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Abstract

Microbial (archaeal, bacterial, and fungal) communities associated with plant roots

are central to its health, survival, and growth. However, a robust understanding of

root microbiota and the factors that govern their community structure and dynamics

have remained elusive, especially in mature perennial plants from natural settings.

Although the advent of Next Generation Sequencing (NGS) technologies have changed the

scale of microbial ecological studies by enabling exhaustive characterization of microbial

communities, the accuracy of taxonomic and quantitative inferences are affected by multiple

experimental and computational steps and lack of knowledge of the true ecological diversity.

To test for inaccuracies and biases, I assembled diverse bacterial and archaeal ‘synthetic

communities’ from genomic DNAs of sequenced organisms. I tested and compared different

approaches that included metagenomic and small subunit rRNA (SSU rRNA) amplicon

sequencing. The outcome was dependent on primer pairs, analysis parameters, and

sequencing platforms. Nevertheless, new approaches in processing and classifying amplicons

were able to recapitulate microbial diversity with high reproducibility within primer sets,

even though all tested primers sets showed taxon-specific biases. Consequently, inferences

from ‘synthetic communities’ study were implemented in experimental design and analysis of

microbial communities from roots of naturally occurring mature riparian plants of Populus

deltoides. Thaumarchaeota, Proteobacteria and Ascomycota dominated the overall archaeal,

bacterial, and fungal communities respectively. Further, I investigated relationships of

bacterial and fungal communities in rhizosphere and endosphere with soil and environmental

properties, host genotype, season, and geographic setting. The variation of bacterial and

fungal communities between each sampled roots were explained on the basis of seasonal,

soil properties, and geographical settings (4% to 23%), however, most variations remain

vi



unexplained. I also tested if rhizosphere of P. deltoides and mature trees in general select for

higher diversity of archaea than surrounding soil. I discovered a slightly higher diversity of

archaea in the trees compared to corresponding bulk soil, but the results were not specific to

P. deltoides. In summary, this dissertation validates current microbial diversity approaches,

characterizes microbial communities of an important plant, and decipher drivers that are

controlling root associated community structure.
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Chapter 1

Introduction
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Given the profound role of microbes in global nutrient and energy cycling (Schimel

and Gulledge, 1998), understanding their diversity, dynamics, and interactions in natural

habitats is one of the most important and challenging task facing microbial ecologists.

In nature, microbes are found in wide range of environments such as the ocean, soil,

hydrothermal vents. Additionally, these microbes are also found associated with living

things like plants and animals. The interface created by plants and microbes affects the

growth and development of the host and also has direct implications on global ecosystem,

climate change, and energy availability (Singh et al., 2004). It has become increasingly

evident that important phenotypes of plants are directly or indirectly influenced by the

structure of their associated microbial community(Mendes et al., 2011). Understanding the

mechanisms and factors that govern the community structure and dynamics is thus of great

interest.

With the striking decline in cost, Next Generation Sequencing (NGS) technologies

have changed the scale of microbial ecological studies and have enabled exhaustive

characterization of microbial communities (MacLean et al., 2009). However, determining

the real diversity and distinguishing novel or rare organisms from experimental and

computational artifacts remains a challenge. It is pivotal that these methods and

technologies be verified for accuracy and effectiveness. As a part of my dissertation research,

I investigated the nature of potential errors and biases using an in house set of ‘synthetic

communities’, genomic DNA mixes with known concentration from archaea and bacteria

with completely sequence genomes (Chapter 2). The results were then implemented in

the experimental design and analysis of sequence data in chapter 3, where I characterized

bacterial and fungal communities associated with the roots of Populus deltoides and then

deciphered important factors that are driving the structure of these assemblages. Likewise,

in chapter 4, I characterized archaeal communities in roots of P. deltoides and then tested

for rhizosphere effect on archaea by comparing its community structure to surrounding soils

and non Populus rhizosphere.
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1.1 Background

Microbes in different parts of plants.

Terrestrial plants provide a range of habitats for microorganisms. These habitats can be

categorized into three different sections called the phyllosphere, the endosphere, and the

rhizosphere. Phyllosphere encompasses surface of above ground plant (Lindow and Leveau,

2002). Endosphere designates area inside the plant (Wilson, 1995). And, rhizosphere is

defined as the area surrounding plant roots where plants exert its influence (Hiltner, 1904).

Although microorganisms residing in above ground parts of the plant are important, they

will not be discussed in detail here, as the focus of this dissertation is on the below ground

communities. Regardless, these habitats provide microorganisms with nutrients, energy,

protection, and place for attachment. In exchange, most resident microbes provide plant

with nutrients, protection against pathogens, and storage (Buée et al., 2009).

Interactions between plants and microbes.

Bacteria residing in rhizosphere contribute towards the health of the host plant. For

instance, species of Bacillus, Erwinia, Pseudomonas, Rhizobia Serratia, and Xanthomonas

protect the host plant against soil borne plant diseases by inducing the systemic resistance

and competition for substrates (Doornbos et al., 2011). A group of beneficial bacteria

known as plant growth promoting rhizobacteria (PGPR) are known to promote growth of

the plants and increase its tolerance to stress caused by drought, salinity, and low nutrients

(Yang et al., 2009). Similarly, endophytic bacteria posit mutualistic benefit to the host

plants by producing antagonistic metabolites against pathogens, secreting phytohormones,

and influencing host metabolism (Holland, 1997; Jallow et al., 2004; Schulz and Boyle, 2005;

Benhamou et al., 2000). Additionally, bacterial endophytes in Populus are known to make

it more effective at tolerating and degrading xenobiotic compounds in the soil (van der Lelie

et al., 2009). Some endophytes also have direct effect on growth rate of plants (Taghavi

et al., 2009).

Fungi associated with roots - both mycorrhizas and endophytes - are capable of

performing many functions that are beneficial to their host. For example, fungi provide

plants with mineral nutrients that are otherwise inaccessible, mobilize organic forms
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of nitrogen and phosphorus, transfer carbons and nutrients between plants through

interconnected roots, suppress pathogens and deter herbivores, and degrade simple and

complex substrates (Buée et al., 2009; Cardon, 2007).

Plants in turn provide microbes with a place for attachment, energy source in the form

of root exudates and control community structure by promoting beneficial microbes and

adjusting environmental parameters like pH (Bais et al., 2006).

Microbes in the rhizosphere.

Lorenz Hiltner crowned the word rhizosphere to describe ‘soil compartment influenced by

the root’ in 1904 (Hiltner, 1904), since then a century of research has described the wide

diversity of microbes present here. Molecular studies have discovered bacteria, fungi, and

more recently archaea from rhizosphere of most terrestrial plants. For instance, molecular

studies have reported archaea from rhizosphere of Lycopersicon esculentum (tomato) (Simon

et al., 2000), Zea mays (maize), pine seedlings (Bomberg et al., 2003), Oryza sativa (rice)

(Lu and Conrad, 2005), and mosses (Sliwinski and Goodman, 2004). Archaea that reside

in rhizosphere belong to either Thaumarchaeota - phylum encompassing ammonia oxidizers

- or Euryarchaeota, phylum that comprise of methanogens, with the former dominating in

almost all the studied plants. For example, a survey of archaea from the boreal forest trees

revealed that 75% of identifiable sequences belonged to Thaumarchaeota (Bomberg et al.,

2011). Presently, the only archaea from a plant root with complete genome sequence is

Candidatus Nitrosoarchaeum koreensis, a Thaumarchaeota from the rhizosphere of Caragana

sinica (Chinese Pea Shrub) (Kim et al., 2011).

Diverse groups of bacteria are found associated with rhizosphere of many plants. For

instance, 35 taxonomic orders of bacteria were recorded from just 14 plant species (Cardon,

2007). However, at higher taxonomic rank, 10 bacterial phyla (Acidobacteria, Actinobac-

teria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Verrucomicrobia,

Planctomycetes, and Chloroflexi), can recapitulate most of the diversity in rhizosphere

(Peiffer et al., 2013; Lundberg et al., 2012; Uroz et al., 2010). Table 1.1 is a collection

of published cultivation-independent surveys of some of highly characterized plants. It is

clear that Proteobacteria, Acidobacteria, and Actinobacteria dominate rhizosphere bacterial

4



communities, a trend observed in mature tree species like oak (∼ 70%) and poplar (∼ 75%)

too (Gottel et al., 2011; Uroz et al., 2010).

Fungi are also found in the rhizosphere of most terrestrial plants. Based on the host,

these fungi have been generally grouped into six groups: arbuscular, ecto, ericoid, arbutoid,

monotropoid, and orchid (Smith and Read, 2008). Arbuscular mycorrhizae, a widespread

and abundant fungi, belongs to division Glomeromycota. Ectos, a group that comprise of

Ascomycota, Basidiomycota, and Zygomycota are only found associated with certain families

of woody gymnosperms and angiosperms. Orchids are specific to Orchidaceae, and rest of

the group is specific to the plant order Ericales, all of which are either Basidiomycota

or Ascomycota (Cardon, 2007). A culture-independent surveys of field grown Pine and

naturally occurring Poplar tree revealed Ascomycota and Basidiomycota to be major fungal

division in corresponding rhizospheres (Table 1.1).

Microbes in the endosphere.

Anton de Bary, a German botanist of 19th century coined the term endophyte in 1886

to describe ‘microorganisms that colonize internal tissues of stems and leaves’ (Wilson,

1995). However, now endosphere is a broad term that implies area within a plant, usually

between cells in any part of a plant. Endophytes are microbes that reside within plant

tissues in both above and below ground parts of plants without causing any harm to the

host (Carroll, 1986).In few cases endophytes have been referred conservatively as organisms

that are present in a healthy plant at the the time of sampling (Sieber et al., 2002). The

dissertation research, however, only focuses on root endosphere.

The root endosphere houses comparatively lower diversity of bacteria and fungi than

rhizosphere as shown by both culture based and culture independent methods(Izumi et al.,

2008; Gottel et al., 2011). Proteobacteria and Actinobacteria are the two most dominant

bacterial groups in endosphere while Ascomycota and Basidiomycota are two most dominant

fungal groups (Table 1.1). Likewise, in one study, an archaeon (Euryarchaeota) was shown

to be present in the endosphere of O. sativa (rice) (Sun et al., 2008).
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Table 1.1: Microbial phyla dominating rhizosphere and endosphere of some common plants

Host Plants
Dominating phyla

Bacteria Fungi Archaea Reference
Rhizosphere Endosphere Rhizosphere Endosphere Rhizosphere Endosphere

Oak (Quercus sp.)
Proteobacteria

NR
Ascomycota

NR NR
(Uroz et al., 2010)

Actinobacteria Basidiomycota NR (Jumpponen et al., 2010)
Acidobacteria

P. deltoides.
Proteobacteria Proteobacteria Ascomycota Ascomycota

NR NR (Gottel et al., 2011)Acidobacteria Actinobacteria Chytridiomycota Basidiomycota
Verrucomicrobia Zoopagomycotina Zoopagomycotina

A. thaliana
Proteobacteria Proteobacteria

(Bulgarelli et al., 2012)Acidobacteria Actinobacteria NR NR NR NR
Planctomycetes Bacteroidetes

Pinus spp. NR
Basidiomycota Thaumarchaeota

NR
(Lottmann et al., 2010)

Proteobacteria Ascomycota NR (Bomberg et al., 2011)

NR:Not reported yet.



Factors influencing root microbiota.

Microbial community structure - the diversity and abundance of microbes - is relevant to

its ecological functions. Changes in microbial community structure is directly proportional

to its functions as observed in human and plant associated microbial communities. For

instance, changes in gut microbial community structure have shown to be linked with

metabolic disorders Spencer et al. (2011), obesity (Turnbaugh and Gordon, 2009), and

Crohn’s disease (Eckburg and Relman, 2007) in humans and disease suppresiveness in plants

(Mendes et al., 2011). Therefore, to understand consequences of these shifts we need to

characterize the structure and identify the factors that are driving it, and by identifying

these factors we can better understand the mechanisms that are structuring these complex

communities.

Microbial communities in the rhizosphere are influenced by biotic and abiotic factors.

Table 1.2 compiles published studies that revealed such factors that affects fungal and

bacterial community structure. These factors can be universal, meaning it affects both

bacterial and fungal communities, or it can be specific to either one of them. Additionally,

their effect can depend on the host plant type and may not equally affect all plants. I did

not list factors that influence below ground archaeal community because very little is known

about it. For instance, only pH gradient has been shown by multiple studies as a factor

that affect archaeal community (Gubry-Rangin et al., 2011).

Biotic factors comprise of plants or plant-related properties like genotype, developmental

stage, and species. All of these factors and few others have been shown to shift both bacterial

and fugal communities. Bacterial communities can be plant specific (Kuske et al., 2002;

Smalla et al., 2001; Costa et al., 2006; Marschner et al., 2004) and within species, it can

differ based on genotype (Aira et al., 2010; LeBlanc et al., 2007) , age (Berg et al., 2005;

Aira et al., 2010), plant nutrient status (Yang and Crowley, 2000), and pathogen infections

(Cardon, 2007; Yang et al., 2001). Fungal communities can be plant and genotype specific,

affected by age and infections, but the number of studies and evidences are limited (Table

1.2). Genotype of plants can be directly correlated to its phenotype. For example, different

maize cultivars produce different root exudates (Aira et al., 2010), and as a result different

maize genotypes house different bacterial communities. However, these type of effects have
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rarely been observed for fungal communities (Hannula et al., 2012) and no direct evidence

for any relationship with archaeal community and plant genotype has been reported.

Rhizosphere communities are in intimate contact with the soil, thus soil properties are

also major players that affect root communities. At broader scale, soil type is an important

factor determining the structure of both fungal and bacterial rhizosphere communities

(Berg et al., 2005; Buée et al., 2009; Hannula et al., 2012). At finer scale, only bacterial

communities in the rhizosphere correlate with individual soil properties like pH (Marschner

et al., 2004; Lauber et al., 2009). Direct evidence of linkage between fungal communities and

soil chemical properties are still lacking. In addition to physical factors, root communities

are also sensitive to short term environmental changes like season (Lottmann et al., 2010;

Smalla et al., 2001) and sampling sites (Peiffer et al., 2013; Costa et al., 2006).

Bacterial and fungal endophytes are also influenced by factors similar to the ones that

influences rhizosphere communities. Some of the factors that have been shown to influence

bacterial endophytes are plant’s developmental stage (Mano et al., 2007), geography or

location (A, 2001), plant genotype (Sturz et al., 1999), and soil type (Lundberg et al., 2012;

Long et al., 2010). However, the information is lacking in the case of fungal endophytes

where the only factors that are known to affect the fungal community structure are

genotypes related to plant-defense compounds (Saunders and Kohn, 2009) and agricultural

amendments (Seghers et al., 2004). To enhance our ability to utilize beneficial potential of

endophytes to improve plant growth and health, it is critical to understand the factors that

are structuring endosphere communities.

The microbiome of trees

Most of our knowledge about plant microbiota has been derived from studies of agricultur-

ally important plants like maize (Peiffer et al., 2013), rice, and model plants like Arabidopsis

spp. (Lundberg et al., 2012; Bulgarelli et al., 2012). Besides the clear importance of mature

perennial plants in global economy, energy, and environmental health, the knowledge of tree

microbiota is lacking. Only a handful of studies have attempted to characterize microbial

community structure in trees (Hernesmaa et al., 2005; Uroz et al., 2010; Gottel et al., 2011)

and only few have used NGS technologies (Uroz et al., 2010; Gottel et al., 2011).
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Table 1.2: Factors that affect rhizosphere microbiota.

Biotic factor Abiotic factor

Plant developmental stage Soil type
Bacteria Bacteria
Van Overbeek and Van Elsas (2008) Lundberg et al. (2012)
Fungi Marschner et al. (2004)
Hannula et al. (2012) Fungi
Mougel et al. (2006) Mougel et al. (2006)
Plant species Viebahn et al. (2005)
Bacteria Soil heterogeneity
Kuske et al. (2002) Fungi
Costa et al. (2006) Viebahn et al. (2005)
Smalla et al. (2001) Season
Marschner et al. (2004) Bacteria
Fungi Smalla et al. (2001)
Viebahn et al. (2005) Van Overbeek and Van Elsas (2008)
Plant genotype Fungi
Bacteria Hannula et al. (2012)
Van Overbeek and Van Elsas (2008) Soil pH
Aira et al. (2010) Bacteria
LeBlanc et al. (2007) Marschner et al. (2004)
Fungi Sampling site
Hannula et al. (2012) Bacteria

Costa et al. (2006)
Peiffer et al. (2013)
Fungi
Costa et al. (2006)
Hannula et al. (2012)
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Populus as a model plant system

Populus is an ideal model system to study plant microbe interface due to its extensive root

system that houses a diverse set of microbes that includes archaea, bacteria, and fungi. It

is also considered a model plant due to its properties like rapid growth rate, prolific sexual

reproduction, small genome (approximately 480Mb), and availability of extensive genomic

and molecular tools (Bradshaw et al., 2000; Tuskan et al., 2006; Jansson and Douglas, 2007;

Podila et al., 2009). Due to its rapid growth rate and abundance in North America, it is used

to produce lumber, pulp, and paper. Moreover, it is an effective phytoremediation agent

(Hur et al., 2011) and is currently being studied for its use as a feedstock to produce biofuel.

These important functional properties of Populus is influenced by the microbes associated

with the plant. Thus, studying the plant-microbe system in naturally occurring Populus

provide a premier opportunity to discover interface functions relevant to Department of

Energy missions that includes increase plant biomass yield, ecosystem sustainability, disease

control, tolerance, and efficient carbon cycle. This dissertation research is a part of larger

initiative aimed to understand and characterize plant microbe interface http://pmi.ornl.

gov.

NGS approach to study microbial ecology.

Since the identification of SSU rRNA gene (especially 16S rRNA) as a universal marker gene

to identify and classify microbes, its amplification and sequencing has been of paramount

importance in microbial ecology. Based on its universal presence and relatively uniform

rate of evolution, SSU rRNA enabled the discovery and classification of a vast diversity

of uncultivated microorganisms spanning all phylogenetic levels (DeLong and Pace, 2001;

Tringe and Hugenholtz, 2008; Pace, 2009). The discovery coupled with the advent in NGS

technologies have allowed exhaustive characterization and derive statistically robust results

from the community studies. NGS technologies allow for characterization of microbes at

unprecedented level with fraction of the cost, which keeps decreasing every year. The

process, however is rather complex and requires many experimental steps, each of which

are prone to errors (Engelbrektson et al., 2010; Haas et al., 2011; Hong et al., 2009; Huse

et al., 2010; Polz and Cavanaugh, 1998). Biases due to the hypervariable region in SSU
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rRNA, primer pair, PCR and sequencing, and data analysis methods can significantly inflate

and misrepresent the actual diversity. Therefore, NGS based microbial ecology studies

require specific consideration of methodologies and data analysis for correct interpretation

of diversity (Werner et al., 2011; Caporaso et al., 2011; Quince et al., 2011; Schloss et al.,

2011; Gihring et al., 2011). An ideal way to test for these errors and biases is through direct,

quantitative comparisons between known diversity of a controlled ‘synthetic community’ to

that inferred by rRNA gene and metagenomics sequencing (Caporaso et al., 2011; Haas

et al., 2011; Morales and Holben, 2009; Schloss et al., 2011). By quantitatively comparing

the accuracy of SSU rRNA gene based microbial diversity analyses and metagenomic

sequencing using a controlled ‘synthetic community’ approach one can infer effects of varying

experimental procedures and data analysis strategies on diversity characterization.

1.2 Statement of Hypotheses

This dissertation research addresses two areas of microbial ecology. First, I investigated

errors and biases in NGS based microbial microbial diversity characterization methods.

Second, I applied such microbial diversity characterization approaches to better understand

the microbial (archaea, bacteria, and fungi) community structure and its drivers in roots of

an economically and ecologically important mature plant in P. deltoides. The research will

address following specific hypotheses:

Hypothesis 1: NGS based microbial ecology studies are associated with errors and biases

that can be reduced with robust QA/QC methods.

Previous studies have revealed the presence of artifacts in NGS based methods (Kunin

et al., 2009; Polz and Cavanaugh, 1998), so it is important to understand the nature of

these errors and biases before starting a NGS based study. By understanding the nature of

biases, we can improve experimental designs and data analysis pipelines of these studies to

obtain robust and reliable results.

Hypothesis 2: Bacterial and fungal communities in the roots of native P. deltoides are

controlled by soil properties (pH), plant genotype, and seasonal changes.
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Deciphering the factors that are structuring microbial communities in plants are of

utmost interest due to their effect on health and development of plants. Based on previous

studies conducted on other plants, soil pH, plant genotype, and seasonal change have

emerged as major factors that influence microbial communities in roots. So, here I

hypothesize pH, genotype, and season to have significant effect on microbial communities

of native P. deltoides.

Hypothesis 3: Roots of P. deltoides and mature trees host higher diversity of archaea than

surrounding bulk soils.

Given the potential role of archaea in nitrogen cycle and evidences of direct effect of

microbes in health and growth of P. deltoides, it is important to characterize their associated

archaea. However, archaeal communities in the roots of P. deltoides have not been studied

before. Thus, fundamental features of archaeal communities in the roots remain unknown.

For instance, a general pattern of selection of specific bacteria from surrounding soil in

the rhizosphere is observed in many plants, but same is not known for archaea. Moreover,

studies that focused on archaea from mature trees are rare. Here, I test if mature trees in

general and P. deltoides house higher diversity of archaea than corresponding bulk soils. I

also checked if below ground archaeal communities are distinct based on their niches.

1.3 Approach

Experiments to test the above listed hypotheses can be categorized into three parts. First, by

assembling ‘synthetic communities’ with known quantity of genomic DNA from sequenced

archaea and bacteria, I tested for errors and biases in NGS based microbial community

characterization (SSU rRNA and metagenomics) methods. Second, based partly on findings

from previous chapter, a meticulous experimental design and data analysis pipeline that

reduced such errors was implemented to test for soil properties (pH), plant genotype, and

seasons influence on microbial community structure of P. deltoides. Additionally, I also

characterized the taxonomy and structure of the resident bacterial and fungal communities.

Third, a SSU rDNA and amoA based community characterization of archaeal communities
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from a subset of our P. deltoides samples and surrounding bulk soils was conducted to test

for rhizosphere effect.

Chapter 2: Test the efficacy of NGS based microbial (archaeal and bacterial)

diversity characterization methods.

There are clear evidences of errors and biases in NGS based microbial community

characterization approaches (Kunin et al., 2009; Polz and Cavanaugh, 1998). Therefore,

My first step was to understand these errors and biases and use the findings to reduce it

during community analysis. Most of the microbial community that are characterized have

little to no prior information about diversity and abundance of its community which makes

the community characterization method hard to test. Therefore, I assembled ‘synthetic

communities’ with known amount of gDNA from archaeal and bacterial species that have

complete genome sequences. This chapter details the construction of three ‘synthetic

communities’ and testing of different experimental and computational techniques using it.

Chapter 3: Characterize P. deltoides’ root microbiota and elucidate the factors

that are structuring it.

Bacterial and fungal communities associated with plant roots - in rhizosphere and

endosphere - are central to its health, survival and growth. However, a robust understanding

of the factors that shape root microbiota composition and structure has remained elusive.

Here, we set out to investigate relationships of bacterial and fungal communities in

rhizosphere soils and endosphere of the riparian tree species Populus deltoides, with soil

parameters, environmental properties (host phenotype and aboveground environmental

settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs.

Fall), and geographic setting (at scales from regional watersheds to local riparian zones).

Chapter 4: Compare archaeal communities in P. deltoides and mature trees’

rhizosphere with surrounding bulk soils.

Archaea constitute one of the major organisms in below ground - soil and rhizosphere -

microbial communities. In this chapter, I characterized archaeal communities in roots of P.
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deltoides, other mature trees, and bulk soils from the riparian zone along Caney Fork river

in Tennessee using V1-V3 region of 16S rRNA gene and partial region of ammonia oxidizing

subunit A gene (amoA), a key functional gene for ammonia oxidation. The chapter details

two parts of the study. Comparison of archaeal diversity in P. deltoides and mature trees

with surrounding bulk soil and characterization of archaeal communities in P. deltoides,

surrounding bulk soil, and non Populus trees.

1.4 Significance

Recent advances in the microbial ecology is directly proportional to the advent of sequencing

technologies and experimental and computational methodologies. Especially, amplicon

based sequencing of phylogenetic marker genes like 16S rRNA and metagenomics have

contributed to discovery of novel microbes and functions. However, these approaches are

not always accurate and are known to inflate the actual diversity (Sogin et al., 2006; Kunin

et al., 2009; Huse et al., 2010). In environmental data sets, distinguishing rare but real

OTUs or metagenomic signatures of uncultured taxa from experimental and computational

artifacts remains a challenge. Diverse ‘synthetic communities’ and validation data sets

such as the ones presented in chapter 2 enables direct comparison of sequencing, data

processing accuracy and effectiveness in sequence binning and assembly for representing

the true environmental microbial composition. Although the study mainly focused on 454

sequencing sequencing platform for amplicon sequencing, Illumina is now widely used for

amplicon sequencing (Caporaso et al., 2011) as well. Additionally, new sequencing platforms

like Ion-Torrent are constantly being introduced in the market. By having access to a mix

of microorganisms with all attributes known, we can test new approaches, platforms, and

computational tools like AmpliconNoise (Quince et al., 2011), Denoiser (Reeder and Knight,

2010), and Accacia (Bragg et al., 2012) before using it in the actual experiment.

The significance of studying plant microbe systems in naturally occurring perennial

plants are two folds. First, by characterizing communities of resident microbes and their

major driving factors, we can better understand the plant microbe interface to manipulate

and optimize the interface for relevant ecological and environmental functions. Microbes

residing in plant roots play an important roles in growth, development, health, and ecological
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fitness of the host plants through specific functions like antibiotic production, geochemical

cycling of minerals, processing otherwise inaccessible nutrients, and many others (Buée

et al., 2009). For better understanding of beneficial functions due to resident microbes or

their community, it is important that we characterize the microbes and their community

structure. Second, studying microbial systems in naturally occurring perennial plants can

lead to discoveries that are relevant to DOE missions. In this regard Populus is an ideal

plant. It is a model woody plant, a leading candidate for bioenergy application, and widely

distributed in North America. Since microbial resident of roots have significant impact on

health and proliferation of Populus, characterizing the diversity and abundance of resident

microbes and deciphering factors that affect them are pivotal for ultimate use of indigenous

or engineered Populus to increase biomass yield, efficient environmental remediation, and

carbon cycling.
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Chapter 2

Comparative metagenomic and rRNA microbial diversity

characterization using archaeal and bacterial synthetic

communities

Disclosure: This chapter was published as:

Shakya, M., Quince, C., Campbell, J.H., Yang, Z.K., Schadt, C.W., and Podar, M.

(2013). Comparative metagenomic and rRNA microbial diversity characterization using

archaeal and bacterial synthetic communities. Environmental microbiology.

Migun Shakya‘s contributions include DNA extraction, DNA quantification, assemblage

of synthetic communities, sample preparation for 454 sequencing, sequencing, analyzing

data, and writing the manuscript as primary author.
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2.1 Abstract

Next generation sequencing has dramatically changed the landscape of microbial ecology,

large-scale and in-depth diversity studies being now widely accessible. However, determining

the accuracy of taxonomic and quantitative inferences and comparing results obtained with

different approaches are complicated by incongruence of experimental and computational

data types and also by lack of knowledge of the true ecological diversity. Here we used highly

diverse bacterial and archaeal synthetic communities assembled from pure genomic DNAs to

compare inferences from metagenomic and SSU rRNA amplicon sequencing. Both Illumina

and 454 metagenomic data outperformed amplicon sequencing in quantifying the community

composition, but the outcome was dependent on analysis parameters and platform.

New approaches in processing and classifying amplicons can reconstruct the taxonomic

composition of the community with high reproducibility within primer sets, but all tested

primers sets lead to significant taxon-specific biases. Controlled synthetic communities

assembled to broadly mimic the phylogenetic richness in target environments can provide

important validation for fine-tuning experimental and computational parameters used to

characterize natural communities.

2.2 Introduction

For over two decades, amplification and sequencing of the small subunit ribosomal RNA

(SSU rRNA or 16S rRNA) gene has been the primary approach to assess the abundance

and taxonomic identity of microbes in environment. Based on its universal presence and

relatively uniform rate of evolution, SSU rRNA enabled the discovery and classification of

a vast diversity of uncultivated microorganisms spanning all phylogenetic levels (DeLong

and Pace, 2001; Tringe and Hugenholtz, 2008; Pace, 2009). With increasing sequencing

depth and throughput, statistically robust quantitative comparisons between communities

have become feasible. Direct, metagenomic sequencing of the community DNA pool

complements rRNA gene-based characterization by providing insights into physiological

potentials and expanding phylogenetic diversity characterization into protein sequence space

(Tringe and Rubin, 2005) while metatranscriptomics and metaproteomics offers a direct
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access to community physiology (McCarren et al., 2010; VerBerkmoes et al., 2009). A

variety of experimental and data analysis alternatives have been developed to allow in-depth

characterization and large-scale comparative studies of complex microbial communities

(Schloss et al., 2011; Sun et al., 2012). Each experimental and computational step in

diversity characterization is prone, however, to errors (Engelbrektson et al., 2010; Haas

et al., 2011; Hong et al., 2009; Huse et al., 2010; Polz and Cavanaugh, 1998). Amplification

of different hypervariable rRNA gene regions can lead to inconsistent taxonomic coverage

and incongruence between datasets. In addition, short read amplicon sequencing requires

specific considerations for the methodology, data analysis and interpretation of microbial

diversity (Werner et al., 2011; Caporaso et al., 2011; Quince et al., 2011; Schloss et al., 2011;

Gihring et al., 2011).

Metagenomic sequencing avoids some of the limitations of rRNA amplicon sequencing by

directly accessing the community genomic information. Diversity interpretation is however,

complicated by uncertainties in assigning genes to specific organisms (especially for taxa

with no cultured representatives) and by bias introduced during sequencing Gomez-Alvarez

et al. (2009). Direct, quantitative comparisons between known diversity and that inferred

by rRNA gene and metagenomic data are scarce (Caporaso et al., 2011; Haas et al., 2011;

Morales and Holben, 2009; Schloss et al., 2011) and have been limited in taxonomic coverage.

Here we quantitatively compared the accuracy of SSU rRNA gene based microbial

diversity analyses with metagenomic sequencing using a controlled synthetic community

approach. The communities consisted of laboratory-mixed microbial genomic DNAs

(gDNA) of known sequence, representing a broad diversity of bacteria and archaea. Species

from nearly all phyla with cultured representatives were included, covering a wide range of

genetic variation at different taxonomic levels and spanning the full spectrum of genome

sizes, (G+C)% (GC) content, genomic divergence, and rRNA operon copy numbers. The

effects of varying experimental procedures and data analysis strategies on rRNA based

diversity and composition were compared with those determined using two metagenomic

sequencing platforms, 454 and Illumina.
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2.3 Methods

Collection of gDNA for the synthetic communities

Three distinct synthetic communities with gDNAs from representatives of 17 bacterial and

5 archaeal phyla were assembled. Except for four bacteria that have genomes in high

quality draft stage (Sulfurihydrogenibium yellowstonense SS-5, Sulfitobacter sp. EE-36,

Sulfitobacter sp.NAS-14.1 and Desulfovibrio piger), all other species and strains included

in the study have their genome sequences closed. Pure cultures of 27 archaea and bacteria

were grown as part of this study in liquid using stocks from ATCC (American Type Culture

Collection), DSMZ (Deutsche Sammlung von Mikroorganismen) or from collaborators, using

the published media and conditions for each organism. High molecular weight DNA was

extracted using a mechanical and organic cell lysis method as described in Ley et al.

(2008), dissolved in TE buffer (pH 8) and measured spectrophotometrically for quality

and concentration. For 37 archaea and bacteria we received either purified gDNA or cell

cultures from collaborators (Table 2.1 and Table 2.2), from which we extracted the gDNA.

All gDNA solutions were stored in nuclease-free sylanized tubes (Ambion, Austin, TX), to

minimize loss by adsorption to tube walls.

DNA quantification and assembly of synthetic communities

Three different methods were used to determine the quality and concentration of each

gDNA. The initial concentration of each gDNA preparation was measured by fluorescence

assay against a set of standards using a Qubit 2.0 fluorometer (Invitrogen, Carlsbad CA).

For an estimation of the molecular weight, approximately 50 ng DNA was separated and

visualized on 1.2% agarose E-gels (Invitrogen) with a set of lambda phage DNA mass

standards (10-100 ng). All DNAs used in the assembly of the synthetic communities

had average molecular weight exceeding that of the lambda phage and no RNA or small,

degraded nucleic acids were detected. Because the DNAs were isolated from very diverse

organisms, grown in different media and potentially still contained molecules that could

interfere with accurate fluorescence and gel quantification, we used generalized quantitative

PCR (qPCR) assays for Bacteria (Fierer et al., 2005) and Archaea (Reysenbach et al., 2006)

to guide assembly of the synthetic communities. For each organism to be represented in
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the community, qPCR was performed on its purified DNA with either the archaeal or the

bacterial primer pair. Sequences of SSU rRNA genes from each organism were screened

against the published primer sequences (Eub338-Eub518 and Arc915f-Arc1059r) in silico

prior to performing qPCRs. To broaden the specificity of the primers so that the SSU

rRNA genes of all the species targeted for inclusion in the synthetic community could be

amplified, we modified both forward primers Eub338 and Arc915f (see below). DNA SYBR

Green qPCR assays (20µl ) were performed in a Bio-Rad CFX96TM (Hercules, CA) thermal

cycler using primers synthesized by IDT (Coralville, IA) and Eurofins MWG Operon

(Huntsville, AL) and Bio-Rad iQ Supermix. Archaeal assays used primers arc915fmc (5‘-

AGGAATTGGCGGGRGRGCAC -3’) and arc1059r (5‘-GCCATGCACCWCCTCT-3’) at a

final concentration of 350 nM each. Cycling parameters included an initial denaturation at

95◦C for 5 min followed by 45 amplification cycles of 95◦C for 30 sec, 61◦C for 30 sec, 72◦C for

1 min and a fluorescence reading. Following amplification cycles, products were denatured at

95◦C for 10 sec, and a melt curve was determined over a range of 60-95◦C . Standard curves

were constructed using Methanococcus maripaludis S900 genomic DNA diluted from 1 ×

107 - 1 × 102 SSU rRNA gene copies per reaction. Bacterial assays used primers Eub338mc

(5‘-ACTCCTACGGGDGGCWGCAG-3’) and Eub518 (5‘-ATTACCGCGGCTGCTGG-3’)

at a final concentration of 500 nM each. Cycling parameters included an initial denaturation

of 95◦C for 5 min followed by 45 amplification cycles of 95◦C for 30 sec, 53◦C for 30 sec,

72◦C for 1 min and a fluorescence reading. Following amplification cycles, products were

denatured at 95◦C for 10 sec, and a melt curve was determined over a range of 50-95◦C .

Standard curves were constructed using Escherichia coli K12 genomic DNA diluted from

1 × 108 - 1 × 102 SSU rRNA gene copies per reaction After individual organism DNA

quantification, in order to achieve a diverse community composition in both taxonomic

distribution and abundance we mixed individual gDNAs, obtaining two primary synthetic

communities (a bacterial and an archaeal one). The organisms for which we had low amounts

of gDNA were represented at lower abundances in the final mix. The genomic abundance

for each organism in the two communities was calculated based on the qPCR-determined

concentration and the known number of rRNA operons present in each genome (1-10 copies;

(Table 2.1 and Table 2.2)). To obtain the Archaea-Bacteria community, aliquots of the two
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were mixed and the individual genomic abundances were calculated based on those in the

primary communities.

Metagenomic sequencing and analysis

Two metagenomic libraries were constructed for sequencing using the 454 and Illumina

platforms. For 454 sequencing, 50 ng of the Archaea-Bacteria synthetic community gDNA

was used to prepare an FLX Titanium compatible library using a NexteraTM DNA

sample prep kit (Epicentre Biotechnologies, Madison WI) and following manufacturers

instructions. Briefly, the DNA was fragmented (“tagmented”) using the transposase enzyme

mix and purified. 454 sequencing primers, a bar-coded Titanium Adaptor 1 (MID3:

AGACGCACTC), were incorporated using 15 cycles of PCR followed by purification

and size distribution analysis on a an Agilent 2100 Bioanalyzer (Agilent Technologies,

Waldbronn, Germany). Insert sizes varied between 500 and 1500 nt. The library was

unidirectionally sequenced in-house on one fourth of an FLX Titanium sequencing plate

using standard 454/Roche reagents and protocols. The 454.sff sequence file was loaded

into the CLC Genomics Workbench 4.8 (CLCBio, Cambridge MA). Low quality reads

(limit =0.05), ambiguous nucleotides, 454 and Nextera adaptors were removed and any

further remaining reads shorter than 20 nt were discarded. The resulting dataset contained

291,146 reads with an average length of 320 nt, totaling 85.5Mbb. The sequences were

mapped to a database containing the 64 reference genomes (combined total length of

205.6 Mbp) using the CLC local aligner algorithm, with a similarity threshold of 0.9,

length fraction of 0.5 and default mismatch/indel cost values. The average coverage of

the metagenome was 0.39 fold, with 261,385 reads mapped the genomes. A breakdown

of the number of reads mapped to each genome and their coverage is shown in Table

2.1 and Table 2.2. The number of reads mapped to each genome was used to calculate

the coverage distribution relative to expected values, taking also in account the variable

genome size among the represented organisms. Unmapped reads were further analyzed

for mapping either to known plasmids of the included organisms (32 plasmids totaling

4.2 Mbp, ranging in size from 3.6 kbp for a Caldicellulosiruptor bescii plasmid to >635

kbp for a Haloferax volcanii megaplasmid) or back to the reference genomes by decreasing
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the similarity threshold in order to accommodate unfiltered sequence artifacts. A total

of 5,455 reads mapped to plasmids, reaching the same average coverage obtained for the

genomic component (0.39 fold). The identity of reads that did not map to either genomes

or plasmids was not further explored but likely include both reads with a higher mutations

or sequencing errors frequency and reads that belong to a Clostridium sp. contaminant

identified in the Desulfovibrio vulgaris culture, for which a genome sequence is not available.

For Illumina sequencing, 1µg of the Archaea-Bacteria synthetic community gDNA was

physically sheared by Covaris Inc. (Woburn, MA), to an average fragment size of 250bp.

The fragmented DNA was sequenced bi-directionally (100 bp each direction) on a lane of

Illumina HighSeq 2000 using V3 sequencing reagents at the Genome Sciences Resource

Center of Vanderbilt University (Nashville, TN). Read quality was analyzed using FastQC

(Brabahan Bioinformatics). Filtering out sequences shorter than 50 nt, removal of low-

quality reads and of those with ambiguous nucleotides in CLC Genomics Workbench

4.8 resulted in two datasets (forward-reverse reads) of >53.5 and >53.7 million reads,

respectively, with an average length of 100 nt and totaling over 10.7 Gbp. Mapping reads to

reference genomes with CLC Genomics Workbench 4.8 followed the same approach except

that a higher sequence fraction match (0.8) was used as threshold. Over 96 million reads

were mapped, achieving an average 46-fold coverage across the metagenome (1,500-fold

maximum region coverage), with many genomes being covered over >95% of their length

(Table 2.1 and Table 2.2). Two million reads mapped to the 32 known plasmids, with

some regions reaching >1,000-fold coverage (average 50-fold). An accuracy of detection

ratio for each species within each sample was calculated by dividing the fraction of its

sequences in the metagenomic dataset by its known abundance (Q-PCR-based), normalized

to genome size, within the corresponding synthetic community. A matrix containing species

accuracy detection within each sample sequenced was constructed relative to the standard

Q-PCR-based estimates (always = 1), with separate analyses performed for Archaeal and

Bacterial data. PRIMER-E v6 (Clarke and Warwick, 1994) was used to calculate Bray-

Curtis resemblance matrices for each dataset. These matrices were used to generate

Principal Coordinate Analysis (PCoA) plots and hierarchical clustering dendrograms to

visualize reproducibility of replicates and accuracy of community representation (based

upon Q-PCR) for each amplicon region and sequencing strategy.
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Comparison of bias due to GC content

The bias in metagenomic coverage on 454 and Illumina platforms was calculated across the

range of genomic GC content of synthetic community constituents (R v2.14; stats package).

For each genome, the Illumina accuracy factor was subtracted from the corresponding 454

values, and the resulting difference was regressed against the genomic GC content. Matched,

pairwise t-tests were used to compare these accuracy differences between the sequencing

platforms across the GC spectrum in three window intervals (27-40%, 40-60% and 60-70%).

To determine the coverage bias across the metagenome, we analyzed the 454 and Illumina

reads coverage for each genome in the community separately. We did not observe coverage

fluctuations linked to genome size. However, the intra-genome sequence coverage matches

what we observed at the level of the community with local GC content having a strong

influence on the number of reads depending on the sequencing platform.

MEGAN Analysis

The available genomes of all Archaea and Bacteria were downloaded from the NCBI ftp

site (ftp://ftp.ncbi.nih.gov/genomes/). We created three different blastable datasets

with those genomes. First, a database that exclusively contained genomes of the synthetic

community organisms (REF); second, a database that contains the genome of all organisms,

including the genomes of synthetic community organisms (ALL); third, a database that

excludes the members of the synthetic community, but includes all other organisms (X

Reference). We used megablast (-v 1 -b 1 -a 10 -m 7) with either 454 or Illumina

metagenomic sequences against these three databases. Additionally, we also used the less

stringent blastn (-v 1 -b 1 -a 10 -m 7) against the X Reference database. We analyzed

and quantified the taxonomic abundance of the community of each blast results using

MEGAN (MEtaGenome ANalyzer) (Huson et al., 2007). For combined visualization of

the result, ratios between the known composition and those determined for each database

type and blast approach were displayed as a heat map and included species, genus and family

taxonomic levels (Fig 2.10). The sequences known to belong to individual genomes (based on

CLC-Bio genome mapping) were identified in terms of their predicted taxonomic affiliation
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by blast-MEGAN and the distribution was projected as histograms for each individual

genome (Fig 2.10 B, C) or globally (Fig 2.10 D).

IMG-M and MG-RAST analysis

To submit the 454 data into IMG/M we used a fasta format file containing the CLC-Bio

quality filtered reads. Data processing used default parameters including gene prediction

and functional annotation. For MG-RAST v3 analysis we uploaded both the 454 sff file and

the Illumina fastq data files. Quality filtering and sequence analysis followed the default

MG-RAST pipeline flow. To analyze the taxonomic composition of the community based

on IMG-M and MG-RAST we extracted the inferred abundance at phylum level for reach

dataset and also the number of taxonomic units predicted by both systems. MG-RAST

enables changing cutoff parameters for the taxonomic mapping and we explored the effect

those changes have on the types and numbers of predicted taxa (Table 2.3). To evaluate

the community composition based on SSU rRNA sequences present in the metagenomes

we extracted the sequences assigned to that gene from both IMG-M and MG-RAST and

analyzed their affiliation using the RDP Classifier. The metagenomes are publicly available

in those systems for further analyses. The raw data files have been deposited in the NCBI

Sequence Read Archive (Accession # SRA059004). Sequences from various filtering stages

are also available from the authors upon request.

PCR amplification and 454 sequencing of SSU rRNA amplicons

Sets of amplification primers were chosen to cover most of the hypervariable regions of

SSU rRNA (Table 2.3) (Lane, 1991; Weisburg et al., 1991; Muyzer et al., 1996; Nübel

et al., 1996; Suzuki and Giovannoni, 1996; Ovre̊as et al., 1997; Takai and Horikoshi, 2000;

Watanabe et al., 2001; Baker et al., 2003; McCutcheon and Moran, 2007; Frank et al.,

2008; Bates et al., 2011). Some of the primers were modified from their original published

sequence or additional variants were added to broaden their taxonomic coverage. Still,

some primer-rRNA gene mismatches to some of the species represented in the synthetic

communities remained, allowing estimation of their effects on amplification efficiency

(Figures 2.11 and 2.12). Amplification primers targeting bacterial V4, V12 and archaeal V4
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regions were designed with FLX adapters and rest of the primers were designed with FLX

Titanium adapters. To allow multiplexing, the sequencing primers contained 6-8 nt long

barcodes. The primers were synthesized by IDT (Coralville, IA) and Eurofins MWG Operon

(Huntsville, AL) and were HPLC or HPSF purified. Polymerase chain reaction (PCR) was

performed in 50µl reactions with 1X High Fidelity PCR buffer (Invitrogen, Carlsbad CA),

2 mM MgSO4, 300 nM of each primer, 200 mM dNTPs, and 1 unit of Platinum Taq

DNA Polymerase High Fidelity (Invitrogen; Carlsbad, CA). Between 2.5-10 ng template

gDNA was used for the different synthetic communities. All reactions were performed

in duplicate or triplicate, and separate reactions with different number of cycles, annealing

temperature, and different polymerases were also conducted. The range of amplicon lengths

obtained with each primer pair, based on the genomic sequences, is shown in Table 2.4

and a summary of amplification parameters is shown in Table S5. For the Bacteria-

Archaea community, three different polymerases, TaqHiFi (Invitrogen), High GC (Roche

Diagnostics, Indianapolis, IN) and Accuprime Pfx (Invitrogen) were used to compare effects

of polymerase fidelity and annealing specificity on resulting sequences. Amplicons were

purified using AMPure paramagnetic beads (Agencourt Biosciences Corporation, Beverly,

MA) followed by concentration and size analysis using DNA 1000 chips on an Agilent

2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany). Amplicon libraries were

then prepared for unidirectional sequencing using the emPCR Kit II (Roche) followed by

sequencing on a 454 FLX Life Sciences Genome Sequencer (Roche Diagnostics, Indianapolis,

IN). Pyrosequencing using the FLX chemistry and Titanium chemistry was done according

to manufacturers instructions.

Amplicon Sequence Processing

For SSU rRNA amplicon sequence data processing we used primarily the software

packages mothur (v1.1639)(Schloss et al., 2009), QIIME (v1.3.040)(Caporaso et al., 2010a),

RDP(Cole et al., 2009), and AmpliconNoise v1.25(Quince et al., 2011). Sequences were

processed using different filtering parameters for respective analyses. For Low Quality

filtering (LQ), sequences were removed from the analysis if they were <200 nt, had

ambiguous bases, had a non-exact barcode match, or showed more than two mismatches
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for the amplification primer. Quality score was not used for this filtering. Remaining

sequences were assigned to samples based on the barcode matches, trimmed and reads

that were sequenced from the reverse end were reverse complemented so that all sequences

begin with the 5 end of the amplicon. Potential chimeras were identified using mothur

implementation of ChimeraSlayer. Reference sequences were aligned against a bacterial or

archaeal SILVA database using the Needleman-Wunsch algorithm in mothur. The aligned

reference sequence was then used as the template for flagging chimeric sequences. For High

Quality filtering (HQ), sequences were removed from the analysis if they were <200 nt, had

ambiguous bases, had a non-exact barcode and primer match, and had a homopolymer >9

nt. If a sequence quality score fell below 20 for a 50-nt window, then it was trimmed at

previous position where the average quality score >20. Similarly, sequences were binned

to corresponding sample based on corresponding barcodes and reverse complemented.

Potential chimeras were identified using ChimeraSlayer. Reference sequences were aligned

against the Greengenes database (greengenes.lbl.gov) using Pynast. The aligned reference

sequences were then used as template for flagging chimerical sequences. For sequences that

were filtered using AmpliconNoise (AN), all samples were run through the AmpliconNoise

pipeline, which consists of removal of both sequencing and PCR errors and removal of

chimeras using its in built Perseus algorithm(Quince et al., 2011). AmpliconNoise analysis

consists of two stages, PyroNoise removal of 454 errors, and SeqNoise removal of PCR single

base misincorporations. We have, therefore, estimated the proportion of errors attributable

to these two sources by calculating the reduction in error rate after applying each algorithm

(Table 2.5). Raw, per-base error rates varied from 0.1-0.25% for FLX and 0.15-0.9% for

Titanium chemistry. For FLX, the V12 region ( 0.25%) was associated with a higher raw rate

than V4 ( 0.1%). For Titanium, higher error rates are associated with V13 ( 0.8%) region,

mostly due to PCR chimeras. Both 454 sequencing errors and PCR errors are responsible

for around 0.05% of the overall error rate each, but there is some variation between regions.

The V6 region appears particularly prone to PCR noise with a 0.1% error rate attributable

to this source, and the V13 region has a higher rate of 454 errors (0.1%). Frequencies

of chimeras were also calculated as a percentage of unique types of sequences following

noise removal by AmpliconNoise. This method (Quince et al., 2011) was used to classify

sequences as good, chimeric, or trimeric by direct comparison with databases composed of
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the corresponding region extracted from genome sequences. These results confirmed those

from ChimeraSlayer, and all the shorter FLX amplicons chimera frequencies were low among

erroneous reads (<7%). However, Titanium sequences showed higher frequencies for V13

(>60%) than V35 ( 10%) or V69 (<5%), and a twofold reduction in frequency for V13 was

observed when the cycle number was reduced to 24. For downstream OTU analysis, except

for the sequences that were denoised using AmpliconNoise, sequences were then trimmed

so that all sequences began and ended at the same coordinates. Sequences were aligned

in mothur against the SILVA database and trimmed at the same alignment position. The

position for trimming was manually selected to conserve number of sequences per sample

and also have an approximate average length of 200 nt for FLX and 400 nt for Titanium

amplicons (Table 2.4). An example of mothur batch file for each amplicon that was used

to trim sequences is included. A summary of number of raw reads and processed reads is

shown in Table 2.5.

OTU Diversity Analysis

On both the LQ and HQ datasets we applied three different clustering algorithms as

implemented by RDP, mothur, and ESPRIT/SLP. For the RDP-based analysis, sequences

were aligned using the secondary-structure-aware Infernal aligner and clustered using

complete-linkage clustering. In mothur based OTU analysis, trimmed sequences were

aligned against the SILVA database using Needleman-Wunsch alignment, pre-clustered

using the mothur implementation of single-linkage pre-clustering algorithm from Huse et al.

(2010) and clustered using average linkage clustering. Batch files that list the commands

that were used to cluster the sequences are provided. For the SLP-PW/AL analysis,

trimmed sequences were aligned using the pairwise alignment algorithm in ESPRIT, pre-

clustered using the single linkage script from Huse et al. (2010) and clustered based

on pairwise distances using average-linkage clustering in mothur. A shell script was

used to generate pairwise distance and cluster sequences (http://alrlab.research.pdx.

edu/aquificales/pyrosequencing.html). To identify which of the clusters at different

distance levels corresponded to which taxa (strain, species, genus etc.) in the synthetic

community, the trimmed reference sequences were also clustered with pyrosequence
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data. Sequences that did not co-cluster with reference sequences were analyzed for

potential mutations, chimeras and by taxonomic affiliation to identify potential unexpected

contaminants. Sequences that were denoised using the AmpliconNoise pipeline were

clustered based on the distance matrices generated as a result of pairwise alignment similar

to ESPRIT package. Average linkage clustering was implemented in this case, essentially

as described (Quince et al., 2011).

Taxonomic diversity analysis

Because each sequence in the dataset should correspond to a SSU rRNA gene sequence

from the represented genomes, accuracy of SSU rDNA-based diversity estimation was

also investigated directly by matching pyrosequence data to references and comparing

observed diversity and abundance with those known based on the assembly of each synthetic

community. Each processed amplicon dataset was top hit matched to a corresponding

reference database by Megablast. As few as single nucleotide differences were sufficient for

accurate matching to the corresponding reference sequence, as determined empirically. For

some closely related strains or species, however some of the SSU rRNA region amplicons

were 100% identical (Figure 2.13) and assignment to a specific organism in the community

was not possible. In those cases, the numbers of hits to the group were assigned to the

organisms based on their Q-PCR-based representation. Two pairs of organisms could not

be discriminated with any amplicon (Pyrococcus furiosus - P. horikoshii and Sulfitobacter

sp. EE-36 - Sulfitobacter sp. NAS-14.1 ), pointing to limitations of the SSU rRNA gene

for comprehensive diversity estimation. For each amplicon dataset, we calculated a ratio

between the observed reads-based abundance of each organism and that known based on

qPCR-guided community assembly.
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2.4 Results and discussion

Synthetic archaeal and bacterial community characteristics

By combining known amounts of purified gDNAs we constructed two diverse synthetic

communities representing the domains Archaea and Bacteria, respectively. These com-

munities included most phyla with cultured representatives, as well as contained closely

related species and strain pairs. All included organisms have complete or high quality draft

genomic sequences. Sixteen members of Crenarchaeota, Euryarchaeota and Nanoarchaeota

represented Archaea, while Bacteria included 48 organisms from 18 phyla (Table 2.1 and

Table 2.2). The organisms covered a wide variety of metabolic strategies and adaptations

to the human body, marine and terrestrial aquatic environments, soils and the subsurface,

and extreme physical or chemical conditions. Unlike environmental communities, each

gDNA was individually purified and quantified prior to being mixed with others, thus

true community composition was known, and extraction-based biases were eliminated.

The genomes span a broad range of GC content (27-70%), sizes (0.5-10 Mbp) and rRNA

operon number (1-10). Based on these known parameters and quantification by Q-PCR,

we validated the representation (cell equivalents) of each species. The Archaea community

contained one dominant species (Nanoarchaeum equitans, 30% of genome copies), with

the others present at abundances between 1-10%. Due to differences in genome size and

rRNA gene copy number, the actual contribution of individual organisms to the metagenome

complexity spanned a 20-fold range (e.g. N. equitans, with a genome of 0.5 Mbp represented

10% of the metagenome). The Bacteria community contained no single dominant organism

however there was a 25-fold variation in the gDNA abundance among the individual

taxa. For several tests, we also combined them into a 64-member Archaea-Bacteria (AB)

community in which the genomic abundance of taxa spanned a 200-fold range, from 0.05-1%

(36 taxa), 1-5 (23 taxa) to 5-8% (6 taxa). These communities were not aimed at reproducing

any specific type of natural diversity, but to broadly represent the phylogenetic and genomic

heterogeneity within Bacteria and Archaea that is often encountered in complex community

assessments. Many communities contain a vastly greater number of taxa at all levels (e.g.

soil communities) or are scarcer in number of high taxa but much more diverse at genus

level and below (e.g. human gut microbiota). However, the synthetic community used here,
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by combining taxa adapted to many different types of environments, should provide a good

initial assessment of the power of taxonomic and quantitative determinations to be expected

when using a broad range of natural samples.

Metagenomic characterization of the synthetic Archaea-Bacteria community

For metagenomic 454 and Illumina sequencing we used the AB community as it contained

the broadest variation in phylogenetic diversity and genomic characteristics. These two

platforms differ in output and data characteristics but both have been widely used for

environmental sequencing (Hess et al., 2011; McCarren et al., 2010)

The 454 sequencing library was generated using NexteraTM in vitro transposition

(Caruccio, 2011), which has low DNA, input requirement compared to physical shearing

methods (50 ng vs. >1 µg ). Analyses using single organism libraries have shown relatively

similar coverage in such libraries compared to ones obtained by shearing (Adey et al., 2010).

Because in many environmental studies the availability of DNA is limited, determining

the accuracy of community composition inferences using metagenomic sequencing of such

samples is important. A recent study demonstrated that extensive, phi29 polymerase

amplification significantly alters the composition of metagenomic libraries (Yilmaz et al.,

2010). While the transposition-generated library requires only mild amplification, a bias

risk remains and was therefore investigated. The NexteraTM AB library was sequenced

on one quarter of a 454 FLX Titanium plate and generated 2.9 × 105 reads (85.5 Mbp

of sequence). For the Illumina platform, a standard sheared library was constructed and

bidirectional sequencing on one lane resulted in 107 million reads (>10 Gbp of sequence).

Using local alignment, >97% of the 454 data (83.5 Mbp of sequence) was mapped to the

64 reference genomes (205.6 Mbp total length) and 2% to plasmids of those organisms (32

plasmids, totaling 4.2 Mbp), reaching average metagenome coverage of 0.39 fold. Similarly,

over 92% of the Illumina reads were mapped to the reference genomes and plasmids,

achieving 46-50 fold metagenome coverage. The combination of a 200-fold range variation

in individual genome abundance with the 20-fold variation in genome size generated distinct

sequence frequency distributions for the different members of the community. Consequently,
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the observed average fold coverage of individual genomes by mapped reads ranged from 0.01-

1.3 for the 454 data to 6-300 for Illumina (Table 2.1 and Table 2.2). With Illumina, 53 of the

64 organisms had coverage overlaying >95% of their determined chromosomal sequences.

To determine how accurately the metagenomic data described the actual community

composition, we compared the expected representation of each species based on qPCR

quantification with the observed coverage. Overall, both metagenomic sequence sets

described the community genomic composition remarkably well, with 70% (454) and 78%

(Illumina) of the individual species/strains estimated within a factor of two-fold or less from

their actual abundance Figure 2.1. Importantly, both sequencing platforms appear relatively

unaffected by the abundance of individual genomes spanning two orders of magnitude

variation. However, the 454 metagenome showed a measurable bias towards oversampling of

genomes with low GC (<40%) and under sampling for those with high GC values (>60%),

including in-depth of coverage across the individual genomes (Figure 2.2 and Figure 2.3).

Potentially, such bias could be attributed to enzymatic steps in library construction. In

comparison, the Illumina metagenome was less influenced by GC content, with abundances

of most of the individual genomes <2-fold of their expected levels and with GC-based

coverage better tracking the actual metagenome composition than 454. Pairwise t-tests

confirmed a higher differential GC-linked bias in low-GC organisms (27-40% GC; p=0.027)

and lower in high-GC organism (40-70% GC; p=2.7e-05) for 454 data, while representation

of mid-range GC organisms (40-60%) was not significantly different between 454 and

Illumina (p=0.170). The abundance of some thermophilic taxa (Pyrococcus, Dictyoglomus,

Sulfurihydrogenibium) was overestimated by both platforms (2-5 fold). This may be linked

to extensive regions of very low GC in their genomes, which displayed an inflated coverage

with both platforms, although other sources of bias could be involved. However, when

we analyzed each individual genome in the community in terms of sequence coverage, the

only bias detected was linked to local GC content. A comparison of the intra- genome

coverage with both 454 and Illumina for representative genomes with different GC content is

presented in Figure 2.9 (similar plots were obtained for the other genomes of the community

and also for genomes we sequenced independently).
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Figure 2.1: Characterization of the Archaea-Bacteria community by 454-FLX-T (A) and Illumina-
HighSeq (B) metagenomic sequencing. The accuracy of retrieving the known composition of the metagenome
is indicated for each organism as a ratio of the observed genomic coverage to the known genome abundance
in the community and is plotted against its known abundance in the community. Shading zones indicate a
low level of bias (dark: <1.5 fold; light: 1.5-2 fold) from the 12 perfect value of 1

The sequences were uploaded into two widely used metagenomic analysis systems,

IMG/M (Markowitz et al., 2012) (454 data) and MG-RAST (Glass et al., 2010) (454 and

Illumina data). Because all individual genomes of the synthetic community are integrated

in these systems, we evaluated IMG/M and MG-RAST for accuracy in predicting and

quantifying the genomic diversity of the synthetic metagenome. Although corrections for

individual genome size and coverage are difficult to apply on metagenomic datasets, both

systems recovered the bacterial phyla representation quite well, with most taxa estimated

to within a factor of two of their actual abundance (Fig 2.9). Archaea were less accurately

quantified, some being either under (N. equitans), or over estimated (Crenarchaeota and

Euryarchaeota). Inferences based on the Illumina data were generally consistent with those

based on 454, with some discrepancies potentially due to GC coverage differences between

platforms. However, both IMG/M and MG-RAST predicted a higher diversity than actually
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Figure 2.2: Effect of sequence processing parameters on OTUs. Sequenced amplicons from V13 region of
SSU rRNA of both Archaea (A) and Bacteria (B) were filtered, trimmed, and clustered using the parameters
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Figure 2.3: OTU-based diversity estimation as a function of genetic distance and analytical approach
relative to the reference genomic SSU rRNA sequences. Bacterial V13, V4, archaeal V13 and the combined
archaeal-bacterial V48 amplicon datasets are shown. The results for the other amplicons are shown in
the Figure 2.14. Silva-SLP-AL (red) and Silva-SLP-AL-HQ (black): single-linkage pre-clustering 2% and
average linkage clustering of SILVA alignment of sequences not purged of errors and on sequences with the
chimeras removed (parameters B and G in Figure 2.2, respectively). PW-SLP-AL (green): single-linkage pre-
clustering 2% and average linkage clustering of Needleman-Wunsch (NW) pairwise alignment of sequences
not purged of errors. PW-AN-AL (orange): average linkage clustering of pairwise alignment of sequences
after denoising and chimera removal using AmpliconNoise/Perseus. For comparison, OTUs obtained by
clustering the reference sequences using Silva-SLP-AL (blue) are shown. Note that the y-axis in (A) is
scaled logarithmically.

present, at most taxonomic levels (MG-RAST alpha diversity was overestimated by >6

fold for both datasets)(Table 2.3) . Most of the spurious groups of organisms at high

taxonomic levels (some bacterial and archaeal phyla as well as fungal, plant and metazoan

lineages) were based however on few sequences and had relatively low confidence values but

numerous sequences were also incorrectly assigned to taxa closely related to those present

in the community. This appears to be due to a combined effect of the short read data and

the variable analysis stringency, limiting phylogenetic resolution and leading to incorrect
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assignments between closely related organisms and, for conserved genes, even across high-

rank taxa. Such, overestimations are an important factor to consider, especially in studies

that aim to identify rare organisms. Default predictions by the current versions of these

two widely used analysis platforms reported organisms and taxa (e.g. Eukarya, several

bacterial and archaeal phyla) that cannot be linked to the community we used here. Some

issues may be addressable by sequence assembly, which should improve gene prediction and

functional annotation in addition to taxonomic assignments, especially at high sequence

coverage (Pignatelli and Moya, 2011). At present, neither IMG-M nor MG-RAST provides

Illumina sequence assembly options although MG-RAST allows upload and assignment of

raw sequence reads. It is important to note, however, that the Illumina short reads provided

a very good estimates of taxonomic distribution above the species level, with only a 2-3 fold

overestimation of the actual number of genera and orders. For the 454 data, however, the

use of the default parameters severely overestimated higher level diversity ( 20 fold for

bacterial genera and identified >100 spurious eukaryotes). Increasing the stringency of the

analysis produced much more accurate results, inline with the Illumina output (Table 2.3).

In analyzing environmental metagenomic datasets selection of the various cutoff parameters

is therefore an important consideration and, the results presented here may serve as initial

guidance in developing such procedures.

We also evaluated the accuracy of taxonomic assignments under the hypothesis that

none of the exact genomes of the community are represented in the database. While in

natural communities one often times identifies closely related organisms to those that have

a genome sequence determined, a large fraction of the Bacteria and Archaea still have

poor genomic coverage, even often at phylum level. Therefore, determining where the

metagenomic sequence data maps and how accurate the assignments are to higher taxon

level (e.g. family, order, phylum) is of interest to expand results obtained with synthetic

communities to natural ones. Because the genomes of all organisms we included in the

synthetic community are part of the public databases used by IMG-M and MG-RAST,

with no option to be excluded from the analysis, we performed a local metagenomic analysis

with MEGAN (Huson et al., 2007). We compared taxonomic assignments to a Bacteria-

Archaea database containing all available sequenced genomes, and to a version of that

from which we removed the genomes represented in the community. In the first case, the
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accuracy was verified to species, genus and family levels. When the reference organism was

excluded from the community, the accuracy was analyzed to genus and family levels. When

taxa were poorly represented in the genomic database (e.g. the reference genome in the

community was the single sequenced representative at genus, order or even phylum level,

such as Ignicoccus, Nanoarchaeum, Gemmatimonas), eliminating the reference genome from

the database affected the assignment of those sequences, most having no match, especially

using the stringent megablast algorithm. As a result, the abundance of those taxa were

underestimated in the community. The more permissive blastn-based analysis produced

a more accurate representation, especially at family level for both 454 and Illumina data.

Figure 2.10 summarizes the result of analyses using the two different blast-mapping criteria

in comparison to the known taxonomic composition of the community. In addition, we

analyzed the use of a single marker gene (SSU rRNA) for explaining the taxonomic and

quantitative composition of the community using the 454 and Illumina metagenomes. The

reads corresponding to that gene were identified and analyzed using the RDP Classifier

(Cole et al., 2009). While many of the taxa were identified to genus level, the quantitative

recovery of the relative community composition was very poor, especially with the Illumina

data, and there was a severe overestimation of the Archaea (Figure 2.10). We explain this

by a combination of low taxonomic resolution of the short reads that randomly cover the

rRNA sequence (and therefore carry different phylogenetic signal depending on the degree of

variability within the gene) and by the GC bias present in the rRNA operons relative to the

average genome content, especially in the many hyperthermophilic archaea present in the

community. In addition, because single gene coverage by 454 data in complex metagenome

is generally low, taxon identification and quantification is statistically weak. The result

of this analysis indicates that a single gene marker such as rRNA is a poor determinant

of the community structure in metagenomic sequence data from complex communities,

especially when one desires quantitative estimates. Synthetic metagenomes therefore

provide important controls in selecting algorithms and parameters used for interpretation

of actual environmental data on various platforms and software and should be explored in

conjunction with in-situ benchmark studies (Pignatelli and Moya, 2011; Mavromatis et al.,

2007).
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SSU rRNA gene amplification, pyrosequencing and data processing

For rRNA gene-based taxonomic characterization of the three synthetic communities,

multiple, variable-length fragments of the SSU rRNA genes spanning most hypervariable

regions were amplified and sequenced using the 454 platform. The selection of primers was

based on their use in prior Sanger and 454 sequencing studies and included five pairs for

Bacteria, three pairs for Archaea and a pair that we developed to simultaneously capture

both domains (Frank et al., 2008; Engelbrektson et al., 2010; Wu et al., 2009; Porat et al.,

2010; Bates et al., 2011; Haas et al., 2011; Kan et al., 2011). Because some were limited

in taxonomic coverage, we introduced modifications or supplemental variants employed in

primer mixtures, to expand their breadth (Figure 2.11 and Figure 2.12 and Table 2.4).

While degenerate positions in primers were predicted to enable annealing to almost all taxa

included in the simulated communities, mismatches to some of the target sequences existed.

Such mismatches allowed us to identify their effects in detecting those taxa, and reflect the

important reality that there are no truly universal primer sets. Effects of polymerase fidelity,

amplification cycle number and amplicon length on inferred taxonomic diversity as well as

the variability between replicate amplifications were also tested. Amplicons were sequenced

using either FLX or Titanium chemistry and the resulting data processed for barcode-based

de-multiplexing, removal of amplification or sequencing artifacts, and diversity analyses

using a combination of software packages (mothur, ChimeraSlayer, AmpliconNoise, RDP,

ESPRIT, QIIME). AmpliconNoise analysis involved PyroNoise removal of 454 errors and

SeqNoise removal of PCR single base misincorporations (Quince et al., 2011). We estimated

the proportion of errors attributable to these two sources by calculating the reduction in

error rate after applying each algorithm (Table 2.5). Raw per-base error rates varied from

0.1% to 0.25% for FLX and 0.15% to 0.9% for Titanium, with some differences noted

between the various amplicons. The error rate following noise and chimera removal was

remarkably low, at less than 0.1% for most regions.

A commonly reported artifact in SSU rRNA amplicon analyses is the formation of

chimeras during PCR (Haas et al., 2011; Quince et al., 2011; Suzuki and Giovannoni,

1996), which inflates the inferred richness. Overall, the frequency of chimeras detected by

ChimeraSlayer or Perseus in AmpliconNoise was very low (<1% of reads) with the exception
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of the bacterial V13 dataset for which it ranged between 7-10%. The rate decreased (2-

3 fold) with fewer PCR cycles (<3% at 24 cycles for V13) and also when using highly

accurate enzymes with additives for increasing PCR specificity (High-GC mix, Accuprime-

Pfx). Whilst the proportion of chimeric reads was generally low, they could form a large

proportion of the unique sequences present following noise removal, implying that their

contribution to the over estimation of diversity is significant

Community diversity analysis using sequence similarity

Because SSU rRNA gene sequence similarity decreases with increasing phylogenetic distance

between organisms, quantifying the differences between individual sequences in microbial

community datasets provides a metric of phylogenetic diversity that can be standardized and

applied in an ecological and statistical framework. Though approximate and not without

pitfalls (Stackebrandt and Ebers, 2006), pairwise similarity values have been adopted in

comparing distance-based classifications to phylogenetically defined taxonomic ranks (e.g.

97% similarity corresponding to species level). For the synthetic communities analyzed

here, we determined the actual sequence similarity level for each sequenced region of the

SSU rRNA gene and each pair of species and strains from the same genus of Archaea and

Bacteria (Figure 2.13). These values were used to determine the maximum resolution of

the sequence analysis step and, in conjunction with the pairwise distances between all

the members of the community, to calculate the actual number of taxonomic units at

various levels of sequence similarity. For some genera the 97% value holds relatively well

and is uniform between the various regions. For other genera however (e.g. Thermotoga,

Sulfurihydrogenibium, Salinispora) inter-species similarity values were significantly higher

(>99%), which limited the taxonomic resolution and underestimated diversity. However,

as OTU similarity cutoffs approach 100%, effective resolution of species and strains in

natural communities is confounded by rare sequence errors. Parameters and methods used

for sequence processing and clustering into OTUs can additionally impact the inferred

diversity OTUs (Huse et al., 2010; Kunin et al., 2009; Schloss et al., 2011; Sun et al., 2012).

To exemplify these effects the number of OTUs at 97% similarity (3% distance) is shown in

Figure 2.2 for bacterial and archaeal V1-V3 region. The frequency of OTUs with only one
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or two sequences is compared with those consisting of multiple sequences as well as with

the actual OTUs determined by clustering of reference sequences. Less stringent sequence

processing leads to severe diversity overestimation, primarily by singletons. Sequence

trimming to common coordinates and quality filtering eliminated a large proportion of

the singletons and reduced the number of spurious OTUs. However, even after OTU

calculation using the mothur implementation of SLP-AL (Huse et al., 2010; Schloss et al.,

2011), some 30% (19-21 out of 61-63) of the bacterial OTUs were still attributable to noise

although only one contained more than two sequences. This could be reduced to just 6%

(2-3 out of 44-47) if AmpliconNoise is used instead of single linkage pre-clustering for noise

removal. This effect is even more dramatic at lower similarity cut-offs. A summary of the

number of OTUs at progressive distances for each SSU rRNA gene amplicon is shown in

Figures 2.3 and 2.14. However, combined removal of sequencing/PCR noise and chimeras by

AmpliconNoise and Perseus followed by pairwise alignments and average linking clustering,

eliminated most spurious OTUs at virtually all distance settings and best represented the

community diversity.

Community diversity analysis using taxonomic mapping

In addition to diversity estimation using similarity clustering, relating SSU rRNA gene

sequences to taxonomically classified organisms provides important information about the

composition and, to some extent, potential physiological and ecological characteristics of a

community. Because the actual composition of natural communities is not known a priori,

the accuracy and resolution of sequence based taxonomic inferences remains undetermined,

and most often, is not verified by independent measurements/techniques in ecological

studies. Using the synthetic Archaea and Bacteria communities we analyzed how the

different SSU rRNA regions reflect the known quantitative taxonomic composition and

in comparison to the frequencies obtained by metagenomics. For each sequence dataset

and each organism, an accuracy ratio (observed versus predicted sequence frequency) was

determined and the average of three replicates is represented as a heat map in Figure

2.4, with a value of one corresponding to perfect agreement. The technical reproducibility

between replicates for each primer set ranged from an average of 2.5 fold variation for
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the bacterial V4 amplicon to 1.5 fold for V13 amplicon. A higher variation in inferred

abundance between the replicates was correlated with decreasing actual organism abundance

in the synthetic community, especially at levels below 1%. This closely followed the

expected patterns associated with Poisson distribution noise and as such may be mostly

be attributable to under-sampling. However, stochastic variation in PCR amplification

efficiencies may play a role as well (Figure 2.15). In general, over or underestimating the

abundance of the different taxa in a community by up to two fold may be considered a

resolution limit of these approaches, however these would likely be greater in the absence

of averaging independent sequencing data or pooling of PCR products before sequencing.

Such noise can be expected to be even more pronounced in natural communities with higher

diversity and many low abundance organisms (Zhou et al., 2011). Our analysis indicates that

although for many organisms the inferred abundance is within a factor of two or less from

the actual value, no primer set was ideal for quantitatively representing the entire diversity

of even our relatively simple community and biases did occur. Some taxon underestimation

could be explained by mismatches between primers and the target sequence, as no primers

are universal, especially at species level. Primer alignments for all tested organisms and

identification of mismatches likely associated with underestimation or lack of detection are

shown in Figures 2.11 and 2.12. Surprisingly, some phylum-level detection problems in

several amplicon regions could not be directly attributed to primer mismatches. The most

apparent discrepancies were underestimation of Bacteroidetes and Actinobacteria by the V4

amplicons and the lack of detection of most thermophilic Aquificales and Thermotogales by

V69 amplicons. Because these group are important members of specific communities (e.g.

mammalian gut, soils, hydrothermal environments), the choice of primers can significantly

impact diversity estimation in ways not always predictable by primer sequence analysis

(Morales and Holben, 2009). Therefore, caution should be applied when analyzing diversity

with novel sets of primers and, if feasible, testing using a synthetic community of gDNA or

SSU rRNA plasmid clones from that environment should be considered.

Similarly for the Archaea community, significant differences occurred between primer

sets and no combination quantitatively reproduced the composition of the synthetic

community. The V13 region amplicon performed best for most of the Euryarchaeota lineages

but failed to detect two of the Pyrobaculum species that have an intron in that region,
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and underestimated other Crenarchaeota as well as N. equitans. Conversely, combinations

of primers that amplify the V4 or V48 region tend to overestimate Crenarchaeota and

underestimate Euryarchaeota, including the methanogens. The explanation for these biases

is unclear as, with the exception of Methanopyrus kandleri, no clear mismatches occur

for any primer combinations with their target species. One potential reason for these

fluctuations could be the high GC content of the SSU rRNA sequence of these mostly

thermophilic and hyperthermophilic organisms, that in some cases contrasts sharply with

that of the overall gDNA. Differences in local melting kinetics in such genomes combined

with PCR competition between primers may be one explanation for such bias. Species with

extreme genome GC composition (N. equitans and H. volcanii) were indeed most affected,

both in amplicon and metagenomic sequencing. We did not observe any correlation between

the degree of bias in either Bacteria or Archaea communities that can be traced back to

the number of rRNA operons in individual genomes. One has to consider nevertheless

that accurate quantification of an organisms presence is dependent on rRNA copy number

estimation. Because in natural communities the actual number of rRNA associated with

each organism is unknown, inferences have to rely on using genome sequence of related

species.

To evaluate the reproducibility of replicates and accuracy of community representation

between each rDNA amplicon region, and each metagenomic sequencing approach, relative

to the expected community structure we calculated Bray-Curtis similarity matrices using

the species detection ratios for each dataset. Principal coordinate analysis and hierarchical

clustering derived from these matrices indicated that both Illumina and 454 metagenomic

data closely recovered the known taxonomic and quantitative composition of both Bacteria

and Archaea communities (Figure 2.5). Among the rRNA amplicons, V13 and V35 for

Bacteria and V13 and V4a for Archaea best represented the overall composition of the two

communities and displayed lowest variability among replicates. The amplicon that captures

Bacteria and Archaea (V48) also appears to be a viable option for diversity surveys that

target both domains simultaneously.
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V12  V13  V4 V35  V69 V48
Hydrogenobaculum sp. Y04AAS1 0.0 0.3 1.8 0.2 0.1 1.0

Persephonella marina 0.0 1.6 1.6 0.6 2.0
Sulfurihydrogenibium sp. YO3AOP1 0.0 1.4 0.7 0.6 1.3

S. yellowstonense 0.0 1.4 0.7 0.6 0.0 1.2
Thermotoga neapolitana 1.2 0.3 1.2 0.5 0.7

Thermotoga petrophila 1.3 0.3 1.2 0.5 0.7
Thermotoga sp. RQ2 1.2 0.3 1.2 0.4 0.7

Deinococcus radiodurans 0.5 0.4 0.6 0.6 0.6 0.4
Thermus thermophilus 1.1 0.5 1.9 0.7 0.5 0.3
Dictyoglomus turgidum 2.2 0.4 7.9 2.4 0.1 0.8

Salinispora arenicola 0.5 1.2 0.1 1.0 0.4 0.3
Salinispora tropica 0.5 1.2 0.1 1.0 0.4 0.3

Chloroflexus aurantiacus 2.5 2.2 1.7 2.7 0.1 0.4
Herpetosiphon aurantiacus 2.5 1.0 1.0 0.7 0.6 1.3

Nostoc sp. PCC 7120 1.3 1.6 1.3 1.8 5.9 2.2
Bacteroides thetaiotaomicron 2.2 0.9 0.0 1.2 0.1 1.3

Bacteroides vulgatus 2.1 0.7 1.4 0.1 1.2
Porphyromonas gingivalis 0.9 0.5 0.0 1.0 0.1 0.8

Chlorobium limicola 1.0 1.7 0.4 0.3 0.8 0.2
Chlorobium phaeobacteroides 0.7 1.3 0.7 0.9 1.2 0.2

Chlorobium phaeovibrioides 0.6 1.2 0.6 0.7 0.9 0.1
Chlorobium tepidum 1.3 1.9 0.6 1.1 1.1 0.2

Pelodictyon phaeoclathratiforme 0.6 1.1 0.7 0.8 1.3 0.2
Caldicellulosiruptor bescii 3.1 0.8 2.7 1.8 0.8 0.8

Caldicellulosiruptor saccharolyticus 4.4 1.2 4.5 2.1 1.9 1.4
Clostridium thermocellum 1.8 1.0 0.4 1.5 0.6 0.9

Enterococcus faecalis 1.2 1.2 0.5 1.6 8.5 1.5
Thermoanaerobacter pseudeth. 0.9 0.9 1.1 2.5 1.5 0.5

Fusobacterium nucleatum 2.2 1.8 0.6 2.2 0.1 2.1
Akkermansia muciniphila 0.0 1.6 2.0 0.1 2.0 1.5

Gemmatimonas aurantiaca 0.6 0.3 1.6 0.8 0.9 1.1
Rhodopirellula baltica 0.0 0.7 0.5 0.2 0.0 1.0
Treponema denticola 2.6 0.8 0.8 1.4 0.0 0.9

Acidobacterium capsulatum 0.7 1.3 1.0 0.9 2.4 0.8
Ruegeria pomeroyi 0.8 1.0 0.6 1.0 0.7 0.9

Sulfitobacter sp. EE-36 0.7 1.0 0.8 1.0 0.3 0.6
Sulfitobacter sp. NAS-14.1 0.7 1.1 0.8 1.0 0.3 0.6

Zymomonas mobilis 1.2 1.6 0.5 0.3 1.5
Bordetella bronchiseptica 1.1 0.7 1.3 1.8 0.5 5.3
Burkholderia xenovorans 0.7 0.7 1.0 0.9 0.1 1.5

Leptothrix cholodnii 0.5 0.6 0.7 0.9 0.1 2.4
Nitrosomonas europaea 0.8 0.7 2.6 1.0 0.2 1.1

Shewanella baltica OS185 0.8 0.5 1.1 1.2 1.3 1.7
Shewanella baltica OS223 0.8 0.4 1.1 1.2 1.3 1.6

Desulfovibrio piger 0.0 1.0 1.6 0.4 3.5 2.1
Desulfovibrio vulgaris 0.7 0.9 0.3 2.9 1.4

Geobacter sulfurreducens 1.5 1.0 0.6 2.1 0.7 1.9
Wolinella succinogenes 1.0 1.2 0.6 0.4 2.1 1.1

ND
ND

ND
ND
ND

ND
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Figure 2.4: Taxonomic diversity and abundance inferences based on shotgun metagenomic and amplicon
sequencing. The accuracy ratio (observed abundance/expected abundance) is represented as a heat map
diagram with values for each organism and data set. Bias values of >1.5-fold are represented as a heat map
of increasing color intensity (red for underestimated and green for overestimated abundance). A value of 0.0
indicates >10 fold underestimated abundance, but detection at low levels. ND indicates that no sequence for
that organism was identified in that amplicon dataset. Values are averages of three independent amplification
and sequencing replicates.
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Figure 2.5: (A) Principal Coordinate Analysis (Bray-Curtis similarity) of Bacteria and Archaea
community composition inferred using metagenomics (454-M and ILM-M) and SSU rDNA amplicon
sequencing relative to the known composition based on community assembly (REF). Replicates for each
amplicon are presented, with closer grouping indicating less variability. The V48 data is presented separately
for Archaea and Bacteria in those respective panels but was obtained using the combined AB community.
(B) Hierarchical clustering (Bray-Curtis similarity) of community composition accuracy indexes for each
amplicon region and sequencing strategy.
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Figure 2.6: The relationship between accuracy of metagenomic abundance estimates and genomic
G+C%. The ratio between observed genomic coverage and known genome abundance in the community
is plotted relative to the GC contents of that genome for each of the sequencing platforms. Shading zones
indicate a low level of bias (dark <1.5 fold, light 1.5-2 fold) from the perfect agreement value of 1. Genomes
above or below those zones display an increased bias, correlated with low or high GC content.
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Figure 2.7: (A). Depth of coverage by 454 and Illumina sequence reads on the Archaea-Bacteria
metagenome. Genomes of all included organisms served as the reference and the plot displays, for each GC
content level, the mean read coverage of 100-bp reference segments with that GC content. The overlapping
shaded area represents the quantitative GC content distribution in the reference metagenome (moving 100-
bp sequence segments), not scaled to y-axis and included only for distribution shape comparison with the
454 and Illumina data. (B) Differential GC bias in metagenomic quantitative inferences between 454 and
Illumina platforms. The three GC window intervals (27-40%,40-60% and 60-70%) were used for pairwise
t-test comparisons
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Figure S3 Depth of coverage by 454 and Illumina sequence reads of three genomes with low (Nanoarchaeum 
equitans, 31.6%), medium (Nitrosomonal europaea, 50.7%) and high (Salinispora tropica, 69.5%) average GC 
content. Each genome contains regions of GC content that depart significantly from the average value (e.g. in 
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sequencing platform.

Figure 2.8: Depth of coverage by 454 and Illumina sequence reads of three genomes with low
(Nanoarchaeum equitans, 31.6%), medium (Nitrosomonas europaea, 50.7%) and high (Salinispora tropica,
69.5%) average GC content. Each genome contains regions of GC content that depart significantly from
the average value (e.g. in ribosomal RNA genes, in non-coding or repetitive regions). To enable overlapped
representation of the coverage bias, the Y-axis scale is in relative units, the absolute values being different
depending on genomes and sequencing platform.
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Figure 2.9: Taxonomic diversity composition of the Archaea-Bacteria community inferred by IMG/M
and MG-RAST. The accuracy ratio was calculated between the percentage of sequences (454 or Illumina)
assigned to individual phyla by the two analysis systems and the known quantitative distribution of those
taxa in the community. The shaded region indicates a two-fold accuracy window. Sequences with no
assignments or assigned to non-present phyla were not taken into account.
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A.
Phylum Family Organism Name Ref Ref

(S) (S) (G) (F) (G) (F) (G) (F) (S) (S) (G) (F) (G) (F) (G) (F)

Desulfurococcaceae Ignicoccus hospitalis 0.9 0.9 0.9 0.9 0.0 0.2 0.0 0.8 1.8 1.8 1.8 1.8 0.0 0.4 0.0 1.8 0.0 13.0

Pyrobaculum aerophilum IM2 1.6 1.6 1.5 1.5

Pyrobaculum arsenaticum 1.2 1.2 1.3 1.3

Pyrobaculum calidifontis 0.9 0.9 1.3 1.3

Sulfolobaceae Sulfolobus tokodaii 2.9 2.9 2.9 2.9 0.6 0.8 1.5 2.1 2.4 2.4 2.4 2.4 0.4 0.5 1.2 1.7 5.6 18.0

Pyrococcus furiosus 4.9 5.0 4.4 4.4

Pyrococcus horikoshii 2.0 2.0 1.9 1.9

unclassified Euryarchaeota Aciduliprofundum boonei 0.7 0.7 0.7 0.7 0.0 0.0 0.0 0.0 0.8 0.8 0.8 0.8 0.0 0.0 0.0 0.0 0.0 12.0

Archaeoglobaceae Archaeoglobus fulgidus 0.8 0.8 0.8 0.8 0.0 0.1 0.2 0.3 0.8 0.8 0.8 0.8 0.0 0.1 0.2 0.3 1.4 5.0

Halobacteriaceae Haloferax volcanii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.4 0.4 0.4 0.0 0.5 0.0 0.9 0.0 14.0

Methanopyraceae Methanopyrus kandleri 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 2.1 2.1 2.1 2.1 0.0 0.0 0.0 0.0 16.0 18.0

Methanosarcinaceae Methanosarcina acetivorans C2A 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.7 0.6 0.7 0.7 0.7 0.5 0.5 0.7 0.9 0.0 17.0

Methanocaldococcaceae Methanocaldococcus jannaschii 1.8 1.8 1.8 1.8 4.2 4.6 2.6 2.7 1.1 1.1 1.1 1.1 3.3 3.3 2.1 2.2

Methanococcus maripaludis C5 0.8 0.8 0.4 0.4

Methanococcus maripaludis S2 1.0 1.0 0.5 0.4

Nanoarchaeota Nanoarchaeota Nanoarchaeum equitans 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.6 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0 20.0

Phylum Family Organism Name Ref Ref

Aquificaceae Hydrogenobaculum sp. Y04AAS1 2.4 2.0 2.0 2.0 0.0 0.1 0.0 0.6 4.9 4.5 5.3 4.5 0.0 0.1 0.0 0.5 0.8 0.0

Persephonella marina EX-H1 2.9 2.5 2.5 0.0 0.0 2.0 1.8 1.8 0.0 0.0 1.3 0.0

Sulfurihydrogenibium sp. 
YO3AOP1 2.5 2.1 1.3 1.2

Sulfurihydrogenibium 
yellowstonense SS-5 4.3 3.8 2.2 2.4

Thermotoga neapolitana DSM 
4359 1.3 1.4 1.3 1.5

Thermotoga petrophila RKU-1 0.5 0.6 0.3 0.5

Thermotoga sp. RQ2 1.0 1.6 0.7 1.6

DeinococcI Deinococcaceae Deinococcus radiodurans R1 1.3 1.1 1.1 1.1 1.6 1.3 1.3 1.3 2.5 2.4 2.4 2.4 1.1 1.1 1.9 1.9 2.3 0.2

ThermI Thermaceae Thermus thermophilus HB8 0.1 0.1 0.1 0.1 0.4 0.3 0.2 0.3 1.3 1.3 1.4 1.4 4.4 4.4 1.4 1.5 0.4 0.0

Dictyoglomi Dictyoglomaceae Dictyoglomus turgidum 4.3 3.6 3.6 3.6 3.0 2.4 2.8 2.8 2.7 2.5 2.5 2.5 0.7 0.7 1.6 1.6 0.9 0.0

Salinispora arenicola 0.3 0.3 1.0 0.9

Salinispora tropica 0.4 0.4 1.2 1.1

Chloroflexaceae Chloroflexus aurantiacus J-10-fl 1.1 0.9 0.9 0.9 3.9 3.2 0.9 1.0 1.8 1.7 1.7 1.7 5.4 5.4 1.5 1.6 0.0 0.8

Herpetosiphonaceae Herpetosiphon aurantiacus 1.6 1.3 1.3 1.3 0.0 0.0 0.0 0.0 1.6 1.4 1.4 1.4 0.0 0.0 0.0 0.0 2.3 0.1

Cyanobacteria Nostocaceae Nostoc sp. PCC 7120 2.1 1.8 1.8 1.8 0.3 5.3 0.3 1.9 1.5 1.4 1.4 1.5 0.1 3.2 0.2 1.3 3.0 0.0

Bacteroides thetaiotaomicron 1.8 1.5 1.1 1.0

Bacteroides vulgatus 1.9 1.7 1.4 1.4

Porphyromonadaceae Porphyromonas gingivalis 0.7 0.6 0.6 0.6 2.2 2.0 0.5 0.9 1.0 1.0 1.0 1.0 2.9 3.1 0.9 1.2 0.5 0.0

Chlorobium limicola 1.0 0.9 0.8 0.8

Chlorobium phaeobacteroides 1.5 1.3 1.0 1.0

Chlorobium phaeovibrioides 0.3 0.3 0.5 0.4

Chlorobium tepidum 1.4 1.2 1.3 1.2

Pelodictyon phaeoclathratiforme 1.2 1.1 1.1 0.0 1.1 1.4 1.4 1.4 0.5 0.8 3.6 0.1

Caldicellulosiruptor bescii 2.2 1.9 1.8 1.8

Caldicellulosiruptor 
saccharolyticus 3.0 2.7 1.8 1.7

Clostridiaceae Clostridium thermocellum 0.7 0.6 0.6 0.6 2.2 1.8 1.0 1.0 0.5 0.4 0.5 0.5 1.3 1.3 0.8 0.9 0.2 0.0

Enterococcaceae Enterococcus faecalis 2.1 0.5 0.5 0.5 8.1 6.5 1.9 2.0 1.1 0.6 1.1 1.1 3.6 3.6 1.0 1.1 2.3 0.0

Thermoanaerobacteraceae Thermoanaerobacter 
pseudethanolicus 2.1 1.8 1.8 1.8 7.4 6.2 2.0 2.2 1.2 1.2 1.2 1.2 3.8 3.8 1.2 1.5 1.4 1.0

Fusobacteria Fusobacteriaceae Fusobacterium nucleatum 
nucleatum 2.1 1.8 1.8 1.8 0.0 0.1 0.0 0.3 1.0 0.7 0.7 0.7 0.0 0.0 0.0 0.2 1.2 0.0

Verrucomicrobia Verrucomicrobiaceae Akkermansia muciniphila 1.2 1.0 1.0 1.0 0.0 0.0 0.0 0.3 1.2 1.1 3.9 1.1 0.0 0.0 0.0 0.0 1.0 2.3

Gemmatimonadetes Gemmatimonadaceae Gemmatimonas aurantiaca 1.3 1.1 1.1 1.1 0.0 0.0 0.0 0.0 2.2 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.4 1.7

Planctomycetes Planctomycetaceae Rhodopirellula baltica 1.2 1.0 1.0 1.0 0.0 0.0 0.0 0.1 1.1 1.0 1.0 1.0 0.0 0.0 0.0 0.1 1.0 0.9

Spirochaetes Spirochaetaceae Treponema denticola 1.6 1.4 1.4 1.4 0.0 0.1 0.1 0.4 1.2 1.1 1.1 1.1 0.0 0.0 0.2 0.5 0.0 0.0

Acidobacteria Acidobacteriaceae Acidobacterium capsulatum 0.5 0.5 0.5 0.5 0.0 0.1 0.0 0.1 0.8 0.7 0.7 0.7 0.0 0.0 0.0 0.1 0.5 0.7

Ruegeria pomeroyi 0.3 0.2 0.2 0.3 0.3 0.5 0.5 0.5 0.2 0.0 1.3

Sulfitobacter sp. EE-36 1.0 0.9 1.1 1.0

Sulfitobacter sp. NAS-14.1 0.3 0.3 0.3 0.4

Sphingomonadaceae Zymomonas mobilis 2.0 1.7 1.7 1.7 6.7 5.7 1.7 2.8 1.3 1.2 1.2 1.2 3.6 3.9 1.3 3.0 4.6 0.1

Alcaligenaceae Bordetella bronchiseptica 0.5 0.4 0.4 0.4 1.0 1.3 0.5 0.6 0.9 0.8 0.8 0.8 2.4 2.5 0.8 1.1 6.7 3.7

Burkholderiaceae Burkholderia xenovorans LB400 0.9 0.8 0.8 0.8 0.3 1.6 1.5 2.0 1.2 1.1 1.1 1.1 1.4 1.6 2.1 2.9 4.0 7.0

unclassified Burkholderiales Leptothrix cholodnii 0.8 0.7 0.7 0.7 0.0 0.0 0.0 0.3 1.6 1.5 1.5 1.5 0.0 0.0 0.0 0.0 3.0 0.0

Nitrosomonadaceae Nitrosomonas europaea 1.1 0.9 0.9 0.9 0.5 0.4 0.6 0.6 0.9 0.9 0.9 0.9 0.1 0.1 0.4 0.4 0.2 0.6

Shewanellaceae Shewanella baltica OS185 1.6 1.3 0.9 0.8

Shewanellaceae Shewanella baltica OS223 1.8 1.9 1.1 1.7

Desulfovibrio piger 0.2 0.2 0.4 0.4

Desulfovibrio vulgaris DP4 0.5 0.3 1.3 0.9

Geobacteraceae Geobacter sulfurreducens PCA 0.8 0.7 0.7 0.7 2.7 2.2 0.8 0.8 2.7 2.5 2.5 2.5 7.3 7.3 2.3 2.3 3.3 0.0

Proteobacteria (e) Helicobacteraceae Wolinella succinogenes 0.9 0.8 0.8 0.8 0.0 0.0 0.0 0.6 1.1 1.0 1.0 1.0 0.0 0.0 0.0 0.7 2.0 0.0
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Figure S5: MEGAN-based analysis of taxonomic accuracy for 454 and Illumina metagenomes. (A) Heatmap of 
the accuracy ratio (observed abundance/ expected abundance) at species(s), genus (g), and family (f) level. The 
heatmap uses the megablast and blastn output against three different databases: (Ref) only  genomes of the 
synthetic community organisms; (All) all microbial genomes; and (XRef) microbial genomes excluding the 
synthetic community members. Illumina sequence distribution (domain level) for each organism when 
sequences that mapped to the reference sequences were megablasted or blasted against the XRef database, 
shown for each organism (B,C) or globally for each blast output (D).  No hit indicates the percentage of 
sequences that were not mapped to any genome. Bacteria and Archaea represent the percentage of sequence 
that were correctly mapped to corresponding genomes. Other Bacteria and Other Archaea represents the 
fraction of sequences incorrectly mapped to genomes not present in the synthetic community.

Figure 2.10: MEGAN-based analysis of taxonomic accuracy for 454 and Illumina metagenomes. (A)
Heatmap of the accuracy ratio (observed abundance/ expected abundance) at species(s), genus (g), and
family (f) level. The heatmap uses the megablast and blastn output against three different databases: (Ref)
only genomes of the synthetic community organisms; (All) all microbial genomes; and (XRef) microbial
genomes excluding the synthetic community members. Illumina sequence distribution (domain level) for
each organism when sequences that mapped to the reference sequences were megablasted or blasted against
the XRef database, shown for each organism (B,C) or globally for each blast output (D). No hit indicates
the percentage of sequences that were not mapped to any genome. Bacteria and Archaea represent the
percentage of sequence that were correctly mapped to corresponding genomes. Other Bacteria and Other
Archaea represents the fraction of sequences incorrectly mapped to genomes not present in the synthetic
community.
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Figure S6. SSU rDNA primer pair sequence coverage map. The consensus for all the sequences in the synthetic 
community and the occasional differences observed for some taxa are illustrated. Nucleotide differences that corre-
late with observed sequencing bias are in red rectangles. For the various taxa and rRNA amplicons, filled squares 
indicate a level of >2 fold over (blue) or under estimation (red) for most or all species from that taxon. Isolated cases 
of bias are indicated by a triangle.

Figure 2.11: SSU rDNA primer pair sequence coverage map. The consensus for all the sequences in
the synthetic community and the occasional differences observed for some taxa are illustrated. Nucleotide
differences that correlate with observed sequencing bias are in red rectangles. For the various taxa and
rRNA amplicons, filled squares indicate a level of >2 fold over (blue) or under estimation (red) for most or
all species from that taxon. Isolated cases of bias are indicated by a triangle.
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Figure 2.12: SSU rDNA primer pair sequence coverage map. The consensus for all the sequences in the synthetic community
and the occasional differences observed for some taxa are illustrated. Nucleotide differences that correlate with observed
sequencing bias are in red rectangles. For the various taxa and rRNA amplicons, filled squares indicate a level of >2 fold over
(blue) or under estimation (red) for most or all species from that taxon. Isolated cases of bias are indicated by a triangle.



16S V12 V13 V35 V4 V69 V48

Bacteroides vulgatus
Bacteroides thetaiotaomicron 91 86 85 92 91 90.5 93

Caldicellulosiruptor bescii
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  99.5 100  100 100
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Methanococcus maripaludis C5
Methanococcus maripaludis S2
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Pyrobaculum arsenaticum 

98.9   -         99 99.6    - 99.8
98.5   -         99.7 98.8    - 99

97.9
Chlorobium phaeovibrioides
Chlorobium limicola  
Chlorobium phaeobacteroides 
Chlorobium tepidum 

96.8 95 96 98 97.6 95.5 97.5
96.2 95.5 95 97 98 95.5 97

  94 92 90 94 96 92.5 96

93.6

Thermotoga naphthophila 
Thermotoga petrophila 
Thermotoga neapolitana 
Thermotoga sp. RQ2

99.5 99.5 99 99 99 99 99
99.1 99.4 99 99 99.5 99 99

99.5 99 99 99 100 99.8 99.6
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Supplementary Fig. 7.

Figure 2.13: Pairwise sequence identity levels between species/strains in different amplicons
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2.5 Conclusions

With the dramatic decline in cost and increase in output, NGS technologies have changed

the scale of microbial ecological studies and have made deep metagenomic sequencing

much more feasible, affordable and enabled statistically replicated designs that can be

quantitatively robust. As 454 and Illumina sequencing probe deeper into the structure

of complex communities, determining the real diversity and distinguishing novel or rare

organisms from experimental and computational artifacts continues to be a challenge,

even though methods and algorithms are continuously improving. Results presented

here allow direct and quantitative comparisons within a defined taxonomic space of two

complementary and widely used approaches in microbial ecology, shotgun metagenomics and

SSU rRNA gene-based diversity characterization. Both metagenomic strategies recovered

the quantitative distribution of the various archaeal and bacterial taxa remarkably well

even though organisms spanned two orders of magnitude in abundance. A certain

degree of bias was observed for genomes with extreme genomic GC content in transposon

based library sequencing but because that method enables analysis of samples with

reduced biomass, such potential bias may be acceptable and could be accounted for when

required by sample/environmental constraints. Additional challenges in analyses of actual

environmental metagenomic datasets remain, such as taxonomic assignments for sequences

that belong to uncultured taxa, distinguishing closely related organisms, and genome

scale assemblies for low abundance species. Advances in taxonomic binning and assembly

algorithms (Koren et al., 2011; Liu et al., 2011; Patil et al., 2011), expanding the repertoire

of genome sequences to understudied taxa and uncultured single cells (Wu et al., 2009)

and very deep sequencing using the Illumina platform (Hess et al., 2011) indicate that

even more complex communities are becoming amenable to comprehensive metagenomic

characterization. Although metagenomic sequencing outperformed most SSU rRNA gene

primer sets used in this study, diversity characterization using this traditional phylogenetic

marker is an important approach to compare complex communities in ecological studies

where large numbers of samples are required. With the decline in cost and the development

of Illumina amplicon sequencing (Caporaso et al., 2011), deeper coverage and more extensive

technical replication has become feasible even for highly diverse communities (Prosser, 2010;
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Zhou et al., 2011). Among the bacterial primer sets for rRNA gene regions, V13 recovered

most accurately the composition of the synthetic community. None of the archaeal sets

tested performed comparably to the bacterial ones and presented biases that generally

occurred at high taxonomic levels but a modified set of V4 primers (V4a) produced good

results. The universal Archaea-Bacteria primer sets (V48) that we tested here, although

suboptimal for several taxa, allowed simultaneous comparisons of the representation of

the two of the three domains of cellular life in environmental samples. In addition, this

was the longest amplicon tested and could provide increased taxonomic resolution with

future improvements in read lengths. Each of the primer sets presented phylum-specific

biases, not all of which were easily predictable computationally even within the known

genomic context of this synthetic community. In particular, the suboptimal detection of

Bacteroidetes and Actinobacteria by the V4 primer set can impact analysis of human

microbiota and some soil samples, while V12, V13 and V35 each has difficulties in

recovering phyla that are often times highly abundant in some free living communities

(e.g. Aquificae, Thermotogae, Planctomycetes) or in some human microbiota samples (e.g.

Verrucomicrobia). Concerted use of two distinct primer pairs for different rDNA regions

is therefore important for revealing such biases or even missed detection that may occur

for certain taxa (Campbell et al., 2012; Gomez-Alvarez et al., 2009). Since many natural

communities contain a much higher taxonomic richness and include uncultured taxa not

represented here separate primer sets can provide an independent measure of the accuracy

of diversity inferences. An important aspect in microbial ecology studies is richness and

evenness estimation and its comparison between communities (alpha and beta diversity).

Severe alpha diversity over estimation, especially at low divergence levels (<0.03), can result

from sequence errors and from clustering artifacts that are unaccounted for in QA/QC

procedures (Huse et al., 2010; Kunin et al., 2009; Quince et al., 2011, 2009; Reeder and

Knight, 2010; Schloss et al., 2011). At the same time, the high sequence similarity of

SSU rRNA genes between clearly distinct organisms indicates that a component of the

diversity may be lost if sequence data is analyzed at distances above the generally applied

0.03 threshold. The results presented here demonstrate that the use of quality-filtered

data can nearly eliminate diversity artifacts in SSU rRNA amplicon data. Addressing

diversity overestimation in metagenomic analyses is more computationally difficult and may
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require simultaneous advances in sequence assembly combined with sequence composition

analysis and classification improvements. In environmental datasets, distinguishing rare

but real OTUs or metagenomic signatures of uncultured taxa from experimental and

computational artifacts remains a challenge. As more and more microbial groups are being

sequenced based on pure cultures or single cell genomic DNA, the uncertainty in recognizing

and quantifying currently uncultured organisms in metagenomic data is diminishing. In

addition, metagenomic sequence binning and assembly is becoming an effective method to

identify uncultured taxa and reconstitute their metabolic capabilities (Iverson et al., 2012;

Wrighton et al., 2012). Diverse synthetic communities and validation datasets such as the

ones presented here enable direct comparison of sequencing, data processing accuracy and

effectiveness in sequence binning and assembly for representing the environmental microbial

composition and genomic information. Tailored to more closely resemble the expected

taxonomic diversity from a specific environment, additional synthetic communities could

provide important analytical controls, weather for single gene-type or, increasingly, for

metagenomic studies.
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Supplementary Figure 9.  Log-linear representation of increased technical replicates variability 
(standard deviation) as a function of measured organism abundance in the synthetic community, 
based on bacterial V13 amplicon data.

Figure 2.15: Log-linear representation of increased technical replicates variability (standard deviation)
as a function of measured organism abundance in the synthetic community, based on bacterial V13 amplicon
data.
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Table 2.1: List of Archaea used for the synthetic community and their sources. General genomic
parameters used to calculate abundance in the communities are presented, as well as the achieved coverage
and inferred accuracy values based on metagenomic and amplicon

Ref. Seq Organism Name Phylum Cells/DNA source Gen.Size
(Mbp)

GC % # 16S rRNA
GC%

Gen. MW

58365 Ignicoccus hospitalis Crenarchaeota Shakya et al, ORNL 1.30 56.5 1 67.5 8.6E+08
57727 Pyrobaculum aerophilum IM2 Crenarchaeota Lowe T, UCSC 2.22 51.4 1 60.7 1.5E+09
58409 Pyrobaculum arsenaticum Crenarchaeota Shakya et al, ORNL 2.12 55.1 1 60.7 1.4E+09
58787 Pyrobaculum calidifontis Crenarchaeota Lowe T, UCSC 2.00 57.2 1 67.8 1.3E+09
57807 Sulfolobus tokodaii Crenarchaeota Stedman K, PSU 2.70 32.8 1 64 1.8E+09
57873 Pyrococcus furiosus Euryarchaeota Shakya et al, ORNL 1.90 40.8 1 66.3 1.3E+09
57753 Pyrococcus horikoshii Euryarchaeota Shakya et al, ORNL 1.74 41.9 1 66.4 1.1E+09
43333 Aciduliprofundum boonei Euryarchaeota Reysenbach AL, PSU 1.49 39.2 1 61.7 9.8E+08
57717 Archaeoglobus fulgidus Euryarchaeota Shakya et al, ORNL 2.18 48.6 1 63.9 1.4E+09
46845 Haloferax volcanii Euryarchaeota Maupin-Furlow J, UF 2.85 65.5 2 56.9 1.9E+09
57883 Methanopyrus kandleri Euryarchaeota Shakya et al, ORNL 1.69 61.2 1 68.1 1.1E+09
57879 Methanosarcina acetivorans C2A Euryarchaeota Metcalf B, UIUC 5.75 42.7 3 56.6 3.8E+09
57713 Methanocaldococcus jannaschii Euryarchaeota Shakya et al, ORNL 1.74 31.3 2 64.3 1.1E+09
58741 Methanococcus maripaludis C5 Euryarchaeota Whitman B, UGA 1.81 33 3 57.6 1.2E+09
58035 Methanococcus maripaludis S2 Euryarchaeota Whitman B, UGA 1.66 33.1 3 57.4 1.1E+09
58009 Nanoarchaeum equitans Nanoarchaeota Huber H, U. Regensburg 0.49 31.6 1 67.7 3.2E+08
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Table 2.2: List of organisms used for the synthetic community and their sources. General genomic
parameters used to calculate abundance in the communities are presented, as well as the achieved coverage
and inferred accuracy values based on metagenomic and amplicon

Ref. Seq Organism Name Phylum Cells/DNA source Gen.Size

(Mbp)

GC

%

#

16S

rRNA

GC%

Gen.

MW

58857 Hydrogenobaculum sp. Y04AAS1 Aquificae Reysenbach AL, PSU 1.56 34.8 2 54.8 1.0E+09

58119 Persephonella marina EX-H1 Aquificae Reysenbach AL, PSU 1.98 37.1 2 60.8 1.3E+09

58855 Sulfurihydrogenibium sp. YO3AOP1 Aquificae Reysenbach AL, PSU 1.84 32 3 57 1.2E+09

54637 Sulfurihydrogenibium yellowstonense SS-5 Aquificae Reysenbach AL, PSU 1.53 33 4 56.9 1.0E+09

59065 Thermotoga neapolitana DSM 4359 Thermotogae Kelly RM, NCSU 1.88 46.9 1 64 1.2E+09

58655 Thermotoga petrophila RKU-1 Thermotogae Kelly RM, NCSU 1.82 46.1 1 64.1 1.2E+09

58935 Thermotoga sp. RQ2 Thermotogae Kelly RM, NCSU 1.88 46.2 1 64 1.2E+09

57665 Deinococcus radiodurans R1 Deinococci Shakya et al, ORNL 3.28 66.6 3 55.4 2.2E+09

58223 Thermus thermophilus HB8 Thermi Shakya et al, ORNL 1.85 69.5 2 64.2 1.2E+09

59177 Dictyoglomus turgidum Dictyoglomi Shakya et al, ORNL 1.86 34 2 59.5 1.2E+09

58659 Salinispora arenicola Actinobacteria Jensen P. UCSD 5.79 69.5 3 60.1 3.8E+09

58565 Salinispora tropica Actinobacteria Jensen P. UCSD 5.18 69.5 3 60 3.4E+09

57657 Chloroflexus aurantiacus J-10-fl Chloroflexi Bryant D, PennSU 5.26 56.7 3 63.5 3.5E+09

58599 Herpetosiphon aurantiacus Chloroflexi Bryant D, PennSU 6.79 50.9 5 58.7 4.5E+09

57803 Nostoc sp. PCC 7120 Cyanobacteria Shakya et al, ORNL 7.20 41.3 4 54 4.8E+09

399 Bacteroides thetaiotaomicron Bacteroidetes Leys E, OSU 6.29 42.9 5 50.3 4.2E+09

58253 Bacteroides vulgatus Bacteroidetes Shakya et al, ORNL 5.16 42.2 7 52.4 3.4E+09

58879 Porphyromonas gingivalis Bacteroidetes Leys E, OSU 2.35 48.4 4 53.3 1.6E+09

58127 Chlorobium limicola Chlorobi Bryant D, PennSU 2.76 51.3 2 51.8 1.8E+09

58133 Chlorobium phaeobacteroides Chlorobi Bryant D, PennSU 3.13 48.4 2 51.7 2.1E+09

58129 Chlorobium phaeovibrioides Chlorobi Bryant D, PennSU 1.97 53 1 52.2 1.3E+09
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Table 2.2 continued . . .

Ref. Seq Organism Name Phylum Cells/DNA source Gen.Size

(Mbp)

GC

%

#

16S

rRNA

GC%

Gen.

MW

57897 Chlorobium tepidum Chlorobi Bryant D, PennSU 2.15 56.5 2 52.8 1.4E+09

58173 Pelodictyon phaeoclathratiforme Chlorobi Bryant D, PennSU 3.02 48.1 3 52.4 2.0E+09

59201 Caldicellulosiruptor bescii Firmicutes Hamilton-B S, ORNL 2.91 35.2 3 58.8 1.9E+09

58289 Caldicellulosiruptor saccharolyticus Firmicutes Kelly RM, NCSU 2.97 35.3 3 58.7 2.0E+09

57917 Clostridium thermocellum Firmicutes Raman B, ORNL 3.84 39 4 55.3 2.5E+09

57669 Enterococcus faecalis Firmicutes Shakya et al, ORNL 3.34 37.4 4 54 2.2E+09

58339 Thermoanaerobacter pseudethanolicus Firmicutes Shakya et al, ORNL 2.36 34.5 4 58.5 1.6E+09

57885 Fusobacterium nucleatum nucleatum Fusobacteria Leys E, OSU 2.17 27.2 5 50.5 1.4E+09

58985 Akkermansia muciniphila Verrucomicrobia Shakya et al, ORNL 2.66 55.8 3 55.8 1.8E+09

58813 Gemmatimonas aurantiaca Gemmatimonadetes Shakya et al, ORNL 4.64 64.3 1 60 3.1E+09

61589 Rhodopirellula baltica Planctomycetes Shakya et al, ORNL 7.15 55.4 1 54.4 4.7E+09

57583 Treponema denticola Spirochaetes Shakya et al, ORNL 2.84 37.9 2 52.6 1.9E+09

59127 Acidobacterium capsulatum Acidobacteria Shakya et al, ORNL 4.13 60.5 1 56 2.7E+09

57863 Ruegeria pomeroyi Proteobacteria (a) Buchan A, UTK 4.59 64.1 3 56.1 3.0E+09

54191 Sulfitobacter sp. EE-36 Proteobacteria (a) Buchan A, UTK 3.60 60 4 54.5 2.4E+09

54259 Sulfitobacter sp. NAS-14.1 Proteobacteria (a) Buchan A, UTK 4.03 60 4 54.4 2.7E+09

58095 Zymomonas mobilis Proteobacteria (a) Brown S, ORNL 2.06 46.3 3 53.3 1.4E+09

57613 Bordetella bronchiseptica Proteobacteria (b) Leys E, OSU 5.34 68.1 3 55.8 3.5E+09

57823 Burkholderia xenovorans LB400 Proteobacteria (b) Tiedje J, MSU 9.74 62.6 6 56.2 6.4E+09

58971 Leptothrix cholodnii Proteobacteria (b) Emerson D, Bigelow Lab 4.91 68.9 2 55.4 3.2E+09

57647 Nitrosomonas europaea Proteobacteria (b) Shakya et al, ORNL 2.81 50.7 1 53.1 1.9E+09

58743 Shewanella baltica OS185 Proteobacteria (g) Shakya et al, ORNL 5.31 46.3 10 54.8 3.5E+09

58775 Shewanella baltica OS223 Proteobacteria (g) Shakya et al, ORNL 5.36 46.3 10 55 3.5E+09
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Table 2.2 continued . . .

Ref. Seq Organism Name Phylum Cells/DNA source Gen.Size

(Mbp)

GC

%

#

16S

rRNA

GC%

Gen.

MW

54519 Desulfovibrio piger Proteobacteria (d) Shakya et al, ORNL 2.90 63 2 55 1.9E+09

58679 Desulfovibrio vulgaris DP4 Proteobacteria (d) Shakya et al, ORNL 3.66 63.2 6 57 2.4E+09

57743 Geobacter sulfurreducens PCA Proteobacteria (d) Shakya et al, ORNL 3.81 60.9 2 56 2.5E+09

61591 Wolinella succinogenes Proteobacteria (e) Shakya et al, ORNL 2.11 48.5 3 51.8 1.4E+09



Table 2.3: Taxonomic distribution of Archaea-Bacteria community sequences based on MG-RAST and
IMG-M analysis. The AB Ref column indicates the number of actual taxonomic levels (phyla to genus)
represented by the organisms included in the synthetic community. The 454 sequence data was analyzed
using both MG-RAST (RAST) and IMG-M. For MG-RAST, three cutoff parameters were used: (a, default)
max e-value: 1e-5, min% identity: 60%, min alignment length: 15; (b) max e-value: 1e-10, min% identity:
60%, min alignment length: 15; (c) max e-value: 1e-20, min% identity: 80%, min alignment length: 50;
For IMG-M analysis there are parameter options and the taxonomic richness was calculated based on the
database output (x indicates taxonomic levels not available in the output). The Illumina reads were analyzed
using the default parameters in MG-RAST (max e-value: 1e-5, min% identity: 60%, min alignment length:
15;).

Ref 454 Illum

AB a b c M RAST

Archaea

phylum 3 5 5 3 3 3

class 9 12 12 9 9 7

order 10 20 20 10 0 8

family 12 30 29 11 18 8

genus 12 72 71 17 0 9

Bacteria

phylum 17 28 28 20 23 19

class 22 43 43 26 33 26

order 29 91 91 48 0 51

family 34 215 206 65 182 72

genus 35 648 635 115 0 102

Eukarya

phylum 0 18 13 2 5 1

class 0 52 35 2 0 2

order 0 89 59 2 0 3

genus 0 119 76 2 10 3

family 0 170 103 2 0 3

V iruses

family 0 5 4 2 3 2
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Table 2.4: List of SSU rRNA primers used for amplicon-based diversity characterization of the synthetic communities.

Region E.coli Platform Primer Forward Primer Sequence Reverse Primer Sequence Amplicon Read Reference
numbering Name (5‘-3‘) (5‘-3‘) Length* Length**

Bacteria
CTGCTGCCTYCCGTA (80)

CTGCTGCCCYCCGTA (7.5)
V1-V2 27-357 FLX 27F-357 GTTTGATCMTGGCTCAG CTGCTGCCACCCGTA (7.5) 281-400 152-222 (Weisburg

et al., 1991)
(R1-5) CTGCAGCCACCCGTA (2.5)

CTGCAGCCTYCCGTA (2.5)
V1-V3 27-534 Tita. 27YMF-

534R
AGAGTTTGATYMTGGCTCAG TYACCGCGGCTGCTGG 431-550 292-400 (Frank et al.,

2008)
V3-V5 357-926 Tita. 357F-926R CCTACGGGAGGCAGCAG CCGTCAATTCMTTTRAGT (80) 525-553 385-399 (Muyzer et al.,

1996)
CCGYCAATTYYTTTRWGT (20)
TACCRGGGTHTCTAATCC (30)

V4 560-803R FLX 560F-803R AYTGGGYDTAAAGNG TACCAGAGTATCTAATTC (5) 206-207 200-213 pyro.cme.msu.

edu

CTACDSRGGTMTCTAATC (10)
TACNVGGGTATCTAATCC (55)

ACGCGAAGAACCTTAC (70)
ACGCGAGGAACCTTAC (10)

V6-V9 968-1492 Tita. F96(1-5) ACCGAARAACCTYAC(10) TACGGYTACCTTGTTAYGACTT 485-687 347-385 (Weisburg
et al., 1991)

1492R AAGCGAAGAACCTTAC(5)
ACGCGMAGAACCTTAYC (5)

Universal
V4-V8 519-1406 Tita. 519UAF-

1406UAR
CAGCMGCCGCGGKAAYAC ACGGGCGGTGWGTRCAA 850-863(A)

829-972(B)
372-400 (Ovre̊as et al.,

1997)
Archaea

V4 519-806 FLX 519ArcF-
Arc806Rb

CAGYMGCCRCGGKAAHACC GGACTACNSGGGTMTCTAAT 248-250 210-256 (Suzuki and
Giovannoni,
1996)

V4a 515-806 Tita. 515ArcF- GTGBCAGCMGCCGCGGTAA GGACTACNSGGGTMTCTAAT 248-250 241-255 (Bates et al.,
2011)

Arc806Rb GTGGCAGYCGCCRCGGGAA
V1-V3 2-571 Tita. A2FA-

571R
TCYSGTTGATCCYGCSRG GCTACRGVYSCTTTARRC 479-1221 321-366 (Baker et al.,

2003)

pyro.cme.msu.edu
pyro.cme.msu.edu
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Table 2.5: Overview of sequences, percentage per base error rates, and chimeras in pyrosequencing reads before and after
QA/QC algorithms.

Synthetic Raw Raw removal removal removal 454 PCR Chimera # chimeras QC
Region Community Replicate reads error of 454 of PCR of error error rate (CS) pass

rate errors errors chimeras rate rate (AN) reads

1 9197 0.244 0.187 0.147 0.146 0.057 0.041 0.001 1 9114
V1-V2 Bacteria 2 6977 0.271 0.212 0.191 0.185 0.060 0.020 0.006 3 6868

3 8293 0.236 0.161 0.113 0.111 0.075 0.048 0.002 8 8228
1 2906 0.861 0.755 0.717 0.093 0.106 0.038 0.624 206 1724

V1-V3 Bacteria 2 2824 0.811 0.716 0.661 0.094 0.095 0.055 0.566 212 1629
3 3930 0.893 0.781 0.746 0.085 0.112 0.035 0.661 377 2211
1 2817 0.167 0.120 0.062 0.041 0.047 0.058 0.021 19 1984

V3-V5 Bacteria 2 2001 0.217 0.176 0.125 0.036 0.040 0.051 0.089 22 1451
3 1649 0.206 0.161 0.113 0.029 0.044 0.049 0.083 10 1195
1 5209 0.112 0.067 0.019 0.016 0.045 0.049 0.002 1 5178

V4 Bacteria 2 7042 0.125 0.082 0.032 0.032 0.043 0.051 0.000 1 7026
3 6624 0.115 0.076 0.027 0.027 0.039 0.049 0.000 0 6571
1 1644 0.287 0.207 0.093 0.072 0.080 0.114 0.021 4 978

V6-V9 Bacteria 2 1944 0.292 0.227 0.084 0.080 0.066 0.142 0.005 6 1103
3 1724 0.257 0.198 0.086 0.072 0.058 0.113 0.013 2 1016
1 3608 0.115 0.086 0.055 0.053 0.029 0.031 0.002 1 3442

V4 (A) Archaea 2 8344 0.088 0.057 0.026 0.026 0.031 0.031 0.000 0 8105
3 7461 0.107 0.069 0.030 0.030 0.038 0.039 0.000 0 7457

V4a (A) Archaea 1 11396 0.259 0.237 0.234 0.229 0.022 0.003 0.005 10 11283
2 12656 0.263 0.244 0.218 0.213 0.019 0.026 0.05 17 12508
1 8236 0.492 0.307 0.064 0.045 0.185 0.243 0.019 7 6217

V1-V3(A) Archaea 2 7351 0.506 0.324 0.067 0.064 0.182 0.257 0.003 1 5604
3 13242 0.489 0.289 0.072 0.069 0.2 0.217 0.003 4 10516



Chapter 3

A multifactor analysis of fungal and bacterial community

structure of the root microbiome of mature Populus

deltoides trees
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3.1 Abstract

Bacterial and fungal communities associated with plant roots are central to the host-health,

survival and growth. However, a robust understanding of root-microbiome and the factors

that drive host associated microbial community structure have remained elusive, especially

in mature perennial plants from natural settings. Here, we investigated relationships of

bacterial and fungal communities in the rhizosphere and root endosphere of the riparian

tree species Populus deltoides, and the influence of soil parameters, environmental properties

(host phenotype and aboveground environmental settings), host plant genotype (Simple

Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at

scales from regional watersheds to local riparian zones) on microbial community structure.

Each of the trees sampled displayed unique aspects to its associated community structure

with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees

(bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number

of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal)

and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria

and Ascomycota were dominant in root communities (>50%) while other higher-level

phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance

in endosphere compared to the rhizosphere. Variance partitioning partially explained

differences in microbiome composition between all sampled roots on the basis of seasonal

and soil properties (4% to 23%). While most variation remains unattributed, we observed

significant differences in the microbiota between watersheds (Tennessee vs. North Carolina)

and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations

associated with the samples taken in TN vs. NC, but overall genotypic distances did not

have a significant effect on corresponding communities that could be separated from other

measured effects.

3.2 Introduction

Terrestrial plants experience complex interactions with microbes found immediately

surrounding the root (rhizosphere) and inside of root tissues (endosphere). This is
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particularly true of perennial land plants where inter annual climatic variability and

extensive and long-lived root systems, that invade and occupy large volumes of soil,

may increase the complexity of rhizospheric interactions. The microbiomes in these root-

associated environments are comprised of bacteria, fungi, and to a lesser extent archaea, each

with potential beneficial, neutral or detrimental effects on hosts growth and development

(van der Lelie et al., 2009; Rodriguez et al., 2009; Berendsen et al., 2012; Danielsen et al.,

2012; Mendes et al., 2013; Turner et al., 2013) . A thorough understanding of these

complex relationships requires knowledge of resident microbes and factors shaping their

abundance and community structure. Few studies have simultaneously examined bacterial

and fungal root communities from the same host or genotype over time and even fewer

have simultaneously and thoroughly measured the other associated physical, chemical,

spatial and temporal factors that may affect these communities. Thus, a deeper analysis of

root microbiome as a function of host and environmental factors is pivotal for expanding

understanding of the nature and function of these relationships.

Native, woody perennial plant environments, such as those of cottonwood trees (Populus

spp.), provide an ideal opportunity to understand these associations within relevant

environmental settings. The importance of Populus spp. in the pulp and paper industry and

their potential for future use in production of cellulose-derived biofuels, contributes incentive

to increasing our understanding of the effects of microbial relationships on their growth and

development. Additionally, P. trichocarpa was the first tree species to have a complete

genome sequence (Tuskan et al., 2006) and several Populus species have become important

plant model organisms for understanding the biology and ecology of woody perennials.

Moreover, the possibility to study Populus in greenhouses, plantation agroecosytems, as

well as in natural ecosystems where they can be dominant keystone species (especially in

riparian zones) together make them a powerful and relevant system for providing a better

understanding of plant-microbe relationships.

The rhizosphere and endosphere microbiome of Populus is important to its overall

health and development. Populus associated bacteria are known to promote plant growth

and development, increase disease resistance and improve phytoremediation potential

(Weston et al., 2012; Doty et al., 2009; Taghavi et al., 2009; Graff and Conrad, 2005).

Ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) relationships also are known
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to occur within Populus and influence plant growth and fitness (Lu and Koide, 1994),

structure and composition of surrounding plants (Bever, 2003), and overall ecosystem

functions (van der Heijden et al., 1998). Thus, characterizing the complex interactions

between these trees and their microbiomes are an important step in understanding the

overall properties of plants.

Several studies have focused on effects of either bacterial or fungal communities on

Populus through sequencing clones and cultured representatives of the most abundant

organisms (Taghavi et al., 2009; Doty et al., 2009; Graff and Conrad, 2005). We previously

used high throughput sequencing to characterize microbes associated with roots of P.

deltoides and identified a clear distinction between communities in and on the roots (e.g.,

endosphere vs. rhizosphere) (Gottel et al., 2011). However, that study was limited to only

a few individuals within two stands and did not address potential host or environmental

factors that may structure microbial communities, or how these communities change over

space and time. In other studies, mostly with agriculturally important plants and in

greenhouse settings, developmental stage, growing season, genotype/cultivar effects and

soil properties have been shown to influence microbial community structure (Lottmann

et al., 2010; Aira et al., 2010; Bulgarelli et al., 2012; Lundberg et al., 2012; Hannula et al.,

2012; Moore et al., 2006). Deep-sequencing efforts that allow multiplexing of many samples

simultaneously, such as the ones used in this study, present an opportunity to scale up these

types of analyses and to potentially unravel the links between the Populus root microbiome

and a wide variety of environmental and host factors that may shape them.

In this study two naturally occurring riparian populations of Populus deltoides occurring

in Tennessee (TN) and North Carolina (NC) were investigated. We focused on examining

the ecological and host factors that could lead to variation in the microbial diversity in

and around natural root systems. Specifically, we correlated measures of root microbiome

composition and structure with soil physical and chemical factors, host phenotypic factors

and genotypic patterns (i.e., SSR-based genetic distances). We sampled roots over two

seasons to discern the potential for seasonal variation within these communities. Finally,

we described the distribution of OTUs among sampled trees and between rhizosphere and

endosphere niches, and identified a core set of both fungal and bacterial OTUs in these two

habitats that may play important roles within the plant-microbe-soil interface.
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3.3 Methods

Study site and sampling.

We collected native P. deltoides samples in two campaigns conducted in spring (May)

and fall (September) of 2010. These samples were collected from multiple sites in two

watersheds of North Carolina and Tennessee. A total of 24 samples were collected with

eleven from North Carolina and thirteen from Tennessee. At each sampling point, we

recorded the GPS coordinate and compass intersection of each tree with a handheld GPS.

Three soil cores were taken from the adjacent area to each tree in spring sampling campaign

only. These soils were refrigerated until soil characterization. Soil characterizations were

performed at the Agricultural and Environmental Services Laboratory (AESL) of University

of Georgia (http://aesl.ces.uga.edu/) on the sieved (4mm) composited samples. The

soil characteristics of each tree and surrounding soil are presented in Table 3.3. We collected

root samples by carefully excavating and tracing the roots back to P. deltoides to ensure

identity. The collected root samples were stored in ice and processed next day in lab.

Tertiary fine roots were removed, and loosely adhered soils were removed by shaking and

then washed with 100ml of 10mM NaCl solution to remove the adhering rhizosphere soil.

The resultant wash was collected in 50mL tubes, which made up the rhizosphere samples.

For endophyte samples, surface of root samples were sterilized by rinsing root 5 times with

sterile distilled water. Then the roots with diameter 2mm or less were transferred to 50ml

centrifuge tubes and then washed using 3% of H2O2 for 30s, 100% ethanol for 30s, 6.15%

of NaOCl with 2 to 3 drops of Tween 20 per 100 ml for 3 min, and again with 3% of

H2O2 for 30s. These surface sterilized roots were then washed for 3 times with sterilized

distilled water. The sterility of the surface was assessed by plating the subsample of surface

sterilized root into Luria Broth (LB) plates and incubating the plate overnight at 30◦C .

These surface sterilized root samples constituent endophyte samples.

Detection of microsatellite polymorphism.

Twenty microsatellites that previously showed clear polymorphisms in P. trichocarpa

(Tuskan et al., 2004) and tested P. deltoides clones, were pre-selected for use in this study

from a set of over 200. The PCR and SSR analytic protocols were as follows: reaction
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mixtures contained 25 ng of DNA, 50 ng of each SSR primer, 0.2 mM dNTPs, 0.5 U Taq

DNA polymerase (Promega Corp., Madison, WI), 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 2.0

mM MgCl2, 0.01% gelatin, and 0.1 mg bovine serum albumin/mL. Amplification conditions

on a GeneAMP 9700 thermocycler (Applied Biosystems) included an initial denaturation

step at 94◦C for 45s followed by 30 cycles of 94◦C for 15s, 50–55◦C for 15 s, and 72◦C

for 1 min and concluded with a 5-min extension at 72◦C . Reaction products were diluted

up to 1:200, denatured in HiDi form amide containing a 400-bp ROX standard (Applied

Biosystems), and processed on the ABI Prism 3700 DNA analyzer. GeneScan version 3.5

was used for size calling of raw alleles based on the internal standard and Genotype version

3.5 was used to visualize and assign alleles to categories for scoring purposes (Tuskan et al.,

2004).

Microbial DNA extraction and 454 pyrosequencing.

For rhizosphere samples, 2.0 ml of rhizosphere material were pelleted via centrifugation.

The resultant pellet was then used for extractions using a PowerSoil DNA extraction kit

(MoBio, Carlsbad, CA). For endophyte samples, the surface sterilized roots were chopped

into 1 mm sections, divided into 50 mg subsamples, and total DNA was extracted using

PowerPlant DNA isolation kit (MoBio, Carlsbad, CA) with the following modifications

relative to manufacturers instruction. We added 50 µl of 10% cetyltrimethylammonium

bromide to each lysis tube containing the lysis solution and roots to enhance plant cell

lysis, followed by three freeze-thaw cycles (80◦C /65◦C ; 10 min each) and homogenization

in a mixer mill for 20 min at 30 Hz (model MM400; Retsch Inc., Newtown, PA). Three

subsamples were then concentrated and combined into a single 50 µl extraction. PCR

amplification of bacterial 16S rRNA gene from the genomic DNA of 96 (23 trees X 2

seasons X 2 environments) samples was conducted using a pair of primer that targets the

V6-V9 region of 16S. The fusion F1070F (5‘-TCAGCTCGTGTYGTGARA-3’) and 1492R

primers (5‘- TACCTTGTTACGACTT-3’) were employed with modification for use with the

GS FLX Titanium platform (454 Life Sciences, Branford, CT). These primers discriminate

against plastid DNA and surrounded an ∼ 200bp mitochondrial insert in Populus. Thus

we excised and gel purified the bacterial enriched band prior to emulsion PCR. For each
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sample, the fusion forward primer was preceded by a unique 8 bp barcode, which was

in turn preceded by the 454 A/B primers. For each sample, a 50µl PCR reaction was

conducted using the High Fidelity PCR system (Invitrogen, Carlsbad, CA), 0.2 mM of

deoxyribonucleotide triphosphates (dNTPs), 2 mM MgSO4, and otherwise carried out as in

Gottel et al. (2011). Fungal primers and conditions were identical to those used by Gottel

et al. (2011).

Sequence Analysis.

We denoised the pyrosequencing data using AmpliconNoise (Quince et al., 2011), which

corrects for both PCR and sequencing error, through QIIME 1.4.0/1.5.0 (Caporaso et al.,

2010a). The resultant sequences that were less than 300bp long and didn’t align well with

the aligned Silva database in mothur (Schloss et al., 2009) were removed. The resulting high

quality sequences were then trimmed at around 300bp and binned to respective samples

based on unique barcode. For bacterial samples, the sequences were then clustered using

uclust (Edgar, 2010) to representative Operational Taxonomic Units (OTUs) at a sequence

similarity of 97%. The representative sequences from OTUs were then checked for chimeras

using ChimeraSlayer against the gold database provided with the software package. OTUs

were assigned a taxonomic unit using RDP classifier 2.2 (Liu et al., 2012) implementation of

QIIME 1.4.0, and OTUs that were classified as chloroplast and archaea were removed from

further analysis. A phylogeny of the representative sequence was built using the FastTree

(Price et al., 2010) algorithm in QIIME v1.4.0/1.5.0 after aligning with Pynast (Caporaso

et al., 2010b) algorithm against the GreenGenes (DeSantis et al., 2006) database. Further

downstream analyses for Unifrac phylogenetic distance metric; bray Curtis similarity metrics

were all conducted in QIIME using a rarefied OTUs table to control for unequal sampling

between samples. A principal coordinate analysis (PCoA) ordination based on Unifrac

distance matrix and bray Curtis metric was also generated. For fungal sequences, the

sequences were checked for chimeras using implementation of UCHIME (Edgar et al., 2011)

in mothur without any reference sequences. It detects chimera de novo with an assumption

that chimeras are less abundant than there parent sequence. The sequences that were

flagged as chimeras were then removed from further analysis. Any sequences that were
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less than 200bp were also removed and the resultant sequences were then clustered into

OTUs using uclust at sequence similarity of 97%. The representative sequences from OTUs

were then assigned to taxonomic unit using RDP classifier 2.4 (Liu et al., 2012). Raw

sequence data and analysis files are available from the NCBI-BioProject data archive http:

//www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA209455 and our PMI project website

http://pmi.ornl.gov respectively.

Data Analysis

To investigate the relationship between microbial community composition and environmen-

tal factors, tree genotype, seasonal variations, and geographic distance, we used capscale

function of vegan 2.0-5 (Oksanen et al., 2007) for variance partitioning and ranked partial

mantel test in the ecodist package (Goslee and Urban, 2007) of R statistical software (Team

et al., 2008). The species by sample or OTU table that was used in the study was rarified

to 1000 sequences per sample for bacteria and 400 for fungi. In order to conduct partial

mantel test with soil properties and tree properties listed in Table 3.2 and 3.3, we built

a separate composite distance matrix from variables that were selected using the forward

and backward selection against the corresponding distance matrix. The distance metric

was then generated based on Euclidean distance metrics using dist function in R. For

genotype data, we generated a distance metrics of Euclidean based genotype data using

a program called GGT 2.0 (van Berloo, 2008). For seasonal variation, which is a categorical

data, we generated a distance matrix using the daisy command of R package cluster. We

created the geographical distance matrix between each tree using the location and compass

direction (degree, minutes, and seconds (DMS)) that were collected using a handheld GPS.

The DMS format was converted to decimal degree (DD) using an online tool at http:

//transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html. The DD coordinates

were then used to generate a geographic distance matrix by platform free java based

software Geographic Distance Matrix Generator. For variance partitioning, distance matrix

was converted to principal coordinates using PCNM function, and only the significant

coordinates were included in the model. The following normalizing transformations of the

variables were done before performing multivariate analyses: Canopy, Basal Areas, River

70

http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA209455
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA209455
http://pmi.ornl.gov
http://transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html
http://transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html


Distance, P, Ca, Mn, Zn, K, Mg, N, DBH, LBC (ppm CaCO3 / pH) were log10 transformed;

percentages of clay, silt, sand, C, OM, basal area dominance of Populus spp./hectare were

arcsine transformed; count values of # of proximal trees (Prism) and # of proximal Populus

spp. trees (Prism) were square root transformed, and pH values were left unchanged.

3.4 Results

We sampled roots [ca. 2 mm or less in dia.] from twenty-three P. deltoides individuals

along watersheds in Yadkin River, North Carolina (NC) and Caney Fork River, Tennessee

(TN) over spring and fall seasons (May and September 2010) (Figure 3.1). During the

May sampling, we also collected bulk soil from three adjacent locations around each tree

to characterize their physical and chemical properties. Geographic coordinates of the sites

and the physical and silvicultural properties of host and surrounding environment were

also assessed. For this study, host properties are comprised of measurements associated

with host phenotype and its surrounding silvicultural setting (including size and distance

to nearest neighbor, distance to river, etc.). A comprehensive list of all the host and soil

data that was recorded is listed in Tables 3.2 and 3.3.

Soils between the two watersheds differed significantly (p<0.05) in numerous properties

including Ca2+, CaCO3, K+, organic matter (OM), phosphate content, and pH. A

hierarchical cluster analysis of the measured host and environmental variables revealed high

correlation between several of these measured factors. For instance, C and N (spearman

ρ2 = 0.94), CaCO3 and OM (ρ2 = 0.89), % sand and % clay (ρ2 = 0.75) and basal

area and DBH (Diameter at Breast Height) (ρ2=0.97) showed high correlation between

pairwise combinations (Figures 3.5: (S1) and (S2)). Thus, several of these highly correlated

factors (Soil: N, CaCO3, Sand and Host: DBH) were removed from downstream analysis

to minimize redundancy within variance partitioning models employed.

Host genotype analyses based on twenty pairs of simple sequence repeat (SSR) primers

resulted in two distinct genetic groups, each comprised of individuals originating from either

NC or TN with no overlap (Figure 3.1). A total of forty-eight alleles were observed, with

an average of 2.4 alleles per primer pair. A phylogenetic tree showing relationships between

the individuals is shown in Figure 3.1. The 20 microsatellites uniquely discriminated 11 of
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the 23 individuals evaluated. Fourteen individuals that could not be uniquely genotyped fell

into three putatively clonal groups, two in TN population and 1 the NC population. Group

I of TN was represented by eight individuals, group II consisted of two TN individuals,

and group XI was comprised of four individuals from NC. The overall geographic distance

between trees from NC and TN significantly correlated with pairwise genetic distance

between the trees (Mantel test:ρ=0.726, p=0.0001) (Goslee and Urban, 2007; Team et al.,

2008). However, within each local population these associations were much weaker and

only the geographic distance between tree locations from the watershed in TN significantly

correlated with genetic distance (ρ=0.390, p=0.0214).

Barcoded 454 pyrosequencing of bacterial 16S rRNA and fungal 28S rRNA gene

amplicons from 185 rhizosphere and endosphere samples resulted 946,354 high-quality reads

after removing sequencing and PCR artifacts using AmpliconNoise (Quince et al., 2011) and

ChimeraSlayer (Haas et al., 2011). These sequences grouped into 24,435 bacterial OTUs

(≥ 97% similarity) and 2,999 fungal OTUs. Table 3.4 and 3.5 summarize the sequencing

reads and OTUs obtained for each rhizosphere and endosphere sample from bacteria and

fungi along with number of OTUs. Unlike our previous efforts targeting the bacterial V4

region (Gottel et al., 2011) the V6-V8 primer sets and gel separation procedures employed

in this study were able to reduce the amount of host plastid and mitochondrial sequence

coincidentally contained in bacterial endosphere samples to an average of ∼ 8%, from ∼

85% on average in our previous study.

Taxonomic distribution

Across all samples, we detected a total of forty bacterial phyla from the rhizospheric and

endospheric samples, but only nine had an average abundance greater than 1%. The phyla

that made up most ofP. deltoides overall root (rhizosphere and endosphere) microbiome were

Proteobacteria (56.1%), Actinobacteria (17.5%), Acidobacteria (10.0%), Firmicutes (2.1%),

Planctomycetes (3.0%), Verrucomicrobia (2.8%), TM7 (1.8%), Chloroflexi (1.1%) and

Gemmatimonadetes (1.0%) (Figure 3.2 (a)). Differential phyla level trends were observed

in the rhizosphere and endosphere bacterial communities. In all rhizosphere samples,
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Figure 3.1: Map of sample locations along Caney Fork River in TN and Yadkin River in NC along with
phylogenetic tree for twenty-three individuals of P. deltoides from twenty simple sequences repeat markers.
Each point in the map represents the location of sample along the river and the corresponding point in the
phylogenetic tree represents its genotype position compared to each other. The size of the point corresponds
to the number of tree in that clonal group.

regardless of watershed or seasonal origin, Proteobacteria (51%) was the most abundant

phylum followed by either Actinobacteria (12.1%) or Acidobacteria (14.6%). The remainder

of the phyla showed high variability in abundance from sample to sample. For instance,

relative abundance of TM7 in a rhizosphere sample was as high as 19.1%, but its average

abundance was only 1.6%. Whereas in the endosphere samples, Proteobacteria (62.4%),

Actinobacteria (23.9%) were enriched, largely at the expense of Acidobacteria (4.3%), and

members of the Chloroflexi (1.0%), Planctomycetes (1.1%), TM7 (2%) and Verrucomicrobia

(1.3%) were among the less abundant phyla. Endosphere sampled exhibited much greater

variability from sample to sample than those from the rhizosphere (Figure 3.9). Also unlike

in rhizosphere samples, Proteobacteria were not always the most abundant phyla as in the

endosphere, as Actinobacteria were dominant in ∼ 10% of samples.

We detected a total of eight fungal phyla in the rhizospheric and endospheric samples

from P. deltoides. Across all samples, Ascomycota (52%) dominated the overall fungal

communities - both rhizosphere and endosphere - followed by Basidiomycota (26.9%),

Chytridiomycota (7.8%) and others of the largely unresolved basal lineages in the former
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Zygomycota (now Mucorales, Mortierellales, etc) that are reported here as Fungi incertae

sedis (11.4%) (Figure 3.2 (b)). A similar trend was observed in the rhizosphere with

Ascomycota (50%) as the most dominant phylum, followed by Basidiomycota, (20.5%),

Fungi incertae sedis (11.7%) and Chytridiomycota (14.7%) (Figure 3.2 (b)). In contrast,

overall endosphere communities consisted primarily of Ascomycota (55%), Basidiomycota

(33%) Fungi incertae sedis (11%), while Chytridiomycota were largely absent (<1%).

At the higher taxonomic levels we observed more moderate differentiation over geo-

graphic space and season compared to differences between the rhizosphere and endosphere.

For instance, seven out of the nine major bacterial phyla differed in abundance significantly

between rhizosphere and endosphere (p<0.05) (Figure 3.6 (a)). Similarly, Chytridiomycota

were completely absent from 50% of endosphere samples, and across all spatial and

temporal samples, only reached a total of 0.7% of endosphere sequences, yet was one of the

dominant phyla in the rhizosphere samples. Other fungal phyla including Basidiomycota,

Blastocladiomycota, Neocallimastigomycota also differed significantly between rhizosphere

and endosphere communities (Figure 3.7), however only few phyla differed in their

composition over space (i.e. watershed) and time (i.e. season) (Figure 3.6). Compared

to differences between rhizosphere and endosphere, we only observed moderate and often

inconsistent differences within these communities, regardless their location or season of

sample (Figure 3.9). Over space, Chloroflexi and Ascomycota from endosphere communities

and Blastocladiomycota, Acidobacteria, and Chloroflexi from rhizosphere communities were

significantly different between trees from watersheds in NC and TN. Over the two seasons,

Glomeromycota from endosphere of TN trees was the only fungal phyla that changed

significantly from one season to another. In contrast, 10 bacterial phyla showed significant

changes between the two seasons, however these seasonal patterns were often inconsistent

between watersheds. For example, a significant shift between dominance of Proteobacteria

(dominant in Spring) and Actinobacteria (dominant in fall) in the root endosphere was

observed between season in the Tennessee samples but not the North Carolina samples.

(Figure 3.6).
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Figure 3.2: : Taxonomic distribution of (a) bacterial and (b) fungal communities from roots of
P. deltoides. The first row of stacked bar represents the overall relative abundance across endosphere
and rhizosphere; the second row represents endosphere and rhizosphere, third row represents the relative
abundance in each watershed, and the fourth row represents the relative abundance in May and September.

Factors related to microbial community patterns of the rhizosphere and endosphere.

Pairwise UniFrac distances (Lozupone and Knight, 2005) between each sample indicated

that bacterial and fungal communities from roots of P. deltoides varied significantly (p<0.05,

Figure 3.8) between rhizosphere and endosphere (Figures 3.3 and 3.9). Though the

rhizosphere and endosphere from a common root sample were only millimeters apart, they

displayed significant differences in major phyla (Figure 3.6), number of OTUs (Table 3.4

and 3.5) and UniFrac distance (Figure 3.8). To further characterize these communities we

separated rhizosphere and endosphere data in recognition that that these likely represent

separate habitats or niches that may have differing drivers of their community structure.

To identify these drivers of microbial community structure we tested the relationships

between community structure and various measurements that included host genotypes and

phenotype, soil physical and chemical parameters, geographic distance between samples,

season, the characteristics of the reciprocal community associates (bacterial vs. fungal)

and the interactions of these variables. Using variance partitioning with distance-based

redundancy analysis (db-RDA) of UniFrac inter-sample distances, we determined which host

and environmental factors best explained the community structure (Borcard and Legendre,

2002; Legendre and Anderson, 1999). In our results, most of the variation in the community

75



structure for both communities in rhizosphere and endosphere is statistically unexplained

(>40%) with only few of the factors contributing significantly to the variance (∼20%,

p<0.05). Figure 3.4 represents the proportion of community variance explained by variation

of individual factors (effects of all others are neutralized), interaction among factors, and

the unexplained variance for both bacterial and fungal communities in rhizosphere and

endosphere.

The most important factors that are directly or indirectly affecting the bacterial

community in rhizosphere are soil and season. Based on variance partitioning, seasonal

change (p<0.05; ∼ 4%) and soil properties (9.1%, p<0.05) explained significant proportions

of variance in pairwise UniFrac distances between samples. To elaborate on the component

of soil properties, we plotted Canonical Correspondence Analysis (CCA) with a subset

of best factors that makes up the composite soil variable. The bacterial rhizosphere

communities are influenced by pH as per the heavily weighted arrow and its high correlation

with first axis (CCA1: the main explainable variation in the relative abundance of OTUs)

(Figure 3.10). Interestingly, the fact that the differences in the rhizosphere bacterial

communities are best explained by the variance in local soil properties like pH despite

significant differences between communities from two populations (Figure 3.3) suggest

that the bacterial rhizosphere communities in P. deltoides are structured by changes in

the local environment and not by the geographical settings and differences in genotype.

The difference observed between two populations is likely due to difference in the local

soil properties. In endosphere bacterial communities, only seasonal change significantly

explained the variance (p<0.05; ∼ 4%), suggesting that both local environment and host

properties have lesser influence on endosphere bacterial communities compared to changes

due to season.

Unlike bacterial communities, significant proportions of variance in (14.0%, p<0.005)

UniFrac distance between fungal rhizosphere communities was explained by inter-tree

distances. Furthermore, soil properties explained 9.83% (p<0.05) of variance in UniFrac

distance between communities (Figure 3.4 (b)). A CCA plot of fungal communities from

rhizosphere consisting of relatively heavily weighted arrows indicate a relationship between
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Figure 3.3: A phylogram based illustration of the experimental design and difference in phylogenetic
based community structure between two rhizosphere, endosphere, watersheds and seasons. Rhizosphere is
represented by brown edges, and endosphere is represented by green edges. Similarly, two watersheds are
represented by orange and blue edges for Tennessee and North Carolina respectively. The end node represents
two seasons of sample collection. The number at the node represents the p-value (red for insignificant >0.05)
generated by comparing the unweighted UniFrac distance metrics between two conditions (left and right
nodes) using adonis function of vegan package in R. Phylograms representing (a) bacterial and (b) fungal
communities.

soil properties like Ca, Mn, and moisture content on these communities (Figure 3.11). In

contrast to bacterial rhizosphere communities, both the local environment and geographical

settings, but not the host genotype, influenced fungal rhizosphere communities. The

importance of geographical setting in structuring fungal communities can be attributed

to dispersal limitation of fungi, which is less likely to be dispersed between two isolated
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locations compared to smaller bacteria (Peay et al., 2007). For endosphere fungal

communities, none of the factors that we measured explained significant proportion of

variance.

Correlation between fungal and bacterial communities.

Over regional scale (both NC and TN watershed in unison), fungal communities in

rhizosphere appear to influence corresponding bacterial communities. Here, partial Mantel

tests (Goslee and Urban, 2007) revealed that the Unifrac distances between fungal

communities from rhizosphere are significantly correlated with Unifrac distances between

bacterial communities (ρ=0.24, p=0.004). Similar to variance partitioning, the test

accounted for all other measured variables. Furthermore, to negate the effect of separate

watershed location, we conducted the test separately within local NC and TN population;

the significant correlation was only maintained in TN population (ρ=0.28, p=0.03). The

endosphere bacterial and fungal communities did correlate with each other at regional scale,

but the correlation was observed in the endosphere of trees from TN population (ρ=0.26,

p=0.03).

OTUs distributions and the core microbiome.

OTUs from roots can be divided into three categories based on their distribution:

rhizosphere-specific: 1) OTUs that are only found in rhizosphere, 2) shared OTUs that

are found in rhizosphere and endosphere and 3) endosphere specific OTUs. Most of the

OTUs (bacterial and fungal) in the roots were rhizosphere specific, with a few shared

between the two habitats, and even fewer being endosphere specific (Table 3.1). However,

while the number of unique rhizosphere OTUs is high, shared OTUs comprised of most

of the sequences (82%), indicating greater dominance often enrichment in the endosphere

compartment. A deeper analysis into the distribution of the OTUs among each category

showed that 77.8% of rhizosphere-specific OTUs and 90% of endosphere-specific OTUs

were unique to one host sample and only few OTUs were present in all sampled trees.

Similarly, there were shared OTUs that were only found in one host, but most shared
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Figure 3.4: Variance partitioning of Bacterial and Fungal communities from the roots of P. deltoides
into soil properties, host properties, spatial, host genotype, seasonal, and beta diversity of corresponding
bacterial or fungal community. Each bar represents total variance, partitioned into pure effect or interaction
of two or all factors. Only Variance proportions that were statistically significant are listed in the chart
(p<0.05). Variables for host and soil properties were selected based on stepwise selection (forward and
backward) to remove non-significant terms from the model. (a) Variance partitioning of bacterial community
from rhizosphere and endosphere. (b) Variance partitioning of fungal community from rhizosphere and
endosphere.

OTUs were present in multiple host samples. For instance, among shared OTUs, 85% and

53% were found in multiple tree rhizosphere and endosphere samples, respectively. We

also detected shared OTUs that were present in rhizosphere or endosphere samples of all

trees. A set of 34 OTUs that were shared and one rhizosphere-specific OTU constituted

putative ‘core’ rhizosphere microbiome of P. deltoides from two populations. One of the

core OTUs from the rhizosphere was detected in endosphere of every sampled tree. A table

with the list of core OTUs along with their top BLAST hits against reference genomic

sequences database in NCBI website is listed in Table 3.6. These core OTUs in rhizosphere

mostly consist of Proteobacteria, and among others there were Actinobacteria, Acidobacteria,

Verrucomicrobia, and Chloroflexi.
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We observed similar distribution of fungal OTUs between rhizosphere and endosphere

and among trees. Here 70% of rhizosphere specific and 81% of endosphere specific OTUs

were only detected in one host (Table 3.1). We also found shared fungal OTUs that were

specific to single tree, but most were found in multiple trees as 71% of shared OTUs in

rhizosphere and 50% of endosphere were common to multiple trees. The shared OTUs also

constituted a core set of rhizosphere OTUs that comprised of 4 OTUs. One of the four

OTUs was also found in endosphere of all the sampled trees. Three out of four core OTUs

from rhizosphere classified as Ascomycota and one of them classified as a Mortierella spp.

(Table 3.7).

3.5 Discussion

Differences in rhizosphere and endosphere communities

We previously conducted a study of two locations near the Caney Fork River in Tennessee,

USA that revealed that the rhizosphere and endosphere communities of P. deltoides were

distinct across both their bacterial and fungal communities (Gottel et al., 2011). With the

current study we show this pattern clearly holds true across a much wider range of soil

types, seasonal transitions, host characteristics and across two regions in the southeastern

USA. Additionally, the present study delineates the phyla that are contributing to these

difference between rhizosphere and endosphere communities and recovers a greater range of

microbes than was revealed in the previous study. At higher taxonomic levels, we observed

Acidobacteria and Chytridiomycota were both more abundant in rhizosphere compared to

the endosphere. This result is consistent with recent results reported for studies of the

roots of Arabidopsis, which also reported low levels of Acidobacteria in the endosphere

(Lundberg et al., 2012). These two reports suggest that members within Chytridiomycota

and Acidobacteria phyla may lack properties essential for proliferation within endophytic

environments.

Also, in contrast to our previous work, we found Actinobacteria, similar to the genus

Streptomyces, were sometimes as dominant (or more so) within endophytic samples as

Pseudomonas-like Gamma-proteobacteria. Our recent study using ‘synthetic community

mixtures of known composition have shown that the V4 primer set we used in our previous
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study underrepresented Actinobacteria in community analyses (Shakya et al., 2013). In the

current study we employed new primers targeted at the V6-9 region and additional methods

to reduce host plastid and mitochondrial rRNA gene contamination. The primer set was

tested against this ‘synthetic community, which revealed that V6-9 set was able to better

recover the overall bacterial diversity, including Actinobacteria (Figure 3.12) that the V4

primers had biased against (Shakya et al., 2013). Beyond reducing plant organelle sequence

(averaging ∼ 85% in our endosphere samples in the previous study to ∼ 8% in the present),

these methods also appear to have eliminated previous biases against Actinobacteria. This

prominence of Actinobacteria in the endosphere is also consistent with other recent studies

of plant root endophytes (Lundberg et al., 2012). Detailed follow-up studies with isolates

of these phyla may provide valuable insights into deciphering genotypic and phenotypic

properties of hosts and microbes that contribute to the entry, survival, growth and function

within host habitats.

Factors governing rhizosphere and endosphere community composition.

Our analyses employed variance-partitioning methods to understand how combinatorial

effects of host factors, soil properties; presence of other microbes and seasonal variation

effect plant associated microbial communities. However, a quantitative understanding of the

relative importance of each of factors remained elusive in our study, especially for endosphere

communities, that exhibited low diversity (average OTUs: 154 (Bacteria), 39 (Fungi)), but

high variability from sample to sample (ranging from 19-1079: bacterial OTUs and 8-169:

fungal OTUs). Given the large amounts of unexplained variance within our study, despite

considerable efforts to measure a diverse suite of host and environment associated variables,

it is possible that unmeasured and/or stochastic factors may play large roles in formation

of endosphere and rhizosphere communities. However, given the diverse nature of these

communities compared to the relatively low sample sizes we employed (derived from 23

trees, tracked over two seasons in two watersheds), it is quite likely that more of this

variation may be attributable with a more robust sample size. Additionally, our power to

observe differences given these sample numbers was also likely limited by the significant

amount of co-variation that occurred across the two watersheds/populations we sampled,
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as a variety of soil properties and host genotype differed significantly between the TN and

NC sample origin.

Despite these limitations several factors were found to have significant effects on the

structure of rhizosphere and endosphere communities. Within rhizosphere communities

the effects of several soil properties (but especially pH), while not large, were significant

across both seasons and regions for both bacterial and fungal communities. Such results

have also been observed in previous studies (Marschner et al., 2004; Lauber et al., 2009).

Season of sampling also explained significant proportion of variance consistently in bacterial

communities of rhizosphere, however was not consistently significant in explaining variation

within fungal communities. Additionally, both bacterial and fungal community properties

varied strongly within the region in which they were sampled (TN vs. NC). The overall

observations agree well with previous studies that have identified soil type and season

as important players in shaping the microbial community of plants(Hannula et al., 2012;

Lottmann et al., 2010; Smalla et al., 2001). The importance of geographical setting in

structuring fungal communities may also be due to greater dispersal limitations of fungi

than for bacteria, leading to larger effects due to isolation by distance (Peay et al., 2007).

Both bacterial and fungal community structure within rhizosphere were shown to

have influences upon each other in the TN population samples (e.g., bacterial community

structure correlated with fungal community structure and vice versa). Such interactions, es-

pecially bacterial community structures being dependent on corresponding fungal diversity

have been documented in other cases (Roesti et al., 2005; Singh et al., 2008; Vesterg̊ard et al.,

2008). Bacterial influence on fungi, while well documented within studies conducted on Petri

plates, are less well documented in natural systems (Kai et al., 2008). The correlations

may be indicative of relationship across these groups through the production of secondary

metabolites, anti-microbial compounds and/or physical contact (Bonfante and Anca, 2009).

For instance, enzymatic activity of extracellular fungal enzymes in lignocellulose-rich soil

environments that results in production of water-soluble sugars and phenolic compounds

serve as growth substrates for bacteria (Boer et al., 2006).

Plant genotypic effects on microbial community in and around the roots have been

documented in other host species (Aira et al., 2010; Caporaso et al., 2011)). Based on the

twenty SSR markers that we employed across both natural populations in our study, these
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influences were not significant. However, there was a large degree of covariance in our data

sets, such that genetic relatedness measured with the SSR markers, as well as multiple soil

properties, tended to co-vary between the two regional sampling areas. So while regional

distinctions in both rhizosphere and endosphere microbiomes were clearly evident in our

data sets (Figure 3.3(a) and 3.3(b)) the specific influence of host versus environmental

drivers on these differences remain mostly unexplained, at least in part likely due to this

high degree of covariance between variables across the two regions sampled. However, even

within the three putative clonal types (ramet genotypes) identified in our SSR analysis,

variation was not significantly different than between genotypes as measured by Unifrac

distances (Figure 3.9). Host influences on the microbial assemblages in the rhizosphere

are complex, but may occur through factors affecting soil properties such as the release

of rhizodeposits and exudates (Buée et al., 2009; Broeckling et al., 2008; Shi et al., 2011),

secondary metabolites and other factors that were also beyond the scope of variables tracked

in this study.

The ‘core’ endosphere and rhizosphere microbiome of Populus deltoides.

A core microbiome is defined as members of the community that are found in all of the

assemblages associated with a habitat (Shade and Handelsman, 2012; Turnbaugh and

Gordon, 2009). Deciphering the core microbiome has been proposed to be fundamental

to understand the ecology of a microbial community, as the groups of species that are

commonly occurring in all habitats are likely to play important role towards communities

function (Shade and Handelsman, 2012). We defined the core endosphere and rhizosphere

microbial OTUs associated with all the sampled trees in the study (regardless of season,

genotype, regional location, etc.) using rarified data sets that may exclude some common,

but low abundance organisms compared to those that use overall (unrarified) distributions.

These conservative approaches resulted in a rather narrow core microbiome in each habitat.

Our core bacterial microbiome in rhizosphere was comprised of only 35 OTUs, one of which,

a Methylibium-like OTU within Burkholderiales, was also the only member of the core

endosphere microbiome (Table 3.6). Most of these core rhizosphere OTUs were within the

order of Burkholderiales and Rhizobiales which are known to be important plant associated
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organisms, as well as to contain diverse gene clusters encoding degradation pathways for an

array of aromatic compounds including pollutants (Pérez-Pantoja et al., 2012).

The core fungal microbiome constituted four only rhizosphere OTUs and one endosphere

OTU. Sequence analysis of fungal core OTUs in rhizosphere and endosphere revealed mem-

bers likely represented the genera Exophiala, Metarhizium,, Neonectria, and Mortierella.

Some of these organisms are known to have positive benefits to the plants by increasing

plant growth, preventing oxidative damage, mitigating salt stress, transferring nitrogen from

insect to plant and acting as entomopathogens (Behie et al., 2012; Khan et al., 2012b,a).

Neonectria is known as an opportunistic plant pathogen in some environments, however

their function within native rhizosphere habitats of P. deltoides remains undefined. Further

genome sequencing of isolates, controlled inoculations and other experiments to test the

molecular basis of these associations with host plants will be required to fully appreciate

the roles and functions of these fungi.

3.6 Conclusions

Analysis of rRNA gene amplicons pyrosequencing data from 23 P. deltoides host trees

across two watersheds and over two seasons for fungal and bacterial community revealed

new details about the microbes and microbial community structure in the roots of P.

deltoides. At higher taxonomic levels (e.g., phyla) rhizosphere and endosphere communities

were highly similar between two watersheds differing only in abundance of major phyla.

However, at finer levels such as methods using OTUs or UniFrac distances that account

for overall phylogenetic variation, clear distinctions were observed for communities from

different watersheds suggesting that mature plants of the same species in different locations

harbor distinct microbial communities in and on their roots. Also, we observed a seasonally

dynamic bacterial community in both the rhizosphere and endosphere of Populus. The

high degree of covariation within the host and environmental datasets likely limited the

power to distinguish between many of the genotypic, geographic and environmental factors

that may shape the Populus microbiome. Future studies with more extensive sampling

and in depth host characterization should further elucidate the factors shaping community

structure of both rhizosphere and endosphere communities in Populus. Fungal and bacterial
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Table 3.1: Distribution of rhizosphere specific, shared, and endosphere specific bacterial and fungal
OTUs among all sampled trees. Not all the endosphere samples amplified, so the NA represents the samples
that were not sequenced.

Bacteria Fungi
Rhizosphere Endosphere Rhizosphere Endosphere

# of
Trees

Specific Shared Specific Shared Specific Shared Specific Shared

1 4920 127 328 410 769 72 101 126
2 683 102 24 178 174 30 11 35
3 255 84 9 84 59 21 3 23
4 152 64 3 50 31 17 3 10
5 88 53 2 27 19 21 2 9
6 60 45 0 18 11 10 3 9
7 37 41 0 22 10 14 1 4
8 28 33 1 8 6 6 0 12
9 19 30 1 10 5 11 0 5
10 20 32 0 6 2 8 0 5
11 13 19 0 5 3 5 0 3
12 11 16 0 6 1 3 0 2
13 11 11 0 3 1 5 0 3
14 2 17 0 3 0 3 0 3
15 5 18 0 3 0 3 0 0
16 4 17 0 4 0 5 0 1
17 1 21 0 2 0 3 0 0
18 4 17 0 3 0 4 0 1
19 2 13 0 8 0 3 0 1
20 2 18 0 6 0 2 0 1
21 0 22 0 1 0 3 0 0
22 1 23 NA NA 0 1 0 0
23 1 34 NA NA 0 4 0 1

OTU distribution across samples suggested a small set of OTUs that formed the core

microbiome and should guide isolate studies that target the detailed mechanisms of host-

microbe interactions in Populus.
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Figure 3.5: Cluster analysis of the measured environmental variables to remove redundant variables
from the model. The analysis was done using varclus function of Hmisc package in R statistical software.
(S1): Tree and stand properties (S2): Soil properties
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Figure 3.6: Comparative analysis of major bacterial phyla between rhizosphere and endosphere, two
populations, and seasons. The significant difference is calculated using t-test between relative abundance of
two. Each bar represents its relative abundance and the label colored red represents that the difference is
significant.
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Figure 3.7: Comparative analysis of major fungal phyla between rhizosphere and endosphere, two
populations, and seasons. The significant difference is calculated using t-test between relative abundance of
two. Each bar represents its relative abundance and the label colored red represents that the difference is
significant.
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Figure 3.8: Principle Coordinate analysis of Unweighted UniFrac distance for bacterial (left) and fungal
(right) communities. The plot indicates the rhizosphere and endosphere communities are distinct for both
bacteria and fungi. Average Unweighted UniFrac distance matrix was calculated from 999 even rarefactions
of 1000 sequences per sample for bacteria and 400 sequences per sample for fungi. The significance of the
difference was calculated using adonis function of vegan package in R.

��
�
�
�
����
���

�
��

��

���
�

�

�
�
�

�

����

�
�

��

�

�
�
�

���

�
�
�
�
�
�� �

�

�
�

�

����������
�
�
�
��
�
��
�
��
�
���
�
��

�

�
�

��

���

�

�
�
��
�
��
���

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�

� �

�
�

��
�
�
�

�

�

�

�

�
�
�
�

�

���
�
��
��
�

�

�

�

�

��

�

��
��

�

�

��

�

�

�

�

�
�

�
�

��
�
�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

� �
�

��

�

�

�

�

�

��

�

�

� �

��
�

�

�

�

�

�
�
�

�
�

�

�

�

�

�

�

�
��

�
�

�� �

�

�

��
��
�

��
0.6

0.7

0.8

0.9

End
os

ph
ere

an
dR

hiz
os

ph
ere

End
os

ph
ere

an
dE

nd
os

ph
ere

Rhiz
os

ph
ere

an
dR

hiz
os

ph
ere

Rhiz
os

ph
ere

with
inN

C

Rhiz
os

ph
ere

with
inT

N

Rhiz
os

ph
ere

be
twee

nN
Can

dT
N

Rhiz
os

ph
ere

NCwith
inM

ay

Rhiz
os

ph
ere

NCwith
inS

ep
tem

be
r

Rhiz
os

ph
ere

NCbe
twee

nM
on

th

Rhiz
os

ph
ere

TNwith
inM

ay

Rhiz
os

ph
ere

TNwith
inS

ep
tem

be
r

Rhiz
os

ph
ere

TNbe
twee

nM
on

th

Rhiz
os

ph
ere

Betw
ee

nG
en

oty
pe

Rhiz
os

ph
ere

With
inG

en
o

End
os

ph
ere

with
inN

C

End
os

ph
ere

with
inT

N

End
os

ph
ere

be
twee

nN
Can

dT
N

End
os

ph
ere

NCwith
inM

ay

End
os

ph
ere

NCwith
inS

ep
tem

be
r

End
os

ph
ere

NCbe
twee

nM
on

th

End
os

ph
ere

TNwith
inM

ay

End
os

ph
ere

TNwith
inS

ep
tem

be
r

End
os

ph
ere

TNbe
twee

nM
on

th

End
os

ph
ere

Betw
ee

nG
en

o

End
os

ph
ere

With
inG

en
o

un
we

ig
ht

ed
 u

ni
fra

c

Bacteria

�

�

�

��
��

�

��
�
���
��
�
��

�

�

�
�
�

���
�

��

�

������
��
���
�

��

�������
��
�
�����
�
����
�
�
��

�

�
��
����
��
�
�
��
�
�
��������
���

�

�
�

��

�
�
�

�

�
����
�
�

�

�

�
�
�

�

�

�

�
��
�� ���

�

�

����

�
����
�

�

�

�

�

�
����

����
�
�
�

�

��
��

�

�

0.25

0.50

0.75

End
os

ph
ere

an
dR

hiz
os

ph
ere

End
os

ph
ere

an
dE

nd
os

ph
ere

Rhiz
os

ph
ere

an
dR

hiz
os

ph
ere

Rhiz
os

ph
ere

With
inN

C

Rhiz
os

ph
ere

With
inT

N

Rhiz
os

ph
ere

Betw
ee

nN
Can

dT
N

Rhiz
os

ph
ere

NCWith
inM

ay

Rhiz
os

ph
ere

NCWith
inS

ep
t

Rhiz
os

ph
ere

NCbe
twee

nM
aya

nd
Sep

Rhiz
os

ph
ere

TNWith
inM

ay

Rhiz
os

ph
ere

TNWith
inS

ep

Rhiz
os

ph
ere

TNBetw
ee

nM
aya

nd
Sep

Rhiz
os

ph
ere

Betw
ee

nG
en

o

Rhiz
os

ph
ere

With
inG

en
o

End
os

ph
ere

With
inN

C

End
os

ph
ere

With
inT

N

End
os

ph
ere

Betw
ee

nN
Can

dT
N

End
os

ph
ere

NCWith
inM

ay

End
os

ph
ere

NCWith
inS

ep
t

End
os

ph
ere

NCBetw
ee

nM
aya

nd
Sep

t

End
os

ph
ere

TNWith
inM

ay

End
os

ph
ere

TNWith
inS

ep
t

End
os

ph
ere

TNBetw
ee

nM
aya

nd
Sep

t

End
os

ph
ere

Betw
ee

nG
en

o

End
os

ph
ere

With
inG

en
o

un
we

ig
ht

ed
 u

ni
fra

c

Fungi

Figure 3.9: Box plot of UniFrac distances comparison between and within niche, population, and season.
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Figure 3.10: CCA of bacterial OTUs from rhizosphere and soil and host factors. Larger circles represent
samples that are color-coded based on their location, and smaller dots represent species/OTUs.

Figure 3.11: CCA of fungal OTUs from rhizosphere and soil and host factors. Larger circles represent
samples that are color-coded based on their location, and smaller dots represent species/OTUs.
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Figure 3.12: A representation of accuracy of V6-V9 primers from this study in characterizing synthetic
community from our previous study (Shakya et al., 2013)
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Table 3.2: Measurable physical features of P. deltoides and its surrounding environment.

TreeID DBH
(cm)

Dist.
to river
(m)

Dist.
to
closest
Pop.
(m)

Tree to
sam-
pled
roots
(m)

# of
prox-
imal
trees
(Prism)

# of
prox-
imal
Poplar
(Prism)

Sample
dis-
tance
to tree
(m)

Angle
to top
of the
tree

Angle
to base
of the
tree

Angle
to
lowest
live
branch

Canopy
width
(m)

Basal
area
(m2)

Basal
area
per
hectare

Basal
area
per
hectare

TNP03 73.5 14.02 3.5 2 4 2 28.65 54.5 -8.75 10.4 16.61 0.4 2.1 1.3
TNP04 122.4 32.9 3.05 2.5 10 4 32.55 57.5 -3.35 21.75 23.85 1.2 12.9 5.9
TNP05 77 15.24 4 3.3 7 5 15.2 62.75 -4.75 36 12.25 0.5 3.7 2.8
TNP06 80 13.6 6.3 1.4 10 1 15 68.5 -1.45 18.25 16.3 0.5 5.5 1
TNP07 68.5 18.4 1.92 0.51 9 2 22.45 56.9 -16.75 21 12.51 0.4 3.7 1.1
TNP08 71 13 no Pop 0.67 8 0 10.9 68.2 -5.75 30.2 10.6 0.4 3.6 0.4
TNP09 68 26.4 5.8 0.46 3 1 18.6 61.5 -1.7 28.55 15.85 0.4 1.5 0.7
TNP10 56 11 no Pop 2.14 5 0 21 45.75 -18.5 15 52 0.2 1.5 0.2
TNP11 61 40 1.6 0.8 3 3 8.45 76.15 -7.7 36.1 9.8 0.3 1.2 1.2
TNP2B 119 25.2 4.7 4 3 1 37.1 38.8 -8.7 9 18.14 1.1 4.4 2.2
TNP5B 87.5 30.8 11 2.2 8 1 12.9 68 -3.9 39.5 15.9 0.6 5.4 1.2
TNP9A 84.3 30.48 14 0.2 6 0 11 39.85 -4.85 6.2 21.8 0.6 3.9 0.6
NCP01 66.3 0 ∗ 20 2.5 4 0 17.98 55.9 -10.7 -7.4 9.41 0.3 1.7 0.3
NCP02 51.7 0 10 1 1 1 11.58 71.65 1.9 19.3 12.05 0.2 0.4 0.4
NCP03 66.4 6.4 1.52 0.5 9 4 17.2 68 -3.5 28 15.6 0.3 3.5 1.7
NCP04 47.25 106.7 6.01 1.98 12 4 12.3 76 -6 24 42.75 0.2 2.3 0.9
NCP05 62.8 55.5 no Pop 6.4 9 0 32.16 45.85 -4.2 22.75 13.1 0.3 3.1 0.3
NCP06 71.5 16.9 no Pop 7 7 0 36.27 44.6 -3.55 14.35 11.83 0.4 3.2 0.4
NCP07 37.7 53.5 0.23 1.59 8 3 17.19 53 -16.65 15 8.23 0.1 1 0.4
NCP08 119.5 70.1 5.48 6.19 11 1 30.48 65.5 -3 25.5 25.9 1.1 13.5 2.2
NCP09 95 2 50 15.24 10 7 25.5 58.1 4.45 22.9 21.89 0.7 7.8 5.7
NCP10 82.5 20 no Pop 6.1 9 0 12.5 72.15 -7.5 40.95 16.15 0.5 5.3 0.5
NCP11 69.6 2.13 no Pop 0.36 14 0 30.66 44.75 -4.2 15.15 14.88 0.4 5.7 0.4

∗on stream/creek
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Table 3.3: Physical and chemical properties of soil around P. deltoides of NC and TN.

TreeID %
Soil
Mois-
ture

LBC1

(ppm)
pH
CaCl2

Equiv.
H2O
pH

Sand
(%)

Silt
(%)

Clay
(%)

C
(%)

N
(%)

OM
(%)

Ca
(ppm)

K
(ppm)

Mg
(ppm)

Mn
(ppm)

P
(ppm)

Zn
(ppm)

TNP03 16.77 401 6.85 7.45 47.2 35.9 16.8 3 0.24 4.95 2762 88.9 221.3 56.5 148.5 18.2
TNP04 11.61 256 6.25 6.85 75.9 15.9 8.2 1.59 0.12 2.64 1584 44.4 98.2 44.9 151.9 5.5
TNP05 14.29 244 5.55 6.15 55.8 30 14.2 0.85 0.07 1.79 1329 61.9 90.8 46.6 231.2 2.3
TNP06 19.4 399 5.69 6.29 41.9 43 15.1 2 0.16 4.19 1768.5 61.5 97.2 66.1 125.1 5
TNP07 37.11 546 6.6 7.2 21.2 50 28.9 3.84 0.34 7.23 4361 72.1 285.9 74.2 390.7 29.1
TNP08 13.93 228 6.4 7 79.2 13.3 7.5 1.47 0.11 2.89 1650 34.7 93.2 60 205.1 3.7
TNP09 20.05 456 6.26 6.86 20.6 55.3 24.1 2.58 0.22 5.16 2585 109.3 189.2 49.4 132.4 5.5
TNP10 27.08 385 6.86 7.46 64 22.5 13.5 3.97 0.28 6.59 3727 80.1 336.3 61.4 198.2 25.3
TNP11 25.29 382 6.65 7.25 43.9 32.6 23.5 1.88 0.16 3.68 3455 63 182.5 42.9 473.5 16
TNP2B 18.61 596 7.42 8.02 25.2 41.2 33.5 7.38 0.33 7.26 7026 125.5 246.4 4.7 56.3 1.5
TNP5B 18.4 373 6.09 6.69 53.9 36.7 9.4 2.48 0.2 4.35 1972 49.4 112 52.6 70.4 8.5
TNP9A 18.55 504 6.97 7.57 22 50.5 27.5 3.83 0.31 6.67 4967 84.9 220 73.4 307.1 7.8

NCP01 22.97 701 5.12 5.72 35.3 43.2 21.5 3.84 0.24 7.75 2847 94.6 543.2 67.3 159.4 11.6
NCP02 17.53 636 5.88 6.48 35.9 31.9 32.2 5.31 0.38 9.65 3015 345.2 436.2 58.5 31 14.9
NCP03 5.01 186 5.05 5.65 89.9 7.3 2.8 0.81 0.05 1.63 409 48.6 52.1 8.7 9.4 3.9
NCP04 65.49 1303 5.23 5.83 25.9 55.8 18.3 32.65 0.62 17.03 3085 384.1 436.3 31.2 171.2 32.2
NCP05 19.44 455 5.51 6.11 52.6 32 15.4 2.24 0.18 4.73 1493 132.3 177.3 36 15.6 6.1
NCP06 24.24 646 5.25 5.85 18.6 52 29.4 3.1 0.23 7.38 1782 120.3 263.9 38.2 27.6 14.1
NCP07 21.15 507 5.73 6.33 35.2 33.3 31.4 2.51 0.19 5.87 1774 147.9 192.6 39.5 22.7 6.8
NCP08 31.01 579 5.24 5.84 21.2 41.3 37.5 2.72 0.23 7.65 1524 171.5 176 38.3 17.3 8
NCP09 24.32 643 5.14 5.74 21.3 44.7 34 3.14 0.25 7.3 1343 218 177.1 32.4 10.6 7.3
NCP10 24.55 793 4.81 5.41 16 50.6 33.4 3.43 0.27 7.47 1426 174.3 181.9 43.1 30.6 12
NCP11 22.12 831 4.86 5.46 18 47.9 34.1 3.53 0.26 8.21 1602 112.6 307.2 84.7 21.8 11.3



Table 3.6: A list of core bacterial OTUs and their closest relative organism.

OTU Phylum Order Closest sequenced relative % ID

1211 Acidobacteria Desulfuromonadales Geobacter sulfurreducens PCA 89%

3934 Acidobacteria Desulfuromonadales Geobacter pelophilus Dfr2 88%

5037 Acidobacteria Desulfuromonadales Geobacter daltonii FRC-32 strain FRC-32 92%

16727 Acidobacteria Solirubrobacterales Solirubrobacter soli strain Gsoil 355 100%

18613 Acidobacteria Solibacterales Candidatus Solibacter usitatus Ellin6076 99%

20548 Acidobacteria Desulfuromonadales Geobacter psychrophilus strain P35 90%

27680 Acidobacteria Acidobacteriales Thermolithobacter ferrireducens strain KA2 89%

3066 Actinobacteria Actinomycetales Mycobacterium setense 100%

4037 Actinobacteria Nitriliruptoridae Nitriliruptor alkaliphilus DSM 45188 ANL-iso2 93%

2637 † Actinobacteria Actinomycetales Microlunatus phosphovorus NM-1 $$ 99%

24338 Chloroflexi Anaerolineales Longilinea arvoryzae 86%

1413 Proteobacteria Rhizobiales Zavarzinella formosa strain : A10 87%

5154 Proteobacteria Rhodospirillales Nisaea nitritireducens strain DR41 18 93%

8886 Proteobacteria Xanthomonadales Nevskia soli strain GR15-1 100%

9201 Proteobacteria Xanthomonadales Steroidobacter denitrificans strain FS 94%

10210 Proteobacteria Rhizobiales Hyphomicrobium sulfonivorans strain S1 95%

12581 Proteobacteria Methylophilales Methylovorus glucosetrophus SIP3-4 100%

12723 Proteobacteria Gallionellales Gallionella capsiferriformans ES-2 strain ES-2 94%

12806 Proteobacteria Rhodobacterales Ponticaulis koreensis DSM 19734 94%

13148 Proteobacteria Rhizobiales Rhodoplanes elegans strain AS130 96%

14206 Proteobacteria Burkholderiales Oxalicibacterium flavum strain TA17 96%

15435 Proteobacteria Rhizobiales Bradyrhizobium japonicum 100%

17447 Proteobacteria Myxococcales Kofleria flava strain Pl vt1 92%

19176 Proteobacteria Syntrophobacterales Desulfoglaeba alkanexedens ALDC 94%

20376 Proteobacteria Rhizobiales Agrobacterium radiobacter K84 strain K84 100%

22702 Proteobacteria Caulobacterales Caulobacter sp. strain FWC21 99%

23419 Proteobacteria Rhizobiales Agrobacterium fabrum str. C58 strain C58 100%

23459 Proteobacteria Burkholderiales Variovorax paradoxus EPS strain EPS 100%

24004 Proteobacteria Burkholderiales Burkholderia phymatum STM815 strain STM815 96%

24018 Proteobacteria Burkholderiales Thiobacter subterraneus strain C55 96%

24967 Proteobacteria Rhizobiales Zoogloea oryzae strain A-7 97%

25294‡ Proteobacteria Burkholderiales Methylibium fulvum strain Gsoil 322 100%

25950 Proteobacteria Burkholderiales Duganella violaceinigra strain YIM 31327 100%

11162 Verrucomicrobia Verrucomicrobiales Prosthecobacter fluviatilis strain HAQ-1 88%

15696 Verrucomicrobia Verrucomicrobiales Haloferula phyci strain AK18-024 89%

†rhizosphere specific
‡present in all samples
§All samples
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Table 3.4: List of bacterial reads, OTUs, chao indices for all samples. The empty boxes represent samples
that failed to amplify.

RHIZOSPHERE
MAY SEPTEMBER

NORTH CAROLINA
SAMPLE READS OTUs Chao1 SAMPLE READS OTUs Chao1

R.M.N.01 9,201 2,006 5,309 R.S.N.01 7,369 1,336 3,178
R.M.N.02 7,410 1,640 4,787 R.S.N.02 8,777 1,403 3,182
R.M.N.03 15,247 1,626 2,564 R.S.N.03 9,042 873 1,292
R.M.N.04 4,980 1,464 4,032 R.S.N.04 5,434 1,538 3,961
R.M.N.05 4,852 1,654 5,452 R.S.N.05 7,635 1,810 4,517
R.M.N.06 7,438 1,063 1,702 R.S.N.06 2,245 703 1,601
R.M.N.07 3,162 1,108 3,433 R.S.N.07 9,348 2,300 6,270
R.M.N.08 3,126 917 1,947 R.S.N.08 8,061 1,354 2,315
R.M.N.09 10,176 1,693 3,950 R.S.N.09 8,816 1,634 3,813
R.M.N.10 15,502 2,021 4,061 R.S.N.10 10,470 711 1,726
R.M.N.11 8,735 2,051 6,834 R.S.N.11 5,095 968 1,706

TENNESSEE
R.M.T.03 2,882 1,047 3,508 R.S.T.03 11,210 1,962 5,164
R.M.T.04 5,459 1,837 6,417 R.S.T.04 4,148 342 405
R.M.T.05 6,045 1,825 5,978 R.S.T.05 7,613 1,694 4,370
R.M.T.06 2,253 971 3,219 R.S.T.06 5,722 1,327 3,227
R.M.T.07 3,359 1,218 4,302 R.S.T.07 6,095 1,688 5,059
R.M.T.08 10,057 1,812 4,524 R.S.T.08 8,560 2,289 7,541
R.M.T.09 7,567 2,211 8,235 R.S.T.09 7,355 1,309 2,947
R.M.T.10 2,660 1,124 4,529 R.S.T.10 6,454 1,206 2,982
R.M.T.11 4,065 1,327 3,938 R.S.T.11 9,957 2,445 7,818
R.M.T.2B 5,913 1,099 1,944 R.S.T.2B 9,890 1,689 3,786
R.M.T.5B 2,091 962 3,209 R.S.T.5B 5,312 1,628 5,867
R.M.T.9A 3,998 1,406 4,823 R.S.T.9A 13,987 2,759 7,257

ENDOSPHERE
NORTH CAROLINA

E.M.N.01 5,571 37 41 E.S.N.01 7,893 95 103
E.M.N.02 6,003 170 195 E.S.N.02 6,810 68 72
E.M.N.03 8,505 150 245
E.M.N.04 3,502 103 403 E.S.N.04 8,400 72 77
E.M.N.05 1,668 186 237 E.S.N.05 4,899 104 115
E.M.N.06 6,320 99 132 E.S.N.06 19,091 64 100
E.M.N.07 7,370 406 538 E.S.N.07 9,371 64 77
E.M.N.08 3,667 59 128 E.S.N.08 18,212 97 106
E.M.N.09 10,475 445 655 E.S.N.09 6,764 1,072 2,740
E.M.N.10 4,347 125 210 E.S.N.10 9,157 151 178
E.M.N.11 11,888 316 559 E.S.N.11 18,105 32 33

TENNESSEE
E.M.T.03 8,514 184 225 E.S.T.03 9,426 63 66
E.M.T.04 3,431 65 71 E.S.T.04 9,765 62 90
E.M.T.05 16,707 96 98 E.S.T.05 7,480 89 100
E.M.T.06 8,020 68 73
E.M.T.07 13,269 160 184 E.S.T.07 33,800 139 159
E.M.T.08 8,674 103 112 E.S.T.08 21,039 191 196
E.M.T.10 7,191 234 288
E.M.T.11 8,622 237 251

E.S.T.2B 8,717 19 19
E.M.T.5B 14,210 101 112 E.S.T.5B 9,664 95 102
E.M.T.9A 240 63 90
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Table 3.5: List of fungal reads, OTUs, and chao index for all samples. The empty boxes represent
samples that failed to amplify.

RHIZOSPHERE
MAY SEPTEMBER

NORTH CAROLINA
SAMPLE READS OTUs Chao1 SAMPLE READS OTUs Chao1

R.M.N.01 2,878 301 387 R.S.N.01 4,894 248 329
R.M.N.02 6,686 345 467 R.S.N.02 913 92 146
R.M.N.03 3,019 100 107 R.S.N.03 1,459 39 42
R.M.N.04 3,626 298 355 R.S.N.04 797 147 222
R.M.N.05 2,723 135 143 R.S.N.05 2,901 182 208
R.M.N.06 1,369 108 114 R.S.N.06 2,243 151 175
R.M.N.07 3,066 297 530 R.S.N.07 880 147 222
R.M.N.08 2,419 195 248 R.S.N.08 1,398 109 141
R.M.N.09 2,942 247 319 R.S.N.09 2,734 200 235
R.M.N.10 3,278 206 216 R.S.N.10 5,877 134 149
R.M.N.11 2,039 243 395 R.S.N.11 1,271 77 96

TENNESSEE
R.M.T.03 2,110 43 45 R.S.T.03 1,223 166 259
R.M.T.04 2,557 51 54 R.S.T.04 1,805 22 24
R.M.T.05 3,244 80 89 R.S.T.05 723 110 136
R.M.T.06 2,263 68 76 R.S.T.06 2,015 142 166
R.M.T.07 1,305 193 399 R.S.T.07 2,765 119 136
R.M.T.08 4,101 346 588 R.S.T.08 1,548 126 153
R.M.T.09 9,749 543 905 R.S.T.09 2,692 95 99
R.M.T.10 3,196 228 575 R.S.T.10 4,888 126 137
R.M.T.11 3,762 245 430 R.S.T.11 5,655 132 139
R.M.T.2B 3,050 90 104 R.S.T.2B 8,660 336 437
R.M.T.5B 2,920 103 156 R.S.T.5B 2,916 97 103
R.M.T.9A 1,799 243 414 R.S.T.9A 4,621 237 271

ENDOSPHERE
NORTH CAROLINA

E.M.N.01 3,749 21 22 E.S.N.01 5,180 43 44
E.M.N.02 3,561 23 26 E.S.N.02 3,013 21 21
E.M.N.03 1,635 15 15
E.M.N.04 9,200 25 46 E.S.N.04 1,888 8 8
E.M.N.05 1,395 25 28 E.S.N.05 1,912 169 184
E.M.N.06 1,010 99 149 E.S.N.06 819 22 23
E.M.N.07 960 31 53 E.S.N.07 1,394 58 97
E.M.N.08 4,815 62 72 E.S.N.08 4,294 45 62
E.M.N.09 1,129 63 76 E.S.N.09 1,627 28 30
E.M.N.10 1,918 20 29 E.S.N.10 1,902 48 56
E.M.N.11 408 27 45 E.S.N.11 2,753 96 125

TENNESSEE
E.M.T.03 1,828 42 45 E.S.T.03 1,806 36 36
E.M.T.04 1,398 14 45 E.S.T.04 2,860 19 20
E.M.T.05 2,390 55 15 E.S.T.05 2,791 63 81
E.M.T.06 1,547 36 66 E.S.T.06 2,733 9 12
E.M.T.07 1,037 15 41 E.S.T.07 2,297 32 32
E.M.T.08 2,241 35 15 E.S.T.08 1,951 38 45
E.M.T.09 2,286 34 40 E.S.T.09 2,320 57 60
E.M.T.10 4,043 46 35 E.S.T.10 3,680 35 37
E.M.T.11 3,128 28 47 E.S.T.11 1,683 11 14
E.M.T.2B 66 24 28 E.S.T.2B 2,110 13 13
E.M.T.5B 1,599 28 42 E.S.T.5B 2,695 56 64
E.M.T.9A 2,929 29 30 E.S.T.9A 15,011 37 46
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Table 3.7: A list of core fungal OTUs and their closest sequenced relatives.

OTU # Phylum Order Closest sequenced relative % ID

294 Ascomycota Chaetothyriales Exophiala tremulae 100%
413 Ascomycota Hypocreales Metarhizium anisopliae 100%

1467§ Ascomycota Hypocreales Neonectria sp. 100%
2332 Fungi incertae sedis Mortierellales Mortierella sp. 100%
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Chapter 4

Characterizing archaeal communities in rhizosphere of

mature trees and surrounding bulk soils from a riparian zone

Disclosure: This chapter is a manuscript under preparation. Migun Shakya was

responsible for most experimental work and data analysis.
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4.1 Abstract

Archaea are common members of rhizosphere microbial communities, but most of our

understanding of below ground archaeal communities are derived from soil, not rhizosphere.

These resident archaea that includes Thaumarchaeota have been implicated in nitrogen

cycling and potentially could play role in plant nutrition. Based on environmental and

economical importance of mature trees, it is important to characterize their resident archaea.

Here, we used barcoded pyrosequencing to characterize archaeal community structure in

roots of mature trees with focus on P. deltoides. A total of 42 samples - 6 P. deltoides

rhizosphere and 3 bulk soils and 3 non Populus trees surrounding each of the 6 Populus

tree - were included in the study. We used two genes: V1-V3 of 16S rRNA and amoA

(ammonia monooxygenase subunit A) to survey archaeal and ammonia oxidizing archaeal

(AOA) communities. Our results revealed relatively low diversity of archaea in both soils

and rhizosphere compared to corresponding bacterial and fungal communities. Pairwise

comparison of 16S based phylotype of rhizosphere and soil from each site revealed slightly

greater diversity of archaea in rhizosphere. However, the community structure of rhizosphere

and soil communities did not differentiate based on their niches. Additionally, 95% of 16S

and 66% of amoA based phylotypes were common between two niches and only 1 16S

phylotype was significantly enriched in rhizosphere. The study, however, showed a wide

diversity of archaea - either affiliated to previously known lineages of ammonia oxidizing

archaea or novel - are associated with mature trees and soils from riparian zones.

4.2 Introduction

Archaea are common in the rhizosphere of Zea mays (maize) (Chelius et al., 2001),

Oryza sativa (rice) (Großkopf et al., 1998), Sullius bovines (pine) (Bomberg et al., 2003)

etc. Euryarchaeota and Thaumarchaeota - a recently coined phylum that consist of non-

thermophilic Crenarchaeota - are two phyla usually found in rhizosphere and most bulk

soils. These phyla comprise of organisms that could potentially carry out oxidation of

ammonia (NH3) to nitrite (NO2
−), a critical step in nitrogen cycle (Tourna et al., 2011)
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and methanogenesis (Conrad, 2007). Thus, studying archaea-plant interface is an important

step towards understanding plant microbe interface and its impact on the environment.

Since the time archaea was first discovered from a non-thermophilic soil there have

been many studies that characterized archaeal communities from soil (Bates et al., 2011;

Gubry-Rangin et al., 2011; Pester et al., 2012; Onodera et al., 2009). However, few studies

have focused on rhizosphere, most of which were conducted on agricultural sites (Chen

et al., 2008; Di et al., 2009). Beside its importance in global economy, climate change, and

environment, only few studies have attempted to characterize archaeal community from

mature perennial plants (Bomberg et al., 2011; Bomberg and Timonen, 2009). Therefore,

many properties of archaeal communities associated with mature perennial plants remain

unknown. For instance, the rhizosphere effect - change in diversity or abundance of

microorganisms in the rhizosphere compared to surrounding bulk soils (Hiltner, 1904) -

is an important component for understanding the plant microbe interface remains unclear

for archaea. Although rhizosphere effect on archaeal communities has been reported in

macrophytes like Littorella uniflora (American shoreweed) (Herrmann et al., 2008) and

limited studies of oak and pine trees (Sliwinski and Goodman, 2004), it has not been

reported in Populus.

Populus is a perennial plant that is used for production of lumber, pulp, paper, and

biofuel (Tuskan et al., 2006). It has an extensive root system that harbors diverse groups of

bacteria and fungi (Gottel et al., 2011) that have direct effect on its growth and development

(van der Lelie et al., 2009). Based on the presence of archaea in diverse plants, it is likely

that archaea are present in rhizosphere of P. deltoides and may play important roles in

their hosts’ health and development. Molecular techniques like PCR, NGS, and advanced

bioinformatic tools have made studies of microbial community possible without the need of

isolating and culturing its members. These tools allow us to study microbial communities at

unprecedented scales. Our previous studies have used similar approach to characterize the

community structure and the factors that are structuring bacterial and fungal communities

of P. deltoides but did not examine archaea.

The objective of present study is to characterize archaeal communities in bulk soils

and rhizosphere of naturally occurring mature trees including P. deltoides. We seek to

test for the rhizosphere effect by comparing the rhizosphere communities to adjacent bulk
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soils. We used two marker genes (V1-V3 region of 16S rRNA gene and partial amoA

gene) for in-depth characterization. Results of our study suggest a low diversity of archaea

including AOAs in both soils and rhizosphere compared to other microbes like bacteria and

fungi. Furthermore, relatively higher diversity of archaea were recovered from rhizosphere

compared to corresponding bulk soils. However, the community structures were not distinct

based on their niches, not even for P. deltoides rhizosphere. Regardless, the study showed a

wide diversity of archaea - either affiliated to known lineage of ammonia oxidizing archaea

or not - are present in the soils and mature trees from a riparian zone.

4.3 Methods

Study site and sampling.

We collected soil and root samples along Caney Fork river in Cookeville, Tennessee on

September of 2011. The study includes a subset of P. deltoides from our previous study

of 2010 (See Chapter 3) along with additional bulk soils and rhizosphere samples from

non-Populus trees. All samples were collected from 6 P. deltoides and 3 bulk soils and

3 non Populus tree surrounding each P. deltoides in september 2011. Root samples were

collected by carefully excavating and tracing the roots back to the tree to ensure identity.

The collected root samples were stored in ice and processed next day in lab. Furthermore,

core soil samples were collected from areas between the P. deltoides and each non Populus

trees. Similarly, soil samples were refrigerated to be processed next day. A total of 42

samples with 18 bulk soil and 24 root samples were collected. A list of all the samples and

their source are listed in Table 4.1. From the root samples, tertiary fine roots were removed,

and loosely adhered soils from these roots were removed by shaking and then washed with

100 ml of 10mM NaCl solution to remove the adhering rhizosphere soil.

The resultant wash was collected in 50mL tubes, which made up the rhizosphere samples.

Part of the soil sample was used for extracting DNA and part was sent to Agricultural and

Environmental Services Laboratory (AESL) of University of Georgia (http://aesl.ces.

uga.edu/) for physical and chemical characterization. The soil characteristics of each soil

are presented in Table 4.2.
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(a) (b)

Figure 4.1: Location of trees. (a) Location of sample units (P. deltoides) along Caney Fork river in
Tennessee. (b) An example of experimental design at one sampling unit. The symbol in the middle represents
the position of P. deltoides, surrounded by bulk soil samples and corresponding mature trees that are not
Populus. Common name of non Populus trees are listed in Table 4.1

DNA extraction

For rhizosphere samples, 2.0 ml of samples that were pelleted using a low-speed centrifuga-

tion was used for extractions using PowerSoil DNA extraction kit (MoBio, Carlsbad, CA).

For soil samples,a 250mg of soil was weighed and used for extraction using PowerSoil DNA

extraction kit (MoBio, Carlsbad, CA).

DNA amplification and sequencing for 16S rRNA gene.

PCR amplifications of archaeal 16S rRNA gene from the genomic DNA of 42 samples (18

bulk soil and 24 rhizosphere) were conducted using a pair of primer that targets V1-V3

region of 16S rRNA gene. The primers used are F2A-(5‘-TCYSGTTGATCCYGCSRG-

3’) and 571R-(5‘-GCTACRGVYSCTTTARRC-3’) (Shakya et al., 2013) that were tagged

with 8 bp barcode which was preceded by the 454 B sequence (5‘-CTATGCGCCT

TGCCAGCCCGCTCAG-3’) in the forward primer and just the 454 A sequence in reverse

primer (5‘-CGTATCGCCTCC CTCGCG CCATCAG-3’) (454 Life Sciences, Branford, CT,

USA). A list of all the primers with their barcode are listed in Table 4.3. For each sample, a

50 µl PCR reaction was conducted using 1X High Fidelity PCR buffer, Platinum Taq High
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Fidelity polymerase (Invitrogen, Carlsbad, CA), 0.2mM of deoxynucleoside triphosphates

(dNTPs), 2mM MgSO4, and 300nM of each primer. The samples were amplified using

following thermal condition: 94◦C for 2 minutes, then 30-35 cycles of 94◦C for 30s, 55◦C

for 45s, and 72◦C for 1 min followed by 72◦C for 7 min before cooling at 4◦C . Amplicons

were sequenced using a 454 Life Sciences Genome Sequencer FLX (Roche Diagnostics,

Indianapolis, IN, USA) at Oak Ridge National Laboratory, USA.

DNA amplification and sequencing for amoA gene.

PCR amplification of archaeal amoA gene from the subset of 42 samples were conducted

using a pair of primer that targets part of the gene. The primers used are Camo19F (5‘-

ATGGTCTGGYTWAGACG-3’) and Camo616R (5‘-GCCATCCABCK RTANGTCCA-3’)

(Pester et al., 2012). The forward primer was tagged with 6-7 bp barcode which was

preceded by the 454 B sequence and the reverse primer was preceded by the 454 A sequence.

A list of all the primers with their barcode are listed in Table 4.4. For each sample, a 50

µl PCR reaction was conducted using 1X High Fidelity PCR buffer, Platinum Taq High

Fidelity polymerase (Invitrogen, Carlsbad, CA), 0.2mM of deoxynucleoside triphosphates

(dNTPs), 2mM MgSO4, and 300nM of each primer. The samples were amplified using

following thermal condition: 95 ◦C for 2 minutes, then 30-33 cycles of 95◦C for 30s, 50◦C

for 1 min, and 72◦C for 1 min followed by 72◦C for 5 min before cooling at 4◦C . Amplicons

were sequenced using a 454 Life Sciences Genome Sequencer FLX (Roche Diagnostics,

Indianapolis, IN, USA) at Oak Ridge National Laboratory, USA.

Sequence analysis for 16S.

We denoised pyrosequencing data using Ampliconnoise v1.27 (Quince et al., 2011), which

corrects for both PCR and sequencing errors using default settings. Ampliconnoise was

implemented through QIIME 1.5.0 (Caporaso et al., 2010a). The denoised sequences were

then checked and removed off chimeras using uchime (Edgar et al., 2011) implementation

through mothur (Schloss et al., 2009) with most abundant sequence in a sample as the

template. Additionally, sequences that were shorter than 350 bp were also removed from

further analysis. The high quality sequences were then used to cluster (99% sequence
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similarity) into phylotypes using uclust (Edgar, 2010) implementation in QIIME. The

representative sequences from each phylotypes were assigned a taxonomic classification using

RDP classifier 2.2 (Cole et al., 2009) against green genes taxonomy (DeSantis et al., 2006).

Furthermore the representative sequences were checked for chimeras using ChimeraSlayer

(Haas et al., 2011) against the database provided with the package, although none were

found. The resultant phylotypes were then filtered based on there sequence composition to

have only those phylotypes that were present in at least 10% (4 samples) of all samples and

had at least 20 sequences total. Furthermore, 3 phylotypes that were either unclassified or

classified as bacteria were removed for further analysis. Each samples was then rarified to

have equal number of sequences to remove any sampling biases ∼ 2999.

Reference amoA sequences.

A manually curated database with previously reported archaeal amoA gene was created with

method based on Gubry-Rangin et al. (2011). First, National Center for Biotechnology

Information (NCBI) GenBank database was searched with Entrez search terms “amoA

and archaea” on March 18 2013. These sequences were then filtered for sequences that

were too long (>750) or too short (<500) or have any ambiguous bases. Furthermore,

duplicate sequences were removed and then location of the primer that was used in this

study was trimmed off from both ends. The sequences that begin after the primer or

shorter than the reverse primer used in the study were discarded off as well. Furthermore,

sequences were then checked for stop codon in all three frames using a custom python code.

Sequences that passed these thresholds were retained along with amoA sequences from some

of the characterized ammonia oxidizing archaea. The sequences were then clustered at 85%

sequence similarity based on Gubry-Rangin et al. (2011) and Pester et al. (2012) using

uclust implementation in QIIME. The representative sequences from each cluster were then

used as reference to cluster the sequenced amoA sequences.

Sequence analysis for amoA.

Similar to 16S, amoA sequences were also denoised using Ampliconnoise (Quince et al., 2011)

followed by removal of chimeras using uchime (Edgar et al., 2011) (without the reference
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sequence) implementation of mothur (Schloss et al., 2009). Furthermore, the sequences

were checked for in frame for translation using a custom python script. Any sequences that

have stop codon in any of the three frames were removed from downstream analysis. Also,

sequences that were less than 350 nucleotide long were also removed from further analysis.

The resultant sequences were the clustered against reference sequence at 85% sequence

similarity using uclust (Edgar, 2010) implementation of QIIME.

Phylogenetic analysis of sequences representing 16S and amoA based phylotypes.

Phylogenetic analysis that includes sequence processing and tree construction was done

using a suit of tools that includes Geneious 5.3 (Drummond et al., 2011), MEGA v5

(Tamura et al., 2011), PyNAST (Caporaso et al., 2010b), QIIME v1.5 (Caporaso et al.,

2010a), and greengenes database (DeSantis et al., 2006). Representative sequences of

16S based phylotypes were aligned against greengenes reference database using PyNAST

implementation in QIIME v1.5. The alignment was manually edited in Geneious v5.3, which

was then uploaded into MEGA v5 for model selection and constructing phylogenetic tree.

Based on the AIC score Kimura 2 parameter using discrete gamma distribution was chosen

as a substitution model. Similarly, representative sequences of amoA based phylotypes

were aligned based on codon in geneious, and was further edited as in the geneious as well.

Likewise, the alignment was uploaded in MEGA v5 for model selection and construction of

phylogenetic tree. Phylogenetic tree was then constructed using Kimura 2 parameter with

discrete gamma distribution as the substitution model.

4.4 Results and discussion

Site characteristics.

Our study included 42 samples (18 bulk soils, 18 non Populus, and 6 P. deltoides rhizosphere)

collected from riparian zones of Caney Fork river in Cookeville, TN (Figure 4.1). The six

sites are named 10, 11, 2b, 5b, 7, and 9a. For every P. deltoides rhizosphere, we sampled 3

bulk soils and 3 non P. deltoides rhizosphere from its surroundings. A list of all samples and

names of non Populus trees are shown in Table 4.1. We extracted DNA from all samples
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and characterized physical and chemical features of all bulk soils (Table 4.2). Based on

hierarchical clustering of measured factors, one sample (10.2) adjacent to P. deltoides 10

was different from all other soil samples (Figure 2), but the remaining samples clustered

based on there location. Only Mn, P, and Zn showed high variation of up to 1 fold and rest

of the samples variation were under 1 fold. In summary, the bulk soils along riparian zone

did not vary much within our sample sites.

Archaea in rhizosphere and soil.

We used V1-V3 region of 16S rRNA gene to describe archaeal diversity. A total of 455,660

high quality sequences - denoised, dechimerized, and trimmed to 350 bp - were recovered

from 41 soil and rhizosphere samples (one soil sample failed to amplify) with an average of

11,115 sequences per sample and range of 3,502 to 20,601 sequence per sample. These high

quality reads clustered into 1,595 phylotypes (defined at 99% sequence similarity), most

of which were singletons and only present in few samples. After removing rare phylotypes

- < 10% (4 samples) of the samples and <20 sequences total - and ones that classified

as bacteria, the number of phylotypes dramatically decreased to 63. However, removal of

those phylotypes accounted only 1.4% of total sequence. Based on high number of reads,

low number of phylotypes per sample, and rarefaction curves from this study (Figure 1) it

is possible that we might have captured most of the archaea detectable using the primer

pairs used in the study. However, biases due to primer mismatches could undervalue actual

diversity (Shakya et al., 2013). The observed lower diversity of overall archaea in below

ground environment is on par with average archaeal diversity in soils from around the world

(Auguet et al., 2009; Bates et al., 2011).

Out of 63 phylotypes, 6 belonged to phylum Euryarchaeota, 4 to Marine Benthic Group

A, and rest (53 phylotypes) were similar to genus Nitrososphaera of Thaumarchaeota.

Among all taxonomic groups, Nitrososphaera was the most dominant. This group, which

consist of potential ammonia oxidizing archaeon (AOA) represented ∼ 99% of overall

sequences, 95%- 99% of sequences per sample, and all phylotypes with relative abundance

greater than 5% per sample. It is clear that regardless of habitat, riparian zone below

ground archaeal communities are dominated by small number of taxa. Similar pattern of
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dominance by few archaeal phylotypes have been observed in rhizosphere of crop plants like

maize and soybean (Nelson et al., 2010).

The phylogenetic placement of sequences representing 13 most abundant phylotypes,

all of which were classified as Thaumarchaeota are shown in Figure 4.2. All the sequences

belong to group 1.1b crenarchaeota clade, the dominant member of soil archaeal community

(Auguet et al., 2009; Bates et al., 2011). 7 of 13 abundant phylotypes had close affiliation

to Nitrososphaera from soil and rest formed separate lineages. Out of 13 dominant

phylotypes, four ((phylotype # 188 (Avg.:28.4%), 1029 (21.8%), 1125 (16%), and 1243

(12.5%)) accounted for ∼80% of total sequences. These phylotypes, however, showed

great variation across all samples and only one phylotype (# 1243) was present in all

41 samples and varying from <1% to 52%. Phylogenetic placement of these four abundant

phylotypes suggest two (1125 and 1243) are closely related to Nitrososphaera isolated from

garden (Tourna et al., 2011) and agricultural soil (Kim et al., 2012), and two formed clades

with uncultured representatives (Figure 4.2). A BLAST search of two phylotypes in the

uncultured clade against cultured or isolated archaea revealed that the closest one (∼90%

percent identity) is Candidatus “Nitrososphaera gargensis” (Hatzenpichler et al., 2008).

Clearly, these phylotypes’ represent novel archaea that have only been identified through

SSU rRNA. However, given the affiliation of these phylotypes to Thaumarchaeota and their

high abundance, it is likely that they are important part of nitrogen cycle functions of their

host and environment (Leininger et al., 2006).

Putative ammonia oxidizing archaea in rhizosphere and soil.

With amoA, a total of 193,657 high-quality sequences - denoised, dechimerized, checked for

translation frame, and trimmed to 350 bp - were recovered from 18 soil and rhizosphere

samples with an average of 10,759 sequences per sample and range of 986 to 18,985 reads

per sample. The 18 samples comprised rhizosphere of all 6 P. deltoides and a bulk soil

and a non Populus tree’s rhizosphere surrounding it. These reads clustered into 171 amoA

phylotypes at 85% sequence similarity against reference clusters derived from high quality

amoA sequences deposited in NCBI (Gubry-Rangin et al., 2011; Pester et al., 2012). Similar

to 16S phylotypes, most (54%) amoA phylotypes were singletons. Thus, after removing
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the rare ones (present in < 2 samples and <20 sequences total.), we recorded 22 amoA

phylotypes.

Similar to distribution of 16S based phylotypes, all samples were dominated by six

phylotypes (90%). Furthermore, phylotype # 15 accounted for 72% of total sequences and

was present in all, but one sample. Another phylotype # 80 was the second most dominant

phylotype comprising 14% of all sequences. As these phylotypes were clustered against a

reference database, # 15 also represents most abundant cluster of reference sequences from

NCBI as well. These results suggest that a group of most abundant potential AOAs in this

study and possibly globally, still lack genomic information. We also found one phylotype

that did not cluster with any representative reference sequences (phylotype labeled None56),

thus representing a novel phylotype that have not been detected before. Additionally, the

blast search of ‘None56’ against all NCBI sequences did not reveal any sequence with 100%

match.

Phylogenetic analysis of representative sequences from amoA phylotypes with cultured

representatives of Thaumarchaeota revealed diverse groups of putative AOAs in our samples

(Figure 4.2(b)). Five phylotypes were affiliated to lineage with known archaea and rest

formed a separate lineage with no affiliations to cultured/isolated/enriched/sequenced

AOAs. In contrast with 16S based phylotypes, amoA primers in the study are able to

detect a phylotype (phylotype # 101) that was closely related to AOAs from marine

environment. Additionally, the only phylotype that clustered with reference sequence

representing a cultured archaea was phylotype # 69. It clustered with Ca. “N. gargensis

Ga9.2”. Both abundant phylotypes # 15 and # 80 belonged to a separate clade that did

not have sequenced or cultured AOAs. In agreement with the archaeal diversity based on

16S, the study suggests that most abundant, and likely important phylotypes from soil and

rhizosphere environments are still uncharacterized.

The 16S primer set used in the study was also tested against archaeal ‘synthetic

communities’ in a previous study (Shakya et al., 2013). The primer set, although missed

certain Thermoproteales, it was able to reconstruct most of the original diversity. Therefore,

16S primers used in the study should be able to capture wide diversity of archaea, if present.

amoA primer used in the study has been used to study communities of putative AOAs Pester

et al. (2012). Comparison of archaeal diversity revealed from 16S and amoA based primer
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sets revealed that former captured higher number of potential AOAs (Thaumarchaeota) than

the latter. However, by using amoA gene, we were able to detect novel phylotypes that were

potentially missed by the 16S gene. Nevertheless, the general community structure revealed

by both marker genes were identical, with many rare phylotypes and few dominant ones.

Comparative analysis of archaea in rhizosphere and soil.

We discovered an average of 21 phylotypes per sample from rhizosphere with a range of 11

to 30 per sample. The average phylotypes per bulk soil sample was 18, with a range of 12

to 25 per sample. The higher average in rhizosphere richness may indicate its capability to

support higher diversity of archaea than corresponding bulk soils. Additionally, pairwise

comparisons of average rhizosphere phylotypes in each of six sites with surrounding bulk

soil also show similar trend. 4 sites had higher rhizosphere diversity and 2 sites had equal

number of phylotypes in both rhizosphere and soil. Similar richness of phylotypes have

been recorded for archaea in a wide variety of plants (Sliwinski and Goodman, 2004), but

contrasting results were observed for bacterial communities in oak (Uroz et al., 2010). These

observations suggest factors that select bacteria and archaea in rhizosphere may be different.

This is in agreement to Valentine (2007), who suggested adaptation to energy stress controls

the ecology and evolution of archaea while bacteria become adapted to maximize energy

availability. However, distribution of 16S based phylotypes across rhizosphere and soil

revealed 95% were shared between two niches, 1 was unique to soil, and 2 to rhizosphere

(Figure 4.3(a)). Phylotype unique to soil was in relatively low abundance (< 1%) and

specific to single site (site 11). Similarly, the rhizosphere specific phylotypes were also

(< 1%) low abundance. These observations suggest only few archaeal phylotypes were

mutually exclusive to either of the niches and although we detected higher diversity of

archaea in rhizosphere compared to soil, the archaea residing in rhizosphere are capable of

proliferating in soil and vice versa.

Principal coordinate analysis of Bray-Curtis dissimilarity measure (based on phylotype

abundance) and Sorensen Dice coefficient (based on presence absence of phylotypes) did

not reveal clustering of samples based on rhizosphere and soil (data not shown). These

results suggest lack of niche partitioning of archaeal communities into bulk soils and
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rhizosphere. However, at the phylotype level, out of 13 abundant phylotypes, one (# 1125)

was significantly enriched in rhizosphere (Figure 4.4 (c)). This phylotype was closely related

to sequences found in the BLAST data base that have been recovered from trembling aspen

(Lesaulnier et al., 2008).

Based on amoA, we detected an average of 13 phylotypes in soil with a range of 10

to 18 per sample, and an average of 11 phylotypes in rhizosphere with a range of 4 to 17.

However, pairwise comparisons of amoA based phylotypes revealed no significant differences

in rhizosphere or soil. The lack of clear richness of AOAs between rhizosphere and soil

suggest that AOAs might not have preference over one site or another. However, we detected

some rhizosphere and soil specific phylotypes as only 14 phylotypes were shared, 4 were

unique to soil, and 3 to rhizosphere (Figure 4.3). pH is known as one of the main driver of

AOAs (Gubry-Rangin et al., 2011). We did not observe wide range of pH among all our soil

samples and since we don’t expect much variation in pH within few meters of the site, we did

not observe variation between the distribution of these AOAs either. Furthermore, distinct

amoA communities were not observed using beta-diversity measures like Bray-Curtis and

Sorenson dice and no phylotypes showed significant enrichment in either rhizosphere or

soil. The lack of difference in chemically and physically similar environments are in par

with studies that have only revealed differences in community structure of potential AOA

in significantly diverse environment types Alves et al. (2013); Gubry-Rangin et al. (2011);

Pester et al. (2012).

P. deltoides and surrounding tree species

Based on 16S, our study discovered an average of 19 phylotypes per sample from rhizosphere

of P. deltoides with a range of 11 to 30 per sample. Similarly, an average of 22 phylotypes per

sample with a range of 12 to 26 per sample were recovered from rhizosphere of non Populus

trees. And, as mentioned previously, the average phylotypes in soil was 18. Compared to

P. deltoides rhizosphere, non Populus show slightly higher richness, however, we do not

have enough observations and equal number of samples to claim non Populus rhizosphere

to be enriched with higher diversity of archaea. Similarly, we detected 44 phylotypes from

rhizosphere of P. deltoides, 60 from non Populus, and 61 from bulk soils and none of the
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phylotypes were unique to P. deltoides. Furthermore, pairwise comparison of phylotypes of

each P. deltoides rhizosphere to its surrounding non Populus and bulk soil showed varying

results. For example, in 4 sites, average phylotype of non Populus tree were higher than

corresponding P. deltoides and in other two sites, it was lower. Ternary plots based on the

average abundance of these phylotypes also show that most of the phylotypes, including the

abundant ones are almost equally distributed in all three sites (Figure 4.4). Some rare ones,

based on 16S, however showed to be slightly enriched in soil, but most of the phylotypes

were discovered from all three niches. A similar inconsistent results were also observed in

phylotypes based on amoA. Based on partial amoA, we found 15 phylotypes in P. deltoides,

18 in soil, and 14 in non Populus rhizosphere. Two phylotypes were unique to P. deltoides

and four to soil. None of amoA based phylotypes’ relative abundance differed between

P.deltoides and soil or other trees. One 16S based phylotype showed significant enrichment

in P. deltoides compared to non Populus, but no significant difference in abundance was

observed between bulk soil and P. deltoides (Figure 4.4). However, none of the other

abundant phylotypes were specifically enriched in one rhizosphere to another or to a soil

environment. These observation suggest that the AOAs and archaea in general don’t have

preference over soil, rhizosphere of P. deltoides, and rhizosphere in general.

4.5 Conclusions

Here we present a study that characterizes the diversity and community structure of archaea

and AOAs from rhizosphere of mature trees including P. deltoides and soil in a riparian

zone. The study reveals that rhizosphere and bulk soils have similar community structure

consisting of few dominant and many rare phylotypes. It also suggests that archaeal

community structure don’t vary much within the narrow range soil physical and chemical

properties. However, the study reveals archaea from rhizosphere and soil demonstrates

that there is a high variability in structure and relative abundance of dominant phylotypes

regardless of their habitat. Most archaeal groups, rare or abundant, did not show preference

to soil or rhizosphere of P. deltoides, or rhizosphere in general. Although all the samples

were dominated by phylotypes belonging to genus Nitrososphaera, a putative ammonia

oxidizer, study like ours cannot confirm their role in ammonia oxidizing. However, the use
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of amoA gene marker also showed dominance of putative AOAs, thus it can be cautiously

suggested that these archaea contributes to N availability for host and environment through

nitrification. Future studies using metagenomics or single cell genomics to target dominant

phylotypes have potential to confirm the role of these archaea and also reveal previously

unknown functions of the organism and ecosystem.
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Table 4.1: List of samples and their source. The S in the sample name represents the samples originated
from soil and R represents the samples originated from Rhizosphere

Sample Tree phylotypes phylotypes
Source (16S) amoA

R10 Populus 17 12
R10.1 Oak 17 13
R10.2 Prunus 19 NA
R10.3 Tulip Poplar 20 NA
R11 Populus 30 12
R11.1 Sycamore 25 17
R11.2 Red maple 22 NA
R11.3 Box elder 26 NA
R2b Populus 11 7
R2b.1 Hackberry 20 11
R2b.2 Box elder 29 NA
R2b.3 Box elder 20 NA
R5b Populus 12 4
R5b.1 Beech NA NA
R5b.2 Dogwood 21 8
R5b.3 Chest Oak 24 NA
R7 Populus 21 10
R7.1 Hickory 20 11
R7.2 Box elder 18 NA
R7.3 Maple 16 NA
R9a Populus 21 14
R9a.1 maple 25 13
R9a.2 Box elder 27 NA
R9a.3 Hackberry 22 NA
S10.1 Soil 16 18
S10.2 Soil 12 NA
S10.3 Soil 14 NA
S11.1 Soil 25 16
S11.2 Soil 22 NA
S11.3 Soil 18 NA
S2b.1 Soil 18 11
S2b.2 Soil 16 NA
S2b.3 Soil 17 NA
S5b.1 Soil 20 10
S5b.2 Soil 17 NA
S5b.3 Soil 18 NA
S7.1 Soil 22 12
S7.2 Soil 17 NA
S7.3 Soil 17 NA
S9a.1 Soil 19 11
S9a.2 Soil 16 NA
S9a.3 Soil 24 NA
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Figure 4.2: Maximum likelihood phylogenetic trees of (a) 13 abundant phylotypes based on 16S (V1-V3
∼ 372 base position) and (b) phylotypes based on partial amoA sequences including corresponding gene
sequences from known Thaumarchaeotas. The colored branches indicates samples from the current study and
the ‘*’ by the phylotype indicates that it is one of the most abundant phylotype in our samples. Numbers
indicate bootstrap support based on 100 replicates, and the values with < 50 are not shown. The scale bar
indicates the inferred number of substitutions per site.
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rhizosphere and soil, and (d) amoA based phylotypes shared between rhizosphere of P. deltoides and non
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Figure 4.4: Ternary plots based on average abundance of (a) 16S based phylotypes and (b) amoA
based phylotypes across all three niches. Size of the dots represent OTU relative abundance in the overall
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composition of that phylotype between two niches.
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Table 4.2: Soil physical and chemical properties. ** in the sample name represents data that are average
of 2010 collection from the same site as these data were not obtained in 2011 due to technical problem. *
represents data point that are average of 2010 as well. LBC: Lime Buffer Capacity

ppm
Sample Soil LBC pH pH Sand Silt Clay Total Total OM Ca K Mg Mn P Zn

Type CaCO3/pH CaCl2 H2O % % % C % N % % ppm ppm ppm ppm ppm ppm

S2B.1 Clay Loam 443 7.31 7.91 28.0 38.0 34.0 6.66 0.33 6.46 6508 131.6 213.1 1.10 27.6 1
S2B.2 Clay Loam 511 7.42 8.02 23.9 40.2 35.9 7.35 0.36 7.31 6957 147.4 221.2 0.57 33.8 1.10
S2B.3 Clay Loam Not app. 7.53 8.13 21.9 42.1 36.0 5.5 0.2 3.51 6491 154.7 178.5 0.63 17.5 1.11
S5B.1 Loam 324 6.07 6.67 49.8 36.2 14.0 1.11 0.14 2.04 2025 47.3 136.7 18.99 90.1 6.43
S5B.2 Sandy Loam 374 6.22 6.82 55.8 32.2 12.0 2.21 0.22 3.48 1912 65.7 140.0 27.79 59.1 9.05
S5B.3 Loam 363 5.72 6.32 47.9 38.1 14.0 2 0.22 3.25 1708 50.5 132.5 29.08 43.6 7.33
S7.1 Clay Loam 449 6.35 6.95 21.9 46.0 32.0 2.5 0.26 4.77 3870 83.0 200.7 23.92 430.5 14.59
S7.2 Clay Loam 571 6.42 7.02 21.8 46.2 32.0 4.38 0.4 7.71 4924 101.3 256.9 39.24 397.7 27.10
S7.3 Clay Loam 558 6.34 6.94 21.7 46.2 32.1 3.77 0.36 6.43 4392 95.8 238.6 40.98 358.5 21
S9A.1 Silty Clay Loam 479 6.27 6.87 17.7 52.2 30.0 3.15 0.28 5.14 3159 145.0 220.3 34.22 66.2 6.28
S9A.2 Silt Loam 454 5.76 6.36 17.7 56.2 26.0 2.30 0.25 4.07 2210 121.8 185.7 27.67 69.1 4.97
S9A.3 Silt Loam 552 6.27 6.87 19.7 54.2 26.1 4.35 0.39 7.42 3605 257.7 283.9 35.60 101.7 11.14
S10.1** Sandy Loam 493.5 6.86 7.46 64 22.53 13.47 5.83 0.42 9.81 4826.5 111.15 389.60 62.38 174 22.67
S10.2 Sandy Loam 819 6.77 7.37 82* 9.9* 8.1* 11.4 0.83 19.5 8125 204.20 549.5 65.33 101.4 14.75
S10.3** Sandy Loam 493.5 6.86 7.46 64 22.53 13.47 5.83 0.42 9.81 4826.5 111.15 389.60 62.38 174 22.67
S11.1** Loam 485 7.13 7.73 31.90 45.90 22.20 2.53 0.22 4.88 5528 83.27 191.60 55.94 574.7 8.03
S11.2 Silty Clay Loam 410 6.69 7.29 19.7 48.2 32.0 1.65 0.17 3.07 3060 63.7 376.2 22.61 421.9 26.06
S11.3 Sandy Loam 293 6.30 6.90 59.7 24.2 16.0 0.96 0.13 1.62 2155 49.4 178.7 15.81 342.8 9.95



Table 4.3: List of 454 primers used in the study that targets V1-V3 region of 16S rRNA gene.

Barcode Primer Name Full Primer (454+barcode+primer)

AAGCCGCC FLXB A2FA1 CTATGCGCCTTGCCAGCCCGCTCAGAAGCCGCCTCYSGTTGATCCYGCSRG
CAAGAACC FLXB A2FA2 CTATGCGCCTTGCCAGCCCGCTCAGCAAGAACCTCYSGTTGATCCYGCSRG
AGTTGGCC FLXB A2FA3 CTATGCGCCTTGCCAGCCCGCTCAGAGTTGGCCTCYSGTTGATCCYGCSRG
TATCAACC FLXB A2FA4 CTATGCGCCTTGCCAGCCCGCTCAGTATCAACCTCYSGTTGATCCYGCSRG
AACCAGCC FLXB A2FA5 CTATGCGCCTTGCCAGCCCGCTCAGAACCAGCCTCYSGTTGATCCYGCSRG
CAAGAACC FLXB A2FA6 CTATGCGCCTTGCCAGCCCGCTCAGCAAGAACCTCYSGTTGATCCYGCSRG
AGTTGGCC FLXB A2FA7 CTATGCGCCTTGCCAGCCCGCTCAGAGTTGGCCTCYSGTTGATCCYGCSRG
TATCAACC FLXB A2FA8 CTATGCGCCTTGCCAGCCCGCTCAGTATCAACCTCYSGTTGATCCYGCSRG
AGGCGGCC FLXB A2FA9 CTATGCGCCTTGCCAGCCCGCTCAGAGGCGGCCTCYSGTTGATCCYGCSRG
CGGTATCC FLXB A2FA10 CTATGCGCCTTGCCAGCCCGCTCAGCGGTATCCTCYSGTTGATCCYGCSRG
TGACGACC FLXB A2FA11 CTATGCGCCTTGCCAGCCCGCTCAGTGACGACCTCYSGTTGATCCYGCSRG
ACAAGGCC FLXB A2FA12 CTATGCGCCTTGCCAGCCCGCTCAGACAAGGCCTCYSGTTGATCCYGCSRG
AGACCTCC FLXB A2FA13 CTATGCGCCTTGCCAGCCCGCTCAGAGACCTCCTCYSGTTGATCCYGCSRG
TAGGAATC FLXB A2FA14 CTATGCGCCTTGCCAGCCCGCTCAGTAGGAATCTCYSGTTGATCCYGCSRG
CCGGCCAC FLXB A2FA15 CTATGCGCCTTGCCAGCCCGCTCAGCCGGCCACTCYSGTTGATCCYGCSRG
AATGGTAC FLXB A2FA16 CTATGCGCCTTGCCAGCCCGCTCAGAATGGTACTCYSGTTGATCCYGCSRG
TCTCCGTC FLXB A2FA17 CTATGCGCCTTGCCAGCCCGCTCAGTCTCCGTCTCYSGTTGATCCYGCSRG
TCTCGACC FLXB A2FA18 CTATGCGCCTTGCCAGCCCGCTCAGTCTCGACCTCYSGTTGATCCYGCSRG
CCAGGACC FLXB A2FA19 CTATGCGCCTTGCCAGCCCGCTCAGCCAGGACCTCYSGTTGATCCYGCSRG
ACTCCTCC FLXB A2FA20 CTATGCGCCTTGCCAGCCCGCTCAGACTCCTCCTCYSGTTGATCCYGCSRG
TTCCTGCC FLXB A2FA21 CTATGCGCCTTGCCAGCCCGCTCAGTTCCTGCCTCYSGTTGATCCYGCSRG
TTCATACC FLXB A2FA22 CTATGCGCCTTGCCAGCCCGCTCAGTTCATACCTCYSGTTGATCCYGCSRG
CGTCGTCC FLXB A2FA23 CTATGCGCCTTGCCAGCCCGCTCAGCGTCGTCCTCYSGTTGATCCYGCSRG

Table 4.4: List of 454 primers used in the study to amplify part of archaeal amoA gene.

Barcode Primer Name Full Primer (454+barcode+primer)

AAGCCGC FLXB Camo19F 1 CTATGCGCCTTGCCAGCCCGCTCAGAAGCCGCATGGTCTGGYTWAGACG
CGCAAC FLXB Camo19F 2 CTATGCGCCTTGCCAGCCCGCTCAGCGCAACATGGTCTGGYTWAGACG
TGAAGC FLXB Camo19F 3 CTATGCGCCTTGCCAGCCCGCTCAGTGAAGCATGGTCTGGYTWAGACG
ACTTGC FLXB Camo19F 4 CTATGCGCCTTGCCAGCCCGCTCAGACTTGCATGGTCTGGYTWAGACG
TCACAC FLXB Camo19F 5 CTATGCGCCTTGCCAGCCCGCTCAGTCACACATGGTCTGGYTWAGACG
CGTGAC FLXB Camo19F 6 CTATGCGCCTTGCCAGCCCGCTCAGCGTGACATGGTCTGGYTWAGACG
ACGCGC FLXB Camo19F 7 CTATGCGCCTTGCCAGCCCGCTCAGACGCGCATGGTCTGGYTWAGACG
CCTCTC FLXB Camo19F 8 CTATGCGCCTTGCCAGCCCGCTCAGCCTCTCATGGTCTGGYTWAGACG
ACTCAC FLXB Camo19F 9 CTATGCGCCTTGCCAGCCCGCTCAGACTCACATGGTCTGGYTWAGACG
AGACAC FLXB Camo19F 10 CTATGCGCCTTGCCAGCCCGCTCAGAGACACATGGTCTGGYTWAGACG
CGACTC FLXB Camo19F 11 CTATGCGCCTTGCCAGCCCGCTCAGCGACTCATGGTCTGGYTWAGACG
AGCTTC FLXB Camo19F 12 CTATGCGCCTTGCCAGCCCGCTCAGAGCTTCATGGTCTGGYTWAGACG
CAAGAAC FLXB Camo19F 13 CTATGCGCCTTGCCAGCCCGCTCAGCAAGAACATGGTCTGGYTWAGACG
AGTTGGC FLXB Camo19F 14 CTATGCGCCTTGCCAGCCCGCTCAGAGTTGGCATGGTCTGGYTWAGACG
TATCAAC FLXB Camo19F 15 CTATGCGCCTTGCCAGCCCGCTCAGTATCAACATGGTCTGGYTWAGACG
AGGCGGC FLXB Camo19F 16 CTATGCGCCTTGCCAGCCCGCTCAGAGGCGGCATGGTCTGGYTWAGACG
CGGTATC FLXB Camo19F 17 CTATGCGCCTTGCCAGCCCGCTCAGCGGTATCATGGTCTGGYTWAGACG
TGACGAC FLXB Camo19F 18 CTATGCGCCTTGCCAGCCCGCTCAGTGACGACATGGTCTGGYTWAGACG
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Chapter 5

Conclusion
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5.1 Conclusions

This research was undertaken with the goal of characterizing and understanding microbial

(archaea, bacteria, and fungi) communities in roots - both rhizosphere and endosphere - of

mature P. deltoides trees. NGS is one of the most suitable approaches for exhaustive

characterization of microbial community, if inherent biases and errors are taken into

consideration during experimental design, data analysis, and interpretation. However,

testing for biases is complicated by incomplete knowledge of the diversity, abundance,

and genomic details of microbes. Most microbes in environments are still uncultured,

unsequenced, and identified only based on marker genes.

To overcome such uncertainty, I constructed mixes of genomic DNA, comprising

of known abundances of sequenced bacteria and archaea, or in other words ‘synthetic

communities’. It allowed direct and quantitative comparisons of two widely used

approaches in microbial ecology, shotgun metagenomics and SSU rRNA gene-based diversity

characterization. In terms of recapitulating the actual taxonomic diversity of ‘synthetic

communities’, metagenomic sequencing outperformed most SSU rRNA gene primer sets

used in this study. None of the primer sets were ideal for quantitatively representing the

entire diversity of even our relatively simple community. Among the bacterial primer sets

for rRNA gene regions, V13 recovered most accurately the composition of the synthetic

community. None of the archaeal sets performed comparably to the bacterial ones.

However, the results from the study revealed the use of quality-filtered data can nearly

eliminate diversity artifacts from SSU rRNA amplicon data. Both metagenomic strategies

- transposon based shearing of DNA followed by sequencing in 454 and physical shearing of

DNA followed by sequencing in Illumina HiSeq - recovered the quantitative distribution of

the various archaeal and bacterial taxa remarkably well even though organisms spanned two

orders of magnitude in abundance. Between two metagenomics method tested, a certain

degree of bias was observed for genomes with extreme genomic GC content in transposon-

based library sequencing. In summary, ‘synthetic communities’ like the one used in this

study could serve as important analytical controls for validating novel community studies.

The dissertation research represents one of the most in-depth and complete charac-

terization of microbes - archaea, bacteria, and fungi - from roots of P. deltoides. The
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study revealed overall diversity of archaeal communities (average phylotype at 99% ∼19) in

their roots are significantly lower compared to corresponding bacterial (average phylotype

at 97% ∼1500) and fungal (average at 99% ∼172) communities. Additionally, the use of

functional gene amoA as marker to characterize potential ammonia oxidizing archaeaon

revealed even lower number of phylotypes (average∼10). The archaeal communities of P.

deltoides, studied using both 16S and amoA based phylotype revealed similar community

structure dominated by just couple of phylotypes that belonged to phylum Thaumarchaeota.

Moreover, 99% of all 16S archaeal sequences were classified as Thaumarchaeota and

phylogenetic analysis of most abundant ones revealed presence of diverse groups, some

of which are closely affiliated to clades with known AOAs and some formed a separate clade

with no characterized AOAs. Similar results were revealed with phylogenetic analysis of

amoA. Comparisons of P. deltoides archaeal communities based on both 16S and amoA with

surrounding non Populus trees and soil did not reveal selection of unique phylotypes in their

roots. However, pairwise comparison of average diversity of 16S based archaea in soil and

rhizosphere of all trees (both Populus and non Populus) from each site revealed a slightly

higher diversity of archaea in rhizosphere, but the same was not true for P. deltoides. In

summary, archaea are common inhabitants of P. deltoides root and bulk soils of riparian

zones. At extreme conditions of reduced oxygen, flooding, or high CO2 pressure archaea

may become abundant and contribute to rhizosphere processes (Buée et al., 2009; Chen

et al., 2008), but as of now much remains to be discovered about their role in roots. It is

clear that the archaeal communities in soil and rhizosphere of P. deltoides are dominated

by putative ammonia oxidizers that could potentially contributing to N availability of host

plants and environment.

NGS approaches for exhaustive characterization of bacterial communities have been

widely implemented to study associated bacteria from plants like Arabidopsis spp., maize,

and others (Bulgarelli et al., 2012; Lundberg et al., 2012; Peiffer et al., 2013), but only

few studies included fungal communities from the same plant. Here, I characterized

both fungal and bacterial community from same tree in P. deltoides. I discovered that

roots of P. deltoides housed diverse group of bacterial phyla, but were dominated only

by nine phyla (Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Planctomycetes,

Verrucomicrobia, TM7, Chloroflexi, and Gemmatimonadetes). Likewise, I detected a total
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of eight fungal phyla in the roots of P. deltoides with Ascomycota dominating the overall

fungal communities followed by Basidiomycota,Chytridiomycota and others of the largely

unresolved basal lineages in the former Zygomycota that are commonly reported as Fungi

incertae sedis. Additionally, the primer pair used for bacterial community was able to

minimize amplification of mitochondrial and chloroplast sequences of P. deltoides, while

recapitulating important bacterial groups (namely Actinobacteria) that were missed in the

previous study (Gottel et al., 2011). Regardless, the study reiterated the difference in

communities between rhizosphere and endosphere which was maintained across P. deltoides

from two geographical settings (Gottel et al., 2011). The differences were evident in

higher taxonomic level with seven phyla having different abundance in two niches and

at lower taxonomic level (OTUs) with rhizosphere housing 9-10 times more phylotypes

than corresponding endosphere. I was also able to partially explain the variation in

bacterial and fungal community structures from rhizosphere and endosphere of trees in

native environments. The most important factors that were affecting these communities

were soil properties (pH), seasonal changes, and geographical settings. In summary, the

study revealed new details about the microbes and microbial community structure in the

roots of P. deltoides that could be utilized in future studies to optimize their use in biofuel

production and other environmentally relevant uses.

5.2 Future Directions.

In my study to understand errors and biases in microbial diversity characterization methods,

I focused on two sequencing platforms (454 and Illumina) and two common microbial

diversity characterization approaches: amplicon based sequencing and metagenomics, but

only metagenomic sequencing was performed in both platforms. Illumina is now also used for

amplicon sequencing (Caporaso et al., 2011), but its error profile has not been characterized

yet. So, the ‘synthetic communities’ assembled in this study can be used to test the efficacy

of amplicon sequencing in Illumina and other new platforms like Ion-Torrent as well. The

limited diversity of ‘synthetic communities’ compared to natural communities is always a

disadvantage, but with more microorganisms now available in culture, it would be beneficial

to increase the number of organisms in the community. Additionally, DNA extraction biases
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were not tested in our study, and based on available cultures of microorganisms, approaches

similar to this study can be used to test for biases due to DNA extraction method.

I investigated bacterial and fungal communities in roots of naturally occurring riparian

population of P. deltoides as these two taxa consist of members that are major players in

their growth and health. In this study, I was able to account partial (14%-24%) variation in

bacterial and fungal communities of rhizosphere and endosphere to soil chemistry, seasonal

change, and geographical settings. However, the attributed community variation can be

increased by continuing the study in a more controlled environment like common gardens.

Additionally, my study failed to attribute community variation to genotype differences,

but the role of genotype can’t be discounted yet. Different set of SSR markers that are

able to tease out differences in putative clonal population or the ones that corroborate

with root exudation properties could be used to test the hypothesis again. The study

also deciphered OTUs that could reveal mechanism of colonization. For instance, in both

fungal and bacterial communities, there were OTUs residing exclusively in rhizosphere

or endosphere and both. Isolation, sequencing, and comparative genomic studies of

the organisms represented by these OTUs could reveal genetic basis of colonization and

proliferation.

The archaeal study was able to capture most of the archaeal diversity for the primer

set used and revealed that regardless of habitat, rhizosphere or soil, all samples were

dominated by 6-13 phylotypes. Most of these phylotypes do not have culture representatives

or genome sequences, so much remains to be learned. Given their potential role in ammonia

oxidation, the resident Thaumarchaeotas could be important players that contribute to N

availability in these environments. Thus, next step could be obtaining genomic information

for these phylotypes using single cell genomics. To specifically target potential AOAs,

we have developed antibodies against a cultured representative N. viennensis that could

be used to isolate cells for single cell genomics and culture studies. Additionally, the

contribution of AOAs in Nitrogen cycle compared to ammonia oxidizing bacteria (AOB) in

these environments are also not known. To understand the importance of archaea in these

environments a comparative quantification of resident AOAs and AOBs using qPCR could

reveal the dominant ammonia oxidizers from these environment.
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Figure 1: The rarefaction curve generated for the archaeal populations in all 41 samples. The points
are color coded to represent the source of samples that could be soil, P. deltoides or surrounding trees’
rhizosphere. The shaded line represents the average of corresponding points.

#!/ usr / b in / env python

from f u t u r e import d i v i s i o n

au th o r = ”Migun Shakya”

c o p y r i g h t = ”Copyright 2007−2012 , The Cogent Pro j ec t ”

c r e d i t s = [ ”Migun Shakya” ]

l i c e n s e = ”GPL”

v e r s i o n = ”1.5.3−dev”

ma in t a i n e r = ”Migun SHakya”

ema i l = ”microbeatic@gmail . com”

s t a t u s = ”Production ”

from cogent import DNA, LoadSeqs , Sequence

from cogent . core . g ene t i c c ode import DEFAULT as standard code

seqs = LoadSeqs ( f i l ename=’ amo processed 1 . f a s t a ’ , moltype=DNA, a l i gned=False )

o u t f i l e=open ( ” in−frame . f a s t a ” , ”w” )

have seen = {}

for l abe l , seq in seqs . i tems ( ) :

for i in range ( 3 ) :

frame = standard code . g e tS top Ind i c e s ( seq , s t a r t=i )

i f not frame :

i f l a b e l in have seen :

print ”Mult ip le read ing frames with out stop−codon found with : %s ! ” % l ab e l

else :

have seen [ l a b e l ] = 1

o u t f i l e . wr i t e ( ’>f rame ’+s t r ( i )+ ’ ’+l a b e l+’\n ’+s t r ( seq)+ ’\n ’ )
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Figure 2: Cluster analysis of bulk soil samples based on measured variables.
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Figure 3: (a) Rank abundance plot of 16S rRNA gene based OTUs. (b) A heat map of OTUs that had
a relative abundant of greater than 5% in any of the samples. The heatmap is scaled at logarithmic scale of
2.
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Figure 4: A heat map of OTUs based on partial amoA sequences that were clustered at 85% against a
reference database. The heatmap is scaled at logarithmic scale of 2.
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