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ABSTRACT 

 
In the last decades great breakthroughs have been achieved in the study of the 

genomes, supplying us with the vast knowledge of the genes and a large number of 

sequenced organisms.  With the availability of genome information, the new systematic 

studies have arisen.  One of the most prominent areas is proteomics.  Proteomics is a 

discipline devoted to the study of the organism’s expressed protein content.  Proteomics 

studies are concerned with a wide range of problems.  Some of the major proteomics 

focuses upon the studies of protein expression patterns, the detection of protein-protein 

interactions, protein quantitation, protein localization analysis, and characterization of 

post-translational modifications.  The emergence of proteomics shows great promise to 

furthering our understanding of the cellular processes and mechanisms of life.   

One of the main techniques used for high-throughput proteomic studies is mass 

spectrometry.  Capable of detecting masses of biological compounds in complex 

mixtures, it is currently one of the most powerful methods for protein characterization. 

New horizons are opening with the new developments of mass spectrometry 

instrumentation, which can now be applied to a variety of proteomic problems.  One of 

the most popular applications of proteomics involves whole organism high-throughput 

experiments.  However, as new instrumentation is being developed, followed by the 

design of new experiments, we find ourselves needing new computational algorithms to 

interpret the results of the experiments.  As the thresholds of the current technology are 

being probed, the new algorithmic designs are beginning to emerge to meet the 

challenges of the mass spectrometry data evaluation and interpretation.    
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 This dissertation is devoted to computational analysis of mass spectrometric data, 

involving a combination of different topics and techniques to improve our understanding 

of biological processes using high-throughput whole organism proteomic studies.  It 

consists of the development of new algorithms to improve the data interpretation of the 

current tools, introducing a new algorithmic approach for post-translational modification 

detection, and the characterization of a set of computational simulations for biological 

agent detection in a complex organism background.  These studies are designed to further 

the capabilities of understanding the results of high-throughput mass spectrometric 

experiments and their impact in the field of proteomics. 
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Chapter 1 

Introduction to Proteomic Analysis with Mass Spectrometry and General Mass 

Spectrometry Data Analysis 

Introduction 
 
 The proteome can be defined as the set of all expressed proteins in a cell, tissue or 

organism.   Proteomics is an emerging new discipline in the field of studying living 

organisms being a direct continuation to the area of genomics; where as genomics is 

concerned with the study of genetic codes of living organisms, proteomics is devoted to a 

study of the organism’s expressed protein content.  The study of genes is applied to 

uncovering the secrets of life focusing on the genetic makeup, including the sequencing 

and study of DNA patterns in nature.  The Central Dogma of biology states: DNA is 

transcribed into mRNA which in turn is translated to produce proteins.  As opposed to the 

relatively static study of a genome, proteomics is very dynamic, the protein content of a 

living organism ever changing, starting with the programmed changes in the proteome 

that deal with time points in life cycle and ending with the adapting the organism to 

varying environmental conditions.  The study of a proteome can address a wide range of 

conditions such as discovering traces of disease, measuring body’s response to a 

medication or detecting a particular protein compound in an organism.  The area of 

proteomics involves a wide range of studies dealing with proteins, including the study of 

protein structure and function, post-translational modifications (PTMs), protein-protein 

interactions, protein regulation and the study of complex protein networks.  

 A major area of proteomics deals with characterization of an organism’s 

proteomic content.  It is focused upon studying what proteins are present in an organism 
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under a particular condition.  While the genome sequences supply the full DNA 

information of an organism, proteomic studies measure the dynamics of an organism, 

supplying a variety of information about an organism at a particular time.  With 

proteomics it became possible to measure the dynamics of an organism.  In the last 

decades great breakthroughs were achieved in the study of the genome, supplying us with 

the vast knowledge of the genes and a massive amount of sequenced organisms.  As the 

genome information becomes more and more accessible, the need for further systems 

level studies became clear; transcriptome studies and then proteomic studies became 

prominent.  Some of the major proteomic studies involve the studies of protein 

expression patterns (protein cataloguing), detecting protein-protein interactions, protein 

localization analysis, and analysis of post-translational modifications.  One of the main 

techniques used for high-throughput proteomic studies is mass spectrometry.  It is 

capable of detecting masses of biological compounds in complex mixtures and currently 

one of the most powerful methods for protein detection and analysis. 

Mass spectrometry 

Mass spectrometry (MS) is one of the most indispensable tools for high-

throughput proteomic analysis (Aebersold, 2003) due to its versatility and speed.  It is a 

fast and reliable tool capable of measuring masses of biological molecules in complex 

mixtures (Pandley, 2000).  Fundamentally, a mass spectrometer is an instrument 

consisting of three parts: ionization source, ion analyzer and ion detector.  The ionization 

source is responsible for desorption and ionization of biological molecules into gas phase, 

the ion analyzer separates them according to their mass to charge ratios (m/z) and ion 

detector detects and multiplies the ion signal.  The two ionization sources most frequently 
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used in proteomic analysis are electrospray (ESI) and matrix assisted laser desorption 

ionization (MALDI) sources.  The MALDI ionization technique involves transferring 

biological molecules into gas phase from a solid matrix (Hillenkamp, 1991).  This 

ionization method produces low charge state molecules -- the ions measured by a mass 

analyzer have in most cases single and double more rarely triple charges.   ESI transfers 

biological molecules directly from liquid matrix into gas phase (Fenn, 1989), producing 

mainly multiply charged molecules.  The masses of biological molecules reflect their 

composition and are used for their detection and characterization.   

In addition to measuring the masses of biological molecules, mass spectrometers 

are also capable of producing sequencing information in a form of fragmentation pattern.    

The fragmentation pattern of a peptide is produced by a process called tandem MS (or 

MS/MS) (Hunt, 1981; Biemann, 1986).  The tandem MS experiment involves the 

following three steps: isolation of ions in a particular mass to charge ratio, fragmentation 

of these ions, and the detection of the resulting fragment ions.  The fragmentation is 

performed by the process called collision induced dissociation (CID), which involves 

colliding peptides of isolated m/z with inert gas, the collisions inducing breaks in the 

peptide bonds, and resulting in a spectrum of mass to charge ratios for peptide fragments, 

which are the function of the peptide sequence.  Using the parent m/z of the peptide and 

its fragmentation pattern, the identity of a biological molecule can be established through 

a variety of database search algorithms. 

The two major mass spectrometric techniques frequently used for protein analysis 

are referred to as top down and bottom up methods.  These two techniques approach 

proteome analysis from the different angles as is illustrated in the figure 1.1.  
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Figure 1.1 Top down vs. bottom up mass spectrometric techniques.   Top down MS 
involves analyzing intact proteins, while the bottom up MS involves an extra step of 
digesting the proteins into smaller peptides, measuring and analyzing the peptides and 
then inferring the identities of the present proteins from the detected peptides. 
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The top down approach involves analyzing intact proteins which are extracted from the 

cell.    The bottom up approach analyzes peptides, the fragments of proteins resulting 

from an enzymatic digestion, inferring the protein identities from the detected peptides.  

These techniques are often complementary to each other: while the bottom up approach 

produces more protein identifications, it does not supply the information about the state 

of an intact protein (PTMs, N-terminal protein processing, splice site variants, and 

amino-acid substitutions) and while top down experiment supplies the information about 

intact proteins, it generally produces less protein identifications due to the limitations of 

experimental technology and computational interpretations.   Currently, the high-

throughput proteomics tends towards bottom up techniques as the instrumental 

technology is more robust and better developed.       

   Top down proteomics is a technique involving protein characterization at the 

intact protein level by MS with possible following tandem MS analysis.  Before proteins 

are analyzed by MS, they are separated into smaller fractions.  This separation process of 

intact proteins is one of the most difficult challenges of current top down proteomics 

technologies.  One of the most popular techniques for intact protein separation is two 

dimensional polyacrylamide gel electrophoresis (2-D PAGE gel), (O’Farell, 1975) 

separating proteins by two criteria: isoelectric point in the first dimension and molecular 

weight in the second dimension.  While powerful, 2-D PAGE gel separation remains 

difficult and slow process impeding the speed of intact protein analysis.  Furthermore, the 

extraction and subsequent MS analyses of intact proteins from 2-D PAGE gels is nearly 

impossible.  The MS analysis of intact proteins is generally performed using electrospray 

ionization Fourier transform ion cyclotron resonance mass spectrometers (ES-FT-ICR-
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MS) (Mortz, 1996; Kelleher, 1998).  The instruments of this type have both high degree 

of resolution, and mass accuracy up to 10-4 Da, both of which parameters play a 

significant role in protein characterization.  In addition, top down proteomic method can 

also employ the tandem MS (or MS/MS analysis), providing a limited sequence 

information for the measured protein.  Top down analysis provides the information about 

the mature proteins expressed in the organism, including the post-translational 

modifications and amino acid substitutions.  However, the interpretation of intact protein 

analysis is frequently complicated by the absence of the exact corresponding protein 

sequences in the database (PTMs, SNPs, etc.), while at experimental end separations with 

liquid chromatography and measuring large proteins by MS can often be very difficult.  

Top down mass spectrometry in general is not yet applied for high-throughput proteomic 

studies.  While other methodologies are introduced in the dissertation, the work is 

focused upon the data interpretation for the bottom up “shotgun” proteomics introduced 

below and unless otherwise stated all of the references to MS and data analysis 

correspond to these experiments.   

There are many avenues for bottom up proteomics which involve a multitude of 

techniques.  The two most popular of the bottom up techniques are “shotgun” bottom up, 

(which will later be referred to simply as bottom up) and peptide mass fingerprint (PMF) 

analysis.  The main technique for high-throughput protein identification using tandem 

mass spectrometry is called bottom up or “shotgun” approach.  A typical complex 

mixture bottom up experiment involves a protein mixture digestion with an enzyme 

protease (such as trypsin, pepsin, glu-C, etc), a separation of the complex mixture into 

smaller fractions by such techniques by gel separations (Hess, 1993; Gatlin, 1998) or 
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liquid chromatography (McCormack, 1997; Martin, 2000; Shen, 2001) followed by MS 

analysis.  The bulk of bottom up proteomic analysis is performed by ES ionization 

sources coupled with ion trap mass analyzers.  This instrument is fast, reliable and 

affordable however, it has a limited resolution of approximately 0.5 Da.   The MS 

analysis yields information about the mass to charge ratio of the examined peptide while 

MS/MS analysis provides information about the peptide amino acid sequence.     

 Another popular method for characterizations of complex mixtures is peptide 

mass fingerprinting (PMF), which is a different approach to bottom up experiment.  Like 

the previously described “shotgun” bottom up technique, PMF involves digesting the 

proteins into peptides and measuring their masses with mass spectrometry.  The key 

differences between PMF and shotgun bottom up technique is that PMF involves protein 

separation (generally 2-D PAGE) and that tandem MS experiment is not performed.   

Peptide masses are generally analyzed with MALDI TOF instruments.  The protein 

identification is made based upon identifying it’s peptides by their masses, the reliability 

of protein identification dependant on the detected sequence coverage and pattern of 

detected peptide masses. 

Fragmentation pattern 

Tandem MS or MS/MS peptide/protein fragmentation creates a sequence 

dependent fragmentation pattern.  The peptides tend to fragment by breaking along 

peptide backbone bonds, each break creating a pair of fragment ions (Figure 1.2).  The 

fragment ions retaining N-terminus of a peptide are referred to as ‘a’, ‘b’, ‘c’ ions, while 

the ions containing C-terminus are referred to as ‘x’, ‘y’, ‘z’ ions (Roepstorff, 1984; 

Biemann, 1988). 

7 7



 

 

 

 

Figure 1.2 Tandem MS fragments. The representation of possible backbone 
fragmentations.  The ions containing N-terminus are referred to as ‘a’, ‘b’, ‘c’ ions, while 
the ions containing C-terminus are referred to as ‘x’, ‘y’, ‘z’ ions. 
 

In the case of low energy CID fragmentation, the ‘b’ and ‘y’ ions are the major ions in 

the spectrum, all of the other types of ions shown in the figure 1.2 can be present, but at a 

significantly lower abundance.  In theory, the number of ‘b’ and ‘y’ ions for each given 

peptide is roughly equal to the number of the peptide bonds, if the number of amino acids 

in the peptide is equal to N, then the peptide will have a maximum of N-1 ‘b’ and N-1 ‘y’ 

ions (Figure 1.3).  Each ion appears in the tandem MS spectrum in a form of a peak with 

an m/z and intensity.  Intensity of a peak is related to the abundance of the ions of this 

m/z (Figure 1.3).   
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Figure 1.3 Sequence dependent fragmentation pattern produced by CID.  The 
horizontal axis is representing the m/z ratios of the fragment ions and vertical axis is 
representing the intensities of the fragment ions.  The major ions in the CID spectrum are 
the ‘b’ and ‘y’ ions.  As shown, there is no easy differentiation between the ‘b’ and ‘y’ 
series in the ion trap tandem MS spectrum.   
 

As a result of CID fragmentation the expected outcome is a pair of ‘b’ and corresponding 

‘y’ ions at each amino acid position, producing so called ion series.  The m/z difference 

between two consecutive ‘b’ (and ‘y’) ions of a single charge (equivalent to a single 

amino acid mass) can be used to infer the identity of an amino acid between them as 

shown in figure 1.3, from “Introduction to Proteomics” by Dan Liebler (Page 95, Figure 

4).  This property is extensively used by many of the peptide identification algorithms to 

infer the sequence information from the tandem MS spectrum.   
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 Mass spectrometry is used to detect and identify protein content of complex 

biological mixtures.  Each of the outlined approaches, top down, bottom up and PMF is 

applied to the proteomic studies.  The majority of high-throughput proteomic analysis, as 

previously stated, is performed by the bottom up mass spectrometry.  A significant 

portion of bottom up analysis is performed with the use of ES ion trap instruments.  The 

instrumentation and procedures are well characterized and developed, making proteome 

analysis a comparably simple and routine task.  Bottom up mass spectrometry can be 

used for protein detection in complex mixtures; however, the identity of a protein in 

bottom up analysis must be inferred from its detected peptides.  Since not all of the 

peptides are generally analyzed and interpreted, only partial sequence coverage is 

possible and the protein in the complete form is generally not detected.  In some cases 

bottom up MS can be used to detect post-translational modifications if they are present in 

the detected peptides.  However, the analysis of post-translational modifications using the 

current data interpretation methods is not straightforward.  Some of the major problems 

with PTM detection are: a) difficulty with ionizing modified peptides, as modifications 

frequently change peptide properties, b) modifications can cause complications in tandem 

MS spectra such as reducing peptide fragmentation, c) there are no rigorous computer 

algorithms for identification of modified peptides. Chapter 4 of this dissertation addresses 

this very important and interesting task of high-throughput PTM detection by bottom up 

mass spectrometry.   

The top down approach is used to detect intact proteins as they appear in the 

sample.  As opposed to the bottom up technique, the entire protein is characterized by top 

down mass spectrometry, including the possible post-translational modifications and 
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sequence mutations.  As is explored in Chapter 5 of the dissertation, it can be applied to 

detecting a particular protein or even an organism in a biological sample. In addition, top 

down approach can be expected to be less computationally intensive as there is 

significantly smaller number of intact proteins that can be measured with mass 

spectrometry than the peptides.  However, the top down approach is more difficult 

experimentally, the difficulties laying in the protein separation, gas phase conversion and 

performing MS/MS on intact proteins.   

 Mass spectrometric data analysis 

 While mass spectrometers produce meaningful information about masses of 

biological molecules, computational data interpretation is necessary to discover the 

identity of the measured biological molecules.  In order to interpret mass spectrometric 

data, a multitude of computation methods have been developed.  There are three basic 

approaches to bottom up MS data interpretation: database search algorithms, de novo 

sequencing algorithms and hybrid algorithms.  The database search algorithms are 

currently the main tools for bottom up MS data interpretation, the de novo sequencing 

and hybrid algorithms are relied upon in cases when the database is not available or the 

database searches do not produce adequate results. 

Database search algorithms 

 The most commonly used methods for bottom up mass spectrometry data 

interpretation are the database searches.  Database searches are robust, reliable, sensitive 

and fast approaches for peptide identification.  All of the database search algorithms have 

an inherent similarity: they operate based on the sequence database generally specific to 

the organism of interest.  Database search algorithms rely on the comparison between the 
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theoretical fragmentation patterns of peptides derived from the database and the 

experimental peptide fragmentation pattern.  Such tools produce a list of possible peptide 

assignments and theoretical fragmentation patterns for each experimentally measured 

tandem MS fragmentation pattern based on m/z of the parent peptide.  The theoretical 

fragmentation patterns are scored against the experimental tandem spectrum and the 

theoretical peptide that displays the highest similarity to the experimental measurements 

is accepted as the best candidate.  There are basic two assumptions that database search 

algorithms make that must be met in order for the identification to be successful.  The 

first assumption is that the peptide represented by the tandem MS spectrum is present in 

the database in exactly the same form as it is in the sample.  The second assumption is 

that if the peptide which gave rise to the tandem MS spectrum has been found in the 

database, its theoretical spectrum is more similar to the tandem MS spectrum than that of 

any other peptide in the database.  There is a multitude of database search algorithms for 

MS data interpretation such as MASCOT (Perkins, 1999), SEQUEST (Eng, 1994), 

DBDigger (Tabb, 2005), Sonar (Field, 2002), ProteinProspector (Clauser, 1999), and 

OMSSA (Geer, 2004).  While the software design of the algorithms varies to improve 

speed and flexibility, the main differences in performance are dependent on two factors: 

the selection of candidate peptides and the scoring scheme used for spectral comparison.  

The selection of candidate peptides for database search algorithms is generally based on 

the mass window of the measured precursor peptide.  The scoring schemes can vary 

between spectral comparisons, which take into account the similarity of two spectra, and 

complex probabilistic approaches, which attempt to assess the probability of match by 

incorporating the whole database into the comparison.  One of the oldest and most 
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established database search program is SEQUEST (Eng, 1994), developed in 1994.  It 

involves an adaptation of a cross correlation scoring scheme for experimental and 

theoretical spectra comparison.  While sensitive, the X-correlation scorer does not 

provide information on the identification probability.  Chapter 2 of this dissertation 

addresses the need for a reliability scheme for SEQUEST scoring for statistically sound 

peptide and protein identification.   

De Novo algorithms 

 De Novo algorithms have always been the “silver bullet” of mass spectrometry 

data interpretation, in theory abolishing the need for databases by deriving sequence 

information directly from the tandem MS spectra.  When sequence databases are not 

available or there is an inconsistency between the database and the protein of interest 

people often resort to “sequencing by hand”.  The term “sequencing” in application to 

tandem MS data means reading sequence off the spectrum and in the majority of cases 

produces either a partial (several amino acids long) or a full sequence of the peptide in 

question.  De Novo is the name that people apply to the algorithms that use tandem MS 

spectrum to derive the full length sequence (or it’s majority), using the same concepts as 

do humans while performing “sequencing” by hand.  Unfortunately at this time, this 

promising and inspiring approach does not demonstrate any degree of robustness and 

sensitivity that has been demonstrated by generally much more simplistic database search 

algorithms for the low resolution ion trap data and while it is promising technique for 

higher resolution instrumentation such instruments are not currently used for shotgun 

proteomic experiments.  In addition, de novo approaches are generally very slow, taking 

significantly more time than the database search algorithms, while producing a 
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significantly greater number of false positives.  The difference between de novo and 

database search approaches is such that their performance is considered not comparable.  

De novo approaches are more likely to be used when a tandem spectrum of a good quality 

cannot be identified by a database search, and then the likelihood of success is often 

small.  Similarly to the database search, de novo methods generally provide an answer, 

however, even though a partial sequence might be found correctly; to find the fully 

correct sequence or even predict which part of the sequence is correct is very hard.  Some 

of examples of well known de novo programs are PEAKs (Ma, 2003), Lutefisk (Taylor, 

2001), and Sherenga (Dancik, 1999). 

Hybrid approach 

Hybrid data interpretation is a more flexible method than the database search.  It 

is based on performing the database search based on short amino acid tag (peptide tag), 

rather than on the mass of the peptide which allows for a better PTM search as PTMs 

affect the mass of measured peptide, preventing the mass filtering from finding correct 

candidate peptide from the database.  There are several approaches to finding a peptide 

tag, for example, Mann and Wilm in 1994 introduced a reasonably successful Peptide 

Sequence Tag approach (Mann, 1994).  The other representatives of the hybrid approach 

are GutenTag, developed by David Tabb (Tabb, 2003), and one of the most recent hybrid 

approach MultiTag (Sunyaev, 2003).  The basic flexible hybrid approach is based on 

finding a continuous short amino acid sequence tag from a tandem MS, searching the 

database based on the tag and masses flanking the tag, scoring the database peptide 

sequences against the original tandem MS, and reporting the best fitting candidate 

sequence.  This type of approach might show an improvement over simple peptide mass 
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database search, being less sensitive to one or two amino acid substitutions in the peptide 

sequence, since it is possible to search the database by degenerative tags and either or 

none of the flanking masses.  However, it is difficult to rigorously assess the reliability of 

an amino acid tag.   In addition, many of the short amino acid tags match the database, 

the possibility of degenerate tag and flanking masses creates a large number of false 

positives as well as false negatives.   

Overview of the dissertation 

The goal of this dissertation is to address some of the problems in mass 

spectrometric data interpretation.  As the field of mass spectrometry expands, the 

experiments are becoming more complex and demand better data interpretation.  The 

majority of algorithmic tools currently widely used for the data interpretation are a few 

years old.  While being well tested and robust, they often lack the flexibility and accuracy 

required to deal with the increasing demands of the field.  It can therefore be expected 

that with this rising demand new data interpretation tools will be continuously developed 

in the future years.  This dissertation addresses a few of the concerns of mass 

spectrometric data interpretation for bottom up shotgun high-throughput proteomics.  

Some of the common problems in bottom up MS data involve assigning reliability to the 

peptides and proteins identified by SEQUEST, one of the accepted database search 

algorithms up to date; determination of peptide mass based on mass to charge ratio (m/z 

deconvolution); and the detection of post-translational modifications.  These three 

problems of MS data interpretation comprise three chapters of this dissertation.  Mass 

spectrometry is becoming a promising tool for organism detection based on its proteomic 

content which can be an invaluable resource for detection of biological agents in the 
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environment.  The fifth chapter of the dissertation presents a series of computer 

simulations made to probe the capabilities of mass spectrometry as biological agent 

detector.  

The second chapter of the dissertation is focused on designing a new scheme to 

assess the reliability of peptide and protein detection made by SEQUEST.  SEQUEST is 

one of the most popular database search tools used for bottom up MS data interpretation, 

which currently employs simple filtering procedures for peptide and protein detection 

without assessing the likelihood of the correct identification.  The results of SEQUEST 

data interpretation are sorted and ranked by its scoring scheme and the peptide 

identification receiving the highest score is considered to be the correct answer.  The 

people using the software are then free to accept or reject any of the identifications made 

based on the score cutoffs accepted in their laboratory.  However, the score is frequently 

influenced by such factors as peptide length, peptide charge, spectral quality and even 

digest procedures.  The lack of accepted reliability scheme causes difficulties in accurate 

peptide detection as well as making it difficult to assess the likelihood associated with 

protein identification.  The presented work suggests a new neural network based 

approach to assess the reliability of peptide identifications by SEQUEST and, using the 

new strategy, proposes a scheme for reliability of protein identifications. 

A new algorithmic approach for charge state deconvolution for low resolution 

mass spectrometry is presented in the third chapter of the dissertation.  While other 

methodologies are emerging, the tools employed as driving force of proteomic efforts 

today are electrospray ion-trap instruments.  While they are robust, sensitive, fast and 

easily coupled to liquid chromatography separations, they are also low-resolution 
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techniques. Electrospray ionization technique produces multiple charged peptides and 

MS analyzers measure m/z ratio.  The low resolution of ES ion-trap instruments does not 

allow to definitively recognize the charge state of the peptide ion measured by MS which 

leads to an ambiguity in the peptide mass.  The presented work explores the 

fragmentation pattern for charge specific characteristics and employs a trained artificial 

neural network to differentiate between the multiply charged spectra.  This methodology 

both reduces the number of spectra by eradicating precursor mass ambiguities and 

improves the performance of the analysis by potentially decreasing the number of 

incorrect identifications.  Additionally, in the chapter, a new performance evaluation 

method is introduced and used to evaluate the presented charge state determination 

method. 

In the fourth chapter of the dissertation, an organism-specific detection of post-

translational modifications by bottom up proteomic analysis is addressed.  A new PTM 

driven database search algorithm is introduced and tested on several growth conditions of 

the metabolically versatile prokaryotic organism Rhodopseudomonas palustris.  The 

detection of post-translational modifications is an extremely difficult and important 

problem.  Mass spectrometry is uniquely qualified for high throughput protein 

modification detection due to the changes in the protein mass.  However, interpretation of 

mass spectrometric data for post-translationally modified proteins is especially difficult 

due to the amount of false identifications and explosive database sizes. A detection of 

biologically sound post-translational modifications in an organism of interest was 

approached by building an organism specific post-translational modifications annotated 

homology based database and developing a set of criteria for a reliable identification.   
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The database was built to include only the experimentally observed post-translational 

modifications, greatly reducing the number of false positive identifications, database size 

and time of analysis.  The method for reliable detection of post-translational 

modifications included a combination of a database search approach combined with a set 

of rules increasing the reliability of detection and reducing the number of incorrect 

identifications.   

The fifth chapter of the dissertation is devoted to a set of computational 

simulations for biological agent detection via mass spectrometry.  With the use of mass 

spectrometers, proteins present in complex mixtures can be analyzed and identified.  This 

concept can be extended to proteome based organism detection in a complex multi-

organism mixture.  Organism detection in a complex background can be useful in 

detecting harmful organisms in the environment, water supplies and food sources and is 

already considered for use in the detection of biological weapons.  However, there are 

many limitations to the current technology which must be overcome before the 

instruments and data analysis algorithms are capable of undertaking high-throughput 

organism detection.  The simulations presented in Chapter 5 of this dissertation are 

designed to examine the pros and cons of top down and bottom up MS detection 

techniques and explore the instrumental parameters needed for detection of an organism 

in a complex environmental sample. 
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Chapter 2 

A Computational Method for Assessing Peptide-Identification Reliability in 

Tandem Mass Spectrometry Analysis with SEQUEST 

Some of the text presented below has been published as Razumovskaya J., Olman V., Xu 
D., Uberbacher E., Nathan Verberkmoes, Hettich R.L., Xu Y., Proteomics, 2004., Apr; 
4(4):961-9. 
 
Introduction  

One of the most important goals in systems biology is to identify and characterize 

the protein composition of cells as a function of conditions (Pandley, 2000).  Mass 

spectrometry has become a fast and reliable tool for determining the protein composition 

of complex mixtures by measuring mass to charge ratios of proteins and peptides in 

mixtures.  A very popular technique for whole proteome characterization is bottom up 

shotgun mass spectrometry. 

Many tools have been developed for high-throughput peptide identifications for 

bottom up shotgun mass spectrometry such as SEQUEST (Eng, 1994; Yates, 1995; 

Yates, 1995*), MASCOT (Perkins, 1999) SONAR (Field, 2002) and others.  Most of the 

current applications are database search based: they rely on the comparison between 

theoretical peptides derived from the database and experimental mass spectrometric 

tandem spectra.  The database theoretical peptides are scored against the experimental 

tandem spectrum and the theoretical peptide that displays the highest similarity to a 

corresponding experimental spectrum, according to accepted scoring scheme is 

considered to be the best hit.  SEQUEST is one of earliest developed and still a very 

popular tool for peptide identification.  From a tandem mass spectrometry experiment, 

SEQUEST produces a list of possible peptide assignments in a protein mixture.  For each 

19 19



candidate peptide, it assigns scores, including the X-correlation score, the final score 

produced by SEQUEST, the charge state of the peptide and several others.  The peptide 

identification process takes place after SEQUEST produces peptide identifications and 

involves a number of filtering steps based on the aforementioned scores. The two main 

SEQUEST scores used for filtering are the X-correlation score and the number of 

charges, though other scores can also be used. SEQUEST peptide hits are generally 

ranked based on their X-correlation scores. One problem with the current SEQUEST 

scoring scheme is that a SEQUEST score, say the X-correlation score = 2.5, may have 

different meanings for different peptides with different lengths and charges, making it 

difficult to interpret the SEQUEST identification results automatically. For some 

annotated data sets (Keller, 2002), the distributions of X-correlation score along with the 

charge states for the correct and incorrect hits do not have a clear separation.  

A possible solution to the problem is to develop a scheme to estimate the 

identification reliability for each SEQUEST hit, based on the SEQUEST scores. The 

preliminary analyses of SEQUEST search results have suggested that it is possible to 

achieve this by combining different SEQUEST scores.  

There have been several attempts to separate correct SEQUEST assignments from 

the incorrect ones (Yates, 1995).  Recently, a statistical approach was reported to assign 

reliabilities to peptide hits using a database consisting of 18 protein sequences -- these are 

Drosophila proteins with possible human contaminants (Keller, 2002).  The score 

distributions for the correct and incorrect peptide assignments were used to create a 

statistical model from which the probabilities of correct and incorrect assignments were 

derived.  This method was designed to filter out a large number of database search results 
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with predictable false identification error rates. The probability distributions were 

represented as normal and gamma distributions.  This approach relies on fitting the 

experimental data to these distributions without theoretical justification for the 

phenomena which might not be reflected under different conditions.  The method is 

focused on a specific experimental design involving tryptic digest coupled with non-

specific digest SEQUEST data analysis, as one of the given parameters is NTT (number 

of tryptic termini), which although might insure an improvement under this specific 

experiment, is not applicable to other type of experiments. 

In another recent study, a support vector machine (SVM) technique was applied 

to separate correct SEQUEST identifications from the incorrect ones (Keller, 2002).  

SVM is a binary classifier that learns to distinguish between correctly and incorrectly 

identified peptides by using a vector of parameters describing each peptide identification. 

This method improved upon the simple cutoff approach, currently used in SEQUEST, for 

separating the correct and the incorrect peptide identifications, but it does not provide an 

estimate of the reliability of each identified peptide.   

In this chapter, a new scheme is described for assessing reliabilities of peptide 

identifications made by SEQUEST.  In the scheme, peptide scores are normalized and 

their probabilities to be correct are statistically estimated.  These peptides and assigned 

probabilities are then used to provide a statistical assessment for protein identification. 

This method is based on a combined application of a statistical decision-making 

procedure and a neural network.  The training of the neural network was accomplished 

using a set of tryptic peptides from known proteins measured by mass spectrometry and 

analyzed by SEQUEST.  The SEQUEST results were separated into correct and incorrect 
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identifications by careful manual analysis. Once trained, the neural network provides a 

score between 0.0-1.0 for each peptide, reflecting the probability of a peptide to be the 

correct identification.  

One advantage of this approach is that it provides improved resolution of 

assignments for peptides that SEQUEST scores in the "gray area".  In this current 

approach, each peptide hit has a particular level of confidence associated with its 

SEQUEST score.  This confidence value can then be used in conjunction with other 

parameters to assign a reliability estimate for protein identification, which typically 

corresponds to a number of peptides identified in a protein.   

The trained neural network was evaluated on two sets of data, one representing a 

relatively simple mixture of proteins, and one complex mixture. The evaluation was 

based on two accepted parameters often used in method comparisons: sensitivity and 

specificity.  Sensitivity is the ratio between the number of correctly predicted hits and the 

number of all correct peptide assignments, while the specificity is defined as the ratio 

between the number of correctly predicted hits and the total number of hits.  The formula 

for sensitivity is described as  

FNTP
TP
+

                                                                                                                     [1] 

and specificity is  

FPTP
TP
+

                                                                                                                     [2] 

where TP denotes the number of true positives, FN denotes the number of false negatives, 

and FP, the number of false positives.  The test results showed a significant improvement 

22 22



in both the identification sensitivity and specificity for peptides by this method, compared 

to the standard SEQUEST filtering procedure.  Based on this peptide-identification neural 

network, we have developed a statistical model for protein identification, through 

combining peptide-identification reliability estimates.  To evaluate this approach, 

comparisons were performed on our statistical model and one current filtering procedure 

of SEQUEST, called DTASelect (Tabb, 2002).  This method yielded a significantly 

larger set of protein identifications than the filtered DTASelect, showing 20% 

improvement in sensitivity over the filtered DTASelect in the first 70 ranked protein 

identifications (with the same specificity). These results demonstrate that the combined 

neural network method and statistical model is more sensitive than filtered DTASelect 

while maintaining the same specificity, and more specific than the results of DTASelect 

without application of filters (later to be referred to as unfiltered DTASelect), which was 

applied for higher sensitivity of protein identifications, while maintaining the same 

sensitivity.  

Materials and Methods  

Data set for neural network training 

An 18 protein sequence dataset was used as the training data set for the neural 

network. This set was obtained from a mixture analyzed by the Institute for Systems 

Biology (ISB) (Keller, 2002*).  The 18 purified proteins, placed in the mixture and 

digested with trypsin, were: bovine β-casein, bovine carbonic anhydrase, bovine 

cytochrome c, bovine β-lactoglobulin, bovine α-lactalbumin, bovine serum albumin, 

chick ovalbumin, bovine transferrin, rabbit GAPDH, rabbit phosphorylase b, E. coli β-
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galactosidase, bovine γ-actin, bovine catalase, rabbit myosin, E. coli alkaline 

phosphatase, horse myoglobin, B. lichenformis α-amylase, and S. cerevisiae 

phosphomannose isomerase.  Keller et al. performed an analysis, using SEQUEST, to 

identify the peptides.  The search was performed against the human protein database plus 

these eighteen protein sequences.  The assignments of spectra to peptides were confirmed 

through thorough manual examination.  Keller et al. (Keller, 2002*) did peptide 

assignment in the following way: if a peptide did not belong to the set of expected 

proteins, its assignment was considered incorrect; otherwise they were manually 

examined before being considered as correct.  Detailed manual analysis also revealed that 

this set contains additional proteins from human contamination. Hence the set actually 

consists of 29 proteins.  

The final list of correct assignments consists of 2,784 peptides, confidently 

identified in the mixture; and the list of incorrect assignments contains 34,287 peptide 

hits by SEQUEST (Table 2.1).  The incorrect assignments could be due to limitations of 

SEQUEST interpretation, or to the presence of bad spectra.  These data were used to train 

our neural network.  Using this dataset, the sensitivity using a “normal” X-correlation 

cutoff (1.8 for charge state 1, 2.5 for charge state 2, and 3.5 for charge state 3) was found 

to be 66%, with a specificity of 89%, while the sensitivity using a “minimal” cutoff (1.5 

for charge state 1, 2.3 for charge state 2, and 3 for charge state 3) was found to be 75%, 

with a specificity of 84%, in comparison to the neural network approach, which at 

specificity of 89% has sensitivity of 89%. 
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Table 2.1.  Peptide assignment results for the ISB protein mixture.  

Charge state Correct Incorrect 

 +1 125 379 

 +2 1649 16856 

 +3 1010 17052 

Assignments used in the neural network training.  The first column indicates the charge 
state.  The second column shows the number of the correct peptide assignments found by 
SEQUEST through database search and confirmed by manual interpretation.  The third 
column represents the incorrect peptide assignments.   

  

Neural network selection and training 

The first goal with neural network application is to identify which peptide-

assignments by SEQUEST are correct and which ones are incorrect, through applications 

of other parameters in addition to the X-correlation scores and the charge states.  

The preliminary studies have suggested the following six parameters should be useful in 

helping to achieve this goal:  the SEQUEST X-correlation score (measure of likelihood 

of an experimental spectrum to be a representation of a theoretical peptide), peptide 

charge state (1, 2 or 3), ∆Cn (∆Cn - the difference between X-correlations of the top and 

the second top hits in the SEQUEST output for a particular experimental spectrum), 

SpRank (rank of the peptide in the preliminary scoring), ion coverage (percent of 

matched peaks), and the length of the peptide.  Several other scores were also evaluated 

in the preliminary studies, including dM (mass difference between theoretical and 

experimental parent ions) and Sp (SEQUEST preliminary score).  However, it was found 

that these do not improve the performance of our neural networks.  Each of the training 

data (2784 correct ones and 34287 incorrect ones) has six parameters associated with it 

and a 0/1 (for “incorrect” and “correct”, respectively) label as the desired output value.  
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70% of the data points from this data set were randomly selected as the training data and 

the remaining 30% of the data as the testing set.  The architecture of our neural network 

has six input nodes corresponding to the selected input parameters, one hidden layer, and 

one output node corresponding to the result of the neural net.  Nodes of adjacent layers 

are fully connected.  Throughout the training process various neural network 

architectures with different numbers of hidden nodes were evaluated. 

A SNNS 4.2 (Stuttgart Neural Network Simulator) was used to train a neural 

network to distinguish correct from incorrect peptide identifications. We used the back-

propagation learning algorithm to train the connection weights. Performance results are 

saved every 60 cycles throughout the training process. The training stops when no 

improvement in the error rate could be achieved. Each of the resulting nets was then 

tested for performance and the best was selected based on resulting sensitivity and 

specificity. Neural network testing was performed using a jackknife approach where 30% 

of the ISB data was held out for testing, while the rest was used for training. The 

resulting neural network has a hidden layer with four hidden nodes. The neural network 

output ranges from 0.0 to 1.0, where the output represents the network’s estimate of 

assignment correctness. Each result of SEQUEST, its associated neural network score, 

and its a priori classification can be used to generate histograms of the network’s 

performance. An example histogram is shown in the figure 2.1. 

Additional dataset for testing 

A mixture of eight proteins was prepared as an additional test set: bovine hemoglobin 

alpha chain (2mg), bovine hemoglobin beta chain (2mg), bovine carbonic  



Figure 2.1 Histogram of correct and incorrect peptide assignments made by neural network.  The majority of incorrect 
peptide assignments are at a range of 0-0.3 while the majority of correct peptide assignments have scores that range between 0.75-
1.0.  This histogram can be used to estimate the probability that a peptide with a given neural network score is correctly assigned. 
The neural network output ranges from 0.0 to 1.0, where the output represents the network's estimate that each assignment is 
correct. Each result of SEQUEST, its associated neural network score, and its a priori classification can be used to generate 
histograms of the network's performance. 
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anhydrase (2mg), horse myoglobin (1mg), bovine albumin (5mg), yeast alcohol 

dehydrogenase chain I (3mg), yeast alcohol dehydrogenase chain II (3mg), and chicken 

lysozyme (1mg).  In order to denature the protein mixture, it was dissolved in 1ml of 6M 

guanidine and 5mM DTT and heated at 60C for 1hour.  Then 2ml of solution was diluted 

to 10ml in Tris buffer and digested overnight with 1:50 aliquot of trypsin (60ug of  

trypsin).  The sample was treated with 10mM DTT for 1 hr at 60C, desalted with a 

SepPak, completely dried, re-dissolved in 1ml of HPLC Buffer A and filtered resulting in 

sample concentration of ~2mg/ml. This sample was then analyzed with ion trap 

instruments (Thermo Finnigan LCQ-Deca). The sample was separated into three equal 

parts: Sample I was analyzed using LC-MS/MS with a 30ul injection and the short LCMS 

run.  Sample II was concentrated to 10mg/ml and run with a 50ul injection with long LC-

MS run.  Sample III was concentrated to 10mg/ml and run with 50ul injection with short 

LC-MS run.  The three samples were created in order to check the performances with 

different concentration related detection levels. 

The trained neural network was tested on the mass spectrometry data collected 

under different conditions as defined in Samples I, II and III, respectively.  In order to 

assign peptides a Shewanella database was used in addition with the eight proteins 

present in the mixture.  The Shewanella database was selected for this task as there were 

little sequence similarity between the organism’s proteins and the proteins present in the 

sample.  Thus, it was considered to be a good background for SEQUEST search.     

SEQUEST (TurboSEQUEST v. 27) was used to search the database, using the default 

parameters.  2980 assignments were made for Sample I; 2163 assignments for Sample II; 

and 1186 assignments for Sample III.   All the peptides identified by SEQUEST as 
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belonging to the eight proteins present in the protein mixture were considered correct. 

Peptides that correspond to both Shewanella proteins and the proteins from the test 

mixture were taken out of the analysis.  Remaining peptides attributed to proteins coming 

from Shewanella were, therefore, considered to be incorrectly assigned.  Results for 

SEQUEST on this dataset are summarized in Table 2.2. 

Probability model for peptide identification 

Using the result of neural network training, P, the conditional probability of true 

peptide identification given neural network score can be estimated using Bayesian 

formula as follows. A probability of a peptide being correctly assigned, given a particular 

neural network Score, is the ratio of the previously observed number of correct peptide 

identifications with that given Score to the total number of peptides with that Score.  

Formally, let P(C | Score)  and P(I | Score) as the probabilities for a assignment to be 

correct (C) and incorrect (I), respectively. P is estimated as P(C | Score) as frequency(C , 

Score)/frequency(Score), where frequency(E) is a frequency of event E from histogram 

of neural network scores. Similarly, we estimate P(I | Score) as frequency(I , 

Score)/frequency(Score).  

Protein identification 

The above discussion is about identification of a peptide.  Identification of a protein, from 

the mass spectrometry data, is based on the identification of peptides that come from the 

protein. In order to quantify the accuracy of protein assignment we have assessed the 

likelihood of a false protein to be identified by chance.  For estimating the reliability of 

proteins in the mixture, the identified peptides are treated as independent observations (of 

a potential protein) within the mixture. Due to the assumption of peptide  
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Table 2.2 Peak assignment results for Sample I, Sample II and Sample III made by 

SEQUEST.   

Sample set Correct  Incorrect 

Sample I 487 2493 

Sample II 345 1818 

Sample III 245 941 

The first column indicates the analyzed sample.  The second column shows the correct 
peptide assignments made by SEQUEST.  The third column represents the incorrect 
peptide assignments made by SEQUEST.   
 

assignment independence, the probability of a false protein assignment can be calculated 

by combining the probabilities of incorrect identification of its peptides as follows:  Let 

peptides  be a complete set of peptides that belong to protein A (resulted from 

the mixture analysis), the probability for a

naaa ..., 21

i to be a true hit is defined as pi, and mi is a 

number of proteins that were found to contain peptide ai.  Then the probability that 

protein A is not in the mixture is estimated by value: 

PScore = ∏ ∈− )|11( Aap
m

ii
i

                                                                                        [3]    

The result shows the likelihood of a protein being identified by chance, given the 

collection of peptides that belong to the protein.  The smaller this PScore, the less is the 

chance that the protein identification occurred by chance and therefore, greater the 

certainty that the protein is actually present in the mixture.  Another method that utilizes a 

similar protein reliability model is described by MacCoss et al (MacCoss, 2002), 

however, with a very different peptide probability estimation (further discussed in Results 

section).      
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In this method, if multiple peptide assignments in the mixture correspond to the 

same protein, the likelihood that that protein is present in the mixture increases.  The 

difference between this method and simple addition of number of peptides per protein, as 

it has been done by DTASelect (where every accepted peptide contributes the same 

amount) which also uses SEQUEST’s peptide identifications is that the contribution of 

peptides to the final protein likelihood is based on their probability of correct 

identification.  In the current scheme, unreliable peptide hits contribute less than reliable 

ones, but as the number of hits per protein increases, so does the likelihood of its 

presence in the mixture.  In addition to the assumption of independence of peptide 

observations, it is assumed that non-unique peptides have equal chance to be produced by 

any parent protein.  

Results and Discussion 

Peptide identification 

We present the peptide identification results on the two test sets: the ISB set and 

our own eight protein set, and compare these results with the simple SEQUEST 

identification results, using both the normal and minimal cutoffs.  We also provide a 

performance comparison between our program and PepProphet, a software program 

written by Keller et al.  To facilitate the comparison, the identification sensitivity and 

specificity were calculated for each range of the neural network score, between 0.0 and 

1.0 with a 0.01 increment.  The sensitivity and specificity of the SEQUEST normal and 

minimal cutoffs were calculated.  The comparisons between the neural network results, 

the cutoffs and PepProphet are presented in figures 2.2 and 2.3.  Figure 2.2 shows the plot 



 

 

 

 

Figure 2.2 Specificity vs. specificity for ISB dataset.   Prediction specificity vs. sensitivity on the ISB test set for different 
neural network scores, as compared to PepProphet results and to the SEQUEST predictions using both normal and minimal 
cutoffs through DTASelect.
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Figure 2.3 Specificity vs. sensitivity of eight-protein dataset.  Prediction specificity vs. sensitivity on the eight-protein set for 
different neural network scores, as compared to PepProphet results and to the SEQUEST predictions using both normal and 
minimal cutoffs through DTASelect.
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of sensitivity and specificity for different values of the neural network score, as well as 

for the minimal and normal cutoffs for the ISB test set and the results of PepProphet.  

Here, the neural network significantly outperforms the SEQUEST cutoff method for both 

the normal and minimal cutoffs.  For example, at the 89% specificity, the SEQUEST 

normal cutoff achieves a sensitivity level at 66% compared to 89% by our method.  The 

performances of the neural network and PepProphet are shown to be relatively similar 

though neural network consistently outperforms PepProphet throughout the sensitivity-

specificity plot. 

Figure 2.3 shows the sensitivity versus specificity plot for different values of our 

neural network score on the eight protein test set.  Note that SEQUEST’s cutoff 

performance is much better on the second set than on the first one because the first 

dataset is more complex than the second, in terms of peptide compositions and spectral 

quality.  In addition, the first database for peptide searching is significantly larger than 

the second one.  The performance for our neural network and PepProphet, however, 

appears to be somewhat lower in sensitivity on the eight protein set.  The explanation for 

this lies in the definition of correct hits for the eight protein set.  All the peptides that 

were assigned to the expected proteins were considered to be correct, even though the 

assignment could happen by chance (with X correlation score sometimes less than 0.8).  

These random hits were considered incorrect by all the methods and thus, their sensitivity 

was penalized. The manually validated ISB set, however, does not contain any random 

hits and therefore, the sensitivity of all the methods is higher.  The performance of 

PepProphet on the eight protein data set is very similar to the performance of the neural 

network (neural network performs better than PepProphet in sensitivity except in the 
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specificity range greater than 92%).  The similar level of performance on both sets, by 

our neural network, indicates that our method is robust.  While our neural network 

approach improves on the prediction performance compare to SEQUEST’s cutoffs, a key 

advantage of using this approach lies in its ability to provide probability assignments for 

peptide identification and the potential to combine these for protein identification 

reliability estimation. 

Protein identification 

 SEQUEST generally provides a list of top ten hits for each experimental spectrum 

that it assigns.  It is a general practice to take the top hit as the correct assignment, 

discarding the other nine.  However, many people use the difference between the top 

ranked hit (will be referred to as X-correlation(1)), and the second ranked hit (X-

correlation(2), the number in parenthesis ranges from 1 to 10, indicating the number of 

rank) to assess the goodness of the identification in the first hit (∆Cn).  If there is no 

significant difference between X-correlation(1) and X-correlation(2), the first hit’s 

reliability is undermined.  However, many researchers are still concerned with the 

possibility of the second or even the third hit being correct rather than the first one.  It is 

difficult to assess statistics when SEQUEST identification with the first hit was incorrect, 

but the second (or lower) hit was correct, since it involves ten times the manual effort 

than that required for just the first hit.  The ISB test set used in this paper for neural 

network training does not contain any correct hits that are not ranked one.  Thus, it was 

not possible to train a neural net with the consideration of rank in the identification as a 

parameter.  We attempted to use the information from all ten SEQUEST identification 

hits for protein reliability assignment.  It was done with the use of the neural network 
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(previously described) and without any consideration as to the rank of the peptide hit in 

the SEQUEST identification (each peptide hit, regardless of rank, was treated equally).  

For example, it is possible to have a peptide for which X-correlation(1) is lower than the 

X correlation(2-10) of another peptide.  This treatment of ranks is, of course, naive. 

However, we decided to attempt this approach, which we call Neural Network 2, which 

relies on hits with X-correlation(1-10) rather than Neural Network 1, which only relies on 

hits with X-correlation(1).  Thus, in Neural Network 2, the overall number of peptides 

assigned to proteins is roughly ten times higher than in Neural Network 1.  It was 

hypothesized that even though the number of random hits in Neural Network 2 will be 

increased, the number of correct hits will contribute more, achieving a greater separation 

between signal and noise in protein identification. 

 To evaluate our method for estimating the reliability of protein 

assignments, we compared the following four approaches: (1) protein assignment based 

on the neural network scores for the top hit only (Neural Network 1), (2) protein 

assignment based on the neural network output for the 10 top hits (Neural Network 2), (3) 

DTASelect with the normal filter in SEQUEST, and (4) DTASelect without filters.  On 

the eight protein test set (the simpler one), both Neural Network 1 and Neural Network 2, 

as well as DTASelect using the normal cutoff, identified all eight proteins as their top 8 

predictions. Results of Neural Network 1and Neural Network 2 are shown in Table 2.3 

and Table 2.4 respectively.  A Pscore (Table 2.3, Table 2.4) is computed by combining 

the probabilities of a protein’s peptides being incorrectly identified.  The value, therefore, 

represents the likelihood that the protein in the sample has been identified by chance.  

Thus, the lower is Pscore, the higher the reliability of protein identification.   
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Table 2.3  Performance of Neural Network 1 on the 8-protein dataset.   

Rank PScore #peptide 

Hits 

Protein Name 

1 1.45417902267382e-145 150 gi|2190337|gnl|PID|e321614 

2         3.16526496278431e-119 105     gi|2506462|sp|P02188|MYG_HORSE 

3          1.15508933747051e-109 120 gi|1168350|sp|P00330|ADH1_YEAST 

4          8.23525223578428e-63 53 gi|122361|sp|P01966|HBA_BOVIN 

5          1.86784851604797e-61 58 gi|122572|sp|P02070|HBB_BOVIN 

6         3.24834848406027e-38 40   sp|P00698|LYC_CHICK 

7          5.91934606492622e-33 40 gi|115453|sp|P00921|CAH2_BOVIN 

8          0.000420000000000001 6 gi|113380|sp|P00331|ADH2_YEAST 

9      0.2288    5 Contig7971.revised.gene2331.protein 

10        0.33 3 Contig7971.revised.gene1007.protein 

The first 8 proteins are correctly identified with given probabilities in both neural net 
results.  Proteins with ranks 9 and 10 are not present in the sample and identified 
incorrectly.  In Neural Network 1 the difference in probabilities between protein with 
rank 8 (correct) and protein with rank 9 (incorrect) is on the order of 1 order of 
magnitude. 
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Table 2.4  Performance of Neural Network 2 on the 8-protein dataset. 

Rank  PScore #peptide 

hits 

Protein Name 

1          3.04681564494944e-146 199 gi|2190337|gnl|PID|e321614 

2          1.43470065809146e-120 130 gi|2506462|sp|P02188|MYG_HORSE 

3          3.75183070708015e-112 138 gi|1168350|sp|P00330|ADH1_YEAST

4          7.74113710163722e-63 60 gi|122361|sp|P01966|HBA_BOVIN 

5          1.50924027945192e-61 68 gi|122572|sp|P02070|HBB_BOVIN 

6          9.09537575536875e-39 48 sp|P00698|LYC_CHICK 

7          5.68434802614865e-33 52 gi|115453|sp|P00921|CAH2_BOVIN 

8          4.17398305533061e-29 75 gi|113380|sp|P00331|ADH2_YEAST 

9          1.09152586669637e-05 20 Contig7971.revised.gene2048.protein

10        0.0004899779900928 15 Contig7971.revised.gene2240.protein

The first 8 proteins are correctly identified with given probabilities in both neural net 
results.  Proteins with ranks 9 and 10 are not present in the sample and identified 
incorrectly.  In Neural Network 2 the difference in probabilities between protein with 
rank 8 (correct) and protein with rank 9 (incorrect) is 28 orders of magnitude.  
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For example (Table 2.3), according to the results of Neural Network 1, the likelihood of 

seeing myoglobin (second hit) in the sample by chance is 3.16e-119 based on its peptide 

hits. The likelihood of seeing yeast alcohol dehydrogenase II by chance, according to 

Neural Network 1, is much higher, with a probability of 4.2e-3 while the first incorrect 

protein has a Pscore of 3e-1.   

On the more complex ISB dataset, protein identification results were found to be 

significantly different by these different methods. The comparison of the four methods in 

terms of sensitivity and specificity of protein identifications is shown in Figure 2.4.  The 

first 500 protein identifications for each method were used in the analysis, showing the 

change in sensitivity and specificity based on the rank of protein identifications.  The plot 

was made by creating rank cutoffs for each method in incremental step of 10 from 10 to 

100 consequently computing sensitivity and specificity of each method.  After the 

hundredth rank, the step size was increased to 100.  Of the 29 proteins manually 

identifiable in the ISB set, DTASelect with the normal filter found 17 proteins ranked 

between 1 and 100 while Neural Network 1 found 23 proteins in the first 100 hits.  A 

more detailed comparison is given in figure 2.4.  From this figure, we can see that Neural 

Network 1 consistently outperforms DTASelect (SEQUEST) by a large margin.  

However, Neural Network 2 performs significantly worse than Neural Network 1, having 

identified only 62% of the proteins within the first 100 hits, while Neural Network 1 

identified 79% and DTASelect with normal cutoff identified 58% (Figure 2.4).  Protein 

assignments based on DTASelect unfiltered, regardless of protein rank or dataset, showed 

no usable specificity (Figure 2.4).  The comparison of performance between the four 

methods shows that overall, the neural network approach is superior to simple filtering. 



Figure 2.4 Specificity vs. sensitivity of protein detection.  Comparison of sensitivity and specificity for identified proteins 
between DTASelect filtered, DTASelect unfiltered and the two neural network approaches as the rank cutoffs increase for the 
expected 29 proteins.  Sensitivity and specificity are computed for rank windows (1-10, 1-20, 1-30 … 1-200…), as rank increases, 
the specificity of identification decreases while sensitivity increased.
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DTASelect filtered lacks the sensitivity needed for protein identification in complex 

mixtures.  Because there is no cutoff applied at the peptide level, it is understandable that 

the other three methods have sufficient sensitivity to identify most of the proteins with 

different false positive rates.  In particular, DTASelect unfiltered and Neural Network 2 

lack practical specificity.  Neural Network 1, however, provides superior sensitivity and 

specificity compared to conventional methods. 

Another approach for protein reliability estimation based on SEQUEST scores, 

presented by MacCoss et al (MacCoss, 2002) appears very similar to the method 

proposed in this chapter.  The differences between the two approaches lay in the 

treatment of peptide probabilities and the implications in the model of protein reliability.  

MacCoss’s reliability of peptide matching appears to solely depend on the use of 

normalized X-correlation score.  X-correlation score is normalized through dividing it by 

the autocorrelation score of the experimental spectrum; that is expected to minimize the 

effect of peptide charge and length on the X-correlation.  This approach to normalization 

of X-correlation assumes that the users have SEQUEST source code to modify the 

resulting X-correlation (as autocorrelation has to be calculated exactly as X-correlation is 

in order to provide correct results).  It does not take into account the effects of ∆Cn, 

SpRank, and ion coverage on the probability of correct peptide identification, excluding 

them from MacCoss’s Peptprob model.  We expect, however, that the peptide probability 

model would be improved by using these parameters, which are also often used in simple 

filtering procedures.  The Protprob proposed by MacCoss is depicted as a real probability 

model of identifying protein from its peptides.  However, it ignores an important fact of 

non-unique peptides that are not an evidence of any one protein.  Additionally, due to the 
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greatly varied number of peptide matches per protein, the resulting probability is often 

misleading.  For example, from the Neural Network 1 part of Table 2.3, it is shown that 

according to the Protprob the proteins that rank 1 and 7 have probability of 1 to be present 

in the sample (as their probability of being identified by chance is negligibly small 

comparing to 1), and the incorrectly identified proteins with the rank 9 and 10 will have 

probability of detection respectively 0.99 and 0.98.  The approach proposed in this 

chapter is preferable, as the difference between more likely proteins and less likely 

proteins is more clearly seen by the difference in exponents.  It will eventually be 

possible to automatically detect where the most likely cutoffs lie between correct and 

incorrect protein identifications. 

Significant improvement to the conventional methods of peptide filtering and 

protein assignment has been demonstrated, compared to standard cutoffs.  This 

improvement was achieved by training a neural network, which utilizes a number of 

additional parameters not usually considered in filtering.  The neural network score 

provides a more accurate basis for estimating peptide identification likelihood, as well as 

a foundation for statistical scoring of protein assignments. The results also show, 

however, that even with these improvements the methodology is far from perfect.    

At the current stage of development, it remains difficult to distinguish between 

the scores of small proteins present in the sample. There is also a problem in that often 

times a particular peptide may be observed and counted multiple times, artificially 

inflating the protein identification score.  It may be possible to remedy this situation by 

constructing a more complex statistical model that would involve coverage of proteins by 

peptides.   
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Chapter 3 

Charge Determination for Low Resolution Mass Spectrometry 

Some of the data presented below has been presented as Razumovskaya J., Fridman T., 
Day R., Borziak A., VerBerkmoes N., Hettich R., Uberbacher E., Gorin A., poster 
presentation at ASMS 2004 
  
Introduction 

 Mass spectrometry 

Analysis of protein mixtures is one of the most important and difficult 

technological challenges for high-throughput proteomics.  Mass spectrometry is an 

analytical technique that is capable of accurately measuring the mass-to-charge ratio 

(m/z, where ‘m’ stands for the mass of the measured molecule, while ‘z’ represents its 

charge state) of gas-phase ions originating from biological molecules.  One of the most 

popular instruments used today is robust, sensitive and inexpensive quadrupole ion trap 

mass spectrometer used in bottom up shotgun proteomics approaches (McCormack 1997, 

Martin, 2000, Shen, 2001).  With all the advantages of using quadrupole ion trap 

instruments for high throughput protein identification, they lack the necessary resolution 

(at least under high-throughput operating modes) to measure directly the charge state of 

peptides, making the determination of mass from the m/z measurement ambiguous.  

While more sophisticated mass spectrometry instrumentation can record spectra with 

sufficient resolution for unambiguous charge state determination, the abundance of 

proteomics data generated by quadrupole ion trap instruments dictates the need for 

substantial advances in computational algorithms for interpretation of spectra from these 

instruments, including robust charge determination algorithms.  Here a new approach for 
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accurate charge state assignment is presented involving using a trained neural network to 

detect charge-specific spectral characteristics.  

Charge determination problem for database search algorithms  

One of the main approaches to tandem MS data interpretation is database 

searching.  As described in the Introduction “Database search algorithms” section, a 

typical database search involves scanning a protein database for potential candidate 

sequences that match the experimentally observed peptide’s spectrum by such parameters 

as the peptide’s m/z or a short sequence tag obtained from the peptide’s fragmentation 

pattern (MS/MS spectrum) through sequencing.  In this analysis every piece of 

information can play a critical role in the reliable identification of the peptide.  Some of 

the most frequently used methods, such as mentioned SEQUEST (Eng, 1994), MASCOT 

(Perkins, 1999), SONAR (Field, 2002) rely on using the peptide m/z ratio as a step for 

obtaining the candidate sequences from the database.  The database typically consists of 

the predicted peptide masses derived from in-silico digestion of the proteins present in 

the database.  In order to obtain database candidate sequences that match the 

experimentally measured peptide’s m/z, the masses of the theoretical peptides must be 

compared to the m (mass) of the peptide, for which its z (charge) must be determined or 

at least assumed.  In case of incorrect mass assumption, the true peptide’s sequence does 

not appear in the list of the candidate peptides leading to either no identification or a false 

positive identification. 

The resolution of an ion trap instrument does not allow for direct determination of 

charge state of peptides by looking at the isotopic packet distances as it is done with some 

mass spectrometers that are capable of higher resolution (Loo, 1992).  In case of a 
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peptide carrying a single charge, the CID produces MS/MS spectrum where all the real 

fragment ions fall below the precursor mass.  Thus the singly charged state can generally 

be easily determined by comparing the percent of spectral intensity before and after the 

precursor mass (95% of intensity below precursor ion generally constitutes a singly 

charged peptide as mentioned in the work describing 2to3 (Sadygov, 2002)).  However, 

in case of higher charge states, the fragment ions can appear in different charge states, as 

well as either above or below the precursor m/z.  From CID spectrum of a doubly-

charged peptide parent ion, we can observe fragment ions of charge one or two below the 

precursor m/z, and of charge one above the precursor m/z.  In case of multiply charged 

peptides, the spectral density alone does not allow for a good discrimination between the 

charge states. 

Current charge determination approaches 

The widely applied approach is to differentiate between singly and multiply 

charged ion spectra.  Since obtaining tandem mass spectra from parent ions with charge 

states higher than three is considered rare (Sadygov, 2002), all the multiply charged 

spectra are considered to be either doubly or triply charged.  Therefore, the charge states 

of two or three are assumed and then the corresponding molecular weight for each charge 

state is computed.  The database search then proceeds to search for database peptides 

with both calculated molecular weights.  The actual charge state of a peptide is then 

inferred from the results of the database search – the charge state with the higher score is 

assumed to be the correct charge state with consideration for the charge dependant 

increase in X-correlation.  While this approach prevents loss of peptide assignments due 
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to the incorrect charge determination, the search time is nearly doubled by the approach, 

and the possibility of false positives is increased.  

A recently published approach, 2to3, (Sadygov, 2002) assigns multiply charged 

spectra to charge states +2 or +3, while the un-assignable spectra remain in the duplicate 

versions.  The approach is based on counting all the pairs of fragment peaks that match 

the expected parent masses (for either charge 2 or charge 3) and then choosing the charge 

state that accounts for the most of the fragment ions found in the spectrum. 

Another relevant paper by Colinge et al (Colinge, 2003) reviews three algorithms 

focused at peptide charge assignment.  The algorithms are denoted as Algorithm (N) and 

Algorithm (K), “posteriori charge assignment” algorithms and Algorithm (B), 

“integrating observations” algorithm. Algorithm (N) involves dividing a tandem mass 

spectrum into a set of intervals according to parent mass with different possible charges.  

They propose designing a stochastic model to evaluate the distributions of fragment m/z 

values in the specific intervals defined by the parent mass to charge ratio and compare the 

modeled distributions to each of the considered spectra.  Algorithm (B) is based on 

complementary ions, much as previously discussed 2to3 algorithm and parent mass 

correction algorithm (Dancik, 1999).  The third Algorithm (B) is a combination of 

Algorithm (N) and Algorithm (K).    

In this chapter, a new method for charge state assignment is presented.  It involves 

using an artificial neural network to determine a charge state of a precursor ion based on 

a set of charge-specific features found in its tandem mass spectrum. The features that are 

used to differentiate between the multiple charged peptides involve: long distance 

information (amino acid differences), short distance information (small neutral losses), 
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the number of fragment ions consistent with possible parent masses and relative densities 

of peaks in regions of the spectrum.  The last two features were also used in the previous 

approaches.  The addition of new characteristics such as long distance information and 

the short distance information coupled with a neural network allows us to significantly 

improve the quality of charge determination.  The results of our charge determination 

show an accuracy of roughly 99% for complex samples in charge state assignment, with 

only 10% of spectra with unassigned charge state. 

Materials and Methods 

Training sets 

A protein standard mixture dataset, the “Seattle dataset”, provided by the Institute 

for Systems Biology (ISB, Seattle, Washington), published by Keller et. al (Keller, 

2002*), was used as the training data for the systems.  It includes 18 proteins, and 

additionally considers a few human contaminants, bringing the number of proteins in the 

sample to 29.   The peptide data used in our analysis includes 1,565 identified peptides of 

charge 2 and 914 identified peptides of charge 3.   

An additional dataset from a standard mixture of proteins was used for testing the 

system.  A protein standard mixture of eight proteins including 5442 tandem mass spectra 

was prepared and analyzed by 1D-LC-ES-MS/MS.  This “ORNL dataset”, was fully 

described in a previous study on reliability assessment (Razumovskaya, 2004). 

An Escherichia coli proteome data set, the “E. coli dataset” was used in both 

testing and training.  This dataset was generated from an E. coli K-12 strain grown deep 

into stationary phase and analyzed by 1D-LC-MS/MS with multiple mass range scanning 

and contained 35,486 tandem MS spectra.  Briefly, the cells from a 2-L culture grown 
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deep into stationary phase were harvested, washed twice with Tris buffer (pH 7.5) with 

10mM EDTA and lysed with sonication.  Four crude protein fractions were created by 

ultracentrifugation (100,000g for 1 hour creates membrane and crude fraction and then 

for 24 hours creates pellet and cleared fraction).  Protein fractions were denatured, 

reduced and digested with sequencing grade trypsin.  The resultant peptide mixtures were 

de-salted with solid phase extraction (C-18), concentrated and filtered to give a final 

concentration of ~10µg/µL based on starting material.  All tryptic digestions of all 

fractions were analyzed via one-dimensional LC-MS/MS experiments performed with an 

Ultimate HPLC (LC Packings, a division of Dionex, San Francisco, CA) coupled to an 

LCQ DECA XP ion trap mass spectrometer (Thermo Finnigan, San Jose, CA) equipped 

with an electrospray source operated at 4.5kV.  Injections were made with a Famos (LC 

Packings) autosampler onto a 50µl loop.  Flow rate was ~4µL/min with a 240-min 

gradient for each LC-MS/MS run.  A VYDAC (Grace-Vydac, Hesperia, CA) C18 

column (300µm id x 15cm, 300Å with 5µm particles) was directly connected to the 

Finnigan electrospray source with 100µm id fused silica.  For all LC/MS/MS data 

acquisition, the LCQ was operated in the data dependent mode with dynamic exclusion 

enabled, where the top four peaks in every full MS scan were subjected to MS/MS 

analysis.  To increase dynamic range in the 1D-LC-MS/MS analysis separate injections 

were made with a total of 8 overlapping segmented m/z ranges scanned (referred to as 

gas phase fractionation or multiple mass range scanning).  The resultant MS/MS spectra 

files from all fractions were searched with SEQUEST against all predicted ORFs from E. 

coli.  The raw SEQUEST output files were filtered and sorted with DTASelect (Tabb, 

2003) with the following parameters: fully tryptic peptides only, with delCN of at least 
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0.08 and cross-correlation scores (X-correlations) of at least 1.8 (+1), 2.5 (+2) and 3.5 

(+3).  All peptides passing these criteria were kept for further analysis. 

Neural network training and testing 

 Stuttgart Neural Network Simulator 4.2 (SNNS) (http:/www-ra.informatik.uni-

tuebingen.de/SNNS/) was used to train an artificial neural network to assign charge states 

to multiply charged peptides measured  by quadrupole ion trap.  The neural network 

connection weights were trained using the back-propagation learning algorithms, with all 

the standard parameters suggested in the SNNS package.  Performance results were saved 

every 60 cycles throughout the training process, the training procedure stopping when no 

improvement in the error rate could be achieved.  Each of the resulting nets was then 

tested for performance and the best was selected based on performance on the training 

and testing sets. The neural network output ranges from 0 to 10, where the output 

represents the charge state of the precursor ion – 0, stands for charge 2+, while 10, stands 

for charge 3+.   

The three non-overlapping datasets described in the “Training Sets” section, the 

ORNL dataset, the E. coli dataset and the Seattle dataset were used to train and test the 

neural network for charge determination.   The well-characterized, manually curated 

Seattle dataset (Keller, 2002) was used for training of the neural net; it includes 1565 

examples of charge 2+ tandem MS spectra and 914 examples of charge 3+ tandem MS 

spectra.  The method was tested on two non-overlapping data-sets acquired at Oak Ridge 

National Laboratory 1) the ORNL dataset, acquired from a standard mixture of 8 

proteins, and 2) the E. coli dataset, derived from a complex mixture of proteins, the 

proteome of a whole organism.  In order to increase the size of the training set, the high 
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confidence identifications from E. coli dataset were included for ORNL dataset testing 

and the high confidence identification from ORNL dataset were included in the E. coli 

dataset testing, creating the unbiased non-overlapping training datasets.  The high 

confidence identifications included into the training sets from ORNL and E. coli datasets 

were chosen as follows: all spectra assigned to charge 2+ peptides with SEQUEST’s X-

correlation score of 2.8 and higher, (X-correlation scores of 2.5 or above are generally 

required for  confident identifications of charge 2+ peptides) and all spectra assigned to 

charge 3+ peptides with SEQUEST’s X-correlation of 3.8 and higher (confindent 

identification requires X-correlation score of 3.4 or above).  The training set for ORNL 

dataset included the full Seattle dataset and a filtered collection of spectra from E. coli 

dataset, including 1963 examples of charge 2+ tandem MS spectra and 1001 examples of 

charge 3+ tandem MS spectra.  The training set designed to test the performance of the 

charge determination approach on the E. coli dataset included Seattle dataset and 395 

examples of charge 2+ spectra and 131 examples of charge 3+ spectra from ORNL 

dataset.  Thus the neural network trained with the first training set was only tested on a 

non-overlapping ORNL dataset and neural network trained on the second training set was 

tested on non-overlapping E. coli dataset.   

Algorithmic approach 

The development of the charge determination approach involved the following 

three steps: 1) identifying the fragmentation pattern features that are related to the charge 

of precursor ion, 2) training an artificial neural network to recognize the charge state of 

the precursor ion based on the set of features found in its fragmentation pattern, 3) 

selecting the neural network cutoffs for the assignment of the charge states.  The rationale 
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behind choosing the fragmentation pattern features is discussed in the following three 

sections: “CID spectrum” and “Underlying principles” and “Charge Determining Spectral 

Features”.  The spectral features used for the charge identification are: long distance 

information (amino acid differences) for each of the charge states considered (3 

parameters), short distance information (neutral losses) (3 parameters), parent masses for 

the charge 2+ and charge 3+ states (2 parameters) and relative densities below and above 

parent mass (2 parameters) each of which is discussed separately in the “Charge 

determining spectral features” section.  Using the set of ten parameters derived from the 

mentioned features we trained an artificial neural network, as described in “Neural 

network training and testing” section and based on the results selected reasonable neural 

network score cutoffs for the final charge state determination. 

CID spectrum 

Tandem mass spectrometry produces a sequence dependent fragmentation pattern 

and the mass analyzer records the m/z of the resulting ions.  The number of positive 

charges on the parent ion (H+) determines the total charge of the peptide and therefore 

real parent ion mass (PM) can be computed as follows: PM(real) = PM(observed)*charge 

- charge or PM = (m/z)*z - z. As a result of CID fragmentation, a peptide tends to 

fragment by breaking along the backbone bonds and creating a pair of fragments, which 

if they retain a charge are referred to as ‘b’ and ‘y’ ions (Roepstorff, 1984; Biemann, 

1988).  The number of singly charged ‘b’ and ‘y’ ions for each given peptide is equal to 

the number of the peptide bonds.  A peptide containing N amino acids, has N-1 peptide 

bonds, it’s CID spectrum is expected to have N-1 possible ‘b’ and N-1 possible ‘y’ ions 

of charge 1+.  The sum of masses between the singly charged ‘b’ and the corresponding 
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‘y’ ions in tandem MS spectrum produce the mass of the parent ion PM= b + y -1, and 

the sum of charges between the ‘b’ and corresponding ‘y’ ions, should produce the total 

charge on the parent ion: zP=zb + zy where zp is the charge on the peptide p.  Many of the 

‘b’ and ‘y’ ions have been shown to have additional fragmentation, resulting in a series of 

trailing peaks formed by the losses of various chemical groups, such as loss of water and 

loss of ammonia, etc (Dancik, 1999,  Fridman, 2003) (the considered chemical losses off 

the ‘b’ and ‘y’ ions were: H, H2O, NH3, CO, CO-H2O, CO-NH3, NH3-H2O, where ‘-‘ 

refers to the loss of the corresponding chemical group).  

Underlying principles 

The main idea of the charge determination described here is based on the concept 

that different charge states of a parent peptide lead to variations in the fragmentation 

patterns.  For example, a peptide with a total charge of 1+ will only produce fragment 

ions of 1+ charge, while the same peptide with charge 2+ might produce 1+ and 2+ 

fragment ions, and a peptide with charge 3+ could have all the charge states present in the 

fragmentation pattern, as illustrated in Figure 3.1.  The peptide with total charge of 2+ is 

likely to fall apart in the following patterns: ‘b’ ion of charge 1+ and corresponding ‘y’ 

ion of charge 1+, or ‘y’ ion of charge 2+, with unobservable neutral fragment in place of 

a ‘b’ ion and conversely ‘b’ ion of charge 2+, with unobservable ‘y’ fragment ({1+,1+} 

pattern or {0,2+} pattern).  The peptide with total charge of 3+ can fall apart into {1+,2+} 

pattern or {0,3+} pattern.  It was also noted that, due to charge repulsion, protons favor to 

be at a distance from each other making {1+,1+} and {1+,2+} patterns more frequent 

(Figure 3.1). Since the patterns are different, it should be possible to differentiate between 

the precursors of charge 2+ and charge 3+ (as well as higher charge states).   
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Figure 3.1 Charge dependent patterns.  The most frequently observed charge 
fragmentation patterns in the SEATTLE dataset.  The vertical arrows indicate the 
cleavage site for each parent ion.   
a.  Peptides of charge 1+ fragment into an ion with 1+ charge and a neutral fragment,      
b.  Peptides of charge 2+ are likely to fragment into b ion with charge 1+ and a y ion with 
charge 1+,   
c.  Peptides of charge 3+ are likely to fragment into b and y ions with one ion carrying 1+ 
charge and the other with 2+ charge. 
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 It was noted that more fragments from charge 2+ precursors carry 1+ charge with little 

of 2+ charged ions, while fragments from charge 3+ precursor have roughly equal 

amount of 1+ and 2+ charged ions. 

Charge determining spectral features 

Long range information (Amino acid differences) 

Most of the software developed for interpretation of tandem mass spectra relies on 

the fact that in an ideal case a peptide is expected to fragment along the peptide 

backbone, producing a series of consecutive ions separated by m/z of one amino acid 

residue as described in “CID spectrum” section.   In the case of a continuous succession 

of ‘b’ (or ‘y’) fragment ions with charge 1+, the mass differences between consecutive 

ions would correspond to single amino acid masses.  In the case of a series of fragment 

ions with charge 2+, the mass differences should match amino acid masses divided by 2, 

etc.  This insight can be used to assess the number of differently charged fragment ions 

present in the spectrum.  It would be expected that different charge spectra have a 

different number of 1+, 2+ and 3+ amino acid differences.  To use this information for 

charge state determination, the instances of amino acid differences of charge 1+, charge 

2+ and charge 3+ are counted and weighted.  Computing these weights involves the 

summation of the normalized intensity products of peak pairs, whose m/z are separated 

by mass of one amino acid or one amino acid divided by the respective charge.  For 

example, as the differences between the m/z values of all pairs of consecutive charge 1+ 

‘b’ (or ‘y’) ions yield to the masses of amino acids, AA1 is the sum of the product 

intensities of the two consecutive ions, normalized to the square of the highest peak in the 

spectrum.    Since the ion identity is unknown, all the peak pairs located at the amino acid 
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distances with an error of 1 Da of each other are accepted in the analysis, which 

potentially includes the neutral loss ions and the noise peaks.    The three charge states of 

amino acids provide the three parameters (AA1, AA2 and AA3) for the long range 

information in the spectrum.  The contribution of long range information to the 

differentiation between charge 2 and charge 3 spectra is shown on Figure 3.2a.  The 

separation based only on the long range information is not in itself conclusive, as most of 

charge 2 and charge 3 spectra have similar scores derived from the neural net analysis.   

Short range information (Event differences) 

In addition to the amino acid differences, it is expected that the differences 

between main ion types and their corresponding satellite peaks, described above in the 

”CID spectrum” section, will be similarly affected by the charge states.  Since this 

information is contained within approximately 50 m/z region surrounding each b or y ion 

peak, we refer to this as the “short range” information.  For example, a ‘b’ fragment ion 

with a charge state 1+ has a water loss ion peak 18 m/z units lighter, while a ‘b’ fragment 

ion with a charge state of 2+ having a water loss ion peak only 9 m/z units lighter.  The 

full set of such small neutral losses that we considered in our model is listed in the “CID 

spectrum” section.    The procedure for computing the short range parameters is very 

similar to the one described above in the section describing the “Long Range 

Information”.  Computing ED1 involves summation of the normalized intensity products 

between the expected charge 1+ ions and their corresponding neutral loss satellite peaks, 

while ED2 and ED3 are computed by summing the normalized intensities of ion pairs 

located at the event masses divided by 2 and by 3 respectively.   The short range 
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Figure 3.2 Significance of spectral parameters for charge state determination. 
The performance of charge separation by each of the four considered factors separately: 
a) long range information, b) short range information, c) parent windows, d) spectral 
density.  The solid line stands for charge 2+ peptides, dashed line stands for charge 3+ 
peptides, X-axis denotes the neural network score, while Y-axis shows the number of 
spectra with the given score.  The parent windows factor shows the greatest separation 
between charge 2+ and charge 3+ spectra.
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information provides us with another three parameters (ED1, ED2 and ED3).  The short 

range information in itself also fails to provide a distinct differentiation between parent 

ions of charge 2 versus charge 3.  Figure 3.2b demonstrates that the distributions of 

scores derived from the neural net analysis for charge 2 and charge 3 spectra are fairly 

broad, with considerable overlap.  However, the short-range scores in Figure 3.2b provide 

a more marked distinction between parent ions of charge 2 versus charge 3 than the 

scores derived from amino acid differences (Figure 3.2a). 

Parent windows 

The concept of complementary ions is a well studied phenomenon in tandem mass 

spectrometry of peptides.  When a peptide dissociates into two corresponding fragment 

ions, b and y, the sum of the masses of the two complementary fragment ions equals the 

mass of the parent peptide.  This property is extensively used by charge determination 

algorithms such as those mentioned above:  2to3 (Sadygov, 2002), and Algorithm(K) and 

Algorithm(B) (Colinge, 2003).  When the parent m/z is measured, the mass can be 

calculated with a particular assumed charge state and the summation of candidate pairs of 

complementary ions can be used to deduce the correct parent mass.  The true parent mass 

“window” (a window of ±2 Da around given mass value) collects the sums of true 

complementary pairs of fragment ions, while other assumed parent mass windows 

collects random pair wise sums of m/z values.  The comparison between the number of 

fragment pairs that produce the possible parent mass in summation is used to determine 

the likely charge state of the peptide.  In our approach the procedure involves multiplying 

the normalized intensities of the two corresponding ‘b’ and ‘y’ fragment ions (their m/z 

values add up to a particular parent mass) and summing all the resulting products for a 
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particular parent mass to produce a final parent mass score (PM).  The procedure is 

applied to all the considered parent masses, in the case of differentiating between charge 

2+ and charge 3+ charge states, it involved computing the value for parent mass 

“window” of charge 2+ (PM2) and the value for parent mass “window” of charge 3+ 

(PM3), creating two parameters for the charge state determination algorithm. The 

potential capability of parent windows for determining the charge state is shown in 

Figure 3.2c.  It is undoubtedly the most powerful of all the techniques that we apply to 

the charge state identification, however, it was reinforced by the addition of the other 

parameters. 

Relative density 

In case of parent ion of charge 1+, all of the valid fragment ions fall into mass 

range lower than that of the m/z of the parent ion while the mass range above the parent 

ion contains no peaks that belong to the parent peptide of charge 1+.  Let us divide the 

spectrum into two parts:  the first part with lower m/z range than the observed parent m/z 

and the second part with higher m/z range than the observed parent m/z.  As previously 

described, in charge 1+ spectra, all the fragment ions have charge 1+, and they are 

concentrated in the first part of the spectrum, with no peaks due to authentic fragments of 

the parent ion in the second part of the spectrum.  The approach currently used to identify 

charge 1+ spectra involves the comparison of composite intensities in the first (D1) and 

second (D2) parts of the spectrum.  If the total intensity in the second part of the spectrum 

is below 5% of the total intensity of the spectrum, the spectrum is considered to be a 

charge 1+ spectrum.  In case of a spectrum being produced from a parent peptide with 

charge 2+, the peaks located below the parent m/z hold either charge 1+ or charge 2+, 
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while all the peaks in the second part of the spectrum are of charge 1+.  The reason for 

this model is based on the following: all of the fragments observed in the tandem mass 

spectrum must be less than or equal to the parent in mass; any fragment observed with 

higher m/z than the parent m/z must have a lesser charge than the parent ion, while the 

peaks below the parent m/z can have any charge from 1 up to the charge of the parent 

peptide ion.  As the parent charge increases, the parent m/z becomes lower, and the 

fragment ions in the first region can carry higher charges.  The ratio between the 

intensities in the first and second part of the spectrum changes depending on the peptide 

charge.  A similar approach was used by Colinge, in his algorithm(N) (Colinge, 2003), 

however, here it is simplified to the division of the spectrum into only two parts (which is 

more realistic, considering mass to charge range), adding two parameters, D1 and D2 to 

the charge determination where they are used in combination with all the other 

parameters.  The neural net scores for spectrum density are shown in Figure 3.2d. 

Selecting cutoffs 

The ten variables produced by the four contributing factors – the AA1, AA2 and 

AA3 (1+, 2+ and 3+ charge state parameters from the long range information), the ED1, 

ED2 and ED3 (1+, 2+ and 3+ from short range information), PM2 and PM3 (2+ and 3+ 

charged parent windows) and D1 and D2 (above and below parent mass densities) are 

used to describe the charge state of a given spectrum.  Using the training sets described in 

“Training set” section, we trained and tested the separation between the charge 2+ and 

charge 3+ precursor ions based on the given parameters.  The results of our charge 

determination for the Seattle training dataset are shown in Figure 3.3 and summarized in 

Table 3.1. 



Figure 3.3 Charge separation results for the Seattle dataset.  The distributions of charge 2 and charge 3 spectra by the neural 
network score.  The charge 2 spectra are denoted by a solid line – most of the charge 2 spectra have a score below 1; charge 3 
spectra are denoted by dashed line – most of charge 3 spectra have a score higher than 8.
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Table 3.1  Charge state assignment results for neural net training with Seattle 

dataset 

Parent ion charge Correct* Incorrect* Undecided* 

+2 1546 10 9 

+3 878 26 10 

Percent IDs 97.74% 1.45% 0.766% 

The charge assignments for Seattle dataset *relative to the manually curated assignments 

(Keller, 2002) 

 

Since the Seattle dataset was manually curated, all the charge states for the tandem MS in 

the dataset are considered correctly pre-assigned. The charge state discrimination 

presented in Figure 3.3 is significantly better defined than in any of the four contributing 

factors shown in the Figure 3.2.  Most of the charge 2 spectra are shown to have a neural 

network score below 1, while most of charge 3 spectra have a score higher than 8.  Based 

on the analysis which minimizes the erroneous assignments (increasing the number of 

undecided assignments), all the spectra with score less or equal to 1 are considered to be 

a product of charge 2+ peptides, while all the spectra with score greater or equal to 9 are 

considered to be a product of charge 3+ peptides.  The peptides with scores between 1 

and 9 are the “unassigned spectra”, which will be subjected to SEQUEST analysis as 

both possible charge 2+ and charge 3+ spectra.  The results show a rate of incorrect 

charge state assignment of 1.45% and unassignable spectra rate of 0.8% for Seattle 

dataset (36 spectra out of 2479 would have been incorrectly assigned and 19 spectra 

would have been considered as both charge 2 and charge 3 peptides).  The absence of any 

single given parameter decreased the efficiency of charge separation in the training set. 
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Results and Discussion 

The charge determination algorithm for low resolution quadrupole ion trap mass 

spectrometer promises an improvement to high throughput data interpretation in two 

main aspects: it is capable of significantly decreasing the number of false positive 

identifications and the increase of the speed of the analysis.  It is difficult to ascertain the 

rate of false positive identifications made by search algorithm like SEQUEST, the only 

methods for such analysis are generally increasing the search space (by increasing the 

database size) and comparison to other algorithms.  Here, we attempt to examine the 

SEQUEST’s performance in a different manner – by comparing the performance of the 

described charge state determination algorithm to the performance of SEQUEST’s charge 

state assignment under different X-correlation cutoffs.  The performance of the described 

method is not affected by the changing X-correlation cutoffs, however, as they are 

increased the number of true positive SEQUEST’s assignments increases and the true 

performance of the charge state algorithm can be seen.  The true performance exhibited 

by our method for a real proteomic sample at 0.6% error and 10% unassigned spectra at 

highest X-correlation suggests that at the accepted X-correlations, the charge 

determination algorithm will be able to reduce the number of false positives from the 

1.8% shown at X-correlation of 2.6 for charge 2+ to 0.6% while the number of 

unassigned spectra will be 17.7%.    

  One of the problems in measuring the error rate of bottom up data interpretation 

algorithms is that it is difficult to obtain a large set of correctly assigned peptides.  If the 

dataset contains accepted 5% of incorrect identifications, the percent error of the tested 

method cannot be lower than 5%.  In our test cases (the non-manually curated ORNL 
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dataset and E. coli dataset), we had to rely on SEQUEST database search to produce                                 

correct peptide assignments for our training and test sets, however, there is no guarantee 

that all the assignments used in the analysis are correct.  The peptide assignments are 

mainly based on particular set of cross-correlation (X-correlation) cutoffs derived from 

SEQUEST and different laboratories apply different cutoffs for their peptide 

identification.  The high X-correlation cutoffs used for the training sets reduce the 

number of false identifications, however, with the increasing cutoffs the number of 

unidentified peptides also increases making the analysis unrealistic.  In order to 

circumvent the problem of inflated error, we present a scheme to measure the 

performance of the charge determination algorithm independently of the static X-

correlation cutoffs.  The algorithm’s performance is displayed in Figure 3.4 for different 

ranges of X-correlation cutoffs, to show the relationship between the accuracy of peptide 

sequence identification and charge state assignment. For charge 2+ peptides is X-

correlation cutoffs are varied in the range from 1.0 to 3.8, in increments of 0.2.  The 

charge 3+ X-correlation cutoffs range from 2.0 to 4.8 in increments of 0.2.  As the X-

correlation cutoff is increased, the number of false positive identifications decreases, the 

percent of SEQUEST’s incorrect identifications is negligibly small with very high X-

correlation cutoffs (as 3.5 for charge 2+ peptides and 4.5 for charge 3+ peptides). When 

the percent of incorrect identifications is reduced, the real performance of our algorithm 

can be observed.  This performance measure should provide an accurate assessment of 

error rate of our algorithm, as well as provide the expectation of the algorithm’s 

performance based on any set of cutoffs. 

 



Figure 3.4 Estimation of error rates for charge state assignment in E. coli and ORNL datasets.  The solid curves represent 
the percent of error made by the charge determining algorithm as comparing to the SEQUEST charge assignment, the dashed 
lines stand for the percent of spectra that the charge determining algorithm considered unassignable as comparing to the 
SEQUEST charge assignment.
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There are two measures of error for the performance of a charge determination 

algorithm: the number of incorrectly assigned charge states, and the number of spectra for 

which charge could not be determined.  The two characteristics are connected – it can 

generally be adjusted whether more spectra should be assigned (potentially producing 

more incorrect assignments), or more unassigned spectra can be allowed (reducing the 

number of erroneous assignments, but increasing the number of spectra with multiple 

charge states).  The performance of our method was tested against two test sets, the 

ORNL dataset and the E. coli dataset, as shown in Figure 3.4 and summarized in Tables 

3.2 and 3.3.   

The percent of false positive assignments made by SEQUEST is expected to 

decrease with the increase of X-correlation cutoff.  At the low X-correlation cutoffs (1, 

for charge 2+ peptides and 2 for charge 3+ peptides) both datasets show high error rates: 

19% error for the ORNL dataset and 27% error for the E. coli dataset.  However, as 

expected, when the X-correlation cutoffs are increased reducing the number of false 

identifications, the percent error of our charge state assignment method decreases 

dramatically.  At the frequently used X-correlation cutoffs of 2.6 for charge 2 and 3.6 for 

charge 3, the percent errors in charge state determination are 2.8% and 1.8% for ORNL 

dataset and E. coli dataset respectively.  At the higher X-correlation cutoffs, the decrease 

in charge state assignment error as a function of X-correlation levels off.  At the highest 

X-correlation cutoff considered: X-correlation 3.8 and 4.8 for charge 2 and charge 3

65 65



 

Table 3.2 Charge assignments for the ORNL dataset. 

X-correlation %Error %Undecided Charge 2 Charge 3 

2.2 5.0 14.4 528 193 

2.4 3.3  11.4 475 165 

2.6 2.8 10.1 431 141 

2.8 2.8 9.1 395 131 

3.0 2.7 8.5 363 118 

3.2 2.5 7.8 331 104 

3.4 2.5 7.4 303 89 

3.6 2.0  7.08 275 77 

3.8 1.6 5.8 248 62 

 

The first column refers to the presented X-correlation cutoffs for charge 2+ peptides, 
corresponding X-correlation cutoffs for charge 3+ is greater by 1.  Second column shows 
%error made by charge assignment method, SEQUEST assignments with given X-
correlation cutoffs are correct.  Third column displays the percent of unassigned spectra, 
while fourth and fifth columns show the number of SEQUEST assignments for charge 2 
and charge 3 peptides in the database. 
 
 

 

 

 

 

 

 

 

 

66 66



 

Table 3.3 Charge assignments for E. coli dataset. 

X-correlation %Error %Undecided Charge 2 Charge 3 

2.2 4.4 21.5 2874 1515 

2.4 2.6  19.2 2475 1326 

2.6 1.8 17.7 2203 1149 

2.8 1.3 16.6 1963 1001 

3.0 1.1  15.1 1740 862 

3.2 0.8 14.3 1501 740 

3.4 0.6 13.1 1273 634 

3.6 0.5  11.3 1066 520 

3.8 0.6 10.1 875 438 

 

 The first column refers to the presented X-correlation cutoffs for charge 2+ peptides, 
corresponding X-correlation cutoffs for charge 3+ is greater by 1.  Second column shows 
%error made by charge assignment method, SEQUEST assignments with given X-
correlation cutoffs are correct.  Third column displays the percent of unassigned spectra, 
while fourth and fifth columns show the number of SEQUEST assignments for charge 2 
and charge 3 peptides in the dataset.
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peptides respectively, ORNL dataset shows 1.6% error, while E. coli dataset shows 0.6% 

error.  These final numbers approximate the accuracy of our charge determination as 

compared to X-correlation cutoffs, since as X-correlation decreases, the less SEQUEST 

assignment contributes to the percent of error in the analysis.  Thus, for the ORNL 

dataset, the charge assignment’s error is approximately 1.6% (based on the highest X-

correlation cutoffs), and for the E. coli dataset, the error is approximately 0.6%.   

The percent of unassigned spectra behaves similarly to the percent error, as the X-

correlation cutoffs increase.  For relatively low X-correlation cutoffs of 1 and 2 for 

charge 2+ and charge 3+ peptides respectively, the ORNL dataset shows 19% unassigned 

spectra, while the E. coli dataset displays 38% unassigned spectra.  At the X-correlation 

cutoffs of 2.6 for charge 2+ and 3.6 for charge 3+, 10% of spectra are unassigned in the 

ORNL dataset, while the E. coli dataset shows 18% unassigned spectra.  At the X-

correlation cutoffs of 3.8 for charge 2+ and 4.8 for charge 3+, the ORNL dataset has 

roughly 6% of spectra with unassigned charge state, and the E. coli dataset shows 10% of 

spectra with unassigned charge states. The spectra that fall under the classification of 

being undecided will be searched as either charge 2+ and charge 3+ spectra, therefore 

they will not be lost as identifications as the ones whose charge was assigned incorrectly.  

The disadvantages to having unassigned spectra are that they increase the search time of 

the algorithm and that they cause incorrect assignments on the peptide levels.  However, 

it is important not to loose possible identifications by making incorrect charge state 

assignments, thus as long as the number of unassigned spectra is not overly large (greater 

than 20%), it is beneficial to open the windows for a few more unassigned spectra rather 

then cause increase in error rate, leading to unidentified spectra.  
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Some of the differences between the our method’s performance for the two 

datasets can be explained by the nature of the data: ORNL dataset, like Seattle dataset is 

very limited in number of peptides, while E. Coli dataset is a real life complex mixture 

with significantly larger number of peptides in every range of scoring.  As shown above, 

the differences between the datasets are displayed by both the error percent and the 

percent of unassigned peptides (ORNL dataset: error 1.8%, unassigned 5.8%; E. coli 

dataset: error 0.6%, unassigned 10%).  These differences point at the different 

distributions of charge 2+ and charge 3+ spectra as a function of the neural network score 

(Figure 3.3), which affects the percent error and percent undecided.  It is possible to 

change the neural network score cutoffs for charge 2+ spectra and charge 3+ spectra to 

produce similar percent of errors and undecided for both datasets. 

The algorithm has been trained on the data received from two ion trap instruments 

from different laboratories (ISB and ORNL).  It appears that the performance is best if 

the neural network is partially trained on the data available from the instrument where the 

data is analyzed, it is at this time unknown whether it is due to the instrumental 

differences or the differences in the experiment or the quality of data.  At this time, the 

best performance shown by the charge determination method was in application to real 

proteomic data rather than the standard datasets where the protein content is assumed as 

known.  In part, the reason for this phenomenon might be caused by the practice of 

accepting most of SEQUEST’s identifications which correspond to the expected proteins, 

even though such identification might still be coincidental. 

The neural network charge state determination method combines an extensive 

study of features of tandem MS spectrum with the pattern recognition of neural networks.  
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It embraces a combination of known and new observations in the MS/MS spectra such as 

examining the number of peaks consistent with parent masses, the spectral densities and 

the long and short range spectral information.  The added features and the new intensity 

based schemes increase the sensitivity and accuracy of charge state determination, and 

neural network allows for the normalized score estimating the likelihood of a charge state 

for a tandem MS spectrum.  In the future, this algorithm is easily extensible to the higher 

charge state models using trivial addition to the feature parameters.  This new approach is 

a promising new method for charge state determination for low resolution mass 

spectrometry, which can be used to improve the specificity and time of high-throughput 

mass spectrometric data analysis.   
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Chapter 4 

Computational Identification of Post-Translational Modifications from Shotgun 

Mass Spectrometry Data. 

Some of the data presented below has been presented as Razumovskaya J., VerBerkmoes 
N., Hurst G., Uberbacher E., poster presentation at ASMS 2005 
 
Introduction 

 The proteome can be defined as the set of all expressed proteins in a cell, tissue or 

organism.  Proteomic analysis is the product of the need to understand the function of 

proteins.  Proteomics gives us insight into the interactions between proteins, allowing us 

learn more about the complex network of molecular interactions.  Now, as more and 

more is revealed about proteins, protein structure and function, we find ourselves looking 

for a deeper knowledge of protein-protein interactions and protein pathways, which gives 

us a clue to the mechanics of life.  The task of identifying and modeling protein pathways 

is challenging and introduces a great degree of complexity to the studies, as it is a multi-

parametric dynamic system.  The protein pathways, such as kinase signaling pathway, 

involve multiple proteins interacting at different times. Additionally, it often involves 

protein regulation with post-translational modifications, which is essential to the process.   

Post-translational modifications (PTMs) are covalent processing events that change the 

properties of a protein by proteolytic cleavage or by addition of a modifying group to one 

or more amino acids.  Far from being mere protein decorations, PTMs of a protein can 

determine its activity state, localization, turnover and interactions with other proteins.  

For example, “kinase cascades are turned on and off by the reversible additions and 

removal of phosphate groups, and in the cell cycle ubiquitination marks cyclins for 
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destruction at defined time points.” (Mann, 2003).  The study of PTMs of proteins is, 

therefore, absolutely essential to facilitate our understanding of cellular processes. 

Post-translational modifications 

 A post-translational modification (PTM) is a modification to a protein which 

occurs after its translation, causing the protein to appear in altered form from the one 

originally suggested by its DNA sequence.  PTMs can be in a form of proteolytic 

cleavage such as a signal peptide cleavage, or a covalent addition of various chemical 

groups to one or more amino acid residues.  PTMs are important for protein function: 

they can control the protein’s activity, be related to protein’s localization, and have an 

effect on protein-protein interactions (Mann, 2003).  At this time, a large number of 

different PTMs has been observed in eukaryotic and prokaryotic organisms.  RESID, one 

of the available databases of post translational modifications, reports 330 confirmed 

PTMs (Garavelli, 2004), but it is expected that the actual number is significantly greater.  

Some of the more commonly observed post-translational modifications include 

1)phosphorylation which is involved in regulation of enzyme activity and signaling; 

2)acetylation which affects the protein stability (protection of N-terminus) and regulation 

of protein-DNA interactions, 3)methylation, regulating of gene expression, 4)acylation, 

cellular localization and targeting signals, membrane tethering, mediator of protein-

protein interactions; 5)hydroxyproline, protein stability and protein-ligand interactions, 

6)sulfation, modulator of protein-protein and receptor-ligand interactions; 7)deamidation, 

possible regulator of protein-ligand and protein-protein interactions, also a common 

chemical artifact; 8)glycosylation, cell-cell recognition/signaling, reversible, regulatory 

functions (Mann, 2003).  Other PTMs, like disulphide-bond formation seem to be only 
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involved in protein structure stabilization, or like GPI anchor, in membrane tethering.  

The main PTMs found in prokaryotes include phosphorylation, methylation, loss of the 

first methionine, and acetylation.  Some PTMs have only been so far observed in 

eukaryotes, which might suggest their later evolution, or is just related to our current 

inability to perform a whole proteome PTM analysis. 

Methods to measure PTMs 

Several approaches have been used to attempt the study of PTMs on the 

proteomics scale.  Some PTMs can be predicted from DNA sequence by computational 

methods, like signal peptide cleavage, and some by homology to the previously observed 

proteins (like kinase cascades) in different organisms or pathways.  The unknown PTMs 

are very difficult to detect; many of them have been uncovered by accident during studies 

of particular proteins, or specific pathways.  The study of post-translational modifications 

in an organism is made difficult by the nature of PTMs: generally, they can only be found 

on the protein level, the DNA and mRNA do not carry the information about most PTMs.  

Edman degradation (Edman, 1950) and various mass spectrometry methods have been 

the most successful to detection.  However, Edman degradation involves analyzing pure 

proteins, which prohibits a high throughput analysis; additionally, the candidates for 

Edman degradation must come from some prior analysis.  Therefore, while the Edman 

degradation technique is useful for identifying and localizing PTMs on specific proteins 

of interest or as a confirmation technique, it cannot be practically applied to a whole 

genome study.   

Post-translational modifications are post-processing events that generally change 

the mass of the proteins from the original mass prescribed by the DNA sequence as is 
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illustrated in the figure 4.1.  Since PTMs affect the mass of a protein, such techniques as 

2-D PAGE and mass spectrometry that measure protein mass can be applied to detecting 

the mass change and characterize present post-translational modification.  While the 

combination of isoelectric point information and molecular weight provided by 2-D 

PAGE separations has been shown useful for detection of post-translational 

modifications, 2-D PAGE separations coupled to various mass spectrometric methods 

provides significant additional improvements (Wilkins, 1999).   

Despite the presence of many other mass spectrometric techniques, shotgun 

bottom up mass spectrometry is one of techniques that are most widely used for a high 

throughput whole proteome analysis (Pandley, 2000).  Using this technology it is possible 

to analyze the whole proteome under varying growth conditions and at different stages of 

development to be able to monitor the changes in the dynamics of the proteome.  Bottom 

up proteomics is a method that can be used to detect PTMs in a comparatively high-

throughput fashion in a whole proteome data.  However, mass spectrometry requires 

computational algorithms to evaluate and interpret the measured information and 

detection of post-translationally modified proteins is a challenging problem in terms of 

current computational technology. 

The three types of software tools that are currently applied to MS data 

interpretation and are used for PTM analysis are de novo and hybrid algorithms and 

database searches.  At the moment, the de novo and hybrid algorithms are not up to the 

standards of high-throughput proteomic data interpretation, in general, exhibiting high 

rates of incorrect identifications.  In many cases, these approaches are limited by the  
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Figure 4.1 Post translational modifications.  Example of the effect of PTM on protein 
sequence and it’s impact on bottom up mass spectrometry analysis.  The peptides marked 
in red contain change in mass that can only be detected by special analysis considering 
PTMs.   
 

quality of data produced by MS instruments as they are more sensitive to the quality of 

data than the database searches.  Thus, though they are not inherently suited for PTM 

detection, for proteomic experiments on ion trap instruments, database searches currently 

remain the method of choice.      

As previously mentioned, the peptide identifications made by database search 

algorithms are based on comparisons between the fragmentation patterns of theoretical 

and experimental peptides, where theoretical fragmentation patterns are derived in silico 

from the available database and experimental fragmentation patterns are measured by 
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mass spectrometer from a peptide found in a sample.  Database searches are at the 

moment considered the most reliable of the MS data interpretation tools for the shotgun 

proteomic experiments, however, they are extremely sensitive to database deviations, any 

peptides inconsistent with the database by mass or sequence are unidentifiable by this 

method.  Since PTMs change the mass of the peptides, these deviations from the database 

are generally fatal, as they often prevent placing the appropriate peptide into the 

candidate list formed by parent mass.  Such inconsistency between the database mass and 

the peptide present in the sample is illustrated above in the figure 4.1 which outlines two 

avenues for PTM occurrences: the simple signal peptide cleavage and the addition of two 

covalent modifications to the sequence.  In either of these cases, the masses of affected 

(modified) peptides are inconsistent with the masses present in the protein database 

causing errors in identifications.  It is noted that with the current methods of peptide 

identification only 10-30% of all tandem MS spectra in a proteomics sample are 

identified (the rest are either discarded, or receive such low scores that they cannot be 

considered to be correct answers).  While some of the spectra could be of inferior quality 

or carry single amino acid substitutions, it is currently unknown what percentage of the 

remaining 70% of peptide spectra may contain post translational modifications.  The 

attempt to analyze PTMs is built into database search algorithms.  As proposed by Yates 

et al (Yates, 1995), the PTM analysis performed by database searches involves placing all 

PTMs of interest into all possible places in peptide sequences.  This approach to analyze 

PTMs leads to a large combinatorial problem, even for a small number of PTMs; 

additionally Yates et al. indicated that “extending this approach to a larger set of 

modifications is an open problem”.  This approach is not up to the task in terms of speed 
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and accuracy of the identifications; in addition it relies entirely on the user to provide a 

limited list of PTMs to search during each run. 

The database search algorithms are currently considered the most robust system 

for peptide identification, but they are not inherently suited to solving the problem of 

identification of PTMs, as they have to rely on the database sequences to be exact 

representations of the parent peptide.  The only way to circumvent the problem of PTM 

detection by database search lays in the organism specific database annotation.  As of 

now, with an exception of ProSight PTM (LeDuc, 2004) designed for intact protein 

analysis, there is no organism specific PTM database annotation, and without a coherent 

strategy of PTM identifications, the database size quickly becomes unmanageable, 

increasing the time of analysis and the number of false identifications.  In addition 40-

60% of genes in current genome annotations are hypothetical proteins (Blattner, 1997; 

Fraser, 1995; Heidelberg, 2002; Larimer, 2004) which may never be expressed in the 

organism, but can add an enormous number of false identifications.  In many cases PTMs 

identified by database searches must be manually confirmed as to accuracy and biological 

significance of the identification (how likely a particular protein is to carry a certain type 

of post-translational modification based on prior studies).  While further experiments 

must be performed to corroborate the presence of the PTM detected by shotgun bottom 

up mass spectrometry, an additional insight to the accuracy of detection is invaluable to 

target further studies.   

One of the major sources for incorrect identifications of peptides by database 

search algorithms is due to the increasing of the database size, which causes an increase 

in the number of candidate sequences.  As the result of many similar candidate sequences 

77 77



 

78 78

present in the database, many of them might produce comparable scores.  A thorough 

search for PTMs increases the database sizes dramatically: for example, a possible 

phosphorylation, which in principle may affect any tyrosine, serine or threonine (and in 

case of prokaryotic organism histidine) in the sequence, can easily increase a database 

hundreds of times, since every peptide containing any of these common residues may be 

modified once, or multiple times depending on the number of these residues.  In addition 

to the increasing number of false positives, such thorough search can lead to days of 

computational time and all the results should be manually confirmed to ensure that they 

are biologically sound.  All of these factors severely limit the ability of current database 

search algorithms to perform a comprehensive all proteome PTM detection, leaving us 

with a capability of detecting no more then a few PTMs at a time while the likelihood of 

correct detection is frequently uncertain.  The algorithmic approach presented in this 

chapter guarantees that all the detected PTMs are biologically sound, by utilizing all the 

current knowledge about post-translational modifications.  This approach provides a new 

way for PTM driven database annotation, which includes the combination of the prior 

knowledge of PTM carrying domains in multiple organisms, homology inference and 

basic PTM prediction software.   

Rhodopseudomonas Palustris is a prokaryotic microbial organism commonly 

found in water and soil.  It is equipped to endure an extensive range of growth conditions: 

aerobic to anaerobic, as well as dark to light as illustrated in the Figure 4.2.  

In the light conditions, the bacteria are capable to convert light into cellular 

energy.  In the absence of oxygen it converts atmospheric CO2 into biomass.  It is also 



Figure 4.2  R. palustris growth conditions.   The four metabolic growth conditions for R. palustris are aerobic, anaerobic, 
chemoautotrophic and photoautotrophic.  The PTM analysis was applied to each of these growth conditions. 

r et al. 2004.
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capable of degrading organic compounds including toxins like 3-chlorobenzoate building 

blocks.  In the presence of oxygen, R. palustris generates energy by degrading carbon 

containing compounds (such as sugars, lignin-monomers, etc) and carrying out 

respiration.  R. palustris is one of the most metabolically versatile bacteria described at 

this time.  R. palustris was recently sequenced (Larimer, 2004), revealing the genome 

sequence of the 5,459,213 base pair circular chromosome, with 4,836 predicted genes.  

The careful study of the predicted genes showed that 31% of genome is devoted to 

energy metabolism and cellular processes, 14.5% of genome to transport, 4.7% to signal 

transduction.  About 3.5% of the genome may carry PTMs as showed by the preliminary 

analysis based on COGs (Tatusov, 1997) homology comparison of functional domains 

with multiple organisms.  Due to its ability to degrade toxic compounds, R. palustris 

became an organism of interest for Department of Energy (DOE) and multitude of mass 

spectrometric data is being collected for the analysis of the organism’s proteome 

(VerBerkmoes et al., 2005) (http://compbio.ornl.gov/rpal_proteome/) and protein 

complexes. 

In this chapter a new algorithmic approach to PTM detection is introduced and 

applied to analyzing R. palustris under a variety of metabolic growth conditions.  The 

new PTM discovery driven approach for shotgun bottom up MS data interpretation is 

focused on utilizing all of the current knowledge about post-translationally modified 

proteins to address the limitation of current database search algorithms in terms of PTM 

detection.  The methodology for designing PTM annotated protein domain library is an 

extension to the one proposed in the ProSight PTM introduced by LeDuc in (LeDuc, 

2004) for intact protein  analysis (“top down” analysis (McLuckey, 1998)), which was 

80 80



 

successfully applied to the yeast PTM analysis by Meng et al (Meng, 2004), here applied 

to high-throughput bottom up MS data.  Our new PTM detection approach uses all the 

current knowledge of PTM proteins and protein domains to annotate R. palustris 

sequence database using the newly developed algorithmic approach PTMsearch performs  

proteomic PTM analysis for bottom up MS of R. palustris. 

Materials and Methods 

Rhodopseudomonas Palustris sample preparation 

 All datasets were kindly provided by VerBerkmoes et al (VerBerkmoes et al, 

2005) and their generation is briefly described below. 

Cell growth, production of protein fractions and proteome digestion   

R. palustris strain CGA010, a hydrogen-utilizing derivative of the sequenced 

strain (unpublished C.S. Harwood) and referred to here as the wild-type strain, was 

grown under the six conditions (photoheterotrophic, chemoheterotrophic, 

photoautotrophic, photoheterotrophic with nitrogen fixation, photoheterotrophic with 

benzoate as a carbon source).  All cultures were grown anaerobically in light or 

aerobically in dark, with shaking in 1.5 liters of defined mineral medium at 30°C to mid-

log phase (OD 660nm = 0.6).  All anaerobic cultures were illuminated with 40 or 60 W 

incandescent light bulbs.  Carbon sources were added to a final concentration of 10 mM 

succinate (for all growth modes except benzoate and photoautotrophic), 3 mM benzoate 

(benzoate growth) or 10 mM sodium bicarbonate with H2 gas in the head space 

(photoautotrophic growth).  For the photoheterotrophic N2 fixing cultures, ammonium 

sulfate was replaced by sodium sulfate in the culture medium and N2 gas was supplied in 

the head space.   
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Cell extracts were prepared as follows:  cells were harvested by centrifugation, washed 

twice with ice-cold wash buffer (50 mM Tris-HCl buffer (pH 7.5) with 10 mM EDTA) 

and resuspended in ice-cold wash buffer.  Cells were then lysed by sonication and 

unbroken cells were removed with low-speed centrifugation (5,000 g x 10 min).  Four 

proteome fractions were created from this cellular extract by ultracentrifugation (100,000 

g for 1 h led to membrane and crude fractions; this supernatant was then further 

centrifuged at 100,000 x g for 18 h leading to pellet and cleared fractions).  All four 

proteome fractions were analyzed as below. 

Proteome fractions from each growth state were processed by the same protocol:  

Briefly, proteome fractions were denatured, reduced, digested with sequencing grade 

trypsin and de-salted by solid phase extraction. 

LC-ES-MS/MS analysis 

   The four proteome fractions from each growth state were analyzed in duplicate 

via multiple one-dimensional LC-ES-MS/MS experiments performed with an Ultimate 

HPLC (LC Packings, a division of Dionex, San Francisco, CA) coupled to an LCQ-

DECA or LCQ-DECAXPplus quadrupole ion trap mass spectrometer (Thermo Finnigan, 

San Jose, CA).  To increase dynamic range in the 1D-LC-ES-MS/MS analysis, separate 

injections were made with a total of 8 overlapping segmented m/z ranges scanned 

(referred to as gas phase fractionation or multiple mass range scanning).  These entire 

datasets were used in this study.  
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PTM fragmentation 

 The PTMs that modify a protein by covalent additions of chemical groups can be 

classified into three basic categories based on the binding strength of PTM to the peptide 

and their impact on the MS fragmentation pattern.  The modifications can be “extremely 

labile”, “labile” and “stable”(Figure 4.3), based on their behavior during the analysis as 

mentioned by Mann et al.  While is frequently difficult to predict the full impact of 

modification on the tandem MS fragmentation, the figure illustrates how different types 

of modifications might affect the tandem MS fragmentation pattern of a peptide, making 

the analysis of modified peptides more difficult due to the inconsistencies between the 

experimental tandem MS spectrum of a modified peptide and the theoretical spectrum of 

a candidate peptide.   

1. The “extremely labile” PTMs (such as serine/threonine phosphorylations) have a 

propensity to fall off the peptide during CID very easily, creating a dominating 

fragment ion in the tandem MS spectrum. The spectra with this type of 

modification generally take the form of a single major peak at Precursor mass – 

PTM, as illustrated in Figure 4.3a. 

2. The “labile” PTMs are significantly more stable during the fragmentation than 

the “extremely labile” PTMs, only some proportion of the PTM falls off during 

fragmentation of parent ion, causing a potential fragment ion at the mass of 

Precursor mass – PTM .  Additionally the ‘b’ and ‘y’ fragment ions also proceed 

to lose some proportion of the PTM causing satellite peaks to the ‘b’ and ‘y’ ions 

in the form of ‘b’ ion - PTM and ‘y’ ion - PTM ions in the fragmentation pattern, 

as illustrated at the Figure 4.3.b. 
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Figure 4.3 Effect of post-translational modifications on fragmentation patterns. 
The examples of tandem MS spectra for the three types of PTMs: a. “extremely labile” 
PTM, b. ”labile” PTM, and c. “stable” PTM. 

   

3. The “stable” PTMs tend to be firmly attached to the peptide.  The bond between 

PTM and side chain is not easily breakable.  As shown at the Figure 4.3.c, the 

spectrum does not have any indication of the presence of a post translational 

modification as in previous 2 cases since the PTM does not fall off the peptide 

during the fragmentation.  The tandem spectrum offers the same type of 

sequencing information that is present in spectra with no PTMs. 

For some of the PTMs, the fragmentation behavior is already known, and some have not 

yet been observed through mass spectrometry.  These different types of PTM behavior 

tend to significantly alter the characteristics of the theoretical mass spectrum, and can 
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create considerable difficulties for PTM detection with conventional database scoring 

schemes. 

Building PTM library 

Over the past decades, the relationships between protein function and post 

translational modifications have been observed in different organisms.  The fact that 

presence of a PTM in a protein is expected to have functional significance, leads to a 

conclusion that homologous proteins are likely to have the same PTMs.  Based on this 

assumption, we use the homology between proteins to predict a presence and localization 

of a PTM as it is done for protein functional annotation.  In order to detect biologically 

important post translational modifications, we created a comprehensive library of 

proteins that have been documented to carry PTMs in multiple organisms – PTMLib.    

RESID database (Garavelli, 2004) is a comprehensive collection of annotations and 

structures for protein modifications including amino-terminal, carboxyl-terminal, peptide 

chain cross-link and many other PTM types.  Currently RESID database contains over 

330 residues either predicted or observed in proteins arising through natural 

modifications of encoded amino acids, which include N-formyl methionine, 

selenocysteine and pyrrolysine.  The creators of RESID database focused on creating a 

database which documents experimentally detected post translational modification, the 

protein sequences where they were found and the literature references.   

The PTMs documented in the database also contain references to PIR and/or 

Swiss-Prot sequences where they were discovered.  This database is continuously 

increasing as more data is being collected, the new experimentally verified entries of 

PTMs are added at an average of 15 per year.  Each RESID database entry, as shown in 
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Figure 4.4 presents a chemically unique modification and shows how that modification is 

currently annotated in the protein sequence databases, Swiss-Prot (Farriol-Mathis, 2004) 

and the Protein Information Resource (PIR).  The database is becoming an invaluable 

tool for further studies of post translational modifications.  The RESID database is 

available at http://pir.georgetown.edu/pirwww/dbinfo/resid.html. 

The post-translationally modified proteins documented in the RESID database, 

the information about their corresponding PTMs and the site specificities were extracted 

from RESID database and used for the creation of global PTM annotated protein library 

PTMLib.  Each entry in the PTMLib database specifies a protein, the post translational 

modification it can carry and the annotated possible PTM target sites.  The final PTMLib 

database includes 223 types of post-translational modifications in 326 different proteins.     

PTM annotation of R. palustris was performed based on the protein similarity 

allowing location of potentially modified sites for a large number of post-translational 

modifications with experimental proof.  The annotation of R. palustris for putative post-

translationally modified proteins was achieved by running BLAST (Altschul, 1990; 

Altschul, 1997) searches between the proteins present in PTMLib and the sequences 

found in the R. palustris genome.  All sequences with BLAST E-score < 10-3 were 

included into the candidate PTM sequences.  The PTM annotated R. palustris database 

contains 287 proteins annotated for 220 different post-translational modifications.  

The PTM target sites were annotated by the PROSITE pattern search (Hofmann, 1999; 

Falquet, 2002).  PROSITE is a search tool, which using a large collection of biologically 

meaningful PTM signatures is designed to detect short PTM patterns in the given 
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Figure 4.4 Example entries in the RESID database.   
The database entry shows the name, molecular weight of the modification, keyword under which they are frequently found, and 
reference to the protein(s) where PTM was found.  It also contains the protein sequences, the PTM binding sites and references to 
the journal articles describing the evidence of the PTM’s presence. 
http://pir.georgetown.edu/pirwww/dbinfo/resid.html.

 



 

sequence.  While in many cases, PROSITE tends to give a greater number of possible 

modification sites than can be expected, when the database is limited to the proteins with 

expected PTMs and the PTM types are known, the number of PROSITE predictions is 

quite tractable.  PROSITE is freely available at: 

http://pir.georgetown.edu/pirwww/search/patmatch.html.  The new R. palustris PTM 

annotated database improves searches against multiple post-translational modifications 

both in terms of search time and management of number of false positive identifications.  

The PTM detection database search approach 

 The new approach to PTM analysis involved building a search engine that would 

allow searching for any number of post-translational modifications (number of 

modifications searched for in R. palustris was 220) at a time.  A new database search 

approach (PTMsearch) was developed in order to perform the searches for post-

translational modifications in R. palustris.  The PTMsearch was modeled after the widely 

used database search algorithm, SEQUEST (Eng, 1994), with the basic peptide parent 

mass used as a filter for candidate peptides and the use of cross-correlation scoring 

scheme based on the published SEQUEST’s scoring scheme, X-correlation.  The 

PTMsearch differs from SEQUEST by allowing only annotated PTMs in a given 

sequence as specified in the database, and allowing only one expected PTM in a peptide 

sequence at one time.  In addition, PTMsearch is extended to detect PTMs receiving 

relatively low scores, since some of PTMs can significantly alter the appearance of a 

fragmentation pattern.  Thus, PTMsearch is capable of incorporating in the further 

analysis all the candidate peptides including the ones that do not appear with the top ten 

scores, as it is done in SEQUEST, which improves the sensitivity of the method for PTM 
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detection.  The use of PTMsearch greatly reduces the number of runs that have to be 

made by SEQUEST to perform the analysis since only SEQUEST run allows for a 

maximum of 3 post-translational modification at one time, it reduces the number of false 

identifications made by SEQUEST when any number of modifications is allowed in one 

peptide and allows to detect peptides with lower scores.      

 PTMsearch approach ensures that all the detected PTMs are found in expected 

sequences, however in a novel approach, additional measures had to be taken to improve 

the likelihood of the identifications.  Therefore, an additional filtering approach was 

introduced to increase the confidence of the detected post-translational modifications.  

The filtering scheme for PTM detection in R. palustris by PTMsearch was set up to 

involve a set of conditions, which are used to accept or reject an identification made by 

PTMsearch.  The conditions are established to reduce the number of false positive results 

while retaining most of the reliable PTM detections.  The conditions for accepted PTM 

detection include: 1) appropriate scoring cutoffs, 2) growth conditions, 3) number of 

occurrences.   

The scoring cutoff condition refers to the range of PTMsearch scores that can be 

accepted for peptide identification.  Though the scoring scheme used in the PTMsearch is 

modeled after the X-correlation, it is not an exact replica of X-correlation and while there 

is a direct correlation between X-correlation and the PTMsearch scoring scheme, the 

scoring cutoffs for confident identification are not as well explored as for X-correlation.  

In addition to this consideration, as mentioned above in a section on “PTM 

fragmentation”, the “labile” and the “extremely labile” PTMs produce a different 

fragmentation pattern than the expected fragmentation pattern described in the 
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“Fragmentation pattern” section of introduction.  Because of these factors, the scoring 

scheme behaves in an unpredictable manner when detecting post-translational 

modifications and the score cutoff conditions were lowered to include most of the 

identifications, including the identifications which are not the top candidate peptide.   

 The growth condition cutoff refers to identifying PTMs only under appropriate R. 

palustris growth conditions when they are known.  As an example, uridylation is a post-

translational modification that is known to be present during the nitrogen-fixing 

conditions in P-II proteins.  The only accepted identifications containing uridylation in P-

II proteins were made under nitrogen-fixing growth conditions.  Unfortunately, in many 

cases, the conditions in which a PTM is expected to be present are not definitively known 

or they have only been detected in a limited set of conditions.  This condition is only used 

if the number of detected PTMs is unmanageably large since it can be extremely limiting.  

It is suggested to be used only as a final confirmation of the PTM presence after 

additional experiments have been performed. 

 The number of occurrences condition refers to the number of times the peptide 

with the PTM has been detected by PTMsearch.  The repetitive detection of a peptide 

increases the chances of the peptide’s presence.  This condition was set to 3 or more 

occurrences to be required for accepted peptide detection.  In general at least 2 of the 

occurrences are expected to be made under the repetition of the same growth condition. 

This condition does not ensure that peptide identification has been made correctly since 

the same fragmentation pattern can be misidentified several times.  However, it does 

ensure that the stable fragmentation pattern has been detected multiple times, which 

decreases the likelihood of detection of a noise spectrum.   
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Results and Discussion

 Post-translational modifications frequently serve as regulatory switches to protein 

activities, they are capable of changing protein properties to influence transcription, 

translation, ligand-binding interaction and many other cell processes, thus playing a 

crucial part in the life of organisms and are extremely important to our understanding of 

biological processes.  While there have been many studies of post-translational 

modifications in eukaryotic organisms and many interesting PTMs were discovered by a 

variety of methods, there have not been as many attempts for the whole organism study 

of PTMs in prokaryotes.  Mass spectrometric instrumentation is uniquely qualified for 

high-throughput PTM detection both because of its capability to measure the cell 

proteome content and its ability to detect mass differences which generally accompany 

post translational modifications.  In this chapter, PTMsearch, a new algorithmic approach 

for high-throughput PTM detection by bottom up mass spectrometry is introduced.  In 

addition, a whole proteome study of post-translational modifications in R. palustris is 

performed with the use of available biological information.   

R. palustris is a metabolically versatile prokaryotic organism it is expected to be 

highly regulated on the proteomic level.  The availability of R. palustris MS proteomic 

data for a range of different growth conditions inspired an effort to attempt the detection 

of a range of post-translational modifications in the organism.  For the purpose of this 

experiment R. palustris was grown under five different metabolic conditions.  The growth 

conditions included in the study were chemoheterotrophic, photoheterotrophic, 

photoautotrophic, photoheterotrophic grown in benzoate medium and photoheterotrophic 

nitrogen fixation; each of the conditions were analyzed at least twice to ensure the quality 
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of data.  In part, the project was driven by the hope to uncover some of the eukaryotic 

post-translational modifications which could potentially be present in R. palustris and 

have never previously been detected in prokaryotic organisms.  As the result of the 

computational analysis, 228 different peptides with post-translational modifications were 

detected in 85 proteins (not all of the peptides were unique to one protein), however, all 

of the computational data must be subjected to a set of experiments in order to be 

confirmed.  Thus, most of the results of this study are potential candidates for further 

biological studies.  However, so far two of the PTMs detected by this methodology have 

been confirmed by a separate top down MS experiment.      

 A PTMLib database was built to incorporate all the protein sequences with 

documented post-translational modifications presented in Garavelli’s RESID database.   

Based on RESID, 223 different types of PTMs and 326 protein sequences were included 

in the final PTMLib database.  With the use of the PTMLib database, R. palustris 

sequence database was pre-annotated for the possible 223 types of PTMs using BLAST 

similarity search.  All the R. palustris sequences with a BLAST’s E-value greater than 10-

3 were included in the R. palustris PTM database which resulted in 287 proteins with 220 

possible PTMs.  The target sites were then annotated with the use of PROSITE software.  

All of the collected MS data for R. palustris was then searched against the annotated R. 

palustris database using new PTMsearch algorithm in order to detect the presence of 

post-translational modifications. 

PTMsearch is a generic database search algorithm based on SEQUEST’s X-

correlation scoring scheme, coupled with filtering procedures designed to decrease the 

amount of false positive identifications.   As a result of analyzing the data from 
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VerBerkmoes et al. 2005 with an exception of the stationary growth phase and lhaA 

mutant growth phase, 228 unique peptides were identified as potential PTM carriers, with 

29 distinct types of post translational modifications.  As required by the filtering 

procedure each of these peptides had to be detected at least 3 times during the analysis 

before they were included in the final list of modifications.  The detected post-

translational modifications include such PTMs as phospho-uridylylation, biotinyl, lipoyl, 

acetyl, methyl, dehydroalanine, and carboethyl modifications and many others.  The list 

of all peptides with candidate PTMs can be found in the appendix 1, and the list of all the 

proteins can be found in the appendix 2.  However, as previously stated, even though, 

these modifications can be considered biological sound in terms of their protein 

localization, there are still many factors that could have caused incorrect identifications.  

These detected peptides should, therefore, be experimentally verified, while they can now 

be considered only as potential candidates for further studies rather than definite 

identifications.  The potential verifications can be done with the use of multiple enzyme 

cleavage followed by LC-MS-MS (MacCoss, 2002), top down mass spectrometry, or 

Edman degradation. 

The spectra for two of the detected post translational modifications are presented 

below.  These modifications are uridylation and lipoylation.  Uridylation was represented 

in three tandem MS spectra under one growth condition, while lipoylation appears in 

seven spectra and is found under a variety of different growth conditions.  Both of these 

modifications are not typically searched for in high-throughput proteomic data by typical 

database search engines.   
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An uridylation of P-II protein is an important regulatory signal modification 

which serves as a regulator of the nitrogen metabolism in many organisms such as 

Rhodospirillum rublum, Escherichia coli, Rhodopseudomonas palustris.  Uridylation is a 

reversible modification: under the conditions of nitrogen excess P-II proteins are 

unmodified, while when the nitrogen concentration is low P-II proteins become 

uridylated.  The modified form of P-II is considered to be a signal of nitrogen starvation 

(Atkinson, 1994).  Thus, the presence of uridylated P-II protein are only expected during 

nitrogen limiting conditions, while in all other growth conditions P-II protein are 

expected to be unmodified.     

The PTMLib derived from RESID database contains a sequence documented to 

carry uridylation.  The sequence blasted against R. palustris database yielded three 

protein sequences: RPA2066 glnB nitrogen regulatory protein P-II 3360442:3360780 

forward with E-value of 9e-37 (NREF entry number is NF01165177), RPA0272 glnK1 

GlnK, nitrogen regulatory protein P-II 300253:300591 forward with E-value of 1e-34 

(NREF entry number is NF01528520); RPA0274: glnK2 GlnK, nitrogen regulatory 

protein P-II 302307:302645 forward with E-value of 2e-33 (NREF entry number is 

NF01528171).  The tandem MS spectrum of the uridylated version of peptide 

GAEYAVSFLPK from RPA0274 protein is shown in the figure 4.5.  The uridylation site 

predicted by PROSITE for RPA0274 sequence was Y!RGAEY!, with tyrosine as the 

potential modification binding site, “!” sign in the sequence denotes all the possible 

modification sites.   As it is shown in the figure 4.5, the detected modifications site is 

EY!A.  However, only one of the proteins was detected in the proteomic data, the peptide 

with expected modification site appearing in both modified and unmodified form.      



Figure 4.5  The tandem MS spectrum of uridylated peptide.  A representative spectrum of modified peptide GAEYAVSFLPK 
is presented, showing the labeling of consecutive ‘b’ ions.  
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As expected the modified version of the peptide appeared under the nitrogen limiting 

conditions, while no unmodified peptide version was detected.  No modified version of 

the peptide was detected in other growth conditions.   

One of the other detected post-translational modifications is lipoylation, which 

mediates the transfer of electrons and activated acyl groups resulting from the 

decarboxylation and oxidation of α-keto acids within the complexes.  It is expected to be 

present in the pyruvate dehydrogenase complex, which consists of three proteins: a 

pyruvate decarboxylase, a dihydrolipoyl acetyltransacetylase, which contains α-lipoic 

acid covalently bonded through amide linkage with lysine residue, and a dihydrolipoyl 

dehydrogenase. (most of the information is adapted from Zubay, Biochemistry IIIrd 

edition.)   

 The PTMLib contains four sequences homologous to lipoyl carrying proteins 

documented in RESID database.  The proteins are RPA2864 dihydrolipoamide 

acetyltransferase 3241258:3242649 reverse MW:48330 (NF01529250), RPA3849 

glycine cleavage system protein H 4348444:4349967 forward MW:12927, 

(NF01528984), RPA0188 sucB dihydrolipoamide succinyl transferase 208123:209376 

reverse MW:111339 (NF01530219), and RPA2866 pyruvate dehydrogenase E1 beta 

subunit 3242963:3242958 reverse MW:11042 (NF01532208).  However, the only protein 

with lipoylated peptide detected was RPA2864, the peptide sequence being 

SGDVIAEIETDK!ATMEVEAADEGTLAK, one of the tandem MS spectra for the 

peptide is shown in the figure 4.6.  The lipoylated sequence motif predicted by PROSITE 

is: GDK!VK!SGDVIAEIETDK!ATMEVEAADEGTL, with lysine as specified binding 



Figure 4.6  The tandem MS spectrum of lipoylated peptide.  A representative spectrum of 
SGDVIAEIETDKATMEVEAADEGTLAK modified peptide  is presented, showing the labeling of consecutive ‘y’ ions.
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site (all the lysines in the sequence are marked as possible modification sites).  The 

peptide was detected seven times under various growth conditions, as is expected from 

the type of modification, since it’s presence is expected at all metabolic conditions. 

PTMs are post-processing events that occur after protein translation and can 

rarely be detected at the DNA sequence level.  The detection of post-translational 

modifications is very important for our understanding of biological processes as they 

modulate the activity of many proteins during the lifetime of an organism.  And while 

they are notoriously difficult to analyze, their characterization can provide an immense 

insight into biological function.  While there are many studies of proteins and pathways 

regulated by post-translational modifications they are generally performed on case by 

case basis.  These experiments are tremendously important for the advance of the 

biological knowledge, however, they tend to be extremely slow and frequently must be 

based upon already known facts.  And while the goal of detecting and characterizing all 

post-translational modifications in the cell is currently unattainable, it is desirable to be 

able to elucidate the targets for studies of post-translational modifications with greater 

efficiency as well as perform detections of already known PTMs.          

 Mass spectrometry is frequently used for detecting proteins in complex samples, 

with its use it is possible to gain insight into the appearance of a mature protein which 

can frequently be different from the expected based on the DNA sequence.  It is a 

technique that is well qualified for PTM analysis.  While top down mass spectrometry 

appears more desirable for analysis of post-translational modifications it is currently 

limited by the technology limitations and is not generally used for high-throughput 

analysis.  The shotgun bottom up MS is a technique that is capable of characterizing 
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proteins in complete proteomic samples.  In this chapter, a new algorithmic method for 

analysis of post-translational modifications by shotgun mass spectrometry was presented 

and applied to the detection of post-translational modifications in R. palustris.  While 

prokaryotic organisms are rarely studied for PTMs, it was expected that an organism with 

such metabolic variability might be highly regulated on the PTM level.  However, while 

shotgun mass spectrometry can be used to detect post-translational modifications, further 

experiments must be considered to verify the made identifications.  With the use of the 

new algorithm for PTM detection, we have uncovered a number of peptides that are 

likely to be post-translationally modified.  There are several experiments that can be used 

for verification of these findings.  One strategy that could be applied to the PTM presence 

verification is multiple digest strategy.  It involves digesting the sample with different 

types of enzymes and analyzing them by bottom up MS.  The presence of the PTM in 

several overlapping peptides from different digests is a strong indication for the correct 

identification.   The other strategies can involve isolating the proteins of interest under 

the specified conditions and analyzing them one by one.  In this case, the purified 

proteins can be subjected either to Edman degradation to determine the presence of the 

post-translational modification or they be analyzed with top down MS using ES-FT-ICR, 

which can measure the accurate mass of the intact protein, providing the information on 

the mass shift.  To be conservative, an extensive analysis is necessary to confirm the 

presence of a post-translational modification after it has been detected by bottom up MS 

method.  However, the shotgun bottom up PTM detection can be used to produce 

candidate proteins for the thorough analysis providing new and interesting avenues in the 

research of post-translational modifications. 
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Chapter 5 

Computational Simulations for Mass Spectrometry-Based Identification of 

Biological Agents 

Some of the data presented below has been presented as Razumovskaya J., Fridman T., 
Day R., Borziak A., VerBerkmoes N., Hettich R., Uberbacher E., Gorin A., poster 
presentation at ASMS 2004 
  
Introduction 

Current political events and acts of terrorism have elevated the demand for 

suitable instrumentation to detect and identify potentially threatening biological agents, 

such as bacteria, viruses, toxins and chemical agents.  This heightened demand for a 

robust instrument with the capability to simultaneously identify all possible threats within 

a narrow timeframe exceeds current technology.  In order to develop novel 

instrumentation with such capabilities, it is necessary to probe the threshold of current 

instrumentation using computational simulations.  This chapter describes a computational 

simulation of organism detection in a complex biological background using top down and 

bottom up mass spectrometry.  The focus of this chapter is to explore the differences 

between these two approaches and the acceptable instrumental parameters for each of the 

methods.  

Detection of an organism in a complex biological sample is a two-sided problem 

of sensitivity and specificity of detection.  From the side of sensitivity, it is necessary to 

be able to detect the organism of interest, however, it is also essential to be sufficiently 

specific to recognize the absence of an organism in the complex mixture.  Both 

sensitivity and specificity of a method are equally important.  Without high sensitivity 

many biological agents may not be detected, while without high specificity, there will be 
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a very high rate of incorrect detection, rendering the method similarly ineffectual.  

Sensitivity of organism detection by mass spectrometry is significantly dependent upon 

the differences between the concentrations of the organism of interest and the background 

as mass spectrometry measures protein abundance.  Specificity is only affected by the 

measurements of the proteins present in the sample, focusing on whether background 

proteins could be erroneously accepted as the evidence of the presence of the organism of 

interest.  In the presented theoretical simulations, the data is fully computer generated, the 

real experimental conditions are only approximated and noise potentially present in the 

spectra is ignored.  Thus, the sensitivity is not in question – a protein from the organism 

in question can always be detected.  However, there is an uncertainty as to the specificity 

of the method: whether a protein from the background could be misidentified as 

belonging to the organism of interest.  Therefore, in this chapter, we evaluate only the 

specificity of detection of an organism of interest in a complex background by computer 

simulations.  

Current methods of organism characterization 

Basic PCR detection method:  Polymerase chain reaction (PCR) based organism 

detection is an old and well established technique.  It is based on the concept of DNA 

hybridization – a set of oligonucleotide primers from a particular organism is added to the 

DNA sample, if the primers complementary to the DNA in the sample, they hybridize, 

and the organism is detected.  If there is no hybridization, it is assumed that the 

organism’s DNA is not present in the sample. 
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Possible downfalls/problems:  

1. DNA can be changed through genetic manipulations while it is significantly more 

difficult to alter proteins. 

2. Have to be able to make template DNA from the sample in field in order to detect 

any new organisms. 

3. All the components of PCR must be made stable under long periods of time. 

Antibody based detection method:  Antibodies are developed to recognize particular 

proteins.  When the proteins are present in the sample, the antibodies will recognize them 

and give out a signal. 

Possible downfalls/problems:  

1. The development of new antibodies is difficult and takes a long time.  This 

constraint, therefore, limits it’s usefulness for the detection of new organisms.  

2. It is difficult to select a combination of proteins which will be specific only to one 

specific organism strain. 

3. The antibodies may not be very specific to an organism in the truly complex 

background.  When more organisms are introduced into the sample the chances 

that another organism possesses the protein for which the antibody was designed 

increases. 

Mass spectrometry:  Mass spectrometry is a technique uniquely qualified to quickly 

characterize a complex proteomic mixture by measuring the masses and fragmentation 

patterns of the proteins in the mixture.  This capability can be used for detection of one or 

more organisms within a large proteomic sample.  Frequently mass spectrometry is used 
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to characterize an organism’s proteomic content, therefore it can be proposed that it also 

possible to characterize protein content of multiple organisms.   

Top down versus bottom up 

 In this chapter we discuss two main mass spectrometric techniques used for 

protein characterization: the top down and bottom up methods as the techniques of 

organism detection.  The top down method is used to directly characterize protein content 

and the bottom up characterizes the protein content by the analysis of protein pieces -- 

peptides.  The top down method involves measuring the m/z ratios of intact proteins, 

while the bottom up method involves proteolytic digestion, cutting the intact proteins into 

shorter amino acid stretches (peptides) with one or more proteases (such as trypsin, 

pepsin, GLU-C, etc) and measuring m/z ratios of the resulting peptides.  Either of these 

methods can be coupled with tandem MS analysis, providing the sequence information 

(fingerprint) for the analyzed protein. 

 The advantages of using top down analysis for the organism detection lie in the 

potential speed of measurement and the reduced complexity of the mixture leading to the 

reduced complexity in the identification process.  The potential speed of measurement is 

due to the fact that top down technique does not require protein digestion period -- 

protein masses are measured intact.  The reasons for reduced complexity of the 

identification (as well as the speed of analysis) are a) intact protein masses are generally 

more distinctive then the peptide masses and b) each protein in the organism corresponds 

to a single measurement (assuming there is only one form of every protein, and not taking 

into account the isotopic packet).  The disadvantages of this technique involve a) not 

fully developed instrumentation (expensive and not designed for routine operation 

103 103



 

devises), b) difficulty of protein mixture separation by liquid chromatography, c) 

difficulty in deconvoluting the intact protein spectra, d) difficulty in performing tandem 

MS on intact proteins cause incomplete tandem MS patterns.  

        For the past decade bottom up has been the main method for high-throughput 

proteomic experiments, instrumentation becoming well developed, robust and routine to 

operate.  Another advantage of bottom up technology is that it provides nearly complete 

peptide tandem MS fragmentation.  The disadvantages of bottom up are the increased 

time of measurement and the identification complexity.  The increased time of 

measurement is due to the time spent performing the proteolytic digestion which can 

range from a few hours to an overnight digest (which is a common practice during 

proteomic experiments).  The increase in the identification complexity is caused by the 

amount of peptides to be interpreted, as each protein can correspond to 20 peptides, in 

most cases any single peptide identification being inconclusive as to the presence of the 

parent protein. 

 The described computational simulation is designed for two purposes: a) to 

examine the performance of the two techniques for detection of a potential biological 

agent in an environmental sample and b) to evaluate the instrumental parameters which 

will be necessary for the task for each of the techniques.  The performances of the top 

down and bottom up methods are measured by a series of computational studies which 

not only make it possible to easily create a controlled experiment, they also allow for 

straightforward way to vary the instrumental parameters.  Even though computational 

simulations lack many elements of real life situations such as noise, concentration 

detection limits, multiple parent ions in the fingerprint pattern and others it can serve as 
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an indication of best case scenarios for these experiments.  Using the guidelines shown 

by the simulation, it will be possible to select the best experiments to pursue the strategies 

for organism detection.  The simulation involves choosing an organism of interest which 

will represent the biological agent and a realistic organism background which can 

approximate the complexity of an environmental sample.  Then the specificity of 

organism of interest detection is tested by both top down and bottom up methods with 

varying instrumental parameters.  The specificity performances of the two methods can 

then be compared and the best instrument and experiment can be described. 

Materials and Methods 

Simulation design 

Simulation of biological agent 

 In order to simulate the detection problem, an organism of interest was selected to 

represent a biological agent and the complex organism background to represent an 

environmental sample.   

The organism of interest chosen for detection is the widely studied gram negative 

prokaryotic organism Escherichia coli (E. coli) K-12.  One of the best studied model 

organisms in molecular biology and biochemical genetics, E. coli K-12 was one of the 

earliest candidates for full genome sequencing, its complete genome sequence published 

in 1997 (Blattner, 1997).  E. coli K-12 is a generally harmless bacteria frequently found 

in mammalian intestinal tracks.  E. coli genome consists of 4237 number of genes, each 

of which could potentially form a gene product that can be measured by mass 

spectrometry.  However, some of the predicted genes may not be coding for proteins and 

not all of the proteins predicted by the genome database are expressed at all times in the 
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proteome; in addition many of them are not in the abundance to be successfully detected 

by mass spectrometry.  In order to successfully detect an organism by mass spectrometry 

all of these points must be taken into an account and only detectable proteins can be used 

to represent the organism of interest.  Thus, rather tha 

n include all of the possible genes into the analysis, only a subset of E. coli 

genome was selected to represent it as the target organism in the simulation.  The 

representative proteins were selected based on experiments, where the cell proteome was 

repeatedly measured by mass spectrometry and analyzed by database searching 

algorithms.  The 376 proteins repeatedly detected in the proteome became the “signature 

proteins” (from now will be referred to as “signature proteins”) for E. coli detection. 

Simulation of environmental sample 

The representation of environmental sample consists of twelve distinct organisms, 

including prokaryotic and eukaryotic bacteria, plant and fungi (Figure 5.1).  The 

proteomes of some of the organisms are similar to E. coli proteome, increasing the 

complexity of the analysis.  Many of the organisms are commonly found in soil and water 

samples.  The twelve organisms are expected to be a reasonable representation of the 

complexity of an environmental sample.  Here are short descriptions of the selected 

organisms.  Bacillus anthracis is gram positive spore forming prokaryotic organism 

widely distributed in nature and a potential biological weapon, Deinococcus radiodurans 

is a gram positive prokaryote and the most radiation resistant organism known, 

Burkholderia xenovorans formally known as fungorium  and is a gram negative organism 

widely found in soils, Geobacter metallireducens is a gram negative microorganism  
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Figure 5.1 Component organisms used in the simulation. 
The representation of background sample consisting of in total 12 organisms and the 
target organism (Escherichia coli) 
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capable of reducing metals generally found in sedimentary environments, Nitrosomonas 

europaea is a gram negative ammonium oxidizing bacteria commonly found in the soil,  

and Pseudomonas  aeruginosa, is a gram negative opportunistic pathogen widely 

distributed in soil and water. The two strains of Yersinia pestis CO92 and KIM are gram 

negative organisms known to cause plague, commonly found in nature, Arabidopsis 

thaliana is the first plant to be completely sequenced, Saccaharomyces cerevisiae is a 

eukaryotic fungus and is widely utilized by humans in food production industry, 

Rhodopseudomonas palustris is a gram negative prokaryote commonly found in 

sedimentary environments and Shewanella oneidensis is a gram negative prokaryotic 

organism found in water and soil.  The majority of the information about the organisms 

was adapted from Margulis and Scwartz’s “Five Kingdoms”, 2001.  Together, the 

proteomes of these twelve organisms represent the environmental background for this 

simulation.  The environmental background protein mixture consists of 83,777 proteins, 

which will later be referred to as “background proteins”.   

In order to assure that the simulation is realistic we compared the mass 

distributions of the 376 “signature proteins” found in E. coli to the 83,777 “background 

proteins” as shown in the figure 5.2.   The mass distribution of the “signature proteins” is 

similar to the mass distribution of “background proteins”; all of the masses of “signature 

proteins” lay in the same region as the “background protein” masses, which simulates the 

worst case scenario since none of the “signature protein” masses are significantly 

different from the “background protein” masses.  The inset shows an enlarged view of 

mass distribution of E. coli proteins in the window of 10,000 Da.  The number of E. coli 

proteins in the window is small comparing to the number of the background proteins. 



Figure 5.2 Protein mass distributions for the background and E. coli proteins.  Illustrates the mass distributions of 
background proteins and the E. coli “signature proteins”.  The inset demonstrates the blown up area of “signature proteins” in the 
mass range of 0 – 10,000 Da.  Each “signature protein” is found in a bin with about 400 times more background proteins. 
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Scoring schemes 

The second step to performing the study was to formulate a feasible scoring 

system for protein and peptide identifications and organism detection.  The scoring 

schemes consist of following two parts: a) score for tandem MS spectra, which are used 

to measure similarity between two tandem MS spectra and b) score for the organism 

detection, which is used to determine presence or absence of an organism within the 

mixture.   

Fingerprint scoring schemes 

The tandem MS scoring scheme for both top down and bottom up data analysis 

was adapted from the widely used mass spectrometry data interpretation software 

package, SEQUEST.  It is a general cross-correlation score used for spectral comparison.   

As described in the original SEQUEST paper (Eng, 1994), the cross-correlation function 

between two spectra can be calculated using following formula: 

∑ =
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][][)( ττ , where x[i] represents a spectrum from E. coli “signature 

proteins”, y[i] represents a spectrum from the background protein and τ is the 

displacement value by which the mass index is offset.  The cross-correlation then is 

computed as follows: 
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.  As shown in the formula, in 

this study, the displacement τ is varied in an interval of [-10;10] in increments of 1.  If 

two spectra are the same, the cross-correlation function should be maximized at the 

displacement 0, thus the comparison between the F(0) and average of the displacements 

in the [-10;10] interval reflects the similarity between the two spectra.  The cross 
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correlation function can then be normalized by dividing by the best cross-correlation 

achievable: auto-correlation.  Then the final normalized cross-correlation formula applied 

in the simulation can be described as follows: 
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= , where pattern1 stands a spectrum  

(fingerprint pattern) of a “signature protein” and  pattern2 stands for the spectrum 

(fingerprint) of a background protein.  

 Organism scoring schemes 

The score used for the assessment of organism detection (later referred to as 

OrganismScore) was developed to reflect the likelihood of organism’s presence, based on 

the detection of “signature proteins” found in the mixture.  Though it appears that the 

occurrence of each of the “signature proteins” in the mixture should increase the 

probability for the presence of an organism in the sample, it cannot be expected that a) all 

of the “signature proteins” will be reliably detected and b) all of the “signature proteins” 

are unique to the organism of interest and have no duplicates within the background.  

Therefore, a concept of OrganismScore was introduced in order to evaluate the reliability 

of organism detection.  The OrganismScore should involve two factors for each 

“signature protein”: factor1, how reliably the protein was detected and factor2 how 

unique the protein is to the organism of interest versus the background mixture proteins.   

The reliability of protein detection, factor1, can be estimated by any scoring 

scheme used for spectral comparison (comparison between the fingerprints of the 

“signature protein” and the measured fingerprint) such as cross-correlation used in this 
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simulation.  However, since this simulation does not involve modeling noise, the cross-

correlation score for a perfect match always results in a score of 1 (where 1 is the highest 

possible score).  Therefore, for this simulation purposes, the reliability term of protein 

detection has been made binary – a protein is either detected (factor1 is assigned to 1) or 

it is not (factor1 is assigned to 0).  In further studies it is possible to model noise and 

improve detection by assigning weights to factor1. 

The assessment of protein’s uniqueness to the organism of interest in a 

background mixture is factor2 for the OrganismScore.  In case of a particular “signature 

protein” being present only in an organism of interest, and not in the background mixture, 

the protein would be unique to the organism of interest (here, E. coli) and thus, a reliable 

detection of such protein would lead to the detection of the organism.  On another hand, 

if several “signature proteins” could also be found in the organisms present in the 

background sample, their detection would not mean the presence of the organism of 

interest.  Thus, knowledge whether “signature proteins” are unique to the organism of 

interest is very important, however, since the identity of organisms present in the real 

samples is unknown, we would have to assess the likelihood that the protein is unique to 

only one organism in nature.     

A protein with a distinctive amino acid sequence (the protein mass can coincide 

with masses of other proteins but their sequences must be different) can be considered 

unique, and ideally can be identified by mass spectrometry by a combination of mass and 

fingerprint information.   A presence of a homologous protein with a 98% sequence 

similarity (a slightly different sequence) in a background mixture generally won’t lead to 

an incorrect identification with top down mass spectrometry due to the differences in 

112 112



 

113 113

∏
=

−=
M

k

k kaFMifactor
1

),(1)(2

overall protein masses.   However, since not all the organisms are yet sequenced and our 

knowledge about genes and proteins is still limited it is not a simple task to assess the 

uniqueness of a protein in nature.  In general, it is expected that protein sequence is 

conserved if it is crucially important for its functionality.  The answer of protein sequence 

conservation lies in observing its family members – the homologous proteins from other 

organisms.  It is frequently observed that functionally important amino acids are 

conserved within sequences in a protein family, while parts of a sequence may differ; the 

more amino acids are functionally important the more sequence is shared between 

homologous proteins.  Protein family based profiles are used to assess the uniqueness of a 

protein.  Using BLAST searches against nr (All non-redundant GenBank CDS 

translations, RefSeq Proteins, PDB, SwissProt, PIR and PRF) database available from 

NCBI, all of the homologous proteins from different sequenced organisms present in the 

mentioned databases can be found, it is then possible to calculate the position dependent 

frequency of amino acid conservation (how frequently an amino acid in a particular 

position is conserved within the family); an example of such matrix is shown in the figure 

5.3.  It is then possible to compute the likelihood that the exact copy of the protein can be 

present in another organism using the amino acid conservation frequency information by 

combining the conservation frequencies of amino acids in each position.  The probability 

is computed in the form of , where M is number of amino 

acids present in the ith protein, FM is the family profile frequency matrix, and FM(ak,k) 

stands for frequency of conservation of amino acid a, in kth position in the sequence.  As  



Figure 5.3 Frequency matrix based on family profile information.  Shows an example of family based profile frequency 
matrix, where the vertical sequence represents the protein sequence and the horizontal sequence represents the twenty amino 
acids.  Each position in the matrix symbolizes the frequency of an amino acid substitution in the sequence based on the protein 
family.
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it can be noticed, multiplication of numbers below 1 over a large M would produce a 0, 

therefore, in real calculations log scales were employed to compute factor2. 

For the purposes of the simulation, factor1, the presence of a protein in the 

mixture, is defined in binary terms dependant on the accepted cross-correlation score 

cutoff (given a score cutoff, all the proteins with a cross-correlation lower than the cutoff 

are considered absent: factor1 = 0, and all the proteins with a cross-correlation above the 

cutoff are considered present: factor1 = 1).  The factor2, protein uniqueness scores, are 

normalized, so that the sum of all factor2 scores for the “signature proteins” is equal to 1 

( ) 1)(2
1

=∑ =

N

i
ifactor , where N stands for the number of “signature proteins” in the 

organism of interest (here, 376). The definition of OrganismScore is then the normalized 

sum of the multiplied protein presence and protein uniqueness over all the “signature 

proteins” of an organism: ∑ =
∗=

N

i
ifactorifactororeOrganismSc

1
)(2)(1 , where if all of 

the “signature proteins” are present in the sample, OrganismScore is 1, and each of the 

present proteins makes a contribution to the OrganismScore according to its likelihood of 

uniqueness in nature, factor2.    Since detection of all “signature proteins” in the sample 

yields an OrganismScore of 1, it is easy to compare the probability of organism detection 

between different samples and different organisms of interest where background and 

“signature proteins” are different. 

Results and Discussion 

The described simulation involved exploring the efficiency of organism detection 

by top down and bottom up mass spectrometry approaches with varying instrumental 

parameters.  Both approaches were performed in two modes: MS mode and fingerprint 
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mode.  MS mode refers to using only MS information (measurement of protein or peptide 

mass), and fingerprint mode refers to using both MS and MS/MS information (using 

measurement of mass and sequence fingerprint).   

The MS mode was used to determine the fractions of “signature” proteins and 

peptides which could be separated from the “background” proteins and peptides based on 

their mass alone for varying accuracy measurements.  The accuracy measurements for the 

MS mode top down experiment were varied in the interval of 0 to ±20 Da, with an 

incremental step of ±1 Da; for the bottom up experiment, the accuracy measurements 

were varied between 0 and ±5 Da, with ±0.001 Da and ±0.1 Da in the range of 0 to 1 and 

an incremental step of ±1 Da in the range of 1 to 5.     

The fingerprint mode was used to evaluate the specificity of E. coli detection in a 

background of 12 other organisms.  The top down method simulations were arranged to 

explore varying parameters for the measurement accuracy and the fragmentation 

efficiency.  Since fragmentation of intact proteins is not easily achieved and is generally 

very limited, the fragmentation efficiency for top down experiment was explored.  The 

results shown for the top down method are for the measurement accuracy of 20 Da, the 

fragmentation efficiencies are varied between 1 – 150 fragments per protein.  In case of 

bottom up experiments, the peptide fragmentation is significantly more efficient than the 

protein fragmentation and the bottom up data interpretation programs, such as 

SEQUEST, assume complete peptide fragmentation.  The bottom up method simulations 

were performed with ±3 Da measurement accuracy, while the fragmentation efficiency 

for peptides is considered to be complete.  
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Top down MS mode  

 The MS mode for top down simulation shows the dependency between the 

fraction of unique “signature protein” masses and the measurement uncertainty.  In order 

to establish the fraction of unique “signature protein” masses, mass of each “signature 

protein” was computed and compared to the computed masses of the proteins from the 

“background mixture” with varying measurement uncertainty in the interval of 0 to ±20 

Da.  Measurement uncertainty applies to the delta error allowed for the matching between 

observed and expected masses.  As expected, the higher is the measurement uncertainty 

(higher measurement accuracy), the less there are “signature proteins” with unique 

masses.  At an extremely low measurement uncertainty of 10-4Da, the fraction of unique 

protein masses approaches 1 as shown in the figure 5.4.  Most of the proteins possess 

unique mass at such accurate mass measurement, using an instrument with such accuracy 

and resolution, it might be possible to perform specific organism detection in a top down 

MS mode unless there are present background proteins with the same amino acid 

composition and different sequence.  However, the fraction of unique proteins is then 

sharply reduced to 0.21 at the measurement uncertainty of ±1 Da, decreasing even further 

to 0.03 at the measurement uncertainty of ±10 Da.  The top down MS mode can only be 

used for organism detection when the instrumental accuracy and resolution are extremely 

high, rendering measurement uncertainty to being almost negligible.  

Bottom up MS mode 

 A similar analysis to measure the specificity of detection was performed for 

bottom up MS mode as previously mentioned for the top down MS mode.  In order to  



Figure 5.4 Unique “signature protein” masses as comparing to the background set as a function of measurement error.  
The plot of intact protein masses that are unique to the E. coli “signature proteins” at varying measurement uncertainties.   
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perform bottom up simulation, the “signature proteins” firstly have been in silico digested 

by trypsin to produce “signature peptides”.  Trypsin digest leads to cleavages along the 

peptide backbone after Lysine (K) and Arginine (R) residues.  During an experiment, due 

to insufficient digest time, incomplete peptide denaturation and other causes trypsin 

digest is often incomplete leaving peptides with internal K and R residues.  In an attempt 

to model a realistic tryptic digest, up to four missed cleavages has been allowed in the in 

silico digest process (the accepted settings for bottom up data interpretation programs).  

The digestion produced 70,000 “signature peptides” (only peptides with different 

sequences were considered), and 125 million of unique background peptides. The MS 

mode for bottom up simulation shows significantly reduced number of unique masses for 

the “signature peptides”.  As illustrated in the figure 5.5, the fraction of unique peptide 

masses at the measurement uncertainty of  10-4Da is less than 0.24, while at the 

measurement uncertainty of ±0.01 Da, the fraction of unique peptides is 0.08.  It would 

be impossible to specifically detect E. coli in this background based exclusively on the 

peptide masses with measurement uncertainty higher than 10-4Da and even then, the 

number of non-unique peptides if very high.  In this simulation, MS mode for bottom up 

does not appear to be a successful approach for a specific organism detection. 

 Top down fingerprint mode  

 The fingerprint mode for top down simulation shows the specificity of E. coli  

detection in the complex background sample under varying measurement parameters.  

The first parameter is previously examined measurement uncertainty and the second is 



Figure 5.5 Unique “signature peptide” masses as comparing to the background set as a function of measurement error.  
The plot of peptide masses unique to the E. coli “signature peptides” at varying measurement uncertainties.  
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the tandem MS fragmentation efficiency.  The experiments involving measurement 

uncertainty have been addressed in the MS mode section, showing the impact of delta 

error on the protein/peptide detection accuracy.  The primary focus of this part of the 

experiment is to observe the changes in detection specificity as a function of 

fragmentation efficiency.  The fragmentation efficiency refers to the capacity of the 

instrument to break a biological molecule into smaller fragments creating its fingerprint 

pattern (sequence information).  As previously mentioned, the fragmentation of intact 

proteins is frequently incomplete, providing only a few fragments while the core of the 

protein often remains whole.  The greater is the amount of fragmentation, the more 

information is contained in the fingerprint which then provides a more specific 

identification.    

As noted above in the top down MS mode section, measurement uncertainty 

applies to the delta error allowed in matching between observed and expected masses.  In 

the fingerprint mode it was fixed at the reasonable values, when the parent mass alone 

can not be used as a detection factor.  In case of top down experiment, it is expected that 

increased measurement error will not greatly affect the resulting specificity since at ±10 

Da error a large increase in measurement error causes comparably small changes in the 

number of matching background proteins.  The range of 0-1 Da of measurement 

uncertainty where the parent mass for top down experiment can be used for protein 

detection was not considered in this study as an unrealistic measurement constraint 

creating a greater background dependency (more proteins with similar masses could be 

found within a different background).       
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In order to establish fragmentation efficiency necessary for confident and specific 

organism detection, the detection of E. coli proteins was attempted in the background 

mixture with varying fragmentation efficiencies for the background proteins.  As 

previously noted, greater fragmentation efficiency (more resulting fragments) provides a 

more informative fingerprint – the greater the number of fragments the lower is the 

chance that protein will be identified incorrectly.  Separate simulations were performed 

for eighteen fragmentation efficiencies.  Fragmentation efficiency was modeled by 

creating incomplete fingerprints of length N for each of the background proteins, where N 

stands for the number of fragments allowed per protein and remains the same for all 

proteins in a given simulation.  The procedure involves creating all the fragment ions 

possible for a protein (for an average protein of length 300 amino acids, the number of all 

expected fragments is ~600), and randomly selecting N of them to create a fingerprint.  

Each protein fingerprint from E. coli “signature proteins” was compared using cross-

correlation to the incomplete fingerprints of all of the background proteins that match the 

“signature protein” by parent mass within the delta mass window. The plot of “signature 

protein’s” scores for a fragmentation efficiency of N = 10 is shown in the Figure 5.6.  The 

black line (“second hit”) representing the highest cross-correlation score from the 

background protein as comparing to each single “signature protein”.  In the absence of 

noise, the cross correlation of “signature protein’s” fingerprint to itself would produce a 

score of 1.  The red line (“average hit”) shows the average of cross-correlation scores for 

all the background proteins matching each single “signature protein”.  Only in one case a 

best score for a background protein achieves a cross correlation of 1 (full score for 

“signature protein”), all other background protein top scores ranging from 0.7 to 0; the  
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Figure 5.6 Protein detection with fragmentation efficiency N = 10. 
Difference in scores for “signature proteins” fragmentation patterns as comparing to the best and average matches in the 
background. The “x” axis represents the number of a protein in the “signature” set from 0 to 376 and “y” axis represents 
normalized cross correlation score.
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average of top background protein scores are 0.38.  The average scores of all background 

proteins show how far the top background protein score is from the average.  In this 

figure, the average of cross correlation of background proteins to the “signature proteins” 

is shown to be 0. 

The specificity of the method in this case can be measured by the percentage of 

incorrect identifications as a function of cross-correlation score cutoff.  Score cutoffs are 

set in order to make a decision whether a protein is detected.  It is not expected to have 

“signature proteins” in the background sample, therefore all of the proteins “detected” in 

this simulation are in fact incorrect identifications, which can lead to unspecific detection 

of an organism of interest.  The specificity of protein detection for the fragmentation 

efficiency of N = 10 is shown on the Figure 5.7.  At the cross-correlation score cutoff of 

0.4, 21.8% of “signature proteins” are detected in the background sample.  It is sharply 

reduced with increasing score, with cross-correlation cutoff of 0.5, less then 10% of 

incorrect identifications remain, and at score cutoff of 0.9, there is only one “signature 

protein” that is still detected in the background mixture.  Upon examination, it was found 

that one of the background proteins has an identical amino acid sequence as the 

“signature protein”, making it impossible to differentiate between them.  Therefore, at 

least one E. coli “signature protein” will always be incorrectly “detected” in this 

background mixture. 

In the eighteen top down organism detection simulations, the fragmentation 

efficiency ranged from N = 10 to N = 150 fragments with an increment of 10 fragments; 

in the window 0-10, additional points of N = 1 and N = 5 fragments were included. The 

dependency of “signature protein” detection as a function of 
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Figure 5.7 Specificity of protein detection.  
Percent of background proteins incorrectly matching to E. coli “signature proteins” as a function of the cross correlation score 
cutoff.  
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fragmentation efficiency for the range of N = [0, 150], is shown in figure 5.8.  The black 

line shows the average of cross-correlation top scores between all the “signature proteins” 

and the corresponding background proteins for each N.  The red line refers to the average 

of the mean cross-correlation scores of all the “signature proteins” to the background 

proteins. As expected, Figure 5.8 shows that there is a relationship between the 

fragmentation efficiency (N) and the specificity of protein detection: as the fragmentation 

efficiency increases, the correlation between the background proteins and the “signature 

proteins” decreases, improving the specificity of the detection.  While the average top 

background score for N = 1 was 0.8, the score for N = 20 is 0.23, for N = 60 is 0.18 and 

for the greatest considered fragmentation efficiency of N = 150 is 0.16.  The lower is the 

score, the less is the likelihood of incorrect detection of a “signature protein” in the 

background sample, and the greater is the noise tolerance in the detection scheme. 

Bottom up fingerprint mode 

 The fragmentation efficiency that is considered a substantial factor for protein 

identification in the top down experiments does not play a significant part in the bottom 

up experiments.  Smaller peptides tend to fragment more efficiently than the large 

proteins, in general providing good fragmentation coverage.  In this simulation, therefore, 

the fragmentation efficiency of peptides was considered as full fragmentation – all of the 

possible background peptide fragments were included in the fingerprint.  The 

measurement uncertainty used for the bottom up simulations was accepted as the ±3 Da.  

As previously shown in the MS mode section, the peptide mass can not be used for 

reliable peptide detection, the delta error of ±3 Da yielding to 3 peptides unique to the set 

of “signature peptides” in the background peptide mixture.  In addition, ±3 Da is 
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Figure 5.8 Dependency of correct detection on the number of fingerprint fragments.  The greater is the fragmentation 
efficiency, the higher is the specificity of organism detection.

 

 

 

 



 

128 128

considered one of the accepted delta error settings during real database search procedures 

and expected to be a reasonable error for peptide parent mass matching.  

The results of the peptide detection simulation in terms of top and average 

background peptide cross-correlation scores are shown in the figure 5.9.  The peptides are 

arranged by masses, as it is shown, the smaller are the peptide (the lower is the parent 

mass) the higher are the scores of background peptide as comparing to the “signature 

peptides”.  In fact, there are many background peptides, for which cross-correlation 

scores are higher than 0.9, approaching 1.  Such background peptides would likely 

produce erroneous peptide detection when the parent protein is not present in the 

background sample.  It can be seen that at higher peptide masses the cross-correlation 

scores between the “signature peptides” and background peptides are significantly lower 

than at the lower masses.  The reason behind this phenomenon can be easily explained, a 

short amino acid sequence is generally less specific than the longer one:  the peptides 

with lower masses have a short amino acid sequence since there is a direct relationship 

between the mass and length of a peptide and a number of possible combinations of 

amino acids in a short sequence with matching parent mass is significantly smaller that in 

the long one, allowing for a greater chance of the same sequence occurring in both 

“signature peptides” and the background samples.  The “signature peptides” with mass 

greater than 10,000 Da are as unique as the “signature proteins”.  Unfortunately, there are 

limitations to mass detection with the instrument used to perform the bottom up analysis, 

as this study is focused on ion trap MS which can detect a m/z range of 200-2000 Da.  

Even though the instrument detects mass to charge ratio (increasing the scope of the mass 



Figure 5.9 Peptide detection.  Difference in scores for “signature peptides” fragmentation patterns as comparing to the best and 
average matches in the background. The “x” axis represents peptide mass and “y” axis represents normalized cross correlation 
score.  With increasing mass, the cross correlation scores decrease (the specificity increases).
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detection) there is no hope to detect peptides with very large masses.  Therefore, for the 

purpose of this simulation, only peptides with masses less than or equal than 6,000 Da 

were used for further analysis.  This mass cutoff has been judged extremely generous, 

since on average the peptides detected with the technology are of 2,000 – 4,000 Da. 

The specificity of cross-correlation for the bottom up method for peptides with mass less 

than 6,000 Da is shown in figure 5.10 as the percent of incorrect peptide detection as a 

function of the cross-correlation score cutoff.  At the cross-correlation score cutoff of 0.4, 

57% of “signature peptides” have been detected in the background mixture incorrectly, 

while with the score cutoff of 0.9, 19% of “signature peptides” are incorrectly detected.  

The percentage of incorrect identifications in bottom up analysis at a score cutoff of 0.4 is 

incomparable to that of top down (21.8%).  Additionally, in bottom up simulation, while 

the number of incorrect identifications is reduced with increasing score cutoffs, it never 

reaches less than 19%.  It is expected that there is a large overlap between the “signature 

peptides” and background peptides as can be seen in 5.9 (the background peptides which 

received the cross correlation score of 1 have the same sequence as some of the 

“signature peptides”).  Because of this fact, at the highest score cutoffs there will still be 

some background peptides with high enough scores to be identified the “signature 

peptides”.  

Top down and bottom up comparison 

The specificity of detecting “signature proteins” is severely dependant on 

fragmentation efficiency.  Sparse fragmentation can frequently causes incorrect or 

inconclusive identifications since any of the fragments in one spectrum can match 



Figure 5.10 Specificity of peptide detection. Percent of background peptides matching to incorrectly to “signature peptides” 
with masses less than or equal to 6,000 Da as a function of the cross correlation score cutoff.
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another spectrum by accident.  The likelihood of correct identification increases with the 

number of matches while only when all major fragments between two spectra match (and 

none of the major fragments are mismatched), the identification can truly be considered 

confident.  In case of top down tandem MS, the complete fragmentation cannot be 

expected, while the bottom up mass spectrometry is generally expected to provide 

complete fragmentation.  To explore the advantages and disadvantages of the two 

methods a comparison must be made in terms of their specificity of protein detection.  

Since the fragmentation efficiency is a significant factor in the top down mass 

spectrometry, several fragmentation efficiencies must be considered for the comparison.  

As shown in the figure 5.11, the percent of incorrect identifications was compared 

between bottom up method (complete fragmentation efficiency) and top down method 

with three different fragmentation efficiencies.  

The top down fragmentation efficiencies include the worst case scenario, where 

fragmentation efficiency is very low: N = 5, the mid-case scenario, where the 

fragmentation efficiency is somewhat efficient: N = 20, and the best case scenario, where 

the fragmentation is closest to being complete (in the scope of this experiment): N = 150, 

where, as previously mentioned, N stands for the number of allowed fragments per 

protein.  There is a significant difference between the number of incorrect identifications 

in the three scenarios at the lower score cutoffs – the best case scenario performs 

dramatically better than both worst and mid-case up to cutoff of 0.3, at fragmentation of 

N = 150 when at the cutoff of 0.2, the number of incorrect identifications is already 

nearly negligible (around 5%), the efficient fragmentation ensuring the efficiency of the 

scoring.  The mid-case fragmentation efficiency (N = 20) becomes comparable to the best 



Figure 5.11 Comparison between top down and bottom up detection specificity.  Percent of incorrect identifications as a 
function of cross correlation score cutoff.  The results are shown for the bottom up simulation and for three fragmentation 
efficiency scenarios of top down simulation.  The fragmentation efficiencies include the best (N = 150), worst (N = 5) and mid (N 
= 20) cases.
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case at the score of 0.4, getting closer and closer to the best case performance at the 

increasing score cutoffs.  The worst case scenario (N = 5) starts to show similar 

performance to the other cases only after a score cutoff of 0.7, showing 3%, where as the 

others two cases show 1% of incorrect identifications (in either case the percentage can 

be considered negligible).  However, though the worst case scenario is still capable of 

showing a good performance at higher score cutoffs, the simulation contains no noise 

modeling which would necessarily decrease the performance of all three scenarios, and in 

likely case, would make the worst case scenario inadequate for protein identification. 

As shown in the figure, bottom up’s performance in the simulation is significantly 

inferior to top down in both the mid and the best case scenarios.  Top down with 

fragmentation efficiency of N = 20, at cross-correlation cutoff of 0.4 shows less than 10% 

of incorrect identifications, while bottom up at the same cutoff shows 57%.  The gap 

between performances is not reduced at the higher score cutoffs.  The bottom up method 

is only comparable to the top down worst case scenario (N = 5).  It shows a slightly 

higher specificity (lower percent of incorrect identifications) than the worst case scenario 

for top down method in the score cutoff region of 0.2 – 0.45, while performing slightly 

lower for all the other score cutoffs.  This result suggests that in case of this simulation, 

bottom up technology could not be used to perform organism detection in the complex 

background due to the great overlap between the “signature peptides” and the background 

peptides.  Even though, it is likely that bottom up method would be sensitive enough to 

detect peptides it lacks the necessary specificity to be useful for real detection. 
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OrganismScore 

 Specificity of protein detection plays a very important part in the detection of the 

organism of interest.  However, the detection of “signature proteins” in the background 

mixture does not necessarily signify the presence of the organism represented by these 

“signature proteins”.  As the background sample becomes more complex (more 

organisms and proteins are included in the sample) the chances that some of the 

“signature proteins” appear in background organisms increase.  While some of the 

“signature proteins” can be fairly distinctive of the organism of interest, others can be 

quite common in nature.  Limiting the “signature proteins” to the proteins unique to the 

organism of interest is very desirable, however there are two negative factors to reducing 

the number of “signature proteins”.  Firstly, the proteome content is known only for a 

small fraction of existing organisms, making it difficult to differentiate between unique 

and non-unique proteins and secondly it can greatly reduce the number of “signature 

proteins” and where one unique protein cannot be used for positive organism detection, a 

detection of a combination of non-unique proteins can be more conclusive.  

OrganismScore scheme, described in the Scoring Schemes section, utilizes protein 

uniqueness information as well as the number of detected proteins. 

We estimate the uniqueness of each of the E. coli “signature protein” in nature using 

positional frequency matrix created using family based profiles.  Each of the “signature 

proteins” received a weight coefficient (likelihood of a protein uniqueness ), which 

determines its value to the organism detection.  We then were able to calculate 

OrganismScore for each protein cross-correlation score cutoff.  The OrganismScores are 

shown for four fragmentation efficiencies for top down mass spectrometry in Figure 5.12.  



Figure 5.12 Specificity of organism detection with OrganismScore.  The top down organism detection with OrganismScore is 
shown as a function of cross-correlation score cutoff.  Top down fragmentation efficiencies include the best (N = 150), worst (N = 
5) and two mid (N = 20, N = 70) cases.
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The fragmentation efficiencies shown are N = 5, 20, 70 and 150.  The specificity 

of E. coli detection in the background mixture using the OrganismScore shows 

improvement from the simple count of number of proteins – for example, the protein 

count for N = 5 fragmentation efficiency with score cutoff of 0.4 would produce a score 

of 0.69 (69% of incorrect identifications as shown in the figure 5.11), while the 

OrganismScore for the same setting produces a score of 0.62.  The OrganismScore for 

score cutoff of 0.8 for N = 20, N = 70 and N = 150 all show the same results of 0.001 

(where as protein count would have shown 0.1) and for N = 5, shows 0.0062 (where as 

protein count would have shown 0.2).  

 The described simulations of detecting E. coli in a complex background were 

fashioned to approximate a real life situation of detecting a biological agent in an 

environmental sample.  The biological agent was represented by a set of 376 E. coli 

“signature proteins”, which are readily detectable by mass spectrometry, while the 

environmental sample was represented by a mixture of twelve organisms, containing 

83,777 background proteins.  The detections were performed using two mass 

spectrometric approaches: the top down and bottom methods. The in-silico experiments 

were focused upon establishing the specificity of detecting a biological agent in a 

complex sample and exploring a set of instrumental parameters needed for such 

detection.   

 The bottom up method is one of the most established methods for organism’s 

characterization.  The instrumentation and procedures are optimized and robust making it 

a desirable approach for organism detection.  However, there are a few expected 

drawbacks to the bottom up methodology in terms of speed: a) bottom up method 
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requires protein digestion before the analysis, to convert the proteins to shorter peptides, 

b) the analysis itself is very complex due the great number of peptides present in the 

mixture.  In addition, the short peptides are generally not unique to a protein or an 

organism, frequently making peptide detection not indicative of an organism’s presence.  

Since the instrumentation is well established, the set of explored instrumental parameters 

was limited.  Here, the simulations only addressed the impact of parent mass accuracy 

measurements on specificity of organism detection, the fragmentation efficiency was 

considered complete basing on the fragmentation efficiency of the bottom up instruments. 

 The top down method is less established as a high throughput method, the 

instrumentation and procedures being significantly less developed than that of bottom up 

method.  However, one of the goals of this simulation is to probe the thresholds of the 

current instrumentation and to reach a conclusion which of these two methods is more 

suited to solve the problem of biological agent detection.  The current drawbacks of top 

down methodology are mostly involved with analyzing proteins with mass spectrometry, 

which is currently a difficult process in terms of protein separation, introducing proteins 

into mass spectrometer and protein fragmentation.  Some of these concerns were 

addressed in the simulation with varying parameters in mass accuracy and fragmentation 

efficiency.   It was noted that changes in mass accuracy have a comparably insignificant 

effect on the detection specificity after mass accuracy of ±5 Da for top down (Figure 5.4) 

and  ±1 Da for bottom up (Figure 5.5), therefore, the simulations were focused  on 

reasonable mass accuracy ranges instead of performing the simulations with all mass 

accuracies. 
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 According to the in-silico simulations the top down methodology is inherently 

better suited to the organism detection than the bottom up method.  The comparisons of 

specificity of E. coli detection by the two methods is shown in figure 5.11.  The analysis 

suggests that if top down fragmentation efficiency is greater than N = 5 (there are at least 

5 fragment ions per protein) while the accuracy of protein mass measurement is no lower 

than ±10 Da, it will be more specific in organism detection than the bottom up with 

complete fragmentation efficiency and accuracy of peptide mass measurement of ±3 Da.  

However, if there is no fragmentation in the top down method (only parent mass is 

available) or the fragmentation efficiency is low (less than N = 5), top down method loses 

its specificity as comparing to the bottom up.  Even though, as illustrated in the Figure 

5.4, when accurate parent mass is available (measurement accuracy is 10-4 Da) almost all 

protein masses are unique to the E. coli “signature proteins”, the background sample 

might become more complex rendering protein masses less specific.  For the top down 

experiment the preferred fragmentation efficiency based on this study is N = 20, a point, 

where the specificity of detection does not change significantly with the increasing 

number of fragments.  It must also be noted that the protein fragmentation efficiency was 

modeled by randomly choosing N ions from all the fragments produced from complete 

protein fragmentation.  In reality, the fragmentation is likely to follow different pattern, 

and protein fingerprint might be less meaningful. 

The last issue examined in the study was establishing a reasonable scoring scheme 

for organism detection.  OrganismScore was designed to provide the assessment of 

likelihood of organism detection and allow for comparison between detections of 

different organisms.  OrganismScore is based upon the concept of uniqueness of a given 

139 139



 

protein in nature.  The protein uniqueness is measured with the use of family based 

profile of the protein.  In essence, it is a measurement of amino acid conservation in the 

protein sequence.  Using a family based position dependent frequency matrix example of 

such a matrix shown in the Figure 5.3, derived from the family based profile, it is 

possible to compute the probability of all amino acids in the sequence remaining the same 

in a different organisms.  OrganismScore is normalized to 1, which allows for easy 

assessment of organism detection as well as the comparison between OrganismScores for 

different organisms in different environmental samples.         

 Mass spectrometry is an analytical tool that can detect proteomic signatures in 

complex samples.  As shown in this simulation, the complex background does not overly 

interfere with the specificity of signature detection, while sensitivity of detection will 

have to be explored by real experimental studies.  One of the advantages of top down 

mass spectrometry over the other techniques for organism detection is that the organism 

does not have to be well characterized or sequenced before it can be detected by top 

down mass spectrometry.  The detection can be done based on a proteomic signature 

pattern of unknown proteins as long as it has been measured once before.  Indeed, top 

down mass spectrometry can be used to detect changes in the environment, by separating 

the signatures of organisms present in the background from any new organism signature 

which appears in the sample.  This detection is easily achievable by subtracting the 

previously detected background signal from the measured spectrum of the environmental 

sample leaving only the newly emerging signatures.  If the new signatures are judged 

harmless, they can be added to the background signal and won’t be considered in the new 
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analysis.  This approach can potentially make bio-organism signature detection 

completely automatic and highly efficient. 
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Modification Name Peptide   
# of 

Occurrence 

MW of 
PTM 

N6,N6,N6-trimethyl-L-
lysine_ 

NYDPRAKIMQQVCHEVLAETGHHGDPLLK! 3 43.0548 

O5-glycosyl-L-
hydroxylysine_ 

GK!QGPVGKPGPQGK 12     
178.0477+ 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

VAPP!PPPQHAAPRMAPPPAPVRAAPPPPHVAPPR 3 31.9898 

L-3-oxoalanine_ QLPGKDFSS!VLTNPSSADIHAVR 3 -2.0156 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PSAPPTAAPAERPAAPP!PAAAPVRPPAPPAGEAPQ
R 

4 31.9898 

S-(L-isoglutamyl)-L-
cysteine_ 

TLSRYQ!LSDLGNERGAK 5 -17.0265 

N-acetyl-L-methionine_ AVFMTGHGGNEVIEVGDRPM!PQR 8 42.0106 
N6-1-carboxyethyl-L-
lysine_ 

VNAVNPGMVVTEGVK! 4 72.0211 

N6-biotinyl-L-lysine_ EAASARWMK!EADK 6 226.0776 
N6-lipoyl-L-lysine_ AAGAGWK!ASAGGAPSPQR 3 188.033 
N6-biotinyl-L-lysine_ YPNDK! 12 226.0776 
N5-methyl-L-glutamine_ VEEFRVSEDALLPVGAEIQADHFVVGQ!FVDVTGT

STGK 
3 14.0157 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PAAPPP!AAAPVR 3 31.9898 

N-acetyl-L-methionine_ LAM!AGFAAARALSTGFNDAPTKASR 3 42.0106 
N6-1-carboxyethyl-L-
lysine_ 

REALDALAAK!LGER 3 72.0211 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PSAPPTAAPAERPAAPPPAAAPVRPPAPP!AGEAPQ
R 

5 31.9898 

O4'-(phospho-5'-uridine)-L-
tyrosine_ 

GAEY!IVDFLPK 3 306.0253 

N5-methyl-L-glutamine_ VFTEAGEHIPVTVLKLGNCQ!VLGHRTK 3 14.0157 
L-serine_ AS!ADVALLK 3 87.032 
N-acetyl-L-proline_ FPEPYLAAFDGP!R 3 42.0106 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GLPPAPGVAARPGIP!SVAQPQPPGRPALGPGGPA
AAR 

3 31.9898 

3'-(1'-L-histidyl)-L-
tyrosine_ 

YVDY!PDAFAGWNLVSSIGSYISGFAVLVFLYGMT
LAFIRKER 

3 -2.0156 

L-3-oxoalanine_ ITRS!DEAIAAK 4 -2.0156 
N6-1-carboxyethyl-L-
lysine_ 

K!TIPAPAQALDAEANR 4 72.0211 

N6-1-carboxyethyl-L-
lysine_ 

NAAEVDGAVAALK! 3 72.0211 

N-acetyl-L-methionine_ RVVVTGM!GIVSSIGNNTQEVLASLHDAKSGISR 5 42.0106 
N6,N6,N6-trimethyl-L-
lysine_ 

LSVEAGSVKMFEIADRIEAVMHESK! 3 43.0548 

N6-1-carboxyethyl-L-
lysine_ 

GTDHKIGQLNPLK!R 3 72.0211 
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trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AAPPPPHVAPPRPPAPPRAAPPP!R 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

VAPPPP!PQHAAPRMAPPPAPVRAAPPPPHVAPPR 4 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

EGAAVVVNDLGGPRDGSGSDAGMAQQVVDAIK! 3 72.0211 

N6-1-carboxyethyl-L-
lysine_ 

GIGVEIALK!LAAEGAAVAVNYASSKQGADDVVD
K 

5 72.0211 

N,N-dimethyl-L-proline_ NMVGP!ALGGVVGR 4 29.0391 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

NGTVAPSAGSAP!KPLAGTPPAGGGPAVRPEAVR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

LRPTPPVTAPARPAGPP!PAAAVDR 3 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

VIGANLK!GAYFLATEVAR 3 72.0211 

N-acetylglycine_ LLQTASVDQG!SK 6 42.0106 
O5-glycosyl-L-
hydroxylysine_ 

QGPVGK!PGPQGKAGPQGK 4     
178.0477+ 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

DTEIP!TEGLR 4 31.9898 

N-acetyl-L-alanine_ SVA!AR 3 42.0106 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

MAPPPAPVRAAPPPPHVAPPRPP!APPR 3 31.9898 

N-acetyl-L-proline_ FGRP!LLGATVK 6 42.0106 
N6-biotinyl-L-lysine_ VAHTAEDLALAISTAGNEAKAAFGDASVYLEK! 4 226.0776 
omega-N-(ADP-ribosyl)-L-
arginine_ 

NVFIHGCDPKADSTR!LILGGK 3 541.061 

3-hydroxy-L-proline_ P!GIAGKPGPDGKPGPIGPQGK 5 15.9949 
N6-lipoyl-L-lysine_ SGDVIAEIETDK!ATMEVEAADEGTLAK 7 188.033 
L-3-oxoalanine_ GS!LRSTYDGR 4 -2.0156 
3-hydroxy-L-proline_ GPKGEAGAAGAP!GPAGPAGPAGPAGPAGPKGDA

GPAGPAGPAGPAGPSGATGPAGPK 
4 15.9949 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PAAPPPSPAGPP!AR 9 31.9898 

N-acetyl-L-alanine_ EVPEA!IRKATESAK 3 42.0106 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GLP!PAPGVAARPGIPSVAQPQPPGRPALGPGGPA
AAR 

5 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

ALK!AAGYK 3 72.0211 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PSAPPTAAPAERPAAPPPAAAPVRPPAP!PAGEAPQ
R 

3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PPAPPAGEAPQRRGPP!PGAVPPNAVPPNAAAPDA
AK 

4 31.9898 

3-hydroxy-L-proline_ PGIAGKPGP!DGKPGPIGPQGK 4 15.9949 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PAAPPPSP!AGPPAR 3 31.9898 

dehydroalanine_ AYRDILPESSPSELLIAVAGDYNY!VLPTLLVADR 3 -94.0419 
N5-methyl-L-glutamine_ GQ!FAAAKVEPK 6 14.0157 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GLPPAPGVAARP!GIPSVAQPQPPGRPALGPGGPA
AAR 

3 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

LMMRK!K 3 72.0211 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

P!EPKPAPGPLR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AEPAMPRP!PR 4 31.9898 
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N6,N6,N6-trimethyl-L-
lysine_ 

GGAWTFDELNK!FLASPKGYIPGTAMSFAGVPND
K 

3 43.0548 

dehydroalanine_ AYRDILPESSPSELLIAVAGDY!NYVLPTLLVADR 3 -94.0419 
N-acetyl-L-methionine_ MRAATVNRVDLYM!R 3 42.0106 
N6-biotinyl-L-lysine_ EDNQLSDYLLGTLPELVPGDVKARYPNDK! 4 226.0776 
S-methyl-L-cysteine_ DETQIHTHMC!YSEFNDIIDAIAAMDADVISIETSR 3 14.0157 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PSAP!PTAAPAERPAAPPPAAAPVRPPAPPAGEAPQ
R 

4 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

APESAAPAAATPKP!AAPPPSPAGPPARR 5 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PSAPP!TAAPAERPAAPPPAAAPVRPPAPPAGEAPQ
R 

4 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

SQSPRIVNIASTEALGATATHSPYSAAK!AGVTGLT
R 

3 72.0211 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

APESAAPAAATPKPAAPPPSPAGPP!ARR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GLPP!APGVAARPGIPSVAQPQPPGRPALGPGGPA
AAR 

5 31.9898 

N6-biotinyl-L-lysine_ LFGDKVAAK!ELAK 3 226.0776 
N6-1-carboxyethyl-L-
lysine_ 

TLALHGAQVVLVNLK!HESGEAAARAITNAGGDA
R 

7 72.0211 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GLPPAP!GVAARPGIPSVAQPQPPGRPALGPGGPA
AAR 

4 31.9898 

N6-carboxy-L-lysine_ NVIDGRAMIASFLTLTIGNNQGMGDVEYAK! 3 43.9898 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

TSVVVLDLAREQPFVP!GGSVASGLAMVEPNPK 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GPPPGAPGTPPNATAP!GMTPPPGEAPRR 4 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

ARGTIVNTASISGLFGDYGFAAYNAAK!GAVINLT
R 

7 72.0211 

N6-biotinyl-L-lysine_ HVADLVEAAQQFDQPLIATDGADNRSSAAAAAS
K! 

3 226.0776 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PPP!AAPRIQR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PEAP!AAEPNKGEAGAAPK 4 31.9898 

N-acetyl-L-methionine_ M!RALTLVADR 3 42.0106 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AEPAMPRPP!R 3 31.9898 

N-acetyl-L-methionine_ TEPPQEASSDQGGLHSVSM!ESKMSGDEVSKALIK 3 42.0106 
N6,N6,N6-trimethyl-L-
lysine_ 

LLQTASVDQGSKVAK! 3 43.0548 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PAPPTVSRPVPP!PMHVAPRVAPPPPPQHAAPR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

APESAAP!AAATPKPAAPPPSPAGPPARR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

EKPAQP!EAAKPEAAK 4 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PPAPPAGEAPQRRGPPP!GAVPPNAVPPNAAAPDA
AK 

3 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

VALVTGASKGIGVEIALKLAAEGAAVAVNYASSK
! 

3 72.0211 

N6-1-carboxyethyl-L-
lysine_ 

AHALGLAALGAK! 4 72.0211 

N6-biotinyl-L-lysine_ VHVLAEAVEK!AK 4 226.0776 
N-acetyl-L-methionine_ NIAESLDKMAAGM!LPVIDTEVPLDDVGAALKR 3 42.0106 
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N-acetyl-L-proline_ VTIAHPHGNFGAKIP!NLLSAVCGEGVFFSPGIPLIR
LQDIR 

3 42.0106 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AKEAP!PPGPRPAPAPPK 3 31.9898 

3-(3'-L-histidyl)-L-
tyrosine_ 

FMEGFGVH!TFRLVNADGESTFVK 3 -2.0156 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PEPPLQPLP!RTEPPMPRVEAPIMR 3 31.9898 

3-hydroxy-L-proline_ GPKGEAGAAGAPGPAGPAGPAGP!AGPAGPKGDA
GPAGPAGPAGPAGPSGATGPAGPK 

3 15.9949 

L-3-oxoalanine_ RDFLGLAMGAVAAGTSS!TVLGPTTAAAQAQPGG
GSLPRK 

3 -2.0156 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

SRQDAPSEP!KQR 3 31.9898 

S-(L-isoglutamyl)-L-
cysteine_ 

ALTLCAGLALGLASAQ!AADKAFQRNELADAAIK 5 -17.0265 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PGIPSVAQPQPPGRPALGPGGP!AAARNGTVAPSA
GSAPK 

3 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

IGQLNPLK! 4 72.0211 

N6-carboxy-L-lysine_ EGLSVVMLMPMIVGLANFHLIAK! 6 43.9898 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

RP!ADPFASLVPEPIAR 3 31.9898 

N6-carboxy-L-lysine_ PK!AGFGNFIQTAAHFAAESSTGTNVEVSTTDDFT
RGVDALVYEVDEANSLMK 

8 43.9898 

S-(L-isoglutamyl)-L-
cysteine_ 

LLTTQSLQ!VK 3 -17.0265 

N6-biotinyl-L-lysine_ AERDGTVKK! 3 226.0776 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

QPPGERRGP!PPGAPGTPPNATAPGMTPPPGEAPR 5 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GP!PPGAVPPNAVPPNAAAPDAAKPDAAK 3 31.9898 

N-acetyl-L-proline_ P!KAGFGNFIQTAAHFAAESSTGTNVEVSTTDDFT
RGVDALVYEVDEANSLMK 

10 42.0106 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

LTTPEPGQWEADTAAELPEPELPPLP!TRPLR 3 31.9898 

N6-biotinyl-L-lysine_ EDNQLSDYLLGTLPELVPGDVK!ARYPNDK 3 226.0776 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

APESAAPAAATP!KPAAPPPSPAGPPARR 4 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

APESAAPAAATPKPAAPPP!SPAGPPARR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

QPPGERRGPP!PGAPGTPPNATAPGMTPPPGEAPR 5 31.9898 

N6-lipoyl-L-lysine_ VK!SGDVIAEIETDKATMEVEAADEGTLAK 3 188.033 
N6-methyl-L-lysine_ VGRKLFVK! 5 14.0157 
N6-1-carboxyethyl-L-
lysine_ 

VNVVAPGGARTPIWK! 3 72.0211 

N-acetyl-L-alanine_ EVPEA!IR 3 42.0106 
N6-1-carboxyethyl-L-
lysine_ 

RLSPQGIERAFAINHLGPFLLTNLLLDLIK! 3 72.0211 

N6-biotinyl-L-lysine_ LGIPVVPGSDGGVGPDDDAMAIAKEIGFPVLVK! 3 226.0776 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AAPSAPPPPP!AAAPPHVAPPPPPPAPPR 3 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

TNLTAVFFTVQAALPYLNDGASIILNGSVISVLGNP
GFAAYAASK! 

7 72.0211 

N6-1-carboxyethyl-L-
lysine_ 

K!IR 4 72.0211 
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dehydroalanine_ IASIY!HGYPSK 3 -94.0419 
N-acetyl-L-methionine_ ARVARM!QQMGPEK 3 42.0106 
L-3-oxoalanine_ DFLGLAMGAVAAGTSSTVLGPTTAAAQAQPGGG

S!LPR 
3 -2.0156 

N6-lipoyl-L-lysine_ SGDVIAEIETDK!ATMEVEAADEGTLGK 4 188.033 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

VAPPP!PPQHAAPRMAPPPAPVRAAPPPPHVAPPR 3 31.9898 

dehydroalanine_ FDY!ATPLTR 4 -94.0419 
N5-methyl-L-glutamine_ SGVIAQ!K 4 14.0157 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PEPP!VLR 4 31.9898 

N-acetyl-L-methionine_ FLGEGAAWNHVAM!EQAIADSGLEESEISNIR 4 42.0106 
omega-N-(ADP-ribosyl)-L-
arginine_ 

SLTVTQAELSGRTTIEAAPQSAQADVYRQLAR! 3 541.061 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PEP!PVLR 3 31.9898 

N6-biotinyl-L-lysine_ IGFPLMLK!STAGGGGIGMQLCHDEATLRER 4 226.0776 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AAPPPRPQGP!AK 3 31.9898 

N6-carboxy-L-lysine_ QLDIVRREGLSVVMLMPMIVGLANFHLIAK! 7 43.9898 
N-acetyl-L-proline_ LFDGP!STTIKDLWR 6 42.0106 
N5-methyl-L-glutamine_ VSEDALLPVGAEIQADHFVVGQ!FVDVTGTSTGK

GFAGGMK 
3 14.0157 

N-acetyl-L-methionine_ AAGGRAVANTADISTM!AGGQSVFDDAIKHFGR 4 42.0106 
N-acetyl-L-methionine_ LQPGETVLVFGVGGGVSLAAM!QIAAAAGARVLA

TSRSADK 
3 42.0106 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PALGPGGPAAARNGTVAPSAGSAPKP!LAGTPPAG
GGPAVR 

4 31.9898 

L-3-oxoalanine_ RDFLGLAMGAVAAGTSSTVLGPTTAAAQAQPGG
GS!LPRK 

5 -2.0156 

N-acetyl-L-methionine_ ALGADAVIDAPADKIPAAVM!DLTSGR 3 42.0106 
N6-1-carboxyethyl-L-
lysine_ 

TLQGKVALVTGASKGIGVEIALK! 4 72.0211 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GPP!PGAVPPNAVPPNAAAPDAAKPDAAK 3 31.9898 

3-hydroxy-L-proline_ GPKGEAGAAGAPGPAGPAGPAGPAGP!AGPKGDA
GPAGPAGPAGPAGPSGATGPAGPK 

5 15.9949 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GEAGAAP!KQGAGK 3 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

VNGVAPGPVDTAMAK!QVHTADIRSDYR 3 72.0211 

N6,N6,N6-trimethyl-L-
lysine_ 

GYPIEQLAEK! 4 43.0548 

N6-1-carboxyethyl-L-
lysine_ 

ARGGGAIVNIGSRSSVNAYGGGAAYCASK! 3 72.0211 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

P!EAPAAEPNKGEAGAAPK 3 31.9898 

N-methyl-L-alanine_ KNIASGIAHVNSSFNNTTITITDAQGNA!IAWSSAG
TMGFK 

3 14.0157 

N6-biotinyl-L-lysine_ LFGDK!VAAKELAK 7 226.0776 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GLPPAPGVAARPGIPSVAQP!QPPGRPALGPGGPA
AAR 

3 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

NAVKNHAALATMANAPGK! 5 72.0211 

N6-lipoyl-L-lysine_ AAAPAAAPAPAAPAPAAAPAAK!APPSDAPLAPSV
RR 

4 188.033 
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S-methyl-L-cysteine_ ETLGAEWRQYEDIFPAIDASSIQQVAVEC!R 5 14.0157 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

APESAAPAAATPKP!AAPPPSPAGPPAR 4 31.9898 

N6-biotinyl-L-lysine_ PEHLEAFGLK!HR 10 226.0776 
N-acetyl-L-proline_ VEAIAP!IGETRFSVR 3 42.0106 
O4'-(phospho-5'-
adenosine)-L-tyrosine_ 

NIY!RAALQKLAAR 4 329.0525 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

NGTVAPSAGSAP!K 4 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PALGPGGPAAARNGTVAPSAGSAP!KPLAGTPPAG
GGPAVR 

4 31.9898 

N6-carboxy-L-lysine_ PLLGATVK!PKLGLSGR 4 43.9898 
N,N-dimethyl-L-proline_ ADKNMVGP!ALGGVVGRK 3 29.0391 
O-phospho-L-threonine_ SSAQRVIAAT!NSWLHAETRR 3 79.9663 
N6-biotinyl-L-lysine_ NLAALTAAPSTLGDLEFAAAVAAILRGEDEAAK! 3 226.0776 
N6-1-carboxyethyl-L-
lysine_ 

IVNIASIAGK! 3 72.0211 

dehydroalanine_ IASIYHGY!PSK 9 -94.0419 
3-hydroxy-L-proline_ GPKGEAGAAGAPGPAGPAGPAGPAGPAGP!KGDA

GPAGPAGPAGPAGPSGATGPAGPK 
4 15.9949 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PPAPPAGEAPQRRGP!PPGAVPPNAVPPNAAAPDA
AK 

3 31.9898 

S-methyl-L-cysteine_ NDMVQYFGEQLSGFAFTKEGWVQSYGSRC!VR 3 14.0157 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AAPVEAEPP!AEAAAPAPGVEAQPTAAPEPEAKPT
K 

3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PLRPALAEEP!R 4 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

QGADDVVDKITAQGGK! 3 72.0211 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PSAPPTAAPAERPAAPPPAAAPVRPP!APPAGEAPQ
R 

4 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

QPPGERRGPPP!GAPGTPPNATAPGMTPPPGEAPR 4 31.9898 

N6-acetyl-L-lysine_ AIASLIIDGK! 3 42.0106 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AEP!PIMRADPPILR 3 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

AAMDATLK! 3 72.0211 

N6-biotinyl-L-lysine_ PFGLIANNPK!HLGGAIDADAGDK 4 226.0776 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

EKPAQP!EAAK 3 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

IINNGSISAHAPRPFSAAYTATKHAISGLTK! 3 72.0211 

3-hydroxy-L-proline_ GPKGEAGAAGAPGP!AGPAGPAGPAGPAGPKGDA
GPAGPAGPAGPAGPSGATGPAGPK 

3 15.9949 

N-acetyl-L-methionine_ DGSGSDAGMAQQVVDAIKAAGGRAVANTADIST
M!AGGQSVFDDAIK 

3 42.0106 

3-hydroxy-L-proline_ GPKGEAGAAGAPGPAGPAGPAGPAGPAGPKGDA
GP!AGPAGPAGPAGPSGATGPAGPK 

5 15.9949 

N-acetyl-L-proline_ MDKFGRP!LLGATVK 3 42.0106 
3'-(1'-L-histidyl)-L-
tyrosine_ 

Y!VDYPDAFAGWNLVSSIGSYISGFAVLVFLYGMT
LAFIRKER 

3 -2.0156 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AAPVEAEP!PAEAAAPAPGVEAQPTAAPEPEAKPT
K 

3 31.9898 

N6-carboxy-L-lysine_ VTIAHPHGNFGAK! 4 43.9898 
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N6-lipoyl-L-lysine_ SGGGLK!APASAPAGPAIAAAMSDQQIR 3 188.033 
3-hydroxy-L-proline_ PGIAGKP!GPDGKPGPIGPQGK 3 15.9949 
N-acetyl-L-methionine_ VGPFAVPKAM!SSTASATLATWFK 3 42.0106 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

P!SAPPTAAPAERPAAPPPAAAPVRPPAPPAGEAPQ
R 

4 31.9898 

N6-lipoyl-L-lysine_ GLLK!AAIRDPNPVIFLEHEMLYGQHGEVPK 3 188.033 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

NGTVAP!SAGSAPK 4 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

GEAGAAPKQGAGKPAAAPAAETPAHTDP!VPAVT
PAPK 

4 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AAEP!ATEEPTADTSPAAGK 5 31.9898 

L-histidine_ VAAH!PEFDMGAILGHRASADVALLKLAAPLPGK 3 137.0589 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

RGPPPGAP!GTPPNATAPGMTPPPGEAPR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

P!EPPVLR 3 31.9898 

N6,N6,N6-trimethyl-L-
lysine_ 

AQK!EDFDYR 3 43.0548 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PVPPPMHVAPRVAPPPPPQHAAP!RMAPPPAPVR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

APESAAPAAATPKPAAP!PPSPAGPPARR 5 31.9898 

N6-1-carboxyethyl-L-
lysine_ 

AAVPHMKPGSAIINTASVNSDMPNPMLLAYATTK
! 

3 72.0211 

N6-1-carboxyethyl-L-
lysine_ 

LAAEGAAVAVNYASSKQGADDVVDKITAQGGK! 3 72.0211 

N6-1-carboxyethyl-L-
lysine_ 

RMIARQQGGNIVNIASVLGQSVLK! 3 72.0211 

L-serine_ GNFCS!GTLIAPDLVLSAAHCVGPGADYK 3 87.032 
N6-1-carboxyethyl-L-
lysine_ 

VINIASIDGIFVNPLETYPYAASK!AGLIHLTR 3 72.0211 

3-hydroxy-L-proline_ GPKGEAGAAGAPGPAGPAGP!AGPAGPAGPKGDA
GPAGPAGPAGPAGPSGATGPAGPK 

3 15.9949 

N6-1-carboxyethyl-L-
lysine_ 

EGNPNAAHYSASK! 3 72.0211 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

VAP!PPPPQHAAPRMAPPPAPVRAAPPPPHVAPPR 3 31.9898 

N-acetyl-L-methionine_ HWIARPAPVNLDISM!PVASAQGDSFPR 3 42.0106 
N-acetyl-L-methionine_ PNVSHRLPLSQWAPAM!RLLIDR 4 42.0106 
N6-biotinyl-L-lysine_ LVTTK! 7 226.0776 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 
 

P!PPAAPRIQR 3 31.9898 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AP!PPMPERRPADPFASLVPEPIAR 3 31.9898 

3-hydroxy-L-proline_ GEAGEAAP!K 3 15.9949 
N-acetyl-L-proline_ LTELHDVAVANGAGALLINAMP!VGLSAVRMLRK 3 42.0106 
trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

AEPP!IMRADPPILR 3 31.9898 

N6,N6,N6-trimethyl-L-
lysine_ 

FLTDK!GKADQAVGVTK 4 43.0548 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

VAPPPPP!QHAAPRMAPPPAPVRAAPPPPHVAPPR 4 31.9898 
 

trans-2,3-cis-3,4-dihydroxy-
L-proline_ 

PAAPPPSPAGP!PAR 9 31.9898 
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3'-(1'-L-histidyl)-L-tyrosine RPA0832
3-(3'-L-histidyl)-L-tyrosine RPA3310
3-hydroxy-L-proline RPA2801
3-hydroxy-L-proline RPA3593
Dehydroalanine RPA2627
Dehydroalanine RPA3893
L-3-oxoalanine RPA1365
L-3-oxoalanine RPA1990
L-histidine RPA1895
L-serine RPA1895
N,N-dimethyl-L-proline RPA1535
N5-methyl-L-glutamine RPA3250
N6,N6,N6-trimethyl-L-lysine RPA1535
N6,N6,N6-trimethyl-L-lysine RPA2394
N6,N6,N6-trimethyl-L-lysine RPA2907
N6,N6,N6-trimethyl-L-lysine RPA3693
N6-1-carboxyethyl-L-lysine RPA0109
N6-1-carboxyethyl-L-lysine RPA0234
N6-1-carboxyethyl-L-lysine RPA0532
N6-1-carboxyethyl-L-lysine RPA0586
N6-1-carboxyethyl-L-lysine RPA0895
N6-1-carboxyethyl-L-lysine RPA1110
N6-1-carboxyethyl-L-lysine RPA1684
N6-1-carboxyethyl-L-lysine RPA1757
N6-1-carboxyethyl-L-lysine RPA2073
N6-1-carboxyethyl-L-lysine RPA2160
N6-1-carboxyethyl-L-lysine RPA2172
N6-1-carboxyethyl-L-lysine RPA2186
N6-1-carboxyethyl-L-lysine RPA2417
N6-1-carboxyethyl-L-lysine RPA3074
N6-1-carboxyethyl-L-lysine RPA3191
N6-1-carboxyethyl-L-lysine RPA3287
N6-1-carboxyethyl-L-lysine RPA3339
N6-1-carboxyethyl-L-lysine RPA3474
N6-1-carboxyethyl-L-lysine RPA3551
N6-1-carboxyethyl-L-lysine RPA3552
N6-1-carboxyethyl-L-lysine RPA3631
N6-1-carboxyethyl-L-lysine RPA4306
N6-1-carboxyethyl-L-lysine RPA4464
N6-1-carboxyethyl-L-lysine RPA4618
N6-1-carboxyethyl-L-lysine RPA4786
N6-acetyl-L-lysine RPA3764
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N6-biotinyl-L-lysine RPA1405
N6-biotinyl-L-lysine RPA1450
N6-biotinyl-L-lysine RPA2435
N6-biotinyl-L-lysine RPA2539
N6-biotinyl-L-lysine RPA3175
N6-biotinyl-L-lysine RPA4071
N6-carboxy-L-lysine RPA0262
N6-carboxy-L-lysine RPA1559
N6-carboxy-L-lysine RPA2169
N6-carboxy-L-lysine RPA4641
N6-lipoyl-L-lysine RPA0188
N6-lipoyl-L-lysine RPA2864
N6-lipoyl-L-lysine RPA2866
N6-methyl-L-lysine RPA4257
N-acetylglycine RPA3693
N-acetyl-L-alanine RPA3233
N-acetyl-L-alanine RPA3339
N-acetyl-L-methionine RPA0426
N-acetyl-L-methionine RPA0656
N-acetyl-L-methionine RPA1775
N-acetyl-L-methionine RPA2018
N-acetyl-L-methionine RPA2184
N-acetyl-L-methionine RPA3072
N-acetyl-L-methionine RPA3191
N-acetyl-L-methionine RPA3339
N-acetyl-L-proline RPA0262
N-acetyl-L-proline RPA1559
N-acetyl-L-proline RPA2169
N-acetyl-L-proline RPA4641
N-methyl-L-alanine RPA3227
O4'-(phospho-5'-adenosine)-L-tyrosine RPA0984
O4'-(phospho-5'-uridine)-L-tyrosine RPA2966
O5-glycosyl-L-hydroxylysine RPA3593
omega-N-(ADP-ribosyl)-L-arginine RPA1438
omega-N-(ADP-ribosyl)-L-arginine RPA2635
O-phospho-L-threonine RPA3200
S-(L-isoglutamyl)-L-cysteine RPA2553
S-methyl-L-cysteine RPA2181
S-methyl-L-cysteine RPA2397
trans-2,3-cis-3,4-dihydroxy-L-proline RPA0213
trans-2,3-cis-3,4-dihydroxy-L-proline RPA2923
trans-2,3-cis-3,4-dihydroxy-L-proline RPA3081
trans-2,3-cis-3,4-dihydroxy-L-proline RPA3889
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