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Abstract

The Models of Random Motions in Random Media (RMRM) have been shown to have

fruitful applications in various scientific areas such as polymer physics, statistical

mechanics, oceanography, etc. In this dissertation, we consider a special model of

RMRM: the Ornstein-Uhlenbeck process in a Poisson random medium and investigate

the long time evolution of its random energy. We give complete answers to the long

time asymptotics of the exponential moments of the random energy with both positive

and negative coefficients, under both quenched and annealed regimes. Through these

results, we find out a dramatic difference between the long time behavior of the

Brownian motion dynamics and the Ornstein-Uhlenbeck dynamics in the Poisson

random medium.
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Chapter 1

Introduction

Concerns of Random Motions in Random Media (RMRM) arise when researchers try

to understand the interaction between the evolution of a random particle movement

and the random environment where it stays in. RMRM is one of the most active

research fields in probability theory in the past few decades, having many applications

to areas such as astrophysics, oceanography, chemical reactions, statistical mechanics

and partial differential equations (PDE). We refer the readers to [8, 19, 21] for

background, motivation, applications and fundamental results.

The general model of RMRM is formulated as following. Let {X(t,$)}t∈R+ be

a stochastic process representing the evolution of some random movement or curve

growth over time. For instance, one can treat X(t,$) as the location of a particle

with random movement realization $ at time t, or view {X(s,$)}0≤s≤t as the shape

of a random polymer chain up to time t, in the d−dimensional Euclidean space Rd.

On the other hand, independent of the law of {X(t,$)}t∈R+ , the Rd space is filled

with a random medium {V (x, ω)}x∈Rd , where the value of V (x, ω) can be interpreted

by different meanings ranging from the reward function to the potential function ∗ at

each position x for every random realization ω. With this set up,
∫ t

0
V (X(s,$), ω) ds

quantifies the total energy accumulated by the particle from starting time 0 up to

∗Due to the broad applications of RMRM in polymer physics, sometimes random media are also
called random potentials in literature.
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time t. Notice that due to the two systems of randomness in the construction of a

RMRM (i.e. the particle movements and the media), there are two different regimes

for these types of models that can be studied. Those studies of the random energy

given the media ω are called the quenched regime. The annealed regime, on the

other hand, is obtained by averaging the quenched objects over all possible random

media. Throughout this dissertation, denote P and E as the law and expectation

of a random medium, respectively. Similarly, denote Px and Ex as the law and

expectation ofX(t,$) starting at position x, respectively. Without causing confusion,

let us take X(t) := X(t,$) for simplicity in the rest of the dissertation. The following

exponential moments are of great interest due to their strong connections with various

fields, such as PDE in mathematics, survival probability of polymer chains in polymer

physics, and random Gibbs measure in statistical physics:

uω±(t, x)
def
= Ex exp

{
±
∫ t

0

V (X(s), ω) ds

}
(Quenched)

U±(t, x)
def
= E⊗ Ex exp

{
±
∫ t

0

V (X(s), ω) ds

}
(Annealed)

Throughout this paper, we call uω+, uω−, U+, U− the quenched exponential moment with

positive coefficient, the quenched exponential moment with negative coefficient, the

annealed exponential moment with positive coefficient, and the annealed exponential

moment with negative coefficient, respectively. Research on long time asymptotics

of those exponential moments have become very active in the past few decades. To

make the idea of long time asymptotics clearer, let us take the quenched exponential

moment with positive coefficient as an example, and the problem can be formulated

as follows: we look for suitable long time growth rate a(t) and the corresponding

almost surely constant λ /∈ {0,±∞} such that

lim
t→∞

1

a(t)
logEx exp

{∫ t

0

V (X(s), ω) ds

}
= λ.

2



As an example of RMRM, the models of Brownian motion (BM) in homogeneous

Poisson random media have been studied extensively in literature due to their

applications in a wide range of scientific areas such as random polymer model in

chemistry [8], parabolic Anderson model in physics [15], and so on. The research

on the long time asympotics of Brownian motion in Poisson random media can be

traced back to 1970s. In their seminal paper in 1975, Donsker and Varadhan [9]

discovered that the long time asymptotic of the annealed exponential moment U− for

BM in Poisson random media exhibits a decay rate a(t) = td/(d+2), using their ground-

breaking large deviation theory. Whereas the development of the quenched regime for

BM in Poisson random media appeared much later. There were big breakthroughs

for the quenched regime in the 1990s. Carmona and Molchanov [3] studied the

long time asymptotic of uω+ for BM in Poisson random media and they obtained the

suitable growth rate a(t) = t log t
log log t

. Around the same time, Sznitman [27] proved that

a(t) = t
(log t)2/d

is the correct rate for uω− for BM in Poisson potential using his powerful

method of enlargement of obstacles. Since then, there have been many advances in

this area. To mention a few here: Gärtner et al. [16] obtained the almost surely

second order long time asymptotic of exponential moment with positive coefficient

for BM in certain Poisson media. Most recently, Chen [7] investigated the BM in a

Poisson media of the gravitational field type and obtained long time asymptotics of

renormalized exponential moments for both positive and negative coefficients cases.

Brownian motions, as the continuous analogues of simple random walks, have

very strong diffusive behaviors. However, various real world random dynamics which

are influenced by certain known factors, such as friction and mean-reverting effect,

are often presenting non-diffusive or even stationary phenomenons One such dynamic

is the Ornstein-Uhlenbeck (O-U) process, which was first introduced by Leonard

Ornstein and George Eugene Uhlenbeck in the 1930s to describe the velocity of a

massive Brownian particle under the influence of friction [29]. Since then the O-U

processes have been discovered to have many applications in a wide range of areas

such as noisy relaxation process and Langevin equations in physics, interest rates,
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currency exchange rates, and commodity prices in financial mathematics, and model

for peptide bond angle of molecules in biochemistry, etc. See for instance [4, 18, 26]

for introductions and applications. One way to formulate the O-U dynamic is through

the following stochastic differential equation:

dX(t) = −X(t) dt+ dW (t). (1.1)

It is classical results [25] that the O-U dynamic is an ergodic Markov process with

a Normal distributed invariant distribution. Notice that, due to the pull-back effect

of the −X(t) dt term in (1.1), the O-U process tends to stay near its equilibrium

position 0, which is quite different from the behavior of BM dynamic.

Motivated by O-U processes’ crucial roles in various areas of real-world applica-

tions as well as their different dynamical behavior from the BM, we are interested in

investigating a type of new RMRM model: the O-U process in homogeneous Poisson

potential. In particular, we ask the following question:

“Are there differences between the long time asymptotic behaviors of O-U

processes and BM, in a Poisson random medium?”

The goal of the presented work is to give a complete answer to the long time

asymptotics of exponential moments with both positive and negative coefficients

for O-U processes in homogeneous Poisson random media, under both quenched

and annealed regimes. The results in this work provide a better understanding of

the interaction between the O-U dynamics and the Poisson random media, which is

potentially fruitful in statistical physics, finance and biochemistry.

Organization of the Dissertation

The rest of the paper is organized as follows. In Chapter 2 we describe the

O-U process in Poisson potential model in details, present the main results of the

dissertation, and compare the results with the counterpart of Brown motion studied

in [3, 9, 27]. Chapter 3 characterizes the spectral structure of the O-U semigroup,
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which will be used extensively in later chapters for the proof of the asymptotic results.

In Chapter 4 we consider the quenched regime and give the proof of the corresponding

long time asymptotics. In Chapter 5 we provide the proof of long time asymptotics for

our model under the annealed regime. Chapter 6 discusses several possible avenues

for future work of this topic. Some mathematical backgrounds as well as proofs of

several technical lemmas are included in Appendix A.
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Chapter 2

Model Set Up and the Main

Results

In this chapter we set up the model and then present the main theorems of the

dissertation. We first list the notations and basic definitions which will be used

through the paper in Section 2.1. Section 2.2 introduces the Ornstein-Uhlenbeck

process and its related properties that will be used in later proofs. We define the

Poisson potential which serves as the random media in our model. Furthermore, we

give a path description of the random potential in Section 2.3. Equipped with these,

we state the main results of the dissertation and compare them with the cases of

Brownian motion in Section 2.4.

In the whole dissertation, we consider the model on Rd with d ≥ 1.

2.1 Notation and Basic Definitions

Throughout the dissertation, p(x, y, t) denotes the transition probability of a Markov

process X from position x at time 0 to position y at time t > 0.

Z+ is the set of all positive integers.
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P and E stand for the probability law and the corresponding expectation of the

random media, respectively. Similar, Px and Ex stand for the probability law and the

corresponding expectation of the random motion starting at position x, respectively.

We use ωd to denote the volume of the unit d−dimensional ball.

i.o. is short for infinitely often and a.s. is short for almost surely.

Denote the domain of an operator A by D(A).

B(x,R) is the ball centering at x of radius R.

B(Rd) is the collection of all Borel sets on Rd.

supp(K)
def.
= the closure of {x : K(x) 6= 0} is called the support of a function K.

We denote the first exit time of a stochastic process X(t) from the inside of a

R−ball by τR, that is, τR = inf{t ≥ 0 : X(t) /∈ B(0, R)}.

R+ denotes the set of all non-negative real numbers.

2.2 Random Motions: Ornstein-Uhlenbeck Pro-

cesses

We model the random motion by a d−dimensional Ornstein-Uhlenbeck processes

{X(t)}t∈R+ = {X1(t), · · · , Xd(t)} which satisfies the following stochastic differential

equation:

dX(t) = −X(t) dt+ dW (t) (2.1)

with X(0) = x, where W (t) is a d−dimensional Brownian motion of which margin

is a one dimensional standard Brownian motion. Under this setting, it is well known

that (see [25])

• X is a homogeneous ergodic Markov Process. Hence, given the present state

of X, the future and past behaviors of X are independent. Indeed, X has the

7



transition density

p(x, y, t) =
1(

π(1− e−2t)
)d/2 exp

{
−|y − xe

−t|2

1− e−2t

}
x, y ∈ Rd, t > 0, (2.2)

and the invariant distribution µ(x) ∼ N(0, Id/2), where Id is the d by d identity

matrix. In the following dissertation, we denote the density function of µ by φ,

that is

µ(dx) = φ(x) dx = (2π)−d/2 exp{−|x|2} dx. (2.3)

• X is a Gaussian process. That is, any finite linear combination of samples

of X is Normal (also known as Gaussian) distributed: for all c1, · · · , cN ∈

R, t1, . . . , tN ∈ R+,
∑N

k=1 ckX(tk) is Normal distributed. In fact, X as a

stochastic process has the same distribution as a time changed Brownian motion

B(·):

X(t)
d
= xe−t +

e−t√
2
B(e2t − 1). (2.4)

According to (2.4), it is also straight forward to see that X has N(0, Id/2)

distributed invariant distribution.

Remark 1. The following equation (2.5) can be derived from (2.2), (2.3) and the

time reversal property of X:

φ(y)−1p(x, y, t) =
1

(1− e−2t)d/2
exp

{
|x|2 − |x− ye

−t|2

1− e−2t

}
= φ(x)−1p(y, x, t). (2.5)

We will revisit this equation several times in the later proofs.

2.3 Random Media: Poisson Random Media

The positions of random obstacles is modeled by a Poisson point process ω(·) with

intensity measure ν(dx) = λ dx (λ > 0). A Poisson point process {ω(A)}A∈B(Rd) is a

measure-valued random variable such that for any Borel set A in Rd:

8



1. ω(∅) = 0 almost surely.

2. For any disjoint sets A1 and A2, ω(A1) and ω(A2) are independent random

variables.

3. ω(A) is a Poisson distributed random variable of parameter λ·volume(A).

Furthermore, we assume the influence of each Poisson point to the environment is

local, captured by a deterministic shape function K(·). More precisely, we make the

following assumptions:

Assumption The shape function K is nonnegative, continuous and com-

pactly supported. Without loss of generality, assume supp(K)⊂ B(0, L) and

maxx∈Rd K(x) > 0.

Therefore, the Poisson media V (·) defined by

V (x) =

∫
Rd
K(x− y)ω(dy)

measures the accumulated impact of all the Poisson points at position x. Figure

2.1 illustrates simulations of a 2-dimensional Poisson point process on the [−40, 40]2

square with λ = 0.05 and the corresponding Poisson media V with a compactly

supported shape function K.

We include some long range estimates of the Poisson random media V in Appendix

A.3.

9



Figure 2.1: Simulation of Poisson point process (left) and the corresponding Poisson
media V (right).

2.4 Main Theorems: Long Time Asymptotics

As introduced in Chapter 1, we are interested in the long time asymptotics of the

following quantities:

uω±(x, t) = Ex exp

{
±
∫ t

0

V (X(s)) ds

}
, (Quenched Regime) (2.6)

and

U±(x, t) = E⊗ Ex exp

{
±
∫ t

0

V (X(s)) ds

}
. (Annealed Regime) (2.7)

For the quenched exponential moments uω±, incorporating the Feynman-Kac

formula as well as the infinitesimal operator structure of X, we know that uω± solve

the following parabolic PDE with random potentials V and −V , respectively:

∂u

∂t
=

1

2
∆u− x · ∇u± V (x, ω) · u, (t, x) ∈ [0,∞)×Rd, (2.8)

u(0, x) = 1, x ∈ Rd.

10



Therefore, understanding the long time asymptotics of (2.6) provides information on

the the long time behavior of the solution of PDE (2.8).

As to U−, here we provide two ways to visualize the quantity: For the first

viewpoint, take the Poisson integral (see Appendix A.1 for more details on Poisson

integral) to

Ex exp

{
−
∫ t

0

V (X(s)) ds

}
,

then we have

E⊗ Ex exp

{
−
∫ t

0

V (X(s)) ds

}
= Ex exp

{
−λ
∫
Rd

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}
.

(2.9)

If we take the Poisson points as “hard obstacles”, i.e. the shape function K satisfies

K(x) =

 +∞ if |x| < δ

0 otherwise.

We see that
∫
Rd

(1 − exp{−
∫ t

0
K(X(s) − y) ds}) dy equals to the total volume of

the region swept by the δ−neighborhood of the path of X from 0 to t, denoted by

|Cδ
t (X(·))|. In literature, Cδ

t is called the δ−sausage of the process X [2, 9]. Hence,

U− measures the exponential moment of the δ−sausage of O-U process.

Another perspective to understand U−(x, t) is to view is as the survival probability

of an O-U process in the δ−Poisson traps until time t. Indeed, if we take each Poisson

point as a trap and assume the O-U process being killed when it first runs into a δ

neighborhood of those Poisson points, then the survival probability of the O-U process

up to time t could be expressed as:

P⊗ Px (τ > t) = E⊗ Ex exp

{
−
∫ t

0

V (X(s)) ds

}
,

11



where τ = inf{t ≥ 0, X(t) ∈ δ neighborhood of a Poisson point} is the survival time

of the O-U particle and V is the hard obstacles modeled as above. For details, see

Section 2.5 in [2].

Under the above settings for the RMRM model, we obtain the following long time

asymptotics of the exponential moments for O-U processes X in homogeneous Poisson

random media V , for both the quenched regime as well as the annealed regime. For

each regime, we consider the exponential moments in both positive and negative

coefficients situations.

Theorem 1 (Quenched Regime). P−almost surely,

lim
t→∞

1

t
logEx exp

{∫ t

0

V (X(s)) ds

}
= λ1,

and

lim
t→∞

1

t
logEx exp

{
−
∫ t

0

V (X(s)) ds

}
= −λ2,

where λ1, λ2 ∈ (0,∞) are non-degenerate random variables with the following

variational representations

λ1 = sup
g∈F∞

{∫
Rd

(
−1

2
|∇g|2 + V (x)g2(x)

)
φ(x) dx

}
λ2 = inf

g∈F∞

{∫
Rd

(
1

2
|∇g|2 + V (x)g2(x)

)
φ(x) dx

}

where F∞ =
{
g ∈ C∞0 (Rd) :

∫
Rd
g2(x)φ(x) dx = 1

}
and C∞0 (Rd) is the set of all smooth

functions on Rd with compact support.

According to the Feynman-Kac formula, we have the following corollary straight

forward from Theorem 1.

Corollary 2. The solutions of the PDEs in (2.8) have exponential growth/decay speed

almost surely. More precisely,

lim
t→∞

1

t
log uω+(x, t) = λ1,

12



and

lim
t→∞

1

t
log uω−(x, t) = −λ2,

where λ1, λ2 ∈ (0,∞) are non-degenerate random variables.

Figure 2.2: x = t, y = log uω+(0, t). Averaging 500 O-U samples in 3 realizations of
the Poisson media.

Remark 2. For the BM case, Carmona and Molchanov’s result [3] shows that

lim
t→∞

log log t

t log t
logEx exp

{∫ t

0

V (B(s)) ds

}
= dmax

x∈Rd
K(x), P− almost surely

whereas Sznitman’s result [27] shows that

lim
t→∞

(log t)2/d

t
logEx exp

{
−
∫ t

0

V (B(s)) ds

}
= c P− almost surely.

Comparing their results with ours, we have the following observations. First, both

rates are different from the O-U dynamics: the uω+ for BM has faster growth rate

13



exp{c t log log t
log t

} comparing with O-U dynamics’ ect, while the uω− for BM yields a slower

decay rate exp{−c t
(log t)2/d

} than O-U dynamics’ e−ct. Second, even though uω+ and uω−

are random variables of which values depend on each realization ω of the random

media V , the constants λ in both cases of the quenched exponential moments under

the BM dynamics are almost surely not affected by the randomness of the Poisson

potential. However, the constants we obtained for O-U dynamics are taking random

values that are highly influenced by the random media. So these phenomenons reveal

that BM has a relatively stabilized interaction with the Poisson random media.

Remark 3. Due to the dramatic path behavior differences between O-U processes

(non-diffusive) and BMs (diffusive), the strategies executed well for BM case do not

work here for the O-U dynamics anymore. For instance, the approach proposed by

Carmona and Molchanov for the quenched exponential moment of BM in Poisson

media needs to quickly send the random motion to a small ball which is far away from

the origin point and let it stay inside for the rest time (see also [7] for an excellent

summary in details). The effectiveness of this strategy for BM counts on its diffusive

nature. However, to require the same behavior for O-U processes is extremely hard

since there is a strong intention for an O-U process to come back to the equilibrium

position when the O-U particle moves far apart from the equilibrium position. Indeed,

it turns out that the cost of such procedure is not affordable for us to achieve the

correct long time asymptotic. Therefore, we need to find alternative method to handle

the O-U model.

Our proof of the long time exponential moment asymptotic for the quenched regime

proceeds by analyzing spectral structure of the following semigroup {T ft }t∈R+

T ft g(x) = Ex exp

{∫ t

0

f(X(s)) ds

}
g(X(t)).

For the case of potential function f being bounded and deterministic, the classical

potential theory and large deviation theory for Markov processes ensures that the long

time limit of 1
t

logEx exp
{∫ t

0
f(X(s)) ds

}
is closely related to the principle eigenvalue

14



of the infinitesimal operator of Tt. Furthermore, the principle eigenvalue has a

variational representation [10, 28]. Inspired by this idea, we aim to derive similar

variational representation in our quenched model, in which case the potential function

V is random and blows up in infinity. We achieve this by using local approximation

techniques to the semigroup in Chapter 4. By analyzing the variational representation

formula, we manage to get the desired long time asymptotic.

Theorem 3 (Annealed Positive Regime). Let Poisson potential V (·) be defined as

before. For all d ∈ Z+, we have

lim
t→∞

1

t
log log E⊗ Ex exp

{∫ t

0

V (X(s)) ds

}
= max

x∈Rd
K(x).

Remark 4. Following the similar argument in Section 5.1 with some mild adjust-

ments, a careful reader will find out that the same asymptotic result holds if we replace

the O-U process X(·) by Brownian motion B(·). This phenomenon indicates that,

for the positive exponential moment case, it is the the overall impact of the Poisson

potential, rather than the random motions, plays the dominant role to the long time

asymptotic of the annealed exponential moment.

Theorem 4 (Annealed negative regime). Let Poisson potential V (·) be defined as in

Section 2.3. For all d ∈ Z+, we have

lim
t→∞

1

(log t)d/2
E⊗ Ex exp

{
−
∫ t

0

V (X(s)) ds

}
= −λωd,

where ωd is the volume of the unit d−dimensional ball and λ > 0 is the intensity of

the intensity measure ν(dx) = λ dx for the Poisson point process {ω(A)}A∈B(Rd).

Remark 5. Applying a very similar approach covered in Section 5.2, the same

asymptotic result also holds for the hard obstacle situation, as introduced early in

(2.4).

Remark 6. In their seminal paper [9], Donsker and Varadhan showed that both the

negative exponential moments of the soft obstacle and hard obstacle (also known as
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“Wiener sausage”) have an exponential decay with rate td/(d+2), i.e.

lim
t→∞

1

td/(d+2)
E⊗ Ex exp

{
−
∫ t

0

V (B(s)) ds

}
= −c c > 0.

The results for the O-U process and the BM are consistent because the O-U process

generates smaller sausage than Brownian motion in general due to the pull-back force

to the equilibrium position, which is the origin in our model.
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Chapter 3

Spectral Structures of the

Ornstein-Uhlenbeck Semigroup

In this Chapter, we characterize the spectral structure of certain global as well as

killed O-U semigroups. In particular, we derive the variational representations (see

(3.15) and (3.16)) of the principle eigenvalues of the infinitesimal operators of these

O-U semi-groups. These variational representations will play a crucial role in proving

the quenched exponential regime in Chapter 4.

Section 3.1 lists the function spaces which will be applied extensively in the current

and the follow up Chapters. Section 3.2 concentrates on presenting the spectral

structure of certain O-U semigroups. A summary of background knowledge for self-

adjoint operators and their spectral structures can be found at Section A.6 in the

Appendix.

3.1 Function Space Notations

In the following, we are going to present some analytic results of functional of

{X(t)}t≥0. First we list some notations for functional spaces of which will be applied

extensively in this section:

17



• L2(Rd, µ) – L2 space on Rd with reference measure µ;

• L2(B(0, R), µ) – L2 space on B(0, R) with reference measure µ;

• Poly(Rd) – space of all polynomials on Rd;

• C∞0 (Rd) – smooth function on Rd with compact support;

• W 1,2(Rd, µ) =
{
g ∈ L2(Rd, µ) : |∇g| ∈ L2(Rd, µ)

}
, where ∇g is defined in the

weak derivative sense;

• F∞ =
{
g ∈ C∞0 (Rd) : ||g||µ = 1

}
where || · ||µ is the L2 norm;

• FR =
{
g ∈ C∞0 (Rd) : supp(g) ∈ B(0, R), ||g||µ = 1

}
;

• P =
{
g ∈ Poly(Rd) : ||g||µ = 1

}
.

Remark 7.

• W 1,2(Rd, µ) is a Hilbert space under the Sobolev norm
√
||g||2µ + ||∇g||2µ (see

Section A.4 in Appendix for the proof).

• C∞0 (Rd) and Poly(Rd) are both dense in W 1,2(Rd, µ) under the Sobolev norm.

Hence, any function g ∈ Poly(Rd) can be approximated by functions in C∞0 (Rd)

in the Sobolev norm sense.

3.2 Spectral Structures of the Ornstein-Uhlenbeck

Semigroup

Let f(x) be a bounded continuous function on Rd. We define the following family of

linear operators {Tt}t≥0 on L2(Rd, µ): for each g ∈ L2(Rd, µ),

T ft g(x) := Ex
(

exp

{∫ t

0

f(X(s)) ds

}
g(X(t))

)
. (3.1)
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Similarly, for g ∈ L2(B(0, R), µ), we define

T f,Rt g(x) = Ex
(

exp

{∫ t

0

f(X(s)) ds

}
g(X(t))1{τR>t}

)
, (3.2)

where τR
def
= inf{t ≥ 0 : X(t) /∈ B(0, R)} is the first exit time of X from the ball

B(0, R).

Since O-U process X is time-reversal Markov process, {T ft }t≥0 and {T f,Rt }t≥0 are

semigroups where each operator is bounded and self-adjoint. In particular, for the

case of f ≡ 0, T 0
t and T 0,R

t correspond to the semigroup of Markov processesX and the

semigroup of the killed Markov processes X on the boundary ∂B(0, R), respectively.

Let Lf and Lf,R be the infinitesimal operators for {T ft }t≥0 and {T f,Rt }t≥0,

respectively. In particular, when f ≡ 0, L0 and LR are the infinitesimal operators

for Markov process X and the Markov process X being killed at boundary ∂B(0, R),

respectively. The following Feynman-Kac formula for {Tt}t≥0 on C∞0 (Rd) holds (see,

e.g., Chapter VII & Chapter VIII, [25]):

Proposition 5. For all g(x) ∈ C∞0 (Rd),

Lfg(x) = lim
t→0+

T ft g(x)− g(x)

t
= −x · ∇g(x) +

1

2
∆g(x) + f(x)g(x).

Proof. For the case of f ≡ 0, applying Itō’s formula to g(X(t)) gives us

dg(X(t)) =

(
−X(s) · ∇g(X(t)) +

1

2
∆g(X(t))

)
dt+∇g(X(t)) · dW (t).

Hence the infinitesimal operator L0 can be written as

L0g(x) = −x · ∇g(x) +
1

2
∆g(x),

for all g ∈ C∞0 (Rd). See for instance [22].
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As to general f , first notice that

exp

{∫ t

0

f(X(s)) ds

}
= 1 +

∫ t

0

f(X(s)) exp

{∫ t

s

f(X(r)) dr

}
ds.

Multiplying both sides by g(X(t)), taking expectation and then applying Markov

property on the right side, we get

T ft g(x) = T 0
t g(x) +

∫ t

0

Ex
(
f(X(s))EX(s)

(
exp

{∫ t−s

0

f(X(r)) dr

}
g(X(t− s))

))
ds

= T 0
t g(x) +

∫ t

0

Ex
(
f(X(s))Tt−sg(X(t− s))

)
ds,

which yields to

Lfg(x) = lim
t→0+

T ft g(x)− g(x)

t
= L0g(x) + f(x)g(x)

= −x · ∇g(x) +
1

2
∆g(x) + f(x)g(x).

From Proposition 5, we observe that Lf have the following symmetric quadratic

form on C∞0 (Rd):

Proposition 6. For g, h ∈ C∞0 (Rd),

〈Lfg, h〉µ =

∫
Rd
f(x)g(x)h(x)φ(x) dx− 1

2

∫
Rd

(∇g · ∇h)φ(x) dx, (3.3)

which admits that Lf is a symmetric operator on C∞0 (Rd) with respect to µ, i.e.

〈Lfg, h〉µ = 〈g, Lfh〉µ.

Proof. From Proposition 5,

〈Lfg, h〉µ =

∫
Rd

(−x · ∇g) hφ dx+

∫
Rd

1

2
∆g h φ dx+

∫
Rd
f g h φ dx. (3.4)
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Recall φ(x) = π−d/2 exp{−|x|2}. By divergence theorem, the second integral on the

right side of (3.4) becomes∫
Rd

1

2
(∆g(x))h(x)φ(x) dx

=−
∫
Rd

1

2
∇g · ∇ (h(x)φ(x)) dx

=−
∫
Rd

1

2
(∇g · ∇h)φ(x) dx+

∫
Rd

(x · ∇g)h(x)φ(x) dx.

Therefore,

〈Lfg, h〉µ =

∫
Rd
f(x)g(x)h(x)φ(x) dx− 1

2

∫
Rd

(∇g · ∇h)φ(x) dx.

Notice that C∞0 (Rd) and Poly(Rd) are both dense in W 1,2(Rd, µ) and the quadratic

form on the right side of (3.3) is continuous (both in g and h) under the Sobolev norm,

we know that the same quadratic form in (3.3) also holds on Poly(Rd):

Corollary 7. For all g, h ∈ Poly(Rd), we have

〈Lfg, h〉µ = 〈g, Lfh〉µ =

∫
Rd
f(x)g(x)h(x)φ(x) dx− 1

2

∫
Rd

(∇g · ∇h)φ(x) dx. (3.5)

In order to apply the powerful spectral representation toolbox for self-adjoint

operators to Lf , we need to extend the description of Lf to a larger function space than

Poly(Rd) and C∞0 (Rd). In fact, from (3.5) we have 〈Lg, g〉µ ≤ supx∈Rd |f(x)| · ||g||2µ
for all g ∈ Poly(Rd) ∪ C∞0 (Rd), which implies that L is upper semi-bounded due

to the boundedness of f . According to the Friedrichs’ extension theorem in Section

A.6, Lf admits a self-adjoint extension. For simplicity, we still use the same notation

for the Friedrichs’s extension of Lf and still call it the infinitesimal generator of the

semigroup T ft . Denote D(Lf ) as the domain of the self-adjoint operator Lf , that is,

D(Lf ) is the collection of all the L2(Rd, µ) functions g such that Lfg ∈ L2(Rd, µ).

21



From Proposition 6 and Corollary 7, it is clear that C∞0 (Rd) ∪ Poly(Rd) ⊂ D(Lf ) ⊂

L2(Rd, µ).

Next, we aim to describe Lf on the domain D(Lf ) by the same quadratic

form formulated in (3.5). This could be achieved by approximation using Hermite

polynomials.

For n = (n1, n2, . . . , nd) ∈ Nd and x = (x1, . . . , xd) ∈ Rd, define

Ĥn(x) =
d∏
i=1

Hni(xi),

where {Hn}n∈N is the family of one dimensional Hermite polynomials, that is,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

We know that each Ĥn is an eigenfunction of L0 with eigenvalue −|n|, where |n| =∑d
i=1 ni. That is

L0Ĥn = −x · ∇Ĥn +
1

2
∆Ĥn = −|n|Ĥn.

Furthermore, normalize these eigenvalues by en = Ĥn/||Ĥn||µ, n ∈ Nd. Then {en}n∈N
becomes an orthonormal basis of L2(Rd, µ). See section 2.3.4, Dunkl and Xu [11] for

details.

Using standard approximation techniques in L2(Rd, µ), we have the following

isometry result:

Proposition 8. Given g ∈ L2(Rd, µ), then g ∈ W 1,2(Rd, µ) if and only if

∑
n∈Nd

(2|n|+ 1)〈g, en〉2µ <∞. (3.6)
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Furthermore, for any g, h ∈ W 1,2(Rd, µ), we have∫
Rd
g(x)h(x)φ(x) dx =

∑
n∈Nd
〈g, en〉µ〈h, en〉µ,∫

Rd
(∇g · ∇h)φ(x) dx =

∑
n∈Nd

2|n|〈g, en〉µ〈h, en〉µ.
(3.7)

With the above isometry identity, we can prove that the quadratic form 〈g, Lfg〉µ
has the following representation on D(Lf ):

Lemma 3.0.1. We have D(Lf ) ⊂ W 1,2(Rd, µ). Furthermore,

〈g, Lfg〉µ =

∫
Rd
f(x)g2(x)φ(x) dx− 1

2

∫
Rd
|∇g|2φ(x) dx for g ∈ D(L). (3.8)

Proof. Let g ∈ D(Lf ). For any n ∈ N, write gn(x) =
∑
|k|≤n〈g, ek〉µek(x) ∈ Poly(Rd).

Then

〈Lfgn, g〉µ =

∫
Rd
f(x)gn(x)g(x)φ(x) dx−

∑
|k|≤n

|k|〈g, ek〉2µ. (3.9)

Since {ek}k∈Nd is an orthonormal basis of L2(Rd, µ), we know

gn → g as n→∞

in L2(Rd, µ). Consequently,

lim
n→∞
〈Lfgn, g〉µ = lim

n→∞
〈gn, Lfg〉µ = 〈g, Lfg〉µ <∞. (3.10)

On the other hand, due to the boundedness of f(x),

lim
n→∞

∫
Rd
f(x)gn(x)g(x)φ(x) dx =

∫
Rd
f(x)g2(x)φ(x) dx <∞. (3.11)

Let n tend to infinity in (3.9). By (3.10) and (3.11), we have
∑

k∈Nd |k|〈g, ek〉2µ <∞.

This implies that g ∈ W 1,2(Rd, µ) by (3.6) from Proposition 8. Furthermore, from
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(3.7) and (3.9),

〈g, Lfg〉µ =

∫
Rd
f(x)g2(x)φ(x) dx−

∞∑
k∈Nd

|k|〈g, ek〉2µ

=

∫
Rd
f(x)g2(x)φ(x) dx− 1

2

∫
Rd
|∇g(x)|2φ(x) dx.

From the classical result of relations between a semigroup and its infinitesimal

operator (for instance, see [23]),

T ft = exp
{
tLf
}

(3.12)

on L2(Rd, µ). From (3.12) and the spectral representation of self-adjoint operator

T ft =

∫ ∞
−∞

exp{tλ}Ef (dλ),

where {Ef (λ);−∞ < λ < ∞} is the corresponding resolution of identity for self-

adjoint operator Lf . In addition, for any g ∈ L2(Rd, µ),

〈g, T ft g〉µ =

∫ ∞
−∞

exp{tλ}mf
g (dλ), (3.13)

where mf
g is the spectral measure on R induced by the distribution function F f (λ) ≡

〈g, Ef (λ)g〉µ with

mf
g (R) = ||g||2µ.

Moreover, the measure mf
g is bounded above by

λf ≡ sup
g∈D(Lf ),||g||µ=1

〈g, Lfg〉µ. (3.14)
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Recall that C∞0 (Rd) is dense in D(Lf ) under the Soblev norm and

F∞ =
{
g ∈ C∞0 (Rd) : ||g||µ = 1

}
,

then we have

λf = sup
g∈F∞

{∫
Rd
f(x)g2(x)φ(x) dx− 1

2

∫
Rd
|∇g(x)|2φ(x) dx

}
. (3.15)

Next, we would like to transfer similar spectral properties from T ft and Lf to

T f,Rt and Lf,R. Indeed, L2(B(0, R), µ) can be imbedded in L2(Rd, µ) by the mapping

U : L2(B(0, R), µ)→ L2(Rd, µ), where

(Ug)(x) =

 g(x) if x ∈ B(0, R)

0 if x /∈ B(0, R)

Thus L2(B(0, R), µ) and W 1,2(B(0, R), µ) can be regarded as a closed subspace of

L2(Rd, µ) and W 1,2(Rd, µ), respectively.

The following definition of local operator can be found in different literatures, for

instance, Getoor [17]:

Definition 1. An operator Q in L2(Rd, µ) is called a local operator if for any h ∈

D(Q) and any open set G with Lebesgue measure 0 on the boundary, one has hIG ∈

D(Q) and IGQh = Q(IGh) as elements of L2(Rd, µ).

We know from lemma 3.0.1 that Lf is a local operator. Therefore, Theorem 4.2 and

Theorem 4.3 in Getoor [17] yields to the fact that D(Lf,R) = D(Lf )∩L2(B(0, R), µ)

and Lfg(x) = Lf,Rg(x) for all g ∈ D(Lf,R). Combine with (3.8), we have

〈g, Lf,Rg〉µ =

∫
B(0,R)

f(x)g2(x)φ(x) dx− 1

2

∫
B(0,R)

|∇g(x)|2φ(x) dx

for any g ∈ D(Lf,R).
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Now we turn to T f,Rt . Repeat the similar argument carried out for T ft , we know

that T f,Rt has the spectral representation:

T f,Rt =

∫ ∞
−∞

exp{tλ}Ef,R(dλ),

where {Ef,R(λ);−∞ < λ < ∞} is the corresponding resolution of identity for self-

adjoint operator Lf,R. In addition, for any g ∈ L2(B(0, R), µ),

〈g, T f,Rt g〉µ =

∫ ∞
−∞

exp{tλ}mf,R
g (dλ),

where mf,R
g is known as spectral measure on R induced by the distribution function

F f,R(λ) ≡ 〈g, Ef,R(λ)g〉µ with

mf,R
g (R) = ||g||2µ.

Furthermore, mf,R
g is bounded above by

λf,R ≡ sup
g∈D(Lf,R),||g||µ=1

〈g, Lf,Rg〉µ

= sup
g∈FR

{∫
Rd
f(x)g2(x)φ(x) dx− 1

2

∫
Rd
|∇g(x)|2φ(x) dx

}
.

(3.16)
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Chapter 4

Long Time Asymptotics:

Quenched Regime

In this Chapter, we give the proof of Theorem 1. The proof is followed by two

steps. First, we derive variational formulas for λ1 and λ2. Second, we investigate the

variational formulas and obtain that λ1, λ2 ∈ (0,∞).

4.1 Variational Formulas for the Rates

Proposition 9. The following large deviation result holds P-a.s.:

lim
t→∞

1

t
logEx exp

{
±
∫ t

0

V (X(s)) ds

}
= sup

g∈F∞

{∫
Rd

(
−1

2
|∇g|2 ± V (x)g2(x)

)
φ(x) dx

}
,

(4.1)

where F∞ =
{
g ∈ C∞0 (Rd) :

∫
Rd
g2(x)φ(x) dx = 1

}
.

In the following subsections, we will discuss the proof of Proposition 9 under

the position exponential as well as negative exponential situations, respectively. As

we mentioned earlier, the main challenge here is to deal with unbounded potential

function V . This challenge is highlighted more for the positive exponential situation
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and the solution we provide is to use local approximation. With this regard, we will

give full proof with details for the positive exponential situation. As to the negative

exponential case, since the argument is very similar, we will sketch the proof and

highlight those parts which need different attention from the positive exponential

situation.

4.1.1 Exponential Moments with Positive Coefficients

Proof. For n ∈ Z+, define Vn = V ∧ n. Since Vn is a bounded function, the spectral

representation techniques discussed in Chapter 3 can be applied here. In fact, choose

g ∈ F∞ and notice that V ≥ 0. Then we have

Ex exp

{∫ t

0

V (X(s)) ds

}
≥Ex exp

{∫ t

1

Vn(X(s)) ds

}
≥||g||−2

∞ Ex
(
g(X(1)) exp

{∫ t

1

Vn(X(s)) ds

}
g(X(t))

)
=||g||−2

∞ Ex
(
g(X(1))EX(1) exp

{∫ t−1

0

Vn(X(s)) ds

}
g(X(t− 1))

)
=||g||−2

∞

∫
Rd
p(x, y, 1)g(y)T Vnt−1g(y) dy,

(4.2)

where recall that p(x, y, 1) is the transition density of X from x at time 0 to y at time

1 and T Vnt−1 is the semigroup defined in (3.1).

Recall from (2.5) that

p(x, y, 1)φ−1(y) = c exp

{
|x|2 − |x− ye

−1|2

1− e−2

}
.

So p(x, y, 1)φ−1(y), as a function of y, is bounded below by a positive number on the

compact support of g. Therefore, combine with (4.2), we get

Ex exp

{∫ t

0

V (X(s)) ds

}
≥ c

∫
Rd
g(y)T Vnt−1g(y)φ(y) dy = c〈g, T Vnt−1g〉µ. (4.3)
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By applying spectral representation and Jensen’s inequality, we have

〈g, T Vnt−1g〉µ =

∫ ∞
−∞

e(t−1)λmg(dλ)

≥e(t−1)
∫∞
−∞ λmg(dλ)

= exp
{

(t− 1)〈g, LVng〉µ
}

= exp

{
(t− 1)

∫
Rd

(
−1

2
|∇g|2 + Vn(x)g2(x)

)
φ(x) dx

}
.

(4.4)

From (4.3) and (4.4), we get

lim inf
t→∞

1

t
logEx exp

{∫ t

0

V (X(s)) ds

}
≥ −1

2

∫
Rd

(
|∇g|2 − 2Vn(x)g2(x)

)
φ(x) dx.

Let n→∞ and then take supreme over all g ∈ C∞0 (Rd), we obtain the lower bound.

Next, we turn to the upper bound. To prove the upper bound, we need the

following localization estimate, of which proof is given in the Appendix, Section A.5.

Lemma 4.0.2. Put γt = αt1/2 log t for some constant α > 0. Then P-a.s.,

lim
t→∞

Ex
(

exp
{∫ t

0
V (X(s)) ds

}
1{τγt>t}

)
Ex exp

{∫ t
0
V (X(s)) ds

} = 1,

where τR = inf{t > 0 : X(t) /∈ B(0, R)}.

By Lemma 4.0.2 and Lemma A.0.8, P−a.s. there exist c1, c2 > 0 (the choice of

c1, c2 depends on the realization of random media ω(·)) such that for all large t

Ex exp

{∫ t

0

V (X(s)) ds

}
≤ c1Ex

(
exp

{∫ t

0

V (X(s)) ds

}
1{τγt>t}

)
,

and

sup
x∈B(0,γt)

V (x) ≤ c2 log t.
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Therefore, for all t sufficiently large, we have

Ex exp

{∫ t

0

V (X(s)) ds

}
≤c1Ex

(
exp

{∫ t

0

V (X(s)) ds

}
1{τγt>t}

)

≤c1t
c2Ex

exp

{∫ t

1

V (X(s)) ds

}
1{

sup
1≤s≤t

|X(t)|≤γt

}


=c1t
c2Ex

1{|X(1)|≤γt} exp

{∫ t

1

V (X(s)) ds

}
1{

sup
1≤s≤t

|X(t)|≤γt

}1{|X(t)|≤γt}

 .

(4.5)

Let |gt| ≤ 1 be a smooth function such that, gt(y) ≡ 1 on B(0, γt) and gt(y) ≡ 0

outside B(0, γt+2). Denote ht = c−1
t gt, such that ||ht||µ = 1. Clearly, the normalizing

constant

ct =

(∫
Rd
g2
t (x)φ(x) dx

)1/2

≤
(∫

B(0,γt+2)

φ(x) dx

)1/2

< 1.

Therefore,

Ex

1{|X(1)|≤γt} exp

{∫ t

1

V (X(s)) ds

}
1{

sup
1≤s≤t

|X(t)|≤γt

}1{|X(t)|≤γt}


≤Ex

gt(X(1)) exp

{∫ t

1

V (X(s)) ds

}
1{

sup
1≤s≤t

|X(t)|≤γt+2

}gt(X(t))


≤Ex

ht(X(1)) exp

{∫ t

1

V (X(s)) ds

}
1{

sup
1≤s≤t

|X(t)|≤γt+2

}ht(X(t))


=

∫
Rd
p(x, y, 1)φ(y)−1ht(y)T V,γt+2

t−1 ht(y)φ(y) dy

≤c exp
{
|x|2
}
〈ht, T V,γt+2

t−1 ht〉µ,

(4.6)

where the notation T V,γt+2
t is defined as in (3.2):

T V,Rt g(x) = Ex
(

exp

{∫ t

0

V (X(s)) ds

}
g(X(t))1{τR>t}

)
,
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and the last inequality in (4.6) holds since p(x, y, 1)φ(y)−1 ≤ c exp {|x|2} by (2.5).

Recall from (??) and (3.16) that the semigroup T V,γt+2
t has the spectral represen-

tation

〈ht, T V,γt+2
t−1 ht〉µ =

∫ ∞
−∞

e(t−1)λmγt+2
ht

(dλ)

and the smallest supporting set of probability measure mγt+2
ht

is bounded above by

sup
h∈D(LV,γt+2)

〈h, Lγt+2h〉µ = sup
g∈Fγt+2

{
−1

2

∫
Rd

(
|∇g(x)|2 − 2V (x)g(x)2

)
φ(x) dx

}
,

where

Fγt+2 =

{
g ∈ C∞0 (B(0, γt + 2)) :

∫
B(0,γt+2)

g2(x)φ(x) dx = 1

}
.

Hence,

〈ht, T V,γt+2
t−1 ht〉µ ≤ exp

{
(t− 1) sup

g∈Fγt+2

{
−1

2

∫
Rd

(
|∇g|2 − 2V g2

)
φ(x) dx

}}

≤ exp

{
(t− 1) sup

g∈F∞

{
−1

2

∫
Rd

(
|∇g|2 − 2V g2

)
φ(x) dx

}}
.

(4.7)

Combine (4.5), (4.6) and (4.7), we obtain the upper bound

lim sup
t→∞

1

t
logEx exp

{∫ t

0

V (X(s)) ds

}
≤ sup

g∈F∞

{
−1

2

∫
Rd

(
|∇g(x)|2 − 2V (x)g(x)2

)
φ(x) dx

}
.

4.1.2 Exponential Moments with Negative Coefficients

Here we sketch the proof for the negative exponential moment situation.
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Proof. First, we consider the lower bound. Keep the same notation Vn = V ∧ n as

before. Notice that

Ex exp

{
−
∫ t

0

V (X(s)) ds

}
≥ e−nEx exp

{
−
∫ t

1

Vn(X(s)) ds

}
.

Repeat the similar procedures in (4.2), (4.3) and (4.4), we get

Ex exp

{
−
∫ t

0

V (X(s)) ds

}
≥ C exp

{
−(t− 1)

∫
Rd

(
1

2
|∇g|2 + Vn(x)g2(x)

)
dx

}
,

where C is constant determined by g and n. Hence, we have

lim inf
t→∞

1

t
logEx exp

{
−
∫ t

0

V (X(s)) ds

}
≥ −

∫
Rd

(
1

2
|∇g|2 + Vn(x)g2(x)

)
dx.

Let n go to infinity and take supreme over g ∈ C∞0 (Rd), then we obtain the lower

bound:

lim inf
t→∞

1

t
logEx exp

{
−
∫ t

0

V (X(s)) ds

}
≥ sup

g∈F∞

{
−
∫
Rd

(
1

2
|∇g|2 + V (x)g2(x)

)
dx

}
.

(4.8)

Next, we turn to the upper bound. Since −V is bounded above by 0, the proof of

the upper bound is straight forward and do not need localization treatment as before.

Indeed, we have

Ex exp

{
−
∫ t

0

V (X(s)) ds

}
≤Ex exp

{
−
∫ t

1

V (X(s)) ds

}
=

∫
Rd
p(x, y, 1)φ(y)−1T−Vt−1 1φ(y) dy

≤c exp
{
|x|2
}
〈1, T−Vt−1 1〉µ,

(4.9)

where the last inequality holds once again due to the fact that p(x, y, 1)φ(y)−1 ≤

c exp {|x|2}. Apply the spectral representation (3.13) and the spectral measure
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estimate (3.15) to 〈1, T−Vt−1 1〉µ, we have

〈1, T−Vt−1 1〉µ ≤ exp

{
(t− 1) sup

g∈F∞

{
−
∫
Rd

(
1

2
|∇g|2 + V (x)g2(x)

)
dx

}}
. (4.10)

Combine (4.9) and (4.10), we obtain the upper bound

lim sup
t→∞

1

t
logEx exp

{
−
∫ t

0

V (X(s)) ds

}
≤ sup

g∈F∞

{
−
∫
Rd

(
1

2
|∇g|2 + V (x)g2(x)

)
dx

}
.

(4.11)

Put (4.8) and (4.11) together, we get the desired result.

Using standard approximation treatment, we have,

lim
t→∞

1

t
logEx exp

{
±
∫ t

0

V (X(s)) ds

}
=− inf

f∈F∞

{∫
Rd

(
1

2
|∇f |2 ∓ V (x)f 2(x)

)
φ(x) dx

}
,

=− inf
f∈P

{∫
Rd

(
1

2
|∇f |2 ∓ V (x)f 2(x)

)
φ(x) dx

}
, (4.12)

where

P =
{
g ∈ Poly(Rd), ||g||µ = 1

}
.

For the convenience of the analysis in Section 4.2, we rewrite (4.12) with respect to

Lebesgue measure. Let E =
{
f̃(x)

def
= f(x)e−

|x|2
2 : f ∈ P

}
, then ||f̃ ||2 = πd/2, where

|| · ||2 is the classic L2-norm. Hence,

∫
Rd
|∇f |2φ(x) dx = π−d/2

∫
Rd

∣∣∣∇f̃ + xf̃(x)
∣∣∣2 dx

= π−d/2
∫
Rd

(∣∣∇f̃ ∣∣2 + |x|2f̃ 2
)

dx+ 2π−d/2
∫
Rd

(
x · ∇f̃

)
f̃ dx. (4.13)

Applying divergence theorem to the second integral in (4.13),

∫
Rd

(
x · ∇f̃

)
f̃ dx =

1

2

∫
Rd
x · ∇f̃ 2(x) dx = −d

2

∫
Rd
f̃ 2(x) dx = −d

2
πd/2. (4.14)
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Hence, by (4.13) and (4.12), the quenched long time asymptotic results become

lim
t→∞

1

t
logEx exp

{
±
∫ t

0

V (X(s)) ds

}
= −1

2
π−d/2 inf

g∈E

{∫
Rd
|∇g|2 +

(
|x|2 ∓ 2V (x)

)
g2 dx

}
+
d

2
.

(4.15)

4.2 Analysis of λ1 and λ2

In this section, we analyze (4.15) and prove theorem 1.

Lemma 4.0.3.

inf
g∈E

{∫
Rd
|∇g|2 + |x|2g2 dx

}
= dπd/2, (4.16)

where the minimizers are g0(x) = ±e−|x|2/2.

Proof. By (4.14),

1

2
dπd/2 = −

∫
Rd

(x · ∇g)g dx ≤
(∫

Rd
|x|2g2 dx

)1/2(∫
Rd
|∇g|2 dx

)1/2

≤ 1

2

(∫
Rd
|x|2g2(x) dx+

∫
Rd
|∇g(x)|2 dx

)
.

To make both inequalities equal, we need g0(x) · x = −∇g0(x). Under the condition

that ||g0||2 = 1, we have g0(x) = ±e−|x|2/2. Clearly, g0 ∈ E .

To get what stated in theorem 1 we need to show the following Proposition.

Throughout the proof, use the same notation as in lemma 4.0.3: g0(x) = e−|x|
2/2.

Proposition 10. Let

λ1 = −1

2
π−d/2 inf

g∈E

{∫
Rd
|∇g|2 +

(
|x|2 − 2V (x)

)
g2 dx

}
+
d

2
,

λ2 =
1

2
π−d/2 inf

g∈E

{∫
Rd
|∇g|2 +

(
|x|2 + 2V (x)

)
g2 dx

}
− d

2
.

Then P−a.s., λ1, λ2 ∈ (0,∞) are non-degenerate random variables.
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Proof. First, consider λ1. By Lemma A.0.8, |x|2−2V (x) has a (random) lower bound

C(ω) on Rd. Then, we have

inf
g∈E

{∫
Rd
|∇g|2 +

(
|x|2 − 2V (x)

)
g2 dx

}
≥ inf

g∈E

{∫
Rd

(
|x|2 − 2V (x)

)
g2 dx

}
≥ inf

g∈E

{
C(ω)

∫
Rd
g(x)2 dx

}
= C(ω)πd/2.

Therefore, P−a.s., λ1 ≤ 1
2
(d− C(ω)) <∞. On the other hand,

inf
g∈E

{∫
Rd

(
|∇g|2 +

(
|x|2 − 2V (x)

)
g2(x)

)
dx

}
≤
∫
Rd
|∇g0|2 +

(
|x|2 − 2V (x)

)
g2

0(x) dx

= dπd/2 − 2

∫
Rd
V (x)e−|x|

2/2 dx < dπd/2 P− a.s.

The last inequality holds since P(V ≡ 0 on Rd) = 0. Therefore, P−a.s.

λ1 = −1

2
π−d/2 inf

g∈E

{∫
Rd

(
|∇g|2 +

(
|x|2 − 2V (x)

)
g2
)

dx

}
+
d

2
> 0.

To prove the non-degeneracy of λ1, it suffices to show P(λ1 > α) > 0 for any

α > 0.

By continuity of K, there exists r > 0 such that K(x) > K(0)/2 for all x ∈ B(0, r).

Then for any x ∈ B(0, r/2)

V (x) =

∫
Rd
K(x− y)ω(dy) ≥

∫
B(0,r/2)

K(x− y)ω(dy)

≥
∫
B(0,r/2)

K(0)

2
ω(dy) =

K(0)

2
ω(B(0, r/2)).
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Therefore, ∫
Rd
V (x)g2

0(x) dx ≥
∫
B(0,r/2)

V (x)g2
0(x) dx

≥K(0)

2
ω(B(0, r/2))

∫
B(0,r/2)

e−|x|
2

dx

≥c ω(B(0, r/2)).

(4.17)

From (4.17) we get

λ1 ≥ −
1

2
π−d/2

∫
Rd

(
|∇e−|x|2|2 + |x|2e−|x|2 − V (x)e−|x|

2
)

dx+
d

2

≥ cω(B(0, r/2)),

which implies that

P(λ1 ≥ cn) ≥ P(ω(B(0, r/2)) = n) > 0.

As to λ2, the upper bound holds since

λ2 ≤
1

2
π−d/2

∫
Rd
|∇g0|2 +

(
|x|2 + 2V (x)

)
g2

0 dx− d

2

=π−d/2
∫
Rd
V (x)e−|x|

2

dx <∞,

where the last inequality holds by Lemma A.0.8.

For the lower bound, denote F (g) :=
∫
Rd
|∇g|2 + (|x|2 + 2V (x)) g2(x) dx. Notice

that for g = g0 a.s.,

F (g0) =

∫
Rd

(
|∇g0|2 + |x|2 + 2V (x)

)
g2

0(x) dx

=dπd/2 + 2

∫
Rd
V (x)e−|x|

2/2 dx > dπd/2 + δ1 P− a.s.,
(4.18)

for some δ1 > 0.
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For g 6= g0, by lemma 4.0.3,

F (g) =

∫
Rd

(
|∇g|2 +

(
|x|2 + 2V (x)

)
g2(x)

)
dx

≥
∫
Rd

(
|∇g0|2 + |x|2g2

0(x)
)

dx+ δ2 = dπd/2 + δ2 P− a.s.
(4.19)

for some δ2 > 0.

Therefore, from (4.18), (4.19) and the continuity of F on E under Sobolev norm,

λ2 =
1

2
π−d/2 inf

g∈E

{∫
Rd

(
|∇g|2 +

(
|x|2 + 2V (x)

)
g2
)

dx

}
− d

2
> 0.

As to the non-degeneracy of λ2, by continuity of K and the construction of V , we

know that V has a positive probability of greater than any large value in a compact

set. Therefore,

λ2 ≥ π−d/2 inf
g∈E

{∫
Rd

(
|x|2 + 2V (x)

)
g2(x) dx

}
− d

2
≥ inf

x∈Rd
(|x|2 + 2V (x))− d

2
:= c

happens with a positive probability.
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Chapter 5

Long Time Asymptotics: Annealed

Regime

In this Chapter, we give the detailed proofs of Theorem 3 and Theorem 4.

5.1 Exponential Moments with Positive Coeffi-

cients

Proof of Theorem 3. Notice that

∫ t

0

V (X(s)) ds =

∫
Rd

∫ t

0

K(X(s)− y) ds ω(dy).

Using Fubini Theorem and Poisson integrals (see Appendix A.1), we have

E⊗Ex exp

{∫ t

0

V (X(s)) ds

}
= Ex exp

{
λ

∫
Rd

(
exp

{∫ t

0

K(X(s)− y) ds

}
− 1

)
dy

}
.

(5.1)

First we establish the upper bound of (5.1). Jensen’s inequality yields to

exp

{∫ t

0

K(X(s)− y) ds

}
≤ 1

t

∫ t

0

exp
{
tK(X(s)− y)

}
ds.
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Hence, we have

Ex exp

{
λ

∫
Rd

(
exp

{∫ t

0

K(X(s)− y) ds

}
− 1

)
dy

}
≤Ex exp

{
λ

t

∫ t

0

∫
Rd

(
etK(X(s)−y) − 1

)
dy ds

}
= exp

{
λ

∫
Rd

(
etK(y) − 1

)
dy

}
,

(5.2)

where the last equality holds due to the shift invariance of the Lebesgue measure.

Since K(·) is compactly supported and supp(K) ⊂ B(0, L), the integral in the last

line of (5.2) equals to the restriction of its domain on B(0, L). Therefore, combining

(5.1) and (5.2) we obtain the upper bound:

lim sup
t→∞

1

t
log log E⊗ Ex exp

{∫ t

0

V (X(s)) ds

}
≤ lim sup

t→∞

1

t
log

(
λ |B(0, L)| exp

{
tmax
x∈Rd

K(x)

})
= max

x∈Rd
K(x).

(5.3)

Next, we consider the lower bound. For any ε > 0, by the continuity of K there

exists a ball B(x0, δ) such that

K(y) > max
x∈Rd

K(x)− ε, for all y ∈ B(x0, δ). (5.4)

Hence, our strategy for the lower bound is to restrict the O-U process X(·) inside a

small ball up to time t so that the exponentials will get main contribution from the

maximum of the shape function K. More precisely,

39



Ex exp

{
λ

∫
Rd

(
exp

{∫ t

0

K(X(s)− y) ds

}
− 1

)
dy

}

≥ Ex

exp

{
λ

∫
B(x−x0,δ/2)

(
e
∫ t
0 K(X(s)−y) ds − 1

)
dy

}
1{

sup
0≤s≤t

|X(s)−x|<δ/2
}


≥ exp

{
λ |B(x− x0, δ/2)|

(
e
t·( max
x∈Rd

K(x)−ε)
− 1

)}
· Px

(
sup

0≤s≤t
|X(s)− x| < δ/2

)
,

(5.5)

where the last inequality holds due to (5.4) and the fact that X(s) − y ∈ B(x0, δ)

given the condition that X(s) ∈ B(x, δ/2) and y ∈ B(x− x0) for all 0 ≤ s ≤ t.

Using the classical small ball estimate for Gaussian processes, for instance [20],

the cost of restricting Gaussian process X in a small ball up to t is exponentially

small:

Px
(

sup
0≤s≤t

|X(s)− x| < δ/2

)
� e−ct, for some c > 0. (5.6)

Therefore, combine with (5.1), (5.5) and (5.6) we have

lim inf
t→∞

1

t
log log E⊗ Ex exp

{∫ t

0

V (X(s)) ds

}
≥ max

x∈Rd
K(x)− ε.

The lower bound is obtained by letting ε go to 0+.

Together with (5.3) we get the full result of Theorem 3. �

5.2 Exponential Moments with Negative Coeffi-

cients

In this section, we shall prove the Theorem 4. Notice that by using Poisson integral

again, to prove Theorem 4 is equivalent to prove the following Proposition:
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Proposition 11. For any bounded, compactly supported shape function K(·) ≥ 0, we

have

lim
t→∞

1

(log t)d/2
logEx exp

{
−λ
∫
Rd

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}
= −λωd,

where ωd denotes the volume of d−dimensional unit ball and λ > 0 is the intensity of

the Poisson point process ω(·), the same notations as we described before in Theorem

4.

5.2.1 Lower Bound

For any given t, denote Rβ,t =
√
β log t with β > 1. By restricting X(·) in the ball

B(0, Rβ,t) up to time t, we have

Ex exp

{
−λ
∫
Rd

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}

≥Ex exp


{
−λ
∫
Rd

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}
1{

sup
0≤s≤t

|X(s)|<Rβ,t

}


=Ex exp


{
−λ
∫
B(0,Rβ,t+L)

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}
1{

sup
0≤s≤t

|X(s)|<Rβ,t

}
 ,

where the last equality holds simply due to the fact that the support of K(·) is

inside the ball B(0, L) hence the function inside the spacial integral vanishes outside

B(0, Rβ,t + L). Using the simple fact that 1− ex < 1 for all x ∈ R, we have

Ex exp

{
−λ
∫
Rd

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}
≥e−λωd(Rβ,t+L)dPx

(
sup

0≤s≤t
|X(s)| < Rβ,t

)
.
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Applying the Lemma 5.0.4 below and noticing that β > 1, we thus obtain

lim inf
t→∞

1

(log t)d/2
logEx exp

{
−λ
∫
Rd

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}
≥ lim inf

t→∞

1

(log t)d/2

(
−λωd(

√
β log t+ L)d − ct−

β−1
2 (log t)

d−1
2

)
=− βd/2 λωd.

Therefore, we get the lower bound of Proposition 11 by letting β go to 1+.

Now we turn to prove the technical Lemma used early in the proof of the lower

bound. This Lemma tells us that the probability of restricting O-U process X up to

time t is close to 1 if we select the radius of the ball carefully.

Lemma 5.0.4. Take Rβ,t =
√
β log t (β > 1), then for all t large enough,

Px
(

sup
0≤s≤t

|X(s)| < Rβ,t

)
log
�� exp

{
−t−

β−1
2 (log t)

d−1
2

}
.∗ (5.7)

Proof. Let γ(t) ↗ ∞ be an increasing function of t of which growth speed is slow

enough. For instance, choose γt ≺≺ log t. Observe that:

Px

(
sup

γ(t)≤s≤t
|X(s)| ≤ Rβ,t

)

=Px

(
sup

0≤s<γ(t)

|X(s)| > Rβ,t and sup
γ(t)≤s≤t

|X(s)| ≤ Rβ,t

)
+ Px

(
sup

0≤s≤t
|X(s)| ≤ Rβ,t

)
.

(5.8)

Therefore, in order to prove (5.7), it suffices to check

Px

(
sup

0≤s<γ(t)

|X(s)| > Rβ,t

)
log
≺≺ exp

{
−t−

β−1
2 (log t)

d−1
2

}
(5.9)

and

Px

(
sup

γ(t)≤s≤t
|X(s)| ≤ Rβ,t

)
log
�� exp

{
−t−

β−1
2 (log t)

d−1
2

}
. (5.10)

∗f(t)
log
�� g(t) means log f(t)/ log g(t)→ +∞ as t→ +∞.
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Indeed, by Lemma A.0.9 in Section A.5, the following inequality holds for all t large

enough

Px

(
sup

0≤s<γ(t)

|X(s)| > Rβ,t

)
≤ c1

γ(t)

tc2
, where c1, c2 > 0. (5.11)

Hence, since γ(t) ≺≺ log t, (5.9) holds. Next, we show (5.10). For any g ∈

C∞0 (B(0, Rβ,t)) with ||g||2,µ = 1, we have

Px
(

sup
γ(t)≤s≤t

|X(s)| < Rβ,t

)
= Ex

{
1{

supγ(t)≤s≤t |X(s)|<Rβ,t
}}

≥||g||−2
∞ Ex

{
g(X(γ(t)))g(X(t))1{supγ(t)≤s≤t |X(s)|<Rβ,t}

}
.

(5.12)

Using Markov property of X,

Ex
{
g(X(γ(t)))g(X(t))1{supγ(t)≤s≤t |X(s)|<Rβ,t}

}
= Ex

{
g(X(γ(t)))EX(γ(t))

{
g(X(t− γ(t)))1{sup0≤s≤t−γ(t) |X(s)|<Rβ,t}

}}
.

(5.13)

Hence,

Px
(

sup
γ(t)≤s≤t

|X(s)| < Rβ,t

)
≥ ||g||−2

∞

∫
B(0,Rβ,t)

p(x, y, γ(t))g(y)T
0,Rβ,t
t−γ(t)g(y) dy, (5.14)

where p(x, y, t) is the probability density of X staring from x and ending at y at time

t. The semigroup T 0,R
t on L2(B(0, R), µ) is defined as in Chapter 3:

T 0,R
t g(x)

def.
= Ex

{
g(X(t))1{

sup0≤s≤t |X(s)|≤R
}} .

Notice from (2.5) and the fact that γ(t) ≺≺ log t, we know p(x, y, γ(t))φ(y)−1 is

uniformly bounded below on B(0, Rβ,t) for large t. That is,

lim inf
t→∞

inf
y∈B(0,Rβ,t)

p(x, y, γ(t))φ(y)−1 > C.
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Hence, combining with (5.14), Px
(
supγ(t)≤s≤t |X(s)| < Rβ,t

)
has the following

Dirichlet form lower bound:

Px

(
sup

γ(t)≤s≤t
|X(s)| < Rβ,t

)
≥ C||g||−2

∞

∫
B(0,Rβ,t)

g(y)T
Rβ,t
t−γtg(y)φ(y) dy

= C||g||−2
∞ 〈g, T

0,Rβ,t
t−γ(t)g〉µ.

(5.15)

By using spectral representation for T
0,Rβ,t
t in (5.14), we have

〈g, TRβ,tt−γ(t)g〉µ =

∫ ∞
−∞

e(t−γ(t))λm
0,Rβ,t
g (dλ) ≥ exp

{
(t− γ(t))

∫ ∞
−∞

λm
0,Rβ,t
g (dλ)

}
= exp

{
(t− γ(t))L0,Rβ,tg

}
= exp

{
−t− γ(t)

2

∫
B(0,Rβ,t)

|∇g(y)|2 φ(y) dy

}
,

(5.16)

where the inequality holds due to Jensen’s inequality.

Choose ht: R→ [0, 1] as a smooth function such that ht(x) ≡ 1 for |x| < Rβ,t− 2,

ht(x) ≡ 0 for |x| > Rβ,t, and |h′t| < 1 for all x ∈ R. Define gt : Rd → R as

gt(x) = ctht(|x|), where ct > 0 is the normalizing constant such that ||gt||2,µ = 1. Use

gt in (5.15), (5.16) and notice ct = ||gt||∞, we have

Px

(
sup

γ(t)≤s≤t
|X(s)| < Rβ,t

)
≥ C exp

{
−t− γ(t)

2

∫
B(0,Rβ,t)

h′t(|y|)2 φ(y) dy

}
. (5.17)

To achieve the desired lower bound, we need to estimate
∫
B(0,Rβ,t)

h′t(|y|)2 φ(y) dy.

In fact, using the sphere integral, we have for t sufficiently large

∫
B(0,Rβ,t)

ht(|y|)2φ(y) dy ≤ c1

∫ √β log t

√
β log t−2

rd−1e−r
2

dr ≤ c2(log t)
d−1
2 e−

β+1
2

log t.

Therefore, we have

P

{
sup

γ(t)≤s≤t
|X(s)| ≤ Rβ,t

}
log
�� exp

{
−t−

β−1
2 (log t)

d−1
2

}
. (5.18)
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From (5.8), (5.11) and (5.18), we have

Px
(

sup
0≤s≤t

|X(s)| < Rβ,t

)
log
�� exp

{
−t−

β−1
2 (log t)

d−1
2

}
.

5.2.2 Upper Bound

Now we turn to the upper bound. Take Rβ,t =
√
β log t with β < 1. Since K(·) ≥ 0,

we have

Ex exp

{
−λ
∫
Rd

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}
≤Ex exp

{
−λ
∫
B(0,Rβ,t)

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}
=I1(t, β, δ) + I2(t, β, δ),

where

I1(t, β, δ) = Ex

(
exp

{
−λ
∫
B(0,Rβ,t)

(
1− exp

{∫ t

0

K(X(s)− y) ds

})
dy

}
1Bβ,δ

)
,

I2(t, β, δ) = Ex

(
exp

{
−λ
∫
B(0,Rβ,t)

(
1− exp

{
−
∫ t

0

K(X(s)− y) ds

})
dy

}
1Bcβ,δ

)
,

and Bβ,δ is defined as

Bβ,δ =

{
1

(log t)d/2

∫
B(0,Rβ,t)

exp

{
−
∫ t

0

K(X(s)− y) ds

}
dy ≤ δ

}
.

In the following, we will show that I1(t, β, δ) makes the main contribution to the

upper bound while I2(t, β, δ) is negligible comparing with I1(t, β, δ). Indeed, notice
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that

I1(t, β, δ) ≤ exp
{
−λ |B(0, Rβ,t)|+ λ δ(log t)

d
2

}
= exp

{
−λωd(β log t)

d
2 + λ δ(log t)

d
2

}
.

Hence,

lim
t→∞

1

(log t)d/2
log I1(t, β, δ) ≤ −λωdβd/2 + λ δ. (5.19)

Next we prove the smallness of I2(t, β, δ). By Chebyshev inequality,

I2(t, β, δ) ≤ Px(Bc
β,δ) ≤

1

δ(log t)d/2

∫
B(0,Rβ,t)

Ex exp

{
−
∫ t

0

K(X(s)− y) ds

}
dy.

(5.20)

Recall K ≥ 0, then the expectation on the right side of (5.20) has the following upper

bound estimate

Ex exp

{
−
∫ t

0

K(X(s)− y) ds

}
≤Ex exp

{
−
∫ t

1

K(X(s)− y) ds

}
=

∫
Rd
p(x, y, 1)Ey exp

{
−
∫ t−1

0

K(X(s)− y) ds

}
dy

=

∫
Rd

p(x, y, 1)

φ(y)
Ey exp

{
−
∫ t−1

0

K(X(s)− y) ds

}
φ(y) dy

From (2.5),

p(x, y, 1)φ−1(y) = c exp

{
|x|2 − |x− ye

−1|2

1− e−2

}
≤ ce|x|

2

,

for some c > 0. This implies that p(x, y, 1)φ−1(y), as a function of y, is uniformly

upper bounded. Therefore,

Ex exp

{
−
∫ t

0

K(X(s)− y) ds

}
≤ c1〈1, TKt−11〉µ = c1

∫ ∞
−∞

e(t−1)λm1(dλ), (5.21)
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where spectral measure m1 is a probability measure, see again in Section A.6 for

details. From (3.14) and (3.15), The support of m1 is bounded from above by

sup
g∈D(LK )

||g||2,µ=1

〈g, LKg〉µ = − inf
g∈F∞

{∫
Rd

(
K(x− y)g2(x) +

1

2
|∇g(x)|2

)
φ(x) dx

}
. (5.22)

Summarizing (5.21) and (5.22), we get

Ex exp

{
−
∫ t

0

K(X(s)− y) ds

}
≤ c exp

{
−(t− 1) inf

g∈F∞

{∫
Rd

(
K(x− y)g2(x) +

1

2
|∇g|2

)
φ(x) dx

}}
,

for some c > 0. Define Λ(β, t) as

Λ(β, t) = inf
g∈F∞

inf
y∈B(0,Rβ,t)

{∫
Rd

(
K(x− y)g2(x) +

1

2
|∇g|2

)
φ(x) dx

}
. (5.23)

Then from (5.20), we observe that

I2(t, β, δ) ≤ C exp
{
− (t− 1)Λ(β, t)

}
,

for some C > 0. According to the Lemma 5.0.5 below and the fact that β < 1, we

have

lim
t→∞

1

(log t)d/2
log I2(t, β, δ) = −∞. (5.24)

Therefore, combine (5.19), (5.24) and let β → 1−, δ → 0+, we obtain the upper

bound. �

Lemma 5.0.5. For Λ(β, t) as defined in (5.23) and 0 < β < 1, the following

inequality holds for t large enough

Λ(β, t) ≥ ct−β for some c > 0.

47



Proof. Given t > 0, denote

F1(t) =

{
g ∈ F∞ :

1

2

∫
Rd
|∇g(x)|2φ(x) dx > λt−β

}

and

F2(t) =

{
g ∈ F∞ :

1

2

∫
Rd
|∇g(x)|2φ(x) dx ≤ λt−β

}
,

where λ > 0 is a constant, of which value will be determined later. We have the

following inequality

Λ(β, t) ≥ min

{
inf

g∈F2(t)
inf

y∈B(0,Rβ,t)

∫
Rd
K(x− y)g2(x)φ(x) dx, λt−β

}
. (5.25)

For any g ∈ F2(t), let ḡ =
∫
Rd
g(x)φ(x) dx be the expectation of g with respect to

the Normal distribution µ. By triangular inequality,

(∫
Rd
K(x− y)g2(x)φ(x) dx

)1/2

≥
(∫

Rd
K(x− y)ḡ2φ(x) dx

)1/2

−
(∫

Rd
K(x− y)(g(x)− ḡ)2φ(x) dx

)1/2

.

Apply the Poincaré inequality for Normal distribution to g (See Section A.2 in

the Appendix), we get

1− ḡ2 =

∫
Rd

(g(x)− ḡ)2 φ(x) dx ≤ C

∫
Rd
|∇g|2φ(x) dx < 2Cλt−β,

which leads to √
1− 2Cλt−β ≤ ḡ ≤ 1, (5.26)
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and ∫
Rd
K(x− y) (g(x)− ḡ)2 φ(x) dx

≤max
x∈Rd

K(x)

∫
Rd

(g(x)− ḡ)2 φ(x) dx

≤2 max
x∈Rd

K(x)Cλt−β.

(5.27)

From (5.26) and (5.27), we have

(∫
Rd
K(x− y)g2(x)φ(x) dx

)1/2

≥
√

1− 2Cλt−β
(∫

Rd
K(x− y)φ(x) dx

)1/2

−
(

2 max
x∈Rd

K(x)Cλt−β
)1/2

.

(5.28)

Notice that for large t

inf
y∈B(0,Rβ,t)

∫
Rd
K(x− y)φ(x) dx

≥ c1 inf
y∈B(0,Rβ,t)

∫
B(0,δ)

φ(x− y) dx

≥ c2 exp
{
−R2

β,t

}
= c2t

−β,

for for some suitable constants c1, c2 > 0. Choose λ > 0 sufficiently small but fixed,

we obtain from (5.28) that

inf
g∈F2(t)

inf
y∈B(0,Rβ,t)

∫
Rd
K(x− y)g2(x)φ(x) dx ≥ c3t

−β.

Therefore, combine with (5.25) we have

Λ(β, t) ≥ c4t
−β for some c4 > 0.
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Chapter 6

Future research

Some of my plans for future research include the followings:

• There are a number of applications rising from other science fields that address

the importance of the time dependent random media, such as moving catalysts

or traps in chemistry reaction, chiral medium in electromagnetic fields. Thus, I

am going to investigate the behavior of O-U processes in certain time dependent

random media. For the case of BM, it has been studied in [13, 14]. However,

the methodology will most likely be different for OU processes due to its friction

effect, as one have seen in my dissertation.

• The macroscopic systems of OU dynamics have ubiquitous applications in

physics, chemistry, biology and engineering. Unlike the single OU particle, the

output processes of large composite OU systems appear a long time memory

(non-Markov) behavior with a universal scaling limit: fractional Brownian

Motion(fBM)[12]. Motivated by this, I am going to investigate the model of fBM

in random media, which in return answers the question on long time macroscopic

behavior of OU dynamics in random media. One possible approach is to rewrite

the fBM by a integral of BM and then to apply Gaussian techniques.
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660. 57

[7] Chen, X. (2012b). Quenched asymptotics for Brownian motion of renormalized

Poisson potential and for the related parabolic Anderson models. The Annals of

Probability, 40(4):1436–1482. 3, 14

[8] den Hollander, F. (2009). Random polymers. Lecture Notes in Mathematics.

Springer Berlin Heidelberg. 1, 3

52



[9] Donsker, M. and Varadhan, S. R. S. (1975). Asymptotics for the wiener sausage.

Communications on Pure and Applied Mathematics, XXVIII:525–565. 3, 4, 11, 15

[10] Donsker, M. D. and Varadhan, S. R. S. (1974). Asymptotic evaluation of certain

wiener integralsfor large time. Proceedings of International Conference of Function

Space Integration, pages 15–33. 15

[11] Dunkl, C. and Xu, Y. (2001). Orthogonal Polynomials of Several Variables.

Cambridge University Press. 22

[12] Eliazar, I. and Klafter, J. (2009). From ornstein-uhlenbeck dynamics to long-

memory processes and fractional brownian motion. Phys. Rev. E, 79:021115. 50
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[24] Rajput, B. S. and Rosiński, J. (1989). Spectral representations of infinitely

divisible processes. Probab. Th. Rel. Fields, 82:451–487. 57

[25] Revuz, D. and Yor, M. (1994). Continuous Martingale and Brownian Motion

(2nd ed.). Springer. 4, 7, 19

[26] Risken, H. (1989). The FokkerPlanck Equation: Method of Solution and

Applications. Springer-Verlag. 4

[27] Sznitman, A. (1993). Brownian asymptotics in a poissonian environment.

Probability Theory and Related Fields, 95:155–174. 3, 4, 13

[28] Takeda, M. (1998). Asymptotic properties of generalized feynmankac functionals.

Potential Analysis, 9(3):261–291. 15

[29] Uhlenbeck, G. and Ornstein, L. (1930). On the theory of brownian motion. Phys.

Rev., pages 823–841. 3

54



[30] Yosida, K. (1980). Functional Analysis. Classics in Mathematics Series.

Cambridge University Press. 66, 68

55



Appendix

56



Appendix A

Appendix

A.1 Poisson Integrals

Recall {ω(dx)}x∈Rd is a Poisson random measure (also known as Poisson point

process) with intensity measure ν(dx) = λ dx, λ > 0. Integrals of the form

E exp

{∫
Rd
g(x)ω(dx)

}
,

for some measurable functions g, if well-defined, are essentially the moment gen-

erating functions of stochastic integrals over Poisson random measure ω(dx). The

definitions of stochastic integrals over infinitely divisible random measures and their

characteristic functions as well as moment generating functions have been discussed

thoroughly in [24]. Hence, as an example of infinitely divisible random measure, we

have the following Poisson integral characterization: (see also [6] for Poisson random

measure case)

Proposition 12. Let {ω(A)}A∈Rd be a Poisson random measure with intensity

measure ν(dx) = λ dx (λ > 0). A Borel measurable function g(x) is integrable
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on Rd with respect to ω(dx) if and only if

∫
Rd

1− e−|g(x)| dx <∞.

Furthermore, if g is integrable with respect to ω, the following Poisson integral formula

holds

E exp

{∫
Rd
g(x)ω(dx)

}
= exp

{
λ

∫
Rd

(
eg(x) − 1

)
dx

}
.

A.2 Poincaré Inequality for Normal Distribution

The Poincaré inequality allows one to obtain bounds on a function using bounds on

its derivatives and the geometry of its domain of definition. The following Poincaré

inequality for Normal distribution µ(·) can be found in [1], therein Theorem 1.6.4.

Lemma A.0.6. Let f ∈ W 1,2(µ). It holds that for some C > 0,

∫
Rd
f 2 dµ−

(∫
Rd
f dµ

)2

≤ C

∫
Rd
|∇f |2 dµ.

A.3 Basic Properties of the Poisson potential

In this section, we first give a large deviation type upper tail estimate of Poisson

distributed random variables:

Lemma A.0.7. Let Y be a Poisson distributed random variable with parameter λ > 0.

For any σ > 0, the following large deviation result holds

lim
t→∞

1

t
log P

(
Y ≥ σ

t

log t

)
= −σ.

Hence, we have P
(
Y ≥ σ log t

log log t

)
= t−σ(1+o(1)) as t goes to ∞.
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Proof. By Stirling formula, we have

P(Y = k) =
1√
2πk

(
λe

k

)k
e−λ(1 + o(1)). (A.1)

Notice that

P(Y = k) < P(Y ≥ k) =
λk

k!
e−λ

∞∑
j=0

k!

(j + k)!
λj ≤ eλP(Y = k). (A.2)

Take k =
[
σ t

log t

]
, by (A.1) and (A.2), we have

lim
t→∞

1

t
log P

(
Y ≥ σ

t

log t

)
= lim

t→∞

1

t

(
−σ t

log t

)
log

(
σ

t

log t

)
= −σ.

Remark 8. Lemma A.0.7 implies that this tail estimate does not rely on the Poisson

parameter λ.

Using the above upper tail estimate and a standard Borel-Cantelli argument, we

have the following Lemma.

Lemma A.0.8. With probability one,

lim
R→∞

log logR

logR
max
|x|<R

V (x) = d max
x∈Rd

K(x).

Proof. First, we prove the upper bound. Notice that B(0, R) can be covered by cRd

evenly spaced unit ball, i.e.

B(0, R) ⊂ ∪x∈ΛRB(x, 1) and |ΛR| ∼ cRd,

where ΛR is the collection of centers of the unit covers. Hence,

max
|x|<R

V (x) ≤ max
z∈ΛR

max
x∈B(0,1)

V (x+ z). (A.3)
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Since the support of K(·) is contained in B(0, L), we have

sup
x∈B(0,1)

V (x+ z) = sup
x∈B(0,1)

∫
Rd
K(x+ z − y)ω(dy)

≤ max
xRd

K(x)ω (B (z, L+ 1))

(A.4)

By lemma A.0.7 and the fact that {ω(B(z, L+ 1)}z∈ΛR
are identically distributed,

P

(
max
z∈ΛR

ω (B (z, L+ 1)) ≥ σ
logR

log logR

)
≤
∑
z∈ΛR

P

(
ω (B (0, L+ 1)) ≥ σ

logR

log logR

)
≤ cRd−σ.

(A.5)

Choose rn = 2n and σ = d+ ε. From (A.5), the following infinite series converge:

∞∑
n=1

P

(
max
z∈Λrn

ω (B (z, L+ 1)) ≥ (d+ ε)
log rn

log log rn

)
<∞.

Borel-Cantelli lemma tells us

P

({
log log rn

log rn
max
z∈Λrn

ω (B (z, L+ 1)) ≥ d+ ε

}
i.o.

)
= 0,

which implies that

lim sup
n→∞

log log rn
log rn

max
z∈Λrn

ω(B(z, r2)) ≤ d a.s.

For arbitrary R ∈ R+, there exists an n ∈ N such that rn ≤ R < rn+1. Therefore, we

have

lim sup
R→∞

log logR

logR
max
z∈ΛR

ω(B(z, L+ 1))

≤ lim sup
n→∞

log log rn+1

log rn
max

z∈Λrn+1

ω(B(z, L+ 1))

= lim sup
n→∞

log log rn+1

log rn+1

max
z∈Λrn+1

ω(B(z, L+ 1)) = d.
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Combine this with (A.3) and (A.4), we obtain the upper bound.

Next, we prove the lower bound. For any ε > 0, by continuity of K, we can find a

δ > 0 such that K(x) > maxx∈Rd K(x)− ε for x ∈ B(x0, δ) and those balls {B(x0 +

x, δ) : x ∈ Zd} are mutually disjoint. Hence, the elements in {ω(B(x0 + x, δ))}x∈Zd

are independent, identically distributed. From lemma A.0.7,

P

(
max

x∈Zd∩B(0,n)
ω (B (x0 + x, δ)) < σ

log n

log log n

)
= P

(
ω (B (0, δ)) < σ

log n

log log n

)cnd
∼
(
1− n−σ

)cnd ∼ exp
{
−cnd−σ

}
.

Take σ = d− ε. We have

∞∑
n=1

P

(
max

x∈Zd∩B(0,n)
ω (B (x0 + x, δ)) < σ

log n

log log n

)
<∞.

Using Borel-Cantelli lemma again,

lim inf
n→∞

log log n

log n
max

x∈Zd∩B(0,n)
ω(B(x0 + x, δ)) ≥ d− ε P− a.s. (A.6)

Notice that

max
x∈B(0,R)

V (x) ≥ max
x∈Zd∩B(0,R)

V (x) ≥
(

max
x∈Rd

K(x)− ε
)

max
x∈Zd∩B(0,n)

ω(B(x0 + x, δ)).

Combine with (A.6) and let ε go to 0, then we obtain the lower bound.

A.4 W 1,2(Rd, µ)

In this part, we define the weak derivative under measure µ and then prove several

basic properties of W 1,2(Rd, µ).
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Definition 2. Suppose u, v ∈ L2(Rd, µ) where µ(dx) = φ(x) dx. We say that v is the

weak partial derivative of u with respect to variable xi, 1 ≤ i ≤ d, written as

∂

∂xi
u = v,

provided

∫
Rd
v(x)w(x)φ(x) dx = −

∫
Rd
u(x)

∂w

∂xi
φ(x) dx−

∫
Rd
u(x)w(x)

∂φ

∂xi
dx

for all test function w ∈ C∞0 (Rd).

It is a standard argument to show that a weak derivative, if it exists, is uniquely

defined to a set of measure zero.

Proposition 13. The Sobolev space W 1,2(Rd, µ) is a Hilbert space.

Proof. Assume {un}∞n=1 is a Cauchy sequence in W 1,2(Rd, µ). Then {un}∞n=1 and{
∂
∂xk

un

}∞
n=1

(1 ≤ k ≤ d) are all Cauchy sequences in L2(Rd, µ). Since L2(Rd, µ) is

complete, there exists functions û, û1, · · · , ûd ∈ L2(Rd, µ) such that

∂

∂xk
un → ûk, for 1 ≤ k ≤ d and un → û in L2(Rd, µ).

We now claim that

∂

∂xk
û = ûk for 1 ≤ k ≤ d. Hence, û ∈ Ŵ 1,2(Rd, µ), . (A.7)
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To verify this assertion, fix w ∈ C∞c (Rd). Then for 1 ≤ k ≤ d∫
Rd
û
∂

∂xk
(wφ) dx

=π−d/2
(∫

Rd
û(x)

∂

∂xk
w(x)e−|x|

2

dx− 2

∫
Rd
û(x)w(x)xke

−|x|2 dx

)
=π−d/2 lim

n→∞

(∫
Rd
un(x)

∂

∂xk
w(x)e−|x|

2

dx− 2

∫
Rd
un(x)w(x)xke

−|x|2 dx

)
=π−d/2 lim

n→∞

∫
Rd

∂

∂xk
un(x)w(x)e−|x|

2

dx

=

∫
Rd
ûk(x)w(x)φ(x) dx.

Thus (A.7) is valid. Since therefore ∂
∂xk

un → ∂
∂xk

û in L2(Rd, µ) for all 1 ≤ k ≤ d, we

see that un → û in W 1,2(Rd, µ), as required.

A.5 Proof of Lemma 4.0.2

First, we need the following Gaussian tail type upper bound estimate for the proof

of Lemma 4.0.2:

Lemma A.0.9. Let {X(t)}t≥0 be the O-U process defined in (2.2). There exists c > 0

and ax > 0 such that for all a > ax, the following inequality holds for all t > 0:

Px
(

sup
0≤s≤t

|X(s)| > a

)
≤ 2t exp

{
−ca2

}
.

Proof. First, let x = 0. Since X(t) is an asymptotically stationary Gaussian process,

by classical Gaussian tail estimate (for reference, see [20]) there exists c1 > 0 and

a0 > 0 such that

max

{
P0 (|X(k)| > a) ,P0

(
sup

0≤s≤1
|X(s)| > a

)}
≤ exp

{
−c1a

2
}
,

for a > a0 and all k ∈ N.
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For a > a0, by Markov property and (2.4), we have

P0

(
sup

k≤s≤k+1
|X(s)| > a

)
=

∫ ∞
−∞

Ex
(
1{sup0≤s≤1 |X(s)|>a}

)
p(0, x, k) dx

≤
∫
|x|≤a

2

Px
(

sup
0≤s≤1

|X(s)| > a

)
p(0, x, k) dx+ P0

(
|X(k)| > a

2

)
=

∫
|x|≤a

2

P0

(
sup

0<s≤1
|X(s) + xe−s| > a

)
p(0, x, k) dx+ P0

(
|X(k)| > a

2

)
≤P0

(
sup

0≤s≤1
|X(s)| > a

2

)
+ P0

(
|X(k)| > a

2

)
≤ 2 exp

{
−c1

4
a2
}
.

Hence,

P0

(
sup

0≤s≤k+1
|X(s)| > a

)
≤ P0

(
sup

0≤s≤k
|X(s)| > a

)
+ P0

(
sup

k≤s≤k+1
|X(s)| > a

)
≤ P0

(
sup

0≤s≤k
|X(s)| > a

)
+ 2 exp

{
−c1

4
a2
}
.

Repeating this procedure and let c := c1/4, we have

P0

(
sup

0≤s≤t
|X(s)| > a

)
≤ 2t exp

{
−ca2

}
.

For general x, notice that

Px
(

sup
0≤s≤t

|X(s)| > a

)
= P0

(
sup

0≤s≤t
|xe−s +X(s)| > a

)
≤ P0

(
sup

0≤s≤t
|X(s)| > a− |x|

)
.

Let ax := a0 + x, then for all a > ax we have

Px
(

sup
0≤s≤t

|X(s)| > a

)
≤ 2t exp

{
−ca2

}
,

Using lemma A.0.9, we can prove Lemma 4.0.2:
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Proof of Lemma 4.0.2. Notice that

0 ≤ Ex exp

{∫ t

0

V (X(s)) ds

}
− Ex

(
exp

{∫ t

0

V (X(s)) ds

}
1{

τQγ(t)>t
})

=
∞∑
n=1

Ex
(

exp

{∫ t

0

V (X(s)) ds

}
1
{
τQnγ(t) ≤ t < τQ(n+1)γ(t)

})
≤

∞∑
n=1

exp

{
t max
x∈Q(n+1)γ(t)

V (x)

}
Px
(
τQnγ(t) ≤ t

)
.

We know from Lemma A.0.8 that there exists a constant c1 > 0 such that, with

probability one,

max
x∈QR

V (x) ≤ c1 logR

for all sufficiently large R. Moreover, from lemma A.0.9 we have

Px (τQa ≤ t) = Px
(

sup
0≤s≤t

|X(s)| > a

)
≤ 2t exp

{
−ca2

}
,

for a > ax. Therefore, with probability one, for sufficiently large t and all n, we have

exp

{
t max
x∈Q(n+1)γ(t)

V (x)

}
Px
(
τQnγ(t) ≤ t

)
≤2t exp

{
c1t

(
1

2
log t+ log log t+ log(α(n+ 1))

)
− cα2n2t(log t)2

}
≤2t exp

{
− c

2
α2nt (log t)2

}
=2t · t−

c2
2
α2nt log t.

Notice that the second inequality holds for t sufficiently large and uniformly in n.

Therefore,

∞∑
n=1

exp

{
t max
x∈Q(n+1)γ(t)

V (x)

}
Px
(
τQnγ(t) ≤ t

)
≤ 2t−

c2
2
α2t log t+1

1− t−
c2
2
α2t log t

for large t. (A.8)

Let t→∞, the left hand side of (A.8) goes to 0, which completes the proof. 2
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A.6 Spectral Representation of Self-Adjoint Oper-

ators

In this section, we briefly introduce the spectral theory for self-adjoint operators which

appears several time in the dissertation. For more details on this topic, see [5] and

[30].

In this section, we assume H is a separable real Hilbert space.

Definition 3. A linear operator A is said to be densely defined if its domain D(A)

is dense in H.

Let A be a densely defined operator on H.

Definition 4. The adjoint operator of A is the operator A∗ : y → y∗ defined by

〈Ax, y〉 = 〈x, y∗〉 for x ∈ D(A).

Definition 5. A is said to be symmetric if

〈Ax, y〉 = 〈x,Ay〉 for x, y ∈ D(A).

If A is a symmetric operator, then clearly D(A) ⊂ D(A∗) and Ay = Ay∗ for all

y ∈ D(A).

Definition 6. A symmetric operator A is said to be self-adjoint if D(A) = D(A∗).

If A is a bounded operator on H, symmetric and self-adjoint are the same.

However, for unbounded operators, there is an example that an operator is symmetric

but not self-adjoint. Since there are nice and powerful spectral representations for

self-adjoint operators, we hope to extend a symmetric operator A to a larger domain

such that it becomes self-adjoint. Indeed, for a special class of operators this is

possible:
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Definition 7. A linear operator A is said to be upper semi-bounded (or lower semi-

bounded), if

sup
x∈D(A),||x||=1

〈x,Ax〉 <∞ (or inf
x∈D(A),||x||=1

〈x,Ax〉 > −∞).

Theorem 14 (Friedrich’s Extension Theorem). A semi-bounded symmetric operator

A can be extended into a self-adjoint operator. More precisely, there is a self-adjoint

operator Ã on H such that D(A) ⊂ D(Ã) for every x ∈ D(A).

In the following, we focus on self-adjoint operators and introduce their spectral

structures.

Definition 8. A projection operator P is a bounded self-adjoint operator on Hilbert

space H such that P 2 = P .

It is clear that ||P || ≤ 1 and P is symmetric, hence P is self-adjoint.

Definition 9. A family {E(λ) : −∞ < λ < ∞} of projection operators on H is

called a resolutionofidentity if

1. E(λ) ◦ E(µ) = E(λ ∧ µ) for any −∞ < λ, µ <∞;

2. E(−∞) is zero operator and E(∞) is identity operator. Also, E(λ+) = E(λ)

for all λ ∈ R, where E(−∞), E(∞) and E(λ+) are the linear operators defined

as following:

E(±∞)(x) = lim
λ→±∞

E(λ)(x), E(λ+)(x) = lim
µ→λ+

E(µ)(x) for all x ∈ H.

Notice from Definition 9 that resolution of identity looks like an operator version

of the distribution function in probability theory. Indeed, there is a strong bond

between these two. For any x ∈ H with ||x|| = 1, the function

Fx(λ) = 〈E(λ)(x), x〉 = ||E(λ)x||2
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is a probability distribution function on R. We write µx as the probability measure

generated by Fx(·) and call µx spectral measure.

For any Borel-measurable function ξ(λ) on R, the linear operator

∫ ∞
−∞

ξ(λ)E(dλ) (A.9)

is called spectral integral on domain Dξ ⊂ H, where

Dξ =

{
x ∈ H :

∫ ∞
−∞
|ξ(λ)|2 µx(dλ) <∞

}
.

Moreover, we have

〈(∫ ∞
−∞

ξ(λ)E(dλ)

)
(x), x

〉
=

∫ ∞
−∞

ξ(λ)µx(dλ), (A.10)∥∥∥∥(∫ ∞
−∞

ξ(λ)E(dλ)

)
(x)

∥∥∥∥2

=

∫ ∞
−∞
|ξ(λ)|2µx(dλ). (A.11)

It turns out that the linear operator in (A.9) is self-adjoint. On the other hand, all

the self adjoint operator have the spectral integral representation (see [30]):

Theorem 15 (Spectral Integral Representation). For any self-adjoint operator A,

there is a unique resolution of identity {E(λ) : −∞ < λ <∞} such that

A =

∫ ∞
−∞

λE(dλ), (A.12)

where the domain of A is

D(A) =

{
x ∈ H :

∫ ∞
−∞
|λ|2 µx(dλ) <∞

}
.

Also, we use the following result in the dissertation.
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Proposition 16. Let the A be the self-adjoint operator given in (A.12). For any

x ∈ H, the spectral measure µx is supported by the interval [c0, c1], where

c0 = inf
x∈D(A),‖x‖=1

〈x,Ax〉, and c1 = sup
x∈D(A),‖x‖=1

〈x,Ax〉.
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