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Abstract 

 

Materials and process integration of a thin film transistor array for 

intra/extracellular probing are described in this study.  A combinatorial rf magnetron 

sputter deposition technique was employed to investigate the electrical characteristics and 

micro-structural properties of molybdenum tungsten (MoW) high temperature electrodes 

as a function of the binary composition.  In addition to the composition, the effect of 

substrate bias and temperature was investigated.  The electrical resistivity of MoW 

samples deposited at room temperature with zero bias followed the typical Nordheim’s 

rule as a function of composition.  The resistivity of samples deposited with substrate 

bias is uniformly lower and obeyed the rule of mixtures as a function of composition.  

The metastable β-W phase was not observed in the biased films even when deposited at 

room temperature.  High resolution scanning electron microscopy revealed a more dense 

structure for the biased films, which correlated to the significantly lower film resistivity.   

In order to overcome deficiencies in sputtered silicon dioxide (SiO2) films the rf 

magnetron sputtering process was optimized by using a full factorial design of 

experiment (DOE).  The optimized SiO2 film has a 5.7 MV/cm breakdown field and a 6.2 

nm/min deposition rate at 10 W/cm2 RF power, 3 mTorr pressure, 300 °C substrate 

temperature, and 56 V substrate bias.  Thin film transistors (TFTs) were also fabricated 

and characterized to show the prospective applications of the optimized SiO2 films. 

The effect that direct current (DC) substrate bias has on radio frequency (RF)-

sputter-deposited amorphous silicon (a-Si) films was also investigated.  The substrate 
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bias produces a denser a-Si film with fewer defects compared to unbiased films.  The 

reduced number of defects results in a higher resistivity because defect-mediated 

conduction paths are reduced.  Thin film transistors (TFT) that were completely sputter-

deposited were fabricated and characterized.  The TFT with the biased a-Si film showed 

lower leakage (off-state) current, higher on/off current ratio, and higher transconductance 

(field effect mobility) than the TFT with the unbiased a-Si film. 

The crystallization properties of amorphous silicon (a-Si) thin film deposited by rf 

magnetron sputter deposition with substrate bias have been thoroughly characterized.  

The crystallization speed can be increased and the crystallization temperature can be 

drastically lowered relative to unbiased a-Si even though the stress state of biased a-Si 

film is highly compressive.  The substrate bias enhances defect formation (vacancies, 

dislocations, stacking faults) via ion bombardment during the film growth, which 

effectively increases the driving force for crystallization of the films.   

The electrical and optical properties of sputter-deposited silicon nitride (SiNx) and 

n+ amorphous silicon (n+ a-Si) films as a function of substrate bias during sputter 

deposition were investigated.  The breakdown voltage of sputter-deposited SiNx with 20 

W (125 V) substrate bias is 7.65 MV/cm which is equivalent to that of plasma enhanced 

chemical vapor deposition (PECVD) SiNx films.  The conductivity of n+ a-Si films are 

also enhanced by applying substrate bias during the sputter deposition.  To verify the 

effect of substrate bias, amorphous silicon thin film transistors (TFTs) were fabricated 

with substrate biased thin films and compared their electrical properties with 

conventional sputter deposited TFTs. 
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Lastly, electrochemical measurements were analyzed using gold and pyrrole 

solution to verify the active addressability of the TFT array fabricated by entirely by 

sputter deposited thin films below 200 °C temperature.  
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Chapter 1 Introduction 

 

1.1 Microelectrode array (MEA) for extra/intracellular cell probing 

 

1.1.1 Definition and application of Microelectrode arrays (MEA) 

 

Microelectrode arrays (MEA) have been studied to investigate electrogenic cells 

and tissues by intra/extracellular stimulating and recording.1  A microelectrode array 

(MEA) is an arrangement of typically more than a few tens of electrodes with 100 ~ 500 

µm pitch allowing the probing of several sites for cell stimulation and extracellular 

recording at once (Fig. 1-1).1  An extracellular recording system is composed of 

following components; signal source (cells or tissue), cell-sensor interface (biocompatible 

electrolyte), biosensor (MEA), filter amplifier, and recording hardware and software.  In 

these days, the devices are fabricated by conventional semiconductor fabrication 

processes (thin film deposition, lithography, and wet / dry chemical etching) with a high 

density of electrodes. 

The cell membrane is semi-permeable and is separated by different ion 

concentrations (charges) on the inner and outer side of the membrane.  The cell 

membrane, therefore, has the electrical properties like a plate capacitor.  The 

electrochemical gradient due to the concentration difference induces a membrane 

potential that can be measured directly by an intracellular (or extracellular) electrode.  

When ion channels are opened due to chemical or electrical stimulation, the resultant ions 
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FIG. 1-1. Micrograph of a microelectrode array (MEA).  Only the cells on the electrodes 

can be measured and the cells lying on between the electrodes are not analyzed. 

 

V. Bucher, B. Brunner, C. Leibrock et al., Biosensors & Bioelectronics 16 (3), 205 

(2001). 
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are moved along the electrochemical gradient.  In other words, the resistance of the 

membrane is lowered, resulting in an inward or outward flow of ions measured as a trans-

membrane current. 

In the case of extracellular probing, the space between signal source (cells or 

tissue) and electrode is also conductive and the extracellular current results in a small 

voltage that can be measured with extracellular electrodes and reference electrode 

according to Ohm's law (V = I × R, where V is voltage, R is resistance, and I is current).  

Extracellular signals are smaller than trans-membrane potentials measured by 

intracellular probing and the potential depends on the distance between the signal source 

and the extracellular electrode.  Due to resistance properties of the extracellular space, the 

level of extracellular signal decreases with increasing distance of the signal source to the 

electrode.  Therefore, a high spatial resolution of the electrode array corresponding to 

high electrode density and/or a close interface between electrode and cell membrane is a 

very important factor to get a high signal-to-noise (S/N) ratio.2 

Over the past decades, non-invasive extracellular recording devices using multiple 

electrodes has been developed using standard microelectronic fabrication processes.  

Systems and methods have been greatly improved, leading to more features, lower costs, 

and higher throughput.  Almost all excitable or electrogenic cells and tissues can be used 

for extracellular recording in vitro, for example, central or peripheral neurons, heart cells, 

retina, or muscle cells.3,4,5 

MEAs can be used to inspect the activities of whole cells and tissues rather than 

simple single cell measurements and can measure the interaction of several cells in a 
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culture or in their natural environment or even in whole organs.  The rising applications 

of monitoring biological signals generated during nerve excitation, quantitative release of 

molecules, and cell-to-cell communication has stimulated the development of new 

methodologies and materials for novel applications of bio-applicable devices in basic 

science, laboratory analysis and therapeutic treatments.5 

The classical methods need complex and expensive micro-processes for electrode 

positioning, which are limited to 2 or 3 units per recording cells and produce inevitably 

serious damage to the interior of cell that limits the duration of the recording and 

reproductivity of the recording over the same cell.  Solid-state microelectrode arrays 

overcome many of these drawbacks and allow several of the following advantages: 1) 

recording electrical signals with higher fidelity signal-to-noise ratios without destroying 

the intracellular domain, 2) monitoring simultaneously the activity of various cells 

belonging to a complex network, 3) repeating periodically the recordings on the same 

cells over long periods of time.  

However, the main drawback of the MEA is that the only cells lying on the 

electrodes can be measured and the cells outside of the electrodes cannot be analyzed due 

to the still relatively low electrode density relative to the size of the cells.  In addition, 

cells usually do not adhere exactly on the electrodes and cell-electrode contact is often 

very poor in this device.  As a consequence, the signal to noise ratio is not optimized and 

often the signal is not detected properly.   

 

 



 5

1.1.2 Light-addressed extracellular probing device 

 

To overcome the low electrode density of MEAs, V. Bucher et al. proposed an 

array of light-addressable sub-µm electrodes.6,7  Each electrode, as shown in Fig. 1-2, can 

be addressed individually by switching a photoconductor layer by means of a focused 

laser beam.  The array provides a great number of electrodes on a photoconductor layer 

(hydrogenated amorphous silicon).  Each electrode in the device is operated under the 

illumination of laser light with 488 nm wavelength and the current can be induced to the 

electrode stimulating cells.   

Although having higher density of electrode, it has several disadvantages due to 

in driving scheme.  Firstly, the device needs additional equipment on the periphery to be 

driven due to its passive-addressed driving scheme; for instance a laser source, amplifier, 

addressing tools, and mounting tools.   

Secondly, it is so hard to focus at a specific electrode to stimulate a cell because 

mechanical addressing to focus at a coordinate cannot be precisely controlled.  The 

failure of a precise focus makes cross-talking and addressing delays a problem in the 

whole active area.  To simplify the driving scheme while maintaining the high electrode 

density, we propose an active addressed microelectrode array using thin film transistors.  
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FIG. 1-2. Principle of light-addressed sub-µm contacting of excitable cells. Electrodes 

over the illuminated photoconductor are switched through. 

 

V. Bucher, J. Brugger, D. Kern et al., Microelectronic Engineering 61-62, 971 (2002).
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1.2 Active matrix addressing and Thin film transistor (TFT) 

 

1.2.1 Definition of passive and active matrix addressing 

  

The passive addressing is a scheme that the charge of a unit cell (pixel) is 

maintained by directly applied voltage on the row and column electrodes.  Even though 

this has a very simple driving scheme and structure, it requires high driving voltages and 

complex peripheral devices relative to an active addressing scheme due to its inability to 

maintain charge on other pixel elements that are not simultaneously addressed. 

For the active matrix addressing scheme, as shown in Fig. 1-3, each unit cell is 

attached to a switching device (TFT, Field effect transistor or FET) which actively 

maintains the cell state while other cells are being addressed. This scheme also prevents 

crosstalk from inadvertently changing the state of an unaddressed pixel.  The active 

addressing scheme is usually used in the fabrication of flat panel display devices such as 

thin film transistor-liquid crystal displays (TFT-LCD) and TFT-organic 

electroluminescence display (TFT-OELD).   

 

1.2.2 Amorphous silicon TFT and parameter extraction 

 

Thin film transistors (TFTs) were proposed by Weimer in 1961.8  The 

semiconducting layer and gate dielectric of the TFT were made of cadmium sulfide and
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FIG. 1-3. Active matrix addressing scheme and one example of applications. Thin film 

transistor - liquid crystal display (TFT-LCD). 
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silicon monoxide by conventional evaporation.  Soon after this, various semiconducting 

materials have been studied for example Cadmium Selenide (CdSe). 

Hydrogenated amorphous silicon thin film transistors (a-Si:H TFTs) were initially 

proposed by LeComber as electronic switching devices in 1979.9,10,11  It has been 

demonstrated that TFTs are effective driving and read-out devices in the microelectronic 

applications such as liquid crystal displays (LCDs) 12,13, optoelectronic sensors 14, and 

chemical/biological sensors.15,16  Recently novel devices such as the radiation sensors 17, 

medical imaging sensors (Digital X-ray detector) 18,19, and MEMS (Micro Electro 

Mechanical Systems) 20 have been successfully fabricated on the basis of TFT 

technologies.  Additionally, chemical and biological sensing devices driven by TFTs are 

currently being studied throughout the world.15   

Fig. 1-4 shows various cross-sectional TFT structures.  The staggered and 

inverted-staggered structures are used in a-Si:H TFTs.  The inverted-staggered structure 

is more popular than the staggered structure because of the lower interfacial density of 

states between the gate dielectric and a-Si:H films.21  An inverted-staggered TFT is 

usually fabricated with following mask steps; gate, active region, source/drain, and via 

hole.  As shown in Fig. 1-4, electrons injected from the source electrode cross the a-Si:H 

layer, travel through the channel at the interface between the gate dielectric and a-Si:H, 

cross the a-Si:H layer again, and reach the drain electrode.  Since the channel thickness is 

estimated to be several tens of nanometers, the interface properties between gate 

dielectric and a-Si:H play a critical role in TFT characteristics.22   
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FIG. 1-4. Various cross-sectional structures of TFT. (a) Channel-passivated (CHP), (b) 

back-channel etched (BCE), and staggered (top-gated) TFTs. 

 

Kuo Yue, Journal of the Electrochemical Society 142 (1), 186 (1995). 
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The basic current-voltage characteristics of a TFT can be analyzed in a similar 

fashion compared to a metal-oxide-semiconductor field effect transistor (MOSFET) and 

polycrystalline devices.  The following assumptions are defined for the formulation; (1) 

the carrier mobility in the channel is constant, (2) the gate capacitance is constant and 

independent of the gate voltage, (3) the source and drain electrodes are electrically ohmic 

contacts to the semiconductor, (4) the initial charge density in the semiconductor is n0, 

and (5) the gradual cannel approximation can be applied.  The gradual channel 

approximation means that the transverse field in the channel is greater than the 

longitudinal field (Ex).  To define TFT parameters, a coplanar TFT structure shown in Fig. 

1-5 is used for the analysis.  The coplanar structure is not common in a-Si:H TFT but this 

structure illustrates well how the TFT characteristics are extracted using this simple 

configuration.23,24 

 The application of a gate voltage Vg induces charge density ∆n(x) in channel 

region.  This is given by; 

[ ])()( xVV
t

C
xne g

i −⎟
⎠
⎞

⎜
⎝
⎛=∆  

where Ci is the gate capacitance per unit area (=εi/d), t is the a-Si:H thickness, d is the 

gate insulator thickness, and V(x) is the drain voltage at distance x from the source.  If the 

thickness t is assumed to be sufficiently small, the drain current Id is given by 

 [ ] [ ] xnxd ExnntWeExtWI )()( 00 ∆+=∆+= µσσ  

where σ0 and ∆σ(x) are initial conductivity and incremental conductivity from ∆n(x), 

respectively.  From combining above two equations, Id is given by 
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FIG. 1-5. The coplanar TFT structure used for electrical characterization.  In a-Si:H TFTs, 

the staggered electrode configuration is generally adopted.  Therefore, the analytical 

model is different from the actual device characteristics.  However, the current-voltage 

characteristics from this device model can be described well by the analytical results 

obtained using this model. 

 

Toshihisa Tsukada, "TFT/LCD: Liquid Crystal Displays Addressed by Thin-film 

Transistors-Japanese Technology Review,"  29 (1996) 
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Then, drain current is given by 
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where Vt ≈ -etn0/Ci. The threshold voltage Vt depends on the initial charge density n0.  

This equation is valid for a voltage range of 0 ≤ Vd ≤ Vg-Vt.  Beyond this range, the 

current is assumed to be constant as in insulated-gate field effect transistor.  Low Vd 

values correspond to the region of linear output characteristics where the drain 

conductance, gd, and the transconductance, gm, are given by 
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The drain conductance is a linear function of Vg, and the transconductance is 

proportional to Vd.  Saturation of the drain current occurs when ∂Id/∂Vd=0, due to pinch-

off of the conducting channel in the region near the drain.  In this case, the saturation 

current, Idsat, is given by 
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For Vd ≥ Vg-Vt, the transconductance in the saturation region is given by 
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 The typical operating scheme of a-Si TFT is shown in Fig. 1-6.  TFT usually 

operates in the range of 20 ± 2 V for ON state and -5 ± 2 V for OFF state.  The on/off 

current ratio is generally defined as the current ratio of the ON and OFF state.  

 

1.3 Vertically aligned carbon nanofibers (VACNFs) 

 

1.3.1 Definition and overview of VACNF 

 

Carbon nanofibers (CNFs) can be defined as cylindrical or conical structures with 

diameters from a few to hundreds of nanometers and lengths ranging from less than a 

micron to millimeters.  Fig. 1-7 (a) shows a graphene structure with covalently bonded 

carbon atoms arranged in a hexagonal network.  There are two types of carbon 

nanostructures according to the angle between the fiber axis and the graphene sheet near 

the sidewall surface; stacked cone structure nanofiber and nanotube; Fig. 1-7 (a) and (b) 

respectively.25,26   

Fig. 1-8 shows tunneling electron microscopy (TEM) image of carbon nanofiber 

and carbon nanotubes grown by direct current catalytic plasma enhanced chemical vapor 

deposition (DC C-PECVD); (a) with Ni catalyst, and (b) bamboo-type carbon nanofiber 

with Fe catalyst; (c) bundles of single-walled carbon nanotubes. 
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FIG. 1-6. Typical operating scheme of a-Si TFT. 
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FIG. 1-7. Schematic diagrams of carbon nanofiber and nanotube. (a) Graphene layer, (b) 

stacked cone nanofiber, and (c) nanotube. 

 

M. Endo, Y. A. Kim, T. Hayashi et al., Applied Physics Letters 80 (7), 1267 (2002). 

A. Krishnan, E. Dujardin, M. M. J. Treacy et al., Nature 388 (6641), 451 (1997). 
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FIG. 1-8. STEM image of a carbon nanofiber grown by DC C-PECVD. (a) With Ni 

catalyst, (b) a bamboo-type carbon nanofiber grown with Fe catalyst, and (c) bundles of 

single-walled carbon nanotubes. 

 

A. V. Melechko, V. I. Merkulov, T. E. McKnight et al., Journal of Applied Physics 97 (4), 

41301 (2005). 
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1.3.2 Synthesis process and growth mechanism of catalytic thermal chemical vapor 

deposition 

 

There are several methods for synthesizing carbon nanostructures; laser 

evaporated deposition,27 arc discharge,28,29 catalytic chemical vapor deposition (C-CVD), 

and catalytic plasma enhanced chemical vapor deposition (C-PECVD).  In the case of 

laser ablation and arc discharge deposition, although they have several advantages of 

being high quality nanotube materials with high efficiency, controlling spatial 

arrangement of nanostructures is intractable using these deposition technologies.  In 

addition to this drawback, extra purification processes are needed to remove amorphous 

carbon particles for highly purified materials.  On the other hand, C-CVD and C-PECVD 

allow the controlled deterministic synthesis to achieve a specific location, alignment, size, 

shape, structure of individual carbon nanofibers.   

In using conventional CVD, there are process sequence steps to deposit a 

condensed phase on substrate; desorption, evolution, and incorporation of vapor species 

on substrate.  The conventional CVD deposition occurs by heat flux at high temperature, 

400 to 1000 °C.  C-CVD uses a catalyst in the decomposition of vapor species on the 

catalyst surface and somewhat differs from the conventional CVD.30  There are two 

methods to introduce the catalyst onto the substrate; supported and floating catalyst.  The 

supported catalyst is deposited onto the substrate directly and the floating catalyst is 

formed by flowing a reactive gas.31,32  Carbon nanostructures have been successfully 



 19

synthesized by C-CVD and recently it has been used to successfully grow multi-walled 

carbon nanotubes (MWCNTs) 33 and single-walled carbon nanotubes (SWCNTs).32   

The growth mechanism of carbon nanofibers has been widely studied by many 

researchers.  Baker et al. showed small amount of metal particles generate carbon 

nanofibers during the decomposition of acetylene.34  They used in situ electron 

microscopy to take images of the growth sequence and measured the growth rate to 

determine the kinetic parameters involved in the process.  They conclude that the growth 

mechanism follows these steps (Fig. 1-9): (1) adsorption and decomposition of the 

reactive hydrocarbon molecule on the surface of catalyst, (2) dissolution and diffusion of 

carbon species through and around the metal particles, and (3) precipitation of carbon on 

the reverse surface of the catalyst particles to structure the nanofibers.  In the step (3), the 

precipitation occurs on the bottom surface of the catalyst particle and then the particles 

are lifted up toward top of the carbon nanofiber remaining crystalline graphite.  At the 

first stage of the study, the temperature gradient was regarded as the dominant kinetic 

factor of carbon diffusion through the catalyst due to exothermic reaction of 

decomposition on the catalyst surface.34  Later, it turned out that the dominant driving 

force for diffusion of carbon into the catalyst is the concentration gradient.  Kock et al. 

also suggested that the driving force for carbon diffusion is the concentration gradient of 

carbon content of sub-stoichiometric carbides, therefore the carbon content decreases 

with the direction of the metal-carbon interface.35   
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FIG. 1-9. Growth mechanism of carbon nanofiber. (a) Adsorption and decomposition of 

reactive hydrocarbon molecule on the surface with catalyst, (b) dissolution and diffusion 

of carbon species through or around metal particles, and (c) precipitation of carbon on the 

reverse surface of the catalyst particles and incorporation into graphite layers. 

 

R. T. K. Baker, M. A. Barber, R. J. Waite et al., Journal of Catalysis 26 (1), 51-62 (1972). 
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1.3.3 Synthesis process and growth mechanism of catalytic plasma enhanced chemical 

vapor deposition (C-PECVD) 

 

Plasma enhanced chemical vapor deposition (PECVD) is one of the widely used 

deposition techniques which utilizes a plasma to reduce activation energy.  By decreasing 

the activation energy, the growth temperature of thin films can be also lowered and can 

be suitable for low temperature deposition.  By introducing catalysts in PECVD system 

(C-PECVD), carbon nanostructures are successfully grown at low temperature relative to 

conventional CVD.36  In recent study, Boscovic et al. suggested that a high field of radio 

frequency (rf) provides selective heating on catalyst particle in the growth of carbon 

nanostructures even though the substrate temperature is very low.37  Other effects should 

be considered, however, as there are some possibilities of simple resistive (Joule) heating 

by induced current.  That is, there is a possibility of Joule heating that contributes to the 

catalyst heating as well as the heating by high frequency movement of catalyst. 

Prior to understanding the growth mechanism of carbon nanofibers, it is 

instructive to review the deposition theory of PECVD.  PECVD is a technique commonly 

used in microfabrication to deposit insulating thin films amorphous or polycrystalline 

silicon.  The plasma is used to stimulate a reaction on the substrate surface the species 

from the gas phase.  The plasma helps break up the parent molecules and allows the 

reaction to deposit species at a lower temperature than conventional thermal CVD.  The 

major advantage of PECVD is in fact, the lower temperature capability with respect to 

other systems such as conventional CVD.  For example, while deposition temperatures of 
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500-900 °C are required for silicon deposition in CVD, temperatures in the range 250-

350 °C are sufficient in PECVD systems.  In the PECVD deposition process, a glow 

discharge plasma is sustained within vacuum chamber.  The radio frequency ranging 

from 100 kHz to 40 MHz is usually employed as a power source at 50 mTorr to 5 Torr 

pressure range.  When the plasma turns on, the density of electrons and positive ions are 

between 109 and 1012 /cm3, and average electron energy is from 1 to 10 eV.  The 

sufficiently energized discharge decomposes gas molecules into several kinds of species; 

electrons, ions, atoms, free radicals, and molecules in ground and excited states.  PECVD 

is commonly utilized to deposit silicon dioxide (SiO2) and silicon nitride (Si3N4) for 

insulating layer of microelectronics.  SiO2 films are formed by reacting silane and nitrous 

oxide gases.  Si3N4 films are deposited either by reacting silane and ammonia gases or by 

reacting silane in a nitrogen discharge. The following is a reaction sequence for 

producing SiNH films from silane and nitrous oxide. 

224

234

22224

322
3

244

HSiNHNSiH
HSiNHNHSiH

OHNSiOONSiH

+→+
+→+

++→+
 

 In the case of direct-current PECVD system to grow carbon nanofibers, the 

substrate is usually placed on a substrate heater that is a cathode.  To grow isolated 

VACNFs, the metal catalyst is essential as described previously.  Among many kinds of 

metal catalyst, patterned 40 nm dimeter Ni dots on a Si substrate is preferentially used to 

synthesize isolated VACNFs.38  Fig. 1-10 shows dc-PECVD system to grow VACNFs.  

The process sequence to grow VACNFs is the following; 1) pump down to base pressure, 

2) after reaching base pressure below 1×10-5 Torr, ammonia (NH3) gas is introduced into
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FIG. 1-10. DC-PECVD reactor for the growth of VACNFs. (a) High current heater 

wiring, (b) thermocouple wiring, (c) mass flow controllers for acetylene, ammonia, and 

other gases, (d) gas inlet, (e) glass cylinder vacuum chamber, (f) gas showerhead and 

anode, (g) cathode glow of acetylene/ammonia plasma above a 100-mm diam Si wafer, 

(h) substrate heater and cathode, and (i) pressure transducer.  

 

A. V. Melechko, V. I. Merkulov, T. E. McKnight et al., Journal of Applied Physics 97 (4), 

41301 (2005). 
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the chamber and the sample is pretreated with the NH3 plasma.  As a result of the 

treatment, discrete catalyst nanoparticles are formed from the deposited catalyst dot as 

shown in Fig. 1-11 (b).  These nanoparticles play an important role of forming seeds for 

the catalytic growth of isolated VACNFs.  After the pretreatment, 3) acetylene (C2H2) gas 

is introduced into the chamber with maintaining NH3 plasma and then the growth of 

VACNF is initiated vertically.  Fig. 1-12 shows SEM images of VACNFs with a tip-type 

and non-aligned base-type CNFs grown by dc PECVD.  Melechko et al. showed that the 

kinetics of the CNF growth also plays a role in various kinds of growth mode; base-type 

and tip-type CNFs can be simultaneously grown on the same substrate and using same 

catalyst by changing the ratio of gas flow.36 

 

1.3.4 Electrical and electrochemical properties 

 

Lee et al. reported recently the electrical properties of individual VACNF by 

measuring current-voltage characteristics of suspended nanofiber bridge.39  The 

nanofibers showed typical linear current-voltage characteristics at low applied voltage 

both positive and negative.  The estimated range of resistivity was calculated to be from 

10-6 to 10-5 Ω·m with the assumption that the electrical conductivity is equal within the 

entire cylindrical cross-sectional area of the nanofiber.   

Carbon nanofibers have been widely used as electrodes in electrochemical 

measurements since it provides low fabrication cost, stability in aqueous solutions, and 
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FIG. 1-11. Schematic representation of the PECVD process for growing VACNFs. (a) 

Catalyst deposition, (b) catalyst pretreatment / nanoparticle formation, and (c) growth of 

carbon nanofibers.  

 

A. V. Melechko, V. I. Merkulov, T. E. McKnight et al., Journal of Applied Physics 97 (4), 

41301 (2005). 
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FIG. 1-12. SEM images of two types of carbon nanofibers. (a) Vertical alignment of 

carbon nanofibers in a tip-type growth mode, and (b) nonaligned growth of base-type 

carbon nanofibers by DC PECVD process.  

 

A. V. Melechko, V. I. Merkulov, D. H. Lowndes et al., Chemical Physics Letters 356 (5-

6), 527 (2002). 
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excellent electrochemical reactivity.  McKnight et al. studied the electrochemical 

properties of VACNF electrodes as electrochemical probes which were grown by dc-

PECVD using a Ni catalyst.40  The VACNFs showed very prospective possibilities in the 

application of nanoscaled carbon electrodes into multi-element array such as individually 

addressable probing devices providing unique platforms to introduce a high level of 

parallelism into electro-physiological and electro-analytical techniques. 

Recently, VACNFs were also used as gene delivering device to introduce genetic 

materials into live cells.  In this application, individual VACNFs were used for the direct 

injection and delivery of genetic materials into the intracellular and nuclear domains of 

eukaryotic cells.  McKnight et al. used VACNF arrays in the as a parallel microinjection-

based method.41   
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Chapter 2 Materials integration issues for the active matrix thin film 

transistor array of intracellular probes 

 

2.1 Gate electrode, molybdenum-tungsten (MoW) 

 

2.1.1 Background 

 

For TFTs to achieve high-speed, high-density, and low-power consumption, a 

low-resistivity gate and / or source-drain metal electrode is essential.  As shown in Table 

2-1, molybdenum (Mo) (and Mo alloys), aluminum (Al) (and Al alloys), and copper (Cu) 

are generally used as gate electrodes in manufacturing electronic displays and 

semiconductor devices.  In choosing a metal material for the gate electrode, there is a 

trade-off between resistivity and thermal/chemical stability.  Al and Cu, for example, 

have very low electrical resistivity and therefore have a significant advantage and 

attraction to applications in high speed and large-scaled thin film devices.  However, their 

thermal stability is very poor, especially, for processing temperatures in excess of 500 °C.  

One of the main problems occurs during heat treatment of the Al (Cu)-Si contact because 

Al (or Cu)-Si inter-diffusion is significant above 500 °C.  This interdiffusion can, for 

example, create silicon precipitates in Al which reduces the overall conductivity of the 

lines.  In addition, Al can suffer from electromigration, which is a metal mass transport 

due to an electric current.  Al atoms move in the direction of electron flow, toward the 

anode, and vacancies remain in the Al thin film.  Consequently, Al whisker growth can
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Table 2-1. Representative gate electrode materials for fabrication of TFTs. 

 

 

Material Resistivity 
(µΩ·cm) Stress resistance Taper angle in 

dry etching 

MoTa 40-45 Excellent Good 

MoW 15-20 (conventional) 
7-10 (our work) Excellent Excellent 

Al alloy (AlNd) 5-7 (post-annealed) Fair Good (AlNd) 

Al-Cu 4-5 Fair Fair 

Al 4-5 Poor Fair 

Cu 3-4 Good Fair 
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be observed between Al and Si films.  If the whiskers contact other layers, for example 

dielectric layers, they can cause additional device failures.  When Al is passivated by a 

dielectric, hillock formation can cause cracking of such films.  To prevent hillock 

formation, in the case of using Al as a gate electrode, a Mo layer can be added to form a 

Mo/Al bilayer.42  The bi-layer deposition and dry etch processes, however, are more 

complicated.  The dry etch process is particularly difficult because the Mo and Al etch 

chemistries are different.   

When fabricating TFT devices, the etching profile of the gate electrode is also 

very important.  This is especially true for an invert-staggered TFT structure where the 

gate electrode is the bottom layer (typically used in TFT-liquid crystal displays).  These 

structures require a tapered etch profile for several reasons.  Firstly, it provides better 

step-coverage in subsequent deposition patterning processes.  Secondly, the sharp edged 

(undercut) gate is a main source of dielectric breakdown due to the concentration of 

electric field at this sharp-edged point.  Thirdly, the tapered gate electrodes influence the 

electrical properties of a TFT and can lower threshold voltages and facilitate steep swing 

characteristics.  

For the past several years, the molybdenum tungsten (MoW) alloy has been 

studied and used as gate electrodes by Thin Film Transistor-Liquid Crystal Display (TFT-

LCD) manufacturing companies because of its excellent thermal and chemical stability, 

reasonably low resistivity, and easily controllable etch taper angle.43,44  In spite of its 

excellent properties, problems with larger substrate size and higher device driving speed 

have been encountered.  Some of the problems include flicker, cross-talking, and line 



 31

delay due to relatively high resistivity of MoW (15~20 µΩ·cm).  To compensate the high 

resistance, MoW thin films require wider and thicker patterns.  The wider and thicker 

MoW causes some fabrication problems in large-scaled integration and planarization of 

the device which can also lead to device failure.  Therefore a thorough investigation of 

the process-property relationships of the MoW alloy is necessary to extend the utility of 

this alloy to advanced semiconductor applications.  Although MoW has many advantages 

in microelectronics, especially high temperature applications, there is not much published 

work on this thin film alloy.  In this work, we present electrical and micro-structural 

properties as a function of the MoW composition for films sputtered under various 

process conditions (temperature and bias). 

As shown in Fig. 2-1, the Mo-W binary system has complete solid solubility since 

they satisfy the requirements to make the complete solid solution; same crystal structure 

(body-centered cubic, BCC), similar electronegativity (Mo-2.16, W-2.36) and below 3 % 

of lattice parameter difference (Mo-0.3147 nm, W-0.3164 nm). 

 

2.1.2 Experimental 

 

The details of the sputtering conditions used to deposit the MoW specimens are 

shown in Table 2-2.  An AJA ATC2000 RF magnetron sputtering system equipped with 

heated and DC biased substrate holder was utilized for the deposition of Mo, W, and 

MoW thin films (Fig. 2-2).  The films were deposited on thermally oxidized SiO2 (1 µm) 

/ Si (100) substrates.  The substrate holder can be rotated if uniform thickness and
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FIG. 2-1. Equilibrium phase diagram of Mo-W binary system. 

 

(P. Gustafson et al., 79 (6), 1988, p388-396, SGTE Phase Diagram Collection at 

www.met.kth.se) 
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FIG. 2-2. Schematic diagram of an AJA ATC2000 RF magnetron sputtering system 

equipped with DC bias supply. 
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Table 2-2. Experiment conditions for the MoW work.  

 

RF power (W) 
Run No. ID 

Mo W 

DC bias 
(Watt / Volt) 

Pressure 
(Pa) 

Temp. 
(˚C) 

(a) 200 160 0 / 0 0.66 RT 

(b) 200 160 0 / 0 0.66 250 

(c) 200 160 30 / 165 0.66 RT 
1st series 

(d) 200 160 30 / 165 0.66 250 

(a) 200 0 0 / 0 1.06 RT 

(b) 200 0 15 / 140 1.06 RT 

(c) 200 0 30 / 165 1.06 RT 

(d) 200 0 45 / 190 1.06 RT 

(e) 0 200 0 / 0 1.06 RT 

(e) 0 200 15 / 140 1.06 RT 

(f) 0 200 30 / 165 1.06 RT 

(g) 0 200 45 / 190 1.06 RT 

(h) 200 200 0 / 0 1.06 RT 

(i) 200 200 15 / 140 1.06 RT 

(j) 200 200 30 / 165 1.06 RT 

2nd series 

(k) 200 200 45 / 190 1.06 RT 

 

(Fixed parameters: 25 sccm Ar gas, 70 mm gap between substrate and target) 
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composition are desired and produces a Mo1-xWx (0.1 < x < 0.9) gradient when the 

sample is not rotated (combinatorial mode).  As shown in Fig. 2-2, the system has three 

targets each equipped with an rf matching network and power supply.  The sources can 

be tilted and the z-position of the substrate holder can be varied in-situ to change the 

deposition profile.  The sputtering targets have a 50 mm diameter and a 6 mm thickness.  

The base pressure prior to the sputtering deposition was below 5.0×10-6 Pa and the total 

flow rate of argon used in these experiments was fixed at 25 sccm for all conditions.  The 

substrate is heated by quartz lamps and the temperature is controlled within ± 1 °C 

temperature range.  The resistance was analyzed via four point probe measurements 

(Veeco FPP-5000) at a fixed film thickness (~300 nm).  The crystal structure 

characteristics of the films were analyzed with a Phillips X-pert Pro X-ray diffraction 

(XRD) system, and the microstructure was analyzed by using a Hitachi S-4700 scanning 

electron microscope (SEM).  The first series of experiments was designed to analyze 

electrical properties and microstructures as a function of Mo-W composition, applied bias, 

and substrate temperature.  The second series was designed to explore the effects of the 

applied bias on the electrical and micro-structural properties of MoW. 

 

2.1.3 Results and discussion 

 

A. Films deposited without negative bias at room temperature and 250 °C 

The electrical resistivity of the MoW alloy as a function of atomic fraction of W 

is shown in Fig. 2-3.  In the figure, (a) and (c) are processed at room temperature and (b)
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FIG. 2-3. Electrical resistivity of MoW as a function of composition, temperature, applied 

bias, and process pressure. (a) No bias / RT, (b) No bias / 250 ˚C, (c) 30 W (165 V) bias / 

RT, and (d) 30 W (165 V) bias / 250 ˚C from the 1st series. 
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and (d) are at 250 ºC.  And (a) and (b) are processed without bias and (c) and (d) are 

under a 30W (165V) dc bias.  The resistivity results as a function of W fraction for (a) 

and (b) samples that are processed without bias follow a typical Nordheim relationship.  

In a metallic material, the electron scattering due to the perturbations such as solute 

atoms, second phases, impurities, dislocations, vacancies, and grain boundaries increase 

electrical resistivity.  As demonstrated in Fig. 2-3 (a) and (b), the electrical resistivity of 

the MoW binary system increases with increasing solute concentration, and it has the 

maximum at ~ 0.5 atomic fraction of solute atoms because of high electron scattering due 

to defects from mixing of the solid solution.  The resistivity of binary alloys can be 

expressed by the well-known Nordheim’s equation: 

(1) )1( xCxI −=ρ  

where x is the fraction of solute atoms and C is Nordheim coefficient.  This expression is 

valid for binary systems having the same valency.  Therefore, the total resistivity of the 

metal alloy can be described with Matthiessen’s rule; 

(2) IRT ρρρρ ++=  

Combining 1 and 2 yields: 

(3) )1( xCxRT −++= ρρρ  

where, ρT is the resistivity due to scattering from thermally activated vibration; ρR is the 

residual resistivity due to the scattering from crystal defects, dislocations, vacancies, and 

impurities, etc.; ρI is the resistivity arising from solute atoms.  The Nordheim coefficients 

of (a) and (b) in Fig. 2-3 are 118 and 70 µΩ·cm, respectively.  The sputtering temperature 

provides energy to the arriving species which enhances their surface mobility and allows 
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the species to occupy a lower energy state.  This leads to a more ordered structure which 

reduces the electron scattering, and lowers the electrical resistivity. 

Fig. 2-4 shows XRD results of MoW as a function of W fraction at several 

sputtering conditions; (a) room temperature with no bias, (b) room temperature with 30 

W (165 V) bias, 250 ºC with no bias, and 250 ºC with 30 W (165 V) bias.  The XRD 

result of Fig. 2-4 (b) is identical to the RT / 30 W bias, 250 ºC / no bias, and 250 ºC / 30 

W bias sputtering conditions.  In the XRD spectra, the strong peak around 2θ = 40° is a 

confluence of several peaks from α-W (40.26°, 110 plane), β-W (39.89°, 210 plane), and 

Mo (40.51°, 110 plane).  The weak peak around 2θ = 38° is a noise signal from the 

aluminum sample holder.  As shown in Fig. 2-4 (a), at room temperature and without bias, 

a second metastable phase (β-W) is observed which correlates well with the resistivity, i.e. 

higher β-W content correlates with higher resistivity.  The intensity of β-W (200) changes 

significantly with the atomic fraction of W in MoW alloy and has a maximum at ~ 0.5 W.  

It is opined that the β-W fraction in MoW is highest at the ~ 0.5 W composition because 

the strain induced by the lattice mismatch between Mo and W is highest at ~ 0.5 W which 

helps nucleate the metastable β-W.  The β-W has a 5.05 Å lattice constant and its lattice 

mismatch with α-W is about 37.3 % in transforming from β-W to stable α-W phase.  It 

has an A15 crystal structure and W atoms are positioned at (0, 0, 0), (½, ½, ½), (¼, ½, 0), 

(¾, ½, 0), (0, ¼, ½), (0, ¾, ½), (½, 0, ¼), and (½, 0, ¾) sites.45  It appears that the 

presence of metastable β-W causes electron scattering which increases the electrical 

resistivity of the MoW thin film.  The relationship between the amount of β-W from the 

XRD results and electrical resistivity of the MoW is shown in Fig. 2-5.  The relative
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FIG. 2-4. XRD results of MoW as a function of W atomic fraction. (a) RT / no bias. 
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FIG. 2-4. Continued. (b) RT / 30 W bias. 
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FIG. 2-5. The relationship between β-W fraction and electrical properties of MoW as a 

function of composition. (The β-W fraction at room temperature/30 W bias is zero 

because β-W phase is not present under all biased sputtering conditions even at room 

temperature sputtering.) 
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amount of β-W to α-W is calculated from the intensities of the (200) planes located at 

58.27 ° (α-W) and 35.52 ° (β-W), respectively, and compared to the intensities expected 

from the standard diffraction patterns of each phase.  This iteration was used because the 

(200) planes were the only peaks that did not have significant overlap with any other 

peaks.  For the room temperature and un-biased sputter deposited sample, Fig. 2-5 shows 

that the presence of the second phase β-W significantly affects the resistivity.  As the 

XRD peak intensity of β-W increases, the electrical resistivity also increases and has a 

maximum value at the point of ~ 0.5 atomic fraction W. 

The sample deposited at 250 oC and un-biased does not contain the β-W phase 

over the entire composition range as illustrated in Fig. 2-4 (b).  This correlates to Fig. 2-3 

(c) which shows that resistivity of the 250 oC sample decreases relative to the room 

temperature deposited sample.  This decrease is well correlated to the elimination of the 

second phase β-W.  The higher temperature deposition could also induce a slightly more 

ordered lattice with fewer lattice defects which could also contribute to the lower 

resistivity.  This contribution is not expected to be significant, however, due to the 

refractory properties of this alloy system.  Therefore, the major factor that the 250 oC in-

situ heating has on the MoW film is to slightly order the material and inhibit the 

metastable β-W phase from forming.   

 

B. Films deposited with negative bias (30W, -165V) at room temperature and 250 °C 

Comparing Fig. 2-3 (a) and (b) to (c) and (d), respectively, illustrates the effect 

that substrate bias has on the MoW alloy resistivity.  A significant reduction in the film 
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resistivity over the entire composition range is realized for each condition.  Unlike the 

un-biased samples, however, the resistivity of the biased samples do not follow 

Nordheim’s rule.  Rather, these samples obey a rule of mixtures relationship  

WWMoMoMoW xx ρρρ +=  as a function of W fraction in MoW as shown in Fig. 2-3 (c) and 

(d).  In this case the following relationship applies: 

(4) )( WWMoMoRT xx ρρρρρ +++=  

where xMo and xW are atomic fraction of Mo and W, respectively, and ρMo and ρW are the 

resistivity of Mo and W, respectively.   

With bias sputtering of ~ 30W (-165 V), the metastable β-W is not present, even 

at room temperature as shown in Fig. 2-4 (b).  Fig. 2-6 shows a series of SEM images as 

a function of the tungsten fraction for samples deposited at room temperature with and 

without substrate bias.  From the figure, it can be seen that the biased microstructure is 

denser and has less void space between grains.  Table 2-3 illustrates the effect that 

substrate bias has on the lattice constant measured normal to the substrate.  The substrate 

bias increases the lattice parameter of the MoW alloy and qualitatively it is shown that 

the induced strain in the z-direction is a result in a change in the bi-axial stress in the 

plane of the substrate which is tensile without substrate bias and compressive with 

substrate bias.  While the magnitude of the stress was not specifically determined, thicker 

(1 µm) thick MoW films deposited with substrate bias peeled off subsequent to 

deposition, whereas un-biased 1 µm thick films did not.   

Another interesting observation from Fig. 2-3 and Fig. 2-5 is that the biased 

tungsten-rich alloy has a higher resistivity than biased molybdenum-rich alloy, (c) and (d). 
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FIG. 2-6. SEM images of MoW surface morphology as a function of the W atomic 

fraction in MoW thin films for samples deposited at room temperature with and without 

substrate bias. 
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Table 2-3. Result summary of the 2nd experimental series.  

 

 

 Applied bias 
Watts (V)  

Resistivity 
µΩ·cm 

Deposition 
rate nm/min 

XRD 
(110) 2θ 

*1 Lattice 
constant nm 

Mo 0 42.9 5.16 40.59 0.3141 

 15 (140 V) 13.0 3.36 40.33 0.3161 

 30 (165 V) 11.9 3.97 40.33 0.3162 

 45 (190 V) 12.6 3.61 40.33 0.3161 

W 0 18.7 5.50 40.37 0.3157 

 15 13.1 4.43 40.17 0.3172 

 30 13.1 4.16 40.15 0.3173 

 45 14.8 3.64 40.15 0.3173 

*2 MoW 0 55.5 11.59 40.46 0.3150 

 15 11.6 7.32 40.29 0.3163 

 30 12.7 7.57 40.29 0.3163 

 45 12.9 7.13 40.28 0.3164 
 

*1 Lattice constant of α-phase 

*2 0.5 atomic fraction of W 

Fixed parameters: 0.66 Pa, room temperature, 25 sccm Ar gas, 70 mm electrodes-gap  
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It is well known that the resistivity of bulk tungsten (α-W, 5.49 µΩ·cm) is slightly 

lower than that of molybdenum (Mo, 5.78 µΩ·cm) at room temperature.  The reason for 

the higher resistivity for the tungsten-rich end of the biased samples can be explained by 

the dislocation density of tungsten relative to molybdenum.  H. B. Shukvsky and L. D. 

Whitmire et al. showed that the dislocation resistivity of tungsten is higher than that of 

molybdenum.  Specifically, the dislocation resistivity of tungsten and molybdenum are 

reported to be 6.7×10-11 and 5.8×10-13 µΩ·cm3, respectively.46,47,48  During sputter 

deposition on a biased substrate, the deposited MoW film is subjected to ion 

bombardment by highly energized ions and these ions can produce ion-radiated defects 

such as dislocation loops and point defects.45  The electron scattering from dislocations in 

tungsten is nearly two orders of magnitude higher than molybdenum; therefore the 

tungsten-rich MoW alloy has a higher resistivity than the molybdenum-rich alloy.  While 

the dislocation density in the films increases the resistivity of the tungsten-rich end, the 

overall effect of substrate bias improves the resistivity of the entire alloy.  The substrate 

bias inhibits the β-W alloy from forming and produces a much denser film structure.  

While dislocations are likely generated by the impinging energetic species, the lattice 

structure has fewer vacancies and a more ordered overall structure.    

In order to survey thermal stability of MoW (0.35 atomic fraction W), we 

investigated the current density and breakdown voltage of SiO2 thin film with MoW 

electrodes after annealing up to 700 °C by using current-voltage measurement.  The 

structure of these samples is MoW / PECVD SiO2 / Si (100) and it was vacuum annealed 

at 100 °C to 700 °C (the upper limit of system) in 100 °C increments for 1 hour.  There 
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were no changes in the current density and breakdown voltage between the as-deposited 

and annealed samples up to 700 oC which confirms the excellent high-temperature 

stability of MoW electrodes. 

Fig. 2-7 shows dry etching profile of MoW (0.35 atomic fraction of W).  A Trion 

Technologies Oracle reactive ion etching (RIE) system was used and the sample was 

etched under the process conditions of 120 W RF power, 16 Pa pressure, SF6 / O2 (25 / 35 

sccm) gas flow rate.  The etch profile is shown just before end point etching.  This profile 

shows a slight tapered angle (~80 degrees) which can be significantly reduced (~ 30 

degrees) by using a two step etch process or over etch process.44 

 

2.1.4 Conclusion 

 

For un-biased rf magnetron sputtered MoW films the electrical resistivity as a 

function of tungsten fraction follows a typical Nordheim relationship.  The resistivity 

increases with the addition of solute atoms (tungsten) and it is maximum at ~ 0.5 atomic 

fraction of solute atoms.  Films sputtered at room temperature without substrate bias 

contained a second metastable phase (β-W) and results in a significantly higher resistivity 

due to the lattice mismatch between stable α-W and metastable β-W.  As sputtering 

temperature increases, the β-W does not form and the resistivity decreases over the entire 

composition range relative to the room temperature deposited sample.  Thin films 

deposited with substrate bias had a considerably lower resistivity over the entire 

composition range and its resistivity as a function of composition obeys a rule of mixture
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FIG. 2-7. Dry etching profile of MoW (0.35 atomic fraction of W) just before reaching 

the end point. (Reactive ion etching, 120 W RF power, 16 Pa pressure, SF6 / O2 = 25 / 35 

sccm). 
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rule.  Additionally, in the MoW film deposited with biased sputtering, the β-W phase is 

not present even at room temperature. From the SEM results, a denser and void-free 

structure is shown in the microstructure of biased thin films.  Additionally, unlike bulk 

molybdenum and tungsten biased tungsten films had higher resistivity than biased 

molybdenum.  This phenomenon is consistent with the fact that the dislocation resistivity 

of tungsten is two orders of magnitude higher than that of molybdenum. 

 

2.2 Gate dielectric (I); silicon oxide (SiO2) 

 

2.2.1 Background 

 

Sputtered silicon oxide has been widely studied and used as a dielectric insulator 

of electronic switching and sensing devices such as thin film transistors (TFTs) and 

metal-insulator-semiconductor (MIS) switching devices.  Sputter deposition is a 

particularly attractive process as a low temperature large area fabrication process on 

transparent, flexible, and plastic substrates.49,50  While room temperature sputtered silicon 

oxide from a silicon dioxide target is possible, the film typically has a low breakdown 

field and is sub-stoichiometric (oxygen-deficient) relative to low temperature 

conventional chemical vapor deposition (CVD) silicon oxide films.  Furthermore, 

sputtering from a silicon dioxide target has a low deposition rate since SiO2 has an 

extremely low sputtering yield (0.13 atoms/ion for 1 KeV Argon).  These disadvantages 

prohibit the adoption of this deposition technology for many manufacturing applications.  
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In order to enhance the electrical properties of sputtered silicon oxide, researchers have 

showed higher quality sputtered silicon oxide films with high breakdown field from a 

quartz target, using an argon and oxygen gas mixture, and low process pressure.51  Its 

deposition rate, however, was still prohibitively low for industrial purposes.  In the case 

of the reactively sputtered silicon oxide film from a silicon target with an argon and 

oxygen mixed gas, it typically has extremely low breakdown field because the film has 

high trap densities, non-stoichiometric composition, and other defects.  In this work, we 

evaluated and optimized the silicon dioxide sputtering process with high breakdown 

voltage, high deposition rate, and ideal stoichiometric composition.  The optimized 

silicon oxide from this work has a ~ 5.7 MV/cm breakdown voltage and ~ 6.2 nm/min 

deposition rate which is comparable to the deposition rate of refractory metal films 

(tungsten and molybdenum) at the same conditions in our sputtering system.52  Lastly we 

fabricated and characterized a metal-insulator-semiconductor switching device that was 

entirely processed by RF magnetron sputtering deposition; bottom and top electrodes, 

silicon oxide, intrinsic and extrinsic silicon, and passivating silicon oxide. 

 

2.2.2 Experimental 

 

An AJA ATC2000 RF magnetron sputtering system equipped with three 

magnetron sources and heated and/or DC biased substrate holder was utilized for the 

deposition of silicon oxide, silicon, and metal films (Fig. 2-2).  The base pressure before 

the sputter deposition was below 5.0×10-5 Pa and the mass flow rate of argon was fixed at 
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25 sccm for all conditions and the oxygen flow rate was varied.  The gas delivery system 

preferentially delivers argon to the sputtering sources and delivers the reactive gas 

(oxygen) to the substrate, so as to extend the so-called “metallic” mode of reactive 

sputtering.  A pure silicon target (99.9995 %) was used since its sputtering yield (S, 

atoms/ion) is much higher than that of quartz (SSi=0.6 versus SSiO2=0.13 for 1 KeV 

Argon).  The silicon sputtering target has a 50 mm diameter and a 6 mm thickness.  The 

film thickness was measured using a reflectometer (Filmeterics F20/40 Advanced Thin-

Film Measurement System) and surface profiler (KLA Tencor Alpha-Step 500).  The 

reported thickness is an average of at least five measurements over each deposited sample.  

In order to analyze the electrical properties, the silicon oxide film was deposited between 

the n-type silicon wafer and a tungsten film deposited with the sputtering system to form 

a metal-insulator-semiconductor structure; tungsten (200 nm), SiOx (50 nm), and 

semiconductor (n-type Si wafer).  The patterned top electrodes for current-voltage 

measurement were formed using a shadow mask with 50 µm-diameter circles with a 150 

µm-pitch.  The dielectric breakdown strength (breakdown voltage) was evaluated with an 

HP 4156A, Precision Semiconductor Parameter Analyzer and the reported values are an 

average of ten measurements over each sample.  Finally, to show electrical stability 

characteristics of the silicon oxide film, we fabricated metal-insulator-semiconductor 

(MIS) switching device and evaluated the current-voltage characteristics of this switching 

devices. 
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2.2.3 Results and discussion 

 

To evaluate the effects of the process factors in an efficient way, a design of 

experiment (DOE) was performed with a 2-level and 3-factor factorial design.  The 

process target is high deposition rate with higher than 5 MV/cm breakdown field.  Prior 

to the DOE, the hysteresis of the magnetron target voltage as a function of the oxygen 

fraction was analyzed in the sputtering gas in order to determine the ranges of “metallic” 

and “covered or oxide” sputtering modes that provide a proper range of oxygen fraction 

in the gas to achieve both modes of sputtering.53  The abrupt decrease in target voltage, as 

shown in Fig. 2-8, shows that the plasma impedance increases with oxygen addition as 

the silicon oxide starts to form on the silicon sputtering target (oxide sputtering mode).  

The hysteresis did not changed with the sputtering temperature and substrate bias but 

changed with sputtering pressure.  This indicates higher pressure causes the target to 

oxidize at lower oxygen flow rate because the effective oxygen partial pressure is higher 

even for lower flow rates because the throttle valve decreases the effective conductance 

of the pumping system.  Therefore, the pressure was fixed at a low total pressure of 3 

mTorr for all subsequent depositions.  In addition to pressure, RF power can also shift the 

hysteresis loop to lower oxygen flow rates so the power was also fixed at 200 W (10 

W/cm2) for each deposition.  Previous literature has shown that the oxygen flow rate 

significantly affects the silicon oxide properties, and has shown that higher oxygen partial 

pressures resulted in higher quality silicon oxide with high breakdown voltage and low 

current density.51  On the other hand, the deposition rate decreases with increasing
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FIG. 2-8. Hysteresis of magnetron target voltage for a silicon target sputtered in Ar/O2 

mixed gas as a function of oxygen fraction. 
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oxygen partial pressure.  In order to analyze both sputtering modes, the oxygen ratios 

(O2/O2+Ar) were set to 0.15 and 0.30; these represented metallic and oxide sputtering 

modes from the hysteresis curve, respectively.  Table 2-4 shows the experimental 

conditions of variable factors and quantitative results of the responses.  The factors of the 

DOE are temperature, oxygen ratio in the Ar-O2 gas mixture, and substrate bias and all 

are two-level factorial designs.  The measured responses were deposition rate, breakdown 

voltage, and oxygen ratio in the silicon oxide films as measured by x-ray photoelectron 

spectroscopy. 

Fig. 2-9 shows the effects of temperature, oxygen ratio, and substrate bias on 

deposition rate, dielectric strength (breakdown field), and oxygen content in sputtered 

silicon oxide films.  The results were analyzed and plotted by the IBM based statistical 

software, MINITAB®.  Firstly, deposition rate, as we mentioned previously, depends 

mainly on the oxygen fraction in the sputtering gas as shown in Fig. 2-9 (a).  The 

deposition rate drastically decreases as the oxygen partial pressure increases as there is a 

concomitant change from metal to oxide sputtering mode.  The other factors, temperature 

and substrate bias, only slightly affect the deposition rate as the rate slightly decreases 

with temperature and substrate bias.  It is suggested that densification of the silicon oxide 

film with increasing temperature and substrate bias causes the effectively lower 

deposition rate.  The electrical properties of sputtered silicon oxide films, specifically 

breakdown field, are shown in Fig. 2-9 (b).  As the temperature increases from room 

temperature to 300 oC, the breakdown field increases up to ~ 5.5 MV/cm.  Also, as we 

expected, higher oxygen in the sputtering gas mixture has a positive factor on the 
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Table 2-4. Experimental conditions of variable factors and quantitative results of the 

responses for the sputtered silicon dioxide insulator study. 

 

 Factors Responses 

No 
Temp., 
oC 

Oxygen, 

O2/O2+Ar 

Substrate 

bias, V 

Deposition 

rate, 

nm/min 

Breakdown 

field, 

MV/cm 

Oxygen 

ratio in 

SiOx, x 

1 25 0.15 0 6.36 1.61 1.66 

2 25 0.15 150 5.62 1.15 1.77 

3 25 0.30 0 1.65 3.14 1.75 

4 25 0.30 150 1.05 3.00 1.86 

5 300 0.15 0 6.05 5.13 1.93 

6 300 0.15 150 5.07 5.61 2.00 

7 300 0.30 0 1.54 5.43 2.00 

8 300 0.30 150 0.84 5.56 2.00 

* 9 25 0.15 0 - 1.93 - 

* 10 25 0.15 150 - 2.74 - 

 

* Post-annealed after deposition: 300 oC, 5 hours in vacuum 
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FIG. 2-9. Graphical expression of results from statistical design of experiments. 

(MINITAB® Statistical Software Release 13.4). 
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breakdown field.  Both higher temperature and oxygen fraction reduce the defect density 

in the films; dangling bonds, vacancies and non-stoichiometric defects, etc.  Counter to 

our expectation, the substrate bias does not affect the breakdown voltage.  We speculate 

that substrate bias densifies the thin film by via energetic ion bombardment; however, 

these energetic ions can also produce ion-irradiated defects such as dislocation loops, 

point defects, and can change the stoichiometry by preferentially sputtering either the 

cation or anion species.52  Any or all of these effects can deteriorate the electrical 

properties of the films.  These defects induced by substrate bias can be released by post-

annealing as shown in the results for sputtering condition (10) of Table 2-4, which has 

almost the same breakdown field as the unbiased sample after post-annealing.  Before the 

annealing, as shown in Table 2-4 (1) and (2), the breakdown voltage of biased films is 

slightly lower than without substrate bias.  After post-annealing at 300 oC for 5 hours in 

vacuum, the breakdown field was enhanced and the breakdown field was higher than that 

of the unbiased condition.  This result shows that the substrate bias in sputtering provides 

densification and ion-radiated defects in the films at the same time.  The ion-radiated 

defects can be easily released by post-annealing and its electrical properties are improved 

by the annealing resulting from relaxation of the bias-originated defects combined with 

amore densified film.   

The concentration ratio of oxygen to silicon in sputtered silicon oxide film was 

analyzed by X-ray Photoelectron Spectroscopy (XPS).  As shown in Fig. 2-9 (c), 

temperature, oxygen, and substrate bias are positive factors on the stoichiometric oxygen 

ratio of silicon oxide films.  That is, the silicon oxide film becomes more stoichiometric 
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with increasing temperature, oxygen fraction, and substrate bias.  From the results of Fig. 

2-9 (b) and (c), the silicon oxide film is denser and more stoichiometric with applying 

substrate bias but, contrarily, the breakdown voltage is almost unchanged with substrate 

bias.  It is surmised that the substrate bias provides ideal silicon oxide films with good 

stoichiometry and very dense.  However, it causes micro-structural defects, for example 

dislocations, due to the highly energized ion bombardment.45 

Table 2-5 (a) shows the optimized individual factors with higher deposition rate, 

higher breakdown voltage, and stoichiometric SiO2 films by statistical software, 

MINITAB®.  By doing an interpolation of the ideal sputtering parameters, as shown 

Table 2-5 (b), the optimized process conditions were obtained; 300 oC temperature, 0.15 

oxygen fraction, and 56 V substrate bias.  We also compared the predicted value done by 

the statistical program with the actual value by depositing the optimized film condition as 

shown in Table 2-5 (b).  The actual values are slightly higher than the predicted in the 

deposition rate and breakdown voltage but are within an acceptable value of 10 % of the 

predicted values.   

Fig. 2-10 shows a metal-insulator-semiconductor (MIS) array, which for the 

lithographic mask set has 20 column and 20 row electrodes.  Each pixel can be 

individually addressed by applying an electric field on a specific pair of column and row 

electrodes.  The MIS device is composed of a bottom electrode, insulator, intrinsic 

amorphous silicon, n+ doped amorphous silicon, and top electrodes.  This MIS is 

normally used in chemical sensing devices and switching elements for detecting or 

turning on/off with the concentration change of specific gas in a mixed gas.54,55  In this
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Table 2-5. Optimized process conditions of individual and mixed factors.  

 

 

(a) Optimization of individual sputtered silicon dioxide factors.  

Process target Temp. (oC) O2 fraction Bias (V) Results 

Max. deposition Rate 25 0.15 0 
6.36 

nm/min 

Max. breakdown voltage 300 0.15 150 
5.61 

MV/cm 

Optimum Stoichiometry 

x = 2.0 in SiOx 
300 0.30 150 2.0 

 

(b) Optimized process conditions by statistical analysis and comparison of predicted and 

actual values. 

 
Process 

target 

Temp. 

(oC) 

O2 

fraction 

Substrate 

bias (V) 
Predicted Actual 

Deposition 

rate 
Maximum 5.68 6.26 

Breakdown 

voltage 
Maximum 5.31 5.70 

x, SiOx 2.0 

300 0.15 56 

1.95 - 
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(a) 

 

 

 

 

 

 

(b) 

 

FIG. 2-10. Device design for fabricating MIS switching device with 20 × 20 row and 

column electrodes. (a) Plane view of overall layout, (b) cross-sectional view of an unit 

pixel from left to right of arrow in (a). 

Bottom electrode, MoW 200 nm 

Si / n+ Si, 250 nm / 50 nm 

Top electrode, W 150 nm 

SiO2, 200 nm 

Length, L 
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work, molybdenum-tungsten (MoW) was used as bottom electrode to obtain a sloped 

etch taper angle for good step coverage.52  The MoW was pattered by conventional 

lithography and reactive ion etching (RIE) using SF6 + CF4 + O2 plasma gas.  The 

deposition condition of the sputtered insulator, silicon oxide (SiOx), is 200W RF power, 3 

mTorr pressure, 300 oC temperature, 25.0 / 4.4 sccm Ar / O2 gas flow rate (O2 / Ar+O2 = 

0.15), and 57 V substrate bias.  The intrinsic silicon and n+ doped silicon were deposited 

via sputtering at 200W RF power, 3 mTorr pressure, 300 oC temperature, 25 sccm Ar gas 

flow rate, and no substrate bias.  Similar to the bottom electrodes, conventional 

lithography and reactive ion etching were utilized for pattering the top electrodes (W), n+ 

doped silicon, and intrinsic silicon.   

Fig. 2-11 demonstrates transfer characteristic of the MIS device by our sputtered 

silicon oxide, intrinsic silicon, and n+ doped silicon in order to show the prospective of 

using the sputtered insulator films.  The MIS device with sputtered Si and SiOx shows 

dynamic transfer curves, however, the on-state current is relatively low.  We speculate 

that the sputtered n+ silicon layer may not be doped as high as the target concentration, 

and consequently the contact resistance is higher than anticipated.  The voltage margin at 

the off-state (zero-current) is from 1.5 to 3.0 V and its voltage-current transfer 

characteristics are quite similar to conventional Schottky-barrier diodes.  From the results 

mentioned, we can conclude the optimized SiOx film has very reasonable characteristics, 

high deposition rate and high enough breakdown field for fabricating microelectronic 

devices at relatively low temperature. 
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FIG. 2-11. Current-voltage transfer characteristics of MIS switching devices fabricated 

by sputtered silicon oxide, intrinsic silicon, and n+ silicon. 
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2.3 Gate dielectric (II); silicon nitride (SiNx) 

 

2.3.1 Background 

 

TFTs have a unique capability of being fabricated on a wide variety of substrates, 

even on plastic substrates.  Currently, many researchers are focusing on developing 

flexible display devices for electronic books and wearable displays.56  In addition to 

electronic display devices, TFTs on various substrates are actively being studied for bio-

sensing and bio-interfacing microelectronic devices.15  The most serious issue in 

fabricating TFTs on plastic substrates is that all of the fabrication steps have to be 

processed at low temperature, for instance below 150 oC for polyethylene terephthalate 

(PET) substrates.  Plasma enhanced chemical vapor deposition (PECVD) is widely used 

for the deposition of semiconducting and dielectric thin films because of their adequate 

film properties and a capability for mass production.  However, as PECVD deposition 

temperature decreases below 200 oC, one serious problem is particle formation from 

unstable byproducts resulting in eventual device failure such as a line open, exposure 

failure, and dielectric breakdown.  In addition to particles, PECVD systems employ toxic 

gases such as SiH4 and PH3 and require equipment for burning and handling unreacted 

process gas.  This can impose significant increases in equipment and maintenance costs 

with increasing substrate size.  On the other hand, sputter deposition is an attractive 

alternative for deposition at low temperature relative to conventional PECVD and even 

room temperature.57  Sputter deposition generates fewer particles at low temperature due 
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to its physical deposition characteristic and does not require toxic gases.  If some 

particles are induced during the sputter deposition, the particles can be removed almost 

completely by adopting a horizontal sputtering scheme where the substrate and target are 

aligned parallel to each other and perpendicular relative to gravity.  In addition to particle 

and toxic gas issues, the uniformity of PECVD thin films, the most important process 

factor for large-sized substrate applications, is typically degraded at lower temperature 

and larger substrate size.  On the other hand, sputter deposition overcomes this serious 

issue by adopting a scanning (or passing) sputtering scheme with long rod-like targets 

and high density plasma (HDP) sources.  It was reported that the thickness uniformity of 

a sputter deposited film is below 5 % on 1200 x 1300 mm substrate size at room 

temperature.58  Consequently, for large-sized substrates, the scanning and horizontal 

sputtering mode of sputter deposition is utilized to improve the thin film uniformity and 

remove the particles on the substrate at the same time.  The major process issue for low 

temperature TFT fabrication with fully sputter deposited films is how to overcome the 

poor thin film quality.  In this work, we have characterized the electrical and optical 

properties of sputter deposited silicon nitride (SiNx) as a function of DC substrate bias 

during sputter deposition.   

 

2.3.2 Experimental 

 

The SiNx dielectric thin film was characterized by measuring the current density 

and breakdown voltage as a function of substrate bias during sputtering.  The samples for 
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the measurement were prepared by fabricating a metal-insulator-metal (MIM) structure; 

top-metal (Mo, 200 nm), insulator (SiNx, 40 nm), and bottom-metal (Mo, 200 nm).  The 

circular top-electrodes were pattered using a shadow mask consisting of 50 µm diameter 

apertures during the top electrode sputter deposition.  The deposited SiNx thickness was 

40 nm and the fixed sputter parameters are 100 W RF power, 200 oC temperature, Ar-H2 

(25 sccm), N2 (25 sccm), and 5 mTorr pressure.  The schematic diagram of the sample 

preparation for this measurement is shown in Fig. 2-12. 

 

2.3.3 Results and discussion 

 

Fig. 2-13 shows the current densities and breakdown voltages with the change in 

the applied substrate bias and Fig. 2-14 is a plot of the change in the breakdown with 

substrate bias.  As shown in the figures, the SiNx film without substrate bias, as expected, 

has a very low breakdown field of about 2 MV/cm.  The breakdown field of the SiNx 

films increases with increasing substrate bias and has a maximum at 20 W (125 V) 

substrate bias with 7.65 MV/cm breakdown field.  The increase in the breakdown field 

corresponds to a decrease in the deposition rate, which suggests that the SiNx film is 

denser.  This densification is likely due to reducing the number of vacancies and pores 

that is known to improve the dielectric strength of a material.  The breakdown field 

decreases slightly again at higher substrate bias up to ~ 40 W (155 V).  We speculate that 

at higher substrate bias the ion bombardment during SiNx growth is too severe and starts 

to induce defect generation by preferential re-sputtering or creating point and line defects.
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FIG. 2-12. Schematic diagram of sample preparation for current density and breakdown 

measurement. 
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FIG. 2-13. Current densities versus applied field of sputtered SiNx thin films as a function 

of DC substrate bias. 



 68

 

 

0 10 20 30 40

2

3

4

5

6

7

8

 

 

B
re

ak
do

w
n 

vo
lta

ge
 (M

V
/c

m
)

Substrate bias (W)

 

 

 

FIG. 2-14. The changes in breakdown field and deposition rate of sputtered SiNx thin 

films as a function of substrate bias. 
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In previous work, it was demonstrated that the conductivity of molybdenum-

tungsten (MoW) is enhanced by applying a moderate substrate bias, however, at 

excessively high substrate bias (45W) the conductivity decreased slightly.52  

 Fig. 2-15 shows the change in refractive indices of sputter-deposited SiNx films as 

a function of N2 / (Ar-H2) sputtering gas ratio.  All SiNx films were prepared with the 

following conditions; 100 W RF power, 0 W substrate bias, 200 oC, 5 mTorr.  The 

refractive index decreases from 2.82 to 1.92 (at 200 nm) with increasing nitrogen / 

(Ar+H2) content from 0.1 to 2.  T. Makino et al and E. Bustarret et al propose that the 

refractive index of SixNy film can be represented as the bond-density-weighted linear 

combination of reference refractive indices taken at y = 0 and at y / x = 4 /3.59,60  

Refractive index, 
][][
][][

43

SiSiNSi
nSiSinNSi

n SiaNSia

−+−

−+−
= −−   

where [Si-N] and [Si-Si] are absolute bond densities per unit volume.  The experimental 

refractive indices of a-Si3N4 and a-Si are 1.9 and 3.3 respectively.59  The refractive index 

of SiNx, as shown in Fig. 2-15, decreases to 1.9 with increasing nitrogen gas ratio (>1.0) 

in the visible wavelength range.  It is assumed that the [Si-N] bond density also increases 

with N2 addition in the sputter deposition resulting in the decrease in refractive indices of 

SiNx films.  Fig. 2-16 shows the deposition rate and refractive indices of sputter-

deposited SiNx films as a function of DC substrate bias.  The refractive indices of SiNx 

are virtually constant with the change in substrate bias even at zero substrate bias.  We 

can speculate that the DC substrate bias does not significantly affect the optical properties 

(Si-N bond densities) of SiNx films and the electrical properties are enhanced due to the 

densification and low defect densities by applying the substrate bias.   
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FIG. 2-15. The change in refractive index of sputter-deposited SiNx films as a function of 

the N2 / (Ar-H2) sputtering gas ratio.  
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FIG. 2-16. Deposition rate and refractive index of sputter-deposited SiNx films as a 

function of DC substrate bias during the sputter deposition.  
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2.3.4 Conclusion 

 

In summary, the breakdown field of sputter-deposited SiNx films is considerably 

enhanced by applying substrate bias during the sputtering deposition.  The maximum 

breakdown field is 7.65 MV/cm with 20 W (125 V) substrate bias and the breakdown 

voltage slightly decreases at higher substrate bias up to ~ 40 W (155 V) due to increasing 

the number of defects caused by severe ion bombardment during SiNx deposition.  

 

2.4 Semiconductor (I); hydrogenated intrinsic amorphous silicon (a-Si:H) 

 

2.4.1 Background 

 

Amorphous silicon (a-Si) sputter deposition has been studied for the 

semiconducting layer of thin-film transistors (TFTs) and solar cells.61  Sputter deposition 

is particularly attractive for low temperature large area fabrication processes on 

transparent, flexible, and plastic substrates.49,62  Sputtered a-Si films, however, typically 

have high trap densities which result in high off-state current when driving 

microelectronic devices.57  For this reason, reasonable quality devices have not been 

demonstrated for sputter-deposited a-Si films.  J. R. Abelson, et al studied the electrical 

and microstructural properties of sputter-deposited a-Si at ~350 oC.57  In spite of having 

low defect densities compared to other research results, the films were deposited at even 

higher temperatures than what flexible display applications will allow.  To achieve a low 
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temperature deposition process and high device performance, a polycrystalline silicon 

technology has been developed by annealing sputtered a-Si films.63  In this study, a-Si 

films were initially deposited on flexible substrates by RF magnetron sputtering at low 

temperatures (as low as room temperature), and then, the a-Si films were crystallized by 

excimer laser annealing.  The flexible substrate is not thermally degraded since the 

excimer laser anneals only the top surface of the a-Si films.  Even though the quality of 

the films is high, the excimer laser anneal process is complex and costly.  Consequently, 

it is desirable to obtain high quality a-Si thin films without any post-treatment, and low 

temperature sputter deposition is a logical candidate. 

It is well known that direct current (DC) substrate bias makes thin films denser 

and can reduce defects, which can have a pronounced effect on the electrical properties of 

thin films.  That is, thin films can be densified, and thus have a void-free microstructure 

even when deposited at room temperature by applying a substrate bias.  We recently 

studied the effects of substrate bias on rf-sputter-deposited MoW 52 electrodes and SiO2 64 

and SiNx 65 insulators.   

In this work, we evaluated the electrical properties of rf-sputter-deposited a-Si 

films with a substrate bias to show the effect of substrate bias on the electrical properties 

of a-Si films.  Finally, to verify the effect of substrate bias, thin film transistors were 

fabricated with sputter-deposited a-Si with and without a substrate bias and their 

electrical characteristics were compared. 
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2.4.2 Experimental 

 

An AJA ATC2000 RF magnetron sputtering system, equipped with four 

magnetron sources and a heated and/or DC biased substrate holder, was utilized for the a-

Si thin film deposition (Fig. 2-2).  The base pressure before the sputter deposition was 

below 5.0×10-5 Pa and the process pressure was 0.4 Pa with a mass flow rate of argon-

hydrogen (5% H2) fixed at 25 standard cubic centimeters per minute (sccm).  The Si 

sputtering target has a 50 mm diameter and a 6 mm thickness.  The film thickness was 

measured using a reflectometer (Filmeterics F20/40, Advanced Thin-Film Measurement 

System).  The electrical properties were measured using an HP 4156A, Precision 

Semiconductor Parameter Analyzer.  All reported property values are an average of ten 

measurements for each sample.   

 

2.4.3 Results and discussion 

 

Fig. 2-17 shows the current-voltage characteristics for the a-Si films grown in Ar-

H2 as a function of applied substrate bias.  To observe the effects of hydrogen in the 

sputtering gas, an additional zero-bias film was sputter-deposited in pure Ar.  The current 

of the a-Si film sputtered in an argon-hydrogen (5%) gas is lower than that of films 

sputtered in pure argon gas.  It is well known that hydrogen atoms play an important role 

in a-Si:H films by compensating for defects such as dangling bond, vacancies, and
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FIG. 2-17. Current-voltage characteristics of sputtered a-Si thin films in Ar (zero bias) 

and Ar-H2 as a function of DC substrate bias during sputter deposition. 
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dislocations.22  These defects create energy levels near the conduction and valence bands 

which produce conduction paths for electrons and holes, respectively.  This, in turn, 

effectively increases the current carried by the a-Si.  Our previous study of the effects of 

substrate bias on sputter-deposited MoW films showed that biased films are denser and 

have fewer defects, which reduces the resistivity of the metal films.52  In the case of a-Si, 

however, the thin films with fewer defects have a higher resistivity because, as mentioned 

previously, defects mediate conduction in semiconductors by providing energy states for 

carriers in an otherwise forbidden gap.  In metal films, these defects scatter or impede 

electron conduction, resulting in higher resistivity.   

Fig. 2-18 shows the current at -3 V and the deposition rate for various sputtering 

conditions; gas mixture and substrate bias.  The deposition rate decreases with increasing 

applied substrate bias.  The lower deposition rate indicates that the films are denser, 

which is a result of energetic ion bombardment during growth.  Fig. 2-18 also 

demonstrates the correlation between the deposition rate (i.e., film density) and the 

resistivity of the films.  The films with the lower deposition rate (denser films) correlate 

with the lower current at a -3 V bias.  To verify the short range order in a-Si film, the 

reflectance spectroscopy analysis was performed as shown in Fig. 2-19.  (a) is the 

reference reflectance from a single crystal Si wafer, (b) and (c) is annealed Si at 700 °C 

from biased and unbiased sputter deposition, respectively, (d) is PECVD a-Si deposited at 

400 °C, and (e) is sputtered a-Si without substrate bias at low temperature (room 

temperature).  As shown in the figure, the reflectance spectra from annealed a-Si 

deposited with substrate bias (b) shows the characteristic peaks which indicate a
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FIG. 2-18. Current (at –3V) and deposition rate changes as a function substrate bias for 

films sputter-deposited in Ar-H2. 
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FIG. 2-19. UV reflectance spectra of Si films deposited by unbiased and biased sputter 

deposition at high temperature (700 °C). 
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recrystallization of a-Si.  On the other hand, unbiased a-Si films (c, e) do not have any 

characteristic peaks indicating amorphous Si even for high temperature annealing (c).  

More detailed recrystallization properties of sputter deposited a-Si will be shown in 

section 3.4. 

 

2.4.4 Conclusions 

 

In conclusion, we surveyed and verified the effects of substrate bias on a-Si 

sputtered films.  Biased a-Si films exhibit lower leakage current and a lower deposition 

rate because they are denser films with fewer defects as a result of the energetic ion 

bombardment that occurs during bias sputtering. 

 

2.5 Semiconductor (II); extrinsic amorphous silicon (n+ a-Si) for S/D ohmic contact 

 

Fig. 2-20 shows the reflectance spectra of n+ a-Si films with deposition conditions 

measured by Filmetrics thin film analyzer (F-20).  The spectrum (h) is a single crystal 

(100) Si wafer for reference and has characteristic peaks at 273 nm and 360 nm which are 

closely related with direct optical transition at the critical points in crystalline Si.66  The 

characteristic peaks indicate a short range order in Si and the intensity increases with an 

increase in the degree of crystallinity and Si-Si arrangement.  Porous silicon for high 

efficiency photovoltaic cells, for instance, has a lower reflectance than that of crystalline 

or single Si.67  In the case of amorphous silicon, broad and flat curves are obtained



 80

 

225 250 275 300 325 350 375 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 
R

ef
le

ct
an

ce

Wavelength (nm)

(a)

(b), (c), (d)
down to up

(e)
(f)
(g)

(h)

 

 

FIG. 2-20. UV reflectance spectra of sputter and PECVD deposited n+ a-Si; 0W, 15W, 

30W, 45W substrate biased sputter films. (a, b, c, d, respectively). PECVD n+ a-Si, 1000, 

2000, 3000 mTorr (e, f, g); Si wafer (h). 
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instead of the characteristic peaks in the crystalline Si.  The reflectance spectra, both 

amorphous and crystalline Si, are strongly proportional to the absolute bond densities per 

unit volume of Si films.59  The reflectance spectra of thesputter deposited n+ a-Si films 

with biased and unbiased substrate and PECVD deposited n+ a-Si films.  All sample were 

prepared with 100 nm thicknesses of n+ a-Si films on thermally oxidized silicon wafers (1 

µm thick SiO2).  The sputter deposition parameters were 100 W RF power, 200 oC, 25 

sccm Ar-H2 , 5 mTorr pressure, and 0 W (a), 15 W (b), 30 W (c), 45 W (d) substrate bias.  

The PECVD n+ a-Si deposition condition was SiH4/H2/PH3 (40/7/70 sccm) gas flow rate, 

350 oC, 200 W RF power, and 1000 mTorr (e), 2000 mTorr (f), 3000 mTorr (g) pressure.  

As shown in Fig. 2-20, the substrate biased sputter n+ a-Si (b, c, d) shows higher 

reflectance than the unbiased film (a) and even higher than the PECVD films (e, f, g).  To 

verify the effect of substrate bias on the electrical properties of n+ a-Si films such as 

conductivity, the samples were prepared as shown in Fig. 2-21.  The current between Cr 

electrodes across the n+ a-Si films (100 nm thickness) were measured using a 

semiconductor parameter analyzer, HP 4156A.  Fig. 2-22 shows the change of resistance 

(dV/dI) and reflectance as a function of the DC substrate bias.  The resistance is 

drastically decreased with substrate bias and it indicates the number of defects such as 

vacancies that is one of the main sources of electron scattering is reduced by applying 

substrate bias resulting in higher conductivity n+ a-Si films. 

 The conductivity of n+ a-Si is enhanced by applying substrate bias and is 

attributed to densification and fewer induced defects in the films by the biased sputter 

deposition. 
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FIG. 2-21. Schematic diagram of sample preparation for resistance measurements of n+ a-

Si thin films. 
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FIG. 2-22. The changes in reflectance and resistance of sputtered n+ a-Si thin films as a 

function of substrate bias. 
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2.6 Low temperature crystallization of sputter deposited a-Si films 

 

2.6.1 Background 

 

Thin film transistors are widely used as a switching element for microelectronic 

applications and electronic display devices such as thin film transistor-liquid crystal 

displays (TFT-LCD).68  Many applications are divided between two silicon TFT 

technologies which depend on the ordering of the semiconducting Si active region; 

hydrogenated amorphous silicon (a-Si:H) TFTs and polycrystalline silicon (poly-Si) 

TFTs.  The a-Si:H TFT is currently utilized as a switching element for the most of TFT-

LCD panels since it provides very stable properties and is suitable for mass production on 

glass due to its low temperature processing even though the field effect mobility is 

extremely low < 1 cm2/V-sec.  To improve the field effect mobility above 10 cm2/V-sec 

up to 300 cm2/V-sec for the applications of low power consumption, high driving speed, 

and integrated circuits on various low temperature substrates, the a-Si film is usually 

crystallized by post-annealing techniques such as solid phase crystallization (SPC),69 

metal induced crystallization (MIC),70 metal induced lateral crystallization (MILC),71 

field aided lateral crystallization (FALC),72 and excimer laser annealing (ELA).73  In the 

case of MIC, a very small amount of metal such as nickel (Ni) or palladium (Pd) is used 

as a catalyst for the crystallization.  The a-Si is crystallized under thermal annealing 

conditions and form an intermediate phase, a metal silicide, at lower temperature than 

intrinsic a-Si crystallization temperature ~ 650 °C.  Even though MIC techniques have an 
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advantage in lower temperature processing as low as 300 °C, the electrical properties of 

TFT by MIC, for example threshold voltage and leakage current, are seriously degraded 

by metal residues in the channel region inevitably incorporated during the crystallization.  

In the case of MILC and FALC, the amount of metal residues in the channel region is 

extremely small because the lateral crystallization propagates from the metal-coated 

region (source / drain) to the uncoated channel region, however the crystallization 

temperature and crystallization time are relatively high, at least 500 °C and 5 hours for a 

15 µm channel length.  More recently, ELA has shown to be a very attractive 

crystallization technology since poly-Si crystallized by ELA has very large grain size 

with fewer defects relative to other techniques.  This technology, however, is still not 

suitable for mass production since the shot speed is very slow due to the ~ 90 % 

overlapping exposure scheme required to improve the uniformity of the crystallized 

silicon.  Furthermore, the processing cost of maintaining the large laser source is very 

high.  To compensate the deficiencies of the aforementioned crystallization methods, a 

technique called continuous grain silicon (CGS) which combines ELA and MIC was 

recently introduced by Sharp and Semiconductor Energy Laboratory (SEL).74  The 

process flow is very complicated and the net yield is very low due to the complex process 

scheme.   

To better develop a lower temperature polycrystalline silicon process requires a 

fundamental understanding of the a-Si to poly-Si phase transition.  Kimura et al. 

proposed that the crystallization characteristics of a-Si varies with the stress state of the 

as-deposited a-Si films.75  The crystallization speed slows when the as-deposited a-Si is 
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under compressive stress which was induced with a silicon nitride (Si3N4) capping layer.  

Conversely, the crystallization speed is enhanced when the a-Si film is under tensile 

stress with a silicon oxide (SiO2) capping layer.  Hashemi et al. demonstrated a 

crystallization method called stress-assisted nickel-induced crystallization.76  In this 

method, the crystallization properties of a-Si with a very thin nickel (Ni) film were varied 

with the effect of external stress imposed mechanically on an a-Si film.  The 

crystallization temperature can be lowered and the speed enhanced by applying an 

external tensile stress on the a-Si films during the thermal annealing.  On the other hand, 

the crystallization of a-Si with a compressive stress inhibits the a-Si crystallization 

mainly due to a buckling of the silicon network. 

In our previous work, it was demonstrated that the properties of sputter deposited 

thin films such as metal 52, silicon oxide 64, and silicon 77 can be significantly changed 

with the addition of substrate bias during sputtering deposition.  In this study, it will be 

demonstrated that that ion irradiation induced by substrate biased during sputter 

deposition of a-Si thin films enhances the kinetics of poly-Si nucleation even though the 

stress state of biased a-Si is highly compressive.  It will be demonstrated that a-Si 

deposited with substrate biased sputter deposition can be crystallized at lower 

temperature with higher crystallization speed than intrinsic a-Si crystallization using 

conventional furnace annealing.   If this approach can be extended to ELA, it could 

minimize thermal damage to the substrate and underlying thin films and could enable 

poly-Si TFT technology for use on commercial glass and flexible substrates such as soda-

lime glass and plastic substrates, respectively.  Additionally, the dehydrogenation process 
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after crystallization is not necessitated if only Ar gas is utilized during the a-Si sputter 

deposition. 

To verify the effect of substrate bias on crystallization characteristics of a-Si 

sputter-deposited with and without DC substrate bias, we analyzed x-ray diffraction 

(XRD), Raman spectroscopy, and UV reflectance over a wide annealing temperature 

range.  In addition to the quantitative analysis, the surface morphology of crystallized 

silicon measured with scanning electron microscopy (SEM) and atomic force microscopy 

(AFM) will be shown. 

 

2.6.2 Experiment 

 

An AJA ATC2000 RF magnetron sputtering system equipped with four 

magnetron sources and a heated and/or DC biased substrate holder was used for the a-Si 

film deposition.52  The Si sputtering target has a 50 mm diameter and a 6 mm thickness 

with 99.999 % purity.  The base pressure before the sputter deposition was below 4.0×10-

5 Pa (3.0×10-7 Torr) and the process pressure was 0.666 Pa (5 mTorr) with a mass flow 

rate of argon-hydrogen (5% H2) fixed at 25 standard cubic centimeters per minute (sccm).  

The RF power and deposition temperature for all were fixed at 200 W, 200 °C 

respectively and the substrate bias was 0 W (no substrate bias) and 30 W (215 V) during 

the deposition.  The a-Si films were deposited on quartz substrates and the film thickness 

for all the samples was 500 nm.  A quartz tube furnace was used for thermal annealing 
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and the conditions were atmosphere ambient and 600 °C to 900 °C every 100 °C for 20 

hours. 

 

2.6.3 Results and discussion 

 

To verify the crystallinity of poly-Si after annealing, X-ray diffractograms of the 

annealed a-Si from 600 to 900 °C every 100 oC for 20 hours are shown in Fig. 2-23 and 

2-24 collected by Philips X’Pert Diffractometer with an angle 2θ between 25° and 60° 

using CuKα1 X-ray with λ = 1.54056 Å in the θ-2θ and high resolution configuration (2θ = 

0.01 step).  The XRD result of crystallized Si without substrate bias, is shown in Fig. 2-

23, and has a characteristic peak at 2θ = 28.5° corresponding to the (111) above 600 °C 

and the intensity of the XRD peak increases slightly with the annealing temperature.  The 

intensity of the peak is very small and other characteristic peaks are not shown even high 

temperature annealing ~ 900 °C.  We speculate that the crystallites are nanocrystalline 

with very small grain size.  In contrast, the XRD spectra of crystallized Si deposited with 

substrate bias (30 W, 215 V), in Fig. 2-24, shows strong characteristic peaks at 2θ = 28.5°, 

47.5°, 56.3° that correspond to (111), (220), (311), respectively.  The intensity of 

crystallized Si deposited with substrate bias is much higher and sharper than those of 

crystallized Si deposited without substrate bias.  Fig. 2-25 shows UV reflectance spectra 

of annealed a-Si deposited with and without substrate bias.  The change in the profile and 

the shift in the peaks in the UV spectra indicate the modification of electronic density of 

states as a result of the long-range order.  In the crystalline silicon, there are two main



 89

 

0

40

80

A
s-

de
po

si
te

d

2-theta

60
0 

o C

0

40

80

70
0 

o C

0

40

80

80
0 

o C

0

40

80
90

0 
o C

(111)

25 30 35 40 45 50 55 60
0

40

80

 

 

 

FIG. 2-23. XRD spectra of annealed Si films deposited by unbiased sputter deposition. 
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FIG. 2-24. XRD spectra of annealed Si films deposited by 30 W (215 V) biased sputter 

deposition. 
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FIG. 2-25. UV reflectance spectra of annealed Si films deposited by unbiased and biased 

sputter deposition. 
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optical transition peaks; indirect transitions (E1) at ~ 360 nm and direct transition (E2) at 

~ 273 nm, respectively.78  As shown in the figure, the characteristic peaks at both 273 nm 

and 360 nm are clearly shown in crystallized Si deposited with substrate bias and though 

the intensity is lower it resembles the single Si reference spectrum.  The characteristic 

peaks, however, are not observed in the annealed Si deposited without substrate bias, 

which indicates the Si film is almost amorphous or nanocrystalline at best. 

Fig. 2-26 and 2-27 shows the Raman spectra obtained by Confocal micro-Raman 

Spectroscopy (Renishaw 1000 spectrometer).  The crystalline fraction of poly-Si, χ was 

calculated roughly from the expression below,79  

ap

p

II
I

γ
χ

+
=  

where Ip and Ia are integrated Raman scattering intensity of crystalline and amorphous 

silicon respectively, and γ is the ratio of the integrated Raman cross section for poly-Si to 

a-Si.  Tsu et al. suggested the value of γ is 0.88 when the grain size or crystalline fraction 

is small.79  The crystallinity of the Si films with biased and unbiased sputter deposition at 

600 °C for 20 hours, as shown in Fig. 2-26, is 0.61 and 0.48, respectively.  The net 

crystallinity of crystallized Si deposited by substrate bias, however, is likely higher than 

this calculation result because the grain size of the poly-Si is large and thus the γ value 

would be smaller than 0.88 that was used in the calculation (Fig. 2-28). 

 The Raman spectrum for the unbiased film annealed at 600 °C for 20 hours, has 

two characterized peaks; a sharp poly-Si peak at 520 cm-1 and a broad Raman shifted a-Si 

peak at 480 cm-1.  On the other hand, the crystallized Si from the 30 W biased a-Si film 

has only a sharp characteristic peak at 520 cm-1 representative of poly-Si.  In the case of
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FIG. 2-26. Raman spectra of annealed Si films deposited by unbiased and biased sputter 

deposition. (annealed at 600 °C for 20 hours). 
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FIG. 2-27. Raman spectra of annealed Si films deposited by unbiased and biased sputter 

deposition. (annealed at 900 °C for 20 hours). 
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FIG. 2-28. Surface morphology of annealed Si films taken by SEM and AFM.  
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900 °C (20 hours), the a-Si peak is not shown in both crystallized films but the biased 

poly-Si film has a sharper and narrower peak than that of the unbiased film indicating the 

biased film is more crystalline under same annealing condition (Fig. 2-27). 

To compare the microstructure of crystallized Si deposited with and without 

substrate bias, the surface morphology of the two films taken by SEM and AFM is shown 

in Fig. 2-28.  The a-Si films were annealed and crystallized by SPC at 900 °C for 20 

hours in atmosphere ambient of quartz tube furnace.  The poly-Si film from substrate 

biased sputtering, as shown in the figure, has more condensed and larger grain size than 

those of the unbiased poly-Si film.  Lager grain sized poly-Si is more desirable to 

fabricate poly-Si TFTs since larger grains have less electron scattering than smaller 

grains resulting and higher field effect mobility and lower threshold voltage. 

In the crystallization of amorphous silicon, the phase transition from a-Si to poly-

Si is processed via random nucleation of crystalline clusters surrounded by an amorphous 

phase.  The nucleation and crystal growth kinetics are strongly influenced by impurities 

and defects in the amorphous Si film and these defects play an important role in the 

nucleation site.  Spinella et al. suggested that ion irradiation induced by ion beam assisted 

deposition produces many kinds of internal defects such as vacancies and stacking faults 

within the amorphous network.80  The free energy for the transition from a-Si to poly-Si, 

the driving force of the transition, is increased significantly as a result of the continuous 

defect generation in the a-Si network during the ion irradiation.  Therefore, the 

thermodynamic barrier of nucleation is lowered and the nucleation kinetics is increased 

with ion bombardment of the deposited film.  In the sputter deposition with substrate bias, 
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in general, the intense bombardment leads to the formation of larger amount of defects 

such as dislocations, vacancies, and stacking faults in the film relative to unbiased sputter 

deposition.  These defects induced by ion irradiation are the main centers of nucleation 

and, as a result of the enhanced nucleation sites; the crystallization speed is increased and 

the crystallization temperature is decreased.   

As we mentioned previously, in the case of tensile stress within or upon a-Si films, 

the residual elastic strain causes an increase in strain energy during the phase transition 

because the elastic modulus of poly-Si is larger than that of a-Si and then the difference 

of free energy between a-Si and poly-Si (∆Ga-Si→poly-Si) is decreased by the 

transformation.81  On the other hand, if there is residual or applied compressive stress in 

a-Si, the crystallization speed and temperature were compromised due to the buckling of 

the Si network.75,76  Choi et al. showed the relative film density increases and the stress of 

film is highly compressed with increasing substrate bias during sputter deposition.82  In 

this work, we showed the crystallization speed and temperature can be enhanced and 

lowered, respectively, by annealing substrates biased during a-Si deposition even if it is 

highly stressed compressively.  This suggests that the enhanced number of nucleation 

sites induced by ion bombardment is a more dominant factor than the status of stress in 

low temperature crystallization of a-Si. 
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Chapter 3 Device processing issues 

 

3.1 Design of photolithographic masks 

 

Photolithographic masks were designed by Tanner L-Edit v8.3 based on an IBM 

PC.  The processing issues on mask design will be described in this section with a 

process sequence of TFT-VACNF. 

 

3.1.1 Mask design of alignment marks 

 

GCA AutoStep 200 steppers is a system in which all masks and substrates are 

aligned to the optical column, but masks and substrates are not aligned directly to each 

other.  Consequently, both masks and wafers require alignment marks.  As shown in Fig. 

3-1 (a), they are placed on the mask in specific locations to allow alignment of the mask 

to the optical column.  The first level mask in a multilayer process must include special 

alignment marks on a base substrate wafer (normally thermally oxidized Si wafer) which 

match marks built into the stepper alignment microscope.  Subsequent levels of 

lithography masks do not need alignment marks, unlike the case for contact aligner.  

There are mainly three kinds of alignment marks in using the stepper system; mask 

alignment marks, INSITU marks, and global alignment marks. 
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FIG. 3-1.  Mask design for TFT-VACNF designed by Tanner L-Edit software. 
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3.1.2 Mask design of gate electrode 

 

When designing the gate electrode, one needs to consider the critical dimension 

(CD) since the CD loss is usually > 1 µm if the electrodes are patterned by a wet 

chemical etch.  The metal wet etch needs a higher over-etch ratio because of metal 

residues due to etch-byproducts called snow balls (or etch bubbles).  Therefore, the gate 

mask must be designed with > 1 µm CD rule to compensate for the over-etch ratio.  In the 

case of MoW gate, the gate is usually etched by dry etch based on SF6/O2 plasma with 

below ~ 0.5 µm of CD loss for 20 ~ 30 % over etch.  The CD loss of Mo gate electrode 

patterned by wet etch, on the other hand, is very high usually 1.0 ~ 2.5 µm according to 

over etch.  More CD loss causes narrow gate length resulting in high resistant electrode.  

Cr gate is usually has less CD loss (~ 1 µm) than Mo gate due to less hydrogen formation 

during etch process.  One needs to make CD margin (1.0 ~ 1.5 µm) when designing the 

gate mask if one use either Cr or Mo gate electrodes.  The designed length of gate line, as 

shown in Fig. 3-1, is 5 µm and the actual length of gate line will be ~ 4 µm (final 

inspection CD, FI CD) with 20 % over etch if Cr gate is used. 

 

3.1.3 Mask design of active layer 

 

In the case of using chrome (Cr) as gate and S/D electrodes, S/D etch is processed 

with acid based chemicals which can also attack the gate electrode if the active layer (n+ 

a-Si / a-Si) is over etched resulting in a very thin gate dielectric (SiNx) on the gate 
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electrode.  The gate attack causes a gate-S/D short at the crossover area between gate and 

S/D lines.  To prevent this gate-S/D short an etch-blocking buffer active layer on the area 

between gate and S/D line is essential when the active mask is designed.  The blocking 

area must be designed with a polyhedral angle since it is a crossover area with S/D and 

gate electrode on which the step height of all layers is very high (~ 900 nm) from gate to 

S/D electrodes resulting in S/D open if the etch-blocking active is not designed well.  

 

3.1.4 Mask design of VACNF 

 

In the VACNF mask design, enough distance between the VACNF and the edge 

of S/D is required because the height of VACNF is several microns which can result in 

pattern distortion during photolithography.  The distance from the VACNF to the S/D 

edge, as shown in Fig. 3-1 (d) and 3-2, must be at least 5 µm as observed during the 

inspection after the catalyst dot lithography.  The designed diameter of VACNF dot was 

0.5 µm and resulting diameter of grown VACNF was ~ 1.0 µm (Fig. 3-2).  The standard 

VACNF mask is negative type which the VACNF area is a clear opening in the chrome 

background of the mask since VACNF patterning is processed by lift-off process with the 

negative mask. 
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FIG. 3-2. Distance margin between VACNF and the edge of S/D electrode for precise 

S/D patterning. (No distortion in S/D patterning). 
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3.1.5 Mask design of S/D electrode 

 

The actual length (FI CD) of S/D line should be higher than 3 µm if 300 nm Cr 

S/D is used since Cr has much higher resistance than other low resistant metals such as 

Al, Mo, and W.  When designing S/D electrode, one have to consider and determine the 

channel length and width of TFT in active area.  As the channel width increases, the on-

state current also increases but pixel density is inversely decreased.  The channel length is 

also important factor in designing TFT.  The field effect mobility and on-state current is 

enhanced with decreasing the channel length but there is high possibility of S/D short 

with much narrowed channel length.  Desirable channel length and width are 3 ~ 5 µm 

length and 25 ~ 35 µm width if considering TFT properties and process margin at the 

same time. 

 

3.1.6 Mask design of passivation (via contact hole) and SU-8 well 

 

When designing via hole mask for patterning passivation, CD bias also must be 

considered.  The over etch ratio is over 50 % even 100 % if the passivation is etched by 

BOE wet etch and the CD bias will be above 1.0 µm each side of via hole (total at least 2 

µm for both sides).  The mask was designed as 40 µm of CD margin with S/D (gate) 

electrode and via hole as shown in Fig. 3-1 (f).  That is, the length of gate and S/D pads is 

160 µm and the length of via hole is 120 µm.  The SU-8 well for storing electrolyte can 

be defined with the via hole mask on same mask design. 
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3.2 TFT device processing 

  

Fig. 3-3 shows overall device processing flow for (a) TFT device processing and 

(b) TFT-VACNF processing.  In this section, the TFT device processing will be 

described with each detail process flow. 

 

3.2.1 Alignment mark processing 

 

Thermally oxidized water is utilized as a starting substrate.  Before coating 

photoresist, HMDS priming process is essential to promote adhesion between photoresist 

and thermal oxide.  The brief mechanism for the adhesion promotion by HMDS is shown 

in Fig. 3-4.  The HMDS priming is processed in vacuum priming furnace at 90 °C for 25 

~ 30 minutes including pumping down, priming, purging, and venting.  Slow complete 

cooling process is needed after the priming to prevent rapid hardening of subsequent 

photoresist.  Spinning speed and time for photoresist coating is 3000 rpm and 60 seconds. 

The resultant thickness of photoresist will be ~ 1.6 µm for 955CM 2.1 and ~ 0.6 µm for 

955CM-0.7.  Developing photoresist is processed by CD-26 for 80 sec and then descum 

process based on oxygen plasma is needed to remove photoresist residues to be etched 

area for 30 seconds.  The etched thickness of photoresist is below 50 nm.  The thermal 

oxide film is etched by dry etch using RIE with a condition of 200 W RF power, 

CHF3/O2 (75/7), 200 mTorr pressure for 450 seconds.  Resultant etch depth of SiO2 after 

photoresist striping is ~ 600 nm and remained thickness of photoresist is 0.8 ~ 1.0 µm
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FIG. 3-3. Overall process flow for TFT and TFT-VACNF. (a) TFT device processing, (b) 

TFT-VACNF processing  
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FIG. 3-4. Adhesion promotion by HMDS priming. 
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before photoresist striping.  The photoresist hardened by highly generated ion 

bombardment is not removed easily by conventional wet strip process.  A dry strip based 

on oxygen plasma generated by ICP and RF is required to strip residual photoresist 

completely after wet strip.  The condition for the dry strip is 300 W ICP power, 50 W RF 

power, O2 50 sccm, 350 mTorr pressure, and 120 seconds process time. 

 

3.2.2 Gate electrode processing 

 

In fabricating TFT devices, the etching profile of the gate electrode is a very 

important process issue.  This is especially true for an inverted-staggered TFT structure 

where the gate electrode is the bottom layer.  These structures require a tapered etch 

profile for several reasons.  Firstly, it provides better step-coverage in subsequent 

deposition patterning processes.  Secondly, a sharp edged (or undercut) gate can be a 

main source of dielectric breakdown due to the concentration of electric field at this 

sharp-edged point.  Thirdly, the tapered gate electrodes influence the electrical properties 

of TFT and can lower threshold voltages and facilitate steep swing characteristics.44  As 

shown in Fig. 3-5 (a), poorly patterned gate electrode causes the device failure due to 

chemical attack into a crack when it is chemically etched during the S/D wet etch process.  

Fig. 3-5 (b) shows dry etching profile of MoW (0.35 atomic fraction of W) by reactive 

ion etching (RIE) system under the process conditions of 120 W RF power, 16 Pa 

pressure, SF6/O2 (25/35 sccm) gas flow rate.52  The etch profile is shown just prior to 

completing the metal etch.  This profile shows a slight tapered angle (~80 degrees) which  
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FIG. 3-5. Various SEM images of tapered gate electrodes. (a) chemical attack from crack 

caused by poor taper angle resulting in device failure, (b) well-tuned MoW gate electrode 

etched by plasma etch (etch end point), (c) excellent step-coverage in subsequent 

deposition layers (gate SiNx, a-Si, and S/D) due to well-defined MoW gate. 
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can be significantly reduced (~ 30 degrees) by using a two step etch process or over etch 

process.  The tapered angle of gate electrode can be controlled by changing the gas ratio 

of SF6 and O2.  As the ratio of oxygen content increases, the etch tapered angle is usually 

lowered with increasing photoresist ashing rate.44  The process pressure is another 

dominant factor to control the tapered angle.  The tapered angle of MoW is lowered with 

increasing process pressure due to the increased reactivity between photoresist and etch 

radicals and short mean free path of ions and radicals resulting in lower ion bombardment 

(less anisotropic and more chemically etch results).  The use of the MoW alloy as a gate 

electrode is very desirable to get very low etch tapered angle with reasonably low 

resistivity.   

As shown in Fig. 3-2, the sputtering has four guns and RF sources which can 

sputter multi-compositional film such as MoW.  To verify the deposition properties of 

Mo, W, and MoW films, the Mo and W targets were put on gun #1 and #3 respectively 

and a thermally oxidized wafer was placed on substrate holder without rotation for 

combinatorial MoW thin film synthesis which has a composition difference across the 

wafer.  That is, the composition of Mo and W is changed with the position across the 

wafer.  The substrate is rotated if one needs uniform composition on the whole wafer.  

Fig. 3-6 shows the deposition rate of MoW film with several positions across the water 

(actually composition), deposition temperature, and substrate bias.  Lower temperature 

(RT) and unbiased condition has higher deposition rate than high temperature (250 °C) 

and 30 W biased deposition for the all positions.  The atomic fraction of W, as shown in 

Fig. 3-7, is almost linearly increased with positions from one edge (Mo-rich) to another
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FIG. 3-6. Deposition of MoW as a function of position in a wafer for combinatorial 

analysis. 
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FIG. 3-7. Atomic fraction change of W with the distance from center for combinatorial 

analysis. 
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edge (W-rich).  The fixed process parameters for these two figures (3-6, 3-7) were Mo 

(200 W), W (160 W) RF power, 5 mTorr pressure, 25 sccm Ar flow rate, and 70 mm 

electrode gap.  As mentioned previously in Chapter 3, Fig. 3-8 and 3-9 show the 

electrical resistivity and deposition rate changes with applied substrate bias.  The 

resistivity and deposition rate decrease drastically with increasing substrate bias and they 

are saturated above ~ 15 W substrate bias.  At 0 W substrate bias condition, the resistivity 

of MoW is higher than those of Mo and W since the film is deposited at room 

temperature and has high content of metastable β-W phase which causes high resistivity 

in MoW film.  The resistivity of Mo, W, and MoW becomes almost same when substrate 

bias is applied.  The fixed parameters were room temperature, Mo (200 W), W (200 W), 

MoW (100 W, 100W respectively) RF power, 8 mTorr pressure, 25 sccm Ar flow rate, 

and 70 mm electrode gap.  Fig. 3-10 shows the electrical resistivity change with process 

pressure, substrate bias as a function of atomic fraction of W.  The resistivity of MoW 

deposited at high pressure is higher than that of MoW deposited at low pressure which 

indicates highly energized ions by low pressure makes the films with less-defect such as 

β-W phase in the MoW film.  As described previously, the resistivity of unbiased MoW 

follows Nordeheim’s rule with a change of composition but that of biased MoW shows 

linear relationship as a function of composition.  The etch rate of MoW as a function of 

composition, as shown in Fig. 3-11, changes with deposition temperature.  The conditions 

for dry etch by RIE were 120 W RF power, 120 mTorr pressure, SF6/O2 (25/35) gas ratio.  

The etch rate of high temperature deposited MoW is lower than that of RT deposited 

MoW which contains the metastable 2nd phase such as β-W and more defects in the film.
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FIG. 3-8. Electrical resistivity change of Mo, W, and MoW as a function of substrate bias 

in sputter deposition. 
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FIG. 3-9. Deposition rate change of Mo, W, and MoW as a function of substrate bias in 

sputter deposition. 



 117

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

 

 

R
es

is
tiv

ity
  (

µΩ
 ⋅ 

cm
)

Atomic fraction of W

 0W biased, 8mT
 0W biased, 5mT
 30W biased, 8mT
 30W biased, 5mT

- Fixed parameters
  Mo(200W), W(200W)
  RT, 25sccm Ar, 70mm gap

 

 

 

FIG. 3-10.  Electrical resistivity of MoW as a function of atomic fraction of W in MoW 

films with a change of process pressure. 
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FIG. 3-11. Dry etch rate of MoW film as a function of composition in MoW film. 
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The etch rate of MoW film deposited at room temperature is almost constant somewhat 

decreases with increasing W fraction.  On the other hand, the etch rate of high 

temperature deposited MoW film increase with increasing W fraction in MoW film.  

Usually the etch rate of W is higher that that of Mo in fluorine based dry etch.  The etch 

rate result of MoW deposited at 250 °C is very reasonable as a function of W content in 

MoW film.  But RT deposited MoW is not common with increasing W fraction.  It seems 

to attribute to the complexity such as microstructure and the presence of metastable phase 

and more speculation is needed to understand this phenomena. 

 Even though MoW gate electrode provides excellent etch tapered angle and 

reasonably low electrical resistivity, it has very serious drawback if the dry etch for via 

hole (passivation etch) is not controlled precisely because fluorine-based gas plasma used 

for the passivation (SiO2, SiNx) etch can attack the MoW gate simultaneously.  The etch 

selectivity of SiNx to MoW in an SF6 based plasma etch is at most 2:1 and thicker MoW 

or a low over etch ratio is needed to compensate the undesirable MoW attack in 

passivation etch (via hole etch). 

To realize a better (nearly infinite) etch selectivity, chrome (Cr) gates can be 

utilized instead of MoW since Cr is not etched by fluorine-based plasma chemistry.  The 

condition for Cr sputter deposition on gun #1 is 200 W RF power, 200 °C temperature, 3 

mTorr pressure, and no substrate bias.  Resulting deposition rate is 5.0 nm/min and the 

sheet resistance (RS) ranges 0.92 to 1.02 Ω/□ for 250 nm thickness.  If the deposition 

temperature is room temperature, the RS value is increased to 1.2 ~ 1.35 Ω/□.  In 

photolithography process, photoresist (955CM-2.1) is coated with a speed of 3000 rpm 
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for 60 seconds and then soft baked at 90 °C for 90 seconds.  The exposure time by 

stepper should be range in 0.32 ~ 0.40 to prevent under/over exposure.  Especially over 

exposure results in high loss of DI CD (developing inspection CD) resulting very 

narrowed gate length.  Post exposure baking (PEB) was done by hot plate set at 120 °C 

for 90 seconds and developing time in CD-26 is 60 ~ 70 seconds.  The method of Cr etch 

is usually wet etch or dry etch process based on chlorine plasma chemistry.  In the case of 

CR-7 Cr etchant (Cyantek) containing 9%(NH4)2Ce(NO3)6+6%(HClO4)+H2O, the etch 

rate of Cr is ~ 150 nm/min at a temperature of 45 °C with agitation.  By switching to a 

chromium gate electrode a suitable over etch was possible to for the SF6/O3 plasma via 

hole etch.  Furthermore, because the wet chemical chromium etch is relatively isotropic, a 

good taper angle was also realized.  The etch mechanism for Cr by this wet etchant is, 
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To remove the photoresist after the Cr gate wet etch, conventional wet strip was 

utilized based on carbitol (dietylene glycol monoethye ether), amine, NMP (normal 

methyl 2-pyrrolidone), and surfactant.  Cr is not attacked with this kind of photoresist 

stripper, however, in the case of using an aluminum (Al) or multi-layered gate such as 

Al/Mo or Mo/Al/Mo, there is serious Al attacked by following process steps; 1) 

ionization of amine and OH- formed, 2) Al attack with forming aluminum oxide reacting 

with H2O.  Plasma dry strip is recommended to remove photoresist after Al etching to 

protect Al gate line. 
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3.2.3 Active layer processing 

 

Active layer deposition; Prior to investigating sputter deposited active layers, 

several studies were performed to investigate PECVD Si, SiO2, and Si3N4 active layers.  

While ultimately the sputter deposited films were used in the transistor fabrication, below 

are some of the processing issues encountered when studying the PECVD films.   

Amorphous silicon (a-Si) active layers are typically deposited by PECVD using a 

SiH4 gas plasma.  The sequence of the deposition process is; 

1) Activation of free electron; the free electron is accelerated by electric field in 

the plasma and the accelerated electrons collide with the source gas for the 

deposition. 

2) Ionization of feed gas (X  X+ + e-); electrons and ions are accelerated 

toward RF source and grounded substrate, respectively, by electric field in 

the plasma state. 

3) Formation of precursor; the accelerated ions collide with source gas (SiH4) 

and form four kinds of precursor for the deposition. 
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where ∆H is enthalpy needed to form precursor.  The precursor reacts with 

the source gas and then 2nd precursors are formed as below, 

)6.0(
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4362
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6233
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4) Formation of film reacting with surface; SiH3 reacts with surface after drift 

diffusion to the surface.  The SiH3 is bonded with Si dangling bonds resulting 

in high internal energy and then dehydrogenated (a-Si film formed). 

As shown in Fig. 3-12 and 3-13, the deposition rate of PECVD a-Si increases with 

increasing RF power and process pressure because activation energy and chemical 

activity can be lowered and enhanced, respectively, by increased RF power and pressure.  

The UV reflectance spectra of a-Si as a function of process pressure are shown in Fig. 3-

14.  Higher reflectance with characteristic peaks indicates a shorter-range order in the a-

Si film and the reflectance with peak is shown clearly at higher process pressure due to 

the condensed a-Si at higher pressure.  Fig. 3-15 shows the deposition thickness of 

PECVD a-Si as a function of deposition time.  The deposition condition was 100 W RF 

power, SiH4 (250 sccm) gas flow, 2000 mTorr pressure, and 395 °C temperature. 

SiNx as a gate dielectric insulator is usually deposited by PECVD using SiH4 and 

NH3 or N2 gas plasma.  The sequence of deposition process is; 

)(3)()()(
)(12)()(4)(3

234

24334

gHsSiNHgNHgSiH
gHsNSigNHgSiH

+→+
+→+

 

In forming precursor, NH3 gas is more desirable than N2 gas since ∆H to form 

precursors from N2 gas is much higher than NH3 (NH3 ∆H = 3.9~4.5 eV, N2 ∆H = 9.83 
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FIG. 3-12. Deposition rate of PECVD a-Si as function of RF power. (10-points-averaged) 
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FIG. 3-13. Deposition rate of PECVD a-Si as function of process pressure. (10-points-

averaged). 
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FIG. 3-14. Reflectance spectra of a-Si deposited by PECVD as a function of process 

pressure. 1500, 2000, and 3000 mT.  
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FIG. 3-15. Deposited thickness of PECVD a-Si:H film as a function of deposition time. 
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eV).  The deposition condition for PECVD SiNx film were 30 W RF power, 1200 mTorr 

pressure, SiH4/N2/NH3 (160/100/30) gas flow, and 450 °C temperature.  To characterize 

the electrical properties of PECVD SiNx, current density is measured by patterning metal-

insulator-metal using dot shadow mask.  As shown in Fig. 3-16, the current density of 

PECVD SiNx is much higher than that of PECVD SiO2 film with same thickness (200 

nm).  The high current density attributes to many carriers resulting in low breakdown 

strength and device failure.  As shown in previous chapter 3, PECVD SiO2 and SiNx have 

very low breakdown strength relative to reported values since the used source gas (SiH4) 

is diluted with 95 % Ar.  Usually 100 % of SiH4 gas is utilized for the deposition of a-Si, 

SiO2, and SiNx with high quality in microelectronics manufacturing companies.  Fig. 3-

17 demonstrates the deposited thickness of PECVD SiO2 as a function of deposition time 

and the condition was 75 W RF power, SiH4/N2O (80/120) gas, 1000 mTorr pressure, and 

395 °C temperature.   

 As shown in previous Chapter 3, PECVD deposited SiO2 and SiNx has very low 

breakdown strength relative to reported ones and it might attribute to using highly diluted 

source gas and chamber contamination due to as-deposited residues onto chamber wall.  

In the case of PECVD a-Si film using the system, it is very hard to maintain properties of 

a-Si film such as thickness and even the properties are very poor relative to even sputter 

deposited a-Si.  Because of several reasons in PECVD films, we optimized sputter 

deposited a-Si, SiO2, and SiNx films to achieve high film quality and low temperature 

process in fabricating TFT-VACNF. 
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 FIG. 3-16. Current changes of PECVD deposited SiNx and SiO2 films as a function of 

applied strength. 
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FIG. 3-17. Deposited thickness of PECVD SiO2 film as a function of deposition time. 
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Fig. 3-18 shows the deposition rate of SiNx film as a function of substrate bias in 

the sputter deposition.  The deposition rate decreased with an increase of substrate bias 

and it is saturated above ~ 20 W bias.  The deposition was done by the condition; 200 W 

RF power, 5 mTorr pressure, Ar-H2/N2 (25/35) gas flow, and 200 °C temperature.  The 

thickness of SiNx film is 250 or 300 nm and applied substrate bias was 10 W for TFT 

device fabrication.  To maintain the vacuum state in sputter chamber for high quality 

films, a-Si film is deposited consecutively just after SiNx deposition.  Before a-Si 

deposition, 20 ~ 30 nm SiNx with low RF power deposition was done to improve the 

interface state between SiNx and a-Si films.  The interlayer state between SiNx and a-Si is 

most critical issue to improve TFT performance.  The RF power was 50 W and other 

conditions were same as a-Si deposition for the rest of thickness.  Fig. 3-19 shows the 

deposition rate of a-Si with substrate bias at two different temperatures (300 and 600 °C).  

From the figure, the some main factor effecting on the deposition rate is changed from ~ 

15 W substrate bias.  That is, the ion scattering due to increased temperature results in 

lower deposition rate at relative low substrate bias.  On the other hand, highly adsorption 

process due to lowered activation energy results in higher deposition rate at high 

substrate bias.  As same as a-Si deposition, n+ a-Si film is deposited with maintaining 

vacuum state.  The deposition rate change as a function of substrate bias is shown in Fig. 

3-20.  In the case of SiNx and a-Si sputter deposition, as shown in Fig. 3-18 and 3-19, the 

deposition is drastically drop until ~ 20 W substrate bias and then saturated.  On the other 

hand, unlike the case of SiNx and a-Si, the deposition rate of n+ a-Si is almost decreased 

linearly with an increase of substrate bias.  Fig. 3-21 shows induced current of n+ a-Si and



 131

 

 

0 10 20 30 40

1

2

3

4

5

 

 

D
ep

os
iti

on
 ra

te
 (n

m
/m

in
)

Applied substrate bias (W)

- Fixed parameters
  RF power: 200W
  Pressure: 5mTorr
  Gas: Ar-H2 / N2 (25 / 50)

  Temperature: 200oC

 

 

 

FIG. 3-18. Deposition rate of sputter deposited SiNx as a function of DC substrate bias. 
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FIG. 3-19. Deposition rate of a-Si thin film as a function of DC substrate bias at two 

different temperatures. 
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FIG. 3-20. Deposition rate of n+ a-Si as a function of substrate bias. 
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FIG.3-21. Induced current of n+ a-Si and intrinsic a-Si thin films as a function of applied 

voltage. 
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intrinsic a-Si films deposited by sputter deposition with same deposition conditions.  

Surely n+ a-Si has higher conductivity than that of intrinsic a-Si.  To optimize the 

deposition condition of n+ a-Si with low resistance, a design of experiment (DOE) was 

performed with 3 factors and 3 levels using by MINITAB statistical software.  The DOE 

condition and the results are shown in Fig. 3-22.  As shown in the figure, the electrical 

resistance of n+ a-Si decreases with decreasing deposition temperature and pressure 

which might attribute to evaporation of p ions in sputtering.  The substrate bias is a 

dominant factor affecting on the resistance of n+ a-Si film and the resistance decreased 

drastically with increase of substrate bias which is agreed well with an experiment result 

in Chapter 3 (materials integration of n+ a-Si). 

Active layer photolithography; After active layer deposition, a conventional 

lithography is processed using 955CM-2.1 photoresist, stepper, and CD-26 developer.  

Before coating photoresist, a cleaning process is required to remove residual particles 

using deionized (DI) water rinsing.  The substrate after wet cleaning is placed on hot 

plate set at 120 °C to remove completely residual DI water since water molecules on a-Si 

film causes very serious problem with photoresist adhesion with thin films.  To improve 

adhesion between photoresist and a-Si film, a hexamethyldisilazane (HMDS) priming 

process is normally used.  The HMDS typically forms a monolayer on the silicon film 

which bonds both to the silicon and the photoresist layer which improves photoresist 

adhesion as shown in Fig. 3-4.  After soft baking at 90 °C for 90 seconds, UV exposure is 

done by stepper with 0.35 ~ 0.38 exposure time.  The photoresist is baked at 120 °C for  



 136

Temperature Substrate bias Pressure

 25 20
0

40
0  0 15 30  5 15 25

0

50K

100K

150K

200K

R
es

is
ta

nc
e 

(d
V/

dI
), 

oh
m

 

No. Temp. (°C) DC bias (W) Pressure (mT) R (dV/dI) 
1 25 0 5 6020 
2 25 15 15 2287 
3 25 30 25 1642 
4 200 0 15 141496 
5 200 15 25 1950 
6 200 30 5 1917 
7 400 0 25 454508 
8 400 15 5 7006 
9 400 30 15 4511 

 

 

FIG. 3-22. Effect of process factors on electrical resistance of n+ a-Si film analyzed by 

statistical method. (Taguchi, 3 factors, 3 levels). 
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90 seconds (PEB) and then developed by CD-26 for 70 seconds with agitation.  PEB is 

essentially needed to get highly defined pattern in this process. 

Active layer etch; In the case of using Cr as the gate and S/D electrodes, there are 

several process issues in designing active layer because an identical chemical etchant is 

used for both gate and S/D wet etching resulting in gate attack during the S/D wet etch if 

the active layer (n+ a-Si / a-Si / SiNx) is excessively etched.  After the active layer is 

patterned by plasma etching, only a very thin SiNx (gate dielectric) remains on the gate 

electrodes, occasionally < 100 nm depending on the etch uniformity if an over etch is > 

50 %.  The remaining SiNx thickness depends on the initial thickness of SiNx and the 

over etch ratio and typically a 30 % over etch is applied on this process.  In designing the 

active layer mask, as shown in Fig. 3-1 (c) and 3-23, an etch-blocking buffer layer 

between the gate and source/drain electrodes at the crossover area must be formed to 

prevent a gate-source short.   

The majority of dry etching processes for n+ a-Si / a-Si (active layer) is based on 

CF4 or SF6 plasma chemistry; the chemical etch products for the reaction are silicon 

tetrafluoride.  In the case of CF4 chemistry, fluorocarbon molecules in the ground state 

are inert for Si and SiNx.  Etching only starts after the reaction gas has been ionized by 

ingniting a glow discharge.  The subsequent etching of Si and SiNx in CF4 plasma can be 

illustrated by following equations, 

CSiFCFSi
SiFFSi

CFFCF
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FIG. 3-23. Etch-block active layer at the crossed area between gate and S/D line (circled).  

The active layer protects gate electrodes from S/D etchant if gate and S/D are same 

materials. (show scale bar). 
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 Adding oxygen into CF4 glow discharge increases the amount of free radical F 

through the formation of oxyfluorides from fluorocarbons, 

 FCOFOCF 224 +→+  

 The etch rate of a-Si in CF4 and O2 usually increase with an addition of O2 to the 

ratio (O2/CF4) of ~ 0.3 but the etch rate drops drastically at higher O2 concentration.  It 

ascribes in part to a lowering in free radical F because of gas-phase recombination as 

below equation. 

 
222

22

OFFFO
FOFO

+→+
→+

  

 In a-Si etch using SF6 or CF4 plasma chemistries, each etch chemistry has 

advantages and drawbacks simultaneously due to their properties.   In the case of CF4 

chemistry, it usually provides low CD loss and higher tapered angle (anisotropic) due to 

polymerization with photoresist (low photoresist ashing rate).  However, residual 

contamination on the etched surface is also due to unreacted (unstable) radicals reacting 

with oxygen such as COx.  On the other hand, SF6 can be more isotropic which lowers the 

taper angle due photoresist ashing.  Consequently the CD loss is bigger for SF6 than CF4 

based etch.  In spite of the drawback of higher CD loss, the use of SF6 based plasma is 

strongly recommended in order to get less-contaminated thin film and lower taper angle 

for stable step-coverage of subsequent layers (S/D and passivation).  Similar to the gate 

process, the tapered angle of active layer is also an important process factor since there 

are possibilities of open-defects at the crossover area with subsequent S/D electrode due 

to bad step-coverage of the active layer.  The dry etch condition for active etch by RIE is 

100 W RF power, SF6/O2 (40/4) gas flow, and 100 mTorr pressure.  The end point of dry 
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etch for 50 nm n+ a-Si and 200 nm a-Si is about 40 second and 15 ~ 20 % over etch is 

applied. 

After active dry etching, it is hard to remove the photoresist completely using 

conventional wet strip because the photoresist was hardened by ion bombardment during 

the dry etch.  To remove the photoresist residues, plasma ashing processes based on 

inductive-coupled plasma (ICP) source and oxygen gas is needed after a wet strip for 60 

~ 100 seconds with 300 W ICP and 100 W RF power, O2 (50) gas flow, and 150 mTorr 

pressure. 

 

3.2.4 S/D electrode processing 

 

The main factors affecting on electrical properties of the TFT are summarized in 

Table 3-1.  The electrical properties of TFT are mainly affected by the properties of the a-

Si, the interface between a-Si and gate dielectric, and the ohmic contact between n+ a-Si 

and the S/D metal.  Prior to S/D sputter deposition, a BOE (buffered oxide etchant) 

cleaning diluted with DI water should be treated to remove the native oxide on the n+ a-Si 

which otherwise can be a source of high ohmic contact resistance resulting low on-state 

current and a threshold voltage shift.  The recommended dilution and treatment time is 

10:1 with DI water and BOE (10:1 diluted) for 15 seconds at room temperature.  Sputter 

deposited Molybdenum (Mo) or chrome (Cr) was usually used as S/D electrodes and the 

deposition temperature was ~ 200 °C to prevent forming metastable metal phases with 

high resistivity at low temperature deposition.  To get high dry etch selectivity to
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Table 3-1. Major factors effecting on TFT characteristics. 

 

 

Characteristics Factor 

Channel width / length 

Electron mobility (transconductance) 

Interface semiconductor / gate dielectric 

Ohmic contact resistance 

Band gap state 

On-state current 

Back channel surface (BCE-TFT) 

Channel width / length 

Fermi level of semiconductor 

Interface semiconductor / gate dielectric 

Back channel surface (BCE-TFT) 

Ohmic contact resistance 

Off-state current 

Band gap state 

Width of band tails 
Field effect mobility 

Interface semiconductor / gate dielectric 

Band gap state (defect state) Gate voltage swing 
(Threshold voltage) Interface semiconductor / gate dielectric 
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passivation SiO2, using Cr S/D is highly recommended.  But Mo S/D is good enough if 

the passivation is etched by BOE wet etch since the contact resistance of Mo S/D with n+ 

a-Si is lower than that of Cr S/D.  In the case of wet etching for Cr S/D, the etch 

condition is the same as method for the Cr gate electrode.  On the other hand, the etchant 

for Mo S/D etch is based on mixed chemical solution containing H3PO4, CH3COOH, 

HNO3, and H2O.  Hydrogen bubbles formed during this etch process are generated on the 

S/D film and can block further etching.  As a result of the generated bubbles, metal 

residues called snow balls can be introduced on the surface.  Methods to remove the 

bubbles include: agitation treatment, spray etch mode, and the addition of a surfactant.  

The agitation treatment used in this work is recommended if the spray nozzle or 

surfactant is not available.  In this process, dry etch for Mo S/D is not recommended 

because the control of etch stop at the end of Mo S/D is actually impossible due to a 

similar etch rate with a-Si and SiNx gate insulator. 

 

3.2.5 Back channel etch processing 

 

The back channel etch used to separate the source and drain region is the most 

significant process in BCE-TFT.  Under-etching causes a source-drain short and over-

etching causes a source-drain open resulting in device failure.  Subsequently, one needs 

to monitor the depth of BCE with etch process and etch time regularly since various 

materials are etched in RIE system and the etch rate varies depending on the system 

history.  Fig. 3-24 shows the change of back channel etch depth of n+ a-Si / a-Si
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FIG. 3-24. Back channel etch depth of n+ a-Si / a-Si deposited with/without substrate bias 

sputter deposition. (10-points-averaged). 
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deposited with and without substrate bias sputter deposition as a function of etch time.  

Both films have a linear etch rate with etch time.  Low RF powered etch recipes (40 W) 

were used to minimize damage in the back channel region and the other etch conditions 

are SF6/O2/CF4 (20/3/20) gas ratio, and 100 mTorr pressure.  The etch rate of n+ a-Si / a-

Si deposited with substrate bias, as shown in the figure, is lower than that of n+ a-Si / a-Si 

deposited without substrate bias since biased a-Si is a denser thin film.  A low power RF 

ashing with an oxygen plasma is followed by the back channel etch in order to 

compensate defects such as dangling bonds generated by ion bombardment during the 

back channel etch.  The post-etch process condition is 75 W RF power, 150 mTorr, O2 50 

sccm for 120 seconds.  The desirable etch depth is 100 nm ± 20 nm (n+ a-Si 50 nm / a-Si 

50 nm ± 20 nm) and a deeper etch results in deterioration in TFT properties; high off-

state current, low on/off current ratio, low field effect mobility due to an increased 

number of defects such as dangling bonds.65  One needs to monitor the depth of back 

channel every 15 seconds to make sure the depth because the depth varies with the status 

and history of etch chamber. 

 

3.2.6 Passivation (via contact hole) processing 

 

The passivation SiO2 film is deposited by PECVD to protect the device from 

chemical and physical attacks.  In order to minimize the densities of states between back 

channel and passivation film, a two-step deposition process is introduced for the PECVD 

SiO2 deposition; 1) low power deposition for minimizing the densities of states (25 W RF 
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power, 50 nm thickness), 2) high power for the rest of thickness (75 W, 250 ~ 300 nm).  

The other condition are same; SIH4/N2O (80/120), 1000 mTorr pressure, and 395 °C 

temperature.  To make via hole for contacting with gate and S/D electrode pads, a dry 

etch is employed based on SF6/O2 plasma chemistry.  As mentioned previously, unlimited 

etch selectivity to gate and S/D is obtained if Cr is used as the S/D electrodes.  The etch 

chemistry of SiNx dry etch is below and the etch condition is same as active etch process 

based on SF6/O2 plasma. 

nNSiFFSiNx
SiFFSi

CFFCF

+→+
→+

+→

4

4

24
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3.2.7 TFT characterization 

 

To characterize electrical properties of TFT, current-voltage characteristics was 

extracted by semiconductor parameter analyzer (HP 4156A).  The gate sweep voltage 

was from -20 V to +25 V with 0.1 ~ 0.5 V step interval and drain voltage is 0.1 ~ 10 V at 

this gate voltage.  The raw data is saved as ASCII file and re-plotted by external plotting 

softwares such as ORIGIN or EXCEL.  The methods to extract TFT parameters such as 

field effect mobility, threshold voltage, and on/off current ratio are described in Chapter 1. 
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3.3 TFT-VACNF processing for Intracellular probe  

 

As shown in Fig. 3-3, (b) TFT-VACNF processing for intracellular probing will 

be described with each detail process flow.  The process is same as TFT device 

processing from alignment mark processing to the S/D deposition. 

 

3.3.1 Ni catalyst deposition and patterning 

 

Thin Si film with ~ 10 nm thickness was deposited by sputter deposition.  The 

deposition condition is same as that of active a-Si film.  A conventional lithography 

process was followed by a-Si deposition.  Used photoresist is 955CM-0.7 and spinning 

speed was 3000 rpm for 60 seconds resulting in 0.6 ~ 0.7 µm thickness.  The exposure 

time was 2.5 second to prevent under exposure since the designed diameter of VACNF 

hole is just 0.5 µm.  After exposure, PEB and developing processes were done 

consecutively.  Ni thin film as a catalyst for VACNF growth was deposited by e-beam 

evaporation and thickness of the film was ~ 100 nm.  To pattern the Ni dot, conventional 

lift-off process was done by using acetone for ~ 1 hour at room temperature.  Resulting 

diameter of the Ni dot was proven to be ~ 1.0 µm.   
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3.3.2 VACNF growth and solution for device failure due to interlayer stress 

 

VACNF was grown in DC-PECVD chamber with a condition of C2H2 (35) gas 

flow, 3000 mTorr, 400 mA current, and 550 °C temperature and total time for the growth 

was 1 hour.  Fig. 3-25 shows a TFT-VACNF device failure during VACNF growth.  The 

interlayer stress during the growth is main source of the breakdown.  Understanding the 

stress state of the interlayer thin films is very important since the VACNF is usually 

grown at high temperature above 550 °C.  There are two main factors affecting the stress 

state of thin films; 1) internal stress during film formation, 2) thermal stress formed by 

thermal gradients or thermal expansion coefficient differences between thin films.  As 

described in previous, biased sputter deposition provides densified and lower defect thin 

films.  On the other hand, the film has a significant amount of internal stress.45  A typical 

growth temperature of VACNF is ~ 700 °C in DC-PECVD and the growth rate is 

normally proportional to the growth temperature.  To minimize these stress factors, the 

VACNF was grown at 550 °C with slow growth rate and the cooling rate was as slow as 

possible after VACNF growth in DC-PECVD chamber (~ 10 °C/min) when it is 

integrated with TFT.  Fig. 3-25 shows SEM images of TFT-VACNF showing a device 

failure due to internal stress from biased sputter deposition even though VACNF was 

grown at low temperature, 550 °C.  The delamination between SiNx and a-Si layers 

results from a significant amount of internal stress caused by biased sputter deposition.  

To prevent the device failure, unbiased sputter deposition must be employed for the TFT-

VACNF integration with sacrificing high TFT properties even though the biased sputter
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FIG. 3-25. SEM image of TFT-VACNF showing a device failure due to internal stress 

after VACNF growth at 550 °C. Biased sputter deposition induces a significant amount 

of internal stress which during the high-temperature VACNF growth causes delamination 

between the SiNx and a-Si layers. 
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deposition provides high quality thin film.  Fig. 3-26 shows a SEM image of TFT-

VACNF after CNF growth at 550 °C fabricated with thin films deposited by fully 

unbiased sputter deposition.  The figure shows that interlayer stress can be lowered by 

reducing the VACNF growth temperature and using unbiased sputter deposition.  From 

these results, we need to adopt the unbiased sputter deposition if we fabricate TFT-

VACNF devices for intracellular probing.  On the other hand, in the case of extracellular 

probing devices where VACNFs are not required, we can use biased sputter deposition 

which enhances the device performance. 

 

3.3.3 Passivation 

 

The passivation lithography and etch process are critical processes to probe cells 

directly.  Fig. 3-27 and 3-28 shows two different types of process sequence for the 

passivation lithography, photoresist ashing, and etch process to form the via contact hole 

on the S/D and gate electrodes and to expose the VACNF tips for cell probing.  Fig. 3-27 

is for passivation wet etch process and Fig. 3-28 is for passivation dry etch process.  The 

passivation SiO2 is usually deposited by PECVD and the thickness is 200 ~ 300 nm with 

a two step deposition to minimize the densities of states between back channel and 

passivation films; low and high RF power 50 ~ 100 nm, 200 ~ 250 nm respectively Fig 3-

27 (a) and 3-28 (a).  Next, a thin photoresist (600 ~ 700 nm, 955CM-0.7) is coated on the 

passivation film and then baked, and exposed by UV and then PEBed; Fig 3-27 (b) and 3-

28 (b).  In the case of passivation we etch (Fig. 3-27), after developing using CD-26
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FIG. 3-26. Breakdown failure is not shown after VACNF growth at low temperature 

growth ~ 550 °C and on the unbiased n+ a-Si / a-Si. 
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FIG. 3-27. Process sequence for TFT-VACNF passivation (I) for via hole etch and 

exposing tips of VACNF. (a) Passivation deposition, (b) photoresist coating, (c) 

developing and photoresist plasma ashing, (d) BOE wet etching to form via contact hole 

and to expose tips of VACNF striping photoresist. 
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FIG. 3-28. Process sequence for TFT-VACNF passivation (II) for via hole etch and 

exposing tips of VACNF. (a) Passivation deposition, (b) photoresist coating, (c) 

developing photoresist, passivation dry etch, and photoresist plasma ashing, (d) BOE wet 

etching to expose tips of VACNF and striping photoresist. 
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developer, the photo resist is dry-etched by plasma ashing based using an oxygen plasma 

to etch back the photoresist on the tips of VACNF, Fig. 3-27 (c).  Subsequently the 

passivation SiO2 is etched with a 6:1 BOE instead of a dry etch because the VACNF is 

easily attacked by fluorine based plasmas.  Lastly the photoresist is removed by 

conventional wet strip and plasma ashing based on oxygen plasma and then inspected by 

optical microscopy or SEM, Fig. 3-27 (d).  The passivation wet etch process is good 

enough to pattern via hole but it is not suitable for exposing the VACNF tips because CD 

bias is very large.  On the account of large CD bias, there is a serious possibility to 

expose S/D electrode with the VACNF tips.  To minimize the CD loss, a passivation dry 

etch process was employed; Fig. 3-28.  The condition for the dry etch is same as that of 

TFT device processing.  After passivation dry etch using fluorine based plasma, the 

remained photo resist is dry-etched by oxygen plasma to etch back the photoresist on the 

tips of VACNF; Fig. 3-28 (c).  Subsequently the passivation SiO2 on the VACNF tips is 

etched with a 6:1 BOE and then the photoresist is removed by conventional wet strip and 

plasma ashing based on oxygen plasma and then inspected by optical microscopy or 

SEM; Fig. 3-28 (d). 
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Chapter 4 Electrical characterization of thin film transistors 

 

4.1 Definitions and thin film transistor operation 

 

First of all, the definitions of several terms for the TFT operation are introduced.  

Mobility is a proportionality constant which relates the drift velocity to the electric field 

in a semiconductor.  Mobility is essentially a measure of how easily carriers such as 

electrons and holes can move through a semiconductor.  Electrons move most easily 

through single-crystalline silicon because of the uniform periodic arrangement of the 

atoms.  Unfortunately, single-crystalline films require high temperature processes.  In 

poly-crystalline silicon (poly-Si), individual grains of crystalline Si are randomly oriented 

to one another.  In this case, electrons can move easily through each crystalline grain, but 

are scattered at g grain boundaries.  Electrons in amorphous silicon have the lowest 

mobility which has neither short nor long range atomic order.   

Leakage current refers to the small amount of current flowing through a transistor 

when it is in its off state.  In an ideal transistor, leakage current would be zero, but in 

practice, leakage current always has a finite value.   

For all practical purposes, a TFT can simply be considered a switching element; 

when selected ‘ON’ it allows charge to flow through it and when ‘OFF’ it acts as a 

barrier preventing or restricting the flow of charge.  Basically, a TFT behaves similar to a 

MOSFET (Metal Oxide Semiconductor Field Effect Transistor) device.  The gate can be 

considered the "switch" of the transistor, which can turn the device ‘ON’, partially ‘ON’, 
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or ‘OFF’.  The source and drain are essentially an entrance and exit of the TFT, 

respectively, for the charge that is to be passed through the switch.  For the TFTs in this 

work, the source and drain metal electrodes are separated by an amorphous silicon (a-Si) 

semiconductor layer and it does not contain any charged carriers in the off state.  Thus 

the a-Si layer acts as an insulator or resistor and prevents the flow of charge from the 

source to drain, thus isolating the unit cell from the rest of the cells.  SiNx or SiO2 is the 

gate insulator and forms the gate dielectric that inhibits carrier transport from the gate 

line to the transistor. While current transport is minimized via the gate dielectric, a gate 

voltage is used to influence the charge distribution in the underlying semiconductor layer 

via a field effect.  When a positive charge, in the case of n-type TFT, is placed on the gate 

line, electrons (negatively charged particles) begin to collect in the area above the gate on 

the other side of the SiNx in the a-Si.  When the charge on the gate is increased to a 

certain point, called the threshold voltage (VT), enough electrons will have collected in 

the a-Si to change it from an insulator to a conductor.  In other words, it builds up an 

electron channel, so if a potential is induced across the source (negative potential) and the 

drain (positive potential), the electrons will begin to move through the electron filled 

channel.  The unique aspect of this device is the nonlinear current response after the TFT 

passes through VT.  The current exponentially rises (usually 5 to 7 orders of magnitude) 

over a very short modulation voltage which makes it very easy to turn a TFT on or off 

around the VT value.  
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4.2 Thin film transistor fabrication and parameter extraction 

 

4.2.1 Inverted-staggered back channel etched (BCE) thin film transistor fabrication 

 

The TFT, as shown in Fig. 4-1, was fabricated by an inverted-staggered and back-

channel etched (BCE) process on thermally oxidized wafers (1 µm SiO2).  The detail 

process flow for the TFT fabrication is illustrated in the appendix of the dissertation and 

the processing issues are discussed in chapter 3.  Briefly, Molybdenum (Mo, 250 nm) or 

chrome (Cr, 250 nm) gate electrodes were deposited with the RF magnetron sputtering 

system at 200 °C.  The Mo gate electrodes were lithographically patterned by 

conventional photolithography and reactive ion etching (RIE) based on SF6/CF4/O2 

chemistry or wet chemical etching (Cyantek Al etchant, H3PO4+CH3COOH+HNO3) at a 

temperature of 35 °C with agitation (a).  The temperature should be below 40 °C since 

the CH3COOH evaporates with easy at high temperature resulting in a change of etch 

properties.  In the case of Cr gate electrodes, the gate is etched by premixed CR-7 Cr 

etchant (Cyantek) containing 9%(NH4)2Ce(NO3)6+6%(HClO4)+H2O and the etch rate of 

Cr is ~ 150 nm/min at a temperature of 45 °C with agitation.  The silicon dioxide (SiO2, 

300 nm) or silicon nitride (SiNx, 300 nm) gate insulator was also deposited by RF 

magnetron sputtering with substrate bias in argon-hydrogen (5 % H2) and nitrogen gases.  

The sputter deposition condition of the SiNx film was 100 W RF power, 20 W (125 V) 

substrate bias, 5 mTorr pressure, 25 sccm Ar-H2, 25 sccm N2 gas flows, at a temperature 

of 200 oC.  Subsequently, the RF magnetron sputtering was also used to deposit a
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FIG. 4-1. Process sequence of TFT fabrication with back channel etch structure. (a) Gate 

electrode (Mo 200 nm), (b) active layers (gate SiNx 300 nm, a-Si:H 200 nm, n+ a-Si 50 

nm), (c) source-drain electrode (Mo 300 nm), (d) back channel etch and post-treatment, 

(e) passivation (SiNx 350 nm), (f) cross-sectional SEM image of inverted-staggered BCE-

TFT. 
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semiconducting hydrogenated amorphous silicon, a-Si:H, thin film (200 nm) and a n+ 

amorphous-Si contact layer (50 nm), respectively.  The sputtering conditions for both 

films were 100 W RF power, 20 W (125 V) substrate bias, 5 mTorr pressure, 200 °C 

temperature, and 25 sccm Ar-H2 gas flow.  The n+ a-Si and a-Si:H layers were 

photolithographically patterned and etched with an RIE (SF6/O2) using a single 

lithography and etch step (b).  Next, Mo or Cr source-drain electrodes (250 nm thickness) 

were RF magnetron sputter deposited and lithographically defined and patterned by a wet 

etch process based on a mixed solution same as the etchant used in gate wet etch (c).  In 

order to define the source and drain electrodes, a back channel etching (BCE) process 

was adopted with low damage (low RF power) etching on the back channel as this is a 

main source of leakage current of staggered BCE TFTs (d).  Finally, to passivate the TFT 

array from chemical and mechanical attacks, a 350 nm SiNx was sputter deposited with 

same conditions as the gate insulator.  Finally, via holes were patterned for contacting the 

gate and source-drain electrodes (e).  The electrical properties were measured using a 

semiconductor parameter analyzer, HP 4156A. 

 

4.2.2 Staggered (top-gated) thin film transistor fabrication 

 

Inverted-staggered BCE TFTs have several disadvantages in the fabrication 

process.  First of all, it is very hard to control the depth of the BCE which can result in a 

S/D short or open if the depth is not controlled precisely.  Secondly, the defects in the 

back channel resulting from BCE such as dangling bond cause high leakage currents and 
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threshold voltage shifts.  In order to solve the problems in BCE TFT, a staggered (top-

gated) TFT structure is introduced and the electrical properties for both TFTs are 

compared. 

The brief process flow description is outlined below.  Firstly, similar to the BCE 

TFT, Cr S/D (250 ~ 300 nm) is used for the S/D electrode deposited by RF sputter 

deposition.  Ohmic contact n+ a-Si (50 nm) is then deposited on the S/D electrodes 

without breaking vacuum in the sputtering system to enhance the ohmic contact 

properties.  The condition of n+ a-Si deposition is same as that of BCE-TFT.  The S/D 

and n+ a-Si is patterned by photolithography with the S/D mask and then etched by 

plasma etching based on SF6/O2 plasma for the n+ a-Si and wet etched by Cr etchant for 

S/D electrodes, respectively (Fig. 4-2 (a)).  The a-Si:H  semiconducting layer is deposited 

by sputter deposition using the same conditions as the BCE-TFT.  PECVD LPCVD or 

sputtering can be utilized for a-Si:H or poly-Si as a semiconducting layer respectively.  

The thickness of the film is 100 ~ 150 nm and a thinner semiconductor film is preferred 

to get higher transconductance and lower threshold voltage for ultimately higher TFT 

performance.  The a-Si:H or poly-Si is patterned by conventional photolithography and 

dry etch based on an SF6/O2 plasma chemistry (b).  Gate dielectric SiNx is deposited by 

sputter deposition with substrate bias and the deposition condition is same as that of the 

BCE-TFT (c).  Similar to the semiconducting layer, the gate dielectric also can be formed 

by PECVD or LPCVD.  The Cr gate electrode is formed by sputter deposition at 200 °C 

and the thickness is 250 nm.  The gate electrode is patterned by photolithography and 

etched with a Cr wet etchant (d).  To passivate the device from external attacks, SiO2
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FIG. 4-2. Process sequence of TFT fabrication with staggered structure (top-gated). (a) 

S/D (Cr, 250 nm) and n+ a-Si (50 nm) patterning, (b) a-Si (150 nm) patterning, (c) gate 

dielectric (SiNx, 250 nm) deposition, (d) gate (Cr, 250 nm) patterning, (e) passivation 

(SiO2, 300 nm) and via hole. 
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passivation is deposited by PECVD and patterned by photolithography and dry etched 

based on SF6/O2 plasma to form via holes for contacting the gate and S/D electrodes (e). 

 

4.2.3 Parameter extraction 

 

The electrical parameters such as field effect mobility and threshold voltage were 

obtained by the method and equations described below. 

In the saturation region, transconductance is defined by; 
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where ID is drain current, VG is gate voltage, W is channel length, L is channel length, µ is 

field effect mobility, Ci is capacitance per unit area, and VT is threshold voltage. 

Using the definition of the constant K given below, we can define gm as given 

below as: 
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Therefore, in saturation VG=VT at gm=0 

The threshold voltage is obtained by two methods and then averaged. 

First method; in the saturation region, 
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Second method (Fig. 4-3); this is the most straightforward way to get threshold 

voltage without calculating a K value.  The VT is obtained by plotting ID vs [VG-VD/2] in
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FIG. 4-3. Example of illustrating the calculation of threshold voltage. (By plotting ID vs 

[VG-VD/2] on the TFT operating region (linear region) and reading out the threshold 

voltage off the x-intercept). 
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the linear TFT operating region and then extrapolating the linear portion of the curve to 

the x-intercept.  This method is widely used to get VT since the first method has 

difficulties in calculating several variables such as the exact capacitance per unit area of 

the gate dielectric film, channel width, and length.  Usually the channel length and width 

are different from the designed dimensions after device fabrication due to CD loss.  The 

VT from the second method is obtained from the current-voltage output of TFT itself 

without incorporating these variables.  The equations to get VT from the x-intercept 

described in this second method are described below. 
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4.3 Electrical property characterization of thin film transistor fabricated with substrate 

biased sputter deposition 

 

4.3.1 Direct current substrate bias effects on the electrical characteristics of amorphous 

silicon thin film transistors  

 

  To show the effect of substrate biased films on the TFT performance; the 

electrical properties of TFTs with the a-Si active layer sputtered with (10W, 110V) and 
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without substrate bias are compared.  Mo was used as gate and S/D electrodes for the 

TFT and the gate dielectric was SiO2 deposited by sputter with 20 W of substrate bias.  

As shown in Fig. 4-4, the on-state current of the biased a-Si TFT (b) is slightly higher 

than that of an unbiased a-Si TFT (a), which means that the biased a-Si TFT has a higher 

transconductance and field effect mobility.  Secondly, the leakage (off-state) current of 

the biased a-Si is much lower than that of unbiased a-Si TFTs.  The defect density in the 

unbiased films likely causes the high leakage current in the unbiased a-Si TFTs.  On the 

other hand, the biased a-Si TFT has an extremely low leakage current (less than a pico-

ampere) because the biased a-Si is denser and has fewer defects.77  As shown in the 

figure, the TFT properties using SiO2 gate dielectric has very poor electrical 

characteristics such as low on/off current ratio and very high threshold voltage.  To 

improve the transconductance and switching characteristics of the TFTs, a SiNx dielectric 

film was introduced. 

 

4.3.2 The effect of the TFT dimensions on the electrical characteristics of the TFTs 

 

Fig. 4-5 shows the electrical characteristics of five TFTs measured in different die 

across the 4-inch wafer, which shows that the thin films are uniform across the entire 

wafer and the device characteristics are very stable.  To characterize the TFTs, the gate 

voltage was swept from -20 V to 30 V at 0.5 V intervals and drain voltage was fixed at 7 

V.  As shown in the figure, the electrical properties of the TFTs within a 4-inch wafer are 

very uniform and the deviation in the electrical characteristic is below 2 % for every
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FIG. 4-4. Transfer characteristics of TFTs. (a) Unbiased a-Si TFT, (b) DC biased a-Si 

TFT (both are characteristics before annealing). 
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FIG. 4-5. Current-voltage characteristics of TFT devices as a function of the wafer 

position which illustrates the stability of the device characteristics. 
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point.  The current-voltage characteristics of the TFT with a 20 W (125 V) biased SiNx 

gate insulating film (300 nm) and 10 W (110 V) biased a-Si:H / n+ a-Si are shown in Fig. 

4-6.  Cr was used as gate and S/D electrodes for this TFT.  The channel width and length 

are 10 and 5 µm respectively and an applied drain voltage is 1 V to 9 V (2 V step).  The 

TFT has the following electrical characteristics; 7.0 V threshold voltage, 0.38 cm2/Vsec 

field effect mobility, greater than 105 on/off current ratio, and less than a pico-ampere 

off-current (leakage current) at VG = -8 V and VDS = 1, 3 V.   

Fig. 4-7 and Fig. 4-8 show the electrical properties of the TFT with different 

channel lengths (2 to 8 µm) and widths (10 to 40 µm).  The threshold voltage (VT) in the 

Fig. 4-7 increases with increasing channel length, which likely results from the increase 

in the channel resistance as the channel length increases.  The on-state current, as shown 

in Fig. 4-8, is increased slightly with increasing channel width and the threshold voltage 

decreases with an increase in channel width due to the increased field effect area at 

higher the channel widths.  

 

4.3.3 The effect of post-annealing ambient on the electrical characteristics of the TFTs 

 

Fig. 4-9 shows the electrical characteristics of the TFT with various annealing 

conditions.  Of particular note in this figure is the change in the off-current with various 

annealing conditions after the TFT fabrication.  The annealing was processed at 500 oC, 

and 5 mTorr pressure in Ar or Ar-H2 (5 % H2) ambient for 3 hours.  The off-current of 

the TFT after annealing in Ar is higher than the device before annealing.  This is
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FIG. 4-6. Current-voltage characteristics of a fully sputtered TFT.  
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FIG. 4-7. Current-voltage characteristics of fully sputter-deposited TFTs as a function of 

channel length.  
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FIG. 4-8. Current-voltage characteristics of fully sputter-deposited TFTs as a function of 

channel width.  
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FIG. 4-9. The electrical properties of fully sputter-deposited TFTs as a function of the 

annealing ambient. (Ar and Ar-H2 ambient). 



 172

attributed to dehydrogenation of the a-Si at relatively high temperatures ~ 500 oC.  The 

annealing reduces the concentration of hydrogen in a-Si:H films and consequently 

degrades the electrical device performance of TFTs and solar cells unless the dangling 

bonds are also eliminated.  Unpassivated dangling bonds are a main source of electron 

scattering and trapping in electron conduction.  A publication reported that the properties 

of a-Si:H are changed with the annealing at 350 oC, 450 oC, and 575 oC corresponding to 

the conversion of SiH3 to SiH2 and SiH with dehydrogenation.83,84  On the other hand, 

after annealing in an Ar-H2 ambient at 500 oC, the off-current is slightly lower than the 

as-deposited device.  Hydrogen atoms in amorphous silicon films play an important role 

in compensating defects, for example dangling bonds and lattice defects.  Hydrogen 

passivates these defects by combining and effectively neutralizing these defects which 

otherwise contribute to a high off-current.  On the other hand, there are no significant 

changes in the on-current with the annealing conditions.  This suggests that the 

dehydrogenation mainly occurs in the back channel, which is contacted with the 

passivation SiNx film, rather than in the gate SiNx / a-Si:H interface.  Consequently, the 

dehydrogenation from the back channel a-Si:H / passivation SiNx interface generates the 

high off-current and does not significantly effect the on-current.83,68   

 

4.3.4 The effect of back channel etch depth on the electrical characteristics of the TFTs  

 

The electrical properties of the TFT as a function of the back channel etch depth 

are shown in Fig. 4-10.  The off-state current increases and the on-state current decreases,
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FIG. 4-10. Electrical property changes of fully sputter-deposited TFTs with back channel 

etch depth.  
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respectively, with an increase in the back channel etch depth.  This means that the longer 

and deeper back channel etch damages this region and creates interface defects, which 

generates a higher off-current and decreases the on-current.  Furthermore, the actual 

thickness of a-Si:H is also decreased with deeper etch and it results in lower on- current 

and lower on/off current ratio due to the thinning of the a-Si:H film.  Additionally, an 

increase in threshold voltage is observed with increasing the back channel etch depth 

resulting in more electron trapping by interface defects with the deeper back channel etch.  

In the inverted-staggered TFT with a channel-passivated (CHP) structure, the off-current 

is largely controlled by hole injection from the drain electrodes at room temperature and 

in the dark state.  That is, the off-current is strongly influenced by the ohmic contact 

resistance between a-Si:H and source-drain electrodes and not significantly affected by a-

Si:H thickness.85,86  The effect of a-Si:H thickness is mainly shown in photoconductivity 

measurements under illumination and the photocurrent generated by electron-hole pairs is 

directly related to the a-Si:H film thickness.  The off-current, generally speaking, 

decreases with the thinning of the a-Si:H in the CHP TFT.68  Unlike the CHP TFT, in the 

back channel etched (BCE) structure used in this study, the overall electrical properties 

including off-current at room temperature vary with the back channel etch depth (actual 

a-Si:H thickness).  One can conclude that controlling the back channel etch process is one 

of most important process factors to control the TFT electrical characteristics.  To further 

illustrate the importance of the back channel etch region, it was recently reported that the 

BCE-TFT properties can be enhanced by oxidizing the back channel by plasma 

treatment.87 
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4.3.5 The effect of gate dielectric thickness on the electrical characteristics of the TFT 

 

Fig. 4-11 shows the electrical property change with gate SiNx thickness.  The TFT 

with the thin gate SiNx has a lower threshold voltage, higher on-current, and higher on/off 

current ratio than TFT with thicker gate SiNx.  The threshold voltage, on/off current ratio, 

and field effect mobility are enhanced from 4.8 V to 1.2 V, 105 to 107, and 0.32 to 0.46 

cm2/Vs, respectively, with a decrease in the gate SiNx thickness from 300 nm to 150 nm.  

To achieve more stable TFT processing, using a 300 nm thickness of SiNx is 

recommended since there is high possibility a device failure due to an over-etched active 

layer such as gate attack and gate-S/D short. 
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FIG. 4-11. Electrical property changes of fully sputter-deposited TFTs with gate SiNx 

thickness.  
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Chapter 5 Electrochemical analysis 

 

To show the addressability of thin film transistor array, electrochemical 

measurements were performed using gold and pyrrole solution.  The metrology and 

characteristics for localized electrochemistry to demonstrate the addressability of the TFT 

array are described in this chapter. 

 

5.1  Electrochemistry analysis with TFT-VACNF using gold and pyrrole solution 

 

Fig. 5-1 (a) shows a cross-sectional diagram of TFT addressed VACNF.  A 

VACNF is grown on the drain of the TFT and Orotherm HT gold or pyrrole solution is 

filled between the TFT-VACNF and the common electrode.  An overall diagram of 

electrochemical measurement is shown in Fig. 5-1 (b).  A 15 µm thick SU-8 (2010) film 

is patterned on the 20×20 TFT active area to make a well for containing the solution.  The 

coating condition of SU-8 was 3000 rpm, 60 seconds and then baked at 65 °C for pre-

heating to minimize thermal shock and baked consecutively at 95 °C for 90 seconds.  The 

soft-baked SU-8 was exposed by UV light with a 30 second exposure time on a contact 

mask aligner and then post-exposure-baked (PEB) with the same condition as soft-baking.  

The developing time was 70 seconds without agitation and then rinsed by Isopropyl 

Alcohol (IPA) and DI water.  An optical photograph of the measurement is shown in Fig. 

5-1 (c).  The photography shows SU-8 passivation and active areas filled with
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FIG. 5-1. A schematic diagram of TFT-VACNF for electrochemical analysis. (a) A cross-

sectional diagram of TFT addressed VACNF. 
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FIG. 5-1. Continued. (b) An overall diagram of electrochemistry measurement. 

Substrate 

Pyrrole solution 

TFT-CNF array 

S/D Gate 

PVX, SiO2 

SU-8 

VCOM = 0 ~ -10V (0.2V step) 

VS = 0, 5V 

VG, = -5, 20V 

SU-8 



 180

 

 

 

 

 

(c) 

 

 

FIG. 5-1. Continued. (c) An optical photography of the measurement. 
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electrochemical solution.  Electrical fields are applied on a specific gate and source (data) 

lines and the output current is collected on the common electrode.   

 Fig. 5-2 shows SEM images of the TFT-VACNF integrated device where the 

VACNF is covered with SiO2 passivation except for the tip of the VACNF which is 

emancipated by the process as shown in chapter 3.  The growth condition of VACNF and 

process sequence of TFT-VACNF integration is also described in chapter 3 (Fig. 3-27, 3-

28).  Fig. 5-3 shows the current change of the common electrode as a function of applied 

voltage on common electrode.  Gold solution (Orotherm HT Gold) may be used to show 

electrochemical properties of individually addressed electrodes.40  To measure the 

electrochemical properties of the gold solution with a grounded TFT, the applied gate and 

source voltages are all zero, that is, grounded and all others are floating states (not 

probing).  The voltage applied on common electrode was swept from 3 V to -3 V with 

0.02 intervals.  As shown in the figure, there is a significant voltage drop at ~ ±2 V which 

means gold deposition is occurring on either the common electrode or the VACNF.  

Usually gold is deposited on negative electrode upon overpotentials ~ -1 V.40  In the case 

of this analysis, the overpotentials indicated by the current spike is higher than the ~1V 

reported due to the higher resistance of TFT channel.  In spite of current change 

illustrated in Fig. 5-3, SEM analysis of the VACNFs after the electrochemical analysis 

did not reveal any gold deposition on the fibers.  It is speculated that deposition occurred 

on the common electrode. 

 Another solution for electrochemical analysis is pyrrole electrochemistry.  Pyrrole 

is a conductive polymer and the conduction mechanism of pyrrole is due to interchain



 182

 

 

 

 

FIG. 5-2. SEM images of TFT-VACNF. (a) TFT-VACNF, (b) VACNF on drain 

electrode of TFT. 
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FIG. 5-3. Current change of common electrode as a function of applied voltage on 

common electrode. 
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hopping of electrons (Fig. 5-4).  It provides an easy preparation for standard 

electrochemical techniques and surface charge characteristics of polypyrrole can easily be 

modified by changing the dopant anion (X-) that is incorporated into the material during 

synthesis. 

Fig. 5-5 shows the current-voltage characteristics on the common electrode as a 

function of pyrrole concentration.  Pyrrole was diluted with KCl solution.  The current 

through the common electrode induced by the applied voltage increases with an increase 

in pyrrole concentration.   

Fig. 5-6 shows current-voltage characteristics of pyrrole electrochemistry with an 

applied voltage cycle.  As reported, the growth of polypyrrole film begins at the potential 

of about 0.4 V which is shown with an abrupt increase in the current.88  As shown in Fig. 

5-6 (a) and (b), initially the current decreases with each cycle and then increases after few 

cycles.  At the initial stage of forming polypyrrole, the current decreases with each cycle 

as shown in Fig. 5-6, (1), (2).  This is attributed to a nucleation process of polypyrrole 

resulting in current decrease with each cycle.  After few cycles, the current subsequently 

increases with each cycle and then saturates which indicates the formation of 

polypyrrole.89 

 

5.2 Electrochemical analysis of TFT array with fully active addressed scheme 

 

Active Matrix addressing involves the use of an electronic switch at every pixel.  

Once a pixel is switched on, the field can be maintained by the switch while other pixels
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FIG. 5-4. Molecules structure of unit pyrrole (monomer) and polypyrrole. 
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FIG. 5-5. Current-voltage characteristics on common electrode as a function of pyrrole 

concentration. 
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FIG. 5-6. Current-voltage characteristics of pyrrole electrochemistry with cycle analysis. 
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FIG. 5-6. Continued. (b) From 3rd to 8th cycles. 
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are turned off.  A TFT also isolates the pixel from the influence of adjacent pixels so that 

crosstalk isn't a problem either.  In this section, the scheme and electrochemical result of 

active addressing using a TFT array will be described.   

 A typical current-voltage characteristic of TFT is shown in Fig. 5-7.  The TFT 

operating voltage at ‘ON’ and ‘OFF’ states are 20 ± 2 V and -5 ± 2 V respectively.  

Usually on/off current ratio of a-Si TFT is 105 ~ 107 and leakage current at -8 V gate 

voltage is below few pico-ampere.  Fig. 5-8 shows a diagram of active addressing scheme 

using TFT array.  There are two sets of addressing lines; horizontal gate lines and vertical 

data lines.  A TFT is integrated at etch intersection of these addressing lines to turn on 

and off the voltage.  To turn-on a specific TFT, a 20 V gate voltage is applied on a gate 

line to be addressed while the other gate lines are addressed with -5 V to be turned off.  

Then a source voltage (VDS) is applied on the data line.  The induced charge on the drain 

electrode of the TFT induces a potential difference with common electrode through 

electrolyte such as gold or pyrrole solution.  Fig. 5-9 shows SEM images of 20×20 TFT 

array with via hole for electrochemistry.  The size and depth of via hole are about 0.8 µm 

and 300 nm respectively.  Fig. 5-10 shows a 20×20 TFT array chip after dicing, wire 

bonding, and mounting.  To cut the finished substrates into individual die, a 4-inch wafer 

was diced by Disco Dad/2H6T Dicing Saw which all alignment to the substrate is 

performed by a split field video stereo microscope.  After dicing the substrate into 5 mm 

× 5 mm chip, the chip was wire-bonded by K&S Wire Bonder with Aluminum (Al) 

wedge and Gold (Au) ball bonders.  A melted and solidified epoxy was used to passivate 

a chip and isolate a chip from gold solution.  Fig. 5-11 demonstrates a digital picture of
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FIG. 5-7. A typical current-voltage characteristic of a-Si:H TFT. 
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FIG. 5-8. A diagram of active addressing scheme using TFT array. 
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FIG. 5-9. SEM images of 20×20 TFT array with via hole for electrochemistry.  
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FIG. 5-10. 20×20 TFT array chip after dicing, wire bonding, and mounting.  
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FIG. 5-11. A scheme picture of active addressing which is mounted on multi-functional 

slots. 
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the active addressing array which is mounted onto multi-functional slots.  The applied 

gate voltage to turn on a specific TFT was 30 V (VGate, ON) and all others are -5 V for 

maintaining ‘OFF’ (VGate, OFF).  Source-drain voltage (VDS) is applied on a specific data 

line to be addressed and then the voltage on the common electrode was swept from -5 V 

to 5 V with 0.02 V intervals. 

Fig. 5-12 show current-voltage characteristics of TFT array with the gold solution.  

There is a large change of current at TFT ‘ON’ with applied voltage around -5 V, which 

is attributed to the voltage drop between the common electrode applied negative voltage 

and the drain charged positively when the TFT is turned on.  On the other hand, there is 

not much current change in TFT ‘OFF’ due to the cut-off current in TFT channel when 

the TFT was turned off.  The increasing current both TFT ‘ON’ and ‘OFF’ with 

increasing applied voltage might result from leakage current due to TFT leakage and 

pinholes in the passivation layer. 
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FIG. 5-12. Current-voltage characteristics of TFT array with gold solution. 
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Chapter 6 Conclusions 

 

For un-biased rf magnetron sputtered MoW films the electrical resistivity as a 

function of tungsten fraction follows a typical Nordheim relationship.  The resistivity 

increases with the addition of solute atoms (tungsten) and is maximum at ~ 0.5 atomic 

fraction of solute atoms.  Films sputtered at room temperature without substrate bias 

contained a second metastable phase (β-W) and results in a significantly higher resistivity 

due to the lattice mismatch between stable α-W and metastable β-W.  As sputtering 

temperature increases, the β-W does not form and the resistivity decreases over the entire 

composition range relative to the room temperature deposited sample.  Thin films 

deposited with substrate bias had a considerably lower resistivity over the entire 

composition range and the resistivity as a function of composition obeys a rule of mixture 

rule.  Additionally, in the MoW film deposited with biased sputtering, the β-W phase is 

not present even at room temperature. From the SEM results, a denser and void-free 

structure is observed in the microstructure of biased thin films.  Additionally, unlike bulk 

molybdenum and tungsten biased tungsten films had a higher resistivity versus biased 

molybdenum.  This phenomenon is consistent with the fact that the dislocation resistivity 

of tungsten is two orders of magnitude higher than that of molybdenum. 

To overcome deficiencies of sputtered silicon oxide (SiOx) films the rf magnetron 

sputtering process was optimized by using a full factorial design of experiment (DOE).  

The optimized SiOx film has a 5.7 MV/cm breakdown field and a 6.2 nm/min deposition 

rate at 10 W/cm2 RF power, 3 mTorr pressure, 300oC substrate temperature, and 56 V 
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substrate bias.  We also fabricated and characterized metal-insulator-semiconductor 

(MIS) switching devices to show potential and prospective applications of the optimized 

SiOx films. 

The breakdown field of sputter-deposited SiNx films is considerably enhanced by 

applying a substrate bias during the sputtering deposition.  The maximum breakdown 

field is 7.65 MV/cm with 20 W (125 V) substrate bias and the breakdown voltage slightly 

decreases at higher substrate bias up to ~ 40 W (155 V) due to increasing the number of 

defects caused by severe ion bombardment at higher biases during SiNx deposition.  

The effects that substrate bias has on a-Si sputtered films were also surveyed.  

Biased a-Si films exhibit lower leakage current and a lower deposition rate because they 

are denser films with fewer defects as a result of the energetic ion bombardment that 

occurs during bias sputtering.  Additionally, we fabricated a fully sputter-deposited TFT 

with biased a-Si that exhibit very low leakage and superior transconductance values 

relative to films deposited with no bias.  Similar to the results of a-Si, the conductivity of 

n+ a-Si is enhanced by applying substrate bias and is attributed to densification and fewer 

induced defects in the films by the biased sputter deposition. 

The crystallization speed and temperature can be enhanced and lowered, 

respectively, by annealing substrates biased during a-Si deposition even if it is highly 

stressed compressively.  This suggests that the enhanced number of nucleation sites 

induced by ion bombardment is a more dominant factor than the induced stress in low 

temperature crystallization of a-Si. 
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The fully sputter-deposited TFTs fabricated with substrate biased SiNx, a-Si, and 

n+ a-Si films has reasonably good electrical properties up to 0.48 cm2/Vs field effect 

mobility, 107 on/off current ratio, and below 1.2 V threshold voltage.  The TFT properties 

were degraded with an increase in the back channel etch depth and this is attributed to 

interfacial defects that are generated during the back channel etch process.  Finally, a 

lower threshold voltage, higher on-current, and higher on/off current ratio, are 

demonstrated with a thin gate SiNx TFT (150 nm) versus a TFT with thicker gate SiNx 

(300 nm). 

A 20×20 active matrix thin film transistor array with integrated vertically aligned 

carbon nanofibers grown by Ni catalyst in DC-PECVD has been fabricated and 

characterized.  This device provides great potential to perform direct cell sensing, probing, 

and recording with a high electrode density and active addressability.  Consequently, 

actively addressed nanofiber arrays enable bidirectional interfacing with tissue matrices 

in a format that provides intercellular positioning of electrode elements as well as the 

potential for intracellular residence of probes within individual cells.  In a near future 

study, we will be investigating the electrochemical characteristics of the TFT array in 

various biological electrolyte solutions to evaluate how the electrical properties of the 

array change with voltage and frequency.  Finally, the fabrication and characterization of 

TFT-CNF devices for recording and stimulating live bio-cells with active addressability 

will be exploited. 

 

 



 200

 

 

 

References 



 201

1 A. Mohr, W. Finger, K. J. Fohr et al., "Performance of a thin film microelectrode 

array for monitoring electrogenic cells in vitro," Sensors and Actuators B 

(Chemical) B34 (1-3), 265 (1996). 

2 V. Bucher, M. Graf, M. Steizle et al., "Low-impedance thin-film polycrystalline 

silicon microelectrodes for extracellular stimulation and recording," Biosensors & 

Bioelectronics 14 (7), 639 (1999). 

3 Pierre Thiebaud, Cynthia Beuret, Milena Koudelka-Hep et al., "Array of Pt-tip 

microelectrodes for extracellular monitoring of activity of brain slices," 

Biosensors & Bioelectronics 14 (1), 61 (1999). 

4 E. Claverol-Tinture and J. Pine, "Extracellular potentials in low-density 

dissociated neuronal cultures," Journal of Neuroscience Methods 117 (1), 13 

(2002). 

5 Conrad D. James, Andrew J. H. Spence, Natalie M. Dowell-Mesfin et al., 

"Extracellular recordings from patterned neuronal networks using planar 

microelectrode arrays," IEEE Transactions on Biomedical Engineering 51 (9), 

1640 (2004). 

6 V. Bucher, B. Brunner, C. Leibrock et al., "Electrical properties of a light-

addressable microelectrode chip with high electrode density for extracellular 

stimulation and recording of excitable cells," Biosensors & Bioelectronics 16 (3), 

205 (2001). 



 202

7 V. Bucher, J. Brugger, D. Kern et al., "Electrical properties of light-addressed 

sub- mu m electrodes fabricated by use of nanostencil-technology," 

Microelectronic Engineering 61-62, 971 (2002). 

8 P. K. Weimer, "The TFT -  a new thin-film transistor," Proc. IRE 50, 1462 (1962). 

9 P. G. LeComber, W. E. Spear, and A Gaith, "Amorphous-silicon field-effect 

device and possible application," Electronics Letters 15, 179 (1979). 

10 K. D. Mackenzie, A. J. Snell, I. French et al., "The characteristics and properties 

of optimised amorphous silicon field effect transistors," Applied Physics A 

(Solids and Surfaces) A31 (2), 87 (1983). 

11 A. J. Snell, K. D. Mackenzie, W. E. Spear et al., "Application of amorphous 

silicon field effect transistors in addressable liquid crystal display panels," 

Applied Physics 24 (4), 357 (1981). 

12 M. Katayama, "TFT-LCD technology," Thin Solid Films 341 (1-2), 140 (1999). 

13 F. Morin, "Amorphous silicon TFTs and their applications," Microelectronic 

Engineering 19 (1-4), 171 (1992). 

14 Shunsuke Tomiyama, Takashi Ozawa, Hisao Ito et al., "Amorphous silicon thin 

film transistors and application to image sensors," Journal of Non-Crystalline 

Solids 198-200 (pt 2), 1087 (1996). 

15 P. Estrela, A. G. Stewart, F. Yan et al., "Field effect detection of biomolecular 

interactions," Electrochimica Acta 50 (25-26), 4995 (2005). 



 203

16 L. Mariucci, G. Fortunato, A. Pecora et al., "Hydrogenated amorphous silicon 

technology for chemically sensitive thin-film transistors," Sensors and Actuators, 

B: Chemical B6 (1-3), 29 (1992). 

17 A. M. Brockhoff, W. M. Arnoldbik, and F. H. P. M. Habraken, "Study of the 

permeability of thin films of a-Si:H using MeV ion beams," Nuclear Instruments 

and Methods in Physics Research, Section B: Beam Interactions with Materials 

and Atoms 190 (1-4), 226 (2002). 

18 Jean-Pierre Moy, "Recent developments in X-ray imaging detectors," Nuclear 

Instruments and Methods in Physics Research, Section A: Accelerators, 

Spectrometers, Detectors and Associated Equipment 442 (1-3), 26 (2000). 

19 Jean-Pierre Moy, "Large area X-ray detectors based on amorphous silicon 

technology," Thin Solid Films 337 (1-2), 213 (1999). 

20 H. Mahfoz-Kotb, A. C. Salaun, T. Mohammed-Brahim et al., Strasbourg, France, 

2003 (unpublished). 

21 R. A. Street and M. J. Thompson, "Electronic states at the hydrogenated 

amorphous silicon/silicon nitride interface," Applied Physics Letters 45 (7), 769 

(1984). 

22 Y. Kuo, "Plasma etching and deposition for a-Si:H thin film transistors," Journal 

of the Electrochemical Society 142 (7), 2486 (1995). 

23 Young Hee Byun, Michael Shur, Michael Hack et al., "New analytical 

polycrystalline-silicon thin-film transistor model for computer aided design and 

parameter extraction," Solid-State Electronics 35 (5), 655 (1992). 



 204

24 Byun Young Hee, M. Shur, M. Hack et al., "New analytical polycrystalline-

silicon thin-film transistor model for computer aided design and parameter 

extraction," Solid-State Electronics 35 (5), 655 (1992). 

25 M. Endo, Y. A. Kim, T. Hayashi et al., "Structural characterization of cup-

stacked-type nanofibers with an entirely hollow core," Applied Physics Letters 80 

(7), 1267 (2002). 

26 A. Krishnan, E. Dujardin, M. M. J. Treacy et al., "Graphitic cones and the 

nucleation of curved carbon surfaces," Nature 388 (6641), 451 (1997). 

27 H. W. Kroto, J. R. Heath, S. C. O'Brien et al., "C/sub 60/: Buckminsterfullerene," 

Nature 318 (6042), 162 (1985). 

28 S. Iijima, "Helical microtubules of graphitic carbon," Nature 354 (6348), 56 

(1991). 

29 W. Kratschmer, L. D. Lamb, K. Fostiropoulos et al., "Solid C/sub 60/: a new form 

of carbon," Nature 347 (6291), 354 (1990). 

30 A. V. Melechko, V. I. Merkulov, T. E. McKnight et al., "Vertically aligned 

carbon nanofibers and related structures: controlled synthesis and directed 

assembly," Journal of Applied Physics 97 (4), 41301 (2005). 

31 M. J. Bronikowski, P. A. Willis, D. T. Colbert et al., "Gas-phase production of 

carbon single-walled nanotubes from carbon monoxide via the HiPco process: A 

parametric study," Journal of Vacuum Science & Technology A (Vacuum, 

Surfaces, and Films) 19 (4, pt.1-2), 1800 (2001). 



 205

32 A. M. Cassell, J. A. Raymakers, Kong Jing et al., "Large scale CVD synthesis of 

single-walled carbon nanotubes," Journal of Physical Chemistry B 103 (31), 6484 

(1999). 

33 W. Z. Li, S. S. Xie, L. X. Qian et al., "Large-scale synthesis of aligned carbon 

nanotubes," Science 274 (5293), 1701 (1996). 

34 R. T. K. Baker, M. A. Barber, R. J. Waite et al., "Nucleation and growth of carbon 

deposits from the nickel catalyzed decomposition of acetylene," Journal of 

Catalysis 26 (1), 51-62 (1972). 

35 A. Kock, P. K. De Bokx, E. Boellaard et al.,  Journal of Catalysis 96, 468 (1985). 

36 A. V. Melechko, V. I. Merkulov, D. H. Lowndes et al., "Transition between 'base' 

and 'tip' carbon nanofiber growth modes," Chemical Physics Letters 356 (5-6), 

527 (2002). 

37 B. O. Boskovic, V. Stolojan, R. U. A. Khan et al., "Large-area synthesis of carbon 

nanofibres at room temperature," Nature Materials 1 (3), 165 (2002). 

38 V. I. Merkulov, D. H. Lowndes, Y. Y. Wei et al., "Patterned growth of individual 

and multiple vertically aligned carbon nanofibers," Applied Physics Letters 76 

(24), 3555 (2000). 

39 S. B. Lee, K. B. K. Teo, M. Chhowalla et al., "Study of multi-walled carbon 

nanotube structures fabricated by PMMA suspended dispersion," Microelectronic 

Engineering 61-62, 475 (2002). 



 206

40 T. E. McKnight, A. V. Melechko, D. W. Austin et al., "Microarrays of vertically 

aligned carbon nanofiber electrodes in an open fluidic channel," Journal of 

Physical Chemistry B 108, 7115-7125 (2004). 

41 T. E. McKnight, A. V. Melechko, G. Griffin et al., "Intracellular integration of 

synthetic nanostructures with viable cells for controlled biochemical 

manipulation," Nanotechnology 14 (5), 551 (2003). 

42 H. Choe and Kim Sang-Gab, "Effects of the n/sup +/ etching process in TFT-LCD 

fabrication for Mo/Al/Mo data lines," Semiconductor Science and Technology 19 

(7), 839 (2004). 

43 M. Ikeda, T. Oka, M. Atsuta et al., Hamamatsu, Japan, 1995 (unpublished). 

44 K. Okajima, T. Sato, T. Dohi et al., "Two-step-etching process of MoW gate 

metal on large TFT glass substrates," Vacuum 51 (4), 765 (1998). 

45 P. Petroff, T. T. Sheng, A. K. Sinha et al., "Microstructure, growth, resistivity, 

and stresses in thin tungsten films deposited by r.f. sputtering," Journal of Applied 

Physics 44 (6), 2545 (1973). 

46 H. P. Shukovsky, R. M. Rose, and J. Wulff, "The 1ow temperature electrical 

resistivity of lattice defects in deformed tungsten single crystal," Acta 

Metallurgica 14 (7), 830 (1966). 

47 R. C. Sun, T. C. Tisone, and P. D. Cruzan, "Internal stresses and resistivity of 

low-voltage sputtered tungsten films [microelectronic cct. conductor]," Journal of 

Applied Physics 44 (3), 1009 (1973). 



 207

48 L. D. Whitmire and F. R. Brotzen, "The effects of deformation on the electrical 

resistivity of molybdenum single crystals," Transactions of the Metallurgical 

Society of AIME 239 (6), 827 (1967). 

49 C. S. McCormick, C. E. Weber, J. R. Abelson et al., "Low temperature fabrication 

of amorphous silicon thin film transistors by dc reactive magnetron sputtering," 

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15 

(5), 2770 (1997). 

50 S. Suyama, A. Okamoto, and T. Serikawa, "Electrical conduction mechanism and 

breakdown property in sputter-deposited silicon dioxide films on polycrystalline 

silicon," Journal of Applied Physics 65 (1), 210 (1989). 

51 T. Serikawa and S. Shirai, "Ultra-thin silicon-oxide films by sputter-deposition 

and their application to high-quality poly-Si TFTs," Vacuum 51 (4), 781 (1998). 

52 Seung-Ik Jun, P. D. Rack, T. E. McKnight et al., "Electrical and microstructural 

characterization of molybdenum tungsten electrodes using a combinatorial thin 

film sputtering technique," Journal of Applied Physics 97 (5), 54906 (2005). 

53 P. Carlsson, C. Nender, H. Barankova et al., "Reactive sputtering using two 

reactive gases, experiments and computer modeling," Journal of Vacuum Science 

& Technology A (Vacuum, Surfaces, and Films) 11 (4, pt.1), 1534 (1993). 

54 H. Aguas, E. Fortunato, V. Silva et al., "High quality a-Si:H films for MIS device 

applications," Thin Solid Films 403-404, 26 (2002). 

55 J. W. Medlin, A. H. McDaniel, M. D. Allendorf et al., "Effects of competitive 

carbon monoxide adsorption on the hydrogen response of metal-insulator-



 208

semiconductor sensors: the role of metal film morphology," Journal of Applied 

Physics 93 (4), 2267 (2003). 

56 S. D. Theiss, C. C. Wu, M. Lu et al., San Francisco, CA, USA, 1997 

(unpublished). 

57 Y. H. Liang, N. Maley, and J. R. Abelson, "The improved stability of 

hydrogenated amorphous silicon films grown by reactive magnetron sputtering at 

high substrate temperature," Journal of Applied Physics 75 (7), 3704 (1994). 

58 Christine Algate, "PECVD and PVD Systems for TFT-LCD Manufacturing," 

FPD Update, Semiconductor Equipment and Materials International 2 (4), 9 

(2002). 

59 E. Bustarret, M. Bensouda, M. C. Habrard et al., "Configurational statistics in a-

Si/sub x/N/sub y/H/sub z/ alloys: a quantitative bonding analysis," Physical 

Review B (Condensed Matter) 38 (12), 8171 (1988). 

60 T. Makino, "Composition and structure control by source gas ratio in LPCVD 

SiN," Journal of the Electrochemical Society 130 (2), 450 (1983). 

61 Bae Sanghoon, A. K. Kalkan, Cheng Shangcong et al., "Characteristics of 

amorphous and polycrystalline silicon films deposited at 120 degrees C by 

electron cyclotron resonance plasma-enhanced chemical vapor deposition," 

Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films) 16 

(3), 1912 (1998). 



 209

62 Y. Mishima, M. Takei, T. Uematsu et al., "Polycrystalline silicon formed by 

ultrahigh-vacuum sputtering system," Journal of Applied Physics 78 (1), 217 

(1995). 

63 T. Voutsas, H. Nishiki, M. Atkinson et al., "Sputtering technology of Si films for 

low-temperature poly-Si TFTs," Sharp Technical Journal (80), 36 (2001). 

64 S. I. Jun, T. E. McKnight, A. V. Melechko et al., "Characterisation of reactively 

sputtered silicon oxide for thin-film transistor fabrication," Electronics Letters 41 

(14), 822 (2005). 

65 Seung-Ik Jun, Philip D. Rack, Timothy E.  McKnight et al., "Electrical 

characterization of amorphous silicon thin film transistors fabricated by rf 

magnetron sputtering with substrate bias," Journal of Applied Physics (2006). 

66 A. Straub, P. I. Widenborg, A. Sproul et al., "Fast and non-destructive assessment 

of epitaxial quality of polycrystalline silicon films on glass by optical 

measurements," Journal of Crystal Growth 265 (1-2), 168 (2004). 

67 S. Strehlke, S. Bastide, and C. Levy-Clement, "Optimization of porous silicon 

reflectance for silicon photovoltaic cells," Solar Energy Materials and Solar Cells 

58 (4), 399 (1999). 

68 Kuo Yue, "PECVD silicon nitride as a gate dielectric for amorphous silicon thin 

film transistor. Process and device performance," Journal of the Electrochemical 

Society 142 (1), 186 (1995). 

69 G. Farhi, M. Aoucher, and T. Mohammed-Brahim, "Study of the solid phase 

crystallization behavior of amorphous sputtered silicon by X-ray diffraction and 



 210

electrical measurements," Solar Energy Materials and Solar Cells 72 (1-4), 551 

(2002). 

70 Y. Z. Wang and O. O. Awadelkarim, "Metal-induced solid-phase crystallization 

of hydrogenated amorphous silicon: dependence on metal type and annealing 

temperature," Applied Physics A (Materials Science Processing) 70 (5), 587 

(2000). 

71 A. R. Joshi, T. Krishnamohan, and K. C. Saraswat, "A model for crystal growth 

during metal induced lateral crystallization of amorphous silicon," Journal of 

Applied Physics 93 (1), 175 (2003). 

72 Seung-Ik Jun, Yong-Ho Yang, Jae-Bok Lee et al., "Electrical characteristics of 

thin-film transistors using field-aided lateral crystallization," Applied Physics 

Letters 75 (15), 2235 (1999). 

73 M. Miyasaka and J. Stoemenos, "Excimer laser annealing of amorphous and 

solid-phase-crystallized silicon films," Journal of Applied Physics 86 (10), 5556 

(1999). 

74 T. Mizuki, J. S. Matsuda, Y. Nakamura et al., "Large domains of continuous grain 

silicon on glass substrate for high-performance TFTs," IEEE Transactions on 

Electron Devices 51 (2), 204 (2004). 

75 Y. Kimura, M. Kishi, and T. Katoda, "Effects of elastic stress introduced by a 

silicon nitride cap on solid-phase crystallization of amorphous silicon," Journal of 

Applied Physics 86 (4), 2278 (1999). 



 211

76 P. Hashemi, J. Derakhshandeh, S. Mohajerzadeh et al., "Stress-assisted nickel-

induced crystallization of silicon on glass," Journal of Vacuum Science & 

Technology A (Vacuum, Surfaces, and Films) 22 (3), 966 (2004). 

77 Seung-Ik Jun, Philip D. Rack, Timothy E. McKnight et al., "Direct-current 

substrate bias effects on amorphous silicon sputter-deposited films for thin film 

transistor fabrication," Applied Physics Letters 87 (13), 132108 (2005). 

78 Manuel Cardona and Fred H. Pollak, "Energy-Band Structure of Germanium and 

Silicon: The k·p Method," Physical Review 142, 530 (1966). 

79 R. Tsu, J. Gonzalez-Hernandez, S. S. Chao et al., "Critical volume fraction of 

crystallinity for conductivity percolation in phosphorus-doped Si:F:H alloys," 

Applied Physics Letters 40 (6), 534 (1982). 

80 C. Spinella, S. Lombardo, and F. Priolo, "Crystal grain nucleation in amorphous 

silicon," Journal of Applied Physics 84 (10), 5383 (1998). 

81 W. A. Brantley, "Calculated elastic constants for stress problems associated with 

semiconductor devices," Journal of Applied Physics 44 (1), 534 (1973). 

82 H. M. Choi, S. K. Choi, O. Anderson et al., "Influence of film density on 

residual stress and resistivity for Cu thin films deposited by bias sputtering," Thin 

Solid Films 358 (1-2), 202 (2000). 

83 P. J. Jennings, J. C. L. Cornish, B. W. Clare et al., "Study of the effects of 

annealing and outgassing on hydrogenated amorphous silicon," Thin Solid Films 

310 (1-2), 156 (1997). 



 212

84 Kyung Hoon Jun, Koeng Su Lim, Sang Youl Kim et al., "Optical evidence of 

amorphous-network change in the initial-growth stage a-Si:H," Journal of Non-

Crystalline Solids 275 (1), 59 (2000). 

85 G. E. Possin, Anaheim, CA, USA, 1991 (unpublished). 

86 M. J. Powell, J. A. Chapman, A. G. Knapp et al., "A 6-in. full-color liquid-crystal 

television using an active matrix of amorphous-silicon TFTs," Proceedings of the 

S.I.D 29 (3), 227 (1988). 

87 K. Takechi, A. N. Hirano, H. Hayama et al., "Back-channel-oxidized a-Si:H thin-

film transistors," Journal of Applied Physics 84 (7), 3993 (1998). 

88 J. H. Chen, Z. P. Huang, D. Z. Wang et al., "Electrochemical synthesis of 

polypyrrole films over each of well-aligned carbon nanotubes," Synthetic Metals 

125 (3), 289 (2001). 

89 Jee Yeon Lim, Woon-kie Paik, and In-Hyeong Yeo, "A study of ion transports 

and growth of conducting polypyrrole with electrochemical quartz crystal 

microbalance," Synthetic Metals 69 (1-3), 451 (1995). 

 

 



 213

 

 

 

Appendix Run sheet for TFT-VACNF processing 

 



 214

Updated: February 20, 2006 (Rev.3.0) 
 
Run ID  Name  
Date of run start  Date of run end  
Purpose  
 
Date Layer Process Equipment Conditions/Spec. Remark/Results

/ Thermal 
oxide 

HMDS 
priming 

YES oven 
#1 

Recipe #2, 2 min 
(Total ~ 25 min)  

/ Align key PR coating /  
Baking Spinner 

PR: 955CM-2.1 
Coating: 
3000rpm/60sec 
SB: 90°C/90sec 

~ 1.5um 

/  
Exposure /  
Developing 
(1. Align) 

Stepper 

Recipe: 
INTRA\MARST 
EXP: 0.40sec 
PEB: 120°C/90s 
DEV: CD26/70s 

 

/  Descum RIE #1 
Recipe: 
DESCUM 
Time: 30sec 

 

/  
Etching  
(Buffer 
SiO2) 

RIE #1 

Recipe: OXIDE1 
RF power: 200W 
Gas: CHF3/O2 
(75/7) 
Press: 200mT 
Proc. time: 500sec 

 

/  PR wet strip Strip bath Temp.: 70C 
Time:  20min  

/  PR dry strip RIE #1 

Recipe: POLY-
ICP 
ICP power: 300W 
RF power: 50W 
Gas: O2 (50) 
Press: 350mT 
Proc. time: 180sec 
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/ Gate Deposition 
(Cr, 250nm) Sputter  

RF: 200W 
Pressure: 3mT 
Gas: 25sccm Ar-
H2 
Temp: 200°C 
Proc. time: 50min 

Gun #4 (or #1) 

/  Rs 
measurement Rs meter Rs 0.97±0.2         

ohm/sq.  

/  PR coating /  
Baking Spinner 

PR: 955CM-2.1 
Coating: 
3000rpm/60sec 
Soft baking: 
90C/90sec 

~ 1.5um 

/  
Exposure /  
Developing 
(2. Gate) 

Stepper 

Recipe: 
INTRA\LEADST 
EXP: 0.38sec 
PEB: 120C/90s 
DEV: CD26/70s 

 

/  Etching (Cr) Wet etch 
Cr etchant 
Temp: 40C 
Time: 2min30sec 

 

/  PR wet strip Strip bath Temp.: 70C 
Time:  20min 

 
 

/ Active 
Deposition 
(SiNx, 
300nm) 

Sputter 

RF power: 200W 
Gas: Ar-
H2/N2(25/50) 
Pressure: 5mT 
Temp.: 200°C 
DC bias: 30W 
Proc. time: 
187min 

Si target 
(Gun #2) 

  (a-Si, 
200nm) Sputter 

RF power: 200W 
Gas: Ar-H2(25) 
Pressure: 5mT 
Temp.: 200°C 
DC bias: 30W 
Proc. time: 59min 

Si target 
(Gun #2) 
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  (n+ a-Si, 
50nm) Sputter 

RF power: 200W 
Gas: Ar-H2(25) 
Pressure: 5mT 
Temp.: 200°C 
DC bias: 30W 
Proc. time: 15min 

n+ Si target 
(Gun #3) 
 
Resistivity 
= 3.9 Ωcm 

/ HMDS HMDS 
priming 

YES oven 
#1 

Recipe #2, 2min 
(Total ~25min) 

Optional 
process 

  PR coating /  
Soft baking Spinner 

PR: 955CM-2.1 
Coating: 
3000rpm/60sec 
Soft baking: 
90C/90sec 

 

/  

Exposure /  
Developing 
(3. Active 
ReV_2) 

Stepper 

Recipe: 
INTRA\LEADST 
EXP: 0.40sec 
PEB: 120°C/90s 
DEV: CD26/70s 

 

/  
Dry etching 
(n+ a-Si/a-
Si) 

RIE #1 

RF power: 100W 
SF6/O2 (40/2) 
Pressure: 100mT 
Proc. time: 45s 

EPD+15 OE% 

/  PR wet strip Strip bath Temp.: 70C 
Time:  20min  

/  PR dry strip RIE 
Recipe: POLY-
ICP 
Proc.: 180sec 

 

/  BOE clean Wet bath 
20(H2O) : 1(10:1 
HF) 
15sec dip 

 

/ S/D Deposition 
(Cr, 250nm) Sputter  

RF: 200W 
Pressure: 3mT 
Gas: 25sccm Ar-
H2 
Temp: 200°C 
Proc. time: 50min 

Gun #4 (or #1) 
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/  Rs 
measurement Rs meter Rs 0.97±0.2         

ohm/sq.  

 CNF PR coating /  
Soft baking Spinner 

PR: 955CM-0.7 
Coating: 
3000rpm/60sec 
Soft baking: 
90C/90sec 

 

/  
Exposure /  
Developing 
(4. CNF) 

Stepper 
(ORNL) 

Recipe: 
INTRA\LEADST 
EXP: 1.5sec 
PEB: 120C/90sec 
DEV: CD26/70s 

 

/  Deposition 
(Ni, 10A) 

E-beam 
evaporator 
(ORNL) 

RF power:             
W 
Pressure: 5mT 
Gas flow rate: 
25sccm Ar 
Temp: RT 
Process time:           
min 

 

/  Lift-off Wet bath 
(ORNL) 

Solution: Aceton 
Lift-off time: ~1h  

/  CNF growth 
DC-
PECVD 
(ORNL) 

Temp: 600°C 
Gas: C2H2(35) 
Press: 3000mTorr 
Amp: 400mA 
Proc. Time: 1h 

 

/ S/D, N+ 
(BCE) 

PR coating /  
Baking Spinner 

PR: 955CM-2.1 
Coating: 
3000rpm/60sec 
Soft baking: 
90C/90sec 

~ 1.5um 
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/  
Exposure /  
Developing 
(5. S/D) 

Stepper 

Recipe: 
INTRA\LEADST 
EXP: 0.38sec 
PEB: 120C/90s 
DEV: CD26/70s 

 

/  Etching (Cr) Wet etch 
Cr etchant 
Temp: 40C 
Time: 2min30sec 

 

/  

Back 
channel 
etching 
(n+ a-Si/a-
Si) 

RIE #1 

RF power: 40W 
SF6/O2/CF4 
(20/3/20) 
Pressure: 100mT 
Total process 
time: 20s 

Etched depth:  
~110nm 

  PR wet strip Strip bath Temp.: 70C 
Time:  20min 

 
 

/  PR dry strip RIE 

Recipe: POLY-
ICP 
Process time: 
180sec 

 

/ Via hole (1) 
Deposition 
(1st SiNx, 
25nm) 

Sputter 

RF power: 50W 
Gas: Ar-
H2/N2(25/50) 
Pressure: 5mT 
Temp.: 200°C 
DC bias: 30W 
Proc. time: 35min 

Si target 
(Gun #2) 

  
Deposition 
(2nd SiNx, 
200nm) 

Sputter 

RF power: 200W 
Gas: Ar-
H2/N2(25/50) 
Pressure: 5mT 
Temp.: 200°C 
DC bias: 30W 
Proc. time: 
120min 

Si target 
(Gun #2) 

/  HMDS 
priming 

YES oven 
#1 

Recipe #2, 2min 
(Total ~25min)  
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/  PR coating /  
Soft baking Spinner 

PR: 955CM-2.1 
Coating: 
3000rpm/50sec 
Soft baking: 
90C/90sec 

PR coating /  
Soft baking 

/  
Exposure /  
Developing 
(6. VIA1) 

Stepper 

Recipe: 
INTRA\LEADST 
EXP: 0.42sec 
PEB: 120C/90s 
DEV: CD26/70s 

 

/  Descum RIE #1 
Recipe: 
DESCUM 
Time: 30sec 

 

/  
Dry etching 
(g-SiNx, 
PVX SiNx) 

RIE #1 

RF power: 100W 
SF6/O2 (40/4) 
Pressure: 100mT 
Proc. time: 360s 

EPD+50 OE% 

  PR dry 
ashing RIE #1 

Recipe: poly 
Gas: O2(50) 
Proc. time: 85sec 

 

  BOE wet 
etch Wet bath 

10:1 BOE 
Temp: RT 
Proc. Time: 25sec 

 

  PR wet strip Strip bath Temp.: 70C 
Time:  20min 

 
 

/  PR dry strip RIE 

Recipe: POLY-
ICP 
Process time: 
180sec 

 

/ Via hole (2) 
SU-8 coating 
/  
Soft baking 

Spinner 
(for SU-8 
and 
PMMA) 

PR: SU-8 2010 
Coating: 
2000rpm/50sec 
Soft baking:  
1st 65C/60s 
2nd 95C/120s 

~ 9 um 
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/  
Exposure /  
Developing 
(7. VIA2) 

Mask 
aligner 

EXP: 25sec 
PEB:  
1st  65C/60s 
2nd  95C/75s 
DEV: SU-8 
developer/70sec 
IPA rinse 
DI rinse 

 

 TFT 
measurement 

I-V, 
capacitance 

Probe 
station 
(ORNL) 

Mobility: 
Ion (+10V): 
Ioff (-8V): 
Vth: 
Subthreshold 
swing: 

 

 Inspection  Microscopy Pass / Fail  

 Dicing  
Disco 
Dad/2H6T 
Dicing Saw 

5×5mm  

/ Device 
integration 

Wire 
bonding 

K&S Wire 
Bonders   

/ Chip 
Housing     
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