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ABSTRACT

A study of the basic processes involved in boiling water
nuclear reactor dynamics is presented. The main emphasis of this
research has been placed on the physical interpretation of these pro-
cesses. It is shown that this type of reactors have two regimes of
operation: linear, during normal operation, and nonlinear, if they
become unstable due to the thermohydraulic feedback. Both of these
regimes are studied using low-order physical models.

The main result obtained from the linear study is the pole-
zero configuration of the reactivity-to-power transfer function. It
is determined that three zeros and four poles are needed to properly
represent this transfer function. Physical processes are identified
with these transfer function features. Based on the understanding of
these processes, an automated algorithm to estimate boiling water
reactor stability from neutron noise measurements is developed and
implemented as a computer code.

The causative mechanism leading to the appearance of the
limit cycle in boiling water reactors is identified from the nonlinear
study. The relationship between the different process variables
during limit cycle oscillations is studied. It is shown that these
oscillations could reach large amplitudes.

The stability of the limit cycle is also studied. It is
shown that the amplitude of the limti cycle can become unstable and

produce period-doubling pitchfork bifurcations which scale according



vi
to Feigenbaum's universality theory. As a consequence of the
bifurcation process, aperiodic solutions of the deterministic reactor
equations are found to be possible.
Finally, nonlinear noise propagation is studied. A nonper-
turbative technique is developed for detecting the onset of linear

instability and the transition to the nonlinear regime.
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CHAPTER 1

INTRODUCTION

There are presently 72 commercial boiling water reactors
(BWRs) either in operation or under construction in the western world;
37 of them are located in the United States.! Consequently a large
effort has been devoted to the study of the BWR dynamic behavior under
varied plant operating conditions. The work presented in this disser-
tation contributes to this ongoing effort. It deals with the study of
the basic dynamic processes taking place in these reactors, with spe-
cial emphasis being placed on the physical interpretation of these
processes.

In view of the negative reactivity feedback from neutron
moderation and heat transfer in a two—phase flow environment, BWRs are
essentially stable machines in the sense that they regulate their own
power without the need of external control systems. In some cases,
however, instances of unstable behavior that lead into a nonlinear
regime of operation have been observed. Thus, BWRs have two different
regimes of operation: the linear or stable regime and the nonlinear
or unstable regime. Both of them have been studied during the course

of this research.



1.1 General BWR Dynamics

Nuclear power plants are in essence devices in which a fluid
is caused to flow through a volume in which heat is generated by a
nuclear fission chain reaction. In BWRs this fluid is water that
enters the reactor core at temperatures close to saturation and
partially vaporizes while flowing inside channel boxes containing
uranium oxide fuel rods. In this type of reactors, the water has the
dual role of coolant and moderator; it removes heat from the fission
process, and at the same time helps maintain the fission reaction by
moderating the energy of the fast fission—neutrons. This dual role is
the cause for the strong moderator-density reactivity feedback which
is characteristic of BWR operation.

Two distinct dynamic loops can be considered in BWRs:
a neutronic loop, which controls the way in which heat is produced in
the core, and a thermal-hydraulics loop, which in a sense controls the
way in which heat is removed from the core by means of fluctuations in
heat transfer rate, coolant density, and flow. The coupling between
these two loops is through the Doppler and moderator-density reac-
tivity coefficients. BWRs, thus, form a closed-loop system with nega-
tive feedback, which allows for self-regulation of the power level
without the need for control systems during normal operation.

The relatively large magnitude of the density reactivity feed-
back causes the reactor power to oscillate around equilibrium

following reactivity perturbations. At low flow and high power
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conditions the magnitude of the reactivity feedback can become so
large that the power oscillations following a small perturbation do
not converge to the equilibrium point; that is, the reactor becomes
unstable. The stability problem was recognized in the early experime-
tal BWR designs in the 1950's, but commercial BWRs were thought not to
be susceptible to instabilities in view of their high operating
pressure, which reduces the moderator density reactivity coefficient.
Recent design changes, though, have increased the reactor power den-
sity and fuel heat transfer coefficient to a level in which instabili-

ties become possible.
1.2 Survey of Previous Work in the Field of BWR Dynamics

There have heen many studies performed on the dynamic behavior
of BWRs. One of the first works reported is that of Dietrich and

2-4 relative to the Borax experiment in 1953. During the 1950's

Layman
and 1960's many studies were conducted while designing the present day
BWRs; among them are those of Skinner,5 Iriarte,6 Beckjord,7’8 Thie,9
Akcasu,lo’ll Christensen,12 Suda,13 Garlid,l“ Zivi,15 Margolis,16
Jones, 17722 Fleck,23>2% Niemi,25 and Charmichael.2®

In recent times, there has been a continuing effort toward the
study and modeling of BWR dynamic behavior;27_37 however, the main
contemporary studies on BWR dynamics have been directed towards the

development of detailed computer codes to simulate the physical

processes in the reactor. Two main categories of codes exist:
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(a) transient codes to simulate large transients such as pipe breaks
or turbine trips, and (b) stability codes, which are specifically
tailored to the calculation of the stability margin of reload cores.
Among the first type are RAMONA, 38 RELAP,3% COBRA,“0 and RETRAN.4!
Among the second type are FABLE,28 ODYSY,L'2 and TOSDYN“3 used by the
Geneal Electric Company, COTRAN“*" used by the Exxon Nuclear

Company, PARADYN"® used by Hitachi Ltd., NUFR]E‘.QL’6’L'7 used in the
Rensselaer Polytechnic Institute, and LAPUR"8>49 which was developed
in the Oak Ridge National Laboratory and is presently used also by
TVA. All the stability codes are based on linear frequency domain
analysis except for TOSDYN, COTRAN, and PARYDYN which model the reac-
tor non-linearities and solve the equations in the time domain.

The original experiments to study the reactor dynamics were
rod-oscillator type tests,50_52 for which a special control rod is
made to oscillate at a particular frequency in a sinusoidal fashion.
More recently, dynamic tests are performed by perturbing the reactor
pressure using pseudorandom binary signals (PRBS).53_59 The first
series of this new type of tests was performed in the Peach Bottom
reactor®3756 to determine the reactor stability. These tests showed
that this particular reactor was stable with a decay ratio of 0.5 at
the most unstable operating condition (the decay ratio is a measure of
the system stability; if the decay ratio is less than 1.0 the system
is stable). The relatively high decay ratio obtained cast doubts
about the stability of other reactors with higher power density. As a

consequence, two more tests were performed, one of them in the



S
ASEA-ATOM Barseback reactor,57 and the other in the Vermont Yankee

58 In these last two tests the reactor became unstable when

reactor.
operated at high power levels and natural circulation flow. An impor-
tant result of these tests was the appearance of a limit cycle at the
onset of unstable behavior, which limited the amplitude of the
oscillations to about *15% of the steady-state value.

The tests in the Peach Bottom and Vermont Yankee reactors have
been extensively modeled by almost all existing codes in a bench-
marking effort.0764% Most of the codes give satisfactory agreement
with the test results in the linear (stable) range, showing that there
is a good understanding about which processes are involved in linear
BWR dynamics and about how to model them numerically. Although these
numerical solutions do not provide a clear picture of the physical
processes. However, the nonlinear range of BWR operation
corresponding to linear unstability has been scarcely modeled or
studied.

Another area of interest related to the work in this disser-
tation is the analysis of noise (stochastic) signals in BWRs. There
are many publications in this field.®5779 Among the uses of BWR
neutron noise analysis that have been reported, the most important

69,75

are: vibration monitoring,69 bypass boiling detection, in core

void velocity measurements,60’70’7S two phase flow parameters measure-

69,70,72 70,71,75,76

ments, and stability monitoring. The latter one
being the most relevant to this work; however, due to an apparent con-
fusion between different researchers about the definition of decay

ratio, this methodology yielded inconsistent results.
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There are many publications in the area of nonlinear

dynamics,so'99 but the author was unable to find any references about

studies of nonlinear stochastic phenomena in BWRs.
1.3 Motivation and Objectives

The current approach to BWR dynamic modeling has been based on
the development of detailed and complex models of the reactor neutro-
nics and thermal-hydraulics which are then implemented in large com-
puter codes. The result of calculations performed with these codes is
a series of numbers which define a transfer function in the case of
the linear models“2>46=%9 oy 4 time trace of the reactor response to a
perturbation in the case of the nonlinear models.38=%#1,43-45 ogt of
the codes have proven to be reasonably accurate when applied to large
commercial BWRs, but due to their complexity, a great part of the
physical understanding is lost in the numerical calculation. Hence,
there is a need for simpler, yet physically sound, models which
provide tools allowing the analyst to achieve a clear understanding of
the various physical phenomena. The motivation of this research is to
obtain a deeper understanding of the BWR behavior in both the linear
(stable) and nonlinear (unstable) regimes of operation. The specific

objectives of this work are:

1.3.1 Model Development

To develop a reduced order physical model of the dynamics of

a BWR. The main objective of this step is the determination of the



minimal model order (i.e., number of equations) needed to represent

the reactor dynamics.

1.3.2 Linear Study

To use the model to study the linear dynamics of BWRs. This
will include the identification of observable transfer function
features (such as resonances, zeros, or break frequencies) with
reactor parameters (such as fuel heat transfer coefficients, void

sweep time, etc).

1.3.3 Stochastic Linear Study

To use the results from the linear analysis to study the
possibility of applying noise analysis techniques to BWR parameter
identification. This objective includes the development of an

algorithm to identify the decay ratio of an operating 3WR.

1.3.4 Nonlinear Study

To develop a nonlinear model of the BWR dynamics to study the
experimentally observed limit cycles as well as its stability against

changes in operating conditions and reactor parameters.

1.3.5 Stochastic Nonlinear Study

To study nonlinear noise propagation in nonlinear reactors.
The goal of this work is to develop noise analysis techniques for the

identification of the onset of the nonlinear regime.



1.4 Organization of the Text

This work has two main parts: the linear dynamics part,
contained in Chapters 3, 4, and 5 and the nonlinear dynamics part,
presented in Chapters 6, 7, and 8. An introduction to both parts is
contained in Chapter 2.

Chapter 2 contains a description of the physical model.
First, a description of the BWR architecture and of the dynamic
processes involved is presented. The general equations are given in
Section 2.2. An introduction to the problem of BWR stability and its
relationship with the physical reactor parameters is presented in
Section 2.3. Finally,'section 2.4 contains a discussion of nonli-
nearities found in BWRs.

Chapter 3 contains an overview of some topics of linear dyna-
mics theory related to the work presented in this dissertation. The
concepts of transfer function and stability are presented. Chapter 4
documents the development and applications of a reduced order linear
model. Chapter 5 describes an algorithm to measure the asymptotic
stability of BWRs by using the normally occuring fluctuations in
neutron density known as noise.

An introduction to the nonlinear part of this dissertation is
contained in Chapter 6. Some basic concepts of nonlinear dynamics are
described. Chapter 7 contains the development and qualification of a
reduced order nonlinear model for BWR dynamics. The main charac-
teristics of nonlinear BWR operation are studied by means of this

simple model. In Chapter 8 a more complete model, which takes into



account the nonlinearities in the thermohydraulic feedback, is deve-

loped and applied to study nonlinear BWR dynamic behavior in more

detail.
Chapter 9 contains the highlights of the work presented in

this disssertation and some recommendations for future work.

1.5 Original Contributions

The original contributions of this dissertation to the field

of BWR dynamics in general can be divided in three main categories:

1.5.1 Linear Dynamics

This part of the dissertation contains the first study known
to the author of the pole-zero configuration of the reactivity-to-
power transfer function of a commercial BWR. A consequence of this
study is the development, based on a nodal synthesis technique, of a
reduced-order linear model which is used to associate physical reactor
processes with transfer function features, hence leading to a thorough
understanding of the basic causative mechanisms which control BWR

dynamics.

1.5.2 Stability Measurements Using Neutron Noise Analysis

Although several works have been published in this area pre-
viously, the work reported in this dissertation has produced several
original contributions:

(a) The concept of asymptotic decay ratio has been developed; this

concept is of great importance since, as shown in this work,
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the apparent decay ratio (measured by most existing tech-
niques) does not provide the necessary information to guaran-
tee the reactor stability.

(b) Existing techniques to measure the decay ratio have been
improved to allow for the measurement of the asymptotic decay
ratio. In addition, two completely new techniques have been
developed for this purpose: the autocorrelation function
technique and the frequency domain pole search of the
autoregressive (AR) model.

(c) The concept of AR-consistent correlation has been developed to
improve the estimate of the asymptotic decay ratio. This con-
cept is also an original contribution.

(d) An algorithm for the evaluation of an error estimate for the
measured decay ratio has been developed. This error estimate
accounts for the stochasticity of the noise measurement and
can be used to determine the amount of data required for an
accurate determination of the decay ratio.

(e) A technique for the calculation of a confidence level of the
estimate has been outlined. This level represents the good-
ness of the fit. It is obtained on the basis of a priori
knowledge about general BWR dynamics and selfconsistency

checks.

1.5.3 Nonlinear Dynamics

The field of nonlinear BWR dynamics has been scarcely studied

previously. This dissertation is (to the knowledge of the author) the
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first attempt to obtain an understanding of the basic physical
processes involved as opposed to numerically calculating the reactor
response for each particular set of conditions. In this sense, most
of the work reported here is an original contribution to this field.
The major results obtained from this research are:

(a) Nonlinearities become important when the linear stability
threshold is reached; thus, nonlinear modeling is required
when trying to describe the reactor dynamic behavior above
that threshold.

(b) Nonlinearities in BWRs manifest themselves through the
appearance of limit cycles. It has been shown in this work
that the limit cycles are caused by nonlinearities inherent to
the neutron field equations (the term pn in tpe point kinetic
representation), rather than thermal-hydraulic charac-
teristics. It has been found that the amplitude of the
oscillations is very sensitive to the reactor operating
condition. Under some conditions, the limit cycles may have
large amplitudes that may cause unwanted reactor scrams or
fuel damage if the reactor is not shut down in time.

(c) The limit cycles are susceptible to instabilities as the
operating conditions or the reactor design parameters are
changed. As a function of these changes, the limit cycles may
sustain a phenomenon known as period-doubling bifurcations.
Further changes in the reactor parameters originates a cascade

of bifurcations which lead to a region of aperiodicity where



(d)
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the reactor power oscillations are finite but not of periodic
nature. This is the first time that such a behavior has been
reported as possible in BWR operation.
It is shown in this work that the cascade of bifurcations
experienced by the reactor response behaves in the universal
manner described by Feigenbaum's theory.eo'83 This is indeed
a remarkable result considering the fact that such diverse
systems as weather prediction equations or the transition from

laminar to turbulent flow behave in the same universal manner.



CHAPTER 2
THE PHYSICAL MODEL

This chapter describes the general physical dynamic model of a
BWR. First a general description of the processes involved and the
typical configuratioﬁ of this type of reactors are given. The general
equations for each process are presented in Section 2.2; these
equations will be used later in particular applications throughout
this dissertation. The concept of BWR stability, its causes, and its
effect on reactor operation is presented in section 2.3. Finally,
some nonlinear effects which have been observed in operating BWRs are

presented and the nonlinearities of the reactor equations are studied.
2.1 General Description of the Dynamics of a BWR

The general design of light water reactors is always the same,
in the sense that water circulates through the reactor core where a
nuclear fission reaction is maintained. The energy released by the
fission reaction is absorbed by the water which acts as coolant. At
the same time, the water acts as moderator by slowing down fast
fission-neutrons. Therefore, two different loops or dynamic processes
can be identified in the reactor: (a) the neutronic loop, which
controls the way in which heat is produced, and (b) the thermal-
hydraulic loop, which in a sense controls the way in which the heat is
removed from the core. The two loops are coupled via the reactivity

feedbacks due to the Doppler and density reactivity coefficients.

13
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This concept is presented graphically in the block diagram of
Figure 2.1.

In BWRs the water flows through individual channels or fuel
assemblies. Each of these assemblies is surrounded by a channel wall
which inhibits cross flow between neighboring assemblies. Older BWR
fuel designs contained arrays of 7 x 7 cyclindrical fuel rods per
assembly. Newer designs contain 8 x 8 or 9 x 9 arrays. typical
dimensions of a channel are 13 x 13 cm wide and 411 cm high, of which
only 365 cm (12 ft) have active fuel. The number of assemblies varies
from 500 to 800 depending on the reactor. Each of these assemblies
forms an independent flow path between the lower and upper plena.

The water flow enters the channel through the lower plenum at
temperatures close to saturation. Typical inlet subcooling values
(the difference between inlet and s;turation temperatures) are 10 to
30 K, depending on the reactor operating condition. There is a small
region at the bottom of the channel (typically 30 to 50 cm) in which
no boiling occurs. The majority of the cha;nel is occupied by the
sucooled-boiling region (typically from 50 to 300 cm); in this region
the water and steam bubbles are not in thermodynamic equilibrium and
the liquid phase is slightly subcooled. The upper part of the channel
is the bulk boiling region, which is charaterized for thermodynamic
equilibrium between phases. Typical exit qualities vary from 0.05 to

0.3 and the exit void fractions from 40 to 807%, depending mainly on

the power-to-flow ratio.
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Given the low exit qualities characteristic of normal BWR
operation, most of the water leaving the core is recirculated through
what is called the recirculation loop. This loop includes the upper
plenum, the steam separators and driers, the downcommer region, the
jet pumps, and the lower plenum. For a typical exit quality of 0.05
at 100% rated conditions, the ratio of recirculated-to-inlet water is
20 to 1. The recirculation loop provides a coupling mechanism between
the upper and lower plena pressures and the recirculation flow. Thus,
variations in the channel thermal-hydraulics result in changes of
inlet flow through pressure variations.

The energy source in the core comes from the fission chain
reaction. Most of this energy is released inside the fuel rods, but
a small fraction (about 3%) is deposited directly in the coolant by
means of y-ray absorption and neutron moderation. The heat transfer
between fuel rods and coolant has its own dynamic characteristics
which couple the neutron field to the channel thermal-hydraulics.
Fuel rods are formed by a stack of cylindrical UOy fuel pellets

surrounded by a zircaloy cladding. The gap between fuel and cladding
introduces a noticeable resistance which affects the overall dynamic
response of the fuel. The gap heat conductance increases towards the
end of the fuel cycle due to the accumulation of gaseous fission
products.

In summary, we have described the four major dynamic processes
present in BWRs: (a) the neutron field, (b) the fuel heat transfer,

(c) the channel thermal-hydraulics, and (d) the recirculation loop.
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All of these processes act together forming the closed loop dynamics

characteristic of BWR operation.
2.2 The Physical Equations Representing the Reactor Processes

As described in the previous section, there are four main
processes which have to be modeled to represent the general BWR dyna-
mic behavior: (a) the neutron field, (b) the fuel, (c) the channel,
and (d) the recirculation loop. This section presents the general
physical equations corresponding to these processes and some commonly
used approximations. The coupling mechanisms between the different
processes will also be needed. They are: (a) the reactivity feed-
back, which couples the thermal-hydraulics with the neutronics, and
(b) the upper and lower plena, which couple the channel thermal-

hydraulics with the recirculation loop dynamics.

2.2.1 The Neutron Field Equations

The purpose of this section is to derive the one-point
reactor kinetic equations describing the neutronics in the present
BWR model as well as an expression for the reactivity changes intro-
duced by the thermohydraulic loop.

The neutronics loop is described by the Boltzman equation

oY

vls =HY , (2-1)

where the vector ¥ has as its components the neutron flux,

$(E,Q,r,t), and the delayed neutron precursor concentrations,

Ci(r,t) (j = 1,..,7), i. e.,

2

(2,C;5-++»C3) (2-2)
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and where

1/v 0 ... O
0 1 ...0

vl= |, R N (2-3)
0 ... 1

with the matrix operator, H, given by

TQUUHB A X, eee A3Xs
Ble _*11 s o0 8 J

i=1". el , (2-4)
Bde 0 LY —KJ

where we introduced the following operators

B =S + (1-B)F (2-5)
S = Scattering operator

- [d4Q' [dE" [ZS(E',Q'IE,Q,r,t)—%EXt(E',r,t)é(E-E')} (2-6)
F = Fission operator

= [dQ'[dE' x(E')V(E')Zg(E',r,t) (2-7)
Py = JaQ' fAETNED L1, 6) (2-8)

x(E) = Prompt neutron fission spectrum

Xj(E) = Delayed neutron fission spectrum

Aj = Decay constant for the jth group of delayed neutron
precursors

th group of delayed neutron precursors fraction

By = ]
B =1 Bj
Zf(E,r,t) = Macroscopic fission cross section

Vv(E) = Neutron multiplicity

ZS(E',Q'IE,Q,r,t) = Scattering Kernel
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ZT(E,r,t) = Macroscopic total cross section

The following initial and boundary conditions are satisfied

¥Y(E,Q,r,t=0) = IO(E,Q,r) , (2-9)
where IO’ the vector of initial conditions, is given by

1T = (£(E,Q,1),d (), +..,d3(r)) (2-10)
and

®(E,Q,r(S),t) =0 ;3 (neQ<0O) (2-11)
where r(S) are the position coordinates of the neutron boundaries
and n is the unit normal vector.

The ad joint system is defined by the matrix equation

syt

vl 25 - wryt (2-12)

where ¥¥ is a vector whose components are the adjoint flux, ®+, and

the adjoint delayed neutron precursors, c:t, i. e.

j o

T - (¢+,cl+,...,cj+) (2-13)
and where the matrix operator, ET, is obtained by transposing the
forward matrix operator, H, and adjoining each one of its elements
containing differential and integral operators. Under this set of
conditions, the forward and adjoint operators are related by the
conmutation relation

< lpw = <¢fgtyh (2-14)
where the brackets symbolize integration over the phase space
variables (energy, angle, and space) and where, for relation (2-14)

to hold, the adjoint flux must satisfy the boundary condition below

3T(E,Q,r(S),t) = 0 ; (n+R>0) . (2-15)
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Because of the time reversal implicit in equation (2-12) for
the adjoint vector, T+, one must specify final conditions which we
write in a general fashion as

vI(E,Q,r,t=tf) = Ip(E,Q,r) , (2-16)
with

FT = (£7(8,9,0),4,7(E,0),...,d57(E, 1)) . (2-17)

The reactivity changes are defined with respect to a criti-
cal reactor with the fuel temperature and moderator void fraction at

their steady state values, Tfo and a, respectively. The reference

0
reactor is then defined by the steady state transport equation

E@Y =0 (2-18)
where the vector Y has as its components the flux, ¢, and the

delayed neutron precursor concentrations, 6 i.e.,

j»

¥T = (9,0,,.4,07) - (2-19)
The matrix operator, EO’ corresponds to the matrix operator H eval-
uated at the equilibrium point (steady state) values of the reactor
parameters. The adjoint reference reactor is in turn described by

Bt vf =0 , (2-20)
where the adjoint operator, §0+, is obtained from EO as previously
shown.

We now rewrite the material properties of the altered reac-
tor in terms of the properties of the reference reactor and the

changes arising from altered plant conditions. The energy angle and

time dependence are not explicitely written for the sake of clarity.
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Ig = Lyg + 6Zg (2-21)
IT = L7 + 6%t (2-22)
I = T,f + 8Ip . (2-23)

It should beﬂemphasized that the changes in the system
material properties are not necessarily restricted to be small.
On account of the definitions (2-21) through (2-23), the operator H

can be writen as

H=H +6&H , (2-24)
with
8S+8F v... O
B 8Fg ++e+ O
8H = e eeee (2-25)
BibE, il
and
8S = [dE'[dQ' {6Zg(E',Q'|E,Q) - %— 8LT(E') S(E-E')}  (2-26)
T
8F = (1-B) [dE'[dQ' X(E')V(E')8LZg(E',r,t) (2-27)
§Fq = [dE'[dQ'V(E')6Lg(E',r,t) . (2-28)

The derivation of the one-point reactor kinetics approxima-
tion is based on the assumption of separability between time and the
phase—space variables. In the spirit of this assumption we write

¥(E,Q,r,t) = N(t)Y(E,Q,r) (2-29)

vH(E,Q,r,t) = NY(t)YT(E,Q,r) , (2-30)
where we introduced the diagonal matrices

n(t) O ees O

0 D(E) «er O
N(t) =] . S (2-31)

0 . eee D
J(t)
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and
nt(t) 0 ... O
0 Cl(t) N
NF(e) =] . . cee s . (2-32)
0 0 ... CyE)

Straight forward insertion of the "ansatz" (2-29) in the
transport equation (2-1) followed by integration over the phase-space
variables would indeed reduce that equation to a lumped parameter
model in terms of the time variable alone. However it can be shown
that such procedure does not yield optimal estimates of the quantities
n(t) and Dj(t) (j = 1,...,J) [in the sense that first order errors in
the shape function Y lead to first order errors in the time—dependent
quantities n(t) and Dj(t)]. It is then important that the point-
kinetics equations be obtained by methods which ensure that first
order errors in/the trial functions result in only second order errors
in the estimate of the neutron and delayed precursors populations.
Such a method can be formulated in terms of a variational principle.

The variational derivation of the point-kinetics approximation
proceeds through the following steps:

(a) Formulation of a functional, L, of the forward and adjoint
vectors, ¥ and W+, which is stationary (e.g., dL = 0), for the
arbitrary variations &Y and sYt.

(b) Insertion of the "ansatz” (2-29) and (2-30) into the sta-
tionary functional, L, followed by integration over the phase-
space variables. This step generates the reduced functional Ll.

(c) The point-kinetics approximation is obtained by demanding that

the reduced functional, L be stationary.

l)
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The stationary functional, L, can be shown to be

t
L=[Fac <ytT| (vl %% - HY)>
to - -

+ <w+T(t0)|gjl(y(c0)-10q)> - <eg) vl (2-33)

where t, is the initial time (beginning of the altered plant opera-

tion) and tf is an arbitrary final time.

We now implement step (b), which on account of Equations

(2-18) and (2-14) yields the following reduced functional, Ll

t J
L, =/ £ ae fot(ey [m 428 - P, (8p=B)n(t) = [ AjU5D5(t)]
t de j=1
0
J
+‘21Cj+(t)[Uj %EDj(t) - P Byn(t) + A3U3D5(t) ]}
J=

+ ut(e ) [Mm(e <ot [E>] + ) () [UDy(ty)-B;]

j=1
- 6n(tg) ~ ] By'Dy(tg) (2-34)
where we introduced the following quantities

M

Weighted neutron population

<¢+|1/v¢> (neutrons) (2-35)

2~}
n

Weighted neutron production

<¢+|F0¢> (neutrons/s) (2-36)

a
n

Weighted jth delayed neutron precursor population

<9j+|9j> (precursors) (2-37)

[ed
©
1

Reactivity change = l/P0 <¢+|(68+6F)¢>

(dimensionless) (2-38)
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Bj = Effective delayed neutron fraction

= 1/P, <¢7[x5Fq¢>B;

B =) Bj
3

B3
precursors = <9+|dj+>

J

neutron precursors = <6j|dj+>

G+

<o|1/vET>

Weighted final conditions for the adjoint flux

(2-39)

(2-40)

= Weighted initial conditions for the delayed neutron

(2-41)

Bt = Weighted final conditions for the adjoint delayed

(2-42)

(2-43)

At this point we carry out step (c) by taking variations in

Equation (2-34) with respect to n(t), n+(t), Dj(t), and C+(t). By

demanding that the functional, L, be stationary (i.e., 6L = 0), for

arbitrary variations of forward and adjoint neutron densities and

precursor concentrations, we obtain the initial and final conditions

n(ty) = <oF[£>/M

Dj(to) = Bj/Uj

n+(tf) ct/m
cj*(ey) = Bj¥/Uy

and the following equations

J
Son(e) =L (sp-B)n(e) + ] Ajeie)
dt A j=1
d - -
E: cj(t) = %_Bjn(t) chj(t)
+ 1 1 3 +
"o T® = 1 GepiaCe) + T ByesT(o)

d
dt
d .+ _ + ..t

E: CJ (t) = Xjn (t) KJCJ () ’

(2-44)
(2-45)
(2-46)

(2-47)

(2-48)

(2-49)

(2-50)

(2-51)
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where we introduce the neutron generation time, A,

Mo_ <ef|1/ve>

A = (2-52)
Po  <¢T|F 0>
and we defined the delayed neutron precursor amplitudes as
.t = /M) D.(t 2-53
cj () (U5 ) i ) ( )

The reactivity change is given from Equation (2-38), on account of

equations (2-26) and (2-27) as an ad joint-flux weighted average
1 dp %p -
80 = 5, <" | { 3a 5@ + 71Ot bo> (2-54)

where the void reactivity feedback and Doppler coefficient of reac-

tivity are given respectively by

.99. = ! ! 6__ t 1,
Y JdE' [dQ' { 55 Zs(E',Q'E,Q,1,t)
- 1_6_ ' -F! _
= 55 T(E'>T,t)8(E-E") } (2-55)
a_ L ) a -
5T~ (17P) JdE' [a@'x(E)v(E )gp Tp(E',TE) (2-56)

where a(r,t) and Tg(r,t) areAthe void fraction and fuel temperature
process variables.

In summary, the use of the present variational technique
allowed the derivation of a lumped parameter model for the neutronics
loop, where the parameters are defined as bilinear averages of the
forward and adjoint reference reactor fluxes; thus resulting into
optimal estimates of the various reactor parameters.109 In par-
ticular, Equation (2-54) gives an expression for the reactivity
changes due to variations in the process variables; thus, defining the
coupling between the neutronic and thermohydraulic dynamic loops in

terms of the void and Doppler coefficients of reactivity.
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2.2.2 The Fuel Equations

The equation describing the heat transfer process in the

fuel is

pcp-%% = Q + VKVT (2-57)

where
Q = Volumetric rate of heat generation in fuel
p = Fuel density

C, = Fuel heat capacity

P
K = Fuel heat transfer coefficient.
The fuel rods have cyclindrical geometry. Therefore,
neglecting axial heat transfer, the equation becomes
oT 0

ol oT _

An important component of the fuel dynamics is the gap between
pellets and cladding. This gap can be modeled as a boundary

condition. In this way, the heat transferred per unit surface, Q", is

Q"(rg) = ho(T(rp)-T(rg)) , (2-59)
where

hg = Gap heat transfer coefficient

rp = Pellet outside radius

rg = Cladding inside radius.

Equation (2-59) serves as coupling between the fuel and

cladding equations by taking into account that

" = - .a._l‘. -
Q"(ry) k= IrO . (2-60)
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The boundary condition at the external cladding radius, r,
can be handled by the equation

oT|  _ _ _
—k-s;lro = h(T(r.)-Te) (2-61)

where

T. = Coolant temperature

Cc

h = Convective heat transfer coefficient

2.2.3 The Channel Equations

The channel thermal-hydraulics can be modeled by mass, energy,

and momentum balances. In the bulk boiling region they become™®
0 oG
- - + + 22 = -
5= [(1-a)pytapy ] + == =0 (2-62)
C [(1-a)pyhy+ap,h,—p] + o [(1-x)hyG+xh,G] = Q' (2-63)
ot P1MTEPgNg Y 16+xhg
% _ 36 13 (-0?262  x%62, ., o
3t ot 7 Bz [ + ] [(1 a)pPy apg]gc

pl(l_a) pga

02062 ) Ki $2QG2

-f 2p1D 201 8(z-zy) (2-64)

where

G = Coolant mass flux in Kg/m?s

a = Void fraction

x = Steam quality

p = Pressure in N/m?

pg = Saturated steam density in Kg/m3

p; = Saturated liquid denmsity in Kg/m3

hy = Saturated steam enthalpy in J/Kg

Saturated liquid enthalpy in J/Kg

=2
=
]
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f = Single-phase friction coefficient
¢2 = Martinelli-Nelson correction factor

for two—-phase flow pressure drop

Q

Jones correction factor

D Equivalent flow diameter in m

K; = Concentrated pressure loss coefficients

Boundary conditions needed are an inlet void fraction, mass
flow rate, and inlet pressure. A series of empirical correlations
have to be used to determine the slip ratio and the two-phase friction
multipliers.

A commonly used approximation29

assumes that the pressure
transients related to acoustic phenomena are very fast compared to the
enthalpy transients. In this approximation, the term dp/dt in the
energy balance equation is neglected by assuming that the system
pressure remains constant during the transient so that the thermo-
dynamic properties (such as specific density and enthalpy) remain
constant. With this assumption the acoustic pressure waves propagate

instantaneously through the system. The equation without acoustic

phenomena becomes

2
o [(mderhrtapghy ] + & [(1-x)hyGxh,6] = Q' . (2-65)

This approximation greatly simplifies the problem of solving
for the channel dynamic behavior, since it essentially uncouples the
momentum equation from the energy and continuity balances.

Numerically, the solution requires only a fraction of the computation



29

time necessary if the pressure waves were considered. A saving in
computer memory is also obtained, since it reduces the dimensionality

of the problem.

2.2.4 The Upper and Lower Plena Equations

BWRs are formed by a multitude of individual channels. All of
them are connected through the upper and lower plena. A complete
model of a BWR should contain several channel types, which are coupled
together through these plena. Commonly they are modeled just as a
boundary condition for the inlet and outlet channel pressures. If
more than one channel is being modeled, the constant pressure boundary
condition forces flow redistribution among the different channel
types. In addition, the plena pressures serve as coupling between the
channel thermal-hydraulics and the recirculation loop. Variations in
the pressure drop across the channel result in changes of the inlet

mass flow rate.

2.2.5 The Recirculation Loop Equations

The recirculation loop is formed by the upper plenum, the
steam separators and dryers, downcomer, jet pumps, and lower plenum.
A complete model of this system would be extremely complex. We will
treat it as a single path of fluid with variable flow areas but
constant mass flow rate and incompressible flow. It is convenient,
thus, to rewrite momentum equation in terms of flow areas, A(z), and
a constant flow rate, w, instead of mass flux, G.

%p _ 3wy, L3 [w?-

0
“a "ot ) TR (Ga) e g (2Pe) - (2-66)
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AP¢ represents the integrated friction losses can be considered
proportional to w?. Note that A depends on z but not on t, whereas w
depends on t but not on z. Integrating over the path of the recir-
culation loop we obtain

Ly 2w w? 1
(K) 3.t-+ 291 (A22 - A

1
5) + p18(2,7z,) + APp  (2-67)
1

P;7P, =

where we define
L 2 1

&=L = e -

This equation, thus, yields the variation in inlet masss flow
rate as a function of variations in channel pressure drop. Therefore,
this equation eliminates one of the boundary conditions needed for the
channel equations, since it supplies the inlet flow. Note that in
normal BWR operation the upper plenum pressure is kept constant by the

pressure regulator and, thus, variations in the channel pressure drop

produce changes in the lower plenum absolute pressure.
2.3 BWR Stability

In general three different types of instabilities are con-

sidered to be possible in BWR operation:

(a) Plant Instability. This is related to the reactor control

systems and how the plant as a whole reacts to external
disturbances such as a power load demand.

(b) Reactivity Instability. BWRs form a closed-loop system, in

the sense that power feeds back to the reactivity through both
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the density and Doppler reactivity coefficients. Both of
these feedbacks are negative, and the reactor is stable
without the need of a control system under normal operating
conditions; however, the density reactivity feedback is
sufficiently strong to cause the reactor power to oscillate
when a perturbation in reactivity is applied. Several parame-
ters affect the gain and phase of this feedback, and over the
critical value of these parameters the reactor becomes
linearly unstable. This type of stability manifests itself as
a diverging power oscillation with the core acting as a whole.
Reactors are susceptible to the reactivity instability mostly
when operated at reduced flow conditions, for instance during
natural circulation.

Channel Thermal-Hydraulic Instabilities. These types of

instabilities are related to the dynamic characteristics of
two phase flow in heated channels. They can occur in any type
of heating system since the neutronic loop is not involved.
Several types of these instabilities have been recognized;lOO
the most important one is the density wave instability, which
is caused by a downflow pressure drop. Other recognized types
of channel instabilities are the buoyancy wave for natural
circulation systems, the pressure or Helmholtz wave due to the
compressibility of the flow, and out—-of-phase multichannel

oscillations. All these types of instabilities cause flow

oscillations in a particular group of channels, which can be a
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small number compared to the whole reactor. Therefore, these
oscillations will be seen in the local power through the
density reactivity coefficients, but the global or overall
power will not be affected as much. For this reason, these

types of instabilities are often called "local instabilities.”

Several stability experiments have been performed

1:'ecent1y.50'59

These tests show that BWRs are susceptible to the
reactivity instability when operated at low flow and high powers (for
instance, 51% power and 327% flow in the case of Reference 58). For
this reason, utilities are required to submit calculations relating to
the stability of the reactor prior to any new fuel reloading.

As stated before, this type of instability arises from the
dual role of water as coolant and moderator. As the power is
increased, the heat transferred to the coolant increases and more
steam voids are produced. The increase in voids, however, reduces the
moderating power of the water and, thus, reduces the reactivity. This
causes a reduction in power. This negative feedback process is what
maintains the reactor power constant during normal operation without
the need for a control system. It is a well known fact that negative
feedback systems can be susceptible to oscillatory-type instablities
if the feedback gain or the phase lag are increased. Thus, the nega-

tive void feedback may cause a reactor instability if it becomes too

strong.
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2.3.1 Parameters Affecting the Reactivity Stability

In this section we discuss the effects of various parameters
on the gain and phase lag of the core's reactivity feedback dynamics.
Most parameters affect both phase and gain of the reactivity feedback,
and in some cases it is difficult to determine the impact of changes
in a given parameter on core stability. In a BWR one parameter can
hardly be changed without affecting others. In this section, however,
we discuss the direct effect of each of the parameters in isolation,
thus identifying their individual partial contributions to the
integrated effect of any perturbation.

Steady state moderator density distribution. For illustrative

purposes, the density reactivity coefficient (DRC) for a typical
fuel®3 is shown in Figure 2.2 as a function of coolant density rela-
tive to the liquid phase density. Figure 2.2a represents an
uncontrolled cell (four fuel assemblies) and Figure 2.2b represents a
controlled cell (four fuel assemblies plus a control rod in between).
In Figure 2.2a it can be seen that for the uncontrolled case the DRC
increases as moderator density increases (i.e., as void fraction
increases). Since the gain of the reactivity feedback is proportional
to the value of the DRC, in general a high void fraction in a core
with a low degree of control (i.e., operation at high power-to-flow
ratios) will result in a less stable condition. Figure 2.2b shows,
however, that the behavior of a controlled cell is the opposite, but
since the controlled regions of the reactor have lower power, they
have a smaller weight in computing the DRC (see Section 2.2.2), and

the overall effect of an increase in voids is destabilizing.
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Axial power shape. The power shape affects BWR stability in

two ways: first, by a direct effect on the void fraction distribu-
tion, and second, through its square-weighting contribution to the
reactivity feedback algorithm (see Section 2.2.2). A bottom-peaked
power shape preferentially generates steam voids in the lower (inlet)
part of the core. This effectively adds voids to all the core, thus
maximizing the average core void fraction for a given power-to-flow
ratio; it also increases the effective void residence time in the core
which increases the reactivity feedback lag. Both effects contribute
to making the reactor more unstable when the axial power shape is
tilted towards the bottom—-peaked configuration.

Steam void velocity. The higher the void velocity, the

smaller the effective void residence time in the core; this variable,
therefore, has two effects: (a) decreasing the phase lag and (b)
increasing the rate at which moderator density perturbations are
removed from the core, thus reducing the feedback gain. Both effects
tend to make the reactor more stable. Therefore, for the same power-
to-flow ratio, the condition with higher flow will be more stable.

Fuel gap conductance. A change in gap conductance alters the

fuel-to-coolant heat flow transfer function. An increase in conduc-
tance (for instance, smaller gap) will increase the gain, thus making
the reactor more unstable; at the same time, however, it will reduce
the phase, a fact that tends to make the reactor more stable.
Although these effects are opposite, the overall stability impact of

the increase in gain is larger than that of the phase reduction.
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Recirculation loop parameters. The pressure-to-core-inlet-

flow transfer function in the recirculation loop has an important

effect on stability.L'8

It couples the inlet flow with the core
hydraulics, thus closing the loop between the upper and lower plena.
The reactor becomes less stable as a result of the increase in its
gain or its time constant. In general, a decrease in recirculation
pump speed increases both the gain and the time constant;63 thus,

reduced flow conditions are more unstable.

Control rod pattern. For a given axial power shape and void

fraction distribution, the control rod pattern affects the reactor
stability only through the DRC. An increase in the degree of control
makes the reactor more stable.

Fuel isotopic composition. In Figure 2.2 the curves of DRC

versus moderator density are shown as a function of gadolinium
concentration. It can be observed that the DRC is smaller for higher
Gd concentrations. Therefore, the higher the Gd contents (for
instance, at the beginning of cycle) the more stable the reactor.

Radial power and flow distribution. In a BWR each channel

contributes to the global core reactivity according to the integral
over its length of the local DRC, weighted by the local power squared.
Since the local DRC is determined by the void fraction distribution
along the channel, changes in the core's radial power and flow distri-
butions will affect the relative contribution of the particular chan-
nel to the overall reactivity feedback, thus affecting the stability

of the core.
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Inlet subcooling. This parameter affects the position of the

boiling boundary thus changing the effective void residence time in
the core. It also affects the average channel void fraction.
Increasing inlet subcooling (i.e., lower inlet temperature)

will decrease the residence time and the average void fraction.
Therefore, it will result in a more stable reactor.

Total core flow. This parameter affects mainly the average

void fraction and the bubble velocity. For the same power level, an
increase in flow will reduce the void fraction and increase the bubble
velocity. Both effects make the reactor more stable.

Core thermal power. An increase in power while keeping the

flow constant (i.e., along a constant recirculation pump speed line)
has the effect of increasing the void fraction and, thus, it has a
destabilizing effect. However, if the power is increased through an
increase in recirculation pump speed, the flow is also increased; in
this case, the void fraction is kept essentially constant (in order to
maintain the reactor critical) but the bubble velocity is increased.
Therefore, a power increase along the flow control line results in a

more stable reactor configuration.

2.4 Nonlinearities in BWRs

The reactor equations presented in Section 2.2 are not linear.
However, any nonlinear system will behave in a linear manner if the

perturbations around equilibrium are small enough. This is the case

53-56

in BWRs. It has been shown experimentally that this type of
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reactors behave linearly during normal operation; thus, linear
modeling is appropriate for these conditions. However, as explained
in Section 2.3, BWRs are susceptible to instabilities. When the
equilibrium point becomes unstable the oscillations become undamped
and they grow large enough so that nonlinearities become important.

This effect has been observed in recent experiments.57'58 In
these experiments the reactor power was increased slowly while keeping
the flow rate essentially constant. When the critical power level was
reached, the reactor became unstable. At this moment, if the reactor
were linear, the oscillations should have continuously diverged expo-
nentially. However, this was not the case since the oscillation
amplitude grew originally but it stayed bounded due to the appearance
of a limit cycle which is a typical nonlinear effect. The observed
limit cycles were of small amplitude, with about a *157% oscillation in
power. In this section we will describe the nonlinearities in the
reactor equations which could account for the observed effects. 1In
chapters 7 and 8, we will study these nonlinearities more carefully
and their effects on the reactor's dynamic response.

The first nonlinearity appears in the neutron field equations.
In the point kinetics representation, the term "reactivity-times-
neutron—-density"” (pn) is a nonlinearity because, due to the inherent
reactivity feedback, p depends on n. The physical meaning of this
term is that reactivity perturbations are weighted by the neutron
density. This term forces the neutron density to be positive at all

times. No matter how large a negative reactivity perturbation is
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imposed in the reactor, the actual perturbation (as seen by the
equations) will tend to zero as the neutron density is reduced.

The way in which the reactivity feedback is computed introdu-
ces another nonlinearity because the cross—-sections and the associated
reactivity coefficients are complex nonlinear functions of temperature
and moderator density.

The fuel equation (2-64) is linear except for the temperature
dependence of the heat conductance, density, and fuel heat capacity.

Assuming the operating pressure constant (see Section 2.2.4),
the specific densities and enthalpies are constant and, thus, the mass
conservation for the channel is linear. The energy and momentum con-
servation equations, however, are nonlinear. The product of G, the
mass flux, times x, the steam quality, appears in the convection term
of the energy equation. Furthermore, x is a complex nonlinear func-
tion of the void fraction, a. The non-linearities in the momentum
equation are in the kinetic energy (szz/a) and friction (G2) terms,
which include the nonlinear dependence of the two-phase friction coef-
ficient.

The recirculation loop is modeled using the integrated momen-
tum equation and, thus, it contains the same nonlinerities described
above.

In summary, we have seen that the true reactor equations
have a multitude of nonlinearities in them. Although experiments
have shown that none of them affects significantly the reactor
normal operation, it has been observed that they become important

when the linear stability limit is reached.



CHAPTER 3
LINEAR SYSTEMS DYNAMICS: THE CONCEPT OF STABILITY

The relationship between two variables in a system can be
represented mathematically by a differential equation. If this
equation is lineér, or if it can be linearized for small pertur-
bations, the equation can be Laplace transformed and the transfer
function between two variables can be obtained as the ratio of two
poynomials in s, the Laplace variable. The roots of the denominator
polynomial are called the poles of the transfer function and the deno-
minator are the zeros. Once the transfer function, G(s), of a linear
system is known, the output of this system, R(s), for any input, I(s),
is given in the Laplace domain by the product of the input times the
transfer function

R(s) = G(s) I(s) . (3-1)

The output, r(t), in the time domain can be obtained using
the well-known convolution theorem

r(t) = j; i(t) h(t-71) dt , (3-2)

where h(t) is the inverse Laplace transform of the transfer function.
It can be shown that h(t) is also the response of a system to an
impulse (or Dirac delta function) and is, therefore, usually called
the impulse response of the system. Equation (3-2) clearly shows that
the characteristics of the impulse response determine the response of

the system to an input and consequently it determines the stability of

40
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the system. If the impulse response decays to zero, then the output
follows the input in the sense that r(t) depends only on the latest
values of i(t); however, if h(t) increases with time, the old values
of i(t) are multiplied by a function which increases in magnitude. In
this case, the response becomes divergent and the system is said to be
unstable.

The impulse response can be calculated as a function of the
poles of the transfer function, {pi, i-= 1,2,...,N}, as

R; ePi® (3-3)
1

h(t) =
i

I~

where R; is the residue of pole p;j. If p;y is a single pole, the

residue is given by the expression

Ry = lim (s—pi) G(s) . (3-4)
S'*Pi

Equation (3-3) shows that if at least one of the poles has a
positive real part, the impulse response will grow exponentially and
the system will be unstable. If all the real parts of the poles are
negative, the system will be stable and the impulse response will
asymptotically behave like the component of the pole with the smallest
real part, because all other components decay faster. Hence, the real
part of the most unstable pole (the one with smallest real part)
determines the relative stability of the system.

Usually we are interested in measuring the stability of
systems with oscillatory characteristics when the most unstable pole

is complex. It is in this context that the concept of decay ratio
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arises. It can be shown that if a system has only a pair of complex
conjugate poles, the impulse response is
ot

h(t) = e cos(wgt + ¢) , (3-5)
where o is the real part and wy is the imaginary part of the pole.
The decay ratio is defined as the ratio between the second and first
peaks in the impulse response. This ratio is constant for any two
consecutive peaks and equal to

DR = e2nc/wd

. (3-6)
Therefore, we see that for a second order system, the decay ratio is
directly related to the position of the poles and it is a good
measure of the system stability.

For higher order systems, the impulse response is not formed
by just one term but by the contributions from all the poles; there-
fore, the decay ratio between consecutive peaks is not constant.
However, if a series is formed with the value of the decay ratio for
every two consecutive peaks, it can be shown that it converges to a
value equal to the decay ratio of a second order system with only a
pair of complex poles at the same position as the least stable pair of

poles in the original system. We call this value the asymptotic decay

ratio, whereas the ratio between the first two peaks is the apparent
decay ratio.

The asymptotic decay ratio is related to the position of the
least stable pole as shown in Equation (3-6) and is, therefore, a

good measure of the stability of the system. On the other hand, in
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general the apparent decay ratio is not related to the stability of
the system. This last point is best clarified with an example:
Figure 3.la shows the impulse response of a second order system. The
number on top of each peak is the decay ratio between that peak and
the previous one. It can be seen that all the decay ratios are equal
and that in the second order case the apparent and the asymptotic
decay ratios coincide. Figure 3.1lb shows the impulse response of a
fourth order system whose least stable pair of poles is the same as
the system of Figure 3.la. It is seen in this figure that the decay
ratios are not the same for all peaks; however, they converge to an
asymptotic decay ratio of 0.73, the same as in figure 3.la. The
apparent decay ratio is 0.41, obviously a nonconservative estimate of
the stability of the system. The nonconservative nature of the
apparent decay ratio can be seen more dramatically in Figure 3.lc:
here, the same pair of poles as in Figure 3.la- are retained, but we
add a pair of unstable poles (positive real part) with a pair of zeros
very close, but not completely canceling them. The effect of these
zeros is to make the residue in Equation (3-3) for the unstable poles
very small; then, for short times, the dominant factor in the impulse
response is the stable poles, so the apparent decay ratio is less than
1.0 (equal to 0.55); however, as time increases the exponential nature
of the unstable poles dominates and makes the impulse response diverge
with an asymptotic decay ratio greater than one. Consequently, we can
conclude that the apparent decay ratio of the impulse response, even
though it is somehow related to the stability of the system, is not a

conservative estimate and is, thus, not a good measure of stability.
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The impulse response is not a measurable quantity in a system.
Once a system is excited by an input, the only measurable quantity is
its response, r(t), which contains information about both, the input
and the system transfer function. Furthermore, in systems like BWRs,
the input is unknown and stochastic; therefore, only average quan-
tities like power spectral densities (PSDs) or correlation functions
can be used to describe the output of such systems. For this reason,
we must rely on these functions to estimate the output stability.

The power spectral density of the output, PSDR(w), can be
calculated in terms of the system transfer function, G(w), and the
input noise spectrum, PSDI(w)109

PSDg(w) = G(w) G¥*(w) x PSDp(w) . (3-7)
Therefore, the poles of the output PSD can be attributed to either
the input PSD or the system transfer function.

The autocorrelation is defined as the inverse Fourier trans-
form of the PSD and thus, it can be calculated as

. N
Ry eP1° + 7 Ry

t
g P17, (3-8)
1 i=M+1

C(t) =
i

R

where R; are the residues of the output spectrum and pj its poles.
The first M poles are assumed to come from the system transfer
function and the rest from the input spectrum.

For oscillatory systems, we can define apparent and asymptotic
decay ratios in the autocorrelation function in a manner similar to
the impulse response. For the case in which the transfer function is

less stable than the input (i.e., the least stable pole of PSDy is
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associated to a pole of G(w)), the asymptotic decay ratio of the auto-
correlation function must coincide with that of the impulse response
(see Equations (3-3) and (3-8)); however, the apparent decay ratios
will in general be different. Figures 3.2a, b, and c show the auto-
correlation function of the output of the systems in figure 3.1 when
driven by white noise. These figures show that the apparent decay
ratio of the autocorrelation is not a direct estimate of the system's
stability and that it could be nonconservative; there is, however, an
improvement over the apparent decay ratio of the impulse response in
that if the system is unstable, the apparent decay ratio of the auto-
correlation is greater than 1.0 and, therefore, provides a good
measure of the approach to instability. Note that the autocorrelation
function is an a posteriori measurement, and, therefore, its apparent
decay ratio gives a measure of how much the output is actually
oscillating.

In summary, we have seen that the stability of a system is
defined by the position of the least stable pole of its transfer
function. For oscillatory-type systems, the decay ratio is a measure
of the system stability. Three types of decay ratios can be defined:

(a) Asymptotic decay ratio, which is directly related to the absolute

stability of the system; it is independent of the function used for

its definition. (b) Apparent decay ratio of the autocorrelation

function, which is related to the amount of oscillations during opera-
tion; it coincides with the asymptotic decay ratio as it approaches

the value of 1l.0. (c) Apparent decay ratio of the impulse response,
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which is only related to short-time behavior of the system; it does
not measure the absolute stability of the sytem and, thus, should not

be used for stability measurements.



CHAPTER 4
A PHYSICAL MODEL OF BWR LINEAR DYNAMICS

The goal in this chapter is to develop a linear model of the
dynamic behavior of BWRs through a detailed study of the various
physical processes involved.

In the past, models have been obtained by integrating the
reactor equations over a finite number of nodes. In this way a set
of coupled ordinary differential equations are generated for node-
averaged variables. The coefficients of these models are node-
averaged parameters which can be computed from first principles or

48 in deve-

empirical correlations. This approach was taken by Otaduy
loping the detailed BWR model implemented in the code LAPUR. It was
found®3 that the code yielded excellent results when compared with
reactor experiments, but a large number of nodes were needed (a mini-
mum of 50 axial and 3 radial nodes). A model with this number of
nodes is adequate to calculate numerical results; however, it is very
hard to extract a physical understanding about the dynamic process
from these numerical solutions.

The approach taken in this work is to minimize the number of
nodes involved in the modeling so that the results provide physical
information without sacrificing accuracy. In order for the low-order
model to represent accurately the dynamics of the system, nodal

synthesis was used. A series of "supernodes" were synthesized from

the results of a fine-mesh nodal calculation. Each of these
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supernodes describes the physical process taking place in each of the
system regions, such as fuel heat transfer or channel thermal-
hydraulics. Associated with a particular supernode there is a set
of average parameters such that the overall system dynamics is
properly represented in the sense of matching the results of the fine-
mesh nodal calculation.

The nodal synthesis is performed in two steps:

(a) Determination of the minimum number of poles and zeros needed
for an accurate representation of the system transfer function
for each set of operating conditions.

(b) Identification of the physical processes associated with the

poles and zeros obtained as a result of the previous step.

From step (a) one obtains the equivalent linear set of dif-
ferential equations which exhibits the pole-zero configuration
describing the system transfer function, while step (b) associates the
corresponding physical processes to each of the differential equations
in the set. To implement step (a) one performs fits of polynomial
ratios to the fine-mesh results with various model orders until model
order convergence is reached. Order convergence is characterized by
the appearance of spurious poles which cancel with zeros.

The final result of this fit is the smallest set of poles and
zeros which give a reasonably accurate description of the system. The
implementation of step (b) is carried out in two phases. First, para-

meter-sensitivity studies are performed with the detailed model to



51
determine possible correlations to motions of transfer function
features. This phase is followed by physical modeling of the process
to justify that the effective nodal parameters are within reasonable
physical ranges.
The outlined procedure was applied to the conditions of the
stability test labeled 3PT3%® which was performed in the Peach Bottom

reactor. The results are shown in sections 4.2 through 4.5.
4.1 Brief Description of a Detailed BWR Model: the Code LAPUR

LAPUR"S is a computer code developed at the Oak Ridge National
Laboratory for the calculation of BWR core stability parameters. It
uses a multinodal description of the neutron dynamics together with a
distributed parameter model of the core thermal hydrodynamics to
produce a space-dependent representation of the dynamics of a BWR in
the frequency domain for small perturbations around a steady state
condition. The LAPUR program consists of two autonomous modules,
LAPURX and LAPURW, which are linked by means of an intermediate
storage routine. The first module, LAPURX, solves the governing
equations for the coolant and the fuel steady state. Maps of the core
steady state are generated and stored in data files for subsequent
utilization by LAPURW. The second module, LAPURW, solves the dynamic
equations for the coolant, fuel, and neutron field in the frequency
domain. A set of open-loop transfer functions are generated and the
stability indices are estimated from the closed-loop reactivity-to-

power transfer function.
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The fuel equations in LAPUR assume no axial heat flow in the
fuel rods, use a radial mesh within the fuel pellet to account for the
radial dependence of the heat source as well as the temperature depen-
dence of the UO2 fuel's heat conductivity, and include the effect of
the nonconductive transfer of heat to the coolant by y-ray absorption
and neutron moderation processes. Coolant dynamics include three flow
regions in a flow channel: a nonboiling region, a subcooled-boiling
region, and a bulk-boiling region. The conservation equations and
two-phase fluid mechanical equations, in conjuction with the fuel
equations, yield a set of transfer functions relating perturbations of
the nodal coolant density and pressure drop to nodal perturbations of
coolant temperature, flow rate, and power generation. Upon integra-
tion of these functions along the length of the channel and along the
partial length of the channel pertaining to each nuclear subcore, a
fuel-and-coolant matrix equation of transfer function results.

To obtain the reactivity feedback transfer function matrices,
the fuel temperature and coolant density nodal transfer functions are
weighted by both the local power and the local density reactivity
coefficients and integrated over the volume of each of the neutronic
subcores.

The overall space-dependent transfer function matrix represen-
tation of the BWR core dynamics with feedback is obtained by con-
sideration of the hydraulic coupling through the inlet and outlet
plena and the recirculation loop, in conjunction with the neutronic

matrix equation. To calculate the stability indices (decay ratio and
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natural frequency) the position of the most unstable pole of the
core's closed-loop transfer function is determined according to
Smith's frequency gradient method . 101
The accuracy of the LAPUR model to predict the stability of

63 However, a large number

commercial BWR cores has been demonstrated.
of nodes (50 axial, 3 radial) are needed. The LAPUR code was used as

reference to develop the reduced order model presented in this work.

4.2 The Pole-Zero Configuration of the Reactor Transfer Function

Figure 4.1 shows the magnitude and phase of the reactivity-
to-power transfer function calculated by LAPUR for the conditions of
test 3PT3%® in the Peach Bottom reactor. The main dynamic features
which can be observed at first glance are: a low frequency zero
(0.03 Hz), a break frequency at about 21 Hz, and the resonance peak
at about 0.3 Hz which determines the transfer function stability.
These observations would suggest the use of a l-zero/3-pole model to
fit this transfer function, but this would yield an asymptotic value
of the phase of -180 degrees at high frequencies. Since the phase
converges only to -90 degrees at 1000 Hz, an extra zero is needed.
Figure 4.2 shows a comparison between the LAPUR transfer function
and the fitted 2-zeros/3-poles model; from this comparison we
conclude that this model order is inadequate. When the next model
order (3-zeros/4-poles) was used, the results shown in Figure 4.3 were
obtained. This figure shows that this model order is more

appropriate.
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Table 4.1 contains the numerical value of the poles and zeros
corresponding to this fit. We observe that there is a low-frequency
real zero, a complex pair of zeros, two real poles, and a complex pair
of poles. The real part of this last pair of poles determines the

reactor stability.

Table 4.1

RESULTS OF THE 3-ZERO/4-POLE MODEL
ORDER FIT TO THE BASE CASE

Zeros Poles
(Hz) (Hz)
_0-03 -0025
_21 -7

To further determine if the pole-zero configuration obtained
is appropriate, we constructed the root locus?? for this transfer
function. In conventional linear system dynamics, the open loop poles
and zeros are known and there are standard techniques99 to draw the
root locus as the feedback gain, K, is increased. However, in the
present work, the poles and zeros of the open loop are not readily
available and, furthermore, there is a very large number of them. For
this reason, the root locus was constructed by fitting the closed-loop
transfer function obtained by LAPUR for several values of K.

Following this procedure, only the significant poles and zeros are
obtained, because most of the poles and zeros of the open loop

transfer function will cancel as the feedback gain is increased.??
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Figure 4.4 shows how the LAPUR calculated closed-loop transfer
function for test case 3PT3%°6 changes as the nominal feedback gain is
multiplied by a factor K. 1In this figure a value of K = 0 gives the
open loop forward transfer function and a value of K = 1 corresponds
to exactly the transfer function calculated by LAPUR. We observe that
as K is increased, the frequency of the characteristic peak increases,
and the peak itself becomes sharper. A critical value of approxima-
tely K = 2.25 defines the limit of linear stability. For higher
values of K, the complex poles become unstable, but the magnitude of
the peak decreases as they move away from the imaginary axis. Note
the appearance of the low frequency zero as K is made larger than
0.25.

Nonlinear fits were performed on the closed-loop transfer
function for various values of K. The motion of the poles is shown
in the root locus diagram of Figure 4.5. Note that only the low
frequency part is represented in this figure, and, therefore, the 21
Hz peak is not present. We observe that

(a) The pair of complex poles which determine the reactor stabil-

ity originate from the complex pair of zeros. These zeros

correspond, therefore, to a pair of complex poles in the feed-

back part of the open loop transfer function (see Section

4.4.2 for more details).

(b) The low frequency zero is not present in the closed-loop
transfer function when K = 0 (see Figure 4.4). Therefore, it

must be caused by the presence of an open-loop pole in the
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feedback. The real pole at 0.27 Hz originates from this low

frequency zero.

Summarizing, we have determined that the closed-loop
reactivity-to—-power transfer function can be appropriately represented
by an empirical model containing three zeros and four poles. If only
low frequencies (<10 Hz) are of interest, a 3-zero/3-pole model is
sufficient. The three zeros identified in the closed-loop transfer
function correspond to open loop feedback poles. Finally, the complex
pair of poles which determine the reactor stability originate from a

pair of open-loop complex poles.

4.3 Sensitivity of the Poles and Zeros

of the Reactor Transfer Function

Within the framework of linear dynamics theory, given a
closed-loop system formed by a forward transfer function, G, and a
feedback transfer function, H, the closed-loop transfer function, T,

is given by

G

“T+or b

T

The zeros that appear in T are, thus, the zeros of G and the poles
of H. The poles of T, however, take a more complex expresion and
are determined by the characteristic equation
1+GH =0 . (4-2)
Without loss of generality the BWR forward transfer func-
tion, G(s), can be represented by the point kinetics approximation

with a single group of delayed neutrons
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dn _ Ng s+A

G(s) = 3o = “A S(s+B/A+h)  °

(4-3)

where A is approximately 0.08 s~ and B/A is of the order of 20 s™1.
Therefore, the zeros that we have identified in the LAPUR closed-loop
transfer function of the reactor do not correspond to zeros of G.
Thus, they must be poles of H. At this point we cannot identify the
poles with the physical processes that they represent. Similarly,
since the poles of T are given by the complex Equation (4-2), we can
not identify them either. We shall concentrate for the moment on
identifying the three zeros of T by studying their sensitivity to
changes in reactor physical parameters.

Table 4.2 shows the sensitivity of the fitted poles and zeros
to changes in the fuel gap conductance. We observe that the complex
zeros remain practically unchanged, but the low-frequency zero changes
from 0.028 to 0.036 Hz, a 30% change. This fact suggests that this

zero is related to the fuel heat transfer time constant. Indeed, as

Table 4.2

SENSITIVITY TO FUEL GAP CONDUCTANCE OF THE POLES AND
ZEROS FITTED TO THE CLOSED LOOP TRANSFER FUNCTION

Gap -20% Base Gap +20% Gap +507%
Zeros -0.028 -0.030 -0.033 -0.036
(Hz) -0.18+0.271 -0.18+0.271 -0.18+0.281 -0.18+0.281

Poles -0.051+0.311 -0.045+0.321 -0.044+0.331 -0.042+0.341
(HZ) —0026 _0-25 -0028 _0-30
-2100 _2107 -2007 _2109




63
the gap‘conductance is increased, the fuel becomes more responsive,
this fact would explain the increase in frequency (i.e. a decrease of
the time constant). Figure 4.6 shows the power-to—-heat-flux transfer
function as calculated by LAPUR. The break (real pole) at about
0.03 Hz is apparent. This last figure along with the results of Table
4.2 imply that the low frequency zero should be associated with the
fuel dynamics.

Tables 4.3 and 4.4 show the results of the fit when the core
flow and power are changed respectively. We observe that the
frequency of the complex zeros increases as the power or flow are
increased. The real zero remains essentially constant. These facts
suggest that the complex zeros should be related to the void sweep
time in the core: as the power or flow increases, the steam bubbles
travel faster through the core and reduce the sweep time, thus pro-
ducing a higher frequency response. Figure 4.7 shows the heat-flux-
to-density-reactivity transfer function as calculated by LAPUR. The
double pole break at about 0.3 Hz is evident. This confirms the
hypothesis that the pair of zeros in the closed-loop reactivity-to-
power transfer function are due to the channel thermal hydraulics and
the associated density reactivity feedback.

Summarizing, the sensitivity study indicates that an
approximation to the reactor transfer function could be composed of:
(a) Point kinetics to represent the neutron field dynamics. This will
form the forward open-loop transfer function. (b) A single-node

approximation for the fuel dynamics, which will yield the observed
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Table 4.3

SENSITIVITY TO TOTAL CORE FLOW OF THE POLES AND ZEROS
FITTED TO THE CLOSED LOOP TRANSFER FUNCTION

Flow -10% Base Flow +10%
Zeros -0.030 -0.030 -0.030
Poles -0.037+0.311 -0.045+0.321 -0.058+0.331
(HZ) _0-26 _0025 _0026
-20.5 -21.7 -21.0
Table 4.4

SENSITIVITY TO THERMAL POWER OF THE POLES AND ZEROS
FITTED TO THE CLOSED LOOP TRANSFER FUNCTION

Power -10% Base Power +10% .
Zeros -0.030 -0.030 -0.031
(Hz) -0.18+0.251 -0.18+0.271 -0.18+0.291
Poles -0.054+0.301 -0.045+0.321 -0.042+0.331
(Hz) -0.25 -0.25 -0.28

-21.0 -21.7 -20.9
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low-frequency zero in the closed-loop response. (c) A two-node
approximation for the channel thermal-hydraulics and reactivity feed-

back, which would contribute the complex pair of zeros.

Further proof that this model order is appropriate as well as
the identification of poles and zeros with physical components will be

given in Section 4.4.

4.4 The Linear Physical Model

In this section we study the linear equations representing the
reactor with the purpose of identifying the features observed in the

reactor transfer function.

4.4.1 The Fuel Transfer Function

We established in Sections 4.2 and 4.3 that only one pole was
needed to represent the fuel dynamics in the closed-loop reactivity-
to-power transfer function of a BWR. This can be accomplished from a
single-node expansion of the equation describing the temperature
distribution in the fuel. The effective coefficients of the resulting
lumped parameter model are selected to match the position of the known
poles (closed-loop zeros).

The equation governing the temperature distribution within

the fuel rod is

QT

pcp 3¢ = Q + YkVT . (4-4)

We can obtain a one-node lumped parameter model by integrating

Equation (4-4) over the fuel. We define an average fuel temperature
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1
bnrp

Tp = 2 IOF 2nr T(r,t) dr . (4-5)

r
Applying the operator 1 3 f F [ ] 2nrdr to Equation (4-4), the
an 0

following nodal equation is obtained

o) _ 2 oT
Spep? LT = @ 4 o [ “é’r']r=rF , (4-6)
where
r
<pcp> = —__l__éf F anpcpT dr , (4-7)
TFan 0
and
r
QP = —~l7 / F 2nrQ dr . (4-8)
T 0
The boundary condition is
oT
[k Slearp = -U(Tp-T) (4-9)

where U is the effective overall reactor heat transfer coefficient
(in J/Ksmz) and T, is the coolant saturation temperature.

Equation (4-6) becomes

d o _ <@ __2w
dt 'F <pcp>  Tp<pe

s (Tp-Tc) - (4-10)
P

The heat transferred to the coolant can be estimated as

Q" = 2mrpU(Te-T.) - (4-11)
Taking small perturbations and Laplace transforming equation (4-9),
we obtain the fuel transfer function

8T (s) 1/<pcp>

- , (4-12)
8<Q> s+ZU/(rF<pcp>)

which as expected contains a single real pole.
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To match the conditions of the test 3PT3 for which we made
the closed loop fits, this pole must be located at -0.03 Hz.
Therefore, the effective heat transfer coefficient, U, must be

U = %-(Zn 0.03 rp <pcp>) = 1481 J/Ksm2 (4-13)
This value is of the order of magnitude expected. A typical value of
the fuel-to-cladding gap heat transfer coefficient is 4500 J /Ksm?
(800 BTU/hrftzF). The effective U obtained is smaller, because it
takes into account the fuel pellet and cladding conductances as well
as the film coefficient between cladding and coolant. Furthermore,
the temperature in Equation (4-11) is the average temperature over the
whole rod, which is larger than the surface temperature.

We can, therefore, safely conclude that the low-frequency

(0.03 Hz) zero in the closed-loop reactor transfer function is due

to the fuel dynamics.

4.4.2 The Channel Transfer Function

It was suggested in Sections 4.2 and 4.3 that the channel
dynamics influence the closed-loop reactivity-to—power transfer
function through a complex pair of zeros. In other words, the channel
transfer function can be represented by a two-node expansion of the
energy and continuity equations. Let's first study the channel
thermal hydraulics. Later we will introduce the reactivity feedback.
Neglecting acoustic phenomena,29 the channel equations (continuity and

energy) described in Section 2 become
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d 3G
N [(1—a)p1+apg] +3,=0

[e° 1Y
rt

[(-a)erhy+apghg ] + T [(1-x)ny GrxnyG] = @

(4-14)

(4-15)

We are interested in a linearized version of these equations.

For this we need the steady state relations

0Gg _

0z =0

Oxg  _ Qo

0z (hg—hl)Go

(4-16)

(4-17)

Linearizing (4-14) and (4-15) and considering (4-16) and

(4-17) we obtain

(Coghgmpriny) + (hy (=g Ythgxy) (pr-pg)} 22

ciyo, &x 368 0 60, 60
+ (hg=h1)6y 2 37— = Q (Q0 +G0 )
where
z
6(z,t) = 6(0,t) + (pr=pg) J 2pi=E) az
Define
dx
. G, (hg=hy) T
0 (Pghg‘Plhl) + (hy (I-x)+x o) (p1-pg)
and

Hy(z) = (pghg—p1hy) + (hy (1-x,)+x,hs)(p1-pg)
Note that both V0 and H0 are functions of z but not time.

Equation (4-18) can then be rewritten as

a‘Sa.{.v _6<S_a=g0_(§g+_§_c_)

ot 0 0z H0 Q0 G0

«(4-18)

(4-19)

(4-20)

(4-21)

(4-22)
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This last equation has the form of a convection equation,
where V0 is the propagation velocity. There are two possible pertur-
bation sources in the right hand side: the volumetric heat flux
transferred to the coolant, 6Q, or the mass flux, 8G, which could be
altered through the inlet flow (see equation (4-19)). The
z-dependence in this equation can be eliminated using an integrating
factor. If we Laplace transform and multiply Equation (4-21) by

esz/VO’ we obtain

sa(z,8) = e5%/Vo(2) (% =sz'/V (2") Qo 8 4 8450, (4-23)
0 Vo(z')Ho(z') Q0 GO

Note that H0 has units of enthalpy and it is not related to the
variable H, the core height. If &G did not depend on a or if the
dependence was weak compared to 6Q, then this equation would be a
closed-loop solution for the channel thermal hydraulics. Note,
however, that &6G depends on a not only directly as seen on
Equation (4-18), but also indirectly through the momentum equation
and the recirculation loop, which determine G(O,t).

Let us assume for the sake of simplicity that <SG/G0 can be
neglected with respect to the term 6Q/Q0. This would be the case
when no recirculation loop is considered and the dynamics of the

channel are driven by power perturbations. In this case,

dz'. (4-24)

6(!(2,3) = eSZ/VO(Z) I(z)e-sz/vo(Z') 6Q

YV (-"'\H ('
Vo(z )Ho(z )
What this equation tells us is that the void fraction, a, at

a particular time and axial location is produced by all the previous
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power perturbations at lower channel heights, which are seen with a
time delay introduced by the effective velocity, VO(Z)' Note that
this velocity (see equation (4-20)) depends only on the steady state
steam quality distribution and the factor dx/da, which is a function
of X, and the slip ratio.

Within the context of our model, the heat flux perturbations
are spacially correlated. This means that 6Q can be separated into
two components

6Q(z,s) = @0(2) 8q(s) (4-25)
but a(z,s) will not be separable due to the delay term inside the
integral in Equation (4-24).

The transfer function that defines the channel dynamics in
our model is the heat—flux-to-void-reactivity-feedback transfer
function. It was shown in Section 2.2.2 that the void reactivity

feedback is given by the expression

H + Aﬂ
8pg(s) = Io o, (2) 5 8a 2y(z) dz (4-26)

where 6p/8a is the void reactivity coefficient at level z and the
flux is normalized so that f®0+ @0 = 1. Since the flux in 1-D
diffussion is self adjoint, and taking into account Equations (4-24),

(4-25), and (4-26) the transfer function of interest becomes

Spals) H 5
_ 2 p _sz/V
sa(s) - © jo [20%(2) 5 e 0(2)
ez () 2 dz'] dz . (4-27)

0 Vo(z')ﬁo(zl)
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Let us make a further simplifying assumption in order to
understand the physics behind this equation. To first order approxi-
mation, we can consider @0(2) constant and that the steady state void
fraction contents is very small, so Vo(z), Ho(z) and the density reac-
tivity coefficient are constant over the length of the channel. Then
the channel transfer function becomes

8pq(s) H

SRy N S P S IRTA T IFPIR I PR (4-28)
6q(s) 0

With the previous assumptions, this equation can be integrated

directly to give

8pqy(8) 2,4_.~sH/Vg)
o[ Yl ¥etd s ) (4-29)
8q(s) s s

The first term in this equation is a pure s”! term. The
numerator of the second term, however, oscillates between zero and one
with a time constant T = H/VO’ the residence time of the bubbles in
the channel. Since the second term has a s™2 dependency, the asymp-
totic behavior at high frequencies is that of a first order system.
Let us try to find an approximation to Equation (4-29) at low frequen-
cies. To this end we shall use the Pade approximant expression for
the exponential function,102 which is known to be an excellent
approximation for small values of the independent variable. The Pade
approximant to e X of order [2/2] is

-x, _ 1 - x/2 + x2/12

P [e
1+ x/2 + x2/12

2,2

(4-30)
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Introducing it into Equation (4-29), we obtain an approximation to the
channel transfer function in term of poles and zeros which is valid

for low frequencies.

bpq(s) H2 s + 6/t
— - X — (4-31)
8q(s) T s8¢+ 6s/1+ 12/x

where T is the bubble transit time defined previously.
The two poles of this transfer function are always complex

and located at

1

;-(—3 + 1.411) . (4-32)

S=

The zero is located at

s = -6/t , (4-33)
where s is measured in radians per second.

Figure 4.8 shows a numerical calculation of the magnitude and
phase of the channel transfer function using Equation (4-29) and
assuming V0= 2m/s and H = 4m. With these parameters, the natural
frequency of the poles calculated using Equation (4-32) is w = 0.26 Hz
and the zero is located at w = 0.48 Hz. We can locate in Figure 4.8
both the poles and the zero. There are more pole-zero combinations at
higher frequencies which would result from higher order Pade approxi-
mants for e ~. With the model order used, the equivalent to

Equation (4-31) in the time domain is

dzpa dpg 2
- T - - AR B (4-34)
dt T dte 72 K T

Note that the steady state gain is independent of <.
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In summary, we have proven that the channel transfer function
has a pair of complex poles in the vicinity of 0.3 Hz. These must
correspond to the pair of complex zeros found in the closed-loop
reactivity-to-power transfer function (see Section 4.2). The
frequency of these poles is inversely proportional to the bubble
transit time in the core, T, and they are introduced by the 2
weighting (equation (4-26)) of the reactivity feedback rather than by
channel thermohydraulic effects. Finally, in order to obtain the same
natural frequency as the one associated with the complex zeros
obtained for the Peach Bottom 3PT3 case (see Table 4.1), the equiva-
lent bubble residence time must be T = 1.63 s. This residence time

compares well with measured values.’”’

4.4.3 The Closed Loop Model

In the previous sections we have identified and modeled the
various prdcesses involved in the description of linear BWR dynamics.
Now we can put them together and form the closed-loop model shown in

Figure 4.9.

Reactivity POINT Power
“| KINETICS
DOPPLER FUEL
VOID
REACTIVITY [+ | CHANNEL

Figure 4.9 Block diagram of the reduced order model.
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This figure shows a block diagram of this reduced order
model. The forward loop is represented by the point kinetics approxi-
mation with a single group of delayed neutrons. The feedback has two
loops, representing the Doppler and density reactivity feedbacks.

The time domain mathematical description of the closed loop

for the reduced order model becomes

dn _ Pg-8 ] -
it = An+}\c+A (4-35)
g_‘; - %n - e (4-36)
T

%f = an - a,(T-T;) (4-37)
d2py, 6 dpg | 12 2 4q . 6

e e LR L s
p=pg +DT , (4-39)

where D is the Doppler reactivity coefficient and the parameters
a;, a,, and t are functions of the effective physical constants
calculated in Sections 4.4.1 and 4.4.2. Note that the quantities n
and c¢ are normalized to the steady state neutron density, NO. The

model parameters for the Peach Bottom 3PT3 case are summarized in

Table 4.5.
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Table 4.5

MODEL PARAMETERS FOR PEACH BOTTOM TEST CASE 3PT3

Parameter Value Units
al 19.08 K s”1
a2 0.19 s~1
T 1.63 s
C -3.65x10™4 k-1
D -2.61x107° k-1
B 0.0056
A 4.00x1075 s~ 1
A 0.08 s™1

4.5 Identification of Features in the Closed-Loop

Transfer Function

The root locus for the model we just developed is drawn sche-
matically in Figure 4.10. We observe that as the feedback gain is
increased, the fuel and point kinetics poles merge. A further
increase results in one of the poles canceling the delayed neutrons
zero. The remaining pole yields the real pole observed in the closed-
loop transfer function (see Section 4.2). The trajectory of the
closed-loop poles is well defined and has the origin (K = 0) at the
channel open-loop poles, which appear in the closed loop as the:
complex pair of zeros. The frequency of the B/A (21 Hz) pole
increases slightly and the pole remains real for all values of K.
With these observations we can now confidently identify not only the

zeros but also the poles of the closed-loop transfer function.
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Table 4.6 and Figure 4.11 summarize the relationship between the
closed-loop transfer function features and their corresponding physi-

cal processes.

Table 4.6

RELATIONSHIP BETWEEN CLOSED LOOP TRANSFER FUNCION
FEATURES AND PHYSICAL PROCESSES

Features Frequency Physical process
(Hz)
Low-frequency zero 0.03 Fuel element effective

heat transfer coefficient

Compex pair of zeros 0.3 Reactivity feedback weighting
of channel thermal hydraulics

Real pole 0.3 Fuel element

Complex pair of poles 0.3 Channel thermal hydraulics and
density reactivity feedback

Real pole 20. B/A pole in point kinetics
equation
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CHAPTER 5
STABILITY MEASUREMENTS USING NOISE ANALYSIS

As seen in Section 2.3, three types of instabilities are

considered to be possible in boiling water reactor operation:

(a) plant instability, related to the reactor control systems;

(b) local channel instability, related to two-phase flow dynamics of a
heated channel; and (c) reactivity-type instability, related to the
void reactivity feedback and its interaction with the neutronic loop.
Experimentsso_59 have shown that commercial BWRs can be susceptible to
the latter type of stability.

In this chapter we deal with the problem of determining the
reactivity-type stability of an operating BWR by medsuring only the
output noise of the reactor power. This noise is caused by inherent
fluctuations of process variables in the reactor such as flow,
pressure, void fraction, etc. These fluctuations affect the power
through the reactivity-to-power transfer function; therefore, the
power noise contains information about the reactor dynamics and thus
about its stability. However, since we can measure only the output
noise and not the transfer function directly, it is impossible to
distinguish between oscillations caused by the reactivity-to-power
transfer function and those caused by the fluctuation in the process
variables themselves. For instance, if the operating conditions were

such that the channel flow were unstable, the power noise would show

82
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an oscillation, but it would be due to the channel thermohydraulic
instability rather than to the reactivity instability. Therefore, by
measuring the noise, we can only measure the "output"” stability; if an
instability is found, it is up to the noise analyst to identify it
with one of the three instabilities described before or with any other
physical phenomenon.

The feasibility of using the neutron noise signal for
stability related measurements in BWRs was first suggested by Thie.?
Further studies®9777 have shown that the power spectral density (PSD)
of neutron noise in BWRs exhibits a noticeable resonance in the fre-
quency range 0.3 to 0.7 Hz, as has been predicted by theoretical'8,63

and experimental studies®0758

of the reactivity-to-power transfer
function. Several papers have been published in the open literature
describing methods to estimate BWR stability,70’71’7“'76 all of them
based on one type or another of autoregressive (AR) modeling.
However, there is ambiguity in the definition of decay ratio which is
the parameter searched for in the stability analysis. Several authors
use different definitions and, therefore, the results are not directly
comparable. The problem becomes more important when a decay ratio
obtained from noise data is to be compared with results of calcula-
tions or experiments.

The objectives of this section are: (a) to show that neutron

noise has the necessary information for the determination of the

reactivity-type stability in BWRs, (b) to evaluate several methods
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to obtain the decay ratio from the noise data, and (c) to compare
the results obtained using different definitions of decay ratio.

An overview of neutron noise in BWRs is presented in
Section 5.1. 1In Section 5.2,the theoretical relationship between the
neutron noise and the reactor stability is studied. Section 5.3
outlines several methods to obtain the necessary stability information
from the noise. The noise techniques are evaluated against computer-
generated data in Section 5.4. Section 5.5 outlines the proposed
algorithm for estimating BWR stability from noise measurements. The
new algorithm is validated through applications to computer generated

and real BWR noise data.
5.1 Noise in Boiling Water Reactors

BWRs exhibit normally occurring fluctuations in power of the
order of 4 to 87 peak-to-peak, which are normally referred to as
noise. It is believed that the major source of normal BWR noise is
the formation, collapse, and transport of steam voids in the reactor
core. The voids modify neutron absorption and thermalization, thereby
introducing perturbations in cross sections and thus in the neutron
density as seen by the in-core fission detectors.’3

Figure 5.1 shows the power spectral densities of a typical
local power range monitor (LPRM) string at levels A, B, C, and D

along with the PSD of the average power range monitor (APRM) for a

BWR operating at rated power and flow. Figure 5.2 shows the PSD of
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the same APRM signal; the characteristic 0.5 Hz resonance and
associated double-pole break frequency is clearly observed.

Experience has shown that the BWR neutron noise has two
components79 the first is dominant at high frequencies (above 1 Hz)
and its main characteristic is that it is radially uncorrelated from
channel to channel. However it is axially correlated within the same
channel and a time delay can be measured between this component of two
LPRM detectors at different levels. The second component, which is
dominant at low frequencies, is both radially and axially correlated;
moreover, it oscillates in phase all over the core and is correlated
with process variables such as core flow and pressure.

The major source of radially uncorrelated noise is the pertur-
bati?ns in neutron flux caused by voids in the vicinity of the neutron
detectors. This generally accounts for the increased noise seen by
the LPRM detectors at high frequencies. Note that the detectors near
the top of the core (detectors C and D in Figure 5.1) see more
radially uncorrelated noise (presumably because there are more voids)
than those near the bottom.

The APRM signal is a measure of the radially correlated sour-
ces of neutron noise in the core, whereas the difference between APRM
and LPRM noise is an indication of the uncorrelated noise at a given
detector location. Because the APRM signal is made up of the sum of
20 to 30 LPRM signals, any portion of the individual signals that is

uncorrelated will tend to be reduced in the total signal by a factor

of approximately one over the square root of the number of signals in
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the sum. The overall fluctuations in core-voids introduce a feedback
to the core dynamics which, when coupled with the thermal hydraulics,
causes correlated low-frequency fluctuations. This is believed to be
the source of the characteristic 0.5 Hz resonance seen in the PSD of

all APRM signals.
5.2 Relationship between BWR Noise and Stability

The stability of BWRs is normally evaluated using the
reactivity-to-power transfer function obtained either from deter-

42-149

ministic codes or from deterministic experiments using pseudoran-

dom binary signals (PRBS) to stimulate reactivity perturbations.53_59
However, when trying to estimate the stability from noise measure-
ments, the transfer function is not measurable because the input is
unknown and stochastic. It will be shown‘in this section that, in
spite of this handicap, the stability can be estimated from noise
measurments; in other words, that there is stability information in
the neutron noise. Section 5.3 will describe some of the mathematical
methods that can be used to extract this information.

Aspreviously stated, there are two components in the normal
neutron noise, but only the correlated part is related to the reactor
stability. This part is believed to be caused by perturbations in
global reactivity, which are seen in the neutron density through the

reactivity-to-power transfer function. The neutron noise, n(s), as

seen by the in-core detectors is given, then, by the expression

n(s) = D(s) G(s) p(s) + v(s) (5-1)
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where
p(s) = Reactivity perturbations
G(s) = Reactivity-to-power transfer function
D(s) = Detector transfer function
v(s) = Uncorrelated noise introduced by the detection

processes and local effects.

Therefore, n(s) contains not only the poles of G(s) but also the ones
of p(s). The reactor stability is related to the position of the most
unstable pole of G(s); thus, if Equation (5-1) is valid, the necessary
information is included in the neutron noise. The point that needs to
be proven is that the correlated part of the neutron noise is caused
by reactivity fluctuations, in which case Equation (5-1) holds.

Figures 5.3a and b show the PSD of an APRM signal of the

Dresden-2 reactor>?,105

at two operating conditions: (a) full power
and (b) 52.77% power and 38.9% flow, which corresponds to the minimum
recirculation pump speed; this is the most unstable condition within
the normal operation map. The estimated decay ratio (obtained from
noise analysis) of condition (a) is 0.15, and the decay ratio of
condition (b) is 0.35. Two main differences exist between the PSDs
for these two conditions: first, the characteristic frequency dropped
from 0.71 Hz in the full-power case to 0.42 Hz in the low-flow
condition. Second, the peak at the characteristic frequency is more
pronounced and looks sharper in the low-flow condition. The two above

differences can be explained by a change in the system transfer

function:
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Figure 5.3 Power spectral density of a typical BWR APRM signal.
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(a) It was established in Chapter 4 that the characteristic fre-
quency of the reactivity-to-power transfer function is
inversely proportional to the sweep time of the steam bubbles
in the core. Therefore, a lower frequency is expected at
the low-flow condition due to the reduced channel inlet
velocity. The reduction in frequency as well as its actual
value is in good agreement with computer simulations.

(b) If the peak observed in the neutron noise PSD corresponded
to the peak in the reactivity-to-power transfer function,
then it would have to be sharper at the low-flow condition
due to the reduced stability. Furthermore, the numerical
value of the decay ratio obtained from the neutron noise is

in good agreement with computer simulations.103,110

Both of the: above points imply that the peak in the neutron
noise PSD is due to the characteristic peak of the reactivity-to-
power transfer function; therefore, the correlated component of the
neutron noise must be caused by global reactivity fluctuations and,
thus, it contains stability information.

Once we have confirmed that Equation (5-1) is valid, iden-
tification of the poles of n(s) can be used to evaluate the reactor
stability. However, since we can measure only the output noise and
not the transfer function directly, it is impossible to distinguish
between oscillations caused by the reactivity-to-power transfer func-

tion and those caused by the fluctuations in the process variables
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themselves. For instance, if the pressure control system were out of
tune, and it were introducing a sinusoidal (DR = 1.0) perturbation in
pressure (and consequently in reactivity), the neutron noise would
show an undamped oscillation with DR = 1.0, but it would be due to the
control system stability, not to the reactor thermal hydraulics.
Therefore, by measuring the noise we can only measure the "output”
stability; if an instability is found, it is up to the noise analyst

to identify it with a physical phenomenon.

5.3 Methods to Measure Output Stability

In this section we discuss the characteristics of several

methods to measure the output stability.

5.3.1 Autocorrelation Function

The autocorrelation function of a sampled signal, x(t), is
defined as

1 T
c(t) = lim — | x(t)x(t-1) dt , (5-2)
T»>eo T O

where it has been assumed that the signal is zero before the start

of the measurement at time t = 0. The correlation can be estimated

from a sampled sequence, x(tji), as®6
1 N
C(nAT) =z ] x(ty) x(ty-nAT) . (5-3)
i=1

The standard deviation of the error made in the estimation of

typical autocorrelations in BWRs is approximately constant for all
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9 The autocorrelation of stable systems decay

time 1ags.7
exponentially; therefore, the relative error in the estimation
increases exponentially. The more unstable the system, the slower the
autocorrelation decays and, therefore, the smaller the relative error;
the error in the estimation of the autocorrelation function thus
depends on the stability of the system itself.

The apparent decay ratio (see Chapter 3) can be measured
directly from the correlation function. The asymptotic decay ratio
can be estimated as the limit of the series formed by the decay ratios
between every two consecutive peaks. The apparent decay ratio is a
well-defined quantity and can be estimated using relatively small
lengths of data; however, the asymptotic decay ratio depends on the
values of the autocorrelation at large lags and, therefore, the preci-
sion of the estimation depends largely on the system stability.
Nevertheless, given enough time for the autocorrelation to converge,
this is the most accurate method of measuring the asymptotic decay

ratio because it does not rely on any assumption or model fitting.

5.3.2 Autoregressive Modeling

69,70,75 can be

The autoregressive (AR) modeling technique
thought of as an attempt to improve the convergence rate of the auto-
correlation function. A univariate AR model of order N for the time
series x(t) is of the form

N

x(t) = ) A x(t-kAt) + v(t) , (5-4)
k=1
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where Ay are the AR parameters and v(t) is a residual noise sequence
whose variance is minimized by the model. Given a model order the
model parameters, Ay, satisfy the Yule Walker equations®9,70,75
(see Appendix A for details).

Ak Ci_k Py (5-5)
1

(@]
1]
[N o 14

k
where C; is the autocorrelation function evaluated at time lag
T = iAt.
The AR parameters for a model of order N are defined if the
correlation is known for the first N time lags. Then, as shown in
Appendix A, the AR-consistent correlation function, C;', is given by

the expression

N

Ci' = ) Ag Cig' 5 i=N+1,... (5-6)
and

Ci' = Ci ; i=0,1,...,N . (5-7)

In this manner we see that the AR model takes the first N
lags in the correlation (the ones with smaller error) and predicts
the rest in a consistent manner. The asymptotic decay ratio can be
estimated from the AR-consistent correlation even if the real corre-
lation is not converged enough to define it.

A serious problem with the AR modeling technique is the deter-
mination of the "optimal” model order: 1low orders use well-converged
correlation lags, but they do not have enough parameters to describe

the system accurately; high order models, on the other hand, have
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enough parameters to describe the system, but they use unconverged
correlation lags. Therefore, there is an "optimal™ order that sup-
posedly produces a minimal error. There are several criteria
described in the literature to determine this optimal model order; the

1ok which takes

most commonly used is Akaike's information criterion
into account the amount of data used, the model order, and the stan-
dard deviation of the residual sequence. The model order is chosen so
that the joint probability of all the measurements (i.e., the likeli-
hood function) is maximum. This is equivalent to minimizing the
following function

AIC = M 1n(02/c0) + 2N (5-8)

where
M = Total number of samples used

2

o = Variance of the residual noise

N = AR model order.

Assuming that the AR model order is determined, there are
several methods of estimating the asymptotic decay ratio from the AR
parameters:

(a) The first approach is to use the AR-consistent correlation
function defined by Equation (5-6) and measure the decay
ratio directly. This correlation is normally well behaved
and the decay ratio between consecutive peaks converges
rapidly to the asymptotic value. The apparent decay ratio

of the autocorrelation can be measured directly.
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(b) Another approach is to obtain the impulse response of the AR

(c)

model. It is shown in Appendix A that the AR model assumes
that the system has only one more pole than zeros (i.e.,
l-zero/2-poles, 2-zeros/3-poles, etc.). The impulse
response, hj, of this type of systems is equal to an initial
value response and can be calculated recursively according
to the equation
N
hy = L A by (5-9)
k=1
with initial conditions h0= 1 and h.j= O.
A similar estimate can be obtained by using the
properties of the cross—correlation function (see
Appendix A)
N
hy =Ci' = 1 A Cim' (5-10)
k=1
where C;' is the AR-consistent autocorrelation function.
A third method is based in the frequency response of the AR
model and determines the position of the most unstable pole

of the model. The Fourier transform of Equation (5-4) is

X(w) = ) A X(w) DK + V(w) , (5-11)

where D is the backshift operator

-2 TiwAt
e

D = H (5-12)

therefore,
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X(w) = . (5-13)

If V(w) is close to a white noise, the poles of X(w) are the
zeros of the denominator, which is a polynomial in D. Note
that there are N poles for 0 < w < Nyquist-frequency. The
zeros of the denominator can be obtained by using Newton's
method in the complex domain. Figure 5.4 shows the magni-
tude squared of equation (5-13) for a typical 30th order
model. The figure has been plotted in three dimensions to
display the whole complex or s—plane. The left vertical
axis corresponds to the frequency axis; thus, the magnitude
in this plane is the PSD.

Newton's method requires a starting point in the
s-plane which is close to the solution. This first guess
can be estimated in several ways. The most straightforward
method would be to search for the frequency, w, of the peak
of interest in the PSD; then, the starting point would be
s = O+jw. This approach works most of the time, specially if
the pole is close to the imaginary axis (decay ratio > 0.5),
but the iterations might possibly converge to a different pole
if it is far away as can be seen in Figure 5.4. The starting
guess can be improved if an estimate of the real part of the
pole can be obtained. Following a conformal mapping procedure

in the closed-loop transfer function similar to the one used
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by Smith!0! in the open—-loop, it can be shown that an estimate

of this real part is

- dw -
°= d¢|w=wmax (5-14)

where ¢ is the phase of the transfer function (Equation
(5-13)) in radians and o will have the units of w. wpax
corresponds to the frequency where the derivative of the phase
is a maximum. An improved starting guess is then s = octiw.

If a different starting point is used for each of
the peaks in the PSD, a set of AR poles is obtained. If the
one with the smallest real part is chosen, it should yield
the same asymptotic decay ratio as methods (a) and (b).
Note, however, that the decay ratio for the other peaks is
also available. This is the main advantage of this approach

compared to the other two.

5.3.3 Power Spectral Density Fit

A procedure similar to that in part (c) of the last section
cannot be applied to the measured PSD directly because the PSD is
only defined along the frequency axis. However, a nonlinear fit
with poles and zeros can be performed on this data and an asymptotic
decay ratio can be obtained from the fitted parameters.

The functional form of the PSD is a ratio of polynomials
with even powers in frequency. The fit should be weighted by the

inverse variance of the PSD, given by the expression66

52 = PSD(w)
N

(5-15)

’
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where N is the number of blocks used in the fast Fourier transform

(FFT) analysis to generate the PSD.

5.4 Validation of Noise Techniques Against

Computer—Generated Data

To demonstrate the validity of the methods described in Sec-
tion 5.2, noise data for a system with 3 zeros and 4 poles were
obtained from computer simulations by solving the corresponding
fourth-order differential equation driven by a Gaussian white noise.
The four poles were located at s = -0.05*0.5i Hz and s = -0.1+0.1i Hz.
The zeros were located at s = -0.05 Hz and s = -1*i Hz. A time series
of 3 hours of data was generated and AR models of orders 10, 30, and
50 were utilized to fit the generated data. The AR-consistent corre-
lations are plotted versus the computer—generated correlations in
Figure 5.5. The AR-PSDs'for the three model orders are shown in
Figure 5.6.

In addition, a nonlinear fitting routine was used to fit a
second order system (only 2 poles) and a 3-zeros/4-poles model. The
results of the fits are shown in Figures 5.7a and b.

After all these data were reduced, a stability analysis was
performed using the techniques described previously. The results
are shown in Table 5.1. It can be observed that all methods worked

reliably except, as expected, the second order fit.
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Figure 5.5 Comparison of AR-consistent versus measured
autocorrelation functions for computer generated data.
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(a) Second order fit
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Table 5.1

RESULTS OF THE STABILITY ANALYSIS OF
COMPUTER GENERATED DATA

Method Asymptotic Apparent Apparent
Decay Ratio Decay Ratio Decay Ratio
Impulse Response Correlation
Exact 0.53 0.24 0.27
Correlation function 0.50 - 0.27
PSD fit
0/2 order 0.28 - -
3/4 order 0.54 - -
AR model order 10
Most unstable pole 0.49 - -
Impulse response 0.49 0.37 -
Consistent correlation 0.49 — 0.37

AR model order 30

Most unstable pole 0.55 — -
Impulse response 0.55 0.25 -
Consistent correlation 0.55 - 0.26

AR model order 50
Most unstable pole 0.54 - —
Impulse response 0.54 0.24 -
Consistent correlation 0.54 - 0.27
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5.5 The Algorithm to Estimate BWR Stability

from Noise Measurements

After consideration of the advantages and disadvantages of
all the methods presented so far to estimate the BWR stability from
noise measurements, an integrated algorithm has been developed which
performs this task in an optimal manner. This algorithm has been
implemented as a package of FORTRAN-77 subroutines, which are
described in detail in Appendix B. In this section, only the high-
lights of the present methodology are presented. The main advan-
tages of this algorithm with respect to the previously existing

methodologies70_76

are

(a) First, the asymptotic decay ratio of the reactivity-to-power
transfer function is obtained. Whereas the result of previous
methods was an apparent decay ratio of the whole system. In
contrast, if more than one resonant frequency is present in
the reactor response, the present method makes an effort to
try to determine which one corresponds to the reactor transfer
function.

(b) This algorithm is designed so that it can perform in an auto-
mated manner, without the need of an expert noise analyst to
validate the results. Most of the effort during the calcula-
tion is directed towards validating these results by using a

priori knowledge, which is provided as a series of heuristic

rules, and a series of self-consistency checks.
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Since the emphasis of the present technique is on having a
reliable, completely automated system, considerable effort is spent on
the determination of the confidence level of the estimate based on a
priori knowledge and consistency checks. It has been our experience
that any of the methods described in the previous sections will fail
(i.e. yield the wrong decay ratio) given the appropriate combination
of poles and zeros in the neutron PSD. For this reason, the DR is
computed in three different ways for each set of data. A set of
heuristic rules is built into the subroutines to check for self-
consistency among the set of the estimated DRs. A best estimate DR is
obtained and then checked again for consistency with available noise
descriptors, such as the autocorrelation function or the AR impulse
response. In addition, a priori knowledge about BWR behavior, such as
the frequency of the charateriétic resonance and the expected shape of
the PSD, is tested. The three different DR estimates are:
(a) apparent DR of the correlation function, (b) asymptotic DR of the
AR impulse response, and (c) DR estimated from the position of the
most unstable pole of the frequency response equivalent of the AR
model.

An estimate of the statistical precision is also obtained.
For this purpose, the total data length is divided into a set of
blocks and DRs are estimated for each block as well as for the
average. In addition to the pure statistical error, the DR estimated
from the average PSD compared to the individual results yields an

estimate of the systematic or bias error.
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This diagnostic technique has been implemented in the ORNL
on-line surveillance system103 and will be tested in a commercial
BWR. We expect a rough estimate of the DR every ten minutes and a
more accurate one, including the error estimate, approximately every

hour.

5.5.1 Application of the Algorithm to Computer Generated Data

The present algorithm has been extensively validated against
computer—-generated data. For this purpose, autocorrelation functions
corresponding to systems with different sets of poles and zeros were
fed into the algorithm and the results are compared with the theoreti-
cal answers. The results of these comparisons were excellent. Some
examples are presented in Tables 5.2 and 5.3. These tables contain
the pole/zero configuration of the system along with the AR model
order used and the results of the algorithm. These results are

Sampled At. This corresponds to the original sampling time
used to calculate the autocorrelation function.

AR At. The algorithm has the capability of resampling the
raw autocorrelation function in order to increase the effective
sampling time for the AR model. This will occur if the original
sampling time is too fast or if the algorithm senses that there are
low-frequency components which need to be modeled in order to obtain
an acceptable result. This resampling is performed if the maximum
model order allowed for the calculation is not large enough to mini-

mize Akaike's information criterion.lO"
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Table 5.2
RESULTS OF THE NOISE STABILITY ALGORITHM

APPLIED TO COMPUTER GENERATED DATA
CASES (a) THROUGH (d)

Case (a) Case (b) Case (c) Case (d)

Poles -0.0441+0.41 -0.0441+0.41i -0.0441%0.41i -0.0441%0.41
(Hz)

Zeros - -1.0 -0.1 -0.01
(Hz)

AR Order 10 10 20 30
Sampled At 0.1 0.1 0.1 0.1
AR At 0.1 0.1 0.2 0.2
Decay Ratio 0.50 0.50 0.54 0.51
Nat. Freq. (Hz) 0.40 0.40 0.40 0.42
Cofidence Level 7 7 6 4
DRC 0.50 0.50 0.54 0.51
FNC 0.40 0.40 0.40 0.42
IERC 0 0 0 0
DRS 0.50 0.50 0.54 0.51
FNS 0.40 0.40 0.40 0.42
IERS 0 0 -1 0
DRP 0.50 0.50 0.54 0.51
FNP 0.40 0.40 0.40 0.42
IERP 0 0 0 0
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Table 5.3
RESULTS OF THE NOISE STABILITY ALGORITHM

APPLIED TO COMPUTER GENERATED DATA
CASES (e) THROUGH (h)

Case (e) Case (f) Case (g) Case (h)
Poles -0.0441+0.41i -0.0067%0.41 -0.147%0.41 -0.1
(Hz) -0.02%0.11 -0.02+0.11 -0.02+0.11i
Zeros -0.1 -0.1 -0.1 ——
(Hz) -0.5+0.51 -0.5+0.51 -0.5+0.51
AR Order 20 20 15 10
Sampled At 0.1 0.1 0.1 0.1
AR At 0.4 0.4 0.4 0.1
Decay Ratio 0.51 0.90 0.19 -999
Nat. Freq. (Hz) 0.40 0.40 0.37 -999
Cofidence Level 3 4 2 -7
DRC 0.24 0.48 0.28 -999
FNC 0.40 0.40 0.40 -999
IERC 0 0 0 -1
DRS 0.30 0.90 0.32 =999
FNS 0.10 0.40 0.10 -999
IERS 0 -1 0 =2
DRP 0.51 0.90 0.19 -999
FNP 0.40 0.40 0.37 -999
IERP 0 0 -2 -3
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Decay ratio. This is the best estimate of the asymptotic
decay ratio produced by the algorithm and it is the main result.

Natural frequency. This is the natural frequency of

oscillation.

Confidence level. This number represents the goodness of

the fit. A level of +7 is maximum and a level of -7 is minimum. As
long as the level is greater than 3, the estimate is probably good.
If the level is negative, the estimate is worthless.

DRC. The apparent decay ratio of the autocorrelation
function.

FNC. The apparent natural frequency of the autocorrelation
function.

IERC. Error‘code generated by subroutine DRCORR while
calculating the apparent decay ratio of the autocorrelation. See
the subroutine listing for details.

DRS. The asymptotic decay ratio of the impulse response
function generated from the AR model.

FNS. The asymptotic natural frequency of the impulse
response.

IERS. Error code generated by subroutine DRTIME while

calculating the asymptotic decay ratio of the impulse response. See
the subroutine listing for details.
DRP. The asymptotic decay ratio estimated from the

frequency domain pole search.
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FNP. The asymptotic natural frequency estimated from the
frequency domain pole search.

IERP. Error code generated by subroutine DRFREQ while
calculating the asymptotic decay ratio from the frequency domain
pole search. See the subroutine listing for details.

The first case in Table 5.2 corresponds to a pure second-order
system with a decay ratio of exactly 0.5. We observe that for such a
well behaved system, all methods work perfectly. Indeed, the
confidence level is +7 and all estimates agree.

A major problem with AR models is their inherent difficulty
with representing zeros. Indeed, AR models are formed just by poles
in the frequency domain, and it takes an infinite number of poles to
represent exactly a zero. Cases (b) through (d) in Table 5.2 confirm
this idea, but they show that the present algorithm is capable of
performing acceptably well even under adverse circumstances. For
these three cases we conserve the same poles than for case (a) (i.e.,
decay ratio 0.5) but we introduce a zero at different frequencies. In
theory, the AR model should have the greatest problem with the lowest
frequency zero (case (d)). This is precisely what happens. We
observe first that the AR model needed to double the sampling time and
use model orders as high as 30 to represent case (d). The confidence
level came down from +7 to +4, but the estimate of the decay ratio is
still acceptable. Summarizing, the algorithm was smart enough to
realize that this cases were more difficult to solve and it adjusted

itself to obtain the best possible estimate of the solution.
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Table 5.3 (cases (e) through (h)) show how the algorithm
behaves under difficult conditions. Cases (e) through (g) highlight
the problem of the low—-frequency resonance. In this problem, a reso-
nance exists at a frequency lower than that of the reactivity-to-power
transfer function. The pole causing this resonance, having lower
frequency, has a smaller real part and thus dominates the asymptotic
behavior of the response, but the decay ratio of the pole of interest
is larger. The low-frequency pole has a real part of -0.02 Hz and a
decay ratio of 0.28.

The pole in case (e) has a decay ratio of 0.5. In this case
we observe that the apparent decay ratio of the autocorrelation is
very poor, the asymptotic decay ratio of the impulse response,
however, yields the decay ratio of the low-frequency pole, due to its
dominance of the asymptotic behavior. Fortunately, the frequency
domain search is able to perform properly for this case and yield the
correct answer which is the best estimate value taken by the
algorithm. However, given the disparity between the results, the con-
fidence level 1is marginal at a value of +3.

In case (f) the problem is better defined. The transfer
function pole has now a smaller real part than the low-frequency
pole, because the reactor decay ratio is now 0.9. 1In this case we
observe that both the impulse response and the pole search methods
work properly. The confidence is moderate, +4, because the sampling

time had to be doubled twice to allow for the low-frequency modeling.
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Case (g) represents the opposite case. Here, the low-
frequency pole has a smaller real part and a larger decay ratio,
because the reactor decay ratio is only 0.l. This is an extremely
difficult problem to solve, but the pole search part of the algorithm
is still able to locate the reactor pole. The estimate is of the
order of magnitude, but it is not as accurate as when the decay ratios
are high. Nevertheless, we should consider a success that the
algorithm is capable of finding a solution even in a difficult case
like this. Of course, the confidence level is low, +2, suggesting to
the user that this reactor condition is a difficult one for a decay
ratio estimation.

Finally, in case (h) we present a case in which no pole
exists. This would correspond to a case in which the operator made
a mistake, and the signal supplied was not from a BWR neutron detec-
tor, or a case in which a recording or processing problem of some sort
had happened. We observe that the algorithm detects this problem
inmediately and returns a confidence level of -7.

In summary, we can say that the algorithm works extremely
well. It not only supplies the asymptotic decay ratio accurately,
but it also is able to determine abnormal data sets and use the most
appropriate method for the particular condition. We have found the
confidence level estimate to be of great usefulness, especially when

an on—-line or automated diagnostics system has to be implemented.
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5.5.2 Application of the Algoritm to BWR Data

53=56 noise

During the Peach Bottom stability tests,
(unperturbed) data was recorded 1n digital form immediately after or
before the pseudorandom binary signal (PRBS) perturbation tests. Some
of this noise data was made available to the Oak Ridge National
Laboratory by the Electric Power Research Institute (EPRI). The typi-
cal length of the nolse recordings was 25 minutes; however, we
recelved only about 3 minutes worth and only for test 3PT3. We found
that this short time was 1nadequate to accurately define the decay
ratio (DR), at least for these relatively stable conditions
(DR < 0.5). Nevertheless, we present here the results of this analy-
sls to show that, even with these short record lengths, a "“reasonable”
estimate can be obtalned. We also received from EPRI the PRBS data
corresponding to the same 3PT3 test. In this case we had a full
25 minute recording. Even though this was not noise data, we treated
it as such, because the 1nput perturbation 1s random in nature.

We estimated the "output” stability as if we did not know the input,
which 1is the case 1In the nolse recordings. We show that we can obtain
a good estimate from this type of data without making use of the input
information.

The estimated DR from the noise recordings (3 minutes) was

DR 0.39. The estimated DR from the PRBS data treated as noise was

DR 0.53, which compares well with the published DR results using the
standard transfer function technique, DR = 0.50.%6 Table 5.4 and

figures 5.8 and 5.9 summarize the results of these analyses.
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Table 5.4

RESULTS OF STABILITY ANALYSIS OF PEACH BOTTOM
TEST 3PT3 DATA

Asymptotic Natural Frequency
Decay Ratio (Hz)
Noise data (3 minutes) 0.39 0.38
PRBS data (25 minutes) N 0.53 0.38
Transfer function results 0.50 0.41

*from Reference 56

A different set of data was also available to validate this
technique. This data was obtained during the local stability tests

performed at the Dresden-2 reactor.>9» 10

For these tests, the reac-
tor was operated at the intersection between the minimum recirculation
pump speed and the 100% flow control line, which is the most usstable
point of the normal operating range. This corresponded to 52.77% power
and 38.9% flow. The decay ratio estimated for this condition was
0.35, whereas the decay ratio at full power was 0.l1l5. Unfortunately,
this number cannot be compared to transfer function measurements,
simply because they were not performed. However, computer
calculations, both by Exxon Nuclear Corporation and Oak Ridge National
Laboratory predicted very similar decay ratios for both conditions.l055110

In summary, the present technique works properly with both

computer—generated and real-world data.
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Figure 5.8 Comparison between measured and AR-model predicted
power spectral density for noise data.
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CHAPTER 6

NONLINEAR SYSTEM DYNAMICS

The basis of linear system dynamics is the superposition
principle, which states that if a system is linear the response is
proportional to the input. In the same way, the response to the sum
of two different inputs is equal to the sum of the responses to both
inputs. This is the basis for the transfer function analysis used in
linear dynamics because, as shown in Chapter 3, a transfer function
completely defines the dynamics of a linear system. In nonlinear
dynamics, however, the superposition principle does not apply and the
response of a system to different inputs cannot be characterized by a
single transfer function.

One characteristic of nonlinear systems is that they are able
to excite frequencies in the output response which- are not contained
in the input signal. Normally, the frequencies excited are harmonics
of the input frequencies, but this is not necessarily the case for all
nonlinear systems. In particular, some systems could excite subhar-
monics (lower frequencies) of the input frequencies. A typical
example of nonlinearity is a saturation. For instance, an electronic
amplifier will perform linearly as long as the output signal is small,
but if the output approaches the voltage of the power supply, the out-
put signal becomes deformed. In this fashion, the output to a sine

wave is chopped at the tops and it looks more like a square wave,
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which contains higher frequencies (harmonics). The new frequencies
are harmonics of the original because the output signal must be
periodic with period equal to the one of the input signal. This
example shows one of the main characteristics of non-linear systems,
which is that they behave in a linear fashion as long as the output is
of small magnitude, and nonlinearities become important as the magni-
tude increases.

A nonlinear effect of particular importance is the appearance
of limit cycles. Within linear theory (see Chapter 3), if one of the
poles has a positive real part, the system becomes unstable and the
solution is a diverging exponential whose magnitude will grow indefi-
nitly. However, many nonlinear systems under these conditions exhibit
periodic bounded solutions, which are called limit cycles. Limit
cycles are commonly represented as trajectories in phase space (the
space of the dependent variables) with time being a parameter of the
trajectory.

A typical example of the development of a limit cycle is
presented in Figure 6.1. The point (0,0) is an unstable equilibrium
point. Close to this point (see the insert in Figure 6.1) the trajec-
tory behaves linearly and spirals away exponentially. However, if we
look at the whole picture, we observe that the trajectory stays
bounded and it eventually converges to a closed curve which defines

the limit cycle.
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Development of a typical limit cycle in phase space.
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The stability of linear systems is characterized by an
asymptotic decay ratio (see Chapter 3). In nonlinear systems exhi-
biting limit cycles, however, the decay ratio is always equal to 1l.0.
A parameter of more interest in the nonlinear regime, then, is the

amplitude of the oscillations.

6.1 Subharmonic Excitation: Feigenbaum's Theory for

the Transition to Aperiodicity

As stated before, the most common effect of nonlinearities is
the excitation of higher harmonics of the input frequencies. However,
there are some systems in which the nonlinearities excite lower
harmonics (i.e., subharmonics) also. In some of these systems the
excitation of subharmonics eventually produces aperiodic or chaotic
behavior as a system parameter is changed. In these systems the solu-
tion is stable and converges to the equilibrium point as long as the
value of a parameter, p, is less than a critical value, Py When
Py is surpassed, the solution becomes unstable and a limit cycle of
period T is reached. When p is made greater than P, a new critical
value, the limit cycle becomes unstable and a new limit cycle of twice
the period appears (i.e., the first subharmonic is excited). Further
increases of the value of the parameter result in a cascade of insta-
bilities with each successive limit cycle being unstable at a value of
the parameter Pje The successive periods are 23T and, thus, the

th

j subharmonic is excited. Each of the successive limit cycle insta-

bilities 1is called a period-doubling pitchfork bifurcation.
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Numerical experiments have shown that the critical values, Pj>
at which the bifurcations occur converge geometrically to an accumula-
tion point. In other words, the bifurcations occur closer and closer

as j is increased. Furthermore, the convergence ratio, defined as

§: = Pj " pj—l
i~ . - Ps
Pj+l 3

(6-1)
converges to a universal constant, § = 4.6692..., which was predicted
by Feigenbaum's theoryez’83 and which has the same universal value
regardless of the form or order of the system of equations. A second
Feigenbaum constant, a = 2.5029..., is called the pitchfork scaling
parameter and relates the relative magnitudes of the new subharmonic
frequencies.

Feigenbaum's theory was developed for one-dimensional nonin-
vertible maps and then expanded to nonlinear differential equations
based on properties of the Poincare map.80

A one-dimensional map is simply a function, F, or a recursion
formula which relates the value of the dependent value, xy, to itself
one increment of time before. That is

X = F(Xp-1) - (6-2)
For instance, the relation

X = 4b X1 (1=x%p_1) (6-3)
is a one-dimensional map which is graphically represented in

Figure 6.2a. This map is clearly noninvertible because there are two

possible values of x,_j which give the same x.
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Figure 6.2 Graphical representation of the map xx = 4B xp_1 (l-x._1)
for the first four iterations.
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The equilibrium points are found by the intersection of the
map with the line xp = Xyp-1. These points are stable if the absolute
value of the derivative of the map is less than 1.0. Otherwise they
are unstable. By changing a parameter (for instance b of
Equation (6-3)) we can make the equilibrium point unstable.

Feigenbaumeo'83

shows that for maps with quadratic extrema (i.e., F
and its derivative are continuous), whenever the equilibrium point of
F(x) becomes unstable, two new equilibrium points appear in the second
iterate of F (Fz(x)=F(F(x))) and, thus, the solution of the map bifur-
cates (splits) into two points (Figure 6.2b). If we keep increasing
the parameter b, then Fz(x) becomes unstable, but four equilibrium
points of F“(x) appear (Figure 6.2d). Thus F2(x) bifurcates and the
process continues ad infinitum when Fq(x) bifurcates and then Fe(x)
and so on. Note that there is only one equilibrium point for F3(x)
and it is unstable.

A direct result of Feigenbaum's theory is that the values of
b, at which the bifurcation occurs, converge to the accumulation point
be in a geometric fashion, with a convergence rate § = 4.6692...,
independently of the form of the map. For values of b greater than
b, the solution has bifurcated an infinite number of times; there-
fore, its period is infinite. That is, the solution is aperiodic.

The process through which the aperiodic or chaotic behavior is
reached is called in the literature a "cascade of period-doubling

pitchfork bifurcations.” This process is represented in Figure 6.3
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X (k)

Figure 6.3 Bifurcation diagram for the map xp = 4B x 1 (l=x%p_1)-
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which shows the bifurcation diagram for the map of Equation (6-3).
In this diagram the equilibrium points of Equation (6-3) are plotted
as a function of the value of the parameter b. We observe that when b
< 0.75 the single equilibrium point is stable. For b = 0.75 the first
bifurcation occurs and two points appear. From then on the cascade of
bifurcations starts. The geometric convergence of the critical bifur-
cation values is also obvious in this figure.

A second universal constant defined by Feigenbaum is the
pitchfork scaling parameter, ay, which scales the magnitude of the
successive bifurcations as shown in Figure 6.4. The value of aj
converges to a = 2.5029... as the bifurcation number increases.

Some nonlinear differential equations exhibit a similar
universal behavior as the one described for 1-D noninvertible maps.
This effect is explained in the literature using Poincare maps.80
A Poincare map corresponding to a particular solution of a system of
equations can be constructed by intersecting the phase space trajec-
tory of the solution with a predetermined surface. In this way a set
of points is obtained every time the trajectory intercepts the surface
in a predetermined direction. The 1-D map can then be formed graphi-
cally by plotting the consecutive points obtained in this manner.

If this map has a quadratic maximum, then the Feigenbaum scenario is
applicable. In this event, the set of nonlinear differential
equations associated with such a Poincare map is expected to follow

this scenario.
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Figure 6.4 Typical bifurcation diagram showing the scaling process.
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6.2 Period-Doubling Pitchfork Bifurcations in

Nonlinear Ordinary Differential Equations

In the previous section the transition to aperiodic behavior
through a cascade of period-doubling bifurcations, which is
experienced by some nonlinear ordinary differential equations, was
explained a posteriori in terms of Poincare maps. That is, once the
solution is found to undergo bifurcations numerically, the Poincare
map is formed and the behavior explained by the non-inversibility of
the map. In this section, however, we develop a procedure to gain
some insight to the necessary conditions which have to be satisfied by
a set of N coupled ordinary differential equations in order to exhibit
period-doubling bifurcations.

Upon elimination of N-1 dependent variables,.the resulting
Nth order differential equation can be written in general form as

N

Z Bn(X,t,P)
=0

dx(t)

Jen = F(t,p) , (6-4)

where B, are nonlinear coefficients which in general depend on the
value of the dependent variable, x, the independent variable, t, and
a parameter, p, that can be varied externally. F(t,p) is a forcing
function. Arbitrarily, and without loss of generality, we set By to
unity.

Let us assume that for a value of the parameter p = P, greater
than Py» the critical value, there is a periodic solution, xo(t),

which defines a limit cycle with period T. We are interested at this
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moment in the stability of the limit cycle with respect to changes in
the parameter p. Following a small perturbation, we can expect that
the new solution, x(t), will be similar in form to xo(t) but with dif-
ferent magnitude. Let us thus make a change of variables such that

x(t) = (1+M(t)) xo(t) . (6-5)
The new variable, M(t), describes as a function of time the change
in magnitude of the original limit cycle, xo(t), when the parameter

is changed. Note that from Equation (6-5)

dig(e) _ ¥ (my dhame)) g Rxg(e)

. (6-6)
at? 2o K dek dt(n7k)

We can introduce Equation (6-6) into (6-4) and, after some algebraic

manipulations, we obtain

N N k (n-k)
ny d®M(t) d xg(t)
nzan(Xo,t,Pl)kZO(k) dtk dt(n-k)

N
+ Y B (x,t,p) XUE) e by (6-7)
n=0 det

Since xo(t) is a solution of the original equation for p = p the

l,

following relation is satisfied

N dDxa(t)

L Ba(xg,t,p) — =% = F(t,p,) - (6-8)
n=0 dt

Therefore, Equation (6-7) becomes

(n-k) k
LY () By(x,t,p) & K)xo(t) 7 dM(t)

k=0 n=0 X ae(n-k) dek

N
== 2 ABn(Mat)p) dnx (t) ’ (6_9)
n=0 den
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where the term AB, is defined as
ABn(M,t,p) = Bn(x,t,p) - Bn(xo,t,pl) (6-10)
and, thus, it contains terms which depend on M and independent
terms. Let us collect all the independent terms of AB, in a
variable called I, (t,p) and all M-dependent terms in another

variable called D,(M,t,p). Then Equation (6-9) becomes

N k N n
dkMeey d%q(t)
C(M,t,p) =2 = - ¥V 1 (t,p) &EQE 6-11
kzo k(M E,p) — nZ:O n(t:p) —3 (6-11)
where
N (n-k)
C(M,t,p) = ) (E) B, (x,t,p) 9——ETE§§§51 5 k=1,...,N (6-12)
n=0
and

4

Dn(x,t)p) ] anO(t)

CO(M)t)P) = 2 [ Bn(x’t’p) + M(t) den

n=0

. (6-13)

Note that Equation (6-11) is formally very similar to the original
equation, (6-4). The only difference is that Cy is not equal to 1.0,
since from equation (6-12), and for k = N

Cy(M,t,p) = Cy(t) = xo(t) (6-14)
and, thus, Cy is a periodic function of period T. Furthermore, it
does not depend on M or p.

Let us define a new set of coefficients, Bnl, as

C
Byl(M,t,p) = —%

1 dkxg(t)
Xo(t) dtk

5
[(§)BaCx,t22) + 55 DO, p) ] (6-15)

| o~1 2

k=n
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1 dkxg(t)
Xo(t) dtk

N
F,(t,p) = = ] I;(t,p) . (6-16)

n=0
Note that all the coefficients are independent of the amplitude of
xo(t)- The equation for the limit cycle amplitude becomes

anl(t)

\ 1

= Fl(t,p) R (6-17)
n=0
where we have renamed M(t) as Ml(t).

This equation is formally equal to Equation (6-4), the origi-
nal equation. We observe, however, that the effect of the original
forcing function, F, has been completely lost because it was canceled
by the relation in Equation (6-8). All of the new coefficients, Bnl,
and forcing functions are now function only of xo(t) and the original

coefficients, B The form of the new coefficients is a ratio of

Sy
periodic functions (see Equation (6-15)) and, thus, they are periodic
functions. The period, however, is not necessarily the same as the

one of the original limit cycle, xo(t). For instance, recall that

tan(a/2) = lg%%%&%l ; (6-18)

consequently, given the right conditions, the new coefficients, Bnl,
could have a period twice as large as the original one (i.e., 2T).

Note that these conditions will not be met in general for all Nth

order differential equations. This is the reason why not all such
equations bifurcate.
If we consider now only very small perturbations of the

parameter p around the original value, P> then Ml(t) << 1.0, and
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Equation (6-17) can be linearized. We obtain; then, a linear equation
with periodic coefficients. This is a equation of the Floquet type,98
which has been amply studied. Floquet theorem says that the solution,
Ml(t)’ will be periodic of the same period of the coefficients, which
is twice as large as the period of the original limit cycle. There is
a set of Floquet exponents which determine the stability of the solu-
tion, that is, the exponents determine whether Ml(t) will follow a
decaying or a diverging oscillation.

The oscillatory part of Ml(t) represents a transient between
two limit cycles of x(t) for parameters P, and P, + Ap. As long as
Ml(t) is stable, following a perturbation in p there will be a
transient but x(t) will settle to a new limit cycle of different
magnitude with the same period as the previous one. Note that
Equation (6-17) is nonlinear and, thus, if Ml(t) became unstable for a
particular value of the parameter p, and if the right conditions
exist, Ml(t) could reach a limit cycle of its own, Mlo(t). For this
value of the parameter the solution of the original equation is

x (£) = (144, 0()) xo(t) (6-19)
where Mlo(t) has period 2T. Therefore, the new solution, xl(t), has
period 2T. Under these conditions, the equation has produced subhar-
monics of the original frequency in the solution. This process is
also called a period—-doubling bifurcation.

Equation (6-17) is exactly equal in form to the original

Equation (6-4). Therefore, the same procedure used for x(t) can be
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applied to Ml(t). Assuming that Ml(t) becomes unstable and reaches
a limit cycle (periodic solution of period 2T) for a parameter value
P = p, we make the change of variables
M (E) = (IM,(e) M %) . (6-20)
Following the same procedure outlined at the beginning of this

section, we obtain

N
d™o(t
] B20u,,t,p) STk (r,p)y (6-21)
= et
n=0
with the coefficients, an, and the forcing function, F2, defined by

equations similar to Equations (6-12) through (6-16).

Again, Cy is a periodic function, but now its period is 2T
(the period of Mlo(t)). Thus, if the right conditions are met, the
new coefficients, an could have period 4T and, consequently, Ml(t)
would bifurcate. The period of the original function, x(t), for this
value of the parameter is, therefore, 4T.

The same procedure can now be applied to Mz(t) and then to
M3(t). In general, the equation representing the magnitude at the
jth bifurcation is

N

z an(Mj,tsP)
n=0

L - py(erp) (6-22)

with
. N n
BnJ(Mj9t:p) = z [(k)Bk(Mj—l’t’p)

=N
L Ok,0
Mj-1(t)

1 d“Mi-1(t)
Mi_1(t) gk

Dy 3 (My-1,t,0) ] (6-23)
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and

N .
N - 5 1 akMj=1(t) . 6-24
i(t,p) n;oln (t,p) Mj-1(0) dek ( )

Note that given the appropriate conditions Mjo(t) is a periodic
solution of period 23T and the original variable, x(t), which is given
by the expression

x(t) = (LMy(E)) (1M 0(E)) e (14 (DX (8) ,  (6-25)
is also periodic of period 23T,

Equations (6-22) through (6-24) define a recurrence relation
for the magnitude of the successive bifurcations. Note that the
amplitude of Mj(t) is equivalent to the magnitude of the bifurcation
in the bifurcation diagram as shown in Figure 6.4. It has been
observed numerically that these magnitudes scale down in successive
bifurcations according to the universal parameter a. Thus,’ the ampli-
tude of the successive Mj(t) should scale accordingly.

The fact that the successive Mj(t) and Pj scale in a universal
fashion is very hard to prove from first principles; however, the
recursive nature of these equations suggests that such universality is
possible because, once many bifurcations have taken place, the infor-
mation from the original equation has already been lost and the only
important feature is the way in which the recursion is produced.

In summary, in this section we have studied some necessary
conditions for period-doubling bifurcations in ordinary differential

equations. We showed that



(a)

(b)

(e)

(d)
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general nonlinear ordinary differential equations can sustain
period-doubling pitchfork bifurcations of the original limit
cycle oscillations.
the underlying cause of these bifurcations is an instability
of the magnitude, M(t), of the limit cycle oscillations.
M(t) is a periodic function and may have a period twice as
large as the original because the coefficients of its dif-
ferential equation are formed by ratios of periodic functions.
some generic arguments have been made supporting the fact that

these equations may have universal scaling factors.



CHAPTER 7

A REDUCED ORDER NONLINEAR MODEL

Integrating a set of nonlinear differential equations is a
difficult task. The solution of at least one nonlinear system of
equations is involved at each time step. In addition, the stronger
the nonlinearity, the longer the computation time to solve the
problem. This is the reason we are interested in obtaining an
approximate solution based on a low-order model with as few equations
as possible. An additional advantage is that, having few equations,
the results can be studied in more depth, and a physical understanding
can be extracted from the numerical solution. In fact, some analyti-
cal work can be performed to increase the understanding of this
solution.

The approach taken in this section is to solve numerically a
low-order, nonlinear model of a boiling water reactor (BWR) and study
the qualitative aspects of the solutions. A model that gives more

accurate numerical solutions is described in Chapter 8.

7.1 The Reduced-Order Model

For the reasons expressed above, we want to use a model with
the lowest possible order (number of equations) which would represent
qualitatively the dynamic behavior of a BWR. We showed in Chapter 4

that the basic processes involved in BWR dynamics can be represented

136
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by one-point reactor kinetics, a one-node representation of the heat
transfer process in the fuel, and a two—-node representation of the
channel thermal-hydraulics to account for the void reactivity feed-
back. Based on these findings, we propose to use the following

reduced order model:

d;‘it) - p(z)'ﬁ ae) + A + £ (7-1)
d—ﬁ% = }% alt) + Ac (7-2)
9—dT§—t) = a, n(t) - a, T(t) (7-3)
ﬂg‘z"—(ﬂ +a, Bal0) 4o oy =k T(e) (7-4)
p(t) = po(t) + D T(t) , (7-5)

where n(t) is the excess neutron population normalized to the steady
state neutron population; c(t) is the excess delayed neutron precur-
sors concentration also normalized to the steady state neutron popula-
tion; T(t) is the excess average fuel temperature; and pa(t) is the
excess void reactivity feedback. Note that for this simple model,

the only nonlinear term appears in the neutronic equation through the
parametric feedback produced by the reactivity.

Parameters a, through a

1 are obtained from the fitting proce-

y
dure described in Section 4.2 so that the closed-loop poles and zeros
of this model correspond to the ones of the reactivity-to—-power

transfer function of the reactor. Since we are interested in the

nonlinear region above the threshold for linear stability, the
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parameters for the base case were obtained from a fit to the LAPUR
calculated transfer function for test 7N in Vermont Yankee,58 for
which conditions a limit cycle was experimentally observed. The

value of the parameters are presented in Table 7.1.

Table 7.1

MODEL PARAMETERS FOR VERMONT YANKEE TEST 7N

Parameter Value Units
a, 25.04 Ks~1
aj 0.23 s~1
a, 2.25 s~1
a, 6.82 s”2
k, -7.50x10~"4 K- lg™2
D -2.61x1075 k™1
] 0.056
A 4.00x10~5 s”1
A 0.08 s~1

The parameter k, which is directly related to the void reac-
tivity coefficient and the fuel heat transfer coefficient, controls
the gain of the feedback and,thus, defines the linear stability of
this reactor model. The value of ko given in table 7.1 is the criti-
cal value at which the model becomes unstable. By artificially
increasing the value of k above ko we can make the model unstable and,
under these conditions, we can study its behavior in the nonlinear
region.

An external source is needed to excite the model. The respon-

ses of the neutron signal to a reactivity step and to a step in heat
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generation in the fuel are presented in Figures 7.la and b respec-
tively. The reactivity step produces a very large first peak and then
it converges to the limit cycle. The heat generation step, however,
does not result in an overshoot, but it converges more smoothly to the
same limit cycle than in the reactivity step case. Based on these
observations, we applied the input source to the heat generation in

Equation (7-3) for the deterministic and stochastic analyses.

7.2 Model Qualification

The model parameters presented in Table 7.1 were obtained from
a frequency domain fit to the reactivity-to-power transfer function as
calculated by the linear code LAPUR. Therefore, for this fit, the
present model had to be linearized and then Laplace transformed.
Figure 7.2 presents a comparison between the transfer function for the
conditions of test case 7N of Vermont Yankee®8 calculated by LAPUR and
the transfer function of the linearized version of our simple model.
We proved in Chapter 4 that this model accurately represents the
linear dynamic behavior of the reactor when the appropriate parameters
are used.

Although the present model was proven in Chapter 4 to be based
on sound physical foundations, its validity is limited by the fact
that the thermohydraulic processes have been linearized. In view of
this approximation, the results of this model will be valid only for a
limited range of parameters around the nominal values presented in

Table 7.1 (see Chapter 8 for the results of a more accurate model).
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Despite this limitation, the model has proven to work remarkably well,
for instance it predicted the appearance of the experimetally observed

limit cycle.

7.3 Analytical Study

Given the low order of the model, we can perform some analyti-
cal studies on it to try to understand the behavior of the solution.
The first thing we should be concerned with are the equilibrium
points; these are obtained by setting the time derivatives in
Equations (7-1) through (7-5) to zero after a step perturbation of
magnitude A in the neutron population is applied in the heat genera-
tion term of Equation (7-3). Some straightforward algebra yields the
only two equilibrium points, which we name A and B.

A

fn=-a, c=—BA/(M), T=0, p,=0} (7-6)
and

B = {n=-1, c=-B/ (M), T=al(A-1)/a2,

pa=kal(A-1)/(a2ak)} . (7-7)

Equilibrium point A corresponds to the normal reactor operation, while
point B describes a shutdown condition. Note that by definition
n = (N-NO)/N0 and, consequently, n = -1 corresponds to N = 0, where N
is the absolute neutron density.

We can now study the local (linear) stability of the system of
equations describing the model. For this we linearize the equations

around points A and B and compute the eigenvalues of the resulting
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Jacobian matrix. By doing this, we find that point B is always
unstable for this type of perturbation and that point A is stable as
long as k < ko. For k > ko both equilibrium points are unstable.
Let us have a closer look at Equation (7-1). If we neglect
the delayed neutrons effects, it becomes

dn _ p(n+l)

It 1 . (7-8)

Therefore, no matter how negative the reactivity feedback, p, is,
dn/dt will always tend to zero when n approaches n = -1 due to the
fact that the reactivity feedback is introduced in the form of a
parameter in the equation. This phenomenon is known as parametric
excitation. Physically what this means is that the absolute neutron
population, N, cannot be negative. Therefore, the whole n = -1 line
in phase space, not just the point B, is unstable in the sense that it
repels the trajectories (solutions) if they get close to it.

The n = -1 line can not be crossed by the trajectories.

With the above findings in mind we can draw the phase-space
trajectories of the solutions of the present model. This is done in
the diagrams presented in Figures 7.3a and b, which correspond to
k < ko and k > ko respectively. It can be observed that case (a)
corresponds to a stable system. All the trajectories end up at
equilibrium point A; this situation represents normal BWR operation.
Once the linear stability threshold is crossed we have case (b) in
which the trajectory spirals away from eqilibrium point A, which has

become unstable. In both cases, the trajectories are parallel to the
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(b) k>k0@

Figure 7.3 Phase space trajectory of the solution close to the two
equilibrium points.
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ﬁ = -1 line as they approach it because they cannot cross it nor end
at the unstable equilibrium point B.

Case (b) is in what we have called the non-linear region.
We have already studied the local characteristics of the solution
close to A and B. Globally, we can have several types of solutions.
These types are graphically presented in Figures 7.4a through c.
Three cases are considered here: in case (a), the system is globally
unstable and the trajectory continually departs from point A.
Case (b) describes a situation in which the trajectory departs from
the equilibrium point, but due to the nonlinearities the system stabi-
lizes itself and the trajectory remains bounded, eventually converging
to a closed line. This line defines a limit cycle, which corresponds
to a periodic solution of fixed magnitude. Case (c) is similar to
case (b) in the sense that the trajectory is repelled by equilibrium
point A and at the same time remained bounded due to the nonlineari-
ties. The difference here is that no periodic solution (closed line)
exists; therefore, the trajectory stays bounded within a region, but
never converges to a closed curve or to an equilibrium point. This

region is called a strange attractor8?

and the solution of a system of
equations with a strange attractor is said to be aperiodic.

At this time it is hard to predict analytically which of the
three cases shown here represents the behavior of our model in the
nonlinear region, or even if all three are valid for different ranges

of some parameters. To determine this we will have to resort to

numerical solutions of the equations.
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In summary we have seen that the present model has two
equilibrium points. One of them, corresponding to a shutdown
configuration, is always unstable. The other point becomes unstable
when the feedback gain is increased above a critical value. When both
equilibrium points are unstable, nonlinearities are important and
fully define the dynamic behavior of the reactor. In the nonlinear
region limit cycles (periodic solutions) or strange attractors
(aperiodic solutions) are possible as a result of the interaction of

the two unstable equilibrium points and the phase-space trajectories.

7.4 Deterministic Numerical Analysis

For the deterministic analysis, a step—type perturbation was
used. As mentioned before, it was determined that the solution
would converge faster and more smoothly to equilibrium if the
perturbation were introduced in the heat generation term of the fuel
Equation (7-3); therefore, for all these anlysis a 10% perturbation in
the neutron population was introduced in the fuel equation at time
t = 0+, and then the solution was allowed to converge freely to its
final state.

It is of great importance to select the appropriate numerical

method for the solution of a nonlinear system of ordinary differential
equations. In particular, the stability of the method used should be

guaranteed for the specific set of equations to solve. Most ordinary

differential equation solvers require that the eigenvalues of the
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system lie within a stability region. For instance, the Runge-Kutta
methods require that all the eigenvalues lie within a circle of radius
1/At with center in the negative real axis and which passes through
the origin. The largest eigenvalue, then, sets the sampling time, At;
if a problem has eigenvalues of different magnitudes, it is said to be
stiff, because the slow eigenvalue solution (often the most
interesting) has to be obtained with the fast eigenvalue sampling
time, even if the fast transient has already died away. In our
particular problem, we will show that the nonlinearities introduce an
important higher harmonic contamination. In fact, all the harmonics
up to infinite frequency are present. If we used a Runge-Kutta
method, we would be forced to use a sampling time of zero to satisfy
the stability requirements. Fortunately, there are the so-called
implicit methods for ordinary differential equatioﬁ solutions whiéh
are absolutely or A-stable regardless of the time step. These methods
are stable regardless of the magnitude of the eigenvalues as long as
the real part is negative. The time step in these methods controls
the accuracy of the solution but not its stability. We used the
A-stable method in the LSODE package106 which has time step control
for the accuracy of the solution. As a general rule, we solved the

equations with a relative accuracy of 1074 per time step.

7.4.1 The Appearance of Limit Cycles

The numerical solution of the model shows that when the feed-

back gain, k, is made greater than the critical value, kO’ limit
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cycles appear. A limit cycle corresponds to a periodic and bounded
solution of a system of equations which describes a closed trajectory
in phase space. For the present model, phase space has five dimen-
sions which are: n, the neutron density; c, the delayed neutrons
precursors concentration; T, the fuel temperature; p,, the void
reactivity feedback; and dpa/dt, its derivative. Time is the para-
meter of the trajectory in phase space. The figures in this thesis
can only represent, however, two-dimensional projections of the true
five-dimensional limit cycle against some planes. Another type of
representation is the time trace of a particular signal. For
instance, the neutron density time trace presented in Figure 7.5a
shows the development of a typical limit cycle following a 107% step
perturbation when the system was originally in the unstable
equilibrium point. A detail of the time trace once the limit cycle
has been reached (Figure 7.5b) shows that the signal is periodic and
that the amplitude of the oscillation is about *157%, which is of the
same order of magnitude as the experimentally observed limit cycle for

test condition 7N at Vermont Yankee.58

This fact gives more credibi-
lity to the model and confirms that it is representing the general
dynamic behavior of BWRs not only in the linear domain but also in the
nonlinear region.

Further increases in the feedback gain have the effect of
making the reactor more unstable in the linear or local sense.

However, we found that in the nonlinear regime, this increase has the

effect of modifying the amplitude of the resulting oscillation.
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A limit cycle of large amplitude is presented in Figures 7.6 and 7.7

seen from different perspectives. The main characteristics of this

limit cycle can be studied in the time trace plot (Figure 7.6):

(a)

(b)

()

The neutron density shows a periodic series of pulses of large
magnitude. Between the pulses, the neutron population remains
at a low level close to the unstable shutdown condition
(equilibrium point B of Section 7.3).

The main feedback path is the channel void reactivity feed-
back. The average void fraction plotted in Figure 7.6 has
been obtained as the ratio between the void reactivity and the
void reactivity coefficient. It shows a slightly deformed
sinusoidal behavior, which defines the frequency of the
neutronic pulses. The pulses appear during the negative part
of the void fraction oscillation.

The fuel temperature rises sharply during the neutron pulse,
and then it decays exponentially according to the fuel time
constant. The temperature oscillation around equilibrium
becomes negative and, thus, produces a positive reactivity
feedback before the void reactivity does, but it is clear from
the timing of the neutron pulses that they are caused by the
void reactivity feedback rather than by temperature effects.
It can also be observed that the fuel temperature oscillation
merely follows the neutronics, whereas the void fraction
oscillation (determined by Equation (7-4)) dictates the

frequency of the pulses.
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Similarly to the case of the temperature oscillation, the
delayed neutrons precursor concentration seems to play a minor
role in the nonlinear reactor dynamics. It rises during the
pulse and then slowly decays according to its own time
constant. The precursors concentration has a major impact,
however, in determining the width of the pulse because the
precursors limit the rising and decaying rates for the neutron

density.107

So far we have described the limit cycle in the time domain.

In phase space we can represent the relationship between different

variables by projecting the five-dimensional limit cycle against

two-dimensional planes (Figure 7.7). Some interesting observations

can be made:

(a)

(b)

The plot of neutron density versus its derivative

(Figure 7.7a) shows a slight asymmetry which implies that the
pulse rises more sharply than it decays due to the effect of
the delayed neutrons. There is also a fast change of the
derivative on the upper part of the plot, which corresponds to
the summit of the pulse. Then the derivative tends to zero as
the neutron density decays towards its minimum value.

The neutron density versus fuel temperature plot (Figure 7.7b)
is even more interesting. The temperature rises as long as
the neutron density is positive. When the neutron population

reaches its minimum, the fuel slowly cools down. The delay
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Abetween the time at which the temperature oscillation becomes
negative and the time at which the sharp neutron pulse starts
can be easily recognized.

(c) Figure 7.7c shows how strongly correlated the neutron density
and the void fraction are because in the scale shown in the
figure it becomes impossible to resolve the width of the limit
cycle. When the void fraction is negative (positive reac-
tivity feedback), the power rises. At this moment the void
fraction increases, producing a negative reactivity effect,
which causes the neutron density to decrease. The void frac-
tion remains high as long as there is energy stored in the
fuel.

(d) As seen in Figure 7.7d (fuel temperature versus average void
fraction), the fuel temperature rises sharply, and then it
starts to decay. While it decays, the fuel transfers energy
to the coolant, and the void fraction increases. Finally, the
coolant convection takes over, and the void fraction starts

decreasing too. At this moment, a new cycle is started.

As postulated before, the dominant contribution to the overall
reactor dynamic behavior in the nonlinear regime is the void reac-
tivity feedback. The effect of the fuel temperature (Doppler) feed-
back can be further studied in Figures 7.8 and 7.9 which contain
neutron density time traces for the base case (Figures 7.8a and 7.9a)

and with zero Doppler feedback (Figures 7.8b and 7.9b). Even though
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the Doppler effect increases the magnitude of the feedback, we observe
that its presence actually stabilizes the reactor (the limit cycle
amplitude is smaller when the Doppler reactivity coefficient is taken
into account). This apparent paradox is due to the fact that this
type of feedback is practically in phase with the neutron dynamics
and, therefore, does not contribute to the oscillatory (out-of-phase)
type of instability. A second observation is that the time traces
have the same general behavior and pulse frequency with or without
Doppler feedback. This confirms the fact that the pulsed behavior of
the neutronics is indeed produced by the channel thermal-hydraulics

and the corresponding void reactivity feedback.

7.4.2 Limit Cycle Stability: Bifurcations

In Chapter 3 we defined the concept of stability for a linear
system. Here we will expand that concept to the nonlinear regime.

In the linear regime, the system is said to be stable if
following a perturbation the resulting oscillation is eventually
damped and the solution converges to the equilibrium state. For
instance, Figure 7.1b in page 141 contains a typical step response of
the present model in the linear region, when k < ko and consequently
the reactor is stable. When the system becomes unstable, however, the
solution does not converge to an equilibrium point, but to a new
equilibrium state defined by a limit cycle.

In the linear region the stability of the system is quantified

in terms of an asymptotic decay ratio (DR) defined in Chapter 3;
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however, in the nonlinear region, the asymptotic DR is always equal to
1.0, due to the appearance of limit cycles. Therefore, the DR is not
a good parameter to describe the dynamic state of the reactor in this
region. A better dynamic parameter in this region is the amplitude of
the limit cycle oscillations. Consequently, the concern in the nonli-
near region is the stability of the amplitude of the oscillations, and
not the oscillation themselves. To clarify this point let's look at
figures 7.10a, b, and c. These figures show the development of the
limit cycle for three different values of the feedback gain:
(a) k =1.2, (b) k = 1.4, and (c) k = 1.5. We observe a clear
difference among the way the limit cycle is reached in the three
cases. In case (a) the amplitude of the oscillation (which is equal
to the maximum value of the pulses, i.e., the signal envelope) follows
a smooth curve and promptly converges to the final amplitude.
In case (b) the amplitude oscillates around the final value but even-
tually converges to it. In case (c), however, the amplitude oscilla-
tes, but it never converges; it describes an undamped periodic
oscillation. This effect can be seen more clearly in Figures 7.10c,
d, and e, where the oscillation amplitude has been highlighted.
In essence the amplitude of the limit cycle has become unstable and is
following a new limit cycle of its own with twice the original period.
This causes the original signal to periodically exhibit two pulses of
different magnitude. This process is known in physics by the name of

a "pitchfork bifurcation."80
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The bifurcation process can be seen more clearly in phase
space. For instance in the neutron—-density/fuel-temperature plane
(Figure 7.11), the original limit cycle splits (bifurcates) into two.
The trajectory described by the solution follows first the inside
curve and then the outside curve. The cycle is then repeated in a
periodic fashion. The small and large curves in Figure 7.11
correspond to the small and large pulses in Figure 7.10c.

The bifurcation of the limit cycle implies that the basic
period of the oscillation approximately doubles because now the
trajectory has to make two turns to complete the cycle. This is the
reason why this process is also called "period-doubling” bifurcations.

Summarizing, the bifurcation process can be understood as an
instability of the limit cycle amplitude when a parameter, k, is
increased. For a critical value of the parameter, the amplitude beco-
mes unstable and it oscillates, but it remains bounded due to nonli-
nearities which force the appearance of a new limit cycle.

At this moment, the process can be complicated if the ampli-
tude of this new limit cycle becomes unstable at some value of k and
itself describes another limit cycle (in this case this would be a
limit cycle of the amplitude of the limit cycle described by the
amplitude of the original limit cycle). In fact, the equations repre-
senting our model have this behavior and produce this new bifurcation.
The time traces and neutron-density/fuel-temperature phase-space plots

are shown in Figure 7.12 for the three cases considered so far.



164

1200 | !
_ 01%]%) o -
>-
Y17, | = -
(02)]
prd
(W1]
(@]
Z 300} -
c
l-—
D
L
prd
%] -
-300 | |
-50 0] S0 100

FUEL TEMPERATURE [K]

Figure 7.11 Illustration of a period-doubling bifurcation in
phase space.



165

K=1.45 k,|in| k=1.45 k,

lr) |

' 5 (o) 38 -25 T(C) 75
Ip | 1 Tp) T 1 ]

~ —

}_ - -
C L Cl- _
0 © k=1.55 kEU, k=1.55 K,

-5 L (s) 30 Lzs T(C) 75

0
Cl- —
5 . k=1.60 kgu? kfl.ﬁ@Lk@

-3 t(s) 38 =235 T(C) 75

Figure 7.12 Cascade of period-doubling bifurcation as the feedback
gain 1s increased.



166

We observe that for the latter type of limit cycle, the trajectory
describes four full turns in phase space before it closes on itself,

thus, it has a period four times as large as the original.

7.4.3 Aperiodicity: Strange Attractors

The bifurcation process described in Section 7.4.2 continues
as the value of k is increased further. The amplitude of each new
limit cycle becomes unstable at critical values of the feedback gain,
kj, and a new cycle of twice the period appears. This effect is
described in the literature as a "cascade of period-doubling pitchfork
bifurcations” and it can be visualized in the bifurcation diagram
presented in Figure 7.13. 1In this diagram the maxima and minima of
the oscillation are plotted for several values k.

In the region k < kO the model is stable and the maxima and
minima coincide with the equilibrium point. Between ko and kl the
equilibrium point is unstable but a limit cycle exists with amplitude

defined by the maxima and minima of the oscillation. When k equal

kl the amplitude of the original limit cycle becomes unstable and a
new limit cycle with two maxima and two minima appears (see Figure
7.12). The two maxima are represented in Figure 7.13 by the two
points in the upper branch of the diagram. When the value of k is
increased over kz, this two-turns limit cycle becomes unstable (i.e.,
its magnitude does) and a new four-turns limit cycle appears.

In this region (k2 < k< k3) there are four maxima, repre-

sented by four points in the bifurcation diagram. In essence, at
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every critical value, ks, each of the branches in the diagram splits

iR
(bifurcates) into two new branches.

As seen in the insert in Figure 7.13, the critical values,
kj, occur at shorter intervals as j increases. In fact, we observe
a geometric rate of convergence; that is, the distance between two
consecutive critical values is decreased by a factor éj

kj - kj-l

—_ = §: .

(7-9)
This implies that the critical values, kj, converge to an accumulation
point, k,, beyond which the limit cycle has bifurcated an infinite
number of times and, thus, its period is infinite. The solution of
the system of equations representing the present BWR model is, con-
sequently, aperiodic (nonperiodic) for values of k greater than the
accuﬁulation point, kg

In the aperiodic regime (k > k,) the trajectory described by
the solution stays bounded within a region of phase space, but it
never converges to a closed curve or to an equilibrium point. This
type of solution is called in the literature a "strange attractor"80
because this region in phase space attracts the trajectories towards
it but once inside, all the trajectories repel each other so that
there is not a final closed curve that could maintain an equilibrium
condition. A situation similar to this has been postulated to explain

turbulence phenomena.81
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In the bifurcation diagram of Figure 7.13 the aperiodic region
starts at a k slightly larger than k3. Periodic windows can be iden-
tified in the middle of this region. For instance, there is a window
of periodicity at about k = 1.7k0. This window corresponds to a limit
cycle of period 3 (i.e., it makes three turns before closing on
itself). This windows degenerate into aperiodicity through the same
cascade of period-doubling bifurcations process described before.
Limit cycles of period 3 x 23 appear after each successive bifurcation.

The bifurcation process can also be observed in the frequency
domain. Figures 7.l4a through f present the power spectral densities
of the fully developed limit cycles at different levels of the bifur-
cation. Figure 7.l4a corresponds to the first limit cycle with the
hase period. Only the main resonant frequency can be observed. As
the gain of the feedback is increased, the first bifurcation occurs;
this appears as the first subharmonic in the frequency domain (Figure
7.14b). Limit cycles of period 22, 23, and 2% are presented in
Figures 7.l4c, d, and e respectively. Finally, Figure 7.14f contains
the PSD of a limit cylce in one of the windows of periodicity. In
this case, this condition corresponds to a period of 3 x 22 times the

original period.

7.4.4 Universal Nonlinear Behavior in BWRs

Within the precision of the present numerical analysis, seven
bifurcations were observed before the aperiodic region was found. The

last periodic solution identified made 27 = 128 turns in phase space



170

A TR S
FREQUENCY
(a) Period T

T 1

FREQUENCY
(c) Period 4T

FREQUENCY
(e) Period 16T

A
1]
&
FREQUENCY
(b) Period 2T
a
wn
o

FREQUENCY
(d) Period 8T

FREQUENCY
(f) Period 6T

Figure 7.14 The cascade of period-doubling bifurcations
in the frequency domain.
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before closing itself. This corresponds to 128 different peak heights
in the time trace. The extrapolated value of k, was kg = 1.61811k0.
Table 7.2 presents the calculated critical values of kj/k0 along with

the constants 6j and a; defined in Chapter 7.

J

Table 7.2

ESTIMATION OF THE UNIVERSAL CONSTANTS § AND a

Cycle Period Critical bifurcation
j 2] values kj/ko

[ed

b h|
0 1 1.000000 = -
1 2 1.470000 * 0.002 - -
2 4 1.584000 + 0.001 4.123 + 0.126 1.095
3 8 1.610300 + 0.0001 4.335 + 0.295 2.207 * 0.097
4 16 1.616500 + 0.0001 4.242 + 0.314  2.391 * 0.332
5 32 1.617750 *+ 0.00001  4.960 + 0.596 2.465 * 0.154
6 64 1.618025 *+ 0.000005 4.545 + 0.648  2.517 *+ 0.094
® ® 1.618112 4.6692...b 2.5029...P

4 extrapolated
b Reference 82

Feigenbaum's theoryaz’83

predicts that as j tends to infi-
nity, éj and aj tend to the universal constants & = 4.6692... (the
convergence ratio) and a = 2.5029... (the pitchfork scaling
parameter). These values are given together with the value
(calculated by extrapolation) of the accumulation point ko, in the

last row of Table 7.2. Overall, there is good agreement between

these theoretically predicted values for 6 and a, and the calculated
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éj and e This fact indicates that the present model of a BWR
behaves in the nonlinear domain in the universal fashion predicted
by Feigenbaum's theory. Many other physical systems have the same
universal behavior; among them are: weather equations, transition

from laminar to turbulent flow, nonlinear oscillators, nonlinear

optics, etc.

7.4.5 The Poincare Map

Feigenbaum's theory80,83

was developed for noninvertible
unidimensional maps of the form

xe+1 = F(xy) (7-10)
for which the value of the dependent variable, x, depends only on
the value of itself in the previous time step. For instance, as
shown in Chapter 6, the map

X+l = 4bxp (1-x%)) (7-11)
has the same universal behavior as the BWR model we are studying. The
first bifurcation in this simple map occurs at b0 = 0.75. For values
greater than b0 there is a cascade of period-doubling bifurcations.
The critical points converge to the accumulation point by, = 0.892, and
for values of b greater than b, the solution is aperiodic. The
convergence ratio, 6j, and the pitchfork scaling parameter, ajy, con=
verge to the same universal constants § and a as our BWR model when
operating in the nonlinear region.

A way to relate the solution of a system of equations with a

0

one—-dimensional map is to create the so-called Poincare map.8 For
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this purpose the trajectory in phase space described by the solution
of the set of differential equations is intersected with a particular
surface. In this way a set of points are obtained every time the
trajectory intersects the surface in a predetermined direction.

A Poincare map for the solution of our model can be obtained
by selecting the consecutive maxima of the neutron density time
trace as the series of points defined by the map. This is equiva-

lent to selecting as Poincare surface of intersection

dn

T 0 (7-12)

which defines a four-dimensional hypersurface (in five-dimensional
phase space). The maxima and minima of n(t) lie on this surface.
Once the series of consecutive maxima has been obtained, the
Poincare map can be formed graphically by plotting each maximum of n
versus the previous maximum. In this way we are drawing the function
F(xy) of Equation (7-7). The results of this process are shown in
Figures 7.15a through c for three different values of k:
(a) k = 1.61803k0, which corresponds to a periodic solution with
27 = 128 turns; (b) k = 1.65k0, which is at the beginning of the
aperiodic region; and (c) k = 1.8k0, which is in the well-developed
aperiodic region.
In case (a) the solution is periodic; therefore, there are
only 128 different magnitudes of the pulses in the neutron time trace
and, consequently, only 128 points appear in the Poincare map. The

whole map cannot be defined. Nevertheless, it is clear that the line
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on which these points lie is smooth and has a quadratic extremum (an
extremum is quadratic if the function and its derivative are
continuous). The map is clearly noninvertible because there are two
possible values of n(j) given n(j+l). Furthermore, it has the
stretching and folding capabilities described in Reference 80
necessary for chaotic (or aperiodic) behavior. The fact that the
Poincare map of the solution of the present model satisfies the above
conditions is the reason why Feigenbaum's universality properties are
satisfied.

In the aperiodic region, however, the Poincare map is not as
simple (see Figures 7.15b and c). It displays unexpected foldings,
indicating that a double-valued relation might exist between
successive maxima. This double valuedness, though, is illusory:
an examination of the dynamic evolution of the relation between
successive maxima reveals the existance of hysteresis, in that the
solution evolves either on the lower or on the upper branch according
to whether the magnitudes of preceding maxima form an increasing or a
decreasing sequence. This hysteresis indicates that a many-term
recursion relation is needed to represent the behavior of this BWR

model in the aperiodic region.

7.5 Stochastic Numerical Analysis: Nonlinear Noise in BWRs

Section 7.4 has dealt exclusively with a deterministic analy-

sis of the nonlinear behavior of BWRs. 1In this section we study the
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effect of nonlinearities on the behavior of the reactor under
stochastic (random) excitations (sources). For this purpose, the
model was externally driven with a band-limited Gaussian white noise,
and the equations were solved numerically in the time domain using an
A-stable routine.l00

Two parameters were varied: the feedback gain, k, and the
variance of the driving noise source. The generated power traces,
n(t), were Fast Fourier transformed to obtain power spectral densities
(PSDs). The development of the limit cycle in the time domain is
shown in Figure 7.16, where the envelopes (maxima and minima) of the
oscillation are plotted as a function of time for three different
values of the noise-source variance. For this figure, the system was
held originally at the unstable equilibrium point. At time t = O
a zero—mean white noise was applied.. The amplitude of the oscilla-
tions increased initially until it reached a limit cycle. The ampli-
tude of these limit cycle oscillations is independent of the magnitude
of the driving noise variance as expected.

The study of the effects of the feedback gain on system beha-
vior shows that for stable systems, k < ko, the neutron PSD exhibits a
single peak at the reactor characteristic frequency of oscillation as
predicted by linear studies (see Chapter 4). However, as k approaches
ko while maintaining the driving-source variance constant, the PSD
develops peaks at the harmonics of this fundamental frequency. For

k >k the power oscillations increase in time and eventually reach

0)
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Figure 7.16 Envelopes of the development of a limit cycle in the
presence of noise. (a) 10”1 noise variance.
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a limit cycle, with an enhancement of the harmonic components of the
PSD as seen in Figure 7.17. This figure shows three PSDs for
different values of k. 1In case (a) the model is barely stable and
only the fundamental peak is clearly discernible at about 0.4 Hz.
Case (b) represents a small amplitude limit cycle, for which the value
of k is only slightly above the critical value, ko. Case (c)
corresponds to a fully developed large amplitude limit cycle. The
main difference between the stable and the unstable PSDs is the
appearance of higher harmonics. These harmonics have a strong magni-
tude and they should be measurable in real-life experiments in which
measurement and process noise are present.

One of the consequences of the appearance of a limit cycle in
a reactor is an increase of the variance (noisiness) of the neutron
density as seen by the in-core neutron detectors. However, an
increase in neutron noise variance could also be due to an increase in
the noise of other variables, flow for instance, which in turn drives
the neutronics. It is of interest to be able to distinguish between
these two kinds of noise increases, because different corrective
action might need to be taken depending on the cause. For example, if
the increase in noise is due to an instability (i.e., the appearance
of a limit cycle), the reactor can be made more stable by increasing
the flow rate through the core and, thus, eliminate the extra noise.
However, if the increase in noise is due to a pump malfunction, which
causes flow noise, an increase in flow would only make the problem

worse.
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This problem is a present concern with regard to BWR single
loop operation. When some reactors are operated with a single pump
and above 407 of rated flow, there is an increase in neutron noise,
which at the moment is unexplained. It is necessary to develop a
technique to differentiate between the two scenarios previously
presented.

The present model was used to generate neutron density time
traces for a stable and an unstable condition. The variance of the
imput noise source was adjusted in order that the variance of the
output neutron noise be of the same order of magnitude in both cases.
The resulting time traces are presented in Figures 7.18a and b.
Although there are obvious differences between the unstable reactor
condition (a) and the stable one (b), it is not easy to determine if
case (a) is really a limit cycle or not. A simple, more sensitive
technique is required to differentiate the mode of operation.
Figures 7.19a and b contain the PSDs of the time traces for the two
above cases. Here the differences are more obvious. In case (a),
where the reactor is unstable, the characteristic peak at about 0.4 Hz
is very sharp. The main difference, however, is the appearance of
high harmonics in the neutron PSD. Case (b), the stable condition,
also has harmonic contamination, due to the large amplitude of the
noise, but since the peak is wider, this contamination is not as
ohvious as in case (a). Furthermore, in a real-life measurement it

would be impossible to distinguish harmonic contamination from the
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measurement and process noise. In summary, we have seen that if large
amplitude oscillations occur, nonlinearities appear as harmonic
contamination in the neutron PSD. If the oscillations are due to the
appearance of limit cycles, the harmonic contamination is easily
distinguishable from the background noise and it shows as sharp peaks
at harmonic frequencies of the characteristic peak. This technique,
then, can be used to differentiate between limit cycle oscillations

and increased noise source variance.



CHAPTER 8

A MORE COMPLETE NONLINEAR MODEL

The model used in Chapter 7 was simple enough to allow a
detailed parametric study and even some analytical results. However,
it had some serious restrictions; the most important one being the
fact that we assumed a linear thermohydraulic feedback. This assump-
tion is based on the fact that the fuel element filters out most of
the heat generation changes at the frequencies of interest. Indeed,
only about 10% of the heat generated in the fuel is transfered to the
coolant at 0.5 Hz; and at that same frequency, only about 3% of the
generated heat produces changes in the average void fraction in the
core.

The feedback parameters used in the model of Chapter 7 were
obtained from a fit to the results of a LAPUR*® run for which the
reactor was close to instability. This model is supposed to work
properly only for small changes of these parameters. In this chapter
we will develop a nonlinear model for BWR dynamics which is entirely
based on first principles and which maintains all nonlinearities.

The model will then be applied to a reactor with conditions close to
test /N of the Vermont Yankee low flow stability tests®8 with the goal

of obtaining quantitative results.

185
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8.1 The Model

8.1.1 The Neutron Field

The point-kinetics approximation was used to represent the

neutron dynamics

dN _ p=B -
- N + AC (8-1)
dc _ B . _ _
T=EN-A . (8-2)

We define normalized neutron density and precursor concentrations as

n(t) = (I‘I(t)-.l‘lo)/l‘l0 (8-3)

c(t) = (C(£)-CH/N, . (8-4)
The equations become

BB+l (8-5)

L-Bane (8-6)

Note that the reactivity feedback appears as a parameter in
Equation (8-5); since the dynamic reactivity is a function on n(t),
this equation is nonlinear. This was the only nonlinearity considered
in Chapter 7 and caused all the effects presented previously. In this

model, however, we will consider the feedback nonlinearities also.

8.1.2 The Fuel
Assuming only radial conduction, the equation governing the

temperature distribution within the rod is

oT 16 oT
pcpgt:‘:Q'*'——(rk— . (8-7)
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This equation is linear in T except for the dependence of
the conductance, K, on the temperature. Assuming that K is constant,
we can apply a procedure similar to the one used in Section 4.4.1 to
define average fuel and clad temperatures, which we name Tg and T,

respectively. The resulting equations are

dT
F 2 AT
Kpedp — = <QPp + — k 2= -
Pep F dt @r rp brlr=rF (8-8)
dT 2r dT 2T dT
c _ c oT _ c oT _
<pep2e it =~ 7 ¢ 6r'r=rc 7 K 3¢ r=ry (8-9)
I'c “TFf rc —rF

with boundary conditions

oT - - - -

e lpmry = = BCTETC) (8-10)

oT _ _ _
Korleme, = = UTeTe) (8-11)

where h is the effective fuel-to-clad gap heat transfer coefficient
and U is the effective overall heat transfer coefficient between
clad and coolant. Tg is the coolant temperature, which we will
assume constant and equal to the saturation temperature all along

the channel. The final equations are

dTp _ <Q>p 2h
= - Tp-T (8-12)
dt~  Tpepdy  rlpepdy (Tp~Te)
dT 2hT 2ur
Tt e ——(TpT) = ——— S (T~Tg).  (8-13)
(re -ty )<pep2e (re -ty )<pep2e

Typical values of the constants involved are shown in
Table 8.1. The values of h and U are obtained from a fit to the LAPUR

fuel transfer function calculated for the conditions of interest.
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Table 8.1

TYPICAL VALUES OF THE CONSTANTS IN THE FUEL EQUATIONS

Constant Value Units
r¢ 0.00503 o
r. 0.00601 m
<pep>¢ 3.125x108 J/m3K
<pcp?c 15.18x106 J/m3K
h 1.827x103 J/m2Ks
U 0.103x103 J/m2Ks

The heat generation within the fuel is proportional to n(t)

QP =P n(t) , (8-14)
where the coefficient P depends on the steady state power NO' For
the values of the constants in Table 8.1 and the parameters of the
Vermont Yankee reactor, the total heat transferred to the coolant per
unit length of fuel is given by the expression

AQ'(J/ms) = 8.876 x 108 aAr, (X) . (8-15)
The above two expressions provide the coupling between the fuel and

neutronics and thermal-hydraulics equations respectively.

8.1.3 The Channel Thermal-Hydraulics

Neglecting acoustic phenomena,29 the one-dimensional channel

equations (mass, energy, and momentum) can be writen as™d
) 0G
e - + 4+ =22 = -
3t [(1-a)py aog] 22 - © (8-16)
o 8 r¢1- = Q' -
e [(1_a)plh1+apghg] + 5 [ x)h1G+xth] Q (8-17)



dp _ _ 3 _ 13 r(1-x)%62  x2G2y .
3¢~ at 2 oz [pl(l—a) pg® ] - [-a)ortag e,
g 92962y kie2ae? o -
£ 2e.D ) 7oy 8(z-z4) (8-18)

where
G = Coolant mas flux in Kg/m2s

a = Void fraction
x = Steam quality
p = Pressure in N/m?

= Saturated steam density in Kg/m3

Pg

py = Saturated liquid density in Kg/m3
hg = Saturated steam enthalpy in J/Kg
h; = Saturated liquid enthalpy in J/Kg

f = Single phase friction coefficient

¢2 = Martinelli-Nélson correction factor
for two-phase flow pressure drop

Q = Jones correction factor

D = Equivalent flow diameter in m

Ki

Concentrated pressure loss coefficients

Q' Heat transferred per unit length of fuel
X, @2, and Q are functions of the void fraction, the operating
pressure, and the flow rate.

Equations (8-16) through (8-18) are a set of partial differen-

tial equations. We will eliminate the space dependence by integrating

over finite nodes. In this way a set of ordinary differential
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equations for the nodal variables is obtained. For this purpose, we
apply the operator
Zs

o4z (8-19)

=
M i

to Equations (8-16) through (8-18). Define the nodal variables as

-1 1
Gi(t) = i fzi_l G(z,t) dz (8-20)
1 Z4
ai(t) = ZC'fz . a(z,t) dz (8-21)
i -
z
Qi '(t) =-%; fzi_l Q'(z,t) dz (8-22)
1 Zy
p1(t) = 1= [ " p(z,t) dz (8-23)
Lozyg
Equation (8-16) becomes
6a1(t)
G(zj,t) = G(zi_1,t) + 83(p1~py) <t (8-24)

using Equation (8-24), Equation (8-17) becomes

day Q' - (hy-hy) G(zy_q) [x(zq)-x(zq_1)]/84

3t~ Toghg-pihy J[hy (1-x(24))+hgx(z1) J(P1-Pg) (8725)
The momentum equation becomes
p(zi-1) = p(zy) + Aiggi + [Ec(z1)-EC(z5-1) ]
Ko
+ 8g[(1-ay)py+ayp,] + AjFRy + To; G,28(1,1) (8-26)

where EC(z) and FRy are the kinetic and friction terms respectively,

and given by the expressions



_ 1 r(-x)%62 | x%c2
EC(zi) =3 [p1(1~a) g ] (8-27)
2
FR; = — f—— G%dz = f . (8-28)
Boundary conditions are
p(z=H,t) = p, , (8-29)

because the upper plenum pressure is held constant by the pressure
regulator.

a(z=0,t) =0 . (8-30)
The coolant at the inlet of the channel is assumed at saturation
temperature, but all in liquid phase. The last boundary condition is

G(z=0,t) = Go(t) ’ (8-31)
where Go(t) is determined by the recirculation loop dynamics (see
Section 8.1.4). | .

The initial conditions are

a(z,t=0) = ao(z) (8-32)
G(z,t=0) = G, (8-33)
p(z,t=0) = p,(2) (8-34)

and they are determined by the steady state equations.
The numerical procedure of solution of these equations is:
(a) At each time step Equation (8-25) is solved to obtain the
new value of the nodal void fraction.
(b) The new mass fluxes are calculated from Equation (8-24)
(c) The pressure distribution along the channel is calculated

using Equation (8-26) starting from the boundary condition
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p(H) = Py* This procedure yields the lower plenum pressure,
which determines the pressure drop across the channel. This
pressure drop is the input to the recirculation loop equations

which in turn determine the inlet mass flux rate, Go(t).

8.1.4 The Recirculation Loop

The recirculation loop is formed by the upper plenum, the
steam separators and dryers, downcomer, jet pumps, and lower plenum.
A complete model of this system would be extremely complex. We will
treat it as a single path of fluid with variable flow areas but
constant mass flow rate (i.e., incompressible flow). It is convenient
to rewrite momentum equation in terms of flow areas, A(z), and a
constant flow rate, w, instead of mass flux, G.

0p _ 3 (wy, 12 (w? 3 }
3 "o &) YR A tes gy () (8-35)

where AP¢ represents the integrated friction losses and can be
considered proportional to w2. Note that A depends on z but not on

t, whereas w depends on t but not on z. Integrating over the path of

the recirculation loop we obtain

_ (Ly dw w? 1 1 _ _
P17Py T (A_) dt 2p1 (Azz Alz) + p18(z,~z,) + APy (8-36)
where we define
L 2 1
(z)- 5y de - (8-37)
Defining
H=12 -z (8-38)
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and
APg = kw? (8-39)

the equation becomes

Ly Ow 1 1 1
(3) 3¢ = [(®,7p,)+pgH] - w2[2p1 (A22 - Alz)+k] . (8-40)
Note that in steady state, dw/dt = O and
1 1 1
[5o-(— - —5)+&] = [p,-p,+pel]; - (8-41)

201 A 2 2
P1 A2 Al
Substituting Equation (8-41) in (8-40) and considering that the mass

flux at the inlet of the channel is

G(zp) =% (8-42)

the recirculation loop equation becomes

2
ST U v/ [p,-p,+eet], [1- Gz

o ) Gy*(20)
+ 2 1o e )~(pmp ), ] - (8-43)
i

This equation relates the inlet mass flux to the pressure drop
across the core. Consequently, it couples momentum equation with

the mass and energy balances.

8.2 The Program TLAP

The above equations have been implemented in the computer
code TLAP, which is written in FORTRAN-77. A listing of the program

with a sample input is contained in Appendix D.
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The code solves the equations in the time domain using an
A-stable ordinary differential equation solver.l06 Up to 12 axial
nodes can be used to solve the channel thermal-hydraulics equations.
The one-dimensional void reactivity feedback is calculated from the
void fraction spatial distribution and serves as coupling between
the channel equations and the point kinetics representation of the
neutronic equations. The fuel behavior is represented by a two-node
expansion, corresponding to the pellet and cladding, respectively,
with explicit representation of the pellet-to-clad gap. The recir-
culation loop is also modeled as a single-node integral momentum
equation and serves as coupling between the channel pressure drop
and the inlet mass flux.

Several empirical correlations are used in the code. All of
them are based on the correlations used by LAPUR"8 for consistency.

The slip ratio is computed using the modified Bankoff
empirical correlation determined by A. B. Jones.17"22 Ip the bulk
boiling region, which is the case in all our channel, the correla-
tion becomes

l -a

s = , (8-44)
kg = a + (l-kg)aT

where kg and r are functions of the operating pressure."8 Their
nominal value at 1000 psi is kg = 0.8 and r = 3.97.
With the slip ratio and the steam quality known, the void

fraction, a, is given by the expression
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p1x
spg T x(p1-spg)

@ = (8-45)

The two phase pressure drop is normally related to the
single phase pressure drop through a multiplier coefficient. The
Martinelli-Nelson correlationl0 is the one most commonly used.
LAPUR uses a polynomial fit valid for steam qualities less than 0.7
(a typical BWR exit quality is 0.15). In this code we used only the
first coefficient of the polynomial as an approximation. In this
way,

32 =1+ 30x . (8-46)
This expression approximates LAPUR's correlation to within #5% up to
steam qualities of x = 0.8.

17-22

calculated a correction factor for the

Jones
Martinelli-Nelson coefficient which depends on the flow rate and
pressure. For the nominal operating pressure, the Jones correction
factor can be approximated as

Q =1.9 - 5x10"% G , (8-47)
where G is the mass flux in Kg/m2s.

The single phase friction coefficient, f, can be considered
constant in the turbulent region (a typical BWR Reynolds number is
70000). The value of f for a typical new fuel element is f = 0.019.

A multiplier factor of 1.4 is applied to account for aging and curd
deposition processes which increase the friction.
The density reactivity feedback is calculated as a weighted

integral of the density reactivity of each individual node. The
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density reactivity coefficient for each node is calculated as a
function of the void fraction. A second order polynomial was fitted

to the density reactivity coefficient calculated from a void depen-

dent two-group cross-section set.®3

3—3 = -0.108 - 0.207a + 0.140a? - 0.135a3 (8-48)

The resulting correlation is

where p is measured in absolute units (i.e., p = AK/K.)
8.3 Application to a Typical BWR

The conditions of test 7N in the Vermont Yankee low-flow
stability tests®8 were modeled using the code TLAP. The input parame-
ters were extracted from the results of a detailed LAPUR calculation.
Then, the density reactivity coefficient was ad justed by a factor of
0.97 so that the inception of the limit cycle oscillations would
correspond approximately to the conditions of the test. Once the
effective model parameters were determined, the operating power and
flow were changed to study the dynamic behavior of the reactor over a

wide operating range.

8.3.1 The Limit Cycle

A typical 1limit cycle produced by TLAP is shown in Figure 8.1.
In figure 8.la, the power time-trace, n(t), is presented as it develops
a limit cycle from equilibrium. Once the limit cycle is reached
(Figure 8.1b) the power oscillates between 30 and 120%. Therefore,

these operating conditions (647% power and 327 flow) would not cause an
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automatic scram on high power. These results show that largel
amplitude limit cycles are possible in BWRs. Figure 8.1b presents a
detail of the oscillations. We can observe that they have the main
characteristics found in the oscillations of the simpler model of
Chapter 7; that is, the peaks are sharp and the valleys of the
oscillation are smooth. This tends to indicate that, similar to the
model in Chapter 7, the main nonlinearity causing the limit cycle
phenomena is the parametric reactivity feedback in the point kinetics
equation.

The oscillations around the equilibrium point of the main
variables involved are presented in Figure 8.2. This figure
corresponds to 647 power and 327 flow operating conditions once the
limt cycle has been reached. We observe similarities between the
results of this model and the ones in Chapter 7. The neutron time
trace is formed by a series of sharp peaks followed by some valleys
that are relatively flat. During the peaks, the fuel temperature
rises and then slowly cools down by transferring energy to the
coolant. At this moment of the cycle, the void fraction starts
increasing until the convection cooling takes over and makes the void
fraction oscillation negative. At this moment the reactivity feedback
becomes positive and a new neutron pulse occurs. The oscillation in
downcomer pressure seems to follow the void fraction with a phase lag.
The mass flux follows the downcomer pressure. Since the upper plenum

pressure is kept constant by the pressure regulator control system,
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then if the lower plenum pressure is negative, the recirculation mass
flux increases. Hence, we conclude that the average void fraction
oscillation and the associated reactivity feedback is the driving
source which determine the frequency of the pulses.

The phase space plots (Figure 8.3) show the limit cycle and
the relation between variables in more detail. The plot of n versus
dn/dt (Figure 8.3a) is very similar to the one in Chapter 7 as is the
plot of n versus T (Figure 8.3b). The plot of n versus the average
channel void fraction (Figure 8.3c) shows a high correlation of these
two signals, which are in phase; however, contrary to the results of
Chapter 7, the average a here is not the reactivity feedback, because
the reactivity is weighted by the square of the power. This is the
reason for the difference between this plot and the one in Chapter 7.
The rest of the phase space plots in Figure 8.3 show the relationship
between the different process signals. The most interesting of these
relations are average void fraction versus pressure (Figure 8.3g) and
mass flux versus pressure (Figure 8.3i). Here we see the nonlinear
relationship between void fraction, mass flux, and pressure. If the
relationship were linear, then the phase space plots would be perfect

elipses.

8.3.2 Space Dependence of the Void Fraction Oscillations

The reactivity-type instability is also referred to in the
literature as a density wave instability. Whenever there is a pulse

in the power, a density perturbation is produced which travels upwards
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through the channel as a wave. We showed in Chapter 4 that the
reactor instability i; caused by the way in which this wave is
weighted to obtain the global reactivity feedback.

A three—-dimensional representation of the density wave as
calculated by TLAP is presented in Figures 8.4a and b from two dif-
ferent perspectives. We observe that as a function of time, there is
a buildup of voids in the lower part of the channels. The transport
process of the density wave tilts the void fraction axial shape
upwards until eventually the perturbation is eliminated and the
process repeats itself. The evolution of the void fraction axial

distribution can be seen more clearly in Figure 8.5, where the void

shape is shown at various times during the oscillation.

8.3.3 Sensitivity to Operating Conditions

Customarily, the decay ratio is used to quantify stability;
however, for any operating conditions in the nonlinear region the
asymptotic decay ratio is by definition equal to 1.0 due to the
appearance of limit cycles. An alternative parameter is therefore
needed to describe the dynamic behavior of the reactor in this
region. Our research indicates that the parameter best suited for
this purpose is the amplitude of the oscillations.

Figure 8.6 shows the contours of constant decay ratio in the
stable region (stable) and contours of constant oscillation ampli-
tude in the nonlinear (unstable) region. This figure indicates

several facts:



g ///// ,,,;,,, l’/,%”l/"’l/” ......
S
I, /,,/,,/,,/,,// ________________ /,/,//,//

..... ................ ..... fa/

TIME
(b) Time dependence
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(a) The oscillation amplitude appears to behave in the nonlinear
region in a similar manner than the decay ratio in the linear
region.

(b) The decay ratio and oscillation amplitude are more sensitive
to flow changes than to power changes.

(c) Large amplitude limit cycles are possible in nonlinear
BWR operation.

(d) The limit cycle amplitude is very sensitive to changes in

operating conditions.

The last point is better seen in Figure 8.7, which presents
the oscillation amplitude as a function of power along the natural
circulation line (327% flow). The limit cycle appears at 567% power
and the oscillation reaches the 120% high power safety trip point at

about 647 power.

8.3.4 Limit Cycle Stability

For all the conditions studied in section 8.3.3 (see
figure 8.6) the calculated limit cycles were stable. When the power
was increased further or the mass flux decreased, then the bifur-
cations and aperiodic behavior described in Chapter 7 were observed.
Unfortunately, at the high power required for the bifurcations (for
instance 1207% power at 327% flow,) the large power oscillations caused
the flow in the channel to be of saturated steam at some nodes during

the high part of the oscillation. This effect produced in the present
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model that the steam quality be greater than 1.0, because the model in
the present state can not handle supersaturated steam. For this
reason, bifurcations and aperiodic behavior were not studied with the
present model.
Nevertheless, the model results showed that for all probable

modes of operation of a commercial BWR the limit cycles will be

stable and the solutions will be periodic.



CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

During the course of this research BWR dynamic behavior from
the linear and nonlinear points of view has been studied. Several
reduced order models have been developed as an aid for the iden-
tification of physical processes, which have been associated with
observable reactor features. As a result of this research an
understanding of the linear and nonlinear behavior of this type of
reactors has been obtained. In particular, the questions about what
to expect from nonlinearities in BWR operation and when to expect it
have been addressed. Finally, new methods have been developed for the
study of BWR stability in both the linear and nonlinear regimes. The
main accomplishements of this dissertation are highlighted in
Section 9.1. Recommendations for future work in this area are given

in Section 9.2

9.1 Accomplishments

The main accomplishments of this research can be summarized

as follows:

9.1.1 Features of the BWR Transfer Function

The pole-zero configuration of the reactivity-to-power
transfer function of BWRs has been studied. It has been determined
that an optimal model must contain three zeros and four poles to
properly represent the BWR dynamics. One of the zeros is real and

213
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located at low frequency (about 0.03 Hz); the other two zeros are
complex and have a frequency of approximately 0.5 Hz. Two of the
poles are complex with a frequency in the vicinity of 0.5 Hz; the
other two poles are real, one of them is located at a frequency of
about 20 Hz and the other is close to the complex poles (about

0.3 Hz). Hence, an important conclusion of this work is that empiri-
cal fits to BWR reactivity-to-power transfer functions should contain
at least three zeros and four poles. Note, however, that in the low

frequency range (<10 Hz), a 3-zeros/3-poles model should suffice.

9.1.2 Association of Features with Physical Processes

The poles and zeros of the reactor transfer function have
been associated with reactor dynamic processes:

(a) The low-frequency zero is directly related to the heat
transfer process between fuel and coolant; it arises from a
pole in this open loop feedback transfer function.

(b) The pair of complex zeros are related to the void reactivity
feedback in the channel; they are caused by a combination of
the cumulative effect of the axial void reactivity pertur-
bations and the convection process with its associated
density wave.

(c) The pair of complex poles are caused by the same mechanism
as the complex zeros, as it can be concluded from the fact
that their branch in the root locus diagram starts from this

Zeros.
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(d) The high frequency pole arises from the B/A pole of the
neutron field equations.
(e) Finally, the real pole at low frequency originates from the
fuel dynamics, as its branch in the root locus starts at

the low-frequency zero.

9.1.3 A Reduced Order Model for the Physical Processes

A reduced order linear model for BWR dynamics has been
developed. This model has been used to study the sensitivity of
transfer function features (i.e., poles and zeros) to changes in
operating condition or variations in reactor parameters. This simple
model accounts for the significant processes involved in the reactor

dynamic behavior.

9.1.4 Linear BWR Stability Measurements

An automated technique has been developed and applied to
determine the stability of commercial BWRs based on the analysis of
their inherent power fluctuations (noise). This technique, thus,
avoids the need of perturbative tests for this purpose.

This thechnique, which was the result of an improved
understanding of the physical processes involved in the BWR dynamics,
has the following unique features:

(a) It distinguishes between the asymptotic and apparent decay
ratio; hence avoiding the pitfalls incurred by previous

methods.
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(b) It estimates the maximum decay ratio of the system, rather
than the decay ratio of the pole with the smallest real part.

(c) It provides an estimation of the statistical error
arising from the stochasticity of the noise data. Thus,
allowing for a mean to check if enough data have been
collected for the measurement.

(d) Furthermore, it supplies the user with a confidence level
which defines the goodness of the estimate. This level is
computed on the basis of a priori knowledge about the reac-

tor dynamics and self-consistency checks.

9.1.5 Importance of Nonlinearities in BWR Operation

It has been shown that nonlinearities become important for
BWR operation when the linear stability threshold is reached, which
may occur at low flow and high power. This nonlinearities manifest

themselves through the appearance of limit cycles.

9.1.6 The Causative Mechanism Leading to the Appearance of the

Limit Cycle

It has been shown that the main nonlinearity causing the
appearance of the limit cycle in BWRs is inherent to the neutronics
equations, as it is caused by the parametric nature of the reactivity
feedback (i.e., the pn term in the point kinetics representation). An
important consequence of this finding is that limit cycles will always

appear even in cases when the reactor geometrical configuration has
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been altered (for instance, as a result of a severe accident). Thus,

the reactor response will always be bound.

9.1.7 The Limit Cycle in Phase Space

The study with the more complete linear model has shown the
relationship between the process variables during limit cycle
oscillations. It has been found that the void reactivity feedback
defines the frequency of the limit cycle oscillation and that the
rest of the process variables merely follow the reactivity feedback

evolution in phase space.

9.1.8 Amplitude of the Limit Cycle Oscillation

It has been found that, although the oscillations are
always bound, the amplitude of the limit cycle may reach values above
the threshold for automatic scram. In addition, the sensitivity study
performed in this research shows that the limit cycle amplitude is
very sensitive to plant operating conditions. As a consequence,
caution should be excercised in the operation of BWRs in the nonlinear

regime to avoid unwanted scrams or excessive fuel temperature cycling.

9.1.9 Stability of the Limit Cycle

It has been found that the amplitude of the limit cycle
might become unstable as the operating conditions are changed. This
instability occurs in the amplitude of the limit cycle, which produces
a doubling of the basic oscillation period. This research is the
first published reference in nuclear reactors of this process, which

is known in the literatue as a period-doubling pitchforck bifurcation.
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9.1.10 Universality and Aperiodic Behavior in BWRs

As a parameter is changed, a cascade of period-doubling
bifurcations occurs. The critical values of the parameters for
which bifurcations occur have proven to converge geometrically to an
accumulation point. This rate of convergence and the scaling of the
bifurcations have been shown to satisfy Feigenbaum's universality
theory. It is worthwhile to note that the same universal behavior
has been found in such diverse systems as weather prediction
algorithms, transition from laminar to turbulent flow, and many more
physical processes.

As a consequence of the bifurcation process, aperiodic solu-
tions of the deterministic reactor equations have been found for
parameter values above the accumulation point. This result, besides
its academic value, bears importance in the interpretation of the
results of large numerical codes which might confuse the
unsuspecting user with aperiodic solutions.

The results from the higher-order model, however, show that
the limit cycle is stable, and the solution is periodic for reasonable
ranges of power, flow, and pressure. That is, the period-doubling
bifurcations and aperiodic region, although present, are in an extre-
mely abnormal range of operating conditions in commercial BWRs. They
can be found, though, in low-pressure reactors that have a larger

void reactivity feedback.
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9.1.11 Nonlinear Stochastic Phenomena

Nonlinear noise propagation in BWRs has been studied. A non-
perturbative technique has been developed for detecting the onset of
linear instability, and thus the transition to the nonlinear regime.
This technique complements the linear stability measurement methodo-
logy developed using noise analysis, as it gives an independent and
reliable evaluation for the limiting case in which the decay ratio is

1.0 (i.e., 1limit cycle conditions).

9.2 Recommendations for Further Research

During the course of this research we have come acros several
interesting topics which we have not been able to pursue in more
detail; these can be recommended as areas for future studies. Most of
these topics are related to the nonlinear part of this research.

We showed in Chapter 7 that some BWR designs could sustain
large power oscillations which resemble a series of sharp pulses.

A neutronic machine could be designed for this purpose. This would be
a self-pulsed reactor which could supply neutron pulses of large
magnitude. These large pulses could be used for a range of purposes,
from cross—-section measurements to nuclear-pumped lasers. The pulse
magnitudes could be maximized without fuel melting if the reactor
operated at low pressure where the density reactivity coefficient is
maximum.

Another area of further research is the study of local channel

instabilities. As in the case of the reactivity instability, these
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types of instabilities define a new area of reactor nonlinear
operation, where local effects are of importance; for instance, a
single channel might become unstable producing severe local damage,
but the reactor protection system would not detect it because the
average power is not affected in a significant amount. A study of
these local nonlinearities could yield some techniques to identify and

correct this abnormal operating condition.
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APPENDIX A

SOME PROPERTIES OF AUTOREGRESSIVE MODELS

Autoregressive or AR models have been widely used previously.
There are many publications describing this methodology in detail; see
for example References 75 or 108. 1In this appendix we present some
properties of univariate AR models which are relevant to the subject
of stability estimation from noise analysis. To the knowledge of the
author, most of these properties have not been published before.

A univariate AR model of order N is of the form

[l e 3~

x(t) =
k

Apx(t-kAt) + v(t) (A-1)
1

where
x(t) = Sampled signal

A = Model parameters

N = Model order

v(t) = Residual sequence

Once the model is known, the residual sequence can be

calcuiated from the expression

v(t) = x(t) - % A(k)x(t-kat) . (A-2)
k=1

Having M samples of the signal, x(t), we obtain the model

parameters by minimizing the variance of the residual. Thus, we

minimize the function

N
L [x(t) - ] A(k)x(t-kar) ]2 . (A-3)
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Taking derivatives with respect to the parameters and equating them
to zero, we obtain the celebrated Yule-Walker equations108
N
KglAkC(k—l) =C(l) ; 1=1,2,...,N , (A-4)

where the correlations, C(l), can be approximated by the expression

c(1) =

<4l

N
) x(t)x(t-1At) . (A-5)
k=1

A.1 The Impulse Response

Let us turn our attention now to the role of the residual
sequence. In the Fourier domain, the original sequence is given by
X(w) = G(w)V(w) , (A-6)
where G(w) is the AR model transfer function. The cross-
correlation, XC(t), between x(t) and v(t) is, therefore
XC(1) = FTL[v¥*(wX(w) ] = FTLv*(w)c(wV(w)] , (A-7)
where F~! stands for inverse Fourier transform. On the other side,
from equation (A-2), we have
N
XC(1lAt) = C(1) - ) A(k)C(l+k) . (A-8)
k=1
And therefore, considering equations (A-4) and (A-8), we see that the
cross—correlation is zero for negative lags, 1, but nonzero for posi-
tive or zero lags. In terms of equation (A-7), we see that in order
for XC to be zero for 1>0, V(w) must not have any poles; otherwise,

V*(w) would introduce some poles for the negative-time integral path
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in the inverse Fourier transform. Thus, we can conclude that V(w)
must be a white noise. As a consequence,

Xc(t) = F i[e(w)] , (A-9)
but the right-hand side is the impulse response of G(w). Thus, the
impulse response can be calculated as

N

h(l) = C(1) - ) A(k)C(1+k) . (A-10)
k=1

A.2 Pole-Zero Configuration

Note that from equation (A-10) the impulse response is not
equal to zero at zero lag. Note also that, given the form of h(t)
(i. e., zero for negative times), Fourier and Laplace transform are
equivalent in this case. Thus, we can apply the final value theorem,
which states that

lim h(t) = lim sG(s) , (A-11)
t->0 s>

and conclude that for h(t) to be finite and nonzero at t = 0, the
model transfer function, G(s), must have one zero less than poles.
This is, the order of G(s) must be O-zeros/l-poles,

l-zeros/2-poles, ...
A.3 AR-Consistent Autocorrelation

Systems in general do not have the pole-zero configuration
necessary for the AR model to be an exact representation. For this

reason, AR models of large order must be used in this cases, but the
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fit is never perfect because the Yule-Walker equations are satisfied
only up to lag N and, thus
N
C(1) * ) A(k)C(k-1) ; DN . (A-12)
k=1
However, once the model order is chosen, we can define an

AR-consistent autocorrelation, C'(l), which satisfies this equation

C'(1) = c(1) 3 1=0,1,...,N (A-13)
N

C'(1) =) A(k)C'(k-1) ; DN . (A-14)
k=1

This autocorrelation defines an imaginary system with the

same pole-zero configuration as the AR model.
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APPENDIX B

DETAILED DESCRIPTION OF THE NOISE ANALYSIS ALGORITHM

TO MEASURE BWR STABILITY

This appendix describes a series of FORTRAN-77 subroutines
that are used to evaluate the asymptotic decay ratio and frequency
of oscillation from a noise recording of an average power range
monitor (APRM) signal from a boiling water reactor (BWR). The
subroutines were originally developed as part of a diagnostics
package to be included in the PSDREC103 system, but they can be used
as part of a general stability evaluation code.

The technique used to evaluate the stability of the APRM
signal is autoregressive (AR) modeling (see Appendix A). Subroutine

ARMODL fits an optimal AR model order of the form

N
x(1) = ] Ax(i-k) + v(i) (B-1)
k=1
where
x(i) = sampled signal

N = model order

Ay = model parameters

v(i) = residual noise

This subroutine selects the model order so that the likeli-
hood function (i. e., the joint probability of all the measurements)
is a maximum. AkaikelO% showed that this is equivalent to mini-

mizing the following function
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AIC = M 1n(0?/C(0)) + 2N , (B-2)
where o is the residual noise variance. This function is often
called the Akaike's information criterium.
Once the model parameters, Ay, are determined, the impulse
response, h(i), can be calculated as an initial value problem
N
h(i) = ) Agh(i-k) , (B-3)
k=1
with boundary conditions

h(0)

1. (B-4)

h(-1i)

0. N i=l,2,oo,N,oo (B_S)
The frequency domain equivalent of the AR model can be

obtained by Laplace transforming equation (B-1)

c2
x(s) = s : (B-6)
1 - § apDK
k=1
where D is the backshift operator
D = e SB¢ (B-7)

Note that in Equation (B-6) s is not restricted to the
imaginary axis, and the equation can be evaluated at any point of
the s-plane. In this way, a search for the poles of x(s) can be
performed.

The stability of the signal is quatified in terms of a decay
ratio (DR) and a natural frequency of oscillation (NF); both of these
parameters can be evaluated from the model. This code evaluates the
DR in three different ways: First, it measures the apparent DR of the

autocorrelation function; then, it estimates the asymptotic DR of the
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model's impulse resﬁonse; finally, it attemps to find the most
unstable complex pole from the frequency domain representation of
the AR model. The three estimates are evaluated, and a most probable

DR and NF are selected along with a confidence level.
B.1 Apparent Decay Ratio of the Autocorrelation Function

The autocorrelation function is estimated in subroutine
CORREL as the inverse fast Fourier transform (FFT) of the power
spectral density (PSD) of the APRM signal. This estimate coincides
with the true correlation as the number of samples, M, tend to
infinity, and in general, for finite M, it is a good estimate. The
PSD supplied should be the best available estimate of the true PSD
of the signal and, therefore, Hann windowing66 is recommended.

The apparent DR is directly measured in the correlation and
the frequency of oscillation is obtained as the inverse of the time
at which the first maximum occurs. This decay ratio is a very
robust measure of the reactor stability, in the sense that it is
well defined and that as the reactor approaches the stability
threshold this DR tends to 1.0 (which is not necesarily true for the
apparent DR of other functions like impulse or step responses). All
this is accomplished in subroutine DRCORR, which returns three error
conditions:

(a) IERC=-1 : No maximum was found. This could be due to a low
decay ratio (DR<0.l) or to a big DC component in the signal.

(b) IERC=-2 : The first minimum (or valley) in the correlation
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has a positive value. This could be due to the presence of
low—-frequency oscillations.
(c) IERC=-3 : The first maximum (or peak) in the correlation
does not have the highest wvalue of all the peaks in the
correlation (excluding zero-lag). This is also probably due

to low frequency oscillations.

The importance of determining the existance of low—frequency
oscillation can not be underestimated. It has been observed!??
that some BWRs when operated at reduced flows exhibit a low-frequency
oscillation (about 0.07 Hz) of almost pure-sine-wave type (i.e. decay
ratio close to 1.0). This has been attributed to a poor tuning of the
pressure control system. When these oscillations are present, most of
the methods to determine phe reactor stability will yield the stabi-
lity of the oscillations that are introduced by the control system and
not by the reactor thermal hydraulics. Once their presence has been

determined in these subroutine, corrective action can be taken.
B.2 Asymptotic Decay Ratio of the Impulse Response

The impulse response is calculated using Equation (A-6) in
subroutine DRTIME. The DR is evaluated directly and a check for
convergence to the asymptotic value is performed in subroutine

CONVRG.

The DR is measured using the formula

X =X
DR = (73-:;22—)2 (B-8)
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are three consecutive extrema (maxima or minima)

where X1s Xy and Xq

of the impulse response. This formula explicitly takes into account
the possibility of low—-frequency (or DC) interferences.

The main problem with this approach to evaluate the DR is
that this subroutine returns the DR of the complex pair of poles
with the minimum real part, and not the maximum DR. For instance, if
the system had two poles, one at s = -0.044+0.4i Hz with DR = 0.5
and another at s = -0.026+0.071i Hz with DR=0.1, DRTIME will return
DR=0.1 and NF=0.07 Hz. This kind of error has to be considered in
subroutine CONFID.

Three error conditions are returned by DRTIME

(a) IERS=-1 : DR did not converge, but the impulse response was
within roundoff bounds. Fhis is probably due to either a
very low DR or the interaction of two pairs of poles with the
same real part but different frequencies. An estimate of DR
and NF is returned from the time it took to reach the
roundoff level.

(b) IERS=-2 : DR did not converge in 3000 steps, but the impulse
response was not yet within roundoff bounds. This is also
due to the interaction between two poles, but the DR is
high, since the impulse response magnitude did not decrease
enough.

(c) IERS=-3 : No peaks were found in the impulse response. This
is probably due to a signal that does not oscillate (i.e.

DR=0).
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B.3 Frequency Domain Pole Search

Subroutine DRFREQ executes a search for poles of equation
(B-6), the frequency domain representation of the AR model, in the
frequency range were the characteristic BWR oscillation is expected
(i. e., 0.25 to 0.85 Hz). The search is executed for the zeros of the
denominator, which is a polynomial in D. For this purpose, Newton's
method in the complex domain is used: given a starting guess, DO’
the next estimate of the positon of the pole is

= P(D
Dy =Dy, 2P0) (B-9)

dD D=D0
where

N
P(D) =1 - ) A DK . (B-10)
k=1

A convergence check is performed after each step along with
step size control if necessary.

DRFREQ uses three starting guesses, D that correspond to

0?
the maximum value of the PSD, the maximum value of the derivative of
the phase of Equation (B-6) with respect to frequency and finally, the
maximum value of the derivative of the phase close to the maximum
value of the PSD.
Three error conditions are returned:
(a) IERP=-1 : All three estimates are within the range 0.25 to

0.85 Hz, but they are not the same. The most unstable pole is

returned.
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(b) IERP=-2 : At least one of the estimates is outside the
frequency range. The most unstable pole within the range is
returned.
(c) IERP=-3 : All estimates are outside the frequency range.

No estimate is returned.

B.4 Best Estimate Decay Ratio Evaluation

After the three previous estimates of the DR have been
obtained, subroutine CONFID evaluates the results, picks a best esti-
mate DR and assigns a confidence level to it. A confidence 1level of
+7 is highest and means that the estimate passed all the tests. If
the confidence is less than +3, the estimate could still be good, but
it should be treated with caution; finally, if the confidence is nega-
tive, the estimate is probably absolutely worthless.

On return, the parameter IER contains a positive value that
has coded in it the reasons for the confidence level assigned to the
DR estimate (see the program listing for details). Note that if IER
is negative, it means that some error was found in the input parame-

ters and no intent was made to estimate the stability.

B.5 Error Estimate

This set of subroutines has a provision for estimating the
error associated with the estimates. For this purpose, the raw time

data is divided into several records; a PSD is caculated for each
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record and then for the total length of data. After each
individual-record PSD is computed, a call to STABIL is made with the
parameter IFLAGZ equal to zero. Finally, a call is made with the
average PSD and IFLAGZ equal to the number of data records;
subroutine ERREST then evaluates the error in the DR and NF estimates
as the maximum dispersion between all the previous estimates. In this
way both the statistical and the bias error are addressed, since the
estimate with the average PSD will have a reduced bias error.

This error estimate can not be guaranteed to be conservative,

but experience has shown that in general it is.
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[aNals]
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20-JUN-B4 11:10:47 PAGE 1

SUBROUTINE STABIL(ITYPE,C,PSD,NP.DT,NBK:,IFLAGZ
» DR, FN, ICONF, DRERR., FNERR, IER)

This subroutine evaluates the stability of a BWR
from the PSD of an APRM noise signal.

Jose March-Leuba October, 1983

CALLING PARAMETERS:

ITYPE - Type of i1nput
O - Correlation supplied -- RECOMMENDED
1 - PSD supplied
c - Autocorrelation array (it must be dimensioned
regardless of ITYPE) dimension > NP if ITYPE:=1
PSD - Power Spectral Dens:ty of APRM noise signal.

The absolute magnitude of the PSD is not
important. The FFT blocksize and sampling
times should be cnosen so tnat:

deltafreq < 0.1 & Nyquistfreq > 1.0 Hz.
Hanning window i1s recommended.

NP - Number of points in either correlation or PSD
NP < NPMX if ITYPE:=1

DT ~ Criginal sampling time 0.05 ¢ DT < 0.5 s

NBK = Numper of blocks analyzed
1.e. NBK = NP/ (2sNP)

IFLAGZ - Flag with values:

O - Normal call (in PSDREC, PSD=zPSD2)
n - PSD is an average of the PSD’s used
in the last <n)> calls.

If IFLAGZ > 1 then an approximate error estimate

is returned along with the best estimate of
tne decay ratio and natural frequency.

.
-
%

THE SUBROUTINE RETURNS

DR - Best available estimate of the asymptotic
decay ratio.
FN - Best available estimate of tne damped

frequency of oscillation. It 1s not the
natural frequency. This :s the i1maginary
part of the most unstable pole.
ICONF - Confidence level of the estimate:
+7 - nighest confidence
ICONF >3 18 a good confidence level
IF ICONF<O then the estimate is no good
If ICONF 1s negative, the estimate should be
used witn cautaion.
DRERR - An estimate of the error in DR.
WARNING: cnly returned 1f IFLAGZ > 1
This 1S not Juiarantied to be a conservat:ve

STAB.FTN
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== estimate of the error

= FNERR - An estimate of tne error in ¥FN.

== Same restrictions than for DRERR apply.

=% IER - If < O then, error in i1nput parameters.

== SUBROUTINES CALLED:

b INPCHK - Checks input parameters

= CHKPSD - Computes RMS ana checks 1f PSD’s are positive
- CHKCOR =~ Checks that C¢(Q) > C(1) 1=1,..,NP and C(0) > O
== CORREL - Inverse FFT PSD. Returns autgcorrelatioen.
= FFT - Fast Fourier Transform

= DRCORR =~ Calculates the apparent D.R. of the autocorr.
== ARMODL - Fits a umivariate AutoRegressive (AR) model
== AR - Univariate AR moael

bt DECOMP =~ Triangular matrix decomposition

== SOLVE - Solve sytem of equations after DECOMP

b AIC - Function to calculate Akaike's inform. crat.
s DRTIME =~ Calculates the asymptotic D.R. from the

== 1mpulse response of tne AR model in the

== time domain,

== CONURG - Calculates DR and checks for convergence

== DRFRE@ -~ Calculates the D.R. ana N.F. from the

= AR mode! in the frequency doma:n.

== ZERO - Finds a zero of a polynosial

= POLY - Evaluates a polynomial and its derivative
b2 CONFID <~ It evaluates the previous results and

== determines the confidence level.

== ERREST - Estimates the error 1f IFLAGZ > 1.

== OUERLAY INFORMATION:

== STABIL

E 2] INPCHK

== CHKPSD

== CHKCOR

= CORREL

- FFT

= DRCORR

= ARMODL

== AR

== DECOMP

== SOLVE

b SOLVE

b3 AIC

- DRTIME

== CONVRG

== DRFREQ

=x ZERO

= POLY

== CONFID

== ERREST

L%t
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INTERNAL UARIABLES:
RMS - PSD RMS.
[ - Autocorrelation function.
DRC - Apparent DR of C.
FNC - Apparent FN of C.
A - AR parameters.
DTAR - Equivalent sampling time used for AR model
DRS - Asymptotic DR using impulse response.
FNS - Asymptotic FN using i1mpulse response.
DRP - Asymptotic DR using pole search.
FNP - Asymptotic FN using pole search.
DRSTCK = Array of last DR’s for error estimation
FNSTCK =- Array of last FN’s for error estimation

DEFINITIONS:

Yhe ratio between the first and
second peaks in either correlation
step or i1mpulse responses.
Asymptotic Decay Rati0: The limit as time goes to infinity

Apparent Decay Ratio:

of the ratio between consecutive peaks.

The Asymp. DR truly represents the

stability of the system, the apparent

DR does not.

Decay Rat:i0: Equivalent to asymptotic DR.

SAMPLE MAIN PROGRAM

REAL =4 C(0:128),PSD(0:128)
COMPLEX TMP.,S.,P(2),2(2)

ITYPE=1 ' PSD SUPPLIED
NP:=128

DT=0.1

NBK=25

IFLAGZ:0

DWz1.-/(2.8FLOAT(NP)=DT)
NPL =2
P(1)=CMPLX(-0.0441.,.4) { DR=0.S5 , FN:0.4
P(2)=CONJG(P(1))

DO 100 I:0.,128
W=FLOAT(I)=DW
SzCMPLX(0.,H)
TMP:=CMPLX(1..,0.)

DO 110 IP=1.NPL
TMP:=TMP/ (S+P(IP))
PSD(I):=TMP=CONJG(TMP)
CONTINUE

STAB.FTN
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CALL STABIL(ITYPE.C,PSD,NP.,DT,NBK,IFLAGZ
» DR, FN, ICONF., DRERR. FNERR, IER)

WRITE(6,3020) NPL.(P(I),I=1,NPL)
FORMAT(*1°/,7* NUMBER OF POLES =
WRITE(6,3000) DR,FN,ICONF,IER

*, 16, <NPLD>(/’

FORMAT(~s7/* DR = *,G20.57/
+ NF = *,G20.5/
» ICONF = ’,I10~
+ IER = ', 110)

STOP

END

PAGE

’,2G20.9%))
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PARAMETER NPMX:=256 MAXIMUM NUMBER OF POINTS
PARAMETER MXSTCK=10
PARAMETER NARMX=30

PARAMETER NARMN:=S

MAX. AR MODEL ORDER TO USE
MIN. AR MODEL ORDER TO USE »>:=2

REAL %4 C(O:NP),PSD(O:NP),DT,DR,FN,DRERR, FNERR
INTEGER »2 NP,NBK, IFLAGZ., ICONF

COMMON /STAB/ A,NAR,DTAR,VARZ2, DRSTCK.FNSTCK
+»DRC,FNC, IERC, DRS,FNS, IERS., DRP, FNP, IERP

REAL =4 DRSTCK(MXSTCK), FNSTCK(MXSTCK),F(2)

REAL 28 A (1:NARMX)

CALL INPCHK(ITYPE.C,PSD,NP,DT,NBK,IFLAGZ, IER)
IFC(IER.LT.0) RETURN ! FATAL ERROR IN INPUT

IF(ITYPE.EQ.1) CALL CORREL(PSD,NP,DT,C)
CALL DRCORR(C,NP,DT,DRC.FNC, IERC)

NAR = NARMX
CALL ARMODL(C,NP,DT,NBK,NAR,A, DTAR,VAR2, IERA)

CALL DRTIME(A.NAR,DTAR.DRS.,FNS, IERS)
CALL DRFREQ(A,NAR,DTAR.,DRP.,FNP, IERP)
IER=0 ¢ NOTE, IF <O IT WOULD HAUVE RETURNED
CALL CONFID(A,NAR,IERA.DRC,FNC, IERC,DRS,FNS, IERS
+DRP,FNP, IERP.DR,FN, ICONF, IER)
CALL ERREST(DR,FN,DRSTCK,FNSTCK,MXSTCK, IFLAGZ, DRERR, FNERR, IER)

RETURN
END

MAX. NUMBER OF CALLS BEFORE ERROR CHECK
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[
[
[
SUBROUTINE INPCHK(ITYPE.C.,PSD,NP,DT,.NBK,IFLAGZ, IER)
[
Cc This subroutine checks the i1nput parameters
c calling parameters are the same than STABIL
[
C = mm e e e
(ol P TR IR ESE SRR R LR SRR SRR SRR SRR SR RS R LRSS R R SRR SR RS SRS SRS SR 22 2 4 330
€ = mmmm e e
[
PARAMETER NPMX:=256 ! MAXIMUM NUMBER OF FREQUENCY POINTS
PARAMETER NARMX:=30 ! MAX. AR MODEL ORDER TO USE
[
gy
[
REAL =4 C(O:NP),PSD(QO:NP),DT,DFC
INTEGER =2 NP, NBK. IFLAGZ.,IER
[
[
(4
[
[
IER:=O
IF(DT.LE.O.) IER=-1
IF(NBK.LE.O) IER=-1
IF(NP.LE.O .OR. NP.GT.NPMX) IER=-1
[
IF(ITYPE.EQ.1) THEN ¢ PSD INPUT
DF=z1.7(2.«FLOAT(NP)=DT)
IF(DF.GT.0.1) IER=-2
IF(DF®«FLOAT(NP).LT.0.9) IER:=-2
CALL CHKPSD(PSD,NP.DT, IER)
ELSE ! CORRELATION INPUT
IF(NP.LT.NARMX) IER=-2
IF(DT.LT.0.05 .OR. DT.GT.0.5) IER:=-2
CALL CHKCOR(C.,NP.,DT,IER)
ENDIF
C
IF(IFLAGZ.GT.MXSTCK.OR. IFLAGZ.LT.0.0R.IFLAGZ.EQ.1) IER=z-3
C

RETURN
END

6%¢
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C
[
[

SUBROUTINE CHKPSD(PSD,NF,DT, IER)
[
C =% This subroutine calculates RMS and checks
C »x 1f RMS>0 anad PSD(i)>z0 1:1,NF
[
C =x» PSD - Real PSD array
C =» NF - Number of points in PSD
C »» DT - Equivalent sampling time for PSD
C »x RMS - RMS
C =»x IER - Error condition
[
c ...................................................................
C XXX ARRE R XA R ERRRSERERREE AR R SRR R E R R RS R AR RS AR R R RN R R
c -------------------------------------------------------------------
[

REAL =4 PSD(O:NF),DT.RMS

INTEGER =2 NF,IER
[
c ___________________ . e e e e e e e — e —— - - - ———-— - ———
o TR IR R RS R IR R R3S R R R RS2 22 R R R 2R SRS R RS R R R R R R R RS2 222 2 3 3
C —mmmmmmmmmm o [, e eceecccccccccccccc————
[

RMS =0

IER=O

DO 100 I:=0.NF

IF(PSD(I).LT.0.)
100 RMS:zRMS+PSD(I)

IF(RMS.LE.O.)

RETURN

END

IER=-4 ' INDIVIDUAL PSD ALLOWED = O

IER=-S ' RMS CAN NOT BE = O

STAB.FTN 20-JUN-84 11:10:47 PAGE 8
C
C
C

SUBROUTINE CHKCOR(C,NC.DT,IER)
C
C »x This subroutine checks that C(0) > C(i) i=1,..,N
C =»x and that C(0) > O
C =» It 1s callea only if ITYPE <> 1
C
C == [ - Real autocorrelation array
C == NC - Number of points in C
C =x DT - Equivalent sampling time for C
C == IER - Error condition
[
c ___________________________________________________________________
C SEESSERERRRE SRS XL LS RS SE SR RS RS R SR RS R SR EEBE SRS SRS RSB BEEERE R RS
gy g g gy g g g
C

REAL =4 C(O:NC),DT

INTEGER =2 NC, IER
C
c -------------------------------------------------------------------
C SSSSEESESREEEEEEEEE SRS S SRS SR EEESEE SRS S S SRS S NS S SRS EEEEEEEEEE SRR R
C -------------------------------------------------------------------
C

IER=O0
DO 100 I=1,NC

100 IF(C(I).GT.C(0)) IER:-4
IF(C(0).LE.O.) IER:=-5
RETURN
END

0s¢
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SUBROUTINE CORREL(PSD.NF,DT.C)
This subroutine inverse FFTs PSD.
PSD - Real PSD array
[« - Real correaltion array
SUBROUTINES CALLED:
FFT - Real Fast Fourier Transform

PARAMETER NPMX=256 ! MAXIMUM NUMBER OF FREQ. POINTS

REAL =4 PSD(O:NF),C(O:NF)
INTEGER =2 NF

COMPLEX TMP (NPMX»2)

LN=O
DF=1./(FLOAT(NF)=2.%DT)
JUNK=NF=2

JUNK=JUNK-2

LNzLN+1 ¢ LOGARITH BARSE 2 OF BLOCKSIZE (FOR FFT)

IF(JUNK.GT.1) GO TO 10

DO 100 I:zO.NF

LzI+1

TMP (L) =CMPLX(PSD(I)»DF,2.,0.) ' 2 BECAUSE OF NEGATIVE FREG.
DO 110 L=2,NF

K=28NF-L+2

TMP(K) =CONJG(TMP (L))

CALL FFT(1,LN,THP)

DO 120 I=0,NF
CCIYzREAL(TMP(I+1))

RETURN
END

STARB.FTN
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SUBROUTINE DRCORR(C.NF,DT,DRC,FNC,IERC)

- This subroutine estimates the aparent decay ratio of

- the autocorrelation.

- If the first peak in C is not the maximum peak value,

- an error condition is returned. This means tnat a lower

= frequency peak might influence the results, or that a

- first peak could not be found.

== C - Real correaltion array

== NF - Number of points in C

= DT -~ Sampling time in C

- DRC - Apparent DR of C

== FNC - Apparent Natural Freq. of C

= IERC ~ Error condition 1f <O

== -1 : Peak could not be found

= -2 ! Low frequencies influence C

= (first miniaum not negative)
. -3 : There is a low freq. peak with
== smaller real part.

REAL =4 C(O:NF),DT,DRC,FNC
INTEGER =2 NF.IERC

IERC=0
U1:-999.
C1:--999.
It=1
CMAX=-999.

DO 100 I=1,NF
D1=C(I)-C(I-1)
D2=C(I)-C(I+1)

IF(D1.LE.O. .OR. D2.LE.O.) GO TO 10 ' NOT A PEAK
IF(C1.€Q.-999.) I1:=1I
IF(C1.EQ.-999.) C1:CCI) ' FIRST PEAK
IF(C(I).GT.CMAX) CMAX:=C(I) ! HIGHEST PEAK
GO TO 100

10 IF(D1.GT.0. .OR. D2.GT.0.) GO TO 100 ! NOT A VALLEY (MIN.)
IF(V1.EQ.-999.) V1:=C(I) t FIRST VALLEY

100 CONTINUE

IF(C1.NE.-999 .AND. U1.NE.-999.) DRC=( (C1-VU1),(C(0)-V1) )=x2
IF(C1.NE.-999) FNC:z1.,/(FLOART(I1)=DT)
IF¢C1.EQ.~-999) IERC:=-1 ! PEAKS NOT FOUND

16¢
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IF(V1.EG.~-999) IERC:=-1
IF(V1.GE.0.) IERC:z-2
IF(C1.NE.CMAX) IERC:=-3
RETURN

END

2T-JUN-34

11:18: 47 PaGE

VALLEYS NOT FOUND
FIRST VALLEY NOT <O
FIRST PEAK NOT HIGHEST

11
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SUBROUTINE ARMODL(C,Nf,DT,NBK,NAR.A,DTAR,VARZ, IERA)

- This subrout:ne returns the “"optimal" AR model of oraer NAR
= “optimal" 1s aefined as the best AIC criterion

P 3] x(t)zsum Alk)mx(t-k=DT) + wit) k=1,NAR

- CALLING PARAMETERS:

== c - Autocorrelation function (magnitude unimportant)
= DT - Sampling time :n correlat:on

= NAR - Order of AR model

= A - Array containing the AR Narameters

L3 DTAR - Sampling time used for AR model

== VARZ2 - Residual error wvariance

= IERA - Error condition

= SUBROUTINES CALLED:

- AR - Calculate AR parameters

PARAMETER NARMN:=S ! MINIMUM ORDER TO FIT
PARAMETER NARMX=30 ! MAXIMUM ORDER TO FIT
PARAMETER MARINC:S * ORDER INCREMENTS

INTEGER =2 NF,NAR
REAL =4 C(O:NF),DT,DTAR, CAR(O: NARMX)
REAL =8 A(1:NAR)

IERA=O

POINTS:=2. «FLOAT(NF)®FLOAT(NBEK)
DTAR=DT

NC=NF

NCAR=NC

ISKIP=1

10 AICMX:=-1.E38

DO 200 I:=0,NARMX
CAR(IN=C(I=ISKIP)
200 CONTINUE

DO 100 IAR:=NARMN, NARMX.NARINC
CALL AR(CAR., NARMX, DT, IAR. A, VAR2)
AIC:POINTS®ALOG(ABS(VARZ2/C(C))) + 2.%xFLOAT(NAR)

(44
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AICzABS(AIC) t NOTE, VAR2/C(0)<1. SO AIC<KO
IF(AIC.GT.AICMX) NAR:zIAR
IF(AIC.GT.AICMX) AICMX=AIC

100  CONTINUE
LASTzIAR-NARINC

c
IF(NAR.NE.LAST) GO TO 30
ISKIPzISKIP+1
DTAR:DT»ISKIP ¢ IF MODEL NOT LARGE ENOUGH DOUBLE SAMPLING TIME
NCAR:z=NC/ (ISKIP)

IERAzIERA+1 ! NUMBER OF SAMPLIG TIME DOUBLINGS
IF(DTAR.GT.0.51) GO TO 20 ! MAXIMUM FREQUENCY TOO SMALL
IF(NCAR.LT.NARMX) GO TO 20 ! NOT ENOUGH LOW FREQUENCY
GO TO 10
c
20 ISKIPz ISKIP-1
NCAR:=NCs ISKIP
DTAR:zDT&ISKIP
c IERAz -1 ! MODEL ORDER USED WAS NOT LARGE ENOUGH
30 CALL AR(CAR.NARMX,DT.NAR. A, VAR2)
c

RETURN
END
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C
C
C
SUBROUTINE AR(C,NF,DT.NAR,A,VAR2)
C
C == This subroutine returns an AR model of order NAR
C ss x(t)=sum A(k)sx(t-ksDT) + wit) k=1,NAR
C
C == CALLING PARAMETERS:
C
C == [ - Autocorrelation function (magnitude unimportant)
C == DT - Sampling time in correlation
C »» NAR - Order of AR model
C ss A - Array containing the AR parameters
C
C == SUBROUTINES CALLED:
C
C == DECOMP - Triangular matrix decomposition
C s» SOLVE - Solve a system of equations
C
C - ————— - —— ———— - ———— - - - - - - - - - - - - - - - - - - - - - -
C SEXSENSEE XSS RS S XSS RS SIS S A S S SRS A S S S A SIS SRS SRR SRS AR X
C =~ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccaaa-
C
PARAMETER NARMX=30
C
C e = = ——————————————————————
C
REAL =4 C(O:NF).,DT,VAR2
REAL =8 A(1:NAR).,WM(NARMX, NARMX), COND
INTEGER =4 NDIM,NORDER., IPUT(NARMX)
INTEGER =2 NF,NAR
C
(ol et
C XEEEEAREEE R AEEE AR SRR EEE AR ERE SRR SRR RS AR AR SRR R R SRR R RN K K
[ e ccccccccccccc e e e - - ---
C

[aNs}

ND IMz=NARMX
NORDER:=NAR

DO 100 I=1,NAR

DO 100 J=I,NAR

WM(I,J)=C(IABS(I-J))
100 WMCT, I)zWM(I,T)

CALL DECOMP (NDIM, NORDER, WM, COND, IPVUT,R)

DO 200 I=1,NAR
200 ACDY=C(D)

CALL SOLVE(NDIM,NORDER,WM,A, IPUT) + AR PAR. CALC.
VAR2:=C(0)
DO 300 I:=1.,NAR
300 VAR2:=VAR2-A(I)xC(I) i RESIDUAL UVARIANCE
RETURN

END

€6¢
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c c
c c
C z -2. + 2. '
SUBROUTINE DRTIME(A,NAR,DT,DRS.,FNS, IERS) :f=:::f;-§(;§;i;zx(°)) 2 PARABOLA FIT TO EXTREMA
C TEXT=(~A1/(2.%A2))=DT
C == This subroutine calculates the DR ana Nat. Freq. IF(TEXT.GT.2.&DT .OR. TEXT.LT.O.) TEXT=DT
C == from the impulse response of the AR model. EXT=X(0)+A1*TEXT+A2sTEXTes2
C TEXT=(T-2.sDT)+TEXT
C == CALLING PARAMETERS: NPEAKS =NPEAKS+1
c c
C =x A - AR model parameters CALL CONURG(EXT,TEXT,DRS.FNS,FIRST, END, IERS)
C »x NAR - AR model order c
C =x DT - Sampling time i1n correlation IF(.NOT.END) GO TO 10 1 NOT CONUVERGED
C »» DRS - Impulse response DR c
C »» FNS - Impulse response N. F. RETURN
C == 1IERS - Error condition (used i1n determining Cc
C =x the DR confidence in CONFID) 20 DRS:=-999.
C =x IF <O ERROR. FNS=-999.
c IERS:=-2 ! NOT CONUVERGED IN MXSTP TIME STEPS (PEAKS FOUND)
€ e e e o e o—se-——e—o— 1IF (NPEAKS.EQ.0) IERS:-3 ! NO PEAKS FOUND
C == SEEEEEEEEEE SRR EEEEEEEEE RS RETURN
L ittt bttt S Sttt fommmmme—e——- END
C
PARAMETER NARMX:=30 ! SAME AS NAR IN STABIL
PARAMETER MXSTP=3000 1 MAXIMUM NUNMER OF TIME STEPS FOR CONUERGENCE
C
C —mmmmmmm—mm e
C
REAL =8 A(1:NAR),X(0:NARMX)
REAL =4 DT,DRS.,FNS
INTEGER *2 NAR. IERS
LOGICAL =*1 FIRST,END
[
C —mmmmmmmm————mm o - e m e
C REXEXEAEARARAREAEAREAEA AR AAEEREEE AR RS AR E AR AR XX SRS AR R AR N RN RN KK
C mmmmm—mmm——m—mm———ee - e
C
FIRST:=.TRUE.
NPEAKS:=0
DRS:O0.
FNS:=O0.
T=0.
DO 100 I:0.NARMX
100 X(I)=0.
v=1. * IMPULSE MAGNITUDE = 1.
C
10 DO 110 I=NAR,1,-1
110 X(I)=X(I-1)
X(0)zV
v:=0. t FORCING FUNCTION
DO 120 I=1.NAR
120 X(0)=X(0)+A(I)&X(I) ' IMPULSE RESPONSE
T=T+DT ' TIME
IF(T.GT. FLOAT(MXSTP)«DT) GO TO 20
C

D1:X(1)-X(2)
D2:X(1)-X(0)
IF(D1&D2.LE. 0.) GO TO 10

' NOT AN EXTREMA

VA4
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SUBROUTINE CONURG(X,T.DR.FN.FIRST,END, IERS)

e This subroutine calculates the DR and Nat. Freq.

= and checks for convergence (i.e. if it is asymptotic)
P The D.R. estimation uses a formula that allows for

- a bias in the response (1.e. 1f it was a STEP response
= this subroutine would also work).

(3 The calling subrout:ine has to do a search anf fino

P2 the extrema (max. or min), CONURG 1s called then

= with the value of the extrema (see DRTIME).

% CALLING PARAMETERS:

K X - Impuise response’s current extrema
- T - Current time

b ad DR - Impulse response DR

% FN ~ Impulse response N. F.

hd FIRST - =.TRUE. if 1t is first call

b END - When =.TRUE., DR and FN are converged
= IERS - Error condition (used in determining
= the DR confidence in CONFID)
P2 IF <O ERROR.

PARAMETER CONV=1.E-1 ! CONVERGENCE CRITERIUM FOR DR
PARAMETER NOLDMX=10 ¢ NUMBER OF DR’S WITHIN CONV FOR CONURG.
PARAMETER ROUND:=1.E-1S ! ROUNDOFF CRITERIUM

REAL =4 X,T.DR,FN,DROLD(O:NOLDMX),FNOLD(O:NOLDMX)
INTEGER =2 IERS
LOGICAL =i FIRST.END

IERS:=0
END=.FALSE.
IFC.NOT.FIRST) GO TO 10
FIRST:=.FALSE.
EX1:-999.
Ex2=-999.
TEX1=0.
TEX2:=0.
NOLD=0
NPEAKS:=0
EXFRST=X

STAB.FTN
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EX3:=X

TEX3=T

NPEAKS:=NPEAKS+1
IF(EX1.EQ.-999.) GO TO 16

D1:=EX3-EX2

D2:=EX1-EX3

IF(D2.NE.O.) GM=D1sD2
IF(D2.£Q.0.) GM=1.E32
IF(GM.NE.-1.) DR=(GM/(1.+GM))=x2
FNz1./(TEX3-TEX1)

DROLD(0)=DR

FNOLD(0) =FN

IF(NOLD.LT.NOLDMX) GO TO 1S

DRERR:=0.

DRAV=O0.

FNERRz=O.

FNAV=O0.

DO 110 I=0,NOLD
DRAV=DRAV+DROLD(I)/FLOAT(NOLD+1)
FNAUzFNAVU+FNOLD(I) /FLOAT(NOLD+1)
DRERR=AMAX1 (DRERR.,ABS (DROLD(0)-DROLD(I)))
FNERRz=AMAX1 (FNERR, ABS(FNOLD(0) -FNOLD(I)))
CONTINUE
IF(DRERR.LT.DRAUVSCONU.AND.FNERR.LT.FNAUsCONU) GO TO 20 + CONVERGED

DO 120 I=NOLDMX.1.,-1
DROLD(I)=DROLD(I-1)
FNOLD(I)=FNOLD(I-1)
IFCNOLD.LT.NOLDMX) NOLD=NOLD+1

IF(ABS(D2).LT.ROUND .AND. ABS(D1).LT.ROUND) GO TO 30 ! ROUNDOFF

EX1:=EXx2
EX2:=EX3
TEX1=TEX2
TEX2=TEX3
END:=.FALSE.
RETURN

END=.TRUE.

IERS=0

DR=DRAV ! IF CONVERGED RETURN AVERAGE DR
FNz=FNAV

RETURN

END:=. TRUE.

IERS:=-1 ' DR NOT CONVERGED AND RESPONSE WITHIN ROUNDOFF
NPEAKS=NPEAKS~2 ¢ NOTE HALF ARE VALLEYS

THE FOLLOWING ARE APPROXIMATED UALUES

FN=FLOAT (NPERKS)/T + TAKE AVERAGE PERIOD
YR=ABS(X/EXFRST)

DR=YR=*=%(1 . /FLOAT(NPEAKS)) ¢ DECAYED FROM 1 TO YY IN NPEARKS
RETURN

END

Y4
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SUBROUTINE DRFREQ(A, NAR, DT, DR, FN, IERP)
This subroutine estimates a DR and a N.F. from the

AR model in the frequency daomain.

It first gets a rough estimate by looking at the maximum
value of the derivative of the phase with respect to
frequency. Then, it improves the estimate by doing a pole
search uising Newton’s method in the compex domain.

CALLING PARAMETERS:

A - AR parameters

NAR - AR model order

DT - Sampling time for AR model
DR - Decay ratio estimate

FN - Natural fFrequency estimate
IERP - Error code (error i1f IERP<O)

SUBROUTINES CALLED:
- Estimates a zero of a polynomial

ZERO

MINIMUM FREQ FOR SEARCH
MAXIMUM FREQ FOR SEARCH
NUMBER OF INCREMENTS FOR SEARCH >:=3

PARAMETER WMIN:=0.2 !
PARAMETER WMAX:=0.9 !
PARAMETER NW:=B

COMPLEX EW,EWN,TF,EST,2Z

REAL =8 A(1:NAR)

REAL =4 DT,DR.FN,DRE(3),FNE(3)
INTEGER =2 NAR., IERP

IERP:=0

P1:-3.1415926%

DW= (WMAX-WMIN)/FLOAT (NW~1)
WO=WMIN

IPHASE:=1

PSDMX=0.

DPHMX=0.

DO 100 IW:z=1,NW
WzWO+FLOAT(IW-1)sDW
EWzCEXP(CMPLX(0.,-2.%PI=WxDT))
TF=CMPLX(1.,0.)
EWNzCMPLX(1.,0.)

DO 110 I=1.NAR

EWNzZEWNSEW

BACKSHIFT OPERATOR

STAB.FTN
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110 TF=TF-A(I)sEWN
PSD=1./(TFsCONJG(TF))
IF(REAL(TF).NE.O.) PHz-ATAN(AIMAG (TF)/REAL (TF))
IF(REAL(TF).LT.0.) PH:=PH-PI
IF(IWN.EQ.1) GO TO 20
IF(PSD.LT.PSDMX) GO TO 10
PSDMX=PSD
WPSDMX=W
10 DPHzPHOLD-PH
SIGN=DPH/ABS (DPH)
11 IF(ABS(DPH) .GT.2.8PI) DPH:=SIGNs(ABS(DPH)-2.sP1)
IF(ABS(DPH).GT.2.sPI) GO TO 11
IF (ABS(DPH) .LT.ABS(DPHMX)) GO TO 20
DPHMX=DPH
WDPHMXzW
20 PHOLD=PH
PSDOLD=PSD
CONTINUE
IF (PSDMX.EQ.0.) WPSDMX=WDPHMX !
GO TO (71.72,73) IPHASE

100

- DEF INE MAXIMA MORE ACCURATELY (FINER MESH)

71 DWzDW/FLOAT (NW)
WP =WPSDMX-FLOAT(NW)=DW-2. !
WD=WDPHMX-FLOAT(NW)sDW/ 2. ‘
WO:=WD
IPHASE:=2
GO TO 1

72 DPHMAX:=DPHMX/DW ' d(PHASE)/d(FREQ)
ARR=-1./DPHMAX ! REAL PART OF POLE (H2)
ARI zWDPHMX ' IMAG PART OF POLE (H2)
1IF(WD.EQ.WP) GO TO 73 t SAME RANGE THAN PSDMAX
WO = WP ' DIFERENT RANGES
IPHASE:=3
GO TO 1

73 DPHMAX =DPHMX/DW ¢ d(PHASE)/d(FREQ)
ARRP:=-1./DPHMAX ' REAL PART OF POLE (H2)
ARIP:=WDPHMX * IMAG PART OF POLE

RAD/HZ

RAD/HZ
(HZ)
e IMPROVE ESTIMATES

FROM aP/dw

EST=CEXP(-2.sPIsDTsCMPLX(ARR, ARI)) !
CALL ZERO(NAR.R,EST.,Z,I1ER)

IF(IER.EQ.0) Z:=-CLOG(2)/(2.PIsDT) ' ZERO IN HZ
IF(IER.EQ.0) DRE(1):=EXP(2.%PIsREAL(2)7ABS(AIMAG(2)))
IF(IER.EQ.0) FNE(1)=ABS(RIMAG(2)) t N.F.
IF(IER.LT.0) DRE(1)=-999.

IFCIER.LT.0) FNE(1)z-999.

FROM MAX PSD
EST:=CEXP(-2.%PIsDTsCMPLX(0. , WPSDMX)) 1
CALL ZERO(NAR,A,EST,Z,IER)

PSD MAX FIRST ITERATION
DPH MAX FIRST ITERATION

21

IF NO PEAK FOUND SAME AS PHASE

NOTE EST:zexp(-s=dt)

(s-domain)

D.R.

FROM MAX dP/dw

NOTE EST:=exp(-ssdt)

IF(IER.EQ.0) 2:=-CLOG(2)-/¢2.&PI*DT) ' ZERO IN HZ (s-domain)
IF(IER.EQ.0) DRE(2):=EXP(2.«PI*REAL(Z)/ABS (AIMAG(2))) ' D.R.
IF(IER.EQ.0) FNE(2)=zABS(RIMAG(2Z)) ' N.F.

IFCIER.LT.0) DRE(2)=-999.

96¢
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IFC(IER.LT.0) FNE(2):-999.

stimate of dP/dw @ MAX PSD

EST=CEXP(-2.=PISDT#CMPLX(ARRP, ARIP)) ! NOTE EST:zexp(-s=dt)

CALL ZERO(NAR,A,EST.Z, IER)

IF(IER.EQ.0) Z=-CLOG(2)/(2.sP1=DT) ' ZERO IN HZ (s-domaain)
IF(IER.EQ.0) DRE(3I)=zEXP(2.s«PIsREAL(Z)/ABS(AIMAG(2Z))) ' D.R.
IF(IER.EQ.0) FNE(3):=ABS(AIMAG(2)) ! N.F. FROM MAX dP/dw

IF(IER.LT.O0) DRE(3)z-999.
IFCIER.LT.0) FNE(3):-999.

EVALUATION OF RESULTS

210
200

40

So

DO 200 I=1.3

IF(FNECI).GT.WMAX .OR. FNE(D).LT.WMIN) GO TO 210 * QUTSIDE RANGE

IF(DRE(I).GT.DR) FNzFNE(I)
IF(DRE(I).GT.DR) DR=zDRE(I)

Y1=Y1+DR

Y2:=Y2+DRx%2

Y3:=Y3+FN

Y4:=Y4+FNxx2

GO TO 200

IERPz=-2 ¢ AT LEAST ONE POLE OUT OF FREQ. RANGE
CONTINUE

IF(DR.EQ.-999.) GO TO 40

IF(IERP.EQG.-2) RETURN ' AT LEAST ONE POLE OUT OF FREQ. RANGE
DRAV:=Y1/3.

DRVAR:=Y2/3. -DRAV==2

FNAVzY3/3.

FNUAR:z=Y4/3. -FNAV=%2

IF (DRVUAR.GT. DRAU* (0.05%*2)) GO TO SO ' Sx STANDARD DEVIATION
IF(FNUAR.GT.FNAUx(0.0S%x2)) GO TO SO ! S$% STANDARD DEVIATION
IERP:=0

RETURN ! EVERYTHING ALL RIGHT

IERP=-3 ! ALL POLES OUT OF RANGE

RETURN ! NO DR ESTIMATE (DRz=-999.)

IERP=-1 ! ALL POLES IN RANGE, BUT NOT THE SAME

RETURN t* DR ESTIMATE GOOD BUT NOT RELIABLE

END
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Cc
C
C
SUBROUTINE ZERO(NMN.,A,X,2Z, IER)
c
C == This subroutine find a Zero of a polynomial of the form
C »x 1.-sum( A(1)®2Zew; ) =
C == Normally, it will find a Zero close to the initial guess X,
Cc
C =» CALLING PARAMETERS:
C =» N - Order of poly
C =» A = Poly coeff.
C == X - First estimate 1n l-adomain C(exp(-2piwdt)]
C == r4 - One of the Zeros of the poly in l-domain
g = IER - Error parameter (error 1f IERCO)
C »» SUBROUTINES CALLED:
C == POLY - Evaluates a polynomial and its derivative
C
e e e e - ——
C sssssssssnnsn SEEE AR R R SRR R AR N SEEEE TR ISR S S S S EAEERRE R R
C —===~- - e —————— = - -
Cc
PARAMETER CONU=1.E-S ¢ CONVERGENCE CRITERIUM
PARAMETER MXITER=S0 ' MAX NUMBER OF ITERATIONS
[
C m e e Sy
Cc
COMPLEX X,2,P,DP,P1,DP1,DX
REAL %8 A(1:N)
INTEGER N
Cc
C === e mmmmmmmmmmmme———e———————————————
C SESFAAREERRREERRN SESEEF XSRS RS RS S SRS SR A SRS SRS S SR SRR A R K
[
C

10
30

20

IER=O
EPS:zAMAX1 (CABS (X)®CONUV, 1.E-S)
K=0

CALL POLY(N,A,X,P,DP)

J=0

DX=(P/DP)/(2%%J)

2=X-DX

CALL POLY(N,A.,Z,P1,DP1)
IF(CABS(DX).LT.EPS) RETURN
IF(CABS(P1).LE.CABS(P)) GO TO 20
J=J+1

IF(J.LT.10) GO TO 30 ' STEP CONTROL
P:zP1

DP=DP1

x:2

Kz=K+1

IF(K.LE.MXITER) GO TO 10
Z=CMPLX(1.E£32,1.E32)

IER=-1

RETURN

END

LG



STAB.FTN Z20-JuN-~-34 11:10:47 PASE 24

[aNel

[aNaNaNaNaNaNaNsl

[s e NaNaNs]

SUBROUTINE POLY(N. A, X,P,DP)

= This sub. evaluates tne polynomial A @ X and 1ts derivative
== See sub. ZERO for details

COMPLEX P,DP.X, XK
REAL =8 A(1:N)

Pz=CMPLX(1.0.,0.)
DP=CMPLX(=-SNGL(A(1)),0.)
XK=CMPLX(1.0,0.)
D0 100 K=1,N-1
XKz XK®X
PzP-A (K)®XK

100 DP=DP-FLOAT (K+1)aA(K+1) XK
PzP-A(N)*XKaX
RETURN
END

5T

s N aNaNeNeNaNeNaNe e NaNaNeNa N e Na Mo o Ne NN NeNaNoNeNaNaNa e NaNaNale) [aNaNs]

[sNeXse)

[aNeNaNaNe]

(]
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SUBROUTINE CONFID(A.NAR, IERA, DRC.FNC.IERC.DRS,FNS, IERS

> »DRP,FNP, IERP.,DR,FN, ICONF, IER)
== This subroutine evaluates the DR’s and FN’s calculated
- in DRCORR, DRTIME anhd DRFREQ and the error codes generated.
= It estimates the best DR and NF.
bid CALLING PARAMETERS:
= A - AR parameters
=x NAR - AR order
= IERA - Error parameter returned by ARMODL
- DRC - Apparent DR of autocorrelation
== FNC - Natural frequency of autocorrelation
b 1ERC - Error parameter returned by DRCORR
s DRS - Asymptotic DR of impulse response
== FNS - Natural frequency of 1mpulse resp.
== IERS - Error parameter returned by DRTIME
= DRP - Asymptotic DR evaluated 1in DRFREQ
P FNP = Natural frequency
== IERP - Error parameter returned by DRFREQ
= DR — Best estimate decay ratio (returned by CONFID)
P FN - Best estimate nat. freq. (returned by CONFID)
s ICONF - Confidence level of estimate
= +7 highest confidence
== 1f ICONF < O estimate 1S ho good
- IER - Error code
= I¢ IER=0 no error
hed If IER>O some error occurred (not necesarilly fatal)
== Note that if IERCO tnere was a fatal error
= during input checking and never got to
- thi1s subroutine.

PARAMETER WMIN=0.25 t MINIMUM FREQUENCY FOR BWR RESONANCE
PARAMETER WMAX=0.8 ! MAXIMUM FREQUENCY

REAL =8 A(1:NAR)
REAL =4 DRC,FNC.,DRS,FNS,DRP,FNP,DR,FN
INTEGER »2 IERA,IERC.,IERS.IERP

IER=0
IF(IERA.EQ.-1) IER=1 * AR ORDER NOT LARGE ENOUGH
IF(IERC.EQ.-1) IER=IER+2 ! NO PEAK IN CORRELATION

IF(IERC.EQ. -2) IER:=IER+4 ¢ FIRST UALLEY IN CORR. >0

86¢
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IER=IER+B

IER=IER+16
IER:=IER+32
IER=IER+64

IER=IER+128
IER:=IER+256
IER:=IER+512

DR AND NF

IFCFNS.GT.WMAX .OR. FNS.LT.WMIN
.OR. FNS.LT.WMIN) GO TO

DR=DRP

OR. DR.EQ.DRP) GO

IF(DRS.LT.DRP=1.25) GO TO 20

.OR. FNS.LT.WMIN)
.OR. FNS.LT.WMIN)
.OR. FNP.LT.WMIN)
.OR. FNP.LT.WMIN)

ICONF=-7

ICONF zICONF -3
ICONF = ICONF -1

EQ.-1.AND.DR.GT.0.3)

ICONF =ICONF -1
ICONF=ICONF-1

EQ.-1.AND.DR.EQ.DRS)

ICONF =ICONF -1

€Q.-3.AND.DR.GT.0.3)

ICONFzICONF-1
ICONF =ICONF -1
ICONF =ICONF -1

STAB.FTN
IF (IERC.EQ. -3)
C
IF(IERS.EQ.-1)
IF(IERS.EQ.-2)
IF(IERS.EQ.-3)
C
IFCIERP.EQ.-1)
IF(IERP.EQ.-2)
IF(IERP.EQ. -3)
Cc
C =» BEST ESTIMATE FOR
[
DR=-999.
FNz-999.
c
c
DR=DRS
FN:z=FNS
IF(DRP.GT.DRS)
IF(DRP.GT.DRS) FN:z=FNP
IFC(IERS.NE.-1
Cc
DR:=DRS
FNzFNS
GO TO 20
C
C
10 IF(FNS.GT.WMAX
IF(FNS.GT.WMAX
IF(FNP.GT.WMAX
IF (FNP.GT.WMAX
c
IF(DR.EQ.-999.)
IF(DR.EQ.-999.) RETURN
C
C
20 ICONF =S
C
IF(IERA.EQ.-1)
IFC(IERA.GT.O)
C
IF(IERC.
IF(IERC.EQ. -2)
IF(IERC.EQ.-3)
C
IFCIERS.
IFCIERS.EQ. -2)
IFCIERS.
C
IF(IERP.EQ.-1)
IFC(IERP.EQ.-2)
IF(IERP.EQ.-3)
C
C

4 11:10:47 PAGE 26

LOWER FREQUENCY IS IMPORTANT

IMPULSE RESP. NEVER CONVERGED
MX TIME REACHED WITHOUT CONV IN IMP
NO PEAKS IN IMPULSE RESPONSE

¢ ALL PEAKS IN RANGE, NOT SAME
AT LEAST 1 POLE OUT OF FREQ RANGE
ALL POLES OUT OF FREQ RANGE

.OR. FNS.GT.WMAX
10

T0 20

DR=DRP
FNzFNP
DR=DRS
FNzFNS

ICONF=ICONF-3

ICONF =ICONF-3

ICONF=ICONF-3

IF (CABS(DRS-DRP).LT.0.0SsDR).AND. (ABS(FNS-FNP).LT.0.0S«FN))

STAB.FTN

IF((ABS(DRC-DR).LT.0.05=DR).AND. (ABS(FNC-FN).LT.0.0S5FN))

RETURN
END

ICONF zICONF +1

ICONF=ICONF+1

20-JUN-B4

1:10:47

PAGE

27

66¢



STAB.FTN 20-JUN-84 11:10:47 PAGE 28 STAB.FTN 20-JUN-84 11:10:47 PAGE 29

c [+
C 10 DRMX=DR
c DRMN=DR
SUBROUTINE ERREST(DR.FN,DRSTCK, FNSTCK, MXSTCK FNMXZFN

> » IFLAGZ, DRERR, FNERR, TER) FNMNZFN
c IF(IFLAGZ.GT.MXSTCK) IFLAGZ=MXSTCK
C »= This subroutine calculates an error estimate for DR and FN. DO 200 I:=1,IFLAGZ
C =a It is intended to be used with the PSDREC system. IF(DRSTCK(I).GT.DRMX) DRMX=DRSTCK(I)
C == Sub. STAB 15 called N times with PSDZ’s as imput. Then., the IF(DRSTCK(I).LT.DRMN) DRMN=DRSTCK(I)
C »» average of the PSDZ’'s is done and STAB called again with IF(FNSTCK(I).GT.FNMX) FNMXzFNSTCK(I)
C =»x» this average. The error estimate 15 the maximum of the 200 IF(FNSTCKCI).LT.FNMN) FNMNzFNSTCK(I)
C == dispersion of all this estimates. This error accounts for the c
C == standard deviation of the DR’s evaluatead from PSDZ’s., and also DRERR z DRMX-DRMN
C == takes into account the bias, since the average PSD estimate FNERRzFNMX-FNMN
C »» is more accurate than with PSD2’s. c
C == Nevertheless. this 1s just an estimate and is not guarantied RETURN
C == to be conservative. END
C
C »» CALLING PARAMETERS:
C »» DR - Current decay ratio
C == FN - Current natural fregq.
C =» DRSTCK - Array to store ola DR
C == FNSTCK - Array to store old FN
C == MXSTCK - Maximum length of the previous arrays
C »x» IFLAGZ - If =0, then this call is with PSDZ’s ana
C == only updating of the arrays 1s done
C »x» If =N >0. then an estimate 1s obtainea.
C == N 1s the number of PSDZ’s that have alreaay
C »» been evaluated
C == DRERR - Estimate of error in DR
C »» FNERR - Estimate of error in FN
C == IER - Error condition
C
C
C
C
C

REAL »4 DR, FN,DRSTCK(1:MXSTCK),FNSTCK(1:MXSTCK)
> » DRERR., FNERR
INTEGER #2 MXSTCK., IFLAGZ. IER

C
C
C
C
C
DRERR=-999.
FNERR=-999.
IFCIFLAGZ.LT.2) RETURN
C
IF(IFLAGZ.GT.0) GO TO 10
c

DO 100 I-MXSTCK.2.,-1

DRSTCK (I)=DRSTCK(I-1)
100 FNSTCK(I)zFNSTCK(I-1)

DRSTCK (1) :=DR

FNSTCK (1) =FN

RETURN

09¢
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6 F(I):=F(I)/FLOAT(N)
RETURN
END

SUBROUTINE FFT(IDIR,LN.F)
FAST FOURIER TRANSFORM ALGORITHM

IDIR=0 FORWARD TRANSFORM
=1 INVERSE TRANSFORM

LN =THE BLOCKSIZE IS 2==LN

F =COMPLEX ARRAY CONTAINING ARRAY TO BE TRANSFORMED ON INPUT
AND CONTAINS TRANSFORM ON OUTPUT

FOR 1 CHANNEL FORWARD TRANSFORM, THE TIME DATA GOES INTO THE
REAL PART OF F. ON OUTPUT, THE TRANSFORM IS PROPERLY ORDERED.
FOR 2 CHANNEL FORWARD TRANSFORM, THE TIME DATA FOR CHANNEL 1
GOES INTO THE REAL PART OF F AND CHANNEL 2 INTO THE
IMAGINARY PART OF F. ON OUTPUT, THE TRANSFORMS ARE JUMBLED.
USE FUNCTION TWOSP IN THIS LIBRARY TO UNJUMBLE THE TRANSFORM.

THIS ROUTINE HAS NOT BEEN USED FOR 2 CHANNEL INUVERSE TRANSFORM.
THEREFORE, ITS APPLICABILITY IS NOT KNOWN.

COMPLEX F.,U,W, T,.CMPLX,CONJG
DIMENSION F (1)

P1:3.141592654 N
N:z2==LN o)}
IFC(IDIR.EQ.0)GO TO 7 —
DO 8 I=1.,N

F(I>)=CONJG(F(I))

NU2:=Ns2

NM1:z=N-1

J=1

DO 3 I=1.,NM1
IF(I.GE.J)GO TO 1
T=F()

F(I)=F(I)

FCIH=T

Kz=NU2
IF(K.GE.J)GO TO 3
J=J-K

Kz=K72

GO TO 2

J=J+K

DO S L=1,LN
LEz2wxlL

LE1:=LE /2
U=(1.0,0.0)
W=CMPLX(COS(PI/LE1),-SIN(PI/LE1))
DO S J:=1,LEL

DO 4 I:zJ.N,LE
IP=I+LEL

T=F (IP)»U
FCIP)=F(I)-T
FCI)zF (I)+T

Uzu=KW

IFCIDIR.EQ. 1)RETURN
DO 6 I=1.N
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SUBROUTINE DECOMP (NDIM, N,A,COND, IPUT, WORK)

IMPLICIT REAL =B(A-H,0-2)
IMPLICIT INTEGER =4(I-N)
INTEGER %4 NDIM.N

REAL =»B A(NDIM.,N),COND, WORK(N)
INTEGER =4 IPVUT(N)

DECOMPOSES A REAL MATRIX BY GAUSSIAN ELIMINATION
AND ESTIMATES THE CONDITION OF THE MATRIX

USE SOLVE TO COMPUTE SOLUTIONS TO LINEAR SYSTEMS.
INPUT. .

NDIM=DECLARED ROW DIMENSION OF THE ARRAY CONTAINING A.
N=ORDER OF THE MATRIX

A=MATRIX TO BE TRIANGULARIZED

OUTPUT. .

A CONTAINS AN UPPER TRIANGULAR MATRIX U AND A PERMUTED
VERSION OF A LOWER TRIANGULAR MATRIX I-L SO THAT
(PERMUTATION MATRIX)=A:zL=U

COND= AN ESTIMATE OF THE CONDITION OF A.

FOR THE LINEAR SYSTEM AsX:=B, CHANGES IN A AND B
MAY CAUSE CHANGES COND TIMES AS LARGE IN X.

IF COND+1.0 .EQ. COND, A IS SINGULAR TO WORKING
PRECISION. COND IS SET TO 1.0E+32 IF EXACT
SINGULARITY IS DETECTED

IPUT=THE PIVOT VECTOR

IPUT(K)=THE INDEX OF THE K-TH PIVOT ROW
IPUT(N)=(-1)®x(NUMBER OF INTERCHANGES)

WORK SPACE.. THE VECTOR WORK MUST BE DECLARED AND INCLUDED
IN THE CALL. ITS INPUT CONTENTS ARE IGNORED.
ITS OUTPUT CONTENTS ARE USUALLY UNINPORTANT.

THE DETERMINANT OF A CAN BE OBTAINED ON OUTPUT BY
DET(A)=IPUT(N)®A(1,1)®A(2,2)%...%A(N,N).

REAL =8 EK, T,ANORM.YNORM, ZNORM
INTEGER %4 NM1,I,J,K,KP1,KB,KM1,M

IPUT(N)=1
IF(N.EQ.1) GO TO 80
NM1:=N-1

COMPUTE 1-NORM OF A

ANORM:=0.0
DO 10 J=1,N
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T=0.0

DO S I=1,N
T=T+DABS(A(I,J))
CONTINUE
IF(T.GT.ANORM) ANORM:=T
CONTINUE

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

DO 35 K=1,NM1L

KP1:zK+1
FIND PIVOT
M=K

DO 1S I=KP1,N
IF(DABS(A(I,K)).GT.DABSC(A(M,K))) M=1
CONTINUE

IPUT(K) =M

IF(M.NE.K) IPUT(N)=-IPUT(N)

TzA(M,K)

A(M,K)zA(K,K)

A(K,K)=T

SKIP STEP IF PIVOT IS ZERO

IF(T.EQ.0.0) GO TO 3S

COMPUTE MULTIPLIERS

DO 20 I=KP1,N
A(I,K)==A(I.K)/T
CONTINUE

INTERCHANGE AND ELIMINATE BY COLUMNS

DO 30 J=KP1.,N

T=A(M, J)

A(M, I)=AK, T)

A(K, J)=T

IF(T.EQ.0.0) GO TO 30
DO 25 I=KP1,N

ACL, I)zAL, I)+A(L,K) =T
CONTINUE

CONTINUE

CONTINUE

COND= (1-NORM OF A)= (AN ESTIMATE OF 1-NORM OF A-INVERSE)
ESTIMATE OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE
SMALL SINGULAR VECTOR. THIS INVUOLUVES SOLVING TWO SYSTEMS
OF EQUATIONS, (A-TRANSPOSE)=*Y:zE AND A®2:Y WHERE E

IS AVECTOR OF +1 OR -1 CHOSEN TO CAUSE GROWTH IN Y.
ESTIMATE=(1-NORM OF Z)/(1-NORM OF Y)

SOLVE (A-TRANSPOSE)=Y:=E

DO SO K=1,N
T=0.0

[4°X4
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IF(K.EQ.1) GO TO 4S5
KML=K-1

DO 40 I=1.,KM1
T=T+A(I,K)=KORK(I)
CONTINUE

EK=1.0

IF(T.LT.0.0) EKz-1.0
IF(A(K,K).EQ.0.0) GO TO 90
HWORK (K)=-(EK+T)/7A(K,K)
CONTINUE

DO 60 KB=1,NM1
Kz=N-KB

T=0.0

KP1zK+1

DO 5SS I:=KP1.,N
T=T+A(1,K)®HORK (K)
CONTINUE

WORK(K)=T

Mz IPUT(K)

IF(M.EQ.K) GO TO 60
T=WORK (M)

WORK (M) =WORK (K)
WORK(K)=T

CONTINUE

YNORM=0.0

DO 6S I=1.,N
YNORM:=YNORM+DABS(HWORK(I))
CONTINUE

SOLVE A=xZ:Y

CALL SOLVE(NDIM,N,A,HWORK, IPVUT)

ZNORM=0.0

DO 70 I=1.N
ZNORM=ZNORM+DABS(WORK(I))
CONTINUE

ESTIMATE CONDITION
COND=ANORM*ZNORM/YNORM
IF(COND.LT.1.0) COND=1.0
RETURN

1-BY 1

COND:=1.0
IF(AC1,1).NE.O0.0) RETURN

EXACT SINGULARITY
COND=1.0E+32

RETURN
END
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SUBROUTINE SOLVE(NDIM,N.A.B,IPUT)

IMPLICIT REAL =8 (A-N,0-2)
IMPLICIT INTEGER =4 (I-N)
INTEGER =4 NDIM,N., IPUT(N)
REAL *8 A(NDIM.N),B(N)

SOLUTION OF LINEAR SYSTEM.

AxX:z=D

DO NOT USE IF DECOMP HAS DETECTED SINGULARITY

INPUT. ..

NDIM:=DECLARED ROKW DIMENSION OF ARRAY CONTAINING A

NzORDER OF MATRIX

AzTRIANGULARIZED MATRIX OBTAINED FROM DECOMP

B=RIGNT HAND SIDE VECTOR

IPUTzPIVOT VECTOR OBTAINED FROM DECOMP

OUTPUT...

B=SOLUTION VECTOR, X.

INTEGER %4 KB, KM1,NM1,.KP1,I,K,M

REAL =B T

FORWARD ELIMINATION

IF(N.EQ.1) GO TO SO
NMi=N-1

DO 20 K=1,NM1
KP1zK+1

Mz IPVT(K)

Tz=B(M)

B(M)=B(K)

B(K)=T

DO 10 I=KP1:N
B(ID=B(I)+A(I,K)=T
CONTINUE

CONTINUE

BACK SUBSTITUTION

DO 40 KB=1,NM1

KMi =N-KB

K=KM1+}
B(K)zB(K)/7A(K,K)
T=-B(K)

DO 30 I=1,KM}1
B(I)z=B(D)+A(I, K)«T
CONTINUE

CONTINUE

So B(1)=B(1)/A(1,1)
RETURN
END

3S
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[

C »x IT SOLVES THE NON LINEAR EQUATIONS REPRESENTING A BWR
C == WITH NON-~LINEAR FEEDBACK

C == AND RECIRCULATION LOOP (ONLY ONE CHANNEL)

[

C ss IT INCLUDES 2-NODE FUEL AND POINT KINETICS

C rmmcmrmc e m—e————— e ——— e ——— - - —

[

VvV v

PARAMETER NEQMX:=20
PARAMETER MXNDz12
IMPLICIT REAL*8 (A-H,0-2)
COMMON /MODEL~
NND.A1.,R2,ETA, DZ, XKF . PSHP
» XLA, DPFO, DPO, FLOW
» H, RHOL , RHOG, GC, XKC
» XKS,RCOEF ,HL ,HG, AFLOW
s WHITE, IMPUL, STEP,HSIN
REAL =8 A1,A2,H,RHOL,RHOG,GC, XKF , XKC
+» XLA,DPFO, DPO, FLOW
+» XKS,RCOEF ,ETA, HL, HG, PSHP(MXND), DZ
LOGICAL =1 WHITE., IMPUL.STEP.HSIN

COMMON /BOUND~/ YZ,XZ,FHZ,ECZ,FR,QDOT

REAL *8 YZ(O:MXND,3),XZ(O0:MXND),FHZ(0:MXND),ECZ(O:MXND)
»FR(1:MXND),QDOT(1:MXND)

COMMON /STEADY~/ YZ0.XZ0,ECZO

REAL %8 YZO(O:MXND,3),XZ0(0:MXND),ECZ0(0:MXND)

EXTERNAL F

REAL =8 ATOL (NEQMX),Y(NEQMX)
INTEGER ICH(NEQMX+1)

COMMON /PERTUR/ R, WPERT,PHPERT
LOGICAL =1 FILE(28)

COMMON /NEUT/ XL.,GT,BETA.,F3,DOP,REACO
REAL =8 REACO(MXND)

COMMON /HTR/ U.,R3,A4,AS,POW,PSUM2, DRCM
COMMON ~/ IN2/ POWPC,FLOWPC

COMMON /0UTP/ PRINT, PRALL.DSK
LOGICAL =»1 PRINT,PRALL,DSK
COMMON /UNIT4-/ DEV

LOGICAL =1 DEV(28)

10

CALL INPUT(NEQ.F,JAC.DT,T,Y,ATOL.,RTOL.MF,FILE,ICH,NCH)
CALL INPF(FILE)

CALL STEADY(DT.Y,FILE)

CALL DTGEN(NEQ.F, JAC.DT,T,Y,ATOL,RTOL.MF,FILE, ICH,NCH)

GO TO 10
END

TLAP.FTN
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SUBROUTINE INPUT(NEQ.,F,JAC,DT.T.Y.ATOL,RTOL,MF.,FILE, ICH,NCH)
PARAMETER NEQMX:=20
PARAMETER MXND:=12
IMPLICIT REAL®8 (A-H,0-2)
COMMON /MODEL~/
NND.A1,A2,ETA, DZ, XKF , PSHP
» XLA,DPFO, DPO, FLOW
»H, RHOL, RHOG , GC , XKC
» XKS,RCOEF ,HL ,HG, AFLOW
+WHITE, IMPUL, STEP, HSIN
REAL =8 A1,A2,H,RHOL.,RHOG,GC., XKF , XKC
+»XLA,DPFO,DPO,FLOW
» XKS,RCOEF,ETA, HL »HG, PSHP (MXND),D2Z
LOGICAL =1 WHITE, IMPUL,STEP,HSIN

COMMON /BOUND~/ YZ,XZ,FHZ,ECZ.FR,QDOT

REAL *8 YZ(O:MXND,3),XZ(O0:MXND),FHZ(O:MXND),EC2(0:MXND)
»FR(1:MXND),QDOT (1:MXND)

COMMON /STEADY~/ Y20.,X20,ECZ0

REAL *8 YZO(O0:MXND,3),XZ0(0:MXND),EC20(0:MXND)

1020

1030

1040

EXTERNAL F

REAL #8 ATOL (NEQMX),Y(NEQMX)
INTEGER ICH(NEQMX+1)

COMMON /PERTUR/ R, WPERT,PHPERT
LOGICAL =1 FILE(28)

COMMON /NEUT/ XL,GT,BETA,F3.,DOP,REACO
REAL =8 REACO(MXND)

COMMON /HTR/ U.,A3J, A4, AS, POW, PSUM2, DRCM
COMMON ~/IN2/ POWPC,FLOWPC

COMMON /0UTP/ PRINT,PRALL,DSK
LOGICAL *1 PRINT,PRALL,DSK
COMMON /UNIT4/ DEV

LOGICAL =1 DEV(28)

LOGICAL «1 IANS.FILE6(28)

WRITE(S,1000)

FORMAT(//7* »®= PROGRAN TLAP sx°’//

* ENTER NUMBER OF NODES (DEF=12) :’.$)
READ(4,1010) NND

FORMAT(BI10)

IF(NND.LE.O) NND=12

IF (NND.GT.MXND) GO TO 1

NEQ:=NND+1+2+1+1 ¢ ALFA, INLET FLOW, 2 TEMP, NEUTR, DELAYED
WRITE(S, 1020)

FORMAT (" DELTAT (DEF=0.021] BEEE B

READ(4,1030), DT

FORMAT(4F20.0)

IF(DT.LE.O.) DT=0.02

WRITE(S. 1040)

FORMAT(’ TOTAL TIME (DEF=200) 1 e)

G9¢
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READ(4,1030} T N
IF(T.LE.O.) T=200.
WRITE(S,1070) 2060
FORMAT(* ENTER 1 = FOR WHITE NOISE PERT.'~
s 2 - FOR IMPULSE RESP.’/
I 3 - FOR DAMPED SINE RESPONSE. [DEF)’~
»? 4 - FOR STEP RESP. i)
READ(4.,1010) IOPT
IFC(IOPT.LE.O.OR.IOPT.GT.4) IOPT=3
WHITE=.FALSE.
IMPUL=.FALSE.
STEP=.FALSE.
IF(IOPT.EQ.1) WHITE=.TRUE. C
IFCIOPT.EQ.2) IMPUL:=.TRUE
IFCIOPT.EQ.3) HSIN=.TRUE. 2040

IF(IOPT.GE. 4> STEP:=.TRUE.

WRITE(S,107S)

FORMAT(* PERTURBATION MAGNITUDE (DOLLARS) (DEF=0.1] :’.s$)

READ(4,1030) R

IF(R.LE.O0.) R=0.1

WRITE(S.,1080)

FORMAT(’ ENTER ATOL.RTOL [DEF=1.E-B8,1.E-41:'.,$)

READ(4,1030) ATOL (1),RTOL

IF(ATOL(1).EQ.0.) ATOL(1)=1.E-B c
IF(RTOL.EQ.0.) RTOL=1.E-4

WRITE(S,1090)

FORMAT(’* ENTER DRC MULTIPLIER (DEF=1):',$)

READ(4,1030) DRCM
IF(DRCM.EQ.0.) DRCM=1.
WRITE(S,2000)

FORMAT(* POWER SHAPE (BOT,.
F1=FLOAT(NND)>+2.S
F2=FLOAT(NND)>+2.

DO 110 I=1,NND
PSHP(1)=SQRT(ABS(SIN(3.14x ((F1-FLOAT(I))/F2)x%2)))
DO 100 I=1,NND

WRITE(S,2010) I,PSHP(I)

FORMAT(’ PSHP(’,12,”) = [DEF=’,G12.2,’1 :',$)
READ(4.,1030) PPP

IF(PPP.NE.O.) PSHP(I):=PPP

CONTINUE

.»TOP1*)

PRINT=.FALSE.

PRALL=.FALSE.

DSK=.FALSE.

WRITE(S,2020)

FORMAT(’* PRINT PROGRESS? (DEF=NOJ :’,s)
READ(4,2030) I.,IANS

FORMAT(Q,80A1)

IFC(IANS.EQ.’Y’") PRINT=.TRUE.

IF(PRINT) WRITE(S,2025)

FORMAT(’ PRINT ALL UVARIABLES? [DEF= ONLY POWER] :’,s)
IF(PRINT) READ(4,2030) I,IANS

IF(IANS.EQ.’Y*) PRALL:=.TRUE.

WRITE (S, 2050)

FORMAT(” SAUE ALL VARIABLES IN DISK” (DEF:=NO1 :°’.$)
REZADP(4.2030) I,IANS

2C-JUN-34 11:23:45 PAGE

IF(IANS.EQ."Y’) DSK:.TRUE.
WRITEC(S,2060)

FORMAT(* DEVICE FOR STEADY AND DR OUTPUT [DEF=CL:1:’,$)
READ(4,2030) NCHR, (DEU(J),I=1,NCHR)
IFI{NCHR.EQ.O) DEV(1)="'C’
IFINCHR.EQ.O0) DEV(2)="L"
IF(NCHR.EQ.0) NCHR:=2
IF(DEV(NCHR).EQ.’:’) NCHR=NCHR-1
DEV(NCHR+1)=":"

DEVI(NCHR+2)=0

CLOSE(UNIT=6)

CALL ASSIGN(6,DEU,NCHR+1)

WRITE(S.2040)

FORMAT(’ DEVICE FOR POWER AND FLOW INPUT [DEF=TI:] :’.$)
READ(4,2030) NCHR, (DEU(T),J=1,NCHR)
IF(NCHR.EQ.O0) DEV(1)='T"*
IF(NCHR.EQ.O) DEV(2)="1"
IF(NCHR.EQ.0)> NCHR:=2
IF(DEU(NCHR).EQ.’: *) NCHR=NCHR-1
DEVI(NCHR+1)="':"

DEV(NCHR+2) =0

CLOSE(UNITz4)

CALL ASSIGN(4,DEV,NCHR+1)

MF=23 t DIAGONAL JAC
RETURN
END

(NOT SUPLIED?
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SUBROUTINE INPF(FILE)
PARAMETER NEQMX:20
PARAMETER MXND=12
IMPLICIT REAL=8 (A-H,0-2)
COMMON ~/MODEL~/
NND.A1,AR2,ETA, DZ, XKF, PSHP
»XLA,DPFO,DPO,FLOKW
» H, RHOL . RHOG, GC, XKC
» XKS,RCOEF ,HL . HG, AFLOW
s WHITE, IMPUL., STEP,HSIN
REAL %8 A1,A2,H,RHOL.RHOG, GC, XKF,XKC
»XLA, DPFO, DPO,FLOW
» XKS,RCOEF,ETA, HL,HG, PSHP (MXND),DZ
LOGICAL =1 WHITE., IMPUL.,STEP,HSIN

COMMON /BOUND/ YZ,XZ,FHZ,ECZ,FR,QDOT

REAL #8 YZ(O:MXND.,3),XZ(O:MXND),FHZ(O:MXND),ECZ(0:MXND)
»FR(1:MXND),QDOT (1:MXND)

COMMON /STEADY~/ Y20, X20,ECZ0

REAL =8 YZO(O0:MXND,3),XZO(0:MXND),ECZO(0:MXND)

COMMON /NEUT/ XL.,GT,BETA.F3,D0OP,REACO
REAL =8 REACO(MXND)

COMMON /PERTUR/ R, WPERT, PHPERT

COMMON /HTR/ U, A3, A4,AS, POW,PSUM2,DRCM
COMMON 7IN27/ POWPC.,FLOWPC

COMMON /UNIT4-/ DEV

LOGICAL =1 DEV(28)

IF(DEV(1).EQ.’'T") WRITE(S,1000) ' TERMINAL INPUT
FORMAT(* POWER, FLOW (%,DEF=100%] i, s)
READ(4,1010) POWPC,FLOWPC

FORMAT(6F20.0)

IF(POWPC.EQ.0.) POWPC:=100.

IF(FLOWPC.EQ.0.) FLOWPC=100.

IPzIFIX(SNGL (POWPC))
IF=IFIX(SNGL (FLOWPC))
IF(IP.EQ.O0.AND.IF.EQ.O0) STOP
ENCODE(8,1030,FILE(1)) IP.IF
FORMATC’P’, 13, 'F’.1I3)

FILE FOR STEADY STATE INFORMATION =x
FILE(9)="

FILE(11)
FILE(12)="D"

FILE(13)=0

CLOSE(UNITz6)

OPENCUNIT:z6,NAME=FILE, TYPE="NEW’,ACCESS:=’SEQUENTIAL’

S

TLAP.FTN 20-JUN-84 11:23:45
> ,FORM: ‘FORMATTED ’, SHARED)
CLOSE(UNIT:=1)
FILE(9):=0 ¢ .DAT
[
RETURN
END

PAGE
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c
C
C
SUBROUTINE STEADY(DT,Y)
c --------------------------------------------------------------------
PARAMETER NEQMX:=20
PARAMETER MXND:=12
IMPLICIT REAL®*B (A-H,0-2)
REAL =B Y(1:NEQMX)
COMMON ~MODEL~
> NND, A1,AR2,ETA, DZ, XKF , PSHP
> +»XLA,DPFO,DPO,FLOW
> »H, RHOL , RHOG, GC, XKC
> » XKS, RCOEF »HL ,HG, AFLOW
> »WHITE, IMPUL, STEP,HSIN
REAL *8 A1,A2,H,RHOL,RHOG.,GC, XKF , XKC
> »XLA,DPFO,DPO,FLOW
> » XKS, RCOEF,ETA, HL,HG, PSHP (MXND), D2
LOGICAL =1 WHITE, IMPUL,STEP,HSIN
DATA Hs3.657 ! CORE HEIGTH
> » RHOL-/0.74E3/ ! SATURATED WATER DENSITY Kg-/m3
> »RHOG/0.03SE37 ! SATURATED STEAM DENSITY Kg/m3
> »GCrs9.81~/ t'g (mss2)
> + XKC/30.07 t Kc for Martinelli Nelson (see Pedros
> » XKS/0.87 ! Ks " "
> +RCOEF~/3.97/ tr " "
> »HL/1.25€6~ ! Sat. water enthalpy (J/m3)
> »HG/2.77E6/ ! Sat. steam enthalpy (J/m3d)
> » AFLOW/3.98/ ' Flow area (m2)
> » XLA’74.0/ ' L/A ratio for R.L. (m=-1)
C === -—————————— e —— - - -————————
COMMON /BOUND~/ Y2,X2,FHZ,ECZ,FR, QDOT
REAL *B YZ(O:MXND,3),XZ(0:MXND),FHZ(0:MXND),ECZ(0:MXND)
> »FR(1:MXND),QDOT(1:MXND)
COMMON /STEADY-/ Y20,X20,EC20
REAL *B YZO(O:MXND,3),XZ0(0:MXND),ECZO(O:MXND)
C ____________________________________________________________________
DATA POW100-0.45E9/ ' J/ms  thermal V.V,
DATA FLO100-1.SE3~/ ! Kgrsm2 V.Y,
COMMON /NEUT/ XL.,GT,BETA,F3,D0P.REACO
REAL =B REACO(MXND)
DATA XL~-0.08/ ! DEALYED N. LAMBDA
> ,GT/74.E-5/ ! GENERATION TIME (s)
> »BETA/70.0056/ ! DELAYED N. BETA
> »DOP/-1.4E-S/ ! DOPPLER REACTIV. COEFF (Kelvin-1)
> »R370.2325/ ! FUEL TIME CONSTANT (FROM LAPUR FIT)
> +AR4/0.048/ ! A4:A3x(RHOCPFUEL)/ (RHOCPCLAD)
> »AS/7.54/ ! CLADING TIME CONSTANT (LAPUR) s-1
> »Us2.96E8~/ ! SEE BWR S (2~NODE HEAT TR. COEFF)
COMMON /HTR/ U.AR3,A4,AS,POW.PSUM2, DRCM
€ e m e e e e e e e e e e e et e e e e
COMMON ~IN2/ POWPC,FLOWPC
€ ==~ e e
C
C

POW-POWPC*POW100-100. '
RCPUF =6.62%3.125E6
F3:POWsH/RCPUF '

J/ms thermal
J/K  (BWRS)
FOR USE IN FUEL EQ.

th

s-1
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FLOW:zFLOWPC*FL0100-100. !
DZ:=H/FLOAT(NND)

SUM=0.

DO 100 I=1,NND

SUM=SUM+PSHP(I)
SUM=SUM/FLOAT (NND)

PSUM2:0.

DO 110 I=1,NND
PSHP(I)=POWSPSHP(I)/SUM '
PSUM2:=PSUM2+PSHP(I) a2 '
CONTINUE

Kgssm2

J/as
FOR DRC WEIGHTING

¥2(0,1):=0.0 ! ALFA O

YZ(NND,2):0.0 ! P(H) UPPER PLENUM PRESS. CONSTANT
Y¥Z(0,3)=FLOW ' GO

X2(0):0.0 t X0

A1:z1./(DZ*(RHOL-RHOG))
A2: (HG®RHOG-HL *RHOL)
ETA=z(RHOL-RHOG) /RHOL
D2:zH/FLOAT(NND)
FMOODYz0.019%1.4 :
DE=0.0134 ,
XJONES:=1.9-5.E-4sFLOW !
XKFzXJONES*FMOODY/ (DE%2. *RHOL) !

FOR Re=70000 TURBULENT REGION APROX CONST.
m

JONES CORRECTION FACTOR FOR MARTINELLI-NELSON
SINGLE PHASE FRICTION COEFF.

DO 120 I=1.,NND

YZ(I,3):zFLOW 16(2I)
XZ(I)zX2(I-1)+D2*PSHP (I)/ (AFLOW®FLOW*(HG-HL))
YZ(I,1):=X2¢I) t FIRST GUESS

ITERATION FOR ALFA CONVERGENCE

K=0
CONUV=FLOAT(NND)»1.E-10
SUM=0.0

DO 200 IN:=1,NND

ALF=YZC(IN, 1)

IF(ALF.LT.0.) ALF:=0. t ALF <O NOT ALLOWED
SLIP=( 1.-ALF )7 ( XKS-ALF+( 1.-XKS )*(ALF*x®SNGL (RCOEF)) )
YZCIN, 1)=XZ(IN)/(SLIP*(1.-ETA)+XZ(IN)=(1.-SLIP%(1.-ETA)))
SUM=SUM+ABS(ALF-YZ(IN, 1))
KzK+1

IF(K.GT.100) STOP * STEADY --
IF(SUM.GT.CONV) GO TO 10

TOO MANY ALFA ITERATIONS®

DO 210 IN=1,NND
ALF=(YZ(IN,1)+YZ(IN-1,1))72. ' NODAL ALFA
REACO(IN)=-10.B#ALF-20.7/2.%*ALF#*22+14.03/3.%ALF %3
-13.54/4. %ALF*x4 ' R=INT( DR/DALF = DLAF)
REACO (IN)=0.97«DRCM=REACOCIN)~/100. ! NODAL REACTIVITY (m-1)
0.97 ADJUSTED SO VY ?N IS THE START OF LIMIT CYCLE OPERATION

DO 300 IZ:0.,NND

89¢
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COMPTUTE XZ COMPATIBLE WITH THE CONVERGED ALFA

ALF=YZ(I2Z2,1)

G=YZ2(1Z,3)

SLIP=( 1.-ALF )/ ( XKS=ALF+(
XZ2(IZ):=ALF=SLIP®(1.-ETA) 7 ( 1.-ALF=(

1.-XKS )sALF*sRCOEF )
1.-SLIP=s( 1.-ETA ) ) )

FHZ(I2)=G=( HL+( HG-HL )=®X2(I12) ) * FLOW ENTHALPY
ECZ2(I12):=0. ¢ KINETIC ENERGY
IF(ALF.NE.1.)
ECZ2(I2)zECZ(I2)+.5%(Gwn2) = (
IF(ALF.NE.O .)
ECZ2(I2):ECZ(I2)+.5%(Gwx2)%((X2(I2)%=2)/(RHOG*ALF) )

(1.-X2(12))%%2/( RHOL=(1.-ALF )))

EC20(I2>=EC2(12)
X20(I2):=X2(12)
CONTINUE

DO 400 IN:=NND.1.,-1

XIz(XZ(IN)+XZ(IN-1)) /2. ! NODE AVERG. QUALITY
FROIN) zXKFe(1.+31.e«X)®(FLOWs®2) ¢ FRICTION
IFCIN.EQ.1) FRCOIN)zFR(IN)+XKC®(YZ2(0,3)*%2)/(2.%«DZ=RHOL) ' ENTR.
YZCIN-1,2)=YZ(IN,2) + (ECZ(IN)-ECZ(IN-1))
+DZ*(RHOL-(RHOL-RHOG)=®Y(IN))*GC +DZ*FR(IN) !
CONTINUE

PRESSURE Nw/m2

DO S00 J=1.3

DO SO0 I=0.,NND
YZOC(I,J)=Yv2(I., 1)
Y2(I1.J)=0.0

CONTINUE

DO S10 I=1.,NEQMX

Y(I):=0.

CONTINUE

THE RECIRC. LOOP CONSTANTS ARE CALCULATED SO THAT THE NATURAL

CIRCULATION TIME CONSTANT BE APPROX. 0.3 SEC
THE FRICTION IS ASSUMED PROPORTIONAL TO THE FLOW »*=2

RLTNC=0.3 { R.L. TIME CONSTANT AT NAT. CIRCULATION (APPROX)
DPFNC=FLOW®AFLOW®XLA/(2.%RLTNC) ¢ FRICTION DP AT NAT. CIRC.
DPFO:=DPFNC= (FLOWPC/32.)%%2 ' 32xF = NAT. CIRC.
DPO=-YZO(NND.2) ' DPOzPO-PN
LUN:6
WRITE(LUN,2000) POW.POWPC, FLOW.FLOWPC
FORMAT (1H1//’ POWER = ’,G20.5,’ Jss -~ ',FB8.3," %'/

* FLOW = ',G20.5.’ Kg/s -- *vFB.3," %tssv
s7' NODAL UVALUES "7’ *
» 13X
' ALFA DRC REACTIVITY PRESSURE POWER SHAPE’
» 713X
»? Nw/m2 I/ms’)

ORIF
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DO 700 I=1,NND

ALF=(YZ20(I,1)+Y20(I-1,1))r2.
DRC:-10.8-20.7%ALF +14.03%ALF*%2-13. S4sALF=x3 !
DRC=0.97%DRCM=DRC~/100. ' LAPUR UNITS = XK/K
PPz(YZO(I,2)+YZ0(I-1,2))2.

DRC FIT LAPUR XSEC

WRITE(LUN,2050) I.,ALF,DRC,REACO(I),PP,PSHP(I)

CONTINUE

WRITE(LUN.2020)

FORMAT(/77’ BOUNDARY VALUES 7/’ °’,13X

»’ QUALITY ALFA PRESSURE FLOW’ 7
213X

.’ Nw/m2 Kgssm2’)
DO 710 I=0.NND

WRITEC(LUN,2030) I,X20(I),(Y20(I,J),J=1,3)

FORMAT(’ ’,13,3X,4G16.3)

CONTINUE

WRITE(LUN,2040)

FORMAT(s 77’ BOUNDARY UVALUES "/’ *

213X

»* ECZ FHZ FR KINETIC DP HEAD DP’
s 713X

»’ Nw/m2 Jssm2 Ne/m2 Nw/m2 Nwsm2’)
DO 711 I=0.,NND

IF(I.NE.O) P1=( ECZ(I)-EC2(I-1) )

IFC(I.NE.O) P2:( RHOL-(RHOL-RHOG)=Y(I) )=GC=DZ
IF(1.EQ.0) P30:XKC®(Y20(0,3)=%2)/(2.%RHOL)

IF(I.NE.O) P3:=DZ*FR(I)

IF(I.EQ. 1) P3:P3-P30 ! ONLY FIRST NODE CONTRIBUTION (NO INLET)
IF(1.€EQ.0) WRITE(LUN, 2050) I.,ECZ(I),FH2(I1),P30
IF(I.NE.O) WRITE(LUN,2050) I.,EC2(1),FHZ2(I),P3,P1.P2
FORMAT(’ *,13,3X,5G14.3)

CONTINUE

WRITE(LUN.2060)

FORMAT(/ 77’ BOUNDARY VALUES ’-’ ’,13X

SVLIQ) V(STEAM) SLIP’

» 713X

' m/s m/s’)

DO 712 I=0.,NND

ALF:=YZ20(I.1)

G=Y20(I. 3)

SLIP=( 1.-ALF )/( XKS-ALF+( 1.-XKS )=ALF==RCOEF )
ULzG®(1.-XZ2(I))/(RHOL®(1.~ALF))

VUSz=SLIP=UL

IF(I.NE.O) WRITE(LUN,2050) I,UL.,VUS,SLIP

IF(1.EQ.O) WRITE(LUN, 2050) I.VL

CONTINUE

RLG=FLOW~/ (2.=DPFO)

RLTzRLG=AFLOW®XLA

WRITE(LUN-2070) RLG.RLT

FORMAT(/ 7’ If linearizea,’s

»* Recairc. Loop Gain ¢ ’,G14.3,° (Kgssm2)/(Nw/m2)’~/
»* Recairc. Loop Time Constant : °,G14.3,°’ s’)

WRITE (LUN,2080)
NND.A1,A2,ETA, DZ, XKF

69¢
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» XLA, DPFO, DPO, FLOW, H
» RHOL, RHOG, GC, XKC, XKS
» RCOEF , HL » HG, AFLOW

FORMAT(///*

RETURN
END

COMMON /MODEL~/

*77110,8(/5G1S.4))

PAGE
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C

c

€ ittt ittt ettt e e sttt e ettt e
C

€ it ittt tttee i ettt st
C

C =& THIS IS THE NONLINEAR MODEL OF A SINGLE CHANNEL BWR

C == THE RECIRC. LOOP IS INCLUDED.

C == 24-AUG-83

C =» DP/DT IS ASSUMED VERY SMALL (NO ACUSTIC PHENOMENA)

[

SUBROUTINE F(NEQ,T.,Y,YDOT)
C —=cmmcemceea ey g B B S LSS S S PSSR
PARAMETER NEQMX:=20
PARAMETER MXND=12
IMPLICIT REAL®8 (A-H,0-2)
REAL =8 Y(NEQMX),YDOT(NEQMX)
COMMON /MODEL~/
NND.A1,A2,ETA, DZ, XKF, PSHP
+»XLA,DPFO,DPO,FLOW
»H, RHOL , RHOG, GC, XKC
» XKS, RCOEF ,HL HG, AFLOW
»WHITE, IMPUL, STEP, HSIN
REAL =8 A1,A2,H,RHOL, RHOG,GC, XKF, XKC
»XLA,DPFO,DPO.,FLOW
> » XKS, RCOEF,ETA, HL, HG, PSHP(MXND), D2
LOGICAL =1 WHITE, IMPUL.,STEP,HSIN
C ---- ——— gy gy B S
COMMON /BOUND/ YZ,XZ,FHZ.,ECZ,FR,QDOT
REAL *8 YZ(O:MXND,3),XZ(0:MXND),FHZ(O:MXND),ECZ(0:MXND)
> »FR(1:MXND), QDOT (1:MXND)
COMMON /STEADY~/ Y20,X20.,ECZ0
REAL *8 YZO(O0:MXND,3),XZO(0:MXND),ECZO(O:MXND)

vvv v v

v

C ——-mere e cccmaccceccccecmcaceccccccccccccc—c—mca—aa—aacaaa
COMMON /PERTUR/ R, WPERT, PHPERT
COMMON /PP/ PERT,TO,DTO,TOLD
DATA DGDT-/0./
C mmmm e
COMMON /NEUT/ XL.GT, BETA,F3, DOP, REACO
REAL %8 REACO(MXND)
COMMON /HTR/ U,R3,A4,AS,POW,PSUM2,DRCM
C e e e
C
C »» YZ(1,J) I=NODE BOUNDARY O,...,NND
C =x J=SIGNAL 1-ALFA, 2-P, 3-G
C
COMMON /NOISE/ P
REAL =»8 P(0:20)
C

IF(STEP) PERT:=R
IF(STEP) GO TO 10
PERT:0.
IF(TO.EQ.0. .AND.IMPUL) PERT:2.%Rs%EXP(-3.%T/DTO0)
IFCIMPUL) GO TO 10
IF(HSIN.AND, T.LT.1)
> PERT:zR&EXP(1.5-3%T)%xSIN(3.141592654%SNGL(T)) ' 0.5 Hz
IF(HSIN) GO TO 10
IF(T.EQ.TOLD) GO TO 10

0L¢
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TOLD=T
»x BAND LIMITED NOISE INTERPOLATION ==
DTDsDTO-10. ¢ INTERMEDIATE DT

TINT=SNGL((T-TO)/DTD)
II=IFIX(SNGL(TINT))
IFCII.GT.20) II=20 !
XINTzTINT-FLOAT(II)
PERT=R*(P(II)m (1. -XINT)+P(II+1)aXINT)

IF OUTSIDE RANGE EXTRAPOLATE

NOTE, ALL THE VARIABLES ARE NORMALIZED TO THEIR
STEADY STATE VALUE

X2(0):=0. !t X(2:z0)
¥2(0,1):=0. ' ALFA(Z:z0)
YZ2(0,3)zY(NND+1) ' G(Z:=0)
YZ(NND.,2):=0. + P(H)

G02:2.%YZ0(0,3)%YZ(0,3)+YZ(0,3)x%2
DO 100 INz=1.NND
YZ(IN,1):=2.«Y(IN)-YZ(IN-1,1) '
ALF=YZOC(IN,1)+YZ(IN,1)

ALFA(2)

CORRECTION FOR SUBCOOLING OR SUPERHEATING

.AND. ALF.GT.O0.)

SLIP=( 1.-ALF )7( XKS-ALF+( 1.-XKS )=ALF*=RCOEF )
IF(ALF.LT.1. AND. ALF.GT.0.)
XZ(IN)zALF=SLIPx(1.-ETR) ~(
IF(ALF.GE.1.) XZ(IN)=1.
IF(ALF.LE.O.) XZ(IN)=O.
IF(ALF.GE.1.) ALF=1.
IF(ALF.LE.O.) ALF=O.

IFCALF.LT.1.

1.-ALFs( 1.-SLIP=( 1.-ETA ) ) )

XIz(XZ(IN)+XZ(IN-1))72. ' NODE AVERG. QUALITY
DXI=XI-(XZ20(IN)+X20(IN-1))-2.
DG=(YZC(IN,3)+YZ(IN-1,3))2. ' NODE AVERAGE (G-GO)
G2:=2.%FLOW*DG+DG==»2 I Gex2-GOww2
FROIN)=XKF®(G2%(1.+31.%X])+31 . «DXIaFLOWNS®2)
IFCIN.EQ.1) FRCIN)=FR(IN)+XKC®(GOR2)/(2.%DZ«RHOL) ' ENTR. ORIF.
GzYZO(IN,3)+YZ(IN,3)

ECZ(IN):=O. '
IF(ALF.LT.1.)
ECZ(IN)ZECZ(IN)+.5%x(Gun2)=(
IF(ALF.GT.0.)
ECZ(IN)ZECZ(IN)+.Sx(Geu2)x( (XZ(IN)»%2)/ (RHOG*ALF) )
ECZ(IN)=ECZ(IN)-ECZ0(IN) ! NORMALIZED

KINETIC ENERGY

(1.-XZ(IN))=%2/( RHOL®(1.-ALF )))

CONTINUE
ECZ2(0):.5%((YZ20(0,3)+YZ2(0, 3))»x2)/RHAL - ECZ0(O)»
NOTE DGDT=YDOT(NND+1) ' APPROX 2ND ALF DER.:=0

DGDT=(-DPFO*(2.%Y20(0,3)%YZ(0,3)+Y2(0,3)*%x2)/YZ0(0,3) w2

TLRP.FTN
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+ (YZ(NND,2)-Y2(0,2)) ) 7 (AFLOW=XLA) ! RECIRC. LOOP

C ==mmmm——— ——————— B T T T PRI B e L T, —————

200

[aNe)

[aNe)

-
-
-

[aNaNaNaXel

-
-
-

[aNaNaNaNs}

250

DSoi10
D

DSo000

300

DO 200 IZ2=NND.1.,-1

YZ(I12-1,2):Y2(1Z,2) + (EC2(I2)-EC2(I2-1))
+D2% (- (RHOL-RHOG)®Y(I2))»GC +DZ=FR(I2) !
CONTINUE

+ DGDT=D2
PRESSURE Nw/m2

YDOT(NND+1)=(-DPFO%(2.%Y20(0,3)*Y2(0,3)+YZ2(0,3)»%2)/Y20(0,3)ns2
+ (YZ(NND,2)-Y2(0.,2)) ) 7 (AFLOWsXLA) ! RECIRC. LOOP FLOW

VUFB:=0.
DO 250 I=1.,NND

REACT IS THE NODAL VOID REACTIVITY
I.E. INT(DRC = DALFAR)

WITH DRC:=DRHO-/DALFA= 'LAPUR FIT

-10.B-20.7A+14.03R2-13.54AR3

ALFz(YZO(I,1)+Y20(I-1,1))72. + Y(I)

NOTE: ALFA IS ALLOWED HERE TO BE >1 OR <O .

FOR REACTIVITY FEEDBACK POURPOSES., IF THERE IS SUPERHEATING.
THE STEAM DENSITY DECREASES. THIS IS ONLY AN APPROXYMATION.

REACT=-10.B%ALF-20.7-/2. sALFx#2+14.03/3. *ALFua23

-13.54/4.%ALFssd4 ' DRC FIT LAPUR XSEC
REACT=0.97«DRCM*REACT/100. ! LAPUR UNITS =
REACT=REACT-REACO(I) ! CHANGE IN REACTIVITY
UFB:UFB+REACT®PSHP (1) »x2 ' VOID FEEDBACK
UFB=UFB/PSUM2 !NOTE: UFB:zINT(DRC*ALF(Z)*PSHP2%DZ) /INT(PSHP2%D2)
RHO:=DOP=Y(NND+2) + UFB + PERT=BETA

%K/7K

YDOT(NND+2) zF 3« Y(NND+4)-A3% (Y (NND+2)-Y(NND+3)) ! FUEL

YDOT(NND+3)zA4% (Y(NND+2)-Y(NND+3))-AS®Y(NND+3) ' CLADDING
YDOT(NND+4) = (RHO-BETA)®Y(NND+4)/GT+XL=Y(NND+S) + RHO/GT ' N
YDOT(NND+S)zBETA®Y(NND+4) /GT-XL=Y(NND+S) { DELAYED N

WRITE(S,.5010) A3,V

FORMAT(’® ’,T20,2G20.5)

WRITE(S.,S000) T.(Y(I),YDOT(I),I=1,NEQ)
FORMAT(’ ’.,G14.3,<NEQ>(-2G20.5)

DO 300 IN=1.NND
QDOTCIN)zUsY(NND+3)*PSHP (IN)/POKW
DENI=(RHOG*HG-RHOL »HL)
+( HL®(1.-XZ(IN))+HG*XZ(IN) )=(RHOL-RHOG)
GX1:YZOCIN=-1,3)%(XZ(IN)-XZ0C(IN))I+YZ(IN-1,3)%XZ(IN)
GX2:=YZO(IN-1,3)®(XZ(IN-1)-XZO(IN=-1))+YZ(IN-1,3)%XZ(IN-1)
YDOTC(IN)=( QDOTC(IN)-/AFLOW
~YZ(IN=-1,3)%(HG-HL)*(XZ(IN)-XZ(IN-1))/DZ )/DENI !
-(HG-HL)=®(GX1~Gx2)-DZ ) /DENI ' DALFA/DT
YZ(IN,3)=YZ(IN-1,3) + DZ*«(RHOL-RHOG)=YDOT(IN)
CONTINUE
RETURN
END

DALFA/DT

1L¢
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SUBROUTINE DTGEN(NEGQ,F, JAC, DT, TIME, Y, ATOL, RTOL
+MF ,FILE, ICH, NCH)

THIS VERSION OF DTGEN STORES THE AUERAGE CHANNEL UOID FRACTION,
THE WHITE NOISE, THE INPUT FLOW éND PRESSURE.,
ALONG WITH THE POWER
»¢ TO BE USED ONLY WITH PROGRAM NNLFB.FTN »»

THIS SUBROUTINE SOLVES A SYSTEM OF EQUATIONS DEF INED
IN SUBROUTINE F (WITH JACOBIAN JAC IF MF>20).

PARAMETERS:
NEQ - NUMBER OF EQUATIONS <10
F - NAME OF THE FUNCTION SUBROUTINE (DECLARED EXTERNAL)
JAC - NAME OF THE JACOBIAN SUB. " *
DT - DESIRED TIME INCREMENT FOR OUTPUT
LSODE COMPUTES ITS OWN TIME INCREMENT
TO LIMIT ERRORS
TIME - TOTAL TIME
Y - INITIAL VALUE
ATOL - ABSOLUTE TOLERANCE
RTOL - RELATIVE TOLERANCE
LSODE MAKES THE ERROR APPROX.
ERROR < RTOL=Y + ATOL
MF - 10 FOR NON STIFF PROBLEM
- 21 FOR STIFF PROBLEM WITH FULL SUPLIED JACOBIAN
- 23 FOR STIFF PROBLEMS. LSODE COMPUTES A DIAG. JAC
FILE - FILE NAME TO STORE DATA IN MULSMN FORM
ICH - SIGNAL NUMBERS TO STORE IN DISK
NCH - NUMBER OF SIGNALS TO STORE

PARAMETER MXND=12

PARAMETER NEQMX=20

IMPLICIT REAL%B (A-H,0-2)

COMMON ~MODEL~/
NND.A1,A2,ETA,DZ,) XKF , PSHP
»XLA, DPFO,DPO, FLOKW
+ H, RHOL ,RHOG » GC » XKC
+» XKS, RCOEF , HL » HG , AFLOW
+WHITE, IMPUL.STEP, HSIN

REAL *8 A1,A2,H,RHOL.,RHOG, GC, XKF , XKC
»XLA, DPFO, DPO,FLOW
» XKS, RCOEF ,ETA, HL,HG, PSHP (MXND), D2

LOGICAL »i WHITE, IMPUL,STEP,HSIN

COMMON /BOUND~/ Y2,X2,FHZ,ECZ,FR,QDOT

REAL *8 YZ(O:MXND,3),XZ(0:MXND).,FHZ(O:MXND).ECZ(O:MXND)
»FR(1:MXND),QDOT (1:MXND)

COMMON /STEADY-/ Y20.X20,EC20

REAL %8 YZO(O:MXND,3).,XZO(O:MXND),ECZO(O:MXND)

REAL #B Y(NEQ),ATOL(1),RWORK(256).RTOL,T,TOUT,Y1,Y2,YOLD(NEQMX)

TLAP.FTN
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» YDOT (NEQMX)
REAL =4 YDAT(256), YMAX(NEQMX),DT4,X1
INTEGER *2 IWORK(30),IDAT(256),ICH(1)
LOGICAL =1 FILE(28),LNCH,LICH,LB,AD.LO, IANS
EXTERNAL F
COMMON /PP/ PERT,TO,DTO., TOLD
REAL =8 TO,DTO, TOLD
COMMON /SEEDS~/ 11,12
DATA 11/0/,1270/
LOGICAL =»1 ESC
DATA ESC/27/,RWORK/256%0. 7/

COMMON /OUTP/ PRINT,PRALL.,DSK
LOGICAL =1 PRINT.,PRALL.DSK

COMMON /CNU~/ FIRST,CONV.,Y1,Y2,Y3,YEX1,YEX2,DR1,DR2,FN1,FN2
+» IREC, KOUNT
LOGICAL *1 END,FIRST,CONV

DATA ITOL/1/,1TASK/1/,ISTATE 1/, I0OPT/0/,LRW/256/,LIW/30/

DT4:=DT

DTO=DT

IF(NEQ.GT.NEQMX) STOP * TOO MANY EQUATIONS’
IF(ATOL(1).EQ.0.) ATOL(1)=1.E-S

ALFMX=0,

KALFO:=0

KALF1:=0

FIRST:=.TRUE.

END:. FALSE.

NCH:=6

IBKSZ:-256

NPB:=256

IF(NCH.NE.O) NPB:=IBKSZ/NCH '
IF(NCH.NE.O) IBKSZ=NCHsNPB ' CIBKSZ
NBK:=IFIX(SNGL(TIME/(DT®FLOAT(NPB))) + 0.9999)
IF(MF.LT.21.0R.MF.GT.2S) MFz23 ! DEFAULT NON STIFF

NUMBER OF DATA POINTS

IF(DSK)
OPEN(UNIT=1,NAME=FILE, TYPE="NEW’, ACCESS="DIRECT"’
» RECORDSIZE=IBKSZ)

START CALCULATIONS

CALL CLREF(40)

TOUT=0.

DO 100 IB=1,NBK
TOUT=FLOAT(IB-1)xFLOAT(NPB)*DT
K=1

DO 110 I=1.NPB

TO=TOUT

TOUT=TOUT+DT

cLe
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IF(WHITE) CALL BLGWN(I1,I2) ¢ BAND LIMITED NOISE FOR USE IN FUNC
C
LKOUNT=0
91 CALL LSODE(F,NEQ,Y.,T,TOUT, ITOL.RTOL,ATOL. ITASK, ISTATE.,

1000

(s Ne]

1020
1021

D3020

D3030
C

7000

7010
115

7015

IOPT, RWORK,LRW, IWORK, LIK, JAC, MF)
IFC(ISTATE.EQ.~1) GO TO 90
IFC(ISTATE.NE.2) WRITE(S,1000) ISTATE
FORMAT(’ ERROR IN LSODE -- ISTATE =’,I7)
IFC(ISTATE.NE.2) STOP

IFC(.NOT.WHITE .AND. .NOT.END) CALL CONURG(Y(NND+4),T,FILE,END)

IF(PRALL) WRITE(S,1020) TOUT, (Y(J),J=1,NEQ)

FORMATC(’ ’,1PG11.3,°:’,(T14,6G11.3/"+"))

PWR=Y(NND+4)%100 ! POWER IN %

IF(PRINT.AND. .NOT.PRALL) WRITE(S,1021) TOUT,PWR y

FORMAT(’ ’,1PG11.3,’:",(T14,G15.5,’%"))

IF(PRALL) WRITE(6,3020)
C((YZ(,J3),321,3),XZ(L),FHZ(L),ECZ(L),L=0,NND)

FORMAT(’ Y2Z,X2,FHZ,ECZ’/4(3G14.3,"/",3G14.3/))

IF(PRALL) WRITE(6,3030) (FR(L),L=1,NND)
FORMAT(’ FR’,4G20.5)

YDAT(K) =PERT ! WHITE NOISE PERT
KzK+1

SUM=0.

DO 11S J=1,NND

SUMzSUM+Y(J)

ALF=YZ0(J,1)+Y2(J, 1)

IFC(ALF.GT.ALFMX) ALFMX=ALF

Y(J)=ALF ! TEMPORARY STORAGE

IF(ALF.GE.1. .AND. KALF1.EQ.0) WRITE(6,7000)
IF(ALF.GE.1.) KALF1:=KALF1+1

FORMAT(/-60("%’)/60(’-")/

* ALFA IS GREATER THAN 1. '/’ STANDARD CORRECTION TAKEN’
* -- NO MORE MESSAGES WILL BE PRINTED’/60(’-')s60(’%’))
IF(ALF.LE.O. .AND. KALFO0.EQ.O0) WRITE(6,7010)
IF(ALF.LE.O.) KALFO:z=KALFO+1

FORMAT(//60(’%*)/760C"-")~

* ALFA IS GREATER THAN 1. "/’ STANDARD CORRECTION TAKEN’
* -- NO MORE MESSAGES WILL BE PRINTED’-/60(’-’)s60(’%x’))
CONTINUE

IF(PRALL) WRITE(S,7015) (Y(J),J=1,NND)
FORMAT(’ ALFA :: ’,2(T14,6G11.3/°+"))

YDAT(K)=SUM/FLOAT(NND) ! AVERAGE vOID

KzK+1

YDAT(K)=Y(NND+4) ' POWER

KzK+1

YDAT(K)=Y(NND+1) ! FLOW (Kgssm2)

KzK+1

YDAT(K)=YZ2(0.,2) ¢ PRESSURE (Nw/m2)
K=K+1

YDAT (K)zY(NND+2) ' FUEL TEMPERATURE (K)
KzK+1

TLAP.FTN
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CONTINUE
WRITE RESULTS

IF(END) GO TO 777

IF(DSK) WRITE(1°IB) (YDAT(I),I=1,IBKSZ)
NREC:=IB

CALL READEF (40, IDS)
IFC(IDS.NE.O) GO TO 777

'SET EF 40 TO STOP

CONTINUE

CLOSE (UNIT:=1)
IF(.NOT.END .AND. .NOT.WHITE) THEN
END:=.TRUE. t DID NOT CONVERGE, BUT RUN OUT OF TIME
CALL CONURG(Y(NND+4),T.FILE.,END)
ENDIF
IF(KALFO.NE.O .OR. KALF1.NE.O) WRITE(6,7020) KALFO,KALF1,ALFMX
FORMAT(//60(’®’),60¢’~-")/" ALFA WAS < O ’,IS, ’'TIMES’~/
* ALFA WAS > 1 ", IS, *TIMES’~/
* MAXIMUM ALFA = ’,G1S5.4/
60(¢(’-")/60("%"’))
IFC.NOT.DSK) RETURN

CREATE REDUCED ID FILE

NFL:=0

NFLMX=10

NFL:=NFL+1

IF(FILE(NFL).EQ.": ") NFLMX=NFLMX+NFL ! FILE NOT IN SY:

IF(NFL.LT.NFLMX.AND.
(FILECNFL).NE.O.AND.FILE(NFL).NE.".")) GO TO 70

FILE(NFL)=" .’

FILE(NFL+1 B 5

FILE(NFL+2 D’

FILE(NFL+3):=0

OPEN (UNIT:z1,NAME:=FILE,ACCESS="DIRECT’, TYPE="NEW’,

1 MAXREC:=1, INITIALSIZE=2,RECORDSIZE=165)

DO 720 Iz1,NCH

YMAX(I)z1./YMAX(I)

DO 720 I=1,NCH

YMAX(I)=1.

LNCH=NCH

Lo:=0

LBz’ *

AD= ‘N’

X1z1.

D1z "PERTURB. *

D2:=’AV. ALFA’

D3: 'POWER ’

D4:-"FLOW ’

DS:’PRESSURE ’

D6:='F. TEMP.’

DO="’ .

WRITE(1°1)IBKSZ,NREC,LNCH,LO,DT4,X1,L0,LO0,LO,AD,

€L¢
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[ > (YMAX(I), Iz 1, NCH) » (X1,I121, (48-NCH)), (LB, I=1,446)
> (YMAX(I)»Iz1,NCH), (X1,I=1,(48-NCH))
> ~Dl:DO:DO-DZ-DO:DO»D3:DO.DO»D‘.DO-DO,DS-DO;DO-DS:DO-DO

> »(LB.,I=1,302)

000

SUBROUTINE BLGWN(I1,I2)

CLOSE (UNIT=1) = FUNCTION BLGWN BAND LIMITED GAWSIAN WHITE NOISE

RETURN
bd WITH THIS PARAMETERS THE FILTER IS SET AT 80X OF NYQUIST FREQ.

L WHEN SAMPLING ONE EVERY TEN POINTS

RITE (S, 3000)
90 WRITE(S,3 - THIS NOISE HAS A STANDARD DEVIATION OF 1.0

3000 FORMAT (* LSODE MADE MORE THAN S00 ITERATIONS’~/
> * CALCULATIONS RESUME’)
LKOUNT:LKOUNT+1
IF (LKOUNT.GT.10) GO TO 777
ISTATE=2
GO TO 91
END

[aNeNeNeNeNaNel

IMPLICIT REAL®8 (A-H,0-2)

REAL =8 G.H(B8)

DATA G-/0.0000081941793343/,

H/6.7186791248246675,-19.8375452128568596,
33.6094741679254439, -35.7278328917172163.,
24.3960091362192910,-10.4474756767113902,
2.5649604195750299, -0.2763572614363015/

NPOLES/B/,STDNRM-/0.2833S~/

Vv wvvwy

bdd ARRAY Y CONTAINS THE BLGWN IN POSITION 11.
== IT ALSO CONTAINS 10 POINTS BEFORE AND 10 POINTS AFTER
bdd IN INCREMENTS OF DT-/10.

[aNe¥s¥aXs]

REAL =8 Y(21)
COMMON /NOISE/ Y,FIRST
DATA Y/21%0./

LOGICAL =1 FIRST
DATA FIRST/.TRUE.~/

(e N e}

K=0

10 DO 200 IB=1.10 * CALCULATE NEW 10 POINTS (DT-/10.)
X=GWN(I1,1I2)
DO 100 I=1.,20

100 Y(I)zY(I+1)

Y(21)=GxX/STDNRM
DO 110 I=1,NPOLES
110 Y(21):=Y(21)+H(I)=Y(21-1)
200 CONTINUE
WNzSNGL(Y(11)) ! OUTPUT NEW BLGWN (REAL DT) { NOT RETURNED )

IFC(.NOT.FIRST) RETURN

Kz=K+1

IF(K.LT.2%) GO TO 10 ¢ INITIALIZE FILTER
FIRST=.FALSE.

RETURN

END
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C
c
c
SUBROUTINE CONURG(YY, TT,FILE,END)
c
C == THIS SUBROUTINE FINDS THE MAXIMA AND MINIMA
C == OF A STEP RESPONSE GENERATED BY TLAF
C =x AND CALCULATES D.R. AND WHEN IS THE RESPONSE CONVERGED
[

REAL =8 DRSUM, DRS2,FNSUM,FNS2, SMAX, SMAX2, SMIN, SMIN2

REAL =8 YY,TT

LOGICAL =1 FILE(28)

LOGICAL =1 END,FIRST.CONV

COMMON /CNVU/ FIRST,CONV.Y1,Y2,Y3,YEX1,YEX2,DR1,DR2,FN1,FN2 C
» IREC, KOUNT

COMMON /0UTP/ PRINT,PRALL,DSK

LOGICAL =1 PRINT,PRALL,DSK

Y=SNGL (YY)
T=SNGL(TT)

IF(END) GO TO 10

IFC.NOT.FIRST) GO TO 1

FIRST=.FALSE. [
FILE(D)
FILEC10
FILE(11
FILE(12)="T’

FILE(1=0

CLOSE(UNIT=3)

OPENCUNIT=3,NAME=FILE, TYPE="NEW’,ACCESS="DIRECT”’
+RECORDSIZE=2)

IREC=1
Yi:z0

Y2:=0

Y3:=0
YEX1:-999.
YEX2:-999.
KOUNT=0
DR1:-999.
DR2:=-999.

CONV=.FALSE.
END:=.FALSE.

IF(KOUNT.GT.10) GO TO 10 ' CONVERGED

Y3:=Y

T3=T

IFC((Y2.GT.Y1.AND.Y2.GT.Y3).0R. (Y2.LT.Y1.AND.Y2.LT.Y3) ) THEN ' EXTREMA
YEX3:=Y2
TEX3:=T2
DR=-999. ' FORMAT CHECK

IF(YEXL1.NE.-999.) THEN
D1=YEX3-YEX2
D2=YEX1-YEX3
DROUND=ABS(Y2%S . E-2) ! ROUNDOFF CUTOFF
IF(DROUND.LT.2.E-3) DROUND:2.E-3
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IF(ABS(D2).GT.DROUND .OR. ABS(D1).GT.DROUND) THEN
GM=D1-D2
IF(GM.NE.-1.) DR=GM/(1.+GM)
IF(GM.EQ.~-1.) DR=-1.
FNz1./(TEX3-TEX1)
ELSE
KOUNT=KOUNT+1
ENDIF
ENDIF
YEX1:YEX2
TEX1=TEX2
YEX2:YEX3
TEX2:=TEX3

IF(CONV .AND. YEX1.GT.YEX2) THEN
YMX=YEX1
YMN=YEX2
SMAX=SMAX+YMX
SMAX2:=SMAX2+YMX2®2
SMIN=SMIN+YMN
SMINZ2:=SMINZ2+YMN=x2
NNzNN+1

ENDIF

IF(DR.NE.-999.) THEN
IFC.NOT.CONU) THEN

DRERR=ABS(DR1-DR)+ABS(DR2-DR)

IF(DRERR.LT.DR=.01) THEN
CONV=. TRUE.
DRSUM:=DR1+DR2+DR
DRS2:=DR1=%24+DR2*»x2+DRx=»2
FNSUM=FN1+FN2+FN
FNS2:=FN1x%2+FN2=#2+FNxx2
NSUM:=3
DRAU=DRSUM/FLOAT(NSUM)
DRSD=DSQRT(DABS(DRS2/FLOAT(NSUM)~-DRAVE®2))

IF( ABS(DRAV-1.) .GT. 0.002 ) CONUz=.FALSE. ' NOT LIMIT CYCLE
YMX=AMAX1(YEX1, YEX2)
YMNzAMIN1(YEX1, YEX2)
SMAX=YMX
SMAX2:YMX®%2
SMIN=YMN
SMINZ2:=YMN==2
NN:=1

ELSE
DR1 =DR2
DR2:=DR
FN1=FN2
FN2:=FN

ENDIF

ELSE

DRAV=DRSUM/FLOAT (NSUM)

DRSD:=DSQRT (DABS(DRS2-FLOAT (NSUM)-DRAU=E%2))

DRERR=ABS(DR-DRAV)

IF (DRERR .LT. S.=DRSD) THEN
DRSUM=DRSUM+DR
DRS2:DRS2+DRa»2
FNSUM=FNSUM+FN

GLT
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9000
C
C

C
C
C

C ==
Cc

10

S000

S00S

So10

So20
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FNS2:FNS2+FNxe2
NSUM:zNSUM+1
ELSE
KOUNT:=KOUNT+1
ENDIF
ENDIF
ENDIF

IF(PRINT) WRITE(S,9000) DR.,FN
FORMAT(’ *,35(’-’),2G15.4)
WRITE(3’IREC) T2,v2
IREC=IREC+1
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IF(CONV .AND. ABS(DRAU-1.).LT.3.%DRSD) KOUNT:=KOUNT+1 ' LIMIT CYCLE

ENDIF

Yi=ve
Ti=T2
Y2:=vY3
T2:=73

RETURN
CONVERGED

END:=.TRUE.
IF (CONV) THEN
DRAV=DRSUM/FLOAT(NSUM)
DRSD:=DSQRT(DABS (DRS2/FLOAT(NSUM)-DRAV==s2))
FNAUzFNSUM/FLOAT (NSUM)
FNSD=DSQRT (DABS(FNS2/FLOAT(NSUM) -FNAV=%2) )

WRITE(6,5000) DRAV.DRSD,FNAU,FNSD

FORMAT (777’ AVERAGE DECAY RATIO
7' AVERAGE FREQUENCY

WRITE(6.5005) NSUM

*+G18.5, " +/-
’»G18.5, ' +/-

FORMATC(’ *,16,’ OSCILLATIONS USED FOR AVERAGE’~)

ELSE

WRITE(6,5010)

FORMAT(/7/’ DECAY RATIC DID NOT CONVERGED ‘)
ENDIF

IF(ABS(DRAV-1.) .LT. DRSD*S.) THEN
AUMX=SMAX/FLOAT (NN)
SDMX:=DSQRT(DABS(SMAX2/FLOAT (NN) ~AUMX%%2) )
AUMN=SMIN/FLOAT (NN)
SDMN:=DSQRT(DABS(SMIN2/FLOAT(NN)-AUMN%%x2))
WRITE(6,5020) AUMX, SDMX, AUMN, SDMN
FORMAT(/’ LIMIT CYCLE :’'~/

»* MAXIMUM OSCILLATION
»’ MINIMUM OSCILLATION

*.1PG18.5,’ +/-
*»1PG18.S, " +/-

ELSE
AUMX=-999.
AUMN=-999.
SDMX=-999.

SDMN:=-999.

*»G18.5
*+G18.5)

*+G168.5/
*,G18.57/7)
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WRITE(6.5030)
5030 FORMAT(/’ LIMIT CYCLE WAS NOT REACHED ‘)
ENDIF
Cc
c
XJINK=-999.

WRITE(3’IREC) (XJINK,I=1,2)
IREC=IREC+1
WRITE(3’IREC) DRAV,DRSD
IREC=IREC+}
WRITE(3’IREC) FNAU,FNSD
IREC=IREC+1
WRITE(3’IREC) AUMX.SDMX
IREC=IREC+1
WRITE(3’IREC) AUMN.,SDMN
IREC:=IREC+1
CLOSE(UNIT=3)

RETURN

END
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