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Abstract 
 
 Dihydrofolate Reductases (DHFRs) have been identified in nearly every proteome 

and are essential for most biosynthetic pathways involving one-carbon transfer reactions 

due to their recycling of tetrahydrofolate (THF). They catalyze the NADPH-dependent 

reduction of dihydrofolate (DHF), producing THF. Inhibition of DHFR ultimately 

depletes cellular pools of THF; causing a reduced supply of thymine nucleotides for 

DNA synthesis, resulting in genomic instability and cell death. Therefore, DHFRs remain 

important drug targets in antimicrobial and chemotherapeutic treatments. Despite 

exhaustive investigation of E. coli chromosomal DHFR, controversy persists over the 

dynamics of regulatory loops (the Met20, the βF-βG, and the βG-βH) and the nature of 

the interaction between methotrexate (MTX), a tight-binding anti-cancer drug, and Asp 

27, the only ionizable residue in the active site. Also of importance is the ionization state 

of Asp 27 in the apoenzyme and other complexes. Hydrogen atoms (H) likely play a 

critical role in DHFR ligand binding and catalysis, yet are difficult to directly visualize. 

High resolution X-ray and neutron crystallography have been utilized in this dissertation 

to provide accurate positions of H within the DHFR active site and to probe dynamics of 

the enzyme. The ultrahigh resolution X-ray structures of DHFR/MTX (1.0Å; chapter 4), 

apo DHFR (1.05Å), and DHFR/MTX/NADPH (1.4Å; both chapter 5) have been solved. 

Novel features were observed in the electron density maps, including the ability to model 

the Met20 loop in the apoenzyme as closed (reported disordered previously) and alternate 

side chain conformations in all the structures. The high data-to-parameter ratio of the 

apoenzyme and the MTX data sets allowed anisotropic B-factor refinement and full-

matrix refinement to calculate carboxylate bond lengths and estimates of their deviations. 
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The apoenzyme has highly different bond lengths for its Asp 27 carboxylate, thus, it is 

neutral at physiological pH. The carboxylate bond lengths of the Asp 27 in both the 

monomers of the asymmetric unit of the DHFR/MTX crystal are nearly equal, suggesting 

it is charged at physiological pH.  

 If H is substituted for deuterium (D), neutrons are especially powerful probes due 

to D’s strong positive scattering length. To assign protonation states to the MTX and the 

Asp 27 by the direct identification of D, a neutron structure has been solved to 2.2Å 

resolution from nearly 80% complete data collected on a 0.3mm3 crystal (chapter 4). 

Prerequisite to the neutron experiment was the growth and D2O-soaking of large-volume 

crystals (chapter 3). The DHFR/MTX cocrystal possesses the largest primitive unit cell 

and is the smallest D2O-soaked crystal used successfully in a neutron diffraction 

experiment. This is the 11th novel protein ever to be solved by neutron crystallography 

(the 16th total structure). Nearly 2/3 of the amide backbone has undergone H/D exchange, 

an indicator of protein dynamics. However, monomer B, where the Met20 loop is closed, 

is ~10% more exchanged than monomer A, where the Met20 loop is partially occluded. 

Based on results from D occupancy refinement and analysis of the neutron maps, it is 

concluded that the MTX N1 is protonated when bound to DHFR. Paired with the X-ray 

data, this is new strong evidence that the Asp 27•MTX interaction is ionic in nature.  

 To increase the signal-to-noise ratio in future neutron experiments, perdeuterated 

protein has been produced and its D enrichment measured by mass spectrometry. X-ray 

data (to 1.2Å) has now been collected on a perdeuterated DHFR/MTX cocrystal and it is 

isomorphous to the native cocrystals (chapter 3).  
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Chapter 1. Introduction 
1.1 Pyrimidine nucleotide & amino acid biosynthesis and tetrahydrofolate cofactors 

 A commonality shared among all known organisms is the maintenance of genetic 

material in the form of ribonucleic and/or deoxyribonucleic acid (RNA and DNA, 

respectively) and the requirement of its correct replication and transmission from parent 

to progeny. Additionally, proteins, which perform the bulk of the tasks within living 

cells, are universally composed of different linear sequences and percentages of the 20 

common amino acids. Although the biosynthetic pathways which are used to create them 

are rigorously regulated at multiple levels (i.e. transcriptionally, post-translationally and 

others), the supply of the monomeric units which comprise the larger polymeric forms of 

RNA, DNA, and proteins must be kept in ample abundance. For the generation of one of 

the pyrimidine nucleotides in DNA, thymine, and the amino acid, methionine, 

tetrahydrofolate (THF) is a necessary cofactor for the enzymes catalyzing the direct 

chemical reactions. THF is widely utilized in these and other pathways because of its 

capability to transfer one-carbon (C1) units, even when it is in different oxidation states 

(Voet et al. 1995). A major entry point of THF into biosynthetic reactions is as the 

product of the serine hydroxymethyltransferase (SHMT) reaction, N5, N10-methylene-

THF, where the methylene group branched between the N5 and N10 atoms can be used 

as the C1-unit for transfer. N5, N10-methylene-THF serves as cofactor for the thymidylate 

synthase (TS) reaction, converting deoxyuridylmonophosphate (dUMP) into 

deoxythymidylmonophosphate (dTMP) via methyl transfer to the dUMP C5 atom from 

the THF metabolite. Six individual enzymatic reactions are required in the de novo 

pyrimidine biosynthetic pathway in bacteria to generate UMP from ATP, glutamine, and 
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CO2. From UMP, CTP can also be produced in addition to the dTMP from the TS 

reaction. The dTMP products from the TS reaction can then be phosphorylated by a 

nucleotide monophosphate kinase to dTTP which then can be incorporated into DNA at S 

phase or during a DNA damage response (Alberts et al. 1994). A by-product of the TS 

reaction is dihydrofolate (DHF) (Figure 1.1A). For most organisms, in order to replenish 

the stores of THF (Figure 1.1B) to serve as cofactor for future TS and other important 

reactions, DHF must be converted back into N5, N10-methylene-THF (Figure 1.1C) by 

sequential activities involving reduction by dihydrofolate reductase (DHFR) and 

methylation by SHMT (Figure 1.2).  

1.2 General aspects of DHFRs 

             DHFRs are generally conserved across species from Archaea to the higher 

mammals, although recently it has been discovered that a large number of microbial 

species utilize an alternative flavin cofactor-dependent TS pathway to generate dTMP 

nucleotides (Myllykallio et al. 2002) (Myllykallio et al. 2003), thus, precluding the 

necessity for DHFR to help recycle THF. However, for most organisms, DHFRs are 

critical for multiple metabolic pathways (Kraut et al. 1987). They catalyze the NADPH-

dependent reduction of 7,8-DHF to 5,6,7,8-THF. It is a two-step process where reduction 

occurs across the double bond between the N5 and C6 atoms of the DHF pteridine ring; 

most evidence indicates that proton transfer occurs first, possibly from solvent or from a 

titratable residue within or near the enzyme’s active site, with concomitant or subsequent 

transfer of a hydride (H-) from the C4 atom of the nicotinamide ring of the NADPH 

cofactor (a detailed mechanism and figure for E. coli DHFR is provided later in the  
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Figure 1.1: DHF is the product of the Thymidylate Synthase (TS) reaction and must 
be recycled back to form N5, N10-methylene-THF. A) The chemical structure of the 
TS-reaction product dihydrofolate (DHF) and B) the C1-unit (highlighted in the red box) 
transferred by the cofactor, N5, N10-methylene-tetrahydrofolate (THF), required for the 
TS reaction to make dTMP nucleotides. C) THF, the product of the DHFR reaction, is an 
intermediary metabolite in the recycling process to restore pools of N5, N10-methylene-
THF.  
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Figure 1.2: The pathway to thymine nucleotides and the recycling of THF. The 
synthesis of dTMP nucleotides can only occur in most organisms via a THF-dependent 
TS reaction. Restoration of the N5, N10-methylene-THF supply for continued production 
of dTMP occurs via two enzymatic reactions involving DHFR and SHMT. Direct or 
indirect (at the DHFR step) inhibition of TS (indicated by the red lightning bolts) by 
several well-known drugs such as fluorouracils (converted to F-dUMP in the cell) or 
antifolates such as amethopterin (or methotrexate (MTX)) and trimethoprim (TMP) have 
been extremely successful contributors in anti-cancer, anti-microbial, and anti-protozoan 
therapeutic regimes.  
 
 
 

 4



chapter). Mammals are unable to synthesize folate and its derivatives so they must rely 

on diet and symbiotic microorganisms living within their intestinal tract for its supply 

(Voet et al. 1995). DHFR can catalyze the reduction of folate into DHF, albeit with 

reduced efficacy as compared to reducing DHF directly to THF (Posner et al. 1996). For 

most microbial species and all multicellular species known, the proficient ability to block 

DHFR’s catalytic activity leads to interruption of DNA synthesis, genomic instability, 

and, ultimately, cell death (Schnell et al. 2004). This is mainly due to the indirect 

inhibition of TS by depleting cellular pools of N5, N10-methylene-THF. Accordingly, 

several therapeutic agents have been discovered that can inhibit TS (the fluorouracil 

compounds) or DHFR, most notably, the anti-tumor drugs aminopterin and amethopterin 

(or methotrexate (MTX)), the anti-microbial trimethoprim (TMP), (Figure 1.3A, B, C) 

(Huennekens 1994; Huennekens 1996; Schnell et al. 2004).  More recently, a vast 

number of analogs, mainly of TMP, have been synthesized and tested as successful lead 

compounds against a variety of DHFRs, including the anti-fungals pyrrolo- and pyrido-

pyrimidines, and the anti-protozoan compounds, pyrimethamine (PYR) and WR9910 

(Kuyper et al. 1996a; Kuyper et al. 1996b) (Hekmat-Nejad et al. 1997) (Li et al. 2000) 

(Zuccotto et al. 1998).  

 Due to its proficient binding to human DHFR, MTX is quite common today as 

part of a chemotherapeutic cocktail, especially for rapidly-growing tumors associated 

with acute leukemia, lymphomas, and choriocarcinomas (Voet et al. 1995), and is also 

used in anti-inflammatory treatments such as to combat rheumatoid arthritis, presumably 

DHFR being the primary target of its use in these patients. However, severe side effects  
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Figure 1.3: Common antifolate drugs that bind tightly to DHFRs. A) The anti-cancer 
and anti-inflammatory drug MTX, B) a positive charge is imparted on the N1 atom of 
MTX when it is protonated, and C) the anti-microbial and anti-protozoan drug TMP. 
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from its use persist; one primary example includes MTX, which inhibits DHFR in tumor 

and healthy cells.  Interestingly, DHFR was one of the first enzymes to exhibit increasing  

expression levels as a means of resistance in tissues where MTX had been administered 

(Huennekens, 1996). Most of the above compounds are broad-spectrum inhibitors, 

binding tightly to several forms of the DHFR enzyme; efforts to narrow this spectrum are 

ongoing, with the aforementioned TMP antibiotic having a ~105 lower Kd for most 

microbial DHFRS compared to the human enzyme (Schnell et al. 2004). In fact, TMP 

binds E. coli chromosomal DHFR with a Kd of 20 pM (Howell 2005). Recently, from 

several pathogenic species, additional DHFR genes have been cloned (such as that from 

Bacillus anthracis (Barrow et al. 2004)) and a few of their three-dimensional structures 

have been solved by X-ray crystallography (for example, those from Leishmania major 

(Knighton et al. 1994) and Mycobacterium tuberculosis (Li et al. 2000)). This has led to 

suggestions on the design of novel and more selective inhibitors of DHFR and the folate 

synthesis pathways in these species. The sequence and, perhaps more importantly, the 

structural similarities of DHFRs from different species may make this effort quite 

difficult (Figure 1.4). However, slight differences in active site residues and their 

position may make this a feasible goal (Table 1.1), and hope is also provided from the 

success and efficacy from the use of TMP as an antimicrobial drug. For the remainder of 

this thesis and for the dissertation research described here, the focus is on high resolution 

structural characterization of the chromosomal DHFR enzyme from Escherichia coli (EC 

1.5.1.3; 159 residues; 18 kilodaltons (kDa)).  
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Figure 1.4: A comparison of DHFR structures from representative species. Cα atoms 
were used for least-squares superposition in the program O with the E. coli structure as 
the template. 
 
Table 1.1: A sequence comparison of residues 5-32 of DHFRs from different species. 

E. coli DHFR 
17, 999 Da, 159 residues 
 

ALAVDRVIGMENAMPWNLPADLAWFKR
 

M. tuberculosis DHFR 
18, 000 Da, 159 residues 

AQATSGVIGRGGDIPWRLPEDQAHFRE 
 
 

B. anthracis DHFR 
19, 100 Da, 162 residues 
39.4% identity to E. coli DHFR 

VAMDENRVIGKDNNLPWRLPSELQYVK 
 

H. sapiens DHFR 
21, 000 Da, 182 residues 
36% identity to E. coli DHFR 

CIVAVSQNMGIGKNGDLPWPPLRNEFR 
 

Bold: Procaryotic active site regulatory loop sequences (e.g. Met20 for E. coli) 
Red: Active site acidic residue 1.3 E. coli DHFR: general structure  



1.3 E. coli DHFR: general structure  

 There are more than 45 X-ray structures available for E. coli DHFR in 28 

different liganded states as deposited in the Protein Data Bank (www.rcsb.org, (Berman 

et al. 2000). A recent listing of many of these structures with references, PDB codes, and  

basic crystallographic parameters (i.e. unit cell constants, resolution limits, and R-factors) 

is found in Table 1 of (Sawaya et al. 1997). DHFR’s overall three-dimensional structure 

is dominated by an α/β pseudo-Rossman fold (Creighton 1993), composed of a central 

eight-stranded ß-sheet structure, with the upper four sheets (termed βB-βE) maintaining 

the adenosine nucleotide binding (minor) subdomain (residues 38-88) while the lower 

ones (termed βA and βF-βH) maintain the substrate binding (major) subdomain (Bolin et 

al. 1982; Bystroff et al. 1990; Matthews et al. 1977; Reyes et al. 1995) (Figure 1.5). The 

DHF substrate and the NADPH cofactor bind at a cleft formed at the interface of the two 

subdomains. The major subdomain (residues 1-37 and 89-159) is also known as the loop 

domain since nearly 50% of the residues in this region are within the Met20 (residues 9-

24), βF-βG (residues 116-132), and the βG-βH (residues 142-150) loops. These loops can 

bend and contort on the ligand-binding face of the protein, surrounding the active site. In 

fact, the Met20 loop closes over the active site during catalysis and seems to enhance the 

turnover rate by occluding into the cofactor-binding site once hydride transfer has 

occurred (Falzone et al. 1994); Sawaya et al., 1997). At physiological pH, E. coli DHFR 

has a net charge of -11, however, regions important for contacting the Glu tail of the 

substrates or of MTX are rich in basic residues, imparting a positive surface potential 

(Figure 1.6).  
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Figure 1.5: Cartoon representation of the tertiary structure of E. coli DHFR bound 
to MTX. Secondary structural elements (α-helices in red and β-strands in yellow), major 
loop regions (green), the MTX inhibitor, the N- and C-termini, and the active site Asp 27 
(red) are labeled. The adenosine-binding loop (residues 62-70) is at the top of the 
structure, linking the βC and βD strands together.  
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Figure 1.6: In vacuo (ε = 0) electrostatic surface representation of E. coli DHFR 
bound to MTX. Red represents regions of the structure with a net negative electrostatic 
potential whereas blue represents regions of the structure with a net positive electrostatic 
potential. Charge complementarity exists between the Glu tail of the MTX and a cluster 
of basic residues. The active site is predominantly without charge save a small patch at 
the Asp 27•MTX N1 contact. The surface is shown at approximately 20% transparency 
to reveal the cartoon representation of the structure, similar to what is shown in Figure 
1.5. This orientation is rotated ~90° about an axis that is parallel to the plane of the paper 
as compared to the orientation in the previous figure. 
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1.4 Met20 loop dynamics and catalysis 

 From site-directed mutagenesis of the Met20 and βF-βG loop residues and from 

NMR and crystallographic studies, it is thought that the positioning of the Met20 loop is 

proposed to be indelibly linked to the positioning of the enzyme along the reaction 

coordinate (Miller et al. 1998; Miller et al. 2001; Sawaya et al. 1997); (Venkitakrishnan 

et al. 2004). The Met20 loop conformation in the context of the reaction scheme for E. 

coli DHFR is shown in Figure 1.7 and different crystallographic conformations of the 

loop are shown in Figure 1.8. As determined in several different kinetic studies, the 

reaction catalyzed by E. coli DHFR is ordered, with NADPH binding first (Km = 

0.94µM) and aiding in release of the THF product (the rate-limiting step) from the 

previous reaction cycle (Stone et al. 1982); (Stone et al. 1988); (Fierke et al. 1987). The 

Met20 loop closes over the active site with the binding of NADPH and remains until the 

chemical step has occurred. After binding the DHF substrate (Km = 1.2µM), the enzyme 

rapidly completes proton and hydride transfer (>200 s-1) and the conformation of the 

Met20 loop dramatically changes from closed over the active site to occluding into the 

nicotinamide binding site. This is caused by a reorganization of the N-terminal and core 

part of the Met20 loop, the largest changes being a 180° rotation about ψ for Ile 14 and 

repositioning of Glu 17 and Asn 18, disrupting hydrogen bonding with residues within 

the βF-βG loop (backbone atoms in Gly 121 and Asp 122) that help to stabilize the closed 

conformation (Sawaya et al. 1997). Upon changing conformation to occluded, the N-

terminal and core residues of the Met20 loop protrude into the cofactor pocket while the 

C-terminal Met20 loop residues (specifically Asn 23) form hydrogen bonds with (Schnell 

et al. 2004); (McElheny et al. 2005). A structural overlay of the closed, occluded, and  
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Figure 1.7: One catalytic cycle involves conformational changes of the Met20 loop. 
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Figure 1.8: Observed conformations of the DHFR regulatory loops (PDB ID in 
parentheses).   
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open Met20 loop conformations are shown in Figure 1.8. The open conformation has not 

been identified in solution experiments such as NMR and stopped-flow fluorescence and  

backbone and side chain atoms of Ser 148 in the βG-βH loop. While the βF-βG loop 

seems to be the anchor for the Met20 loop when it is closed, it is the βG-βH loop that 

serves a similar purpose when the Met20 loop adopts an occluded conformation  

appears to be unique to certain crystallographic environments, where it is stabilized by 

lattice contacts. The open conformation extends further out from the active site than both 

the closed and occluded forms (Sawaya et al. 1997). The terminal residues of the open 

Met20 loop conformation also makes hydrogen-bonding contacts with the other 

regulatory loops but does so to both the βF-βG and the βG-βH loops while its central 

portion extends out and away from the active site. It may be that a population of open 

conformers is important in catalysis to allow entrance and exit of substrate and cofactor 

(Schnell et al. 2004). It is interesting to note that in the crystal structures of the apo and 

holoenzyme (where only NADPH is bound) electron density for the core of the Met20 

loop (residues 16-21) is not observable, indicating disorder that may be due to time-

averaged fluctuation between the closed and occluded conformers (Bystroff et al. 1991; 

Bystroff et al. 1990).  

 1.5 The catalytic mechanism and Asp 27  

 The active site of DHFR is quite hydrophobic with the only ionizable residue 

being aspartate 27 (Asp27), within α–helix B (αB), framing one side of the active site 

(Bolin et al. 1982; Matthews et al. 1977; Matthews et al. 1985), adjacent to the pteridine 

ring binding site. The protonation state of the Asp27 is the subject of great controversy. 

Early crystallographic studies of DHFR bound to DHF analogs (such as MTX) revealed 
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that the active site Asp27 would actually be >5Å away from the N5 atom on the pteridine 

ring if substrate was bound (Bolin et al. 1982; Matthews et al. 1977; Reyes et al. 1995). 

Even when the structures of DHFR bound to the weak substrate folate, to a dideoxy form 

of the product THF (ddTHF), or to other analogs such as folinic acid (also known as 

leucovorin) were elucidated, surprisingly, the Asp 27-to-N5 atom distance was about the 

same as observed in the earlier MTX structures, with the notable exception that MTX 

binds DHFR with a 180° rotation using the MTX C6-C9 bond as the rotation axis (Reyes 

et al., 1995; (Sawaya et al. 1997); (Lee et al. 1996). Importantly, water molecules were 

observed within ~3.0Å of the Trp 22 and the Asp 27 residues, and the C4-O4, and the N5 

atoms of the folate pteridine ring in the DHFR/folate structure, suggesting that solvent 

may participate in ligand binding and proton relay (Reyes et al. 1995). Crystal structures 

of ternary complexes, such as folate and NADP+ bound to DHFR (Bystroff et al. 1990), 

also depict the rather long distance between the Asp 27 and the N5 proton acceptor of the 

substrate pteridine ring. However, mutagenesis of Asp 27 to Ser or Asn shows a severe 

decrease (several hundred-fold) in catalytic rate and efficiency (Howell et al. 1986; 

Villafranca et al. 1983).  

 The absolute role Asp 27 has in catalysis is therefore of great interest, and a 

number of groups have proposed different possibilities for its importance. While the 

initial mutagenesis studies suggested Asp 27 serves as a general acid, later studies 

propose that Asp 27 acts by elevating the N5 pKa of bound DHF from 2.59 to 6.5, using 

long-range polarization effects and electrostatic forces to induce and maintain protonation 

of DHF once bound (Bajorath et al. 1991; Chen et al. 1994; Chen et al. 1997). Difference 

UV spectra suggested that an ionizable group from the enzyme has a pKa of ~6.3 but did 
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not speculate that this may be Asp 27; furthermore, they indicated that the ionization state 

of this group had minimal effects on DHF binding to the enzyme (Stone et al. 1983b). 

Since a pH profile of DHFR reveals a catalytic pKa for the hydride transfer step of 6.5 

(Fierke et al. 1987), this titration could possibly correlate with a severely perturbed pKa 

for Asp 27. Recent 13C NMR studies have shown that the homologous Asp 26 residue in 

Lactobacillus casei DHFR possesses a pKa less than 4, so this residue appears to be 

negatively charged at physiological pH (Casarotto et al. 1999).  An alternative possibility 

is that the pKa could be ascribed to an ionizable group on the substrate, DHF. Resonance 

Raman spectra have established the pKa of the N5 on DHF as 6.5 when bound to DHFR 

in a ternary complex with NADP+ (Chen et al. 1994) whereas more recent Raman studies 

over a pH range of 5.6-9.0 revealed that the Asp27 most likely has a pKa below 5 and, 

thus, is charged at least in the ground state (Chen et al. 1997). This suggests that the 

kinetic pKa observed relates to the protonation state of bound ligand and not the Asp 27 

residue.  

1.6 E. coli DHFR mechanism: controversy and questions  

 Using computational approaches, different groups have proposed different 

pathways of proton donation and different ionization states for Asp 27 and bound ligands 

(Bajorath et al. 1991c); (Cannon et al. 1997a; Cannon et al. 1997b); (Greatbanks et al. 

1999); (Cummins et al. 2001). A reorganization of electron distribution in folate and 

DHF has been suggested to occur once it has bound DHFR to counter the negative charge 

of Asp 27 (Bajorath et al. 1991a); more recent studies using varying theoretical quantum 

mechanical approaches have reiterated the substantial substrate polarization that occurs 

upon binding to DHFR, a shifting of ~0.5 electron from the N3-C4 bond towards the N5-
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C6 bond of the DHF pteridine ring (Greatbanks et al. 1999). Recently, evidence has 

mounted for the catalytic pKa possibly being ascribed to keto-enol tautomerization 

occurring at the N3-C4-O4 region of the substrate (Chen et al. 1994) (Lee et al. 1996) 

(Cannon et al. 1997b). It could be that this is a first step in a proton relay pathway 

involving the tautomeric group, water molecules, and ultimately the N5 atom on the 

substrate. Rajagopalan and Benkovic (2002) have suggested tautomerization could be 

induced by expulsion of bulk solvent upon substrate binding, lowering the dielectric 

constant at the active site, and triggering protonation of Asp 27 from the N3 atom of 

DHF. This would cause electron rearrangement within this region of the pteridine ring, 

facilitating protonation of the O4 atom from solvent and thus resulting in the enol 

tautomer. This sets the stage for proton donation from solvent to N5, possibly from a 

hydronium ion (H3O+) created from a water molecule that shares a proton with the O4 

atom involved in tautomerization (Rajagopalan et al. 2002). A catalytic mechanism for E. 

coli DHFR is shown in Figure 1.9, with possible roles for Asp 27 and solvent molecules 

observed in recent substrate-bound crystal structures (noted above for the DHFR/folate 

structure; (Reyes et al. 1995)) that could help drive tautomerization at O4 and, ultimately, 

proton transfer to N5. Figure 1.10 shows two water molecules participating in hydrogen-

bonding contacts with the Asp 27 and folate in an ultrahigh resolution X-ray structure of 

DHFR/folate solved by a colleague in the Dealwis laboratory (Dr. Anna Gardberg). 

Cummins and Gready (2001) have used results from ab initio quantum chemical 

calculations on DHFR bound to DHF and folate to suggest that structurally conserved 

solvent bridges the Asp27 Oδ2 and the substrate O4 atom, the Asp 27 is protonated first 

or initially in catalysis, and that direct protonation of N5 (or N8 if folate is bound) occurs,  
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Figure 1.9: A proposed catalytic mechanism for proton and hydride transfer for E. 
coli DHFR. DHFR catalyzes the reduction across the N5-C6 double bond of DHF, using 
NADPH as a cofactor. Water molecules and distances to the substrate shown in the 
ground state have been observed in a 1.06Å resolution folate-bound DHFR structure (see 
Figure 1.10; coordinates kindly provided by Dr. Anna Gardberg in the Dealwis 
laboratory). It has been proposed that water molecules play a significant role in proton 
transfer, possibly first to O4, triggering a tautomerization event, and then to the N5 atom 
(Bystroff et al. 1990) (Chen et al. 1994) (Reyes et al. 1995) (Lee et al. 1996) 
(Rajagopalan et al. 2002). Most studies suggest that hydride transfer from NADPH to the 
C6 atom of DHF occurs concomitant with or immediately after N5 reduction.  
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Figure 1.10: Water molecules that form hydrogen-bonding contacts with the Asp 27 
and the folate pteridine ring, as observed in the ultrahigh resolution structure of 
folate-bound DHFR. Contacts are shown in red dashed lines and contact distances 
between atoms are shown in red. Solvent has been implicated to have mechanistic 
importance for proton transfer to DHF (see Figure 1.9). Even though direct reduction of 
N5 of folate is unlikely, it has been shown that DHF and folate bind in the same 
orientation in the DHFR active site (Reyes et al. 1995) (Sawaya et al. 1997), thus, it is 
expected that one or both of the water molecules shown would form similar contacts with 
DHF. (The coordinates for the DHFR/folate structure (1.06Å resolution; P61 space 
group) were kindly provided by Dr. Anna Gardberg.)  
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precluding a tautomerization step (Cummins et al. 2001) (Rajagopalan et al. 2002).  The 

protonation state of the Asp 27 throughout the reaction, the origin and path of proton 

donation, and the extent to which solvent contributes to catalysis all remain controversial 

issues.  

1.7 The interaction of E. coli DHFR and MTX: more controversy and questions 

 As stated earlier, MTX is a substrate analog that tightly binds E. coli 

chromosomal DHFR (pM Kd) and persists as an important chemotherapeutic agent. In 

contrast to the protonation states of substrate during the catalytic mechanism, there exists 

evidence from X-ray crystallography, NMR and Raman and UV difference spectra to 

suggest that the N1 atom of MTX is protonated and, thus, positively charged when bound 

to DHFR (Matthews et al. 1977);(Bolin et al. 1982); (Appleman et al. 1988; Coco et al. 

1981; Coco et al. 1983); (Poe et al. 1972); (Ozaki et al. 1981); (Stone et al. 1983b). The 

binding of MTX in the DHFR active site is such that the N1 atom is within 2.7Å of the 

Oδ2 of Asp 27 and the NA2 amide nitrogen is within 2.9Å of the Oδ1 of Asp 27; as 

stated above, this stems from an orientation of the pteridine ring which is flipped as 

compared to folate and DHF binding (Appleman et al. 1988). The close proximity of N1 

of MTX when bound to DHFR to the Asp 27 carboxylate group strongly suggests an 

electrostatic interaction, possibly ionic in nature. This interaction is seemingly so 

favorable that the N1 pKa increases from 5.7 for free MTX to >10 for DHFR-bound 

MTX (Cocco et al. 1983) and is hypothesized to be the reason that the dissociation 

constants for folate and DHF for DHFR are so much higher than for MTX (Appleman et 

al. 1988; Stone et al. 1988). A recent computational study was performed measuring the 

affinities of protons on the Asp 27 carboxylate and the MTX N1 in low dielectric fields (ε 
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= 4 - 20) (Cannon et al. 1997a), attempting to mimic what has been evidenced to be the 

chemical environment at the core of globular proteins, especially at an enzyme active site 

(Creighton 1993). This has been suggested to be especially critical to consider when 

calculating the pKa of an ionizable group which has been shown to be important in ligand 

binding and catalysis (Antosiewicz et al. 1996) (Demchuk et al. 1996). The results 

propose that the Asp 27 is protonated while MTX is not below an ε value of 10; this 

would mean that both groups are neutral when MTX is bound to ecDHFR, and, therefore, 

the interaction is suggested to be dipole-dipole rather than ionic (Cannon et al. 1997), 

refuting most of the available research on the subject.  

1.8 Objectives of the dissertation research 

 Direct determination of hydrogen positions within the active site of DHFR has not 

been demonstrated and the lack of a consensus on DHFR’s mechanism of proton 

donation arises from the question: what are the protonation states of Asp27 and bound 

ligands in the DHFR active site? The complementary use of ultrahigh resolution X-ray 

(beyond 1.2Å resolution) and high resolution neutron (beyond 2.5Å resolution) 

crystallography has been employed in the present dissertation research to probe this exact 

question, among others. X-ray crystallography is a well-established technique for the 

determination of macromolecular structure, allowing not only gross features of a 

molecule to be observed (such as secondary structure) but also, for resolutions beyond 

3Å, distinction between different amino acid side chains of proteins. However, hydrogen 

atoms scatter X-rays weakly since scattering power of an atom is proportional to the 

number of electrons it possesses, of which hydrogen only has 1 (Z = 1). Even with atomic 

resolution data (beyond 1.2Å resolution), where distinct electron density peaks for 

 22



individual atoms can be resolved from one another, nearly all hydrogens in a protein 

structure cannot be observed. Those that can are often bound to a “heavier” atom which 

has a very low B-factor (Howard et al. 2004), and one must rely on single difference 

electron density maps (Fo-Fc) contoured at levels much higher than noise (perhaps, 

>+2.5σ) to be confident that a particular peak can be attributed to a hydrogen atom 

(Minichino et al. 2003) (Schmidt et al. 2003). Of course, even then, proper bonding 

geometry for the hydrogen to the atom to which it is bound must be maintained. In 

regions of a protein where there is high static (inherent) or dynamic (thermal fluctuations) 

disorder, it will most likely be impossible to observe hydrogen atoms, much less the 

heavier atoms to which they are bound (Drenth 1999). Possibly, with sub-atomic 

resolution crystallography at liquid helium temperatures (about -250 to -260°C), these 

features may be distinguished but the studies which have attained this level of detail from 

electron density maps is limited (Longhi et al. 1998) (Jelsch et al. 2000) (Ruiz et al. 

2004) (Schmidt et al. 2003; Schmidt et al. 2005).  

 Neutron crystallography at moderate resolutions (beyond 2.5Å), on the other 

hand, can reveal hydrogen positions directly from 2Fo-Fc nuclear density maps 

(Schoenborn et al. 1996). The neutron structures of several important proteins have been 

elucidated, including trypsin (Kossiakoff et al. 1980; Kossiakoff et al. 1981), RNaseA 

(Wlodawer et al. 1983), insulin (Wlodawer, et al. 1989), concanavalin A (Habash et al. 

2000), rubredoxin (Chatake et al. 2004; Kurihara et al. 2004), endothiapepsin (Coates et 

al. 2001; Cooper et al. 2000), xylose isomerase (Hanson et al. 2004), perdeuterated 

myoglobin (Shu et al. 2000) and perdeuterated aldose reductase (Hazemann et al. 2005). 

With the improvements in detector technology (Cipriani et al. 1996) (Niimura et al. 
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1997) and software development (Langan et al. 2004b), the re-emergence of spallation 

neutrons in protein crystallography (Langan et al. 2004a) (Schoenborn et al. 2004), and 

the application of deuterium labeling of macromolecules (Meilleur et al. 2005), neutron 

crystallography is becoming a more available and accessible tool in structural biology. It 

has been used in the present research to further probe the structure of DHFR bound to 

MTX, and a comparison is made to the ultrahigh resolution X-ray structure also reported 

here. In order to undertake a neutron crystallography experiment, special considerations 

and preparations must be made such as improving crystal diffraction quality and 

enhancing crystal volume and deuterium labeling either by direct soaking of samples or 

by perdeuteration. These are described in chapter 3, the first data chapter. The next 

chapter provides the results and analysis of the X-ray and neutron structures of 

DHFR/MTX. The final data chapter (chapter 5) describes results from high resolution X-

ray crystallography experiments on apo DHFR and a ternary complex of DHFR bound to 

MTX and NADPH. Finally, chapter 6 provides a brief summary of the most important 

results from each of the data chapters (3-5), general conclusions about what these results 

may mean in the larger context of DHFR structure and function, and a few possible future 

directions for the research to continue in the next few years. The next chapter (2) is 

exclusively methods-based and provides much detail concerning the theory and practice 

implemented in the experiments described in chapters 3-5.  
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Chapter 2: Methods 

2.1 Expression, purification, and crystallization of DHFR and DHFR complexes 

 DHFR was purified from the SK383 strain of E. coli (Zeig et al. 1978) that 

contains a pUC8 plasmid encoding the gene for expression of DHFR (Bystroff et al. 

1990). The SK383 E. coli strain is grown in Terrific Broth in the presence of ampicillin 

(100 µg ml-1 final concentration). Expression of DHFR is constitutive, not induced, and 

the cells are grown by shaking at 250rpm at 37°C for ~72 hours. The cells are then 

harvested by centrifugation, flash frozen in liquid nitrogen, and stored at -80°C until 

ready for purification. Complete purification protocols can also be found in (Poe et al. 

1972; Taira et al. 1987). Briefly, SK383 cells over-expressing DHFR are lysed with the 

addition of lysozyme and subsequent sonication (Fisherbrand Dismembranator) using a 

2.5cm tip. After treatment with 0.05% (v/v final; from a freshly made 5% stock solution) 

Brij58 detergent solution to ensure complete lysis, the lysate is centrifuged for 45-60 

minutes at 17,500 x g. The supernatant is subjected to streptomycin sulfate (0.01% v/v 

final; from a freshly made 0.1% stock solution) and ammonium sulfate precipitations 

(added gradually as a solid at 40 and 90% saturation). The final precipitate (the 90% 

ammonium sulfate pellet) contains DHFR, and this can be stored at -20°C indefinitely. 

After resuspension of the pellet and dialysis against MTX loading buffer (1 x P.E. 

(Phosphate and EDTA) buffer: 50 mM KPO4 (pH 6), 1 mM dithioerythritol (DTE), and 1 

mM EDTA), DHFR is purified using an MTX agarose inhibitor affinity column (Sigma 

Chemical Co., MO, USA). The column is washed with 4-5 bed volumes of loading buffer 

and then 4-5 bed volumes of loading buffer with 1 M KCl added to it. At this point, the 
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column is placed on-line with a Biologic HR HPLC chromatography system (BioRad, 

Hercules, CA), and at least 5 bed volumes of pre-elution buffer (0.2 M Sodium borate 

(pH = 9), 1 M KCl, 1 mM EDTA, and 1 mM DTE) are washed through the MTX affinity 

column at a flow rate of 1 ml min-1. A major contaminant normally elutes in this step 

after 1 bed volume of pre-elution buffer has completely passed through the column. 

Elution of the DHFR from the MTX affinity column is performed by addition of 2 mM 

folate to the pre-elution buffer and a change of sodium to potassium for the borate buffer 

component (pH = 9). About 15 bed volumes of elution buffer are washed through the 

column; DHFR almost immediately begins to elute. Fractions of 1-5 ml (depending on 

the size of the preparation and the amount of MTX resin used) are collected; normally, 

DHFR completely elutes in the first 5 bed volumes. After the affinity column, DHFR is 

>90% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE). After dialysis against 1 x T.E. (Tris and EDTA) buffer (10 mM Tris-HCl 

(pH 7.2), 1 mM DTE, and 1 mM EDTA), the protein solution is loaded onto a DEAE-

Sephacel weak anion exchange column (Pharmacia, NJ, USA). This is used to remove 

folate, the competitive ligand employed to elute DHFR from the MTX affinity column. 

DHFR and folate differentially elute from the DEAE column based on the ionic strength 

of the buffer. DHFR elutes at 0.2-0.3 M KCl while the folate remains bound until the 

resin is washed with 0.4-0.5 M KCl (Figure 2.1 A). After loading the dialysis solution 

onto the column, it is washed with 1-2 column volumes of 1 x T.E. The DEAE column is 

then placed on-line with the BioLogic HR system and a salt gradient elution step of 15 

bed volumes is run. The 1 x T.E. buffer is mixed with the same buffer but with 1 M KCl 

added for the gradient run from 0 to 0.5 M KCl. Fractions of 1-5 ml are collected for the  
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Figure 2.1: Purification of E. coli DHFR from SK383 cells. A) After MTX affinity 
chromatography, DHFR is loaded, washed and eluted via an ionic strength gradient from 
an anion exchange column. DHFR elutes at a weaker ionic strength than folate. B) A 
final polishing step over Superdex 75 gel filtration is used immediately prior to 
crystallization trials. C) Reducing SDS-PAGE (15% polyacrylamide) after gel filtration. 
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entirety of the salt gradient. An additional step of size exclusion chromatography 

(Superdex G-75; GE Healthcare, Piscataway, NJ) was incorporated into the purification 

to ensure sample homogeneity. The molecular size of species which elute from a gel 

filtration column can be determined if one has calibrated the column by injecting multiple 

pure proteins of differing but known monomeric size (e.g. standards like chymotrypsin 

and BSA). The apex of the DHFR elution peak is at about 35.5 ml after the end of the 

void volume. Using the calibration equation derived for the G-75 gel filtration column, 

Kav = (Ve – Vo)/ (Vt – Vo)  (Equation 1) 

where Kav is the partition coefficient of the eluted species, Ve is the elution volume (in 

mL), Vo is the void volume (in mL; the mobile phase; species which elute here are larger 

than the spacing between the gel beads; blue dextran (> 500,000 Daltons (Da)) is 

commonly used for this purpose), and Vt is the total volume of the column (in mL; 

packed gel and solution volume), one can closely estimate the mass of the eluted species 

because the Kav is related to the log of the molecular weight. Using a calibration equation 

and curve derived from the standards and from DHFR’s elution volume, the molecular 

weight of the purified E. coli DHFR calculated to a range of 17,800 to 18,500 Da. 

DHFR’s MW has been more accurately measured by FT-ICR and MALDI-TOF mass 

spectrometry (MS) (a description of the FT-ICR experiment is below in the 

perdeuteration section) and is 17,999.220 Da. For protein that would be used for 

crystallization, fractions from the extremes of the peak (i.e. peak “shoulders”) were 

omitted. Normally, at this stage, the only elution peak could be attributed to DHFR 

(Figure 2.1 B). 

 28



 Ultimately, purity was determined visually by SDS-PAGE (Figure 2.1 C) and by 

a UV spectrophotometer using an A280/A260 ratio, a ratio of 1.7-1.9 being optimal for 

crystallization-quality ecDHFR. This allows us to quantify the ratio of protein to any 

contaminating nucleotides and also to folate. Protein concentration is measured by both 

the Beer-Lambert and the Bradford method (Bradford 1976). In the Beer-Lambert 

method, one must know with precision the molar extinction coefficient (ε) at a particular 

wavelength, for example near a λmax like 280 nm. Most proteins have characteristic 

absorbances at 280 nm due to the presence of aromatic side chains on Tyr, Trp, and Phe. 

Then, using the equation,  

Aλ = εcl  (2) 

where Aλ  is the absorbance of the protein at a given wavelength, c is the concentration of 

the absorbing species, and l is the path length of the cuvette used for the measurement. 

The ε for DHFR is 33.1 mM cm-1. The Bradford protein estimation assay is based on the 

binding of Coomassie dye to proteins, specifically with aromatic and arginine side chains. 

After a brief incubation of the Coomassie solution with 0.25-50 µl of the protein sample, 

the absorbance of the mixture is measured at 595 nm. A standard curve where BSA was 

used as the control sample is consulted to estimate the amount of protein used in the 

assay. Solving for x in the standard line equation,  

y = mx + b  (3) 

where y is the absorbance, m is the coefficient and b an integer known from the linear 

regression calculations from the BSA standardization data, provides the concentration of 

the protein sample. The yield of pure DHFR is normally 12-15 mg per liter of TB media. 
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 The protein is concentrated to 0.75-1.5mg/ml with an Amicon or Centriprep 

YM10 membrane filtration device (Millipore, Bedford, MA). If a substrate or substrate 

analog (like MTX) was to be used, it was added (as a solid and at 5x molar ratio) while 

the protein is relatively dilute, due to these ligand’s relative insolubility at high 

concentrations. After a 15-30 minute incubation with MTX in the dark at 4°C, 

DHFR/MTX is then concentrated with a Centricon YM10 (Millipore) device until the 

volume is 1/10 of the starting volume. It is then rediluted back to the starting volume with 

crystallization buffer (0.1 M Tris-HCl (pH 7.2), 2 mM dithioerythritol (DTE) and a trace 

amount of MTX) and reconcentrated in the same manner. This step is repeated twice. The 

protein and protein complexes were concentrated until they had reached > 30 mg ml-1. If 

NADP+ or NADPH cofactor was to be incorporated into the complex for 

cocrystallization, it was added at this point (see below). All the ligands described here are 

light-sensitive and hygroscopic, so care was taken with the compounds to minimize 

exposure to light and to the atmosphere. For the apo crystallization, the protein was 

simply concentrated and rediluted as described above with no addition of ligands. To 

minimize oligomerization and nucleation events, immediately prior to crystallization, the 

protein or protein complex was spun at 40,000 rpm (155,000 x g) for 30-90 minutes in a 

Beckman TL-100 ultracentrifuge. Only the top 2/3 of the supernatant was decanted and 

used for crystallization. All crystallizations were performed and stored at 4°C. All initial 

crystal hits were grown from the Hampton Crystal Screens (Hampton Research, Aliso 

Viejo, CA), which employ the sparse matrix approach and test multiple crystallization 

parameters including pH, ionic strength, and precipitant concentration (Jancarik 1991). 

All hanging drop vapor diffusion crystallizations were performed in either Linbro 24-well 
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tissue culture plates or Nextal 24-well crystallization plates (Nextal Biotechnologies, 

Montreal, Quebec, Canada).  

 DHFR/MTX crystals were initially grown by hanging drop vapor diffusion by 

mixing equal volumes (1µl each) of the concentrated protein solution (30 mg ml-1) in 0.1 

M Tris-HCl (pH 7.3) and 1 mM DTE with 0.1 M Na-HEPES (pH 7.5), 0.3 M MgCl2, and 

30% PEG 400 (Crystal Screen #1, condition #23; Hampton Research). The size and 

diffraction quality of these crystals have since improved by changing MgCl2 to CaCl2 and 

lowering the molarity to 0.2 M and by lowering the precipitant concentration down to < 

18% (v/v). This is detailed in a later section of this chapter. 

  Apo DHFR crystals were grown by hanging drop vapor diffusion by mixing 

equal volumes (1µl each) of the concentrated protein solution (40 mg ml-1) in 0.1 M Tris-

HCl (pH 7), 2.5 mM Lee compound #568, and 2 mM DTE with 0.1 M Na-HEPES (pH 

7.2), 50 mM MgCl2, and 30% PEG MME 550 (an optimization of Index Screen condition 

55; Hampton Research). Lee compound #568 is a proprietary sulfamethoxazole analog 

synthesized for and kindly provided to us as a gift from Dr. Richard Lee (University of 

Tennessee Health Sciences Center; Memphis, TN). It was used as an additive for our 

initial crystallization screens for apo DHFR.  

 To form the MTX/NADPH ternary complex, a 5-molar excess (v/v) of NADPH 

(Alexis Biochemicals, San Diego; from a 0.1 M stock solution) was added to a 

concentrated solution (30mg ml-1) of DHFR/MTX and allowed to incubate in the dark for 

30 minutes at 4°C. Crystals of the DHFR/MTX/NADPH ternary complex were grown by 

hanging drop vapor diffusion by mixing equal volumes (1µl each) of the complex in 0.1 
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M Tris-HCl (pH 7.4) and 2 mM DTE with the reservoir solution, 0.1 M Bis-Tris (pH 

5.5), 0.2 M (NH4)2SO4, and 25% PEG 3350 (Index Screen condition 66; Hampton 

Research).  

2.2 Expression and purification of E. coli DHFR from a Sumo fusion construct  

 Recently, the gene for E. coli DHFR has been cloned into a pET-Sumo vector 

(Invitrogen) so as to create an alternative method for purification. Gradient PCR using 

Taq polymerase (NEB, Beverly, MA) and primers (synthesized by Operon) 

corresponding to the 5’ and 3’ ends of the E. coli DHFR gene were used for coding DNA 

amplification. The use of Taq is necessary to provide amplified gene products with A-

overhangs. The TA cloning system, devised by Invitrogen, allows one to ligate genes of 

interest into expression vectors without the a priori use of restriction enzymes. Instead, 

the A-overhang is used to anneal the gene into the plasmid vector by the use of an 

inherent T-overhang on the vector. T4 DNA ligase (Fisher Scientific) is used to 

covalently link the gene to the vector. Mixed primer PCR (one T7-based from the vector 

and the other a gene-specific primer) and DNA sequencing (at the MBRF in Walters) 

were used to confirm the orientation and sequence of the clone. The pET-Sumo-DHFR 

plasmid was transformed into chemically competent BL21(DE3) E. coli, expression of 

the N-Sumo-DHFR-C fusion was induced by the addition of 0.5 mM 

isopropylthiogalactoside (IPTG) to a liquid culture at an OD600nm of 0.5, and the culture 

was allowed to grow with shaking (225 rpm) at 37°C for an additional 4 hours. The 

fusion construct possesses a hexahistidine tag at the N-terminus of Sumo. So, after cell 

lysis, clarification of the supernatant by centrifugation and pH adjustment of the solution 

to 8.0, the supernatant was incubated with Ni-NTA resin (Qiagen) with slight shaking at 

 32



4°C for one hour. The fusion construct may be eluted by the addition of 0.5 M imidazole. 

To attain native DHFR, the purified fusion construct was incubated with GST-Ulp1 (the 

Sumo protease from S. cerevisiae) for 3 hours at room temperature with slight shaking 

(Figure 2.2). The proteolytic activity of Ulp1 is quite specific; DHFR prepared this way 

is assumed to have a native N-terminus and, unless occurring in the bacterial cell, DHFR 

is not bound to any pterin-ring containing ligand. GST-Ulp1 is used as bound to 

glutathione beads. Therefore, when the assay is completed, the reaction mixture is 

centrifuged, and the supernatant is native DHFR and 6xHis-Sumo while the GST-Ulp1 

bound to glutathione beads remains in the pellet. (In the normal purification method of 

DHFR from SK383 E. coli cells described earlier in this chapter, folate is used to elute 

DHFR from the MTX affinity column in a middle step in the purification process. This 

alternative procedure, with the use of the His tag, exempts the MTX affinity step.) 

2.3 Initial X-ray diffraction analysis 

 Crystals were tested for X-ray diffraction first using our in-house R-AXIS IV++ 

diffractometer (Rigaku/MSC; The Woodlands, TX) (Figure 2.3). Crystals were cryo-

protected by soaking them in cold harvesting buffer (the crystallization buffer made with 

the incorporation of glycerol) for 15-30 seconds; 10% glycerol was used for the apo 

crystals, 20% glycerol for the MTX/NADPH crystals. Crystals were then either flash-

cooled under LN2 or in a stream of N2 gas and diffraction images were collected at -

160°C. Initial indexing revealed that the DHFR/MTX complex crystallized into a 

trigonal/hexagonal Bravais lattice with unit cell dimensions of a=b= 92.2 Å, c= 73.3 Å 

(α=β= 90°, γ= 120°), the apo DHFR form crystallized in the P6 space group with unit  
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Figure 2.2: Purification of E. coli DHFR using a 6xHis-Sumo fusion construct. An N-
terminal 6xHis tag is used to facilitate isolation of the DHFR fusion protein (IMAC #1). 
Ulp1 is a very specific cysteine protease that cleaves at the C-terminus of Sumo (Li et al. 
2003; Li et al. 1999), thus, releasing native DHFR (no exogenous residues post-cleavage) 
and the His-Sumo section. A second metal affinity step (IMAC #2) is used to purify the 
DHFR from the His-Sumo. The Ulp1 is also a fusion construct with a GST tag at its N-
terminus. The GST-Ulp1 is bound to glutathione beads during the proteolytic assay and, 
thus, does not contaminate the DHFR sample.  
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Figure 2.3: An example X-ray diffraction pattern from a DHFR crystal 
(MTX/NADPH) measured using the in-house diffractometer. Approximate resolution 
values (real space) for particular regions on the detector (reciprocal space) are shown, as 
is the position of the scattering shape and pattern of the beamstop used. A group of 
reflections comprising part of a circular line pattern has been highlighted with a black 
box and is most likely a group of points lying on the same plane of the reciprocal lattice.  
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cell dimensions of  a=b= 95.8 Å, c= 34.3 Å (α=β= 90°, γ= 120°), and the MTX/NADPH 

ternary complex crystallized into the P3 space group with unit cell dimensions of a=b= 

61.9 Å, c= 104.7 Å (α=β= 90°, γ= 120°). The best candidates for atomic resolution 

experiments at the synchrotron were immersed under LN2 and stored in a dry shipping 

dewar until synchrotron data collection.  

2.4 Crystallography 

Data collection: Oscillation method 

 Strategies for the determination of some of the data collection parameters can be 

obtained by using processing programs like HKL2000 (Otwinowski et al. 1997); an 

example of this is the estimation of the oscillation range necessary to have good overall 

completeness (> 90%).  However, it is best to understand this in terms of the relationship 

between real and reciprocal space and by the sphere of reflection (also called the Ewald 

sphere; Figure 2.4 A). The spots on a diffraction pattern can be thought of as parallel 

planes comprising the reciprocal lattice which intersect the Ewald sphere. Reciprocal 

lattice points which do not intersect or lie within the Ewald sphere are not recorded as 

reflections. One must rotate the crystal about the spindle axis to make these spots 

intersect the sphere (Dauter 1997a). Two factors related to the full recording of 

reflections and data completeness are the crystal mosaicity (the smallest angle that the 

crystal can rotate and a reflection is fully recorded; it is a diagnostic value associated with 

lattice uniformity and/or deformation) and the magnitude of the individual oscillation 

angles per step rotation. If the rotation angle is too small and also happens to be smaller 

than the mosaicity, then many reflections are recorded as partials because the reflections 

at the extremes of the rotation range will just be starting to intersect the Ewald sphere  
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Figure 2.4: The relationship between real and reciprocal space relative to X-ray 
data collection. A) Conditions for X-ray diffraction are satisfied when points on the 
reciprocal lattice intersect the Ewald sphere. B) A region of the reciprocal lattice remains 
external to the Ewald sphere, even if full rotation of the crystal is accomplished. Two 
ways to ameliorate this is by using a shorter incident X-ray wavelength (i.e. λ1 instead of 
λ2), which provides a larger Ewald sphere (observe the magnitude of sphere 1 vs. sphere 
2) and/or by rotating the crystal about another axis (or by simply off-setting the crystal). 
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(Gewirth 1999). However, programs such as HKL2000 can take care of partials quite 

well. An additional concern in data collection is the treatment of reflections which reside 

in the blind region (Figure 2.4 B), an area of the reciprocal lattice that never crosses the 

Ewald sphere during a φ-scan. The use of a shorter X-ray wavelength is helpful here 

because the Ewald sphere is much larger and the area of the cone encompassing the blind 

region is much smaller. (The X-ray wavelength can be changed at many synchrotron 

beam lines.) Additionally, the blind region can be recorded with a goniometer that has κ-

geometry, which enable a 45 degree tilt from the crystal’s orthogonal position with 

respect to the X-ray beam (offsetting the crystal).  

Ultrahigh resolution data collection 

 Special considerations must be made when collecting diffraction data to atomic 

resolution (beyond 1.2Å). A synchrotron X-ray source allows one to do this, due to its 

strong flux and the ability to tune the wavelength. Use of shorter X-ray wavelengths 

(such as 0.9Å) expands the theoretical sphere of reflection (radius = 1/λ) (Ladd et al. 

1993) (Dauter et al. 1997b). Most X-ray detectors can be positioned quite close to the 

sample so as to record high θ-angle reflections, which would correspond to high 

resolution reflections. Additionally, one can set very long exposure times (30-60 sec) so 

that the high resolution reflections ultimately possess strong intensities for better data 

processing. To ensure good completeness (> 90% overall, > 70% in the highest resolution 

shell), one should collect highly redundant data about one spindle axis (dependent on the 

crystal symmetry but generally a 90-180° rotation) and, if possible, about an additional 

axis to provide coverage in the blind region. Unfortunately, the long exposure times and 
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the extensive total data collection can lead to radiation damage within the crystal, even 

when the experiment is performed at cryogenic temperatures (Burmeister 2000). During 

the process of collecting high resolution data, detector overloads are commonplace at 

areas of reflections which are medium to low resolution. It is now well-documented that 

one should collect multiple passes on the same crystal, with exclusive scans for the 

recording of high and lower resolution reflections (Howard et al. 2004) (Schmidt et al. 

2005). The major differences between the scans are the positions of the detector and 

beam stop position, exposure time, and step width between images. In fact, the detector 

can even be off-set on an axis perpendicular to the incident X-ray beam to facilitate the 

collection of very high resolution reflections (beyond 0.9Å for the ADSC Quantum 4 

detector).  

Laue data collection 

 The neutron data sets described within this thesis were collected using pseudo-

Laue (ILL) and wavelength-resolved Laue (LANSCE) methods with a wavelength range 

of 0.6-7.0Å for the PCS experiment and 2.8-3.7Å for the ILL experiments. The number 

of reflections which can be recorded directly depends on the wavelength range used. In 

contrast to the use of a monochromatic X-ray beam for the oscillation method, more 

coverage of reciprocal space from a stationary crystal is possible. Instead of fine-slice 

oscillation, the crystal can be moved into different settings which may be several degrees 

apart, and if the crystal is of higher symmetry (like the P61 DHFR/MTX crystals 

described in this thesis), then 15-25 settings may suffice to attain high data completeness 

(> 75% for neutron data sets). However, there are three major obstacles to overcome in 

order to effectively process and analyze Laue diffraction data. The first is a problem of 
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multiple reflections arising from a set of planes that are harmonics of one another but 

contributing to one Laue spot (Moffat 1997). These reflections actually fall on a line of 

the reciprocal lattice that passes through the origin of the resolution sphere; the planes 

reflect in the same direction as hkl but with different d-spacings and a different 

wavelength. As it turns out, most of the recorded reflections (and nearly all those at the 

highest resolution) are singles (Drenth 1999). But deconvolution of the multiples is still 

necessary to acquire the low resolution data. A basis for unscrambling was proposed by 

Ren and Moffat (Ren et al. 1995) where a least-squares refinement procedure can 

produce accurate estimates for the structure factor amplitudes of separate reflections 

within each multiple. Secondly, spatial overlapping of neighboring spots in the Laue 

pattern makes data processing difficult. More painstaking profile fitting where non-

overlapping spots are used as the basis profile and are applied to overlapped spots in 

similar detector regions (Yang et al. 1998). If the position of the detector can be changed 

(which is possible for most Laue set-ups at X-ray facilities but not feasible at the current 

neutron beamlines), the distance could be increased to increase the space between 

reflections. Lastly, wavelength normalization is undertaken so as to correct for factors, 

such as sample absorption, which are highly influenced by the wavelength range used and 

can have effects on the Laue intensities. A wavelength dependent factor is multiplied to 

every reflection intensity; often the factor is determined by using the intensity of 

symmetry-equivalent reflections measured at different wavelengths within the same 

image (Ren et al. 1995). This has been implemented recently for normalizing the 

wavelength range used in neutron experiments (including the DHFR work reported here); 

a normalization curve is generated and the extremes and the peak of the incident 
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spectrum can be assessed (Arzt et al. 1999) (Bennett et al. 2005). With the time-of-flight 

(TOF) Laue method for neutron data collection used at LANSCE, one can bin reflections 

based on the time the scattered neutrons reached the detector and, thus, the wavelengths 

of these neutrons can be derived (Langan et al. 2004b). This ability to resolve the 

wavelength of the neutrons and associate them directly with reflections that arise from 

their detection provide a way to deconvolute the diffraction data, reducing problems from 

spatial overlap of reflections and background accumulation (Schoenborn et al. 2004).  

Indexing, integration, and scaling of the X-ray intensities 

 As one begins data collection and observes many diffraction spots (or peaks) 

which accumulate in characteristic patterns on the image, one can then deduce a crystal 

lattice system that may give rise to such a pattern. Reflections arising from a particular 

reciprocal lattice plane are indexed by the assignment of an hkl coordinate set; this occurs 

by a complete search of all possible indices from all selected diffraction peaks. When 

integer values have been identified for one index (such as h) for all reflections, this is 

essentially finding one real space direction (such as a) in the unit cell of the crystal, thus, 

this is real space indexing and the vector search is accomplished by a Fast Fourier 

Transform (FFT) (Gewirth 1999). When the search for reciprocal space vectors is 

completed, indexing of all reflections within the image is attempted. This provides an 

initial basis for description of the unit cell. Manual intervention is necessary to determine 

whether cell reduction is possible; the unit cell constants are determined for all the 

Bravais lattices and, based on how distorted the observed unit cell must become in order 

to fit the particular lattice type, one may decide to transform the initial basis cell to one of 

higher symmetry. Once the cell and symmetry have been agreed upon, one may further 
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refine values via the least squares method for crystal and detector parameters over several 

images in the indexing routine, and this adjustment normally improves error values (χx 

and χy) associated with the deviation of centers of reflections from predicted positions 

based on the indexing solution. An accurate prediction of spot positions is needed for 

proper profile fitting of diffraction peaks; background on the detector is subtracted from 

the intensity of the reflection (Figure 2.5 A). This is needed for a highly precise 

integration of the reflections (Figure 2.5 B).  

Polarization correction  

 A polarization correction is applied to integrated intensities so as to correct for the 

differences in polarization of the incident and the diffracted X-ray beam and how this 

affects the intensities of reflections. Oscillations of electrons “induced” by the 

polarization component of the incoming beam perpendicular to the lattice plane do not 

necessarily contribute to the scattering; therefore, the expected scattered intensities are 

reduced. The X-ray beam generated at a synchrotron source is strongly polarized. So, the 

polarization factor as applied in common data processing programs like Denzo 

(Otwinowski et al. 1997) is similar to the formulation of Azaroff (Azaroff 1955), 

P = (Ih-Iv) / (Ih + Iv),  (4) 

where Ih is the intensity of the horizontal component and Iv is the intensity of the vertical 

component of the polarized X-ray beam.  

Data reduction and scaling 

 The merging of multiple observations of reflections (symmetry equivalent or 

redundant reflections) and the overall scaling of integrated intensities is commonly 

performed using the method of Fox and Holmes (Fox et al. 1966), the utility of which is  
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Figure 2.5: Profile fitting and integration of intensities on an X-ray detector. (A) 
One must decide on a spot size and shape (as well as the difference between spot and 
background) for the intensities that will be included in the (B) integration.  
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that one can scale data from multiple “layers” (or integrated intensity sets arising from 

individual images) and apply an estimated error σ to the overall scale factor as well as to 

input intensities. Poor agreement between multiple observations is cause for rejection. 

The calculation of an error factor based on the merging of symmetry-related data, or 

Rmerge, 

Rmerge = Σhkl Σi ΙIi(hkl) - IhklΙ/Σhkl Σi I(hkl), (5) 

where hkl is the reflection, i is the observation number of that reflection intensity, and  

Ii(hkl) is the intensity of the reflection, and Ihkl is the average intensity of all the 

observations of that reflection, is performed by the scaling program Scalepack 

(Otwinowski et al. 1997). Additionally, Scalepack also allows one to globally refine the 

crystal mosaicity and the unit cell. Additionally, scaling affords one a statistical analysis 

of the quality and the practical extent of resolution of the diffraction data, by providing 

values for Rmerge, χ2, overall and individual I/σ. An Rmerge of less than 10%, a χ2 of less 

than 2, and an I/σ of >2 are generally considered satisfactory statistics (Gewirth 1999).  

Intensities, structure factors, and the electron density function 

 Intensities are directly proportional to the square of the amplitudes, 

I(hkl)= |F(hkl)|2,  (6) 

and the overall structure factors (the Fs) can be derived from the scattering factors, 

F(S) = nΣj=1 fj exp[2πirj x S].   (7) 

The total scattering from electrons within the unit cell is described in equation 7, where fj 

is the atomic scattering factor for rj positions of n atoms in the unit cell, S is a vector 

perpendicular to the plane of reflection (a vector between reciprocal lattice points, an hkl 
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reflections), and 2πirj x S is the modifier for phase angles if the scattering origin is shifted 

to the origin of the unit cell. The merged, averaged intensities from scaling are truncated 

to these mean structure factor amplitudes, and the method of French and Wilson is 

employed to produce sensible estimates of amplitudes, even ones derived from negative 

intensities (French et al. 1978). From this treatment, Fs and their standard deviations 

(sigFs) are output.  

 Note that within the exponential of equation 7 there is an imaginary component. 

This applies to the phase component, α, of the structure factor. Essentially, one only 

knows the absolute value (|F(S)|, or the magnitude) of the complex vector, F(S); the 

missing component is the phase information, or α(S). The real importance in terms of 

structure determination can be signified in the electron density equation, 

ρ(xyz) = 1/V Σh Σk Σl |F(hkl)| exp[-2π x  i(hx + ky + lz - αhkl],  (8) 

where ρ(xyz) is the electron density distribution in an xyz real space position. Equation 8 

reveals that the relationship between electron density and the structure factors is a Fourier 

transformation. However, the equation cannot be completely “solved” without the phase 

angles, αhkl, and, for macromolecular structure determination, must be found using 

indirect means, such as the molecular replacement method that is described next. 

Molecular Replacement (MR) 

 The method of structure determination described in this thesis used for the 

solution of the initial DHFR/MTX complex was molecular replacement (MR). A 

homologous macromolecular structure (a target molecule) can be used to provide the 

phase information for the data collected from a crystal of a macromolecule whose 
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structure is not known (the search molecule). So, the intensities for the target can be 

calculated from its structure (both |F(hkl)| and α are known) while only the intensities are 

known for the search molecule. A six-dimensional search in two defined steps is 

undertaken in MR to detect the orientation (via a rotational search using the target 

molecule), and the positioning (via a translational search using the properly oriented 

target molecule) of the search molecule in the new unit cell (Taylor 2003). The method 

was first described by Rossman and Blow (Rossman et al. 1962).  

 The MR search process can be put in quantitative terms, 

Xnew = R{X} + d,  (9) 

where Xnew is the position of the molecule to be identified, X is the position of the target 

molecule, R is rotation (or orientation) matrix, and d is the translation vector. The latter 

two factors are the computations necessary to bring the target into coincidence with the 

unknown molecule. A limited resolution range (e.g. between 8-3Å) is suggested for MR. 

To reveal the orientation of the search model, a rotation function describing the angular 

relationship between identical molecules in the asymmetric unit (a self-rotation function) 

or between similar molecules in different crystal forms (a cross-rotation function) must 

be implemented (Drenth 1999). A self-rotation function can also identify non-

crystallographic symmetry. The best orientation is the one in which provides for the 

maximum overlap of the intramolecular vectors (the Patterson self-vectors) from the 

target molecule and the search model. The proposed Patterson overlap function (the 

cross-rotation function) by Rossman and Blow (1962) is given as an integral: 

R = ∫U(x)PT(x)PS({X}x) δV,  (10a) 
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where PT(x) is the Patterson vector for the target molecule, PS({X}x) is the Patterson 

vector for the search model, and U(x) is a shape function representing a sphere within 

which the rotational search occurs. Ultimately, the rotation function can be described as a 

summation: 

R(α,β,γ) = ΣhΣp |Fh|2 |Fp|2 x Gh,p, (10b) 

where Fh and Fp are respective structure factors for the target and the search molecules, 

Gh,p is a Fourier transform of the shape and volume function, and R(α,β,γ) is the product 

rotation function and is dependent upon the angles of α,β,γ. These rotation angles and the 

magnitude of rotation are illustrated in Figure 2.6 as angles in three-dimensional Euler 

space (Ladd et al. 1993). To simplify the rotation function calculation, the target 

molecule is arbitrarily placed within a P1 unit cell, and integration is performed over the 

volume, U, equal to the volume around the Patterson function origin where PT (or Pcalc) 

and PS (or Pobs) are quite similar (Tollin et al. 1966). To avoid overlap of the self-rotation 

vectors, the search models must be placed in a sufficiently large unit cell, normally one 

and a half times the dimensions of the target molecule being used for the rotational search 

(Lifchitz 1983). Updated from (Rossman et al. 1962), a rotational search reciprocal space 

method for a fast rotation function was suggested by Crowther (Crowther 1972) and can 

be applied using the Eulerian angular and an orthogonal coordinate system (Figure 2.6).   

 Once a suitable rotation solution (the R matrix) has been found, a translation 

vector should be derived in order to overlap the target onto the search molecule in real 

space. Intermolecular vectors (cross-vectors) instead of self-vectors are used for several 

two-dimension translational searches, the translation function defined from (Crowther et 

al. 1967) as a sum of individual two-dimensional T-functions into one three-dimensional  
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Figure 2.6: Euler angles (αβγ) and orthogonal coordinate system (xyz) used in the 
MR rotation function. From the origin, the rotational search is conducted in a 
counterclockwise manner, α along z, β along the “new” y axis (y’), and γ along the 
“new” z axis (z’). So, the xyz axes are rotated and the angles describe rotation of the 
molecule along αβγ while the reference frame (the new xyz axes after an incremental 
rotation) is fixed. The highest order symmetry axis is made to be along z in the Euler 
system.  
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T2-function where many symmetry operators are utilized for the translational search. This 

form of the function is 

T2(t) = ∫ (Pobs(u) – Pm(u)) x Pcalc (u,t) du,  (11) 

where Pobs(u) is the Patterson vector for the target derived from the observed intensities, 

Pm(u) is a sum of Patterson vectors for n asymmetric units for the model in their proper 

orientations, and Pcalc (u,t) is the calculated Patterson function (Drenth 1999). A non-

crystallographic translation function can be implemented for crystals which possess more 

than one molecule in the AU where one molecule can be fixed and a translational search 

for the second molecule is performed (Tickle 1992). Additionally, standard R-factors (R) 

and correlation coefficients (CC) can be calculated as the oriented target is translated 

throughout the asymmetric unit (Navaza 2001); essentially, |Fcalc| is calculated and is 

compared to the |Fobs| for agreement by: 

R = Σhkl | |Fobs| - |Fcalc| | / Σhkl |Fobs|    (12) 

and 

CC = Σ (|Fobs| x |Fcalc|) / [(Σ|Fobs|2) x (Σ |Fcalc|2)]1/2. (13) 
 
 
 For the MR solutions described in this thesis, AMoRe (Navaza 2001) and 

PHASER (Storoni et al. 2004) (McCoy et al. 2005) were used. AMoRe is a fully 

automated MR package which uses fast rotation (ROTING) and translation functions 

(TRAING) to sample many different configurations and positions and calculates a CC for 

these positions. This allows one to establish a standard so as to contrast the CC values for 

the top solutions (Navaza 2001). AMoRe solutions are then subjected to rigid body 

refinement (FITING) of their orientation and position within the unit cell (Drenth 1999). 
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PHASER, an alternative to AMoRe, actually implements the AMoRe method of initial 

calculation of functions, then rescores this plausible list of solutions using a translation 

likelihood target (Read 2001). Now, both rotation and translation function solutions can 

be attained using approximations of maximum likelihood directly in PHASER (McCoy et 

al. 2005; Storoni et al. 2004).  

Difference Fourier method 

 The position of a ligand bound to or sites of modification (such as mutagenesis or 

post-translational modification) on a “native” protein can be very accurately determined 

by calculating a single (Fo – Fc) or double difference (2Fo – Fc) Fourier map. The phase 

angles for the native protein are already known; the coordinates for this are first refined 

against the reflection data from an isomorphous “derivative” of the same protein 

(“native” meaning the originally solved structure, such as an apoenzyme, and the 

“derivative” here being a ligand-bound form of the same protein).  If Fobs=Iobs
2 for the 

Fourier series, ρobs are the coefficients designated and Fcalc are the coeffici.ents 

designated for ρcalc and one assumes that the phase term for αobs is equivalent to αcalc, a 

difference Fourier synthesis providing the difference electron density can be calculated 

using 

∆ρ(xyz) = 1/V Σhkl  | Fobs - Fcalc | exp [-2πi(hx + ky + lz) exp [iαP(hkl)]. (14) 

Fobs represents the structure factor amplitudes for the derivative whereas Fcalc represents 

the calculated structure factor amplitudes for the native protein. The expression for Fcalc is 

Fcalc = Σ fj exp[-Bjsin2θ/λ2]exp2πi[hx + ky + lz], (15) 
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where fj are the scattering factors for the atoms in the unit cell and Bj is the isotropic 

temperature factor (8π2Uj). The meaning and importance of atomic temperature factors 

(or displacement parameters) are discussed in detail in chapter 4. The resulting difference 

Fourier map (from the calculation in Eq. 14) would reveal peaks at half the height of a 

normal Fourier map, positive peaks should appear at regions for atoms of the derivative 

not present in the native. A single difference density map is useful to calculate because it 

can also reveal unknown or unmodeled density features at half height, both positive and 

negative, 

ρ(xyz) = 1/V Σhkl (|Fobs| - |Fcalc|) exp [-2πi(hx + ky + lz) +iαcalc],  (16) 

even after extensive rebuilding of the model has occurred. A common final step in model 

building and verification is to display only a difference density map and ensure that all 

significant density has been identified and atoms modeled into them (Kleywegt et al. 

1997). Peaks are displayed in these maps for unknown atoms at half the height and can be 

modeled fairly readily. Indeed, a recent study has shown that, using medium resolution 

data (~3Å), an Fo – Fc synthesis can reveal unmodeled primary (bound) solvent structure 

as distinct spherical peaks above 3σ whereas a 2Fo – Fc synthesis cannot (Minichino et 

al. 2003).  

 Related to the single difference Fourier maps are the 2Fobs – Fcalc (or 2Fo – Fc) 

maps commonly known as the double difference Fourier electron density maps one 

utilizes in model building. They take the form 

ρ(xyz) = 1/V Σhkl (2|Fobs| - |Fcalc|) exp [-2πi(hx + ky + lz) +iαcalc], (17) 

and serve as a sum of the electron density of a model and of the difference density at 

double the peak height (Drenth 1999). This is mainly to reveal the electron density for the 
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model as well as the differences between the actual structure and the model at normal 

height. The 2Fo – Fc (or some use 3Fo – 2Fc calculations to see peak height differences) 

synthesis dampens peaks at regions where atoms should not be included while enhancing 

the peak height for correct atom positions to well above background (Main 1979). Most 

of the 2Fo – Fc maps reported here have been weighted as determined by a sigma-A (σA) 

calculation (Read 1986), 

σA = D (ΣP/ΣN)1/2 ,  (18) 

where D describes the probability distribution of electron density (∆ρr, and is a value 

describing agreement of Fo and Fc), ΣN is a sum of the total atoms in the structure and ΣP 

is a sum of the total atoms in the partially modeled structure. The weighting is used 

simply to compensate for errors in the phases arising from wrongly modeled atoms or 

unmodeled atoms.  

Refinement 

 The parameters of the structure model (which can include the xyz, B-factor, and 

occupancy for every atom) must be changed in order to minimize (Fo-Fc). This statement 

can be formalized as an agreement index (an R-factor) between Fobs and Fcalc and takes 

on the recognizable form,   

R = Σhkl | |Fobs| -k | Fcalc | | / Σhkl |Fobs|.  (19) 

One attempts to minimize a function (Q) describing the difference of a set of observed 

data, Fobs, to a model set of data , Fcalc, by manipulation of the model used to describe the 

data (Tronrud 2004). In the simplest manner, this can be solved by taking a series of 

least-squares equations, 
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Q = Σhkl w(hkl) (|Fobs (hkl) | - | Fcalc (hkl)|)2,  (20) 

and finding the minimum of the Q function by changing the atomic parameters, uj (j = 

atom 1, 2, n…), that determine the Fcalc for a given hkl. Essentially, Q for every uj is set 

to zero, 

Σhkl w(hkl) (|Fobs (hkl) | - | Fcalc (hkl)  |) δ |Fcalc (hkl)|/ δ uj = 0.  (21) 

Fobs values are constants and are set from the experimental intensities. However, Fcalc 

values depend on the uj values and will change by a given amount when the model 

structure is changed. So, equation 23 is set up as a vast Taylor expansion of normal 

equations where the solution is for new values of Fcalc (hkl; uj) and its’ derivatives per 

refinement cycle; the common expression for this expansion is a matrix. This will be 

discussed below. Two major assumptions of least-squares mathematics as applied to the 

refinement of protein structures, which have led to a critical revision in how many 

phasing (de la Fortelle et al. 1997) and refinement problems (Pannu et al. 1996) are 

approached, are that errors associated with the data (Fobs) follow a predicted distribution 

and the divergence of the observation to the model (the Fcalc ) is known perfectly; thus, all 

parameters are known with certainty and one can provide a model which can describe the 

observations perfectly (Tronrud 2004). To alleviate the strict conditions for confidence in 

the solution of least-squares calculations, maximum likelihood (ML) has been 

implemented into many refinement packages because one calculates the probability (not 

the exactitude) that a set of observations correlates to a set of model parameters (Drenth 

1999). The relationship between Fobs and Fcalc is then based on this likelihood and takes a 

form similar to Bayes’ Theorem: 

L = p[|Fcalc|; |Fobs|] ,   (22) 
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where the likelihood (L) of the model (derived from the Fcalc; which can be modified) is 

measured given the known, fixed values of the data (Fobs). ML is the optimization 

method used in the Refmac5 (Murshudov et al. 1997) refinements described in this 

thesis.  

 A common early step in macromolecular refinement is to perform a highly 

constrained rigid body refinement. This can be considered an extension of MR because, if 

one sets the rigid bodies to be whole molecules or domains of a protein, then only the 

parameters of the constrained bodies are refined, essentially only the global orientations 

and location of the molecule are modified (Tronrud 2004). Also early within the 

refinement process, one may need to correct for large errors in the model or to reduce the 

bias associated with using the phases from a homologous model in MR. A form of 

molecular dynamics refinement, simulated annealing (Brunger et al. 1999) as 

implemented in the program package CNS (Brunger et al. 1998), has been applied to all 

the X-ray structures described in this thesis; using Newtonian mechanics and applying (in 

silico) an increase in temperature, atoms move with increased velocity and possess 

increased kinetic energy (Tronrud 2004). This can allow the model to sample different 

energy minima, hopefully “pushing” it out of any local minima (including a homologous 

model from MR, thus reducing “model bias”) and nearer to the global minimum, thereby 

expediting convergence of the model towards the experimental data (Brunger et al. 

1999).   

 It was stated above that solution for all the Fcalc values (dependent on the small 

changes applied to the atomic parameters) took the form of a matrix which possesses n x 

n terms, where n is the number of parameters in the model and this can be > 10,000 for 
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macromolecules at moderate resolutions. The diagonal terms of this matrix are directly 

linked to the effect that that parameter change has on minimizing Q. Off-diagonal terms 

describe the correlation between parameters that have changed. Many programs, 

including Refmac5 (Murshudov et al. 1997) and SHELXH (Sheldrick et al. 1997), use 

sparse-matrix approximation to reduce the number of terms that have to be considered in 

the refinement calculations and, thus, reduce the computational memory and time 

requirements. This means that many of the off-diagonal terms are not considered and are 

reduced to zero (Drenth 1999). Conjugate gradient least squares refinement (Tronrud 

1992) was used in SHELXH (Sheldrick et al. 1997). Search vectors describing the 

gradient of descent for the Q function based on the shifting of parameters in the normal 

matrix are compared, and a later cycle in the process “learns” from a previous cycle by 

including a defined fraction of the shift vector used in the previous cycle. The shift 

vectors are conjugates to one another and help the model to reach the minimum (Tronrud 

2004). If one has sufficiently high resolution (the data-to-parameter ratio is > 5), within 

SHELXH, very accurate bond lengths and angles (and their estimated standard 

deviations, ESDs) for all atoms in a protein structure can be calculated by using all the 

parameters in the normal matrix, on and off-diagonal. This is called full-matrix 

refinement and is very expensive computationally due to the fact that one is now 

considering a square or more parameter shifts than in the sparse-matrix and conjugate 

gradient methods (Cowtan et al. 2000).   

Refinement: generalizations for reported structures  

 This section is a general refinement protocol for all the X-ray structures described 

in this thesis. Specific details of the refinement protocols for individual structures are 
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provided within chapters 4 (MTX) and 5 (Apo and MTX/NADPH). For all the data 

reported here, 5% of each data set was sequestered from the refinement for an Rfree 

calculation for cross-validation. For all structures, at least three cycles of maximum-

likelihood refinement in Refmac5 interspersed with manual rebuilding of the model in O 

(Jones et al. 1991) (Kleywegt et al. 1997) were performed. Alternating cycles of 

ARP/wARP (Lamzin and Wilson, 1997) and Refmac5 were invoked for solvent 

divination. Individual isotropic B-factors were also refined at this point. Alternate side 

chain conformations were built if atoms can be modeled into either 2Fo – Fc electron 

density above 1.5σ or Fo – Fc electron density above 2.5σ and if they adopted 

geometrically favorable orientations (favorable side chain rotamers). For the MTX and 

apo structures, further cycles of refinement, this time using the conjugate gradient least 

squares (CGLS) method in SHELXH (Sheldrick et al. 1997), and rebuilding in O were 

performed. In both Refmac5 and SHELXH, all non-hydrogen atoms were ultimately 

refined with anisotropic displacement parameters (ADPs), causing a 3-6% decrease in the 

Rfree values. This expands the description of the vibrational modes of an atom from 

isotropic (one displacement term) to a tensor matrix (multiple displacement terms), where 

the 6 ADP components describe a probability distribution for the electron density of an 

atom in three dimensions (Merritt 1999a). The resultant atomic model is more a sphere 

(for isotropic behavior) or an ellipsoid (for anisotropic behavior). In SHELXH, standard 

restraint and deviation values for SIMU, DELU (rigid body), and ISOR were employed. 

“Riding” hydrogens were generated on most residues using HFIX commands and refined 

with isotropic temperature factors, resulting in a 2-3% decrease in the R values. In 

SHELXH, a final weighting scheme of 0.2 was employed. A penultimate refinement in 
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SHELXH (with recommended weights) was performed until the Rfac, Rfree, and 

Goodness-of-Fit values were stable for 20 cycles and the final maximum atom shift was < 

0.02Å. A final refinement was performed within Refmac5, this time increasing the value 

for the sigma weighting matrix from 0.5 to 5-7 for all structures to allow molecular 

“flexibility” within the minimization procedure while maintaining ideal geometry. 

Essentially, reliance is placed more on the observed data for restraints rather than on the 

small molecule libraries (Engh et al. 1991) invoked in Refmac5. All final refined bond 

distance and angle deviations from the ideal are < 0.025Å and < 2.2°, respectively. 

Additionally, coordinates with hydrogen atoms were included in the final Refmac5 

refinement. The identities of the metal ions were suggested by the composition of the 

crystallization buffer, their coordination geometries within the model, and their 

corresponding electron density.  

 For the MTX and the apo X-ray structures, when the refinement of the models 

had nearly converged (the agreement between the model and the data was seemingly as 

close as reasonably possible), the SHELXH program was used for refinement of the 

aspartate residues free of stereochemical restraints (by removing only the restraints 

associated with these residues) to allow unrestrained movement of the carboxylate 

oxygen positions. Coincident with this step, the structure was refined against all 

reflections (no Rfree set). At this point, the measurements of the carboxylate Cγ-Oδ1 and 

Cγ-Oδ2 bond lengths were refined, quantified and very accurate. To determine the 

estimated standard deviations (ESDs) of all bond lengths, the MTX and apo models were 

then used in one cycle of least squares calculations for a full-matrix unrestrained 

refinement, where all the off-diagonal terms in the parameter matrix are included in the 
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calculations. All restraints are removed for this step. To lessen computational time and 

memory requirements, only the first 30 residues were included in the ESDs calculation. 

On a Linux machine with 4 processors, it took 10 minutes for this 30 residue calculation. 

2Fo – Fc and Fo – Fc difference electron density maps were calculated using FFT within 

CCP4 (CCP4 1994), and electron density was displayed for map inspection and model 

building in the program O (Jones et al. 1991). Sigma-A weighted 2Fo – Fc nuclear 

density maps were calculated using the mapmaking option (“M”) within the SHELXpro 

interface. Maps were converted to CCP4-style maps using MAPMAN (Kleywegt et al. 

1996). Alternatively, maps were also generated “on the fly” from the output .fcf file 

(which contains structure factors and phases) in the model building programs MI-Fit and 

Coot (Emsley et al. 2004). Model and map figures were made using PyMol and Coot.  

2.5 Growth of larger MTX binary crystals for neutron crystallography 

 To generate large volume DHFR crystals for neutron diffraction, one needs to 

maximize crystal growth with minimal nucleation points within the drop while using 

highly concentrated protein. To achieve this, DHFR was ultimately concentrated to >50 

mg ml-1 and large drops at >50 µl total volume were set-up in a modified sitting drop 

format using optimized precipitant and salt conditions. Moderate to large-sized crystals (a 

few grew to 1.4mm x 1.0mm x 0.3mm) were grown at 4°C by mixing equal volumes (25 

µl) of the protein complex with the mother liquor, 0.1 M Na-HEPES (pH 7.5), 0.2 M 

CaCl2, and 18% PEG 400 (v/v) (optimized from a condition in Hampton Crystal Screen 

#1 (Hampton Research) (Jancarik et al. 1991), on siliconized cover slips and placed on a 

Plexiglas support. Pyrex (Corning, NY, USA) custard dishes were used as the reservoirs 

(40 ml total volume of mother liquor) with the support sitting in the dish and the whole 
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apparatus sealed by a thick circle of Plexiglas, with vacuum grease (Dow Corning, MI, 

USA) used to finish the seal. Crystals appeared in 1 day and grew to full-size in about 

two weeks. The traditional crystal volume needed for neutron experiments is ~1mm3 if 

the protein is not perdeuterated; theoretically, if the protein is perdeuterated then the 

volume can be reduced by 1/10th without a significant loss of signal.  As reported in 

(Bennett et al., 2005), a D2O-soaked crystal of dimensions 1.4 x 1.0 x 0.2mm was used to 

collect a neutron data set at the ILL that is 56% complete to 2.2Å. The volumes of these 

crystals have been able to be significantly increased for at least 3 reasons: 1) further 

optimization of the mother liquor for DHFR/MTX crystallization (0.1M Na-HEPES (pH 

7.5), 0.2M CaCl2, and 16% PEG400); 2) a new microbatch-under-paraffin oil 

crystallization method using highly pure, concentrated protein complex (>50 mg ml-1) has 

been employed; and 3), ultracentrifugation of the sample immediately prior to 

crystallization to ensure a minimal number of nucleation points. In the microbatch under 

oil method, 100 µl of DHFR/MTX complex at >50 mg ml-1 is mixed with the same 

volume of crystallization buffer in the bottom of a well of a Nextal 24-well crystallization 

plate (Nextal Biotechnologies). Immediately, a 4x drop volume (so, in this case, 800 µl) 

of paraffin oil was pipetted onto the top of the batch mixture. Screw-cap tops were used 

only after the crystals had grown to their largest possible size and the D2O-soaking 

procedure began. 

2.6 D2O-soaking and harvesting of crystals for neutron diffraction experiments 

 Several DHFR/MTX crystals were subjected to H/D exchange prior to neutron 

data collection in order to reduce the large hydrogen incoherent scattering contribution to 

the background. To prevent “shocking” the crystals they were H/D exchanged 
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conservatively, against an increasing gradient of D2O-based crystallization buffer (0.1 M 

Na-HEPES (pH 7.5) from a 1 M buffer stock made with D2O, 0.2 M solid CaCl2, and 

18% PEG 400 (v/v), all components dissolved into D2O) over the course of one week (i.e. 

from an initial ratio of 10% D2O/90% H2O, the D2O% concentration was doubled every 

other day until 90-100% D2O content was achieved). After one month, the crystals were 

mounted into custom-prepared quartz capillaries with a 2.9mm outer diameter (Vitrocom, 

Inc., Mountain Lakes, NJ) with a D2O “plug” at one end, sealed at both ends with epoxy 

and paraffin wax, and stored securely in a sealed 50ml Falcon tube at 4°C for transport 

and for storage until data collection. The crystal mounting was performed in a D2O-

saturated environment: a tent was erected in a 4°C room with N2-purged D2O pumped 

into the tent to prevent back-exchange of crystal and buffer D atoms with H in H 2O 

vapor in the environment. The dimensions of the crystal used for preliminary neutron 

data collection at the ILL were 1.4 x 1.0 x 0.3 mm. Due to the hexagonal external 

morphology of these crystals (i.e. they are not a perfect cubic shape), the estimated 

volume of this crystal is ~0.3mm3. For our most recent experiments at the ILL and at 

LANSCE, crystals grown from the microbatch under oil method have been used. Their 

dimensions are 1.7 x 1.2 x 0.4 mm and 1.8 x 1.0 x 0.4 mm, respectively. The volumes of 

these crystals, adjusted for the hexagonal morphology, are both ~0.25 mm3.  

2.7 Preliminary neutron diffraction studies: Neutron data collection at the ILL 
(Bennett et al., 2005) 
 
 The D2O-soaked DHFR/MTX crystal was tested for neutron diffraction on the 

quasi-Laue LADI instrument (λ= 3.5Å, dλ/λ ~ 25%) at the ILL (Grenoble, France). This 

diffractometer uses a cylindrical neutron image-plate detector which completely 
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surrounds the sample (Cipriani et al. 1996; Myles et al. 1998). LADI has been utilized for 

a number of successful protein neutron diffraction experiments (Coates et al. 2001; 

Cooper et al. 2000; Habash et al. 2000; Habash et al. 1997; Niimura et al. 1997; 

Tuominen et al. 2004). The DHFR/MTX crystal was exposed for 34 hours per frame, and 

a total of 21 frames were collected at two different crystal orientations. The ϕ separation 

between frames was typically 8°. All data were collected at 20°C. The data were indexed 

and integrated using the program LAUEGEN (Campbell et al. 1998) which has been 

modified to account for the cylindrical geometry of the detector. The program LSCALE 

(Arzt et al. 1999) was used to derive the wavelength-normalization curve using the 

intensity of symmetry-equivalent reflections measured at different wavelengths. The data 

were then scaled using the SCALA program within the CCP4 suite (CCP4 1994).  

2.8 Neutron data collection and processing at the Protein Crystallography Station at 

LANSCE 

 One crystal, mounted in one of the large-diameter quartz capillaries and with 

D2O-based buffer plugs, was used for a time-resolved neutron Laue experiment on the 

Protein Crystallography Station (PCS) at LANSCE (Langan et al. 2004a) using 

previously described techniques (Hanson et al. 2004) (Li et al. 2004) (Sukumar et al. 

2005). Fifteen total Laue images were collected. The capillary was mounted vertically 

and shifted 15° around the φ-axis at φ settings of 0, 15, 30, 45, and 60°, for a total of five 

frames about the φ-axis at κ=0. The crystal was then returned to its original position on φ 

and rotated to +30° on the κ-axis and 5 additional frames at the φ settings indicated above 

(0, 15, 30, 45, and 60°) were collected, again with a 15° rotation on the φ-axis between 

each image. This sequence was repeated using a κ-axis setting of 60°.  The average 
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exposure time per setting was 36 hours. This is longer than the average exposure for a 

crystal of this volume and that has been D2O-soaked but was necessary due to reduced 

beam flux (70-80 µAmps) for the initial part of the data collection. Normal flux (110-120 

µAmps) was attained for the later exposures. Over 41,000 reflections were recorded 

(14,213 unique) for a resolution range of 38.2-2.20Å; the completeness of the data set is 

79.7%.  

 Data over a wavelength range of 0.6Å to 7Å were processed using a version of 

d*TREK (Pflugrath 1997) modified for time-resolved neutron Laue protein 

crystallography (Langan et al. 2004b). Neutron intensity peaks were identified and a list 

of three coordinates was generated for each peak, two spatial (X, Y) and one based on 

TOF. Intensities were indexed and integrated within the modified d*TREK program, and 

integrated Laue reflections were normalized by wavelength and scaled using 

LAUENORM (Helliwell et al. 1989). In order to obtain reasonable values for Rmerge (from 

LAUENORM, the Rmerge was 0.216 for all measurements of a reflection, with 23,416 

reflections; Rmerge is 0.196 for measurements of a reflection of the same sign, with 17,788 

reflections; Rmerge is 0.174 for all measurements of a reflection of the same sign and 

within λ = 0.1 Å, with 4,533 reflections), the wavelength range was narrowed to 0.8Å-3.5 

Å and only reflections with I>2σ were used in determining the wavelength scaling 

normalization curve. Reflections in this wavelength range were binned into 15 

wavelength intervals, and the normalization curve was determined from a Chebyshev 

polynomial of order 5 (Artz et al., 1999).  The data were output in unmerged form so that 

SCALA (Evans 1997) and TRUNCATE (CCP4 1994) could be used for statistical analysis. 
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After merging with SCALA the overall value of Rmerge was 0.136 and the completeness 

was 70%. 

2.9 Neutron structure refinement 

 Solvent molecules and metal ions were removed from the coordinate file of the 

RT X-ray model of DHFR/MTX (again, 3DRC; solved to 1.9Å). This model was used as 

the input coordinates for refinement in SHELX against the neutron data set merged in 

SCALA. The instruction file for SHELX refinement was modified exhaustively to 

include the proper neutron scattering factors, restraints for the incorporation of 

deuteriums into the model and solvent and rigid body restraints within all residues 

throughout the model. An example of this is a restraint used to maintain all the atoms 

within one peptide bond as one rigid group. This effectively reduces the number of 

parameters which must be refined and thus increases the data-to-parameter ratio, an 

important factor when the number of reflections is limiting as in this neutron experiment 

(10,472 unique reflections used to refine about 6600 parameters). Many other restraints 

like this are included in the residue list so as to break up the structure into many rigid 

bodies. The resolution range chosen for the initial rounds of alternating restrained 

positional, occupancy, and B-factor refinement was 8.0 – 2.5Å. Occupancies of 

deuterium atoms (Ds) bound to backbone amide nitrogens were refined next. 

Occupancies of Ds bound to His imidazole rings, Arg guanidino groups, and Lys amine 

groups were then refined. The modeling of D on backbone amides or the side chains was 

based on the resulting values for their occupancies from the refinement, and the presence 

of > 1.5σ nuclear density in the maps. An anisotropic scaling factor (the HOPE parameter 

in SHELX) was included in the refinement, more restraints were introduced for the D’s 
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bound to the His, Arg, and Lys residues, and the lower limit of the refinement range was 

changed to 6.5Å. Sixty-six oxygens (as waters which are H2O or have disordered D’s) 

and 18 D2Os were included in the refinement; the high resolution range was extended to 

2.2Å. At this point, the Rfree was at 36.7%, and progress in refinement halted, no matter 

the manipulation or the program that was used the Rfree either improved only slightly or 

remained the same. A suggestion was made from a collaborator that maybe the crystal 

was twinned. Three facts would strengthen this argument: 1) the refinement had stalled; 

2) larger crystals have an increased chance at malformations in the lattice and “domain” 

rotations of regions within the crystal that are not symmetrically-related; and, 3) crystals 

of the trigonal/hexagonal Bravais lattice system are known to suffer from merohedral 

twinning (Yeates 1997). So, a merohedral twinning correction (the twin law) was 

incorporated into the SHELX instruction file (TWIN 0 1 0 1 0 0 0 0 -1), allowing the 

contributions from the individual twinning components to be refined against the neutron 

data. Thus, SHELX can correct for data from twinned crystals in the refinement by fitting 

the sum of calculated intensities from the separate individual twin domain components to 

the observed intensities (Drenth 1999). Doing this led to a large decrease (> 10%) in the 

Rfree.  

2.10 Preparation, crystallization and X-ray data collection and processing of 

perdeuterated DHFR/MTX crystals  

 In order to obtain the highest level of deuterium exchange in the DHFR crystals, 

the growth of SK383 E .coli and the subsequent purification of DHFR from a completely 

deuterated media source were pursued. Based on low yields acquired from previous 

attempts to express DHFR from minimal media, a commercially available rich media 
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source (Celtone-D, D level >97%, Spectra Stable Isotopes, Columbia, MD) was chosen 

for perdeuterated cell growth (Tuominen et al. 2004) instead of existing alternative 

labeling methods (Leiting et al. 1998). The SK383 strain of E. coli requires an extensive 

period of adaptation before they will robustly grow in deuterated media. From work on 

the perdeuteration of proteins other than DHFR, it is known that BL21 (DE3) strains 

(Invitrogen, Carlsbad, CA) transformed with JM vectors and BL21 (DE3) pLysS strains 

(Novagen, San Diego) transformed with pGEX vectors (GE Healthcare, Piscataway, NJ) 

do not require extensive adaptation; hence, in only a few hours growing in 100% 

Celtone-D, these cells attain a relatively high optical density, as observed when measured 

at 600nm (OD600nm). Conversely, it was necessary to adapt the SK383 strain to growth in 

deuterium over the course of 2-3 weeks by gradually increasing the ratio of D to H in the 

growth medium. Complete adaptation of the E. coli strain is assumed when cells growing 

in 90-100% D media grow at nearly the same rate as those growing in unlabeled rich 

media; this checked by OD600nm measurements. To boost growth rates, 2-5% inoculum 

ratios were used and the media was supplemented with 0.4% D8-glycerol (D level >98%, 

Spectra). An additional antibiotic, trimethoprim (TMP, Sigma-Aldrich) at 20 µg/ml, was 

added to the growth medium to elevate DHFR expression. D -glycerol stocks were made 

and stored at -80°C. The scale of cell growth could then be increase. Also, after 

centrifugation to harvest the cells for the first time, the media may be refiltered, 

inoculated, and used again for a second round of cell growth. So, from 1l of deuterated 

rich media, ~3 mg pure perdeuterated DHFR can be produced, totaling ~6 mg after 

recycling.  
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 All details of cell lysis, protein purification, and concentration are the same as 

above except a pre-packed DEAE2 weak anion exchange column (Bio-Rad) was used for 

the final chromatography step instead of DEAE-Sephacel. Immediately after purification, 

the percent enrichment of D into the DHFR protein was measured by mass spectrometry. 

1 mg ml-1 samples of native and perdeuterated DHFR were dialyzed separately overnight 

at 4°C against Millipore-Q H2O, and the dialyzed solutions were desalted using a C18 

ZipTip (Millipore). The pure, desalted DHFR samples were then subjected to intact mass 

analysis using Fourier Transform-Ion Cyclotron Resonance (FT-ICR) on a Voyager 

Workstation equipped on the front-end with an electrospray ionization (ESI) source to 

impart the samples with a charge. The sample was injected into the ESI source, and 

multiple scans were recorded for each sample to provide the associated deconvoluted m/z 

spectra. The m/z peaks were transformed to mass peaks, and the subsequent spectra was 

analyzed using Excalibur software and programs available on the PROWL website 

(www.prowl.rockefeller.edu).  

 After verification of significant incorporation of deuterium into the protein, a 1 

mg ml-1 sample of perdeuterated DHFR was incubated with a 5x molar excess of MTX, 

was concentrated with a Centricon YM-10 (Amicon) device, and was then used for 

hanging drop vapor diffusion crystallization trials. All other aspects of the crystallization 

are the same conditions as for the native complex; however, reproducibility and 

consistency have been more difficult with the perdeuterated complex. For the largest 

crystals (~0.1 mm3 volume), the protein concentration had to be >25 mg/ml and the 

precipitant concentration had to be decreased significantly, from 18 to 12-14% PEG 400 

(v/v). Upon reaching their largest size, the crystals were soaked in the same buffer, only 
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D2O-based. After one month of D2O soaking, four perdeuterated DHFR/MTX crystals 

were mounted into quartz capillaries (Vitrocom, Inc.) as described above for the native 

DHFR/MTX crystals. Multiple perdeuterated crystals, too small for neutron diffraction, 

have been used for in-house X-ray diffraction. They are isomorphous with native 

DHFR/MTX crystals as they crystallize in space group P61 and have unit cell dimensions 

of a=b= 93.3Å and c= 74.4Å (α=β= 90°, γ= 120°). The resolution of measured reflections 

extends to 1.5Å, the working limit of resolution on our R-AXIS IV++ detector 

(Rigaku/MSC). 
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Chapter 3. Preparation of samples for neutron crystallography and 

protein perdeuteration 

3.1 Background   

 This chapter will summarize the requisite actions that have been taken in order to 

prepare samples for neutron experiments, including efforts to increase crystal volume and 

to effectively exchange H for D, both by D2O-buffer soaking and by perdeuteration. The 

production of perdeuterated DHFR and its subsequent analysis by mass spectrometry and 

X-ray diffraction are also presented. Although this chapter is inherently technical, most of 

the methodological details are described in chapter 2 (Methods). However, the reiteration 

of some of these details is included here where necessary for clarification. Part of the 

results in this chapter have been published as a research article in Acta Crystallographica 

D in May 2005 (Bennett et al. 2005). The neutron crystallography results from the 

Institut Laue-Langevin (ILL) presented in this paper are provided in the next chapter. 

 One of the major goals of the thesis project is to directly demonstrate protonation 

states in the active site of E. coli DHFR, and the proposal is to use X-ray and neutron 

crystallography to accomplish this goal. Many of the results presented in this thesis are 

on the binary complex of DHFR with MTX. Previous evidence from X-ray 

crystallography, NMR, UV/VIS difference, and fluorescence spectra suggest that the N1 

atom of MTX is protonated and, thus, positively charged when bound to DHFR 

(Appleman et al. 1988; Bolin et al. 1982; Cocco et al. 1981; Cocco et al. 1983; Hood et 

al. 1978; London et al. 1986; Matthews et al. 1977; Ozaki et al. 1981; Poe et al. 1972). 

The binding of MTX in the DHFR active site is such that the N1 atom is within 2.6-2.7Å 
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of the Oδ2 of Asp27, stemming from an orientation of the pteridine ring which is flipped 

as compared to folate and DHF binding, a consequence of a 180° rotation about the C6-

C9 bond. The close proximity of N1 of MTX when bound to DHFR to the Asp27 

carboxylate group strongly suggests an electrostatic interaction, possibly a salt bridge. 

(Please see text and figures in chapter 4 for additional details on the DHFR/MTX 

complex and interaction.) In contrast, a recent computational study proposes that, when 

bound to MTX, the Asp27 is protonated while the N1 on MTX is not (and, thus, the MTX 

is neutral); therefore, the interaction is suggested to be neutral dipole-dipole rather than 

ionic in nature (Cannon et al. 1997). Essentially, the present controversy over DHFR’s 

ligand binding and catalytic mechanism can be reduced to not knowing the active site and 

ligand protonation states. Ultra-high resolution X-ray crystallography provides highly 

precise macromolecular structures with atomic detail (Dauter et al. 1997b). However, 

having only one electron, hydrogen atoms scatter X-rays only weakly, causing 

ambiguities to arise upon inspection of electron density maps for hydrogen peaks.  

Neutron scattering and deuterium labeling  

 Neutron crystallography can resolve this ambiguity by revealing the positions of 

hydrogen atoms –especially the deuterium isotope– at moderate resolution (at 2.5-2.0Å 

and beyond). Neutron scattering phenomena are the result of the strong-force nuclear 

interaction between the neutron particle beam and the atomic nucleus, the nature of the 

interaction and the scattering behavior being dependent on the nuclear composition (Shu 

et al. 2000). Due to the inherent weak fluxes at neutron sources, crystal volumes required 

for neutron data collection are prohibitively too large for most systems (Schoenborn et al. 

1996). Another disadvantage to using neutron crystallography is that hydrogen nuclei 
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possess only a single proton and scatter neutrons incoherently and with negative 

scattering lengths (-3.75 femtometers (fm); (Tuominen et al. 2004)). Hydrogen atoms 

appear as negative peaks in neutron density maps and often “cancel” positive neutron 

scattering from the atoms to which they are covalently bound like carbon or nitrogen 

(Meilleur et al. 2004). The signal to noise ratio of the data can be improved dramatically 

by exchanging deuterium (D; M = 2.0126 Da) for hydrogen (H; M = 1.0063 Da) (called 

H/D exchange) in the sample, either by (a) growing or soaking the crystal in D2O-based 

buffer (deuteration at chemically exchangeable positions) or (b) forcing the expression 

organism (i.e. E. coli) to incorporate deuterated amino acids into the target protein at the 

biosynthetic level (deuteration at chemically non-exchangeable positions or 

perdeuteration, Figure 3.1). H/D exchange in samples significantly reduces the 

background of neutron data collections, due to deuterium’s positive and coherent 

scattering behavior (leading to its contribution to signal well above the noise level 

recorded on the detector) (Schoenborn et al. 1996; Tuominen et al. 2004). In fact, 

deuterium scatters neutrons with a similar strength as that of carbon and scatters more 

strongly than sulfur, phosphorus, oxygen, and nitrogen (Schoenborn et al. 1996). Upon 

soaking protein crystals in D2O, H/D equilibrium exchange may occur for backbone 

amide, side chain carboxylate, side chain hydroxyl, and side chain amine hydrogens. 

Generally, the equilibrium exchange rates of the H/D atoms bound to the backbone 

amides are markedly slower than those rates of H/D atoms bound to side chain amine, 

carboxylate, and hydroxyl groups.  
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Figure 3.1: The incorporation of deuterium (D) into proteins is a prerequisite for 
neutron experiments. Exchange of H for D at labile positions (such as backbone amide 
or side chain carboxylic acid groups, as shown here with D) can be accomplished either 
by incubating the sample in a D2O-based buffer or D2O itself. The exchange of H for D at 
chemically non-exchangeable positions (shown here as D) must occur at the level of 
amino acid biosynthesis in the expression organism, a much more complicated form of 
deuterium labeling called perdeuteration.  
Inset table: The requirement for H/D exchange is based on H’s negative and incoherent 
neutron scattering that can actually partially or completely cancel scattering arising from 
the atoms to which it is bound. 
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Protein perdeuteration 

 As stated above, proteins deuterated at chemically non-exchangeable positions 

(e.g. perdeuterated, where D is substituted for H on aliphatic and aromatic carbons) can 

only be generated at the level of biosynthesis by the organism used for expression of the 

target protein (Gamble et al. 1994); (Leiting et al. 1998); (Tuominen et al. 2004)). This 

increased enrichment of D can significantly lower the remaining background scattering 

and improve neutron diffraction quality even more. Perdeuteration has also been used to 

improve the signal from atoms other than D in NMR experiments where significant line 

broadening occurs for larger proteins or systems, and many of the overlapping chemical 

shift peaks can be attributed to H; exchanging for D allows one to “filter” the spectra to 

now only observe the chemical shifts arising from the contributions of “heavier” atoms 

(Gardner et al. 1998); (Mok et al. 1999). Conceptually similar to this, neutron scattering 

can also benefit from the use of perdeuterated molecules in contrast variation and 

matching experiments. The solvent D percentage can be changed until it matches the 

content within a native molecule or the perdeuterated component; once one has 

subtracted the matched components, the difference scattering arises from the other 

component in solution (Schoenborn et al. 1996; Trewhella et al. 1998). For the purpose 

of this thesis, the prevailing reasoning for the deuterium labeling of macromolecules is to 

aid in neutron crystallographic data acquisition and analysis. Indeed, nuclear density 

along the aliphatic side chain of Lys prior to the terminal ε-amino group and on 

hydrophobic side chains like Val and Leu are normally “invisible” in neutron maps due to 

H’s negative scattering and its cancellation effects on carbon positive scattering. So, 

perdeuteration provides a layer of information about the H position (visualized as 
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deuterons in the neutron maps) on these side chins and, in the process, enhances the 

overall scattering of the crystal (Shu et al. 2000). However, perdeuteration can be quite 

expensive both in cost and in time requirements (Table 3.1) due to the inherent expense 

of deuterium itself, the possibility of lengthy deuterium adaptation periods for the 

expression organism, and the normally reduced expression levels of the target protein 

isolated from the deuterated organism relative to a native counterpart (Paliy et al. 2003); 

(Meilleur et al. 2005). Deuterium adaptation has been accomplished for several strains of 

E. coli for the heterologous expression of deuterated target proteins. It is simply the 

process of acclimating the strain to increasing percentages of deuterium over multiple 

platings (if done with deuterated agar medium) and/or over multiple inoculation cycles (if 

done in deuterated liquid medium), allowing each successive generation of cells to adapt 

and grow to high optical densities before the next plating onto or inoculation into a 

slightly higher deuterium percentage medium (Rokop et al. 1969); (Paliy et al. 2003).  

Biophysical effects of perdeuteration 

 About ½ of the atoms in a protein are hydrogen, but exchange of hydrogen for 

deuterium at all or nearly all chemically non-exchangeable positions normally increases 

the mass of the protein by only 5-10%. This can be measured quite accurately with mass 

spectrometry, in a number of different modes (e.g. ESI-FT-ICR, MALDI-TOF). In 

addition to the change in mass, there exists at least mild concern that nearly uniform 

exchange of hydrogen for deuterium in proteins may significantly alter their overall 

three-dimensional and local secondary structure, their ability to perform their 

physiological function, and their inherent stability and flexibility. Pioneers to explore the 

latter two of these concerns were Crespi and Katz, who in the 1960’s extensively studied  
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Table 3.1: Potential costs for perdeuteration of a protein 

 

Media type Minimal (M9) Rich (Celtone-D) 

D2O $350 N/A 

D7-glucose/D8-glycerol1
$1100/$375  

for 0.4% final 

$550/$190  

for 0.2% final2

D-algal hydrolysate powder/resuspension N/A $600/$1200 

Total per liter media $725-$1450 $600-$1750 

1Many different deuterated carbon sources, more than can be listed here. However, 
examples of others commonly used are succinate and xylose. Glycerol is probably the 
best choice due to its relatively low cost, and the fact that it can be transformed into a 
glycolytic intermediate upon incorporation into the bacterial cell.  
 

2 The use of deuterated carbon sources in a rich media culture is strictly optional and is 
mainly used to boost growth rates during the adaptation process, not necessarily during 
the stage of large scale protein expression. 
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perdeuterated phycocyanin isolated from several different cyanobacterial and algal 

species. They found in a series of experiments that perdeuteration does lower both 

phycocyanin’s thermal stability (as revealed by differential scanning calorimetry (DSC); 

(Hattori et al. 1965)) and its propensity to associate into oligomers (as revealed by 

sedimentation equilibrium; (Hattori et al. 1965)). Perdeuteration also seems to increase 

the catalytic rate of GST (Brockwell et al. 2001) compared to unlabeled enzyme while 

the expected isotope effect from replacing H with D (~ 1.4x decrease in rate; (Fersht 

1998)) was reported earlier for perdeuterated alkaline phosphatase (Rokop et al. 1969). 

Little effect on Km was reported for both of these studies. Cumulatively, the only marked 

difference between native and perdeuterated proteins seems to be in thermal stability and 

susceptibility to proteolytic degradation. Circular dichroism, DSC, and Fourier 

Transform-Infrared (FT-IR) spectroscopy analyses have revealed that the perdeuterated 

proteins used in these studies have slightly lower Tms for unfolding and, thus, are less 

thermally stable than native counterparts (Brockwell et al. 2001); (Meilleur et al. 2004). 

Brockwell et al. also found that the rate of proteolytic cleavage was significantly 

enhanced for perdeuterated GST compared to the native form (Brockwell et al. 2001). 

Although the sampling size is quite small, X-ray structural studies of perdeuterated 

proteins, including SNase A (Gamble et al. 1994), myoglobin (Shu et al. 2000), inorganic 

pyrophosphatase (Tuominen et al. 2004), the elongation factor Tu (Cooper et al. 1998), 

and P450cam (Meilleur et al. 2005) reveal that perdeuteration seems to have little if any 

effect on global conformation and secondary structural composition when compared to 

the structure of an unlabeled reference. The r.m.s.d. values between perdeuterated and 

native Cα chains are always much less than 1Å, the traces being nearly identical (Cooper 
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et al. 1998). Stress should be placed on the fact that very little biophysical data has been 

accumulated on perdeuterated proteins, however, the evidence so far suggests that 

perdeuteration does not grossly alter the inherent structure and biochemical function of 

the protein under study. On the other hand, perdeuteration does seem to reduce the target 

protein’s stability in solution, especially when effects from heat, solvent hydrophobicity, 

and proteolytic degradation are taken into account. Although the observations are limited 

in scope, perdeuterated DHFR seems to be very similar to the native form, with slight 

changes noted for solubility and exact conditions for cocrystallization with MTX. 

3.2 Results and discussion 

Applying a “hybrid” crystallization method for larger volume DHFR/MTX crystals 

In order to identify hydrogen positions within the DHFR active site and on bound 

methotrexate, D2O-soaked DHFR/MTX crystals suitable for neutron diffraction analysis 

were grown and a partially complete data set was collected on the Laue Diffractometer 

Instrument (LADI) at the ILL. The D2O-soaked DHFR/MTX crystal diffracted neutrons 

to 2.2Å resolution, however, it is only 56% complete to this resolution. Therefore, to 

increase completeness, extend resolution, and maximize signal-to-noise, two strategies 

have been pursued: larger crystal growth with extended D2O-soaking and perdeuteration, 

to meet these goals. A third is listed at the end of this chapter but has not been utilized. 

 First, larger volume DHFR/MTX crystals (~25-30% increase) have been able to 

be grown by an alternative crystallization method called microbatch under oil. This 

method is based on crystallization techniques described in (Chayen 1997) and (Rayment 

2002) and relies on the ability to rapidly equilibrate the protein solution with the 

crystallization buffer while strictly limiting evaporation from the protein/buffer mixture 
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and also restricting the mixture’s equilibration with the atmosphere. Large volumes (50-

100 µl) of highly concentrated (40-60 mg ml-1) DHFR/MTX complex were mixed with 

an equal amount of crystallization solution (0.1M Na-HEPES (pH 7.5), 0.2M CaCl2, and 

16-18% PEG 400) in the bottom of a well in a crystallization plate. An overlay of oil was 

applied to the batch protein/buffer mixture. For the least amount of crystal nuclei and the 

growth of the largest crystals of DHFR/MTX by this method, the precipitant (PEG 400) 

concentration can vary between 14-18% but paraffin oil is definitely the best diffusion 

control oil to use. After two weeks to allow for complete growth of the crystals, several 

of these were selected for D2O-soaking and, once the buffer exchange began, a screw-

seal cap was placed on top of the crystallization well to fully prevent diffusion of 1H 

water vapor from the atmosphere into the well and the crystals. The crystal size for the 

preliminary ILL study in 2004 is 1.4 x 1.0 x 0.3 mm, or about 0.45mm3, and this was 

produced in the modified sitting drop crystallization. Alternatively, the microbatch under 

oil technique produced at least two crystals used for the studies at ILL and LANSCE this 

year. Their sizes were 1.7 x 1.2 x 0.4 mm (0.6mm3; used at the ILL) and 1.8 x 1.0 x 0.4 

mm (0.5mm3; used at LANSCE). When applying the correction in the volume 

calculations for the fact that these are hexagonal and not cubic crystals, the true volumes 

are about 30-40% less, or about 0.2-0.3mm3. This is 1/3 to ¼ the volume that has 

routinely been required for neutron diffraction experiments.  

Perdeuteration of E. coli DHFR 

 Second, to increase the signal-to-noise ratio in the neutron experiments, fully 

deuterated DHFR protein has been prepared and the growth of large volume 

perdeuterated DHFR/MTX crystals has been optimized for future neutron diffraction 
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studies. The improved signal to noise ratio of neutron data collected from perdeuterated 

protein crystals (Shu et al., 2000) will allow us to collect more complete and higher 

resolution data, even from comparably sized crystals. The SK383 E. coli strain has been 

adapted to growth in >97% D background using both a commercially available rich 

media (Celtone-D) and a formulation devised and produced in-house at LANSCE (called 

“Altone”) (Figure 3.2). Adaptation required about two weeks and consisted of 

incrementally increasing the D% in the growth medium if the cells had adjusted properly 

to the previous increase in D%. This was judged by comparing their rates of growth to 

cells which were growing in unlabeled rich media. To expedite the rate of adaptation, 

boost growth rates, and ensure that the expression plasmid was retained by the cells in the 

presence of an environmental stress, a two antibiotic system (ampicillin and 

trimethoprim) and D8-glycerol (>99% D; Spectra Stable Isotopes) were exploited. Two 

similar protocols using deuterated succinate in minimal medium and carrying out 

adaptation over several cycles are described in (Leiting et al. 1998) and (Paliy et al. 

2003). Very little study has been performed to understand exactly how bacteria adapt to a 

deuterated background and why adaptation even seems to work for most strains. This 

author is aware of several strains other than SK383 which have been utilized for 

recombinant protein expression in deuterated media, including BL21(DE3), MRE600D, 

and JM109 to list a few. A possible explanation for the success of adaptation is that E. 

coli can inherently grow in deuterated media, although slowly, and that, over the course 

of many generations, can accumulate non-lethal mutations which allow the cell to 

function and replicate in deuterated media more successfully (Gamble et al. 1994); (Paliy 

et al. 2003). The microbial and algal life cycle and their physiological responses to a  
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Figure 3.2: Expression, purification, and crystallization of perdeuterated E. coli 
DHFR. A: Mainly, a commercially available deuterated rich media (Celtone-D) has been 
used to culture SK383 E. coli cells for the production of perdeuterated DHFR. However, 
an alternative formulation from deuterated algal hydrolysate prepared at LANSCE 
(“Altone”) has also been used successfully. B and C: The purification scheme is identical 
to the one used for the isolation of native E. coli DHFR. The yield is 6 mg l-1 culture, 
about 40-50% less than the native yield. D: Crystals of perdeuterated DHFR bound to 
MTX. 
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deuterated environment was actively explored in the 1960’s with Crespi and Katz’s work 

(Rokop et al. 1969) among others but, in my knowledge, is only now starting to draw 

more interest. This may be due to the expansion of NMR for studies on larger biological 

systems, and the reemergence of neutron scattering and crystallography for use in the life 

sciences. 

 Identical methods for the expression and purification of native DHFR were used 

for perdeuterated DHFR, save the use of trimethoprim and the addition of the deuterated 

glycerol to the growth media. A 1 mg ml-1 sample of pure perdeuterated DHFR was 

dialyzed against Millipore-Q H2O and then desalted using a C18 Zip Tip (Millipore) for 

mass spectrometry. The percent enrichment of D into DHFR was checked by intact mass 

analysis using an Electrospray Ionization Fourier Transform- Ion Cyclotron Resonance 

(ESI-FTICR) mass spectrometer with Dr. Tomoaki Uchiki in the laboratory of Dr. Robert 

Hettich at ORNL (Figure 3.3). After deconvolution of the m/z data to derive direct mass 

values, a major peak was repeatedly observed in the deconvoluted spectra at 19,239.000 

Da. A comparison to the average intact mass of native DHFR (17,999.220 Da; Figure 

3.4) revealed that the perdeuterated sample was enriched with D at essentially every 

chemically non-exchangeable position; the mass difference was 1233.780 Da, possibly 

meaning that all 1233 non-exchangeable H positions were now enriched with D and an 

additional exchangeable D was still bound to the protein. Although not shown, the mass 

peak area associated with perdeuterated DHFR at full width half maximum spans about 

40 Da and is only about 7 Da for native DHFR (Figure 3.4). This may reflect the isotopic 

distribution differences between the backgrounds in which the proteins were expressed as 

well as the tremendous mass accuracy of the ESI-FTICR mass spectrometer 
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Figure 3.3: Intact mass analysis of purified perdeuterated E. coli DHFR using ESI-
FTICR mass spectrometry and measurement of deuterium enrichment. The 
measured mass of the perdeuterated species is 19,239.200 Da, meaning that at essentially 
100% of the chemically non-exchangeable positions D has been incorporated instead of 
H. This mass may also indicate that D persists at about 7 of the chemically labile 
positions as well. The peak distribution (full width at half maximum) is about 40 Da and, 
although it’s not as small as the native mass distribution (Figure 3.4), may indicate the 
uniformity of D labeling in DHFR, resulting from the exhaustive E. coli adaptation 
process (Gamble et al. 1994) (Brockwell et al. 2001). The Y-axis for both figures 3 and 4 
is percentage relative abundance, a comparative value for the peaks in a given spectra. 
The spectra in figures 3 and 4 were recorded with Dr. Tomoaki Uchiki in Dr. Robert 
Hettich’s lab at the Organic and Biological Mass Spectrometry Division at Oak Ridge 
National Laboratory. Subsequent analysis of the mass spectra was performed in the 
Dealwis laboratory using IonSpec software. 
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Figure 3.4: Intact mass analysis of purified native E. coli DHFR using ESI-FTICR 
mass spectrometry. The average calculated mass was 17999.220 Da and was used for 
comparison with the perdeuterated DHFR mass (Figure 3.3). Note the mass distribution 
is about 8 Da, most likely a distribution of natural isotopic species. Again, the Y-axis is 
percentage relative abundance. 
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(Brockwell et al. 2001); however, the possibility of 13C contribution to the isotopic 

distribution cannot be overlooked. These analyses verified a high level of deuterium 

incorporation into DHFR, allowing us confidence to go forward with crystallization for 

X-ray and neutron diffraction experiments. 

 Crystallization of the perdeuterated DHFR/MTX complex was accomplished 

similar to using unlabeled DHFR except that the protein concentration used is much 

lower (15-25 mg ml-1), and the precipitant concentration used in the crystallization buffer 

is slightly less (14% instead of 16-18% PEG 400). Multiple crystals were cryoprotected 

by incubating them in D2O-based crystallization buffer with an addition of D8-glycerol; 

this protects against ice formation in the buffer and helps to insulate the crystal against 

severe thermal fluctuations (Garman 2003). Some of these crystals were tested on our in-

house X-ray source with a liquid nitrogen cold stream, and their diffraction extends to 

1.5-1.6Å, the working limit of resolution on our detector. These were then dismounted 

and stored under liquid nitrogen for transport to the Advanced Photon Source (APS; 

Argonne, IL). Two synchrotron X-ray data sets were collected at the NE-CAT beamline 

on a perdeuterated DHFR/MTX crystal. The completeness for the combined data sets is 

99% and the resolution extends to 1.25Å (Figure 3.5). The perdeuterated unit cell is 

isomorphous to the native DHFR/MTX crystals, and the space group (P61) is also 

conserved (Table 3.2). The resulting coordinates from refinement will be an excellent 

starting model for future neutron refinement of a perdeuterated DHFR/MTX complex. 

The perdeuterated crystals are first grown in an H2O-based buffer. After they attain what 

is determined to be their largest size (about 1-2 weeks), they are then soaked in the same 

buffer, only D2O-based. The largest size so far for a perdeuterated DHFR/MTX crystal is  
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Figure 3.5: X-ray diffraction recorded from a perdeuterated DHFR/MTX crystal at 
NE-CAT 8-BM at the Advanced Photon Source. The reflections extend to 1.2Å, and 
the unit cell is isomorphous with the native DHFR/MTX crystals. The data revealed that 
these crystals are well-ordered and possess the same symmetry as the native crystals. 
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Table 3.2: Synchrotron X-ray diffraction data statistics: Perdeuterated 
DHFR/MTX 
  
Synchrotron facility Advanced Photon Source 
Beamline NE-CAT; 8-BM 
Detector ADSC Quantum-315 
Temperature (K) 100 
Wavelength used (Å) 0.980 
Resolution range 
Highest shell 

25.0-1.25Å 
1.29-1.25Å 

Space group P61
Unit cell constants 
a, b, c in Å 
α, β, γ in ° 

 
91.8, 91.8, 73.0 
90, 90, 120  

Total reflections 1 222970 (15565) 
Unique reflections 18497 (1852) 
Completeness (%) 98.7 (86.6) 
Rsymm (%)2 6.0 (38.0) 
I/σ 20.0 (2.0) 
Multiplicity 2.7 (2.0) 

 
1Numbers in parentheses correspond to values measured within the highest  
 resolution shell 
2Rsymm= Σhkl Σi ΙIi(hkl) - IhklΙ/Σhkl Σi I(hkl)
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0.5 x 0.5 x 0.2 mm, or about 0.02 mm3, again taking into account the hexagonal 

morphology. Collaboration with scientists at LANSCE is ongoing to produce 

perdeuterated DHFR on a large scale to be able to grow larger volume crystals for future 

neutron experiments at LANSCE. 

 Finally, one possible strategy for modifying the data collection at the ILL that has 

not been pursued is to use a narrower wavelength band pass filter (dλ/λ=15%) and longer 

wavelength neutrons, centered at λ=3.85Å for data collection. This would effectively 

reduce the density of reflections and the number of spatial overlaps on the LADI 

cylindrical detector. Whilst this strategy doubles the number of data frames required, the 

narrower dλ/λ bandpass would reduce the experimental background and the use of larger 

D2O-soaked or perdeuterated crystals would deliver significant improvement in the signal 

to noise ratio of the data. However, the increase needed in total experimental time has not 

been feasible so far for the recent run cycles. In fact, as of the middle of 2005, the ILL 

will be shut down for experiments until 2006. Additionally, this has not been pursued 

because a larger volume crystal has now been used for another experiment at the ILL, and 

a complete data set has been collected on another large volume crystal at LANSCE. This 

latter data will be the focus of the neutron crystallography results discussed in the next 

chapter. 
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Chapter 4. X-ray and neutron crystallographic studies of the 

DHFR/MTX complex 

4.1 Background 

 This chapter details results for crystallography experiments performed on the E. 

coli DHFR/MTX complex. The ultrahigh resolution X-ray structure reported here is 

compared to the 1.9Å resolution X-ray structure deposited into the PDB (3DRC) (Warren 

et al. 1991) and results are reported based on analysis which could not previously be 

undertaken due to the lack of atomic resolution. Outstanding questions concerning 

dynamics and hydrogen atom locations in the active site were left unanswered by this X-

ray structure and, thus, a neutron structure of the same complex was solved. Additionally, 

preliminary neutron crystallography (NC) data were collected at the Institut Laue-

Langevin (ILL), referred to here as “preliminary” because a more complete data set has 

since been collected on a larger volume D2O-soaked crystal at the Protein 

Crystallography Station (PCS) at Los Alamos Neutron Scattering Center (LANSCE). 

This latter experiment has provided a more complete data set for the refinement of the 

neutron structure and analysis of active site protonation states and H/D exchange. The 

ILL data set is reported here because it serves as a benchmark for evaluating 

improvements in sample preparation, and if paired with a more recent data set collected 

at ILL on larger volume crystals, it then also allows at least a general comparison 

between reactor (ILL) and spallation neutron sources (LANSCE).  
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Characterization of Asp 27 and its role in ligand binding to E. coli DHFR 

 From Joseph Kraut’s laboratory, the initial crystal structure of E. coli DHFR with 

substrate bound (a ternary complex with folate and NADP+) revealed that the N5 atom of 

FOL was 5Å distant from the carboxylate group of the important catalytic residue, Asp 

27 (Bystroff et al. 1990). It also revealed that the binding orientation of folate relative to 

MTX differs by the respective rotation of the pterin rings (Figure 4.1). The MTX 

pteridine ring is in a conformation which places its NA2 amide group and N1 atom 

within hydrogen bonding distance (~2.7-2.8Å) of the Asp27 carboxylate (Bolin et al. 

1982; Matthews et al. 1977; Matthews et al. 1985). It has been speculated that this 

orientation is preferred so as to allow a salt bridge to form between the MTX N1 and the 

Asp27 Oδ2, a hypothesis seemingly defended by the fact that the binding affinity for 

MTX is much stronger than for folate or even the natural substrate, DHF (Stone et al. 

1983a); (Stone et al. 1984); (Appleman et al. 1988). To form a true ionic interaction, the 

MTX N1 atom would have to be protonated and, thus, positively charged. It would 

follow that the Asp27 carboxylate would also be ionized, maintaining resonance and 

sharing a negative charge across the Oδ1-Cγ-Oδ2 atoms. A few experimental studies, 

none of which are crystallographic or absolutely direct, have broached this issue of 

charge states. Raymond Blakley’s group used 13C-NMR (Coco et al. 1981; Coco et al. 

1983) to reveal that the pKa of the MTX N1 atom increased tremendously when the MTX 

is bound to DHFR, from 5.7 in solution to >10 when enzyme-bound. Also using 13C-

NMR but observing the chemical shifts of these on labeled Asp residues, Gordon 

Robert’s group (Casarotto et al. 1999) established that, in the homologous L. casei 

DHFR, no Asp carboxylate has a pKa above 4.0, at least when folate, DHF or a ternary  
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Figure 4.1: The conformation of MTX in the DHFR active site is altered 
significantly compared to FOL due to a differing rotamer of their pterin rings. A) 
Interaction distances between MTX and DHFR active site residues (this is the 1.0Å 
model reported here). B) MTX is oriented so as to have its N1 and NA2 atoms within 
contact distance of the Asp27 whereas FOL positions its NA2 atom and its N3-C4-O4 
tautomeric group in an analogous fashion. C) Interaction distances between FOL and 
DHFR active site residues (this is also a 1.0Å model refined by Dr. Anna Gardberg in the 
Dealwis laboratory; it is shown here not as a report of my results but for comparison 
purposes only). 
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complex is bound. These results strongly suggested that the Asp27•MTX interaction 

could very well be ionic in nature. A computational study by Stephen Benkovic’s group 

(Cannon et al. 1997) where theoretical pKa calculations of the Asp27 and the MTX N1 

were measured at dielectric constants nearer to what one would expect for the interior of 

a globular protein (ε = 4-10). They showed that the proton affinities for the two groups 

drastically change below an ε of 10; in fact, both the Asp27 and the N1 titrate, leaving 

them neutral. Their conclusion was that the interaction should be described as a neutral 

dipole-dipole and not ionic (Cannon et al. 1997a; Cannon et al. 1997b). It is one of the 

major aims of this dissertation research to reveal directly the nature of the interaction 

between the Asp27 carboxylate and the MTX N1. The best method to answer this 

question is protein crystallography by X-rays and neutrons.   

The powerful tool of X-ray crystallography in macromolecular structure determination  

 X-ray crystallography has proven to be an eminently powerful technique for 

macromolecular structure determination. At moderate resolutions (2.5-3.0Å), obvious 

secondary structural features are revealed, the main chain can be traced (important in de 

novo structure determination), and residue side chains can normally be modeled into 2Fo 

– Fc electron density (Creighton 1993). Additionally, if one has collected data to high 

enough resolution (at or beyond 1.0Å) at cryogenic temperatures (-170 to -180°C (~100 

K) can be achieved with liquid N2, -250 to -260°C (~15 K) with liquid He), one can 

assign some (but not all) hydrogen atom positions, quantify and visualize anisotropic 

displacement (non-spherical atomic vibration), identify alternate side chain and even 

main chain conformations, and, at very high resolution (normally beyond 0.9Å), 

 90



deformation in the electron density distribution (Dauter et al. 1997b); (Longhi et al. 

1998). Recently, Teeter and colleagues have refined the structure of two proteins, 

crambin (5kDa, to 0.54Å) and savinase (27kDa, to 0.9Å), and performed averaged 

density measurements for the repeating peptide bond units. Intriguingly, they discovered 

deformations in the electron density around the peptide bond atoms while clearly 

observing hydrogen peaks in their maps off the amide nitrogens and the alpha carbons 

(Lamzin et al. 1999); (Jelsch et al. 2000). Podjarny has reported similar behavior for the 

peptide bond for aldose reductase (to 0.66Å) and has also been able to model multiple 

hydrogen atoms (Howard et al. 2004). However, there are few studies so far which have 

revealed this level of detail. Crystals have inherent limitations on diffraction power, and a 

liquid He cryostat (similar to the one used for the crambin study at EMBL-Hamburg 

(Jelsch et al. 2000)) has only been implemented at a few synchrotron beamlines around 

the world. As far as the modeling of hydrogen atoms, the obvious importance for their 

visualization is for defining protonation states of “heavier” atoms (in the macromolecular 

case, these are C, N, O, S, and P); this would reveal the type of noncovalent interaction 

between two species. The covalent bond involving the Cα and the carbonyl carbon on the 

main chain is ~1.5Å in length, near the wavelength of X-rays used in most in-house 

diffractometers (Cu κA radiation = 1.514Å). From diffraction theory, the minimum Bragg 

spacing that can be resolved within a crystal (thus, the maximum resolution possible) is 

λ/2. So, theoretically, data to 0.78Å resolution (the dmin) could be obtained using an in-

house diffractometer with a Cu rotating anode. (However, the X-ray detector would have 

to be very large or have the ability to be swung and/or offset.) To collect even higher 

resolution data, a synchrotron source can supply X-ray wavelengths nearer to the bond 
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distance between a Cα and its bound hydrogen, or ~1.0Å. Although it is dependent upon 

many factors inherent to the crystal itself (such as the lattice construction, packing, and 

any disorder of the molecule), theoretically one should be able to resolve hydrogen from 

other protein and solvent atoms that are sufficiently ordered using X-ray radiation.  

The limits of X-rays and re-emergence of neutrons in crystallography 

 However, X-rays distinguish between different type atoms only by their electronic 

content, sulfur being the strongest scatterer common in proteins (Met and Cys) due to its 

16 electrons and, thus, can normally be readily identified in electron density maps. Due to 

hydrogen’s weak X-ray scattering (only one electron) and its inherent dynamic nature 

(normally, it maintains elevated thermal motion and its B-factor is linked to the B-factor 

of the atom to which it is bound (El-Kabbani et al. 2004), it is difficult at ultrahigh 

resolution (beyond 1.2Å) and essentially impossible at lower resolution (lower than 1.5Å) 

to confidently model hydrogen into electron density maps. In fact, it is a positive single 

difference density map (Fo – Fc) above a contour level of 2.5-3σ which one uses normally 

to attempt this task (Schmidt et al. 2003) (Minichino et al. 2003). Hydrogen constitutes 

~50% of a macromolecule’s atoms and its positioning can be extremely important in 

protein function (i.e. acid-base catalysis in enzyme mechanisms) yet its placement is 

normally only implied by inferences made using difference electron density, potential 

hydrogen bonding patterns, and standard geometries.  

 Macromolecular NC can reveal hydrogen atom positions at moderate resolution 

(2.0-2.5Å). Neutrons are scattered by the atomic nuclei instead of by the diffuse electron 

cloud. Since the initial description of a neutron structure of a protein (myoglobin) in 1969 

(Schoenborn 1969) and into the 1980’s, when the neutron structure of several important 
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enzymes were elucidated, including trypsin (Kossiakoff et al. 1980; Kossiakoff et al. 

1981), RNase A (Wlodawer et al. 1983), and insulin (Wlodawer et al. 1989), there has 

been immense interest in NC. However, the practical use of neutrons has been arduous 

and time-consuming due to the weak fluxes (a neutron pulse is weaker in energy than an 

in-house X-ray source), the requirement of large volume crystals (>1mm3), and the lack 

of dedicated protein crystallography instruments at neutron sources (only 1 in North 

America and 4 in the world). Even so, NC seems to be undergoing a resurgence in 

structural biology, as evidenced by the multiple publications that have been borne out 

over the last 8 years, from the bacterial cell-wall glycosidase, lysozyme (Niimura et al. 

1997); to an aspartic protease, endothiapepsin (Coates et al. 2001); to a spallation neutron 

experiment on the glycolytic enzyme, xylose isomerase (XI; (Hanson et al. 2004); to a 

cryo experiment on a lectin, concanavalin A (Blakeley et al. 2004), just to select a few.

 The ability to distinguish hydrogen in protein structures solved by neutrons is 

actually a misnomer. One can only visualize hydrogen directly by the use of negative 

difference nuclear density (e.g. an Fo – Fc map contoured at -3σ). The reason is that the 

interaction of the incident neutron beam with the hydrogen nucleus (which contains only 

a single proton) is the major cause of incoherent scattering in NC and neutron scattering 

experiments; hydrogen’s neutron scattering cross-section (a measure of the probability, 

magnitude, and area of an interaction event between the neutron beam and the hydrogen 

nucleus; measured in barns (10-24 cm2)) is not only incoherent but greater in incoherence 

than any other atom normally found in proteins (Langan et al. 2004b) (Table 4.1). 

Incoherence is a discrepancy of scattered waveforms when compared to one another; 

there is no net contribution to a signal resulting from constructive or destructive  
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Table 4.1: Neutron scattering lengths (or scattered wave amplitudes) and cross-
sections for atoms in biological macromolecules. 
 
 
 1H 2H (D) 12C 15N 16O 

Bcoherent (fm)1 

(X-ray) 

-3.74 

(2.80) 

+6.67 

(2.80) 

+6.65 

(1.69) 

+9.36 

(1.97) 

+5.81 

(2.25) 

σcoherent
2 1.76 5.59 5.56 11.03 4.23 

σincoherent
2 80.27 2.05 0.0 0.49 0.0 

 
 
1 Scattering lengths are reported as measured in femtometers (10-12 m). 
2 Coherent and incoherent total cross-sections (σ) are reported as measured in barns, with 
1 barn equaling 10-28 m2 (about the size of uranium’s nucleus) and quantifies a cross-
sectional area of a nucleus or nuclear interaction. A cross section itself is a measure of 
probability of interaction between two interacting particles (Here, it would be the 
interaction between reactor or spallation neutrons and the nuclei of the atoms which 
comprise a macromolecular crystal.) 
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interference. It is similar to a randomness in scattering (not just waves that are out of 

phase but those arising from scattering events which have different frequencies) 

(Schoenborn et al. 1996). The result of hydrogen scattering is that the background on the 

detector will be increased, the signal-to-noise ratio will be reduced and it will take longer 

to accurately measure diffraction peaks, and, in the maps, nuclear density for atoms 

bound to hydrogen could be reduced or missing altogether (Meilleur et al. 2005). The 

remedy for this is hydrogen/deuterium (H/D) exchange, either by D2O-soaking the crystal 

or by perdeuteration. (The details are given in chapter 3.) Briefly, the exchange of H for 

D increases overall coherent scattering and, thus, improves signal over background 

(Table 4.1); this is especially true if one perdeuterates the protein, where all the 

covalently-bound H are substituted for D at the biosynthetic level (Shu et al. 2000). 

Therefore, if the maps warrant its placement, one models deuterium directly into 2Fo – Fc 

nuclear density maps due to its substitution for hydrogen. Deuteration also reduces the 

sample volume required for NC (Hazemann et al. 2005); perdeuteration paired with 

spallation neutrons may make it possible for standard crystal volumes to be used (~0.05-

0.1mm3) in NC experiments (Schoenborn et al. 2004).  

 Current NC capabilities: spallation vs. reactor sources 

 Two source types, cold reactor and spallation, exist presently for the production 

of neutrons for structural biology. An example reactor source is the ILL and details 

concerning data collection and instrumentation at LADI for NC are presented later in 

this chapter. Reactors are at an inherent disadvantage to spallation sources due to flux 

limitations imposed by the fission process (limitations that may not be overcome in the 

near future) (Schoenborn et al. 2004). Spallation neutron sources provide a new tool for 
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protein crystallographers. Bombarding a metal target with µsec pulses of high-energy 

protons produces a beam of neutrons with a range of energies and a pulsed time-

structure that allows data to be collected with high efficiency and low background noise 

using the time-of-flight (TOF) Laue method. The first macromolecular NC beam line to 

be built at a modern spallation source (PCS) has been operating at LANSCE since 

August 2002 (Langan et al. 2004a). LANSCE provides a pulse of neutrons 20 s-1 from 

the spallation impact of protons upon a tungsten target. PCS houses a gadolinium-doped, 

position-sensitive, large curved detector for faster data collections (Langan et al. 2004a). 

Since the neutrons are produced from a spallation source, the time that the protons strike 

the target is exactly known and is designated as T0. Thus, the neutrons have time 

signatures and their TOF is based on their energy. Neutrons of different energies 

(therefore, of different wavelengths) arrive at the detector at different times and the TOF 

information (and the exact wavelength) is recorded for the detected neutron; so, not only 

does one detect the position of a reflection but also its time of arrival. Thus, the use of 

the wavelength-resolved Laue method provides data in three dimensions: two for the 

reflection position on the detector and one for the TOF (Langan et al. 2004b). The ability 

to time-stamp the reflections allows one to bin them based on the TOF, each bin or 

channel representing a small curvature of reciprocal space. One detector image is then 

several of these slices adding to a large wedge of reciprocal space (Hanson et al. 2004). 

The maximum wavelength range available at LANSCE is 0.6-7Å, with a normal 

experimental range of 1-5Å. Wavelength-resolved Laue NC is advantageous over quasi-

Laue at reactor sources like ILL because of lower reflection overlap and lower 

background levels (Langan et al. 2004b). An overlay of all TOF channels displaying 
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each pixel position at the pixel value maximum resembles a conventional Laue pattern 

because of the integration of multiple time slices into one diffraction image. Although 

only 10-30 crystal settings are typically required for a complete data set, individual 

exposure times can be as high as 48 hours. Moderately large sample volumes (> 

0.2mm3) that have been extensively D2O-soaked are still required to enhance signal-to-

noise in data collection. 

 High resolution X-ray and neutron crystallography has been used in this research 

to describe the positioning of H/D on residues and MTX in the active site of E. coli 

DHFR. Also of interest are the features in the 1.0Å electron density maps that were 

unavailable in previous crystallographic studies of this complex such as alternate side 

chain conformers, anisotropy, and highly accurate bond length measurements of the 

active site residue, Asp 27. By virtue of H/D exchange (and the fact that D scatters 

neutrons so strongly), an analysis has been made of structural flexibility based on the 

propensity of backbone amides and side chains to undergo H/D exchange.  

4.2 Results and discussion 

X-ray crystallography: Synchrotron data collection and processing 

 Ultrahigh resolution X-ray diffraction data were collected for a DHFR/MTX 

cocrystal at BioCARS beamline 14-BM-C at the Advanced Photon Source. All data were 

collected at -170°C using a Quantum 4 detector and an X-ray wavelength of 0.9Å. The 

program HKL2000 (Otwinowski et al. 1997) was used for indexing, integration, and 

initial scaling of all the data reported here. 

 An MTX cocrystal (0.4 x 0.4 x 0.2 mm3) was chosen for high resolution data 

collection after observing reflections to 0.9Å. The detector was brought to 70 mm from 
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the crystal and the exposure times were set to 30 s for each image. The short crystal-to-

detector distance and long exposure times were used to ensure recording of high 

resolution reflections and strong intensities for these reflections. Ninety degrees of data 

about the ϕ axis were collected at 0.5° per oscillation giving a total of 180 images; the 

resolution range of this set was 3.2 – 1.0Å. A foil attenuator was mounted directly in 

front of the low resolution area of the detector (4Å and lower) to protect it from 

overexposure. The next task was to collect a scan from the same crystal to provide data 

lower than 4Å that had been effectively blocked and/or weakened by the use of the 

attenuator. The detector was put back to 100 mm distance, the exposure times decreased 

to 5 s per oscillation, and the foil was removed. Unfortunately, the integration and scaling 

statistics for the crystal for this data collection progressively became worse as more 

frames were incorporated. It may have been advisable to collect the low resolution data 

first and then collect the high resolution reflections. This is a strategy that was adopted 

for the apo DHFR data collection described in the next chapter. So, a second MTX 

cocrystal of similar dimensions was ultimately used just for the purpose of collecting the 

lower resolution data. This scan encompassed 65° of ϕ space with 0.5° per oscillation, 

and the resolution range of this scan was 15.0 – 1.2Å. The mosaicity of both crystals was 

0.4°.  

Data reduction and scaling 

 After separate indexing and integration of the intensities from the two scans, the 

data sets were merged and scaled together. Owing to a swapped indexing convention 

common to P6, the data sets were rescaled using a reindexing matrix (h k l to k h –l) in 

the program Scalepack (Otwinowski et al. 1997). The overall Rmerge was 8.9% and the 
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completeness was 95.3% for a resolution range of 15.0-1.04Å (for the highest resolution 

shell, 1.04-1.00Å, it is 89.6%). The combined scaling statistics are listed in Table 4.2.  

Molecular Replacement (MR) solution of the DHFR/MTX complex 

 Early on in the thesis research (and well before the synchrotron data collection), 

an in-house X-ray data set was collected on a DHFR/MTX crystal at -170°C with 

resolution extending to 1.7Å. The unit cell is isomorphous to the one described in the 

above section, and the space group (P61) is identical. Based on previous results from E. 

coli DHFR/MTX crystals, it was suspected a screw axis existed on the 6-fold axis. A 

precession photograph was examined for one of the oscillation images using the program 

HKLView (CCP4, 1985). Along the 00l layer, systematic absences of reflections were 

observed at 6n + 1; this is due to a 6-fold symmetry element combined with a 1/6 cell 

edge translation. After integration and scaling of the intensities and conversion to 

structure factor amplitudes, a Mathews coefficient was calculated to determine the 

solvent content of the unit cell (34.5%) and that there were 2 molecules in the asymmetric 

unit (AU). The coordinate set from a room temperature model of DHFR/MTX (3DRC; 

P61 space group; 1.9Å resolution; only protein atoms were retained) was employed as the 

target molecule for MR using the program AMoRe (Navaza 2001) for a resolution range, 

20.0-3.0Å. The search model was placed inside a model P1 unit cell (73.8 Å, 66.3 Å, and 

64.5 Å) for the self-rotation search using a sphere of integration with a radius of 26.4 Å. 

The correlation coefficient (CC) for the top solution from a rotation and translation 

search of the unit cell was 0.32 (32%). This solution was then fixed at the 61 origin, and 

the target was translated from solution 1 along the z axis to search for the second 

molecule (the second solution) within the AU; the resultant CC was 34.6%. Two 
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Table 4.2: X-ray data processing statistics: DHFR/MTX cocrystal 
 

DHFR crystal form MTX 

BioCARS Beamline; 

Detector 

14-BM-C 

ADSC Q4 

Unit cell (a,b,c, in Å) 

(αβγ, in °) 

92.2, 92.2, 73.3 

90, 90, 120 

Molecules/ A.U. 2 

Solvent content (%) 34.5 

Space group P61

Resolution range (Å) 

Highest shell 

15.0-1.00 

1.04-1.00 

Unique reflections 172,284 

Completeness (%) 95.3 (89.6) 

Rmerge
1 (%) 8.9 (67.5) 

I/σ 13.7 (1.2) 

Multiplicity 3.0 (1.6) 

# Data sets used 2 

Rmerge
1 = Σhkl Σi ΙIi(hkl) - IhklΙ/Σhkl Σi I(hkl)
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 solutions were then fit within the asymmetric unit (with one fixed at the origin), and the 

CC and the R-factor were calculated to be 75% and 35%, respectively. 

Refinement 

 The output AMoRe MR solution models for the two molecules in the AU were 

combined into one coordinate file, and this was refined against the in-house 1.7Å 

reflection data using the rigid body method in CNS (Brunger et al. 1998). The refined 

model was then subjected to simulated annealing to reduce model bias from 3DRC 

(Brunger et al. 1997). The output model from annealing and energy minimization (Rfac 

and Rfree = 36.0% and 36.7%) was used to refine against a reflection data set collected to 

1.4Å at the Brookhaven synchrotron (the NSLS). (This was collected about 3 months 

prior to the APS synchrotron experiment. It is mentioned here because it was used in 

refinement in between the in-house and the APS data collection experiments.) Rigid body 

refinement and minimization in CNS along with initial rebuilding in O reduced the Rfree 

to 34%. This model was ultimately used for minimization in CNS and refined against the 

reindexed reflection data collected to 1.0Å at the Argonne synchrotron (the APS). After 

switching over to Refmac5 for maximum likelihood (ML) refinement (Murshodov et al., 

1998; invoked within the CCP4 suite; CCP4, 1985), the proper monomer library was 

invoked within CCP4 so as to include the MTX ligands in the refinement. The resultant 

Rfac and Rfree values from the initial run were 29.3% and 30.3%, respectively. After the 

three cycles of refinement in Refmac5 and SHELX, solvent addition, refinement of 

anisotropy (see below) and modeling of several alternate side chain conformations, the 

Rfree decreased to 23.4%. The addition of hydrogens in riding positions in SHELX further 

reduced the Rfree to 18.4%. After a final refinement in Refmac5 to relax the sigma 
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weighting matrix, the Rfree decreased to 16.5%. Refinement and analysis statistics are in 

Table 4.3 and unit cell contents are listed in Table 4.4. A list of residues for which 

alternate side chain conformations have been modeled is in Table 4.5. 

Comparison of the monomers within the AU  

 The two DHFR/MTX molecules in the asymmetric unit are shown in Figure 4.2. 

As expected for E. coli DHFR, these models possess a tertiary structure consisting of a 

pseudo-Rossman fold (Matthews et al. 1977); (Sawaya et al. 1997) of alternating β-

strands (8, named βA- βH) and α-helices (4, named αB, αC, αE, and αF) with three 

major regulatory loop regions. The largest divergence between the two monomers is at 

these regions, termed the Met20 (aa 9-24), βF-βG (aa 117-131), and βG-βH (aa 142-149) 

loops, due to the fact that the Met20 loop differs in conformation from partially occluded 

(monomer A) to closed (monomer B). The overall Cα r.m.s.d. between monomers A and 

B is 0.52Å (calculated using a least squares superposition in the molecular graphics 

program O (Jones et al. 1991)). The largest Cα r.m.s.d. between monomers A and B is 

for Glu 17, in the core of the Met20 loop, at 5.2Å. Alternate side chain conformers were 

modeled if sufficient 2Fo-Fc (>1.5σ) and/or Fo-Fc (> 2.5σ) density existed at favorable 

rotamer positions. In the final refined model, there are 12 alternate conformers for 

monomer A and 10 for monomer B (see Figure 4.3A, B for examples). Over 600 solvent 

molecules could be modeled into 2Fo-Fc electron density contoured above 1.3σ.  

Isotropic and anisotropic B-factor description and analysis of the MTX structure  

 Because X-rays are scattered from the electron cloud of an atom, any vibrational 

motion of the atom has an effect on its X-ray scattering power. Indeed, there is normally 
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Table 4.3: Refinement statistics for X-ray crystallography: DHFR/MTX cocrystal 
 

DHFR crystal form MTX 

 Resolution range (Å) 

Highest shell 

15.0-1.00 

1.04-1.00 

Final Isotropic Rfac/Rfree 

(Refmac5) (%) 
23.4/25.3 

“Best” Anisotropic Rfac/Rfree 

(Refmac5) (%) 
18.7/21.0 

Same coordinates; Isotropic in 

SHELXH (%) 
21.2/24.0 

“Best” Anisotropic Rfac/Rfree 

(SHELXH) (%) 
16.3/19.8 

All riding hydrogens added; 

Rfac/Rfree (SHELXH) (%) 
15.1/18.4 

Final Rfac/Rfree (SHELXH) (%) 14.1/17.7 

Final sigma weighting matrix 

(Refmac5) 
7.0 

Final Rfac
2/Rfree

3
 (Refmac5) 14.3/16.6 

Final r.m.s.d. for bond distances 

angles 

0.020Å 

2.036° 

Rfac
2 = Σhkl | |Fobs| - | Fcalc | | / Σhkl |Fobs| 

Rfree
3 = Σhkl | |Fobs| - | Fcalc | | / Σhkl |Fobs| 
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Table 4.4: Unit cell contents of the DHFR/MTX cocrystal (X-ray) 
 

Molecules/A.U. 
 

2 

Protein atoms (non-hydrogen) 2638 

 
Water molecules 630 

 
Metals 3 (2 Mg2+; 1 Cl-) 

 
Ligands 

 
2 (MTX) 
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Table 4.5: Residues which possess alternate side chain conformations in the two 
monomers of the DHFR/MTX AU 

Monomer/AU 
 

A B 

# of alternate conformers 12 10 

Residue/Secondary 

structural element 

Leu 4/βA strand 

Asn 18/Met20 loop 

Leu 36/αB helix 

Pro 39/βB strand 

Ser 49/αC helix 

Val 99/αF helix 

Lys 109/βF strand 

Ser 138/βG strand 

Ser 150 (2a)/ βG-βH loop 

Glu 154/βH strand 

Leu 156/βH strand 

Leu 8/βA strand 

Ile 61/βC strand 

Ile 82/αE helix 

Val 88/βE strand 

Thr 123/βF-βG loop 

Ser 138/βG strand 

Asp 142/ βG-βH loop 

Ser 150/ βG-βH loop 

Cys 152/βH strand 

Leu 156/βH strand 

 

a Ser 150 in monomer A possesses two alternate conformers for its side chain hydroxyl 
group 
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Figure 4.2: Comparison of the two monomers in the asymmetric unit of the 1.0Å 
DHFR/MTX model. A) Superposition of the two monomers, with the largest Cα 
deviations occurring at the Met20 loop. Major differences also exist for the βF-βG loops. 
The A monomer is in green and the B monomer is in red. B) The A monomer has a 
Met20 loop which adopts a partially occluded conformation and the βG-βH loop is 
positioned to stabilize it via hydrogen bonding. C) The B monomer has a Met20 loop 
which adopts a closed conformation. Part of the βF-βG loop (residues 120-122) makes 
contacts with the core of the closed Met20 loop, stabilizing it to block the substrate 
binding site and opening the nicotinamide-binding pocket. 
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Figure 4.3: High resolution electron density maps allow the modeling of alternate 
side chain conformations for the DHFR/MTX structure. Examples include one 
alternate conformer for (A) Ser 49 (monomer A) and (B) two alternate conformers for Ser 
150 (monomer B). Shown in blue is 2Fo-Fc electron density contoured at 2.0σ. 
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 an associated “smearing” of electron density with atoms that possess large vibrational 

amplitudes. Therefore, a correction can be applied to each of the scattering factors, f, for 

the given vibrating atoms as 

f = f0 exp [-8π2{u2}(sin2θ/λ2)],  (Equation 1) 

where u2 is the mean squared vibrational amplitude of the atom, θ is the scattering angle, 

and λ is the X-ray wavelength. The magnitude of the vibration is correlated to 

temperature, so u2 is normally referred to as a thermal parameter or temperature factor. 

However, atomic vibration and the smearing of density can also be related to inherent 

dynamics and disorder in the protein as well as to variation of the proper location of the 

atom’s centroid among the cumulative unit cells (Merritt 1999a). Trueblood et al. (1996) 

have suggested that “displacement parameter” be used instead of temperature or thermal 

factor (Trueblood et al. 1996). It is normally referred to as the B-factor, with the term B 

being defined as 

B = 8π2{u2}.  (2) 

Here, u2 is one parameter (an area measurement) that describes isotropic distribution of 

atomic vibration, a uniform displacement that is best represented as a sphere. This is an 

inaccurate approximation for the vibration of most atoms. Thus, an anisotropic B-factor 

describing the non-uniform displacement of an atom is more appropriate and takes the 

form of a 6-parameter matrix. These 6 parameters define an ellipsoid within which the 

atom vibrates (Tronrud 2004).  Although it is a more accurate description of an atom’s 

position, refinement of anisotropic B-factors increases the total parameters to be 

determined and refined per atom from 5 (xyz, isotropic B-factor, and occupancy) to 10 

(instead of one displacement parameter there are now 6). Only with a large ratio of 
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observations (unique reflections) to parameters (perhaps 5:1 or better) can anisotropic 

displacement parameter (ADP) refinement be justified (Sheldrick et al. 1997). 

Essentially, high resolution data is required. Inclusion of ADPs considerably reduces the 

Rfac and Rfree by lowering the uncertainty in atomic positions.  

 For the MTX structure, ADPs were refined in two separate programs (Refmac5 

and SHELX). Restrained refinement of the model in SHELX using the lone isotropic 

parameter (in Å2) to describe the vibrational mode of each atom provided a data-to-

parameter ratio of ~15:1 whereas restrained ADP refinement of the model in SHELX still 

provided a ratio of ~6.5:1 and decreased the Rfree between 3-4% in both programs. Using 

the program PARVATI (Merritt 1999a), an analysis of the distribution of anisotropy and 

thermal motion from the input refined MTX coordinate file was performed and graphical 

displays are shown in Figure 4.4. Anisotropy is defined here as the ratio between the 

smallest and the largest eigenvectors of the ADP matrix, related to the length of the 

shortest and the longest principal axes (eigenvectors) of the ellipsoid (Trueblood et al. 

1996),  

A = Emin / Emax. (3) 

So, a value for an atom near 1.0 would describe a sphere whereas values nearer to 0.5 

describe an ellipsoid and values nearer to 0.1 can describe either a “cigar” or a “pancake” 

distribution (Merritt 1999a). Not surprisingly, the core residues for both MTX monomers 

in the AU can mainly be described as isotropic; that is they have a spherical, uniform 

distribution of motion (seen as blue spheres in Figure 4.4A). However, different regions 

between the two monomers show higher anisotropic behavior, and this seems to be 

strongly correlated to higher B-factors for the atoms in those regions (seen as orange-red 
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Figure 4.4: Anisotropic displacement and B-factor analysis for the 1.0Å resolution 
DHFR/MTX structure (monomers A and B). A) All non-hydrogen atoms for 
monomers A and B are shown as thermal ellipsoid probabilities, with blue-to-green 
spheres representing atoms displaying more isotropic motion (A = ~1.0) whereas yellow-
to-red ellipses represent atoms displaying more anisotropic motion (A = ~0.5) B) B-
factors (in Å2) for peptide backbone atoms for monomers A (black) and B (red) C) 
Anisotropy ratio values (where A = Emin / Emax) for peptide backbone atoms; larger A 
values describe more isotropic behavior whereas smaller A values describe more 
anisotropic (non-spherical atomic vibrational distribution); higher B-factors and ADPs in 
the monomers are indicated by black and red arrows. 
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 ellipsoids in Figure 4.4B, C). For example, the region between the βC and βD strands 

(aa 62-70) is fairly disordered in monomer A with high B-factors and ADP ratios around 

0.3-0.55 (Figure 4.4, black arrows). In monomer A, Glu65 and Pro66 have little electron 

density for atoms other than the main chain. However, in monomer B, this region is quite 

ordered with lower overall B-factors and higher A values (more isotropic) and, in fact, 

much more than the previously deposited MTX structure (solved to 1.9Å; (Warren et al. 

1991). A similar region of discrepancy, this time monomer B having a higher anisotropy, 

is in the βG-βH loop (aa 142-149) and into the C-terminus of the protein (Figure 4.4, red 

arrows). In monomer B, the Met20 loop adopts a closed conformation and the βG-βH 

loop is not needed to stabilize it, possibly contributing to this region’s enhanced mobility 

(Figure 4.4B, C) as compared to monomer A (where the βG-βH loop forms hydrogen 

bonds with the core and C-terminal end of the partially occluded Met20 loop). Merritt 

(1999) established a consensus value for A (equation 3) for protein atoms from a 

sampling of reported high resolution structures (range = 1.4-0.8Å). The mean A is ~0.45, 

a significant deviation from an isotropic description of atomic motion in proteins (Merritt 

1999b). The overall mean A for the MTX structure (including both monomers) is ~0.55. 

Therefore, the DHFR/MTX model at this resolution can be generally described as slightly 

more isotropic in nature, however, with large ADPs for most surface and loop regions.  

Comparison to the previously reported MTX X-ray structure  

 A comparison between the two monomers of this 1.0Å MTX cryo model and the 

two monomers of the previously deposited 1.9Å MTX room temperature (RT) model 

(3DRC; Warren et al., 1991) revealed many side chain rotamers that were different 

between the two structures, most conformational differences justified by the high 
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resolution data (in other words, the cryo model fit the 1.0Å electron density better than 

the RT model; this is normally expected but recall that with increased resolution one has 

increased precision for the structural model). Superposition of the monomer A models 

revealed an overall Cα r.m.s.d. of 0.31Å while superposition of the monomer B models 

revealed an r.m.s.d. of 0.35Å (Figure 4.5A, C). It should be reiterated that the unit cells 

are isomorphous and the space group is the same (P61) for the MTX structure reported 

here and for 3DRC. For the A molecules, there are three major areas of divergence 

between the structures. The side chain of His 45 adopts a different rotamer about the χ1 

torsion, causing the imidazole ring in the high resolution model to point towards a solvent 

channel and the Nε2 atom to form a potential hydrogen bond with Wat 274 (Figure 

4.5B). This also orients the imidazole ring towards the backbone of Gly 15 and the core 

residues of the Met20 loop (~6.5Å away). The His 45 residue in the 3DRC model is 

pointed towards the surface and only part of the imidazole ring fits into 1σ 2Fo-Fc 

electron density. In the region between the βC and βD strands (aa 62-70), 3DRC is 

slightly more complete with Glu 65 in the coordinate file; for the model reported here, the 

Glu 65 had only sufficient electron density up to the Cβ atom. Two water molecules are 

currently modeled for the Glu carboxylate group. The average main chain difference for 

the models between aa 64-72 is ~0.5Å. The βF-βG loop is the region most different 

between the two structures; different side chain rotamers exist for Glu 118, Glu 120, and 

Asp 122 and are justified for the high resolution model based on the electron density. Due 

to ~1.0Å shift between the models for backbone atoms from Asp 127 to Asp 132, most of 

the side chains for these residues are also widely divergent. The βF-βG loop participates 
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Figure 4.5: Comparison of monomers A and B from the 1.0Å model reported here 
and the previously reported 1.9Å model (3DRC; (Warren et al. 1991). Some of the 
regions of the largest Cα divergences are indicated by thick green and red arrows.  
A) Superposition of monomer A from the 1.0Å (green) and the 3DRC (cyan) model. The 
Cα r.m.s.d. between the two models is 0.32Å. B) A major difference in the χ1 rotamer for 
His 45 leads to the imidazole ring pointed in opposite directions; the 1.0Å model (thick 
green line) directs the His 45 towards the Met20 loop whereas His 45 in the 3DRC model 
(thin cyan line) points toward a solvent channel and the surface. C) Superposition of 
monomer B from the 1.0Å (red) and the 3DRC (salmon) model. The Cα r.m.s.d. between 
the two models is 0.35Å. 
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less in Met20 loop stabilization in monomer A, due to the partially occluded 

conformation adopted by the Met20 loop. This may lend to its flexibility (though the B-

factors compared to the B monomer with a closed Met20 loop conformation are nearly 

identical); the 3DRC diffraction data was collected at RT whereas the 1.0Å diffraction 

data reported here was collected at -180°C. The difference in temperature, with its effect 

on atomic motion, could explain some of the divergence between the models, especially 

in a region such as inherently dynamic as the βF-βG loop.  

 For the B monomers, the region between the βC and βD strands (aa 62-70) is 

much more complete in the 1.0Å model than in 3DRC. The backbone Cα atoms diverge 

by as much as 1.0Å here; 3DRC has only backbone atoms for Pro 66 and only an Ala (a 

Cβ) at residue 68 (the proper residue is Thr, which is in the high resolution model). There 

is also a major conformational change between the models for the Thr 68 carbonyl to Ala 

69 amide nitrogen backbone, a shift of ~1.5Å between the Thr 68 carbonyl carbons. 

There is also a backbone shift of ~1.0Å at Asp 122 and a different side chain rotamer 

about the χ2 torsion angle, causing the Oδ2 atom in the 1.0Å model to make a 2.4Å 

contact with Wat246. Another large main chain divergence between the models occurs at 

the end of the βF-βG loop with ~1.2Å differences in Cα position for Pro 130 and Asp 

131. Finally, the C-terminus is slightly different between models with varying rotamers 

adopted for Arg 158 and complete model available for Arg 159 in the 1.0Å model (there 

are no coordinates in 3DRC for this side chain). 
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Difference electron density analysis to identify putative hydrogen atoms   

 Single difference density maps (Fo - Fc) were calculated from the high resolution 

data to identify positive density peaks at > 2.5σ that could be attributed to hydrogen 

atoms in the structure. The resolution of the data (1.0Å) is equivalent to reported C-H and 

N-H bond lengths from spectroscopic data (Stout et al. 1989); so, with sufficient data 

completeness and fairly low B-factors for the “heavier” atoms to which they are bound, at 

least a few hydrogen atoms should be able to be identified in difference density at this 

contour level (Howard et al. 2004). However, the weak scattering power remains the 

main reason why hydrogen is difficult to visualize in electron density maps. On the Trp 

22 indole ring in both monomers, difference peaks exist about 1.1Å distant from Cε3 

(monomer A) or Nε1 (monomer B) (Figure 4.6A, B). The B-factors for the Cε3 and the 

Nε1 atoms are ~12Å2. Other examples are peaks in the A monomer near the Cγ on Pro 39 

and Pro 55, and in the B monomer near the Nε2 on His 45, the Oγ on Ser 138 and 150.  

 A major motive for undertaking this high resolution experiment was to examine 

the DHFR active site for any positive difference density peaks on the Asp 27 and on 

MTX. At an intermediate step in the refinement (when the Rfree was ~20%, thus, the 

refinement had not yet converged), positive peaks adjacent to the Asp 27 Oδ2 and the 

MTX C7 and N8 atoms could be observed at a contour level of > 2.5σ, well above 

background (Figure 4.7A). The peak ~1.0Å away from the MTX C7 atom is easily 

explained since it is supposed to have hydrogen covalently bound to it. The peak near the  

MTX N8 is not as easily understood since this N shares a double bond with C7 and a  

single bond with C8A and no pKa has been ascribed to this atom. A possibility, albeit a 
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Figure 4.6: Positive difference density maps reveal putative hydrogen positions on 
the Trp 22 indole ring. Shown in blue is the 2Fo-Fc electron density map contoured at 
2.0σ and in orange is the Fo-Fc electron density map contoured at 3.0σ. A) Difference 
density peak adjacent to the Cε3 atom on Trp 22 in monomer A; B) Difference density 
peak adjacent to the Nε1 atom on Trp 22 in monomer B. Different orientations are shown 
because the difference peaks are offset from the plane of the paper (the peaks are sitting 
slightly “above” the Cε3 and Nε1 atoms, projecting out from the paper). 
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Figure 4.7: High resolution electron density maps for the MTX pteridine ring and 
the DHFR active site. Shown in blue is the 2Fo-Fc electron density map contoured at 
2.0σ and in orange is the Fo-Fc electron density map contoured at 2.5σ. A: Intermediate 
in the refinement process (Rfree = ~20%), a +2.5σ difference density peak adjacent to the 
Asp 27 Oδ2 was observed and was initially speculated to be a possible hydrogen atom. 
B: After further refinement (Rfree = ~16.5%), no difference density peaks (contoured 
>+2.5σ) were observed near the Asp 27.  
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weak one, is that this is observance of a hydrogen bond between the N8 and the Wat 52 

about 2.8Å distant. Further complicating the analysis of the active site difference peaks is 

the position of the peak adjacent to the Asp 27 Oδ1 atom. The peak center contoured at 

2.5σ is about 1.1Å distant from the Oδ1 atom in the model; however, it is the angle from 

the Oδ1 that is of most concern. The Asp 27 carboxylate group and the MTX pteridine 

ring lie in a near-perfect plane. So, the Asp 27 Oδ1 to MTX NA2 contact is a near-perfect 

linear orientation; the location of the difference peak near the Oδ1 is angled at about 120° 

off of this plane, facing away from the MTX NA2 and not within hydrogen-bonding 

contact with another residue or solvent. This seemed to be a strange and unfavorable 

orientation for hydrogen bound to the only ionizable group in the active site of a highly 

efficient enzyme. In collaboration with Dr. Hong Guo’s laboratory (and in experiments 

not performed by the author), molecular dynamics simulations were performed to 

understand if a hydrogen in this position is favorable. When not constrained to remain at 

the difference peak adjacent to the Oδ1 atom, the hydrogen during the course of the 

dynamics simulation actually exchanges to the Oδ2 atom, seemingly to take advantage of 

a hydrogen bond to Wat 52. If strict constraints were applied to the hydrogen to remain 

bound to the Oδ1 atom in order to calculate the energetics of this position, the ∆G value 

derived was quite positive, thus indicating that this hydrogen was most likely in an 

unfavorable position and orientation. Fortunately, as the refinement converged and the 

Rfree approached its final value of 16.7%, this difference peak had become much weaker, 

even when contouring at the 2.5σ level (Figure 4.7B).  
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Full-matrix refinement to determine the protonation state of the active site carboxylate  

 It was then sought to determine the ionization state of the Asp 27 residue not by 

direct observation of electron density but by assessing the highly precise and accurate 

measurements for bond lengths and angles one is afforded from the ultrahigh resolution 

of the diffraction data. In SHELX, refinement of the aspartate and glutamate residues free 

of stereochemical restraints to allow unrestrained adjustment of the carboxylate groups 

was performed. Coincident with this step, the structure was refined against all reflections 

(no Rfree set). At this point, the measurements of the carboxylate Cγ-Oδ1 and Cγ-Oδ2 

bond lengths are recorded and are very accurate. Differences in these bond lengths can be 

used to suggest the protonation states. To determine the estimated standard deviations 

(ESDs) of the bond lengths and angles, the MTX model was then used in one cycle of 

least squares calculations for a full-matrix refinement where all the restraints were 

removed. This allows one to extract positional ESDs from the inverted (full) matrix for 

the input coordinate model (Sheldrick et al. 1997). Only the first 30 residues were 

included in the ESDs calculation. This permitted the measurement of ESDs for the 

carboxylate groups of Asp11, Glu17, and, most importantly, Asp27 (Table 4.6). Asp11 is 

at the end of the β1 strand and the beginning of the Met20 loop, Glu17 is in the middle 

“hinge” region of the Met20 loop, and Asp27 is within the αA helix and is the lone 

ionizable residue in the DHFR active site. Neutral carboxylates have Cγ-Oδ1 and Cγ-Oδ2 

bond lengths of ~1.210Å for the C=O and ~1.310Å for the C-OH while charged 

carboxylates have equivalent Cγ-Oδ1 and Cγ-Oδ2 bond lengths of ~1.250Å (Deacon et 

al. 1997). Asp and Glu residues whose bond  
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Table 4.6: Refined carboxylate bond lengths, ESDs, isotropic B-factors, and charge 
estimates for Asp 11, Glu 17, and Asp 27 in monomers A and B of the 1.0Å 
DHFR/MTX structure  
 

Residue Bond length (in Å) ESD (in Å) B-factor (in Å2) 
Asp 11 
   Monomer A 
      Cγ-Oδ1 
      Cγ-Oδ2 
   Monomer B  
      Cγ-Oδ1 
      Cγ-Oδ2 
Charge state 

 
 

1.242 
1.254 

 
1.244 
1.230 

Negative 

 
 

0.057 
0.049 

 
0.045 
0.040 

 

 
Cγ    28.0 
Oδ1  36.0 
Oδ2  39.9 
Cγ     24.0 
Oδ1  34.1 
Oδ2  34.4 
 

Glu 17 
   Monomer A 
      Cδ-Oε1 
      Cδ-Oε2 
   Monomer B  
      Cδ-Oε1 
      Cδ-Oε2 
Charge state 

 
 

N/A1

N/A1

 
1.265 
1.254 

Negative 

 
 

N/A1

N/A1

 
0.013 
0.013 

 
Cδ   41.6 
Oε1 32.4 
Oε2 50.0 
Cδ   11.6 
Oε1 13.8 
Oε2 14.0 
 

Asp 27  
   Monomer A 
      Cγ-Oδ1 
      Cγ-Oδ2 
   Monomer B  
      Cγ-Oδ1 
      Cγ-Oδ2 
Charge state 

 
 

1.244 
1.255 

 
1.234 
1.245 

Negative 

 
 

0.011 
0.010 

 
0.011 
0.012 

 
Cγ     8.9 
Oδ1 10.0  
Oδ2 10.7 
Cγ   10.0 
Oδ1 11.3 
Oδ2 12.1 
 

 
 
N/A1: Not Applicable; the carboxylate bond lengths and ESDs are not shown for the Glu 
17 residue in monomer A because they are likely to be highly inaccurate due to the large 
thermal parameters (B-factors) associated with these atoms (far right column). Glu 17 is 
in the core of the Met20 loop. Not surprising, the electron density for the side chain is 
very weak, indicating that it is disordered. The B-factors for the Glu 17 carboxylate in 
monomer B (where the Met20 loop is in a closed conformation) are quite low and, 
therefore, there is greater confidence in the accuracy of the bond length estimates and 
deviations. 
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length differences are greater than 3 times the calculated ESD (>3σ) can be designated as 

protonated while bond length differences that are less than 3 times the calculated ESD 

 (<3σ) define the residue as negatively charged (Coates et al. 2002). For example, the 

calculated bond lengths for the Asp27 carboxylate (monomer A) are nearly equal: 1.244Å 

for the Cγ-Oδ1 and 1.255Å for the Cγ-Oδ2 with ESDs of 0.010Å and 0.011Å, 

respectively. The difference in the bond lengths is 0.11Å (or 1σ), identical to the ESDs, 

and, thus, the conclusion is that the Asp27 carboxylate is charged. Similar results were 

observed for monomer B: the Cγ-Oδ1 bond length was measured to be 1.234Å while the 

Cγ-Oδ2 bond length was 1.245Å, with ESDs of 0.011Å and 0.012Å, respectively. The 

bond length difference is 0.011Å, almost identical to the average ESD (so, 1σ). It should 

be noted that apparent bond lengths are influenced by the displacement parameters (the 

B-factors) of the atoms for which the lengths are being calculated and, possibly, the 

overall B-factor for the protein atoms (the overall Biso) (Dauter et al. 1997b). In fact, for 

similar bond length calculations of Asp and Glu residues in different inhibitor-bound 

endothiapepsin crystals, Coates et al. (2002) omitted one of the structures from the 

analysis because the overall Biso was >20Å2 (Coates et al. 2002). The Asp27 (monomer 

A) Cγ-Oδ1-Oδ2 B-factors in the MTX structure are 8.9, 10.0, and 10.7Å2, respectively, 

while the B-factors of the same atoms in monomer B are slightly higher, at 10.0, 11.3, 

and 12.1 Å2, respectively. The overall Biso is 12.9Å2. From the inference by the full-

matrix refinement of the MTX X-ray structure, it seems most likely that, for both 

monomers in the AU, Asp 27 is negatively charged when MTX is bound to DHFR, at 

least at the pH (7.5) of this experiment. The ultrahigh resolution model of DHFR/MTX 
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reported here provided new information concerning regions of the protein with higher 

mobility (alternate side chain conformations; B-factor and anisotropy refinement), 

possible positions of several hydrogen atoms, and protonation states of carboxylate 

groups (using full-matrix refinement). These can all be exploited for future research 

directives, such as molecular dynamics and possibly even directed mutagenesis and drug 

design. However, direct identification of hydrogen position is lacking for most of the 

structure, especially at the active site near Asp 27 and MTX. For this and additional 

information concerning protein dynamics in the crystalline state, NC was utilized. 

Neutron crystallography: Preliminary neutron diffraction studies of D2O-soaked 

DHFR/MTX crystals at the ILL    

In order to identify hydrogen positions within the DHFR active site and on bound 

methotrexate, several moderately-large (0.1-0.3 mm3) D2O-soaked DHFR/MTX crystals 

suitable for neutron diffraction analysis were grown and a partial data set was collected at 

room temperature on the Laue Diffractometer (LADI) instrument at the Institut Laue-

Langevin (ILL). The D2O-soaked DHFR/MTX crystal (1.4 x 1.0 x 0.3 mm, or 0.3 mm3 

after correction for the crystal’s hexagonal morphology, Figure 4.8C) diffracted neutrons 

to 2.2Å resolution (Figure 4.8A, B). The completeness in individual resolution shells 

dropped to below 50% between 2.75 and 2.97Å and the I/σ in individual shells dropped 

to below 2 at around 2.4Å. Reflections with I/σ greater than 2 were observed beyond 

these limits, and the cumulative completeness of the data set is 56% at 2.2Å (Tables 4.7 

and 4.8). The DHFR/MTX crystal belongs to a high symmetry space group (P61); 

consequently, our strategy involved collecting 13 images in 8° steps about the spindle  
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Figure 4.8: A quasi-Laue neutron diffraction image from a 0.3mm3 D2O-soaked 
DHFR/MTX crystal.  A) The Laue diffraction pattern after a 34 hour exposure. The 
highest resolution reflections extend to 2.2Å. B) A magnified section of the diffraction 
pattern containing reflections at ~2.5 Å. C) The D2O-soaked crystal’s dimensions are 1.4 
mm x1.0 mm x 0.3 mm, or 0.3 mm3. 
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Table 4.7: Neutron diffraction data statistics: preliminary studies on a D2O-soaked 
DHFR/MTX crystal at the Institut Laue-Langevin (ILL) neutron source 
 
DHFR crystal form MTX 
Neutron facility ILL 
Instrument LADI 
Wavelength range used 
(Quasi-Laue) 

2.80-3.70Å 

Temperature (K) 293 
Average exposure time 34 hours 
Number of crystal settings 21 
Total experiment time 30 days 
Resolution range 
Highest shell 

25.0-2.20Å 
2.32-2.20Å 

Space group P61

Unit cell (a, b, c in Å) 
                (αβγ in °) 

90.93, 90.93, 72.36 
90, 90, 120  

Total reflections A 22970 (1665) 
Unique reflections 8497 (852) 
Completeness (%) 56.3 (56.3) 
Rsymm (%)B 20.0 (26.8) 
I/σ 2.9 (1.5) 
Multiplicity 2.7 (2.0) 

 
A Numbers in parentheses correspond to values measured within the highest resolution 
shell 
B Rsymm= Σhkl Σi ΙIi(hkl) - IhklΙ/Σhkl Σi I(hkl)
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Table 4.8: Data reduction statistics for the ILL preliminary study 
 
Dmin(Å) Rsymm   Rcum      I/σ     Mn(I)/sd    %PossA     Cum%PossB   Multipilcty 
7.27       0.153  0.153    4.1      7.1            87.1         87.1                  3.4 
5.14       0.184  0.171     3.7      7.1           91.1         89.7                  3.8 
4.20       0.194  0.181    3.5       7.1           87.9         88.9                  4.0 
3.64       0.199  0.185    3.5      5.9           80.9         86.1                  3.3 
3.25       0.198  0.187    3.5      4.7           67.2         80.7                  2.6  
2.97       0.193  0.187    3.6      3.8           54.4         74.3                  2.1 
2.75       0.231  0.190    3.0      3.4           43.4         68.0                  1.9 
2.57       0.218  0.191    2.8      3.3           40.2         63.0                  1.9 
2.42      0.236  0.194    2.8      3.2           40.6               59.3                  1.9  
2.20       0.268  0.200    1.5       3.2           38.8         56.3                  2.0 
 
Overall  0.200     2.9      4.8           56.3         56.3                   2.7 
 
A %Poss is the data completeness for the individual resolution shell (To give an 
example, for the 3.25-2.97Å shell, the completeness is 54.4%, whereas the cumulative 
completeness from 25.0-2.97Å is 74.3%.) 
B Cum%Poss is the cumulative completeness for the data set. 
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rotation axis at one crystal setting and 8 images at a second crystal orientation separated 

by a tilt of 20° in phi so as to record reflections in the “blind zone.” The LADI instrument 

uses a limited quasi-Laue band pass (∆λ/λ~25%, λ=3.5 Å) to maximize the flux at the 

sample. As a result, reflections that are stimulated at the extremes of the wavelength 

range are significantly weaker than those recorded at the peak incident spectrum (Figure 

4.9). Scale factors of up to 5 were required to normalize these reflections. The effective 

coverage of reciprocal space in each Laue diffraction pattern is dependent upon the 

wavelength range of neutrons in the incident spectrum that give rise to significantly 

recorded reflections. So, effective coverage is also sample dependent. Clearly, for small, 

weakly scattering crystals, the effective experimental wavelength range used can be 

narrow and the phi rotation angle between images should be reduced accordingly to 

ensure that the “recorded” regions of reciprocal space are truly contiguous.  

 To our knowledge, the primitive unit-cell volume of the DHFR crystal (5.2 × 105 

Å3; 2 molecules in the AU) is the largest so far investigated by high resolution NC. The 

ability to collect neutron diffraction data from a small H/D solvent exchanged crystal that 

is only 0.25 mm3 in volume is due to the highly ordered lattice of the DHFR/MTX 

crystal. The solvent content of this crystal form is only 34.5%, allowing a more compact, 

ordered lattice and less diffuse scattering. Indeed, as described earlier, an ultra-high 

resolution X-ray dataset was collected from these crystals, indicative of tighter lattice 

packing and exclusion of excessive bulk solvent. However, the relatively large unit cell 

parameters of our crystal form (a = b = 90.93Å, c = 72.36Å) combined with the broad 

wavelength band pass utilized (∆λ/λ= 25%) led to some spatially overlapped neutron  
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Figure 4.9: Wavelength normalization curve determined by LSCALE (Arzt et al. 
1999) for the neutron diffraction experimental data collected at the ILL. The X-axis 
is the neutron wavelength used for diffraction, in Å. The Y-axis is an arbitrary scale for 
normalization and, thus, is dimensionless. The peak wavelength (the apex) occurs at 
~3.3Å and the intensity falls off towards either extreme of the graph, at 2.8 and 3.7Å, 
respectively. Reflections arising from scattered neutrons at wavelengths off the apex are 
relatively weak, difficult to measure and integrate accurately due to the background, and 
led to low overall data completeness and I/σ at higher resolutions. 
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reflections at higher resolution from the partial data set collected at the ILL. The loss of 

these reflections contributes to the low data completeness, especially in the higher 

resolution shells.  

 Due to the reduced data completeness, it was questionable whether deuterium 

atoms can be modeled into the neutron density maps, even with the inclusion of the data 

that extend beyond the normal limit of around 3.0Å to 2.2Å. Previously, a neutron 

analysis of Con A at a similar resolution (2.75Å) revealed that some hydrogen/deuterium 

atoms could be modeled with confidence (Habash et al. 1997). More recently, the same 

group has collected neutron diffraction data on D2O-soaked Con A that extends the 

resolution to 2.4Å, this improvement the authors attribute only to the H/D exchange 

method and a longer duration in which the crystal was soaked in D2O prior to neutron 

data collection (Habash et al. 2000). The Con A data set to 2.75Å was 75.5% complete; 

the DHFR/MTX data set extends to higher resolution but possesses much lower overall 

completeness (56% to 2.2Å; 68% to 2.75Å). To reiterate from the previous chapter, the 

data completeness needed to be increased, the resolution extended, and the signal-to-

noise ratio maximized. Two strategies were adopted to accomplish these goals: (1) larger 

crystal growth with extended D2O-soaking and (2) perdeuteration. Details of (1) are 

provided in the previous chapter and immediately below while details for (2) are found 

entirely in the previous chapter. 

Preparation for the latest NC experiments at the ILL and LANSCE  

 As stated in the chapter 3, a prerequisite for NC is the growth of large volume 

crystals. This makes the technique prohibitive for many systems. Using the sitting drop 

vapor diffusion method and a large apparatus for crystallization described in the previous 
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chapter, a few crystals on the order of 0.1-0.3 mm3 volume were grown, D2O-soaked, and 

one of these was used for a neutron experiment at the ILL. This required ~40-45 ml of 

D2O per set-up and none of the crystals grown with this method and tested at LANSCE 

were very successful (one crystal diffracted neutrons to ~8Å resolution after a 24-hour 

exposure). An alternative crystallization method was then attempted using the 

microbatch-under-oil technique, employing oil as a diffusion/evaporation “regulator.” 

This produced several crystals that were 0.2-0.4mm3 in volume, and the requirement for 

the amount of D2O that was used was reduced significantly (~400 fold; Figure 4.10A). 

To reduce the incoherent scattering from hydrogen in the neutron experiment, candidate 

crystals grown in the microbatch set-up were soaked extensively with D2O-based 

crystallization buffer (0.1 M Na-HEPES (pH 7.5), 0.2 M CaCl2, and 16% (v/v) PEG 400; 

both the Na-HEPES and CaCl2 were added from 1 M stock solutions where the solutes 

had been dissolved in D2O). Soaking the crystals should cause substitution of H for D at 

chemically exchangeable positions on DHFR and MTX, for example at backbone amide 

and side chain hydroxyl groups. To prevent shocking the crystals, the percentage of D2O 

was gradually increased over several days. After about 10 days, the crystals were 

considered to be > 90% exchanged and were left undisturbed in the D2O solution for 

about 3 weeks. At that point, two crystals were mounted into 2.9 mm outer diameter 

custom quartz capillaries (Figure 4.10B) within a D2O-rich environment and transported 

to LANSCE. A third crystal grown by microbatch-under-oil and D2O-soaked for ~3 

months was also mounted in the same way and transported to the ILL for further 

experiments. Crystals at both LANSCE and the ILL diffracted to high resolution (beyond 

2Å) (Figure 4.10C). From this point, the NC results and discussion will be solely from  
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Figure 4.10: Larger volume DHFR/MTX crystals could be grown using a 
microbatch-under-paraffin oil crystallization technique and diffract to high 
resolution at two different neutron facilities. A) A schematic of the crystallization 
method and set-up. The protein complex solution was mixed with an equal volume of the 
crystallization buffer at the bottom of a crystallization well and, immediately, a 4x 
sample volume of paraffin oil was added onto the top of the mixture. The well was not 
sealed with the cap until the D2O-soaking procedure began. B) D2O-soaked crystals were 
mounted into large diameter quartz capillaries within a tent that had been purged with 
D2O vapor by use of an LN2 tank. Two such mounts were transported to the C) ILL (top) 
and to PCS (bottom) for neutron diffraction experiments.  
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data collected at PCS. This is mainly due to the fact that, at the PCS, a data set could be 

collected from a single crystal attaining higher completeness in less than one month total 

experimental time. 

Data collection and processing at LANSCE and refinement of the neutron structure 

 The crystal chosen for the room temperature neutron experiment at the PCS was 

(after correction for hexagonal morphology) ~0.24 mm3 in volume, considerably smaller 

than most standard volumes previously used successfully in macromolecular neutron 

diffraction experiments. A neutron wavelength range of 0.6-7Å was employed for the 

pseudo-Laue experiment; due to the use of time-of-flight (TOF), reflections that are 

collected on the large, position-sensitive detector can be resolved in wavelength (Figure 

4.10C, bottom image). Fifteen crystal settings were used with an average of 36 hours 

exposure per setting. To complete data collection, the experiment required 22 days.  

 Detailed aspects of processing wavelength-resolved Laue data collected at the 

PCS can be found in (Langan et al. 2004b) and also in chapter 2; only reflections 

recorded arising from a wavelength range of 1-5Å were processed. The previously 

deposited RT X-ray coordinate file (3DRC) (Warren et al. 1991) was used as the starting 

model in SHELX (Sheldrick et al. 1997) for restrained positional, isotropic B-factor and 

occupancy refinement against the merged neutron reflection data set; initial rounds of 

refinement reduced the Rfree to 39.5%. The resolution range used for initial refinement 

was 8.0 – 2.5 Å; after several rounds, the high resolution limit was eventually set to 2.2Å. 

After repeated cycles of refinement and inclusion of several D atoms into exchangeable 

positions of the protein model and D2Os into the solvent model, the Rfree stalled at 36.7%. 

It was suggested that, due to the size and the space group of the DHFR/MTX crystals, 
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there was a possibility of physical twinning. Twinning is a crystal growth disorder where 

one crystal is composed of multiple physical domains whose orientations differ in a 

specific way (Yeates 1997). A merohedral twin has > 2 real space lattices that coincide 

exactly in 3 dimensions, causing perfect overlap of reciprocal lattices and, thus, perfect 

overlap in the diffraction pattern. However, each observed intensity arises from 

contributions from reflections unrelated by crystallographic symmetry. In order to further 

successfully refine the neutron structure, a correction for merohedral twinning had to be 

applied. Incorporation of this twinning correction (a merohedral twin law; see chapter 2) 

in the SHELX instruction file significantly reduced the Rfree to ~26%. The total scattering 

contribution from the twin domain approaches 40%. Data processing and refinement 

statistics are listed in Table 4.9. 

Backbone H/D exchange assessed from occupancy refinement and nuclear density maps  

 From initial inspection of neutron maps (top left and right, Figure 4.11), there 

was significant nuclear density for the main chain and many of the side chain atoms, 

indicating a satisfactory fit between model and data. Additionally, it appeared that there 

was substantial nuclear density adjacent to and around many of the backbone amide 

nitrogen atoms (at this point, H were modeled as bound to these nitrogens) (bottom left, 

Figure 4.11). In these regions, H/D exchange at backbone amide nitrogens could explain 

the nuclear density due to the D nuclei’s strong positive scattering of neutrons (recall that 

H nuclei are incoherent negative neutron scatterers). Compared to other groups which 

may undergo H/D exchange in proteins, amide nitrogens exchange at a fairly slow (and 

convenient) rate (~0.5 min-1 dependent on pH, temperature, and position in the protein), 

thus, the monitoring of their exchange is amenable to biophysical study and interpretation  
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Table 4.9: Neutron data statistics from PCS for the DHFR/MTX cocrystal 
 

DHFR crystal form MTX 

Neutron facility 

Beam line 

LANSCE 

PCS 

          Unit cell (a, b, c in Å) 
                 

(αβγ in °) 

90.93, 90.93, 72.20 
 

90, 90, 120 

Molecules/ A.U. 2 

Space group P61

Resolution range (Å) 

Highest shell 

38.6-2.17 

2.29-2.17 

Unique reflections 14213 (1649) 

Completeness (%) 79.7 (63.7) 

Rmerge
1 (%) 7.0 (32.5) 

I/σ 3.7 (1.7) 

Multiplicity 2.9 (1.9) 

 
Rfac

2/Rfree
3 (%) 

(For refinement resolution 
range 6.5-2.2Å) 

 

24.0/25.9 

 
Rmerge

1= Σhkl Σi ΙIi(hkl) - IhklΙ/Σhkl Σi I(hkl)

Rfac
2= Σhkl | |Fobs| - | Fcalc | | / Σhkl |Fobs| 

Rfree
3= Σhkl | |Fobs| - | Fcalc | | / Σhkl |Fobs| 

(Rfactor calculated for 5% of the data sequestered from the refinement.) 
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Figure 4.11: The DHFR/MTX nuclear density maps and assessment of H/D 
exchange at backbone amide nitrogens. 2Fo-Fc nuclear density map contoured at 1.5σ 
at the (top left) βF region of monomer A and the (right) βF region of monomer B, at Tyr 
150-Cys 151-Phe 152. Note the continuous density for the main chain atoms and many of 
the side chains. Aliphatic carbons are especially difficult to visualize most likely due to H 
negative scattering cancellation of carbon neutron scattering. Observance of density in 
the maps and refinement of D occupancy values suggests the amide nitrogens at Ile 94-
Gly 95 (bottom left) have exchanged H for D.  
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(Creighton 1993) (Korszun 1997). Also, it appears that the time scale of exchange (the 

exchange kinetics) is very similar for proteins in solution compared to in the crystalline 

state (Schoenborn et al. 1996). The occupancy refinement of D at these positions was 

performed in SHELX; essentially, the positional coordinates of the D atoms are 

constrained to be fixed and the probability that a D atom is located there is refined 

(measured as a fractional value from 0.0 to 1.0 but commonly communicated as a 

percentage, 0-100% occupied). Korszun (1997) defines three categories of H/D exchange 

occupancies: 0-15% is unexchanged, 15 to 60% is partially exchanged, and >60% is fully 

exchanged (Korszun 1997). Refined occupancy values were used as an initial indicator of 

amide H/D exchange. To strengthen evidence that an actual exchange event occurred, 

nuclear density maps were inspected >1.5σ along the backbone. Nearly 80% of refined 

occupancy values seemed to agree with what could be directly observed in the maps (see 

Figure 4.11); where little to no nuclear density existed (even at a 1.0σ contour level) at 

these positions adjacent to amide nitrogens often correlated to refined occupancy values 

that were quite low (<0.20 or <20% occupied). The disagreement between the refined 

occupancy value for an amide D atom and what was observed in the map was ~18%. This 

was measured by taking the refined D occupancy values and assessing the nuclear density 

maps at each of the refined positions. If an amide D occupancy value was >0.2 but no 

density existed for the D atom, then it was identified as a disagreement. Due possibly to 

cancellation effects (Kurihara et al. 2004) of the H negative scattering, at a few positions, 

the amide nitrogen itself could not be accounted for in the neutron maps.  

 Including both monomers, there are 289 amide hydrogens possible to exchange. 

Of these, 187 did exchange for deuterium, or about 65%. However, monomer B (101 of 
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146, ~69%) possesses a higher number of amides which have exchanged over monomer 

A (86 of 143, ~60%). Both monomers have only a few amides which have exchanged in 

the βB to αC region (residues 36-50) and, surprisingly, in the loop segment between βC 

to βD (residues 64-72) on the surface of the protein. However, the major region of 

exchange differences between the two monomers occurs from near the end of the βF-βG 

loop (~residue 128) to the C-terminus (a segment of 31 residues), with 15 amides not 

exchanged in monomer A compared to only 3 amides that have not exchanged in 

monomer B. To reiterate, the major structural differences between the two monomers is 

at the Met20 (in A, this is partially occluded; in B, this is closed) and the βF-βG loops. A 

comparison of backbone amide D occupancies to main chain isotropic B-factor and 

anisotropy values (from the 1.0Å X-ray data) is shown in Figure 4.12. There is good 

agreement in the two monomers between regions of higher H/D exchange, higher B-

factors, and higher anisotropy (lower A ratios indicates higher anisotropic motion). 

Models color-coded by amide H/D exchange (and based on both occupancy refinement 

and map observations) are shown in Figures 4.13 and 4.14. A major area of difference 

for H/D exchange between the A (Met20 occluded) and B (Met20 closed) monomers is in 

the C-terminal region, from the end of the βF-βG loop through the βG-βH loop and on to 

the C-terminus (residues 132-159), where the B monomer has significantly more amides 

that have exchanged. Even the majority of the amides within the final 2 β strands (G, H) 

have exchanged. This may be explained by the fact that in the B monomer the core of the 

Met20 loop rearranges so that Gly 15-Met 16-Glu 17 have inverted and moved away 

from the substrate and cofactor (nicotinamide) binding site and part of the core of the βF-

βG loop (Gly 121-Asp 122) is, in turn, now in position to form additional hydrogen  
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Figure 4.12: Comparison of backbone amide H/D exchange, isotropic B-factors, and 
main chain anisotropy for DHFR/MTX. The X-axis for all graphs is plotted as residue 
number. The left-hand panels are for monomer A while the right-hand panels are for 
monomer B. Top panels) Occupancy values for D atoms bound to backbone amide 
nitrogens after refinement in SHELX and inspection of nuclear density maps. Values on 
the Y-axis range from 0.0 to 1.0; essentially, occupancy is a probability index that a given 
atom (with associated scattering factor) is at the xyz position and possesses the particular 
B-factor it has been ascribed. Middle panels) Isotropic B-factors (in Å2) for main chain 
atoms. Bottom panels) Anisotropy ratio values (A) for main chain atoms calculated with 
the PARVATI server (Merritt 1999a); the lower the value for A, the more non-spherical 
(or ellipsoidal) the vibrational behavior is for the corresponding atom. Below the 
anisotropy plots are secondary structure cartoons for DHFR. The arrows indicate β-
strands (A-H), hollow tubes indicate α-helices (B, C, E, & F), and L indicates loops 
(Met20, adenosine-binding, F-G, and G-H). Generally, there is a correlation for residues 
which have amides that have undergone H/D exchange; for the most part, they also 
possess higher B-factors and lower A ratios.  



 
 
 
 
 

 
Figure 4.13: Backbone amide H/D exchange for DHFR/MTX monomer A deduced 
from NC. Exchange is determined by refined occupancy values for D bound to backbone 
amide nitrogens and by sufficient 2Fo-Fc nuclear density (>1.5σ) for these D atoms. 
Essentially, the higher the refined D occupancy value means the greater the probability 
that D has exchanged for H on a particular amide nitrogen. Different levels of D 
occupancy are indicated by color-coding; Blue = <20% occupancy, light Blue = 20-49% 
occupancy, Pink/Light Purple = 50-79% occupancy, and Red = >80% occupancy. Proline 
residues are colored in blue (There are 10 in each monomer). The A monomer has 6 
residues which are disordered at the main chain and, thus, an exchange assignment isn’t 
possible. The B monomer has 3 residues which are disordered to this extent. These 
residues are also shown in blue. A: Side view looking straight into the active site; B: 
Front view of the occluded Met20 loop partially obstructing the active site.
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Figure 4.14: Backbone amide H/D exchange for DHFR/MTX monomer B. The color 
scheme and orientation of the model are as in Figure 4.13. Note the higher prevalence of 
deuterium exchange for β-strands G and H and at the C-terminus compared to monomer 
A. However, less exchange has occurred for most of the βF-βG loop (especially residues 
121-127), possibly due to increased hydrogen-bonding with the closed Met20 loop. 
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bonding contacts with this part of the Met20 loop. For the amide nitrogens (121-123) in 

this section of the βF-βG loop, little to no exchange has occurred; additionally, 2 of the 

amide nitrogens (His 124, Phe 125) possess weak 1σ 2Fo-Fc density for D atoms which 

have correspondingly low refined occupancy values (<40%). This would be expected due 

to the enhanced interactions with and stabilization of the Met20 loop. In other words, 

H/D exchange at the backbone amide groups is hindered due to interloop packing and 

hydrogen bonding. Indeed, the refined occupancies and the nuclear density suggest that 

no exchange has taken place at Gly 121 or Asp 122 in the B monomer; backbone atoms 

of these two residues form hydrogen bonds with Gly 15 and Glu 17 in a closed loop 

conformation. Additionally, every B-factor for the C-terminal residues (from the end of 

the βF-βG loop to the terminus; residues 132-159) of the B monomer are higher than in 

the A monomer, indicating enhanced mobility.  

 In contrast, the A monomer has 2 more exchanged amides in the beginning and 

the core of the βF-βG loop (residues 116-128) than does the B monomer. For residues 

116-119 and 125, both monomers’ amides have exchanged H for D but the refined 

occupancy values for the A monomer are greater. However, from the end of this loop and 

throughout the C-terminus, H/D exchange is severely reduced compared to monomer B. 

This could be due to the necessary stabilization of the occluded Met20 loop by this region 

and especially the βG-βH loop (residues 142-150); two hydrogen bonds form between 

Asn 23 (backbone amide N and backbone carbonyl O) and Ser 148 (Oγ and amide N). In 

the A monomer, both of these residues have very low refined D occupancies for their 

 backbone amides (Asn 23 = 0.2; Ser 148 = 0.1), indicating little to no H/D exchange. 

The βG-βH loop does not change position when the Met20 loop moves from occluded to 
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closed, but, when occluded, the βF-βG loop is not positioned close enough to form 

hydrogen bonds with the Met20 loop. Thus, the βG-βH loop is the main stabilizer of the 

Met20 loop when it adopts an occluded conformation. The Asn 23 and Ser 148 amides 

have exchanged in the B monomer, suggesting that the backbone hydrogen-bonding that 

helps to secure the Met20 loop when it is in an occluded conformation is not needed in 

the closed conformation. This agrees with earlier observations made by Sawaya and 

Kraut (Sawaya et al. 1997) and with the higher B-factors observed for this region of the 

B monomer reported here.  

 One other region of major difference for H/D exchange between the two 

monomers is at the adenosine-binding loop (residues 62-72); for monomer A, this region 

has higher B-factors, solvent accessibility, and anisotropy compared to monomer B yet it 

appears that both possess near-equivalent exchange patterns. However, for two of the 

residues in monomer A (Gly 67-Thr 68), there is not sufficient density to model all of the 

main chain atoms, much less H/D bound to amides. This region of monomer A is also 

somewhat disordered in the 1.0Å X-ray structure, with weak electron density for these 

residues; monomer B does not suffer from this. Since this region has been found 

disordered in DHFR/MTX occluded loop structures at different temperatures, it can be 

suggested that this region is inherently dynamic, possibly due to the fact that no cofactor 

is bound (Bolin et al. 1982) (Warren et al. 1991).  

Relevance of the H/D exchange results to previous reports on DHFR “dynamics” 

 It is beneficial that the DHFR/MTX monomers are not equivalent in loop 

positioning; this way, a comparison can be made of the high resolution structures to the 

available solution data describing the these conformational differences. Several recent 
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NMR studies have indicated that the dynamics of many regions of DHFR can be 

correlated to the conformation of the Met20 loop and the presence of ligand bound at the 

active site. Examining the amplitude of internal motions (called S2) (Schnell et al. 2004), 

changes in 1H and 15N chemical shifts from selectively-labeled 15N-alanine 

(Venkitakrishnan et al. 2004), and difference 15N chemical shifts from relaxation 

dispersion experiments (McElheny et al. 2005), the regions exhibiting the largest change 

in motion and chemical environment from an occluded to a closed Met20 loop 

conformation, of course other than residues in the Met20 loop itself, are residues in the 

βF-βG and βG-βH loops, as well as a few of the active site residues such as Ala 7 which 

shifts due to the presence of cofactor and co-requisite movement of the Met20 loop to 

become closed (Venkitakrishnan et al. 2004). Upon this conformational change (occluded 

to closed), the S2 order parameter increases for the Met20 and slightly for the βF-βG loop 

(so, these regions are becoming more ordered and tumbling less) while the 15N chemical 

shifts change most dramatically for the Met20, βF-βG, and βG-βH loops. As observed 

from the X-ray and NC data presented here, this seems to correlate to the “dynamics” of 

these same regions as revealed by the B-factor and anisotropy analysis paired with H/D 

exchange patterns for the two monomers. The enhanced motion of the loop regions and 

especially change in the Met20 loop conformation (the conformational exchange rate is 

2-40 s-1) is relevant to ligand binding and product release processes and is important for 

the catalytic mechanism (Osborne et al. 2001). The transition of the Met20 loop from 

occluded to closed seems to facilitate binding of the reduced cofactor nicotinamide ring 

prior to catalysis. Once the chemical step has occurred, the Met20 loop rearranges to 

occlude the oxidized nicotinamide ring from the active site, flipping it out towards the 
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surface (Sawaya et al. 1997). These movements and conformers must be facilitated and 

stabilized mainly by the regulatory adenosine, βF-βG, and βG-βH loop regions. Indeed, 

mutation of Gly 121 and Asp 122 disrupts a hydrogen bonding network that forms 

between the βF-βG and the Met20 loops and has severe effects on hydride transfer and, 

thus, the catalytic rate (Cameron et al. 1997) (Miller et al. 1998b) (Miller et al. 2001).  

 H/D exchange for backbone amides on surface-exposed loops and even on helices 

or sheets can be understood simply by positing that there is an enhanced accessibility of 

these residues to solvent, thus increasing the chances of exchange if D2O is incorporated 

into the buffer solution that the crystal is stored. Possibly, the inability of certain residues 

to exchange could be due to crystal contacts, interactions and residue packing at 

interfaces between molecules in the AU and unit cell. What is difficult to explain is the 

mechanism by which H/D exchange can occur for some of the interior backbone amide 

nitrogens and even on side chains; generally there seems to be two hypotheses for the 

process, one invoking protein “breathing” or local unfolding of the polypeptide and the 

other invoking the diffusive capability of solvent to access core regions of the protein 

(Creighton 1993) (Korszun 1997). Conclusions made from early NC studies (Kossiakoff 

1982) (Wlodawer et al. 1983) supported solvent permeation as the mechanism for H/D 

exchange at protein interiors, citing that unfolding should be highly impermissible due to 

the crystalline lattice. Even at the low solvent content of the DHFR/MTX crystals 

(~35%), perhaps the time course over which the D2O-soaking and the diffraction 

experiment itself takes place (weeks) allows exhaustive permeation of the solvent 

throughout the available channels within the crystal. MALDI-TOF mass spectrometric 

(MS) analysis of proteolytic fragments of DHFR which had been subjected to H/D 
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exchange after proteolytic digestion revealed rapid exchange for the Met20 loop fragment 

and residues near to it. However, labile hydrogens within β-strands, even upon digestion 

into fragments, were very slow to exchange (Yamamoto et al. 2004a). Due to differences 

in the exchange kinetics and patterns they observed from intact protein compared to 

fragments, this study also indicated that local structural elements differentially influence 

the extent of exchange and are varied in their contributions to the overall fluctuation of 

the whole protein. The H/D exchange process is in solution for the MS studies whereas 

for the NC study here it is performed in the context of the crystalline lattice. Additionally, 

there are two monomers in the AU of the DHFR/MTX crystal and, as described above, 

differences in H/D exchange patterns are apparent and probably only due to loop 

conformational differences between the two monomers. In one of the MS experiments, it 

was observed that the incorporation of D into DHFR bound to MTX or folate along a 

time course was biphasic, with a rapid exchange step preceding a deceleration of the H/D 

exchange rate (Yamamoto et al. 2004b).  This could correlate to the conformational 

isoforms observed for DHFR from crystallography, NMR (Schnell et al. 2004), and 

recently by single molecule fluorescence studies (Rajagopalan et al. 2002), further 

arguing that DHFR loops play important regulatory roles in ligand binding. Another 

important difference in the two studies is that for the MS experiments the protein sample 

was incubated in D2O solution for ~10 minutes prior to preparing the MALDI plate for 

MS analysis. For the NC experiment at PCS, the DHFR/MTX crystal was soaked in 

>90% D2O-containing buffer for ~3 weeks prior to mounting into the capillary for the 

diffraction experiment.  
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Correlation between solvent accessibility and H/D exchange  

 Solvent accessibility is measured by using a probe molecule with a radius of 1.4Å 

(equal to the radius of a water molecule) to roll upon the surface of the atoms in residues 

in a three-dimensional model to determine the accessibility of the probe to the different 

atoms. Absolute solvent accessibility plots (Figure 4.15) for the two DHFR/MTX 

monomers roughly correlate to amide exchange patterns. For example, the refined amide 

D occupancy values for Ser 64 are 1.0 (A) and 0.3 (B) whereas their solvent accessible 

volumes are 101Å3 (A) and 77Å3 (B). This is indicated for the red asterisks in Figure 

4.15. Upon inspection of the neutron maps, the density suggested that a D atom is bound 

to the Ser 64 amide in monomer A but not for monomer B. Other accessibility/exchange 

correlative examples are provided in the figure. Sixty-one percent of the C-terminal 

region of the B monomer (residues 132-150; 17 of 28 residues) is more solvent accessible 

than the A monomer. Exactly 40% more of the backbone amides within this region have 

exchanged in monomer B (25 of 28 residues) than in monomer A (only 14 of 28 

residues). Although there is a correlation between HD exchange and accessibility to 

solvent, this analysis excludes symmetry contacts as a determinant of accessibility. It is 

worthwhile to incorporate that aspect into any future analyses and its correlation to NC 

data.  

H/D exchange on side chains and identification of D2O molecules within the maps 

 Occupancy refinement of D at exchangeable positions on the functional groups of 

Arg, Lys, and His was also performed. For 13 of 17 Arg residues, 8 of 11 Lys residues, 

and 6 of 10 His residues, partial or full H/D exchange has occurred (see Figure 4.16 A-D 

for examples). The solvent molecules from 3DRC were displayed with the neutron maps. 
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Figure 4.15: Absolute solvent accessibility (ASA) values for all residues in 
DHFR/MTX monomers A and B. Accessibility values (provided as surface area values) 
were calculated by the program NACCESS (Hubbard et al. 1996) for (top) Monomer A 
and (bottom) Monomer B. Indicated by color-coded asterisks are example residues 
where there are significant differences in accessibility volumes for the same residue 
between the two monomers and can be correlated to H/D exchange.  
Black: Glu 17(A): ASA = 108Å3, D occupancy = 12.1%, Map = H; Glu 17 (B): ASA = 
162Å3, D occupancy = 52.4%, Map = D.  
Red: Ser 64 (A): ASA = 101Å3, D occupancy = 1.0, Map = D; Ser 64 (B): ASA = 77 Å3, 
D occupancy = 30.2%, Map = H.  
Yellow: Asp 122 (A): ASA = 119Å3, D occupancy = 1.0, Map = D; Asp 122 (B): 91Å3, 
D occupancy = 53.3%, Map = H.  
Blue: Phe 140 (A): ASA = 117Å3, D occupancy = 0.0, Map = H; Phe 140 (B): ASA = 
129Å3, D occupancy = 1.0, Map = D. 
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Figure 4.16: Determination of H/D exchange on the side chains of His 114 and Lys 
106 (both in monomer B) from neutron density maps of DHFR/MTX and 
comparison to atomic resolution electron density. In blue are 2Fo- Fc nuclear or 
electron density maps contoured at 1.5σ. A) The imidazole ring of His 114 as modeled 
into 1Å electron density maps and into B) 2.2Å nuclear density maps. At this resolution, 
D is able to be modeled at chemically exchangeable positions with the neutron data 
whereas, with the X-ray data, it is not known whether hydrogens are bound to the Nε and 
Nδ atoms on the imidazole ring, thus, it is not known what the charge state of the His is. 
C) The terminal amine group of Lys 106 as modeled into 1Å electron density and into D) 
2.2Å nuclear density maps. In the neutron maps, it is clear that D has exchanged for H at 
all three positions of the amine Nε atom.  
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There have been 18 D2Os so far identified. These are mainly located at primary 

protein/solvent interfaces and more towards the interior of the protein; the stipulations for 

modeling D2O into a region of unmodeled 2Fo-Fc or Fo-Fc density is if there is sufficient 

nuclear density >1.5σ for all three atoms and also if at least 1 hydrogen bond 

donor/acceptor atom is within the proper distance (1.8-2.5Å depending on the atoms 

involved in the contact; Figure 4.17 A, B). Oxygen has been added to the model to 

represent 66 H2O molecules. Again, H scatters neutrons incoherently, meaning that H2O 

may very well be unobservable in neutron maps at this resolution. So, there is a 

possibility that these could represent oxygens in disordered D2O molecules (Chatake et 

al. 2003). Many of the D2Os (12) and oxygens (57) modeled as solvent molecules were 

initially oxygen atoms for H2Os in 3DRC and needed only minor movement to place 

them into the nuclear density.  

Probing the Asp 27•MTX interaction: Occupancy refinement and density analysis  

 Based on the observation of D atoms in many regions of the protein directly from 

the neutron maps, in both monomers a D atom was restrained to be 1.0Å from the N1 

atom on MTX and its occupancy refined in SHELX. Restraints for a D at this position 

had to be manually added into the refinement instruction file. This part of the pteridine 

ring of MTX is very similar to part of a His imidazole ring at the Nε-Cδ-Nδ bonds. The 

bond angle and distance restraints for Ds bound to the Nε and Nδ atoms of a His 

imidazole ring were used as starting values for restraining the D bound to the N1 of 

MTX. The refined occupancy of this D atom was ~1.0 (or 100% occupancy) in monomer 

A and ~0.75 (75% occupancy) in monomer B. The distance between the N1 and the D  
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Figure 4.17: D2O molecules identified in the neutron maps. 2Fo- Fc nuclear density 
maps contoured at 1.5σ are shown in blue. Eighteen D2Os have been modeled into the 
neutron maps so far. A) The oxygen atom in D2O 12 is ~3.2Å from the Arg 33 Nε atom 
(monomer B). B) The oxygen atom in D2O 9 is ~1.9Å from the D on the backbone amide 
of Met 20 (monomer B). 
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atom refined to 1.00-1.02Å whereas the distance between the D atom and the Oδ2 atom 

of Asp 27 is 2.8-2.9Å. For monomer A, the N1, D, and Oδ2 atoms all are positioned on a 

near-perfect plane; the angle is 174°. (The same atoms in monomer B slightly deviate 

from this.) In addition to the occupancy values, the nuclear density around MTX and Asp 

27 in both monomers (Figure 4.18 A, B) highly suggests that a D atom can be bound to 

the N1. At the same contour level (>1.5σ), a D atom could not be constrained to be bound 

to the Oδ2 atom of Asp 27 and fit into the nuclear density. Put together, this would 

suggest that the N1 is protonated when MTX is bound to DHFR, imparting it with a 

positive charge. Based on the direct observation by NC of the D atom bound to the MTX 

N1 and the inference from the X-ray structure that the Asp 27 carboxylate is ionized, we 

propose that the Asp27•MTX interaction is ionic in nature. This is in agreement with 

nearly all of the available biochemical and complementary structural data (or suggestions 

made from analysis of the data) for at least E. coli and L. casei DHFRs (Coco et al. 1981) 

(Bolin et al. 1982; Coco et al. 1983; London et al. 1986; Stone et al. 1983b) (Appleman 

et al. 1988) (Gargaro et al. 1998). Evidence that this interaction was not ionic in nature 

but a neutral dipole-dipole was gleaned from a computational study measuring proton 

affinity for the Asp 27 carboxylate oxygen and the MTX N1 atoms in low dielectric 

environments (ε<10). This environment has been theorized to represent the interior of a 

protein, where there is normally an increase in hydrophobicity. It was found in this study 

that, at ε values below 10, the Asp 27 carboxylate would be protonated and the MTX N1 

would not, making both these groups neutral (Cannon et al. 1997a). From the X-ray and 

the NC data reported here, it was observed that, at pH = 7.5 and regardless of the Met20  
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Figure 4.18: Nuclear density maps at the MTX binding site for monomers A and B 
of the DHFR/MTX cocrystal. 2Fo- Fc nuclear density maps contoured at 1.8σ are 
shown in blue. The occupancy of a D atom bound to the N1 atom of MTX for (A) 
monomer A and (B) monomer B was performed in SHELX. The refined occupancy 
values were 1.0 and 0.75 for monomers A and B, respectively. The D…Oδ2 distance is 
1.9Å and 2.0Å for monomers A and B, respectively. 

 151



loop position, the Asp 27 carboxylate and the MTX N1 are both charged, resulting in a 

salt bridge which is most likely the driving force behind DHFR possessing an order-of-

magnitude lower Kd for MTX (pM) than for substrates (nM) (Appleman et al. 1988).  
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Chapter 5. High resolution structures of Apo and MTX/NADPH-bound 

DHFR 

5.1 Background 

 This chapter describes X-ray crystallographic studies of DHFR in apo and 

MTX/NADPH ternary complex forms. Both crystal forms are grown from newly 

identified crystallization conditions and their data sets extend to much higher resolution 

than had been previously reported; the resolution limits of the apo structure in the PDB 

(5DFR; space group P3121) is 2.3Å and the one reported here is 1.05Å, while the 

resolution limits of the MTX/NADPH structure in the PDB (1RH3; space group P3221) is 

2.4Å and the one reported here is 1.4Å. Most of the results and discussion in this chapter 

focus on the apo DHFR structure because the ultrahigh resolution attained 1) allowed 

observation of the Met20 loop, whereas it is disordered in the lower resolution apo 

structure in the PDB, and 2) permitted anisotropic and full-matrix refinement due to the 

high data-to-parameter ratio. Unfortunately, the MTX/NADPH data did not extend to this 

level of resolution, and the reduced number of unique reflections did not justify the full-

matrix refinement. Additionally, although the electron density maps are of high quality, 

analysis of single difference density for hydrogen atoms and protonation states was 

excluded for this structure due to the lower resolution limit. 

E. coli DHFR loop dynamics: relationship to catalysis 

 As described in the previous chapters, loop regions are a determining factor of the 

catalytic functioning of E. coli DHFR. A striking example of this is how alteration of the 

loop sequence by mutagenesis can have significant effects on the catalytic cycle. 
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Replacement of the core residues 16-19 of the Met20 loop (which actually spans residues 

9-24) with a single Gly residue has little effect on substrate (DHF) and cofactor 

(NADPH) binding but reduces the hydride transfer rate by several hundred fold. This 

effectively switches the rate-limiting step from product release to hydride transfer (which 

is normally ~220 s-1) and indicates that the Met20 loop is indelibly tied to the enzymic 

mechanism (Li et al. 1992). From the >50 crystal structures so far determined for E. coli 

DHFR in several different liganded states (Berman et al. 2002), it is known that the 

Met20 loop is adjacent to the substrate and cofactor binding sites, and acts as a gate 

which can close over the active site (Sawaya et al. 1997). In fact, this is the conformation 

that is observed from crystallography, NMR and other methods when DHFR is in the 

ground state (only NADPH is bound) or during the hydride transfer chemical step (when 

both DHF and NADPH are bound) (Schnell et al. 2004). However, it has been 

demonstrated more recently that the substitution or deletion of residues distant from the 

active site have significant effects on cofactor binding and on hydride transfer rates. 

Specifically, substitution of Asp 122 for Asn or Ala, substitution of Gly 121 for Val or 

Gly 121 deletion, residues which are 10-15Å from the C6 atom on DHF (where hydride 

transfer takes place), increase the NADPH Km up to 40-fold and decrease the kcat of the 

reaction by a hundred-fold or more (Miller et al. 1998a) (Miller et al. 1998b). This has 

led to the idea that hydrogen-bonding between the core of the Met20 and the βF-βG loops 

is necessary to stabilize the Met20 loop in a conformation which maintains its closure 

over the active site during catalysis (Miller et al. 2001). This would effectively “lock in” 

DHF and NADPH while sequestering bulk solvent, ions, and other compounds from 

freely accessing the active site during chemistry. Additionally, mutagenesis of critical 
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loop residues also alter the closed-to-occluded Met20 loop conformation equilibration, 

possibly hindering the catalytic cycle by not allowing exchange of NADP+ for NADPH 

for a new hydride transfer step (Rajagopalan et al. 2002). The closed and occluded 

conformations for the Met20 loop have been observed in solution experiments such as 

NMR; most recently described are the 15N relaxation dispersion experiments by 

(McElheny et al. 2005) which further described that the Met20 mainly adopts a closed 

conformation with folate and NADP+ bound but also reveals the presence of a small 

population of an “excited state” of occluded conformers in this complex. The movement 

of the Met20 loop from closed to occluded is essentially due to the flipping of the 

oxidized nicotinamide ring into and out of the active site, speculated to what actually 

happens after hydride transfer due to repositioning of Gly 15-Met 16-Glu 17 in the core 

of the Met20 loop. This causes them to be oriented into the cofactor binding site, thus, 

occluding NADP+ from the active site after catalysis (Schnell et al. 2004) 

(Venkitakrishnan et al. 2004).  

Crystallographic evidence of other Met20 loop conformations  

 Other conformations of the Met20 loop, called open and disordered, have been 

observed only in the context of the crystalline lattice. The open conformation seems to be 

mainly stabilized by crystal contacts, however, it could be important for cofactor binding 

and accessibility as well as product release because the core of the loop extends away 

from the active site, further outside and bent opposite of the closed or occluded 

conformations (Sawaya et al. 1997). The disordered loop conformation has been 

observed in the apo structure (Bystroff et al. 1991) and in a particular space group for the 

MTX complex (P212121) (Sawaya et al. 1997). Essentially, there exists weak or no 
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electron density for residues 15-20 of the Met20 loop, however, it has been suggested that 

this loop is actually in a time-averaged configuration between closed and occluded 

(Schnell et al. 2004). In the report of the previous apo DHFR structure, it was noted that 

weak density existed at the cofactor nicotinamide and substrate pABG binding pockets, 

prompting the suggestion that parts of the Met20 loop could be modeled into these 

positions (Bystroff et al. 1991). This may indicate that the loop, at least in the apo DHFR 

crystal, is occluding into the cofactor-binding site or is possibly in a more closed position 

than had previously been observed.  

Protonation state of Asp 27 in the apoenzyme  

 In addition to the Met20 loop, an area of continued interest in DHFR research is 

probing the importance and the ionization state of the Asp 27 residue along the reaction 

coordinate. Asp 27 is the lone ionizable residue in the hydrophobic active site and, as 

stated in previous chapters and inferred from crystallographic studies on DHFR bound to 

the weak substrate folate (Reyes et al. 1995), its carboxylate group is >5Å distant from 

the N5 atom on the DHF substrate. Mutagenesis has revealed that the Asp 27 is critically 

important to catalysis, markedly reducing the kcat when it is replaced by Ser or Asn 

(Howell et al. 1986). Obviously, it is somehow required to facilitate protonation of the 

DHF N5, just not directly. Further confounding its possible role in ligand binding and 

catalysis is that the kinetic pKa determined for the reaction is 6.5 (Fierke et al. 1987); 

therefore, a severe perturbation of the Asp carboxylate pKa would exist if one ascribes the 

kinetic pKa to titration of the Asp 27. Essentially, there are two proposed roles for Asp 27 

in the proton donation pathway (Rajagopalan et al. 2002): (1) ionized Asp 27 polarizes 

bound DHF, triggering keto-enol tautomerization at the N3-C4-O4 of DHF with proton 
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donation to a water molecule and then to N5, or (2) Asp 27 accepts a proton from the 

DHF N3, causing direct protonation of N5 from a conserved water molecule. Combined 

results from quantum mechanical MD calculations (Bajorath et al. 1991a); (Bajorath et 

al. 1991c); (Greatbanks et al. 1999), multidimensional NMR (Blakley et al. 1993); 

(Casarotto et al. 1999), and difference Raman spectroscopy (Chen et al. 1994); (Chen et 

al. 1997) lend evidence to the former role: that Asp 27 is ionized at physiological pH, is 

responsible for polarizing bound substrate, and triggers tautomerization, thus initiating 

the proton relay to ultimately reduce the N5 atom. Cannon et al. (1997) additionally 

proposes that, when the enol tautomer is present, the Asp 27 is protonated, presumably 

the proton coming from the DHF N3 (Cannon et al. 1997b). Both of the above pathways 

have Asp 27 interacting with a conserved crystallographic water molecule (Reyes et al. 

1995) but the latter role (2) involves direct protonation from another water molecule to 

the N5 atom of DHF or the N8 atom of folate (Cummins et al. 2001). Early difference 

spectroscopic studies indicated that the Asp 27 in the apoenzyme may be protonated at 

physiological pH (Stone et al. 1983b) (Stone et al. 1983a). This has since been refuted by 

the above NMR (Casarotto et al. 1999) and Raman (Chen et al. 1997) experiments as 

well as recent MD calculations of proton affinities of Asp 27 in low dielectric 

environments (ε = 4-20) more representative of protein interiors (Cannon et al. 1997a). 

These studies provide support that, in the apoenzyme, Asp 27 possesses a pKa that is <5 

and, thus, is negatively charged at physiological pH. A titration at some other group on 

the enzyme or substrate must be responsible for the kinetic pKa of 6.5. It has been 

suggested that it this pKa may be ascribed to either a titration occurring at the DHF N5 

 157



that is reduced in the reaction (Chen et al. 1994) (Rod et al. 2003) or the DHF O4 atom 

involved in keto-enol tautomerization (Cannon et al. 1997b).  

 Ultrahigh resolution crystallography has been used to probe unbeknownst features 

of DHFR in the unliganded form (the apoenzyme), including active site protonation 

states, the conformation of the Met20 loop, interloop contacts, anisotropy analysis, and 

alternate side chain conformations. A comparison to the previously determined 

apoenzyme structure and to an ultrahigh resolution substrate-bound structure is also 

provided. Additionally, some of the results here for the apo structure are cast as 

mechanistic implications for DHFR ground state ligand binding and catalysis. Finally, a 

report of a high resolution MTX/NADPH ternary complex and a brief analysis are 

provided. The structures presented in this and the previous chapter represents the highest 

resolution data attained for E. coli DHFR save a folate/NADP+ ternary structure 

described by Dagmar Ringe at a recent conference (Ringe 2005). In fact, only two other 

DHFR structures from any species have been solved to ultrahigh resolution and deposited 

into the PDB; that of human DHFR, both structures bound to NADPH and two different 

proprietary compounds at 1.05 and 1.09Å resolution, respectively (Klon et al. 2002).  

5.2 Results and discussion 

X-ray crystallography: Data collection and processing 

 New crystallization conditions were identified for apo and MTX/NADPH-bound 

E. coli DHFR from a sparse matrix screen (Jancarik 1991) and were optimized by 

varying pH and precipitant concentration so as to obtain large volume (>0.05 mm3), well-

diffracting crystals. Similar to the strategy outlined in the previous chapter for 

synchrotron data collection for the DHFR/MTX crystal, an apo crystal (0.7 x 0.5 x 0.2 
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mm3) was chosen for a two-step data collection in which 100° of ϕ space (at 0.5° per 

oscillation) was sampled in each scan. The difference here is that the low resolution data 

were collected first which may have been the reason that one apo crystal remained usable 

for both lower resolution and higher resolution scans. First, two low resolution scans 

were accomplished by keeping the detector back at a distance of 200 mm (the beam stop 

was set at 50 mm) from the crystal, limiting the exposure times per frame to 1 sec, and 

setting a pair of slits (JJ and front-end) to effectively weaken the incident X-ray beam. 

Merging the integrated intensities from these two scans together manually in Scalepack 

(Otwinowski et al. 1997) revealed a combined low resolution data set (20.0 – 1.4Å) that 

was 96% complete. More importantly, the scaling indicated that the crystal showed no 

signs of radiation damage. Thus, an ultrahigh resolution scan was then recorded by 

moving the detector up to 150 mm, the beam stop to very near the crystal (20 mm), 

increasing the exposure times per frame to 15 sec, and resetting the pair of slits to allow 

maximum beam. Again, a foil attenuator was used to protect the center of the detector 

from overexposure. Therefore, this region of data (20.0 – 2.0Å) was exempted from 

further analysis. Scaled separately, the ultrahigh resolution apo DHFR data set is 94% 

complete from 20 to 1.0Å. Due to much higher Rsym values for merged intensities beyond 

2.0Å for the low resolution scans, these data sets were reintegrated from 20.0 - 2.0Å and 

then were scaled together with the ultrahigh resolution data using a resolution range of 

20.0 – 1.05Å. Based on previous experience collecting P6 DHFR data on this detector for 

a separate crystal form, a P6 reindexing matrix (hkl to kh-l) was implemented into the 

Scalepack (Otwinowski et al. 1997) script. The merged apo data is 93% complete to 

1.05Å with an Rmerge of 8.9%.  
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 The data collection strategy for the MTX/NADPH crystal (approx. 0.3 x 0.3 x 0.2 

mm3 in size) was identical to that for the apo form except that only one low resolution 

pass was necessary and that the detector was kept at a 200 mm distance from the crystal 

for both the low resolution and the high resolution scans. Only one crystal was used for 

data collection. The integrated data sets were scaled together in Scalepack (Otwinowski 

et al. 1997) in the P3221 space group and the resulting merged data set is 98.6% complete 

to 1.35Å with an Rmerge of 5.9%. The data collection and processing statistics for the apo 

and MTX/NADPH crystals are listed in Table 5.1.  

Difference Fourier calculation for apo DHFR  

 The apo DHFR crystal possesses a unit cell which is isomorphous with only one 

other deposited DHFR structure, that of the P65 binary complex with folinic acid (1JOM; 

(Lee et al. 1996)). The previously reported apo DHFR crystal (5DFR; (Bystroff et al. 

1991)) is in the P3121 space group and has a non-isomorphous unit cell with the apo 

crystal reported here. Initially, rigid body refinement in Refmac5 (Murshudov et al. 

1997) was conducted using a previously solved structure of DHFR bound to folinic acid 

(1JOM; (Lee et al. 1996)) as the starting model (Fcalc) to refine against the 1.0Å apo 

DHFR reflection data (Fobs). After 10 cycles of rigid body refinement, Rfac and Rfree were 

45% and 44.3%, respectively.  

MR solution of the DHFR/MTX/NADPH complex 

 The difference Fourier method was attempted for the MTX/NADPH 1.4Å 

reflection data using previously determined coordinates for DHFR bound to MTX and 

NADPH (1RH3; (Sawaya et al. 1997). The unit cell is isomorphous. Surprisingly, upon 

rigid body refinement in Refmac5 (Murshudov et al. 1997), the R factors remained  
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Table 5.1: X-ray data collection, indexing, integration, and scaling statistics: Apo 
DHFR 
 
DHFR crystal form Apo MTX/NADPH 

BioCARS Beamline; 

Detector 

14-BM-C 

ADSC Q315 

14-BM-C 

ADSC Q315 

Unit cell (a,b,c, in Å) 

(αβγ, in °) 

95.8, 95.8, 34.3 

90, 90, 120 

61.9, 61.9, 105.8 

90, 90, 120 

Molecules/ A.U. 1 1 

Solvent content (%) 50.8 61.4 

Space group P65 P3221 

Resolution range (Å) 

Highest shell 

20.0-1.05 

1.09-1.05 

20.00-1.40 

1.45-1.40 

Unique reflections 83,656 43,422 

Completeness (%) 92.9 (63.6) 98.6 (99.9) 

Rmerge
1 (%) 8.9 (27.6) 5.9 (67.3) 

I/σ 12.4 (4.4) 29 (2.1) 

Multiplicity 2.9 (1.6) 5.5 (2.9) 

# Data sets used 3 2 

Rmerge
1= Σhkl Σi ΙIi(hkl) - IhklΙ/Σhkl Σi I(hkl)
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greater than 50%. Using this same coordinate set (1RH3) as a target molecule and a 

resolution range of 50.0-3.0Å, molecular replacement using PHASER (McCoy et al. 

2005) as implemented within the CCP4 suite (CCP4 1985) was successful in finding a 

solution model and was then used as the starting coordinate set for refinement in 

Refmac5.  

Structure refinement and analysis: Apo DHFR 

  The structure refinement statistics for apo DHFR are listed in Table 5.2 and the 

apoenzyme unit cell contents are listed in Table 5.3. Further refinement of the apo 

structure in Refmac5 and, then, in SHELXH (Sheldrick et al. 1997), to 1.05Å included 

the refinement of anisotropic displacement parameters (ADPs) and the addition of 

hydrogens to all of the side chains (save side chain hydroxyls), ultimately reducing the 

Rfree to 23.1%. The mean anisotropy (A, or Emin / Emax; for details please see the last 

chapter) of the apo structure is 0.53, within range of what has been observed for many 

high resolution structures (0.45-0.55) (Merritt 1999b). However, anisotropy ratio values 

overall are lower in the C-terminal region of the protein (from the βF strand to the C-

terminus), correlating to the regions with the highest B-factors in the structure (Figure 

5.1). In contrast to either of the monomers in the MTX structure (chapter 4), the region 

around and containing the adenosine-binding loop (residues 60-80) is well-ordered in the 

apo structure, with very low B-factors (<12Å2) and higher A values (more isotropic; 

average ~0.6). Using Refmac5 for further refinement of the model allowed loosening of 

the bond and angle restraints (by increasing the sigma weighting factor to 5; default is 

0.3-0.5); this reduced the Rfree to 22.6%. Essentially, this allows more reliance on the data  
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Table 5.2: Refinement statistics for the apo and MTX/NADPH DHFR structures 

DHFR crystal form Apo MTX/NADPH 

Resolution range (Å) 

Highest shell (Å) 

20.0-1.05 

1.09-1.05 

20.00-1.40 

1.45-1.40 

Final Isotropic      Rfac
2/ 

Rfree
3

 (Refmac5) 

27.3%/28.9% 21.4%/23.6% 

Anisotropic Rfac/Rfree 

(Refmac5) 

22.4/23.8 20.6/22.1 

Same coordinates; 

Isotropic in SHELXH 

32.0/34.1 N/A 

Anisotropic Rfac/Rfree 

(SHELXH) 

23.9/25.9 N/A 

Riding hydrogens added; 

Rfac/Rfree

22.8/25.1 N/A 

Final Rfac/Rfree 

(SHELXH) 

22.5/24.1 N/A 

Final Weighting matrix 

(σ; Refmac5) 

5.0 5.0 

Final Rfac/Rfree (Refmac5) 21.0/22.3 16.3/19.1 

Final RMSDs for bond 

distances and angles 

0.022Å 

2.033° 

0.019Å 

1.994° 

Rfac
2= Σhkl | |Fobs| - | Fcalc | | / Σhkl |Fobs|; Rfree

3= Σhkl | |Fobs| - | Fcalc | | / Σhkl |Fobs| 
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Table 5.3: Contents of the unit cell for the apo and MTX/NADPH DHFR crystals 
 
DHFR crystal form Apo MTX/NADPH 

 
Unit cell contents 

   Protein atoms 
 
   Water molecules 
 
   Metals 
 
   Ligands 

 

1264 

269 

1 (Mg2+) (Near Asp 70) 

N/A 

 

1284 

168 

0 

2 (MTX; NADPH) 
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Figure 5.1: B-factor and anisotropy distribution for Apo DHFR. A) B-factor values 
(in Å2) for the backbone atoms of the 1.0Å apo DHFR structure. B) Anisotropic ratio (A 
= Emin / Emax) for the backbone atoms; the lower the A value, the more anisotropic an 
atom is (its vibrational motion cannot be described as spherical) C) Apo DHFR model 
showing all protein atoms represented as thermal ellipsoids. Atoms exhibiting non-
spherical vibrational motion are more elongated and ellipsoidal and are shown in 
yellow>orange>red (higher>lower A). Red arrows indicate regions of high B-factors and 
more anisotropic behavior. Atoms exhibiting displacement more representative of 
isotropic motion are shown as spheres (less ellipsoidal) and are colored in green>blue 
(lower>higher A). Blue arrows indicate regions of low B-factors and less anisotropic 
behavior. 
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than on the standard Engh and Huber (1991) small molecule libraries for geometric 

restraints that Refmac5 utilizes normally (Engh et al. 1991); therefore, matrix weighting 

should only be altered significantly when sufficiently high resolution data is available 

(beyond 1.2Å) and the data-to-parameter ratio is quite high (>10:1). An additional cycle 

of rebuilding and addition of more solvent molecules decreased the Rfree to its current 

value of 22.3%. The final r.m.s.d. for bond lengths and angles were 0.021Å and 1.965°, 

respectively. The data-to-parameter ratio for isotropic B-factor refinement was ~12:1 

whereas for refinement of ADPs (which essentially doubles the parameters that are 

refined) the ratio was ~5.5:1. Thus, unrestrained and full-matrix refinement of the first 30 

residues of the apo structure was performed as described for the MTX structure detailed 

in the previous chapter and in chapter 2. This provides a precise and accurate 

measurement of bond lengths and angles. It was used here to assess carboxylate bond 

lengths and their calculated estimated standard deviations (ESDs) from ideality given the 

model so as to elucidate the charge state of the Asp and Glu residues.  

Full-matrix refinement results: the Asp 27 in Apo DHFR  

 Surprisingly, the Cγ-Oδ1 and Cγ-Oδ2 bond lengths for Asp 27 are not close to 

equivalence. In fact, they are 0.092Å different, which is greater than 3 times the ESD 

(0.087Å) (Table 5.4). The B-factors of the Cγ, Oδ1, and Oδ2 atoms were 16.1, 17.4, and 

21.3Å2, respectively. The overall Biso (main chain atoms) for the apo structure was 14Å2. 

Overall, these thermal parameters seem reasonable and the ADPs are lower (A ratios are 

higher) and disorder is reduced within this part of the structure (all side chains can be 

modeled and there is no main chain disorder). Therefore, this analysis provides evidence 

that the Asp 27 is protonated (Coates et al. 2002; Deacon et al. 1997), at least in the  
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Table 5.4: Refined carboxylate bond lengths, ESDs, isotropic B-factors, and charge 
estimation for Asp 11, Glu 17, and Asp 27 in monomers A and B of the 1.05Å apo 
DHFR structure  
 
Residue Bond length (in Å) ESD (in Å) B-factor (in Å2) 
Asp 11 
      Cγ-Oδ1 
      Cγ-Oδ2 
Charge state 

 
1.234 
1.255 
Negative 

 
0.020 
0.020 
 
 

 
Cγ    13.5 
Oδ1  13.2 
Oδ2  17.2 
 

Glu 17 
      Cδ-Oε1 
      Cδ-Oε2 
 Charge state 

 
1.282 
1.321 
Negative 
 

 
0.057 
0.049 
 

 
Cδ    14.0 
Oε1  23.2 
Oε2  14.2 
 

Asp 27  
      Cγ-Oδ1 
      Cγ-Oδ2 
 Charge state 

 
1.281 
1.190 
Neutral 
 

 
0.031 
0.027 
 

 
Cγ    16.1 
Oδ1  17.4  
Oδ2  21.3 
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context of the crystalline lattice and under these conditions. The crystallization pH was 

7.5; this suggests a dramatic perturbance of the Asp 27 pKa in the apoenzyme. Additional 

results from the full-matrix refinement (Table 5.4) revealed that the Asp 11 and Glu 17 

are both charged in the apoenzyme, with bond length differences much less than the 

mean calculated ESDs. The average B-factors for the atoms in these carboxylate groups 

were ~16-17Å2. These residues, both within the Met20 loop, have side chains which are 

oriented towards the surface of the protein and away from the interior and interact with a 

number of solvent molecules (Figure 5.2). The Asp 27 carboxylate Oδ1 has three 

possible interaction partners, with the Thr 113 Oγ (2.7Å distance), the Wat 90 oxygen 

(2.9Å), and the Wat 131 oxygen (3.0Å). The Asp 27 Oδ2 atom maintains two possible 

contacts, with the Wat 83 oxygen (2.7Å) and the Wat 132 oxygen (2.5Å) (Figure 5.3 A, 

B). Superposition of the MTX closed Met20 loop structure (monomer B, chapter 4) onto 

the apo structure reveals that these solvent molecules are positioned very near (<1.0Å 

distance) to where MTX pteridine ring atoms are when bound in the DHFR active site 

(Figure 5.3 B). In fact, two of these (Wats 90 and 132) are at nearly the same exact 

position where the NA2 and N1 atoms of MTX are; these atoms in MTX make direct 

hydrogen-bonding and ionic contacts with the Asp 27 carboxylate as detailed in chapter 

4.  

A conformation for the Met20 loop in the apoenzyme crystal structure 

 A striking feature in the maps early in refinement and rebuilding was the 

continuous stretch of 2Fo-Fc electron density for all of the Met20 loop (Figure 5.4) that 

was unobservable, at least for the core residues 16-20, in the previous apo structure 
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Figure 5.2: The positions of the residues in the apo DHFR structure used in the 
carboxylate bond length measurements in the full-matrix refinement. A) The Asp 11 
and Glu 17 residues are both within the Met20 loop and their side chains are at the 
surface and directed away from the protein interior. Asp 27 is the only ionizable residue 
in the DHFR active site and is part of helix αB. B) The same image and orientation as in 
(A) only with solvent molecules shown as red spheres.  
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Figure 5.3: In the apo DHFR structure, solvent molecules form close contacts with 
the Asp 27 carboxylate that are conserved in substrate and inhibitor complexes. A) 
Shown in blue is the 2Fo-Fc electron density map contoured at 2σ. The Asp 27 
carboxylate group forms possible hydrogen-bonding contacts with three solvent 
molecules (Wats 90 and 132 shown here, Wat 83 shown in B) and a nearby Thr residue (a 
2.7Å contact with Thr 113 Oγ not shown). In the 5DFR structure, the only contact 
described to the Asp 27 is to the Thr 113. B) Solvent molecules occupy positions in the 
apo DHFR structure that are very near (most are <0.5Å in distance) to where substrate 
and inhibitor atoms (like those in MTX shown) would be. The closed Met20 loop MTX 
structure (monomer B) was used for superposition onto the apo structure. 

 170



 
 
 
 
 

 

Figure 5.4: The ultrahigh resolution (1.05Å) of the electron density maps allowed 
modeling of the core residues of the Met20 loop, observed as disordered in the 
previously reported apo DHFR structure (5DFR; (Bystroff et al. 1991). Shown in 
blue is the 2Fo-Fc electron density contoured at 2σ for part of the Met20 loop. Although 
the folinic acid-bound DHFR structure (shown in green) could be used in difference 
Fourier calculations and as the initial model for apo DHFR, most of the core Met20 loop 
side chains and even regions of the main chain had to be rebuilt to better fit the electron 
density from the ultrahigh resolution apo DHFR data. The rebuilt and refined apo Met20 
loop is shown in cyan.  
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(5DFR (Bystroff et al. 1991); no coordinates are reported from the amide nitrogen of Met 

16 to the carbonyl carbon of Met 20). Using a loop modeling utility within the model  

building program, O (Jones et al. 1991) (Kleywegt et al. 1997), a preliminary loop based 

on the folinic acid-DHFR model (1JOM (Lee et al. 1996); the model used in the 

difference Fourier calculation) was placed into density and then atoms were manually 

refined into favorable positions. An alignment of loops from different structures reveals 

that this is a new type of closed conformation for the core residues of the apo Met20 loop 

(Figure 5.5). It was surprising that, in the absence of any ligand bound, the Met20 loop 

would adopt a closed conformation. However, the core region of the loop (residues 14-

20) is very ordered, with clear electron density for all the side chains and average side 

chain B-factors of 14-15Å2. Upon generating the atoms involved in symmetry-related 

contacts, it was observed that an Mg2+ ion was hexa-coordinated by four solvent 

molecules, Asp 70 Oδ2 from the symmetry molecule, and Asn 18 Oδ1 from the origin 

molecule (all contacts between 2.0-2.1Å) (Figure 5.6). Additionally, the Asn 18 side 

chain amide Nδ2 forms 3.0Å hydrogen-bonding contacts with Asp 70 Oδ2 and Water 51, 

both from the symmetry molecule. Therefore, this interface between crystallographic 

molecules seems to be stabilized by a solvent and ion network. Indeed, the average B-

factor for the Asn 18 residue is 11.5Å2. Most likely, it is this system of crystal contacts 

that induces the Met20 loop to adopt a closed conformation. It could be that, by virtue of 

the closed loop conformation, the active site is more sealed and prevents en masse the 

entrance of bulk solvent, providing a chemical environment more conducive to 

hydrophobicity. This could provide evidence to why the Asp 27 carboxylate is protonated 

and, thus, neutral. Perhaps there is decreased energetic favorability to burying a negative  
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Figure 5.5: The Met20 loop in apo DHFR is in a closed conformation.  Shown are 
color-coded Met20 loop Cα traces from representative E. coli DHFR structures. Nearest 
to the ligand binding site is the folinic acid-bound DHFR Met20 loop (1JOM; the folinic 
acid ligand and its Met20 loop are in purple), next in the sequence from left to right is the 
1.05Å apo structure reported here (closed; light green; black arrow), MTX B molecule 
(closed; pink), MTX A molecule (partially occluded; loop and the MTX for the A 
molecule are in yellow), and, shown as disordered (no trace) is the previously reported 
apo loop (5DFR; light blue). There are no coordinates reported in 5DFR for the core of 
the Met20 loop, from the backbone carbonyl of Gly 15 to the backbone amide of Pro 21 
 

 

 

 173



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 5.6: Crystal contacts at a metal coordination site near Asn 18 help to stabilize 
the Met20 loop in a closed conformation in the apo DHFR structure.  Residues and 
solvent atoms for the origin apo DHFR molecule are shown in cyan whereas residues and 
solvent for the symmetry-related molecule are shown in green. 2Fo-Fc electron density 
contoured at 1.5σ is shown in blue. The Mg2+ ion possesses hexavalent coordination, 
with 4 contacts to oxygens of water molecules, the Oδ2 of Asp 70 (symmetry molecule), 
and the Oδ1 of Asn 18 (origin molecule). The average metal…oxygen coordination 
contact distance is ~2.1Å.  
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charge in an already-hydrophobic active site which is vacant of any ligand that could 

counter with a positive charge (such as MTX) for an ionic interaction or could form 

hydrogen-bonding contacts (such as folate).  

Differences between apoenzyme structures  

 A comparison to the previous apo DHFR structure (5DFR; solved to 2.3Å 

resolution; (Bystroff et al. 1991)) was undertaken. 5DFR crystallized in the P3121 space 

group whereas the 1.0Å apo model reported here crystallized in the P65 space group. 

Superposition of the two models by least-squares revealed that the r.m.s.d. between the 

Cα atoms was 0.6Å (Figure 5.7 A). The βA strands (residues 1-8) are very similar 

between the two structures; however, different side chain rotamers exist for Asp 11 and 

Arg 12. In the 1.0Å apo model, the positions of these side chains are stabilized by 

symmetry contacts, such as a 2.9Å hydrogen bonding distance between the Asp 11 Oδ1 

and the Nς atom of Lys 76 of the symmetry molecule. The differences in the core of the 

Met20 loop are stated in the above section. Additionally, in the 5DFR structure, there are 

no coordinates reported for Leu 23-Pro 24; they could be readily modeled into the 1.0Å 

resolution 2Fo-Fc electron density maps. Also stated above, there are multiple interactions 

between the Asp 27 carboxylate group and surrounding solvent molecules. The only 

possible hydrogen-bonding partner to the Asp 27 in the 5DFR structure is between the 

Oδ1 and the Oγ atom of Thr 113, which is observed in the high resolution model. Not 

surprisingly, basic side chains which line the side of the active site opposite to where the 

Asp 27 resides and normally stabilize the diglutamic acid tail of folate ligands and 

analogs such as MTX (Arg 44, Arg 52, Lys 58) are disordered or in different orientations 
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Figure 5.7: Superposition of the 5DFR structure (the previously reported apo DHFR 
model) onto the 1.05Å resolution apo DHFR structure reported here. A) Overlay of 
the two models was performed within the program O using least-squares superposition 
(Cα r.m.s.d = 0.6Å). Note that there is no Cα trace for residues 15-20 of the Met20 loop 
in the previous apo DHFR structure (green). B) A difference in the main chain 
conformation for Gly 96-Gly 97, which is modeled as trans in 5DFR yet modeled as cis 
in the ultrahigh resolution structure.  
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in the 5DFR structure as compared to the ultrahigh resolution model. The Arg 44 is 

rotated about χ1 in a completely opposite orientation as compared to 5DFR; this allows a  

possible hydrogen-bonding contact with the Pro 66 carbonyl oxygen (2.9Å distance). 

This may help to stabilize the adenosine-binding loop (residues 62-70) in the high 

resolution structure, which has very low main chain B-factors. There exists ~1.1Å 

difference between main chains for the two models from Thr 46 to Pro 54 and from Thr 

68 to Thr 73. In most of the E. coli DHFR structures deposited into the PDB (Berman et 

al. 2002) (and even structures from other organisms such as Lactobacillus casei) and in 

the ultrahigh resolution MTX structures reported in this thesis, the peptide bond for Gly 

95-Gly 96 is found in the cis conformation (Bolin et al. 1982). In 5DFR, it was modeled 

as partially disordered between cis and trans, and this peptide bond was suggested to 

convert from trans to cis upon cofactor binding due to the fact that, in the trans 

conformation, the Gly 96 carbonyl oxygen could project into the pyrophosphate binding 

site of the cofactor and a switch to cis would alleviate this steric clash (Bystroff et al. 

1991). In the 1.0Å model, it is clear that the Gly 95-Gly 96 peptide bond is in the cis 

conformation (Figure 5.7 B). Large χ1 rotamer differences for Arg 98 and Lys 106 

between the two models exist, both allowing the side chains in the 1.0Å model to make 

more hydrogen-bonding contacts and to fit the 2Fo-Fc electron density better. Another χ1 

rotamer difference between the models occurs at His 114. The Nε2 of the imidazole ring 

makes a 2.8Å contact with the Oε1 atom of Glu 154 in the 1.0Å apo model whereas in 

5DFR the imidazole ring is pointed towards symmetry contacts and solvent molecules 

>3.0Å away. The remainder of the C-terminus is quite similar between the two models 

with no major main chain divergences or side chain differences.  
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Differences between the apo and substrate-bound forms 

 To determine changes that would occur in the apo DHFR structure upon substrate 

binding, an ultrahigh resolution (to 1.06Å) folate-bound DHFR structure was superposed 

using least-squares calculations onto the 1.0Å apo DHFR structure reported here. The 

folate-DHFR model was kindly provided by Dr. Anna Gardberg, a postdoctoral fellow in 

the Dealwis laboratory. The resolutions of the data are essentially the same; however, the 

space groups are different. The folate-DHFR crystals are very similar to the MTX 

crystals reported in the previous chapter: they crystallize into the P61 space group and 

have 2 molecules in the asymmetric unit (AU). The major difference between the 

molecules in the AU, like the MTX monomers A and B, is the conformation of the Met20 

and the βF- βG loops. The closed Met20 loop monomer was used for the superposition 

and the analysis of differences with the 1.0Å P65 apo structure, and the r.m.s.d. between 

the Cα atoms of the two models is 0.7Å. As expected, the Cα traces for the two 

structures are very similar, with major divergences in the chain occurring at the Met20, 

the adenosine-binding, and the βF- βG loops (Figure 5.8 A). Beginning at the Ala 7 Cα 

and ending at the Val 10 Cα, there is ~0.5Å main chain difference between the two 

models. The position of the Arg 12 is also different, with the apo residue pointed towards 

the βF- βG loop, the Arg NH2 of the guanidino group within 3.3Å of the Tyr 128 

hydroxyl group of the aromatic ring. The Arg 12 in the folate structure possesses a 

slightly different χ1 rotamer, causing it to bend away from the βF- βG loop a bit more 

than the apo Arg 12; this causes the folate Arg 12 guanidino group to be about 4.5Å 

distant from the Asp 127 carboxylate. The positions of Asp 127 and Tyr 128 between the 

two models are the same. The largest divergence takes place at the core of the Met20  
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Figure 5.8: Superposition of a closed Met20 loop folate-bound DHFR structure 
(1.06Å resolution) onto the 1.05Å resolution apo DHFR structure. A) Overlay of the 
two models was performed within the program O using least-squares superposition (Cα 
r.m.s.d = 0.7Å). The Cα trace of the apo DHFR is shown in cyan while the Cα trace of 
folate-bound DHFR (monomer B) is shown in green. Folate is shown bound in the active 
site. B) The orientation of the core residues of the Met20 loop are significantly different 
between the folate-bound DHFR closed Met20 loop (green) and the apo DHFR closed 
Met20 loop (cyan) structures. The Glu 17 side chain of the apo loop protrudes into the 
active site very near (<5Å) to where the folate pABA-glu tail is positioned. The 
coordinates for the 1.0Å resolution model of folate-bound DHFR were kindly provided 
by Dr. Anna Gardberg. 
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loop, with the distances between Cα atoms for Met 16 (5.2Å), Glu 17 (7.7Å), Asn 18 

(4.2Å), and Ala 19 (3.3Å) all being quite sizable (Figure 5.8 B). The reason for this 

difference is that the apo loop kinks inward to the protein interior just past the Met 16 

backbone amide. The side chains for Met 16, Glu 17, and Asn 18 in the two models are 

oriented in the opposite directions, with the apo Glu 17 carboxylate slightly protruding 

into the active site and positioned less than 5Å from the benzoate moiety of the 

superposed folate ligand. The side chains of all these residues in the folate-bound 

structure are pointing away from the substrate-binding site. It should be noted, as 

observed in the MTX structure, that solvent molecules (Wats 90, 132, 142, 165, and 181) 

in the apo DHFR structure nearly overlay perfectly (<0.5Å) at the positions of atoms in 

the folate pterin ring when the folate is bound to DHFR.  

 The main chain at Arg 44 and His 45 differs by about 1.5Å and the side chains 

extend in different directions; the Nδ1 atom on the imidazole ring of His 45 in the folate 

structure is ~4Å away from the Glu 17 Oε1 atom. This same atom pair in the apo 

structure is at a distance >15Å. The Arg 44 guanidino group in the apo structure is 

pointed towards the core of the adenosine-binding loop, the NH1 atom making a 3.1Å 

contact and the NH2 atom making a 2.9Å contact with the side chain carbonyl oxygen of 

Gln 65 and the main chain carbonyl oxygen of Pro 66, respectively. These interactions 

may help to stabilize the apo DHFR adenosine-binding loop and cause this region to be 

unexpectedly well-ordered. Indeed, from Gln 65 to Arg 71, there is an average main 

chain divergence of ~1.5Å between the two structures, the largest being a 3.0Å difference 

between the Pro 66 Cα atoms. Many of the longer and branched side chains have very 
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different rotamers and/or torsion angles about the χ1 and χ2 rotations, including Arg 52, 

Asp 79, Glu 80, and Arg 98.  

 In the apo DHFR structure, key residues within the βF- βG loop (Asp 120, Gly 

121, and Asp 122) are actually 8-12Å distant from the core of the Met20 loop whereas 

these residues are packed closer to the Met20 loop in the folate-bound DHFR structure. 

An example of this is the side chain of Met 16; as stated above, it is projecting towards 

the active site in the apo structure but, in the folate-bound structure, it is projecting 

towards the Asp 122 of the βF- βG loop, with the distance between Met 16 and Asp 122 

Cα atoms decreasing from 12.1Å (apo) to 7.9Å (folate-bound). With a decrease in 

packing against the βF- βG loop, normally a stabilizer of a closed Met20 loop, it further 

suggests that the crystal contacts are very important for helping to maintain the “ultra” 

closed conformation of the Met20 loop in the apo structure reported here. Indeed, in the 

P65 folinic acid-bound E. coli DHFR structure, it was suggested that components of the 

crystallization medium (Ca+ and ethanol) played a role in stabilizing a “completely” 

closed Met20 loop, where part of the loop protruded into the cofactor-binding site (Lee et 

al. 1996). Although the apo Met20 loop does not protrude as far into the binding cleft as 

the Met 20 loop in the folinic acid-DHFR structure, recall it was the Fcalc of this model 

(1JOM; Lee et al., 1996) used successfully in a difference Fourier calculation in Refmac5 

(Murshudov et al. 1997) with the apo DHFR reflection data (the Fobs). There also exists a 

difference at the end of the βF- βG loop between the two structures, with ~1.5Å between 

Cα atoms of Pro 130 through Asp 132. The remainder of the C-terminus for the two 

models is very similar.  
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Structure refinement and analysis: DHFR MTX/NADPH ternary complex 

 As stated above, a previous DHFR/MTX/NADPH structure (1RH3; P3221 space 

group; (Sawaya et al. 1997)) solved to 2.3Å was used as the target molecule for MR. For 

the MTX/NADPH structure, 10 cycles of rigid body refinement in Refmac5 (Murshudov 

et al. 1997) using the MR output solution model against the 1.4Å reflection data resulted 

in an Rfac and Rfree that were 42.6% and 43.1%, respectively. After multiple cycles of 

restrained and B-factor refinement, simulated annealing was performed using CNS 

(Brunger et al. 1998) to reduce model bias from 1RH3. Model building in O included the 

modeling of alternate side chain conformations and manual addition of several water 

molecules. Subsequent refinement in Refmac5 to 1.4Å with loosening of the geometric 

restraints reduced the Rfree to 19.1%. The final r.m.s.d. for bond lengths and angles were 

0.019Å and 1.994°, respectively. The data-to-parameter ratio for isotropic B-factor 

refinement was ~7:1 whereas, for refinement of ADPs, the ratio was ~3:1. Due to the 

smaller data-to-parameter ratio as compared to the apo and the MTX binary structures 

(stemming from the resolution limitations of the MTX/NADPH data), further refinement 

and analysis (i.e. a full-matrix calculation for carboxylate bond lengths and ESDs) in 

SHELX was not performed. The structure refinement statistics for the DHFR 

MTX/NADPH ternary complex are listed in Table 5.2.  

Analysis of the MTX and NADPH binding sites 

 Electron density maps of the MTX and the cofactor binding sites are shown in 

Figure 5.9. It is expected that the Asp 27 is negatively charged in the MTX/NADPH 

ternary complex to conserve the ionic interaction identified from neutron crystallography 

for the MTX binary complex as reported in the previous chapter. Additionally, this is a  
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Figure 5.9: Interactions at the active site of the DHFR MTX/NADPH ternary 
complex. A) Contacts between the Asp 27 carboxylate and the pteridine ring of MTX. B) 
The flipped orientation of the MTX pteridine ring compared to folate results in a slightly 
larger distance (3.4Å) between the NADPH nicotinamide C4 atom and the MTX N5 atom 
(3.2Å for the folate N5 to the cofactor C4) and creates a vacancy in the position where 
the folate C6 would be. This, along with the position of the MTX pABG moiety, has the 
effect of pushing the αB helix (not shown) and providing more space for the 
nicotinamide ring of the cofactor. Essentially, less strain allows more optimal binding for 
both ligands. This arrangement has been suggested to be mimicked in the transition state 
once the DHF N5 atom has been protonated (Bystroff et al. 1990) (Bystroff et al. 1991), 
facilitating hydride transfer by reducing the distance between the cofactor and the DHF 
C6 atom (Wu 1987). Of course, the DHF would be flipped about its pteridine ring as 
compared to MTX.  
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dead-end complex due to the inhibitory nature of MTX; it is not expected that the 

NADPH would significantly alter or weaken MTX binding to DHFR. In fact, it has been 

reported that there is a tremendous positive cooperativity between MTX and NADPH for 

DHFR binding (Bystroff et al. 1990). The reason given for this phenomenon is that the 

MTX pteridine ring binds DHFR in a flipped orientation as compared to the weak 

substrate, folate (Reyes et al. 1995). This reduces the possible overlap between the 

nicotinamide ring of NADPH and the pteridine ring of MTX, affording less strain and 

steric clashing in the binding sites. This creates space where the folate C6 has been 

observed to be positioned in crystal structures of DHFR bound to it and to NADP+ 

(Bystroff et al. 1990). It has been suggested that the conformation of the enzyme closely 

resembles a transition state structure when MTX is bound in the active site and the Met20 

loop is closed (Bystroff et al. 1991). Indeed, if one superposes the DHFR/MTX/NADPH 

structure (1RH3) onto the DHFR/folate/NADP+ structure (1RX2), the nicotinamide C4 

from the former structure and the folate C6 of the latter structure are only ~2.9Å distant 

from one another (Sawaya et al. 1997). From theoretical calculations on the distance-

dependence of the efficiency of hydride transfer reactions, it was revealed that 2.6-2.7Å 

is an ideal transfer distance (Wu 1987). These details seem to strengthen the argument 

that the binding of MTX and NADPH induce the protein to adopt a transition state-like 

structure and the position of the nicotinamide ring in the crystal structure of 

MTX/NADPH ternary complex is identical or very near to its position concurrent or just 

prior to hydride transfer. Even though the MTX/NADPH ternary complex crystallized in 

a pH 5.5 buffer (0.1 M Bis-Tris), it is not expected that this will titrate the Asp 27 

carboxylate so it can maintain an ionic interaction with the MTX N1 atom. Recent NMR 
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results from the homologous L. casei DHFR in a binary complex with folate and a ternary 

complex with folate/NADP+ revealed that the pKa for the active site Asp is not greater 

than pH 4.8 and is likely less than that (Casarotto et al. 1999). This seems to agree with 

results from NMR spectroscopy  on the MTX complex with the L. casei enzyme that the 

Asp27•MTX interaction is a charge-charge contact (Gargaro et al. 1998), and Raman 

difference spectra on the E. coli enzyme in different liganded forms that provide evidence 

that the Asp 27 remains ionized at least between pH values of 5-9 (Chen et al. 1994; 

Chen et al. 1997).  

Anisotropy analysis: the MTX/NADPH ternary complex  

 Analysis of the B-factor distribution and the anisotropy of the MTX/NADPH 

were performed using PARVATI (Merritt 1999a) as described previously (Figure 5.10). 

Immediately noticeable was that the overall B-factor for the protein atoms was higher 

(Biso = 26.7Å2) and nearly all surface residue atoms are highly anisotropic (lower A 

values) as compared to the apo and the MTX structures. However, the mean A value for 

protein atoms was 0.57, slightly higher than might be expected given the model shown in 

Figure 5.10 C. There is a general correlation between higher Biso and lower A values 

(such as the adenosine-binding and the βF-βG loops), however, there existed regions such 

as the Met20 loop and the random coil region between αE and βE (residues 80-95) where 

this correlation breaks down (Figure 5.10 A, B). It could be that anisotropy was 

overestimated in the maximum likelihood refinement, and this could be due to the 

limitations of the data and the rather small data-to-parameter ratio for the anisotropic 

refinement (~3:1). It may be best to apply more stringent restraints on the anisotropic  
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Figure 5.10: B-factor and anisotropy distribution for the ternary complex of DHFR 
bound to MTX and NADPH. A) B-factor values (in Å2) for the backbone atoms of the 
1.4Å DHFR/MTX/NADPH ternary complex. B) Anisotropic ratio (A = Emin / Emax) for 
the backbone atoms; the lower the A value, the more anisotropic an atom is (its 
vibrational motion cannot be described as spherical) C) MTX/NADPH model showing 
all protein atoms represented as thermal ellipsoids. Atoms exhibiting non-spherical 
vibrational motion are more elongated and ellipsoidal and are shown in 
yellow>orange>red (higher>lower A). Atoms exhibiting displacement more 
representative of isotropic motion are shown as spheres (less ellipsoidal) and are colored 
in green>blue (lower>higher A). In contrast to other structures presented in this thesis, 
most surface atoms in the MTX/NADPH structure have very high mobility and low A 
ratios.  



refinement in Refmac5 or to attempt refinement in SHELX (Sheldrick et al. 1997), where 

further restraints can be implemented and modified as needed. 
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Chapter 6. Conclusions and future objectives 

6.1 Conclusions from the present body of research results  

 This work provides new information about DHFR and its interactions with the 

anticancer drug, methotrexate (MTX), its overall dynamics, and the protonation state of 

Asp 27 by using a complementary X-ray and neutron crystallographic (NC) approach.  

Preparation for NC experiments: crystal size and deuterium incorporation 

 Atypical as a prerequisite for most protein X-ray crystallography experiments is 

the growth of large volume crystals, those with one or more dimensions that exceed 1 

mm and volumes that exceed 0.5-1.0mm3. This, however, has traditionally been a 

necessity for NC. For DHFR/MTX crystals that were successfully utilized here, the 

volumes were ~0.2-0.3 mm3. This is a significant decrease in the typical crystal volumes 

utilized in past macromolecular NC experiments. To improve the DHFR/MTX crystal 

size, a number of parameters were changed including using higher protein complex 

concentrations, decreasing the precipitant concentration, and switching to a microbatch-

under-oil crystallization strategy (Rayment 2002) (Chayen 1997). This produced several 

crystals with volumes that approached and exceeded 0.2 mm3; two of these diffracted 

neutrons beyond 2.2Å resolution. It should be restated that these crystal volumes are 

among the smallest to ever be reported to be successfully used in NC. They also possess 

the largest primitive unit cell (~6 x 105 Å) successfully tested. The D2O-soaked crystal 

from the microbatch-under-oil set-up that was used in the NC data collection at Los 

Alamos provided moderately high resolution data (to 2.2Å) to sufficient completeness 

(~80%) in a decent amount of time (~22 days) from one 0.3 mm3 crystal.  
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 Prior to the NC experiments, the crystals were extensively soaked in D2O-based 

crystallization buffer to substitute deuterium (D) for hydrogen (H) at chemically 

exchangeable positions (such as backbone amide nitrogens and side chain hydroxyl 

groups). This is done to reduce the incoherent neutron scattering from H in the crystal. 

Deuteration not only improves the signal-to-noise significantly in NC experiments but 

also aids in the direct observation and identification of labile H atoms (exchanged for D) 

in nuclear density maps. A more extensive form of deuterium labeling is perdeuteration 

and has been applied to E. coli DHFR. This is where H atoms at chemically non-

exchangeable positions are substituted for D; this must occur within biosynthetic 

pathways of the cell and the growth medium is > 95% deuterated. This is especially 

important for labeling of all the aliphatic carbons in proteins. E. coli DHFR was 

expressed and purified from deuterium-adapted SK383 E. coli cells. Exhaustive 

adaptation of the bacterial strain to the deuterated background required about two weeks 

although adaptation is expedited to 2-3 days using more common strains (like BL21) 

transformed with pET and JM109 vectors. Deuterium enrichment of DHFR was nearly 

100%, as measured by mass spectrometry. Perdeuterated DHFR was cocrystallized with 

MTX and ultrahigh resolution X-ray diffraction data (to 1.2Å) was collected at the APS.  

Effects of perdeuteration on proteins: structure and function (specifically for DHFR)  

 Although very few examples exist in the literature, the three-dimensional 

structures of perdeuterated proteins do not appear to vary significantly from their native 

counterparts (Gamble et al. 1994) (Meilleur et al. 2005). Functional consequences of 

enzymes which have been perdeuterated are normally slight to moderate decreases in the 

catalytic rate (kcat) and stability in solution, the latter demonstrated usually by calorimetry 
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(Hattori et al. 1965) (Rokop et al. 1969) (Brockwell et al. 2001) but also recently by 

NOE data from NMR (Mok et al. 1999) and infrared spectroscopy (Meilleur et al. 2004).  

 Deuterium solvent isotope effects have been measured for E. coli DHFR by Stone 

and Morrison (1988), and it was determined that turnover was limited by a combination 

of D2O effects and by product release. However, the overall rate was only slightly 

decreased for the enzyme in D2O; the kinetic pKa in D2O associated with a deuterium 

isotope effect using NADPD as the cofactor for hydride transfer was shifted significantly 

(~0.6 pH units) (Stone et al. 1988). The meaning of this shift is not well understood since 

now associating the kinetic pKa with titration of Asp 27 is controversial. Although still a 

matter of dispute, it has been ascribed to protonation/deprotonation events on the DHF 

substrate itself (Chen et al. 1994) (Cummins et al. 2001) (Rajagopalan et al. 2002). For 

the perdeuterated DHFR/MTX data, the model and the electron density have not been 

examined, however, the space group is identical and the unit cell constants are 

isomorphous to the native DHFR/MTX cocrystals. Eventually, the model could be used 

as the starting coordinate set in refinement against future NC data collected on a 

perdeuterated DHFR/MTX crystal.  

Crystallographic characterization of the DHFR/MTX complex 

 Prior to the NC experiments on DHFR/MTX, ultrahigh resolution X-ray data had 

been collected at the APS, and the structure was refined against data to 1.0Å resolution. 

Correlation was observed between anisotropic displacement and main chain B-factor 

values in the structure: the more anisotropic the behavior of atoms the higher their 

associated B-factor. An atom exhibiting anisotropic behavior means it has a tendency to 

vibrate with non-spherical (non-isotropic) displacements. There are 2 monomers in the 
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asymmetric unit (AU) of the DHFR/MTX crystals. Although their Cα r.m.s.d. is less than 

0.5Å, striking differences for the main chain occur at the Met20 loop (residues 9-24) and 

at the core residues (118-123) of the supporting βF-βG loop (the whole loop comprises 

residues 116-132). In monomer A, where the Met20 loop is partially occluding the 

cofactor-binding site, residues in the adenosine-binding loop (residues 62-70) and at the 

beginning and core of the βF-βG loop exhibit both higher B-factors and anisotropic 

behavior. In monomer B, to contrast, the Met20 loop is closed over the active site. Its C-

terminal region (residues 132-159) possesses higher B-factors and more anisotropic 

behavior than does the same region in monomer A. This could be due to the fact that the 

βF-βG loop must be positioned to hydrogen bond with the core of the Met20 loop when it 

is closed, possibly rigidifying that region of the protein. This stabilization is unnecessary 

in monomer A due to the fact that the Met20 loop adopts an occluded conformation and 

is directed more into the active site and away from the βF-βG loop, disrupting the 

hydrogen-bonding pattern between these two loops. So, it may be expected that the C-

terminal region (residues 132-159) in DHFR would be more dynamic when the Met20 

loop is closed (as in monomer B) because the βG-βH loop (residues 142-150) is not as 

important for stabilizing the Met20 loop in this conformation. When the Met20 loop 

occludes into the cofactor binding site (presumed to occur after catalysis to expedite 

exchange of NADP+ for NADPH and release of the THF product), the βF-βG loop is no 

longer close enough to anchor the Met20 loop and, thus, the βG-βH loop is required to 

stabilize the C-terminal part of the Met20 loop (at Asn 23). These contacts are 

strengthened when the Met20 loop occludes because the βF-βG loop contacts are lost 

(Sawaya et al. 1997). As a consequence, this could reduce the flexibility of the C-
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terminal region in monomer A, reflected by its lower B-factors and less anisotropic 

behavior compared to monomer B.  

Protonation states of Asp 27 and MTX  

 In an attempt to clarify the possible protonation state of the Asp 27 and due to the 

high data-to-parameter ratio (>10:1) afforded by the ultrahigh resolution, full-matrix 

unrestrained refinement of carboxylate bond lengths was employed. This allows the 

carboxylate group to freely refine and all off-diagonal terms of the refinement parameter 

matrix are utilized in the calculation. It provides precise and accurate bond lengths for the 

Asp Cγ-Oδ1 and Cγ-Oδ2 bond lengths and their estimated standard deviations (ESDs) 

and allows comparison of the average bond length difference to the deviations (Deacon et 

al. 1997). For both monomers of the AU, the Cγ-Oδ1 and Cγ-Oδ2 bond lengths are 

nearly equal and the ESDs are essentially identical to the average bond length difference; 

this implies that the double bond is shared across the carboxylate. This means that the 

Asp 27 in both monomers is deprotonated and negatively charged, at least at the pH (7.5) 

of the crystallization. In the related DHFR/folate crystal structure solved to 1.06Å 

resolution (crystallization pH = 8.0), it has been shown that the Asp 27 carboxylate bond 

lengths are nearly equal and, thus, the Asp 27 is charged when folate is bound (Dr. Anna 

Gardberg). So, when the substrate binding site is occupied, the Asp 27 maintains a 

negative charge. It has been speculated that the maintenance of a negative Asp 27 is 

responsible for polarization of bound DHF, shifting its electrons from bonds of the 

pteridine ring facing the Asp 27 to the N5-C6 bond on the opposite part of the ring, 

inducing protonation and hydride transfer to that part of the ring (Bajorath et al. 1991a) 

(Bajorath et al. 1991c) (Greatbanks et al. 1999). Is a deprotonated (charged) Asp 27 

 192



conserved in productive and/or non-productive ternary complexes, when both the 

substrate and cofactor binding sites are occupied? This is yet to be demonstrated directly, 

an important future goal of X-ray and NC studies of DHFR.  

NC studies of DHFR/MTX  

 NC of DHFR/MTX was performed because one can directly, using nuclear 

density maps, identify H (D) and, thus, directly determine protonation states. A spallation 

NC data set was collected on a 0.3 mm3 crystal with reflections extending beyond 2.0Å. 

Ultimately, the high resolution limit for refinement was set to 2.2Å. After initial 

positional, B-factor, and D occupancy refinement, the nuclear density maps were 

examined at the active site around Asp 27 and MTX. In both monomers, sufficient 

nuclear density (>1.5σ) existed at the N1 atom of MTX that was not observable at the 

Asp 27 carboxylate. Indeed, the refined occupancy value of a D atom bound to N1 was 

1.0 for monomer A and 0.75 for monomer B. The X-ray and neutron analysis provided 

the protonation states of Asp 27 and MTX, respectively: Asp 27 is deprotonated and, 

thus, negatively charged while the MTX N1 is protonated and, thus, positively charged, 

defining the Asp 27•MTX N1 contact as an ionic interaction. Early 13C NMR 

experiments by Coco et al. (1981) and UV difference spectroscopy experiments by Stone 

and Morrison (1983) suggested this to be the case. Over a wide pH range, the N1 atom of 

DHFR-bound MTX, which has a pKa of 5.7 in solution, did not titrate, suggesting it 

remains positively charged at the active site (Coco et al. 1981) (Stone et al. 1983b). An 

ionic interaction had also been suggested from NMR results on a complex of MTX with 

L. casei DHFR (Gargaro et al. 1998) but had recently been challenged by a 

computational study on the E. coli DHFR/MTX complex (Cannon et al. 1997a), where 
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the interaction between Asp 27 and the MTX N1 was speculated to be a neutral dipole-

dipole. Clearly, from the combined X-ray and neutron results presented here, this is not 

the case; the computational predictions were made using the closed Met20 loop monomer 

from a lower resolution structure (3DRC). An obvious implication from this comparison 

of experimental and theoretical findings is that in silico models and predictions require 

intensive testing using other methods to help validate the computational results. A 

problematic assumption made in many MD simulations is about protonation states and 

hydrogen positions: neutrons can provide clear and direct evidence of these by 

identification of H (D) in the nuclear density maps and by their occupancy refinement. 

NC structures can then provide “updated” coordinate sets for MD, with residue and 

ligand protonation states understood because of H (D) identification.   

 Interestingly, drug compounds that have been shown to have marked selectivity 

for bacterial or fungal instead of vertebrate DHFRs, such as TMP, the pyrrolo-

quinazolines, the pyrrolo-pyrimidines, and the antimalarial WR9910 family, share an 

orientation similar to MTX when bound at the active site (Matthews et al. 1985) (Kuyper 

et al. 1996a; Kuyper et al. 1996b) (Li et al. 2000). No DHFR complex structure is 

available, but based on its potent inhibition kinetics and chemical structure analogous to 

WR9910, it is likely that the anti-protozoan drug pyrimethamine (PYR) shares this 

feature as well (Hekmat-Nejad et al. 1997). This shared orientation conserves interactions 

to the Asp 27 (or homologous acidic residue, i.e. Asp 26 in L. casei) that utilize the N1 

and the NA2 atoms of their pyrimidine rings. Applying the X-ray and neutron results here 

for the E. coli DHFR/MTX complex to these other bacterial/drug complexes, it seems 

that it is a common theme for tight-binding DHFR inhibitor compounds to use freedom to 
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rotate their pteridine/pyrimidine rings in order to exploit the possibility of a salt bridge 

interaction between N1 and Asp 27. This is an orientation that is not adopted by folate in 

binary or ternary complexes with E. coli or human DHFR (Reyes et al. 1995) (Davies et 

al. 1990) or by DHF in a binary complex with E. coli DHFR (Sawaya et al. 1997). Is an 

Asp 27 (or homologous residue) to N1 ionic contact the major determinant of inhibitor 

specificity and affinity to DHFRs, especially when taken in the context of competing with 

substrates for binding? Current drug design efforts with DHFRs now seem to be focusing 

on using the compounds TMP, PYR, and WR9910 as templates to generate leads against 

all manner of microbial, protozoan, and viral species, including Mycobacterium 

tuberculosis, Plasmodium falciparum, and even HIV (Li et al. 2000) (Hekmat-Nejad et 

al. 1997) (Wiktor et al. 1999). Why these compounds have higher selectivity for 

particular species whereas MTX binds tightly to nearly every DHFR studied is more than 

likely due to contacts made away from the Asp 27•MTX interface. Indeed, MTX 

possesses a glutamic acid tail that is not found in TMP or the other above compounds 

listed. TMP and these other compounds terminate with a substituted benzoic acid moiety 

and WR9910 (and its analogs) even possesses an extended linker sequence between its 

pyrimidine and chlorobenzene ring, imparting a more lipophilic character that could be 

important for cell membrane permeation and interaction in the hydrophobic active sites of 

DHFRs.  

DHFR dynamics as revealed by NC  

 The D2O-based soak of the crystal functioned as an H/D exchange experiment 

performed on the DHFR/MTX complex in the crystalline state. In terms of the backbone 

amide nitrogen atoms, monomer B has a higher H/D exchange percentage (~70%) than 
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does monomer A (~60%). At first this might seem counterintuitive since monomer A has 

an occluded Met20 loop and one would think it would be the less rigid of the two 

structures, more amenable to exchange and permeation of the D2O. However, the B-

factor and anisotropy analysis of the ultrahigh resolution X-ray data does not bear this 

out, at least in the C-terminal region of DHFR. Recall that the B monomer, especially 

from the middle of the βF-βG loop to the C-terminus, has higher B-factors and more 

atoms which exhibit anisotropy as compared to the A monomer. This may be due to the 

fact that the Met20 loop is closed in the B monomer and the N-terminal portion of the βF-

βG loop is needed for hydrogen-bonding contact to anchor the Met20 loop in this 

conformation. The C-terminus of monomer B is not required to fully stabilize the Met20 

loop, and the movement of the βF-βG loop is slightly towards the Met20 loop and the 

active site, as compared to monomer A. This repositioning may help to expose the βG 

and βH strands and make them more accessible to solvent. All the backbone amides save 

2 have H/D exchanged from residue 132 to the C-terminus in monomer B whereas only 

14 of 28 have exchanged for this same region in monomer A. In fact, accessibility 

measurements reveal that this region in monomer B is 60% more accessible to solvent 

than in monomer A. It should be reiterated here that lattice packing and crystal contacts 

have not been considered yet in the accessibility measurements. It was also observed that 

>75% of exchangeable protons on functional groups of basic residues (His, Lys, Arg) had 

indeed exchanged for D atoms, as assessed from occupancy refinement values (> 0.2) and 

directly from the nuclear density maps.  

 From sequence conservation, mutational analysis, and molecular dynamics 

simulations, Agarwal et al. have suggested a correlated network of residues in DHFR 
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critical for the hydride transfer step of the reaction (Agarwal et al. 2002). Not 

surprisingly, many of the strictly conserved residues are responsible for maintaining 

hydrogen-bonding contacts with ligands, such as Thr 113 and an acidic residue adjacent 

to the pteridine ring (like Asp 27 in E. coli, Asp 26 in L. casei, and Glu 30 in H. sapiens). 

However, several of these key residues were quite distant from the active site, like Tyr 

100 (its side chain hydroxyl oxygen is ~6Å from the N5 proton acceptor on DHF (or ~4Å 

from the N8 atom of folate)), Phe 31 (its aromatic ring is ~5Å from the DHF N5) and 

Met 42 (its Cβ ~10Å from the DHF N5). Double mutant studies on Met 42 and Gly 121 

revealed adverse non-additive effects to the hydride transfer rate (Agarwal et al. 2002). 

During the course of the MD simulations and as progress is made towards the transition 

state, some of the residues identified move slightly closer to one another and/or to ligand 

atoms (like a 0.6Å decrease between the Ile 14 Cδ and Tyr 100 OH atoms), suggesting 

this motion is critical to catalysis, possibly by aiding in decreasing donor-to-acceptor 

distances (e.g. C4 of NADPH to C6 of DHF). Many of the conserved, distal residues that 

have effects on catalysis are located within the Met20 (such as Ile 14 and Gly 15), 

adenosine-binding (Ser 63), and the βF-βG (Gly 121-Asp 122) loops. It is less surprising 

that distant residues have dramatic functional effects if one frames this in the context of 

the importance of Met20 loop conformation and interloop stabilization to aid in 

regulating ligand binding and enhance catalysis (Schnell et al. 2004). A closed Met20 

loop, stabilized by hydrogen-bonding to the βF-βG loop, is necessary for sealing the 

active site and is proposed to be the conformation during the hydride transfer step 

(Sawaya et al. 1997). Critical residues distal from the active site would have to be 

positioned in a particular way to maintain van der Waals and hydrogen-bonding contacts 
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with other key residues; this suggests that there is coupled “promoting motions” exploited 

by DHFR to enhance its catalytic rate (Agarwal et al. 2002) (Rajagopalan et al. 2002). 

Recent 15N relaxation kinetics from NMR have also implicated the Met20 and the C-

terminal loops (the βF-βG and βG-βH) to be major regions of change when the Met20 

loop fluctuates from a closed to an occluded conformation (McElheny et al. 2005). If one 

allows application of increased H/D exchange propensity as a symptom of increased 

areas of mobility, the MD and NMR results can be corroborated with the neutron results 

here: nearly 75% of the amides in the Met20, the βF-βG and the βG-βH loop regions have 

exchanged in either monomer. However, in the closed Met20 loop monomer (monomer 

B), the core of the βF-βG loop has exchanged less than in monomer A, further suggesting 

its importance in closed Met20 loop stabilization. So, many of the loop residues 

implicated to have functionally important correlated motion identified from the work of 

(Agarwal et al. 2002), (Venkitakrishnan et al. 2004), and (McElheny et al. 2005) are 

supported by the NC and X-ray results here; however, a general correlation between the 

dynamics data here to the entire promoting motions network (involving non-loop residues 

like Met42 and Tyr 100) results from (Agarwal et al. 2002) is as of yet inconclusive. 

Crystallographic characterization of apo DHFR 

 Ultrahigh (to 1.05Å) and high resolution (to 1.4Å) X-ray crystallographic studies 

have been performed on apo (unliganded) DHFR and a ternary complex of DHFR bound 

to MTX and NADPH, respectively. B-factor and anisotropy analysis revealed that the apo 

DHFR structure was surprisingly quite rigid and most of its atoms could be described 

isotropically. Comparison to the previously reported apo DHFR structure (5DFR; P3121; 

Cα r.m.s.d. = 0.6Å; (Bystroff et al. 1991)) revealed significant (> 1.0Å) main chain 
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differences at the adenosine-binding loop (residues 62-70) and in the small randomly 

structured region between βE and αF (residues 94-97). In 5DFR, no solvent molecules 

were reported to be in contact distance with the Asp 27 carboxylate. In the present apo 

structure, 4 water molecules are of varying hydrogen-bonding distance to the Asp 27 

carboxylate. Additionally, a possible hydrogen bond also exists between the Oγ atom of 

Thr 113 and the Oδ1 atom of Asp 27. This will be discussed later.  

A conformation for the Met20 loop when the DHFR active site is vacant 

 From Met 16 through Met 20, there are no coordinates in 5DFR, but in the apo 

structure reported here these residues could readily be modeled into electron density.  

The core of the Met20 loop in the present apo structure adopts a closed conformation, 

somewhat more closed over the active site than what was seen in monomer B of the 

DHFR/MTX structure. It seems that what stabilizes this conformation is a Mg2+ ion with 

hexavalent coordination from a symmetry-related molecule. One of these bonds is to a 

carbonyl oxygen of Asn 18 (distance = 2.04Å). The stabilization of the Met20 loop by a 

metal ion was also observed in a crystal structure of DHFR bound to folinic acid (1JOM; 

also P65) save the coordinating metal was Ca2+ in 1JOM and it contacted the Glu 17 

carboxylate (Lee et al. 1996). Comparison to a closed Met20 loop structure of DHFR 

bound to folate (P61; Cα r.m.s.d. = 0.7Å) revealed that the largest differences between 

the unliganded and the substrate-bound structure was at the Met20, the adenosine-

binding, and the βF-βG loops. The N-terminal and the core residues of the apo Met20 

loop (from 14-19) are pointed more inwards and towards the active site than in the 

DHFR-folate Met20 loop; positioning of the residues as they are in the apo structure 

when ligand was bound would cause steric clashes. The largest divergence in this region 
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occurs between the Cα atoms of Met 16-Glu 17-Asn 18, with an average separation 

distance of ~5.5Å. The major difference in Met20 loop positions by default causes a 

major difference in interactions with the βF-βG loop. In the apo structure, the carbonyl 

oxygen of Gly 15 is >10Å distant from the amide nitrogen of Asp 122 in the βF-βG loop; 

in the DHFR/folate structure, this is a hydrogen-bonding distance of 2.8Å. Thus, the 

stabilization of the “further” closed Met20 loop conformation in the apo structure so far 

can be explained by crystal contacts with a symmetry-related molecule (and not by 

interloop contacts), which includes the Mg2+ coordination site and hydrogen-bonding 

contributions from the βG-βH loop. The Met20 loop has been characterized to have a rate 

of conformational exchange between closed and occluded conformers at 2-40 s-1 (Schnell 

et al. 2004), and recent NMR relaxation measurements have revealed that, even when 

DHFR is bound to folate and NADP+ and the Met20 loop would be closed, a small 

population of the Met20 loop remains in another “excited” conformation, presumably 

occluded (McElheny et al. 2005). Visualizing the loop when no ligand is present is 

interesting but it must be noted in the context of the dynamic nature of the loop itself and 

the crystalline lattice. The lattice in the apo structure here seems to be helping to clamp 

the Met20 loop closed. However, it is worthwhile to discuss the mechanistic possibility 

that the loop serves as a gate to the binding site for both cofactor and substrate, shutting 

more when no ligand is present and opening somewhat (~4-7Å) at the core residues (16-

18) while remaining in the “normal” closed conformation to allow catalysis to occur 

unperturbed by bulk solvent, exogenous compounds, and/or ions.  
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Protonation state of Asp 27 in apo DHFR  

 A full matrix refinement was performed on the apo DHFR structure. The 

calculated distances for the Asp 27 Cγ-Oδ1 and the Cγ-Oδ2 bonds were far from 

equivalent (1.281 and 1.190Å, respectively), resulting in a bond length distance 

difference of 0.092Å. This is >3 times the calculated average ESD for these bond lengths. 

No mixture of protonated and deprotonated species exist for the Asp 27, and there is no 

evidence of disorder of the carboxylate group. Taken together, this provides evidence that 

the Asp 27 carboxylate is protonated at the Oδ1 atom (the Cγ-Oδ1 is a single bond, the 

Cγ-Oδ2 is a double bond) and, thus, neutral at the pH (7.5) of the crystallization. This 

result agrees with early observations from spectroscopic studies but contradicts more 

recent data gleaned from Raman difference spectroscopy (Chen et al. 1997) and 

molecular dynamics (Cannon et al. 1997a; Cannon et al. 1997b) on the E. coli 

apoenzyme, and data from 13C NMR with the homologous L. casei apoenzyme (Casarotto 

et al. 1999), all of which indicate that the pKa of the Asp 27 (Asp 26 in L. casei) is less 

than pH 5. These combined results suggest Asp 27 is deprotonated and charged at 

physiological pH. All of these experiments were performed either in solution or in silico; 

perhaps the crystal environment, especially with the Met20 loop in a more closed position 

and its Glu 17 side chain projecting into the substrate binding site, alters the chemical 

environment within the active site such that the pKa of Asp 27 shifts dramatically enough 

to be favorably protonated. Global and local conformational fluctuations and allowance 

of side chain “flexibility” seem to be important factors in MD calculations of pKa values 

for ionizable groups in proteins (Yang et al. 1993) (You et al. 1995) (Antosiewicz et al. 

1996); this provides evidence that conformation influences residue titration behavior. A 
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major perturbance of an Asp pKa has been noted for the aspartic proteases, where one of 

the Asp pair is maintained protonated and is most likely stabilized by hydrogen bonds to 

the other Asp in the active site but also to a surrounding net of Ser/Thr residues (the so-

called “fireman’s grip”) (Veerapandian et al. 1992) (Coates et al. 2001). Discussed 

below, a conserved Thr residue is positioned adjacent to the Asp 27 in the DHFR active 

site and makes hydrogen-bonding contact with, specifically, the Oδ1 atom of the Asp 

carboxylate. This contact is observed in multiple ligand-bound forms of DHFR as well, 

however, it is at its closest distance in the apo structure reported here and in the folate-

bound structure (Figures 6.1 and 6.2). The aforementioned molecular dynamics 

calculations by Cannon and Benkovic measured proton affinities of the Asp 27 

carboxylate as the dielectric constant (ε) was decreased over a range of 20 to 4. It was 

found that the carboxylate form was destabilized over the dielectric “titration”, the final 

calculated pKa being as low as 2.5 at ε =20 and increasing to 4.1 when the ε approached 4 

(Cannon et al. 1997a). This suggests that, in the apoenzyme at least, proton affinity for 

the carboxylate strengthens when the dielectric is low, even if the pKa at this dielectric 

does not reflect true protonation. Antosiewicz et al. (1996) have reported that pKa values 

calculated using an ε of ~20 are more accurate and closer to what is observed from 

experimental data than those pKa values calculated using a lower dielectric (Antosiewicz 

et al. 1996). This phenomenon is not well understood but its finding, along with the 

protonation state data reported here, casts doubt on the accuracy of the computational 

predictions by Cannon and Benkovic (Cannon et al. 1997a). With a closed Met20 loop 

(and possibly even if a hydrophobic ligand is bound in the active site), it could be that 
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Figure 6.1: A comparison of hydrogen bonding patterns in the E. coli DHFR active 
site when in the A) apo (unliganded), B) folate-bound, and C) MTX-bound forms. 
The proton identified on the apo Asp 27 Oδ1 atom is possibly stabilized by three 
hydrogen-bonding contacts (two waters and Thr 113). The Asp 27-Thr 113 contact is 
slightly closer as compared to the folate-bound structure and significantly closer as 
compared to the MTX-bound structure. 
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Figure 6.2: Deprotonation of Asp 27 must occur upon MTX (and folate) binding, as 
evidenced from crystallographic results reported here. The Asp 27 in the apo 
structure is protonated specifically at Oδ1, however, is deprotonated in binary ligand 
complexes. Therefore, transfer of the proton from Asp 27 (red box) to another group 
(possibly solvent) occurs concomitant with or soon after loop opening and/or ligand 
binding.  



bulk solvent is excluded from the active site of apo DHFR, providing a more 

hydrophobic environment for the Asp 27, allowing it to have a perturbed pKa and remain 

protonated. Solvent is definitely observed in the apo active site and seems to be in 

positions where ligand atoms would be if ligand was present. To assess the 

hydrophobicity of the active site, it would be pertinent to examine the active site of an 

apo DHFR structure with another Met20 loop conformation and/or from another space 

group. Unfortunately, the previously reported apo DHFR structure, although it 

crystallized in a different space group (P3221 vs. P65), exhibits disorder for the core of 

the Met20 loop and has no solvent modeled near the Asp 27 residue (Bystroff et al. 

1991). So, at this point, this comparison cannot be made.  

Role of Thr 113 and implications of the apo results for the catalytic mechanism 

 However, we can attempt to understand this protonation/deprotonation 

phenomenon and cast our results in terms of the ligand binding and catalytic mechanism. 

In the apoenzyme, the “completely” closed conformation of the Met20 loop may be the 

main determinant on why the Asp 27 is protonated. What else could be constraining the 

protonation of the Asp 27 carboxylate? Possible hydrogen bonds can form between the 

Asp 27 and at least 3 water molecules. Most importantly, the Oγ atom from Thr 113 is 

within 2.66Å of the Asp 27 Oδ1 atom (Figure 6.1 A). The Cγ-Oδ1 bond distance as 

measured from full matrix refinement of the apo structure is 1.28Å, suggesting that it is a 

single bond and the Oδ1 is the oxygen specifically protonated in the carboxylate. Thus, 

the Thr 113 is most likely key in maintaining the protonation of the Asp 27 carboxylate at 

Oδ1, where the carboxylate hydrogen is utilized in the contact between the Oδ1 and the 

Oγ atoms. In other words, the Thr 113 may be the determinant for why the Oδ1 atom is 
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specifically protonated and not the Oδ2. Also, as stated earlier, there is no evidence of 

proton switching in the carboxylate as indicated from lack of a mixture of 

protonated/deprotonated species for the carboxylate and no evidence of disorder.  

Mutational studies where Thr 113 is replaced by a Val revealed its importance: binding 

affinity for substrates and the rate of hydride transfer was reduced (Fierke et al. 1989). 

When ligand is present, it must help to stabilize the Asp 27 by being a hydrogen bond 

donor (using its own hydroxyl hydrogen directly in the bonding interaction), and then 

plays a similar role when no ligand is bound and/or if the environment in the active site 

becomes favorable for the carboxylate to be neutral (e.g. hydrophobic); the apo structure 

refinement suggests that its Oγ atom may be playing the role of hydrogen bond acceptor. 

The Thr 113 Oγ and the Asp 27 Oδ1 atoms are slightly closer (~0.9Å) in the apo 

structure than in the MTX –bound structure; this distance is identical in the folate-bound 

structure (Figures 6.1 and 6.2). The X-ray and neutron results for the Asp 27 in the MTX 

and in the folate-bound complexes reveal that it is deprotonated in these forms. Without 

ligand bound and with the Met20 loop sufficiently closed, the Asp 27 has a perturbed pKa 

so that it is protonated, even at physiological pH. Upon loop opening and binding of 

MTX or folate (and probably DHF), the proton may shift from Oδ1 to Oδ2 on Asp 27 

(Figure 6.3 panel A) to facilitate its titration and its transfer of the proton to another 

group, possibly relaying through water molecules (Figure 6.3 panel B). Conserved 

solvent in the DHFR active site has been identified as important for ligand binding and 

possibly for catalysis by several studies (Bystroff et al. 1990) (Reyes et al. 1995) 

(Cummins et al. 2001) (Shrimpton et al. 2002). The proton shift on the Asp 27 may be  
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Figure 6.3: Hydrogen bonding patterns and possible proton relay events in the E. 
coli DHFR catalytic mechanism. The observance of a proton on Asp 27 in the apo 
structure with a closed Met20 loop may allow a mechanism in which direct proton 
transfer from Asp 27 to solvent plays a role in DHF reduction. A) Upon Met20 loop 
conformational change and substrate binding and to facilitate protonation of solvent 
adjacent to Asp 27 and also to the pteridine ring, the proton observed in the apo structure 
switches from Oδ1 to Oδ2 on the carboxylate. Protonation of Oδ2 has not been observed 
but has been implicated in previous mechanistic proposals (Bystroff et al. 1990) 
(Cummins et al. 2001). B, C) Transfer of a proton from Asp 27 to solvent may trigger 
DHF keto-enol tautomerization, producing an intermediate prior to attaining D) the 
transition state, the chemical step at which protonation of DHF N5 and hydride transfer to 
DHF C6 from NADPH occurs. E) THF and NADP+ products bound in the active site and 
the Asp 27 is again protonated. F) The Met20 loop occludes, causing NADP+ to release. 
G) Formation of the holoenzyme occurs when a new NADPH cofactor binds, this helps 
to drive THF out of the active site; cofactor binding is concomitant with Met20 loop 
changing from occluded to closed conformations. Binding of DHF would begin a new 
cycle, as shown in A. 
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necessary so that it can be transferred to solvent which may participate in the proton relay 

pathway. However, there possibly would exist a type of ground state “intermediate” 

where Oδ2 is protonated but prior to solvent proton relay and DHF tautomerization 

(shown in Figure 6.3, panel A). The second step in the ground state would involve 

deprotonation of the carboxylate, resulting in a negative charge on the Asp 27; this 

charge on Asp 27 when MTX and folate is bound is inferred from bond lengths and 

deviations derived from full matrix refinement. Deprotonation of the Asp 27 would lead 

to protonation of solvent, possibly Wat 18 as shown in Figure 6.3 panel B, thus 

triggering proton relay (panel C) and ultimate reduction of DHF at N5 (transition state in 

panel D). Bystroff et al. (1990) proposed a catalytic mechanism which originated with a 

protonated Oδ2 atom on Asp 27, and this triggers keto-enol tautomerization on the DHF 

pteridine ring at the N3-C4-O4 group by initial proton transfer to a conserved water 

molecule (206) and then passage of the proton to the O4 atom (Bystroff et al. 1990). 

Ultimately, the proton is relayed to another water molecule before reduction of the DHF 

N5. Recent MD calculations by Cannon et al. (1997) suggest the kinetic pKa of 6.5 

should be ascribed to the tautomerization event and that Asp 27 becomes protonated 

simultaneous with tautomer formation (Cannon et al. 1997b). More recent ab initio 

quantum mechanical MD simulations revealed energetically favorable pathways for Asp 

27 and substrate protonation states and the effects on catalysis (Cummins et al. 2001). 

Their results suggest that Asp 27 Oδ2 is protonated initially, with subsequent direct 

protonation of the DHF N5; therefore, this study argues against keto-enol tautomerization 

as a catalytic intermediate. The obvious important and contentious points with the 

mechanism proposed here is that: 1) in order to agree with previous proposals and 
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accommodate direct protonation of solvent near to the substrate, the proton on the Asp 27 

must switch carboxylate oxygens (Figure 6.3, panel A), 2) the Asp 27 must donate a 

proton to some group, proposed here to be solvent, and 3) upon tautomerization, the N3 

atom on DHF must become deprotonated but to which group this proton would transfer is 

not known. Again, it should be reiterated that the completely closed Met20 loop, 

stabilized in part by metal coordination, at the very least influences and may be the 

reason the Asp 27 is observed as protonated in the apo structure. The behavior of the 

Met20 loop in solution is fairly rapid conformational fluctuation between closed and 

occluded; does the Asp 27 remain protonated when no ligand is bound but the Met20 

loop is more occluded or open? 

6.2 Future directions 

 One of the long-term goals of this line of research is to be able to use X-ray 

crystallography to characterize an ensemble of E. coli DHFR structures at ultrahigh 

resolution in different liganded states. One critical question to address in each structure, if 

the data-to-parameter ratio is adequate, is the protonation state of the Asp 27. 

Additionally to full matrix calculations of bond lengths and in the absence of an NC 

structure, computational predictions of the Asp 27 pKa could provide further evidence for 

the protonation states in the apo and the folate-bound structures. This would help to 

understand hydrogen-bonding patterns in the active site, especially between Asp 27, Thr 

113, solvent in the apo structure. A major question is why specifically the Oδ1 is 

protonated in the Asp 27 carboxylate, as determined from the full matrix refinement of 

the apo structure. The in silico pKa calculations would be performed using molecular 

dynamics methods as outlined in (Cannon et al. 1997a; Cannon et al. 1997b) 
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(Antosiewicz et al. 1996), and (You et al. 1995). A control is to perform this calculation 

on the Asp 27 in the MTX structure for which there already exists both X-ray and neutron 

evidence for the protonation state. An obvious missing piece in the present ensemble is a 

catalytic mimic structure such as a folate/NADP+ ternary complex or other applicable 

substrate/cofactor combination. It would be clearly advantageous to complement each 

high resolution X-ray structure with a neutron structure. The experience gained by the 

laboratory with increasing crystal volume, D2O-soaking, perdeuteration, LANSCE data 

collection, processing and refinement with the MTX complex and structure will be 

invaluable in the application to other forms, such as the folate binary complex and the 

apoenzyme. Once the crystal volumes could be increased slightly, a neutron experiment 

of perdeuterated DHFR bound to MTX could occur in the very near future. The steady 

partnership with LANSCE is now beginning to pay dividends, not only with the current 

DHFR/MTX neutron data, but now with their initiation of a deuterium labeling facility 

on-site. In fact, perdeuterated E. coli for the overexpression of DHFR have been 

produced at LANSCE and shipped to UTK for future purification and cocrystallization 

experiments. 

 Additionally, collaboration with Dr. Richard Lee at the University of Tennessee 

Health Sciences Center (Memphis) has provided derivatives of sulfamethoxazole drugs 

for kinetic study and cocrystallization. It has been demonstrated that at least one of these 

compounds has inhibitory activity against DHFR (data not shown); many of these 

compounds have been tested against a related bacterial enzyme, dihydropteroate synthase 

(DHPS). This could lead to several high resolution E. coli DHFR cocrystal structures and 

may provide a new template for drug design. A potential problem that has been observed 
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with cocrystallizing a ligand with DHFR other than MTX and folate is that MTX and 

folate are both used at some point in the DHFR purification procedure. Essentially, they 

“contaminate” the cocrystallization experiment by binding in the active site and 

preventing other ligands (such as new candidate inhibitor compounds) from being able to 

do so themselves. This problem has been addressed and solved utilizing an alternative 

purification procedure devised in the laboratory where an MTX affinity chromatography 

step is replaced by a metal affinity step. The DHFR is synthesized as a fusion protein in 

BL21(DE3) E. coli from a pET-Sumo vector (Invitrogen). A Sumo tag with an N-

terminal hexahistidine tag is fused at the N-terminus of DHFR, and, after the metal 

affinity step, the Sumo tag may be cleaved specifically away right at the DHFR N-

terminus to release native DHFR. After a second passage through the metal affinity 

column, the DHFR is >90% pure. The yield is ~6 mg l-1 and this is with little 

optimization of growth and expression conditions. Unless DHF or folate has bound to the 

enzyme within the cell, this preparation of DHFR should be free of “contaminating” 

ligands and satisfactory for cocrystallization experiments with new compounds.  

 Lastly, expression and purification of DHFR from Bacillus anthracis has been 

undertaken in the laboratory with the assistance of an undergraduate, Richard 

Simmerman. The gene had recently been cloned from B. anthracis at Oklahoma State 

University (Barrow et al. 2004). The short-term goals for this project are to crystallize the 

apoenzyme and also to cocrystallize the purified protein with MTX or folate and solve 

one or more of these structures; ultimately, it will be interesting to see how similar or 

divergent its structure is as compared to the E. coli and/or human forms of the enzyme. 

The above pET-Sumo system is being used for expression in BL21(DE3) E. coli cells. 
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Crystallization screens have already been attempted for the apoenzyme and the MTX 

complex. Functional characterization of the enzyme by kinetic assays, inhibitor 

screening, circular dichroism, and calorimetry are possible experimental avenues.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 211



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

List of References

 212



List of References 
 
Agarwal, P. K., Billeter, S. R., Rajagopalan, P. T., Benkovic, S. J. & Hammes-Schiffer, 
S. (2002) Proc Natl Acad Sci U S A 99, 2794-9. 
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. (1994) Molecular 
Biology of The Cell Garland Publishing, Inc. New York 1294 
Antosiewicz, J., McCammon, J. & Gilson, M. (1996) Biochemistry 35, 7819-7833. 
Appleman, J., Howell, E., Kraut, J., Kuhl, M. & Blakley, R. (1988) J Biol Chem 263, 
9187-9198. 
Appleman, J. R., Howell, E. E., Kraut, J., Kuhl, M. & Blakley, R. L. (1988) J Biol Chem 
263, 9187-98. 
Arzt, S., Campbell, J. W., Harding, M. M., Hao, Q. & J.R.Helliwell. (1999) J Appl Cryst 
32, 554-562. 
Azaroff, L. (1955) Acta Crystallogr 8, 701-704. 
Bajorath, J., Kitson, D. H., Fitzgerald, G., Andzelm, J., Kraut, J. & Hagler, A. T. (1991a) 
Proteins 9, 217-24. 
Bajorath, J., Kitson, D. H., Fitzgerald, G., Andzelm, J., Kraut, J. & Hagler, A. T. (1991) 
Proteins 9, 217-24. 
Bajorath, J., Kraut, J., Li, Z. Q., Kitson, D. H. & Hagler, A. T. (1991c) Proc Natl Acad 
Sci U S A 88, 6423-6. 
Barrow, E., Bourne, P. C. & Barrow, W. (2004) Antimicrobial Agents and Chemotherapy 
48, 4643-4649. 
Bennett, B. C., Meilleur, F., Myles, D. A., Howell, E. E. & Dealwis, C. G. (2005) Acta 
Crystallogr D Biol Crystallogr 61, 574-9. 
Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., 
Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., 
Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D. & Zardecki, 
C. (2002) Acta Crystallogr D Biol Crystallogr 58, 899-907. 
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., 
Shindyalov, I. N. & Bourne, P. E. (2000) Nucleic Acids Research 28, 235-242. 
Blakeley, M. P., Kalb, A. J., Helliwell, J. R. & Myles, D. A. (2004) Proc Natl Acad Sci U 
S A 101, 16405-10. 
Blakley, R. L., Appleman, J. R., Freisheim, J. H. & Jablonsky, M. J. (1993) Arch 
Biochem Biophys 306, 501-9. 
Bolin, J., Filman, D., Matthews, D., Hamlin, R. & Kraut, J. (1982) JBC 257, 13650. 
Bradford, M. M. (1976) Anal Biochem 72, 248-54. 
Brockwell, D., Yu, L., Cooper, S., McCleland, S., Cooper, A., Attwood, D., Gaskell, S. J. 
& Barber, J. (2001) Protein Sci 10, 572-80. 
Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, 
R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., 
Simonson, T. & Warren, G. L. (1998) Acta Crystallogr D Biol Crystallogr 54, 905-21. 
Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, 
R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., 
Simonson, T. & Warren, G. L. (1998) Acta Crystallogr D Biol Crystallogr 54 ( Pt 5), 
905-21. 

 213



Brunger, A. T., Adams, P. D. & Rice, L. M. (1997) Structure 5, 325-36. 
Brunger, A. T., Adams, P. D. & Rice, L. M. (1999) Prog Biophys Mol Biol 72, 135-55. 
Burmeister, W. P. (2000) Acta Crystallogr D Biol Crystallogr 56 ( Pt 3), 328-41. 
Bystroff, C. & Kraut, J. (1991) Biochemistry 30, 2227-39. 
Bystroff, C., Oatley, S. J. & Kraut, J. (1990) Biochemistry 29, 3263-77. 
Cameron, C. & Benkovic, S. J. (1997) Biochemistry 36, 15792-15800. 
Campbell, J. W., Hao, Q., Harding, M. M., Nguti, N. D. & Wilkinson, C. (1998) J. Appl. 
Cryst. 31, 496-502. 
Cannon, W. R., Garrison, B. J. & Benkovic, S. J. (1997a) J Mol Biol 271, 656-68. 
Cannon, W. R., Garrison, B. J. & Benkovic, S. J. (1997) J Mol Biol 271, 656-68. 
Cannon, W. R., Garrison, B. J. & Benkovic, S. J. (1997b) J Amer Chem Soc 119, 2386-
2395. 
Casarotto, M. G., Basran, J., Badii, R., Sze, K. H. & Roberts, G. C. (1999) Biochemistry 
38, 8038-44. 
CCP4. (1994) in Proceedings of the CCP4 Study Weekend.  
CCP4. (1985) SERC, Daresbury Laboratory, Warrington, UK. 
CCP4, C. C. P. N. (1994) Acta Crystallogr D Biol Crystallogr 50, 760-763. 
Chatake, T., Kurihara, K., Tanaka, I., Tsyba, I., Bau, R., Jenney, F. E., Jr., Adams, M. W. 
& Niimura, N. (2004) Acta Crystallogr D Biol Crystallogr 60, 1364-73. 
Chatake, T., Ostermann, A., Kurihara, K., Parak, F. G. & Niimura, N. (2003) Proteins: 
Structure, Function, and Genetics 50, 516-523. 
Chayen, N. E. (1997) Structure 5, 1269-74. 
Chen, Y. Q., Kraut, J., Blakley, R. L. & Callender, R. (1994) Biochemistry 33, 7021-6. 
Chen, Y. Q., Kraut, J. & Callender, R. (1997) Biophys J 72, 936-41. 
Cipriani, F., Castagna, J. C., Wilkinson, C., Oleinek, P. & Lehmann, M. S. (1996) J. 
Neutron Res. 4, 79-85. 
Coates, L., Erskine, P. T., Crump, M. P., Wood, S. P. & Cooper, J. B. (2002) J Mol Biol 
318, 1405-15. 
Coates, L., Erskine, P. T., Wood, S. P., Myles, D. A. & Cooper, J. B. (2001) 
Biochemistry 40, 13149-57. 
Cocco, L., Groff, J., Temple, C., Jr, Montgomery, J., London, R., Matwiyoff, N. & 
Blakley, R. (1981) Biochemistry 20, 3972-3978. 
Cocco, L., Roth, B., Temple, C. J., Montgomery, J., London, R. & Blakley, R. (1983) 
Arch Biochem Biophys 226, 567-577. 
Coco, L., Groff, J., Temple, C., Jr., Montgomery, J., RE, L. & Blakley, R. (1981) 
Biochemistry 20, 3972-3978. 
Coco, L., Roth, B., Temple, C., Jr., Montgomery, J., RE, L. & Blakley, R. (1983) Arch. 
Biochem. Biophys. 226, 567-577. 
Cooper, J. B. & Myles, D. A. (2000) Acta Crystallogr D Biol Crystallogr 56, 246-8. 
Cooper, J. B. & Myles, D. A. (2000) Acta Crystallogr D Biol Crystallogr 56 ( Pt 2), 246-
8. 
Cooper, S. J., Brockwell, D., Raftery, J., Attwood, D., Barber, J. & Helliwell, J. R. (1998) 
J Chem Soc Chem Commun, 1063-1064. 
Cowtan, K. & Ten Eyck, L. (2000) Acta Crystallogr D Biol Crystallogr 56, 842-856. 

 214



Creighton, T. E. (1993) Proteins: Structures and Molecular Properties W.H. Freeman 
and Company New York 507 
Crowther, R. (1972) in The Molecular Replacement Method. (M. Rossman, Ed.)  
pp 173-178, Gordon and Breach, Gordon and Breach 
Crowther, R. & Blow, D. (1967) Acta Crystallogr 23, 544-548. 
Cummins, P. L. & Gready, J. E. (2001) J Am Chem Soc 123, 3418-28. 
Dauter, Z. (1997a) in Macromolecular Crystallography part A. (C. W. Carter and R. 
M. Sweet, Eds.).  pp 326-344, Academic Press, Academic Press 
Dauter, Z., Lamzin, V. S. & Wilson, K. S. (1997b) Curr Opin Struct Biol 7, 681-8. 
Davies, J. F., 2nd, Delcamp, T. J., Prendergast, N. J., Ashford, V. A., Freisheim, J. H. & 
Kraut, J. (1990) Biochemistry 29, 9467-79. 
de la Fortelle, E. & Bricogne, G. (1997) in Macromolecular Crystallography part A.
 (C. W. Carter and R. M. Sweet, Eds.).  pp 472-494, Academic Press, 
Academic Press 
Deacon, A., Gleichmann, T., Kalb Gilboa, A. J., Price, H. J., Raftery, J., Bradbrook, G., 
Yariv, J. & Helliwell, J. R. (1997) J Chem Soc, Faraday Trans 93, 4305-4312. 
Demchuk, E. & Wade, R. (1996) J Phys Chem 100, 17373-17387. 
Drenth, J. (1999) Principles of Protein X-Ray Crystallography Springer New York City  
El-Kabbani, O., Darmanin, C., Schneider, T. R., Hazemann, I., Ruiz, F., Oka, M., 
Joachimiak, A., Schulze-Briese, C., Tomizaki, T., Mitschler, A. & Podjarny, A. (2004) 
Proteins 55, 805-13. 
Emsley, P. & Cowtan, K. (2004) Acta Crystallogr D Biol Crystallogr 60, 2126-32. 
Engh, R. & Huber, R. (1991) Acta Crystallogr A 47, 392-400. 
Evans, P. (1997) in Proceedings of the CCP4 Study Weekend. (K. S. Wilson, G. 
Davies, A. W. Ashton and S. Bailey, Eds.).  pp 97-102, Warrington, Warrington 
Falzone, C., Wright, P. E. & Benkovic, S. J. (1994) Biochemistry 33, 439-442. 
Fersht, A. R. (1998) Structure and Mechanism in Protein Science W.H. Freeman and 
Company New York 631 
Fierke, C. A. & Benkovic, S. J. (1989) Biochemistry 28, 478-86. 
Fierke, C. A., Johnson, K. A. & Benkovic, S. J. (1987) Biochemistry 26, 4085-92. 
Fox, G. & Holmes, K. (1966) Acta Crystallogr 20, 886-889. 
French, S. & Wilson, K. S. (1978) Acta Crystallogr A 34, 517-525. 
Gamble, T. R., Clauser, K. R. & Kossiakoff, A. A. (1994) Biophys Chem 53, 15-25. 
Gardner, K. H. & Kay, L. E. (1998) Annu Rev Biophys Biomol Struct 27, 357-406. 
Gargaro, A. R., Soteriou, A., Frenkiel, T. A., Bauer, C. J., Birdsall, B., Polshakov, V. I., 
Barsukov, I. L., Roberts, G. C. & Feeney, J. (1998) J Mol Biol 277, 119-34. 
Garman, E. (2003) Curr Opin Struct Biol 13, 545-51. 
Gewirth, D. (1999).  pp 164,  
Greatbanks, S. P., Gready, J. E., Limaye, A. C. & Rendell, A. P. (1999) Proteins 37, 157-
65. 
Habash, J., Raftery, J., Nuttall, R., Price, H., Wilkinson, C., Kalb Gilboa, A. J. & 
Helliwell, J. (2000) Acta Crystallogr D Biol Crystallogr 56, 541-550. 
Habash, J., Raftery, J., Nuttall, R., Price, H. J., Wilkinson, C., Kalb, A. J. & Helliwell, J. 
R. (2000) Acta Crystallogr D Biol Crystallogr 56, 541-50. 

 215



Habash, J., Raftery, J., Weisgerber, S., Cassetta, A., Lehmann, M. S., Hoghoj, P., 
Wilkinson, C., Campbell, J. & Helliwell, J. R. (1997) J. Chem. Soc., Faraday Trans. 93, 
4313-4317. 
Hanson, B. L., Langan, P., Katz, A. K., Li, X., Harp, J. M., Glusker, J. P., Schoenborn, B. 
P. & Bunick, G. J. (2004) Acta Crystallogr D Biol Crystallogr 60, 241-9. 
Hattori, A., Crespi, H. L. & Katz, J. J. (1965) Biochemistry 4, 1213-25. 
Hattori, A., Crespi, H. L. & Katz, J. J. (1965) Biochemistry 4, 1225-1238. 
Hazemann, I., Dauvergne, M. T., Blakeley, M. P., Meilleur, F., Haertlein, M., Dorsselaer, 
A. V., Mitschler, A., Myles, D. A. A. & Podjarny, A. (2005) Acta Crystallogr D Biol 
Crystallogr D61, 1413-1417. 
Hekmat-Nejad, M. & Rathod, P. K. (1997) Exp Parasitol 87, 222-8. 
Helliwell, J. R., Habash, J., Cruickshank, D. W. J., Harding, M. M., Greenhough, T. J., 
Campell, J. W., Clifton, I. J., Elder, M., Machin, P. A., Papiz, M. Z. & Zurek, S. (1989) J 
Appl Cryst 22, 483-497. 
Hood, K. & Roberts, G. C. (1978) Biochem. J. 171, 357-66. 
Howard, E. I., Sanishvili, R., Cachau, R. E., Mitschler, A., Chevrier, B., Barth, P., 
Lamour, V., Van Zandt, M., Sibley, E., Bon, C., Moras, D., Schneider, T. R., Joachimiak, 
A. & Podjarny, A. (2004) Proteins 55, 792-804. 
Howell, E. E. (2005) ChemBioChem 6, 590-600. 
Howell, E. E., Villafranca, J. E., Warren, M. S., Oatley, S. J. & Kraut, J. (1986) Science 
231, 1123-8. 
Hubbard, S. & Thornton, J. (1996).  
Huennekens, F. M. (1994) Adv Enzyme Regul 34, 397-419. 
Huennekens, F. M. (1996) Protein Sci 5, 1201-8. 
Jancarik, J., and S.H. Kim. (1991) J. Appl. Cryst. 24, 409-411. 
Jancarik, J. & Kim, S. (1991) J. Appl. Cryst. 24, 409-411. 
Jelsch, C., Teeter, M. M., Lamzin, V., Pichon-Pesme, V., Blessing, R. H. & Lecomte, C. 
(2000) Proc Natl Acad Sci U S A 97, 3171-6. 
Jones, T. A., Zou, J. Y., Cowman, S. W. & Kjeldgaard, M. (1991) Acta Crystallogr A 47, 
110-116. 
Kleywegt, G. J. & Jones, T. A. (1997) in Methods in Enzymology. (C. W. Carter and R. 
M. Sweet, Eds.). Academic Press, Academic Press 
Kleywegt, G. J. & Jones, T. A. (1996) Acta Crystallogr D Biol Crystallogr 52, 826-8. 
Klon, A., Heroux, A. & Borhani, D. (2002) Journal of Molecular Biology. 
Knighton, D., Kan, C., Howland, E., Janson, C., Hostomska, Z., Welsh, K. & Matthews, 
D. A. (1994) Nat Struct Biol 1, 186-194. 
Korszun, Z. R. (1997) in Methods in Enzymology. (C. W. Carter and R. M. Sweet, 
Eds.).  pp 218-232, Academic Press, Academic Press 
Kossiakoff, A. A. (1982) Nature 296, 713-721. 
Kossiakoff, A. A. & Spencer, S. A. (1980) Nature 288, 414-6. 
Kossiakoff, A. A. & Spencer, S. A. (1981) Biochemistry 20, 6462-74. 
Kraut, J. & Matthews, D. A. (1987) "DHFR" in Volume 3: Active Sites of Enzymes John 
Wiley & Sons New York 1-71 
Kurihara, K., Tanaka, I., Chatake, T., Adams, M. W., Jenney, F. E., Jr., Moiseeva, N., 
Bau, R. & Niimura, N. (2004) Proc Natl Acad Sci U S A 101, 11215-20. 

 216



Kuyper, L. F., Baccanari, D. P., Jones, M. L., Hunter, R. N., Tansik, R. L., Joyner, S. S., 
Boytos, C. M., Rudolph, S. K., Knick, V., Wilson, H. R., Caddell, J. M., Friedman, H. S., 
Comley, J. C. & Stables, J. N. (1996a) J Med Chem 39, 892-903. 
Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D. K. & 
Beddell, C. R. (1996b) Bioorg Med Chem 4, 593-602. 
Ladd, M. F. C. & Palmer, R. A. (1993) Structure Determination by X-ray 
Crystallography Plenum Press London 586 
Lamzin, V. S., Morris, R. J., Dauter, Z., Wilson, K. S. & Teeter, M. M. (1999) J Biol 
Chem 274, 20753-5. 
Langan, P. & Greene, G. (2004b) Journal of Applied Crystallography 37, 253-257. 
Langan, P., Greene, G. & Schoenborn, B. P. (2004a) Journal of Applied Crystallography 
37, 24-31. 
Lee, H., Reyes, V. M. & Kraut, J. (1996) Biochemistry 35, 7012-20. 
Leiting, B., Marsilio, F. & O'Connell, J. F. (1998) Anal Biochem 265, 351-5. 
Li, L., Falzone, C., Wright, P. E. & Benkovic, S. J. (1992) Biochemistry 31, 7826-7833. 
Li, R., Sirawaraporn, R., Chitnumsub, P., Sirawaraporn, W., Wooden, J., Athappilly, F., 
Turley, S. & Hol, W. (2000) J Mol Biol 295, 307-323. 
Li, S. J. & Hochstrasser, M. (2003) J Cell Biol 160, 1069-81. 
Li, S. J. & Hochstrasser, M. (1999) Nature 398, 246-51. 
Li, X., Langan, P., Bau, R., Tsyba, I., Jenney, F. E., Jr., Adams, M. W. & Schoenborn, B. 
P. (2004) Acta Crystallogr D Biol Crystallogr 60, 200-2. 
Lifchitz, A. (1983) Acta Crystallogr A39, 130-139. 
London, R. E., Howell, E. E., Warren, M. S., Kraut, J. & Blakley, R. L. (1986) 
Biochemistry 25, 7229-35. 
London, R. E., Howell, E. E., Warren, M. W., Kraut, J. & Blakley, R. L. (1986) 
Biochemistry 25, 7229-7235. 
Longhi, S., Czjzek, M. & Cambillau, C. (1998) Curr Opin Struct Biol 8, 730-7. 
Main, P. (1979) Acta Crystallogr Part A 35, 779-785. 
Matthews, D. A., Alden, R. A., Bolin, J. T., Freer, S. T., Hamlin, R., Xuong, N., Kraut, J., 
Poe, M., Williams, M. & Hoogsteen, K. (1977) Science 197, 452-5. 
Matthews, D. A., Bolin, J. T., Burridge, J. M., Filman, D. J., Volz, K. W., Kaufman, B. 
T., Beddell, C. R., Champness, J. N., Stammers, D. K. & Kraut, J. (1985) J Biol Chem 
260, 381-91. 
McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. (2005) Acta 
Crystallogr D Biol Crystallogr 61, 458-64. 
McElheny, D., Schnell, J. R., Lansing, J., Dyson, H. J. & Wright, P. E. (2005) Proc Natl 
Acad Sci U S A 102, 5032-5037. 
Meilleur, F., Contzen, J., Myles, D. A. & Jung, C. (2004) Biochemistry 43, 8744-53. 
Meilleur, F., Dauvergne, M. T., Schlichting, I. & Myles, D. A. (2005) Acta Crystallogr D 
Biol Crystallogr 61, 539-44. 
Merritt, E. A. (1999a) Acta Crystallogr D Biol Crystallogr 55 ( Pt 6), 1109-17. 
Merritt, E. A. (1999b) Acta Crystallogr D Biol Crystallogr 55 ( Pt 12), 1997-2004. 
Miller, G. & Benkovic, S. (1998) Biochemistry 37, 6336-6342. 
Miller, G., Wahnon, D. & Benkovic, S. (2001) Biochemistry 40, 867-875. 
Miller, G. P. & Benkovic, S. J. (1998b) Biochemistry 37, 6336-42. 

 217



Miller, G. P. & Benkovic, S. J. (1998a) Biochemistry 37, 6327-6335. 
Minichino, A., Habash, J., Raftery, J. & Helliwell, J. R. (2003) Acta Crystallogr D Biol 
Crystallogr 59, 843-9. 
Moffat, K. (1997) Methods Enzymol 277, 433-47. 
Mok, Y. K., Kay, C. M., Kay, L. E. & Forman-Kay, J. (1999) J Mol Biol 289, 619-38. 
Murshudov, G., Vagin, A. & Dodson, E. (1997) Acta Crystallogr D Biol Crystallogr 
D53, 240-255. 
Myles, D. A., Bon, C., Langan, P., Cipriani, F., Castagna, J. C., Lehmann, M. S. & 
Wilkinson, C. (1998) Physica B 241-243, 1122-1130. 
Myllykallio, H., Leduc, D., Filee, J. & Liebl, U. (2003) Trends Microbiol 11, 220-3. 
Myllykallio, H., Lipowski, G., Leduc, D., Filee, J., Forterre, P. & Leibl, U. (2002) 
Science 297, 105-107. 
Navaza, J. (2001) Acta Crystallogr D Biol Crystallogr 57, 1367-72. 
Niimura, N., Minezaki, Y., Nonaka, T., Castagna, J. C., Cipriani, F., Hoghoj, P., 
Lehmann, M. S. & Wilkinson, C. (1997) Nat Struct Biol 4, 909-14. 
Osborne, M., Schnell, J. R., Benkovic, S. J., Dyson, H. J. & Wright, P. E. (2001) 
Biochemistry 40, 9846-9859. 
Otwinowski, Z. & Minor, W. (1997) in Macromolecular Crystallography part A. (C. W. 
Carter and R. M. Sweet, Eds.).  pp 307-326, Academic Press, Academic Press 
Ozaki, Y., King, R. & Carey, P. (1981) Biochemistry 20, 3219-25. 
Paliy, O., Bloor, D., Brockwell, D., Gilbert, P. & Barber, J. (2003) J Appl Microbiol 94, 
580-6. 
Pannu, N. S. & Read, R. J. (1996) Acta Crystallogr A 52, 659-668. 
Pflugrath, J. W. (1997) in Macromolecular Crystallography Part A. (R. M. Sweet, 
Ed.)  pp 286-306, Academic Press, Academic Press 
Poe, M., Greenfield, N., Hirshfield, J., Wiiliams, M. & Hoogsteen, K. (1972) 
Biochemistry 11, 1023-1030. 
Posner, B. A., Li, L., Bethell, R., Tsuji, T. & Benkovic, S. J. (1996) Biochemistry 35, 
1653-63. 
Rajagopalan, P. T. & Benkovic, S. J. (2002) Chem Rec 2, 24-36. 
Rajagopalan, P. T., Zhang, Z., McCourt, L., Dwyer, M., Benkovic, S. J. & Hammes, G. 
G. (2002) Proc Natl Acad Sci U S A 99, 13481-6. 
Rayment, I. (2002) Structure (Camb) 10, 147-51. 
Read, R. J. (2001) Acta Crystallogr D Biol Crystallogr 57, 1373-82. 
Read, R. J. (1986) Acta Crystallogr Part A 42, 140-149. 
Ren, Z. & Moffat, K. (1995) J Appl Cryst 28, 482-493. 
Reyes, V. M., Sawaya, M. R., Brown, K. A. & Kraut, J. (1995) Biochemistry 34, 2710-
23. 
Ringe, D. (2005) "Ultrahigh resolution X-ray structure of E. coli dihydrofolate reductase 
bound to folate and NADP+" in the Conference on Fronteirs in Macromolecular Neutron 
Crystallography, Oak Ridge, July 11, 2005. 
Rod, T. H. & Brooks, C. L., 3rd. (2003) J Am Chem Soc 125, 8718-9. 
Rokop, S., Gajda, L., Parmerter, S., Crespi, H. L. & Katz, J. J. (1969) Biochim Biophys 
Acta 191, 707-15. 
Rossman, M. & Blow, D. (1962) Acta Crystallogr 15, 24-31. 

 218



Ruiz, F., Hazemann, I., Mitschler, A., Joachimiak, A., Schneider, T. R., Karplus, M. & 
Podjarny, A. (2004) Acta Crystallogr D Biol Crystallogr D60, 1347-1354. 
Sawaya, M. & Kraut, J. (1997) Biochemistry 36, 586-603. 
Sawaya, M. R. & Kraut, J. (1997) Biochemistry 36, 586-603. 
Schmidt, A., Jelsch, C., Ostergaard, P., Rypniewski, W. & Lamzin, V. S. (2003) J Biol 
Chem 278, 43357-62. 
Schmidt, A. & Lamzin, V. S. (2005) Acta Crystallogr D Biol Crystallogr 61, 1132-9. 
Schnell, J., Dyson, H. & Wright, P. (2004) Annu Rev Biophys Biomol Struct 33, 119-140. 
Schnell, J. R., Dyson, H. J. & Wright, P. E. (2004) Annu Rev Biophys Biomol Struct 33, 
119-40. 
Schoenborn, B. & Knott, R. (1996) in Basic Life Sciences.  pp 452, Plenum Press, 
Plenum Press 
Schoenborn, B. P. (1969) Nature 224, 143-6. 
Schoenborn, B. P. & Langan, P. (2004) J Synchrotron Radiat 11, 80-2. 
Sheldrick, G. & Schneider, T. (1997) in Methods in Enzymology. (C. W. Carter and R. 
M. Sweet, Eds.). Academic Press, Academic Press 
Sheldrick, G. & Schneider, T. (1997) in Macromolecular Crystallography Part B. (R. M. 
Sweet, Ed.), Academic Press, Academic Press 
Shrimpton, P. & Allemann, R. K. (2002) Protein Sci 11, 1442-51. 
Shu, F., Ramakrishnan, V. & Schoenborn, B. P. (2000) Proc Natl Acad Sci U S A 97, 
3872-7. 
Stone, S. & Morrison, J. (1988) Biochemistry 27, 5493-5499. 
Stone, S. R., Montgomery, J. A. & Morrison, J. F. (1984) Biochem Pharmacol 33, 175-9. 
Stone, S. R. & Morrison, J. F. (1983a) Biochim Biophys Acta 745, 237-46. 
Stone, S. R. & Morrison, J. F. (1983b) Biochim Biophys Acta 745, 247-58. 
Stone, S. R. & Morrison, J. F. (1982) Biochemistry 21, 3757-65. 
Stone, S. R. & Morrison, J. F. (1988) Biochemistry 27, 5499-5506. 
Storoni, L. C., McCoy, A. J. & Read, R. J. (2004) Acta Crystallogr D Biol Crystallogr 
60, 432-8. 
Stout, G. H. & Jensen, L. H. (1989) X-ray Structure Determination: A Practical Guide 
John Wiley & Sons New York  
Sukumar, N., Langan, P., Mathews, F., Jones, L., Thiyagarajan, P., Schoenborn, B. & 
Davidson, V. (2005) Acta Crystallogr D Biol Crystallogr 61, 640-642. 
Taira, K., Chen, J.-T., Mayer, R. & Benkovic, S. J. (1987) Bulletin of the Chemical 
Society of Japan 60, 3017-3024. 
Taylor, G. (2003) Acta Crystallogr D Biol Crystallogr 59, 1881-90. 
Tickle, I. J. (1992) in Proceedings of the CCP4 Study Weekend. (E. Dodson, S. Gover 
and W. Wolf, Eds.).  pp 20-32,  
Tollin, P. & Rossmann, M. G. (1966) Acta Crystallogr 21, 872-6. 
Trewhella, J., Gallagher, S. C., Krueger, J. K. & Zhao, J. (1998) Sci Prog 81 ( Pt 2), 101-
22. 
Tronrud, D. E. (2004) Acta Crystallogr D Biol Crystallogr 60, 2156-68. 
Tronrud, D. E. (1992) Acta Crystallogr A 48 ( Pt 6), 912-6. 
Trueblood, K., Burgi, H.-B., Burzlaff, H., Dunitz, J., Grammaccioli, C., Schulz, H., 
Shmueli, U. & Abrahams, S. (1996) Acta Crystallogr A 52, 770-781. 

 219



Tuominen, V. U., Myles, D. A., Dauvergne, M. T., Lahti, R., Heikinheimo, P. & 
Goldman, A. (2004) Acta Crystallogr D Biol Crystallogr 60, 606-9. 
Veerapandian, B., Cooper, J. B., Sali, A., Blundell, T. L., Rosati, R. L., Dominy, B. W., 
Damon, D. B. & Hoover, D. J. (1992) Protein Sci 1, 322-8. 
Venkitakrishnan, R., Zaborowski, E., McElheny, D., Benkovic, S. J., Dyson, H. J. & 
Wright, P. E. (2004) Biochemistry 43, 16046-16055. 
Villafranca, J. E., Howell, E. E., Voet, D. H., Strobel, M. S., Ogden, R. C., Abelson, J. N. 
& Kraut, J. (1983) Science 222, 782-8. 
Voet, D. H. & Voet, J. G. (1995) Biochemistry John Wiley and Sons New York City 
1361 
Warren, M. S., Brown, K. A., Farnum, M. F., Howell, E. E. & Kraut, J. (1991) 
Biochemistry 30, 11092-103. 
Wiktor, S. Z., Sassan-Morokro, M., Grant, A. D., Abouya, L., Karon, J. M., Maurice, C., 
Djomand, G., Ackah, A., Domoua, K., Kadio, A., Yapi, A., Combe, P., Tossou, O., 
Roels, T. H., Lackritz, E. M., Coulibaly, D., De Cock, K. M., Coulibaly, I. M. & 
Greenberg, A. E. (1999) Lancet 353, 1469-75. 
Wlodawer, A., Miller, M. & Sjolin, L. (1983) Proc Natl Acad Sci U S A 80, 3628-31. 
Wlodawer, A., Savage, H. & Dodson, G. (1989) Acta Crystallogr B 45, 99-107. 
Wu, Y. D. H., K. N. (1987) Journal of the American Chemical Society 109, 906-8. 
Yamamoto, T., Izumi, S. & Gekko, K. (2004a) J Biochem (Tokyo) 135, 17-24. 
Yamamoto, T., Izumi, S. & Gekko, K. (2004b) J Biochem (Tokyo) 135, 663-671. 
Yang, A. S., Gunner, M. R., Sampogna, R., Sharp, K. & Honig, B. (1993) Proteins 15, 
252-65. 
Yang, X., Ren, Z. & Moffat, K. (1998) Acta Crystallogr D Biol Crystallogr 54 ( Pt 3), 
367-77. 
Yeates, T. O. (1997) Methods Enzymol 276, 344-58. 
You, T. J. & Bashford, D. (1995) Biophys J 69, 1721-33. 
Zeig, J., Maples, V. & Kushner, S. (1978) Journal of Bacteriology 134, 958-966. 
Zuccotto, F., Martin, A. C., Laskowski, R. A., Thornton, J. M. & Gilbert, I. H. (1998) J 
Comput Aided Mol Des 12, 241-57. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 220



Vita 

 Brad Cooper Bennett was born in Chattanooga, TN on March 29, 1976 and was 

raised in the Harrison and Ooltewah communities just outside of Chattanooga. He 

graduated from Chattanooga Central High School in June 1994 and entered the 

University of Tennessee at Chattanooga (UTC) later that fall. He graduated with honors 

with a B.S in Biology from UTC in December 1998. There, he mainly studied plant 

taxonomy and physiology and performed independent research on the germination 

mechanism of Phytolacca americana (American Pokeweed) under the supervision of Dr. 

Maurice Edwards.  

 Brad began his graduate training in Biochemistry, Cellular and Molecular Biology 

at the University of Tennessee at Knoxville in August 1999 and joined the biochemistry 

and structural biology laboratory of Dr. Chris Dealwis in May 2000. He received his 

doctorate in December 2005. Brad is currently working in Dr. Dealwis’ laboratory. 

 

 

 

 221


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2005

	High Resolution X-ray and Neutron Crystallographic Studies of Escherichia coli Dihydrofolate Reductase
	Brad C. Bennett
	Recommended Citation


	Chapter 1

