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Abstract 
 
 
 Nondestructive evaluation is a useful method for studying the effects of 

deformation and fatigue. In this dissertation I employed neutron and X-ray 

diffraction, nonlinear resonant ultrasound spectroscopy (NRUS), and infrared 

thermography to study the effects of deformation and fatigue on two different 

nickel based superalloys. The alloys studied were HAYNES 230, a solid solution 

strengthened alloy with 4% M6C carbides, and secondarily HASTELLOY C-2000 

a similar single phase alloy.  

 Using neutron and X-ray diffraction, the deformation behavior of 

HAYNES 230 was revealed to be composite-like during compression, but unusual 

in tension. The carbides present in this alloy do not provide strengthening in 

tension as would be expected or finite element modeling predicted. The carbides 

provide strengthening until just after the macroscopic yield strength and then they 

begin to debond and crack, creating a tension-compression asymmetry that is 

revealed clearly by in situ diffraction. HASTELLOY C-2000, a similar alloy 

without carbides, shows typical anisotropic load sharing between differently 

oriented grains. 

 In fatigue of HAYNES 230, the hkl behavior as revealed by neutron 

diffraction showed that the elastic strain changes very little in tension-tension 

fatigue. However, in situ tension-compression studies showed large changes over 

the initial stages of fatigue. There was slight evidence for changes in elastic 

modulus as fatigue progressed.  
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 The HAYNES 230 samples studies had two distinct starting textures, 

measured by neutron diffraction. Some samples were texture free initially and 

deformed in tension and compression to fiber textures. Other samples started with 

a bimodal texture due to cross-rolling and incomplete annealing. The final texture 

of these bimodal samples is shown through modeling to be a superposition of the 

initial texture and typical FCC deformation mechanisms. The effect of these 

different textures on the macroscopic and internal-elastic stress-strain curves are 

shown. The texture-free samples deformed significantly more macroscopically 

and in internal elastic strains than the samples with the cross-rolled texture.  

 In contrast to the relative insensitivity of neutron diffraction to the effects 

of tension-tension fatigue, NRUS revealed large differences between as-received 

and progressively fatigued samples. This showed that microcracking and void 

formation are the primary mechanisms responsible for fatigue damage in tension-

tension fatigue. NRUS is shown to be a useful complimentary technique to 

neutron diffraction to evaluate fatigue damage. 

 Finally, infrared thermography is used to show temperature changes over 

the course of fatigue in HASTELLOY C-2000. Four stages of temperature are 

shown over the course of a single fatigue test: an initial temperature rise, followed 

by an equilibrium region, a sharp increase of temperature at failure and, finally, a 

cooling back to room temperature after fracture. Both empirical and theoretical 

relationships between steady state temperature and fatigue life are developed and 

presented. 

 



 vii

Table of Contents 
 

 
Chapter 1:     Introduction ......................................................................................1 

 
Chapter 2:    Materials............................................................................................4 

2.1   HAYNES 230 .........................................................................................4 
2.2   HASTELLOY C-2000 ............................................................................9 
 

Chapter 3:  Diffraction......................................................................................12   
 3.1 Background ...........................................................................................12 
 3.2 In Situ Strain..........................................................................................18 
 3.3 Texture ..................................................................................................26 
   
Chapter 4:  Literature Review...........................................................................34   
 4.1 In Situ Loading......................................................................................34 
 4.2 Fatigue Studies ......................................................................................37 
 4.3 Texture ..................................................................................................39 
 4.4 Nonlinear Resonant Ultrasound Spectroscopy .....................................40 
 4.5 Infrared Thermography .........................................................................41 
 
Chapter 5:  In Situ Loading Experiments .........................................................42   
 5.1 Background Experiments ......................................................................42 
 5.2 Results ...................................................................................................44 
 5.3 Modeling ...............................................................................................59 
 5.4 Discussion ............................................................................................63 
 5.5 Conclusions...........................................................................................73 
 
Chapter 6:  In Situ FatigueExperiments............................................................74   
 6.1 Introduction...........................................................................................74 
 6.2 Tension-Tension Experiment ................................................................74 
 6.3 Results for the Tension-Tension Experiment........................................75 
 6.4 Discussion of the Tension-Tension Experiment ..................................78 
 6.5 Tension-Compression Experiment........................................................87 
 6.6 Results and Discussion of the Tension-Compression 
  Fatigue Experiment ...............................................................................89 
 6.7 Conclusions...........................................................................................95 
 
Chapter 7:  Texture ...........................................................................................99   
 7.1 Introduction...........................................................................................99 
 7.2 Experiment ............................................................................................99 
 7.3 Initial Textures ....................................................................................100 
 7.4 Modeling ............................................................................................103 
 7.5 Texture’s Effect on Internal Strains ....................................................111 
 7.6 Conclusions.........................................................................................115 



 viii

Chapter 8:  Nonlinear Resonant Ultrasound Spectroscopy ............................116   
 8.1 Introduction.........................................................................................116 
 8.2 Experiment ..........................................................................................116 
 8.3 Ex Situ Neutron Results ......................................................................120 
 8.4 NRUS Results ....................................................................................124 
 8.5 Conclusions.........................................................................................124 
 
Chapter 9:  Infrared Thermography................................................................129   
 9.1 Experimental Procedures ....................................................................129 
 9.2 Results and Discussion........................................................................130 
 9.3 Life Prediction.....................................................................................139 
 9.4 Conclusions.........................................................................................144 
 
Chapter 10:  Conclusions..................................................................................145  
 
Chapter 11:  Future Work .................................................................................148 
 
 
Bibliography  .....................................................................................................151 
 
Vita                 .....................................................................................................167 
  
 
 
 
 
  
 
 
 
 



 ix

List of Tables 

 
2.1 Nominal Composition of HAYNES 230 Alloy (Wt. %)………….............5 
2.2 Nominal Composition of HASTELLOY C-2000 Alloy (Wt. %)………....9 
 
5.1 Materials properties used in the FEM………………………………...….62 
 
6.1 The hkl strains at 700 MPa and upon unloading in the axial direction 

for the single cycle and the 110 cycle test………………………………….….83 
6.2 The hkl strains at 700 MPa and upon unloading in the transverse 

direction for the single cycle and the 110 cycle test.……………………...….83



 x

List of Figures 

 
2.1 Micrograph showing the as-received microstructure of HAYNES 

230 alloy, highlighting the M6C carbides (Figure 2.1a) and the 
M23C6 carbides (Figure 2.1b).......................................................................6 

2.2 Engineering stress-strain curves for tension and compression 
experiments on HAYNES 230 alloy............................................................8 

2.3 Engineering stress-strain curves for a tension experiment on 
HASTELLOY C-2000 alloy. .....................................................................10 

2.4 As-received HASTELLOY C-2000 microstructure showing a large 
180 - 200 μm grain size and extensive annealing twins. ...........................11 

 
3.1 Neutron diffraction pattern of HAYNES 230 with the peaks 

indexed, taken on the SMARTS instrument. .............................................16 
3.2 Change in the peak position of the 200 reflection in HAYNES 230 

as load is applied…....................................................................................17 
3.3 Geometry of strain measurements. ............................................................19 
3.4 Geometry of in situ loading measurements at a spallation source.............20 
3.5 Schematic view of the SMARTS diffractometer, showing the load 

cell and furnace in the beam line. ..............................................................22 
3.6 Photograph of the SMARTS diffractometer at the LANSCE 

facility at the Los Alamos National Laboratory, showing the axial 
and transverse detector banks, the load frame and the direction of 
the incident neutron beam..........................................................................23 

3.7 Photograph of the ENGIN-X Diffractometer at the ISIS facility at 
the RAL in England, showing the axial and transverse detector 
banks, the load frame and the direction of the incident neutron 
beam          .................................................................................................24 

3.8 X-ray diffraction rings from HAYNES 230 taken on the 1-ID beam 
line at the APS. ..........................................................................................25 

3.9 Photograph of the 1-ID beamline at the APS at the Argonne 
National Laboratory, showing the image plate, the load rig and the 
direction of the incident X-ray beam .........................................................27 

3.10 Close-up photograph of the load rig on the 1-ID beamline at the 
APS at the Argonne National Laboratory..................................................28 

3.11 X-ray diffraction pattern of HAYNES 230 with the carbide peaks 
highlighted, taken on the 1-ID beam line at the APS ................................29 

3.12 Intensity change due to texture and peak position change due to 
strain in the diffraction pattern of HAYNES 230 as it is loaded 
from 20 MPa to 700 MPa...........................................................................31 

3.13 The High Pressure Preferred Orientation (HIPPO) Diffractometer 
at LANSCE ................................................................................................32 



 xi

3.14 Texture pole figures measured on the HIPPO diffractometer for 
HAYNES 230 after a tensile experiment...................................................33 

 
5.1 Internal strains generated during the in situ tension test, axial 

direction in HASTELLOY C-2000 alloy...................................................43 
5.2 Internal strains generated during the in situ tension test, axial 

direction in 7075 aluminum alloy ..............................................................45 
5.3 Macroscopic stress versus strain curve of HAYNES 230 during the 

in situ tension and compression tests .........................................................48 
5.4 Internal strains generated during the in situ tension test, axial 

direction…… .............................................................................................49 
5.5 Internal strains generated during the in situ tension test, transverse 

direction…….. ...........................................................................................50 
5.6 Comparison between the 200 strains from the neutron and X-ray in 

situ loading experiments ............................................................................52 
5.7 Internal strains generated during the in situ compression test, axial 

direction……. ............................................................................................53 
5.8 Internal strains generated during the in situ compression test 

transverse direction ....................................................................................54 
5.9 Tension-compression asymmetry in the elastic lattice parameter 

strains in the axial direction .......................................................................56 
5.10 The 200 matrix strains and the 333 carbide strains in the transverse 

direction during the in situ tension experiment..........................................57 
5.11 The lattice parameter matrix strains, from the neutron experiment, 

and the carbide strains, from the X-ray experiment, in the axial 
direction during the in situ tension experiment..........................................58 

5.12 The lattice-parameter matrix strains and the 333 carbide strains in 
the transverse direction during the in situ compression experiment..........60 

5.13 A schematic of the representative microstructure used to generate 
the FEM of the carbide and matrix interaction ..........................................61 

5.14 Experimental data vs. FEM for the in situ compression experiment .........64 
5.15 Experimental data vs. FEM for the in situ tension experiment, 

neutron data  ..............................................................................................65 
5.16 Experimental data vs. FEM for the in situ tension experiment in the 

axial direction with both neutron and X-ray data ......................................67 
5.17 Proposed debonding mechanism in tension and compression...................68 
5.18 Experimental lattice strains in tension vs FEM model with 

macroscopic yield strength and proposed carbide debonding stress 
marked          ..............................................................................................70 

5.19 Micrograph of HAYNES 230 perpendicular to the applied load of 
700 MPa, displaying carbide debonding and cracking ..............................71 

5.20 Micrograph of HAYNES 230 parallel to the applied load of 700 
MPa, displaying carbide some debonding, but no cracking ......................72 

 
 



 xii

6.1 The hkl strains versus cycle at 700 MPa in the axial direction for 
the complete fatigue test ............................................................................76 

6.2 The hkl strains versus cycle at 700 MPa in the transverse direction 
for the complete fatigue test.......................................................................77 

6.3 The hkl strains versus cycle at 70 MPa in the axial direction for the 
complete fatigue test ..................................................................................79 

6.4 The hkl strains versus cycle at 70 MPa in the transverse direction 
for the complete fatigue test.......................................................................80 

6.5 The hkl strains in the axial direction during the 110 cycle fatigue 
test.             ................................................................................................81 

6.6 Comparison between 1 cycle of fatigue and 110 cycles of fatigue 
in the 111 and 200 axial directions ............................................................82 

6.7 Strain versus cycle for 110 cycle and complete test in the 200 axial 
direction     ................................................................................................86 

6.8 Schematic of the cyclic stress-strain curve during the tension-
compression fatigue experiment ................................................................88 

6.9 The hkl strains versus cycles of fatigue at the maximum tensile 
strain, axial direction..................................................................................90 

6.10 Strain accumulation in the 200 reflection, axial direction, at 
different points along the cyclic stress-strain curve...................................92 

6.11 Absolute value of the strain accumulation in the 200 reflection, 
axial direction, at different points along the cyclic stress-strain 
curve          .................................................................................................93 

6.12 The hkl strains versus cycles of fatigue at the maximum tensile 
strain, transverse direction .........................................................................94 

6.13 Strain accumulation in the 200 reflection, transverse direction, at 
different points along the cyclic stress-strain curve...................................96 

6.14 Strain accumulation in the 333 carbide reflection, transverse 
direction, at different points along the cyclic stress-strain curve...............97 

 
7.1 As-received texture for HAYNES 230, showing a random, texture-

free orientation .........................................................................................101 
7.2 As-received texture for HAYNES 230, showing cross rolled plate 

texture       ...............................................................................................102 
7.3 Texture for HAYNES 230 after 7% strain in compression, starting 

from a texture-free sample .......................................................................104 
7.4 Texture for HAYNES 230 after 15% strain in tension, starting 

from a texture-free sample .......................................................................105 
7.5 Texture for HAYNES 230 after 15% strain in fatigue (top) and 

simple tension (bottom), starting from a cross-rolled sample..................106 
7.6 Experimental (top) and modeled (bottom) texture for HAYNES 

230 after 15% strain in tension starting from a cross-rolled sample 
texture       ...............................................................................................108 



 xiii

7.7 Modeled (top) and experimental (bottom) texture for HAYNES 
230 after 7% strain in compression starting from a random sample 
texture.       ..............................................................................................109 

7.8 Experimental (top) and modeled (bottom) texture for Haynes 230 
after 14% strain in tension starting from a random sample texture. ........110 

7.9 Difference in macroscopic loading curves between the random 
sample and the pre-textured sample.........................................................112 

7.10 Difference in elastic lattice strains between random and pre-
textured samples.......................................................................................113 

7.11 Difference in hkl specific strains between random sample pre-
textured samples.......................................................................................114 

 
8.1 A schematic of the experimental set up for the NRUS experiments .......118 
8.2 Resonance peaks for the as-received HAYNES 230 sample...................119 
8.3 Internal strains measured using neutron diffraction for the ex situ 

samples.     ...............................................................................................121 
8.4 Peak width measured using neutron diffraction for the ex situ 

samples.     ...............................................................................................122 
8.5 Peak intensity measured using neutron diffraction for the ex situ 

samples.     ...............................................................................................123 
8.6 Resonance peak shift with increasing voltage for the as-received 

sample.      ...............................................................................................125 
8.7 Resonance peak shift with increasing voltage for the as 70,000 

cycle sample.............................................................................................126 
8.8 Summary of the dependency (resonance peak shift with increasing 

voltage) for the complete set of ex situ samples. .....................................127 
 
9.1 S-N curve for C-2000 alloy at R = 0.1, 20 Hz .........................................131 
9.2 Temperature profiles at different stress ranges........................................132 
9.3 Typical temperature profile during complete fatigue test........................133 
9.4 Detail of the thermoelastic effects during a σr = 382 MPa test................135 
9.5 Infrared images of the sample tested at σr = 391 MPa. Images 

taken, at 0, 150, and 600 cycles, from left to right. .................................137 
9.6 Temperature profiles along the center in the gauge-length direction 

of the sample tested at σr = 391 MPa, taken at 0, 150, and 600 
cycles.        ...............................................................................................138 

9.7 Average center temperature of the sample tested at σr = 391 MPa .........140 
9.8 Log-log plot of the steady-state temperature versus number of 

cycles to failure for C-2000 alloy ............................................................141 
9.9 Predicted and experimental fatigue life using thermographic data..........143 
 
 
 
 
 



 1

Chapter 1 

Introduction 

 
The utility of nondestructive methods for evaluating something is 

undeniable. The simple example of a broken arm is proffered. There are two ways 

of determining if there is a broken bone in an injured arm: 

1. Cut the arm open and see if the bone is broken 

2. Use an X-ray to view if the bone is broken or intact 

While the first method is very straightforward, it hearkens to opening the goose 

to see how the golden egg is made, no one wins, especially not the goose. The 

second method, while requiring a degree of expertise and interpretation, is much 

preferable, both from the standpoint of the owner of the injured limb and for the 

prospects of fixing the problem. 

Nondestructive evaluation (NDE) is extremely useful for applications 

ranging from medicine, to manufacturing, to quality control, to facilities 

operations, to research and development. The underlying principle is to obtain an 

accurate evaluation of the condition and state of an object without destroying it, or 

altering it in a process. As shown above, the medical case is obvious, finding out 

if you are healthy should avoid injuring or killing you, if possible. Similarly, 

clever use of NDE techniques can allow the monitoring of the quality of parts on 

an assembly line without damaging their salability. For large facilities, such as 

nuclear reactors, being able to evaluate the soundness of a critical pressure vessel 

in situ during operations allows you to both accurately asses damage during 
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operational conditions and avoid costly downtime during destructive testing or 

component failure. Finally, during research and development, as evidenced by the 

following document, NDE can add a new dimension to traditional mechanical 

testing.  

This dissertation uses three methods of NDE: neutron diffraction, 

nonlinear acoustics, and infrared thermography. The focus will be on in situ 

diffraction. The data presented here shows the elastic strain and texture 

development during loading operations. A simple diffraction pattern, analyzed 

and interpreted, can reveal grain-orientation dependent strains in a material, as 

well as the interplay between multiple phases. Additionally, the material’s texture 

can be examined and its subsequent effect on loading operations can be studied.  

While much less daunting from an equipment perspective, the infrared 

(IR) thermography method provides a similar utility as an NDE technique. 

Directly measuring heat on the surface of an object undergoing loading can reveal 

the elastic and plastic behavior in a material. Moreover, estimates of fatigue 

lifetime can be made from the steady-state temperature achieved during a fatigue 

test. 

Finally nonlinear-acoustic methods are used to analyze damage during 

fatigue, ex situ. While the diffraction techniques shown are very sensitive to the 

elastic behavior due to changes in the atomic spacing in the material, they are not 

directly sensitive to plastic strains and stresses. These acoustic methods, however, 

are sensitive to dislocation density, cracking, and void formation. Data from these 
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tests will compliment the elastic measurements of fatigue damage and allow a 

much fuller picture of the internal state of a material. 

While the NDE methods described herein are not specific to any group or 

class of materials, they will be applied exclusively to two different nickel-based 

superalloys. The alloys studied, primarily HAYNES 230 and secondarily 

Hastelloy C-2000, are solid-solution strengthened superalloys, derivatives of a 

long line of Ni-Cr and Ni-Cr-Mo type alloys. They are used in a variety of 

fatigue-intensive and high-temperature environments, often in harsh atmospheres.  

The current study was initially motivated by some anomalies in the high-

temperature behavior of the HAYNES 230 alloy. As is often the case in research, 

the direction of the project has morphed considerably since its beginnings four 

years ago. The highlight of the following research is the investigation of the load 

sharing between the matrix and carbides in HAYNES 230 alloy during tension 

and compression using neutron and X-ray diffraction, as well as finite element 

modeling (FEM) techniques. Additional studies presented are the development of 

internal strains during loading and fatigue as well as texture development using 

neutron diffraction, development of fatigue lifetime prediction using infrared 

thermography, and the use of acoustic techniques to assess damage as fatigue 

progresses.  

The techniques and results presented in this dissertation offer a 

comprehensive use of NDE techniques to study the effects of loading and fatigue 

on the internal state of HAYNES 230.  
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Chapter 2 

Materials 

 

2.1  HAYNES 230 

The HAYNES 230 alloy studied in this project is a nickel-based 

superalloy frequently used in fatigue-intensive applications, such as power-

generation turbines. It is a nickel-chromium-tungsten-molybdenum alloy that is 

optimized for use in high-temperature, oxidizing, and nitriding environments. It 

was designed to improve the oxidation resistance, creep-rupture strength and 

thermal stability of existing Haynes superalloys, such as HASTELLOY X and 

HAYNES 188 [1], while minimizing the use of cobalt, due to a large price 

increase of this element in the 1970’s [2]. It exhibits temperature-induced carbide 

formation at high temperatures, resulting in a plateau in the yield strength 

between 600 and 800 ºC [1, 3, 4]. Additionally, there is an anomaly in the low-

cycle fatigue behavior of the alloy at high temperatures. At strain ranges between 

1.5 and 2%, the fatigue life is actually longer at 927 ºC than at 816 ºC [5]. 

Exploring the cause of these behaviors has motivated the current study in the 

fatigue behavior of HAYNES 230 alloy. 

HAYNES 230 alloy is a nickel-based solid-solution strengthened super-

alloy with a composition of as shown in Table 2.1. 
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Table 2.1. Nominal Composition of HAYNES 230 Alloy (Wt. %) 
Ni Cr W Mo Fe Co Mn Si Al C La B 
Bal. 22 14 2 3* 5* 0.5 0.4 0.3 0.1 0.02 0.015*
*maximum 
 
 
 

The alloy contains approximately 60% nickel as a balance. The Cr addition 

increases oxidation resistance by allowing a coherent chromium oxide layer to 

form on the surface of the alloy. The minor additions of Si, Mn and La also help 

with the oxidation resistance. The W and Mo additions provide solid-solution 

strengthening from substitutional strain on the lattice. Additionally, with the C 

addition, the Cr, W and Mo form strong carbides. The ratio of the primary 

alloying elements (Cr, W and Mo) is controlled to ensure that M23C6 carbides 

precipitate out at high temperatures. The B is added to change the lattice 

parameter of the carbide, so it is more coherent with the matrix [1]. As shown 

later, the lattice parameter of the M6C carbide is approximately three times that of 

the alloy. The structure of the metal is face-centered cubic (FCC) with carbide 

strengthening. As seen in Figure 2.1a the as-received state contains a primary 

tungsten-rich M6C carbide that is semicoherent with the parent metal. There are a 

small amount of chromium-rich M23C6 carbides on the grain boundaries in the as-

received condition, Figure 2.1b [6]. 

The alloy is rolled from an electro-slag remelted slab ingot on a 4-hi  
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Figure 2.1:  Micrograph showing the as-received microstructure of HAYNES 
230 alloy, highlighting the M6C carbides (Figure 2.1a) and the M23C6 carbides 
(Figure 2.1b) [6]. 
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reversing mill at approximately 1200 °C. After rolling to the final gauge, the plate 

is solution annealed at 1200 °C and water quenched. The end result of the solution 

annealing is nominally a texture-free condition, however, as seen in Chapter 7, 

there are weak rolling and cross rolling textures in the as-received condition 

depending on the size of the initial plate. The grain size of the material averages 

70 μm. The M6C carbide makes up 1-5% by volume of the as-received 

microstructure.  

The tensile properties of the alloy are: 0.2% yield strength of 375 MPa, 

ultimate tensile strength of 844 MPa, and elongation at failure of 48% [4]. Based 

on actual stress-strain experiments performed on the as-received material, tested 

per American Society for Testing and Materials (ASTM) standards [7, 8] at a 

strain rate of 5 x 10-3/min, the 0.2% offset yield strength of the materials are 385 

MPa in compression and 425 MPa in tension, Figure 2.2. However, as will be 

shown, the texture of the as-received specimens has an effect on the yield strength 

of the material. Significantly, with regard to the internal elastic strains, the 

deviation from linearity of the stress versus strain curve occurs below 300 MPa in 

both tension and compression (Chapter 5). The tested elastic modulus of 212 GPa 

is very close to the literature values.  
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Figure 2.2: Engineering stress-strain curves for tension and compression 
experiments on HAYNES 230 alloy. 
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2.2  HASTELLOY C-2000 

The second alloy studied is HASTELLOY C-2000. The alloy is a nickel-

based superalloy with a composition shown in Table 2.2. The alloy contains 

approximately 59% nickel as a balance. It is a solid-solution strengthened FCC 

Ni-Cr-Mo type alloy that is formulated to resist both oxidizing and reducing 

atmospheres. The Cr and Mo act as substitutional-strengthening mechanisms, the 

Cr is a strong oxide former, while the Cu enhances the corrosion resistance in 

both oxidizing and reducing atmospheres [9, 10]. 

The test specimens were machined from bars, which had been hot rolled in 

the temperature range of 1176-1204 ºC, annealed at 1149 ºC, and then water 

quenched. The tensile properties of the alloy: 0.2% yield strength of 370 MPa, 

ultimate tensile strength of 750 MPa, and elongation at failure of 63% [10]. 

However, in actual testing conditions, per ASTM standards [7] at a strain rate of 5 

x 10-3/min, the alloy exhibited a much higher elongation, approximately 85%, at 

the UTS, Figure 2.3. The as-received microstructure, shown in Figure 2.4, is a 

single phase FCC structure with annealing twins and an average grain size of 180 

- 200 μm [11]. 

 

 

Table 2.2 Nominal Composition of HASTELLOY C-2000 Alloy (Wt. %) 
Ni Cr Mo Cu Si C 
Bal. 23 16 1.6 0.08* 0.01*

                                *maximum 
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Figure 2.3: Engineering stress-strain curves for a tension experiment on 
HASTELLOY C-2000 alloy. 
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Figure 2.4: As-received HASTELLOY C-2000 microstructure showing a large 
180 - 200 μm grain size and extensive annealing twins [11].
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Chapter 3 
 
Diffraction 

 

3.1  Background 

As with X-ray and electron diffraction, the behavior of neutron diffraction 

is dictated by Bragg’s law: 

 
θλ sin2dn =           (3.1) 

 
A neutron beam incident upon an appropriate specimen will yield a peak pattern 

much like an X-ray pattern. However, X-rays tend to have very small penetration 

depths into materials, making it difficult to determine anything beyond surface 

information. Similarly, electrons, due to their charge, scatter strongly off the 

electron clouds surrounding atoms. In order to use electron diffraction to study a 

material, the sample must be very thin. Neutrons have a few key properties that 

make them attractive for studying material properties [12-15]. 

Neutrons are neutral particles. They have no interaction, electrostatic or 

otherwise, with the electron cloud surrounding an atom. Thus, the neutrons scatter 

directly off the nucleus of materials. The nucleus of an atom is orders of 

magnitude smaller than the atomic radius. Neutrons are faced with a much smaller 

cross section to scatter off than electrons or photons. Additionally, the nuclear 

radii do not change with the atomic number (Z) nearly as much as the atomic radii. 

Because of this, the atomic-scattering factor from neutrons does not scale with Z 
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number as with X-rays. In fact, negative and positive scattering can occur. This 

feature allows differentiation between atoms of similar Z numbers and even 

isotopes of the same atom. Neutrons can detect hydrogen in a structure and can 

differentiate between hydrogen and deuterium.  

Neutrons are similar in wavelength to typical X-ray radiation, but have 

much lower energies. The interaction between a low-energy neutron and a nucleus 

of an atom is fairly weak. This weak interaction, coupled with the small cross 

section of the nuclei, allows neutrons to penetrate much more deeply than X-rays. 

Similarly, the neutrons do not damage the samples that they are irradiating. This 

trend allows neutron diffraction to be used as a NDE tool on actual parts and 

living things. Experiments can be designed such that the neutrons pass through 

experimental chambers while diffracting off a sample. This characteristic allows 

in situ experiments at temperature, under stress, or in a vacuum or corrosive 

environment.  

The wavelengths of the neutrons involved in typical scattering 

experiments are similar to atomic-scale distances. Also, the neutron’s energy is 

similar to that of the excitation and vibrations of atomic structures. The neutron 

has a magnetic moment allowing the neutron to be scattered by magnetic domains, 

revealing the magnetic structure of materials. The magnetic moment of neutrons 

is three orders of magnitudes lower than that of electrons. However, unlike 

electrons, neutrons do not scatter electrostatically so that the magnetic scattering 

is not overwhelmed. 
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As a crystalline material is put in a state of strain, the lattice spacing, d, is 

changed. If a sample in a diffraction experiment contains residual stresses or it is 

being strained in situ, the change in d also creates a change in the wavelength or 

scattering angle of diffracted neutrons. This detection of strain works well with 

both X-ray and neutron diffraction. X-rays, however, only show surface strains, 

while neutrons can penetrate deeply into a sample, allowing determination of 

average bulk strains.  

 For a spallation source (with a constant angle and many wavelengths), 

taking the derivative of Bragg’s law (1) with respect to θ yields the following: 

 
    θλ sin2 dΔ=Δ          (3.2) 
 
Substituting (1)  for sinθ 
 

    

λ
λε

λλ

Δ
==

Δ

Δ
=Δ

d
d

d
d

         (3.3) 

 
This shows that the strain is a function of the change in the wavelength of the 

diffracted beam for a spallation source with a fixed θ. A strained sample would 

have a small shift in the wavelength of the diffracted peaks versus that of an 

unstrained sample. The interaction between d-spacing and wavelength is also 

obvious from inspecting the derivation of Bragg’s law [13]. This change in the 

wavelength is proportional to an energy change, which affects the speed of the 

diffracted neutron. In a spallation-neutron source, this difference is recorded as a 

difference in the time of arrival of the diffracted neutron at the detector. Given the 
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geometry of the instrument and the properties of the incident beam, the time 

difference can easily be converted into a d-spacing change. 

A typical diffraction pattern for HAYNES 230 is shown in Figure 3.1. 

Using Rietveld refinement [16, 17], the entire pattern is fit, generating a lattice 

parameter (or parameters for non-cubic crystal structures). As elastic strain 

increases or decreases, the pattern changes and a new lattice parameter can be 

calculated. Comparing the initial and final lattice parameters, the elastic strain in 

the crystal can be calculated. Each peak in the diffraction pattern represents a 

specific hkl direction. Using least-squares methods, the peak position of each peak 

can be calculated very precisely. Comparing the changes in peak position as 

conditions vary within each sample can generate the hkl specific strains. Figure 

3.2 shows the position shift in the 200 peak of Haynes 230 as load is applied. In 

this case, the position changes correspond to strains of 2300 με at 375 MPa and 

5660 με at 700 MPa relative to the initial position of the 200 reflection with no 

load.  

Since plastic strains are usually generated from a combination of 

dislocation motion and grain boundary sliding, this method is not directly 

sensitive to plasticity. Only elastic strains, generated from the stretching or 

compressing the interplanar spacing in the grains, are measured. Furthermore, the 

strains generated from this measurement are an average of the strains in all the 

grains that satisfy the Bragg condition for the particular scattering volume.  
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Figure 3.1: Neutron diffraction pattern of HAYNES 230 with the peaks indexed, 
taken on the SMARTS instrument. Lattice parameter derived from Rietveld 
refinement. 
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Figure 3.2: Change in the peak position of the 200 reflection in HAYNES 230 as 
load is applied. 
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 The volume being measured is the intersection of the incident beam with 

the projection of the detector, (Figure 3.3). Using collimators, the size of the 

gauge volume can be changed. The resolution can be as small as 0.1 mm in 

projection, but it typically ranges from 1 to 6 mm in projection.  

By translating this gauge volume through a sample, the complete three 

dimensional (3D) state of stress and strain can be determined for the sample. This 

strain mapping is a powerful tool for characterizing materials. Residual strains can 

be measured in actual parts. In situ mechanical, thermal and corrosion 

experiments can be carried out while monitoring the strain and microstructure of 

the sample. A 3D state of stress can be experimentally determined and compared 

to a finite-element model. The strain, stress and microstructure can be monitored 

in situ on a part that is being tested in a time-dependent operation, like fatigue, 

thermal cycling, or annealing.  

 

3.2  In Situ Strain 

Recently, at both reactor and spallation sources, a number of instruments 

dedicated to materials engineering and, specifically, in situ strain measurement 

have appeared or are in planning stages [18-21]. These instruments operate on 

simple principles. A uniaxial loading machine is placed in the beam line such that 

two sets of detectors can collect data coming from grains oriented parallel and 

perpendicular to the applied load. Using the same technique shown in Figure 3.3 

to define the scattering volume, the sample is oriented at 45º to the incident beam 

(Figure 3.4) with two detectors placed at plus and minus 90º to the beam. A
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Figure 3.3:  Geometry of strain measurements. 
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Figure 3.4: Geometry of in situ loading measurements at a spallation source [30].



 21

schematic of the Spectrometer for Materials Research at Temperature and Stress 

(SMARTS) diffractometer [18] is shown in Figures 3.5 and 3.6. The transverse 

detector bank, +90º, measures the strain in grains with their plane normals 

oriented perpendicular to the applied load. This is the Poisson’s direction during 

loading. The axial detector bank, -90º, measures the strain in grains oriented 

parallel to the applied load. This experimental setup, depending on the exact 

nature of the equipment used, can measure strains during a tension, compression, 

or fatigue test. The ENGIN-X diffractometer at the ISIS accelerator, at the 

Rutheford Appleton Laboratory (RAL) in England is a similar instrument (Figure 

3.7) [19, 20]. Future instruments [21] will make use of tension/torsion rigs to 

explore the generation of internal strains during torsion. 

In situ strain measurements can also be made at high energy X-ray 

sources, such as the Advanced Photon Source (APS) at the Argonne National 

Laboratory (ANL) [12, 22-24]. Instead of gaining diffraction information from a 

beam diffracted at 90 degrees to the sample orientation, as with the neutron 

diffractometers above, it is possible to obtain diffraction rings in transmission 

with macroscopic samples. In this case single wavelength X-rays of 0.1535 Å, 75 

keV energy and a 150 μm x 150 μm beam spot size will yield a clean diffraction 

pattern through 1.5 mm thickness of a HAYNES 230 sample, ranging from 

roughly 0.5 to 4 Å in d spacing, depending on the sample to detector distance 

(Figure 3.8). Although the path length of X-rays is much shorter than neutrons, it 

is possible to pass through a few millimeters of a nickel superalloy with the high 

energy X-rays from the APS. 
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Figure 3.5: Schematic view of the SMARTS diffractometer, showing the load 
cell and furnace in the beam line [18]. 
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Figure 3.6: Photograph of the SMARTS diffractometer at the LANSCE facility at 
the Los Alamos National Laboratory, showing the axial and transverse 
detectorbanks, the load frame and the direction of the incident neutron beam.
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Figure 3.7: Photograph of the ENGIN-X Diffractometer at the ISIS facility at the 
RAL in England, showing the axial and transverse detector banks, the load frame 
and the direction of the incident neutron beam. 
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Figure 3.8: X-ray diffraction rings from HAYNES 230 taken on the 1-ID beam 
line at the APS. 
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 The diffraction pattern for HAYNES 230 shown in Figure 3.8 was taken on the 

1-ID beamline at the APS with the beamline configured with a simple screw-

driven load rig in the beam, Figures 3.9 and 3.10. Integrating the diffraction rings 

across the 20 degrees centered on the sample’s axis and at 90 degrees to the 

sample axis will yield a diffraction pattern that is similar to that recorded at the 

neutron instruments. However, in this case, the sensitivity to a smaller second 

phase, such as the carbide in HAYNES 230 is much higher. Figure 3.11 shows the 

higher d spacings of the diffraction pattern of HAYNES 230 showing multiple 

diffraction peaks from the M6C carbide, as well as the ceria (CeO2) peaks that 

were used to calibrate the diffraction patterns. This experimental setup was 

successful, but suffered from some large positioning errors due to the sample 

changing position with respect to the image plate as loading was applied. This led 

to large error bars on the strain measurements due to the inability to compensate 

for the position changes, despite having the ceria as a calibrant. 

 

3.3  Texture 

Closely related to the measurement of internal strains using diffraction, is 

the measurement of crystallographic texture [25-27]. In a powder, or randomly 

oriented solid, intensities of diffracted peaks in a diffraction pattern are dictated 

by the crystallography of the material and the structure factors for the given 

peaks. However, as a sample becomes more textured, the intensity is skewed by 

the number of grains meeting the diffraction condition. This change in texture is 

usually due to grain rotation, which is a method of accommodating internal 
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Figure 3.9: Photograph of the 1-ID beamline at the APS at the Argonne National 
Laboratory, showing the image plate, the load rig and the direction of the incident 
X-ray beam. 
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Figure 3.10: Close-up photograph of the load rig on the 1-ID beamline at the APS 
at the Argonne National Laboratory 

.
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Figure 3.11: X-ray diffraction pattern of HAYNES 230 with the carbide peaks 
highlighted, taken on the 1-ID beam line at the APS. 
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strains. Twinning will also result in large quick changes in texture development. 

As a sample is loaded in tension the diffraction pattern will show both a shift in 

peak position from elastic strain, and change in peak intensity due to changes in 

texture, Figure 3.12.  

The High Pressure Preferred Orientation Diffractometer (HIPPO) [28, 29] 

at LANSCE is optimized for quickly measuring texture in metallic, geologic or 

biological samples, Figure 3.13. The diffractometer has 50 banks of detectors so 

complete pole figures can be measured with 4 rotations. Each bank of detectors 

yields a separate diffraction pattern which corresponds to a different orientation 

on a pole figure. The patterns are fit using Reitveld refinements with spherical 

harmonics to accommodate changes in texture. A texture pole figure is, then, 

generated from the combined texture information from all the diffraction patterns 

[28, 29]. The texture pole figures seen in Figure 3.14, for example, are generated 

from 98 unique diffraction patterns accomplished by four sample rotations in the 

HIPPO diffractometer. These pole figures show a typical fiber texture achieved by 

tensile deformation on an originally untextured FCC alloy, in this case Haynes 

230 after tension to 700 MPa.  
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Figure 3.12: Intensity change due to texture and peak position change due to 
strain in the diffraction pattern of HAYNES 230 as it is loaded from 20 MPa to 
700 MPa.
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Figure 3.13: The High Pressure Preferred Orientation (HIPPO) Diffractometer at 
LANSCE [29]. 
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Figure 3.14: Texture pole figures measured on the HIPPO diffractometer for 
HAYNES 230 after a tensile experiment. 
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Chapter 4 

Literature Review 

 

4.1  In Situ Loading 

While the measurement of strain using neutron diffraction techniques has 

been known for some time [14, 31-33], the concept of in situ measurement of 

strains during loading using neutrons has become a relatively recent phenomenon 

[32, 34]. The advent of materials science based neutron diffractometers with the 

instrument and scattering geometry optimized for strain scanning and in situ 

loading experiments is less than two decades old. Dedicated instruments for in 

situ strain measurement at neutron sources were pioneered at the Neutron Powder 

Diffractometer (NPD) [35, 36] at LANSCE and the ENGIN Diffractomer at the 

ISIS accelerator [19, 37]. The recent addition of the SMARTS diffractometer at 

LANSCE [18] and the ENGIN X diffractometer at ISIS [19, 20] have brought the 

field into maturity. Next generation instruments such as VULCAN at the SNS 

[21] and dedicated beamline and instruments at high energy synchrotron X-ray 

facilities [23] will push the field further.  

In situ loading experiments have existed since 1925 when X-ray studies of 

loading of steel ribbon were undertaken by Lester [38]. The loading was 

horizontal, accomplished by hanging a weight off of a string and pulley system 

while diffraction patterns were being exposed. Wood and coauthors, starting in 

the late thirties conducted a series of in situ loading experiments, both tension and 
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compression, on full size specimens of copper, aluminum, iron, steel and brass 

[39-47], thus introducing the concept of lattice strain versus applied load plots. 

These studies were instrumental in helping clarify the role of crystalline 

anisotropy during loading as well as anisotropy’s effect on residual strain [48-51]. 

Additional in situ and ex situ studies on creep and fatigue of metals were 

conducted through the late thirties through the 1960’s [47, 52-55]. By the early 

1960’s X-ray studies were being used to single out the reactions of different 

phases of composites during loading [56, 57].  

The addition of time of flight neutron diffraction at high intensity neutron 

sources has improved this technology greatly [34]. The ability to take full 

diffraction patterns without moving the sample or load rig has increased accuracy, 

experimental breadth and decreased experimental time. This work has come to 

maturity with the ability to accurately model lattice strains in metals with high 

symmetry structures. Most clearly, the using the elastic-plastic self consistent 

modeling EPSC technique to isolate and model strains in individual grains during 

loading [58-61]. Starting with the concept of an Eshleby inclusion in a 

homogenous matrix [62], which was originally conceived as a way of modeling 

composite structures, and then applying the model to a specifically oriented grain 

of material in a homogenous equivalent matrix (HEM) consisting of a single 

phase that has the properties of the entire material. In this fashion the reactions of 

the oriented particle to an applied load, within the constraints of the rest of the 

material, can be predicted. With computer simulations this can, through an 

iterative process, accurately predict the results of each grain orientation to an 
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applied load, the hkl specific elastic strains, and compare it to experimental results 

[59, 63-69]. Although it is more difficult due to higher crystal asymmetry, this 

method can be applied to hexagonal close packed materials, such as beryllium and 

magnesium [30, 70-74], as well as ongoing programs to expand this method to 

lower symmetry materials, such as uranium. Keen understanding of slip, twinning 

and other deformation mechanisms must be in hand before this model will 

accurately predict behavior in lower symmetry metals, thus, this is the subject of 

ongoing preliminary deformation studies [75, 76]. 

Although efforts are ongoing to apply these EPSC models to two phase 

materials, right now this has been applied only to materials with voids, with  an 

Eshleby inclusion consisting of a combined grain and void inclusion [77]. For 

composite materials, simple finite element models of a representative 

microstructure can accurately predict macroscopic strains as well as, due to the 

bulk averaging nature of in situ neutron diffraction measurements, elastic lattice 

parameter strains [78].  

As mentioned, the ability of neutron diffraction to record unique 

diffraction patterns from each phase of a composite material, allows one to 

generate separate strain measurements for each phase in the material and 

investigate load sharing mechanisms between phases in composites. Using 

diffraction to study multi-phase materials such as composites has been frequently 

used since the 1960’s [35, 36, 56, 57, 79-83]. More uniquely, in situ diffraction 

has been used to study materials that are not normally considered classic 

composites, such as yielding in reinforced or semicrystalline BMG’s [78, 84, 85], 



 37

load sharing in γ -γ’ type superalloys [86, 87], as well as interphase load sharing 

in various steels [66, 68].  

 

4.2  Fatigue Studies 

The use of ex situ and in situ X-rays to study fatigue has been around since 

the late 1930’s [52, 54, 88]. While results show clear effects of fatigue, the results 

are limited by studying surface effects. More systematic studies involving X-rays 

to study tension-tension and tension-compression fatigue in steels have been 

undertaken [89, 90]. Again these studies look at the effect of surface residual 

stresses and the effect of these stresses on the fatigue life, rather than bulk 

changes in the lattice response as fatigue progresses. 

To date, there has been little published on the use of neutron diffraction to 

study fatigued materials. Previous studies using neutrons have explored only eight 

cycles [65] or have compared the internal strains between different samples that 

had been fatigued outside the neutron instrument (ex situ) [91]. The former 

experiment showed the development of approximately 150 με over the first 8 

cycles of low-cycle fatigue. The latter showed residual strain development of 

roughly 500 με  and the subsequent relaxation to no residual strain over the 

course of 90% of the fatigue life of a high-cycle (stress controlled) full reversal 

fatigue test. However, since the second study was based on experiments 

performed ex situ, the strain development was not tracked across a single sample. 
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Additional studies using stroboscopic methods have explored the 

development of internal stresses due to mechanical and thermal fatigue [92-95]. 

These methods are useful in measuring average strains across the same condition 

(stress or temperature) over many cycles, especially when the cycles and hold 

times are much shorter than the time it takes to collect a diffraction pattern. 

However, they are insensitive to large changes over a small number of cycles, 

especially over current “typical” diffraction time. This technique becomes much 

more viable as neutron flux increases with the next generation of spallation 

sources, such as the Spallation Neutron Source, and its next generation strain 

diffractometer, VULCAN [21]. Similarly the addition of a fatigue rated MTS load 

frame and a high speed image plate [96] on the 1ID beamline at the APS [23] will 

add very high speed fatigue and image recording capabilities, allowing for real 

frequency (1-10 Hz) fatigue experiments and potential for even higher frequency 

stroboscopic measurements. 

There have been a number of studies using in situ diffraction to look at 

stress induced phase changes, especially martensitic type, during fatigue. In 

particular the behavior of shape memory alloys [97, 98]  has been studied over the 

course of a small number of cycles, showing both texture and phase changes as 

cycling  progresses. Studies on stress induced phase changes in austenitic stainless 

steel have been undertaken [99, 100], however, the fatigue has generally been 

accomplished prior to the in situ loading to look at the load sharing between 

austenitic and martensitic phases as the phase fraction changes with increasing 

fatigue life. Similarly, Ultimet, a cobalt based superalloy, has been the subject of 
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both X-Ray and neutron diffraction based studies on phase change during fatigue 

[101-103]. Significantly, both low cycle and high cycle fatigue has been studied, 

as well as large numbers of cycles. Although the primary focus of these studies 

has been the mechanism and result of phase changes during fatigue, the 

progression of internal strains have been noted as well.  

 

4.3 Texture 

Texture describes the orientation of a polycrystalline solid [25-27]. The 

concept has been applied to geologic materials since the early 1800’s [104], when 

it was realized that the method of formation affected the orientation of grains in 

rocks. The term texture was applied by 1850 [105]. Initial studies of texture were 

simply based on observing and counting grains of certain orientation in 

micrographs. X-ray diffraction intensity was used to study texture in metals in the 

1920’s [106]. Quantitative studies of texture using X-rays occurred in the late 

1940’s with the technique of using Geiger counters and goniometers [107, 108], 

roughly coincident with better understanding of anisotropy’s role in in situ 

loading [48-50].  

 Application of neutron diffraction to texture measurement began in the 

1950’s [109] and continues until today [28, 29], spurred on by the development of 

high intensity neutron sources, advanced instrumentation and the inherent 

advantages of neutrons described in previous chapters.  
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4.4 Nonlinear Resonant Ultrasound Spectroscopy  

Nonlinear resonant ultrasound spectroscopy (NRUS) is a specialized 

subset of resonant ultrasound spectroscopy (RUS) techniques, often used for 

evaluating elastic constants in materials [110-114]. By measuring the elastic 

resonance frequencies of a sample using small perturbations created by ultrasonic 

frequencies, the elastic tensor of a solid can be extracted. This method works well 

with homogenous solid samples of precise dimensions, such as single and 

polycrystalline metals in an undamaged state [115-119]. However, recent 

advances coupling RUS techniques with finite element methods have allowed 

determination of elastic constants in more complex materials like composites[120, 

121], bones [122], and  rocks [123, 124]. Similarly, inelastic effects can be 

characterized using RUS such as microcracks in ceramics [125, 126] and internal 

friction in metal hydrides [127].  

Studies on less coherent materials such as rock and bone using RUS 

determined that there were a host of non-linear effects that take place in materials 

that are inhomogenous or damaged [128-131]. As resonant frequencies were 

driven to higher powers, the resonant peaks shifted in damaged materials allowing 

for a qualitative measurement of damage. An obvious application of this 

technique is to progressively fatigued materials, however only simple studies on 

materials such as concrete [130] and bone [122] have been accomplished to this 

point.  
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4.5  Infrared Thermography 

The relationship between temperature and deformation has been known 

for centuries [132]. Elastic and inelastic deformations of materials produce 

thermal effects that can be related to their stress and strain state. Starting with 

early recognition of the role of plastic deformation creating heat in worked objects 

[133], to the study of the thermoelastic effect in metals [134, 135], to the 

quantification of the temperature rise at a crack tip [136], research has built to the 

point of understanding all factors generating heat during deformation and fatigue 

processes. With recent advances in equipment, infrared thermography can be used 

as a quantitative NDE technique for monitoring fatigue tests in situ [137-140]. 

The IR camera records the intensity of infrared waves emanating from a sample. 

The intensity of the IR radiation scales with the temperature of the sample. 

Fatigue damage results from the elastic and inelastic behavior in the material. 

Elastic and inelastic materials have distinct temperature signals, which can be 

monitored in-situ by IR thermography. Excellent background on the technique 

and cutting edge methods of applying IR thermography to fatigue are available 

through the work of Jiang and Yang [102, 103, 137-147]. 
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Chapter 5 

In Situ Loading Experiments 

 

5.1  Background Experiments 

Two relevant, but unpublished, studies conducted by the author and 

collaborators are instructive background to the HAYNES 230 results presented: a 

recently completed study on the in situ loading behavior in HASTELLOY C-2000 

alloy [148], and a study on in situ loading of particulate reinforced aluminum 

alloys [149]. HASTELLOY C-2000 is a very similar alloy to HAYNES 230. It is 

a FCC solid-solution strengthened nickel-based superalloy, however, without the 

benefit of carbide strengthening. Figure 5.1 shows the in situ loading behavior of 

HASTELLOY C-2000. The internal strains are typical for an FCC alloy [59, 69]. 

The elastic anisotropy follows convention with the 200 direction taking up most 

of the elastic strain after yield, while the 311 takes up somewhat less elastic strain. 

The 111, 220, and 331 directions take up very little of the elastic strain. Upon 

unloading, the residual strains balance out with the 200 direction being very 

positive, while the 311 direction being approximately zero and the remaining 

directions having negative residual strain. This is absolutely standard behavior for 

FCC metals, showing the elastic anisotropy expected and seen in single-phase 

alloys like stainless steel, aluminum, and nickel [59, 69].  
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Figure 5.1: Internal strains generated during the in situ tension test, axial 
direction in HASTELLOY C-2000 alloy. 
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The second study is of a precipitate-strengthened 7075 aluminum alloy 

reinforced with approximately 20% MgZn2 precipitates. Shown in Figure 5.2, 

there is a very homogenized lattice response in both the matrix and the carbide. 

Essentially, the strengthening mechanism is such that the MgZn2 takes up all the 

elastic strain, while the aluminum matrix behaves almost completely plastically. 

This homogenization has its roots in the generally isotropic behavior of aluminum, 

especially when compared to that of nickel. The Zener Anisotropy Ratio is 

defined as: 

 

A = 2C44 / (C11–C12)     (5.1) 

 

With C11, C12 and C44 being material stiffness’. A is 1.22 for Al, making it 

virtually isotropic, as compared to 2.33 for nickel alloys and 2.5 on average for 

FCC metals [150]. Despite the isotropic behavior, the load sharing is completely 

consistent with the behavior of metal-matrix composites under in situ loading [35, 

36, 79, 81-83].  

 

5.2  Results 

This chapter involves in situ tension and compression studies. These experiments 

provided a baseline measurement for fatigue experiments (Chapter 6), detailing 

the behavior of the alloy in a single cycle of fatigue. The carbides present in the 

alloy not only affected the loading behavior, but they produced a tension 

compression asymmetry, which motivated the present study of the 
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Figure 5.2: Internal strains generated during the in situ tension test, axial 

direction in 7075 aluminum alloy. 
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carbide-matrix interaction in this material. In situ tension and compression 

experiments using neutrons were performed at the SMARTS diffractometer at 

LANSCE while an additional in situ tension experiment, using high-energy X-

rays, was performed at the 1-ID beamline at the APS. 

For the neutron experiment, cylindrical tensile specimens were cut from a 

13 mm thick plate, with a gauge length of 50 mm and a diameter of 6 mm. The 

specimens had a surface roughness of 0.2 μm along the gauge-length section. The 

ends of the specimens were threaded with a ½” UNC 13 thread [7]. Compression 

specimens were cylinders of 20 mm in length and 10 mm in diameter [8]. The in 

situ X-ray sample was a small dogbone tensile sample, 1.5 mm thick by 2 mm 

wide. 

Both single-peak fitting and Rietveld refinement were performed on the 

diffraction patterns to yield the hkl-specific and lattice-parameter strains, 

respectively [16]. All strains reported below are relative to the starting condition 

of each sample under a nominal holding stress of 20 MPa in tension and -10 MPa 

in compression. Diffraction patterns are shown in the Chapter 3, Figures 3.1, 3.8, 

and 3.11. In the neutron data, the carbide peak was only resolvable in the 

transverse diffraction bank, due to being overwhelmed by background scattering 

in the axial direction. The experimental carbide data from the neutron experiments 

presented is specific to this reflection and is not based on Rietveld-generated 

lattice-parameter strain. As explained previously, despite the cleaner diffraction 

patterns for the carbide reflections recorded in the in situ X-ray diffraction 

experiment, positioning uncertainty during the experiment led to large errors in 
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the measurement of strain. Thus, the only carbide lattice parameter strain 

presented from the X-ray experiment is in the axial direction.  

In the in situ neutron experiment in tension, the specimen was loaded 

incrementally from 20 MPa to 700 MPa and then unloaded to 20 MPa. The 

loading was paused for 10-15 minutes after each stress increment to collect 

diffraction patterns. Measurements were made at twenty-two stresses during 

loading and three during unloading (Figure 5.3). Similarly, in compression, a 

sample was loaded from 10 MPa to 605 MPa, pausing for diffraction patterns at 

thirty-nine stresses during loading and four during unloading (Figure 5.3). Finally, 

during the X-ray experiment, the sample was loaded from a nominal holding 

stress of 10 MPa in approximately 10-20 MPa increments to 630 MPa and then 

unloaded to 10 MPa in 6 steps. Loading was paused for approximately 5 minutes 

at each load level for diffraction patterns to be recorded. 

Figure 5.3 shows the macroscopic stress versus strain curve during the in 

situ tension and compression experiments on SMARTS. Beyond the macroscopic 

yield stress of 390 MPa, creep occurred at a constant load during the hold time 

while the diffraction data was collected, resulting in the plateaus visible in Figure 

5.3. The total macroscopic strain during the tension test was just over 15%, while 

it was approximately 7% in compression.  

The lattice strains for 5 hkl reflections measured parallel and perpendicular 

to the load are plotted against applied stress in Figures 5.4 and 5.5, respectively. 

With respect to the tension-tension fatigue data presented in Chapter 6, this 

experiment corresponds to a single cycle of fatigue. The differences in the plane- 
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Figure 5.3:  Macroscopic stress versus strain curve of HAYNES 230 during the 
in situ tension and compression tests.  
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Figure 5.4: Internal strains generated during the in situ tension test, axial 
direction. 
 
 



 50

0

100

200

300

400

500

600

700

-1200 -1000 -800 -600 -400 -200 0 200 400

111
200
220
311
331

St
re

ss
, M

Pa

Strain, Microstrain

HAYNES 230

 
 
Figure 5.5:  Internal strains generated during the in situ tension test, transverse 
direction. 
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specific moduli are apparent in Figure 5.4. In the axial direction, parallel to the 

applied stress, the 111, 220, and 311 reflections have moduli of 284, 248, and 221 

GPa respectively, contrasting with the 162 GPa moduli of the 200 direction. The 

200 reflection exhibits the most strain at the peak stress of 700 MPa. Notably, in 

both the axial and transverse directions, the residual strains are overwhelmingly 

positive. This is distinct from the typical balance of residual lattice strains upon 

unloading exemplified by the C-2000 data presented in Figure 5.1. It is also 

notable that the behavior is distinct from the typical composite load-sharing 

behavior seen in the 7075 Al alloy seen in Figure 5.2. The behavior of the 200 

matrix hkl strains in the X-ray and neutron experiments are presented in Figure 

5.6. Despite the larger error bars in the X-ray experiment (approx. 400 με for the 

matrix, 1000 με for the carbide) the data shows the same results, and the use of 

carbide data from the X-ray experiment is justified. 

The lattice strains for the compression experiment in the axial and 

transverse directions are plotted in Figures 5.7 and 5.8, respectively. Since the 

peak stress was 600 MPa in compression, the magnitudes of the residual strains 

are not comparable to the in situ tension test, however, the sign of the residual 

stresses upon unloading are significant. In the axial direction, the residual strains 

are mostly positive, while in the transverse direction, they are mostly negative. 

This contrasts to the overwhelmingly positive residual strains in both directions in 

tension (Figures 5.4 and 5.5).  
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Figure 5.6: Comparison between the 200 strains from the neutron and X-ray in 
situ loading experiments. 
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Figure 5.7: Internal strains generated during the in situ compression test, axial 
direction. 
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Figure 5.8: Internal strains generated during the in situ compression test 
transverse direction. 
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Further investigating the behavior in tension and compression, Figure 5.9 

compares the lattice parameter strains for compression and tension on the same 

axis. The qualitative trend of the matrix in compression is completely different 

than in tension. The compressive behavior suggests that the matrix is shedding 

load and behaving plastically. In tension, the matrix is picking up load and 

behaving elastically. This trend suggests a radically different method of 

accommodating plastic strain in tension than in compression. 

The M6C carbide was found to have a lattice parameter of 11.09 Å. 

Despite its 1-5% volume fraction, there were multiple M6C carbide peaks visible 

in both the transverse and axial diffraction patterns. However, during the in situ 

neutron experiment, only the 333 carbide peak in the transverse bank provided 

adequate statistics to extract strain data. This strain data is plotted along with the 

lattice-parameter strains in the 200 reflection in the matrix (Figure 5.10). At the 

maximum load of 700 MPa, the strain in the 333 carbide peak is approximately    

-1600 με in the transverse direction, as compared to -1100 με in the 200 peak of 

the matrix. This 200 reflection exhibits much more strain than any other matrix 

reflection. 

  In the axial direction in tension, the X-ray experiment provided carbide 

data is plotted with the lattice parameter matrix strain in Figure 5.11. Here, a 

similar behavior in the lattice and the carbide is observed, with the carbide 

initially taking elastic strain upon the macroscopic yield at 390 MPa, then, at 

around 420 MPa, the carbide data breaks upward, while the matrix starts carrying 

elastic strain. The macroscopic yield also coincides with an inflection in the 
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Figure 5.9: Tension-compression asymmetry in the elastic lattice parameter 
strains in the axial direction.  
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Figure 5.10: The 200 matrix strains and the 333 carbide strains in the transverse 
direction during the in situ tension experiment. 
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Figure 5.11: The lattice parameter matrix strains, from the neutron experiment, 
and the carbide strains, from the X-ray experiment, in the axial direction during 
the in situ tension experiment. 
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matrix strains. Typical composite behavior would show the matrix behaving 

plastically at yield with the reinforcement behaving elastically. While this 

behavior begins to occur at the macroscopic yield strength, the opposite behavior 

occurs at 420 MPa.  

The carbide behavior in compression, however, is quite distinct to that in 

tension. Figure 5.12 displays the matrix behavior in the transverse direction in 

compression along with that of the 333 carbide. Here we see that at the 

macroscopic yield point of 390 MPa, the matrix phase no longer accumulates 

elastic strain, indicating that it is behaving plastically. At this same stress the 

carbide begins to accumulate elastic strain, thus, taking the bulk of the load. 

Unfortunately, there is no corresponding data from the axial direction as the 

carbide peaks are too faint to use in calculating strain.  

 

5.3  Modeling 

Finite element modeling (FEM) was performed using ABAQUSTM 

software [151]. The carbide particles were modeled as cubes embedded in a 

matrix (Figure 5.13), with the carbides making up 4% by volume of the structure. 

The mesh was generated using second order 20 node brick elements with reduced 

integration points. Carbide volume percentage is based on both microscopy and 

the diffraction pattern, using the phase fraction analysis in GSAS. This model has 

previously been successful in capturing the behavior of the elastic lattice-

parameter strains in particle-strengthened composites [78]. The matrix properties 

were estimated from the bulk properties of the alloy, while the carbide’s 
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Figure 5.12: The lattice-parameter matrix strains and the 333 carbide strains in 
the transverse direction during the in situ compression experiment. 
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Figure 5.13: A schematic of the representative microstructure used to generate 
the FEM of the carbide and matrix interaction.  



 62

properties were estimated from similar carbides (Table 5.1) [152]. The matrix was 

modeled with an elastic-hardening bilinear curve, while the carbide was assumed 

to behave elastically. Each model used the experimental load levels as the applied 

load. The average of the FEM elastic strains in each element at each load point in 

the loading axis (3 direction) is analogous to the experimental lattice-parameter 

strains measured in the axial direction during loading. The average of the FEM 

strains in both the 1 and 2 directions for each element is analogous to the 

transverse lattice-parameter strains measured from the in situ neutron experiments.  

Residual strains present in HAYNES 230 in the as-received state were modeled 

by starting the simulation at a temperature of 600 ºC and cooling it to room 

temperature before load was applied. This arrangement mimics the thermal 

residual strains present due to differences in thermal expansion between the 

carbide and the matrix. 

 

 

Table 5.1: Materials properties used in the FEM. 
 Elastic Modulus 

(GPa) 
Yield Strength 

(MPa) 
σ at ε = 47% 

(MPa) 
α  

(mm/mm/ºC) 
Matrix 211  390  840 13 x 10-6 
Carbide 286 - - 6 x 10-6 
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5.4  Discussion 

In the compression test, HAYNES 230 exhibits typical composite 

behavior in the lattice-parameter strains during loading. The behavior is consistent 

with the 7075 Al experiment shown in Figure 5.2, existing studies [79, 82, 83] 

and known composite FEM’s [78]. As shown in Figure 5.14, little lattice-

parameter strain accumulates in the matrix after the macroscopic yield of 390 

MPa. Furthermore, the matrix behavior matches that of the FEM model very well. 

To preserve the force balance, this trend implies that the carbides take up 

additional stress (elastic strain) in the lattice after macroscopic yield. The strain in 

the 333 carbide reflection in the transverse direction exhibited this trend, which 

agreed well with the FEM results. It should be noted that there is a small, but 

significant difference between the experimental and predicted data in the matrix 

in the transverse direction. The calculated response of the matrix accumulates less 

elastic strain in the transverse direction than observed.  

At this stage, the model, other than thermal stresses, contains nothing capable of 

producing tension-compression asymmetry. Thus, the calculated lattice response 

is necessarily similar in tension and compression. However, as previously 

illustrated (Figure 5.9), the measured lattice response to applied tension is 

strongly disparate from the response to compression. While the thermal residual 

strains will cause a small disparity in the behavior of tension and compression in a 

typical composite, the difference shown in Figure 5.9 cannot be explained by 

residual strains alone. As shown in Figure 5.15, in tension, the matrix accumulates 

elastic strain in the axial direction at an increasing rate 
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Figure 5.14: Experimental data vs. FEM for the in situ compression experiment. 
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Figure 5.15: Experimental data vs. FEM for the in situ tension experiment, 
neutron data.  
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following macroscopic yield at 390 MPa, while the model predicts (and the 

behavior in compression shows) that little elastic strain should evolve in the 

matrix after yield. In contrast, the transverse response of the matrix was very well 

captured by the model. Again the 333 carbide peak in the transverse direction is 

the only experimental carbide data available from the in situ neutron test, but the 

statistics of this data are quite poor (~500 με error bars). The general trend in the 

experimental carbide data agrees with the FEM prediction. 

In the axial direction in tension, however, we can add the carbide data 

from the in situ X-ray experiment, Figure 5.16. The experimental carbide data 

follows the predicted curve through the macroscopic yield of 390 MPa to 

approximately 420 MPa. Here the carbide behavior deflects from the predicted 

path and no longer accumulates elastic strain. Similarly, the experimental data for 

the matrix deviates from the predicted path at 420 MPa as well. The matrix 

clearly begins to accumulate elastic strain where the model predicts that it would 

shed strain.  

The tension-compression asymmetry is consistent with carbide debonding 

and cracking in tension, which effectively prevents the expected load sharing 

between the carbide and the matrix in the axial direction. Perpendicular to the 

applied tensile load, Poisson’s compression occurs, thus, no debonding or carbide 

cracking takes place and the load transfer is as expected, Figure 5.17. The tensile 

behavior discussed here is consistent with previous in situ neutron results showing 

debonding in continuous fiber reinforced composites when loaded perpendicularly 

to the fiber direction [83]. Similarly, in compression, neither debonding nor  
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Figure 5.16:  Experimental data vs. FEM for the in situ tension experiment in the 
axial direction with both neutron and X-ray data.  
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Figure 5.17: Proposed debonding mechanism in tension and compression. 
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cracking occurs parallel to the applied load. However, perpendicular to the 

applied compressive load, Poisson’s tension occurs, which may be too weak to 

lead to debonding, or may only cause small amounts of debonding. Weak 

debonding may be responsible for the subtle differences between the experimental 

and predicted behavior of the matrix in the transverse direction during the 

compression test (Figure 5.14).  

Careful investigation of the inflections in the in situ lattice parameter 

strains in the matrix and the carbides, along with a comparison to the FEM, 

reveals information about when debonding or cracking may occur. Most clearly 

shown in Figure 5.18, both the carbide and the matrix deviate from elasticity as 

expected at the macroscopic yield strength of 390 MPa. From this point forward 

the carbide strains follow the path predicted by the FEM until around 420 MPa. 

Similarly, it is here that the matrix phase changes from shedding elastic strain to 

accumulating it. Thus, it is possible to conjecture that the carbides debond from 

the matrix at 420 MPa.  

 Indeed, the carbide cracking and debonding is confirmed by microscopy 

of a cross section taken parallel to the loading direction in a sample loaded to 700 

MPa, Figure 5.19. Here both debonding around carbides and some carbide 

cracking is present. Contrast this with the micrograph taken perpendicular to the 

loading direction of the sample, Figure 5.20, no carbide cracking is visible, and 

minor debonding is visible. This debonding is likely due to carbides being 

sectioned above or below their centerline, thus is not due to debonding in the 

direction perpendicular to the load. 
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Figure 5.18: Experimental lattice strains in tension vs FEM model with 
macroscopic yield strength and proposed carbide debonding stress marked.  
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Figure 5.19: Micrograph of HAYNES 230 perpendicular to the applied load of 
700 MPa, displaying carbide debonding and cracking.  



 72

 

 
Figure 5.20: Micrograph of HAYNES 230 parallel to the applied load of 700 
MPa, displaying carbide some debonding, but no cracking.  
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5.5  Conclusions 

In contrast to the clear composite loading behavior of 7075 Aluminum and 

the single phase anisotropic behavior of HASTELLOY C-2000, the loading 

behavior of HAYNES 230 is unusual in tension and composite-like in 

compression. Modeling the expected behavior of HAYNES 230 also confirms 

that the tensile behavior is unusual. Carbide debonding and cracking in tension, 

but not in compression, explains this tension-compression asymmetry. In situ X-

ray diffraction explicitly shows the carbide accepting and then shedding load as 

debonding occurs, while microscopy confirms that debonding and cracking have 

occurred. These mechanisms appear to occur at 420 MPa, just past the 

macroscopic yield of 390 MPa. 
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Chapter 6 
In Situ Fatigue Experiments 

 

6.1  Introduction 

As shown in Chapters 3 and 4, neutron diffraction provides a 

nondestructive technique to evaluate the intergranular strain development due to 

mechanical loading in a material. Coupling neutron diffraction with a hydraulic 

testing machine, as at the Spectrometer for Materials Research at Temperature 

and Stress (SMARTS) at the Los Alamos Neutron Science Center (LANSCE), 

allows monitoring of internal strains during uniaxial or cyclic loading. Since the 

mechanisms of damage in fatigue are not completely understood, it is natural to 

use the in situ loading capabilities of an instrument like SMARTS and ENGIN-X 

to explore the changes in internal strains during cyclic loading.  

 

6.2  Tension-Tension Experiment 

Cylindrical test specimens were cut from 13 mm thick plate, with a gauge-

length of 50 mm and a diameter of 6 mm. The specimens had a surface roughness 

of 0.2 μm along the gauge-length section. The ends of the specimens were 

threaded with a ½” UNC 13 thread [7]. 

The in situ loading measurement, to 700 MPa in tension, described in 

Chapter 5, serves as a single cycle fatigue test and was the baseline for 

comparison. Figure 5.1 displays the macroscopic loading for this experiment. The 
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first fatigue experiment was a complete fatigue test at an R ratio of 0.1 (σmin/σmax, 

where σmin and σmax are the minimum and maximum applied stresses, 

respectively) and a σmax of 700 MPa. Testing was paused approximately every 

half order of magnitude to take a diffraction pattern at σmin and σmax. Cycling 

occurred at a frequency of 10 Hz between diffraction patterns. Diffraction patterns 

were taken for 45 minutes, instead of the 15-minute patterns taken during the 

loading experiment. Despite the longer count time, the carbide peaks were too 

indistinct to yield strain data. This test was designed to go to failure. 

Unfortunately, the grips failed at 45,000 cycles, invalidating the subsequent 

diffraction measurements, due to the loss of the critical sample positioning. The 

grips were replaced and the fatigue test continued. The sample failed at 50,613 

cycles. The last measurement prior to the failed grips occurred at 42,417 cycles, 

which corresponds to 84% of the fatigue life of this sample.  

The second fatigue experiment was a 110 cycle fatigue test under the same 

conditions as the first: an R ratio of 0.1 and a σmax of 700 MPa. Diffraction 

patterns were taken at 20 MPa before the test began and after the 110 cycles were 

completed. During the experiment, a diffraction pattern was taken at σmax for each 

cycle, for a total of 110 total measurements. This experiment was designed to 

focus on the residual strain development during the initial stages of fatigue. 

 

6.3  Results for the Tension-Tension Experiment 

Figures 6.1 and 6.2 display the axial and transverse internal strains in the 

matrix in the 111, 200 and 311 directions versus cycle during the complete fatigue  
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Figure 6.1: The hkl strains versus cycle at 700 MPa in the axial direction for the 
complete fatigue test. 
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Figure 6.2: The hkl strains versus cycle at 700 MPa in the transverse direction for 
the complete fatigue test. 
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test. The strains plotted are at an applied load of 700 MPa. For clarity, the initial 

strains for each reflection are offset to zero. Similarly, Figures 6.3 and 6.4 show 

the development of axial and transverse internal strains in the same three 

reflections at an applied load of 70 MPa. 

Figure 6.5 shows the stress versus internal strain data in the axial direction 

for the second test, 110 cycles of fatigue. The data is not a fully formed curve as 

patterns were taken only before the test began, at the peak load for each cycle, and 

then, after the last cycle was completed. The flat section at the top of each curve 

represents the scatter in the data taken at the peak load. The strain measurements 

at the peak load and the endpoints of the experiment are consistent with those of 

the in situ loading test, as shown in Figure 6.6. This comparison is made in Table 

6.1. Table 6.2 presents the same comparison for the transverse direction.  

 

6.4  Discussion of the Tension-Tension Experiment 

Figure 6.1 displays the internal strains in various hkl directions versus 

cycle for the axial direction at 700 MPa during the complete fatigue test. There is 

a clear relaxation in the internal strains as the initial stages of fatigue progress. 

The magnitudes of the strains are fairly small, less than 100 με, but they are 

significant when compared to the ~20 με error bars. Strains relax over the first 

1,000 cycles, but then remain constant for the remainder of the test. The data 

scatter increases at larger number of cycles. The strain in the 311 reflection 

returns to its original value as the test approaches 85% of the fatigue life. It is 
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Figure 6.3: The hkl strains versus cycle at 70 MPa in the axial direction for the 
complete fatigue test. 
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Figure 6.4: The hkl strains versus cycle at 70 MPa in the transverse direction for 
the complete fatigue test. 
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Figure 6.5:  The hkl strains in the axial direction during the 110 cycle fatigue test. 
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Figure 6.6:  Comparison between 1 cycle of fatigue and 110 cycles of fatigue in 
the 111 and 200 axial directions. 
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Table 6.1: The hkl strains at 700 MPa and upon unloading in the axial direction 
for the single cycle and the 110 cycle test. 

“Single Cycle” experiment 110 cycle experiment 
Reflection 

με at 700MPa 
με after 

unloading 

avg. με at 

700MPa 

με after 

unloading 

111 3076 ± 32 -58 ± 32 3062 ± 37 59 ± 38 

200 5663 ± 53 1063 ± 50 5384 ± 60 998 ± 55 

220 3114 ± 114 135 ± 112 2786 ± 107 -92 ±  109 

311 3934 ± 52 285 ± 51 3743 ± 58 252  ±  55 

331 2764 ± 122 -344 ± 122 2383 ± 129  -459 ± 123 

 

 

 

 

 

 

 

 

Table 6.2: The hkl strains at 700 MPa and upon unloading in the transverse 
direction for the single cycle and the 110 cycle test. 

Single cycle experiment 110 cycle experiment 
Reflection 

με at 700MPa 
με after 

unloading 

avg. με at 

700MPa 

με after 

unloading 

111 -709 ± 40 25 ± 42 -560 ± 32 80 ± 33 

200 -1114 ± 43 258 ± 42 -1198 ± 33 180 ± 35 

220 -874 ± 27 92 ± 28 -737 ± 36 103 ±  34 

311 -788 ± 32 216± 32 -711 ± 34 215  ±  34 

331 -695 ± 71 135 ± 71 -501 ± 68 250 ± 67 
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unclear whether this is significant in the context of the scatter seen in the other 

peaks. Figure 6.2 shows the development of internal strains with increasing cycles 

at 700 MPa in the transverse direction. The trends in the transverse direction are 

similar to the axial direction with relaxation of internal strains as fatigue 

progresses.  

Figure 6.3 shows the internal strains in the axial direction at a load of 70 

MPa as a function of number of fatigue cycles. In this case the 111 reflection 

remains roughly constant, while the strain in the 200 direction increases and the 

strain in the 311 direction decreases. Figure 6.4, showing the behavior of the same 

three reflections in the transverse direction, displays similar trends; however the 

strains in both the 111 and 311 directions decrease. Since there were no 

measurements taken after 85% of the fatigue life, no generalizations can be made 

about the behavior of the internal strains as failure is approached.  

The trends seen in Figures 6.1 through 6.4 are consistent with slight cyclic 

hardening or softening in individual crystallographic directions as fatigue 

progresses. It is likely that any larger responses in the internal strains to fatigue 

are masked by the large plastic strain achieved in the first cycle. Future 

experiments should explore the internal response to tension-tension fatigue at 

lower stress ranges. 

Interestingly the trends displayed during the experiment suggest that the 

elastic modulus is increasing slightly in each crystallographic direction as fatigue 

progresses. The effect is subtle and is based on only the end points, however, this 

effect has been seen before in stainless steel [99]. No convincing reasoning is 
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offered for this effect at this time; the effect is subtle and does not have a large 

statistical basis. However, a possible cause is the effect of continuing damage as 

fatigue progresses, particularly cracking and microvoid formation. This would 

effectively change the surrounds and constraints that each crystal interacts with. If 

we were to apply an EPSC type model to this, the effect would be that the HEM 

would be changing and weakening as fatigue progresses. This change may result 

in an increase in elastic modulus in various crystallographic directions. Again, 

carefully exploring this effect, perhaps at lower stress ranges where the changes in 

hkl strains will be greater, will allow for a better understanding and a basis for 

comparison for future modeling efforts. This is beyond current modeling 

capabilities, but efforts are underway to improve the EPSC models to include two 

phase materials and changes in the properties of the HEM as the model progresses. 

The results summarized in Table 1 show, in every direction except the 220, 

a steeper unloading curve from the 110 cycle experiment than in the loading 

experiment. This suggests that the modulus change is visible in the early stages of 

fatigue. Again, the error bars on the measurements are significant compared to the 

change in modulus, but this issue merits further exploration. Figure 6.7 compares 

the internal strains versus fatigue cycle in the 200 axial direction for both the 110 

cycle and the complete fatigue test. For clarity, the beginning strain, at 1 cycle, is 

offset to the same point for both experiments. In the complete fatigue test, a clear 

relaxation of 70 με is revealed over the first 100 cycles. The scatter in the 110 

cycle test masks any clear trends. However it is clear that the data in the 110 cycle 
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Figure 6.7:  Strain versus cycle for 110 cycle and complete test in the 200 axial 
direction. 
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test is consistent with that taken over the complete fatigue test despite much 

higher scatter. 

 

6.5  Tension-Compression Experiment 

A complementary tension compression experiment took place at the ENGIN-X 

diffractometer at the ISIS accelerator. Cylindrical test specimens were used, cut 

from 13 mm thick plate, with a gauge-length of 50 mm and a diameter of 6 mm. 

A reduced section of 5 mm diameter and 12 mm in length was cut into the 

samples to avoid buckling by achieving a 2.5:1 gauge length to diameter ratio. 

The specimens had a surface roughness of 0.2 μm along the gauge length. 

 The fatigue experiment was a performed under strain controlled conditions at an 

R ratio of -1 (εmin/εmax, where εmin and εmax are the minimum and maximum 

applied strains, respectively) and a εmax of 0.75%. As shown in Figure 6.8, testing 

was paused periodically to take a diffraction pattern at four points along the cyclic 

stress-strain curve: the maximum applied strain, zero stress (tensile residual 

strain), maximum compressive strain, and zero stress (compressive residual 

strain). All measured strains are taken with respect to the initial position of zero 

strain. Cycling occurred at a frequency of 0.5 Hz between diffraction patterns. 

Diffraction patterns were taken for 12 minutes. The test was expected to run 

approximately 10,000 cycles; however alignment issues caused the sample to 

buckle during the course of the experiment. The buckling occurred outside the 

diffraction volume and the strain gauge. This caused the sample to fail 

prematurely outside the gauge volume, but the desired fatigue conditions were 
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Figure 6.8:  Schematic of  the cyclic stress-strain curve during the tension-
compression fatigue experiment. 
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achieved in the area being measured. The diffraction patterns were similar to 

those of taken on SMARTS (Figure 3.1). Again, the only carbide peak resolvable 

was the 333 reflection in the transverse detectors. 

 

6.6 Results and Discussion of the Tension-Compression 

Fatigue Experiment 

 Figure 6.9 displays the hkl specific strains vs fatigue cycles at the 

maximum tensile strain for 5 crystallographic directions. The qualitative trends of 

accumulation of elastic strain are very similar to that shown in both the in situ 

loading experiment and the 110 cycle tension-tension fatigue test, Figures 6.4 and  

6.5, respectively. The 200 direction accumulates the most elastic strain, the 311 

direction, the next most, with the 111, 220 and 331 directions accumulating 

similarly small amounts of strain. However, the total amount of strain 

accumulated in each direction over the course of the first 100 cycles is much 

greater than seen in the tension-tension fatigue experiment. While the total change 

in elastic strain during the tension-tension experiments was less than 100 με in all 

directions, the tension-compression experiment shows changes in elastic strains 

ranging from 500 με in the 331 direction to 1500 με  in the 200 direction. After 

the initial accumulation over the first 100 cycles, the strains appear to relax 

slightly over the remainder of the experiment. As mentioned, the total cycles 

explored were only 15% of the fatigue life, so no generalizations can be made 

about the behavior of internal strains at longer fatigue life.  
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Figure 6.9: The hkl strains versus cycles of fatigue at the maximum tensile strain, 
axial direction. 
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Exploring the 200 direction more carefully, shown in Figure 6.10, the 

behavior around the cyclic stress strain curve can be determined. The qualitative 

behavior is similar for each reflection, but the magnitudes are less per the elastic 

anisotropy seen in the loading experiment and Figure 6.9. The trends in elastic 

strain are consistent with the applied strain and the position on the cyclic stress-

strain curve. The largest strains are found at the maximum and minimum applied 

strain. The tensile and compressive residual strains are much smaller in magnitude 

and, as expected, consistent with elastic unloading from the maximum applied 

strains. The tensile and compressive elastic strains measured are not exactly 

symmetric, shown in Figure 6.11. This suggests that the tension-compression 

anisotropy described in Chapter 5 affects the residual strains in this experiment. 

The maximum applied strain is not much more than that at which debonding 

occurs, so the differences in tension and compression are not large.  

In the transverse direction, Figure 6.12, the behavior is consistent with that 

seen in the in situ loading experiment shown in Figure 5.5. Additionally, the 

carbide data shows the same effect seen in the loading experiment, with the 

carbide taking far more strain in the transverse direction than the matrix. 

Unfortunately there is no axial carbide data as the peak was not resolvable in the 

axial diffraction pattern. The strain accumulation in the carbide looks to be 

consistent with that of the other crystallographic directions; however there is more 

scatter in the data after the first 100 cycles. This is caused by the poor statistics of 

the smaller peak, leading to error bars in excess of 200 με, compared to the 20 με 

error bars in the matrix reflections. 
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Figure 6.10:  Strain accumulation in the 200 reflection, axial direction, at 
different points along the cyclic stress-strain curve.
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Figure 6.11:  Absolute value of the strain accumulation in the 200 reflection, 
axial direction, at different points along the cyclic stress-strain curve. 
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Figure 6.12:  The hkl strains versus cycles of fatigue at the maximum tensile 
strain, transverse direction. 
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The transverse strain behavior in the 200 reflection and the carbide 

reflection, Figures 6.13 and 6.14 respectively, yields an interesting comparison. 

While the strain accumulates in the 200 direction as fatigue progresses, the strain 

in the carbide, based on the transverse direction compressive strains, appears to 

relax strongly after the initial large accumulation in the first 10 cycles. Recall that 

the transverse direction in compression has a tensile load on the carbide. The 

relaxation of strains here suggests that the poisson’s tension during compression 

in fatigue may cause debonding or cracking in the carbides during repeated cyclic 

loading. 

 

6.7 Conclusions 

In tension-tension fatigue of HAYNES 230 alloy, at high loads, the 

internal strains saturate in the first 1000 cycles. Under the conditions tested, the 

residual strains after a uniaxial tension test and 42,417 cycles of fatigue are very 

similar. There are slight trends in relaxing and increasing residual strains over the 

first 100-1000 cycles. There appears to be no significant relaxation by 85% of the 

fatigue life. The initial macroscopic strain of 15% appears to have largely 

saturated the internal strains by the first cycle. Future testing at lower σmax should 

reveal the internal strain behavior over the initial stages of fatigue. 

In tension-compression fatigue the internal strain accumulation is 

significant in the initial stages of fatigue. This is a much larger effect than seen in 

the higher maximum stress tension-tension test. Although the strain controlled 

nature of the experiment meant that there was plastic strain occurring on every  
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Figure 6.13:  Strain accumulation in the 200 reflection, transverse direction, at 
different points along the cyclic stress-strain curve. 
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Figure 6.14:  Strain accumulation in the 333 carbide reflection, transverse 
direction, at different points along the cyclic stress-strain curve. 
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cycle, internal elastic strains did saturate after the first 100 cycles of fatigue. The 

experiment ended prematurely due to sample alignment issues, so only the first 

15% of the fatigue life was explored. However, the strains in the transverse 

direction in the carbide reveal a relaxation during the compression part of the 

cycle. This may be a sign of incremental debonding or cracking in the carbides as 

fatigue progresses. 
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Chapter 7 

Texture 

 

7.1  Introduction 

 Initial crystallographic texture has important effects on the tensile loading 

behavior of alloys. Depending on the plate thickness and heat treatment state of 

HAYNES 230, various initial textures were measured in as-received samples. The 

implications of these as-received textures on the subsequent loading behavior of 

this alloy are discussed in this chapter, as well as modeling to show that the final 

texture is a logical result of the initial conditions. 

 

7.2 Experiment 

 All textures were measured on the HIPPO diffractometer at LANSCE. The 

sample was placed in the instrument with the loading axis perpendicular to the 

incident neutron beam. The neutron beam was collimated to 10 x 10 mm2, which 

illuminated approximately 300 – 800 mm3 of the sample’s volume, depending on 

the sample diameter. Patterns were taken in four different orientations rotated 

about the sample’s loading axis (0, 45, 67.5 and 90 degrees), creating 98 unique 

histograms. For the HAYNES 230 sample, patterns were taken for 2 minutes per 

sample orientation for a total beam time of 8 minutes per sample.  
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Pole figures were calculated using the spherical harmonics representation 

of the orientation distribution function (ODF) found in the GSAS software [17]. 

More detailed description of the data analysis can be found in papers by Von 

Dreele and Vogel [29, 153, 154]. Rietveld refinement was performed on all 

histograms simultaneously, refining background, lattice parameter, peak profile 

coefficients, and finally spherical harmonics. No sample symmetry was assumed. 

Eighth order spherical harmonics were used, as higher order spherical harmonics 

did not improve the convergence and χ2 of the data. GSAS output was plotted into 

pole figures using the Program POD [155].  

 

7.3  Initial Textures 

There were two separate as-received textures for the HAYNES 230 

samples used for the in situ fatigue measurements. The sample’s loading direction 

is out of the page. Figure 7.1 shows the as-received texture of a textureless sample. 

The maximum texture is 1.06 times random, which is indicates no preferred 

orientation. Figure 7.2 shows the texture of the second group of as received 

samples. Here the sample has an interesting bi-modal texture. The maximum 

texture is 2.62 times random, with the 111 aligned with the sample axis, and the 

110 direction aligned perpendicular to the samples axis. This texture resembles a 

shear texture [25, 156], and is likely to be a product of  cross-rolling and an 

incomplete annealing due to a thicker sample [157].  
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Figure 7.1: As-received texture for HAYNES 230, showing a random, texture-
free orientation. 
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Figure 7.2: As-received texture for HAYNES 230, showing cross rolled plate 
texture. 
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 Figure 7.3 displays the texture after compression when starting with a 

texture-free sample. Since the macroscopic compression is only 7%, there is a 

very weak fiber texture of 1.36 times random. The 110 direction aligned with the 

loading axis and the 111 direction is perpendicular to it. Figure 7.4 displays the 

texture after tension when starting with a texture-free sample. Here a stronger 

fiber texture of 2.21 times random is seen, with the 111 direction oriented in the 

loading axis. These compression and tension textures are very typical for FCC 

materials [25, 156]. 

 Figure 7.5 shows the texture after fatigue and tension experiments when 

starting with the cross-rolled texture. The resulting texture is similar to the 

starting texture, but with a much stronger 111 texture in the loading axis. 

Remarkably the texture is very similar after one loading cycle and 110 cycles of 

fatigue. This shows that the texture does not change in the first stages of fatigue, 

which is unsurprising in light of the relative similarity in internal strains detailed 

in Chapter 5 as well as previous studies of texture development during room 

temperature fatigue of nickel [158].  

 

7.4  Modeling 

 Similar to the EPSC modeling technique detailed in Chapter 4, 

viscoplastic self-consistent modeling (VPSC) can be used to model the texture 

development during loading operations [159, 160]. Instead of an elastoplastic 

hardening model, a viscoplastic model is used. The model is still based on an idea 

of an Eshleby inclusion in an HEM, but here the grain rotations with applied 
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Figure 7.3: Texture for HAYNES 230 after 7% strain in compression, starting 
from a texture-free sample. 
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Figure 7.4: Texture for HAYNES 230 after 15% strain in tension, starting from a 
texture-free sample. 
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Figure 7.5: Texture for HAYNES 230 after 15% strain in fatigue (top) and simple 
tension (bottom), starting from a cross-rolled sample.  
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strain are modeled. No elastic deformation takes place. Each included grain is 

allowed to deform via twining or slip mechanisms. The grain slips and reorients 

with the applied deformation and within the constraints of the HEM. The 

111/<110> slip mechanism is assumed for FCC crystals, with no twinning 

mechanism allowed. Hardening occurs according to a Vocce model, however the 

interplay of various slip and twinning mechanisms seen in lower symmetry 

materials [70, 71, 159] does not occur in an FCC material.  

The actual initial measured textures (as seen in Figures 7.1 and 7.2) are 

used as the starting point of the model. Figure 7.6 displays a comparison between 

the modeled texture and the experimentally measured texture for the in situ 

loading experiment (Figure 7.5). The model very closely captures both the form 

of the texture pole figure as well as the degree of texture. The model slightly over 

estimates the maximum texture, but this is typical of this type of model due to the 

bulk average nature of the neutron measurements versus the smaller volumes 

treated in the model [159]. This clearly shows that the final textures seen in figure 

7.5 are a result of typical FCC deformation mechanisms superimposed on the 

initial cross-rolled texture, seen in Figure 7.2.  

Similarly, the experimental and modeled final textures after compression 

and tension on the texture-free samples are displayed in Figure 7.7 and 7.8, 

respectively. As expected, a fiber texture is predicted in the model, matching the 

experimental data closely, except for the usual slight overestimation of the 

maximum texture. This fiber texture is typical for FCC metals when starting from 

a texture-free sample [25, 27].  
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Figure 7.6: Experimental (top) and modeled (bottom) texture for HAYNES 230 
after 15% strain in tension starting from a cross-rolled sample texture. 
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Figure 7.7: Modeled (top) and experimental (bottom) texture for HAYNES 230 
after 7% strain in compression starting from a random sample texture. 
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Figure 7.8: Experimental (top) and modeled (bottom) texture for Haynes 230 
after 14% strain in tension starting from a random sample texture. 
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7.5 Texture’s Effect on Internal Strains 

 An initial starting texture implies a degree of preexisting work hardening 

in a material. The material has already undergone a series of deformations and 

grain rotations and may be resistant to further loading because of this. The texture 

pole figure seen in figure 7.2 shows that not only is there an existing texture in the 

as-received condition, but it is already aligned with the sample axis. Meaning the 

expected final texture after loading, 111 direction oriented with the loading axis, 

is already in the sample. For a subsequent tensile experiment, the material would 

act as if it had been work hardened.  

Figure 7.9 shows the macroscopic stress-strain curves strains measured 

during tensile experiments for two samples: the texture-free initial condition 

(Figure 7.1) and the textured initial condition (Figure 7.2). The final textures for 

these two experiments are shown in Figures 7.4 and 7.5, respectively. The texture-

free sample yields before the textured sample. Additionally, the texture-free 

sample has a much higher strain at the maximum load of 700 MPa than the 

textured sample, 18% versus 15%. Both of these behaviors are similar to the 

effect one would see from initial work hardening of a material. 

Figure 7.10 displays the elastic lattice parameter strains measured in the 

axial direction. The textured sample clearly accumulates less strain than the 

texture-free sample. Again, this is consistent with the work hardening needed to 

create the texture. The same effect is noted in the hkl specific strains, as seen in 

Figure 7.11. The strain in both the 111 and 200 reflections is less in the textured 

sample.  
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Figure 7.9:  Difference in macroscopic loading curves between the random 
sample and the pre-textured sample.
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Figure 7.10: Difference in elastic lattice strains between random and pre-textured 
samples. 
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Figure 7.11: Difference in hkl specific strains between random sample pre-
textured samples. 
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7.6  Conclusions 

Clear differences in the loading behavior of HAYNES 230 are noted with 

respect to the initial texture. The unusual bimodal textures seen in some samples 

are a result of incomplete annealing after material processing, particularly cross 

rolling. The final textures, as shown by experiment and VPSC modeling, are a 

superposition of the initial texture and typical FCC deformation mechanisms. The 

effect of initial texture on the macroscopic and internal strain during loading 

underscores the importance of understanding the texture of samples before using 

them as basis for comparison. Small changes in starting texture can easily obscure 

other subtle changes during loading experiments.  
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Chapter 8 
Nonlinear Resonant Ultrasound Spectroscopy 

 

8.1  Introduction 

While internal strains are easily measured by peak position shifts, there are 

a host of fatigue effects that are not easily measured using neutron diffraction. 

Plastic deformation and the resulting increase in dislocation density is convoluted 

with grain size effects and strain inhomogeneity in changes in the peak width [13]. 

Additionally, diffraction is not directly sensitive to microcracking and void 

formation. Nonlinear acoustic techniques [128, 130] however, are more able to 

determine a degree of damage in a material, giving a qualitative measure of 

plastic and cracking effects due to fatigue testing. This chapter compares a series 

of measurements made using Nonlinear Resonant Ultrasound Spectroscopy 

(NRUS) and ex situ neutron diffraction on the same set of prefatigued samples of 

HAYNES 230.  

 

8.2  Experiment 

Samples were tested on a Materials Test System (MTS) machine, model 

810, under load control conditions using a sinusoidal wave form at 10 Hz. The 

samples were tested at an R ratio of 0.1 with a σmax of 700 MPa. The cylindrical, 

button-head test specimens employed had a gauge-length of 1.464 cm and a 

diameter of 0.488 cm. The specimens had a surface roughness of 0.2 μm along the 
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gauge-length section. An as-received sample and five prefatigued samples were 

prepared for these experiments. The prefatigued samples were created by 

interrupting the fatigue tests at 10, 40, 50, 60 and 70 thousand cycles. The fatigue 

life under these conditions was found to be approximately 75,000 cycles to failure. 

 During the neutron experiment, each sample was placed in the center of 

the beam on the SMARTS diffractometer using a jig to ensure accurate 

positioning. Each sample was exposed for approximately 1x106 microamp hours, 

ensuring low error bars on the strain measurement of approximately 20-60 με. 

The as-received sample was tested multiple times to determine the error bars due 

to positioning. The strain measurements were repeatable within 20 με.  

 During the NRUS experiments, each sample was glued to a transducer. 

The transducer was attached to a signal generator to create waves in specified 

frequency ranges. The vibrations and resonance peaks in the sample were 

measured with a laser reflectometer and recorded with Labview software. A 

schematic of the experiment is seen in Figure 8.1. Initially a sweep across a wide 

range of frequencies is performed to see all the resonant peaks, Figure 8.2. Then a 

strong single resonant peak is chosen, in this case, the large peak around 12 KHz. 

Finally, sweeping at a small range around the resonant peak occurs at increasing 

voltages.  

  In classically elastic materials, the amplitude of the resonant peak changes 

as the voltage is increased. However, in samples with discontinuities and inelastic 

behavior, the resonance peak will change both in amplitude and in frequency [128, 

130]. The amount of the shift is related to how inelastic the material is. This 
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Figure 8.1:  A schematic of the experimental set up for the NRUS experiments. 
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Figure 8.2: Resonance peaks for the as-received HAYNES 230 sample. 
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technique is used frequently with rocks, which are highly inelastic materials due 

to amorphous regions, voids, cracks, and composition changes [130]. Typical 

metals are very crystalline and highly coherent, thus behaving elastically. Fatigue 

damage manifests itself in a variety of mechanisms such as, high dislocation 

density, microcracking and void formation. These mechanisms will result in an 

inelastic type response to the acoustic input allowing for a qualitative 

measurement of fatigue damage. 

 

8.3 Ex Situ Neutron Results 

 As seen in the chapter on fatigue, neutron diffraction is relatively 

insensitive to the effects of fatigue under the tested conditions after the first cycle. 

These ex situ experiments confirm the in situ results presented earlier. The elastic 

hkl strains, Figure 8.3, do not change appreciably between the 10,000 cycle and 

70,000 cycle samples. More significantly there is virtually no change in the peak 

width between the 10 and 70,000 cycle samples, Figure 8.4, and these samples are 

virtually indistinguishable using neutron diffraction. Finally, Figure 8.5 shows the 

peak intensity as fatigue progresses for these samples. Changes in intensity 

suggest changes in texture; however there is virtually no difference between the 

10,000 cycle sample and the 70,000 cycle sample. The cumulative effects of 

fatigue are not measured in these neutron experiments. 
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Figure 8.3: Internal strains measured using neutron diffraction for the ex situ 
samples. 
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Figure 8.4: Peak width measured using neutron diffraction for the ex situ samples. 
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Figure 8.5: Peak intensity measured using neutron diffraction for the ex situ 
samples. 
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8.4  NRUS Results 

 Figures 8.6 and 8.7 display the behavior of the resonance peak around 12 

KHz as voltage is increased for the as-received and the 70,000 cycle samples, 

respectively. The as-received sample shows an increase in the amplitude of the 

resonance peak as the voltage is increased. The peak position, however, does not 

shift appreciably or systematically. The resonance peak for the 70,000 cycle 

sample shifts dramatically as the voltage is increased. This difference shows that 

the 70,000 cycle sample is more damaged than the as-received sample.  

 By plotting the dependency, or the peak position with applied voltage, for 

each sample, we can see the degree of peak shift, signifying damage, for each 

sample, shown in Figure 8.8. There is a clear progression of damage from the as 

received sample to the 70,000 cycle sample. Significantly, the as-received and 

10,000 cycle samples are very similar. This contrasts greatly with the neutron 

results where the only significant differences noted are between the as-received 

and 10,000 cycle samples. 

 

8.5  Conclusions 

 The diffraction results presented here and in Chapters 5-7 clearly show 

that elastic strain, texture and dislocation development are primarily noted during 

the initial plastic strain. However these effects no longer play a large role during 

subsequent tension-tension fatigue deformation. These initial effects are easily 

measured by neutron diffraction. The accumulation of damage, in the form of 
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Figure 8.6: Resonance peak shift with increasing voltage for the as-received 
sample. 
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Figure 8.7: Resonance peak shift with increasing voltage for the as 70,000 cycle 
sample. 
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Figure 8.8: Summary of the dependency (resonance peak shift with increasing 
voltage) for the complete set of ex situ samples. 
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cracking, voids and other inhomogeneities, is shown clearly in the NRUS 

measurements. Thus, these two techniques are complimentary showing both the 

initial changes over the first cycle and the accumulation of fatigue effects as 

failure is approached. 
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Chapter 9  
Infrared Thermography 

 

9.1  Experimental Procedures 

Uniaxial high-cycle fatigue (HCF) tests were performed on HASTELLOY 

C-2000 alloy test specimens. The test specimens were machined from bars which 

had been hot rolled in the temperature range of 1176-1204 ºC, annealed at 1149 

ºC, and then water quenched. The cylindrical test specimens employed had a 

gauge-length of 1.464 cm and a diameter of 0.488 cm. The specimens had a 

surface roughness of 0.2 μm along the gauge-length section. The fatigue tests 

were performed in air on a MTS (Materials Test System) machine (Model 810) 

using a sinusoidal waveform at 20 Hz under load-controlled conditions. The 

experiments were conducted under tension-tension conditions with an R ratio 

(σmin/σmax, where σmin and σmax are the applied minimum and maximum stresses, 

respectively) of 0.1. 

An Indigo Phoenix thermographic infrared (IR) imaging system was used 

with a 256 x 256 pixel focal plane array InSb detector. The temperature resolution 

was 0.015 ºC, and the spatial resolution was 5.4 μm with a microscopic lens. Full 

frame data could be acquired at 128 Hz; reduced frame sizes could be used at 

much higher rates. The present thermographic results were acquired at a rate of 60 

Hz for all but the data presented in Figure 3, which contains 60 Hz and 1 Hz data. 
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During testing, the samples were coated with a thin layer of matte black paint to 

reduce IR reflections. 

 

9.2  Results and Discussion 

The S versus N (applied stress versus fatigue cycles) curve of 

HASTELLOY C-2000 alloy at 20 Hz is shown in Figure 9.1. The fatigue-

endurance limit (corresponding to a fatigue life of 2 x 106 cycles) is at a stress 

range (σr = σmax - σmin) of 382 MPa. Figure 9.2 shows the average temperature 

versus time across a 3 mm x 3 mm region at the center of the gauge-length section 

during the first 15-20 seconds of fatigue tests at different stress ranges. 

Figure 9.3 shows the temperature as a function of time for a complete test 

measured at the center of the gauge-length section for a sample tested at a σr of 

626 MPa. Note that this σr was quite large, with the σmax approximately equal to 

180% of the yield strength. As the test began, the temperature increased from 

room temperature to a maximum of 73 ºC (Stage I). The sample then slowly 

cooled to an equilibrium temperature of approximately 70 ºC as the test proceeded 

(Stage II). Finally, the temperature increased to 103 ºC as the specimen failed 

(Stage III). After failure, the temperature then dropped to room temperature 

(Stage IV). The initial maximum and equilibrium values varied with the stress 

range as seen in Figure 9.2. Increasing the stress range from 382 MPa to 516 MPa 

increased the temperature in Stage II from 24 °C to 38 °C (Figure 9.2). 



 131

  

Figure 9.1: S-N curve for C-2000 alloy at R = 0.1, 20 Hz. 
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Figure 9.2: Temperature profiles at different stress ranges. 
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Figure 9.3: Typical temperature profile during complete fatigue test. 
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The temperature-time profiles in Figures 9.2 and 9.3 result from the 

following effects. In Stage I, the main temperature rise was due to the inelastic 

effects, such as plastic deformation and internal friction; in this case plastic 

deformation was responsible for the bulk of the temperature rise. The 

thermoelastic effects were responsible for the temperature oscillations. During 

Stage II an equilibrium was reached. Heat generated from the inelastic effects was 

balanced by heat losses to the sample’s environment. Again, the small 

temperature oscillations in Stage II were due to thermoelastic effects, which will 

be discussed later (Figure 9.4). In Stage III, the rapid increase of temperature was 

due to the inelastic effects associated with the initiation and propagation of cracks 

and plastic deformation, as the sample began to fail. The peak temperature was 

associated with final failure. Stage IV consisted of the sample cooling back to 

room temperature following failure. 

The detail of the temperature-time profile due to thermoelastic effects on a 

sample tested in air at 20 Hz and with a σr of 382 MPa is presented in Figure 9.4. 

This data was taken after the temperature equilibrium had been reached. The heat 

generated within the sample due to plastic, thermoelastic, and inelastic effects was 

in equilibrium with the heat loss due to conduction and radiation. The temperature 

fluctuations occurred due to the thermoelastic effects. The application of a tensile 

load causes a temperature decrease, and the application of a compressive load 

causes an increase in temperature [143, 144, 147, 161-163]. In this case, since the 

R ratio is positive and the only stresses present were tensile, the local maxima in 

temperature occurred at σmin, where the least thermoelastic cooling occurred. The 
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Figure 9.4: Detail of the thermoelastic effects during a σr = 382 MPa test. 

23.8

23.9

24

24.1

24.2

24.3

24.4

24.5

20 20.1 20.2 20.3 20.4 20.5 20.6
Time (Seconds)

Te
m

pe
ra

tu
re

 (º
C

 )

Hastelloy C-2000, R = 0.1, σr = 382 MPa, 20 



 136

local minima in temperature occurred at σmax, where the most thermoelastic 

cooling occurred. Without the thermoelastic effect, the equilibrium temperature 

would have been slightly higher than the local temperature maxima [146]. 

Digital images taken from the IR camera at different points during the 

fatigue life of the sample tested at a σr of 391 MPa are exhibited in Figure 9.5. 

The intensity of the image corresponds to the temperature of the object. Light 

areas denote higher temperatures and dark areas represent lower temperatures. 

The images shown in Figure 9.5, from left to right, are taken at 0, 150, and 600 

cycles of testing, respectively. The image taken at 0 cycles shows a small 

temperature gradient from the bottom of the sample to the top. This gradient 

corresponded to heat being conducted up the sample from the lower hydraulic 

grip, which was connected to the hydraulic actuator. The middle image, taken at 

150 cycles, shows a high-temperature region at the center of the sample and lower 

temperature regions at the ends of the sample. The far right image, taken at 600 

cycles, exhibits a high-temperature region at the center of the sample and lower 

temperatures at the ends of the sample. However, the temperatures of the end 

regions at 600 cycles were slightly higher than those at 150 cycles.  

Figure 9.6 shows the temperature profile along the center of the sample in 

the gauge-length direction for each image shown in Figure 9.5. This temperature 

profile quantifies the information in Figure 9.5. The data at 0 cycles, as mentioned 

previously, shows the small temperature increase from the top to the bottom of the 

sample due to the heating of the lower hydraulic grip. The data at 150 cycles 

indicates that the temperature at the ends of the sample remained constant, but the  
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Figure 9.5: Infrared images of the sample tested at σr = 391 MPa. Images taken, 
at 0, 150, and 600 cycles, from left to right.  
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Figure 9.6: Temperature profiles along the center in the gauge-length direction of 
the sample tested at σr = 391 MPa, taken at 0, 150, and 600 cycles. 
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temperature at the center of the sample was at its peak of about 27 °C. The data at 

600 cycles indicates the temperature at the center had dropped as the heat began 

to conduct away from the center, and the heat generated due to the initial plastic 

deformation had dissipated. The temperature at the ends of the specimen, 

however, increased due to heat conduction away from the center. 

Furthermore, Figure 9.7 presents the average temperature profile at the 

center of the sample of the same test shown in Figures 5 and 6. It is clear that the 

data at 150 cycles was near the peak average temperature, while the temperature 

at 600 cycles was lower and very close to the equilibrium temperature. Again, 

these temperature results show the pattern of heat generation and dissipation in a 

typical fatigue specimen. 

 

9.3  Life Predicition 

Plotting the steady-state temperature reached in each fatigue test versus 

the fatigue life on a logarithmic scale yields a linear relationship, as shown in 

Figure 9.8. As the temperature increases, the life decreases. Using the given 

sample geometry, test frequency, material, and R ratio, the relationship between 

the fatigue life and steady-state temperature can be described by: 

 

 (9.1) 

 

823.304.1825 −= sf TN
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Figure 9.7: Average center temperature of the sample tested at σr = 391 MPa. 
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Figure 9.8: Log-log plot of the steady-state temperature versus number of cycles 
to failure for C-2000 alloy. 
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with Ts being the steady-state temperature, and Nf  the number of cycles until 

failure. This empirical method is useful in predicting lifetime from temperature, 

however, more exact methods can be used to predict lifetime from the steady state 

temperature. Using first-principle calculations, accurate fatigue life predictions 

can be made after one experiment.  

Based on work begun by Jiang [141] and completed by Yang [138, 146], 

the steady-state temperature can be related to fatigue life from the thermodynamic 

model: 
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with Nf  representing the number of cycles to failure, f the test frequency, Le the 

gauge length of the sample, Ts the steady state temperature achieved during 

fatigue, To room temperature, k the thermal conductivity of the sample, ρ the 

density of the material, Cp the specific heat, α the thermal expansion coefficient, 

and  ΔT the change in temperature due to the thermoelastic effect. The constant C 

must be obtained experimentally from an actual experiment. Thus, the steady-

state temperature of the specimen, which is typically reached in the first 15-30 

seconds of the fatigue test, can be an indication of the fatigue life. 

 Figure 9.9 displays the fatigue life predicted using Equation 9.2, along 

with the experimental fatigue life. The constant C was determined using the data 

from the experiment at a stress range of 382 MPa, so the experimental and  
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Figure 9.9: Predicted and experimental fatigue life using thermographic data. 
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predicted life are the same here. The experimental and predicted fatigue life is 

very similar at stress ranges below 450 MPa, however the experiment deviates at 

the two higher stresses. The experimental fatigue life is shorter than the predicted 

life. Stress-controlled fatigue experiments at high stress ranges are very flaw 

sensitive. Small defects at the surface can drastically decrease the fatigue life. 

Thus, the fatigue life may be shorter than one would expect. Secondarily, the 

maximum temperature reached at the stress ranges is on the margins of the 

calibrated temperature range of the infrared camera. Thus the maximum 

temperature may be slightly off in the two largest measurements.  

 

9.4 Conclusions 

The results of high-cycle fatigue tests on HASTELLOY C-2000 alloy 

monitored by infrared thermography have been reported. Thermographic analyses 

have shown that there is a distinct temperature-time sequence that took place 

during a room-temperature fatigue test; an initial temperature rise, followed by an 

equilibrium region, a sharp increase of temperature at failure and, finally, a 

cooling back to room temperature in the post-failure region. The thermographic 

profile of a single sample was analyzed in depth. Lastly, an empirical relationship 

between the equilibrium temperature during the fatigue test and the fatigue life 

was developed, as well as a calculation based on thermodynamic principles, both 

of which are useful for predicting fatigue life based on the steady-state 

temperature reached during fatigue. 
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Chapter 10  
Conclusions 

 

A comprehensive study of fatigue and deformation of two nickel based 

superalloys has been completed and presented in this dissertation.  

The highlight of this research was the discovery, using both neutron and 

X-ray diffraction, of carbide debonding and cracking in tension of HAYNES 230. 

In contrast to the clear composite loading behavior of 7075 Aluminum and the 

single phase anisotropic behavior of HASTELLOY C-2000, the loading behavior 

of HAYNES 230 is unusual in tension and composite-like in compression. 

Modeling the expected behavior of HAYNES 230 also confirms that the tensile 

behavior is unusual. Carbide debonding and cracking in tension, but not in 

compression explains this tension-compression asymmetry. In situ X-ray 

diffraction explicitly shows the carbide accepting and then shedding load as 

debonding and cracking occurs, while microscopy confirmed that debonding and 

cracking had occurred. These mechanisms appear to occur at 420 MPa, just past 

the macroscopic yield of 390 MPa. 

In tension-tension fatigue of HAYNES 230 alloy, at high loads, the 

internal strains saturate in the first 1000 cycles. Under the conditions tested, the 

residual strains after a uniaxial tension test and 42,417 cycles of fatigue are very 

similar. There are slight trends in relaxing and increasing residual strains over the 

first 100-1000 cycles. There appears to be no significant relaxation by 85% of the 
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fatigue life. The initial macroscopic strain of 15% appears to have largely 

saturated the internal strains by the first cycle. Future testing at lower σmax should 

reveal the internal strain behavior over the initial stages of fatigue. 

In tension-compression fatigue of HAYNES 230 alloy the internal strain 

accumulation is significant in the initial stages of fatigue. This is a much larger 

effect than seen in the higher maximum stress tension-tension test. Although the 

strain controlled nature of the experiment meant that there was plastic strain 

occurring on every cycle, internal elastic strains did saturate after the first 100 

cycles of fatigue. The experiment ended prematurely due to sample alignment 

issues, so only the first 15% of the fatigue life was explored. However, the strains 

in the transverse direction in the carbide reveal a relaxation during the 

compression part of the cycle. This may be a sign of incremental debonding or 

cracking in the carbides as fatigue progressed. 

Clear differences in the loading behavior of HAYNES 230 are noted with 

respect to the initial texture. The unusual bimodal textures seen in some samples 

are a result of incomplete annealing after material processing, particularly cross 

rolling. The final textures, as shown by experiment and VPSC modeling, are a 

superposition of the initial texture and typical FCC deformation mechanisms. The 

effect of initial texture on the macroscopic and internal strain during loading 

underscores the importance of understanding the texture of samples before using 

them as basis for comparison. Small changes in starting texture can easily obscure 

other subtle changes during loading experiments.  
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 The ex situ diffraction results presented in Chapter 8 and the in situ results 

in Chapters 5-7 clearly show that elastic strain, texture and dislocation 

development are primarily noted during the initial plastic strain. However these 

effects no longer play a large role during subsequent tension-tension fatigue 

deformation. These initial effects are easily measured by neutron diffraction. The 

accumulation of damage, in the form of cracking, voids and other 

inhomogeneities, is shown clearly in the NRUS measurements, revealing 

progressive damage as fatigue cycles increase. Thus, these two techniques are 

complimentary showing both the initial changes over the first cycle and the 

accumulation of fatigue effects as failure is approached. 

The results of high-cycle fatigue tests on HASTELLOY C-2000 alloy 

monitored by infrared thermography have been reported. Thermographic analyses 

have shown that there is a distinct temperature-time sequence that took place 

during a room-temperature fatigue test; an initial temperature rise, followed by an 

equilibrium region, a sharp increase of temperature at failure and, finally, a 

cooling back to room temperature in the post-failure region. The thermographic 

profile of a single sample was analyzed in depth. Lastly, an empirical relationship 

between the equilibrium temperature during the fatigue test and the fatigue life 

was developed, as well as a calculation based on thermodynamic principles, both 

of which are useful for predicting fatigue life based on the steady-state 

temperature reached during fatigue. 
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Chapter 11 
Future Work 

 

 There are a few obvious continuing research projects from this dissertation.  

The carbide debonding and cracking shown in Chapter 5 would benefit from a 

more complete microscopy study, showing both tension and compression, 

perpendicular and parallel to applied loads.  Similarly a set of ex situ loading 

samples, loaded to increasing levels, could be created and sectioned to show the 

onset of debonding and cracking.  It is obvious from the neutron analysis that the 

strengthening mechanism fails in tension around 425 MPa, but neither neutron nor 

X-ray studies make it clear whether debonding or cracking is responsible for this. 

Based on the lack of doubling in the carbide spots in the X-ray patterns, it would 

appear that debonding is the primary mechanism, followed by cracking at higher 

stresses, but microscopy could confirm this trend.  Similarly more in-depth 

microscopy could be used to see the role of carbides in fatigue, especially whether 

progressive debonding/cracking is responsible for the carbide behavior during the 

tension-compression experiments. 

 The in situ tension-tension experiments would benefit from lower R-ratio 

tests to see if there is more accumulation of elastic strains than the higher R-ratio 

presented here.  Similarly, a single comprehensive in situ fatigue study with a 

single-phase FCC material would allow for a better understanding of fatigue 

effects on internal strains and texture.  A single phase stainless steel or copper 

sample could be used for tests at low and high R ratios using stress and strain 
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controlled fatigue.  Special care should be taken to allow for experiments to last to 

a high percentage of the fatigue life and focus on capturing the elusive final stages 

of fatigue.  The new load frame at the 1-ID beam line at the APS should allow for 

high-frequency experiments to be conducted with a high capture rate image plate.  

With an appropriate small grained, thin sample, long in situ fatigue tests should be 

able to be completed quickly. 

 The NRUS has great potential for use in both fatigue and high pressure 

experiments for characterizing damage.  With respect to HAYNES 230, more ex 

situ experiments could be conducted, in concert with neutron analyses, with 

tension-compression samples and lower R-ratio tension-tension samples to 

explore the sensitivity of the technique to various states of plastic deformation, 

cracking and other damage mechanisms. Similarly, these NRUS experiments 

could be used to characterize damage in single-phase FCC materials to 

compliment the experiments outlined in the previous paragraph.   

 It would be useful to integrate the neutron techniques more fully with both 

the NRUS and infrared thermography methods. The role of plastic and internal 

elastic strains, cracking and heat generation in a single fatigue experiments could 

be explored in depth.  In situ neutron and infrared thermography experiments 

could be conducted at the exact same conditions as well as interrupted 

experiments for creating a large number ex situ samples for NRUS. 

 Finally, high-temperature fatigue effects in HAYNES 230 should be 

explored. Temperature and stress induced M23C6 carbide formation could be 

studied in situ and may explain both the plateau in yield strength between 600 and 
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900°C as well as the unusual longer fatigue life seen in low-cycle fatigue at high 

strain ranges at 927°C versus that at 816°C.  The low percentage and small size of 

M23C6 carbides in the as-received state as well as in the heat-treated condition 

may require the use of synchrotron X-rays rather than neutrons to study this issue 

completely. 
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