrid methodology comes from

fewer model evaluations in the implicit enumeration by being able to cut

branches faster due to tighter bounds. The worst situation is that the solu-

tion provided by GA is no better than the upper bound obtained in the first

iteration from the implicit enumeration. There are no extra fathoming of the

solutions. We call this approach GAIE-3.

Another possible approach is that the solution provided by the GA is

used as a starting point for the implicit enumeration algorithm. The implicit

enumeration algorithm is then used to find the best solution with the given

set of variables. The solution from the implicit enumeration can be feed back

into the GA as a parent again. The solution from GA can then serve as a
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starting point of the implicit enumeration algorithm. The loop could go on

and on until a satisfactory solution is found or until there is no improvement

on the current solution.

In the next section, we use the small real world data from chapter 4 to

demonstrate the hybrid methodology and show its advantages over the pure

GA and pure IE approach. Results of the applications on larger data sets

will be given in the next chapter.

5.4 Computational Examples and Comparisons

In this section, we demonstrate the performance of the hybrid approaches

GAIE-1, GAIE-2 and GAIE-3. Their performances will also be demonstrated

in the next chapter with large data sets.

5.4.1 GAIE-1

The seven real world data sets from chapter 4 is used as benchmark data

sets. GA parameters are chosen as shown in table 5.1. The population size

and number of generations of the GA are chosen arbitrarily. The probability

of crossover is 0.5 and the probability of mutation is 0.01 for all runs. CAIC

is used as the fitness function for the GA runs.

From table 5.2, we see that for the fitness, gas and bodyfat data sets,

GA & IE hybrid approach needs fewer model evaluations to find the optimal

solution. It works very well with the gas and bodyfat data sets. For the
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Table 5.1: GA Parameter Choices

# of Population No. of GA
Var. Size Generation Eval

Belle 7 5 5 25
Fitness 7 5 5 25
Chemical 7 5 5 25
Steam 9 10 6 60
Gas 11 10 8 80
Bodyfat 13 15 10 150
Crime 15 15 10 150

Data Set

Table 5.2: GAIE1 results

Optimum Pure GA GAIE-1 Pure IE GAIE-1
Belle 6,7 4,5,6,7 4,5,6,7 21 29
Fitness 1,2,4,5,7 1,2,4,5 1,2,4,5,7 30 29
Chemical 1,3,4,5,7 1,2,3,4,5,7 1,2,3,4,5,7 33 26
Steam 1,3,5,7,8,9 1,2,3,5,7,8,9 1,2,3,4,5,7,8,9 103 63
Gas 5,8,10 8,10 5,8,10 229 107
Bodyfat 1,2,4,6,7,8,12,13 2,4,6,7,8,12,13 1,2,4,6,7,8,12,13 199 163
Crime 1,3,4,7,10,11,13,14 1,3,4,7,9,10,11,13,141,3,4,7,9,10,11,13,14 253 157

Model EvalsSolution
Data Set
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gas data set, only 107 models are evaluated before it obtains the optimal

solution compared with the evaluation of 229 models by the pure implicit

enumeration approach. For the bodyfat data set, only 163 models needed

to be evaluated compared with the 199 model evaluations by the pure IE

approach. Although the hybrid approach did not find the optimal solution

for the belle, chemical, steam and crime data sets, the solutions it found are

quite competitive with the optimal solution. Except for the Belle data set,

GAIE-1 greatly improved the initial solution provided by GA.

5.4.2 Combined Usage of GAIE-1 and GAIE-2

In addition to the GAIE-1 approach, GAIE-2 are run parallel with GAIE-1.

Table 5.3 gives the results of the combined usage of GAIE-1 and GAIE-2.

Total represents the total number of model evaluations by the GA and IE.

GAIE-1 obtains the optimal solutions for the fitness, gas and bodyfat data

set. GAIE-2 obtains the optimal solutions for the belle, chemical, steam and

crime data Set. The combined methodology finds the optimal solution for

all tested data sets. In particular, it finds the optimal solution for the gas

and crime data sets with fewer number of model evaluations than the pure

implicit enumeration algorithm.
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Table 5.3: GAIE1 and GAIE2 Combined Usage Results

Optimum Pure GA GAIE-1 GAIE-2 Total Pure IE

Belle 6,7 4,5,6,7 4 9 38 21
Fitness 1,2,4,5,7 1,2,4,5 4 9 38 30
Chemical 1,3,4,5,7 1,2,3,4,5,7 1 27 53 33
Steam 1,3,5,7,8,9 1,2,3,5,7,8,9 3 47 110 103
Gas 5,8,10 8,10 27 4 111 229
Bodyfat 1,2,4,6,7,8,12,13 2,4,6,7,8,12,13 13 47 210 199
Crime 1,3,4,7,10,11,13,14 1,3,4,7,9,10,11,13,14 7 93 250 253

Data Set

Model EvalsSolution

Table 5.4: GAIE3 Results

Optimum Pure GA Pure IE GAIE-3
Belle 6,7 4,5,6,7 21 46
Fitness 1,2,4,5,7 1,2,4,5 30 55
Chemical 1,3,4,5,7 1,2,3,4,5,7 33 58
Steam 1,3,5,7,8,9 1,2,3,5,7,8,9 103 163
Gas 5,8,10 8,10 229 309
Bodyfat 1,2,4,6,7,8,12,13 2,4,6,7,8,12,13 199 349
Crime 1,3,4,7,10,11,13,14 1,3,4,7,9,10,11,13,14 253 403

Data Set
Solution Model Evals

5.4.3 GAIE-3

We again tested the GAIE-3 on the same data sets. AIC is used as the fitness

function for the GA runs. Table 5.4 shows the results. The GAIE-3 does not

perform better than the pure IE approach for all data sets. This is due to

the fact that our upper bounds obtained in IE in early stages are very good

bounds. The solution provided by GA does not improve this upper bound

much. Thus, not many extra solutions can be fathomed.
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Chapter 6

Applications

In this chapter, we demonstrate the applications of the implicit enumeration

algorithm using some real and simulated large data sets. The performance

of the implicit enumeration algorithm is compared with that of the genetic

algorithm and the hybrid approach. Computational time and number of

model evaluations are used as criteria to compare the performance. All the

test runs were done on a PC with a Pentium IV 3.0 GHz processor and 1 Gb

of RAM.

The algorithm can be applied to a wide variety of subset model selection

problems. We demonstrate its applications in logistic regression in section

6.1, multivariate regression in section 6.2 and discriminant analysis in section

6.3.
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6.1 Logistic Regression

Logistic regression is a technique for analyzing problems that have one or

more independent variables that determine a dichotomous outcome. This

situation poses problems for the assumptions of the ordinary least squares

regression that the error variances are normally distributed. Thus, rather

than choosing parameters that minimize the sum of squared errors, estima-

tion in logistic regression chooses parameters that maximize the likelihood

of observing the sample values.

From a practical standpoint, logistic regression and least squares regres-

sion are almost identical. Both methods produce prediction equations. In

both cases the regression coefficients measure the predictive capability of the

independent variables.

The logistic regression model can be written as follows:

π′ = β0 + β1X1 + β2X2 + ... + βJXJ + ε, (6.1)

where π′ is logit transformation of the probability of a outcome of an event

π. This logit transformation is defined as

π′ = loge

(
π

1− π

)
. (6.2)

The logit mean has a range from −∞ to ∞ as X ranges within -∞ to ∞.
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Since each Yi observation is a Bernoulli random variable, where:

P (Yi = 1) = πi

P (Yi = 0) = 1− πi

(6.3)

We represent the probability distribution of each observation Yi as follows:

fi(Yi) = πYi
i (1− πi)

1−Yi (6.4)

where Yi = 0 or 1 and i=1, ...,n.

Since Yi observations are independent, their joint probability function is:

g(Y1, ..., Yn) =
n∏

i=1

fi(Yi) =
n∏

i=1

πYi
i (1− πi)

1−Yi

=
n∑

i=1

[
Yiloge

(
πi

1− πi

)]
+

n∑
i=1

loge(1− πi)

(6.5)

The logarithm of the joint probability function is:

loge[g(Y1, ..., Yn)] = loge

n∏
i=1

πYi
i (1− πi)

1−Yi (6.6)

Since loge

(
πi

1−πi

)
= β0 + β1x1 + ... + βJxJ , Hence, equation (6.4) can be
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expressed as follows:

loge(L(β̂)) =
n∑

i=1

Yi(β0+β1x1+...+βJxJ)−
n∑

i=1

loge[1+exp(β0+β1x1+...+βJxJ)]

(6.7)

where L(β̂) is the likelihood function.

Thus, AIC for logistic regression can be computed as:

AIC = −2loge(L(β̂)) + 2k, (6.8)

where k is the number of parameters in the model.

ICOMP for logistic regression can be computed as:

ICOMP (IFIM) = −2loge(L(β̂)) + 2C1(F̂−1(θ̂)), (6.9)

where C1 denotes the maximal information complexity of F̂−1, and C1 is

defined as

C1(F̂−1) =
s

2
log[

tr(F̂−1)

p
]− 1

2
log|F̂−1|,

where s is the dimension or rank of F̂−1.

In this section, we will use four large examples to demonstrate the per-

formance of the implicit enumeration algorithm with logistic regression.

The first example is a data set of n=200 subjects who were part of a much

larger study on survival of patients following admission to an adult intensive

care unit (ICU). The data set has 19 explanatory variables. The detailed
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Table 6.1: ICU Data Description

Vars Description
X1 Age (years)
X2 Sex: 0,Male; 1,Female
X3 Race: 1,While;2,Black;3,Other
X4 Service at ICU admission: 0,Medical;1,Surgical
X5 Cancer part of present problem: 0,No;1,Yes
X6 History of chronic renal failure: 0,No;1,Yes
X7 Infection probability at ICU admission: 0,No;1,Yes
X8 CPR prior to ICU admission: 0,No;1,Yes
X9 Systolic blood pressure at ICU admission (mmHg)
X10 Heart rate (Beats/min)
X11 Previous admission within 6 months: 0,No;1,Yes
X12 Type of admission: 0,Elective;1,Emergency
X13 Long bone, or hip fracture: 0,No;1,Yes
X14 PO2 from initial blood bases: 0,>=60;1,=60
X15 PH from initial blood gases: 0,=7.25;1<7.25
X16 PCO2 from initial blood gases: 0,=45;1,>45
X17 Bicarbonate from initial blood gases: 0,=18;1,<18
X18 Creatinine from initial blood gases: 0,=2;1,>2
X19 Level of consciousness: 0,No Coma or Stupor;1,Deep Stu-

por;2,Coma

description of the data set is in table 6.1. More details can be found in the

book by Hosmer & Lemeshow (2000). The major goal of this study was

to develop a logistic regression model to predict the probability of survival

to hospital discharge of these patients. So the response or the dependent

variable is vital status (0, lived; 1, died) of the patient.

An exhaustive search will need to explore a model space comprising

219 = 524, 288
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Figure 6.1: One Run of GA for the ICU Data Set

models. The implicit enumeration algorithm with the variable augmentation

branching strategy, however, only needs to evaluate 688 models to determine

the best model. The best model consists of variables 1, 5, 9, 12, 15, 16, 19

and has an associated AIC value of 152.2019. It took 4.782 seconds to find

the optimal model. In comparison, one run of GA took 12.7030 seconds to

complete and found the optimal model. The GA parameters are chosen as

shown in table 6.2 and the GA run is shown in figure 6.1.

The second example is a credit scoring data set with 19 variables and 1000
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Table 6.2: GA parameters

Generation 50
Population Size 76
Crossover Rate 0.5
Mutation Rate 0.01

observations. The aim of the study is to model or predict the probability that

a consumer fails to pay back a loan based on certain characteristics of the

individual. Details of this data set can be found in Brooks, Friel and King

(2003). The data set is obtained courtesy of Dr. Friel. Brooks et. al. (2003)

applied the transdimensional simulated annealing (TDSA) algorithm to this

data set to find the best model defined by the information criterion AIC. “The

TDSA algorithm was run 20 times from various initial model configurations

and each took approximately 6 hours to complete.” The algorithm chose a

model with variables 1, 2, 3, 5, 6, 7, 8, 9, 13, 18 and 19. The associated AIC

value is 1017.828. The complete enumeration of all possible models took

approximately 250 hours and it confirms the chosen model is the optimal

model according to AIC.

We applied the implicit enumeration algorithm with Aug1 strategy to

this data set. It took only 29.9850 seconds and evaluation of 1,038 models

out of 524,288 all possible models to find the exact same optimal model.

Aug2 strategy took 13.828 seconds and evaluation of 837 models to find the

optimal model. GA was also run on this data set. The parameters chosen

are shown in table 6.2. One run of GA did not find the optimal model. It
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Figure 6.2: One Run of GA for the Credit Data Set

chose the model with variables 1, 2, 3, 5, 6, 7, 8, 11, 13, 18 and 19. The

model has an AIC score of 1018.0663. It took GA 37.453 seconds to find this

model. This GA run is shown in figure 6.2.

The third example is a cardiac data set. The data set has 27 variables and

558 observations. It can be found on the web site http://www.stat.ucla.edu/data/.

The objective of this data set has two folds: one is to see if the stress echocar-

diography test was still effective in predicting cardiac events when the stress

on the heart was produced by a medicine called dobutamine; the other is to
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“pinpoint which measurements taken during the stress echocardiography test

were most helpful in predicting whether or not a patient suffered a cardiac

event over the next year”. Details of this data set can be found on the afore-

mentioned web site. The outcome is whether a patient’s heart goes wrong.

A “1” indicates that the patient did not suffer from any cardiac event and a

“0” means that he/she did.

A logistic regression is run to select a subset of variables that are most

helpful in predicting any cardiac event. AIC is used as the selection criterion.

The 27 variables together with an intercept term implying a model portfolio

of

228 = 268, 435, 456

possible subset models. The implicit enumeration with Aug1 strategy eval-

uated 169,605 models, which is 0.0263% of its model space, to find the best

model and verify its optimality. The best model consists of variables 4, 8, 9,

10, 11, 13, 16, 18, 20, 21, 22, 23 and 25. The AIC score is 416.6008. The

time it took to find the optimal model is 3024 seconds. HIE with a τ = 0.005

was run. HIE took 1662 seconds and evaluation of 92,737 models to find the

optimal model.

We also applied the GA to choose a subset model for this data set. The

parameters are set as shown in table 6.2. Fifty generations with a population

size of 76 implying that the GA evaluated

50× 76 = 3, 800
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Figure 6.3: One Run of GA for the Cardiac Data Set

models. One run of GA found a model with an AIC score of 417.5572. This

model contains variables 4, 8, 9, 13, 16, 18, 20, 21, 22, 23 and 25. The time

it took is 29.062 seconds. Figure 6.3 shows this GA run.

We consider using the GAIE-1 and GAIE-2 hybrid methodology using

this GA solution as a starting point. GAIE-1 took 56.641 seconds and 1684

model evaluations to find the optimal subset model with an AIC score of

416.6008 by adding variables 10 and 11. GAIE-2 took 3.141 seconds and 263

model evaluations and was not able to improve the solution any more. The

83



total time it took to run GA, GAIE-1 and GAIE-2 is 87.672 seconds. In this

particular run, GAIE was able to find the optimal model with significant less

time than the pure IE and HIE. GAIE also improved the performance of the

pure GA solution. One hundred runs of the GA and GAIE showed that 26%

of the time GA found the optimal subset model, while 54% of the time GAIE

found the optimal subset model.

The fourth example is a general demographics portion of the 10th Graph-

ical Visualization and Usability (GVU) center WWW User Survey. The web

site is http://www.cc.gatech.edu/gvu/. The original data set consists of 38

predictors and 5022 observations. After deleting the records that contain

missing values, the complete data set we used contain 2384 observations.

There are two response variables. The first response variable is whether or

not a respondent made a purchase of > $100 and the second is whether or

not a respondent ever changed cookie preferences. Detailed description of

this data set is listed in table 6.3.

We pick the best logistic regression model for the second response variable.

The intercept is treated as another variable. Therefore, the model portfolio

contains

239 = 549, 755, 813, 888

all possible models. The pure implicit enumeration algorithm with Aug1

strategy took 3070.7 seconds and evaluation of 27,939 models to find the

optimal model. The optimal model has an AIC score of 2429.879 and it
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Table 6.3: GVU WWW User Survey Data Description

Vars Description
X1 Years on internet: <0.5, 0.5-1, 1-3, 4-6, ≥ 7
X2 Language: 2,Chinese;3,Japanese;4,Russian;5,English;6,French;

7,German;8,Spanish;9,Danish;10,Dutch;11,Italian;12,Greek;
13,Portuguese;14,Hebrew;15,Norwegian;16,Swedish;17,Korean;
18,Other

X3 Vision Disability: 0,No;1,Yes
X4 Hearing Disability: 0,No;1,Yes
X5 Motor Disability: 0,No;1,Yes
X6 Cognitive Disability: 0,No;1,Yes
X7 Access www from home: Daily, Weekly, Monthly,

<One/Month, Never
X8 Access www from work: Daily, Weekly, Monthly,

<One/Month, Never
X9 Access www from school: Daily, Weekly, Monthly,

<One/Month, Never
X10 Access www from public terminal: Daily, Weekly, Monthly,

<One/Month, Never
X11 Self pays for access: 0,No;1,Yes
X12 Parents pays for access: 0,No;1,Yes
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Table 6.3: Continued GVU WWW User Survey Data Description

Vars Description
X13 Work pays for access: 0,No;1,Yes
X14 School pays for access: 0,No;1,Yes
X15 Registered to vote: 2,No;3,Yes;4,NA
X16 Type of industry
X17 Type of occupation
X18 Sector: 1,Public;2,Private;3,Notforprofit;5,other
X19 Profession correspondence with: 1,Public;2,Private;3,Notfor-

profit;5,other
X20 Organization’s total budget in $M: <1,1-10,10-100,100-500,500-

1000
X21 Revenues are from sales to private: 0,No;1,Yes
X22 Revenues are from sales to government: 0,No;1,Yes
X23 Revenues are from contracts with private: 0,No;1,Yes
X24 Revenues are from contracts with government: 0,No;1,Yes
X25 Revenues are from contracts from other: 0,No;1,Yes
X26 Revenues are from government appropriations: 0,No;1,Yes
X27 Revenues are from user fees: 0,No;1,Yes
X28 Revenues are from donations: 0,No;1,Yes
X29 Educational attainment
X30 Gender: 0,Female;1,Male
X31 Race: 2,White;3,African American;4,Indigenous;5,Asian;

6,Hispanic;
7,Latino;8,Multiracial;9,Other

X32 Marital status: 2,divorced;3,other;4,married;5,separated;
6,single;7,windowed

X33 Location: Africa, Antarctica, Asia, Oceania, Europe, USA,
Canada, Mexico, Central America, South America, Middle East,
West Indies

X34 Area: Urban, Suburban, Rural
X35 Number of children in household: 0-1, 1-2, 2-3, 3-4, ≥ 4
X36 Household income
X37 Age category in 5 year increments: <5, 5-10, ..., 81-85, >85
X38 Primary computing platform: 1,DOS;2,Mac/Sys;3,Mac;4,OS2;

5,Unix;6,PC Unix;7,Windows;8,NT;9,Win95;10,Win98;
11,VT100;12,WebTV;14,Other

86



contains variables 1, 2, 7, 8, 9, 10, 14, 21, 23, 26, 30, 34, 37, 38 without the

intercept term. We tried the HIE with a τ = 0.002. It took HIE 726.454

seconds and evaluation of 6747 models to find the exact same optimal model.

The pure genetic algorithm was run on this data set. The parameters are

chosen as shown in table 6.2. One run of GA took 147.563 seconds and found

a model with an AIC score of 2434.0218. This model contains variables 1, 2,

6, 7, 8, 9, 12, 13, 14, 18, 21, 23, 26, 30, 34, 37, 38 without the intercept term.

The GA run is shown in figure 6.4. The pure GA does not perform very well.

Thus, we tried the hybrid approach GAIE-1 and GAIE-2. This GA solution

is used as a starting point for the implicit enumeration algorithm. GAIE-

1 improves the solution by adding variable 10 after 356 additional model

evaluations. This model has an AIC score of 2433.872. GAIE-2, however,

finds a better model according to the information criterion by eliminating

variable 27 after evaluations of 629 models. Model found by GAIE-2 has an

AIC score of 2430.1198. The total computational time of the GA, and the

two hybrid approach is 220.1560 seconds. Although the best model was not

found, the hybrid approach does improve the performance of the pure GA

and provides a very competitive alternative model. It is worth noting that

the performance of the GAIE approach does depend on the GA solution that

feeds into the IE algorithm.

87



0 5 10 15 20 25 30 35 40 45 50
2420

2440

2460

2480

2500

2520

2540

2560

2580

2600

2620

Generations

C
rit

er
io

n 
V

al
ue

Mean Criterion Value="o" and Min Criterion Value="x"

Figure 6.4: One Run of GA for the General Data Set
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6.2 Multivariate Regression

In this section, we will demonstrate the performance of the implicit enumer-

ation algorithm with multivariate regression and compare it with that of the

GA approach using some large data sets.

6.2.1 Vectorized Multivariate Regression

Bearse and Bozdogan (2000) developed the model selection procedures based

on the information-theoretic measure of complexity (ICOMP) with the ge-

netic algorithm. In multivariate regression setting with p response variables

and q predictor variables, the exhaustive approach will require evaluation of

2pq models.

Following the notations in their paper, we write the multivariate regres-

sion model using the vectorized notation

vec(Y ) = vec(XB) + vec(E) = (Ip ⊗X)vec(B) + vec(E)

where Y(n×p) = (y1, y2, ..., yn)′ is a n × p dimensional response matrix.

X(n×q) = (x1, x2, ..., xn)′ is a corresponding n × qdimensional matrix of pre-

dictors and E(n×p) = (ε1, ε2, ..., εn)′ is n× p dimensional error matrix. Thus,

vec(Y ) is np × 1. Ip ⊗X, which can be written as Xsup is np × pq. vec(B)

is np× 1 and vec(E) is np× 1. vec(E) has normal distribution with mean 0

and variance Ω).
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For subset MVR models, without loss of generality, we define

vec(B) = Rγ

where m is equal to the number of unrestricted elements in vecB. Thus, we

can write X∗
sup = XsupR.

The feasible generalized least squares (FGLS) estimator can be then writ-

ten as

γ̃ = (X∗′
supΩ̂

−1X∗
sup)X

∗′
supΩ̂

−1y

The FGLS residuals are given by

ẽ = y −X∗
supγ̃

and a consistent estimator of the covariance matrix of ẽ is given by

Σ̃ =
1

n
Ẽ ′Ẽ

A consistent estimator of the covariance matrix of γ̃ is given by

ˆCov(γ̃) = (X∗′
supΩ̃

−1X∗
sup)

−1

where

Ω̃ = Σ̃⊗ In.
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The ICOMP criterion is then given by

ICOMP = np[1 + log(2π)] + nlog|Σ̃|+ slog(
tr( ˆCov) + 1

2
G

s
)

−log| ˆCov| − plog(2) +
p(p + 1)

2
log(n)− (p + 1)log|Σ̃|

where

G = tr(Σ̃2) + (trΣ̃)2 + 2

p∑
j=1

(σ̃2
j )

2

and σ̃2
j is the jth diagonal element of Σ̃. The detailed derivation can be

found in Bearse and Bozdogan (2000).

Here we use the same data set as is used in Bearse and Bozdogan (2000).

The data set is on Japanese wine with 30 observations on two response vari-

ables (p = 2) and nine predictor variables (q = 9). So there are

218 = 262, 144

subset MR models. They chose the GA parameters as shown in table 6.2.

One run of GA found a subset model with a ICOMP(IFIM) score of

52.1637. An exhaustive search of the model space shows that the chosen

model by GA is indeed the one that minimizes ICOMP.

One hundred runs of GA on the rice data set show that GA chooses the

optimal solution 53% of the time. Each run of GA requires evaluations of

50× 76 = 3, 800 models and an average of 6 seconds per run.
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The implicit enumeration algorithm was run on the same data set. It

took 202.25 seconds and evaluated 87,363 models to find the best model by

the Aug1 branching strategy. Aug2 branching strategy took 156.67 seconds

and evaluation of 54,290 models to find the best model.

6.2.2 Multivariate Regression under Misspecification

In reality, wrong model could often fit to the observed data. There are several

situations that misspecification of models can occur as stated in Bozdogan

and Magnus (2004b):

1. The functional form of the model is not correctly specified.

2. There are “near-linear” dependencies among the predictor variables

which is known as the problem of multicollinearity in regression.

3. There are high skewness and kurtosis in the variables which causes

nonnormality of random error or disturbances.

4. There is autocorrelation and heteroscedasticity.

In Bozdogan and Magnus (2004b), a new statistical methodology called mis-

specification resistant model selection was developed. They showed the

performance of the newly developed criterion ICOMPMisspec, also termed

ICOMPcov is superior to other information criteria such as AIC through

some computational experimentations with real and simulated data sets.
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In this section, we first give an example to show the superior performance

of ICOMPcov information criterion. Then we demonstrate the performance

of implicit enumeration with ICOMPcov and compare it with that of the

GA.

We use similar Monte Carlo simulation protocol for subset selection of

variables as in Bozdogan and Magnus (2004b).

Let

x1 = 10 + ε1,

x2 = 10 + 0.3ε1 + αε2, whereα =
√

1− 0.32 = 0.9539,

x3 = 10 + 0.3ε1 + 0.5604αε2 + 0.8282αε3,

where ε2 is independent and identically distributed according to N(0,1).

The response variables are generated from:

Y(n×2) = [1Xor](n×4)B(4×2) + E(n×2)

with Xor = [x1, x2, x3] and

B =




8 −5

1 0.5

0.5 0

0.3 0.3




93



To make the simulation difficult, we specifically consider the random error

matrix E to be a multivariate power exponential distribution which is a

generalization of multivariate Gaussian.

We simulated a data set with 1000 observations and 10 variables, in which

x4 through x10 are random uniform variables. The true model contains the

intercept and variables 1, 2 and 3. It is difficult for any criteria to pick up the

“right” number of variables in the multivariate regression model. However,

the ICOMP misspecification criterion picked the true model 99% of the time.

AIC chose the correct model 32% of the time. The results are shown in

table 6.4. One hundred replications of simulations took all subset methods

1375.1 seconds, while took the implicit enumeration algorithm 174.8 seconds,

which is only 13% of the time all subset methods took.

Using the same simulation protocol, we added some more uniformly dis-

tributed noise variables and simulated a data set with 50 variables and 1000

observations. It took the implicit enumeration algorithm about 246 seconds

and evaluation of 12,275 models to find the true model with a ICOMP mis-

specification criterion score of 4251.2728.

GA was also used on the same data set. The number of generations is 100

and population size is 80. The probability of mutation is chosen to be 0.01

and probability of crossover is 0.7. It took GA 273.609 seconds and evaluation

of 100 × 80 = 8000 models to find the model containing the intercept and

variables 1, 2, 3, 35, 39, 40, 46 and 48 with a ICOMP misspecification score

of 4326.7. The GA run is shown in figure 6.5.
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Table 6.4: Frequency of Choosing the Best Subset MVR Model in 100 Repli-
cations of the Monte Carlo Simulation

IcompCov AIC
0 1 2 3 4 5 6 7 8 9 10 0 0
1 2 3 4 5 6 7 8 9 10 0 0 0

……
0 1 2 3 5 9 10 0 0 0 0 0 1
0 1 2 3 4 7 10 0 0 0 0 0 1
0 1 2 3 5 6 10 0 0 0 0 0 1

……
0 1 2 3 6 7 9 0 0 0 0 0 1
0 1 2 3 4 7 9 0 0 0 0 0 1
0 1 2 3 4 5 9 0 0 0 0 0 1
0 1 2 3 6 7 8 0 0 0 0 0 2
0 1 2 3 4 5 6 0 0 0 0 0 1

……
0 1 2 3 7 10 0 0 0 0 0 0 1
0 1 2 3 6 10 0 0 0 0 0 0 2
0 1 2 3 5 10 0 0 0 0 0 0 1
0 1 2 3 4 10 0 0 0 0 0 0 1

……
0 1 2 3 8 9 0 0 0 0 0 0 3
0 1 2 3 6 9 0 0 0 0 0 0 1
0 1 2 3 5 9 0 0 0 0 0 0 1

……
0 1 2 3 7 8 0 0 0 0 0 0 2
0 1 2 3 6 8 0 0 0 0 0 0 1
0 1 2 3 5 8 0 0 0 0 0 0 1
0 1 2 3 4 8 0 0 0 0 0 0 1

……
0 1 2 3 5 7 0 0 0 0 0 0 1

……
0 1 2 3 5 6 0 0 0 0 0 0 1
0 1 2 3 4 6 0 0 0 0 0 0 1
0 1 2 3 4 5 0 0 0 0 0 0 2

……
0 1 2 3 10 0 0 0 0 0 0 0 5

……
0 1 2 3 9 0 0 0 0 0 0 0 4

……
0 1 2 3 8 0 0 0 0 0 0 1 6

……
0 1 2 3 7 0 0 0 0 0 0 0 7

……
0 1 2 3 6 0 0 0 0 0 0 0 7

……
0 1 2 3 5 0 0 0 0 0 0 0 7
0 1 2 3 4 0 0 0 0 0 0 0 3

……
0 1 2 3 0 0 0 0 0 0 0 99 32

……
0 0 0 0 0 0 0 0 0 0 0 0 0

Model
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Figure 6.5: One run of GA for the Simulated Data Set with 50 Variables

By using the same simulation procedures, we simulated data sets with

30-80 variables and 1000 observations. Using implicit enumeration, the true

models were picked for all simulation runs. The results are displayed in

table 6.5.
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Table 6.5: Results of the Implicit Enumeration on Simulated Data Sets

# of Var. Total_Models Eval Time
30 1,073,741,824 554 8
40 1,099,511,627,776 4,597 86
50 1,125,899,906,842,620 12,275 246
60 1,152,921,504,606,850,000 142,386 3,766
70 1,180,591,620,717,410,000,000 376,952 11,787
80 1,208,925,819,614,630,000,000,000 803,666 26,648
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6.3 Discriminant Analysis

In many applications of discriminant analysis, a large number of variables are

available. For example, Mucciardi and Gose (1971) studied a rather extreme

case of discriminant analysis based on 157 variables. There are various rea-

sons for not using the entire set of variables. A very important reason is that

the misclassification rate may very well increase as the number of variables

increases. Huberty (1994, p.117-118,130) has given a good discussion of the

reasons for selecting a suitable subset of variables in discriminant analysis,

rather than using all of the variables.

In this example, we apply information criteria to define the “best” subset

of variables in two-group and multiple discriminant analysis. Particularly,

Fujikoshi’s (1985a, b) selection method based on Akaike’s Information Cri-

terion (AIC) is used. Thus the variable selection problem can be defined as

that of finding the subset of variables that minimizes the criterion proposed

by Fujikoshi.

In discriminant analysis, we assume that there are two populations π1

and π2 with J variables. As before let x = x1, x2, ..., xJ denote the entire

set of variables measured. Let w define any subset of x and let k denote

the number of variables in the subset defined by w. Also let ẇ = (1, 1, ..., 1)

define the solution consisting of all of the variables in x.

Let D denote the Mahalanobis distance between the two samples taken

from π1 and π2 based on w. and let D(w) denote the Mahalanobis distance
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based on a subset of variables defined by w. Let N1 and N2 denote the

number of observations in the samples and let N = N1 + N2 and n = N − 2.

Fujikoshi (1985a, b) has proposed that the optimal subset is the one

minimizing the following criterion:

A(w) = AIC(w)− AIC(ẇ)

= Nlog(1 +
D2 −D(w)2

n(N−1
1 + N−1

2 ) + D(w)2
)− 2(J − k)

For multiple discriminant analysis, suppose that there are populations.

Let W denote the sample within groups matrix and let B be the sample

between groups matrix. W (w) and B(w) represent the respective sample

within groups matrix and sample between groups matrix for subset defined

by w. Let I be an identity matrix.

Assume that Σ is unknown. Fujikoshi (1985b) proved that

A(w) = Nlog|I + W−1B| − log|I + W (w)−1B(w)| − 2l(J − k)

A subset w should be selected if it minimizes A(w). We call this criterion

the Fujikoshi criterion.

6.3.1 Mathematical Statement of the Bounding Pro-

cedures

The computations of the upper bounds are as follows:
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Let D(wc) denote the mahalanobis distance for the core solution and

M(wc) denote the product W−1B for the core subset wc.

Let

z(wc) = A(wc) = Nlog1 +
D2 −D(wc)

2

n(N−1
1 + N−1

2 ) + D(wc)2
− 2(J − p)

For multiple discriminant analysis:

z(wc) = Nlog
|I + W−1B|
|I + M(wc)| − 2l(J − p)

For the two-group case, the augmented core subset, denoted by wac is the

subset obtained by adding to the core subset the free variable that maximizes

the mahalanobis distance of the resulting subset. For the multiple group

case, the free variable that maximizes the product W−1B is added to the

core subset to form the wac.

Let

z(wac) = A(wac) = Nlog1 +
D2 −D(wac)

2

n(N−1
1 + N−1

2 ) + D(wac)2
− 2(J − p− 1)

For multiple discriminant analysis:

z(wac) = Nlog
|I + W−1B|
|I + M(wac)| − 2l(J − p− 1)
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For the replete solution we have:

z(wr) = A(wr) = Nlog1 +
D2 −D(wr)

2

n(N−1
1 + N−1

2 ) + D(wr)2
− 2(J − p− q)

For multiple discriminant analysis:

z(wr) = Nlog
|I + W−1B|
|I + M(wr)| − 2l(J − p− q)

The diminished replete subset, is the subset obtained by removing from the

replete subset the variable that maximizes the mahalanobis distance of the

resulting subset. For the multiple group case, delete the variable that maxi-

mizes the product W−1B of the resulting subset.

let

z(wdr) = A(wdr) = Nlog1 +
D2 −D(wdr)

2

n(N−1
1 + N−1

2 ) + D(wdr)2
− 2(J − p− q + 1)

For the multiple discriminant analysis:

z(wdr) = Nlog
|I + W−1B|
|I + M(wdr)| − 2l(J − p− q)

To obtain a lower bound on those completions having r variables, where

p + 2 ≤ r ≤ p + q − 2, we first observe that any such completion will have

the quantity D2−D(w)2

n(N−1
1 +N−1

2 )+D(w)2
at least as large as D2−D(wdr)2

n(N−1
1 +N−1

2 )+D(wdr)2
and

have at least p + 2 variables. Therefore we compute a lower bound for those
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completions having r variables, p + 2 ≤ r ≤ p + q − 2 as:

z̃ = A(wdr) = Nlog1 +
D2 −D(wdr)

2

n(N−1
1 + N−1

2 ) + D(wdr)2
− 2(J − p− 2)

Similarly, for multiple discriminant analysis:

z̃ = Nlog
|I + W−1B|
|I + M(wdr)| − 2l(J − p− 2)

Then z(S, wS) = z̄ = min(z(wc), z(wac), z(wr), z(wdr)) is an upper bound

on any completion of (S,wS) and z(S, wS) = min(z̃, z̄) is a lower bound on

any completion of (S, wS).

6.3.2 Numerical Examples

In this section, we provide two numerical examples for variable selections in

two-group and multiple discriminant analysis respectively.

6.3.3 Two-group Discriminant Analysis

Three test problems were run to evaluate the algorithm. They have 6, 13 and

30 variables respectively. For example 1, the data is from Lubischew (1962)

and it is analyzed by McKay (1977) and McLachlan (1980) to find which

subsets of the 6 variables provide adequate discrimination between the two

species Ch. concinna and Ch. heikertingeri. The sample sizes are N1 = 21
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and N2 = 31.

The implicit enumeration algorithm picked variables 1, 2, 4 and 6 after

evaluating 37 out of 64 possible subsets. Although we are not concerned with

a F-test procedure at some specified significance level α, it is worth noting

that McLachlan (1980) also suggests that variables 3 and 5 can be eliminated

with fairly high degree of confidence and that it will not cause any increase in

the overall conditional error rate. One other subset deletion from the original

set is questionable. Subset 3, 5, 6 would be retained at α = 0.1 and deleted

at α = 0.05.

The second example studied is taken from Huberty (1994, p. 277). The

data set consists of J=13 variables and are used to characterize differences

between the two groups of students enrolled in the beginning and interme-

diate level of college French course. The sample sizes for the two groups are

N1 = 35 and N2 = 81.

The implicit enumeration algorithm evaluated 297 of the 8191 possible

number of subsets (213 − 1 = 8191) and picked 9 out of 13 variables. They

are variables 2, 3, 4, 5, 6, 9, 11, 12 and 13. The Fujikoshi criterion is -5.9954.

This result differs from the “best” subset of size 9 picked by the three hit

rate procedures listed in Huberty (1994, p.119, 121, and 123). The results

from the three hit rate procedures also differ from each other. The Fujikoshi

criteria for the three results are -2.4810, 1.4720 and -2.1484 respectively.

The third example data set used is a mammogram data set from the

Wisconsin Diagnostic Breast Center (Wolbert et al. 1994). This data set

103



consists of 569 samples with 357 benign and 212 malignant samples. The

benign samples are denoted as 0 and malignant samples are denoted as 1.

Thirty variables were extracted from a digitalized image of a breast lump.

All features have been standardized. Implicit Enumeration algorithm chose

variables 1, 6, 7, 8, 11, 15, 17, 18, 21, 22, 24, 27, 29, 30. The Fujikoshi crite-

rion value for the chosen model is -27.1738. It took the algorithm 600.8130

seconds and evaluations of 203,149 models out of the possible 1,073,741,823

models. The heuristic version of the IE is also applied to the data set. The

value of τ is chosen to be 0.1. The HIE also found the optimal model after

336.156 seconds and evaluation of 110,909 models, which is about half of the

time and evaluations of the non-heuristic version.

6.3.4 Multiple Discriminant Analysis

We again use the data from Lubischew (1962) to demonstrate the procedure.

Six characteristics about the three species, Ch. concinna, Ch. heikertingeri

and Ch. heptapotamica are investigated. The sample sizes are N1 = 21,

N2 = 31 and N3 = 22.

The implicit enumeration algorithm evaluated 31 out of 63 possible sub-

sets and decided that all 6 variables are needed to discriminate between the

three species. McKay (1977) noted that “at simultaneous level 0.235, the six

characteristics discriminate significantly among all three species and between

each pair of species”.

For the second example, we use the data from Huberty (1994, p. 277).
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The two groups in section 18.1 and the third group of students, N3 = 37,

enrolled in the advanced level of French course are studied. Only variable 12

is picked to discriminate between the three groups of students after evaluating

27 out of 8191 subsets. Variable 12 is ETS Grammar French test score. The

result is the same as the best subset of size 1 picked by BMDP 7M (stepwise

discriminant analysis) and the Smith Forward Selection Strategy in Huberty

(1994, P. 121, Table VIII.2).
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Chapter 7

Summary and Conclusion

7.1 Summary

The main goal of this dissertation is to present a new algorithm that opti-

mally solves the subset model selection problem based on any information

criterion. We first examine the current approaches and point out their limi-

tations. Then, we introduced the implicit enumeration algorithm that over-

comes these limitations. The implicit enumeration algorithm explores the

structure of the information criteria so that it is applicable to a wide variety

of information criteria. A heuristic version is introduced so that fewer model

evaluations might be needed to find the optimal model. The heuristic version

does not guarantee to find the best model for a given information criterion.

However, it does provide some very competitive alternatives.

The new algorithm can be combined with the heuristic algorithm to make
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it more flexible and capable to deal with some real large problems.

The proposed methodology was applied to real and simulated data sets.

Our computational experiences show that the implicit enumeration algorithm

outperforms the popular branch and bound techniques both in terms of the

number of models evaluations and the computational time.

From our computational tests, we suggest that when the number of vari-

ables are greater than 80. We should consider using the heuristic version

of the implicit enumeration algorithm. The absolute value of the multiplier

in the HIE increases as the number of variables increases. A good range of

value is between -0.1 and 0.1.

Finally, we demonstrate the wide application of the new algorithm by

applying these approaches to three different areas: the logistic regression,

multivariate regression and discriminant analysis. The performance of the

implicit enumeration algorithm on some large data sets is shown through the

applications.

7.2 Conclusion and Future Studies

In conclusion, we proposed a novel algorithm that is very efficient and flexible.

It optimally solves the model selection problem based on any information

criterion for the first time.

This algorithm has many potential applications. Besides finding the

“best” model in multiple, multivariate, logistic regression and discriminant
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analysis problems. It can also be used in other important modeling ap-

plications. An example is the Autoregressive Integrated Moving Average

(ARIMA) order selection in time series analysis. Gaeton (2000) applied the

genetic algorithm to ARIMA model identification. It will be interesting to

see the performance of the implicit enumeration algorithm as compared to

the genetic algorithm in ARIMA subset model selection.

The implicit enumeration algorithm can generate all of the models having

information criteria values close to the minimum in multi-model inference ap-

plications and compare different information criteria in Monte Carlo studies.

In multi-model inference, the goal is to use all of the models that have

information criterion values close to the minimum in order to estimate the

uncertainty in model selection (Hoeting 1996, Brieman 2001, Burnham and

Anderson 2002). The algorithm presented in this paper provides a means

to identify all subset models that are within a specified range of the model

having the minimum information criterion value. To generate these models

the implicit enumeration algorithm can be rerun while fathoming only those

solutions for which z(S, wS) > z∗ + c. All completions evaluated having

z(w) ≤ z∗ + c are retained on a list of incumbent solutions.

Comparative studies of information criteria have used Monte Carlo gener-

ated data. Different information criteria have been compared based on their

ability to choose the known true model that was used to generate the data.

Until now these studies were based on very simple generating models, since

it was necessary to generate all possible solutions to identify the one that a
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given information criterion would select. With our method, larger and more

realistic generating models can be used in future comparisons.

The implicit enumeration algorithm developed in this dissertation has

been applied with information criteria having the two part structure in subset

selection. Another direction of future research is that the algorithm can

be adapted to some other unconstrained linear or nonlinear programming

problems with the objective function having the two part structure.
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Appendix A: Matlab Code for Implicit Enu-

meration

Note: All codes are programmed by Xinli Bao and Vuttichai Chatpattananan.

1. Main Function

function main

% Model selection using Implicit Enumeration Algorithm

% Required functions: FindBranch.m, FindBound.m, FindSSE.m

% Input:

% 1) Predictor variables (X in data matrix) file name

% 2) Response variable (Y in data vector) file name

% 3) User-keyed in output file name

% Output:

% 1) On screen output

% 2) the output file named by the user

% Input Data -- File must be in the same dir of main.m

xfilename = input(’Enter predictor vars file name (X): ’,’s’);

x = load(xfilename);
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yfilename = input(’Enter response var file name (Y): ’,’s’);

y = load(yfilename);

outfname = input(’Enter the output file name (Y): ’,’s’);

[row,col]=size(x);

nobs = length(y);

x = [ones(nobs,1) x];

% Declare Output Variables

output_node = struct(’zbndnode’,{},’Snode’,{},’Wsnode’,{});

minAIC = struct(’node_opt’,{},’zopt’,{},’Sopt’,{});

Iteration = [];

% Initialization

Zupper = inf;

Zlower = -inf;

zopt = inf;
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S = [1]; % Intercept

Ws= [1]; % Add Intercept

[zvector,SAdd,S_min,Model] = FindBound(S,Ws,x,y);

zupper = zvector(6);

zlower = zvector(7);

node = 1;

iteration = [node];

if zupper < zopt

zopt = zupper;

minAIC(1).node_opt = node;

minAIC(1).zopt = zopt;

minAIC(1).Sopt = S_min;

end

output_node(node).Snode = S;

output_node(node).Wsnode = Ws;

output_node(node).zbndnode = [zupper zlower];

if zopt > zlower

[output_node,node,zopt,SAdd_left,SAdd_right,Ws_left,...

Ws_right, iteration,minAIC] ...
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= FindBranch(node,S,Ws,x,y,SAdd,...

zopt,iteration,output_node,minAIC);

end

% Output

disp(’ ’);

disp(’Output’);

ModelNo=size(Model,1);

for i = 1:node

disp([’Node ’ num2str(iteration(i))]);

disp([’S ’ num2str(output_node(i).Snode)]);

disp([’Ws ’ num2str(output_node(i).Wsnode)]);

disp([’Bounds ’ num2str(output_node(i).zbndnode)]);

disp(’ ’);

end

disp([’Possible Number of Models: ’ num2str(2^col)]);

disp([’Number of Models evaluated: ’ num2str(ModelNo)]);

disp(’The Best Subset ’);

disp([’Found at Iteration:’ num2str(minAIC(1).node_opt)]);
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disp([’The minimum AIC:’num2str(minAIC(1).zopt)]);

disp([’Variables: ’ num2str(minAIC(1).Sopt)]);

disp([’Total Iterations:’num2str(node)]);

for i = 1:node

z_mat(i,:) = output_node(i).zbndnode;

end

plot([1:node],z_mat(:,1),’b-o’,[1:node],z_mat(:,2),’r-*’)

xlabel(’Iteration’);

ylabel(’Bounds’);

title(’Augment Algorithm:Upper Bound="o" and Lower Bound="x"’);

2. Augmentation Branching Function

function

[output_node,node,zopt,SAdd_left,SAdd_right,Ws_left,

Ws_right,iteration,minAIC]...

=FindBranch(node,S,Ws,x,y,SAdd,zopt,iteration,...
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output_node,minAIC)

% Variable Added

node = node+1;

iteration = [iteration node];

S_left = [S SAdd];

output_node(iteration(node)).Snode = S_left;

Ws_left = [Ws 1];

output_node(iteration(node)).Wsnode = Ws_left;

[zvector, SAdd_left,S_min] = FindBound(S_left,Ws_left,x,y);

zupper = zvector(6);

zlower = zvector(7);

if zupper < zopt

zopt = zupper;

minAIC(1).node_opt = node;

minAIC(1).zopt = zopt;

minAIC(1).Sopt = S_min;

end

output_node(iteration(node)).zbndnode = [zupper zlower];
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if zopt > zlower

[output_node,node,zopt,SAdd_left,SAdd_right,Ws_left,

Ws_right,iteration,minAIC] ...

= FindBranch(node,S_left,Ws_left,x,y,SAdd_left,...

zopt,iteration,output_node,minAIC);

end

% Variable Not Added

node = node+1;

iteration = [iteration node];

S_right = [S SAdd];

output_node(iteration(node)).Snode = S_right;

Ws_right = [Ws 0];

output_node(iteration(node)).Wsnode = Ws_right;

[zvector, SAdd_right,S_min] = FindBound(S_right,Ws_right,x,y);

zupper = zvector(6);

zlower = zvector(7);
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if zupper < zopt

zopt = zupper;

minAIC(1).node_opt = node;

minAIC(1).zopt = zopt;

minAIC(1).Sopt = S_min;

end

output_node(iteration(node)).zbndnode = [zupper zlower];

if zopt > zlower

[output_node,node,zopt,SAdd_left,SAdd_right,Ws_left,...

Ws_right,iteration,minAIC] ...

= FindBranch(node,S_right,Ws_right,x,y,SAdd_right,...

zopt,iteration,output_node,minAIC);

end

3. Bound function

function [zvector,SAdd,S_min,Model] = FindBound(S,Ws,x,y);

% Find five criterion values with Implicit Enumeration

% Required functions: FindSSE.m
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[nobs, npars] = size(x);

fullmodel = [1:npars];

Model=’1’;

% Find z1

core = S(find(Ws~=0));

SSEz1 = FindSSE(x(:,core),y);

z1 =nobs*log(SSEz1/nobs)+2*length(core);

zvector(1) = z1;

% Find z2

core_plus_one = fullmodel;

core_plus_one(S) = [];

for i = 1:length(core_plus_one)

Model=strvcat(Model,num2str([core core_plus_one(i)]));

SSEcore(i) = FindSSE(x(:,[core core_plus_one(i)]),y);

end

SSEz2 = min(SSEcore);

z2 = nobs*log(SSEz2/nobs)+2*(length(core)+1);
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zvector(2) = z2;

SAdd = core_plus_one(find(SSEcore==SSEz2));

% Find z3

replete = fullmodel;

Model=strvcat(Model,num2str(replete));

replete(S(find(Ws==0))) = [];

SSEz3 = FindSSE(x(:,replete),y);

z3 = nobs*log(SSEz3/nobs)+2*length(replete);

zvector(3) = z3;

% Find z4

for i = 1:length(core_plus_one)

replete_minus_one = replete;

replete_minus_one(find(replete_minus_one==core_plus_one(i)))=[];

Model=strvcat(Model,num2str(replete_minus_one));

SSEreplete(i) = FindSSE(x(:,replete_minus_one),y);

end

SSEz4 = min(SSEreplete);

z4 = nobs*log(SSEz4/nobs)+2*(length(replete)-1);
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zvector(4) = z4;

SDelete = core_plus_one(find(SSEreplete==SSEz4));

% Find z5

z5 = z4-2*(length(replete)-1)+2*(length(core)+2);

zvector(5) = z5;

% Find Upperbound

zub = min(zvector(1:4));

zvector(6) = zub;

% Find Minimum Upperbound from z1 to z4

zub_id = find(zub==zvector(1:4));

4. Function to calculate SSE

function SSE = FindSSE(x,y)

% Calculate SSE

b = inv(x’*x)*(x’*y);

yhat = x*b;

res = y-yhat;

SSE = res’*res;
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5. Variable Deletion Branching Strategy

function

[output_node,node,zopt,SDelete_left,SDelete_right,Ws_left,...

Ws_right,iteration,minAIC,binary_model_eval] ...

= FindBranchbw(node,S,Ws,x,y,SDelete,zopt,iteration,...

output_node,minAIC,binary_model_eval)

% Variable Deleted

node = node+1;

iteration = [iteration node];

S_left = [S SDelete];

output_node(iteration(node)).Snode = S_left;

Ws_left = [Ws 0];

output_node(iteration(node)).Wsnode = Ws_left;

[zvector,SAdd,SDelete_left,S_min,binary_model_eval] = ...

FindBound(S_left,Ws_left,x,y,binary_model_eval);

zupper = zvector(6);

zlower = zvector(7);

if zupper < zopt

zopt = zupper;

minAIC(1).node_opt = node;
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minAIC(1).zopt = zopt;

minAIC(1).Sopt = S_min;

end

output_node(iteration(node)).zbndnode = [zupper zlower];

output_node(iteration(node)).num_model_eval =

length(binary_model_eval(:,1))-1;

if zopt > zlower

[output_node,node,zopt,SDelete_left,SDelete_right,Ws_left,...

Ws_right,iteration,minAIC,binary_model_eval] ...

= FindBranchbw(node,S_left,Ws_left,x,y,SDelete_left,

zopt,iteration,output_node,minAIC,binary_model_eval);

end

% Variable Not Deleted

node = node+1;

iteration = [iteration node];

S_right = [S SDelete];

output_node(iteration(node)).Snode = S_right;

Ws_right = [Ws 1];

output_node(iteration(node)).Wsnode = Ws_right;
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[zvector,SAdd,SDelete_right,S_min,binary_model_eval] = ...

FindBound(S_right,Ws_right,x,y,binary_model_eval);

zupper = zvector(6);

zlower = zvector(7);

if zupper < zopt

zopt = zupper;

minAIC(1).node_opt = node;

minAIC(1).zopt = zopt;

minAIC(1).Sopt = S_min;

end

output_node(iteration(node)).zbndnode = [zupper zlower];

output_node(iteration(node)).num_model_eval =

length(binary_model_eval(:,1))-1;

if zopt > zlower

[output_node,node,zopt,SDelete_left,SDelete_right,Ws_left,

Ws_right,iteration,minAIC,binary_model_eval] ...

= FindBranchbw(node,S_right,Ws_right,x,y,SDelete_right,...

zopt,iteration,output_node,minAIC,binary_model_eval);

end
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6. Greedy Branching Strategy

function

[output_node,node,zopt,SAdd_left,SAdd_right,Ws_left,Ws_right,...

iteration,minAIC,binary_model_eval] ...

= FindBranchgd(node,S,Ws,x,y,SAdd,SDelete,zopt,iteration,

zvector,output_node,minAIC,binary_model_eval)

% Variable Added

node = node+1;

iteration = [iteration node];

if zvector(2) <=zvector(4)

S_left = [S SAdd];

Ws_left = [Ws 1];

else

S_left = [S SDelete];

Ws_left = [Ws 0];

end

output_node(iteration(node)).Snode = S_left;

output_node(iteration(node)).Wsnode = Ws_left;

[zvector,SAdd_left,SDelete_left,S_min,binary_model_eval] = ...

136



FindBound(S_left,Ws_left,x,y,binary_model_eval);

zupper = zvector(6);

zlower = zvector(7);

if zupper < zopt

zopt = zupper;

minAIC(1).node_opt = node;

minAIC(1).zopt = zopt;

minAIC(1).Sopt = S_min;

end

output_node(iteration(node)).zbndnode = [zupper zlower];

output_node(iteration(node)).num_model_eval =

length(binary_model_eval(:,1))-1;

if zopt > zlower

[output_node,node,zopt,SAdd_left,SAdd_right,Ws_left,

Ws_right,iteration,minAIC,binary_model_eval] ...

=FindBranchgd(node,S_left,Ws_left,x,y,SAdd_left,

SDelete_left,zopt,iteration,zvector,output_node,...

minAIC,binary_model_eval);

end

% Variable Not Added
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node = node+1;

iteration = [iteration node];

if zvector(2) <= zvector(4)

S_right = [S SAdd];

Ws_right = [Ws 0];

else

S_right = [S SDelete];

Ws_right = [Ws 1];

end

output_node(iteration(node)).Snode = S_right;

output_node(iteration(node)).Wsnode = Ws_right;

[zvector,SAdd_right,SDelete_right,S_min,binary_model_eval] = ...

FindBound(S_right,Ws_right,x,y,binary_model_eval);

zupper = zvector(6);

zlower = zvector(7);

if zupper < zopt

zopt = zupper;

minAIC(1).node_opt = node;

minAIC(1).zopt = zopt;
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minAIC(1).Sopt = S_min;

end

output_node(iteration(node)).zbndnode = [zupper zlower];

output_node(iteration(node)).num_model_eval =

length(binary_model_eval(:,1))-1;

if zopt > zlower

[output_node,node,zopt,SAdd_left,SAdd_right,Ws_left,

Ws_right,iteration,minAIC,binary_model_eval]...

=FindBranchgd(node,S_right,Ws_right,x,y,SAdd_right,...

SDelete_right,zopt,iteration,zvector,output_node,...

minAIC,binary_model_eval);

end

7. Simulation Function

function sim

% Function to generate the simulated data set with user defined

% number of predictor variables, observations and the number of

% predictors that form the response

maxN=200; %Maximum number of generate the prime number

randp = primes(maxN);
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nvars=30; %Number of predictor variables

nobs=1000; %Number of observations

nvars_in=8; % Number of variables to generate the response

% Generate independent variables matrix

for i = 1:nobs

for j = 1:nvars

x(i,j) = log(randn(1)*randp(j));

end

end

% Generate response variable: y = x1+x2+...+x(nvars_in)

for i = 1:nobs

y(i) = sum(x(i,1:nvars_in));

end

% Output files

% Output predictor variables file (X)

fid = fopen(’simx30.m’,’w’);

for i = 1:nobs

for j = 1:nvars

fprintf(fid,’%f\t’,x(i,j));
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end

fprintf(fid,’\n’);

end

fclose(fid);

% Output response variable file (Y)

fid = fopen(’simy30.m’,’w’);

for i = 1:nobs

fprintf(fid,’%f\n’,y(i));

end

fclose(fid);
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