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Abstract

The first part of the thesis addresses the problem of risk management in financial

optimization modeling. Motivation for constructing a new concept of risk measure-

ment is given through the history of development: utility theory, risk/return trade-

off, and coherent risk measures. The process of describing investor’s preferences is

presented through the proposed collection of Rational Level Sets (RLS). Based on

RLS, a new concept termed Rational Risk Measures (RRM) for financial optimization

models is defined. The advantages of RRM over coherent risk measures are discussed.

Approximation of a given set of scenarios using tail information is addressed in the

second part of the thesis. Motivation for the scenario approximation problem, as a

way of reducing computation time and preserving solution accuracy, is given through

examples of financial optimization and asset allocation models. Using the basic ideas

of Conditional Value at Risk (CVaR), this thesis develops a new methodology for sce-

nario approximation for stochastic portfolio optimization. First, the concepts termed

Scenarios-at-Risk (SaR) and Scenarios-at-Gain (SaG) are proposed as for the purpose

of partitioning the underlying multivariate domain for a fixed investment portfolio

and a fixed probability level of CVaR. Then, under a given set of CVaR values, a two-

stage method is developed for determining a smaller, and discrete, set of scenarios

over which CVaR risk control is satisfied for all portfolios of interest. Convergence

of the method is shown and numerical results are presented to validate the proposed

technique.
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Chapter 1

Introduction

1.1 Financial investment problem

This thesis explores the class of problems called financial investment optimization.

A decision maker or an investor wishes to allocate an initial budget (a fixed sum of

money) in certain financial assets (to construct a portfolio). The future returns of the

assets are unknown or uncertain at the time of allocation. Among other objectives,

the investor seeks to maximize his/her expectations on the future portfolio profit. The

investor may also have a future cash inflow to be invested over time, and may possibly

face future liabilities as well. The return on investments for some of the assets may be

stochastic (eg. stocks, options) or it can be known in advance (eg. bonds). In addition

to the requirement that portfolio wealth must be as large as possible, the decision

maker may also be subject to regulatory and policy restrictions that affect portfolio

management. For instance, portfolios such as mutual funds or retirement funds must

be formed by trading in assets (stocks or bonds) that the fund owns, i.e. via long

positions. Creating short positions (sell stocks that the fund does not currently own)

is prohibited. There are other restrictions imposed by either the investor himself or

a brokerage firm. Broker’s restrictions usually guard the investor from very risky

investment policies, see SEC rule 15c-1a in [74] for restrictions on option portfolios.

For an example of restrictions on margins for option portfolios, see [35]. Investor’s own

restrictions reflect his/her recourse limitations and risk attitude; for instance, limited

budget, margin rules, and aversion to investments with large chances of bankruptcy

in the future; also see [13] for an asset allocation model with such restrictions.
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The second application area of financial investment optimization is pricing future

contracts, such as options. The option seller hedges a cash outflow stream in the

future that is contingent upon the prevailing market conditions. The problem of

finding an appropriate initial payment for the future cash outflow is termed the option

pricing problem. The seller’s goal is to create an investment portfolio that will finance

the future cash outflow completely or partially. The initial investments for such an

investment portfolio is the option price (or a bound on it). This price guarantees

the replication of the future uncertain payments for the appropriate premium paid

to the seller now. This problem, in spirit, is similar to the portfolio optimization

problem described earlier. Rather than maximizing the future wealth, the minimum

current wealth that guarantees hedging the future uncertainty is sought. This problem

belongs to the general class of models for financing contingent claims, see [11], [12],

[24], [25], [27], [60], and [72].

The above problems can be formulated as deterministic mathematical program-

ming models (linear or non-linear) only if complete information about future events is

available. However, information about future is almost surely never available before

decisions are made. Typically, future performance of financial assets is forecasted

with some degree of uncertainty and random variables may be used to model this

uncertainty. Therefore, mathematical programming models of investment decision

problems must incorporate the latter uncertainty explicitly. How does one maximize

the future profit if it is random and what is an appropriate objective function for

such maximization? How does randomness affect the quality of investment decisions?

These questions are still subjects of active research today. The randomness of the

future performance of financial assets and the way it affects the financial investment

decisions are the primary foci of the research in this thesis.

1.2 Decision tree as a basis for decision making

Before considering uncertainty, the structure of the investment mathematical model

needs to be defined. As mentioned before, investment decisions are made without

the knowledge about future events, hence, they are called
�

here and now
�

decisions.
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However, if the investment decision is concerned with a certain future period of

time, it is possible to adjust the
�

here and now
�

decision by making future adaptive

(recourse) decisions (i.e., periodically change the asset allocation). The subsequent

investment decisions will depend on the new information that will become available

over time. This decision structure can be presented in a tree diagram where a decision

is made at each node of the tree. This approach to decision making is described in

the famous work of von Neumann and Morgenstern [98], see Chapter II, Section 9:
�

The set-theoretical description of a game
�

.

The underlying premise of a decision tree is two-fold. First, the future is observed

(and acted upon) at finite time intervals. The number of decisions to be made is

finite. That allows constructing a finite and discrete time decision tree. Second, at

a given time epoch, having followed a sequence of realizations (of observed random

events), partial information about the conditional future is available. Consequently,

an information filtration that corresponds to the specified time partition may be

defined on a decision tree. A sequence of realizations (of random events) through the

decision tree up to a given decision node is termed a scenario at the node. Each node

in the tree reflects a particular situation investor will face if the appropriate scenario

will be realized. von Neumann and Morgenstern argue that a decision tree as a part

of game description can be constructed based on the game rules. Player needs to

make a decision at each node of the tree. The difficulty in making such decisions is

due to the absence of information about both the future events and decisions of the

other players. However, the specific decision will affect decisions of the other players

and possibly future events. This is the cycle problem according to von Neumann and

Morgenstern [98].

The financial investment problem does not have the difficulty of multiple players.

The investor makes decisions
�

here and now
�

, see [89] for definition of decisions

without knowledge about future (nonanticipativity) and discussion of the nonan-

ticipativity role in the modeling process. The second simplification is that investor’s

decisions do not influence the future uncertainty. Thus, the financial investment

models of the kind considered in this thesis do not encounter the cycle problem.

By adapting a mathematical programming model to each node of the above deci-
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sion tree, one obtains the so-called multistage stochastic programming models of

decision making.

1.3 Stochastic programming decision modeling

Stochastic programming is a branch within optimization modeling, where random

variables are used in the model formulation. The model becomes multistage if the

decision tree has more than one decision node. A simple (one period) mathemat-

ical programming problem is embedded at each node of the decision tree. These

mathematical programming problems are nested according to the information fil-

tering depicted on the tree, see Figure 1.1. Stochastic programming models have

been explored since the early 50’s, see Beale [6] and Dantzig [17]. Various solution

techniques have been developed for stochastic programming models, see for instance

[89] and [99], using results of functional analysis, see [56], [61], and [87]. A significant

progress has been made in the area of linear stochastic programming.

Period 1 Period 2 Period 3

Decision nodes

t

Decision 1 Decision 2 Decision 3

Figure 1.1. Decision tree structure for financial investment model
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Linear stochastic programming is a modeling tool where models have linear for-

mulation in each node of the decision tree, see [18], [21], and [55], for detailed

descriptions. Solution techniques for linear stochastic programming are based on the

theory of linear programming, see [4], [18], and [103], and convex analysis, see [37]

and [84]. This area was originated by Dantzig [15], [16], and [18]. The major idea

behind stochastic linear programming is to deal with random variables in the problem

formulation. This area has been developed significantly in the past several decades.

The most efficient technique for solving multistage stochastic linear programming is

Bender’s L-shaped decomposition or Dantzig-Wolf decomposition (the dual version

of the L-shaped), see [7] and [94]. Both schemes require partitioning of the original

problem into a framework of master and sub-problems. The decomposition technique

allows solving large stochastic linear programming problems more efficiently than the

pure simplex or barrier methods, [28] and [52]. Many other solution techniques are

also proposed for multistage formulations, see for example [10], [28], [41], [53], and

[99].

The non-linear stochastic programming (NSP) is a problem with non-linear objec-

tive and/or constraints at each node of the decision tree. In this case, algorithms such

as Newton-Rapson, Hooke and Jeeves, and Lagrangian relaxation, must be applied,

see [5] for details. Unfortunately, such algorithms are slow to converge and they can

guarantee a global optimum only for special functions. Thus, there is no general-pur-

pose efficient method that can be applied for solving NSP with an arbitrary objective

function and constraints.

Specification of an appropriate objective function is an important aspect in

stochastic programming models. This function has to link decisions at each node

with the available information at the node. The objective function must also reflect

portfolio future performance conditional upon the available information. Therefore,

the objective function transforms all available information about the past as well

as the future random events into a single (nodal) value for optimization. Such a

transformation reflects investor’s attitude towards risk and/or wealth preferences.

In this context, attitude towards risk recognizes investor’s concerns about future

uncertainty, an area of study termed utility theory. Utility theory was developed
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in the mid 50’s, however, the concept of risk preferences in decision making under

uncertainty is still a subject of active research, see [38] and [83].

1.4 Utility functions and risk measures

The first formal axiomatic treatment of utility as a numerical function was given

by von Neumann and Morgenstern in [98]. Then, Keeney and Raiffa in [58] develop

an approach to measure utility. Their development is based on defining utility as

a function of wealth and future uncertainty. Markowitz in [69] and [70] proposes

an efficient set for expressing utility. Recently, Artzner et al. [2] have raised the

question of separating the wealth valuation from risk attitude. This landmark paper of

Artzner et al. [2] describes the principles of measuring risk attitude, where the authors

propose the concept of coherent risk measures that allows numerical expression of

risk attitude. According to this concept, coherent risk measures scale linearly if the

underlying uncertainty is changed. Because of linearity, coherent risk measures do not

cover all risk measures that are useful in applications, see [87] for examples of such

risk measures. The question of risk measures that are non-linear with respect to the

underlying uncertainty will be addressed in Chapter 3 of this thesis.

One interesting method of risk measurement is to use the conditional value-at-risk

(CVaR), see for example Rockafellar and Uryasev [85] and Ogryczak and Ruszczynski

[77]. The risk measures based on mean and CVaR are coherent, see [87]. However,

relationship between the risk measures based on CVaR and utility functions has

escaped attention. Extension of the existing CVaR concept and exploration of the

relation between utility functions and risk measures based on CVaR are the subjects

of research in Chapter 4 of this thesis.

The difficulty with CVaR and other risk measures that do not have closed-form

expressions is that a discrete sample of outcomes of the random variable is required

for its numerical evaluation when embedded within financial investment mathematical

programming models. In stochastic programming, a sample of random variables is

necessary at each decision node of the decision tree. This sample is used in the model

6



formulation. Thus, determining an appropriate sample is a very important issue in

stochastic programming modeling.

1.5 Scenario generation and approximation

A useful method of presenting a random variable in financial investment mathematical

programming models is to create a finite sample of the underlying random variable.

There are several restrictions on the applicability of this method. The first restriction

is the requirement of full or partial knowledge about the true distribution. It may

be possible to make an a priori assumption about the true distribution (normal,

log-normal, etc.). Another possibility is to use the historical data for constructing a

histogram, assuming that history represents the underlying random variable correctly.

However, even with this knowledge, sample generation is difficult because a sample

needs to preserve information about the underlying random variable. That means a

sample is required to provide sufficient information about uncertainty for the mathe-

matical programming model. Also, the distribution parameters need to be estimated.

Sampling techniques are well developed for simple distributions: normal, log-normal,

uniform, see Billingsley [9] for theoretical foundations, and Numerical Recipes [82] for

efficient computer implementations.

While it may be impossible to determine the correct distribution of the future asset

returns, the information about first and second moments of this distribution can often

be estimated with some accuracy through historical data analysis. Then the questions

of generating a sample based on the given moment information and incorporating the

sample into financial investment decision making model are important issues. But the

more important issue is how well a given sample approximates the original financial

investment model. Quality of such approximations is frequently investigated via the

so-called Generalized Moment Problem (GMP). The GMP was first addressed by

Kemperman [59] in the context of developing bounds on expectation of a function.

Such bounds are readily applicable within stochastic programming. This area gained

much attention because constructing bounds on financial investment stochastic pro-

gramming models is computationally more efficient than solving the original problem,

see [10], [22], [29], [32], [33], and [44].

7



The next difficulty is determining an appropriate size for the sample. Law of

large numbers [9] states that the mean of large samples is asymptotically close to

the true mean of the underlying distribution. But, large samples lead to stochastic

programming models that are extremely large in size. Thus, they are difficult to

solve [29]. Then, the question of approximating the large sample with a smaller one

is critically important. The problem of sample approximations is widely addressed in

the literature, see [10], [22], and [30]. Usually, such schemes allow approximating a

given sample based on the limited moment information and then constructing lower

and upper bounds for the original problem using Kemperman [59] result or Madansky

upper bound [65] and Jensen’s lower bound [9]. Such methods can not be applied for

approximating the sample tails because the proposed methods rely on the moment

information rather than tail information. The proper approximation of the given

sample while preserving tail information is also the subject for research in this thesis,

as presented in Chapter 5.

1.6 Outline of research

The thesis is organized in six chapters. The topics covered in each chapter of this

thesis proposal are outlined below:

• Chapter 2 provides the theoretical background in the form of literature review

for stochastic programming, with particular emphasis to utility/risk measures.

• Chapter 3 discusses axioms and the definition for the proposed new con-

cept termed rational risk measures, along with its properties. The question

of decomposition of a risk measure is explored. Examples of rational risk

measures are given.

• Chapter 4 provides the theoretical basis for CVaR and the proposed con-

ditional value-at-gain (CVaG). It also explores the question of connection

between risk measures based on CVaR/CVaG and risk averse utility functions.

• Chapter 5 develops the theory for approximation of a given large sample with

a smaller one whilst preserving CVaR/CVaG information. An algorithm for

such an approximation is developed.
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• Chapter 6 presents a computational study of the proposed concepts in financial

investments. The experiments for testing the effectiveness of CVaR/CVaG

approximation algorithm will be presented. Quantitative performance analyses

of different risk measures are also included.

The research in this thesis are anticipated to benefit both researchers and practi-

tioners alike. For instance:

1. Managers of hedge, mutual, and pension funds will find the results regarding

rational level sets and risk measures useful as an approach to formalize risk

attitude and incorporate them into financial investment decision making

models. Moreover, as a new approach for constructing risk measures, rational

risk measures are expected to gain attention for further research.

2. The extended treatment of CVaR/CVaG provides better insights for under-

standing the tail risk measures and their connection to utility theory. The

extended treatment of CVaR/CVaG is also a basis for constructing tail approx-

imation schemes. This would be particularly appealing for the insurance

industry where risks due to extremal (tail) events are important in risk control.

3. CVaR approximation algorithm is valuable for investors who use multiperiod

stochastic programming models specified with large number of financial assets.

The algorithm is computationally efficient and it allows constructing bounds

on the original stochastic programming model. Such an efficient algorithm also

allows sensitivity analyses with respect to distributional assumptions.
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Chapter 2

Mathematical Models of Financial
Investments

2.1 Preliminaries

Consider a single-period static financial investment problem at a particular decision

node of the underlying multiperiod decision tree. Such problems at decision nodes

are then nested to form the full multiperiod problem. Complete formulation of the

problem will be discussed later. In this chapter, the nodal problem is discussed in

isolation to set the notation and discuss the modeling of risk-return aspects of the

problem.

Let X denote the random N -vector (i.e. a vector of random variables - r.v.)

representing future returns of a given set of N financial instruments at a particular

decision node. The random vector X is characterized by three parameters {Ω,F(Ω),

P(F(Ω))}, see Billingsley [9], where:

• Ω ⊆ � N is the domain of random variable values (space on which random

vector takes on values).

• F is the σ-field on Ω.

• P is a probability measure defined on F .

A set F of Ω subsets is called a σ-field if it contains Ω itself and is closed under

the formation of complements, finite, and infinite unions, see Kolmogorov [61] for a

detailed description of σ-fields. � N is the N -dimensional real space.

Only one element x∈Ω will be realized in the future. The investor needs to make

a decision about how best to allocate a given budget among the N securities. The set

of all possible investment decisions is denoted by Ω∗⊆ � N. The investor will choose

a decision vector y ∈Ω∗ for implementation. The combination of the realized return
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x and the decision y produces the portfolio return (i.e. profit) R that is a mapping:

R: Ω×Ω∗ � � 1. (2.1)

The investor cannot determine a priori the specific vector x of future returns. Instead,

the investor has full or partial information about random vector X . Therefore, the

portfolio profit is also a r.v. from the investor’s perspective. However, it is impos-

sible to use a random function as an objective for optimization. Thus, the investor

must construct a performance measure. Such a measure is supposed to include the

information about future portfolio profit as well as investor’s attitude to risk. The

function that combines the random vector X , decision y, and investors preferences

into a performance measure is denoted by f(X , y), where:

f : {Ω,F(Ω),P(F(Ω))}×Ω∗ � � 1. (2.2)

Several performance measures have been proposed in the literature - expectation of

utility function, see [58] and [98], combination of first and second moments of the

portfolio profit, see [69], [70], and [71], combination of the expected portfolio profit

with an appropriate deviation function, see [39] and [70], for instance.

Decision maker usually has restrictions on the investment decision y. The restric-

tions are imposed due to regulations or specified by the investor. Such restrictions are

generally expressed in terms of the underlying random vector X and the decision y.

For example, the budget restriction involves only the decision y. However, broker’s

restrictions on option portfolios, see SEC rule 15c-1a in [74], depend on both the

underlying random vector X and the decision y. A second example of a restriction

that depends on both the random vector X and decision y is the CVaR restriction,

see [85]. Such restrictions are denoted by functions gi(X , y), which is greater or equal

to zero, where i is the index for the restriction, i= 1, � , I .

The mathematical model for financial investment problem at a particular node of

the decision tree can then be formulated as follows:

max
y

f(X , y) (2.3)

s.t. gi(X , y) > 0; i= 1, � , I (2.4)

y ∈Ω∗ (2.5)
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where X is a given and fixed random vector specified prior to model construction.

This is a static stochastic programming model because it has only the decision vector

of the current time period. This model is used for one period decision making. It is

easy to extend the model to multi-period investments because for each node of the

decision tree, a value function representing future decision nodes (descendant from

the current node) can be embedded in the model above.

The objective function f(X , · ) of the single-stage financial investment model

(2.3)-(2.5) drives the optimization process. This function is a performance measure

that incorporates investor’s attitude to risk.

2.2 Utility functions and risk measures

According to Keeney and Raiffa [58], it is difficult to specify the function f(X , · )
because this function incorporates investor’s attitude towards both uncertainty and

value of future return. Even an attempt to clarifying investor’s attitude towards the

value of future return is a complex procedure. Utility theory provides a theoretical

description of investor’s preferences towards future outcomes.

2.2.1 Utility functions

von Neumann and Morgenstern [98] founded the axiomatic treatment of utility in

their landmark work in 1943. According to their construction, if preference structure

satisfies the set of axioms, then utility can be expressed in a certain numerical form.

A short verbal description of these axioms is the following:

• Investor can always compare any two deterministic alternatives x1, x2∈Ω for

a fixed decision y ∈Ω∗.

• Investor can always compare the outcomes of stochastic and deterministic

alternatives for a fixed decision y ∈ Ω∗. The first alternative is a lottery of

outcomes x1, x2 ∈ Ω with corresponding probabilities p1, p2 > 0; p1 + p2 = 1.

The second alternative is a deterministic outcome x∈Ω.

Then utility function u(R(x, y)) for a fixed decision y is defined as a mapping:

u: Ω � � 1. (2.6)
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The requirements for utility function u(x) are formulated as follows:

• Consistency in ordering:

x1� x2
�

u(R(x1, y))>u(R(x2, y)) (2.7)

• Consistency in risk attitude:

u(R(αx1 + (1−α)x2, y))>αu(R(x1, y)) + (1−α)u(R(x2, y)) (2.8)

06α6 1.

The above axioms constitute the basis for constructing numerical utility functions in

financial investment problems. However, utility functions do not incorporate infor-

mation about investor’s attitude toward the future uncertainty. For the financial

investment model in (2.3)-(2.5), the function f(X , y) for some fixed y ∈ Ω∗ and

deterministic X is a utility function. Keeney and Raiffa [58] explore the question

of defining utility in applications. They define a procedure to describe investor’s

preferences. The major difficulty that Keeney and Raiffa were faced with during

experimentations is inconsistent answers given by decision makers. However, Keeney

and Raiffa clarify the concept of rational behavior and provide relationships between

utility theory and rational behavior. According to Keeney and Raiffa [58], rational

investors always prefer a deterministic profit to a random profit with mean equal to

the fixed profit. Mathematically, it is expressed as follows:

E[f(X , y)]6 f(E[X ], y) (2.9)

where E[X ] is the first moment of the random variable X . The rational investors

are also called risk averse investors. The concavity of the function f( · , y) implies

inequality (2.9). Convex and concave properties of a function are defined in [84] as

follows:

Definition 2.1. Function g: Ω→ � 1 is called convex if:

g(αx1 + (1−α)x2)6α g(x1) + (1−α) g(x2)

x1, x2∈Ω 06α6 1.

Definition 2.2. Function g: Ω→ � 1 is called concave if − g is convex.
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It follows directly from the above definitions that a concave utility function sat-

isfies the inequality (2.9) and thus, concavity implies risk aversion.

Utility functions are applied in financial investment modeling, see [46], [63], [64],

and [91]. However, financial investment models then become non-linear and difficult

to solve. Also, utility functions indirectly incorporate information about investor’s

attitude toward the future uncertainty. The assumption is that the expectation of a

utility function reflects investor’s attitude towards risk and serves as a performance

measure in financial investment model. An improvement is to incorporate the infor-

mation about future uncertainty directly into a performance measure for the financial

investment problem.

2.2.2 Risk/return trade-off

Markowitz in [69], [70], and [71] addresses the question of risk control based on

rational behavior. The key principle is the balance between risk and return. This

balance is different for different investors. Thus, Markowitz derived the set of efficient

portfolios. He proved that a rational investor picks a portfolio from an efficient set.

Markowitz proposes to present risk control mechanism in two parts. The first part

is the expected profit or mean of the future profit (return). The second part is risk

as measured by deviations from the mean. Different investors pick different levels of

trade-off between risk and return. Markowitz considers several types of risk:

• Variance of final outcome.

• Semi-deviation of final outcome.

• Semi-variance of final outcome.

The investment problem can be formulated either as a quadratic programming or as

a linear programming problem for the above risk measures.

Quadratic programming is appropriate if risk is expressed in the form of variance

or semi-variance. In case of variance, we have:

max
y

y ′ ·m−λ · y ′Qy (2.10)

s.t. y ∈Ω∗ (2.11)
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where m=E[X ], Q= Var[X ], and y ′ is the transposed decision vector.

Linear programming is appropriate if risk is expressed in the form of deviation or

semi-deviation:

max
y

y ′ ·m−λ ·E
[
y ′ · [m−X ]

+
]

(2.12)

s.t. y ∈Ω∗, (2.13)

where

[x]
+

=





[x1]
+

�

[xN]
+





(2.14)

[xi]
+

=

{
xi, xi> 0
0, xi6 0

(2.15)

Then the efficient set can be constructed by solving the above problem for different

λ values. The graph of efficient set is concave, see Figure 2.1.

In Markowitz’s risk/return trade-off, the investor picks only one portfolio from

the efficient set and the investor can not improve return without increasing risk or

decrease risk without decreasing the return.
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Figure 2.1. Concavity of Risk/Return Efficient frontier.
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Unfortunately Markowitz’s risk/return trade-off can generate inappropriate

results. Consider, for example, two portfolios y1 and y2 that generate the outcomes

given in Table 2.1 below. A rational investor always picks the portfolio y1 because

its profit is always greater than profit of portfolio y2. However, Markowitz model

with Mean/Variance trade-off and coefficient λ> 0.00075 picks the portfolio y2 with

deterministic profit because of the larger objective value, see Table 2.2 below. In

general, such issues as consistency in choice can be addressed by the stochastic

dominance approach.

2.2.3 Stochastic dominance

Stochastic dominance is a way of ordering random variables, see [39], [47], [48], [75],

[76], [90], and [101]. The basic idea behind stochastic dominance is the following.

For two random vectors X1 and X2, if X1 > X2 (element by element, almost surely

i.e., with probability 1) then X1 is said to stochastically dominate X2, expressed as

X1<FSDX2. This is called the First order Stochastic Dominance (FSD) relation.

Table 2.1. Example of portfolio returns

Portfolio Probability Profit

y1
0.5 $6,000

0.5 $2,000

y2 1.0 $1,000

Table 2.2. Markowitz’s Mean/Variance model performance

with two example portfolios

Portfolio Mean Variance
Objective value

λ= 0.0 λ= 0.001 λ= 0.002

y1 $4,000 4,000,000 4,000 0 -4,000

y2 $1,000 0.0 1,000 1,000 1,000
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Suppose that the random variable that presents the future portfolio profit of

financial investment has the domain of variation as Ψ ∈ � 1. Then the cumulative

distribution function (c.d.f.) F1
Z(η) of the future profit Z is defined as follows:

F1
Z(η) = � {Z ≤ η |η ∈Ψ} (2.16)

Hadar and Russel [47] introduce First order Stochastic Dominance (FSD) based on

cumulative distribution functions (c.d.f.).

Definition 2.3. First order stochastic dominance (FSD). Random variable Z1 is

FSD to random variable Z2 (Z24FSDZ1) if and only if F1
Z1(η)6F1

Z2( η) for ∀η∈ � 1.

Inverse cumulative distribution functions are defined as follows:

Definition 2.4.

Left continuous inverse cumulative distribution function for r.v. Z is defined as

follows:

F1
Z ,−1(p) = inf

η
{η |F1(Z , η)> p} for 0< p6 1.

This function is also known as the first quantile function, see for instance Ogryczak

et al. [75]. The first quantile function is useful for analyzing tail risk measures later

in this chapter.

Rothschild and Stiglitz [90] introduce second order performance function in order

to weaken the FSD condition. Second order performance function F2
Z(η) of r.v. Z is

defined as follows:

F2
Z(η) =

∫η

−∞

F1
Z(ξ)dξ (2.17)

which is the area under the c.d.f. curve. Then Second order Stochastic Dominance

(SSD) can be defined as follows:

Definition 2.5. (Rothschild and Stiglitz [ 90]) Second order stochastic dominance

(SSD). Random variable Z1 is SSD to random variable Z2 (Z24SSDZ1) if and only if

F2
Z1(η)6F2

Z2(η),∀x∈ � 1
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SSD is weaker than FSD in that FSD implies SSD but not vise-versa. The reason is

that for some η ∈ � 1, FSD condition can be violated but SSD condition can be valid

for ∀η ∈ � 1, see Figure 2.2 for example.

Fishburn [39] derives a one way relationship between stochastic dominance and

utility functions. Fishburn formulates his results in the form of the following Lemma:

Lemma 2.6. (Fishburn [ 39]) If X1 FSD X2, then E[X1] > E[X2] and E[u(X1)] >
E[u(X2)] for every nondecreasing real valued function u. Furthermore, if X1<SSDX2

then E[X1] > E[X2] and E[u(X1)] > E[u(X2)] for every nondecreasing concave real

valued function u.

This lemma shows that risk averse behavior implies the ordering of decisions based

on Second order Stochastic Dominance (SSD). Thus, decisions based on a concave

utility functions are consistent with decisions based on SSD ordering.

The decision rule based on FSD or SSD is straightforward. All possible future

profits are sorted in descending order (under FSD or SSD ordering) and the decision

with the highest rank is picked for implementation. The application of such a decision

rule in financial investments is possible, see [102], but it has some problems in imple-

mentation. Under FSD and SSD ordering, a large number of future portfolio profits

(random variables) are left unordered because for FSD or SSD one random variable

���������� ����������������������������������������������������������������������������������
1

x x

F1(Z, x)

F1(Z2, x)

F1(Z1, x)

F2(Z1, x)

F2(Z2, x)

F2(Z, x)

Figure 2.2. Example of Z24SSDZ1 and Z2 � FSDZ1
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must dominate another almost surely (with probability 1). For example of unordered

future portfolio profits see Table 2.3.

Thus, it is impossible to define the decision with the highest rank because of

incomplete ordering of underlying future portfolio profits. However, FSD or SSD can

be useful as a consistency check for objective functions in financial investment model.

2.2.4 Acceptance sets and coherent risk measures

Suppose that a combination of random returns (of financial instruments) X and a

decision y results in the random future profit Z:

f(X , y)→Z : { � 1,F( � 1),P(F( � 1))}

Then the question of how to choose a decision y can be answered by ordering all pos-

sible future random variables of profit Z (for all possible decisions y) and then picking

the best. Artzner, Delbaen, Eber, and Heath in [2] propose to use this approach in

financial investment problems. They define the concept of an acceptance set through

a set of axioms and propose to use the acceptance set as a basis for decision making.

These axioms are given next with short comments about each:

Axiom 1. The acceptance set A contains L+ = {Z
∣∣∀z ∈ � 1, z > 0}.

If the future profit is always non-negative then this profit will be accepted.

This is rational because everybody will accept a random profit with non-

negative values, for instance a free lottery ticket.

Axiom 2. The acceptance set A does not intersect L−= {Z
∣∣∀z ∈ � 1, z < 0}.

Table 2.3. Example of unordered random portfolio profits.

Probability
Portfolio Profit

Z1 Z2

0.5 $600 $750

0.5 -$200 -$250
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If future profit under any circumstance is negative, then this random vari-

able is definitely rejected. This is rational behavior because investors will never

accept decisions where money is lost for sure.

Axiom 3. The acceptance set A is a convex set.

Convex combination of any number of accepted outcomes is also accept-

able. If the investor decides to split his resource among decisions which are

individually acceptable then a convex combination of the decisions must also

be acceptable.

Axiom 4. The acceptance set A is a positively homogeneous cone.

No verbal explanation can be found for this axiom in the literature.

The rationality for the first three axioms is justified as indicated above from an

investor’s viewpoint. However, the last axiom implies an independence of the level

of risk aversion from the invested amount. Suppose, for example, that there are

two future portfolio profits (see Table 2.4) with Z2 = 5 ∗ Z1. Then the following

implications are correct if the investor uses the acceptance set approach:

Z1∈A⇒Z2∈A (2.18)

Z2∈A⇒Z1∈A, (2.19)

due to the positive homogeneity axiom. However, suppose the investor accepts port-

folio profit only if investor’s potential loss will not exceed some predefined level (say,

$100). Then, the implication (2.18) is invalid because under the specified decision rule

the investor accepts Z1 but rejects Z2. Thus, the assumption about independence

Table 2.4. Two random profits for acceptance sets

Probability
Portfolio profit

Z1 Z2

0.5 $100 $500

0.5 -$50 -$250
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of the level of risk aversion from the invested amount is not true for several efficient

risk control tools, for instance Markowitz’s risk/return trade-off. The properties of

acceptance sets without the last axiom and a possible generalization of the first three

axioms is a subject for research in this thesis. This is presented in Chapter 3 under

the proposed term: Rational Risk Measures .

An acceptance set contains random outcomes that are acceptable to the investor.

Thus, acceptance sets reflect investor’s risk attitude. Artzner et al. [2] use acceptance

sets to define
�

coherent risk measures
�

. A risk measure ρ according to [2] is a function

of a random variable Z (in our case, it is the future portfolio profit):

ρ:
{

� 1,F( � 1),P(F( � 1))
}

� � 1 (2.20)

The risk measure ρ( · ) is coherent if it satisfies the following axioms:

Axiom T. Translation invariance . For all r.v. Z and α∈ �

ρ(Z +α) = ρ(Z)−α

Axiom S. Sub-additivity :

ρ(Z1 +Z2)6 ρ(Z1) + ρ(Z2)

Axiom PH. Positive homogeneity :

ρ(λZ) = λρ(Z), ∀λ≥ 0

Axiom M. Monotonicity :

Z16Z2 �
ρ(Z1)> ρ(Z2), ∀Z1,Z2

Artzner et al. [2] prove a result regarding one-to-one correspondence between accep-

tance sets A and coherent risk measures ρ( · ), see Proposition 2.3 in [2]. This

proposition establishes the following relationships:

ρ(Z) = inf
C∈ �
{C |Z +C ∈A} (2.21)

A= {Z |ρ(Z)≤ 0} (2.22)
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These show the equivalence between the coherent risk measure ρ( · ) and the accep-

tance set A. The formulas (2.21) and (2.22) are the foundation for using coherent risk

measures as a tool in financial investment mathematical modeling if the acceptance

set concept of decision making is confirmed by the investor. The rationale for each

axiom of the coherent risk measures follows from the corresponding axiom in the

definition of acceptance set, see [2] for details.

Rockafellar et al. in [87] extend the coherency axioms with the expectation

bounded condition:

Axiom EB. Expectation bounded:

ρ(Z)> −E[Z]; for stochasticZ (2.23)

ρ(Z) =−Z ; for constantZ (2.24)

This axiom is used for extending the concept of coherent risk measures into deviation

measures and risk envelopes, see section 2.2.5 of this chapter.

Ogryczak and Ruszczynski [76] explore the correspondence between expectation

bounded coherent risk measures and SSD. They introduce the concept of SSD safety

consistent risk measures. Risk measure ρ is SSD α-safety consistent if, for any two

random variables Z1 and Z2, the following conditions are satisfied:

Z1<SSDZ2⇒E[Z1]≥E[Z2] (2.25)

Z1<SSDZ2⇒E[Z1]−α · ρ(Z1)≥E[Z2]−α · ρ(Z2) (2.26)

SSD 1-safety consistent measures are termed SSD safety consistent measures for

brevity.

Ogryczak et al. [75] derive the correspondence between coherent risk measures

and SSD safety consistent measures. Ogryczak starts with the intermediate result:

Theorem 2.7. (Ogryczak et al. [ 75],Theorem 2)

Let ρ(Z) ≥ 0 be a convex, positively homogeneous and translation invariant risk

measure. If this measure is also SSD safety consistent then the corresponding perfor-

mance function C(Z) = ρ(Z)−E[Z ] fulfills the coherency axioms (T, S, PH, M).
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This result shows that every SSD safety consistent risk measure is a coherent risk

measure. Then Ogryczak et al. [75] establish one-to-one correspondence between

coherent risk measures and SSD safety consistent risk measures. Authors state this

correspondence as the following theorem:

Theorem 2.8. (Ogryczak et al. [ 75], Theorem 5) Let ρ(Z)≥0 be a convex, positively

homogeneous and translation invariant risk measure in the form:

ρ(Z) = f(E[g(Z)]), g− convex, f − increasing

Then measure ρ is SSD safety consistent if and only if it is expectation bounded:

Z ≥ 0
�

ρ(Z)<E[Z]

If a risk measure is coherent and expectation bounded then the risk measure is SSD

safety consistent. Any SSD safety consistent and expectation bounded risk measure

is coherent. This is a very strong result because it fully describes the relationship

between SSD and coherent risk measures.

Further developments in the concept of coherent risk measures are decomposition

of the coherent risk measures into independent parts and exploration of sensitivity of

decisions with respect to the probability measure of the underlying random variable

Z.

2.2.5 Deviation measures and risk envelopes

Rockafellar et al. in [87] use the expectation bounded condition (Axiom EB, page 22)

to develop the concept of deviation measures and risk envelopes. Deviation measures

are an extended development of the concept of coherent risk measures. The idea is

to measure the deviation of the random variable. Axioms for deviation measures are

stated as follows:

Axiom 1. D(Z +C) =D(Z), ∀Z and constantC
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Axiom 2. D(0) = 0, andD(λZ) = λD(Z), ∀Z andλ> 0

Axiom 3. D(Z1 +Z2)6D(Z1) +D(Z2), ∀Z1,Z2

Axiom 4. D(Z)> 0 for non-constant Z

Axiom 5. D(Z)≤E[Z]− inf Z

Deviation measures are related to the coherent risk measures as follows:

ρ(Z) =D(Z)−E[Z] (2.27)

D(Z) = ρ(Z −E[Z]) (2.28)

The formulae (2.27) and (2.28) give insight into the process of decision making using

expectation bounded coherent risk measures. The risk term is constructed using

two parts. The first part is an expected value of portfolio and the second part is the

volatility of portfolio.

Risk envelopes are an extension of the risk measure concept. The idea is to define

all possible variations of the probability measure P(F( � 1)) under which the accep-

tance set remains the same. Risk envelope is the set of probability measures that

satisfy the following axioms:

Q1. Q is a closed, convex set containing 1 (constant).

Q2. every Q∈Q has E[Q] = 1.

Q3. There is no Z ∈L2 such that E[ZQ]≤E[Z] for all Q∈Q.

Q4. Q≥ 0 for all Q∈Q.

E[ZQ] =

∫

� 1

Z(x)Q(x)dP (x)

Risk envelopes are proposed as a tool for sensitivity analysis of financial investment

decisions made under coherent risk measures.
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Rockafellar et al. [87] establish one-to-one correspondence among four concepts:

expectation bounded coherent risk measures, deviation measures, acceptance sets,

and risk envelopes:

D(Z) =E[Z]− inf
Q∈Q
{E[ZQ]} (2.29)

ρ(Z) = sup
Q∈Q
{−E[ZQ]} (2.30)

A= {Z | E[ZQ]≥ 0;∀Q∈Q} (2.31)

The concepts of risk envelopes and deviation measures motivate further research in

the risk control theory. The first direction is a generalization leading to a wider class

of decomposable risk measures. What are the implications of such a generalization?

The decomposition of risk measures and other related questions are researched in

Chapter 3 of this thesis.

2.2.6 Exogenous and endogenous risk measures

Rockafellar et al. [87] propose to treat risk measures as a combination of two parts:

deviation measure and target. The question of an appropriate target is important

in optimization of financial investments because different investors adopt different

investment strategies. For instance, certain investors prefer to get profits above a

predefined threshold. Thus, they incorporate risk-less financial instruments. Aggres-

sive traders want to get as much profit as they can and they often use risky financial

instruments. Due to different preferences, target types for these two categories need

to be different. However, the issue of target type is largely unexplored in research and

no detailed basic theory has been developed. The common practice is to use portfolio

expected value (mean) as a target, see for instance [39], [69], [70], [71], and [87].

Consider an investor who formulates a financial investment problem to minimize

risk associated with a decision y. The risk measure ρ for the problem has the following

expression:

ρ= ρ(X , y) = t(X , y) + d(X , y) (2.32)
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where t(X , y) is the target and d(X , y) is the deviation part of investor’s risk measure.

A mathematical model for the financial investment problem is then formulated as

follows:

min
y
{t(X , y) + d(X , y)} (2.33)

s.t. y ∈Ω∗ (2.34)

where Ω∗ is the domain of all feasible investment decisions y. According to the stan-

dard viewpoint [69], [70], [71], and [87]:

t(X , y) =−E[〈X , y〉]

The fact that the target t(X , y) depends on the random vector X of returns of indi-

vidual financial instruments emphasizes the endogenous property of the risk measure

ρ. That is endogenous risk measure is a risk measure where the target depends on the

underlying random vector X . Usually, the target is at the mean. All coherent expec-

tation bounded risk measures are endogenous as follows from (2.29). The properties

of such risk measures have been studied, see [39], [40], [75], [76], and [77].

An exogenous risk measure is a risk measure where target is independent on the

random vector X of individual financial instrument returns. That is, if the target

depends only on the decision vector y or some external stochastic parameters, then

the risk measure is exogenous .

t(X , y) = g(y) (2.35)

Exogenous risk measures have not received much attention in research, only limited

research has been done, see [13], [50], [81], and [100]. Thus, properties of such measures

and possible ways of implementation have not been studied. This thesis explores the

properties of exogenous and endogenous risk measures under specific conditions. The

question of minimal conditions for exogenous and endogenous risk measures to be

consistent with FSD is the subject for research in Chapter 3 of this thesis.

2.2.7 Tail risk measures

In the insurance industry, risk control is achieved via the concept of controlling either

the probability or the value of maximum loss, see [3] and [8]. This approach motivates
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tail risk measures. There has been a significant development in this area in the last

decade, see [93] and [96].

2.2.7.1 VaR definition, properties and applications

Historically, value at risk or percentile is an early approach to risk control. Value-

at-Risk (VaR), according to [96], is defined as the maximum loss with a specified

probability level α. Mathematically, VaR is defined as follows:

VaRα(−Z) =F1
−Z ,−1(1−α). (2.36)

Thus, VaRα(−Z) is the left end point of a nonempty interval consisting of the values

for which:

F1
−Z ,−1(1−α) =x. (2.37)

From an applications stand-point, this is the minimum value of loss under the condi-

tion that α worst-case events will happen. Alternatively, this is the minimum profit

if α worst-case events will not happen, see Figure 2.3 for an illustration.

Uryasev [96] assumes that F1
−Z ,−1( · ) is a continuous function. Based on this

assumption, he concludes that VaRα( − Z) is continuous and non-decreasing as a

function of α. Uryasev [96] also develops a formula for computing the gradient of

���������� ����������������������������������������������������������������������������������

����������������
1 − α

1

x

F1(−Z, x)

V aR
α
(−Z)

Figure 2.3. VaRα(−Z) in graphical representation
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F1
l(X ,·),−1(α) as a function of decision y and the gradient of VaRα(−Z) with respect

to α. Where, l(X , · ) is denoted as a loss function of random return X and portfolio y.

l(X , y) =−Z .

VaR has been used in financial investments, see [8], [54], and [97]. However, VaR as

a concept of risk control has difficulties. For instance, in order to evaluate VaR, one

needs to minimize the inverse cumulative distribution function that is an integral of

the probability distribution function. The minimization of integration operation is

computationally tedious. Even using decomposition techniques and under assump-

tions of independence, this approach does not yield significant computational gain

because of the difficulty of optimization of an integral over a bounded set. However,

VaR approach is widely used in financial applications where an optimization based

approach can be avoided, for instance, evaluating a credit score. This is because for a

particular decision y the problem of computing VaR is only a problem of evaluating

the integral.

Pflug in [78] summarizes the properties of VaR as a function of quantile α and

r.v. −Z . He describes VaR properties as follows (see Proposition 3 in [78]):

i. VaRα(−Z) is translation invariant:

VaRα(−Z + c) = VaRα(−Z) + c; c∈ � 1 (2.38)

ii. VaRα(−Z) is positively homogeneous:

VaRα(c · −Z) = c ·VaRα(−Z); c∈ � 1 and c> 0 (2.39)

iii. VaRα(−Z) =−VaR1−α(Z).

iv. VaRα(−Z) is monotonic with respect to FSD:

−Z14FSD−Z2
�

VaRα(−Z1)≤VaRα(−Z2) (2.40)

VaR is not a convex function of either the quantile α or the r.v. −Z . Therefore, it is

computationally difficult to incorporate VaR as part of a performance measure in a

mathematical programming model of financial investment. VaR is also not a deviation

measure, see [87]. An advanced extension of VaR is the concept of Conditional value-

at-risk (CVaR).
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2.2.7.2 CVaR definition, properties and applications

CVaR, which is also called the Mean Excess Loss , Mean Shortfall , or Tail VaR, is yet

another approach for risk control. The definition of this term is based on the VaR

approach. The purpose of CVaR is to control the expectation of the tail of random

variable, see Figure 2.4 for an illustration. CVaR has received extensive attention in

the past few years, see [1], [68], [78], [85], [86], and [95]. Mathematically, CVaR is

formulated as follows:

CVaRα(−Z) =
1

α

∫

x>VaRα(−Z)

xdF1
−Z(x). (2.41)

Uryasev and Rockafellar [86] also present an alternative expression for CVaR:

Tα(x
∗,−Z) = x∗+

1

α

∫

x>x∗

(x− x∗)dF1
−Z(x) (2.42)

CVaRα(−Z) = VaRα(−Z) +

+
1

α

∫

x>VaRα(−Z)

(x−VaRα(−Z))dF1
−Z(x) = Tα(VaRα(−Z),−Z) (2.43)
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Figure 2.4. CVaRα(−Z) in graphical representation
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The above expressions underscore the link between VaR and CVaR. CVaR is the

expectation of a random variable conditioned on the random variable exceeding the

corresponding VaR value.

Uryasev and Rockafellar [85] provide the properties of Tα(x
∗,−Z) as a function

of x∗. Theorem 1 in [85] establishes the convexity and differentiability of Tα(x
∗, −Z).

The same theorem also establishes the relationship between CVaR and Tα(x
∗, −Z):

CVaRα(−Z) = min
x∗∈ � 1

{Tα(x∗,−Z)} (2.44)

VaRα(−Z) = min
x∗∈ � 1

Aα(−Z) (2.45)

Aα(−Z) = arg min
x∗∈ � 1

{Tα(x∗,−Z)} (2.46)

The proof of (2.44) - (2.46) consists of two major steps. The first one is the proof

of convexity and differentiability of Tα(x∗, −Z). Uryasev and Rockafellar prove the

first step by using the Shapiro and Wardi [92] results. The second step is to prove the

formulas (2.44) � (2.46). Uryasev and Rockafellar use convexity and differentiability

of Tα(x∗, −Z) and derive a precise formula for the derivative of Tα(x
∗, −Z) with

respect to x∗.

The formulas (2.44) - (2.46) state that the minimum value of Tα(x∗, −Z) over all

possible x∗∈ � 1 is associated with the CVaRα(−Z) value, and VaRα(−Z) value is the

argument that minimizes the functional Tα(x
∗,−Z). The main advantage of (2.44) -

(2.46) is the unique relationship between VaR and CVaR values. Both CVaRα(−Z)

and VaRα( − Z) values can be found by minimizing the function Tα(x
∗, − Z) over

x∗. The function Tα(x
∗, − Z) has two important mathematical properties, namely,

convexity and continuity with respect to x∗, which simplify the minimization process.

CVaR is the expectation of the loss in α worst-case events. Thus, CVaR needs

to be minimized in financial applications.Theorem 2 in [85] states that minimizing

CVaR over all possible decisions y is equivalent to minimizing Tα(x
∗, l(X , y)) over all

possible pairs (x∗, y), that is,

min
y∈Ω∗
{CVaRα(l(X , y))}= min

y∈Ω∗;x∗∈ � 1
{Tα(x∗, l(X , y))} (2.47)
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The formula (2.47) establishes the equivalence between minimizing CVaR and min-

imizing the function Tα(x
∗, l(X , y)) over the pair (x∗, y). Moreover, the pair (x∗, y),

that minimizes Tα(x∗, l(X , y)), uniquely defines VaRα(−Z) and CVaRα(−Z) values.

Uryasev et al. [1] explore the question of incorporating CVaR into mathematical

models for financial optimization. They prove that models with CVaR as a deviation

measure can be formulated as linear programs if r.v. X has a finite σ-field. In this case,

the loss function l(x, y) is piecewise linear and convex with respect to y and convex

with respect to x. Several important properties, such as convexity and differentiability

of Tα(x∗, l(X , y)) are established in [85].

Pflug [78] summarizes properties of CVaR with respect to the underlying r.v.

−Z : { � 1, F( � 1),P(F( � 1))} (see Proposition 2 in [78]):

i. CVaR is translation invariant:

CVaRα(−Z + c) = CVaRα(−Z) + c; c∈ � 1 (2.48)

ii. CVaR is positively homogeneous:

CVaRα(c · (−Z)) = c ·CVaRα(−Z); c> 0, c∈ � 1 (2.49)

iii. If r.v. L has a finite probability density function and finite first moment then:

E[−Z ] = (1−α) CVaRα(−Z)−αCVaR1−α(−Z) (2.50)

iv. CVaR is convex:

CVaRα(λ (−Z1) + (1− λ) (−Z2)) = λCVaRα(−Z1) + (1− λ) CVaR(−Z2);

0<λ< 1 (2.51)

v. CVaR is monotonic with respect to SSD:

−Z14SSD−Z2
�

CVaRα(−Z1)≤CVaRα(−Z2) (2.52)

2.2.7.3 Alternative method of defining CVaR as TVaR

Ogryczak et al. in [67], [68], and [77] develop an alternative approach to measure risk

based on tail expectation. They use first quantile function as the basis. The desirable
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property of F1
Z ,−1(p), according to Ogryczak et al. [77], is as follows:

Z1<FSDZ2
�

F1
Z1,−1(p)>F1

Z2,−1(p) for 0< p6 1 (2.53)

Ogryczak et al. in [77] claim that F1
Z ,−1(p) can be used as a risk measure. Authors also

show the consistency of VaRα(Z) risk measure with FSD using the basic properties

of F1
Z ,−1(p). F1

Z ,−1(p) is not consistent with SSD. However, the second quantile

function as a risk measure, defined below, is consistent with SSD.

Definition 2.9. (Ogryczak and Ruszczynski [ 77]) Second quantile function is defined

by:

F2
Z ,−1(p) =

∫

0

p

F1
Z ,−1(α)dα for 0< p6 1.

It has been shown in [77] that F2
Z ,−1(p) is convex and it is a Fenchel dual for F2

Z(x) for

the pair of arguments (p, x), see Section 31 in [36] for details about convex conjugate

(Fenchel dual) functions. This allows authors to directly use results from convex

analysis [84]. The convexity of F2
Z ,−1(p) simplifies the proof of many properties.

Ogryczak and Ruszczynski [77] also establish the following relation:

Z1<SSDZ2
�

F2
Z1,−1(p)≥F2

Z2,−1(p) for 0< p6 1 (2.54)

Ogryczak and Ruszczynski [77] find an alternative way of defining F2
Z ,−1(p) based on

the convex conjugate connection between F2
Z ,−1(p) and F2

Z(x):

F2
Z ,−1(p) = p ∗x−F2

Z(x) =

= p ∗x+E[Z −x|Z 6 x] = pE[Z |Z 6 x] (2.55)

The graph of F2
Z ,−1(p) as a function of p is a modification of Lorentz curve and

called the Absolute Lorentz Curve (ALC) (see Figure 2.5 for illustration and [76], [77]

for details). Ogryczak and Ruszczynski introduce Tail VaR as a risk measure in the

following form:

TVaR(Z , p) =
F2
Z ,−1(p)

p
(2.56)
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Figure 2.5. Absolute Lorentz Curve (ALC) and TVaR

It follows from the previous results that mean-risk model (E[Z],−TVaR(Z , p))
is consistent with SSD. Based on the dual representation of F2

Z ,−1(p), Ogryczak and

Ruszczynski derive two equivalent formulae for computing TVaR:

TVaR(Z , p) =E[Z]−min
ξ∈ �

E

[
max

(
Z − ξ, 1− p

p
(ξ −Z)

)]
(2.57)

TVaR(Z , p) = max
ξ∈ �

(
ξ − 1

p
E[max (0, ξ −Z)]

)
. (2.58)

and, equality (2.58) is consistent with Rockafellar et al. [87] results. The difference is

that Ogryczak and Ruszczynski use the lower tail of distribution instead of the upper

tail in [85], see Figure 2.6.

The above discussion shows the importance of tail risk measures and the attention

that they have gained over the years. VaR, CVaR, and TVaR have all been defined

in the space of portfolio profit that is appropriate for portfolio optimization prob-

lems. However, such definitions of tail characteristics make impossible formulation

of scenario generation and approximation problems using tail information, because

both problems must be formulated in terms of outcomes of individual securities not
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Figure 2.6. TVaR on the portfolio profit distribution function.

composite outcomes of optimal portfolio. An extension of the tail risk measures is

proposed in Chapter 4 of this thesis for improving the risk control in financial invest-

ment models. The theoretical basis and an algorithm for scenario generation and

approximation using tail information is addressed in Chapter 5 of this thesis.
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Chapter 3

Rational Level Sets and Rational Risk
Measures

3.1 Preliminaries

One of the major problems in financial investment optimization, as indicated in

Chapter 2, is the problem of choosing an appropriate objective function for the invest-

ment model. There are several methodologies for addressing this problem: utility

theory, risk/return trade-off, and coherent risk measures, for example. The latter

approach has been developed in the last five years and has gained much attention

in the risk management community. The axioms of Artzner et al. [2] for accep-

tance sets are the cornerstones of the theory of coherent risk measures. Expected

bounded coherent risk measures, deviation measures, and risk envelopes are all based

on the concept of acceptance sets, see [87]. The coherency property (see page 21

of this thesis) induces linearity of risk measures with respect to the underlying r.v.

Z (the future portfolio-profit). However, other useful risk measures that have proven

to be efficient in applications are not coherent, for instance, Markowitz’s mean-vari-

ance and mean-semivariance risk measures, see [70]. The main difference between

these measures and coherent risk measures is the non-linearity of the former with

respect to the r.v. Z.

The linearity of the coherent risk measures arises from the positive homogeneity

property in the definition of coherent risk measures, see Axiom PH on page 21. The

positive homogeneity property is a direct consequence of Axiom 4 in the definition

of acceptance sets. As pointed out in Section 2.2.4, the positive homogeneity property
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of acceptance sets requires strong assumptions about both the investor’s preferences

and the financial market. The first assumption is the linearity of investor’s utility

function. The second assumption is either a frictionless financial market or a market

with linear slippage execution (cost of investments), see [26] Section 3.1 for details

about slippage modeling. The above two assumptions are almost always violated in

reality. Therefore, accepting the assumption about linearity of investor’s utility causes

underestimation of risk in an investment model. A way to resolve this problem is

to develop an alternative concept for describing investor’s preferences where utility

functions and risk attitudes can accommodate non-linearity.

Using the basic ideas in Artzner et al. [2], a precise description of investor’s

preferences is developed first in this chapter. Then, this description is generalized to a

new class of risk measures. The description of preferences is based on a set of axioms

termed
�

rational level set (RLS)
�

. Then, the idea of RLS is utilized to obtain a full

characterization of investor’s attitude towards risk. The bridge from rational level

sets to a new concept termed
�

rational risk measures (RRM)
�

is built using the results

of convex analysis [84]. The resulting concept of rational risk measures is broader

than the concept of coherent risk measures. Coherent risk measures with additional

restriction will be shown to be a subset of rational risk measures.

3.2 Axioms for rational level set

The problem of investor’s choice is reduced to the following form. Let C denote

the certainty equivalent of the risky investment Z to a given investor. Suppose the

investor has the knowledge of C given a risky investment Z. This value C may

depend on such factors as wealth, risk preferences, market conditions, etc. How C is

determined is not the focus here, rather, it is the specific value that is assigned by

the investor that is of interest. The value of certainty equivalent C reflects investor’s

indifference between two alternatives, namely, the random profit Z from risky invest-

ment and the deterministic risk free profit C. For the above interpretation to hold, the

amounts of initial investments are assumed to be the same for the two alternatives.
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Next, based on the concept of certainty equivalent, the set of all investment oppor-

tunities that the investor will accept will be defined. Each investment opportunity

is characterized by the future portfolio profit Z (deterministic or stochastic). Thus,

investor’s decision about acceptance or rejection is based on the distribution of the

profit Z.

Let the value of certainty equivalent to the random profit Z be denoted by C(Z).

A rational investor always has the following implication:

Z1<FSDZ2
�

C(Z1)>C(Z2). (3.1)

The above is true because rationality is equivalent to the investor’s choice always

being consistent with first order stochastic dominance (FSD). If one investment

always generates higher profit then the other, the rational investor always pick the

former one. Now, suppose the investor is faced with two alternatives Z1 and Z2.

A convex combination of these two alternatives yields the profit Z:

Z =α · Z1 + (1−α) · Z2, 0<α< 1.

Clearly the following hold because of linearity of expectation operator:

E[Z] =α ·E[Z1] + (1−α) ·E[Z2], 0<α< 1.

A rational investor will choose Z if and only if the following hold:

C(Z)>αC(Z1) + (1−α)C(Z2), 0<α< 1. (3.2)

That is (α, 1 − α) lottery between deterministic C(Z1) and C(Z2) is inferior to the

fixed C(Z). This is consistent with inequality (2.9) on page 13 that follows from the

definition of rational behavior.

A Rational Level Set (RLS) is defined on the space of random variables (future

portfolio profit) and certainty equivalents. The rational level set Ar contains all future

profits for which the investor accepts an investment decision. The idea for this set is

inspired by the definition of acceptance set in [2]. However, axioms for RLS are less

restrictive than axioms for acceptance set in [2] and RLS depends on the value of

certainty equivalents. The basis for defining rational level sets is the assumption that

the investor is risk averse and rational , see section 2.2.1.
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First, axioms for RLS are presented, then detailed explanations for each axiom

are given. The rational level set Ar(CL) for a particular value CL of the certainty

equivalent is the set of all possible future portfolio values that satisfy the following

axioms:

RLS axiom 1. CL is the lower limit for all certainty equivalents in the rational

level set:

CL= inf
C∈ � 1

{
C |C ∈Ar(CL)

}
(3.3)

RLS axiom 2. RLS is closed and convex:

Z1,Z2∈Ar(CL)
�

λZ1 + (1−λ)Z2 ∈ Ar(CL), 06λ6 1 (3.4)

The reasoning for the above axioms are the following:

RLS axiom 1. It is assumed that the investor has a lower limit for acceptance

among constant returns. The investor can precisely specify this minimum

value CL∈ � 1 (which is either positive or negative) and it reflects the outcome

generated without risk, for instance an investment in treasury bills. The value

of CL depends on the initial conditions of investments.

RLS axiom 2. The investor accepts diversification among acceptable invest-

ments alternatives. In other words, diversification among different alternatives

does not increase the riskiness of investment. This is consistent with the con-

cept of risk aversion. The investor always prefers a fixed outcome instead

of participating in the lottery with expected outcome equal to the fixed one.

It is also consistent with Capital Asset Pricing Model (CAPM) where diver-

sification reduces the principal component of risk.

To explain further, suppose the convexity requirement is violated:

Z =αZ1 + (1−α)Z2; α∈ (0, 1); Z1,Z2∈Ar(CL)

but Z � Ar(CL). Then, according to Axiom 1, we must have:

C(Z)< CL6αC(Z1) + (1−α)C(Z2) (3.5)
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However, (3.5) violates the inequality (3.2) which must hold for a rational

investor. Thus, RLS must be a convex set (Axiom 2).

The following RLS properties (in the form of propositions) can be derived based on

the definition.

Proposition 3.1. RLS is consistent with FSD, for any given CL:

Z1<FSDZ2 and Z2∈Ar(CL)
� Z1∈Ar(CL) (3.6)

Proof. This follows directly from assumption of investor’s rationality , see (3.1). The

investor always prefers higher outcomes over the lower ones. �

Proposition 3.2. If two given investment alternatives, where one has random profit

Z and the other has a fixed profit CL, are both accepted, then a convex combination

of the two investment alternatives is also accepted:

Z ∈Ar(CL)
�

(λZ + (1−λ)CL)∈Ar(CL), 06λ6 1 (3.7)

Proof. It follows directly from RLS axiom 2 that RLS is convex, see (3.4). Because

of RLS axiom 1, CL is the minimal acceptable deterministic profit. Thus, both

investment alternatives belong to RLS and RLS is a convex set. That validates impli-

cation (3.7). �

The major motivation behind RLS is to drop the assumption of positively homo-

geneity from the definition of acceptance set given by Artzner et al. [2]. Suppose that

Z1 =λZ2,∀λ> 1

then Z1 and Z2 are both either accepted or rejected if the acceptance sets are used for

decision making. RLS is more flexible than the acceptance sets. In the case of RLS,

it is possible that Z2 is accepted but Z1 is rejected. This reflects the risk aversion of

the investor where profits with higher volatility are rejected.
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Mathematically, the rationale for dropping the positive homogeneity axiom can

be presented as follows. If a random profit scales linearly (with a positive coefficient),

then the appropriate initial investments are also supposed to be scaled. As a result,

the axiom of positive homogeneous cone is similar to proposition 3.2:

Z ∈Ar(CL)
�

(λZ + (1−λ)CL)∈Ar(CL), 06λ6 1 (3.8)

However, for λ> 1 the implication in (3.8) translates to:

Z ∈Ar(CL)
�

(λZ −
∣∣1−λ

∣∣CL)∈Ar(CL), 16λ (3.9)

The investor borrows money from outside and invests it into a portfolio. First, this

assumes the presence of a perfect market where rates for borrowing and lending are

equal, which is not true in reality. Second, it implies an arbitrage opportunity if

certainty equivalent for portfolio profit Z is different from CL, i.e.

Z∼C(Z)>CL

Thus, positive homogeneity assumption in the case of coherent risk measures imposes

additional implications about financial markets.

The collection of all rational level sets, denoted by {Ar}, for all CL∈ � 1, reflects

the investor’s preferences.

{Ar}≡
{
Ar(CL)

∣∣ CL∈ � 1
}

Moreover, an optimal investment decision can be defined if the collection {Ar} is

specified. In order to find the best investment decision, the CL level needs to be

increased to a level Cmax such that RLS for CL>Cmax is empty (no portfolio outcomes

in the set). Portfolio outcome corresponding to Cmax are the optimal choices.

The advantage of {Ar} is the flexibility in the characterization of preferences.

Each investor can define his/her own preferences. Even if some Ar(CL) for two dif-

ferent investors coincide, their preferences can be different. The acceptance set does

not provide such a flexibility because an acceptance set does not consider certainty

equivalents. However, the concept of an RLS collection incorporates acceptance sets

that are consistent with FSD.
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Proposition 3.3. A rational level set Ar(CL) with CL= 0, along with the additional

requirement that Ar is a positive homogeneous cone, i.e.,

Z ∈Ar(CL)
�

λZ ∈Ar(CL), λ> 0 (3.10)

is equivalent to Ar being an acceptance set.

Proof. It is straightforward that Axiom 1 and Axiom 2 of acceptance set are

satisfied for RLS with CL = 0. Axiom 3 of acceptance set follows directly from

Axiom 2 of RLS. The Axiom 4 of acceptance set is valid by the condition (3.10)

of the proposition. Thus, all axioms in the definition of acceptance set are satisfied

if condition (3.10) is added to the definition of RLS. �

3.3 Rational risk measures (RRM)

The set collection {Ar} of rational level sets completely describes the investor’s pref-

erences. It is possible that the number of elements in {Ar} is infinite. Information in

this form is very difficult to handle and use. However, the RLS is similar in spirit to

the concept of
�

level sets
�

in convex analysis, see [84] section 5. In convex analysis,

the
�

epigraph
�

refers to all function arguments for which the function value is smaller

than some target value µ, see Figure 3.1 for example. From an analogous treatment,

it is possible to express the investor’s full preferences {Ar} through a function. This

function is hereby called a rational risk measure (RRM).

Rational risk measures are defined as functions of random profit ρ(Z). It is a

mapping

ρ:
{

� 1,F( � 1),P(F( � 1))
}
× � 1 � � 1 (3.11)

that satisfies the following axioms:

RRM axiom 1. ρ(Z) is a non-increasing, convex function with respect to Z.

RRM axiom 2. Acceptability property:

Z >CL a.s.
�

ρ(Z)6−CL (3.12)

The connection between RRM and FSD is described as following proposition:
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Figure 3.1. Example of epigraph.

Proposition 3.4. Rational risk measures are consistent with first order stochastic

dominance:

Z1<FSDZ2
�

ρ(Z1)6 ρ(Z2) (3.13)

Proof. The proposition directly follow from RRM axiom 1 where ρ(Z) is a non-

increasing function of its argument. �

From definitions of RLS and RRM, it is clear that RRM is connected to collection

of RLS as follows:

ρ(Z) = inf
C∈ � 1

{
C |(C +Z)∈Ar(CL)

}
(3.14)

Ar(CL) =
{
Z|ρ(Z)6−CL

}
(3.15)

The next result is the theorem that describes the one-to-one correspondence between

rational risk measures and collection {Ar}.

Theorem 3.5. Suppose two collections of rational level sets {A1
r} and {A2

r}, induce

RRM ρ1 and ρ2. If {A1
r} and {A2

r} coincide, then:

ρ1(Z) = ρ2(Z), ∀Z .
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Proof. The proof consist of two parts.

Collection of RLS ⇒RRM.

RLS axiom 1 and RLS axiom 2 imply the convexity of the epigraph of the

negative underlying function. The property (3.6) of RLS from Proposition 3.1 implies

that the negative underlying function is non-decreasing. Thus, the underlying func-

tion is convex and non-increasing. That is the RRM axiom 1.

The following implication is straightforward:

RLS axiom 1 ⇒RRM axiom 2

If two epigraphs coincide (for all values µ∈ � 1) then the two functions coincide,

see Rockafellar [84].

RRM⇒Collection of RLS.

RRM axiom 1 implies the convexity of epigraph and the existing of lower limit

for each epigraph. That is RLS axiom 1 and RLS axiom 2. At the same time, the

following implication is straight forward:

RRM axiom 2 ⇒RLS axiom 1

Based on Rockafellar [84], the convex functions define the level sets uniquely.

Thus, if two convex function coincide the level sets for them must also coincide. �

In the foregoing discussion a process for describing an investor’s preference is

presented via a collection of acceptable future profits and then a method of conversion

between this collection and risk measures, (3.14) and (3.15), is developed. This gives

the insight for the mechanism of preference description using risk measures. The

theorem also gives insight for understanding the difference between coherent and

rational risk measures.

If two different investors have the same acceptance set for CL= 0 then their risk

measures must coincide if they use coherent risk measures. However, two different

rational risk measures can generate the same level set for some values CL. Decisions

made using RRM are consistent with FSD.

Z1<FSDZ2
�

ρ(Z1)6 ρ(Z2)
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which follows directly from RRM axiom 1. This is a consequence of the investor’s

rational behavior. For deterministic portfolio profits, the function − ρ(C) is non-

decreasing and concave. Additionally, − ρ(C) reflects investor’s wealth preferences.

That is a utility function, according to section 2.2.1, because the investor is risk averse

if the utility function is concave.

u(C) =− ρ(C).

The relation between RRM and coherent risk measures is presented in the following

proposition:

Proposition 3.6. The coherent risk measures with FSD requirement instead of

axiom M in the definition are RRM.

Proof. There are only two differences between coherent risk measures and rational

risk measures:

1. Coherent risk measures have the additional axiom PH in the definition.

2. Coherent risk measures satisfy the monotonicity requirement (axiom M)

almost surely.

The first difference narrows the scope of all available risk measures from non-linear

to positive homogeneous functions. Thus, coherent risk measures are a subset of

rational risk measures with respect to axiom PH. However, the second difference

implies that the class of coherent risk measures is broader than the class of rational

risk measures because FSD implies almost sure monotonicity but not vise versa. The

proposition condition restricts all coherent risk measures to those that satisfy FSD.

Thus, coherent risk measures with the additional condition of FSD consistency are

rational risk measures. �

The Proposition 3.6 emphasizes the difference between coherent risk measures and

rational risk measures. Proposition condition of substituting axiom M with FSD

consistency is appropriate for application where σ-field of r.v. remains fixed. The
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important fact is that FSD always implies almost sure monotonicity, but the converse

is not true, see Figure 3.2 where Z2>Z1 a.s. but Z2 � FSDZ1.

3.4 Decomposition of risk measures

Let’s assume that risk measure ρ(Z) is decomposable and consists of two components:

target and deviation. The basis for this assumption is [84] and Markowitz’s work [70],

[69], [71].

The idea is to separate attitude towards deterministic outcome and attitude

towards uncertainty. The target measure reflects utility and the deviation measure

reflects attitude toward uncertainty. The combination of these two components pro-

duces the risk measure. The assumption about separation of the two measures and

additivity of the combination is taken as an axiom, see [87]. Then the risk mea-

sure can be presented as follows:

ρ(Z) =− t(Z)− d(Z)

Both t(Z) and d(Z) need to be concave, non-decreasing functions in order for ρ(Z)

to be a rational risk measure. Some examples of target and deviation measures are

given below.

����������������������������������������������������������������������������������������������
1

x

F1(Z, x)

F1(Z1, x)

F1(Z2, x)

Figure 3.2. Example of Z2>Z1 a.s. but Z2 � FSDZ1.
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3.5 Examples of risk measures

Target measure examples are as follows:

• Expectation.

t(Z) =E[Z] (3.16)

• Value-at-Risk.

t(Z) = VaRα(Z) (3.17)

• Constant target.

t(Z) =C (3.18)

• Non-linear target.

t(Z) = f(E[Z]) (3.19)

with f( · ) concave and non-decreasing function.

Each of the above target measures is consistent with FSD.

Deviation measure examples are as follows:

• Semi-deviation with some power, see [39] for details:

d(Z) =E
[(

[t(Z)−Z ]
+
)γ]

, γ> 1 (3.20)

• CVaR or a weighted combination of different CVaR’s:

d(Z) =
1

α
E
[(

[VaRα(Z)−Z ]
+
)]

(3.21)

d(Z) =
∑

i

1

αi
E
[(

[VaRαi(Z)−Z ]
+
)]

(3.22)

• Deviation from a constant target:

d(Z) =E
[(

[C −Z ]
+
)γ]

, γ> 1 (3.23)
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The investor needs to be cautious because not all combinations of the above target

and deviation measures can produce a rational risk measure. For example, the com-

bination of target measure (3.16) and deviation measure (3.20) yields:

ρ(Z) =−E[Z]−E
[(

[t(Z)−Z ]
+
)2
]
, (3.24)

which is also known as mean/semi-variance risk measure and it is not consistent with

FSD, see [77].

However, there are risk measures that are guaranteed to be rational. A combi-

nation of the deviation measures (3.21), (3.22), and (3.23) with any target measure

(3.16)-(3.19) produces RRM because each component separately is FSD consistent

and convex. Thus, the resulting risk measure is FSD consistent and convex. The

following risk measures belong to this class:

ρ(Z) =−E[Z]−E
[(

[C −Z ]
+
)γ]

, γ> 1 (3.25)

ρ(Z) =−E[Z]− 1

α
E
[(

[VaRα(Z)−Z ]
+
)]

(3.26)

ρ(Z) =−E[Z]−
∑

i

1

αi
E
[(

[VaRαi(Z)−Z ]
+
)]

(3.27)

ρ(Z) =− f(E[Z])−E
[(

[C −Z ]
+
)γ]

, γ> 1 (3.28)

ρ(Z) =− f(E[Z])− 1

α
E
[(

[VaRα(Z)−Z ]
+
)]

(3.29)

ρ(Z) =− f(E[Z])−
∑

i

1

αi
E
[(

[VaRαi(Z)−Z ]
+
)]

(3.30)

All risk measures (3.25) - (3.30) are rational. However, only (3.26) and (3.27) are

coherent risk measures. The risk measures (3.25), (3.28) - (3.30) can violate the

coherency requirements because of either non-linearity of f( · ) or C � 0. Thus, the

concept of rational risk measures is more flexible than the concept of coherent risk

measures.
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If semi-deviation is used with γ > 1:

ρ(Z) =−E[Z]−E
[(

[t(Z)−Z ]
+
)γ]

, (3.31)

it may not be a RRM because FSD consistency is not guaranteed for (3.31).

A new approach to describe investor’s preferences (risk attitude) and to construct

appropriate risk measures has been presented in this chapter. The foundation for

describing the investor’s preferences is the Rational Level Set (RLS) with a specific

value CL for certainty equivalent. A collection of RLS for all possible values of cer-

tainty equivalents is a complete description of investor’s preferences. The collection

of all RLS corresponds uniquely to a Rational Risk Measure (RRM). Such a measure

is appropriate for modeling risk in financial optimization problems. Moreover, the

proposed RRM contains the coherent risk measures which are FSD consistent, see

Proposition 3.6 on page 44.
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Chapter 4

New Approach to VaR/CVaR

4.1 Preliminaries

VaR/CVaR concept is an effective way of controlling risks as it was shown in Chapter

2. However, VaR is not appropriate for an optimization framework because VaR lacks

of concavity/convexity property. Recently, there was an attempt to solve the finan-

cial investment optimization problem using VaR as an objective function, see [80].

Unfortunately, the proposed method gives an approximation solution only. CVaR is

more attractive from a computational view point [85], and at the same time, CVaR

delivers more information about distribution tail (not just a bound as VaR), see

Chapter 2 section 2.2.7. Recently, there have been more studies of CVaR application

for financial investment problems, see [1], [67], and [68]. These results are promising,

but the drawback is the requirement of generating a sample of a random variable in

order to formulate the financial optimization problem. A sample must represent tail

information that requires large number of points in the sample. If the problem of

financial optimization is multiperiod, like in Russell-Yasuda Kasai financial planning

model, see [13], then the scenario tree will be enormously large and the formulated

problem is computationally tedious. Thus, there is a requirement for an efficient

approximation scheme that preserves tail information.

VaR and CVaR are not defined through the underlying sample of random vector

X . They are defined through the one-dimensional random variable, that is the
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future portfolio loss (or profit), see section 2.2.7. Therefore, before constructing an

approximation scheme that preserves tail information, the theoretical properties of

VaR/CVaR with respect to the underlying sample of random vector need to be

explored. This chapter describes a new way of defining VaR/CVaR through a sample

of random vector. The problem of approximating a given sample using CVaR infor-

mation is addressed in Chapter 5.

4.2 The concept of SaR/SaG

Assume that the future portfolio profit is generated by returns of the underlying

financial instruments as a linear function:

Z = 〈X , y〉 (4.1)

where X is the random vector of the future outcomes of the financial instruments and

y is a decision that the investor made, i.e. portfolio positions.

Suppose we fix y ∈ Ω∗ (an investment portfolio). We also define the level of

significance α, where 0<α<1. Then the value at risk (VaR) and value at gain (VaG)

can be defined in several steps. The first definition is for upper part Dy
U(x) and lower

part Dy
L(x) of Ω, which is a partition of Ω by x∈Ω and y ∈Ω∗:

Dy
L(x) = {z ∈Ω � 〈y, z〉< 〈y, x〉} (4.2)

Dy
U(x) = {z ∈Ω � 〈y, z〉> 〈y, x〉} (4.3)

The next step in VaR/VaG definition is to define Scenarios at Risk (SaR) and Sce-

narios at Gain (SaG) for probability level α as additional conditions on upper part

and lower part of (4.2) and (4.3).

SaRα(〈X , y〉) =
{
z ∈Ω � µ(Dy

L(z)
)
≤α

}
(4.4)

SaGα(〈X , y 〉) =
{
z ∈Ω � µ(Dy

U(z)
)
≤ (1−α)

}
(4.5)
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where µ( ) is a probability measure of X , see Figure 4.1 for an illustration. SaR

contains all outcomes that are located in the lower tail of the random variable. The

probability of this lower tail is α. SaG contains all outcomes that are located in the

upper tail. The probability of this upper tail is 1−α.

4.3 VaR/VaG definitions

The original definition of VaR is as follows:

VaRα(〈X , y〉) = max
x∈ � 1
{F1
〈X ,y〉,−1

(α)} (4.6)

VaR can be defined based on the SaR concept (4.4) as follows:

VaRα(〈X , y〉) = sup
x∈SaRα(〈X ,y〉)

{〈y, x〉} (4.7)

This definition is consistent with the original definition of VaR in [96], but we have

defined intermediate sets SaR/SaG . The intermediate sets SaR/SaG will be useful

in the problem of sample approximating. Both SaR and SaG define the partition of

y

SaG
α
(〈X , y〉)

SaR
α
(〈X , y〉)

Figure 4.1. SaR and SaG representation.
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the random vector domain Ω. Mathematically, this partition is defined through a

boundary on Ω that split the r.v. domain into two parts with appropriate probabilities

α and 1−α. SaRα(〈x, y〉) is the biggest subset of Ω with probability no more than α

or the upper limit of the new r.v made from the original one such that 1− α upper

tail values are ignored (or negligible). This is the maximum profit that the investor

can gain if all 1 − α favorable scenarios never happen in the financial investment

application. Equation (4.7) defines the upper bound for the following set:

DVaRG=

{
x

∣∣∣∣∣

∫

Dy
L(x)

dµ(t) =α

}
(4.8)

where µ(t) is the probability measure of the r.v. X . The upper bound for the set

DVaRG can be defined as follows:

V aGα(〈X , y〉) = inf
x ∈ SaGα(〈X ,y〉)

{〈y, x〉} (4.9)

Value at Gain (VaG) is the largest element 〈y, z〉 for z ∈Dy
U(x) with probability of

Dy
U(x) no more than 1 − α. In other words, VaG is the lower limit of the new r.v

made from the original one by neglecting the α lower tail values and adapting the

probability measure. The interpretation for application of financial investment is

similar to VaR. VaG is the minimum profit that the investor can guarantee if α tail

unfavorable events are negligible or non-existent.

As can be seen from the definitions, VaR and VaG are complementary to each

other and adapted to both Lebesgue and countable measure random variables , and

provide lower and upper bound for the (4.8). Rockafellar and Uryasev in [86] define

these values differently, and they are referred to as V a Rα
− and V a Rα

+ . The upper

and lower bounds for probability level α can also be defined as following:

αy
L=

∫

SaRα(〈X ,y〉)
dµ(x) (4.10)

αy
U = 1−

∫

SaGα(〈X ,y〉)
dµ(x) (4.11)

The usefulness of VaRα and VaGα can be seen from the following Lemma.
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Lemma 4.1. For any consistent distribution (dominated by either a Lebesgue or

countable measure), for any α∈ (0,1), and for any y∈Ω ∗ at most one of the following

inequalities is satisfied:

VaRα(〈X , y〉)<VaGα(〈X , y〉), (4.12)

or α y
L<αy

U. (4.13)

Inequalities (4.12) and (4.13) follow from the definitions of V a Rα, V a Gα, αy
L, and

αy
U. The intuition is that it’s impossible to have a non-zero probability for an element

that does not belong to σ-field F(〈X , y〉).

Proof. The proof is based on contradiction. Suppose that both (4.12) and (4.13) hold

at the same time. Then from (4.13), there exists an element β ∈F(〈X , y〉) such that:

β ∩ (V aRα, V aGα) � ∅ a n d µ(β)> 0

But at the same time from the definitions of VaR, VaG , and r.v. 〈X , y〉 we have:

∀β ∈ F(X ) : β ∩ (VaRα, V aGα) =∅,

otherwise, either the sup property of V aR or the inf property of V aG is violated.

Thus, only negligible events can belong to the interval (V a Rα, V a Gα). That is

µ(β) = 0. This contradiction proves Lemma 4.1. �

4.4 Expressions for CVaR/CVaG

According to section 2.2.7.2, CVaR is defined as follows:

CVaRα(Z) =
1

α

∫

z>VaRα(Z)

z dF1(Z , z) (4.14)

Conditional Value at Risk (CVaR) and Conditional Value at Gain (CVaG) can also

be defined as expectation over Scenarios at Risk (SaR) and Scenarios at Gain (SaG).

Conditional Value at Risk (CVaR) has the following expression:

CVaRα(〈X , y〉) =
1

α

∫

SaRα(〈X ,y〉)
〈y, x〉dµ(x) (4.15)
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and Conditional Value at Gain (CVaG) can be defined as follows:

CVaGα(〈X , y〉) =
1

1−α

∫

SaGα(〈X ,y〉)
〈y, x〉dµ(x) (4.16)

The interpretation of these values is similar to VaR and VaG interpretations. CVaR

is the expectation of the transformed r.v. 〈X , y〉 if all 1 − α upper tail events are

considered as negligible. Thus, it is an expectation of the new random variable that

is produced from the original one by dropping 1− α upper tail events and adapting

the probability measure µ to the new σ-field. The same interpretation can be done

for CVaG but instead of dropping upper tail events, the new r.v. is produced by

dropping the α lower tail events from the original distribution. The only difference

between CVaR/CVaG and VaR/VaG is that CVaR/CVaG define expected profits

instead of profit boundaries in VaR/VaG case.

According to modern probability theory [9], [61], the conditional expectation of a

r.v. is another r.v. with σ-field that belongs to the σ-field of the original r.v . The new

σ-field Bα is produced from the original F(Ω) if we condition the r.v. X on SaR/SaG

tails. Bα has only two elements:

βα
1 = {x ∈ SaRα(〈X , y〉)} (4.17)

βα
2 = {x ∈ SaGα(〈X , y〉)} (4.18)

For distributions that are dominated by Lebesgue measure, there is no third compo-

nent because αy
L=αy

U. Thus for all such distributions:

µ(βα
1) + µ(βα

2) = 1

For distributions that are dominated by a countable measure or simple r.v., the point

split is possible in the case of αy
L<αy

U. Assume that a boundary point with coordinate

xb and probability pb exists such that:

〈xb, y〉= VaRα(〈X , y〉) = VaGα(〈X , y〉) (4.19)

This assumption is valid according to Lemma 4.1. Then, the point (xb, pb) is substi-

tuted by two points with coordinates:

xb
1 = xb

2 =xb
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and probabilities:

pb
1 + pb

2 = pb

such that (4.17) and (4.18) are hold. Based on the fact that Bα∈F(Ω), we can write:

E[〈X , y〉] = E[E[〈X , y〉 � Bα]] =
∑

i=1

2 ∫

βα
i

〈y, x〉dµ(x) (4.20)

By incorporating expressions for CVaRα (4.15) and CVaGα (4.16) into (4.20):

E[〈X , y〉] = α ·CVaRα(〈X , y〉) + (1−α) ·CVaGα(〈X , y〉) (4.21)

That gives relation between CVaR, CVaG and expected portfolio profit.

4.5 Properties of CVaR/CVaG

The properties of CVaR/CVaG with respect to the original scenarios X and the

chosen decision y are explored in this section. These properties will be helpful during

formulation and decomposition of an approximation model for the financial invest-

ment problem.

The definitions of CVaRα (4.15) and CVaGα (4.16) can be rewritten as follows:

CVaRα(〈X , y〉) = V aRα

(
〈X , y〉

)
+

+
1

α
·

∫

SaRα(〈X ,y〉)

(
〈y, x〉 − V aRα(〈X , y〉)

)
dµ(x) (4.22)

CVaGα(〈X , y〉) = V aGα

(
〈X , y〉

)
+

+
1

1−α ·
∫

SaRα(〈X ,y〉)

(
〈y, x〉− VaGα(〈X , y〉)

)
dµ(x) (4.23)

We start with the following proposition that asserts positive homogeneity of

CVaR/CVaG .
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Proposition 4.2. CVaRα(〈X , y〉) and CVaGα(〈X , y〉) are positively homogeneous

with respect to portfolio y, as well as with respect to distribution points x ∈Ω, sepa-

rately.

Proof. If we rewrite CVaR definition for a fixed values of α and y:

CVaRα(〈X , y〉) = sup
x∈SaRα(〈X ,y〉)

{〈y, x〉}−

− 1

α

∫

SaRα(〈X ,y〉)

(
sup

x∈SaRα(〈X ,y〉)
{〈y, x〉}− 〈y, x〉

)
dµ(x)

then for λ> 0 we can move the multiplier from sup :

CVaRα(〈λX , y〉)

= sup
x∈SaRα(〈X ,y〉)

{〈y, λx〉}−

− 1

α

∫

SaRα(〈X ,y〉)

(
sup

x∈SaRα(〈X ,y〉)
{〈y, λx〉}− 〈y, λx〉

)
dµ(x) =

= sup
x∈SaRα(〈X ,y〉)

{〈λy, x〉}−

− 1

α

∫

SaRα(〈X ,y〉)

(
sup

x∈SaRα(〈X ,y〉)
{〈λy, x〉}− 〈λy, x〉

)
dµ(x) =

= sup
x∈SaRα(〈X ,y〉)

{λ · 〈y, x〉}−

− λ

α

∫

SaRα(〈X ,y〉)

(
sup

x∈SaRα(〈X ,y〉)
{〈y, x〉}− 〈y, x〉

)
dµ(x) =

=λ ·
(

sup
x∈SaRα(〈X ,y〉)

{〈y, x〉}−

− 1

α

∫

SaRα(〈X ,y〉)

(
sup

x∈SaRα(〈X ,y〉)
{〈y, x〉}− 〈y, x〉

)
dµ(x)

)
=

=λ ·CVaRα(〈X , y〉)
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An analogous proof follows for CVaG . �

Based on (4.22), (4.23), and appealing to Uryasev [96] CVaRα and CVaGα can

be reformulated as given in the following theorem.

Theorem 4.3. If X is properly defined r.v. and α is a given probability level then

CVaRα and CVaGαcan be defined by solving the following optimization problems:

CVaRα(〈X , y〉) = max
x∈Ω




〈y, x〉− 1

α

∫

Dy
L(x)

〈y, x− t〉dµ(t)





(4.24)

CVaGα(〈X , y〉) = min
x∈Ω




〈y, x〉+ 1

1−α

∫

Dy
U(x)

〈y, x− t〉dµ(t)





(4.25)

Proof. The proof is fairly tedious and it is moved into Appendix A. �

This theorem is the SaR/SaG analog of Theorem 10 in [96] (their main theorem

about CVaR). If we take Rockafellar and Uryasev [85] definition of CVaR:

CVaRα(〈X , y〉) = max
ξ∈ �




ξ − 1

α

∫

Ω

[ξ − 〈y, t〉]+dµ(t)





(4.26)

[f(x)]
+

=

{
f(x) | f(x)> 0
0 | f(x)< 0

(4.27)

Similarly, we can write:

CVaGα(〈X , y〉) = min
ξ∈ �




ξ+

1

1−α

∫

Ω

[〈y, t〉− ξ]+dµ(t)





(4.28)

These functions are concave and convex respectively as functions of a decision y∈Ω∗ ,

see [85, Corollary 10].
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The Theorem 4.3 allows finding the CVaR/CVaG values for a fixed α and a fixed

portfolio y∈Ω∗. A comparison with the work in [96] shows that the difference between

the formulation in Theorem 4.3 and that in Theorem 10 [96] is in the utility function

g(x, y). Theorem 10 [96] is more general because g(x, y) is a concave function.

However, the same utility function can’t be applied here because if g(x, y) is convex,

CVaR will not be a concave function with respect to x∈Ω, and if g(x, y) is concave,

CVaG will not be a convex function with respect to x∈Ω.

Using any non-linear utility function will affect the results in Theorem 4.3 in the

following way. If we use a convex utility function g(x, y) instead of the inner product

(linear function), (4.24) becomes invalid. However, (4.25) will be valid and the proof

of Theorem 4.3 will be applicable with minor modifications. The case of convex

g(x, y) reflects a risk taking strategy and we should control portfolio’s Conditional

Value at Gain or conditional expectation of the upper tail. Simply, the investor will

make decisions by looking at the favorable events (upper tail) and reject insignificant

unfavorable events (lower tail). If we use a concave utility function g(x, y) instead

of the inner product, (4.25) becomes invalid. However, (4.24) will be valid and again

the proof of Theorem 4.3 will be valid with minor modifications. The case of concave

g(x, y) reflects a risk aversion strategy and the investor should control portfolio’s

Conditional Value at Risk or conditional expectation of the lower tail. Theorem 4.3

also has the following advantages against the result in [96, Theorem 10]:

• CVaR in Theorem 4.3 is determined directly as a function of x∈Rn instead of

f(y,x)∈R1. This allows using formulas (4.24) and (4.25) later during solving

approximation problem.

• The direct proof of the convexity of the F (x, y) has been incorporated in

Theorem 4.3. That gives insight and understanding of CVaR/CVaG concept.

Observation: C V a Rα and C V a Gα as they are defined in Theorem 4.3 look very

similar to the convex-conjugate functions used in the Large Deviation Principle (LDP)

[ 20] and convex analysis [ 84]. The main subject of research in LDP is to evaluate the

probabilities of rare events using rate functions. Rate functions bound the probability

functionals on open and close sets. That is sufficient to bound probability on the σ-

field. In the case of C V a Rα and C V aGα, we impose bounds on the components of
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Conditional Expectations; we also assume some events to be negligible. Thus, the ideas

behind two approaches are the same.

One possible advantage of using rate functions instead of integration is the possibility

of formulating a financial optimization problem with a tail risk measure. Such a

problem will not have integration in the objective function or in the constraints. The

main problem is to find the correct rate function for the given distribution and to prove

that the rate function will have exact probability bounds.

We pursue further properties of CVaR/CVaG . CVaR/CVaG as defined as in

(4.24) and (4.25) is concave/convex functions with respect to y∈Ω∗. Four supporting

functions are introduced for determining the values of CVaR/CVaG . The first two

functions follow directly from Theorem 4.3:

FR
1(Ω,B(Ω), Pχ, α, y, x) = 〈y, x〉− 1

α

∫

Ω

[〈y, x− t〉]+dµ(t) (4.29)

FG
1(Ω,B(Ω), Pχ, α, y, x) = 〈y, x〉+ 1

1−α

∫

Ω

[〈y, t− x〉]+dµ(t) (4.30)

The second two functions follow from the definition of CVaR in [85] i.e., (4.26) and

(4.28) on page 57:

FR
2(Ω,B(Ω), Pχ, α, y, ξ) = ξ − 1

α

∫

Ω

[ξ − 〈y, t〉]+dµ(t) (4.31)

FG
2(Ω,B(Ω), Pχ, α, y, ξ) = ξ+

1

1−α

∫

Ω

[〈y, t〉− ξ]+dµ(t) (4.32)

Then CVaR/CVaG can be defined as follows:

CVaRα(〈X , y〉) = max
x
{FR1(Ω,B(Ω), Pχ, α, y, x)}=

= max
ξ
{FR2(Ω,B(Ω), Pχ, α, y, ξ)} (4.33)

CVaGα(〈X , y〉) = min
x
{FG1(Ω,B(Ω), Pχ, α, y, x)}=

= min
ξ
{FG2(Ω,B(Ω), Pχ, α, y, ξ)} (4.34)
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The properties of FR
1 and FR

2 are formulated as the following theorem. Analogous

properties can be formulated for FG
1 and FG

2 by replacing the word concave by the

word convex .

Theorem 4.4. FR
1 and FR

2 as a function of multiple variables have the following

properties:

FR
1( · , · , · , x) is concave ∀x∈Ω; (4.35)

FR
1( · , · , · , y, · ) is concave ∀y ∈Ω∗ (4.36)

FR
1( · , · , α, · , · ) is monotonic, non decreasing ∀α∈ (0, 1) (4.37)

FR
1( · , Pχ, · , · , · ) is linear function (4.38)

FR
1(Ω, · , · , · , x) is jointly concave (4.39)

FR
2( · , · , · , · , ξ) is concave ∀ ξ ∈ � 1 (4.40)

FR
2( · , · , · , y, ξ) is jointly concave ∀y ∈Ω∗,∀ ξ ∈ � 1 (4.41)

FR
2( · , · , α, · , · ) is monotonic, non decreasing ∀α∈ (0, 1) (4.42)

FR
2( · , Pχ, · , · , · ) is linear function (4.43)

FR
2(Ω, · , · , · , ξ) is jointly concave function ∀ ξ ∈ � 1 (4.44)

Proof.

Property (4.35) follows from the property (4.40) by the following arguments:

(4.40)
�

(4.35)

FR
2( · , · , · , · , γξ1 + (1− γ)ξ2)>

> γFR2( · , · , · , · , ξ1) + (1− γ)FR
2( · , · , · , · , ξ2); ∀γ ∈ (0, 1)

� ∃x1 , x2∈Ω | ξ1 = 〈y, x1〉, ξ2 = 〈y, x2〉,
γξ1 + (1− γ)ξ2 = 〈y, γx1 + (1− γ)x2〉 because of the fixed y.

Property (4.36) follows form the property (4.41) as a direct consequence because

one parameter in (4.41) has been fixed.

Property (4.37) follows directly from the function definitions (4.29).
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Property (4.38) follows directly from the function definitions (4.29).

Property (4.39) follows from the property (4.44) by applying the same arguments

as in (4.40)
�

(4.35).

Property (4.40) follows directly from Theorem 10 and Corollary 11 [86].

Property (4.41) follows directly from Theorem 10 and Corollary 11 [86].

Property (4.42) follows directly from the function definitions (4.31).

Property (4.43) follows directly from the function definitions (4.31).

Property (4.44) follows directly from Theorem 10 and Corollary 11 [86]. �

The results of Theorem 4.4 will be used in the process of constructing the approx-

imation algorithm. Theorem 4.4 summarizes all properties of the underlying functions

for CVaR definition. The next important properties of CVaR/CVaG are their proper-

ties with respect to vector of random outcomes X . Assume that two random vectors

X 1 and X 2 defined on the same domain Ω. Let’s define the convex combination of

these random vectors as follows:

X =λX 1 + (1−λ)X 2 =

= {Ω, λFX 1(Ω) + (1−λ)FX 2(Ω), λP(FX 1(Ω)) + (1−λ)P(FX 2(Ω))}

where convex combination operator is applied separately to locations and probability

measures.

Pflug in [78] derives the properties of CVaR as a function of a univariate random

variable, see section 2.2.7.2, that is either the final profit or final loss in financial opti-

mization. Because the approximation problem will work with the domain of original

outcomes, we extend Pflug’s result in the following proposition.

Proposition 4.5. For a fixed portfolio y and a fixed probability level α, CVaR is

concave and CVaG is convex with respect to the random vector X:

06λ6 1

CVaRα(
〈
λX 1 + (1−λ)X 2, y

〉
)>

>λCVaRα(
〈
X 1, y

〉
) + (1−λ) CVaRα(

〈
X 2, y

〉
) (4.45)

CVaGα(
〈
λX 1 + (1−λ)X 2, y

〉
)6
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6λCVaGα(
〈
X 1, y

〉
) + (1−λ) CVaGα(

〈
X 2, y

〉
) (4.46)

Proof. The following statement:

CVaRα

(
λ
〈
y,X 1

〉
+ (1−λ)

〈
y,X 2

〉)
>

>λCVaRα,y

(〈
y,X 1

〉)
+ (1−λ) CVaRα,y

(〈
y,X 2

〉)

is correct for a fixed y and α based on Pflug [78] result. Thus, CVaRα(〈X , y〉) is a

combination of two functions: the first is concave and non-decreasing CVaRα(X̃ ) and

the second is linear X̃ =〈y,X 〉. Combination of a non-decreasing concave function and

a linear function is concave due to Rockafellar [84, Section 5]. Inequality for CVaG

follows from (4.21) and linearity of E[〈y,X 〉] with respect to X . �

4.6 Class of risk measures based on CVaR/CVaG

Suppose the investor expresses his/her preferences in terms of trade-off between favor-

able and unfavorable events. Then the risk measure for such investor can be presented

as follows:

− ρ(Z) =w1 CVaRα(Z) +w2 CVaGα(Z) (4.47)

We assume that investor is rational. Thus, using the rational risk measures is appro-

priate. Based on (4.21), we can rewrite (4.47) as follows:

− ρ(Z) =w1 CVaRα(Z) +

+

(
1−α
α

w1

)
CVaGα(Z)−

(
1−α
α

w1−w2

)
CVaGα(Z) =

=
w1

α
E[Z]−

(
1−α
α

w1−w2

)
CVaGα(Z) (4.48)

or alternatively:

− ρ(Z) =
( α

1−αw2

)
CVaRα(Z) +
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+
(
w1− α

1−αw2

)
CVaRα(Z) +w2 CVaGα(Z) =

=
w2

1−α E[Z] +
(
w1− α

1−αw2

)
CVaRα(Z) (4.49)

From the definition of RRM (RRM axiom 1, see page 37) we know that ρ(Z) need

to be convex. Thus, − ρ(Z) is concave. The condition for ρ(Z) to be rational is as

follows:

(1−α)w1>αw2 (4.50)

because CVaR is concave and CVaG is convex functions of r.v. Z (Proposition 4.5).

If equality is held in (4.50) then:

− ρ(Z) =w1 CVaRα(Z) +

+

(
1−α
α

w1

)
CVaGα(Z)−

(
1−α
α

w1−w2

)
CVaGα(Z) =

=
w2

1−α E[Z] =
w1

α
E[Z] (4.51)

Therefore, the risk measure in this case simplifies to the negative value of expectation

or alternatively risk measure has only a target component and no deviation measure.

This is the case of risk neutrality according to [58].

From a practical standpoint, an investor assigns higher weights to the lower tail

in order to be risk averse . The representations (4.48)-(4.51) give perfect insight for

understanding the nature of risk measures based on CVaR and CVaG . They also

provide the two alternative ways of presenting a risk measure in mathematical for-

mulation of the financial optimization problem. The two alternatives are equivalent

and the investor can chose the formula that minimizes computational roundoff error.

Now, it is clear that risk aversion can be expressed in the CVaR form. Moreover, the

degree of risk aversion remains the same for different random variables.
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Chapter 5

Scenario Generation and Approxima-
tion

5.1 Preliminaries

As discussed in the earlier chapters, a stochastic programming model for financial

investment decisions requires an explicit specification of uncertainty in order to com-

pute risk characteristics of future portfolio returns. When multistage investment

models are formulated, under a suitable discretization of time, a specific decision

tree has to be constructed to depict the underlying uncertainty. In fact, the number

of nodes in the decision tree is determined by the degree of discretization of the

future uncertainty for individual asset returns coupled with the number of periods

in the planning horizon. Therefore, with nodes being nested to form a multiperiod

decision tree, and with large sample of outcomes per node, the size of the resulting

multistage stochastic program becomes very large. The solution of such a large mul-

tistage stochastic program is computationally very tedious. For this reason, it is

customary to start with a large enough (discrete) sample of individual asset returns

per node, and then use an appropriate approximation technique to summarize the

sample with a limited number of outcomes.

In this chapter, it is assumed that the investor solves the financial investment

problem using CVaR or CVaG as a tail risk measure, see Rockafellar and Uryasev

[88], [89], and Section 4.6 of this thesis. CVaR or CVaG are used as a risk measure

in the objective function or in the constraints, see the problem formulation in [85],

for instance. This implies that probability levels α for which CVaR/CVaG will be

optimized are known. Suppose that a large sample of outcomes for future asset returns
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is available. This large sample may have been generated randomly under certain

distributional assumptions. In the sequel, it is assumed that probability for each

sample point is known. However, large number of scenarios can be redundant for

portfolio optimization problem and it increases the solution time. The goal is to

construct an approximate sample with fewer scenarios than in the original sample.

The approximated sample needs to preserve important information about the original

sample. The difference between solutions of two investment problems, one with the

original sample and another with the approximated sample, needs to be insignificant.

There are many techniques for scenario (sample) approximation in the literature:

random (or importance) sampling based techniques that relies on asymptotic prop-

erties, see Dantzig and Glynn [19], Ermoliev and Wets [34], Higle and Sen [49], or

distributional approximations that strive for preserving the specified moment infor-

mation of the original large sample, see Birge and Wets [10], Dula [22], Edirisinghe

[23], [29], [30], [31], and [33], Frauendorfer [41], Gassman and Ziemba [44], and

Pflug [79]. The latter approach typically relies on a solution of the so-called Gen-

eralized Moment Problem (GMP). A solution is determined using the underlying

properties of the objective function of the stochastic program. In this chapter, a

brief description of the GMP-based technique for sample approximation is provided

and then conclusions are drawn as to why that method is generally undesirable for

the financial optimization problems with tail risk measures. Later in this chapter, a

new scenario approximation procedure is developed that will be more appropriate for

financial stochastic programs, in particular for those with tail risk measures such as

CVaR/CVaG .

5.1.1 Generalized moment problem (GMP)

The GMP was first addressed by Kemperman [59] in the context of developing bounds

for expectation of a function. Let f( · ) be the function of the r.v. X : {Ω, F(Ω),

P(F(Ω))}. Then generalized moment problem (GMP) is a problem of evaluating the

following integral:

f(h(X )) =

∫

Ω

h(x)dF 1 (X , x) (5.1)
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where h(x) is a following functional:

h: Ω→ � 1 (5.2)

F 1 (X , · ) is unknown but moment information about probability measure P(F(Ω))

is available. This information is presented via functions g1, � , gn that are Borel

measurable functions with respect to F(Ω). So, the moments f(gi) = vi, i= 1...n are

known. Kemperman in [59] claims that this problem is unsolvable in its present form

and proposes to evaluate the upper and lower bounds of the integral (5.1):

U(f) =U(f |h) = sup
µ

f(h)

L(f) =L(f |h) = inf
µ
f(h)

where µ is varied through all possible probability measures for F(Ω) with restriction

of f(gi) = vi for j= 1 � n.

Kemperman defines the upper and lower limits as hyperplanes. It is difficult and

sometimes impossible to find the lower or upper bound for the formulated problem

because of the unbounded domain. The achievement of Kemperman [59] is in defining

the minimal requirements for lower and upper bounds to exist and in finding the way

to express the bounds through the available moment information. Kemperman [59]

uses basic topology, results later confirmed by Karr [57], and the linear structure of

the given moment information {vi} to prove that lower and upper bounds lay between

two limiting hyperplanes. Thus, the problem of multidimensional integration has been

reduced to the problem of finding two limiting hyperplanes. The idea of solving sev-

eral linear optimization problems instead of a non-linear problem is computationally

useful. GMP approach has been applied for solving stochastic linear programs with

resources. This area is well developed, see [33], [41], [42], and [43], and it has been

adapted to the financial investment problems.

The problem of financial investment over two periods is formulated as follows:

max
y1

E

[
f 1(x1, y

1) + max
y2

{
f 2(x2, y

2)
}]

(5.3)

s.t. A y1 = b (5.4)
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T y1 +Wy2 =h (5.5)

y1, y2 > 0 (5.6)

where y1 is the decision on stage 1 when no future information is available, y2 is the

decision on stage 2 when information about r.v. x1 is available, f( · , y) is a linear

function. This is a problem of linear stochastic programming with resources, see

[29] and [30] for details. The application of Kemperman’s approach to the financial

investment problem by evaluating the upper and lower bound of the specified problem

rely on the first and mixed moment information, see [10], [22], [29], [33], and [44].

For instance, Edirisinghe and Ziemba [30] apply GMP result to solve problem

(5.3)-(5.6) if function f t(xt, · ) is linear in the decision variables {y1, y2}. The main

idea is to find upper and lower bounds on the original problem and improve bounds

iteratively until the bounds satisfy a required tolerance. In the course of developing an

approximation using this approach, Edirisinghe and Ziemba make several significant

improvements:

• Edmudson-Madansky [65] upper bound for expectation of a convex function

is improved by deriving Edirisinghe and Ziemba [30] upper bound.

• Mixed moments are incorporated in the procedure of bounds evaluation.

• Approximation problem is reformulated and problem solution gives both

optimal investment strategy y and optimal scenarios approximation x.

Other approaches for bounding approximations can be found in [10] and [44]. How-

ever, these approaches imply solving the original problem and creating an approxima-

tion sample at the same time. The goal of the algorithm is to generate a sample

and to embed the sample into the financial investment problem.

5.1.2 Approximation using mixed moment information

Edirisinghe in [23] addresses the problem of separating the sample approximation and

bounding procedures, where a technique of approximating scenarios using a simplicial

domain is developed. Let Ω be the set of scenarios and Ω∗ the available decisions.
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The problem is to find the approximating distribution X a={xs, ps}s=1
S which matches

the first moments of the original distribution X exactly and incorporates the mixed

moment information as much as possible.

E[X a] = E[X ] (5.7)

E[XiaXja] ≈ E[XiXj] (5.8)

Edirisinghe [23] develops two solution schemes. The first scheme is for random vari-

able with a simplicial bounded domain. The second scheme is for random variable

with a bounded rectangular domain. Both approximation schemes have the same

theoretical foundations. However, the first scheme is more appropriate because it

allows finding a simplicial bound for a given convex, bounded set.

Edirisinghe and You in [33] give the implementation scheme for the first step as

finding the simplex S im such that

S im⊇ conv
(
{xi}i=1

N
)

(5.9)

convex hull of approximation points must include the convex hull of the original

distribution X . However, the procedure in the first step is not ideal and simplex

S i m can be reduced. Thus, authors propose as the second step to shrink the sim-

plex to Wa = {xs}s=1
S . During the second step, Edirisinghe and You use the linear

programming technique. The solution of formulated linear program is a new set of

approximating points Wa. Unfortunately, the volume of the produced simplex is not

minimal because of the trade-off between non-linear and linear formulation.

The proposed scheme of approximation is applicable for financial optimization.

Risk measures are highly dependent on the first moment of the underlying scenarios

and only slightly on the mixed and second moments. Thus, the approach of preserving

first moment information exactly and second moment information with slight varia-

tion is justified from practical stand point. This approach according to Edirisinghe

[23] generates better upper bound then an approximation using the first moments

only. The above scheme is also interesting because it approximates a given convex hull

with a simplex and it will be useful later in this thesis for tail approximation problem.
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5.1.3 Scenario approximation using tail information

All of the above techniques are applicable if the risk measure in financial optimization

problem is based on moment information, for instance Markowitz’s mean/variance

risk measure. The question of approximating a given sample for financial optimization

problem with a tail risk measure (VaR, CVaR, semi-deviation) is an open question.

There is no research found in the literature. All of the above methods are inappro-

priate for such approximation because they do not use tail information. This chapter

of my thesis develops the theoretical foundation and an algorithm for approximating

the r.v. sample for financial optimization problem with a risk measure based on

CVaR/CVaG information.

5.2 Formulation of approximation problem

Scenario approximation problem is formulated as follows. The original distribution X
is given. A discrete approximation needs to be defined. CVaR of the approximation

needs to be as close as possible to the CVaR of the original distribution for the given

probability levels {αk}.

Consider the following:

• ΩU ⊇Ω is a bounded domain on which we will define the values of approxima-

tion distribution {xs}s=1
S .

• Ω∗ is a bounded domain of all possible portfolios y.

• X ={Ω,BX(Ω),PX } is a random variable representing the original distribution.

• X a = {xs, ps}s=1
S is a random variable representing the approximation distri-

bution, where conv({xs}s=1
S )⊂ conv(ΩU).

• {αk}k=1
K is a set of probability levels. CVaR of these levels will be used in the

investment model. These levels are specified a priori. K is finite.
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Now, we need a criteria for evaluating the precision of the approximating distribution

X a with respect to the original distribution X . Approximation is good if CVaR of

approximating distribution will never exceed CVaR of original distribution for all

portfolios in the feasible domain y ∈Ω∗ and CVaG of approximated distribution will

never be less than CVaG of original distribution. In other words, we do not want

to overestimate the lower tail expectations (overestimate the profit of unfavorable

scenarios). We also do not want to underestimate the upper tail expectations (under-

estimate the profit of favorable scenarios). These requirements can be formulated as

following constraints:

For∀y ∈Ω∗, and α∈{αk}k=1

K

CVaRα(〈X a, y〉)≤CVaRα(〈X , y〉) (5.10)

CVaGα(〈X a, y〉)≥CVaGα(〈X , y〉) (5.11)

From (4.21) page 55 in Chapter 4, the relation between upper and lower tail expec-

tations is as follows:

E[〈X , y〉] = α ·CVaRα(〈X , y〉) + (1−α) ·CVaGα(〈X , y〉). (5.12)

Thus, (5.11) can be substituted with the following constraint:

E[X a] =E[X ] (5.13)

According to (5.12), the inequality (5.11) will be automatically satisfied if (5.10) and

(5.13) hold.

Also the CVaR’s of approximated distribution need to be as close as possible to

the CVaR’s of original distribution. This is the criteria for evaluating the effectiveness

of approximation. We construct the objective function that measures the distance

between X a and X in terms of tail expectations for fixed sequence {αk} and all

portfolios y ∈ bound(conv(Ω∗)). We propose to use the following function:

G(X a)≡
∑

k

∫

y∈bound(conv(Ω∗))

[CVaRαk(〈X , y〉)−CVaRαk(〈X a, y〉)]d y (5.14)
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Function (5.14) is convex because of convexity of the integrated expression for fixed

portfolio y and probability level α. CVaR is a concave function with respect to

portfolio profit, see [78]. Superposition of linear and concave functions is concave,

see [84]. Function (5.14) is also positive for all X a satisfying (5.10) and (5.12). G(X a)

is not a norm because it lacks positive homogeneity and symmetry. However, it can

be used as a distance measure because it is non-negative and satisfies the triangular

inequality.

5.3 Scenario generation model (SGM)

Now we can formulate the problem of finding the approximation distribution math-

ematically as follows:

G(X a)≡min
X a

∑

k

∫

y

[CVaRαk(〈X , y〉)−CVaRαk(〈X a, y〉)] (5.15)

s.t. CV aRα(〈X , y〉)≥CVaRα(〈X a, y〉),
∀α∈{αk}k=1

K
and ∀y ∈Ω∗ (5.16)

E[X a] =E[X ] (5.17)

X a= {{xs, ps}s=1
S , xs∈Ωa, {ps}∈P a}

Using the preceding results (Theorem 4.4) and referring to Rockafellar [84], it follows

that CVaRαk (〈X a, y〉) is concave as a function of X a. Therefore, the constraints

in (5.16) generate a non-convex domain. Thus, we have a problem with a convex

objective function but with a non-convex feasible domain. This problem is extremely

difficult to solve. A trivial lower bound for (5.15) is at zero, when approximation

coincides with the original distribution (approximation without errors).

We propose the following approach to find a feasible solution for the above

problem. First, we simplify the problem to eliminate the integration in (5.15). The

simplified problem is then divided into sub-problems which are linear. We design

an algorithm to find a quasi-optimum solution of the simplified problem. Finally,

using CVaR and CVaG properties we establish a feasible solution of the scenario
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approximation problem. As a result, we get X a that satisfies (5.16)-(5.17). Com-

putationally, we verify that such an X a is a good approximation to (5.16)-(5.17).

However, this will not necessarily be true in general.

5.4 Simplified SGM

In order to simplify the problem (5.15)-(5.17) we fix three parameters:

1. S the number of points in the approximation distribution.

2. {yi}i=1
I is set of fixed portfolios with the requirement that Ω∗⊆ conv

(
{yi}i=1

I
)
.

We assume that 0∈ conv
(
{yi}i=1

I
)
.

3. ISaR =
{
ISaRi,k

}
is set of indices that refers to points in Scenarios-at-Risk set.

It is an index set (among points in X a) that specifies for each pair (αk, yi) the

points of X a that belong to S aRi,k(X a) =SaRαk(〈X a, yi〉).

The first parameter is easy to fix because the number of points in the approximating

distribution is usually defined by decision maker. The difficult problem is to determine

{yi}i=1
I because conv{{yi}i=1

I } needs to contain the original domain Ω∗ and be as

small as possible to avoid approximation errors. Domain Ω∗ is bounded. Therefore,

we can solve the problem of finding {yi}i=1
I in three ways:

1. Using
�

simplex approximation
�

, see [33] for details.

2. Using
�

box approximation
�

by projecting all points into orthogonal hyper-

planes.

3. Assuming 0∈Ω∗. Set:

ρi
+≥max

y∈Ω∗
yi and ρi

−≤max
y∈Ω∗

yi

Then Ω∗∈ conv
{
{ρi+ei, − ρi−ei}i=1

N
}

.

In order to index set ISaR, we need an initially feasible distribution X a. Once such a

distribution is in hand, we can find ISaRi,k.
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Denote by D(ISaR) the set of all approximating distributions X a which has the

same index sets ISaR for specified αk and yi. The set of such distributions is convex

because restricting X a to D(ISaR) induces a finite number of linear constraints on

points {xs} and probability measure {ps} of X a.

Consequently, we can reformulate the simplified SGM as follows:

min
Xa

∑

αk,yi

[
CVaRαk(〈X , yi〉) −CVaRαk(〈X a, yi〉)] (5.18)

s.t. CV aRα(〈X a, yi〉) 6CVaRα(〈X , yi〉),
∀α∈{αk}k=1

K
and ∀y ∈Ω∗ (5.19)

X a ∈D(ISaR) (5.20)

E[X a] =E[X ] (5.21)

This problem has convex objective function but non-convex domain. The simplified

problem can have several local optima. It is impossible to check the optimality of a

feasible solution because Constraints Qualification conditions may not be satisfied

(the domain is non-convex, see [5] for details about constraint qualification). This

problem is non-linear in X a. We propose a method of finding a quasi-minimum using

an iterative procedure based on linear programming techniques.

5.5 Solving the simplified SGM

The main idea of the proposed method is to convert the non-convex area of feasible

X a into a convex region. We start with any feasible solution Sa = {xs, ps}s=1
S for

problem (5.18)-(5.21). Then approximation problem can be formulated in a linear

form either by fixing distribution points or by fixing probability measure. Each of

the two formulations is linear and can be solved efficiently. The iterative process of

solving the two problems is the core of the proposed algorithm. We will prove that

this iterative process converges. Using the original distribution X , we can define the

following values:

• CVaRi,k the values of CVaRαk(〈X , yi〉) of original distribution.
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Then we can formulate the problem of finding an approximating distribution with

fixed probability measure {ps} as follows:

fp
1(x)≡min

xs

∑

αk, yi

[
CVaRαk(〈X , yi〉)−CVaRαk(〈X a, yi〉)

]

s.t. CV aRα(〈X a, yi〉)6CVaRα(〈X , yi〉)
∀α∈{αk}k=1

K and∀y ∈{yi}i=1
I (5.22)

X a∈D(ISaR)

E[X a] =E[X ]

We can also formulate the problem of finding an approximating distribution with

fixed points {xs} as follows:

fx
2(p)≡min

ps

∑

αk,yi

[
CVaRαk(〈X , yi〉)−CVaRαk(〈X a, yi〉)

]

s.t. C V aRα(〈X a, yi〉)6CVaRα(〈X , yi〉)
∀α∈{αk}k=1

K and ∀y ∈{yi}i=1
I (5.23)

X a∈D(ISaR)

E[X a] =E[X ]

Both problems have convex domains because CVaRαk(〈X a, yi〉) for fixed proba-

bility measure and S a R can be written as a linear function. The same is true for

CVaRαk(〈X a, yi〉) for fixed points of distribution {xs} and ISaR. We solve these

two problems iteratively. The optimal solution of one problem is the input data for

another and vise versa. The cycle is terminated when either objective function stops

to improve or growth rate of objective function becomes below numerical round-off

error. Convergence of the cycle in a finite number of steps is claimed in the following

proposition.

Proposition 5.1. For two consecutive steps ( 5.22) and ( 5.23) of the cycle, the

following inequalities are satisfied:

fxi
2 (pi+1)6 fpi1 (xi)
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or:

fxi
2 (pi)> fpi1 (xi+1)

Proof. Let’s mark:

MCVaRk,i=CVaRαk(〈X , yi〉)−CVaRαk(〈X a, yi〉)

Also, suppose that fp
1(x) is optimized first. Then:

fp
1(x̂)≡min

xs

∑

k,i

MCVaRk,i

which deliver the optimal solution x̂ and

fx̂
2(p̂)≡min

ps

∑

k,i

MCVaRk,i

p∈P

where P is convex area defined by constraints in (5.22). Then:

p, p̂ ∈P

Thus, it follows that:

fp
1(x̂)> fx̂2(p̂)

because D(ISaR) remains the same from iteration to iteration. The second inequality

of proposition can be proved analogously using the fact that

xi, xi+1∈X

where X is a convex set of feasible points defined by the problem (5.23). �

Using the results of Proposition 5.1 we conclude that objective functions fp
1(x)

and fx
2(p) in the iteration cycle are non-increasing. The objective functions in the

iterative cycle are also bounded from below by 0. This guarantees that the cycle

stops in a finite number of step by either reaching 0 or stopping objective functions

improvement. Thus, we find a quasi-optimum solution for problem (5.18) - (5.21). It
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is not an optimal solution because additional restrictions on X a have been imposed.

We term it quasi-optimal because solution is optimal for two sub-problems. The

solution is optimal for formulation with fixed {x} when {p} are parameters and for

formulation with fixed {p} when {x} are parameters.

5.6 Feasible solution for SGM

The next step is to convert X a into a feasible solution for (5.15)-(5.17). The approx-

imating distribution may violate the requirements (5.16):

CVaRα(〈X a, yi〉)6CVaRα(〈X , yi〉)

∀α∈{αk}k=1
K and ∀y ∈ conv({yi}i=1

I )

This requirements can be checked using the following proposition.

Proposition 5.2. Conditions

CVaRα (〈X a, y〉)6CVaRα (〈X , y〉); ∀y ∈ conv
(
{yi}i=1

I
)

are satisfied if and only if:

CVaRα (〈X a, y〉)6CVaRα (〈X , y〉); ∀y ∈bound
(
conv

(
{yi}i=1

I
))

Proof. According to the first condition:

∀y ∈ conv({yi}i=1
I ):∃ ỹ ∈bound(conv({yi}i=1

I ))→ y=λ ỹ ; λ∈ [0, 1]

Due to the result in Proposition 4.2, CVaR is positively homogeneous with respect to

portfolio y. Therefore, the following hold:

CVaRα (〈X a, ỹ 〉)6CVaRα (〈X , ỹ 〉)
�

λCVaRα (〈X a, y〉)6λCVaRα (〈X , y〉)
�

CVaRα (〈X a, y〉)6CVaRα (〈X , y〉).
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Conversion of the above implications is trivial, that is:

CVaRα (〈X a, y〉)6CVaRα (〈X , y〉)
�

λCVaRα (〈X a, y〉)6λCVaRα (〈X , y〉)
�

CVaRα (〈X a, ỹ 〉)6CVaRα (〈X , ỹ 〉).

The Figure 5.1 below is a graphical illustration of the above results. �

Thus, X a can be corrected early to satisfy the first condition of the Proposition

5.2 by using the positively homogeneous property of CVaR. With all theoretical

background, we can specify the algorithm for finding the approximating distribution.

5.7 Algorithm for finding an approximation

Suppose we have the following values:

1. S - number of points in the approximation distribution.

y2

i

y3

i

y4

i

y1

i

λ ∗ ỹ = y

ỹ

y1

y2

Figure 5.1. Graphical illustration of Proposition 5.2 proof
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2. {αk}k=1
K - set of probability levels. Approximation will use only finite set of

probability levels.

3. {yi}i=1
I - set of fixed portfolios with the requirement Ω∗⊆ conv{{yi}i=1

I }.

Let Sa={xs}s=1
S . Using the original distribution X we can define the following values:

1. CVaRi,k the values of CVaRαk(〈X , yi〉) of original distribution X .

2. m is the mean of original distribution X .

3. li= min
h
{〈yi, xh〉

∣∣∣xh∈Ω} . The minimal return for each basic portfolio yi.

5.7.1 Find an initially feasible solution

We propose to fix the directions from the mean. Each point of approximation distribu-

tion will be in the form m+ ds where {ds}s=1
S is a set of directions to be determined.

Define the set of directions {ds}s=1
S such that conv

{
{m+ ds}s=1

S
}

covers the domain

of original distribution Ω. Let {Is}s=1
S be a family of partitions of I which may be

overlapped. We assume that for each s = 1, S set {yis}is=1
Is has been assigned such

that {yis}is=1
Is ⊂{yi}i=1

I .

min
ds

∑

s

λs

s.t. ds =
∑

j

λj,s(xj−m)

〈yis, m+ ds〉 6 lis
λj,s > ∅

λs−λj,s > ∅

The problem above is separable in each s∈ S. Therefore, it can be effectively paral-

lelized. Each direction is associated with one point of approximation distribution

xs=m+ ds
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The next step is to define the initial probability measure to satisfy the constraint

(5.21).

max
ps

p

s.t. p 6 ps
∑

s

ps = 1

∑

s

dsps = ∅

ps > ∅

This step guarantees existence of solution which satisfy (5.21). Probability measure

and directions need to be defined because of requirement of fixing S a R and either

probability measure or point coordinates for solving procedure.

5.7.2 Define optimization parameters

Compute the values of C V a Ri,k
a = C V a Rαk(X a, yi). Also define S a Ri,k sets. The

boundary points for each combination (αk, yi) (the index of split atoms, [86]) is defined

as SaRi,k
b . If we have:

∃αk, yi:CVaRαk(〈X a, yi〉)>E[X a] (5.24)

then problem has no feasible solution in this S aR partition and number of approx-

imated points S need to be increased. Otherwise we can construct feasible solution

using positive homogeneity property of CVaR from Proposition 4.5.

Procedure can be like this. First, define the new random variable:

X̃ a
=X a−m=

(
{x̃s=xs−m}s=1

S , {p̃s= ps}s=1
S
)

Because of the (5.24) and transformation which put mean E[X a] =m into the origin

all CVaR for X̃ a
are negative. Thus, CVaR of X̃ a

will be decreased by multiplication

X̃ a
on λ> 1. The question of picking λ is trivial question of defining the maximum

over the finite set of values. The reverse transformation:

X a= X̃ a
+m=

(
{xs= x̃s−m}s=1

S , {ps= p̃s}s=1
S
)
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will produce new X a which still satisfy (5.21) but with lower CVaR values.

5.7.3 Adjust points in the approximation domain

The following problem is solved using linear programming technique:

fx
1(p)≡min

xs

∑

k,i

MCVaRk,i

s.t. 〈yi, xs〉6 〈yi, xs∗〉 s∈ ISaRk,i;
s∗∈ ISaRk,ib

〈yi, xs〉> 〈yi, xs∗〉 s
�
ISaRk,i;

s∗∈ ISaRk,ib∑

s

xsps=m

1

αk

( ∑

s∈ISaRk,i

〈yi, xs〉ps+Mpk,i〈yi, xs∗〉
)

+MCVaRk,i =CVaRk,i

MCVaRk,i> ∅

5.7.4 Adjust probability measure

The following problem is solved using linear programming technique:

fp
2(x)≡min

ps

∑

k,i

MCVaRk,i

s.t.
∑

s∈ISaRk,i

ps >αk

∑

s∈ISaRk,i

ps+Mpk,i =αk

1

αk

( ∑

s∈ISaRk,i

〈yi, xs〉ps+Mpk,i〈yi, xs∗〉
)

+MCVaRk,i =CVaRk,i

∑

s

xsps=m

∑

s

ps= 1

80



This problem will always have solution because of convex domain and existence of

initially feasible solution. Steps 3 (section 5.7.3) and 4 (section 5.7.4) are repeated

iteratively until objective function stop to improve.

Using the results of Proposition 5.1 we conclude that objective function in the

iteration cycle is non-increasing. Algorithm will stop when objective function either

becomes ∅ or objective function improvement is less than the pre-specified tolerance.

Thus, we find a local optimum for problem (5.18) - (5.21).

5.7.5 Find feasible solution for SGM

The next step is to convert the X a into feasible solution for (5.15)-(5.17). The

boundary of conv({yi}i=1
I ) is formed by the set of hyperplaines {Hj}j=1

J . In order

to check the conditions (5.10), we need to solve the following problem for each H ∈
{Hj}j=1

J .

Erk,j = min
y∈Hj

(CVaRαk(〈X , y〉)−CVaRαk(〈X a, y〉)) (5.25)

If at least one of Erk,j is negative the approximation distribution X a need to

be corrected.

From now we assume that {Hj}j=1
J has been formed and the approximate distri-

bution X a has been found as a solution of (5.18)-(5.21).

Thus, we know the values of CVaR for basic portfolios. Now the problem is to

find the portfolios {yj,k∗ }; yj,k? ∈ Hj for which the inequality (5.10) is violates with

maximum value. We will change the inequality formulation based on the concavity

property of CVaR (Theorem 4.3).

yj,k
∗ =

∑

m=1

M

ρm · ym; ∀ym∈{yi}i=1
I ∩Hj (5.26)

CVaRαk(〈X a, yj,k
∗ 〉)≤

∑

m=1

M

ρm ·CVaRαk(〈X , ym〉)≤CVaRαk(〈X , yj,k∗ 〉) (5.27)
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For each hyperplaine Hj and each αk we can formulate the problem as the following

LP problem.

max
ρj,ξ

(
CVaRa−CVaRd

)

s.t. C V aRd−
∑

m=1

M

ρm ·CVaRk,m
d = ∅

y−
∑

m=1

M

ρm · ym = ∅

ξ −〈y, xs〉−Psa+Ns
a = ∅

ξ − 1

αk

∑

s=1

S

Ps
a · ps−CVaRa = ∅

∑

m=1

M

ρm = 1

ρm, Ps
a, Ns

a ≥∅

It is easy to evaluate the size of the above LP :

• Number of variables M + 2S+ 4.

• Number of constraints S+ 4.

According to [86], [85] the optimal solution for the problem above always has

CVaRj,k
a = max

ξ∈ �
{FR2(X a, αk, yj,k

? , ξ)}

After getting portfolios {yj,k? } we can define the subset {yj,k? }˜ for which:

CVaRj,k
a −CVaRj,k

d =ErAj,k> ∅

If the set is not empty then the approximation is incorrect. We use positive homo-

geneity property of C V a R to make correction. First we define the maximum

necessary multiplier:

λ= max
yj,k
?

{
〈yj,k? , E[X a]〉−CVaRj,k

d

〈yj,k? , E[X a]〉−CVaRj,k
a

}
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Then each point of approximation distribution is presented in the form:

xs=E[X a] + ds

and adjusted as follows:

xs
new =E[X a] +λ · ds

The new approximation distribution will satisfy all necessary constraints by construc-

tion.

5.8 Numerical example

In this section we present a computational example to illustrate the algorithmic

progress. The LP problems in the approximation algorithm are solved using GLPK

package, see [66] for details about GLPK . For details about the algorithmic imple-

mentation, see Appendix B.

The example demonstrates how the approximation algorithm works. The original

distribution consists of 16 points (see Figure 5.2). Financial optimization model will

use CVaR for three probability levels (see Table 5.1).

−8 −6 −4 −2 0 2 4 6
−10

−5

0

5

10
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X
2

Figure 5.2. Original distribution
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Table 5.1. The set of fixed probability levels

α1 10%

α2 20%

α3 30%

−8 −6 −4 −2 0 2 4 6
−10
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X
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Figure 5.3. Original distribution and Initial approximation

We approximate the original distribution with a 6-point distribution. After Step 1

of the proposed algorithm the initial approximation distribution is found (see Figure

5.3).

At the end of Steps 3 and Step 4 of the proposed algorithm, the approximation

is found, see Figure 5.4. This distribution is optimal for the � simplified
�

problem. In

Figure 5.5, we present the approximating distribution that is feasible for the � ideal
�

formulation. This is the approximation X a used in the financial optimization model.

The next step in research is to explore the question of approximation precision,

in Chapter 6.

84



−8 −6 −4 −2 0 2 4 6 8
−10

−5

0

5

10

X1

X
2

Figure 5.4. Original distribution and quasi-optimal approximation
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Figure 5.5. Original distribution and final approximation
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Chapter 6

Computational Testing of The Sce-
nario Approximation Scheme

6.1 Preliminaries

The objective of this chapter is to provide empirical evidence for efficiency of the

scenario approximation algorithm developed in chapters 4 and 5. The portfolio opti-

mization model used for empirical validation of the scenario approximation scheme is

first presented. Then, the scope of the experimentation is sketched, and finally, the

results of the experiment are analyzed.

6.2 Problem formulation of portfolio optimization

The notations from section 2.1 page 10 are used for model description. However,

previous notations are not specific enough for precise model description. Thus, the

extended notations are introduced below before the formulation of financial optimiza-

tion model.

6.2.1 Model notations

Let’s denote the following parameters:

• N is the number of securities in the financial optimization model.

• yI is the initial positions in number of shares.
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• ρ is the vector of market prices for a share of each stock.

• R is the random variable of future returns.

R≡{xj, pj}

where xj is the return vector of scenario j and pj is the probability of scenario

j.

• m is the vector of expectations of the random variable R.

• {αk, wk} is the set of probability levels and weights for computing weighted

CVaR deviation measure.

• u and l are vectors of upper and lower limits of share positions.

• B is the investment budget in dollars.

• y is the decision to be made. This is the vector of number of shares that

investor needs to create.

The wealth is calculated as inner product of dollar positions and stock returns:

W = 〈x · ρ, y 〉

where x · ρ is a vector of dollar profit for each security computed as Rademaher

product of two vectors. With all of the above notations a one period financial opti-

mization model can be formulated, see formulation (2.3)-(2.5) on page 11, if the

following components are specified: the scenario generation method, the risk function

f( · ), and the set of constraints for financial optimization model.

6.2.2 Scenario generation and approximation

The uncertainty of future returns is modeled using Normal distribution. The recent

studies, see [33], [45], [51], [62], and [73], show that normal distribution can be a good

initial approximation for the real distribution in financial optimization models. Thus,

normal distribution has been picked as the commonly accepted method of scenario

generation. The precision of such procedure and scenario generation methods that

give better results are beyond the scope of this thesis.
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For a computational procedure to generate a sample of normal distribution with a

given mean, standard deviation, and correlation see [82, section 7.2]. The main idea

of the procedure is to generate a sample of two independent uniformly distributed

random variables. This sample could be converted into the sample of two independent

normally distributed random variables with 0 mean and identity matrix as vari-

ance/covariance matrix. Adjusting mean and variance/covariance matrix involves

only trivial multiplications on variance/covariance matrix and the addition of the

desired mean. This is one of the fastest known methods for sample generation.

The approximation technique was developed in chapters 4 and 5. This technique

will be used for scenario approximation in financial optimization model.

The next important component of the financial optimization model is risk measure

f( · ) for the objective function, see (2.3) on page 11.

6.2.3 Objective function

According to the theory, the rational risk measure is decomposable into two additive

components, see section 3.4 on page 45, target measure t( · ) and deviation measure

d( · ):

f(W ) = t(W ) + d(W )

The target measure t( · ) for experimentation is the expected wealth:

t(W ) =−E[W ]

The deviation measure d( · ) for experimentation is of two types:

• Weighted CVaR deviation measure:

d(W ) =−
∑K

k=1

wkCVaRαk(W )

• Expected mean semi-deviation measure:

d(W ) =E
[(

[t(W )−W ]
+
)]
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Thus, the financial optimization model can use two different rational risk measures:

mean/weighted CVaR and mean/semi-deviation. These two measures are coherent

risk measures and there are the most frequently used measures in the literature, see

[1], [26], [28], [39], [67], and [68].

6.2.4 Constraints

There are two constraints for the model:

• Budget:

∑

i=1

N (
yi− yiI

)
· ρi6B

Assume a fixed budget is available for investments.

• Position limits:

li6 yi6ui

These constraints are usually initiated by investor to induce diversification, so

as to reduce the risk of over-exposure in a single or a very few securities.

6.2.5 Models for experiments

Experiments are designed to investigate, for example, the effect of the levels of uncer-

tainty, number of securities, and the sample size on the quality of the approximation

as well as computational time. For this purpose a basic investment optimization

model is utilized in two different variants, namely, the deviation component of the risk

measure is varied in the search of optimal investment choices. The experimentation

will be done using two different models:

1. Model with weighted CVaR deviation measure.

max
y

∑N

i=1

mi · yi · ρi+ w0 ·
∑K

k=1

wk ·CVaR(R, y, αk) (6.1)

∑

i=1

N (
yi− yiI

)
· ρi 6B (6.2)

li6 yi6 ui (6.3)
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2. Model with downside mean semi-deviation measure.

max
y∗

∑N

i=1

mi · yi · ρi+ λ
∑S

s=1

[∑N

i=1

(mi− xi,s) · yi · ρi
]+

· ps (6.4)

∑

i=1

N (
yi− yiI

)
· ρi 6B (6.5)

li6 yi6ui (6.6)

6.2.6 Decision parameters

The solution of the portfolio optimization model either (6.1)-(6.3) or (6.4)-(6.6) is

the vector of optimal investments y∗. This vector represents the optimal positions

in number of shares that the investor creates. The presented financial optimiza-

tion models are over simplified models which disregard practical features such as

transaction costs, margin restrictions, slippage execution costs, multi-period planning

horizon. All of these features have been disregarded because the objective of the

experiment is to validate efficiency of the scenario approximation scheme.

6.3 Computational experiments

6.3.1 Purpose of experimentation

The validation of the scenario approximation scheme efficiency is performed in three

steps. The first step is the comparison of the computational time consumed by the

scenario approximation scheme and optimization versus the time required for opti-

mization using the original scenarios. Such comparison addresses the question: when

is the scenario approximation scheme more efficient than solving the original problem?

The second step is to explore how the number of securities in the model, number of

approximation points and number of probability levels in the weighted CVaR devia-

tion measure affect the time consumed by the scenario approximation scheme. These

results are interesting from an application standpoint because they give preliminary
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ideas about optimal settings for the scenario approximation scheme. The last step

is to compare efficient frontiers generated by the original problems with efficient

frontiers generated by the approximate problems (the financial optimization models

with approximate scenarios). These comparisons should confirm the theoretical result

that CVaR of the approximation problem will never exceed CVaR of the original

problem, see Proposition 5.2 on page 76. Then the efficient frontiers of the original

problem will be built using optimal solution of approximation problems. The distance

between original and simulated efficient frontiers will show the error related to the

scenario approximation scheme.

6.3.2 Efficiency metrics

Performance metrics need to be constructed as validation criteria for efficiency of the

scenario approximation scheme. Because evaluation will be done based on the time

consumed by the financial optimization model and distance between efficient frontiers

there are three performance metrics to measure the quality of approximation:

1. CPU time consumed by program to solve the approximation and optimization

problem together or only optimization problem if approximation procedure is

skipped.

2. Improvement of approximation procedure. This is done by building the effi-

cient frontiers for the approximation problems.

3. Quality of the investment in comparison to the original sample. This is done by

constructing the efficient frontiers for original scenarios using optimal solutions

of the original and approximation problems.

6.3.3 Method of experiment

A computer code was developed that uses history of equity prices and performs

forecast, scenario generation, scenario approximation (if necessary), and financial

investments optimization. The optimization results are the output. The input data
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uses a history of 250 days of equity prices. Twenty companies from Standard & Poor’s

100 are used as the basic data from which four different data sets have been formed:

1. Data set with 5 stocks (SP5).

2. Data set with 10 stocks (SP10).

3. Data set with 15 stocks (SP15).

4. Data set with 20 stocks (SP20).

The experiments are divided into three phases:

Phase 1. This tests the efficiency of the proposed approximation scheme for

different settings. The experiment is organized using the financial optimization

model with weighted CVaR deviation measure (6.1)-(6.3). There are three

different probability levels for the financial optimization model, see Table 6.1.

The model is run for each level with different number of original scenarios.

The number of scenarios in the scenario approximation scheme is fixed. The

experiment is performed for data set: SP5. Results are summarized in the form

of tables and graphs.

Phase 2. Dependency of computation time of the scenario approximation pro-

cedure under different approximation parameters is explored. The financial

optimization models with weighted CVaR deviation measure (6.1)-(6.3) and

three different probability levels, see Table 6.1, are used for experimentation.

The number of scenarios in the original problem is fixed. The number of points

Table 6.1. Three probability levels for CVaR optimization model

Title Probabilities

Level 1 0.1
Level 2 0.1 0.25
Level 3 0.05 0.1 0.25
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in the scenario approximation scheme is varied from 6 to 102. The experiment

is run for all four data sets: SP5, SP10, SP15, SP20. Results are summarized

in the form of tables and figures.

Phase 3. The efficiency of the scenario approximation scheme is analyzed using

the graphs of efficiency frontiers. The first experiment is to test the improve-

ments of efficient frontiers of the approximation problems when the number

of points in the scenario approximation scheme is increased. This experiment

is done for the financial optimization model with weighted CVaR deviation

measure with three different probability levels, see Table 6.1, and one data

set SP5. The next experiment is to check the approximation precision when

number of probability levels in the scenario approximation scheme is increased,

see Table 6.2 for list of probability levels. This experiment is performed with

the same financial optimization model and data set.

The same type of experimentation will be done for the financial opti-

mization model with mean semi-deviation measure, see (6.4)-(6.6). The first

experiment is to check the precision of the scenario approximation scheme

when number of points in the scheme is increased. Then the scenario approx-

imation scheme is run with fixed number of points in approximation (36 points)

but different probability levels, see Table 6.3, and the resulting efficient fron-

tiers are analyzed.

6.3.4 Computer code implementation

The implemented computer code consists of independent modules. Each module has

specific functionality and connected to a model manager module. The model manager

processes all results and manages data flows. The method for data transfer among

modules is pipe mechanism in GLIBC, see [14] chapter 15. The advantages of this

approach are simplicity in implementation and ease of application debugging. Each

module is debugged in stand-alone mode. This form of program organization will

allow adding new functionality to the program during further development. The

scheme of program is presented on Figure D.1 page 135.
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Table 6.2. List of probability levels for the scenario approximation

scheme and the financial optimization model with

weighted CVaR deviation measure

Levels Probabilities

1 level 0.100

2 levels 0.050 0.100

3 levels 0.050 0.100 0.250

4 levels 0.025 0.075 0.100 0.250

5 levels 0.025 0.075 0.100 0.150 0.250

6 levels 0.010 0.050 0.075 0.100 0.150
0.250

7 levels 0.010 0.050 0.075 0.100 0.150
0.200 0.250

8 levels 0.010 0.035 0.065 0.080 0.100
0.150 0.200 0.250

9 levels 0.010 0.035 0.065 0.080 0.100
0.125 0.175 0.225 0.250

10 levels 0.010 0.025 0.050 0.075 0.090
0.100 0.125 0.175 0.225 0.250
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Table 6.3. List of probability levels for the scenario approximation

scheme and the financial optimization model with

mean semi-deviation measure.

Levels Probabilities

1 level 0.50

2 levels 0.25 0.50

3 levels 0.25 0.50 0.75

4 levels 0.10 0.35 0.50 0.75

5 levels 0.10 0.35 0.50 0.65 0.90

6 levels 0.10 0.30 0.40 0.50 0.65
0.90

7 levels 0.10 0.30 0.40 0.50 0.60
0.70 0.90

8 levels 0.10 0.20 0.30 0.40 0.50
0.60 0.70 0.90

9 levels 0.10 0.20 0.30 0.40 0.50
0.60 0.70 0.80 0.90

10 levels 0.10 0.20 0.30 0.40 0.45
0.50 0.60 0.70 0.80 0.90
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List of modules with brief explanations:

Data Reading. This module reads a file with historical prices and return the

array of prices for a specified data range.

Forecast. This module makes the forecast of first and second moments using

history of rate of returns. The forecast method is simple moving average.

Scenarios Generation. This module generates a sample with the specified

number of points. The Normal distribution is used for sample generation,

see section 6.2.2 for details.

Scenarios Approximation. This module approximates a given sample with a

smaller one using CVaR/CVaG information, see chapters 4 and 5 for details.

Financial Optimization Model. This module solves a specified financial opti-

mization problem.

Program Manager. This module provides interconnection between all program

components and forms the output of the program.

The described program package is used for running the experiment. The hardware

and software specifications are given in Table D.1 on page 134.

6.4 Experimentation results

6.4.1 Efficiency of approximation scheme

The methodology for experiment has been described in section 6.3.3. Here the results

of phase 1 of the experiment are presented and discussed. The results of running

the financial optimization model with weighted CVaR deviation measure, one prob-
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ability level (Level 1, see Table 6.1), and data set SP5 are presented in Table E.1.

The minimum number of points required in the original scenarios when the scenario

approximation scheme uses 33 points to be time efficient is around 4000. However, this

number heavily depends on the number of points in the approximation distribution,

see Figure E.1. The results of running the financial optimization model with weighted

CVaR deviation measure, two probability levels (Level 2, see Table 6.1), and data

set SP5 are presented in Table E.2. The minimum number of points required in the

original scenarios when the scenario approximation scheme uses 33 scenarios will be

time efficient is around 3000 scenarios. However, this number depends on the number

of points in approximation distribution, see Figure E.2 for illustration. The results

of running the financial optimization model with weighted CVaR deviation measure,

three probability levels (Level 3, see Table 6.1), and data set SP5 are presented in

Table E.3. The minimum number of points required in the original scenarios when

the scenario approximation scheme uses 33 scenarios will be time efficient is around

4000 scenarios. The graphical representation of this result is given on Figure E.3.

Thus, I conclude that number of points in the original scenarios need to exceed

3000 in order for the scenario approximation scheme to be efficient.

6.4.2 Effect on CPU time

This section presents experimentation results of phase 2, see section 6.3.3. The

results of running the financial optimization model with weighted CVaR deviation

measure, three different probability levels (Level 1, Level2, and Level 3), and data set

SP5 are presented in the Table E.4 and Figure E.4. The analogous results for data

set SP10 presented on Figure E.5, for data set SP15 presented on Figure E.6, and for

data set SP20 presented on Figure E.7. The dependency of CPU time on the number

of points in the scenario approximation scheme is non-linear. Thus, one needs to be

very careful when specifying the number of points for the scenario approximation

scheme, otherwise the CPU time for the approximation scheme and optimization will

exceed CPU time of optimization of the original problem. It is also clear from Figures

E.4, E.5, E.6, and E.7 that the CPU time consumed by the scenario approximation

97



scheme heavily depends on the number of probability levels in the scheme and number

of securities in the financial optimization model.

6.4.3 Precision of scenario approximation procedure

The results of phase 3 of the experiment, see section 6.3.3, are presented in this

section. The first experiment is to test the improvements in approximation quality

when the number of points in the scenario approximation scheme is increased. The

results of running the financial optimization model with weighted CVaR deviation

measure, three different probability levels (Level 1, Level2, and Level 3), and data set

SP5 are presented on Figures E.8, E.18, and E.28. The analogous results are obtained

for data set SP10, see Figures E.10, E.20, and E.30, data set SP15, see Figures

E.12, E.22, and E.32, and data set SP20, see Figures E.14, E.24, and E.34. As

evident from the graphs, after some time the approximation quality fails to improve.

That gives additional insight in to the question of optimal number of points in the

scenario approximation scheme. However, this area is still open for further research.

The second part of this experiment is to compare the quality of the approximation

solution with the efficient frontier of the original problem. This is done by simulating

the optimal solutions of the approximation problem against the original one. The

results of simulating the financial optimization model with weighted CVaR deviation

measure, three different probability levels (Level 1, Level2, and Level 3), and data set

SP5 are presented on Figures E.9, E.19, and E.29. The analogous results are obtained

for data set SP10, see Figures E.11, E.21, and E.31, data set SP15, see Figures E.13,

E.23, and E.33, and data set SP20, see Figures E.15, E.25, and E.35. The general

conclusion is that the efficient frontier simulated using the optimal solutions from

the approximation problem becomes very close to the original efficient frontier when

number of points in the scenario approximation scheme exceeds 30.

The next part of this phase is to check the precision of the scenario approximation

scheme when number of probability levels in the scheme is increased, see Table 6.2 for

the list of probability levels. The results of running the financial optimization model

with weighted CVaR deviation measure, three different probability levels (Level 1,

Level2, and Level 3) in optimization, 36 points in the scenario approximation scheme,
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and data set SP5 are presented on Figures E.16, E.26, and E.36. The efficient frontiers

do not improve at all. Thus, increasing the number of probability levels in the scenario

approximation scheme does not improve the quality of approximation. The second

part of this experiment is to compare the quality of approximation solution with the

quality of optimal solution for the original problem. This is done by simulating the

optimal solutions of approximation problem against the original distribution. The

results of simulating the financial optimization model with weighted CVaR deviation

measure, three different probability levels (Level 1, Level2, and Level 3), 36 points

in the scenario approximation scheme, and data set SP5 are presented on Figures

E.17, E.27, and E.37. The approximation efficient frontier does not improve when

the number of probability levels in the scenario approximation scheme is increased.

Thus, the best approximation is achieved when probability levels in approximation

scheme match the probability levels in the financial optimization problem.

The last experiment is to check the precision of approximation scheme applied to

model with semi-deviation measure. The results of running the financial optimiza-

tion model with mean semi-deviation measure, one probability level in the scenario

approximation scheme (0.5), and data set SP5 are presented on Figure E.38. The

analogous results are obtained for data set SP10, see Figure E.40, data set SP15, see

Figure E.42, and data set SP20, see Figure E.44. Conclusion here is the same as it

is for the financial optimization model with weighted CVaR deviation measure. The

quality of approximation is increased with larger number of points in the scenario

approximation scheme. The results of simulating the optimal solutions of the financial

optimization model with mean semi-deviation measure, one probability level in the

scenario approximation scheme (0.5), and data set SP5 are presented on Figures E.39.

The analogous results are obtained for data set SP10, see Figure E.41, data set SP15,

see Figure E.43, and data set SP20, see Figure E.45. The simulated efficient frontiers

of the approximation problem becomes very close to the original efficient frontier.

Thus, the theoretical result that CVaR of the approximation problem will never

exceed CVaR of the original problem, see Proposition 5.2 on page 76 is confirmed in

each experiment. The efficiency of the proposed scenario approximation scheme is

proven in both CPU time and solution quality.
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Additionally, the empirical testing shows that the proposed scenario approxima-

tion scheme can be applied efficiently not only for the financial optimization models

with weighted CVaR deviation measure but also for models with mean semi-deviation

measure.
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Appendix A

Proof of Theorem 4.3

The proof heavily uses the fact that α increases with 〈y, x〉 and it decreases with

〈y, x〉, as well as it uses the upper and lower bounds on DVaRG.

Proof. (4.24) and (4.25) are reformulations of (4.22) and (4.23) using upper Dy
U(x)

and lower Dy
L(x) tails. Thus, we need to prove that (4.24) and (4.25) deliver the

correct value of x. The proof for (4.24) will be given here, a slight modification of

which can be applied for proving (4.25). Let’s define the functional F : � n � � 1:

F (x) = 〈y, x〉− 1

α
·
∫

Dy
L(x)

〈y, x− t〉dµ(t) (A.1)

Function F ( · ) is concave because: 〈y, x〉 is a linear function of x by definition of

inner product,
1

α
·
∫
Dy
L(x)
〈y, x− t〉dµ(t) is an integration over a variable domain and

convexity of this function needs to be proved directly. That is, for function:

f(x)≡ 1

α

∫

Dy
L(x)

〈y, x− t〉dµ(t)

we need to prove:

f(γx+ (1− γ)z)≤ γf(x) + (1− γ)f(z). (A.2)

Without loss of generality we can assume that:

∀x, z ∈Ω

and

〈y, x〉≥ 〈y, z 〉

Dy
L(γx+ (1− γ)z) =Dy

L(z)∪
(
Dy
L(z)c∩Dy

L(γx+ (1− γ)z)
)
⊆Dy

L(x)
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Now we can make the following transformation:

f(γx+ (1− γ)z) =
1

α

∫

Dy
L(γx+(1−γ)z)

〈y, (γx+ (1− γ)z)− t〉dµ(t) =

=
γ

α

∫

Dy
L(γx+(1−γ)z)

〈y, x− t〉dµ(t) + (1− γ)
1

α

∫

Dy
L(γx+(1−γ)z)

〈y, z − t〉dµ(t)≤

≤ γ

α

∫

Dy
L(x)

〈y, x− t〉dµ(t) + (1− γ)
1

α

∫

Dy
L(γx+(1−γ)z)

〈y, z − t〉dµ(t) =

=
γ

α

∫

Dy
L(x)

〈y, x− t〉dµ(t) +

+ (1− γ)
1

α

∫

Dy
L(z)

〈y, z − t〉dµ(t)−

− (1− γ)
1

α

∫

Dy
L(z)c∩DyL(γx+(1−γ)z)

� 〈y, z − t〉 � dµ(t)≤

≤ γ

α

∫

Dy
L(x)

〈y, x− t〉dµ(t) + (1− γ)
1

α

∫

Dy
L(z)

〈y, z − t〉dµ(t) =

= γf(x) + (1− γ)f(z)

Thus, it follows that (A.2) holds. Based on the convexity of f(x), the concavity of

F (x) is straightforward.

Based on the concavity of F (x) we can derive that F (x) has a unique global

maximum on Ω and every local maximum is a global maximum. The most difficult

step in the proof is to show that V a Rα is a local maximum for F (x). This will be

proved in two steps:

Step 1. Prove that F (x̄)<F (x∗) for

VaRα y= 〈y, x∗〉; 〈y, x∗〉= 〈y, x̄〉+ ε; ε � + 0.
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Step 2. Prove that F (x̄)<F (x∗) for

VaRα y= 〈y, x∗〉; 〈y, x∗〉= 〈y, x̄〉− ε; ε � + 0.

Let start with step 1 assuming that:

VaRα y= 〈y, x∗〉; x∗= x̄+ ν; 〈y, x∗〉= 〈y, x̄〉+ ε; 〈y, ν 〉= ε; ε � + 0

Then

F (x̄) = 〈y, x̄〉− 1

α
·
∫

Dy
L(x̄)

〈y, x̄−x〉dµ(x) =

= 〈y, x∗〉− ε− 1

α
·
∫

Dy
L(x̄)

〈y, x∗− x− ν 〉dµ(x) =

= 〈y, x∗〉− ε− 1

α
·
∫

Dy
L(x̄)

〈y, x∗− x〉dµ(x) +
1

α
·
∫

Dy
L(x̄)

〈y, ν 〉dµ(x).

Since ε � + 0 is true by assumption, Dy
L(x̄)⊂Dy

L(x∗) is correct by construction, and

the following implication is true:

∫

Dy
L(x̄)

dµ(x)<α ⇒ 1

α
·
∫

Dy
L(x̄)

〈y, ν 〉dµ(x) − ε < 0

transformation can be continued as follows:

F (x̄)<

< 〈y, x∗〉− 1

α
·
∫

Dy
L(x∗)

〈y, x∗− x〉dµ(x)− 1

α
·

∫

Dy
L(x̄)C∩DyL(x∗)

〈y, x∗−x〉dµ(x) =

=F (x∗)− 1

α
·

∫

Dy
L(x̄)C∩DyL(x∗)

〈y, ν 〉dµ(x) ≤ F (x∗)

Because
1

α
·
∫
Dy
L(x̄)C∩DyL(x∗)

〈y, ν 〉dµ(x)≥ 0 we derive that F (x̄)<F (x∗).

The step 2 of the proof is as follows:

VaGα= 〈y, x∗〉; x∗= x̄− ν; 〈y, x∗〉= 〈y, x̄〉− ε; 〈y, ν 〉= ε; ε � + 0
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then

F (x̄) = 〈y, x̄〉− 1

α
·
∫

Dy
L(x̄)

〈y, x̄−x〉dµ(x) =

= 〈y, x∗〉+ ε− 1

α
·
∫

Dy
L(x̄)

〈y, x∗− x+ ν 〉dµ(x) =

= 〈y, x∗〉+ ε− 1

α
·
∫

Dy
L(x̄)

〈y, x∗− x〉dµ(x)− 1

α
·
∫

Dy
L(x̄)

〈y, ν 〉dµ(x).

Observing, that Dy
L(x∗)⊂Dy

L(x̄) is correct by construction. The following equality:

∫

Dy
L(x∗)

dµ(x) +

∫

〈y,x∗〉

〈y,x∗〉

dµ(x) = αU ≥α

is also hold by construction and it implies the following:

ε≤ 1

α
·
∫

Dy
L(x∗)

〈y, ν 〉dµ(x) +
1

α
·
∫

〈y,x∗〉

〈y,x∗〉

〈y, ν 〉dµ(x)

Then, the transformations can be continued as follows:

F (x̄)≤

≤〈y, x∗〉+ 1

α
·
∫

Dy
L(x∗)

〈y, ν 〉dµ(x) +
1

α
·
∫

〈y,x∗〉

〈y,x∗〉

〈y, ν 〉dµ(x)−

− 1

α
·
∫

Dy
L(x∗)

〈y, x∗− x〉dµ(x) +
1

α
·

∫

Dy
L(x∗)C∩DyL(x̄)

〈y, x−x∗〉dµ(x)−

− 1

α
·
∫

Dy
L(x∗)

dµ(x).
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the following equality is true by definition:

∫

〈y,x∗〉

〈y,x∗〉

〈y, x∗− x〉dµ(x) = 0

and the transformation can be continued as follows:

F (x̄)<

<F (x∗) +
1

α
·
∫

Dy
L(x∗)

〈y, ν 〉dµ(x) +

+
1

α
·

∫

Dy
L(x∗)C∩DyL(x̄)

〈y, ν 〉dµ(x)− 1

α
·
∫

Dy
L(x̄)

〈y, ν 〉dµ(x)<

<F (x∗) +
1

α
·
∫

Dy
L(x̄)

〈y, ν 〉dµ(x)− 1

α
·
∫

Dy
L(x̄)

〈y, ν 〉dµ(x) =F (x∗)

which yields F (x̄)<F (x∗). That completes the step 2 of the proof. Because there are

only two possible direction of variating for function F (x), we proved that F (x∗) is

a local maximum. Because of the concavity of F ( · ) the local maximum is a global

one. Thus (4.24) is proved. The equality (4.25) can be proved analogously. �
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Appendix B

Approximation Algorithm Implemen-

tation

B.1 Input data and notation

Let’s mark:

m=E[X ]

xj are points of original distribution X .

The following values are consider as given:

szDim. This is the number of financial investment instruments in the model.

szOrgPnt. This is the number of sample points in the original distribution X .

szAprxPnt. This is the number of sample points in the approximating distribu-

tion X a.

szPrbLvl. This is the number of probability levels specified for SGM.

szBscPrt. This is the number of basic portfolios for SGM.

szHyprPt. This is the number of supporting hyperplanes for simplicial bounded

area.
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Index for finite sets:

i = 1, szDim

j = 1, szOrgPnt

s = 1, szAprxPnt

k = 1, szPrbLvl

l = 1, szBscPrt

m = 1, szHyprPt

t − for any other purpose

B.2 Define directions

Original problem formulation for one direction:

min
ds

∑
λ

s.t. ds =
∑

λj(xj−m)

〈yis,m+ ds〉 6 lis

λj > ∅

λ−λj > ∅

Conversion in GLPK format:

column identifiers:

CV1i = ds,i i= 1, szDim

CV2j =λj j= 1, szOrgPnt

CV3 =λ 1
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column limits:

−∞≤ CV1i ≤+∞

∅≤ CV2j ≤+∞

∅≤ CV3 ≤+∞

row identifiers with limits:

∅= RV1i = ∅

∅≤ RV2j ≤+∞

−∞≤ RV3is ≤ lis−
∑

yis,i ·mi

problem formulation:

min
∑
∅ ·CV1i+

∑
∅ ·CV2j + 1 ·CV3

s.t. 1 ·CV1i+
∑

j

[mi− xj,i] ·CV2j = RV1i

1 ·CV3 + [− 1] ·CV2j = RV2j
∑

i

yis,i ·CV1i = RV3is

B.3 Define probabilities

Original problem formulation for one direction:

max
ps

p

s.t. p 6 ps
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∑
ps = 1

∑
dsps = ∅

ps > 0

Conversion in GLPK format:

column identifiers:

CV1s = ps s= 1, szAprxPnt

CV2 = p 1

column limits:

∅≤ CV1s ≤ 1

∅≤ CV2 ≤ 1

row identifiers with limits:

−∞≤ RV1s ≤∅

1 = RV2 = 1

0 = RV3i = 0

problem formulation:

min
∑
∅ ·CV1s+ 1 ·CV2

s.t. [− 1] ·CV1s+ 1 ·CV2 = RV1s
∑

1 ·CV1s = RV2

∑

s

ds,i ·CV1s = RV3i
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B.4 Adjust points

Original problem formulation for one direction:

min
xs

∑
MCVaRk,i

s.t. 〈yi, xs〉6 〈yi, xs∗〉 s∈ ISaRk,i;

s∗∈ ISaRk,ib

〈yi, xs〉> 〈yi, xs∗〉 s
�
ISaRk,i;

s∗∈ ISaRk,ib
∑

xsps=m

1

αk

( ∑

s∈SaRk,i
〈yi, xs〉ps+Mpk,i〈yi, xs∗〉

)
+MCVaRk,i =CVaRk,i

MCVaRk,i> ∅

Conversion in GLPK format:

column identifiers:

CV1s,i = xs,i s= 1, szAprxPnt, i= 1, szDim

CV2l,k =MCVaRl,k l= 1, szBscPrt, k= 1,PrbLvl

column limits

−∞≤ CV1s,i ≤+∞

∅≤ CV2l.k ≤+∞

row identifiers with limits:

−∞≤ RV1#ISaRk,i
≤∅

−∞≤ RV2#(Ωa/ISaRk,i)
≤∅
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CVaRk,l= RV3k,l =CVaRk,l

mi= RV4i =mi

problem formulation:

min
∑
∅ ·CV1s,i+

∑
1 ·CV2l,k

s.t.
∑

s∈ISaRk,i

∑

i

yl,i ·CV1s,i+
∑

s∈I
SaRk,i

b

∑

i

[− yl,i] ·CV1s,i = RV1#ISaRk,i

∑

s∈I
SaRk,i

b

∑

i

yl,i ·CV1s,i+
∑

s � ISaRk,i

∑

i

[− yl,i] ·CV1s,i = RV2#(Ωa/ISaRk,i)

∑

s∈ISaRk,i

∑

i

yl,i · ps
αk

·CV1s,i+
∑

s∈I
SaRk,i

b

∑

i

yl,i ·Mpk,l
αk

·CV1s,i+

+ CV2l,k = RV3k,l
∑

s

ps ·CV1s,i = RV4i

B.5 Adjust probabilities

Original problem formulation for one direction:

min
ps

∑
MCVaRk,i

s.t.
∑

s∈ISaRk,i
⋃
I
SaRk,i

b

ps >αk

∑

s∈ISaRk,i

ps+Mpk,i =αk

1

αk

( ∑

s∈ISaRk,i

〈yi, xs〉ps+Mpk,i〈yi, xs∗〉
)

+MCVaRk,i =CVaRk,i
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∑
xsps=m

∑
ps= 1

Conversion in GLPK format:

column identifiers:

CV1s = ps s= 1, szAprxPnt

CV2l,k =Mpl,k l= 1, szBscPrt, k= 1,PrbLvl

CV3l,k =MCVaRl,k l= 1, szBscPrt, k= 1,PrbLvl

column limits:

∅≤ CV1s ≤ 1

∅≤ CV2l,k ≤αk

∅≤ CV3l,k ≤+∞

row identifiers with limits:

αk≤ RV1k,l ≤+∞

αk= RV2k,l =αk

CVaRk,l= RV3k,l =CVaRk,l

mi= RV4i =mi

1 = RV5 = 1

problem formulation:

min
∑
∅ ·CV1s+

∑
∅ ·CV2l,k+

∑
1 ·CV3l,k

s.t.
∑

s∈ISaRk,i

1 ·CV1s+
∑

s∈I
SaRk,i

b

1 ·CV1s = RV1k,l

∑

s∈SaRk,l
1 ·CV1s,i+ 1 ·CV2k,l = RV2k,l
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∑

s∈ISaRk,i

[∑

i

yl,i ·xs,i
αk

]
·CV1s+

∑

s∈SaRk,lb

[∑

i

yl,i ·xs,i
αk

]
·CV2k,l+ CV3l,k = RV3k,l

∑

s

xs,i ·CV1s = RV4i

∑
1 ·CV1s = RV5

B.6 Finding a feasible solution

Original problem formulation for one direction:

max
ρm,ξ

(
CVaRa−CVaRd

)

s.t. −CVaRd+
∑

t=1

T

ρt ·CVaRk,t
d = ∅

− y+
∑

t=1

T

ρt · yt = ∅

ξ−〈y, xs〉−Psa ≤∅

ξ − 1

αk

∑

s=1

S

Ps
a · ps−CVaRa = ∅

∑

t=1

T

ρt = 1

ρt, Ps
a ≥∅

Conversion in GLPK format:

column identifiers:

CV1s =Ps
a s= 1, szAprxPnt

CV2t = ρt t= 1, szHyprPt

CV3i = y i= 1, szDim
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CV4 = ξ 1

CV5 =CVaRa 1

CV6 =CVaRd 1

column limits:

∅≤ CV1s ≤+∞

∅≤ CV2t ≤ 1

−∞≤ CV3i ≤+∞

−∞≤ CV4 ≤+∞

−∞≤ CV5 ≤+∞

−∞≤ CV6 ≤+∞

row identifiers with dimensions:

RV1 : 1

RV2i : i= 1, szDim

RV3s : s= 1, szAprxPnt

RV4 : 1

RV5 : 1

row limits:

∅= RV1 = ∅

∅= RV2i = ∅

−∞≤ RV3s ≤∅

∅= RV4 = ∅

1 = RV5 = 1
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problem formulation:

max
∑
∅ ·CV1s+

∑
∅ ·CV2t+

∑
∅ ·CV3i

+
∑
∅ ·CV4 +

∑
1 ·CV5 +

∑
[− 1] ·CV6

s.t. [− 1] ·CV6 +
∑

CVaRk,t
d ·CV2t = RV1

[− 1] ·CV3i+
∑

t

yt,i ·CV2t = RV2i

[− 1] ·CV1s+
∑

i

[− xs,i] ·CV3i+ 1 ·CV4 = RV3s

∑

s

[
− ps
αk

]
·CV1s+ 1 ·CV4 + [− 1] ·CV5 = RV4

∑

t

1 ·CV2t = RV5
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Appendix C

Financial Optimization Model Imple-

mentation

C.1 Parameters for financial optimization model

Let’s mark:

m=E[X ]

xj are points in the distribution X .

The following values are consider as given:

szDim. This is the number of financial investment instruments in the model.

szDistrPnt. This is the number of sample points in the original distribution X .

szPrbLvl. This is the number of probability levels for CVaR weighted summa-

tion.

Index for finite sets:

i = 1, szDim

s = 1, szDistrPnt

k = 1, szPrbLvl
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Additional parameters:

• ξk is VaR value for αk probability level.

• Ps,k is the value of [VaR−〈xs · ρ, y∗〉]+ for particular scenario xs and investment

portfolio y∗.

• CVaRk is CVaR(R, y∗, αk)

C.2 Model with weighted CVaR deviation measure

max
y∗,ξk,Ps,k

∑

i

mi · yi∗ · ρi+
∑

k

wk ·CVaRk

s.t. ξk−
∑

i

yi
∗ · ρi ·xs,i−Ps,k 6 ∅

ξk− 1

αk

∑

s

Ps,k · ps−CVaRk = ∅

∑

i

(
yi
∗− yiI

)
· ρi6B

li6 yi∗6 ui

Ps,k> ∅

Conversion in GLPK format:

column identifiers:

CV−Opt−Prti = yi
∗ i= 1, szDim

CV−VaRk = ξk k= 1, szPrbLvl

CV−Pos−Difs,k =Ps,k s= 1, szDistrPnt, k= 1, szPrbLvl

CV−CVaRk = CVaRk k= 1, szPrbLvl
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column limits:

li≤ CV−Opt−Prti ≤ui

−∞≤ CV−VaRk ≤+∞

∅≤ CV−Pos−Difs,k ≤+∞

−∞≤ CV−CVaRk ≤+∞

row identifiers with dimensions:

RV−Pos−Defs,k : s= 1, szDistrPnt, k= 1, szPrbLvl

RV−CVaR−Defk : k= 1, szPrbLvl

RV−Budget−Rst : 1

row limits:

−∞6 RV−Pos−Defs,k 6 ∅

∅= RV−CVaR−Defk = ∅

−∞6 RV−Budget−Rst 6B+
∑

ρi · yiI

problem formulation:

max
∑

i

mi ·CV−Opt−Prti+
∑

k

∅ ·CV−VaRk+

+
∑

s,k

∅ ·CV−Pos−Difs,k+
∑

k

ωk ·CV−CVaRk

s.t. CV−VaRk+ [− 1] ·CV−Pos−Difs,k+
∑

i

[−xs,i] ·CV−Opt−Prti = RV−Pos−Defs,k

CV−VaRk+
∑

s

[
− ps
αk

]
·CV−Pos−Difs,k+ [− 1] ·CV−CVaRk = RV−CVaR−Defk

∑

i

ρi ·CV−Opt−Prti = RV−Budget−Rst
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C.3 Model with downside mean semi-deviation devi-

ation measure

max
y∗,Poss

∑

i

mi · yi∗ · ρi+λ ·
∑

s

Poss · ps

s.t.
∑

i

yi
∗ · ρi · (mi−xs,i)−Poss 6 ∅

∑

i

(
yi
∗− yiI

)
· ρi6B

li6 yi∗6ui

Poss> ∅

Conversion in GLPK format:

column identifiers:

CV−Opt−Prti = yi
∗ i= 1, szDim

CV−Pos−Devs = Poss s= 1, szDistrPnt

column limits:

li≤ CV−Opt−Prti ≤ui

∅≤ CV−Pos−Devs ≤+∞

row identifiers with dimensions:

RV−Pos−Defs : s= 1, szDistrPnt

RV−Budget−Rst : 1

row limits:

−∞6 RV−Pos−Defs 6 ∅

−∞6 RV−Budget−Rst 6B+
∑

ρi · yiI
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problem formulation:

max
∑

mi ·CV−Opt−Prti+
∑

(−λ · ps) ·CV−Pos−Devs

s.t. [− 1] ·CV−Pos−Devs+
∑

i

[(mi−xs,i) · ρi] ·CV−Opt−Prti = RV−Pos−Defs

∑
ρi ·CV−Opt−Prti = RV−Budget−Rst

133



Appendix D

Specifications and Schematic

Table D.1. Hardware and software specification for experiment

Component Specification

Processor AMD Athlon XP 2100+

Memory type DDR 333

Memory capacity 256 MB

Operating system GNU/Linux (Slackware 10.0)

Compiler GCC 3.3.4

Libraries STL 3.3.2

LP solver GLPK 4.8
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Program Manager

Financial Optimization Model

Data Reading

Forecast

Scenarios Generation

Scenarios Approximation

Figure D.1. The scheme of program for financial optimization
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Appendix E

Experiment Results

Table E.1. CPU time in seconds for solving model with weighted CVaR

deviation measure (Level 1) and data set SP5

Scenarios Original Number of points in approximation

6 12 24 33 42 53 64

100 0.0174 0.0326 0.1551 0.827 2.472 6.04 15.84 43.95

500 0.1350 0.0548 0.2089 1.046 1.828 6.47 13.51 48.13

1000 0.4656 0.0816 0.2024 0.889 2.037 3.79 18.21 36.26

3000 1.2249 0.2131 0.3188 1.211 2.699 5.93 16.71 35.17

5000 19.1421 0.3108 0.4396 1.173 2.896 6.58 18.75 25.45

10000 15.1211 0.5884 0.7495 1.692 3.801 7.64 13.95 25.36
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Figure E.1. CPU time comparison for solving model with weighted

CVaR deviation measure (Level 1) and data set SP5
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Table E.2. CPU time in seconds for solving model with weighted

CVaR deviation measure ( Level 2) and data set SP5

Scenarios Original Number of points in approximation

6 12 24 33 42 53 64

100 0.0414 0.1325 0.2603 2.34 13.77 39.99 90.36 240.37

500 0.2297 0.1312 0.3867 2.04 15.19 39.25 125.73 276.20

1000 0.7739 0.2215 0.4159 2.77 21.72 34.18 123.59 382.43

3000 6.7675 0.3088 0.5264 3.10 11.24 33.87 120.12 301.32

5000 19.7204 0.3994 0.6505 2.09 11.46 39.87 111.56 313.71

10000 98.7505 0.6949 0.9581 3.23 15.67 46.88 109.82 320.28
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Figure E.2. CPU time comparison for solving model with weighted

CVaR deviation measure ( Level 2) and data set SP5
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Table E.3. CPU time in seconds for solving model with weighted

CVaR deviation measure ( Level 3) and data set SP5

Scenarios Original Number of points in approximation

6 12 24 33 42 53 64

100 0.04 0.148 0.478 2.86 17.85 41.03 266.66 567.44

500 0.36 0.160 0.559 4.05 20.74 60.95 243.42 663.14

1000 1.32 0.162 0.532 5.116 22.83 71.40 230.93 652.16

3000 12.11 0.393 0.786 4.59 23.55 65.18 215.05 697.52

5000 38.03 0.414 1.369 3.79 17.91 70.13 246.03 839.04

10000 181.39 0.717 1.174 4.81 27.35 80.15 304.10 784.52
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Figure E.3. CPU time comparison for solving model with weighted

CVaR deviation measure ( Level 3) and data set SP5
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Table E.4. CPU time in seconds for solving model with weighted

CVaR deviation measure, 3000 original scenarios and data set SP5

Number of CVaR model with

approximation points 1 Level 2 Levels 3 Levels

6 0.1923 0.2094 0.2258

12 0.3177 0.4373 0.6281

18 0.5366 1.0801 1.2760

24 1.0940 3.0756 4.4677

30 1.6054 7.1292 7.0359

36 3.5111 18.4708 44.2272

42 5.8888 34.0953 64.9417

48 8.4266 62.7366 144.3783

54 17.4137 127.4400 299.4389

60 29.5426 185.7776 647.3501

66 36.6286 307.8309 871.6054

72 35.8680 582.4237 1513.5684

78 110.1980 705.9582 2238.1759

84 117.3843 1094.4741 2700.4273

90 202.7877 1722.4632 3629.0156

96 202.9797 2324.3468 4311.0073

102 394.4830 2802.8796 5742.7305
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Figure E.4. CPU time comparison for solving model with weighted

CVaR deviation measure, 3000 original scenarios and data set SP5
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Figure E.5. CPU time comparison for solving model with weighted

CVaR deviation measure, 3000 original scenarios and data set SP10
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Figure E.6. CPU time comparison for solving model with weighted

CVaR deviation measure, 3000 original scenarios and data set SP15
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Figure E.7. CPU time comparison for solving model with weighted

CVaR deviation measure, 3000 original scenarios and data set SP20
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Figure E.8. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 1) and data set SP5

with increasing number of points in approximation
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Figure E.9. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 1) and data set SP5

with increasing number of points in approximation
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Figure E.10. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 1) and data set SP10

with increasing number of points in approximation
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Figure E.11. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 1) and data set SP10

with increasing number of points in approximation
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Figure E.12. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 1) and data set SP15

with increasing number of points in approximation
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Figure E.13. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 1) and data set SP15

with increasing number of points in approximation
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Figure E.14. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 1) and data set SP20

with increasing number of points in approximation
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Figure E.15. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 1) and data set SP20

with increasing number of points in approximation
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Figure E.16. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 1) and data set SP5

with increasing number of probability levels in approximation
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Figure E.17. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 1) and data set SP5

with increasing number of probability levels in approximation
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Figure E.18. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 2) and data set SP5

with increasing number of points in approximation
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Figure E.19. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 2) and data set SP5

with increasing number of points in approximation
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Figure E.20. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 2) and data set SP10

with increasing number of points in approximation
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Figure E.21. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 2) and data set SP10

with increasing number of points in approximation
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Figure E.22. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 2) and data set SP15

with increasing number of points in approximation
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Figure E.23. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 2) and data set SP15

with increasing number of points in approximation
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Figure E.24. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 2) and data set SP20

with increasing number of points in approximation
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Figure E.25. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 2) and data set SP20

with increasing number of points in approximation
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Figure E.26. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 2) and data set SP5

with increasing number of probability levels in approximation
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Figure E.27. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 2) and data set SP5

with increasing number of probability levels in approximation
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Figure E.28. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 3) and data set SP5

with increasing number of points in approximation
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Figure E.29. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 3) and data set SP5

with increasing number of points in approximation
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Figure E.30. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 3) and data set SP10

with increasing number of points in approximation
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Figure E.31. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 3) and data set SP10

with increasing number of points in approximation
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Figure E.32. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 3) and data set SP15

with increasing number of points in approximation
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Figure E.33. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 3) and data set SP15

with increasing number of points in approximation
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Figure E.34. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 3) and data set SP20

with increasing number of points in approximation
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Figure E.35. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 3) and data set SP20

with increasing number of points in approximation

174



−700 −600 −500 −400 −300 −200 −100 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

CVaR summation

M
ea

n 
R

et
ur

n

3 Levels

5 Levels

9 Levels

10 Levels

Figure E.36. Progress of approximation efficient frontiers for model with

weighted CVaR deviation measure (Level 3) and data set SP5

with increasing number of probability levels in approximation
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Figure E.37. Simulation of approximation optimal solutions against

the original formulation for model with weighted CVaR

deviation measure (Level 3) and data set SP5

with increasing number of probability levels in approximation
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Figure E.38. Progress of approximation efficient frontiers for model with

mean semi-deviation measure and data set SP5

with increasing number of points in approximation
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Figure E.39. Simulation of approximation optimal solutions against the original

formulation for model with mean semi-deviation measure and

data set SP5 with increasing number of points in approximation
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Figure E.40. Progress of approximation efficient frontiers for model with

mean semi-deviation measure and data set SP10

with increasing number of points in approximation
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Figure E.41. Simulation of approximation optimal solutions against the original

formulation for model with mean semi-deviation measure and

data set SP10 with increasing number of points in approximation
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Figure E.42. Progress of approximation efficient frontiers for model with

mean semi-deviation measure and data set SP15

with increasing number of points in approximation
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Figure E.43. Simulation of approximation optimal solutions against the original

formulation for model with mean semi-deviation measure and

data set SP15 with increasing number of points in approximation
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Figure E.44. Progress of approximation efficient frontiers for model with

mean semi-deviation measure and data set SP20

with increasing number of points in approximation
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Figure E.45. Simulation of approximation optimal solutions against the original

formulation for model with mean semi-deviation measure and

data set SP20 with increasing number of points in approximation
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Figure E.46. Progress of approximation efficient frontiers for model with

mean semi-deviation measure and data set SP5 with increasing

number of probability levels in approximation
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Figure E.47. Simulation of approximation optimal solutions against

the original formulation for model with mean semi-deviation

measure and data set SP5 with increasing number of

probability levels in approximation
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