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ABSTRACT 

A study of the basic processes involved in boil ing wa ter 

nuclear reactor dynamics is presented . The main emphasis  of this 

research has been placed on the phys ical interpretation of these pro­

cesses . It is shown that this type of reac tors have two regimes of 

operation : linear , during normal oper at ion , and nonl inear , if they 

become unstable due to the thermohydraul ic feedback . Both of these 

regimes are stud ied using low-order physical mod el s . 

The main resul t ob tained from the linear study is the pole­

zero configurat ion of the reactivi ty-to-power transfer function . It 

is determined that  three zeros and four poles are need ed to properly 

represent thi s  transfer func tion . Phys ical processes are identif ied 

with these trans fer function features . Based on the unders tand in � of 

the se proces ses , an automated algori thm to est imate boil ing water 

reactor stability from neut ron no ise measurement s is developed and 

implemented as a computer cod e . 

The causative mechani sm lead ing to the appearance of the 

limit cycle in bo il ing water reac tors is identif ied from the nonl inear 

study . The relationship be tween the different process variables 

d uring limit cycle oscillations is stud ied . It  is shown that these 

o scillations could reach large ampli tudes . 

The stab ility of the limi t cycle is al so stud ied . It is 

shown that the ampli tude of the limti cycle can become unstable and 

produce period-doubl ing pi tchfork bi furcations which scale accord ing 

v 



vi 

to Feigenbaum ' s  universal ity  theory . As a consequence of  the 

bifurcation process , aperiod ic solut ions of the deterministic  reactor 

equat ions are found to be po ssible . 

Finally , nonl inear noi se propagation is stud ied . A nonper­

turbative technique is developed for detecting the onset of  linear 

inst ab il i ty and the trans i tion to the nonlinear regime . 
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C HAPTER 1 

INTRODUCTION 

There are presently 72 commer c ial bo il ing wa ter reac tors 

( BWRs ) e ither in opera t ion or under cons truc t ion in the we stern wo rld ; 

37  of them are located in the United States . 1 Consequently a large 

e f fort has been devoted to the study of the BWR dynamic behavior und er 

var ied plant opera t ing cond it ions . The work presented in this d isser­

tat ion contr ibut es to th is ongo ing effort . It deals with the stud y of 

the bas ic dynamic processes taking place in these reac tors , with spe­

c ial emphas is be ing placed on the phys ical interpre ta t ion of  these 

processes . 

In v iew of the negat ive react ivity feedback from neut ron 

modera t ion and heat trans fer in a two-phase flow env ironment , BWRs are 

essent ially stable machines in the sense that they regulate the ir own 

power without the need of external cont rol sys tems . In some cases , 

however , instances of uns table behav ior  that lead into a nonlinear 

reg ime of  operat ion have been observed . Thus , BWRs have two d if f erent 

reg imes of opera t ion:  the l inear or stable reg ime and the no nl inear 

or uns table reg ime . Both of them have been stud ied dur ing the course 

of this research . 

1 
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1 . 1  General Bhi'R Dynamics 

Nuclear power plants are in essence devices in whi ch a fluid 

is caused to flow through a volume in which heat is generated by a 

nuclear fis sion chain reac t ion . In BWRs thi s fluid is water tha t 

enters the reactor core at temperatures close to saturation and 

part ially vaporizes while flowing ins ide channel boxes containing 

uranium oxide fuel rod s . In this  type of reac tors , t he water has the 

dual role of coolant and mod erator ; it removes heat from the fission 

process , and at the same time helps maintain the f i s s ion react ion by 

mod erating the energy of the fast fission-neutrons . This  dual role is 

the cause for the strong mod erator-dens ity reac tivity feedback which 

is charac teristic  of BWR operation . 

Two distinct dynamic loops can be considered in BWRs : 

a neutronic loo p ,  which controls the way in whic h heat is produced in 

the core , and a thermal-hydraulics  loop , which in a sense controls the 

way in which heat is removed from the core by means of fluctuat ions in 

heat transfer rate , coolant density , and flow . The coupling between 

these two loops is through the Doppler and moderator-dens ity reac­

tivity co efficient s .  BWRs , thus , form a closed-loop sys tem with nega­

tive feedback , which allows for sel f-re gu lat ion of the power leve l 

without the need for control sys tems during normal operat ion . 

The relatively large magni tud e of  the density reactivity feed­

back causes the reactor power to oscillate around equilibrium 

following reactivity perturbations . At low flow and high power 
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cond itions the magnitude of the reactivity feedback can become so 

large that the power oscillations following a small perturbation do 

not converge to the equilibr ium po int ; that is , the reac tor become s 

unstable . The stability problem was recognized in the early exper ime-

tal BWR designs in the 1 950 ' s ,  but commercial BWRs were thought no t to 

be sus ceptible to instabilities  in view of their  high operat ing 

pres sure , which reduces the moderator densi ty reactivity coefficient . 

Recent design changes ,  though , have increased the reac tor power den-

sity and fuel heat transfer coe f f i c ient to a level in which ins tabili-

ties become poss ibl e .  

1 . 2 Survey of Previous Work in the Field o f  BWR Dynamics 

There have been many stud ies performed on the dynamic behavior 

of BWRs . One of the fir st works reported is tha t of Dietr ich and 

Layman 2- 4 relative to the Borax experiment in 1 953 . During the 1950 's 

and 1 960 ' s  many stud ies were conducted while designing the present day 

BWRs ; among them are those of Skinner , 5 Iriarte , 6 Beckjord , 7 •8 Thie , 9 

Akcasu 1 0 , 1 1 Christensen 1 2  Suda 1 3  Garl id 1 4  Zivi 1 5  Margo lis 1 6  , , ' ' ' ' 

Jone s , 1 7- 2 2  Fleck , 2 3 , 24 Niemi , 2 5  and Charmichael . 2 6  

In recent times , there has been a continuing effort toward the 

study and model ing of BWR dynamic behavior ; 2 7- 3 7  however , the main 

contemporary stud ies on BWR dynamic s have been direc ted towar �s the 

development of detailed computer codes  to simulate the phys ical 

processes in the reactor . Two main categories of codes exist : 
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( a )  transient codes  to simul ate large transients such as pipe breaks 

or turbine tr ips , and ( b )  stabil i ty co des , whi ch are specifically 

tailored to the calculation of the stability margin of reload cores . 

Among the first  type are RAMONA , 3 8  RELAP , 3 9  COBRA , 4 0  and RETRAN . 4 1  

Among the second type are FABLE , 2 8  ODYSY , 4 2  and TOSDY N4 3  used by the 

Geneal Electric Company , COTRAN4 4  used by the Exxon Nuclear 

Company , PARADYN4 5  used by Hi tachi Ltd . ,  NUFREQ4 6 , 4 7  used in the 

Rensselaer Polytechnic Institute , and LAPUR4 8 • 4 9  which was developed 

in the Oak Ridge Nat ional Laboratory and is presen tly used also by 

TVA . All the s tabil ity cod es are based on linear frequency domain 

analys i s  except for TOSDYN , COTRAN , and PARYDYN whi ch model the reac­

tor non-linearities  and solve the equa tions in the time domain . 

The ori ginal experiments to study the reactor dynamics were 

rod-osc illator type tests , 5 0-5 2  for which a spec ial control rod is 

made to oscillate at a particular frequency in a sinuso i dal fashion . 

More recently , dynamic te sts  are perfo rmed by perturb ing the reactor 

pres sure us ing pseudorandom binary signal s (PRBS ) . 5 3-5 9  The first 

series o f  thi s  new type of tests  was performed in the Peach Bo ttom 

reac tor 5 3- 5 6  to determine the reactor stabil ity . These tests  showed 

tha t  this part icular reactor was stable with a decay rat io of 0 . 5  at 

the most unstable operating cond i t ion ( the decay ratio is a measure o f  

the system stability ; if  the decay ratio i s  les s than 1 . 0  the system 

is  stable ) .  The relatively high decay rat io obtained cast  doubts  

about the stability of other reactors with higher power density . As  a 

consequence ,  two more te sts  were per formed , one of  them in the 
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ASEA-ATOM Barseback reactor , 5 7  and the other in the Vermont Yankee 

reactor . 5 8  In these last two te sts  the reactor became uns tabl e when 

operated at high power levels and natural circulation flow . An impor­

tant result of these tes t s  was the appearance of a limit cycle at the 

onset of unstable behavior , which limited the amplitude of the 

o scillations to about ± 15% of the steady-s tate value . 

The te sts  in the Peach Bo ttom and Vermont Yankee reactors have 

been extensively mod eled by almost  all exi sting codes  in a bench­

marking ef fort . 6 0-6 4 Mo st  of the codes give satis factory agreement 

with the test results  in the linear ( stable ) range , showing that there 

is a good unders tand ing about which processes are involved in linear 

BWR dynamics and about how to mod el them numerically . Al though these 

numerical solutions do no t provid e a clear picture of the phys ical 

processes . However , the nonl inear range of BWR operation 

correspond ing to linear unstability has been scarcely modeled or 

stud ied . 

Ano ther area of interest related to the work in thi s disser­

tation is the analysis of noise ( s tochast ic )  signal s in BWRs . There 

a re many publ icat ions in this  field . 6 5-7 9  Among the uses  of  BWR 

neutron no ise analys is that have been reported , the most  impo rtant 

are : vibrat ion monitoring , 6 9  bypass boiling detection , 6 9 • 7 5  in core 

void velocity measurements , 6 0 , 7 0 , 7 S  two phase flow parame ters measure­

ments , 6 9 , ? 0 , ? 2  and stab il i ty monitoring . ? 0 , 7 l , ? S, ? 6  The latter one 

be ing the most  relevant to this  work ; however , due to an apparent con­

fusion between dif ferent researchers about the def inition of decay 

ratio , this  method ology yielded incons i s tent results . 
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T here are many publ ications in t he area of  nonl inear 

dynamics , 8 0- 9 9  but t he aut hor was unable to find any references about 

stud ies  of nonlinear stoc hastic p henomena in moms . 

1 . 3  Mo tivation and Ob jectives 

T he current approac h to BWR dynamic model ing has been based on 

t he development of detailed and complex models of t he reactor neutro­

nics and t hermal- hydraul ics whic h are t hen implemente d in large com­

puter codes . T he result of calculat ions performed wi t h  t hese cod es is 

a ser ies of numbers whic h define a trans fer func tion in t he case of 

t he linear mod el s 4 2 • 46-4 9  o r  a time trace of  t he reac tor response to a 

perturbation in t he case of  t he nonlinear model s . 3 8-4 1 , 4 3-4 5  }fost  of  

t he cod es have proven to be reasonably accurate when applied to  large 

commercial BWRs , but due to t heir compl exity , a great part of  the 

p hysical understand ing is lo st  in t he numerical cal culat ion . Hence , 

t here is a need for simpler , ye t p hys ically sound , mod els whic h 

provide tool s  allowing t he analyst to ac hieve a clear unders tand ing of  

t he var ious p hysical phenomena . T he mo tivation of t hi s  research is  to 

obtain a deeper und erstand ing of the BWR be havior in bo th the linear 

( stable ) and nonlinear (unstable ) regimes of operation . T he specific  

ob jec tives of  t his work are : 

1 . 3 . 1  Mod el Development 

To develop a reduced order p hysical mod el of t he dynamics of  

a BWR . T he main ob jec tive of  t his  step is  t he determination of t he 
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minimal model ord er ( i . e . ,  number of equations ) needed to represent 

the reactor dynamics . 

1 . 3 . 2  Linear Study 

To us e the model to study the linear dynamics of  BWRs . Thi s  

will include the identif ication of  observable transfer function 

features ( such as resonances , zeros , or break frequencies ) with 

reactor parameters ( such as fuel heat trans fer coeffic ients , void 

sweep time , etc ) . 

1 . 3 . 3  S tochastic Linear Study 

To use the resul ts from the linear analys i s  to study the 

po ssibility of applying no ise  analys is  technique s to BWR parameter 

identi fication . Thi s  ob jective includes  the development of an 

algorithm to ident ify the decay ratio of an operating BWR.  

1 . 3 . 4  Nonl inear Study 

To develop a nonl inear mod el of the BWR dynamics to study the 

experimentally observed limi t cycles as well as its  stabil i ty against 

changes in operating cond i t ions and reactor parameters . 

1 . 3 . 5  S tochastic Nonl inear Study 

To study nonlinear noi se propagation in nonl inear reac tors . 

The goal of thi s work is to develop no ise analysis technique s for the 

identif ication of the onset  of the nonl inear regime . 
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1 . 4  Organization of the Text 

Thi s  work has two main part s :  the linear dynamics part , 

contained in Chapters 3 ,  4 ,  and 5 and the nonl inear dynamics part , 

presented in Chapters 6 ,  7 ,  and 8 .  An introduc tion to both parts is 

contained in Chapter 2 .  

Chapter 2 contains a description o f  the physical model . 

Fir st , a descript ion of the BWR architecture and of  the rlynamic 

processes involved is presented . The general equations are given in 

Section 2 . 2 .  An introduc t ion to the problem of BWR stabil ity and its  

relationship wi th the phys i cal reactor parameters is presented in 

Section 2 . 3 .  Final l y ,  sec tion 2 . 4  contains a discus s ion of nonli­

near i ties found in BWRs . 

Chapter 3 contains an overview of  some top ics of linear dyna­

mic s  theory related to the work presented in this dissertat ion . The 

concepts of transfer func tion and stab ility are presented . Chapter 4 

documents the development and applications of  a reduced order linear 

model . Chapter 5 describes an algori thm to measure the asymptot ic 

stability of  BWRs by us ing the normally occuring fluctuations in 

neutron density known as no ise . 

An introduction to the nonl inear part of thi s  dis ser ta tion is  

contained in Chapter 6 .  Some basic concepts o f  nonl inear dynamics are 

described . Chap ter 7 contains the development and qual i f ication of  a 

reduced order nonl inear model for BWR dynamics . The main charac­

teri stics  of  nonl inear BWR operation are stud ied by means of  this 

simple  model . In Chapter 8 a more complete model , which takes into 



9 

account the nonlinearities in the ther mohy draulic feedback , is deve­

loped and applied to study nonl inear BWR dynamic behavior in more 

detail . 

Chapter 9 contains the highl ights of  the work presente d in 

thi s disssertation and some recommendations for future work . 

1 . 5  Original Contribut ions 

The original contributions of  this  dissertation to the field 

of BWR dynamic s in general can be divided in three main categorie s :  

1 . 5 . 1  Linear Dynamics 

Thi s  part  of the dis sertat ion contains the first stud y known 

to the author of  the pole-zero confi _guration of the react ivity-to­

power trans fer function of  a commerc ial BWR. A consequence of this 

study is the development , based on a nodal synthes i s  technique , of  a 

reduced-ord er l inear model which is used to as sociate phys ical reac tor 

processes wi th transfer func tion features , hence lead ing to a tho rough 

und erstand ing of the basic causat ive mechanisms which control BWR 

dynamics . 

1 . 5 . 2  S tabil ity Measurements  Using Neutron No ise Analysis 

Although several works have been published in this  area pre­

viously , the work reported in thi s  dissertation has produced several 

original contribut ions : 

( a ) The concept of asympto tic decay ratio has been developed ; thi s 

concept is of great importance sinc e, as shown in thi s work , 
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the apparent decay rat io (measured by most  exis t ing tech­

niques ) does no t provide the necessary information to guaran­

tee the reactor stabil i t y .  

( b )  Exi sting technique s t o  measure the decay ratio have been 

improved to allow for the measurement of the asymptotic decay 

ratio . In a dd i tion , two completely new techniques have been 

developed for thi s  purpose : the autocorrelation function 

technique and the frequency domain pole search of the 

autoregress ive (AR) mod el . 

( c )  T he concept of AR-consistent co rrelation has been developed to 

improve the estimate of the asymptotic decay ratio . This  con­

cept is also an orig inal contribut ion . 

( d )  An algorithm for the evaluation of  an error estima te for the 

measured deca y rat io has been developed . Thi s  error estimate 

accounts for the stochastic i ty of the noise measurement and 

can be used to determine the amount of data required for an 

accurate determination of the decay ratio . 

( e )  A technique for the calculat ion of a conf idence level of  the 

estimate has been outlined . This  level represents the good­

ness  of the fit . It is obtained on the bas i s  of  a priori 

knowl edge about general ffiVR dynamics and selfcons i stency 

checks . 

1 . 5 . 3  Nonlinear Dynamics 

The field of  nonlinear BWR dynamics has been scarcely stud ied 

previous l y .  This  di ssertation is ( to the knowled ge of the autho r )  the 
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first  attempt to ob tain an unders tand ing o f  the bas ic phys ical 

processes involved as oppo sed to numerically calculat ing the reac tor 

response for each part icular set of  cond itions . In thi s sense , mo s t  

o f  the work reported here i s  an original contribution t o  thi s field . 

The major resul ts  ob tained from this  research are : 

( a )  Nonl inear ities become impor tant when the l inear stab ility 

threshold is  reached ; thus , nonl inear mod eling is required 

when trying to describe  the reactor dynamic behavior above 

that threshold . 

( b )  Nonlineari t ies in BWRs mani fest themselves through the 

appearance of l imi t cycl es . It has been shown in this work 

t hat the limit cycles are caused by nonl inearities inherent to 

the neutron field equations ( the term pn in the po int kine tic  

representat ion) ,  rather than thermal-hydraul ic charac­

terist ics . It has been found that the ampli tud e  of the 

oscillations is very sens i t ive to the reactor operating 

cond i tion . Under some cond i t ions , the limi t cycles may have 

large amplitudes  tha t may cause unwanted reac tor scrams or 

fuel damage if the reacto r is not shut down in ti me .  

( c )  The limit cycles are susceptible to instab il i ties as the 

operating cond itions or the reactor design parame ters are 

changed . As a func tion of  these changes , the limi t cycles may 

sustain a phenomenon known as period-doub l ing bifurcations . 

Further changes in the reactor parame ters originates a cascade 

of bifurcat ions which lead to a region of  aperiod icity where 
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the reac tor power oscillations are fini te but not of  periodic 

nature . This  is the first time that such a behavior has been 

repor ted as po ssible in BWR operat ion . 

( d )  It is shown in thi s work that the cascad e  of  bifurcat ions 

experienced by the reactor response behaves in the universal 

manner described by Feigenbaum ' s  theory . 8 0-8 3  Thi s  is ind eed 

a remarkabl e  result considering the fac t  that such d iverse 

sys tems as weather pred iction equa tions or the trans i tion from 

laminar to turbulent flow behave in the same universal manner .  



CHAPTER 2 

THE PHYSICAL MODEL 

Thi s chapter describes the general phys ical dynamic model of  a 

BWR. First a general description of  the processes involved and the 

typical configuration of  thi s type of reactors are given . The general 

equa tions for each process are presented in Sec tion 2 . 2 ;  these 

equations will be used later in part icular appl ications throughout 

this dissertation . The concept of BWR stabil ity , its causes , and its 

effect on reactor operation is presented in section 2 . 3 .  Finally , 

some nonlinear effects which have been observed in operating BWRs are 

presented and the nonlinearities of the reactor  equations are stud ied . 

2 . 1  General Descript ion of the Dynamics of  a B\-lR 

The general design of  light water reactors is  always the same , 

in the sense that water circulates through the reactor core where a 

nuclear fiss ion reaction is maintained . The energy rel eased by the 

fiss ion reac tion is absorbed by the water which ac ts  as coolant . At 

the same time , the water ac ts as mod erator by slowing down fast 

fiss ion-neutrons . Therefore , two different loops or dynamic processes 

can be id ent i f ied in the reactor : ( a )  the neutronic loop , which 

control s  the way in which heat  is  produced , and ( b )  the thermal­

hyd raulic loop , which in a sense controls the way in which the heat is  

removed from the core . The two loops are coupled via the react ivity 

feedbacks due to the Doppl er and dens i ty reactivity coef f ic ients . 

13  



14 

This concept is presented graphically in the block d iag ram of 

Figure 2 . 1 .  

In BWRs the water flows through ind ividual channels or fuel 

assemblies . Each of  these assemblies is surrounded by a channel wall  

which inhibi t s  cro ss  flow between neighboring assemblie s .  Old er BWR 

fuel designs contained arrays o f  7 x 7 cyclindrical fuel rod s per 

assembly .  Newer designs contain 8 x 8 or 9 x 9 arrays . typ ical 

d imensions of  a channel are 13 x 13  em wid e and 4 1 1  em high , of which 

only 36S em ( 12 ft ) have ac tive fuel . The number o f  assemblies varies 

from SOO to ROO depending on the reactor . Each of  these assemblie s 

forms an ind ependent flow path between the lower and upper plena . 

The water flow enters the channel through the lower plenum at 

temperat ures close to saturation . Typical inl et subcool ing value s 

( the d i f ference between inlet and saturation temperatures ) are 1 0  to 

30  K, depend ing on the reac tor operating cond i t ion . There is a small 

region at the bot tom of the channel ( typically 30 to SO em ) in which 

no bo iling occurs . The ma jority of  the channel is occupied by the 

sucooled-boi l ing region ( typically from SO to 300 em) ;  in this  region 

the water and steam bubb les are not in thermodynamic equil ibriu m and 

the liquid phase  is slightly subcooled . The upper part  of the channel 

is the bulk boil ing region , which is charaterized for thermodynamic 

equilibrium between phases . Typical exit qual ities vary from O . OS to 

0 . 3 and the exit vo id frac t ions from 40 to 80% , depend ing mainly on 

the power-to-flow ratio . 
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Given the low exit qual ities charac ter i s t ic of  normal BWR 

operation , mo st  of the water leaving the core is recirculated through 

what is called the recirculation loop . This  loop includes the upper 

pl enum , the steam separators and driers , the downcommer region , the 

jet pumps , and the lower plenum . For a typical exi t qual ity of 0 . 05 

at 100% rated cond itions , the ratio of  rec irculated-to-inlet water is 

20 to 1 .  The recirculation loop provid es a coupl ing mechanism between 

the upper and lower plena pres sures and the recirculation flo w. Thus , 

variations in the channel thermal-hydraul ics result in changes of  

inle t  flow through pressure variat ions . 

The energy source in the core come s from the fission chain 

reac tion . Mo st  of this energy is released inside the fuel rods , but 

a small fract ion ( about 3% ) is deposited directly in the coolant by 

means of y-ray ab sorption and neutron moderation . The heat transfer 

between fuel rods and coolant has its  own dynamic charac teri stics  

which couple the neutron field to the channel thermal-hyd raul ics . 

Fuel rod s are formed by a stack of  cylindrical UOz fuel pellets  

surrounded by  a zircaloy cladd ing . The gap between fuel and cladd ing 

introduces a no ticeable resistance which affects the overall dynamic 

response of the fuel . The gap heat conduc tance increases toward s the 

end of the fuel cycle due to the accumulation of gaseous fission 

produc t s . 

In summary , we have described the four major dyna mic processes 

present in BWRs : (a)  the neutron field , ( b )  the fuel heat trans fer , 

( c )  the channel thermal-hydraul ic s ,  and ( d )  the recirculat ion loop . 
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All of these processes ac t together forming the closed loop dynamics 

characteristic of BWR operation . 

2 . 2  The Physical Equations Represent ing the Reactor Processes 

As described in the previous sec tion , there are four main 

processes which have to be modeled to represent the general BWR dyna-

mic behavior : ( a )  the neutron field , ( b )  the fuel , ( c )  the channel , 

and (d ) the recirculation loop . This  sec tion presents the general 

physical equa tions correspond ing to these processes and some commonly 

used approximations . The coupl ing mechanisms between the rlifferent 

proces ses will  al so be needed . They are : ( a )  the reac tivity feed-

back , which couples the thermal-hydraul ics with the neutronics , and 

(b) the upper and lower pl ena , which couple the channel thermal-

hy draulics with the recirculation loop dynamics . 

2 . 2 . 1  The Neutron Field Equations 

The purpose of this sec tion is to der ive the one-point 

reactor kine tic equat ions describine the neutronics in the present 

BWR model as well  as an expression for the reactivity changes intr a-

duced by the thermohydraul ic loop . 

The neutronics loop is described by the Bol t zman equation 

H � ( 2-1 ) 

where the vector � has as it s components the neutron f lux , 

�( E, Q, r , t ) , and the delayed neutron precur sor concentrations , 

Cj ( r , t )  ( j  = l, • •  , J) ,  i .  e . , 

�T ( 2-2 ) 
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and where 

[f'" 0 Il 1 
v-1 

0 

wit h  the matrix operator , !!_, given by 

-Q • V+B �1 xl AaXj 
� lFd 

H = 
1 

�/d 0 -AJ 

where we introduced the following operators 

B = S + ( 1-�)F 

S Scattering operator 

jdQ '  fdE ' {l:s (E ' , Q '  jE , Q , r , t )  !1tz:t (E ' , r , t ) 6 (E-E ' ) } 

F = Fission operator 

= jdQ ' fdE ' x(E ' )v(E ' ) l:f (E ' , r , t )  

xCE ) = Prompt neutron fis sion spec trum 

Xj ( E )  = Delayed neutron fis sion spectrum 

( 2-3 ) 

( 2-4 ) 

( 2-5 ) 

( 2-6 ) 

( 2-7 ) 

( 2-8 ) 

Aj = Decay constant for the j t h  group of delayed neutron 

precursors 

�j = j th  group of delayed neutron precursors fraction 

� = 2: �j 

l:f (  ) = Macroscopic fission cross section E , r , t  

v(E ) = Neutron multiplicity 

l:s (E ' , Q '  jE , Q , r , t )  = Scattering Kernel 
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ET(E , r , t ) =Macroscopic total cross section 

The following initial and boundary conditions are satisfied 

�(E , Q , r , t=O ) = I 0 (E , Q , r ) 

where 10 , the vector of initial conditions , is given by 

r0
T = ( f (E , Q , r ) , d 1 ( r) ,  • • •  , d j ( r ) )  

and 

�(E , Q , r ( S ) , t ) = 0 ; (n·Q�O ) 

( 2-9 ) 

( 2-1 0 )  

( 2-1 1 )  

where r ( S ) are the position coord inates o f  the neutron boundaries 

and n is the unit  normal vector . 

The adjoint system is defined by the matrix equation 

-v- 1 o� = H+� at - ( 2-12 )  

where � is a vector whose components are the ad joint flux , �+, and 

the ad joint delayed neutron precursors , cj+ , i .  e .  

�T = <�+, c l+, • • • , c j+) ( 2-1 3 )  

and where the matrix operator , H+ , i s  obtained by transposing the 

forward matrix operator , H , and ad joining each one of its elements 

containing differential and integral operators . Under this set of 

conditions , the forward and ad joint operators are related by the 

conmutation relation 

( 2-14 )  

where the brackets symbolize integration over the phase space 

variables ( energy , angle , and space )  and where , for relation ( 2- 1 4 )  

to hold , the ad joint flux must satisfy the boundary condition below 

�+(E , Q , r ( S ) , t )  = 0 ( n•Q�O ) ( 2-15 )  
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Because of the time reversal implicit in equation ( 2-1 2 )  for 

the ad joint vector , y+, one must  specify final conditions which we 

write in a general fashion as 

( 2-1 6 )  

with 

( 2-17 ) 

The reactivity changes are defined with respect to a criti-

cal reactor with the fuel temperature and moderator void fraction at 

their steady state values , Tf o and a0 respectively .  The reference 

reactor is then defined by the steady state transport equation 

H Y = 0 � 

where the vector Y has as its components the flux , $ ,  and the 

delayed neutron precursor concentrations , ej , i . e . ,  

( 2- 1 8 )  

The matrix operator , �, correspond s  to  the matrix operator H eval-

uated at the equilibrium point ( steady  state )  values of the reactor 

parameters . The ad joint reference reactor is in turn described by 

H + y+ = 0 -0 ( 2-20 )  

where the ad joint operator , �+, i s  obtained from� as previously 

shown . 

We now rewrite the material properties of the altered reac-

tor in terms of the properties of the reference reactor and the 

changes arising from altered plant conditions . The energy angle and 

time dependence are not explicitely written for the sake of clarity . 
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Es Eos + ol:s ( 2-21 ) 

ET EaT + oET ( 2-22 )  

Ef Eof + oEf ( 2-23 ) 

-

It  should be emphasized that the changes in the system 

material properties are not necessarily restricted to be small . 

On account of the definitions ( 2-2 1 )  through ( 2-23 ) ,  the operator H 

can be writen as 

with 

and 

H = H - .::.0 + orr [6S+6F 

orr 
� l oFd 

= . 

. 

�joFd 

os = fdE ' jdQ '  

�] 
{6Es (E ' , Q '  jE , Q)  - .!._ oET(E ' )  

41t 

oF = ( 1- � )  fdE ' fdQ '  x(E ' )v(E ' ) 6Ef (E ' , r , t )  

oFd = fdE ' jdQ'v(E ' ) oEf ( E '  , r , t )  

( 2-24 )  

( 2-25 )  

o(E-E ' ) } ( 2-2 6 )  

( 2-27 )  

( 2-2 8 )  

The derivation of the one-point reactor kinetics approxima-

tion is based on the assumption of separability between time and the 

phase-space variables . In the spirit of this assumption we write 

�(E , Q , r , t )  = !( t )Y(E , Q , r )  

�(E , Q , r , t ) = �( t )Y+(E , Q , r )  

where we introduced the diagonal matrices 

N ( t )  

( 2-29 )  

( 2-30 ) 

( 2-3 1 )  
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and [ n+( t ) 0 CLJ ,+( t )  • � c 1 ( t )  
( 2-32 )  

0 

Straight forward insertion of the "ansatz" ( 2-29 )  in the 

transport equation ( 2-1 ) followed by integration over the phase-space 

variables would indeed reduce that equation to a lumped parameter 

model in terms of the time variable alone . However it can be shown 

that such procedure does not yield optimal estimates of  the quantities 

n( t )  and Dj ( t ) ( j = l,  • • •  , J ) [ in the sense that first order errors in 

the shape function Y lead to first order errors in the time-dependent 

quantities n( t )  and Dj ( t )] .  It is then important that the point-

kinetics equations be obtained by methods which ensure that first 

order errors in the trial functions result in only second order errors 

in the estimate of the neutron and delayed precursors populations . 

Such a method can be formulated in terms of a variational principle . 

The variational derivation of the point-kinetics approximation 

proceed s  through the following steps: 

( a )  Formulation of a functional , L, of the forward and ad joint 

vectors , Y and �, which is stationary ( e . g . ,  dL = 0), for the 

arbitrary variations 6Y and 6�. 

(b)  Insertion of the "ansatz" ( 2-2 9 )  and ( 2-30 )  into the sta-

tionary functional , L, followed by integration over the phase-

space variables . This step generates the reduced functional 1 1 • 

( c )  The point-kinetics approximation is obtained by demanding that 

the reduced functional , 1 1 , be stationary . 
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The stationary functional , L, can be shown to be 

L f
tf dt <�TI<v- 1 oW - HW)>  
t - ot -

0 

+ <�T ( t 0 )1�- 1 ( W( t 0 )-I0q ) > - <WT( tf )lv- 1rf> ( 2-33) 

where t 0 is the initial time (beginning of the altered plant opera­

tion ) and tf is an arbitrary final time . 

We now implement step ( b ) , which on account of Equations 

( 2-18 )  and ( 2-14 ) yields the following reduced functional , 11 

where we introduced the following quantities 

M = Weighted neutron population 

P o 

uj 

= <�+11 /v$) (neutrons ) 

= Weighted 

= q+IF 0P 

= Weighted 

neutron production 

(neutrons / s )  

jth delayed neutron 

<ej+lej> ( precursors ) 

precursor 

o p = Reactivity change = 1 /P 0 <�+l (oS+oF ) �> 

(dimensionless ) 

population 

( 2-34 ) 

( 2-35 ) 

( 2-36 ) 

( 2-37 ) 

( 2-38 )  
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�j = Effective delayed neutron fraction 

= 1/P 0 <$+lxjFd$>�j 

� = 1 �j 

( 2-3 9 )  

( 2-40 )  

Bj = Weighted initial conditions for the delayed neutron 

( 2-41 ) 

Bj+ = Weighted final conditions for the ad joint delayed 

neutron precursors = <ejldj+> ( 2-42 )  

c+ = Weighted final conditions for the ad joint flux 

( 2-43 ) 

At thi s  point we carry out step ( c )  by taking variations in 

Equation ( 2-34 ) with respect to n( t ) , n+( t ) , Dj ( t ) , and c+( t ) . By 

demanding that the functional , L, be stationary ( i .e . ,  oL = 0) , for 

arbitrary variations of forward and ad joint neutron densities and 

precursor concentrations , we obtain the initial and final conditions 

n ( t 0 ) = <$+lf>/M 

Dj ( t 0 ) = Bj /Uj 

n+( tf ) = G+/M 

c.+( t ) = B.+ /U · J 0 J J 
and the following equations 

J 
� n( t )  = l ( o p-�)n( t )  + L Ajc j ( t ) 
dt  A j=1 

� c · ( t ) = l �J·n( t ) - AJ·cJ·( t )  
d t  J A 

- 5f_ n+( t )  
d t  
d + --c· ( t )  
d t  J 

J 
= l ( op-�)n( t )  + l I �jc j+( t )  

A A j=l 

= Ajn+ ( t )  - Ajc j+( t )  

( 2-44 )  

( 2-4 5 )  

( 2-46 ) 

( 2-4 7 )  

( 2-48 )  

( 2-49 ) 

( 2-50 )  

( 2-5 1 )  



2 5  

where we introduce the neutron generation time , A ,  

M 
A = - = 

P o 
<<t>+ll/v<t>> 
<<t>+IFo<l>> 

and we defined the delayed neutron precursor amplitudes as 

( 2-52 ) 

( 2- 5 3 )  

The reactivity change is  given from Equation ( 2-38 ) ,  on account of 

equations ( 2-26 )  and ( 2-2 7 )  as an ad joint-flux weighted average 

( 2-54 ) 

where the void reactivity feedback and Doppler coefficient o f  reac-

tivity are given respectively by 
ap- fdE1fdf"'\1{ a "' (E1 f"'\l E f"'\ t )  oa: - �' aa: ""s .�, ; .�, , r ,  

- .!:.__ � L:T(E 1 r t )  6(E-E 1) } 
41t aa: • • 

�� = ( 1-p) jdE1jdQ1X(E )v(E1)�T l:F(E1 , r , t ) 
u f f 

( 2-55 ) 

( 2-56 )  

where a:( r , t )  and Tf ( r , t )  are the void fraction and- fuel temperature 

process variables . 

In summary , the use of the present variational technique 

allowed the derivation of a lumped parameter model for the neutronics 

loop , where the parameters are defined as bilinear averages of the 

forward and ad joint reference reactor fluxes ; thus resul ting into 

optimal estimates of the various reactor parameters . 1 0 9 In par-

ticular , Equation ( 2-54 ) gives an expression for the reactivity 

changes due to variations in the process variables ; thus , defining the 

coupling between the neutronic and thermohydraulic dynamic loops in 

terms of the void and Doppler coefficients of reactivity . 
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2 . 2 . 2  The Fuel Equations 

The equation describing the heat transfer process in the 

fuel is 

where 

oT pep - = Q + VkV'T ot 

Q Volumetric rate of heat generation in fuel 

p Fuel density 

Cp = Fuel heat capacity 

K = Fuel heat transfer coefficient . 

The fuel rods have cyclindrical geometry . Therefore , 

neglecting axial heat transfer , the equation becomes 

pep �T
t = Q + .!_2.__ ( rkoT) 

u r or or 

( 2-57 )  

( 2- 5 8 )  

An important component of the fuel dynamics is the gap between 

pellets and cladding . This gap can be modeled as a boundary 

condition . In this  way , the heat transferred per unit  surface , Q" , is 

where 

Q"( r ) = h (T ( r  ) -T ( r  ) )  g g p g 

hg = Gap heat transfer coefficient 

rp Pellet outside rad ius 

rg = Cladding inside radius . 

( 2-59 ) 

Equation ( 2-59 )  serves as coupling between the fuel and 

cladding equations by taking into account that 

Q"( r ) = - k oT I o or ro ( 2-60 )  
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The boundary condition at the external cladding radius , rc , 

can be handled by the equation 

where 

oTI -k -- = h(T(r  )-T ) or r o c c 

Tc = Coolant temperature 

h = Convective heat transfer coefficient 

2 . 2 . 3  The Channel Equations 

( 2-6 1 )  

The channel thermal-hydraulics can be modeled by mass ,  energy , 

and momentum balances . In the bulk boiling region they become4 5 

where 

�t [ ( 1-a) plhl+apghg-p ] + �z [ ( 1-x)h1G+xhgG ]  = Q' 

op _ oG 1 o [ ( 1-x) 2G2 
+ x2G2 J J -- - - -- - - �z - [ ( 1-a) pl+apg gc ot ot 2 u Pl ( 1-a) Pga 

�2QG2 
- � Ki �2QG2 

-f 2 plD L 2 pl 
6 ( z-zi ) 

G = Coolant mass flux in Kg/m2 s 

a = Void fraction 

X Steam quality 

p = Pressure in N/m2 

Pg Saturated steam density in Kg/m3 

Pl Saturated liquid density in Kg/m3 

hg Saturated steam enthalpy in J/Kg 

hl = Saturated liquid enthalpy in J/Kg 

( 2-6 2 )  

( 2-63 )  

( 2-64 ) 
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f = Single-phase friction coefficient 

�2 = Martinelli-Nelson correction factor 

for two-phase flow pressure drop 

Q = Jones correction factor 

D Equivalent flow diameter in m 

Ki = Concentrated pressure loss  coef ficients 

Boundary conditions needed are an inlet void fraction , mass 

flow rate , and inlet pressure . A series of empirical correlations 

have to be used to determine the slip ratio and the two-phase friction 

multipliers . 

A commonly used approximation2 9  assumes that the pressure 

transients related to acoustic phenomena are very fast compared to the 

enthalpy transients .  In this approximation , the term dp/dt in the 

energy balance equation is neglected by assuming that the system 

pressure remains constant during the transient so that the thermo-

dynamic properties ( such as specific density and enthalpy ) remain 

constant . With this assumption the acoustic pressure waves propagate 

instantaneously through the system . The equation without acoust ic 

phenomena becomes 

( 2-65 )  

Thi s  approximation greatly simplifies the problem of solving 

for the channel dynamic behavior , since it essentially uncouples the 

momentum equation from the energy and continuity balances . 

Numerically , the solution requires only a fraction of the computation 
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time necessary if the pressure waves were considered . A saving in 

computer memory is also obtained , since it reduces the dimensionality 

of the problem . 

2 . 2 . 4  The Upper and Lower Plena Equations 

BWRs are formed by a multitude  of individual channels .  All of 

them are connected through the upper and lower plena . A complete 

model of a BWR should contain several channel types ,  which are coupled 

together through these plena . Commonly they are modeled just as a 

boundary cond ition for the inlet and outlet channel pressures . If 

more than one channel is being modeled , the constant pressure boundary 

condition forces flow redistribution among the different channel 

types . In addition , the plena pressures serve as coupling between the 

channel thermal-hydraulics and the recirculation loop . Variations in 

the pressure drop across the channel result in changes of the inlet 

mass flow rate . 

2 . 2 . 5 The Recirculation Loop Equations 

The recirculation loop is formed by the upper plenum , the 

steam separators and dryers , downcomer ,  jet pumps , and lower plenum . 

A complete model of this system would be extremely complex . We will 

treat it as a single path of fluid with variable flow areas but 

constant mass  flow rate and incompressible flow . It is convenient , 

thus , to rewrite momentum equation in terms of flow areas , A( z ) , and 

a constant flow rat e ,  w ,  instead of mass flux , G.  

- op 
= .9..... (�) + .!.. .9..... (..L) + Plg + .9..... ( !:iPf ) ot ot A A oz PlA oz ( 2-66 ) 
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�f represents the integrated frict ion losses can be considered 

proportional to w2 • Note that A depends on z but not on t ,  whereas w 

depend s on t but not on z .  Integrating over the path of the recir-

culation loop we obtain 

where we define 

(A
L ) = f 21 ---,-.,-1 � A( z )  dz 

( 2-67 )  

This  equation,  thus , yields the variation in inlet masss  flow 

rate as a function of variations in channel pressure drop . Therefore , 

this equation eliminates one of the boundary conditions needed for the 

channel e9uations , since it supplies the inlet flow. Note that in 

normal BWR operation the upper plenum pressure is kept constant by the 

pressure regulator and , thus , variations in the channel pressure drop 

produce changes in the lower plenum absolute pressure . 

2 . 3  BWR Stability 

In general three different types of instabilities are con-

sidered to be possible in BWR operation : 

( a )  Plant Instability . This  is related to the reactor control 

systems and how the plant as a whole  reacts to external 

disturbances such as a power load demand . 

( b )  Reactivity Instability . BWRs form a closed-loop system , in 

the sense that power feeds back to the reactivity through both 
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the dens i ty and Doppler react ivity coefficient s . Both of  

these feedbacks are negative , and the reactor is stable 

wi thout the need of a control system under normal operat ing 

cond i t ions ; however ,  the density reactivity feedback is 

suf f i ciently strong to cause the reactor power to oscillate 

when a perturbat ion in reac t ivity is applied . Several parame­

ters affect the gain and phase of thi s feedback , and over the 

critical value of these parameters the reac tor becomes 

l inearly unstable . This  type of stab il ity manifests  itself as 

a d iverging power oscillation with the core acting as a whole . 

Reactors are suscept ible to the reactivity instability mostly 

when operated at reduced flow cond itions , for instance during 

natural circulation . 

( c ) Channel Thermal-Hydraulic Instabilities . These types of 

instabilities  are related to the dynamic charac teristics of 

two phase flow in heated channels . They can occur in any type 

of hea t ing system since the neutronic loop is not involved . 

Several types of  these instabilities have been recognized ; 1 0 0 

the mo st  important one is the dens ity wave ins tability , which 

is  caused by a downflow pressure drop . Other recognized types 

o f  channel instabilities are the buoyancy wave for natural 

circulation systems , the pres sure or Helmholtz  wave due to the 

compressibil ity of the flow , and out-of-phase mul ti channel 

oscillations . All these types of instab i l i t ies  cause flow 

oscil lations in a particular group of channel s ,  whi ch can be a 
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small number compared to the whole reactor . Therefore , these 

osc illations wil l  be seen in the local power through the 

density reactivity coeffic ients ,  but the global or overall 

power will no t be affected as much . For this reason , these  

type s  of instab i l i t ies are often called " local ins tabil ities . "  

Several stabil ity experiments  have been performed 

recently . 5 0- 5 9  These  te sts  show that BWRs are sus ceptible to the 

react ivity instability when operated at low flow and high powers ( for 

instance , 51%  power and 32% flow in the case of  Reference 5 8 ) . For 

this reason , utilities are required to submit calculations relating to 

the stab i l i ty of  the reac tor prior to any new fuel reload ing . 

As stated before , this  type of  instability arises  from the 

dual rol e  of water as coolant and moderator . As the power is 

increased , the heat transferred to the coolant increases and more 

steam void s are produced . The inc rease in void s , however , reduces the 

mod erating power of the water and , thus , reduces the react ivity . Thi s  

caus es a reduct ion in power . Thi s  negative feedback process i s  what 

maintains the reactor power constant during normal operation without 

the need for a control sys tem . It is a well known fact that negative 

feedback systems can be suscep t ible to oscillatory-type instablities  

i f  the feedback gain or  the phase lag are increased . Thus , the nega­

tive void feedback may cause a reactor instability if it becomes too 

strong . 
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2 . 3 . 1  Parameters Affecting the Reac tivity Stability 

In thi s  section we discus s the effects  of  var ious parameters 

on the gain and phase lag of the core ' s  reac tivity feedback dynamic s . 

Most  parameters aff ect both phase and gain of the reactivity feedback , 

and in some cases it is diff icult to determine the impact of  changes 

in a given parameter on core stab i l i t y .  In a BWR one parameter can 

hard ly be changed without af fecting others . In thi s  section , however , 

we discuss the direct effect of each of  the parameters in isolation , 

thus id entifying their ind ividual part ial contribut ions to the 

integrated effect of any perturbat io n .  

S tead y  state moderator densi ty dis tribution . For illus trative 

purposes , the density react ivity coeffic ient (DRC ) for a typical 

fuel 6 3  is shown in Figure 2 . 2  as a function of coolant density rela­

tive to the liquid phase  density . Figure 2 . 2a represents an 

uncontrolled cell ( four fuel assemblies ) and Figure 2 . 2b represents a 

controlled cell ( four fuel assemblies plus a control rod in be tween ) .  

In Figure 2 . 2a it can be seen that for the uncontrolled case the DRC 

increases  as moderator densi ty increases ( i . e . ,  as void frac tion 

increases ) . S ince the gain of the react ivity feedback is  proport ional 

to the value of the DRC , in general a high void fract ion in a core 

with a low degree of control ( i . e . ,  operation at high power-to-flow 

rat ios ) wil l  resul t in a less stable cond i t ion . Figure 2 . 2b shows , 

however ,  that the behavior of a controlled cell is the oppo site , but 

s ince the controlled regions of the reactor have lower power , they 

have a smaller weight in computing the DRC ( see Section 2 . 2 . 2 ) ,  and 

the overall effect of an increase in void s is destabilizing . 
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Axial power shape . The power shape affects BWR stabil i ty in 

two ways : first , by a direct effect on the void fract ion d i stribu­

tion , and second , through its  square-weighting contribut ion to the 

reactivity feedback al gor ithm ( see Section 2 . 2 . 2 ) . A bottom-peaked 

power shape preferentially generates steam void s in the lower ( inle t )  

part o f  the core . This  effectively add s  void s to all the core , thus 

maximiz ing the average core void fract ion for a given power-to-flow 

ratio ; it al so increases the effec t ive void residence time in the core 

whi ch increases the reactivity feedback lag . Both effects contribute 

to making the reactor more unstable when the axial power shape is 

t il ted toward s the bottom-peaked configurat ion . 

S team void velocity . The higher the void velocity , the 

smaller the effective void residence time in the core ; this variable , 

therefore , has two effects : ( a )  decreasing the phase lag and ( b )  

increasing the rate a t  which moderator density perturbations are 

removed from the core , thus reducing the feedback gain . Both effects 

tend to make the reactor more stable . Therefore , for the same power­

to-flow ratio , the cond i t ion with higher flow will  be more stable . 

Fuel gap conductance .  A change in gap conduc tance al ters the 

fuel-to-coolant heat flow transfer funct ion . An increase in conduc­

tance ( for ins tance , smaller gap ) will increase the gain , thus making 

the reactor more unstable ;  at the same time , however , it will reduce 

the phase , a fact that  tend s to  make the reactor more stable . 

Al though these effects  are opposite , the overall stability impact of 

the increase in gain is larger than that of the phase  reduct ion . 
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Rec irculation loop parameters . The pressure-to-core-inlet-

flow transfer func tion in the recirculation loop has an important 

effect on stability . 4 8  It couples the inlet flow wi th the core 

hydraulics , thus closing the loop between the upper and lower plena . 

The reactor becomes less stable as a result of  the increase in its  

gain or its time cons tant . In general , a decrease in recirculation 

pump speed increases both the gain and the time cons tant ; 6 3  thus , 

red uced flow conditions are more unstable . 

Control rod pat tern . For a given axial power shape and void 

fraction distribution,  the control rod pattern affects the reactor 

stability only through the DRC . An increase in the degree of  control 

makes the reactor more stable . 

Fuel isotopic compos i t ion . In Figure 2 . 2  the curves of  DRC 

versus moderator density are shown as a function of gadolinium 

concentration . It  can be observed that the DRC is  smaller for higher 

Gd concentrations . Therefore , the higher the Gd contents ( for 

instance , at the beginning of cycle ) the more stable the reactor . 

Rad ial power and flow distribut ion . In a BWR each channel 

contributes  to the global core react ivity accord ing to the integral 

over its length of the local DRC , weighted by the local power squared . 

Since the local DRC is determined by the void frac t ion distribut ion 

along the channel , changes in the core ' s  radial power and flow distr i­

but ions wil l  af fect the relative contribution of the particular chan­

nel to the overall reac tivity feedback , thus affecting the stabil ity 

o f  the core . 
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Inlet  subcooling . Thi s  parameter affects the po s i t ion of  the 

boiling boundary thus changing the ef fective void resid ence time in 

the co re . It al so affects the average channel void frac tion . 

Increasing inlet subcool ing ( i . e . ,  lower inlet  temperatur e )  

will decrease the residence time and the average void frac t ion . 

Therefore , it wil l  resul t in a more stable reactor . 

Total core flow . This  parameter affect s  mainly the average 

vo id fraction and the bubble veloci ty .  For the same power level , an 

increase in flow wil l  reduce the void frac tion and increase the bubble  

velocity . Both effects make the reactor more stable . 

Core thermal power . An increase in power while  keeping the 

flow constant ( i . e . ,  along a constant recirculation pump speed line ) 

has the effect of increas ing the void frac tion and , thus , it has a 

destab i l i z ing effec t . However , if the power is increased through an 

increase in rec irculat ion pump speed , the flow is also increased ; in 

thi s case , the void frac t ion is kept essentially constant ( in order to 

maintain the reactor critical ) but the bubble  velocity is increased . 

Therefore , a power increase along the flow control line results  in a 

more stable reactor conf i gurat ion . 

2 . 4  Nonl inearities  in BWRs 

The reactor equations presented in Sec t ion 2 . 2  are no t linear . 

However ,  any nonl inear system will behave in a linear manner if the 

perturbations around equil ibrium are small enough . Thi s  is the case 

in BWRs . It  has been shown experimentally 5 3- 5 6  that this type of 
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reac tors behave linearly during normal operation ; thus , linear 

mod eling is appropriate for these cond it ions . However , as explained 

in Section 2 . 3 ,  BWRs are susceptible to instabilities . When the 

equilibrium po int becomes unstable the oscillations become undamped 

and they grow large enough so that nonlinearities  become important . 

Thi s  effect has been observed in recent exper iments . 5 7- 5 8  In 

these experiments  the reactor power was increased slowly while keeping 

the flow rate essentially constant . When the crit ical power level was 

reached , the reac tor became unstable . At this  moment ,  if the reac tor 

wer e  linear , the oscillat ions should have continuously diverged expo-

nentially . However , thi s  was no t the case since the oscillation 

amplitude grew originally but it stayed bound ed due to the appearance 

of a limit cycle which is a typ ical nonl inear effect . The observed 

l imit cycles were of smal l  amplitude , with about a ±15%  oscillation in 

-
power . In thi s  section we wil l  describe the nonl inear i t ies  in the 

reactor equations which could account for the observed effects . In 

chapters 7 and 8 ,  we wil l  study these nonlinearities  more carefully 

and their effects  on the reac tor ' s  dynamic response . 

The first nonl inear ity appears in the neutron field equat ions . 

In the point kinetics  representation , the term "reactivity-times-

neutron-density"  ( pn)  is a nonlinearity because , due to the inherent 

reactivity feedbac k ,  p depend s on n. The physical meaning of this 

term is that reac tivity per turbations are we ighted by the neutron 

dens ity . Thi s  term forces the neutron dens ity  to be positive at all 

t imes . No matter how large a negative react ivity perturbation is 
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imposed in the reactor , the actual perturbation ( as seen by the 

equa t ions ) wil l  tend to zero as the neutron density is reduced . 

The way in which the react ivity feedback is computed introdu­

ces ano ther nonlinearity because the cross-sections and the as sociated 

reac tivity coefficients are complex nonl inear functions of  temperature 

and moderator dens ity . 

The fuel equation ( 2-64 ) is linear except for the temperature 

depend ence of the heat conduc tance ,  density , and fuel heat capacity . 

As suming the operating pressure cons tant ( see Sect ion 2 . 2 . 4 ) , 

the specific  dens ities and enthalpies are constant and , thus , the mass  

conservation for the channel is  linear . The energy and momentum con­

servat ion equat ions , however ,  are nonl inear . The product of G, the 

mas s  flux , times x ,  the steam quality , appears in the convection term 

o f  the energy equation . Furthermore , x is a complex nonlinear func­

tion of the void frac tion , a .  The non-linearities in the momentum 

equation are in the kinetic  energy ( G2x2 /a)  and fric tion (G 2 ) terms , 

which include the nonlinear dependence of the two-phase friction coef­

ficient . 

The recirculation loop is mod eled using the integrated momen­

tum equation and , thus , it contains the same nonlinerities described 

above . 

In summary , we have seen that the true reactor equations 

have a mult itude of nonlineari t ies in them . Although experiment s  

have shown that  none o f  them affects  signif icantly the reactor 

normal operat ion , it has been observed that they become important 

when the linear stability limit is reached . 



CHAPTER 3 

LINEAR SYSTEMS DYNAMICS : THE CONCEPT OF STABILITY 

The relationship between two variables in a sys tem can be 

represented mathematically by a dif ferential equation . If this 

equat ion is l inear , or if it can be linearized for small pertur-

bations , the equat ion can be Laplace trans formed and the transfer 

funct ion between two variables can be obtained as the ratio of two 

poynomials in s ,  the Laplace variable .  The roots  of  the denominator 

polynomial are called the poles of the transfer function and the dena-

minator are the zeros . Once the transfer funct ion , G( s ) , of a linear 

system is known , the output of thi s  sys tem ,  R( s ) , for any input , I ( s ) , 

i s  given in the Laplace domain by the produc t  of the input times the 

transfer function 

R ( s )  = G( s )  I ( s )  ( 3-1 ) 

The output , r ( t ) , in the time domain can be obtained using 

the wel l-known convolut ion theorem 
t 

r ( t )  = J i ( t )  h( t- � )  d �  
0 

( 3-2 ) 

where h( t )  is the inverse Laplace transform of the transfer func t ion . 

It  can be shown that h( t )  is al so the response of a system to an 

impulse ( or Dirac delta func tion) and is , therefore , usually called 

the impulse  response of the system .  Equation ( 3-2 ) clearly shows that 

the characteristics  of the impul se response determine the response of 

the system to an input and consequently it determines the stability of 

40 
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the sys tem . If the impulse response decays to zero , then the output 

follows the input in the sense that  r ( t )  depend s only on the latest  

values of  i ( t ) ; however , if h( t )  increases with time , the old values 

o f  i ( t )  are multipl ied by a func tion which increase s in magnitud e . In 

this case , the response becomes divergent and the sys tem is said to be 

unstable . 

The impulse response can be calculated as a function of  the 

pole s  of the transfer func tion , {Pi • i = 1 , 2 ,  • • •  , N} , as 

N 
h ( t )  = L Ri epit ( 3-3 ) 

i=l 

where Ri is the residue of  pole  Pi • If Pi is a single pole , the 

residue is given by the expression 

Ri = lim ( s-pi ) G( s )  
S�Pi 

( 3-4 ) 

Equation ( 3-3 ) shows that if at least one of the poles has a 

pos i tive real par t ,  the impulse response will grow exponent ially and 

the sys tem wil l  be unstable . If all the real parts  of the poles are 

negative , the sys tem wil l  be stable and the impulse response will  

asymptotically behave like the component of the pole  with the smallest  

real par t , because all other components decay faster . Hence , the real 

part of the most  unstable pole ( the one with smallest  real part ) 

determines the relative stabili ty of the system . 

Usually we are interes ted in measuring the stability of 

systems wi th oscillatory characteri stics  when the mo st  unstable pole 

is  complex . It is in thi s  context that the concept of  decay ratio 
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arises . It can be shown that if a sys tem has only a pair of complex 

conjugate poles , the impulse response is 

at 
h ( t )  = e cos ( wdt + � ) ( 3- 5 )  

where a i s  the real part  and wd i s  the imaginary part of the pole . 

The decay ratio is defined as the ratio between the second and first 

peaks in the impulse  response . Thi s  ratio is cons tant for any two 

consecutive peaks and equal to 

DR = e
2na/wd ( 3-6 ) 

Therefore , we see that for a second ord er sys tem ,  the decay ratio is 

d irectly related to the pos ition of the poles and it is a good 

mea sure of the system stability . 

For higher order syst ems , the impul se response is not formed 

by jus t  one term but by the contributions from all the poles ; there-

fore , the decay ratio between consecut ive peaks is not constant . 

However , if a series is formed wi th the value of  the decay ratio for 

every two consecutive peaks , it can be shown tha t  it converges to a 

value equal to the decay ratio of a second order sys tem wi th only a 

pair  of complex poles at the same pos i tion as the least  stable pai r  of 

poles in the original system . We call this value the asymptotic decay 

ratio , whereas the ratio between the first two peaks is the apparent 

decay ratio . 

The asymptotic decay ratio is related to the po s i t ion of the 

lea st  stable pol e  as shown in Equation ( 3-6 ) and is , therefore , a 

good measure of  the stability of the sys tem . On the other hand , in 
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general the apparent decay ratio is not related to the stability of 

the sys tem . This last point is best clarified wi th an example : 

Figure 3 . la shows the impulse response of a second order system . The 

number on top of each peak is the decay ratio between that peak and 

the previous one . It can be seen that all the decay ratios are equal 

and that in the second order case the apparent and the asymptotic 

decay ratios coincide .  Figure 3 . lb shows the impulse response of a 

fourth order system who se least  stable pair of  poles is the same as 

the system of Figure 3 . la .  It is seen in this figure that the decay 

ratios are not the same for all peaks ; however , they converge to an 

asymptot ic decay ratio of 0 . 7 3 , the same as in figure 3 . la .  The 

apparent decay ratio is 0 . 41 ,  obviously a nonconservative estimate of 

the stability of the system . The nonconservative nature of the 

apparent decay ratio can be seen more dramatically in Figure 3 . l c :  

here , the same pai r  of poles as in Figure 3 . la- are retained , but we 

add a pair of uns table poles ( po s i t ive real par t )  with a pair of zeros 

very close , but no t completely cancel ing them . The effect of these 

zeros is to make the residue in Equa tion ( 3-3 ) for the unstable poles 

very smal l ; then , for short times , the dominant factor in the impulse 

response is the stable poles , so the apparent decay ratio is les s than 

1 . 0  ( equal to 0 . 55 ) ; however , as time increases the exponential nature 

of the unstabl e  pol es  dominates and makes the impulse response diverge 

with an asympto t ic decay ratio greater than one . Consequently , we can 

conclud e that the apparent decay ratio of the impulse response , even 

though it is somehow related to the stability of the system , is no t a 

conservative estimate and is , thus , no t a good measure of stability . 
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Figure 3 . 1  Typical impulse responses .  
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The impulse response is not a measurable quantity in a sys tem . 

Once a sys tem is excited by an input , the only measurable quantity is 

its response , r ( t ) , which contains information about bo th , the input 

and the sys tem transfer func tion . Furthermore , in systems like BWRs , 

the input is unknown and stochastic ; therefore , only average quan-

titles like power spectral densities ( PSDs ) or correlat ion funct ions 

can be used to describe the output of  such sys tems . For this reason , 

we must rely on these functions to estimate the output stability . 

The power spectral dens ity of the output , PSDR( w) , can be 

calculated in terms of the system transfer func t ion , G ( w) , and the 

input no ise  spectrum, PSD1 ( w) 1 0 9 

* 
PSDR( w) = G (w)  G ( w) x PSD1 (w)  ( 3-7 ) 

Therefore , the poles of the output PSD can be attributed to either 

the input PSD or the system transfer func tion . 

The autocorrelation is defined as the inverse Fourier trans-

form of the PSD and thus , i t  can be calculated as 

C ( t )  ( 3-8 ) 

where R1 are the residues of the output spectrum and Pi its poles . 

The first M poles are assumed to come from the system transfer 

funct ion and the rest from the input spectrum . 

For oscillatory sys tems , we can define apparent and asymptotic 

decay ratios in the autocorrelation function in a manner similar to 

the impulse response . For the case in which the transfer func t ion is 

less stable than the input ( i . e . ,  the least stable  pole  of PSDR is 
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associated to  a pole of G(w) ) ,  the asymptot ic decay ratio of  the auto­

correlation function mus t  co incid e with that of the impulse response 

( see Equations ( 3-3 ) and ( 3-8 ) ) ;  however , the apparent decay ratios 

wil l  in general be dif ferent . Figures 3 . 2a ,  b ,  and c show the auto­

correlation funct ion of the output of the systems in  figure 3 . 1  when 

driven by white  no ise . These figures show that the apparent decay 

ratio of the autocorrelation is no t a direct estimate of the sys tem ' s 

stability and that it could be nonconservat ive ; there is , however ,  an 

improvement over the apparent decay ratio of  the impulse response in 

that if the system is unstable , the apparent decay rat io of the auto­

correlation is greater than 1 . 0  and , therefo re , provid es a good 

measure of the approach to instability . Note that the autocorrelation 

funct ion is an a po steriori measurement ,  and , therefore , its  apparent 

decay ratio gives a measure of how much the output is actually 

oscillating . 

In summary , we have seen that  the stability of a sys tem is 

def ined by the po sition of the least stable pole  of  its transfer 

func tion . For oscillatory-type sys tems , the decay ratio is a measure 

o f  the system stability . Three types of decay ratios  can be defined : 

( a )  Asymptotic decay ratio , which is directly rel ated to the absolute 

s tabil ity of the sys tem; it is ind ependent of the function used for 

its defini t ion . ( b )  Apparent decay ratio of  the autocorrelat ion 

function , which is  related to the amount of oscillations during opera­

tion ; it  co incides with the asymptot ic decay rat io as it  approache s 

the value of 1 . 0 .  ( c )  Apparent decay ratio of the impul se response , 
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( a )  Second order sys tem 

Figure 3 . 2  Typ ical autocorrelation funct ions . 
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which is only related to short-time behavior of  the system ;  it does 

no t measure  the absolute stability of  the sytem and , thus , should no t 

be used for stab il i ty measurements . 



CHAPTER 4 

A PHYSICAL MODEL OF BWR LINEAR DYNAMIC S 

The goal in this chapter is to develop a linear model of the 

dynamic behavior of BWRs through a detailed stud y  of the various 

physical processes involved . 

In the pas t , models have been obtained by integrating the 

reactor equat ions over a fini te number of nod es . In this way a set 

o f  coupled ordinary differential equations are generated for node­

averaged variables . The coeff icients of these models are node­

averaged parameters which can be computed from first principles or 

empirical correlations . This approach was taken by Otaduy4 8  in deve­

loping the detailed BWR model implemented in the code LAPUR . It was 

found 6 3  tha t  the cod e  yielded excellent result s  when compared with 

reactor experiment s ,  but a large number of nod es were need ed ( a mini­

mum of 50 axial and 3 radial nodes ) . A model wi th this number of 

nod e s  is adequate to calculate numerical resul t s ; however , it is very 

hard to extrac t a physical understand ing about the dynamic process 

from these numer ical solut ions . 

The approach taken in this work is to minimize  the number of 

nodes  involved in the modeling so that the results provide phys ical 

informat ion wi thout sacrificing accuracy . In order for the low-ord er 

mod el to represent accurately the dynamics of the sys t em ,  nodal 

synthes i s  was used . A series of " supernodes " were synthes ized from 

the result s  of a fine-mesh nodal calculation . Each of these 

49 
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supernodes describes the phys ical process taking place in each of the 

sys tem regions , such as fuel heat transfer or channel thermal­

hydraulics . Associated with a part icular supernode there is a set 

o f  average parameters such that the overall sys tem dynamics  is 

properly represented in the sense of  matching the results  of the fine­

mesh nodal calculation . 

The nod al synthe sis  is  performed in two steps : 

( a )  De terminat ion of the minimum number of  poles and zeros needed 

for an accurate representation of the sys tem trans fer func tion 

for each set of operat ing cond itions . 

( b )  Id entification of  the physical processes associated with the 

pol es  and zeros ob tained as a result of the previous step . 

From step ( a )  0ne obtains the equivalent linear set of d if­

ferential equat ions which exhib its  the pole-zero configuration 

describing the system transfer func tio n ,  while  step ( b )  associates the 

correspond ing physical processes to each of the d if ferential equa tions 

in the set . To implement step ( a )  one performs fits  of polynomial 

ratios to the fine-mesh resul ts wi th various model orders until model 

order convergence is reached . Order convergence is charac terized by 

the appearance of spurious poles which cancel with zeros . 

The final result of thi s fit is the smallest  set of  po les and 

zeros which give a reasonably  accurate description of  the sys tem . The 

implementation of step ( b )  is carried out in two phases . First , para­

meter-sensi t ivity studies are per formed with the detai l ed model to 
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determine pos s ible correlations to  mot ions of transfer function 

fea tures . This phase is followed by physical mod eling of the process 

to just i fy that the effec tive nodal parameters are within reasonable 

physical ranges . 

The outl ined procedure was applied to the cond it ions o f  the 

stabil ity test labeled 3PT3 5 6  which was performed in the Peach Bottom 

reactor . The resul ts are shown in sections 4 . 2  through 4 . 5 .  

4 . 1  Brief De scription of a Detailed BWR Model : the Code LAPUR 

LAPUR4 8  is a computer code developed at the Oak Ridge Nat ional 

Laboratory for the cal culation of BWR core stability parameters . It 

uses a mul tinodal description of the neutron dynamics together with a 

d is tributed parameter model of the core thermal hydrodynamics to 

produce a space-dependent representation of the dynamics of a ffiVR in 

the frequency domain for small perturbations around a steady state 

cond i t ion . The LAPUR program consi s t s  of  two autonomous modules , 

LAPURX and LAPURW , which are linked by means of an intermed iate 

storage routine . The first  module , LAPURX , solves the governing 

equat ions for the coolant and the fuel steady state . Maps of the core 

steady state are generated and stored in data files for subsequent 

util i za t ion by LAPURW . The second modul e ,  LAPURW , solves the dynamic 

equations for the coolant , fuel , and neutron field in the frequency 

domain . A set of open-loop transfer func tions are generated and the 

stability ind ices are est imated from the clo sed-loop react ivity-to­

power transfer func tion . 
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The fuel equations in LAPUR assume no axial heat flow in the 

fuel rod s , use a rad ial mesh wi thin the fuel pellet to account for the 

rad ial depend ence of the heat source as well  as the temperature depen­

dence of the uo 2 fuel ' s  hea t  conductivity , and include the effect of 

the nonconductive transfer of hea t  to the coolant by y-ray absorption 

and neutron mod erat ion processes . Coolant dynamics includ e  three flow 

regions in a flow channel :  a nonboiling region , a subcooled-boiling 

region , and a bulk-boiling region . The conservation equations and 

two -phase fluid mechanical equations , in conj uc tion with the fuel 

equa tions , yield a set of transfer func t ions relating perturba tions of  

the nod al coolant density and pressure drop to  nodal perturbations of 

coolan t  temperature , flow rate , and power generation . Upon integra­

tion of these  funct ions along the length of the channel and along the 

part ial length of  the channel pertaining to each nuclear subcore , a 

fuel-and -coo lant matrix equat ion of  transfer func tion resul t s . 

To obtain the reac t ivi t y  feedback trans fer func tion matrices , 

the fuel temperature and coolant dens i ty nod al transfer functions are 

weighted by both the local power and the local dens ity reactivi ty 

coefficient s and integrated over the volume of  each of  the neutronic 

subcores . 

The overall space-dependent transfer function matrix represen­

tation of the BWR core dynamics with feedback is obtained by con­

siderat ion of the hydraul ic coupl ing through the inl e t  and out let  

plena and the recirculation loop , in  conjunc tion wi th the neutronic 

matrix equation . To calculate the stability ind ices (decay ratio and 
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natural frequency ) the po sition of the mos t  unstable pole  of  the 

core ' s  clo sed-loop transfer func tion is determined accord ing to 

Smith ' s  frequency gradient method . 1 0 1 

The accuracy of  the LAPUR model to pred ict the stability of  

commercial BWR cores has been demonstrated . 6 3  However , a large number 

o f  nodes  ( 50 axial , 3 rad ial ) are needed . The LAPUR code was used as 

reference to develop the reduced order model presented in this work . 

4 . 2  The Pol e-Zero Configuration of the Reactor Transfer Function 

Figure 4 . 1  shows the magnitud e  and phase of  the reactivity­

to-power transfer funct ion calculated by LAPUR for the cond it ions of 

test 3PT 3 5 6  in the Peach Bot tom reactor . The main dynamic features 

which can be observed at first glance are : a low frequency zero 

( 0 . 03 Hz ) ,  a break frequency at about 21 Hz , and the resonance peak 

at about 0 . 3  Hz which determines the trans fer function stabil ity . 

These  observations would suggest the use of a 1-zero / 3-pole model to 

fit thi s  transfer function , but thi s  would yield an asymptotic value 

of the phase of -180 degrees at high frequencies . Since the phase 

converges only to -90 degrees  at 1000 Hz , an extra zero is needed . 

Figure 4 . 2  shows a compar ison between the LAPUR trans fer function 

and the fitted 2-zeros / 3-poles model ; from thi s  compari son we 

conclud e that  this model ord er is inad equate . When the next mod el 

order ( 3-zero s / 4-poles ) was used , the resul ts  shown in Figure 4 . 3  were 

obtained . Thi s  figure shows that thi s mod el ord er is more 

appropriate . 



54 

Figure 4 . 1  Closed loop reac t ivity-to-power transfer func tion for 
test 3PT3 , Peach Bot tom . 
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Figure 4 . 2 Compar ison between closed loop trans fer func tion and 
2-zero/ 3-pole fi t .  Test 3PT 3 ,  Peach Bo t tom . 
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F igure 4 . 3  Comparison between closed loop transfer func tion and 
3-zero/ 4-pole fit . Test 3PT 3 ,  Peach Bottom .  
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Table 4 . 1  contains the numerical value of the poles and zeros 

correspond ing to thi s  fit . We observe that there is a low-frequency 

real zero , a complex pair of zeros , two real poles , and a complex pair 

o f  poles . The real part of thi s  last pair of  poles determines the 

reactor stability . 

Table 4 . 1  

RESULTS OF THE 3-ZER0/ 4-POLE MODEL 
ORDER FIT TO THE BASE CASE 

Zeros 
( Hz )  

-0 . 03 
-0 . 18 ±0 . 27 i  

Poles 
( Hz ) 

-0 . 25 
-0 . 04 5 ±0 . 32 i  
-21 . 7  

To further determine if the pole-zero configuration obtained 

is appropriate , we construc ted the roo t  locus 9 9  for this transfer 

funct ion . In conventional linear sys tem dynamics ,  the open loop poles 

and zeros are known and there are standard technique s 9 9  to  draw the 

root locus as the feedback gain , K, is increased . However , in the 

present work , the poles and zeros of the open loop are not read ily 

available and , furthermore , there is a very large number of them . For 

this reason , the root locus was constructed by fitting the closed-loop 

transfer funct ion obtained by LAPUR for several values  of  K. 

Following thi s  procedure , only the signi ficant poles and zero s are 

obtained , because most of the poles and zero s of  the open loop 

transfer funct ion will cancel as the feedback gain is increased . 9 9  
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Figure 4 . 4  shows how the LAPUR calculated closed-loop transfer 

function for test case 3PT3 5 6  changes as the nominal feedback gain is 

multiplied by a factor K. In this figure a value of K 0 gives the 

open loop forward transfer func tion and a value of K 1 correspond s  

t o  exactly the transfer func tion calculated by LAPUR . We observe that 

as K is increased , the frequency of the characteristic peak increases , 

and the peak itself becomes sharper . A critical value of approxima­

tely K = 2 . 25 defines the limit of linear stability . For higher 

values of K, the complex poles become unstable ,  but the magnitud e  of  

the peak decreases as they move away from the imaginary axis .  No te 

the appearance of  the low frequency zero as K is mad e larger than 

0 . 25 .  

Nonlinear fits were performed on the closed-loop trans fer 

function for var ious value s of K. The motion of  the poles is shown 

in the roo t  locus diagram of Figure 4 . 5 .  Note that  only the low 

frequency par t  is represented in thi s  figure , and , therefo re , the 21  

Hz  peak is no t present . We observe tha t 

( a )  The pair of compl ex poles which determine the reactor stabil­

ity originate from the complex pair of zeros . These zeros 

correspond , therefore , to a pair of complex poles in the feed ­

back part of the open loop trans fer function ( see Section 

4 . 4 . 2  for more detail s ) . 

( b )  The low frequency zero is not present in the closed-loop 

transfer function when K = 0 ( see Figure 4 . 4 ) . Therefore , it 

mus t  be caused by the presence of  an open-loop pole  in the 
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Figure 4 . 4  C l osed loop transfer func tion as the feedback gain ( K )  
i s  changed . ( Test 3PT 3 ,  Peach Bot tom ) . 
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Figure 4 . 5  Roo t locus of react ivity-to-power transfer func tion 
obtained from the closed loop fit . 
( Test  3PT3 , Peach Bot tom ) . 
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f eedback . The real pole at  0 . 2 7 Hz originates  from this low 

f requency zero . 

Summariz ing , we have determined that the closed-loop 

react ivi ty-to-power transfer func tion can be appropriately represented 

by an empirical mod el containing three zeros and four poles . If  only 

low frequenc ies ( < 1 0  H�) are of  interest , a 3-zero/ 3-pole model is 

suf f ic ient . The three zeros identi fied in the closed-loop transfer 

func tion correspond to open loop feedback poles . Finally , the complex 

pair of  poles which determine the reactor stability originate from a 

pair of  open-loop complex poles . 

4 . 3  Sensitivity of  the Poles and Zeros 

of the Reac tor Transfer Function 

Within the framework of  linear dynamics theory , given a 

clo sed-loop sys tem formed by a forward transfer function , G ,  and a 

feedback transfer function , H ,  the clo sed-loop transfer func tio n ,  T ,  

i s  given by 

G 
T = 1 + GH 

( 4-1 ) 

The zeros that appear in T are , thus , the zero s of  G and the poles 

o f  H.  The poles of  T ,  however , take a more complex expres ion and 

are determined by the charac teristic equation 

1 + � = 0  ( 4-2 ) 

Without loss of generality the BWR forward transfer func-

t ion , G( s ) , can be represented by the po int kinetics  approximation 

with a single group of delayed neutrons 
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( 4-3 ) 

whe re A is approximately 0 . 08 s- 1  and �/A is of the order of 20 s- 1 . 

Therefo re , the zeros that we have identi fied in the LAPUR closed-loop 

transfer func tion of the reac tor do no t co rres pond to zeros of G .  

Thus , they mus t  be poles o f  H .  At this point we canno t ident i fy the 

poles wi th the phys ical processes that they represent . Similarly , 

since the poles of T are given by the complex Equation (4-2 ) , we can 

no t identify them ei ther . We shall concent rate for the moment on 

ident ifying the three zeros of T by stud ying their sens itivity to 

changes  in reac tor physical parameters . 

Table 4 . 2  shows the sens it ivity of the fit ted poles and zeros 

to changes in the fuel gap conductance . We observe tha t the complex 

zeros remain prac tically unchanged , but the low-f requency zero changes 

from 0 . 028 to 0 . 03 6  Hz , a 30% change . This fac t suggests that this 

zero is related to the fuel heat  transfer time cons tant . Ind eed , as 

Zeros 
( Hz )  

Poles 
( Hz )  

Table 4 . 2  

SENS ITIVITY TO FUEL GAP CONDUCTANCE OF THE POLE S AND 
ZEROS FITTED TO THE CLOSED LOOP TRANSFER FUNCTION 

Gap -20% Base Gap +20% Gap +50% 

-0 . 02 8  -0 . 030 -0 . 03 3  -0 . 03 6  
-0 . 1 8 ±0 . 27 i  -0 . 18±0 . 2 7 i  -0 . 18±0 . 28i -0 . 18±0 . 28i 

-0 • 0 5 1  ±0 • 3 1 i  -0 . 04 5 ±0 . 32 1  -0 . 044±0 . 33i -0 . 04 2 ± 0 . 34i 
-0 . 26 -0 . 2 5 -0 . 28 -0 . 30 
-21 . 0  -2 1 . 7  -20 . 7  -2 1 . 9  
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the gap conduc tance is increased , the fuel becomes mo re respons ive , 

thi s fac t would explain the inc rease in frequency ( i . e .  a decrease o f  

the time co nstant ) .  Figure 4 . 6  shows the power-to-heat-flux transfer 

func tion as calculated by LAPUR . The break ( real pole ) at about 

0 . 03 Hz is apparent . Thi s  last figure along with the resul ts  of Table 

4 . 2  imply that the low frequency zero should be associated wi th the 

fuel dynamic s . 

Tables 4 . 3 and 4 . 4  show the resul ts  of the fit  when the core 

flow and power are changed respec tively . We observe tha t the 

frequency of the complex zeros increases as the power or flow are 

increased . The real zero remains essentially constant . These fac ts 

suggest that the complex zeros should be related to the vo id sweep 

time in the core : as the power or flow increases , the steam bubbles 

travel faster through the core and reduce the sweep time , thus pro­

ducing a higher frequency response . Figure 4 . 7  shows the heat-flux­

to-dens i ty-reactivity transfer function as calculated by LAPUR . The 

double pole break at about 0 . 3  Hz is evident . Thi s confirms the 

hypo thesis  that the pair of zeros in the closed-loop reactivi ty-to­

power trans fer funct ion are due to the channel thermal hydraul ics and 

the as sociated densi ty reac tivity feedback . 

Summari z ing , the sens itivity study ind icates that an 

approximation to the reac tor transfer function could be compo sed of : 

( a ) Po int kinetics to represent the neutron field dynamics . Thi s  will 

form the fo rward open-loop trans fer function . ( b )  A singl e-nod e 

approxima tion for the fuel dynamics , which will  yield the ob served 



64 

w 1 00
�----------�� 0 

::) 
1-
� 
z 
(.j 
<I 
:L: 10 - 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

w 
(J) 

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

<I - 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

I 
Q_ 

Figure 4 . 6  Typical power-to-heat-flux transfer func tion 
calculated by LAPUR . 
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Table 4 . 3  

SENS ITIVITY TO TOTAL CORE FLOW OF THE POLES AND ZEROS 
FITTED TO THE CLOSED LOOP TRANSFER FUNCTION 

Zeros 
( Hz )  

Poles 
( Hz )  

Flow -10% 

-0 . 030 
-0 . 1 6 ±0 . 2 6i  

-0 . 03 7 ±0 . 31 1  
-0 . 26 
-20 . 5  

Base Flow +1 0% 

-0 . 030 -0 . 030 
-0 . 18±0 . 27 1  -0 . 18±0 . 28i 

-0 . 04 5 ±0 . 321 -0 . 058±0 . 33i  
-0 . 25 -0 . 26 
-2 1 . 7  -2 1 . 0  

Table 4 . 4  

SENS ITIVITY TO THERMAL POWER OF THE POLES AND ZEROS 
FITTED TO THE CLOSED LOOP TRANSFER FUNCTION 

Zeros 
( Hz )  

Poles 
( Hz )  

Power -10% 

-0 . 030 
-0 . 18±0 . 25i  

-0 . 054±0 . 30i 
-0 . 25 
-2 1 . 0  

Base Power +10% . 

-0 . 030 -0 . 03 1  
-0 . 18±0 . 27i  -0 . 1 8±0 . 2 9i 

-0 . 04 5 ±0 . 32 i  -0 . 04 2 ± 0 . 33i 
-o . 25 -0 . 28 
-2 1 . 7  -20 . 9  
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low-frequency zero in the closed-loop response . ( c )  A two-node 

approximat ion fo r the channel thermal-hyd raulics and reactivity feed -

back , which would contribut e the complex pair of zeros . 

Further proof that thi s model ord er is appropriate as well as 

the identificat ion of poles and zeros wi th phys ical components will be 

given in Sec tion 4 . 4 .  

4 . 4  The Linear Physical Mod el 

In thi s sect ion we study the linear equa tions represent ing the 

reac tor wi th the purpose of identi fying the features ob served in the 

reac tor transfer func tion . 

4 . 4 . 1  The Fuel Trans fer Func tion 

We es tabl ished in Sect ions 4 . 2  and 4 . 3  that only one pole was 

needed to represent the fuel dynamics in the closed-loop reac tivi ty-

to-power transfer function of a BWR . This can be accomplished from a 

single-nod e expansion of the equation desc ribing the temperature 

di stribution in the fuel . The effec tive coe ff icients of the result ing 

lumped parameter mod el are selected to match the posi tion of the known 

poles ( closed-loop zeros ) .  

The equation governing the temperature distribution wi thin 

the fuel rod is 

oT 
pc -- = Q + VkVT P ot 

We can ob tain a one-nod e lumped parameter model by integrating 

( 4-4 ) 

Equa tion ( 4-4 ) over the fuel . We define an average fuel tempera ture 
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Tp = -1---2 J0
rF 2nr T (r , t )  dr ( 4-5 ) 4nrp 

1 rp Applying the operator ----2 J [ ] 2nrdr to Equation ( 4-4 ) ,  the 
nrp 0 

following nodal equation is obtained 

( 4-6 ) 

where 

( 4-7 ) 

and 

( 4-8 ) 

The boundary condition is 

[k �; Jr=rp 
= -U(Tp-Tc ) ( 4-9 ) 

where U is the effective overall reactor heat transfer coefficient 

( in J/Ksm2 ) and Tc is the coolant saturation temperature . 

Equation ( 4-6 ) becomes 
d 
dt Tp = ( 4-10 ) 

The heat transferred to the coolant can be estimated as 

( 4-1 1 )  

Taking small perturbations and Laplace transforming equation (4-9 ) , 

we obtain the fuel transfer function 

6<Q> s+2U/ ( rp< pcp>) 

which as expected contains a single real pole . 

( 4-1 2 )  
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To match the conditions of the test 3PT3 for which we made 

the closed loop fits , this pole must  be located at -0 . 03 Hz . 

Therefore , the effective heat transfer coefficient , U ,  must be 
1 2 

U = 2 ( 2n  0 . 03 rF < pep> )  = 1481 J/Ksm ( 4-13 )  

This value is of the order of magnitude expected . A typical value of  

the fuel-to-cladding gap heat transfer coeff icient i s  4500 J/Ksm2 

( 800 BTU/hrft 2F ) . The effective U obtained is smaller , because it 

takes into account the fuel pellet and cladding conductances as well 

as the film coefficient between cladding and coolant . Furthermore , 

the temperature in Equation ( 4-1 1 )  is the average temperature over the 

whole rod , which is larger than the surface temperature . 

We can , therefore ,  safely conclude that the low-frequency 

( 0 . 03 Hz ) zero in the closed-loop reactor transfer function is due 

to the fuel dynamics . 

4 . 4 . 2  The Channel Transfer Function 

It was suggested in Sections 4 . 2  and 4 . 3  that the channel 

dynamics  influence the closed-loop reactivity-to-power transfer 

function through a complex pair of zeros . In other word s ,  the channel 

transfer function can be represented by a two-node expansion of the 

energy and continuity equations . Let ' s  first study the channel 

thermal hydraulics . Later we will introduce the reactivity feedback . 

Neglecting acoustic phenomena , 2 9  the channel equations ( continuity and 

energy) described in Section 2 become 
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( 4- 1 4 )  

( 4-1 5 )  

We are interested in a linearized version o f  these equations . 

For this we need the steady state relations 
()Go  - o az- - ( 4-1 6 )  

( 4-1 7 )  

Linearizing ( 4-1 4 )  and ( 4-1 5 )  and considering ( 4-1 6 )  and 

where 

Define 

and 

+ (h -h ) G  dx 06a = q O 
( 6Q + 6G ) g 1 o da  oz q0 G0 

J
z oa( z ,  t )  G( z , t )  = G ( O , t ) + ( pl- Pg) 
O ot dz 

v o = 

Note that both v0 and H0 are functions of z but not time . 

Equation ( 4-18)  can then be rewritten as 
ooa + V 

06a = � ( 6Q + 6G ) ()t o oz H0 Q0 G0 

.( 4-1 8 )  

( 4-1 9 )  

( 4-20 ) 

( 4-2 1 ) 

( 4-22 ) 
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This  last equation has the form of a convection equation , 

where v 0 is the propagation velocity . There are two possible pertur-

bation sources in the right hand side : the volumetric heat flux 

transferred to the coolant , oQ , or the mass  flux , oG , which could be 

altered through the inlet flow ( see equation ( 4-1 9 ) ) . The 

z-dependence in this  equation can be eliminated using an integrating 

fac tor . If we Laplace transform and multiply Equation ( 4-2 1 )  by 
sz/V 0 e , we obtain 

__ esz /V 0 ( z ) JZe-sz ' /V 0 ( z ' )  oa( z , s )  
0 

Qo ( 0Q + oG)dz ' . ( 4-23 ) Q o Go 

Note that H0 has units of enthalpy and it is not related to the 

variable H, the core height . If oG did not depend on a or if the 

dependence was weak compared to oQ , then this equation would be a 

closed-loop solution for the channel thermal hydraulics . Note , 

however , that oG depends on a not only directly as seen on 

Equation ( 4-1 8 ) , but also indirectly through the momentum equation 

and the recirculation loop ,  which determine G( O , t ) . 

Let us assume for the sake of simplicity that oG/G0 can be 

neglected with respect to the term oQ/Q0 • This  would be the case 

when no recirculation loop is considered and the dynamics of  the 

channel are driven by power perturbations . In this case , 

� ( ) sz/V o ( z )  J
z -sz/V o ( z ' )  oQ d I ua z , s  = e 
O
e VO ( z ' )HO ( z ' )  z • ( 4-24 )  

What this equation tells  us i s  that the void fraction, a , at 

a particular time and axial location is produced by all the previous 
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power perturbations at lower channel heights ,  which are seen with a 

time delay introduced by the effective velocity , v0 ( z ) . Note that 

this velocity ( see equation ( 4-20 ) )  depends only on the steady state 

steam quality distribution and the factor dx/da ,  which is a function 

of x0 and the slip ratio . 

Within the context of our model , the heat flux perturbations 

are spacially correlated . This  means that oQ can be separated into 

two components 

oQ( z , s )  = �o ( z )  oq ( s )  ( 4-2 5 )  

but a( z , s )  will not be separable due to the delay term inside the 

integral in Equation ( 4-2 4 ) .  

The transfer function that defines the channel dynamics in 

our model is the heat-flux-to-void-reactivity-feedback transfer 

function .  It was shown in Section 2 . 2 . 2  that the void reactivity 

feedback is given by the expression 
H on opa< s > = I � +< z > � oa  � < z )  dz 
0 

0 oa 0 ( 4-2 6 )  

where op/ oa is the void reactivity coefficient at level z and the 

flux is normalized so that J�0+ �0 = 1 .  Since the flux in 1-D 

diffussion is self ad joint , and taking into account Equations ( 4-2 4 ) , 

(4-2 5 ) ,  and ( 4-26 )  the transfer function of interest becomes 

J
H [ 2 op esz /V O ( z )  = C �0 ( z )  Oa 
0 

J
z 

e-s ( z-z ' ) /V 0 ( z ' )  
0 

�0 dz ' ] dz ( 4-2 7 )  
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Let us make a further simplifying assumption in order to 

understand the physics behind this equation . To first order approxi-

mation , we can consider �0 ( z )  constant and that the steady state void 

fraction contents is very small , so v 0 ( z ) ,  H0 ( z )  and the density reac­

tivity coefficient are constant over the length of the channel . Then 

the channel transfer function becomes 

= C J
H 

[ J
z 

e-s ( z-z ' ) /VO dz ' ] dz  
0 

With the previous assumptions , this  equation can be integrated 

directly to give 

( 4-2 8 )  

( 4-2 9 )  

The first term in this  equation is a pure s- 1 term . The 

numerator of the second term , however , oscillates between zero and one 

with a time constant � = H/V0 , the residence time of the bubbles in 

the channel . Since the second term has a s-2 dependency , the asymp-

totic behavior at high frequencies is that of  a first order system .  

Let us try to find an approximation to Equation (4-2 9 )  at low frequen-

cies . To this end we shall use the Fade approximant expression for 

the exponential function , 1 0 2 which is known to be an excellent 

approximation for small values of the independent variable .  The Fade 
-x approximant to e of order [ 2 / 2 ] is 

F [ e-x) 2 , 2 
1 - x/ 2 + x2/ 1 2  = ----�----��---1 + x/ 2 + x2/ 1 2  

( 4-30 )  
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Introducing it into Equation ( 4-29 ) ,  we obtain an approximation to the 

channel transfer function in term of poles and zeros which is valid 

for low frequencies . 

( 4-3 1 ) 

where � is the bubble transit time defined previously .  

The two poles of this  transfer function are always complex 

and located at 
1 1 . 41 i )  s = - (-3 ± � ( 4-3 2 )  

The zero is located at 

s = -6/ �  ( 4-3 3 )  

where s i s  measured in rad ians per second . 

Figure 4 . 8  shows a numerical calculation of the magnitude and 

phase of the channel transfer function using Equation ( 4-29 )  and 

assuming v0= 2m/ s and H = 4m . With these parameters , the natural 

frequency of the poles calculated using Equation (4-32 ) is w = 0 . 26 Hz 

and the zero is located at w = 0 . 48 Hz . We can locate in Figure 4 . 8  

both the poles and the zero . There are more pole-zero combinations at 

higher frequencies which would result from higher order Pade approxi-

mants for e-x With the model order used , the equivalent to 

Equation ( 4-3 1 )  in the time domain is 

d 2Pa: 6 d pa: 12 H2 d 6 
-- + - - + -

p = c -:;- (dq
t + -;;: q ) d t 2 � d t �2 a: " " 

Note that the steady state gain is independent of � .  

( 4-34 ) 
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In summary , we have proven that the channel transfer funct ion 

has a pair of complex poles in the vic inity of  0 . 3  Hz . These must  

correspond to  the pair of complex zeros found in the closed -loop 

react ivity-to-power transfer func tion ( see Sec tion 4 . 2 ) . The 

frequency of these poles is inversely proportional to the bubble  

transit time in the core , � ,  and they are introduced by  the �2 

weighting ( equat ion ( 4-26 ) )  of the reactivity feedback rather than by 

channel thermohydraulic effects . Finally , in order to obtain the same 

natural frequency as the one associated wi th the complex zeros 

obtained for the Peach Bottom 3PT3 case  ( see Table  4 . 1 ) ,  the equiva-

lent bubble resid ence time mus t  be � = 1 . 63 s .  Thi s  res idence time 

compares wel l  with measured values . 7 7  

4 . 4 . 3  The Closed Loop Model 

In the previous sections we have id entified and modeled the 

various processes involved in the description of linear BWR dynamics . 

Now we can put them together and form the closed -loop mod el shown in 

Figure 4 . 9 .  

Reac tivity POINT 
KINETICS 

Power 

Figure 4 . 9  Block diagram of the reduced order model . 
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Thi s  figure shows a block diagram of thi s reduced order 

model . The forward loop is represented by the point kine tics  approxi-

mat ion with a single group of delayed neutrons . The feedback has two 

loops , representing the Doppler and density reactivity feedbacks . 

The time domain mathemat ical description of the closed loop 

for the reduced order model becomes 

dn 
= Po-13 n + f...c + £. 

d t  A A 

de 
- =  
d t  

l n - f...c 
A 

p = Po: + DT 

C H2 
(d q  + � ) 

't d t  't q 

( 4-3 5 ) 

( 4-36 ) 

( 4-37 ) 

( 4-3 8 )  

( 4-3 9 )  

where D is the Doppler reac tivity coefficient and the parame ters 

a 1 , a 2 , and 't are functions of the effective phys ical cons tants 

calculated in Sections 4 . 4 . 1  and 4 . 4 . 2 .  Note that the quantities n 

and c are normal ized to the steady state neutron dens ity , N0 • The 

mod el parameters for the Peach Bottom 3PT3 case are summarized in 

Table 4 . 5 .  
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Table 4 . 5  

MODEL PARAMETERS FOR PEACH BOTTOM TEST CASE 3PT3 

Parameter Value Units  

a 1  19 . 08 K s- 1  

a2 0 . 1 9 s- l  

't 1 . 63 s 
c -3 . 65 x1o-'+  K- l  

D -2 . 61 x1o- 5  K- l  

� 0 . 00 5 6  
A 4 . 00 x1o- 5 s- l  

A. 0 . 08 s- l 

4 . 5  Identification of Features in the Closed -Loop 

Transfer Funct ion 

The roo t  locus for the model we jus t developed is drawn sche-

mat ically in Figure 4 . 10 .  We observe that as the feedback gain is 

increased , the fuel and point kinetics  poles merge . A further 

increase resul ts  in one of the poles canceling the delayed neutrons 

zero . The remaining pol e  yield s the real pole  observed in the closed-

loop transfer funct ion ( see Sec t ion 4 . 2 ) . The trajectory of the 

closed -loop poles is well defined and has the origin (K = 0 )  at the 

channel open-loop pol es , which appear in the closed loop as the 

compl ex pair of  zero s . The frequency of the � /A ( 21 Hz ) pole  

increases slightly and the pole remains real for all value s of K .  

With the se observations we can now confidently identify no t only the 

zeros but al so the poles of the closed-loop transfer funct ion . 
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Table 4 . 6  and Figure 4 . 1 1 summar ize the relationship between the 

closed -loop trans fer function features and the ir corres pond ing phys i-

cal processes . 

Table 4 . 6  

RELATIONSHIP BETWEEN CLOSED LOOP TRANSFER FUNCION 
FEATURES AND PHYS ICAL PROCES SES  

Features Frequency 
( Hz ) 

Low-frequency zero 0 . 03 

Compex pai r  of zeros 0 . 3  

Real pol e  0 . 3  

Complex pair  o f  poles 0 . 3  

Real pol e  20 . 

Physical process 

Fuel element ef fect ive 
heat transfer coefficient 

React ivity feedback weighting 
of channel thermal hyd raul ics 

Fuel element 

Channel thermal hydraulics and 
density reactivity feedback 

�/A pole  in point kine tics 
equa t ion 
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CHAPTER 5 

STABILITY MEASUREMENTS USING NOISE ANALYSIS 

As seen in Sect ion 2 . 3 ,  three types of instabilit ies are 

considered to be po ssibl e  in boiling water reactor operat ion : 

( a )  plant ins tability , related to the reactor control systems ; 

( b )  local channel instability , related to two-phase flow dynamics  o f  a 

heated channel ;  and ( c )  reactivity-type instability , related to the 

vo id react ivity feedback and its interac tion with the neutronic loop . 

Experiment s 5 0- 5 9  have shown that commercial BWRs can be susceptible to 

the latter type of stability . 

In thi s  chapter we deal with the problem of determining the 

reac tivity-type stability of an operating BWR by megsuring only the 

output no ise of the reactor power . This no ise is caused by inherent 

fluc tuations of process variables in the reac tor such as flow, 

pressure , vo id fract ion , etc . These fluctuations affect the power 

through the reac t ivity-to-power transfer function ; therefore , the 

power noi se contains information about the reactor dynamics and thus 

about its  stab il i ty . However , since we can measure only the output 

no ise and no t the transfer func tion directly , it is impo s s ible to 

d i s t ingui sh between oscillat ions caused by the reactivity-to-power 

transfer funct ion and those caused by the fluc tuation in the process  

var iables themselves . For ins tance , if the operat ing cond i tions were 

such that  the channel flow were unstable , the power noise would show 

82 
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an oscillation , but it would be due to the channel thermohyd raul ic 

ins tability rather than to the reactivity ins tability . Therefo re , by 

mea suring the noi se , we can only measure the "outpu t "  stab ility ; i f  an 

instability is found , it is up to the noise analyst to ident ify it 

with one of  the three instabilities  described before or with any other 

physical phenomenon .  

The feasibility of  using the neutron noise  signal for 

stab il ity related measurements in BWRs was first suggested by Thie . 9 

Further stud ie s 6 9- 7 7  have shown that the power spectral density (PSD) 

o f  neutron no ise in BWRs exhib its  a no ticeable resonance in the fre­

quency range 0 . 3  to 0 . 7  Hz , as has been pred icted by theore tical 4 B , 6 3 

and experimental stud ies 5 0- 5 8  of the reactivity-to-power transfer 

function . Several papers  have been published in the open literature 

describ ing method s to estimate BWR stability , ? 0 , 7 1 , 7 4-7 6  all o f  them 

based on one type or another of autoregress ive (AR)  mod el ing . 

However , there is ambiguity in the definit ion of  decay ratio which is 

the parame ter searched for in the stability analys i s . Several authors 

use different definitions and , therefore , the resul ts are no t directly 

comparable . The problem becomes more important when a decay ratio 

obtained from no ise data is to be compared with resul ts of calcula­

tions or experiments . 

The ob jectives of thi s  sec tion are : ( a )  to show that neutron 

noise has the necessary information for the determinat ion of the 

reac t ivity-type stability in BWRs , ( b )  to evaluate several method s 
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to obtain the decay rat io from the no ise  data , and ( c )  to compare 

the results  obtained us ing dif ferent def init ions of decay ratio . 

An overview of neutron noise in BWRs is presented in 

Section 5 . 1 .  In Sec tion 5 . 2 , the theoretical relat ionship between the 

neutron no ise and the reactor stability is studied . Section 5 . 3  

outl ines several methods to obtain the necessary stability information 

from the no i se . The no ise techniques are evalua ted against computer­

generated data in Section 5 . 4 .  Section 5 . 5  outl ines the proposed 

algorithm for estimating BWR stab il ity from noise measurements . The 

new algorithm is val idated through appl ications to computer generated 

and real BWR no i se data . 

5 . 1  Noise  in Boil ing Water Reac tors 

BWRs exhibit  normally occurring fluctuat ions in power of the 

order of 4 to 8% peak-to-peak , which are normally referred to as 

noise . It is bel ieved that  the major source of normal BWR noise is 

the formation , collapse , and transport of steam voids in the reactor 

core . The void s mod ify neutron absorption and thermal i zat ion , thereby 

introducing perturbat ions in cross  sections and thus in the neutron 

density as seen by the in-core fission detectors . 7 3  

Figure 5 . 1  shows the power spectral dens i t ies  of  a typical 

local power range monitor (LPRM) string at level s A, B ,  C, and D 

along with the PSD of  the average power range moni tor (APRM) for a 

BWR operating at rated power and flow . Figure 5 . 2  shows the PSD of  
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the same APRM signal ; the charac ter i s t ic 0 . 5 Hz resonance and 

associated double-pole break frequency is clearly observed . 

Experience has shown that the BWR neutron noise has two 

components 7 9  the first is dominant at high frequencies ( above 1 Hz ) 

and its main charac teris t ic is that it is rad ially uncorrelated from 

channel to channel . However it is axially correlated within the same 

channel and a time delay can be measured between thi s  component of  two 

LPRM detectors at different level s .  The second component ,  which is  

dominant at  low frequencies , is  both rad ial ly and axially correlated ; 

moreover , it oscillates in phase all over the core and is correlated 

with process variables such as core flow and pressure . 

The major source of rad ially uncorrelated noise  is the pertur­

bations in neutron flux caused by void s in the vicinity of the neutron 

d etectors . Thi s  generally accounts for the increased noise seen by 

the LPRM detectors at high frequencies . Note that the detectors near 

the top of the core (detectors C and D in Figure 5 . 1 ) see more 

rad ially uncorrelated no ise ( presumably because there are more void s )  

than tho se near the bot tom . 

The APRM signal is a measure of the rad ially correlated sour­

ces of neutron noise  in the core , whereas the difference between APRM 

and LPRM no ise is an indicat ion of the uncorrelated noise at a given 

detector location . Because the APRM signal is made up of the sum of  

20 to  30 LPRM signals ,  any por t ion of the individual signals that is  

uncorrelated wil l  tend to  be  reduced in the total signal by  a factor 

of approximately one over the square root of the number of signal s in 
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the sum . The overall fluc tuat ions in core-void s introd uce a feedback 

to the core dynamics which , when coupled with the thermal hydraul ics , 

causes correlated low-frequency fluctua t ions . Thi s  is bel ieved to be 

the source of the characteristic 0 . 5  Hz resonance seen in the PSD of 

all APRM signal s . 

5 . 2  Rel ationship be tween BWR No ise  and Stabil ity  

The stab i l i ty of  BWRs is normally evalua ted us ing the 

reactivity-to-power transfer funct ion obtained either from deter­

ministic  codes 4 2-4 9  or from determini stic  exper iments using pseudoran­

dom binary signal s (PRBS ) to stimulate reac t ivity perturbations . 5 3-5 9  

However , when trying to estimate  the stability from noise measure­

ments , the transfer func tion is not measurable  because the input is  

unknown and stocha s t ic . It  will  be  shown in  this  section that , in 

spite of thi s  hand icap , the stab ility can be estimated from no ise 

mea surments ; in other word s , that there is  stab il ity information in 

the neutron no i se . Sec tion 5 . 3  will  describe some of the mathematical 

method s that can be used to extract thi s  informat ion . 

Asprevious ly stated , there are two component s in the normal 

neutron no ise , but only the correlated part is related to the reactor 

stabil ity . Thi s  part is believed to be caused by perturbations in 

global reactivity , which are seen in the neutron density through the 

react ivi ty- to-power transfer function . The neutron noise , n( s ) , as 

seen by the in-core detectors is given , then , by the expression 

n( s )  = D ( s )  G( s )  p ( s )  + v( s )  ( 5-1 ) 
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p( s )  Reactivity perturbations 

G( s )  React ivity-to-power transfer func t ion 

D ( s )  = Detector transfer funct ion 

v( s )  Uncorrelated noise introduced by the detect ion 

processes and local effects . 

Therefore , n( s )  contains no t only the poles of G( s )  but also the ones 

o f  p( s ) . The reac tor stabil ity is  related to the po s i t ion of  the mo s t  

unstabl e  pol e  of G( s ) ;  thus , if Equat ion ( 5-1 ) is  val id , the necessary 

information is included in the neutron noise . The po int that need s to 

be proven is that the correlated part of the neutron noise is caused 

by react ivity fluctuations , in which case Equat ion ( 5-1 ) holds . 

Figures 5 . 3a and b show the PSD of an APRM signal of the 

Dresden-2 reac tor 5 9 , 1 0 5  at two operat ing cond it ions : ( a )  full power 

and ( b )  52 . 7% power and 38 . 9% flow , which correspond s  to the minimum 

recirculation pump speed ; this is the most unstable cond i t ion within 

the normal operation map . The estimated decay ratio ( obtained from 

noise  anal ys i s )  of cond i t ion ( a )  is 0 . 1 5 ,  and the decay ratio of 

cond i t ion (b) is 0 . 35 .  Two main differences exist  between the PSDs 

for these two cond i t ions : first , the charac teristic frequency dropped 

from 0 . 7 1  Hz in the full-power case to 0 . 42 Hz in the low-flow 

cond i t ion . Second , the peak at the characteristic frequency is more  

pronounced and looks sharper in  the low-flow cond i t ion . The two above 

d ifferences  can be explained by a change in the sys tem transfer 

function:  
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( b )  Minimum recirculation pump speed 

Figure 5 . 3  Power spectral density of a typical BWR APRM signal.  
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( a )  It was established in Chapter 4 that the characteristic fre­

quency of the react ivi ty-to-power transfer funct ion is 

inversely proportional to the sweep time of the steam bubbles 

in the core . Therefore , a lower frequency is expec ted at 

the low-flow cond i tion due to the reduced channel inlet  

velocity . The reduct ion in frequency as  well  as its  ac tual 

value is in good agreement with computer simulations . 

( b )  If the peak observed in the neutron noise  PSD corresponded 

to the peak in the reactivity-to-power transfer func tion , 

then it would have to be sharper at the low-flow cond i t ion 

due to the reduced stability . Furthermore , the numerical 

value of the decay ratio obtained from the neutron noise is 

in good agreement with computer simulat ions . l 0 5 , 1 1 0 

Bo th of the · above point s  imply that the peak in the neutron 

noise PSD is due to the charac teristic peak of the reac tivity-to­

power transfer function ; therefore , the correlated component of the 

neutron noise mus t be caused by global reac t ivity fluc tuat ions and , 

thus , it contains stability information . 

Once we have confirmed that Equation ( S-1 ) is val id , iden­

t i fication of the poles of n( s )  can be used to evaluate the reactor 

stability . However , since we can measure only the output noise and 

no t the transfer function directl y ,  it is  impos s ible to distingui sh 

between oscillations caused by the reactivity-to-power transfer func­

tion and tho se caused by the fluc tuations in the process variables 
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themselves . For instance , if the pressure control sys tem were out of 

tune , and it were introduc ing a sinusoidal (DR = 1 . 0 )  perturbation in 

pres sure ( and consequently in reactivity) , the neutron noise would 

show an undamped oscillation with DR = 1 . 0 ,  but it would be due to the 

control sys tem stability , not to the reactor thermal hydraulics . 

Therefore , by measuring the noise  we can only measure the " output " 

stab ility ; if an ins tab il i ty is found , it  is up to the noise  analyst 

to identify it with a physical phenomenon . 

5 . 3  Method s to Measure Output Stability 

In thi s  sect ion we discuss the character istics  of several 

methods to measure the output stability . 

5 . 3 . 1  Autocorrelation Funct ion 

The autocorrelation funct ion of a sampled signal , x( t ) , is 

defined as 

C( 't)  
1 J

T 
lim x( t )x ( t-'t) dt  
T+m T 0 

( 5-2 ) 

where it has been assumed that the signal is zero before the start 

o f  the measurement at time t = 0. The correlation can be estimated 

from a sampled sequence , x( t i ) ,  as 6 6  

( 5-3 ) 

The standard deviation of  the error made in the estimation of  

typical autocorrelations in BWRs is  approximately constant for all 
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time lags . 7 9  The autocorrelation of  stable sys tems decay 

exponentially ; therefore , the relat ive error in the estimat ion 

increases exponentially . The more unstable the sys tem , the slower the 

autocorrelation decays and , therefore , the smaller the relat ive error ; 

the error in the estimat ion of the autocorrelation function thus 

d epend s on the stability of the system itsel f . 

The apparent decay rat io ( see Chapter 3 )  can be measured 

d irectly from the correlation function . The asymptotic  decay ratio 

can be estimated as the l imit of the series formed by the decay rat ios 

between every two consecutive peaks . The apparent decay rat io is a 

well-defined quantity and can be est imated using relatively small 

lengths of data ; however ,  the asympto tic decay ratio depend s on the 

values of the autocorrelation at large lags and , therefore , the preci-

sion of the estimat ion depend s largely on the sys tem stability . 

Nevertheless , given enough time for the autocorrelat ion to converge , 

this is the most  accurate method of measuring the asympto tic decay 

ratio because it does no t rely on any assumption or model fitt ing . 

5 . 3 . 2  Autoregressive Mod el ing 

The autoregressive (AR)  modeling technique 6 9 , 7 0 , 7 5 can be 

thought of as an attempt to improve the convergence rate of the auto-

correlat ion func t ion . A univar iate AR model of order N for the time 

series x( t )  is of the form 

x ( t )  
N L Ak x( t-k�t ) + v( t )  

k=l 
( 5-4 ) 
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where Ak are the AR parameters and v( t )  is a res idual noise sequence 

whose variance is minimized by the model . Given a model order the 

mod el parameters , Ak , sat i s fy the Yule Walker equations 6 9 , 7 0 , 7 5  

( see Appendix A for detail s ) . 

N 
ci = L Ak ci-k 

k=l 

where ci is the autocorrelation function evaluated at time lag 

't = il!.t . 

( 5-5 ) 

The AR parameters for a model of order N are defined if  the 

correlation is known for the first N time lags . Then , as shown in 

Append ix A, the AR-consi stent correlation function , Ci ' ,  is given by 

the expression 

i=N+l , • • •  ( 5-6 ) 

and 

i=O , l ,  • • •  , N  ( 5-7 ) 

In thi s  manner we see that  the AR model takes the first N 

lags in the correlat ion ( the ones with smaller error ) and pred icts 

the rest in a cons is tent manner .  The asymptotic decay rat io can be 

est imated from the AR-consi stent correlation even if  the real corre-

lation is no t converged enough to define it . 

A serious probl em with the AR modeling technique is the deter-

mination of the "optimal " model order : low orders use well-converged 

correlation lags , but they do not have enough parameters to describe 

the system accuratel y ;  high order models , on the other hand , have 
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enough parameters to describe the system ,  but they use unconverged 

correlation lags . Therefore , there is an "optimal " order that sup­

posedly produces a minimal error . There are several criteria 

described in the literature to determine thi s  optimal model order ; the 

most  commonly used is Akaike ' s  information criterion 1 0 4 which takes 

into account the amount of data used , the model ord er , and the stan­

dard deviation of the residual sequence .  The model order is cho sen so 

that the joint probability of all the measurements ( i . e . ,  the likeli­

hood function) is maximum . This is equivalent to minimi z ing the 

following func tion 

where 

AIC = M ln ( a2 /C 0 ) + 2N 

M = Total number of samples  used 

a2 = Variance of the residual noise 

N = AR model ord er . 

( 5-8 ) 

As suming that the AR model  order is determined , there are 

several method s of es timating the asympto tic decay ratio from the AR 

parameters : 

( a )  The first approach is to use the AR-consistent correlation 

funct ion defined by Equation ( 5-6 ) and measure the decay 

ratio d irectly . Thi s correlat ion is normally well  behaved 

and the decay ratio between consecut ive peaks converges 

rapidl y  to the asymptotic  value . The apparent decay ratio 

of the autocorrelat ion can be measured d irectl y .  
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( b )  Another approach is to obtain the impulse response of the AR 

model . It is shown in Appendix A that the AR model assumes 

that the system has only one more pole than zeros ( i . e . ,  

1-zero/2-poles , 2-zeros / 3-poles , etc . ) .  The impulse 

response , hi , of this type of systems is equal to an initial 

value response and can be calculated recursively accord ing 

to the equation 

( 5-9 ) 

with initial conditions h0= 1 and h_i= 0 .  

A similar estimate can be obtained by using the 

properties of the cross-correlation function ( see 

Appendix A) 

N 
hi = ci ' - I Ak ci+k ' 

k=l 
( 5-10 )  

where Ci ' is the AR-consistent autocorrelation function . 

( c )  A third method is based in the frequency response of the AR 

model and determines the position of the most unstable pole 

of the model . The Fourier transform of Equation ( 5-4 ) is 

X (w) = L Ak X(w) nk + V(w)  

where D is the backshift operator 

D 

therefore , 

-2niw�t e 

( 5-11 ) 

( 5-12 )  
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X (w) = V (w) ( 5- 1 3 )  N 
1 - I Ak nk 

k=1 

If V(w)  is close to a white noise , the poles of X(w) are the 

zeros of the denominator , which is a polynomial in D .  Note 

that there are N poles for 0 < w < Nyquist-frequency . The 

zeros of the denominator can be obtained by using Newton ' s 

method in the complex domain . Figure 5 . 4  shows the magni-

tude squared of equation ( 5-1 3 )  for a typical 3oth order 

model . The figure has been plotted in three dimensions to 

display the whole complex or s-plane . The left vertical 

axis correspond s  to the frequency axi s ; thus , the magnitude 

in this plane is the PSD . 

Newton ' s method requires a starting point in the 

s-plane which is close to the solution . This first guess 

can be estimated in several ways . The most straightforward 

method would be to search for the frequency , w ,  of the peak 

of interest in the PSD ; then , the starting point would be 

s = O+jw. This approach works most of the time , specially if 

the pole is close to the imaginary axis (decay ratio > 0 . 5 ) , 

but the iterations might possibly converge to a different pole 

if it is far away as can be seen in Figure 5 . 4 . The starting 

guess  can be improved if an estimate of the real part of the 

pole can be obtained . Following a conformal mapping procedure 

in the closed-loop transfer function similar to the one used 
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Figure 5 . 4  Magnitude square o f  a typical 30th order AR model in 
the s-domain . 
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by Smith l O l in the open-loop , it can be shown that an estimate 

of this  real part is 

a = dw l � w=Wmax ( 5-14 )  

where $ i s  the phase o f  the transfer function (Equation 

( 5-1 3 ) )  in radians and a will have the units of w. Wmax 

correspond s  to the frequency where the derivative of the phase 

is  a maximum . An improved starting guess is then s = a+iw . 

If a different starting point is used for each of 

the peaks in the PSD ,  a set of AR poles is obtained . If the 

one with the smallest real part is chosen , it should yield 

the same asymptotic decay ratio as method s ( a )  and (b ) . 

Note , however , that the decay ratio for the other peaks is 

also available . This is the main advantage of this approach 

compared to the other two . 

5 . 3 . 3  Power Spectral Density Fit 

A procedure similar to that in part ( c )  of the last section 

cannot be applied to the measured PSD directly because the PSD is 

only defined along the frequency axis .  However , a nonlinear fit 

with poles and zeros can be performed on thi s  data and an asymptotic 

decay ratio can be obtained from the fitted parameters . 

The functional form of the PSD is a ratio of polynomials 

with even powers in frequency . The fit should be weighted by the 

inverse variance of the PSD , given by the expression6 6  

02 = PSD ( w) 
N 

( 5-1 5 )  
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where N is the number of blocks used in the fast Fourier transform 

( FFT ) analysis  to generate the PSD .  

5 . 4  Validation of Noise Techniques Against 

Computer-Generated Data 

To demonstrate the validity of the methods described in Sec­

tion 5 . 2 ,  noise data for a system with 3 zeros and 4 poles were 

obtained from computer simulations by solving the corresponding 

fourth-order differential equation driven by a Gaussian white noise . 

The four poles were located at s = -O . OS ±O . Si Hz and s = -O . l±O . li Hz . 

The zeros were located at s = -0 . 05 Hz and s = -l±i Hz . A time series 

of 3 hours of data was generated and AR models of orders 10 , 30 , and 

SO were utilized to fit the generated data . The AR-consistent corre­

lations are plotted versus the computer-generated correlations in 

Figure 5 . 5 .  The AR-PSDs for the three model orders are shown in 

Figure 5 . 6 .  

In addition , a nonlinear fitting routine was used to fit a 

second order system (only 2 poles ) and a 3-zeros/4-poles model . The 

results of  the fits  are shown in Figures 5 . 7a and b .  

After all these data were reduced , a stability analysis was 

performed using the techniques described previously . The results 

are shown in Table 5 . 1 .  It can be observed that all methods worked 

reliably except , as expected , the second order fit . 
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Figure 5 .  5 Comparison of AR-consistent versus measured 
autocorrelation functions for computer generated data . 
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Figure 5 . 6  Comparison of PSD from AR model versus the fast Fourie r 
transform me thod for computer generated data . 
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( c )  AR order SO 

Figure 5 . 6 ( cont inued ) . 
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( a )  Second order fit 
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Figure 5 .  7 Comparison of non-linear fit wi th ac tual PSD for 
computer generated data . 
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Table 5 . 1  

RESULTS OF THE STABILITY ANALYSIS OF 
COMPUTER GENERATED DATA 

Me thod Asympto tic 
Decay Rat io 

Exact 

Correlation function 

PSD fit 
0/2  order 
3 /4 order 

AR model order 10 
Most  unstabl e  pole 
Impulse response 
Consistent correlation 

AR model order 30 
Mos t  uns table pole 
Impul se  response 
Consistent correlation 

AR model order 50 
Most unstable pole 
Impul se  response 
Cons i s tent correlation 

0 . 53 

o . so 

0 . 28 
0 . 54 

0 . 49 
0 . 49 
0 . 49 

o . s s 
0 . 55 
0 . 55 

0 . 54 
0 . 54 
0 . 54 

Apparent 
Decay Ratio 

Impul se Response 
0 . 24 

0 . 37 

0 . 25 

0 . 24 

Apparent 
Decay Rat io 
Correlation 

0 . 27 

0 . 27 

0 . 37 

0 . 26 

0 . 27 
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5 . 5  The Algori thm to Estimate BWR Stability 

from Noise Measurements  

After consideration of the advantages and disadvantages of 

all the method s presented so far to est imate the BWR stability from 

noise measurements , an integrated algorithm has been developed which 

performs thi s  task in an opt imal manner . Thi s algorithm has been 

implemented as a package of FORTRAN-7 7 subroutine s ,  which are 

described in detail in Appendix B. In this  section , only the high­

lights of the present methodology are presented . The main advan­

tages of thi s  algorithm with respect to the previously exi st ing 

methodologies 7 0-7 6  are 

( a )  First , the asympto t ic decay ratio of the react ivity-to-power 

transfer func tion is obtained . Whereas the result of previous 

method s was an apparent decay ratio of the whole sys tem . In 

contrast , if more than one resonant frequency is present in 

the reac tor response , the present method makes an effort to 

try to determine which one correspond s  to the reactor transfer 

func t ion . 

( b )  This  algorithm is designed so tha t  it can perform in an auto­

mated manner , without the need of an expert noise analys t to 

val idate the resul t s . Most  of the effort during the calcula­

t ion is direc ted toward s validating these resul ts by using a 

priori knowledge , which is provided as a series of heuristic  

rules , and a series of self-cons istency checks . 
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S ince the emphasi s  of the present technique is on having a 

rel iable , completely automated system , consid erable effort is spent on 

the determination of the conf idence level of the estimate based on a 

priori knowl ed ge and cons istency checks . It has been our experience 

that any of the method s described in the previous sections will  fail 

( i . e .  yield the wrong decay ratio ) given the appropr iate combination 

o f  poles and zeros in the neutron PSD . For this reason , the DR is 

computed in three dif ferent ways for each set of data . A set of 

heuristic  rules is buil t  into the subroutine s to check for self­

consi stency among the set  of the est imated DRs . A best est imate DR is 

obtained and then checked again for consistency wi th available noise 

descriptors , such as  the autocorrelat ion func t ion or the AR impulse 

response . In add i t ion , a priori knowledge about BWR behavior , such as 

the frequency of the charateristic resonance and the expected shape of 

the PSD , is tested . The three d i fferent DR estimates are : 

( a )  apparent DR of the correlation func tion , ( b )  asymptotic DR of the 

AR impulse response , and ( c )  DR estimated from the po s i t ion of the 

most uns table pol e  of the frequency response equivalent of the AR 

model . 

An es timate of the stat ist ical precision is al so obtained . 

For thi s  purpose , the total data length is d ivid ed into a set of 

blo cks and DRs are est imated for each block as well  as for the 

average . In add it ion to the pure stati s tical error , the DR estimated 

from the average PSD compared to the ind ividual resul ts yields an 

estimate of the sys tematic or bias error . 
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Thi s diagnostic technique has been implemented in  the ORNL 

on-line surveillance sys tem l 0 3  and will be tested in a commercial 

BWR . We expect a rough estimate of  the DR every ten minutes and a 

more accurate one , including the error estimate , approximately every 

hour . 

5 . 5 . 1  Application of the Algori thm to Computer Generated Data 

The present algorithm has been extens ively validated against 

computer-generated data . For thi s  purpose , autocorrelation funct ions 

correspond ing to sys tems with different sets of poles and zeros were 

fed into the algori thm and the resul ts are compared with the theoreti­

cal answers . The resul ts  of  the se compari sons were excellent . Some 

examples  are presented in Tables 5 . 2  and 5 . 3 .  These  tables contain 

the pole / zero configurat ion of the sys tem along with the AR model 

order used and the resul t s  of the algorithm . These resul ts  are 

Sampled �t . Thi s  correspond s to the original sampling time 

used to calculate the autocorrelat ion func t ion . 

AR �t . The algori thm has the capabil ity of  resampling the 

raw autocorrelat ion funct ion in order to increase the effective 

sampling time for the AR model . Thi s  will occur if the original 

sampling time is too fast  or if the algorithm senses  that there are 

low-frequency component s which need to be mod eled in order to obtain 

an acceptable resul t . Thi s  resampl ing is performed if the maximum 

model order allowed for the calculat ion is not large enough to mini­

mize Akaike ' s  information criterion . l 0 4  
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Table 5 . 2  

RESULTS OF THE NOISE STABILITY ALGORITHM 
APPLIED TO COMPUTER GENERATED DATA 

CASES ( a )  THROUGH ( d )  

Case ( a )  Case ( b )  Case ( c )  Case ( d )  

Poles -0 . 04 4 1 ±0 . 4i -0 . 04 4 1 ±0 . 4i -0 . 04 4 1 ± 0 . 4i -0 . 0441±0 . 4i 
( Hz ) 

Zero s -1 . 0  -0 . 1  -0 . 01 
( Hz ) 

AR Order 1 0  1 0  2 0  30  
Sampled tlt 0 . 1  0 . 1  0 . 1 0 . 1  
AR tlt 0 . 1 0 . 1  0 . 2 0 . 2  

Decay Ratio 0 . 50 0 . 50 0 . 54 0 . 51 
Nat . Freq . (Hz ) 0 . 40 0 . 40 0 . 40 0 . 42 
Co f idence Level 7 7 6 4 

DRC 0 . 50 0 . 50 0 . 54 0 . 5 1  
FNC 0 . 40 0 . 40 0 . 40 0 . 42 
IERC 0 0 0 0 

DRS 0 . 50 0 . 50 0 . 54 0 . 5 1  
FNS 0 . 40 0 . 40 0 . 40 0 . 42 
IERS 0 0 -1 0 

DRP 0 . 50 0 . 50 0 . 54 0 . 51 
FNP 0 . 40 0 . 40 0 . 40 0 . 42 
IERP 0 0 0 0 
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Table 5 . 3  

RESULTS OF THE NOISE STABILITY ALGORITHM 
APPLIED TO COMPUTER GENERATED DATA 

CASES ( e )  THROUGH ( h )  

Case ( e )  Case ( f )  Case ( g )  Case (h)  

Pole s  -0 . 04 4 1 ± 0 . 41 -0 . 0067 ±0 . 41 -0 . 1 47±0 . 41 -0 . 1  
(Hz ) -0 . 02 ±0 . 11 -0 . 02 ±0 . 1 1 -0 . 02±0 . 1i 

Zeros -0 . 1  -0 . 1  -0 . 1  
(Hz )  -0 . 5±0 . 5i -0 . 5 ±0 . 5i -0 . 5 ±0 . 5i 

AR Ord er 20 20 15 10  
Sampled D.t 0 . 1  0 . 1 0 . 1  0 . 1  
AR t.t 0 . 4  0 . 4  0 . 4  0 . 1  

Decay Ratio o.  51 0 . 90 0 . 1 9 -999 
Nat . Freq . (Hz ) 0 . 40 0 . 40 0 . 37 -999  
Cof id ence Level 3 4 2 -7 

DRC 0 . 24 0 . 48 0 . 28 -999 
FNC 0 . 40 0 . 40 0 . 40 -99 9  
IERC 0 0 0 -1 

DRS 0 . 30 0 . 90 0 . 32 -99 9 
FNS 0 . 10 0 . 40 0 . 10 -99 9 
IERS 0 -1 0 -2 

DRP 0 .  51 0 . 90 0 . 1 9 -999 
FNP 0 . 40 0 . 40 0 . 37 -999 
IERP 0 0 -2 -3 
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Decay ratio . This i s  the best estimate of  the asymptotic 

d ecay rat io produced by the algor ithm and it is the main result . 

Natural frequency .  Thi s is the natural frequency of 

o sc il l at ion . 

Confid ence level . Thi s  number represents the goodness of 

the fit . A level of +7 is maximum and a level of -7 is minimum . As 

long as the level is greater than 3 ,  the estimate is probably good . 

If the level is negative , the estimate is worthless . 

DRC . The apparent decay ratio of the autocorrelation 

funct ion . 

FNC . The apparent natural frequency of the autocorrelation 

function . 

IERC . Error code generated by subrout ine DRCORR while 

calcul ating the apparent decay rat io of the autocorrelat ion . See 

the subroutine list ing for details . 

DRS . The asympto t ic decay rat io of the impul se response 

func t ion generated from the AR model . 

FNS . The asymptotic natural frequency of the impulse 

response . 

IERS . Error code generated by subroutine DRTIME while 

calculating the asympto tic decay ratio of the impulse response . See 

the subroutine listing for detai l s . 

DRP . The asympto t ic decay ratio estimated from the 

frequency domain pol e  search . 
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FNP . The asymptotic natural frequency est imated from the 

frequency domain pol e  search . 

IERP . Error cod e  generated by subroutine DRFREQ while 

calculating the asymptotic decay ratio from the frequency domain 

pole  search . See the subrout ine listing for detail s .  

The first  case in Table 5 . 2  correspond s  to a pure second-order 

sys tem with a decay ratio of  exactly 0 . 5 .  We observe that for such a 

well behaved sys tem , all methods work perfectl y .  Ind eed , the 

confidence level is +7 and all estimates agree . 

A major problem with AR models is  their inherent difficul ty 

with represent ing zeros . Indeed , AR models are formed jus t  by poles 

in the frequency domain , and it takes an inf inite number of poles to  

represent exactly a zero . Cases (b)  through (d)  in Table 5 . 2  confirm 

this idea , but they show that  the present algori thm is capable of  

performing acceptably wel l  even under adverse  circumstances . For 

these three cases we conserve the same poles than for case (a)  ( i . e . , 

decay rat io 0 . 5 )  but we introduce a zero at different frequencies . In 

theory , the AR model should have the greatest problem with the lowest  

frequency zero ( case (d ) ) . This is precisely what  happens . We 

observe first that the AR model needed to double the sampl ing time and 

use mod el ord ers  as high as 30 to represent case (d ) .  The conf idence 

level came down from +7 to +4 ,  but the estimate  of the decay ratio is 

still  acceptable . Summarizing , the algorithm was smart enough to 

real ize  that  thi s  cases were more dif f icul t to solve and it ad jus ted 

itself to obtain the best po ssible estimate of the solut ion . 
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Table 5 . 3  ( cases ( e )  through ( h) )  show how the algorithm 

behaves under difficult cond i t ions . Cases ( e )  through ( g )  highlight 

the problem of the low-frequency resonance . In thi s problem , a reso­

nance exists  at a frequency lower than tha t of the react ivity-to-power 

transfer funct ion . The pol e  caus ing thi s  resonance , having lower 

frequenc y ,  has a smaller real part  and thus dominates the asympto tic 

behavior of the response , but the decay ratio of the pole  of  interest 

is  larger . The low-frequency pol e  has a real part of  -0 . 02 Hz and a 

decay ratio of 0 . 28 .  

The pol e  in case ( e )  has a decay ratio o f  0 . 5 .  In thi s case 

we observe that  the apparent decay ratio of the autocorrelation is 

very poor , the asympto tic decay rat io of  the impul se respons e ,  

however , yield s the decay ratio o f  the low-frequency pole , due to its 

dominance of the asymptotic behavior . Fortunately , the frequency 

domain search is abl e  to per form properly for thi s  case and yield the 

correct answer which is the best estimate value taken by the 

algorithm .  However , given the disparity between the resul t s , the con­

fid ence level is marginal at a value of +3 . 

In case ( f )  the problem is better def ined . The transfer 

func t ion pole has now a smaller real part  than the low-frequency 

pole , because the reactor decay ratio is now 0 . 9 .  In thi s case we 

observe that  both the impul se response and the pole  search methods 

work properly . The confidence is moderate , +4 ,  because the sampl ing 

time had to be doubled twice to allow for the low-frequency mod eling . 
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Case (g ) represents the opposite case . Here , the low­

frequency pole has a smaller real part and a larger decay ratio , 

because the reac tor decay ratio is only 0 . 1 .  Thi s  is an extremely 

di fficul t problem to solve , but the pole search part  of the algorithm 

is still abl e  to locate the reactor pole . The estimate is of the 

order of magnitud e , but it is no t as accurate as when the rlecay ratio s 

are high . Nevertheless , we should consider a success that the 

algorithm is capabl e  of find ing a solution even in a di f f icul t case 

like thi s . Of course , the confidence level is low , +2 , suggesting to 

the user that  thi s  reac tor cond it ion is a difficult one for a decay 

ratio estimation . 

Finally , in case (h) we present a case in which no pole 

exist s .  This would correspond to a case in which the operator mad e 

a mi s take , and the signal suppl ied was no t from a BWR neutron detec­

tor , or a case in which a record ing or processing problem of some sort 

had happened . We ob serve that the algorithm detec ts  thi s  problem 

inmed iately and returns a conf id ence level of -7 . 

In summary , we can say that the algori thm works extremely 

wel l . It no t only supplies the asympto t ic decay ratio accurately , 

but it al so is able to determine abnormal data se ts and use the mo st  

appropriate method for the part icular cond i t ion . We  have found the 

confidence level estimate to be of great usefulness , especially when 

an on-l ine or automated diagnostics  system has to be implemented . 
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5 . 5 . 2  Application o f  the Algo ritm to BWR Data 

During the Peach Bot tom stabil ity  test s , 5 3- 5 6  noi se 

( unperturbed ) data was recorded in d i g i tal form immed iately after or 

before the pseudorandom binary signal ( PRBS ) perturbation tests . Some 

o f  this no ise  data was mad e available to the Oak Rid ge Nat ional 

Laboratory by the Electric Power Research Inst i tute (EPRI ) .  The typi ­

cal length of the no ise record ings was 2 5  minutes ; however , we 

rece ived only about 3 minutes worth and only for test 3PT 3 .  We found 

tha t thi s  short  time was inadequa te to accurately def ine the decay 

ratio (DR ) , at least  for these relatively stable cond it ions 

( DR < 0 . 5 ) . Never theless , we present here the resul ts of this analy­

s i s  to show that , even with these short  record lengths , a "reasonable "  

e stimate can be obtained . We al so  received from EPRI the PRBS data 

correspond ing to the same 3PT3 tes t . In thi s case we had a full 

2 5  minute record ing . Even though this  was no t no ise data , we treated 

it as such , because the input perturbation is random in nature . 

We es timated the "output" stability  as i f  we d id no t know the input , 

which is the case in the noi se record ings . We show tha t we can ob tain 

a good est imate from thi s  type o f  data wi thout making use o f  the input 

information . 

The est imated DR from the noi se record ings ( 3  minute s )  was 

DR 0 . 39 .  The est imated DR from the PRBS data treated as noise  was 

DR 0 . 53 ,  which compares well  wi th the publi shed DR resul ts  us ing the 

stand ard transfer function technique , DR = 0 . 50 . 5 6  Table 5 . 4  and 

fi gures 5 . 8  and 5 . 9  summarize the resul t s  of the se  analyses . 
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Table 5 . 4 

RESULTS OF STABILITY ANALYSIS OF PEACH BOTTOM 
TEST 3PT3 DATA 

No ise  data ( 3  minutes ) 
PRBS data ( 25 minutes ) 
Trans fer func tion resul ts * 

*from Reference 56  

Asymptotic 
Decay Ratio 

0 . 3 9 
0 . 53 
0 . 50  

Natural Frequency 
( Hz ) 

0 . 38 
0 . 38 
0 . 41  

A d i fferent set  of data was also available to  val idate thi s  

technique . This data was ob tained during the local stab i l ity tes ts 

performed at the Dresden-2 reactor . 5 9 • 1 0 5  For these tes t s , the reac -

tor was opera ted at the inter section be tween the minimum rec irculat ion 

pump speed and the 100% flow control line , which is the mo s t  uhs table 

po int of the no rmal operat ing range . This  correspond ed to 52 . 7 % powe r 

and 38 . 9% flow . The decay ratio est imated for this cond i tion was 

0 . 3 5 ,  whereas the decay rat io  at full power was 0 . 1 5 .  Unfortunate ly , 

thi s number canno t be compared to transfer funct ion measuremen ts , 

simply because they were no t performed . However , computer 

calculat ions , bo th by Exxon Nuclear Corpo ration and Oak Ridge Na tional 

Laborato ry pred ic ted very similar decay ra tios for bo th cond itions . l 0 5 , l l O  

In summary , the present technique works properly wi th both 

computer-generated and real-world data . 
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FREQUENCY (HZ l  

Figure 5 . 8  Comparison betwee n measured and AR-mod el  pred ic ted 
power spectral dens i t y for no ise data . 
( Peach Bo ttom , tes t  3PT3 ) .  

FREQUENCY ( HZl 

Figure 5 . 9  Compar ison between measured and AR-mod el pred ic ted 
power spectral dens ity fo r PRBS data treated as no ise . 
(Peach Bo ttom ,  test 3PT3 ) .  



CHAPTER 6 

NONLINEAR SYSTEM DYNAMICS 

The basis  of linear system dynamics is the superpo s i t ion 

principle , which states that if a system is  linear the response is 

pro port ional to the input . In the same way , the response to the sum 

of two d i fferent inputs is equal to the sum of the responses to both 

input s .  Thi s  is the bas i s  for the transfer funct ion analys is used in 

linear dynamics because , as shown in Chapter 3 ,  a transfer func tion 

completely defines the dynamics of  a linear system . In nonlinear 

dynamics , however , the superposition princ iple does not apply and the 

response of a sys tem to different inputs cannot be characterized by a 

single transfer function . 

One characteristic  of nonl inear systems is that they are able 

to excite frequencies in the out put response which- are not contained 

in the input signal . Normally , the frequencies  excited are harmonics 

o f  the input frequencies , but this  is not necessarily the case for all 

nonlinear systems . In particular , some systems could excite  subhar­

monics ( lower frequencies ) of the input frequencies . A typical 

example of nonl inearity is a saturation . For ins tance , an electronic 

amplifier wil l  perform linearly  as long as the output signal is small ,  

but if the output approaches the vol tage of  the power supply , the out­

put signal becomes deformed . In this  fashion , the output to a sine 

wave is chopped at the tops and it looks more like a square wave , 

1 1 8  
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which contains higher frequenc ies (harmonics ) .  The new frequencies 

are harmonics of the original because the output signal mus t be 

period ic with per iod equal to  the one of  the input signal . Thi s  

example shows one of the main characteristics of non-linear systems , 

which is that they behave in a linear fashion as long as the output is  

o f  small magnitude , and nonlineari ties become important as the magni­

tud e increases . 

A nonlinear effect of part icular importance is the appearance 

of limit cycl es . Within linear theory ( see Chapter 3 ) ,  if one of the 

poles has a pos i tive real part , the sys tem becomes unstable  and the 

solut ion is a d iverg ing exponential who se magnitude will  grow indefi­

nitly . However , many nonlinear sys tems und er these cond i t ions exhib it  

period ic bounded solut ions , which are called limit cycles . Limit 

cycles are commonly represented as traj ectories in phase space ( the 

space of the dependent variables ) with time being a parame ter of  the 

trajec tory . 

A typical example of the development of a limit cycle is 

presented in Figure 6 . 1 .  The po int ( 0 , 0 )  is an unstable equil ibrium 

point . Close to thi s  point ( see the insert  in Figure 6 . 1 )  the traj ec­

tory behaves linearly and spirals away exponentially . However ,  if we 

look at the whol e  picture , we observe that the tra j ec tory stays 

bounded and it eventually converges to a closed curve which defines 

the limit cycl e .  
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Figure 6 . 1  Development of a typical l imi t cycle in phase space . 
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The stability of linear sys tems i s  charac terized by an 

asympto t ic decay ratio ( see Chapter 3 ) . In nonl inear systems exhi­

bit ing limit cycl es , however , the decay ratio is always equal to 1 . 0 .  

A parame ter of more interest in the nonlinear regime , then , is the 

ampl i tude of the oscillat ions . 

6 . 1  Subharmonic Excitation : Feigenbaum ' s  Theory for 

the Trans ition to Aperiod icity 

As stated before , the most  common effect of  nonlinearities is 

the excitation of higher harmonics of  the input frequencies . However , 

there are some sys tems in which the nonl inearities excite lower 

harmonics ( i . e . ,  subharmonics )  also . In some of these systems the 

excitation of subharmonics eventually produces aperiodic or chao tic 

behavior as a sys tem parameter is changed . In these sys tems the solu­

tion is stable and converges to the equilibrium po int as long as the 

value of a parameter , p ,  is less than a critical value , p 0 • When 

p 0 is surpassed , the solution becomes uns table and a limit cycle of  

period T is reached . When p is made greater than p 1 , a new critical 

value , the limit cycle becomes uns table and a new limit cycle of twice  

the period appears ( i . e . ,  the first  subharmonic is  excited ) .  Further 

increases of the value of the parameter result in a cascad e  of ins ta­

bilities with each successive limit cycle  being unstable at a value of  

the parameter P j • The successive period s are z jT and , thus , the 

j th subharmonic is excited . Each of the successive limit cycle insta­

bil ities is called a period-doubling pi tchfork bifurcation . 
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Numer ical experiments  have shown that the cri tical value s ,  Pj ' 
at which the bifurcations occur converge geometr ically to an accumula-

tion po int . In other word s , the bifurcations occur closer and clo ser 

as j is increased . Furthermore , the convergence ratio , def ined as 

0 ·  = J 
Pj - Pj-1 
Pj+l - Pj ( 6-1 ) 

converges to a univer sal constant , 6 = 4 . 6692 • • •  , which was pred ic ted 

by Feigenbaum ' s  theory 8 2 , 8 3  and which has the same universal value 

regardless  of the form or ord er of the system of equa t ions . A second 

Feigenbaum cons tant , a =  2 . 5029 • • •  , is  called the pitchfork scal ing 

parameter and relates the relative magnitudes of the new subharmonic 

frequencies . 

Feigenbaum ' s  theory was developed for one-dimens ional nonin-

ver tible maps and then expanded to nonlinear different ial equations 

based on pro perties  of the Po incare map . s o 

A one-dimensional map is simply a func t ion , F ,  or a recursion 

formula which relates the value of  the dependent value , xk , to itself 

one increment of time before . That is 

For instance , the relation 

( 6 -3 )  

is a one-dimensional map which is graphically represented in 

Figure 6 . 2a .  This  map is clearly noninvertible because there are two 

pos s ible values of xk-1 which give the same xk . 



1 

.JL ........ 
X 

0 
X ( k 1 )  0 

( a )  F1 ( x )  

1 

.JL ........ 
X 

1 

0"---------------------� 
0 X C k - 1 ) 

( c )  F 3  ( x )  1 

1 

.JL ........ 
X 

0 
0
�--------

X
-

C
-
k

-
-

-
1

-
l

---------
1 

( b )  F2 ( x )  

1�--------------------� 

.JL ........ 
X 

00�--------X-(-k-- 1--) --------�1 
( d )  F4 ( x )  

F i g ur e  6 . 2  Graph i c al rep r e s e n t a t i o n  o f  the map Xk = 4B xk- 1 ( 1 -xk- l ) 
f o r  the f i r s t  four i t e r a t i ons. 

1-' 
N 
(....) 



124  

The equil ibrium po ints are found by the intersec tion of  the 

map wi th the l ine xk = xk-1 " These points are stable if the absolute 

value of the derivat ive of the map is less than 1 . 0 .  Otherwise they 

are uns table . By changing a parameter ( for instance b of 

Equa t ion ( 6-3 ) )  we can make the equilibrium po int unstable . 

Feigenbaum8 0-8 3  shows that for maps with quadratic extrema ( i . e . ,  F 

and its  derivat ive are continuous ) ,  whenever the equilibrium point of 

F ( x )  becomes unstable , two new equilibrium points appear in the second 

iterate of F ( F 2 ( x ) =F ( F ( x ) ) )  and , thus , the solut ion of  the map bifur­

cates ( spl it s )  into two po ints ( Figure 6 . 2b ) . If we keep increas ing 

the parameter b ,  then F2 ( x )  becomes unstable ,  but four equilibrium 

points of F 4 ( x )  appear (Figure 6 . 2d ) . Thus F 2 ( x )  bifurcates and the 

process continues ad inf initum when F4 ( x )  bifurcates and then F8 ( x )  

and so on . No te that  there i s  only one equil ibrium po int for F 3 ( x )  

and i t  i s  unstable . 

A direc t result of  Feigenbaum ' s  theory is that the values of  

b ,  at which the bifurcation occurs , converge to  the accumulation point 

b� in a geometric fashion , with a convergence rate 6 = 4 . 6692  • • •  , 

independently of the form of the map . For values of b grea ter than 

b �, the solution has bifurcated an infinite number of times ; there­

fore , its period is infinite . That is , the solution is aperiod ic . 

The process through which the aperiod ic or chaot ic behavior is 

reached is call ed in the literature a " cascad e  of period-doubling 

pitchfork bifurcations . "  Thi s process is represented in Figure 6 . 3  
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Figure 6 . 3  Bifurcat ion diagram for the map xk 
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which shows the bifurcat ion diagram for the map of Equat ion ( 6-3 ) .  

In thi s  diagram the equil ibrium points of Equation ( 6-3 ) are plo tted 

as a func tion of the value of the parame ter b .  We observe that when b 

< 0 . 7 5 the single equi l ibrium point is stable . For b =  0 . 7 5 the first 

b ifurcation occurs and two points appear . From then on the cascad e  of  

b ifurcations starts . The geometric convergence of the crit ical bifur­

cation values is al so obvious in this  figure . 

A second univer sal constant defined by Feigenbaum is the 

pitchfork scaling parameter , aj , which scales the magnitud e  of the 

success ive bifurcations as shown in Figure 6 . 4 .  The value of aj 

converges to a = 2 . 5029 • • •  as the bifurcation number increases .  

Some nonl inear different ial equations exhibit  a similar 

universal behavior as the one described for 1-D noninvertible maps . 

Thi s  effect is explained in the literature us ing Po incare maps . 8 0 

A Po incare map correspond ing to a particular solut ion of  a system of 

equat ions can be const ructed by intersecting the phase space traj ec­

tory of the solution with a predetermined surface . In thi s  way a set 

o f  po int s  is obtained every time the tra jectory int ercepts  the surface 

in a predetermined direct ion . The 1-D map can then be formed graphi­

cally by plo t t ing the consecut ive po ints obtained in thi s  manner . 

If thi s  map has a quadratic maximum , then the Feigenbaum scenario is 

applicable . In this  event , the set of nonlinear dif ferential 

equations associated with such a Poincare map is expected to follow 

thi s scenario . 
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Figure 6 . 4  Typical bifurcat ion diagram showing the scaling proces s .  
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6 . 2  Period-Doubl ing Pitchfork Bifurcations in 

Nonl inear Ordinary Differential Equations 

In the previous sec t ion the transit ion to aperiodic behavior 

through a cascad e of per iod-doubl ing bifurcat ions , which is 

experienced by some nonl inear ordinary d ifferent ial equations , was 

explained a po steriori in terms of Po incare maps . That is , once the 

solution is found to undergo bifurcations numerically , the Po incare 

map is formed and the behavior explained by the non-inversibility o f  

the map . In this  section , however , we develop a procedure t o  gain 

some ins ight to the necessary cond i tions which have to be satisfied by 

a set of N coupled ord inary dif ferent ial equations in order to exhibit 

period-doubling bifurcations . 

Upon elimination of N-1 dependent variables , the resul t ing 

Nth order d i f ferential equation can be written in general form as 

F ( t , p )  ( 6-4 ) 

where Bn are nonl inear coe f ficients which in general depend on the 

value of the dependent variable ,  x ,  the independ ent variable , t ,  and 

a parameter , p ,  that can be varied externally . F ( t , p )  is a forcing 

func t ion . Arb itrarily , and without los s  of general i t y ,  we set BN to 

unity . 

Let us as sume that for a value of the parameter p = p 1 greater 

than p 0 , the critical value , there is a per iod ic solut ion , x0 ( t ) , 

which defines a limit cycle with period T .  We are interested at this  
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moment in the stability of the limit cycle with respect to  changes in 

the parameter p .  Following a small perturbation , we can expect that 

the new solution , x( t ) , will be similar in form to x0 ( t )  but with dif-

ferent magnitude . Let us thus make a change of variables such that 

x( t )  = (l+M( t ) )  x0 ( t )  ( 6-5 ) 

The new variable , M( t ) , describes as a function of time the change 

in magnitude  of the original limit cycle ,  x0 ( t ) , when the parameter 

is changed . Note that from Equation ( 6-5 ) 

d (n-k)xo ( t )  
dt (n-k) ( 6-6 ) 

We can introduce Equation ( 6-6 ) into ( 6-4 ) and , after some algebraic 

manipulations , we obtain 

d ( n-k )xp ( t )  
dt (n-k)  

= F( t , p )  

Since x0 ( t )  is a solution of the original equation for p 

following relation is satisfied 

� [ � (n ) d (n-k )x0 ( t )  J dkM( t )  L L k Bn(x , t , p )  
dt (n-k ) dtk k=O n=O 

� dflx0 ( t )  - L Lllin (M, t , p )  
n=O dtn 

( 6-7 ) 

( 6-8 ) 

( 6-9 )  
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where the term �Bn is defined as 

( 6- 1 0 )  

and , thus , i t  contains terms which depend o n  M and independ ent 

terms . Let us col lect all the independent terms of �Bn in a 

var iable call ed In ( t , p )  and all M-dependent terms in another 

variable call ed Dn(M, t , p ) . Then Equat ion ( 6-9 ) becomes 

( 6-1 1 )  

where 

k=1 , • • •  , N  ( 6-12 ) 

and 
N Dn ( x , t , p )  

e 0 (M , t , p )  = L [ Bn ( x , t , p )  + M( t )  
n=O 

( 6-13 ) 

Note tha t  Equation ( 6-1 1 )  is formally very similar to the original 

equa t ion , ( 6-4 ) . The only dif ference is that eN is no t equal to 1 . 0 ,  

s ince from equation ( 6-12 ) ,  and for k = N 

and , thus , eN is a period ic funct ion of period T .  Fur thermore , it 

does no t depend on M or p .  

Let us define a new set o f  coefficient s ,  Bn
1 , as 

1 -
en Bn (M , t , p )  - eN 

( 6-1 5 )  
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N 
1 - I In ( t , p )  
( ) n=O 

xo t ( 6-1 6 )  

Note that all the coeffic ients are independ ent o f  the amplitude of 

The equation for the limit cycle ampl i tude becomes 

N dnM1
( t )  I Bn

l ( M l , t , p )  
n=O 

where we have renamed M( t )  as M1 ( t ) . 

( 6- 1 7 ) 

Thi s  equat ion is formally equal to Equation ( 6-4 ) ,  the origi-

nal equa t ion . We observe , however , that the effect of the original 

forcing function , F ,  has been completely lost because it was canceled 

by the relation in Equat ion ( 6-8 ) . All of  the new coe f ficients , Bn
1 , 

and forcing funct ions are now func t ion only of x0 ( t )  and the original 

coef f icient s ,  Bn · The form of the new coefficients is a ratio of 

period ic funct ions ( see Equat ion ( 6-1 5 ) )  and , thus , they are period ic 

functions . The per iod , however , is  no t necessarily the same as the 

one of the orig inal limit cycle , x0 ( t ) . For instance , recall that 

tan ( a / 2 )  = l-co s ( a )  
( 6-1 8 )  sin ( a )  

consequently , given the right cond i t ions , the new coeff icients , Bn
1 , 

could have a period twice as large as the original one ( i . e . ,  2T) . 

Note that these  cond itions wil l  not be met in general for all Nth 

ord er differential equa t ions . This is the reason why not all such 

equations bifurcate . 

If  we consider now only very small perturbations of the 

parameter p around the original value , p 1 , then M1 ( t )  << 1 . 0 ,  and 
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Equa tion ( 6-1 7 )  can be  linear ized . We obtain , then , a linear equation 

with periodic coefficients .  This is a equat ion of  the Floque t type , 9 8  

which has been amply stud ied . Floque t theorem says that the solut ion , 

M 1 ( t ) , wil l  be period ic of  the same period of the coe f f icient s ,  which 

is twice as large as the per iod of the original limit cycle .  There is 

a set of Floquet exponent s  which determine the stability of the solu­

t ion , that is , the exponents determine whe ther M1 ( t ) will follow a 

d ecaying or a diverging oscillat ion . 

The oscillatory part of M1 ( t )  represents a transient between 

two limit cycles of x( t )  for parameters p 1 and p 1 + �p . As long as 

M 1 ( t )  is stable , following a perturbation in p there will  be a 

transient but x ( t )  will settle to a new limit cycle of dif ferent 

magnitud e  with the same per iod as the previous one . No te that 

Equat ion ( 6-1 7 )  is nonlinear and , thus , if M1 ( t )  became uns table for a 

par ticular value of  the parameter p ,  and if the right cond it ions 

exi s t , M1 ( t ) could reach a limit cycle of its own , M1 
° ( t ) . For thi s 

value of the parameter the solution of  the original equa tion is 

( 6- 1 9 )  

where M 1
° ( t ) has period 2T . Therefore , the new solution , x 1 ( t ) , has 

period 2T . Und er these cond i t ions , the equation has produced subhar­

monics of the original frequency in the solution . Thi s  process is 

also call ed a per iod-doubling bifurcation . 

Equation ( 6-1 7 )  is exactly equal in form to the original 

Equation ( 6-4 ) . Therefore , the same procedure used for x ( t )  can be 
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applied to M1 ( t ) . Assuming that M1 ( t ) becomes unstable and reache s 

a limit cycl e  (periodic solution of period 2T ) for a parameter value 

p = p 2 , we make the change of variables 

M 1 ( t )  = ( 1+M2 ( t ) )  M1
0 ( t ) 

Following the same procedure outl ined at the beginning of  thi s 

sec tion , we obtain 

( 6-20 )  

( 6-2 1 )  

with the coe f f ic ients ,  Bn
2 , and the forcing funct ion , F 2 , defined by 

equations similar to Equations ( 6-12 )  through ( 6- 1 6 ) .  

Again , CN is  a period ic func t ion , but now its period is 2T 

( the period of M1
° ( t ) ) .  Thus , if the right cond i t ions are met ,  the 

new coeffic ient s ,  Bu 2 could have period 4T and , consequentl y ,  M1 ( t )  

would bifurcate .  The period of the original func t ion , x( t ) , for this 

value of  the parameter is , therefore , 4T . 

The same procedure can now be applied to M2 ( t )  and then to 

M 3( t ) . In general , the equat ion representing the magni tude at the 

j th bifurcation is 

( 6-22 )  

wi th 

( 6-2 3 )  
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and 

F j ( t , p )  ( 6-24 )  

No te that given the appropriate cond i t ions Mj
0 ( t )  is a per iodic 

solution of period 2 jT and the original variable , x( t ) , which is given 

by the expres s ion 

x( t )  = ( l+Mj ( t ) ) ( l+Mj-l
0 ( t ) )  • • •  ( l+M 1

° ( t ) ) x 0 ( t )  

i s  also periodic o f  period 2 jT .  

( 6-2 5 )  

Equat ions ( 6-22 ) through ( 6-24 )  define a recurrence relat ion 

for the magnitud e  of the succes sive bifurcat ions . No te that  the 

ampl itud e  of Mj ( t ) is equivalent to the magnitud e  of the bi furcat ion 

in the bifurcat ion diagram as shown in Figure 6 . 4 .  It  has been 

observed numerically that these magnitudes scale down in success ive 

bifurcations accord ing to the universal parameter a .  Thus ; the ampli-

tude of the successive Mj ( t )  should scale accord ingly . 

The fac t that the successive Mj ( t )  and Pj scale in a universal 

fashion is very hard to prove from first principles ; however , the 

recur s ive nature of these equat ions suggests that such universal ity is 

possible because , once many bifurcat ions have taken place , the infor-

mation from the original equation has already been los t  and the only 

important feature is the way in which the recurs ion is produced . 

In summary ,  in thi s  section we have stud ied some neces sary 

cond i t ions for period-doubling bifurcations in ordinary dif ferential 

equa t ions . We showed that 
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( a )  general nonl inear ordinary differential equat ions can sus tain 

period-doubling pitchfork bifurcations of the original limi t 

cycle oscillations . 

( b )  the underlying cause of  these  bifurcat ions is an ins tability 

o f  the magnitud e , M( t ) , of  the limit cycle oscillations . 

( c )  M( t )  is a periodic function and may have a period twice as 

l arge as the original because the coefficients of its  dif­

ferential equation are formed by rat ios o f  per iod ic functions . 

( d )  some generic arguments have been made support ing the fact that 

these equat ions may have universal scal ing fac tor s .  



CHAPTER 7 

A REDUCED ORDER NONLINEAR MODEL 

Integrat ing a set of nonlinear differential equat ions is  a 

dif ficul t task . The solution of at least  one nonlinear sys tem of  

equat ions is involved at  each time step . In addi t ion , the stronger 

the nonl inearity , the longer the computation time to solve the 

problem . Thi s  is the reason we are interes ted in obtaining an 

approximate solution based on a low-ord er mod el with as few equations 

as pos s ible . An additional advantage is that , having few equat ions , 

the results  can be studied in more depth , and a physical understand ing 

can be extracted from the numerical solut ion . In fact , some analyti­

cal work can be performed to increase the und erstand ing of thi s 

solution . 

The approach taken in this sect ion is to solve numerically a 

low-ord er , nonlinear mod el of a bo il ing water reactor ( BWR) and study 

the qualitative aspects of the solutions . A mod el that gives more 

accurate numer ical solutions is described in Chapter 8 .  

7 . 1  The Reduced-Order Model 

For the reasons expressed above , we want to use a model wi th 

the lowest  po s s ible ord er ( number of equat ions ) which would represent 

qualitatively the dynamic behavior of a BWR . We showed in Chapter 4 

that the basic processes involved in BWR dynamics can be represented 

1 3 6  
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by one-point reactor kinetics , a one-node representat ion of the heat 

trans fer process in the fuel , and a two-node representation of the 

channel thermal-hydraulics to account fo r the void reac tivity feed -

back . Based on these find ings , we propose to use the following 

reduced ord er model : 

dn( t )  
= 

p ( t ) - �  
n( t )  + A.c 

d t  A 

dc ( t )  
= f n ( t )  + f...c 

d t  

_d T--.:(,__t..!....) 
= 

d t  
a 1 n( t )  - a2 T ( t )  

p( t )  = Pa( t )  + D T( t )  

+ £. 
A 

k T( t )  

( 7-1 ) 

( 7-2 ) 

( 7-3 ) 

( 7-4 ) 

( 7-5 ) 

where n( t )  is the excess neutron populat ion normalized to the steady 

state neutron population ; c ( t )  is the excess delayed neutron precur-

sors concentration also normal ized to the steady state neutron popula-

tion ; T( t )  is the excess average fuel temperature ; and P a( t )  is the 

excess vo id react ivity feedback . Note that for this simple model , 

the only nonl inear term appears in the neutronic equat ion through the 

parametric feedback produced by the reac tivi ty . 

Parameters a 1 through a4 are obtained from the fitt ing proce­

dure described in Sec t ion 4 . 2  so that the closed -loop poles and zeros 

of  this mod el correspond to the ones of the reac tivi ty-to-power 

transfer funct ion of the reac tor . Since we are interes ted in the 

nonlinear region above the threshold for linear stability , the 
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parameters for  the base case were obtained from a fit to  the LAPUR 

calculated transfer funct ion for tes t 7N in Vermont Yankee , 5 8  for 

which cond i t ions a limit cycle was experimentally ob served . The 

value of the parameters are presented in Table  7 . 1 .  

Table 7 . 1  

MODEL PARAMETERS FOR VERMONT YANKEE TEST 7N 

Parameter Value Uni t s  

a 1 2 5 . 04 K - 1  s 
a 2 0 . 23 s- 1 

a 3 2 . 25 s- 1 

a lt 6 . 82 s- 2  
k o -7 . 50 xlo-4  K- 1 s- 2  
D -2 . 6l xlo- 5 K- 1 

� 0 . 05 6  
A 4 . 00 xlo- 5  s- 1  
A. 0 . 08 s- 1 

The parameter k ,  which is direc tly rel ated to the void reac-

tivity coefficient and the fuel heat trans fer coefficient , controls 

the gain of the feedback and , thus , def ines the linear stability of 

this reac tor model . The value of k0 given in table 7 . 1  is the criti­

cal value at which the model becomes uns table . By ar tif ic ially 

increasing the value of k above k0 we can make the model unstable and , 

under these conditions , we can study its behavior in the nonlinear 

region . 

An external source is needed to excite the model . The respon-

ses of the neutron signal to a react ivi ty step and to a step in heat 
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generation in the fuel are presented in Figures 7 . 1a and b respec­

tively . The reac t ivity step produces a very large first peak and then 

it converges to the limit cycle . The heat generat ion step , however ,  

does no t result in an overshoot , but it converges more smoo thly to the 

same limit cycle than in the reactivity step case . Based on these  

observations , we applied the input source to  the heat generat ion in 

Equation ( 7-3 ) for the determini stic and stochastic analyses . 

7 . 2  Mod el Qualif ication 

The model parameters presented in Table 7 . 1  were obtained from 

a frequency domain fit to the react ivity-to-power transfer funct ion as 

calculated by the linear code LAPUR . Therefore , for thi s fit , the 

present model had to be linearized and then Laplace trans formed . 

Figure 7 . 2  presents a compar ison between the trans fer func t ion for the 

cond i t ions of test case 7N of Vermont Yankee 5 8  calculated by LAPUR and 

the transfer func t ion of  the linearized version of our simple model . 

We proved in Chapter 4 that thi s mod el accurately represents the 

linear dynamic behavior of  the reactor when the appropriate parame ters 

are used . 

Al though the present model was proven in Chapter 4 to be based 

on sound phys ical foundat ions , its validity is limited by the fact 

that the thermohydraul ic proce sses have been lineari zed . In view o f  

thi s approximat ion , the result s  of  this model will  b e  valid only for a 

limited range of  parameters around the nominal values  presented in 

Table 7 . 1  ( see Chapter 8 for the results  of a more accurate model ) .  
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Figure 7 . 1  S tep responses  of the nonl inear mode l .  
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Figure 7 . 2  Compari son between the LAPUR trans fer func tion and the 
l inearized vers ion o f  the nonlinear model . 
(Vermont Yankee reac to r ) . 
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Despite this limi tation , the model has proven to work remarkably well , 

for instance it pred icted the appearance of the experimetally observed 

limit cycle . 

7 . 3  Analyt ical Study 

Given the low order of the mod el , we can perform some analyti­

cal studies on it to try to understand the behavior of the solution . 

The first thing we should be concerned with are the equilibrium 

point s ; these are obtained by se t t ing the time derivat ives in 

Equations ( 7-1 ) through ( 7-5 ) to zero after a step perturbation of  

magnitude A in  the neutron population is appl ied in  the heat genera­

tion term of Equat ion ( 7-3 ) .  Some straightforward algebra yields the 

only two equilibrium point s ,  which we name A and B .  

and 

A = {n=-A,  c=- �A/ ( AA) ,  T=O ,  Pa=O} 

B = {n=-1 , c=- �/ ( AA) ,  T=a 1 ( A-l ) /a 2 , 

Pa=ka 1 ( A-l ) / ( a2a4 ) } 

( 7-6 ) 

( 7-7 ) 

Equilibrium po int A correspond s to the normal reactor operation , while 

point B describes a shutdown cond ition . Note that by def ini tion 

n = (N-N 0 ) /N 0 and , consequently , n = -1 correspond s to N = 0 ,  where N 

is  the absolute neutron dens ity . 

We can now study the local ( linear ) stabil ity of the system of 

equat ions descr ib ing the model . For this we linear ize the equations 

around points A and B and compute the eigenvalue s of the resul ting 
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Jacobian matr ix . By doing thi s , we find that point B is always 

unstable for thi s  type of perturbat ion and that po int A i s  stable as 

long as k < k0 • For k ) k0 bo th equilibr ium points are unstable .  

Let us have a closer look at Equation ( 7-1 ) .  If we neglect 

the delayed neutrons effects , it becomes 

dn 
d t  

= p ( n+l ) 
A 

( 7-8 ) 

Therefore , no mat ter how negative the react ivity feedback , p , is , 

dn/dt wil l  always tend to zero when n approaches n = -1 due to the 

fact that the react ivity feedback is introduced in the form of a 

parameter in the equat ion . Thi s  phenomenon is known as parametric 

excitation . Physically what this means is that  the absolute neutron 

popul at ion , N ,  cannot be negative . Therefo re , the whol e  n = -1 line 

in phase space , no t just the po int B ,  is unstable in the sense that it 

repels  the tra jectories ( so lut ions ) if they get clo se to it . 

The n = -1 line can no t be cro ssed by the traj ectories . 

With the above find ings in mind we can draw the phase-space 

tra j ec tories of the solut ions of the present model . Thi s  is done in 

the diagrams presented in Figures 7 . 3a and b ,  which correspond to 

k < k 0 and k ) k0 respect ively . It can be observed that case ( a )  

correspond s  t o  a stable sys tem . All the trajectories end up at 

equilibrium po int A; this  situat ion represents normal BWR operat ion . 

Once the linear stability threshold is crossed we have case (b)  in 

which the tra jectory spiral s away from eqilibrium point A ,  which has 

become uns table . In bo th cases , the trajectories are parallel to the 
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- - - -

B 

( a )  k<k0 

- - - - - - -

B 

( b )  k>k0 

Figure 7 . 3  Phase space traj ec tory o f  the solut ion close to the two 
equil ibr ium po ints . 
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n = - 1  l ine a s  they approach it because they canno t cross  it nor end 

at the unstabl e  equil ibr ium po int B .  

Case  ( b )  i s  in what we have called the non-l inear region . 

Tve have already studied the local charac teri s t ics of the solut ion 

close to A and B. Globall y ,  we can have several types of  solutions . 

These  types are graphically presented in Figures 7 . 4a through c .  

Three cases are cons idered here : in cas e ( a ) , the sys tem is globally 

unstable and the trajectory cont inually depar ts from po int A. 

Case ( b )  describes a situation in which the trajectory departs from 

the equilibrium point , but due to the nonlineari ties the sys tem stabi­

lizes itself and the trajectory remains bound ed , eventually converging 

to a clo sed line . Thi s line defines a limit cycle ,  which corresponds 

to  a periodic  solut ion of fixed magnitud e . Case (c)  is similar to 

case (b ) in the sense that the trajectory is repelled by equil ibrium 

point A and at the same time remained bounded due to the nonlineari­

t ies . The difference here is that no periodic solut ion ( clo sed line ) 

exist s ; therefore , the tra j ectory stays bounded wi thin a region , but 

never converges to a closed curve or to an equilibrium point . This 

region is call ed a strange attractor 8 0 and the solut ion of  a sys tem of 

equations with a strange attractor is said to be aperiod ic . 

At thi s  time it is hard to pred ict analytically which of the 

three cases  shown here represents the behavio r of our model in the 

nonlinear region , or even if all three are val id for different ranges 

of some parameters . To determine this we will  have to resort  to 

numer ical solutions of the equations . 
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In summary we have seen that the present model has two 

equil ibrium po int s .  One of them , correspond ing to a shutd own 

configurat ion , is always uns table .  The other point becomes uns table 

when the feedback gain is increased above a critical value . When both 

equilibrium po ints are uns table , nonl ineari ties are impo rtant and 

fully def ine the dynamic behavior of the reac tor . In the nonlinear 

region limit cycles (period i c  solut ions ) or strange attractors 

( aperiodic solutions ) are pos s ible as a result of the interaction of 

the two unstable equil ibrium po ints and the phase-space trajectories . 

7 . 4 Determini stic Numer ical Analys is  

For  the determinis t ic analysis , a step-type perturbation was 

used . As mentioned before , it was determined that the solut ion 

would converge faster and more smoo thly to equilibrium if the 

perturbation were introduced in the heat generation term of the fuel 

Equa tion ( 7-3 ) ;  therefore , for all these  anlysis a 10% perturbation in 

the neutron population was introduced in the fuel equat ion at time 

t = o+ , and then the solut ion was allowed to converge freely to its  

final state . 

It  is of  great importance to select the appropriate numerical 

method for the solution of a nonl inear system of ordinary differential 

equations . In part icular , the stability of the method used should be 

guaranteed for the specific set of equat ions to solve . Most  ord inary 

d i f ferent ial equation solver s require that the eigenvalue s of the 
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sys tem lie within a stability region . For ins tance , the Runge-Kut ta 

method s require that all the eigenvalues  lie within a circle of  rad ius 

1 / �t wi th center in the negat ive real axis  and which passes through 

the orig in . The largest eigenvalue , then , sets the sampling time , �t ; 

if  a problem has eigenvalue s of dif ferent magnitudes , it  is said to be 

stif f ,  because the slow eigenvalue solut ion ( o f t en the mo s t  

interes t ing ) has to be ob tained wi th the fast eigenvalue sampl ing 

time , even if the fast trans ient has already d ied away . In our 

part icular problem , we will  show that the nonlinearities introduce an 

important higher harmonic contaminat ion . In fact , all the harmonics 

up to infinite frequency are present . If we used a Runge-Kutta 

method , we would be forced to use a sampling time of zero to satisfy 

the stability requirement s .  Fortunatel y ,  there are the so-cal led 

implicit method s for ord inary differential equation solutions which 

are absolutely or A-s table regardless  of the time step . These method s 

are stable regardless of the magni tud e of the eigenvalues as long as 

the real part  is negative . The time step in the se methods control s 

the accuracy of the solut ion but not its stability . We used the 

A-stable method in the LSODE package l 0 6 which has time step control 

for the accuracy of the solut ion . As a general rule , we solved the 

equations wi th a relat ive accuracy of 10- 4 per time step . 

7 . 4 . 1  The Appearance of Limit Cycles 

The numerical solution of the model shows that when the feed­

back gain , k, is made greater than the critical value , k0 , limit 
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cycles appear . A limi t cycle corresponds to a periodic and bounded 

solut ion of a sys tem of equations which describes a closed tra j ectory 

in phase space . For the present model , phase  space has five dimen­

sions which are : n ,  the neutron density ; c ,  the delayed neutrons 

precursors concentration ; T ,  the fuel temperature ; Pa • the void 

react ivity feedback ; and d p a/dt , its derivative . Time is the para­

meter of the tra j ectory in phase space . The f igures in this the s i s  

can only represent , however , two-dimens ional pro jections o f  the true 

f ive-dimens ional limit cycle against some planes . Ano ther type o f  

representation i s  the time trace of  a part icular signal . For 

instance , the neutron densi ty time trace presented in Figure 7 . Sa 

shows the development of  a typical limi t cycle following a 1 0% step 

perturbat ion when the system was originally in the unstable 

equil ibrium po int . A detail of the time trace once the limit cycle 

has been reached ( Figure 7 . Sb )  shows that the signal is period ic and 

that the ampli tude of  the oscillation is about ±15% , which is of the 

same order of magni tude as the experimentally observed limi t cycle for 

test cond ition 7N at Vermont Yankee . 5 8  Thi s  fac t give s more cred ibi­

lity to the model and conf irms that it is represent ing the general 

dynamic behavior of  BWRs not only in the linear domain but al so in the 

nonl inear region . 

Further increases  in the feedback gain have the effect of  

making the reac tor more uns table in the linear or local sense . 

However ,  we found that in the nonl inear regime , this  increase has the 

ef fect of modifying the amplitude of the result ing oscillation . 



,....., 
� 

>-
1-
� 
(j) 
z 
w 
0 
z 
0 
0:: 
1-
:::J 
w 
z 

>-
1-
� 
(j) 
z 
w 
0 
z 
0 
0:: 

3 0  

- 1 0  
0 

3 0  

150 

5 0  100 

T I ME ( s )  

. . . . . . . . . . . . . . . . . .  

1 5 0  2 0 0  

1- 0 :::J 
w z 

- 1 0 �----��------�------�----� 
1 8 0  1 8 5  190 195 200 

T I ME ( s )  
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A limit cycle of large ampli tude i s  presented in Figures 7 . 6  and 7 . 7  

seen from dif ferent perspec t ives . The main character i s t ics  of this 

limit cycle can be stud ied in the time trace plot (Figure 7 . 6 ) : 

( a )  The neutron density  shows a period ic  series of  pulses of  large 

magnitude . Between the pul ses , the neutron population remains 

at a low level clo se to the unstable shutdown cond i t ion 

( equil ibrium point B of Section 7 . 3 ) . 

( b )  The main feedback path is the channel void react ivity feed­

back . The average void fract ion plot ted in Figure 7 . 6  has 

been obtained as the ratio between the void react ivity and the 

void reac t ivity coefficient . It shows a slightly deformed 

s inuso idal behavio r ,  which defines the frequency of the 

neutronic pulses . The pulses appear during the negat ive part 

of the void fract ion oscillation . 

( c )  The fuel temperature rises sharply during the neutron pulse , 

and then it decays exponent ially accord ing to the fuel time 

cons tant . The temperature oscillat ion around equil ibr ium 

becomes negative and , thus , produces a po s i t ive reactivity 

feedback before the void react ivity does , but it is clear from 

the timing of the neutron pulses that they are caused by the 

void reac t ivity feedback rather than by temperature effects . 

It  can also be observed that the fuel temperature oscillation 

merely follows the neutronic s ,  whereas the void fraction 

o scillation (determined by Equation ( 7-4 ) )  dictates the 

frequency of the pulses . 
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dn/dt 

( a )  Neutron densi ty versus dn/dt . 
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FUEL TEMP . C K l  

( b )  Neutron dens ity  versus fuel tempe rature . 

Figure 7 . 7  Phase space representat ion of a limi t cycle .  
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(d ) Similarly to the case o f  the temperature oscillat ion , the 

delayed neutrons precursor concentration seems to play a minor 

role in the nonlinear reactor dynamics . It rises during the 

pul se and then slowly decays accord ing to its own time 

constant . The precursors concentration has a major impact , 

however , in determining the wid th of the pulse because the 

precursors limit the rising and decaying rates for the neutron 

d ens ity . l 0 7  

S o  far we have descr ibed the limit cycle in the t ime domain . 

In phase space we can represent the relat ionship between di fferent 

var iables by pro jecting the five-dimens ional limit cycle against 

two-dimensional planes ( Figure 7 . 7 ) .  Some interest ing observat ions 

can be made : 

( a )  The plo t of neutron dens ity versus its derivat ive 

( Figure 7 . 7a )  shows a sl ight asymmetry which implies that the 

pul se rises more sharply than it decays due to the effect of 

the delayed neutrons . There is al so a fast change of the 

derivat ive on the upper part of the plot , which corresponds to 

the summit  of the pulse . Then the derivat ive tend s to zero as 

the neutron dens i ty decays towards its  minimum value . 

(b ) The neutron densi ty versus fuel temperature plot  (Figure 7 . 7b )  

is  even more interes t ing . The temperature rises a s  long as 

the neutron density  is po si tive . When the neutron population 

reaches· its minimum , the fuel slowly cools down . The delay 
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between the time a t  which the temperature oscillation becomes 

negative and the time at which the sharp neutron pulse starts 

can be easily recognized . 

( c )  Figure 7 . 7c shows how strongly correlated the neutron dens ity 

and the void fract ion are because in the scale shown in the 

figure it becomes impos s ible to resolve the wid th of the limit 

cycl e . When the void fract ion is negat ive ( po s i tive reac­

t ivity feedback ) ,  the power rises . At this moment the void 

fraction increases , producing a negat ive react ivity effect , 

which causes the neutron dens ity to decrease . The void frac­

t ion remains high as long as there is energy stored in the 

fuel . 

(d ) As seen in Figure 7 . 7d ( fuel temperature versus average void 

fraction) , the fuel temperature rises sharply , and then it  

star ts to  decay . While it decays , the fuel transfers energy 

to the coolant , and the vo id fraction increases . Finally , the 

coolant convec tion takes over , and the void fraction starts 

decreas ing too . At this  moment , a new cycle is started . 

As po stulated before , the dominant contribut ion to the overall 

reac tor dynamic behavior in the nonl inear regime is the void reac­

tivity feedback . The effect of  the fuel temperature (Doppler)  feed­

back can be further stud ied in Figures 7 . 8  and 7 . 9  which contain 

neutron densi ty time traces for the base case (Figures 7 . 8a and 7 . 9a )  

and with zero Doppler feedback ( Figures 7 . 8b and 7 . 9b ) . Even though 
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Figure 7 . 8  Effect of Doppler feedback on the step response of 
the model . 
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the Doppler effect increases the magni tude of the feedback , we observe 

that its presence actually stabilizes the reactor ( the limit cycle 

amplitude is smaller when the Doppler reac t ivi ty coefficient is taken 

into account ) .  Thi s  apparent paradox is due to the fac t that thi s 

type of feedback is pract ically in phase with the neutron dynamics 

and , therefore , does no t contribute to the oscillatory ( out-of-phase ) 

type of ins tability . A second observation is that the time traces 

have the same general behavior and pulse frequency with or without 

Doppler feedback . Thi s confirms the fact that the pulsed behavior of 

the neutronics is indeed produced by the channel thermal-hydraulics 

and the correspond ing void reac t ivity feedback . 

7 . 4 . 2  L imit Cycle Stability : Bifurcat ions 

In Chapter 3 we def ined the concept of stability for a linear 

sys tem .  Here  we will expand that concept to the nonl inear regime . 

In the linear regime , the sys tem is said to be stable if 

following a perturbation the result ing oscillation is eventually 

damped and the solution converges to the equilibrium state . For 

instance , Figure 7 . 1b in page 141 contains a typical step response of 

the present model in the linear region , when k < k 0 and consequently 

the reactor is stable . When the system becomes unstable , however , the 

solut ion does not converge to an equil ibrium point , but to a new 

equil ibrium state def ined by a limi t cycle . 

In the l inear region the stability of the sys tem is quantif ied 

in terms of an asymptotic decay ratio (DR) def ined in Chapter 3 ;  
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however , in  the nonlinear region , the asymptotic DR is always equal to 

1 . 0 ,  due to the appearance of limit cycles . Therefore , the DR is no t 

a good parameter to describe the dynamic state of the reactor in this 

region . A bet ter dynamic parameter in this region is the ampli tude of 

the l imit cycle oscillat ions . Consequent ly , the concern in the nonl i­

near region is the stability of the amplitude of the oscillations , and 

no t the oscillation themselves .  To clarify this point let ' s  look at 

figures 7 . 10a , b ,  and c. The se figures show the development of the 

limit cycl e  for three dif ferent values of the feedback gain : 

( a )  k = 1 . 2 ,  ( b )  k = 1 . 4 ,  and ( c )  k = 1 . 5 .  \ole ob serve a clear 

dif ference among the way the limit cycle is reached in the three 

cases . In case  ( a )  the amplitude of the oscillation (which is equal 

to the maximum value of the pul ses , i . e . ,  the signal envelope ) follows 

a smooth curve and promptly converges to the final amplitud e . 

In case (b ) the amplitude oscillates around the final value but even­

tually converges to it . In case ( c ) , however , the ampli tude oscil la­

tes , but it never converges ; it describes an undamped period ic 

oscillat ion . Thi s  effec t can be seen more clearly in Figures 7 . 10c , 

d ,  and e ,  where the oscillat ion ampl itud e has been highlighted . 

In es sence the ampl itude of the limit cycle has become uns table and is 

following a new limit cycle of its own with twice the original per iod . 

This  causes the original signal to periodically exhibi t  two pulses of 

dif ferent magnitude . Thi s  process is known in physics by the name of 

a " pitchfork bifurcation . " 8 0 
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The bifurcation process can be  seen more clearly in  phase 

space . For ins tance in the neutron-dens ity/ fuel-temperature plane 

( F igure 7 . 1 1 ) , the original limi t cycle spl i t s  (bi furcat e s )  into two . 

The tra j ectory described by the solut ion follows first the insid e 

curve and then the outs ide curve . The cycle is then repeated in a 

per iod ic fashion . The small and large curves in Figure 7 . 1 1  

correspond to the small and large pul ses in Figure 7 . 10c . 

The bifurcation of the limi t cycle implies tha t the bas ic 

period of the oscillation approximately doubles because now the 

traj ectory has to make two turns to complete the cycle . Thi s  is the 

reason why this process is al so called " per iod -doubling " bifurcations . 

Summariz ing , the bifurcation process can be unders tood as an 

ins tability of the l imit cycle  ampli tud e  when a parameter , k ,  is  

increased . For  a crit ical value of the parameter , the amplitud e beco­

mes uns table and it oscillates , but it remains bounded due to nonl i­

near ities  which force the appearance of a new limit cycle . 

At thi s moment , the process can be complica ted if the ampli­

tud e of thi s new limit cycle becomes unstable at some value of k and 

itself describes another limit cycle ( in thi s  case this would be a 

limit cycle of the ampl i tude of the limit cycle described by the 

amplitud e  of the original limit cycle ) .  In fact , the equations repre­

sent ing our model have thi s behavior and produce this new bifurcat ion . 

The time traces and neutron-d ensity/ fuel-temperature phase-space pl o ts  

are shown in  Figure 7 . 12 for  the three cases cons id ered so  far . 
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We observe tha t for the latter type of limi t cycle , the tra jecto ry 

describes four full turns in phase space be fore it clo ses on it self , 

thus , it has a period four times as large as the original . 

7 . 4 . 3  Aperiod icity : Strange At tractors 

The bi furcation process described in Section 7 . 4 . 2  cont inues 

as the value of k is increased further . The ampli tude o f  each new 

l imi t cycle becomes uns table at critical values of  the feedback gain , 

kj , and a new cycle of twice the period appears . This  effect is 

described in the li terature as a " cascade of period-doubling pitchfork  

bi furcat ions " and it can be  visual ized in  the bifurcation diagram 

presented in Figure 7 . 1 3 .  In thi s diagram the maxima and minima o f  

the oscillation are plo tted for several values k .  

In the reg ion k < k 0 the model is stable and the maxima and 

minima coinc ide wi th the equilibrium po int . Between k0 and k1 the 

equil ibrium point is unstabl e  but a limi t cycle exists wi th amplitud e 

def ined by the maxima and minima of the oscillation . \�hen k equal 

k l the amplitude of the original limi t cycle becomes uns table and a 

new limit cycle wi th two maxima and two minima appears ( see Figure 

7 . 12 ) .  The two maxima are represented in Figure 7 . 1 3 by the two 

points in the upper branch of the diagram .  When the value of  k is 

increased over k2 , this  two-turns limi t cycle becomes uns table ( i . e . , 

its  magni tud e does ) and a new four-turns limi t cycle appears . 

In this  region (k2 < k < k3 ) there are four maxima , repre­

sented by four po ints in the bifurcation diagram . In essence , at 
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every cri tical value , kj , each of the branches in  the diagram spl its  

(b ifurcate s )  into two new branche s .  

As seen in the insert in Figure 7 . 1 3 ,  the cri tical values ,  

k j , occur at shorter interval s as j increases . In fact , we observe 

a geometric rate of convergence ; that is , the dis tance between two 

consecut ive critical values is decreased by a fac tor Oj 

kj - kj-1 
( 7-9 ) 

This  implies that the critical values ,  kj , converge to an accumulat ion 

po int , k� , beyond which the limit cycle has bifurcated an infinite 

number of times and , thus , its period is inf ini te . The solution of 

the system of equations represent ing the present BWR mod el is , con­

sequently , aperiodic (nonper iod i c )  for values of k greater than the 

accumulation po int , k� · 

In the aperiod ic regime (k  > k�) the trajectory descr ibed by 

the solution stays bounded within a region of phase space , but it 

never converges to a closed curve or to an equilibrium point . This 

type of solution is called in the literature a "strange attractor '' 8 0 

because this region in phase space attracts the tra j ectories toward s 

it but once insid e , all the tra jectories repel each other so that 

there is no t a final closed curve that could maintain an equil ibrium 

cond it ion . A si tuation similar to thi s  has been pos tulated to explain 

turbulence phenomena . 8 1 
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In  the bifurcation diagram of Figure 7 . 13 the aper iod ic region 

starts  at a k slightly larger than k3 • Periodic windows can be iden­

tified in the middle of thi s region . For ins tance , there is a window 

of period ic ity at about k = 1 . 7k 0 • Thi s  window corres pond s  to a l imit 

cycle of period 3 ( i . e . ,  it makes three turns before clos ing on 

itself ) .  This windows degenerate into aperiod icity through the same 

cascad e  of period-doubling bifurcat ions pro cess described before . 

Limit cycles of per iod 3 x z j appear after each successive bifurcation . 

The bifurcation process can al so be ob served in the frequency 

domain . Figures 7 . 14a through f present the power spec tral densi ties 

of the fully developed limit cycles at dif ferent levels of the bifur­

cation . Figure 7 . 14a correspond s  to the first limit cycle with the 

hase period . Only the main re sonant frequency can be observed . As 

the gain of the feedback is increased , the first bifurcat ion occurs ; 

this appears as the first subharmonic in the frequency domain (Figure 

7 . 14b ) .  Limit cycles of period 2 2 , z 3 , and 2 4 are presented in 

Figures 7 . 14c , d ,  and e respectively .  Finally , Figure 7 . 1 4f contains 

the PSD of a limit cylce in one of the windows of periodicity . In 

this case , thi s  cond ition correspond s  to a period of 3 x z 2 times the 

original period . 

7 . 4 . 4  Universal Nonl inear Behavior in BWRs 

Within the precision of the present numerical analysis , seven 

bifurcations were observed before the aperiod ic region was found . The 

last periodic solution ident ified made 2 7  = 128 turns in phase space 
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before closing itsel f . This  co rre spond s  t o  128  d i f f erent peak he ights 

in the time trace . The extrapo lated value o f  k� was k� = 1 . 6 1 8 l lk0 • 

Table 7 . 2  presents the calculated cri t ical values  of kj /k 0 along wi th 

the cons tants 6j and aj def ined in Chapter 7 .  

Cycle 
j 

0 
1 
2 
3 
4 
5 
6 

� 

ESTIMATION OF 

Period Crit ical 
2 j values 

1 1 . 000000 
2 1 . 470000 
4 1 . 584000 
8 1 . 610300 

16  1 . 6 1 6500 
32  1 . 61 7750  
64  1 .  6 1 80 2 5  

1 .  6 1 8 1 1  a 

a extrapo lated 
b Reference 82 

Table 7 . 2  

THE UNIVERSAL CONSTANTS 6 AND a 

bi furcation 
kj /k0 6j aj 

± 0 . 002  
± 0 . 00 1  4 . 123 ± 0 . 126  1 . 09 5  
± 0 . 0001 4 . 335  ± 0 . 29 5  2 . 207 ± 0 . 097 
± 0 . 0001 4 . 242 ± 0 . 314  2 . 39 1  ± 0 . 332  
± 0 . 00001 4 . 960 ± 0 . 596  2 . 46 5  ± 0 . 154 
± 0 . 000005 4 . 545 ± 0 . 648 2 . 5 17  ± 0 . 094  

4 . 6692 • . •  b 2 . 50 2 9  . • •  b 

Feigenbaum ' s theory8 2 , 8 3 pr edicts  tha t as j tend s to inf i-

nity , 6j and aj tend to the unive rsal cons tants 6 4 .  6692  . . . ( the 

convergence ratio ) and a = 2 . 502 9  • • •  ( the pitchfork scal ing 

parameter ) . These values are given toge ther with the value 

( calculated by extrapolation) of the accumulation point k� , in the 

last row of Tab le 7 . 2 .  Overall , there is good agreement be tween 

the se theoret ically pred ic ted values for 6 and a , and the cal culated 
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6 j  and aj . This fac t ind icates that  the present model of a BWR 

behaves in the nonlinear domain in the universal fashion pred icted 

by Feigenbaum ' s  theory . Many other physical sys tems have the same 

universal behavior ; among them are : weather equations , transition 

from laminar to turbulent flow , nonl inear oscillators , nonlinear 

opt ics , etc .  

7 . 4 . 5  The Po incare Map 

Feigenbaum ' s theory 8 0 • 8 3 was develo ped for noninvertible 

unid imens ional maps of the form 

( 7 - 1 0 )  

f o r  which the value o f  the dependent variable ,  x ,  depend s only on 

the value of itsel f  in the previous time step . For instance , as 

shown in Chapter 6 ,  the map 

( 7-1 1 )  

has the same univer sal behavior as the BWR mod el we are studying . The 

first bi furcation in this simple map occur s at b 0 = 0 . 7 5 .  For values 

greater than b 0 there is a cascad e  of period -doubl ing bifurcat ions . 

The cri t ical po ints converge to the accumulation po int boo = 0 . 892 , and 

for values of b greater than boo the solut ion is aperiod ic . The 

convergence rat io , 6j , and the pi tchfork scal ing parameter , aj , con­

verge to the same universal cons tants 6 and a as our BWR model when 

operating in the nonlinear region . 

A way to relate the solution of  a system of equations wi th a 

one-dimensional map is to create the so-called Po incare map . 8 °  For 
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this purpo se the tra jectory in phase space described by the solut ion 

of the set of different ial equat ions is intersected wi th a particular 

surface . In thi s  way a set of po ints are ob tained every time the 

tra jectory intersects the surface in a pred etermined direct ion . 

A Po incare map for the solut ion of our model can be obtained 

by selecting the consecutive maxima of the neutron densi ty time 

trace as the series of points def ined by the map . Thi s  is equiva-

lent to select ing as Poincare sur face of intersection 

dn 
= 0 

d t  ( 7-1 2 )  

which defines a four-d imensional hypersurface ( in five-dimens ional 

phase space ) .  The maxima and minima of n( t )  lie on thi s  surface . 

Once the series of consecut ive maxima has been obtained , the 

Poincare map can be formed graphically by plo t t ing each maximum of n 

ver sus the previous maximum . In this way we are drawing the func tion 

F ( xk) of Equation ( 7-7 ) . The resul ts  of thi s process are shown in 

Figures 7 . 1 Sa through c for three dif ferent values of k :  

( a )  k = 1 . 6 1803k 0 , which correspond s  to a period ic solution with 

2 7  = 128  turns ; ( b )  k = 1 . 6 Sk 0 , which is at the beginning of the 

aperiod ic reg ion ; and ( c )  k = 1 . 8k 0 , which is in the well-developed 

aperiod ic region . 

In case ( a )  the solution is periodic ; therefore , there are 

only 128  different magni tudes  of the pulses in the neutron time trace 

and , consequentl y ,  only 128 point s appear in the Po incare map . The 

whole map canno t be defined . Never theless , it is clear that the line 
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on which these po ints lie i s  smooth and has a quadratic extremum ( an 

extremum is quadratic if the funct ion and its der ivative are 

cont inuous ) .  The map is clearly noninvert ible because there are two 

po s s ible values of n( j )  given n( j+l ) . Fur thermore , it has the 

stretching and fold ing capab i l i t ies  described in Reference 80 

nece s sary for chaot ic ( or aperiod i c )  behavior . The fac t that the 

Poincare map of the solution of the present model sat i s f ies the above 

cond i t ions is the reason why Feigenbaum ' s univer sal ity propert ies are 

satisfied . 

In the aperiodic  region , however , the Po incare map is not as 

simple ( see Figures 7 . 1 Sb and c ) . It d isplays unexpected foldings , 

ind icat ing that a double-valued relat ion might exist  between 

successive maxima . This double valuedness , though , is illusory : 

an examination of  the dynamic· evolution of the relation be tween 

successive maxima reveals the exi stance of hys tere sis , in that the 

solution evolves either on the lower or on the upper branch accord ing 

to whether the magnitudes of preced ing maxima form an increasing or a 

decreasing sequence . This  hysteresis indicates that a many-term 

recursion relat ion is needed to represent the behavior  of thi s  BWR 

model in the aperiodic region . 

7 . 5  Stochas tic Numerical Analys i s : Nonlinear Noise in BWRs 

Section 7 . 4  has dealt exclus ively wi th a det erminis t ic analy­

sis of the nonl inear behavior of BWRs . In this sec t ion we study the 
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effect  of nonl inear ities on the behavior of  the reactor under 

stochastic  ( random) excitations ( sources ) .  For thi s  purpo se , the 

model was externally driven with a band-limited Gaus sian whi te noise , 

and the equat ions were solved numerically in the time domain us ing an 

A-stable rout ine . l O O  

Two parameters were varied : the feedback gain , k ,  and the 

variance of the driving noise  source .  The generated power traces , 

n ( t ) , were Fas t Fourier transformed to obtain power spectral densities  

( PSDs ) .  The development of the limit cycle in the time domain is  

shown in  Figure 7 . 16 ,  where the envelopes (maxima and minima ) of the 

o scillation are plo t ted as a function of time for three different 

values of the no ise-source variance . For this  figure , the sys tem was 

held originally at the unstable equilibrium po int . At time t = 0 

a zero-mean whi te noise was applied . The amplitud e of the oscilla­

tions increased init ially until it reached a limit cycle .  The ampli­

tude of these limit cycl e  oscillations is ind epend ent of  the magni tude 

o f  the driving noise  variance as expected . 

The study of the effects  of the feedback gain on system beha­

vior shows that for stable systems , k < k0 , the neutron PSD exhib i t s  a 

singl e  peak at the reactor characteristic frequency of  oscillation as 

predicted by l inear stud ies ( see Chapter 4) . However , as k approache s 

k 0 whil e  maintaining the driving-source variance constant , the PSD 

d evelops peaks at the harmonics of this fundamental frequency . For 

k > k 0 , the power oscillations increase in time and eventually reach 
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Figure 7 . 16 Envelopes of the development of a limit cycle  in the 
presence of no ise . ( a )  10- l  noise  variance . 
( b )  10- 3  no ise var iance . ( c )  10- 5  no ise var iance . 
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a limit cycle ,  wi th an enhancement of the harmonic components of the 

PSD as seen in Figure 7 . 17 .  This figure shows three PSDs for 

d if ferent values of  k .  In cas e ( a )  the model is barely stable and 

only the fundamental peak is clearly discernible at about 0 . 4  Hz . 

Case ( b )  represents a small ampli tude limit cycle , for which the value 

of k is only slightly above the critical value , k 0 • Case ( c )  

correspond s  to a fully developed large ampli tude limi t cycle . The 

main dif ference between the stable and the uns table PSDs is the 

appearance of higher harmonics . These harmonics have a strong magni­

tud e and they should be measurable in real-life experiments in which 

measurement and process noi se are present . 

One of the consequences of the appearance of a limit cycle in 

a reactor is an increase of the variance (no i s iness ) of the neutron 

density  as seen by the in-core neutron detectors . However , an 

increase in neutron no ise variance could also be due to an increase in 

the noise  of other variables , flow for ins tance , which in turn drives 

the neutronics . It  is of interest to be able to d i s t inguish between 

the se two kind s of no ise increases , because dif ferent correc tive 

ac t ion might need to be taken depend ing on the cause . For example , if  

the increase in noise is due to  an instabil i ty ( i . e . ,  the appearance 

of a limi t cycl e ) ,  the reac tor can be made more stable by increas ing 

the flow rate through the core and , thus , eliminate the extra noise . 

However , if the increase in noise is due to a pump malfunc t ion,  which 

cause s  flow noi se , an increase in flow would only make the problem 

worse . 
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Pigure 7 . 17 Power spec tral dens i t ies before and after the 
development of a limit cycle . ( a )  Slightly stable . 
( b )  Slightly uns table . ( c )  Fully developed 
limi t cycle . 



181  

Thi s  problem is a present concern wi th regard to  BWR single 

loop operation . When some reactors are operated wi th a single pump 

and above 40% of rated flow , there is an increase in neutron noise , 

which at the moment is unexplained . It is necessary to develop a 

technique to differentiate between the two scenarios previously 

presented . 

The present mod el was used to generate neutron dens i ty time 

traces for a stable and an unstable cond it ion . The variance of the 

imput no ise source was ad justed in order that the variance of the 

output neut ron noise  be of the same order of magnitude in bo th cases . 

The result ing time traces are presented in Figures 7 . 18a and b .  

Al though there are obvious differences between the uns table reac tor 

cond i t ion (a) and the stable one ( b ) , it is no t easy to determine if 

case (a) is really a limit cycle or no t .  A simple , more sens i t ive 

technique is required to differentiate the mod e of operat ion . 

Figures 7 . 19a and b contain the PSDs of the time traces for the two 

above cases . Here the differences are more obvious . In case ( a ) , 

where the reactor is uns table , the character i s t ic peak at about 0 . 4  Hz 

is very sharp . The main difference , however ,  is the appearance of 

high harmonics in the neut ron PSD . Case (b) , the stable cond i t ion , 

also has harmonic contaminat ion , due to the large amplitude of the 

no ise , but since the peak is wider , thi s contaminat ion is not as 

ohvious as in case  (a) . Furthermore , in a . real-life measurement it 

would be impos s ible to dist ingui sh harmonic contamination from the 
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Figure 7 . 18 Comparison be tween limit cycle oscillat ions anJ 
ext ernally- induced noise in the time domain . 
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( a )  Externally-induced no ise 
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Figure 7 . 19 Comparison between limi t cycle oscillations and 
externally- induced no ise in the frequency domain. 
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measurement and process no ise . In summary , we have seen that if large 

amplitude oscillat ions occur , nonlineari ties appear as harmonic 

contamination in the neutron PSD . If  the oscillations are due to the 

appearance of limi t cycles , the harmonic contamination is easily 

distingui shable from the background noise  and it shows as sharp peaks 

at harmonic frequencies of the charac ter i s t ic peak . Thi s  technique , 

then , can be used to different iate between limit cycle oscillations 

and increased no ise  source variance . 



CHAPTER 8 

A MORE COMPLETE NONLINEAR MODEL 

The model used in Chapter 7 was simple enough to allow a 

detail ed parametric study and even some analyt ical result s .  However , 

it  had some serious res trictions ; the most impo rtant one being the 

fact that we as sumed a linear thermohydraul ic feedback . Thi s  as sump­

tion is based on the fact  that the fuel element filters out mos t  of 

the heat  generation changes at the frequencies of interest . Indeed , 

only about 10% of the heat generated in the fuel is trans fered to the 

coolant at 0 . 5  Hz ; and at that same frequency , only about 3% of the 

generated heat  produces changes in the average void frac tion in the 

core . 

The feedback parameters used in the model of Chapter 7 were 

obtained from a fit to the results  of a LAPUR4 8  run for which the 

reac tor was close to instabil ity . Thi s  mod el is suppo sed to work 

properly only for small changes of these parame ter s .  In this chapter 

we wil l  develop a nonlinear model for BWR dynamics which is entirely 

based on fir st  principles and which maintains all nonlinearities . 

The model wil l  then be applied to a reactor wi th cond i t ions close to 

test 7N of the Vermont Yankee low flow stabil i ty tes ts 5 8  with the goal 

of obtaining quantitative results . 

1 8 5  
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8 . 1  The Mod el 

8 . 1 . 1  The Neutron Field 

The point-kinet ics approximat ion was used to represent the 

neutron dynamics 

dN 
= tl N + A.C d t  A 

dC  
= f N - A.C 

d t  A 

( 8-1 ) 

( 8-2 ) 

We define normalized neutron densi ty and precursor concentrations as 

n ( t )  = ( N ( t )-N 0 ) / N0 

c ( t )  = ( C ( t ) -C 0 ) /N 0 

The equations become 

dn 
= tl n + A.c + £. 

d t  A A 

de 
= f n - A.c 

d t  A 

( 8-3 ) 

( 8-4 ) 

( 8-5 ) 

( 8-6 ) 

Note  that the reac t ivity feedback appears as a parameter in 

Equa t ion ( 8-5 ) ; since the dynamic react ivity is a funct ion on n( t ) , 

this equat ion is nonl inear . This was the only nonl inearity considered 

in Chapter 7 and caused all the effects presented previous ly . In this 

model , however , we will  cons ider the feedback nonl inearities al so . 

8 .  1 .  2 The Fuel 

Assuming only rad ial conduc t ion , the equation governing the 

temperature distribut ion within the rod is 

pep 
oT = Q + .!:_ � ( rk 

oT
) 

ot r or or 
( 8-7 ) 
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This  equation is  linear in T except for the dependence of  

the conductance , K,  on the temperature . Assuming that K is constant , 

we can apply a procedure similar to the one used in Section 4 . 4 . 1  to 

define average fuel and clad temperatures ,  which we name Tf and Tc 

respectively .  The result ing equations are 

dTF 2 < pc >F - = <Q>F + - k oT I p dt  rF or  r=rF 
dTc 2rc oT I < pcp>c � = 2 2 k � r=r -

rc -rF c 

with boundary conditions 

koT I = - h(TF-Tc ) or r=rF 

( 8-8 ) 

( 8-9 ) 

( 8-10 ) 

( 8-1 1 )  

where h i s  the effective fuel-to-clad gap heat transfer coefficient 

and U is the effective overall heat transfer coefficient between 

clad and coolant . Ts is the coolant temperature , which we will 

assume constant and equal to the saturation temperature all along 

the channel . The final equations are 

( 8-12 )  

Typical values of the constants involved are shown in 

Table 8 . 1 .  The values of h and U are obtained from a fit to the LAPUR 

fuel transfer function calculated for the conditions of interest .  
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Table 8 . 1  

TYPICAL VALUES OF THE CONSTANTS IN THE FUEL EQUATIONS 

Constant Value Units 

rf 0 . 00503 m 
rc 0 . 00601 m 

<pcp>f 3 . 125 xl06 J/m3K 
<pep> c 15 . 18 xl0 6 J/m3K 

h 1 . 827 xlo 3 J/m2Ks 
u 0 . 103 xl0 3 J/m2Ks 

The heat generation within the fuel is proportional to n( t )  

<Q>F = P n( t )  ( 8-14 )  

where the coefficient P depend s on the steady state power N0 • For 

the values of the constants in Table 8 . 1 and the parameters of the 

Vermont Yankee reactor , the total heat transferred to the coolant per 

unit length of fuel is given by the expression 

�Q ' ( J /ms ) = 8 . 87 6  x 108 �Tc (K)  . ( 8-1 5 )  

The above two expressions provide the coupling between the fuel and 

neutronics and thermal-hydraulics equations respectively .  

8 . 1 . 3  The Channel Thermal-Hydraulics 

Neglecting acoustic phenomena , 29  the one-dimensional channel 

equations (mass ,  energy , and momentum) can be writen as 45  

( 8-16 )  

Q '  ( 8-1 7 )  



where 

x ,  <Il2 , 

op 
= � 

oG 
ot 

1 0 - - -
2 oz 

189 
[ ( 1-x) 2G2 + x2c2 ] 
P1 ( 1-a) Pga 

G = Coolant mas flux in Kg/m2s 

a = Void frac tion 

X = Steam quality 

p = Pressure in N/m2 

Pg = Saturated steam density in Kg/m3 

Pl = Saturated liquid density in Kg/m3 

hg = Saturated steam enthalpy in J/Kg 

hl = Saturated liquid enthalpy in J/Kg 

f = Single phase friction coefficient 

�2 = Mart inelli-Nelson correction factor 

for two-phase flow pressure drop 

Q Jones correction factor 

D = Equivalent flow diameter in m 

Ki = Concentrated pressure loss  coefficients 

Q '  = Heat transferred per unit length of fuel 

and Q are functions of the void fraction , the 

pressure , and the flow rate . 

( 8-18 )  

operating 

Equations ( 8-16 )  through ( 8-18 )  are a set of partial differen-

tial equations . We will  eliminate the space dependence by integrating 

over finite nodes . In this way a set of ordinary dif ferential 
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equations for the nodal variables is obtained . For this purpose , we 

apply the operator 

( 8-19 ) 

to Equat ions ( 8-1 6 )  through ( 8-1 8 ) . Def ine the nodal variables as 

1 zi Q · ' ( t )  = -- J Q ' ( z , t )  dz 1 t.i zi-1 

1 J
zi 

Pi ( t )  = � p( z , t )  dz 
i Zi-1 

Equation ( 8-1 6 )  becomes 

using Equat ion ( 8-24 ) ,  Equat ion ( 8-17 ) becomes 

oai Qi ' - (h1-hg ) G( zi_1 ) [x( zi )-x( zi_1 ) ] /t.i 
� = 

[ pghg-plhl ]+[h1 ( 1-x( zi ) )+hgx( zi ) ] ( pl-Pg ) 

The momentum equation becomes 
oGi [ ] p ( zi_1 ) = p (zi ) + t,i� + EC ( zi )-EC ( z i_1 ) 

Ko 
+ t.i [ ( 1-ai ) Pl+ai Pg ] + t.iFRi + 2 pl 

Go 2o ( i , 1 ) 

( 8 -2 0 )  

( 8-2 1 ) 

( 8-22 ) 

( 8-23 ) 

( 8-24 )  

( 8-2 5 )  

( 8-2 6 )  

where EC ( z )  and FRi are the kinet ic and frict ion terms respectively , 

and given by the expressions 
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( 8-27 ) 

Boundary cond itions are 

p ( z=H , t )  = p 0 , ( 8-29 )  

because the upper plenum pressure is  held constant by  the pressure 

regulator . 

a( z=O , t )  0 ( 8-30) 

The coolant at the inlet of the channel is assumed at saturation 

temperature , but all in liquid phase . The last boundary condition is 

G ( z=O , t )  = G 0 ( t )  ( 8-3 1 )  

where G 0 ( t )  is determined by the recirculation loop dynamics ( see 

Section 8 . 1 . 4 ) . 

The initial conditions are 

a( z , t=O ) = a0 ( z )  ( 8-32 ) 

G ( z , t=O ) = Go ( 8-3 3 )  

p ( z , t=O ) = Po ( z )  ( 8-34 ) 

and they are determined by the steady state equations . 

The numerical procedure of solution of these equations is : 

( a )  At each time step Equation ( 8-25 ) is solved to obtain the 

new value of the nodal void fract ion . 

( b )  The new mass fluxes are calculated from Equation ( 8-24 ) 

( c )  The pressure distribution along the channel is calculated 

using Equation ( 8-26 ) starting from the boundary condition 
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p(H) = p0 • This procedure yields the lower plenum pressure , 

which determines the pressure drop across the channel . This 

pressure drop is the input to the recirculation loop equations 

which in turn determine the inlet mass flux rate , G0 ( t ) . 

8 . 1 . 4 The Recirculation Loop 

The recirculation loop is formed by the upper plenum , the 

s team separators and dryers , downcomer ,  jet pumps ,  and lower plenum . 

A complete model of this system would be extremely complex . We will 

treat it  as a single path of fluid with variable flow areas but 

constant mass flow rate ( i .e . ,  incompressible flow) . It is convenient 

to rewrite momentum equation in terms of flow areas , A( z ) , and a 

constant flow rate , w,  instead of mass flux , G .  

- op  = � (w ) + !. � (�) + Plg + � ( &f ) at at A A oz p1A oz 

where &f represents the integrated friction losses and can be 

( 8-3 5 )  

considered proportional to w2 • Note that A depends on z but no t on 

t ,  whereas w depends on t but not on z . Integrating over the path of 

the recirculation loop we obtain 
L ow w2 p -p = (-) - + --1 2 A at z p1 

where we define 

Defining 

(A
L )= J2

l -.,--1,---,- dz A( z )  

H z l-z 2 

( 8-3 6 )  

( 8-3 7 )  

( 8-3 8 )  
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and 

the equation becomes 

(L )  ow = [ Cp -p )+pgH ] _ w2 [ __ 1 __ (--1-- _ __ 
l 

__ )+k ]  A ot 1 2 2 p1 A 2 A 2 

Note that in steady state , ow/ ot = 0 and 
2 1 

( 8-39)  

( 8-40 ) 

( 8-41 ) 

Substituting Equat ion ( 8-41 ) in ( 8-40 )  and considering that the mass 

flux at the inlet of the channel is 

the 

w G ( z  ) = -0 A 

recirculation loop equation becomes 
oG( z 0 ) 
ot 

This  equation relates the inlet mass  flux to the pressure drop 

( 8-42 ) 

( 8-43 )  

across the core . Consequently ,  it couples momentum equation with 

the mass and energy balances . 

8 . 2  The Program TLAP 

The above equations have been implemented in the computer 

code TLAP , which is written in FORTRAN-77 .  A listing of the program 

with a sample input is contained in Appendix D .  
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The code solves the equations in the time domain using an 

A-stable ordinary differential equation solver . l 0 6  Up to 1 2  axial 

nodes can be used to solve the channel thermal-hydraulics equations . 

The one-dimensional void reactivity feedback is calculated from the 

void fraction spatial distribution and serves as coupling between 

the channel equations and the point kinetics representation of the 

neutronic equations . The fuel behavior is represented by a two-node  

expansion , corresponding to the pellet and cladd ing , respectively,  

with explicit representation of the pellet-to-clad gap . The recir-

culation loop is also modeled as a single-node integral momentum 

equation and serves as coupling between the channel pressure drop 

and the inlet mass flux . 

Several empirical correlations are used in the code . All of 

them are based on the cor-relations used by LAPUR 48 for cons istency . 

The slip ratio is computed using the modified Bankoff 

empirical correlation determined by A .  B .  Jones . l ?-2 2  In  the bulk 

boiling region , which is the case in all our channel , the correla-

tion becomes 
1 - a: s = ------------------

ks - a: + ( 1-ks ) a:r ( 8-44 )  

where ks and r are functions o f  the operating pressure . 48 Their 

nominal value at 1000 psi is ks = 0 . 8  and r = 3 . 97 .  

I.-lith the slip ratio and the steam quality known , the void 

fraction , a:, is given by the expression 
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( 8-45 ) 

The two phase pressure drop is normally relateo to the 

single phase pressure drop through a multiplier coefficient . The 

Martinelli-Nelson correlation l 0 0  is the one most commonly used . 

LAPUR uses a polynomial fit valid for steam qualities less than 0 . 7  

( a  typical BWR exit  quality is 0 . 15 ) . In this code we used only the 

first coefficient of the polynomial as an approximation . In this 

way , 

�2 = 1 + 30x ( 8-46 )  

This  expression approximates LAPUR ' s  correlation to within ±5% up to 

steam qualities of x = 0 . 8 .  

Jones 1 7-2 2  calculated a correction factor for the 

Martinelli-Nelson coefficient which depends  on the flow rate and 

pressure . For the nominal operating pressure , the Jones correction 

factor can be approximated as 

Q = 1 . 9  - 5x1o-4 G ( 8-47 )  

where G is the mass flux in Kg/m2s .  

The single phase friction coefficient , f ,  can be considered 

constant in the turbulent region ( a  typical BWR Reynolds number is 

70000 ) .  The value of f for a typical new fuel element is f = 0 . 01 9 .  

A multiplier factor of 1 . 4  i s  applied to account for aging and curd 

deposition processes which increase the friction . 

The density reactivity feedback is calculated as a weighted 

integral of the density reactivity of each ind ividual node .  The 
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density reactivity coefficient for each node is  calculated as a 

function of the void fraction . A second order polynomial was fi tted 

to the density reactivity coefficient calculated from a void depen-

dent two-group cross-section set . 6 3 The resulting correlation is 
d p 

= -o . l08 - 0 . 207 a + 0 . 140a2 - 0 . 1 3 5a3 
d a  

where p is measured in absolute units  ( i . e . ,  p = �K/K . )  

8 . 3  Application to a Typical BWR 

( 8-48 ) 

The condi tions of test 7N in the Vermont Yankee low-flow 

stability test s 5 8 were modeled using the code TLAP . The input parame-

ters were extracted from the results  of a detailed LAPUR calculation . 

Then , the density react ivity coefficient was ad justed by a factor of 

0 . 97 so that the inception of the limit cycle oscillat ions would 

correspond approximately to the conditions of the tes t . Once the 

effective model parameters were determined , the operating power and 

flow were changed to study the dynamic behavior of the reactor over a 

wide operating range . 

8 . 3 . 1  The Limit Cycle 

A typical limit cycle produced by TLAP is shown in Figure 8 . 1 .  

In figure 8 . 1a ,  the power time-trace , n( t ) , is presented as it develops 

a limit cycle from equilibrium . Once the limit cycle is reached 

( Figure 8 . 1b )  the power oscillates between 30 and 1 20% . Therefore , 

these operating conditions ( 64% power and 32% flow) would not cause an 
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automatic scram on high power . These results show that large 

amplitude limit cycles are possible in BWRs . Figure 8 . lb presents a 

detail of the oscillations . We can observe that they have the main 

characteristics found in the oscillations of the simpler model of 

Chapter 7 ;  that is , the peaks are sharp and the valleys of the 

oscillation are smooth . This tends to indicate that , similar to the 

model in Chapter 7 ,  the main nonlinearity causing the limit cycle 

phenomena is the parametric reactivity feedback in the point kinetics 

equation . 

The oscillations around the equilibrium point of the main 

variables involved are presented in Figure 8 . 2 .  This  figure 

corresponds to 64% power and 32% flow operating conditions once the 

limt cycle has been reached . We observe similarities between the 

results of this model and the ones in Chapter 7 .  The neutron time 

trace is formed by a series of sharp peaks followed by some valleys 

that are relatively flat . During the peaks , the fuel temperature 

rises and then slowly cools down by transferring energy to the 

coolant . At this moment of the cycle , the void fraction starts 

increasing until the convection cooling takes over and makes the void 

fraction oscillation negative . At this moment the reactivi ty feedback 

becomes positive and a new neutron pulse occurs . The oscillation in 

downcomer pressure seems to follow the void frac tion with a phase lag . 

The mass flux follows the downcomer pressure . Since the upper plenum 

pressure is kept constant by the pressure regulator control system , 
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then if the lower plenum pressure is negative , the recirculation mass 

flux increases . Hence , we conclude that the average void fraction 

oscillation and the associated react ivity feedback is the rlriving 

source which determine the frequency of the pulses . 

The phase space plots (Figure 8 . 3 )  show the limit cycle and 

the relation between variables in more detail . The plot of n versus 

dn/dt (Figure 8 . 3a )  is very similar to the one in Chapter 7 as is the 

plot of n versus T (Figure 8 . 3b ) . The plot of n versus the average 

channel void fraction (Figure 8 . 3c )  shows a high correlation of these 

two signals , which are in phase ;  however ,  contrary to the results of 

Chapter 7 ,  the average a here is not the reactivity feedback , because 

the reactivity is weighted by the square of the power . This is the 

reason for the difference between this plot and the one in Chapter 7 .  

The rest of the phase space plots  in Figure 8 . 3  show the relationship 

between the different process signals .  The most interesting of these 

relations are average void frac tion versus pressure (Figure 8 . 3g )  and 

mass flux versus pressure (Figure 8 . 3i ) . Here we see the nonl inear 

relationship between void fraction , mass flux , and pressure . If the 

relationship were linear , then the phase space plots would be perfect 

elipses . 

8 . 3 . 2  Space Dependence of the Void Fraction Oscillations 

The reactivity-type instability is also referred to in the 

literature as a density wave instability .  Whenever there is a pulse 

in the power , a density perturbation is produced which travels upwards 
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Figure 8 . 3  Phase sp�ce representation of the reactor limit cycle . 
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through the channel as a wave . We showed in Chapter 4 that the 

reactor instability is caused by the way in which this wave is 

weighted to obtain the global reactivity feedback . 

A three-dimensional representation of the density wave as 

calculated by TLAP is presented in Figures 8 . 4a and b from two dif-

ferent perspectives . We observe that as a function of time , there is 

a buildup of void s in the lower part  of  the channels . The transport 

process of the density wave tilts the void fraction axial shape 

upwards until eventually the perturbation is eliminated and the 

process repeats itself . The evolution of the void fraction axial 

distribution can be seen more clearly in Figure 8 . 5 ,  where the void 

shape is shown at various times during the oscillation . 

8 . 3 . 3  Sensitivity to Operating Cond itions 

Customarily ,  the decay ratio is used to quantify stability ;  

however , for any operating conditions in the nonlinear region the 

asympto tic decay ratio is by definition equal to 1 . 0  due to the 

appearance of limit cycles . An alternative parameter is therefore 

needed to describe the dynamic behavior of the reactor in this 

region . Our research indicates that the parameter best suited for 

this purpose is the amplitude of the oscillat ions . 

Figure 8 . 6  shows the contours of constant decay ratio in the 

stable region ( stable ) and contours of constant oscillation ampli-

tude in the nonlinear (unstable ) region . This figure indicates 

several facts : 
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( a )  The oscillation ampl itude  appears to  behave in the nonlinear 

region in a similar manner than the decay ratio in the linear 

region . 

( b )  The decay ratio and oscillation amplitude are more sensitive 

to flow changes than to power changes . 

( c )  Large amplitude  limit cycles are possible in nonlinear 

BWR operation . 

( d )  The limit cycle amplitude is very sensitive to changes in 

operating conditions . 

The last point is better seen in Figure 8 . 7 ,  which presents 

the oscillation amplitude as a function of power along the natural 

circulation line ( 32% flow) . The limit cycle appears at 5 6 %  power 

and the oscillation reaches the 120% high power safety trip point at 

about 64% power . 

8 . 3 . 4  Limit Cycle Stability 

For all the cond itions studied in section 8 . 3 . 3  ( see 

figure 8 . 6 )  the calculated limit cycles were stable . When the power 

was increased further or the mass  flux decreased , then the bifur­

cations and aperiodic behavior described in Chapter 7 were observed . 

Unfortunately, at the high power required for the bifurcat ions ( for 

instance 120% power at 32% flow , ) the large power oscillations caused 

the flow in the channel to be of saturated steam at some nodes during 

the high part of the oscillation . This  effect produced in the present 



N 
w 
0 
::J ..__ � 
_j 
Q_ 
L: 
([ 
z 
0 
� 
..__ 
([ 
_j 
_j 
� 
u 
({) 
0 

150 

100 - ·  . . . . . . . . . . . . . . . . . . . . . .  . 

S
lil
t 

. . . . : . . . . . . . . . . . . . .  : . . . . . . . . . . . . 

0�------------------------------------� 
5 0  5 5  6 0  6 5  7 0  

POWER % 

Figure 8 . 7  Sensitivity of limit cycle amplitude to power along the 
natural circulation line . 

N 
...... 
...... 



2 1 2  

model that the steam qual ity b e  greater than 1 . 0 ,  becaus e the mode l  in 

the present state can not hand le supersaturated steam . For this 

reason , bifurcat ions and aperiod ic behavior were no t stud ied with the 

present model . 

Nevertheless , the mod el resul ts  showed tha t for al l probable 

modes o f  operation of  a commercial BWR the limit cycles wil l  be 

stable and the solut ions will  be period ic . 



CHAPTER 9 

CONCLUS IONS AND RECOMMENDATIONS 

During the course of this research BWR dynamic behavior from 

the linear and nonl inear po ints of view has been stud ied . Several 

reduced order models have been developed as an aid for the iden­

tification of physical processes , which have been assoc iated wi th 

observable reactor features .  As a result of thi s  research an 

understanding of the linear and nonl inear behavior of thi s  type of  

reac tors has been obtained . In  par t icular , the quest ions about wha t 

to expect from nonl inearities in BWR operation and when to expect it 

have been addres sed . Finally , new methods have been developed for the 

study of BWR stab il ity in both the linear and nonlinear regimes . The 

main accomplishements of thi s d issertation are highl ighted in 

Section 9 . 1 .  Recommendations for future work in this area are given 

in Section 9 . 2  

9 . 1  Accomplishments 

The main accomplishments of thi s research can be summarized 

as follows : 

9 . 1 . 1  Features of the BWR Transfer Func tion 

The pole-zero conf igurat ion of the reac tivi ty-to -power 

transfer funct ion of BWRs has been stud ied . It has been determined 

that an opt imal model mus t contain three zeros and four poles to 

properly represent the BWR dynamics . One of the zeros is real and 

2 1 3  
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located at  low frequency ( about 0 . 03 Hz ) ;  the other two zeros are 

complex and have a frequency of approximately 0 . 5  Hz . Two of the 

poles are complex with a frequency in the vic ini ty of 0 . 5  Hz ; the 

other two poles are real , one of them is located at a frequency of  

about 20  Hz  and the other is  close  to  the complex poles ( about 

0 . 3  Hz ) .  Hence , an important conclusion of thi s work is tha t empi ri­

cal fits to BWR reactivity-to -power transfer funct ions should contain 

at least three zeros and four poles . No te , however , tha t in the low 

frequency range ( < 1 0  Hz ) ,  a 3-zero s / 3-poles model should suffice . 

9 . 1 . 2  As sociation of Features with Physical Processes 

The poles and zeros of  the reac tor transfer funct ion have 

been associated wi th reac tor dynamic processes : 

( a )  The low-frequency zero is d irectly related to the heat 

transfer process between fuel and cool ant ; it ari ses  from a 

pole in thi s  open loop feedback transfer func tion . 

( b )  The pair  of complex zeros are related to the void reac t ivity 

feedback in the channel ; they are caused by a combination of 

the cumulat ive effec t of the axial void reac tivity pertur­

bat ions and the convec t ion process wi th its as sociated 

densi ty wave . 

( c )  The pair of compl ex poles are caused by the same mechanism 

as the complex zeros , as it can be concluded from the fac t 

that the ir branch in the root locus diagram starts from this  

zeros . 



2 1 5  

( d )  The high frequency pole arises from the �/A pol e  of  the 

neutron field equations . 

( e )  Final l y ,  the real pole at low frequency originates from the 

fuel dynamics , as its  branch in the root locus starts at 

the low-frequency zero . 

9 . 1 . 3  A Reduced Order Model for the Physical Proce sses 

A reduced order linear model for BWR dynamics has been 

developed . Thi s  model has been used to study the sens i t ivity of  

transfer function features ( i . e . ,  poles and zeros ) to  changes in 

operating cond it ion or variations in reactor parameters . This simple 

model accounts for the signif icant processes involved in the reac tor 

dynamic behavior . 

9 . 1 . 4  Linear BWR Stability Measurements 

An automated technique has been developed and appl ied to 

determine the stability of commercial BWRs based on the analys is of  

the ir inherent power fluctuat ions ( no ise ) .  This  technique , thus , 

avo ids the need of perturbat ive tes ts fo r thi s purpose . 

Thi s  thechnique , which was the resul t of  an improved 

understand ing of the phy sical processes  involved in the BWR dynamic s , 

has the following unique features :  

( a )  It dist ingui shes  between the asymptot ic and apparent decay 

rat io ; hence avoid ing the pitfalls incurred by previous 

me thod s .  
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( b )  I t  es t imates the maximum decay ratio of the sys tem , rather 

than the decay ratio of the pol e  wi th the smallest  real part . 

( c )  It provides  an est imat ion of the statist ical error 

arising from the stochas ticity of the no ise data . Thus , 

allowing for a mean to check if enough data have been 

collected for the measurement . 

( d )  Furthermore , it suppl ies the user wi th a confidence level 

which defines the goodness of the estimate . This  level is 

computed on the basi s  of a priori knowledge about the reac­

tor dynamics and sel f-consi stency checks . 

9 . 1 . 5  Importance of Nonlineari ties in BWR Operat ion 

It has been shown that nonlineari ties become impor tant for 

BWR operat ion when the linear stability threshold is reached , which 

may occur at low flow and high power . Thi s nonl inearities mani fest 

themselves through the appearance of limit cycles . 

9 . 1 . 6  The Causat ive Mechani sm Leading to the Appearance of the 

Limi t Cycl e 

It  has been shown that the main nonl ineari ty caus ing the 

appearance of the l imit cycle in BWRs is inherent to the neutronics 

equations , as it is caused by the parame tric nature of the reac tivity 

feedback ( i . e . ,  the pn term in the po int kinetics representa tion ) .  An 

important consequence of thi s  find ing is that limi t cycles will  always 

appear even in cases when the reactor geometrical configuration has 
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been al tered ( for  instance , a s  a resul t o f  a severe accident ) .  Thus , 

the reactor response will always be bound . 

9 . 1 . 7  The Limit Cycle in Phase Space 

The study with the more complete l inear mod el has shown the 

relat ionship between the process variab les during limit cycle 

oscillations . It  has been found that the void react ivity feedback 

defines the frequency of the limit cycle oscillation and that the 

rest of the process vari ables merely follow the reactivity feedback 

evolut ion in phase space . 

9 . 1 . 8  Ampl itude of the Limi t Cycle Oscillation 

It  has been found that , al though the oscillations are 

always bound , the ampli tude of the limit cycle may reach values above 

the threshold for automat ic scram .  In add i tion , the sens i t ivity study 

performed in this  research shows that the limit cycle ampli tude is 

very sens i t ive to plant operat ing cond i t ions . As a consequence , 

caut ion should be excerci sed in the operat ion of BWRs in the nonlinear 

regime to avo id unwanted scrams or excessive fuel temperature cycling . 

9 . 1 . 9  Stab il ity of the Limit Cycle 

I t  has been found that the ampli tude of the limit cycle 

might become unstable as the operating cond i t ions are changed . This  

ins tabil ity occurs in  the ampli tude of  the limit cycle , which produces 

a doubl ing of the basic oscillation period . Thi s  research is the 

first published reference in nuclear reactors of thi s process , which 

is  known in the literatue as a per iod-doubl ing pitchfo rck bifurcation . 
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9 . 1 . 10 Universal ity and Aperiodic Behavior in BWRs 

As a parameter is changed , a cascade of period-doubling 

bifurcat ions occurs . The cri tical values of the parameters for 

which bifurcations occur have proven to converge geometrically to an 

accumulation point . Thi s  rate of convergence and the scal ing of the 

bifurcations have been shown to sat isfy Feigenbaum ' s  universal ity 

theo ry . It  is worthwhile to note that the same univer sal behavior 

has been found in such diver se systems as weather pred ic t ion 

algori thms , transition from laminar to turbulent flow , and many more 

phys i cal processes . 

As a consequence of the bifurcation process ,  aperiod ic solu­

tions of the determinis t i c  reactor equa tions have been found for 

parameter values above the accumulation po int . Thi s resul t ,  besides 

its academic value , bears importance in the interpretation of the 

resul ts of large numerical codes  which might confuse the 

unsuspecting user wi th aperiodic solut ions . 

The results from the higher-order model , however , show tha t 

the l imit cycle is stable , and the solut ion is period ic for reasonab le 

ranges of power , flow, and pressure . That is , the period-doubling 

bifurcations and aperiod ic region , al though present , are in an extre­

mely abnormal range of operating cond it ions in commercial BWRs . They 

can be found , though , in low-pressure reactors that have a larger 

vo id react ivity feedback . 
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9 . 1 . 1 1 Nonlinear Stochas tic Phenomena 

Nonl inear noise propagation in BWRs has been stud ied . A non­

perturbat ive technique has been develo ped for detect ing the onset of 

linear instability , and thus the transition to the nonl inear regime . 

This  technique complements the linear stability measurement methodo­

logy developed us ing no ise analysis , as it gives an independent and 

rel iable evaluation for the limi t ing case in whi ch the decay rat io is 

1 . 0  ( i . e . ,  limi t cycle cond i t ions ) . 

9 . 2  Recommendat ions for Further Research 

During the course of this  research we have come acros several 

intere s t ing topics which we have not been able to pursue in more 

detail ; these can be recommend ed as areas for future studies . Mo st  of 

these topics are related to the nonl inear part  of this  research . 

We showed in Chapter 7 that some BWR designs could sus tain 

large power oscillat ions which resemble a series of  sharp pulses . 

A neutronic machine could be designed for thi s  purpose . This  would be 

a self-pul sed reactor which could supply neutron pul ses of large 

magnitude . The se large pul ses could be used for a range of  purposes , 

from cros s-sect ion measurements to nuclear-pumped lasers . The pul se 

magnitudes  could be maximized wi thout fuel mel ting if the reactor 

operated at low pressure where the densi ty react ivity coefficient is 

maximum . 

Ano ther area of further research is the study of local channel 

instabili ties . As in the case of the react ivity ins tability , these 
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types of instabil i t ies define a new area of reac tor nonl inear 

operation , where local ef fects are of importance ; for instance , a 

single channel might become uns table producing severe local damage , 

but the reactor protection sys tem would not detect it because the 

average power is no t affected in a signi ficant amount .  A study of 

these local nonl ineari t ies could yield some technique s to ident ify and 

correct thi s abnormal operating cond i tion . 
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APPENDIX A 

SOME PROPERTIES OF AUTOREGRESSIVE MODELS 

Autoregres sive or AR mod els have been wid ely used previous l y .  

There are many publications describing this methodo logy in detail ; see 

for example References 7 5  or 1 08 . In thi s appendix we present some 

properties of univariate AR mod els which are relevant to the subject  

o f  stabil ity estimation from no ise analys is . To  the knowledge of  the 

author , mos t  of these proper ties have not been published before . 

where 

A univariate AR model of order N is of  the form 

N 
x( t )  L Akx ( t-kAt ) + v( t )  

k=1 

x( t )  = Sampled signal 

Ak = Model parameters 

N = Mod el order 

v( t )  = Residual sequence 

Once the model is known , the residual sequence can be 

calculated from the expression 
N 

v ( t )  = x( t )  - L A(k)x( t-kAt ) 
k=1 

(A-1 ) 

(A-2 ) 

Having M samples of  the signal , x( t ) , we obtain the model 

parameters by minimizing the variance of the res idual . Thus , we 

minimize the funct ion 

1 N 
J = - L [x( t)  - L A(k)x( t-kAt ) ] 2 

M 
k=1 
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(A-3 ) 
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Taking derivat ives wi th respect to the parame ters and equat ing them 

to zero , we obtain the cel ebrated Yule-Walker equat ions l 0 8 

C ( l )  1=1 , 2 ,  • • •  , N  ( A-4 ) 

where the correlat ions , C ( l ) , can be approximated by the expression 

N 
C ( l )  = M

l L x( t )x ( t-l�t ) 
k=l 

A . l The Impulse Response 

( A-5 ) 

Let us turn our attention now to the role of the residual 

sequence . In the Fourier domain , the original sequenc e is given by 

X( w) = G(w)V(w) ( A-6 ) 

where G( w) is the AR model transfer function . The cross-

correl ation , XC ( �) ,  between x( t )  and v( t )  is , therefore 

( A-7 ) 

where F- l  stand s for inverse Fourier transform .  On the other side , 

from equat ion (A-2 ) , we have 

N 
XC ( l�t ) = C ( l )  - L A( k ) C ( l+k ) 

k=l 
(A-8 ) 

And therefore , considering equa t ions (A-4 ) and (A-8 ) , we see that the 

cros s-correlation is zero for negative lags , 1 ,  but nonzero for po si-

tive or zero lags . In terms of equation (A-7 ) ,  we see tha t in order 

for XC to  be zero for 1)0 , V( w) mus t not have any poles ; otherwi se , 

* V ( w) would introduce some poles for the negat ive-time integral path 
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in the inver se Fourier transform .  Thus , we can conclud e that V ( w) 

must  be a white no ise . As a consequence , 

but the right-hand sid e is the impulse response of G(w) . Thus , the 

impulse response can be calculated as 

N 
h( l )  = C ( l )  - I A( k ) C ( l+k) 

k=l 

A . 2  Pole-Zero Configuration 

( A-1 0 )  

Note  that from equat ion (A-10 )  the impul se response i s  not 

equal to zero at zero lag . No te al so that , given the form of h( t )  

( i .  e . ,  zero for negat ive time s ) , Fourier and Laplace transform are 

equivalent in this case . Thus , we can apply the final value theorem , 

which states that 

lim h( t )  = lim sG( s )  
t� s-

(A-l l )  

and conclude that for h ( t )  to be finite and nonzero at t = 0 ,  the 

model transfer function , G( s ) , mus t  have one zero less than poles . 

Thi s  is , the order of G( s )  mus t  be 0-zeros / 1-poles , 

1-zeros / 2-poles , • • •  

A . 3 AR-Consistent Autocorrelation 

Systems in general do no t have the pole-zero configurat ion 

necessary fo r the AR mod el to be an exac t representat ion . For thi s  

reason , AR models of large order must b e  used in this cases , but the 
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fit  is never perfect because the Yule-Walker equa tions are sat isf ied 

only up to lag N and , thus 

N 
C ( l )  * I A ( k ) C ( k-1 ) 

k=1 
l)N 

However , once the model order is cho sen , we can define an 

(A-1 2 )  

AR-cons is tent autocorrelat ion , C ' ( l ) , which satisfies  thi s  equation 

C ' ( l )  = C ( l )  

N 
C ' ( l )  I A ( k) C ' ( k-1 ) 

k=1 

; 1=0 , 1 ,  • • •  , N  (A- 1 3 )  

l)N ( A-14 )  

Thi s autocorrelat ion defines an imaginary sys tem wi th the 

same pol e-zero configuration as the AR model . 
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APPENDIX B 

DETAILED DESCRIPTION OF THE NOISE ANALYS IS ALGORITHM 

TO MEASURE BWR STABILITY 

This append ix describes a series of FORTRAN-77 subrout ines 

that are used to evalua te the asympto t ic decay rat io and frequency 

of oscillat ion from a no ise recording of an average power range 

monito r (APRM) signal from a boiling water reac tor (BWR) . The 

subroutines were originally developed as part of a diagno s t ics 

package to be included in the PSDREC 1 0 3 sys tem ,  but they can be used 

as part of a general stability evalua tion cod e . 

The technique used to evalua te the stabil ity of the APRM 

s ignal is auto regres sive (AR) model ing ( see Append ix A) . Subrout ine 

ARMODL fits  an optimal AR model order of the form 

where 

x ( i )  
N 
L Akx ( i-k )  + v( i )  

k=l 

x( i )  = sampled signal 

N = model ord er 

Ak = model parameters 

v( i )  = res idual no ise 

( B-1 ) 

This  subrout ine selects the model order so tha t the likel i-

hood func tion ( i .  e . ,  the joint probability of all the measurement s )  

i s  a maximum . Akaike l 0 4 showed that this i s  equivalent t o  mini-

mizing the following func t ion 

238 



239 

AIC = M ln( a2/C ( O ) )  + 2N ( B-2 ) 

where a is the residual no ise variance . This  func tion is oft en 

called the Aka ike ' s  informat ion criterium .  

Once the model parameters , Ak , are determined , the impulse 

response , h( i ) , can be calculated as an init ial value problem 

N 
h( i )  = I Akh( i-k ) 

k=l 

with boundary cond itions 

h( O )  L 

h ( -i )  o .  ; i=l , 2 , • •  , N , • •  

The frequency domain equivalent o f  the AR model can be 

obtained by Laplace 

x( s )  = 

1 -

transforming 

a2 

where D is the backshi ft  operator 

-st.t 
D = e 

equation ( B-1 ) 

No te that in Equation ( B-6 ) s is no t rest ric ted to the 

( B- 3 )  

( B-4 ) 

( B-5 ) 

( B-6 ) 

( B-7 ) 

imaginary axi s , and the equa tion can be evaluated at any point of 

the s-plane . In this way , a search for the poles of x( s )  can be 

performed . 

The stability of the signal is quatified in terms o f  a decay 

ratio (DR)  and a natural frequenc y of oscillat ion (NF ) ; both of these 

parameters can be evalua ted from the model . Thi s  cod e evaluates the 

DR in three different ways : First , it measures the apparent DR of the 

autocorrelation func tion;  then , it es timates the asympto tic DR of the 
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mod el ' s  impulse response ; finally , it at temps to find the mo st 

uns table complex pole from the frequency domain representation of  

the AR mod el . The three estimates are evaluated , and a mo st  probable 

DR and NF are selec ted along with a confidence level . 

B . l  Apparent Decay Ratio of the Autocorrelation Func tion 

The autoco rrelation func tion is estimated in subrout ine 

CORREL as the inverse fas t Fourier transform ( FFT ) of the power 

spec tral dens ity ( PSD ) of the APRM signal . Thi s  estimate co inc id es 

with the true co rrelat ion as the number of samples , M ,  tend to 

inf ini ty , and in general , for fini te M, it is a good estimate . The 

PSD suppl ied should be the best  available estima te of the true PSD 

of the signal and , therefore , Hann windowing 6 6  is recommended . 

The apparent DR is direc tly measured in the correl ation and 

the frequency of  oscillation is ob tained as the inverse of  the time 

at which the first maximum occurs . Thi s decay rat io is a very 

robust measure of the reac tor stabili ty , in the sense that it is 

wel l defined and tha t as the reactor approaches the stab il i ty 

threshold thi s  DR tends to 1 . 0  (which is no t necesarily true fo r the 

apparent DR o f  other func tions like impulse or step responses ) .  Al l 

thi s is accomplished in subrout ine DRCORR , which returns three error 

cond it ions : 

( a )  IERC=- 1 : No maximum was found . Thi s could be due to a low 

decay ratio (DR<O . l )  or to a big DC component in the signal . 

( b )  IERC=-2 : The first minimum ( or valley ) in the correlat ion 
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has a pos i t ive value . This  could be due to the presence of 

low-frequency oscillations . 

( c )  IERC=-3 : The first maximum (or peak ) in the correlat ion 

does not have the highest  value of all the peaks in the 

correlation (excluding zero-lag ) .  Thi s  is al so probably due 

to low frequency oscillations . 

The importance of determining the existance of low-frequency 

oscillat ion can not be underes t imated . It has been observed l 0 5  

that some BWRs when operated at reduced flows exhibit  a low-frequency 

oscillat ion ( about 0 . 07 Hz ) of almos t  pure-sine-wave type ( i . e .  decay 

ratio clo se to 1 . 0 ) .  This  has been attributed to a poor tuning of the 

pressure control sys tem . When these  oscillat ions are present , most  of 

the method s to determine the reactor stability will yield the stab i-

lity of the oscillations that are introduced by the control sys tem and 

no t by the reactor thermal hydraulics . Once their presence has been 

de termined in these subroutine , correc tive ac t ion can be taken . 

B . 2  Asymptotic Decay Ratio of the Impulse Response 

The impulse response is calculated using Equation (A-6 ) in 

subrout ine DRTIME . The DR is evaluated directly and a check for 

convergence to the asymptotic value is performed in subroutine 

CONVRG . 

The DR is  measured using the formula 

DR = ( 
x3-x2 ) 2 
x l-x2 

( B-8 ) 
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where x 1 , x2 , and x3 are three consecut ive extrema (maxima or minima ) 

of the impulse response . This  formula explici tly take s into account 

the pos s ibility of low-frequency ( or DC ) interferences .  

The main problem wi th this  approach to evaluate the DR is 

tha t  thi s  subrout ine returns the DR of the complex pa ir of poles 

with the minimum real part , and no t the maximum DR . For ins tance , if 

the sys tem had two poles , one at s = -0 . 044±0 . 4i Hz wi th DR = 0 . 5  

and ano ther at s = -0 . 02 6 ±0 . 07 i  Hz with DR=O . l ,  DRTIME will return 

DR=O . l  and NF=0 . 07 Hz . This  kind of error has to be considered in 

subroutine CONFID . 

Three error cond i tions are returned by DRTIME 

( a )  IERS=-1 : DR did no t converge , but the impulse response was 

wi thin roundoff bound s . Thi s  is probably due to ei ther a 

very low DR or the interac tion of two pairs of poles wi th the 

same real part but dif ferent frequenc ies . An estimate of DR 

and NF is returned from the time it took to reach the 

round o f f  level . 

( b )  IERS=-2 : DR did no t converge in 3000 steps , but the impulse 

response was no t ye t wi thin round off bound s .  This is also 

due to the interac tion between two poles , but the DR is 

high , since the impulse response magni tud e  did no t decrease 

enough . 

( c )  IERS=-3 : No peaks were found in the impulse response . This  

i s  probably due to  a signal that does not oscillate ( i . e .  

DR=O ) .  
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B . 3  Frequency Domain Pole Search 

Subrout ine DRFREQ executes a search fo r po les  of  equat ion 

( B-6 ) ,  the frequency domain representat ion of  the AR model , in the 

frequency range were the charac te ristic BWR osci l lation is expected 

( i .  e . , 0 . 25 to 0 . 85 Hz ) .  The search is executed fo r the zeros of the 

denominator , which is a polynomial in D. For thi s purpo se , Newton ' s  

me thod in the compl ex domain is used : given a start ing guess , D0 , 

the next est imate of  the posi ton of  the pole  is 

where 

P ( D )  

P ( D o )  
+ d P  

dD , D=D 0 

N 
1 - L Ak nk 

k= l 

( B - 9 )  

( B-1 0 )  

A convergence check i s  perfo rmed after each step along wi th 

step size control if necessary . 

DRFREQ uses  three start ing guesses , D0 , tha t co rrespond to 

the maximum value of  the PSD , the maximum value of the derivative of 

the pha se of Equat ion ( B-6 ) wi th respect to frequenc y and finally , the 

maximum value of the der ivative of the phase close to the maximum 

value of the PSD . 

Three error cond it ions are re turned : 

( a ) IERP=-1 : All three es t imates are wi thin the range 0 . 2 5  to 

0 . 85 Hz , but they are no t the same . The most  uns table po le is 

returned . 
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( b )  IERP=-2 : At least one of the est imates is out side the 

frequency range . The most  uns table pole wi thin the range is 

returned . 

( c )  IERP=-3 : All est imates are outside  the frequency range . 

No es timate is returned . 

B . 4  Best Est imate Decay Ratio Evalua tion 

Af ter the three previous est ima tes of  the DR have been 

ob tained , subrout ine CONFID evalua tes the resul ts , picks a bes t e s t i­

mate DR and assigns a confidence level to it . A confid ence level of  

+7 is highe st  and means that the estima te passed all the tests . If 

the conf id ence is less than +3 , the estimate could still be good , but 

it should be treated wi th caut ion ;  final ly , if the conf idence is  nega­

t ive , the estimate is probab ly abso lutely wo rthless . 

On re turn , the parameter IER conta ins a po s i t ive value that 

has cod ed in it the reasons for the confid ence level ass igned to the 

DR estimate ( see the program listing for detail s ) .  No te tha t if IER 

is nega tive , it means tha t some error was found in the input parame­

ters and no intent was mad e to est imate the stab i l i ty . 

B . S  Error Est imate 

Thi s  se t of subrout ines has a provision for es tima ting the 

error associated wi th the est imates . For this purpose , the raw time 

data is divided into several record s ;  a PSD is caculated for each 
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record and the n for the total length of data . Af ter each 

ind ividual-record PSD is computed , a call to STABIL is made wi th the 

parame ter IFLAGZ equal to zero . Final ly , a cal l is made wi th the 

average PSD and IFLAGZ equal to the number of data record s ; 

subroutine ERREST then evaluates the error in the DR and NF estima tes 

as the maximum dispersion between all the previous estimates . In this 

way bo th the sta tistical and the bias error are addres sed , since the 

e s t imate wi th the average PSD will have a reduced bias error . 

This  error estima te can no t be guaranteed to be conservat ive , 

but experience has shown that in general it is . 
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c 
c 
c 

c 
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c •• 

c 
c •• 
c 
c 
c 
c •• 

c 
c •• 
c •• 

c •• 
c •• 

c •• 

c •• 
c •• 
c •• 

c •• 
c •• 

c •• 
c •• 
c • •  

c •• 
c •• 
c •• 

c •• 

c •• 
c •• 

c •• 

c •• 
c •• 

c •• 

c 
c 
c 
c •• 
c 
c •• 

c •• 
c •• 

c •• 

c •• 
c •• 

c •• 

c •• 
c ** 

c •• 

c •• 
c •• 

c •• 
c 
c 

2 0 - JUN-84 1 1 : 1 0 : 4 7 PAGE 

SUBROUTINE S T A B I L C I TYPE , C , PSD , NP . DT , NB K . I FLAGZ 

, DR . FN . I CONF , DRERR. FNERR . IER l 

Th i s  s ub r au t i n l r u a l u at e s  t n •  s t a b i l i t y  of a BWR 
f r o m  t n e  PSD Of an APRM MO l l l  S I Q M i l .  

J o s e  M & r c h -Lt u b &  Oc t o b e r ,  1 993 

C A L L I N G  PARAMETERS : 

I TYPE 

c 

PSD 

NP 

D T  
NBK 

IFLAGZ 

- T y p e  of 1 np u t  
0 - C o r r e l •t • a n  s u p p l i e d  -- RECOMMENDED 
1 - PSD s u p p l • e d  

- Au t o c o r r e l & t l O n  a r r a y  ( i t  � u s t  b l  d i •• n s i o n r d  
r r g lr d l e s s  of I TYP E l  d 1 men s • o n  > N P  i f  I TYPE : 1  

- Power Spe c t r a l  Oens t t �  o f  APRM n o t s l  s i g n a l .  
T h e  a b s o l u t r  m a g n a t u d r  o f  t n e  P S O  i s  n o t  
• mp o r t •n t .  T h e  FFT b l o c k s i ze • n d  s •mp l 1 n g  
t t •t s  s n o u l d  b e  c n o s r n  s a  t n a t :  
de l t l f r e q  < 0 . 1 ' N� qu , s t f r e q  > 1 . 0  H z .  

M a n n 1 n g  w i n d o w  1 1  rr c oMMi n d rd . 
- Nu •brr of p o t n t s  ' "  r i t n e r  c o r r r l at i on or P S D  

NP < N P M X  i f  I TYPE : 1  
- Or • g • n • l  s omp l • n g t • me 0 . 05 < D T  < 0 . 5  s 
- NuMbrr of b l O c k s  an a l y z r d  

1 . e .  NBK : NP/ C Z•NP l 
- t l & g w t t h v a l u e s !  

0 - No r m l l  e l l !  C i n PSDREC, P S D : PS D Z l  
PSO 1 1  an avr r ag r  o f  t n r  P SD � s  u s e d  

i n  t h e  l os t  < n >  C l l l s .  
I f  ItLAGZ > 1 t n r n  an a p p r o x t m & t l  r r r o r  I S t i a a t r  
i s  r r t u r n r d  a l o ng • i t h  t n •  b • s t  R l t i ��t • o f  

t n e  d R c ay r at i o  and n �t u r a l  T r l'q u R n c y .  

THE SUBROUT I NE RETURNS: 

D R  

F"N 

ICONF 

DRERR 

- Be s t  ava i l ab l R  e s t i m a t •  o f  th� a s y• p to t i c  
d 1 c 1y r at t o .  

- B� s t  IVI I l ab l l e s t i m a t e  o T  t n •  a a • p e d  

f r e qu e n c y  o f  o s c i l l a t i o n .  I t  1 1  n o t  t h •  
n a t u r a l  f r t q u • n c y .  T h i l  1 1  t h e  1 1n 1 g i n ar y  
p ar t  o f  t n •  mo s t  u n s t i b l l  p o l l .  

- Co n f i d t n c l'  l i' Vt l  o .f  t n e  r s t t m at • :  
+ 7  - h l Q h t s t  c o n f , a e n c •  
ICONF" > 3  I S  I g o o a  c e n T  t d i M C I  t • vl l 
IF ICONF < O  t h e n  t h e  e s t • m • t e  i s  no g o o d  

I f  ICONF' 1 1  n t g lt l VI' ,  t h l  1 S t  i fll t l  l h O U  l d  b l  
U S I' d  w 1 t n  c au t t o n .  

- A n  t s t t m J. t l'  o f'  t l"l t l' r r o r  i n  DR . 
WARN I N G :  o n l y  l'" f t u l'" n l' d  t f  I F'"LAGZ > 1 

T!"l i. S  l S  n o t  g u ir a n t l iP d t o  bt a c o r: s e r v a t 1 v r 

S T A B . F T N  

c • •  

c • •  

c • •  
c ... 
c 
c 
c 
c • •  
c 
c ... 
c •• 
c •• 
c •• 
c •• 
c ... 
c •• 

c •• 
c •• 
c •• 

c •• 
c •• 
c •• 

c •• 

c •• 
c •• 

c • •  
c •• 
c •• 

c •• 
c •• 
c •• 
c 

F"NERR 

I ER 

2 0 - JU N - 8 4  1 1 : 1 0 : 4 7' PAGE 

t S t 1 m l t l'  of thl' t r r o r  
- An t s t 1 m a t e  o f  t n t e r r o r  1 n  �N. 

S a�• r • s t r 1 C t 1 0 n s  t n an for ORER� a p p l y .  
- I f  < 0 t h l' n ,  1 r r o r  a n  1 np u t  § ar •• • t er s . 

2 

SUBROUTINES CALLE D :  

INPCHK 
CHKPSD 
CHKCOR 
CORREL 
F"F"T 
DRCORR 
ARMODL 
AR 
DECOMP 
SOLVE 
A I C  
DRT I ME 

CONVRG 
DRFREQ 

ZERO 
POLY 
CONF I D  

ERREST 

- C h e c k s  a n p u t  p a r am • t • r s  
- Compu t r s  RMS a n a  C hi C k s  1 f  PSD ' s  a r t  p o s t t J VI 
- C h e c k s  t h at C ( Q )  > C C 1 l  t : 1 ,  . .  , NP a n d  C ( O )  > 0 

- I M V I' f"' S I'  F' F' T  PSD .  Re t ur n s au�CCO f"' f"' l' l at l OM .  
- F' a s t  F'"ou r 1 R r  T r 1 n s � a r •  
- C a l c u l •t e s  t h e  •p p •r e n t  D . R .  of th • IU t oc o r r .  
- r i t S I u n t v a r l a t l'  A U t O R I' g i R SS J �  ( AR )  m od t l 
- Un i v ar i a t e  AR mode l 
- T r i an gu l ar • at r i x  d l c o•pos i t , o n  
- So l ve s y t •• o� e q u 1t t on s  a 't • r  D£COMP 

- r u n c t t on t o  c 1 l cu l 1t e  Ak a i k e • s  t n f o r M .  C r l t .  
- C l l cu l at i' S  t h e  a s y ep t o t i c  D . R .  f r o• t n t  

a •p u l s e r e s p o n s •  o f  t n e  AR •od e l  i n  t h e  
t i •e d o • ' ' " ·  

- C l l c u l &t • s  D R  �nd c h i cks f or c o n ver g • n c •  
- C l l c u l •t e s  t h e  D . R .  •na N . F" .  f r o •  t h e  

AR •ode ! i n  t h e  f r e q u en c y  d o • • • " ·  
- F'" i n d s  • Zl'r o o f  & p o l yn o• i a l  
- £v a l u &t t s  • po l yn o• i & l a n d  i t s  d e r i v at i ve 
- It tv a l u a t • s  t n e p r e v i ou s  r•su l t s  a n d  

d • t •r m l n l' s  t h e  c o n f i de n c e  l • �• l ·  
- E s t • • • t e s  t h e  e r r o r  1 f  I F"LAGZ > 1 .  

c -- - -- --- ---- -- ------------ - - - - - - - - - - - - - ----- - -- --------------- - ----
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

•• 

•• 
... 
.. 
... 
•• 
•• 
•• 
•• 
•• 
** 

•• 
.. 
•• 
•• 
.. 
.. 
•• 
•• 
.. 
.. 

OVERLAY I NF"ORM A T I O N :  

S T A B I L  
INPCHK 

CORREL 

DRCORR 
ARMODL 

DR T I M E  

DRFREQ 

CONF I D  
E R R E S T  

CHKPSD 
CHKCOR 

FF"T 

AR 
DECOI'IP 

SOLVE 
SOLVE 

A I C  

CONVRG 

ZERO 
POLY 

N 
� 
-...J 



S T o'IB . F T N  

c 

c ** 

c 

2 0 - J UN - 8 4  1 1 :  1 0 : 4 7 

IN TERNAL VAR I AB LE S :  

RMS 

c 

DRC 
F'NC 
A 

- PSD RMS . 
- Au t o c o r r t l a t • o n f u nc t a o n .  
- A p p o r o n t  DR o f  C .  
- A p p o r o n t  F' N  O f  C .  
- A R  p a r ame t e r s .  

PAGE 

c ** 

c ** 

c ** 
c ** 

c ** 

c ** 

c ** 

c ** 

c ** 

c ** 

c ** 

c ** 
c 

DTAR 
DRS 
F'NS 
DRP 
F'NP 
DRSTCK 
F'NS T CK 

- Equ t v a l e n t  s •mp 1 1 n g  t a m e  u s e d  f o r  AR m o d e l 
- A s y mp t o t a c  OA u s a n g a mp u l s t r e sp o n s e .  
- A s y mp t o t a c  rH us i n g t mp u l s t  r e s p o n s e .  
- A s y mp t o t i c  D R  u s t n g p o l e  s e ar c h . 
- A s y mp t o t i C  rN us a n g p o l e  s e ar c n . 
- Ar r ay of l a s t  DR ' s  f o r  e r r o r  t s t a m a t a o n  
- Ar r •y o l  l i s t  r N ' s  f o r  e r r o r  e s t t � i t a o n  

c 

c 

c DEF I N I T I ONS : 
c 

c 

c ** 

c ** 

c ** 

c ** 

c ** 

c ** 

c ** 

c ** 

c 

Ap p ar e n t  De c ay R a t t o : Tnt r a t a o b t t w t t n  t nt f a r s t  a n d  
s e c o n d  p e a k s  a n  e a th t r  c o r r t l a t . o n 

s t e p  or 1 mp u l s t  r e s p o n s e s .  
A s y mp t a t a c  D e c ay R 1 t 1 0 :  T h e  l a m t t  a s  t 1 mt g o e s  t o  a n f a n t t y 

of t h e  r l t i O  D t t w t t n  c o n s e c u t t vt p t i k S . 

T h e  Asymp . DR t r u l y  r e p r e s e n t s  t n t  
s t iD 1 l i t y  o f  t n t  s y s t e m .  t n t  a p p i r t n t  
D R  d o e s  no t .  

De c ay R a t 1 0 :  E q u a v a l e n t  t o  a sy m p t O t i C  DR . 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

SAMPLE M A I N  PROGRAM 

REAL *4 C < 0 : 1 28 l . P SD < O : t 2 8 l  
COMPLEX TMP . S . P ! Z l . Z ! Z l  

! T Y PE : !  
NP : 1 2 8  
D T : O .  1 
N B K : 2 5  
I F' L AG Z : O  

' PSD SUPPL I E D  

C D W : l . / ( 2 . •� L OA T < N P ) •D T ) 
C NPL : 2  

C P < l l : CMPL X I - 0 . 044 1 .  , 4 l  ' DR : O . S  , F' N : 0 . 4  

C P < Z l : CON1G ! P ! 1 l l  
C DO 1 00 I : 0 . 1 28 

C W : F'LOA T ! I l • D W  
C S : C MPL X ! O  . •  W l  
C TMP :CMPL X ! !  . •  O .  l 
C DO 1 1 0  I P : ! . NPL 

C 1 1 0 TMP : TMP/ ! S+P C I P l l 
C PSD C i l : T MP•CONJG C T MP l 

C 1 00 CON T I NUE 

c 

c 

S TAB . F' T N  

c 

c 

c 

c 

c 3020 

c 

c 3000 

c 

c 

c 

c 

c 

2 0 - J U N - 8 4  1 1 : 1 0 : 4 7 

CALL S T A B I L C I T YPE . C . P SD • NP . DT . NB K · I F' LA G Z  

. DR , F'N . I CONF' . DRERR . F'NERR , I E R l  

PAGE 

WR I TE C 6, 302 0 l  NPL , C P C I J , I : t . NPL l 

rORMAT C ' l ' / / / 0  NUMBER OF' POLES : ' . I & . < NPL > U '  ' , 2G20 . 5 l l 

WR I TE C 6 , 3000l D R . F' N . I CONF' · I ER 

F'ORMAT C // / '  DR : ' . GZ O . S/ 

STOP 
END 

NF' : ' , G2 0 . 5 /  

I C O NF' : ' , I  1 0/ 
I E R  : • ,  ! 1 0 l  

N 
.p... 
00 
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c 

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c • • • • • • • • • • • • •• • ••••••••••••••••••••••••• • • • • • • • •••••••••••••••••••• 
c - - - - - - - - -- - - -- - - - - - - --------------------- - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

PARAMETER HPMX:256 
PARAMETER MXSTCK : 1 0  
PARAMETER HARMX:30 
PARAMETER NARMN:5 

! MAX I MUM NUMBER 0� P O I N T S  
o MAX . NUMBER 0� C A L L S  BEfORE E R R O R  CHECK 
' MAX . AR MODEL ORDER TO USE 
' M I N .  AR MODEL ORDER TO USE > , 2  

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

REAL • 4 C < O : NP l . PSD < O : NP l , D T . DR , fN, DRERR. �NERR 
INTEGER •2 NP, NBK . IrLAGZ . I COHr 

c - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - ---- - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

COMMON / S T A B /  A . NAR , DTAR , UAR2 , DRSTC K , fNSTCK 
, DR C . rNC. IERC , DRS , fNS . IERS . DRP, fNP . I ERP 

REAL •4 DRSTCK < MXSTCK l , fNSTCK C MXSTCK l , f < 2 l  
REAL •8 A < 1 ! NARMX l 

c - - - - - - - - - - - - -- - - - - -- - -- - - - - - - - ----------- - -- - - - - - - - - - - - - - - - - - - - - - - -

' . . . . . . . • . • . .• . • •. . •. . . • . • . . . . . . . . . . • . . . . • . . . • . . . . . . . . . . . . . . . . . • . . • .  

c - - - - - - - - - - - -- - -- - - - - - - - - - - - -- - -- - -- - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

CALL I NP C HK < I TYPE . C . PSD . NP . D T , NBK . I rLAGZ. I ER l  
I r < I ER . L T . O l  RETURN ' rATAL ERROR IH INPUT 

Ir < I TY PE . EQ . 1 l  CALL CORREL < PSD. NP . D T . C l  

CALL DRCORR < C . NP . D T . DRC . �H C . IERC l 

NAR , NARMX 
CALL ARMODL < C . NP . D T , NBK . NA R , A , DTAR . UAR2 . I ERA l 

CALL DRT I ME < A . NAR . DTAR . DRS . �NS , IERS l 

CALL DRrREQ < A . NAR . DTAR . DRP . �NP, IERP l 

I E R ' O  ! NOT E ,  I �  < O  I T  WOULD HAVE RETURNED 
CALL COHr i D < A , HAR . I E RA . DRC . rH C . IERC . DR S . �NS, I ERS 

. DR P , rNP. IERP . DR , rN , I COHr . I E R l  

CALL ERREST < DR . rN. DRSTCK . rNSTCK . MXSTCK , I � L AG Z . DRERR. FNERR . I E R l 

RETURN 
END 

S T AB . F T N  

c 

c 

c 

c 

20 - JUN -8 4  1 1 : 1 0 : 4 7 

SUBROUT I NE INPCHK C I TYPE . C . P SD , NP , DT . NB K . I rLAGZ. I E R l  

C • •  Th i s  s u b r o u t a n e  c h e c k s  t h e  a n p u t  p & r &ae t e r s  
C • •  c & l l i ng p &r &•e t e r s  &r e t n e  • ••• t h &n S T A B I L  
c 

PAGE 6 

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c ••••••••••••••••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

PARAMETER NPMX , 256 
PARAMETER NARMX , 30 

1 MAX I MUM NUMBER Or rREQUENCY P O I N T S  
1 MAX . A R  M O D E L  O R D E R  TO U S E  

c - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

REAL •4 C < O : NP J , PS D < O : NP l . DT . DrC 
INTEGER •2 NP, NBK . IrLAGZ . I E R  

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -

' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. • . . . . . . . . . . . . . . . . . . . . . . . . .  

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -- - - - - - - - -

c 

c 

c 

c 

I E R : O  
I r ! DT . L£ . 0 . l 
I r !  NBK . L E .  0 l 
Ir C NP . LE . O  . OR .  NP . G T . NPMX l 

I ER ' - 1 
I E R , - 1  
I E R , - 1 

I r C I TYPE . EQ . 1 l  THEN 
Dr , l . / ( 2 . •rLOAT < NP l •D T l  
I r C Dr . GT . 0 . 1 l  
I r < DF«FLOAT C NP > . LT . O . S l  
CALL CHKPSD < PSD , NP . D T , J E R l  

ELSE 

END i r  

I ' <  NP . L T .  NARMX l 
I F < D T . L T . 0 . 05 . OR .  DT . GT . 0 . 5 l  
CALL CHKCOR < C . HP . DT , I E R l  

! PSD INPUT 

I E R : -2 
I E R : -2 

' CORRELATION INPUT 
I E R : -2 
I E R : -2 

I r C i rLAGZ . G T . MXSTCK . OR . I rLAGZ . LT . O . OR . I rLAGZ . EQ . l l  I E R : - 3 

RETURN 
END 

N 
.p.. 
"' 



S T AB . F T N  

c 

c 

c 

c 

c ** 
c ** 

c 

c * *  
c * *  

c ** 

c ** 
c * *  
c 

2 0 - J UN-84 1 1 : 1 0 : 47 

SUBROUT I NE CHKPSD C PSD . NF , D T , IER l 

Th i S  s u o r a u t 1 n• C i l C u l i.t l l  RMS i.Md C h i C k S  
a f  RMS >O i n d  PSD C i l > : O  a : I , HF 

PSD - RO i l  PSD 1 r r 1y 
Nr - Nu m b e r  o f  p o i n t s  i n  PSD 
D T  - Equ a v i l o n t  • ••p l a n g t i MI f o r  PSD 
RMS - RMS 
I ER - E r r o r  c o n d i t i o n  

PAGE 7 

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ******** * * * * * * * * * * * * * * * * * * * * * * *  

c - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - - ------- - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

REAL *4 PSD C O : NF l , DT . RMS 
INTEGER •2 HF , I ER 

c - - - - - - - - - - - - - - - - - - - ---------------------- - - - - - - - - - - - - -- - - - - - - - - - - - -

c * * * * * * * * * * * * * * * ** ** * ** * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * *  

c - - - - - - - - - - - - - -- -- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

1 0 0  

RMS :O 
I E R : O  
D O  1 0 0  I : O . NF 
I F C PS D C i l . L T . O .  l 
RMS : RMS+PSD < I l  
I r < RMS . L£ . 0 .  l 
RETURN 
END 

IER : -4 ' I N D I V I DUAL PSD ALLOWED 0 

I E R : - 5  ' RMS CAN HOT BE : 0 

STAB . FTH 

c 

c 

c 

c 

c ** 
c •• 

c * *  

c 

c ** 

c .. 

c ** 
c ** 
c 

2 0 - J U N - 8 4  1 1 : 1 0 : 4 7 

SUBROUT I NE CHKCOR C C . HC . D T . I ER l  

Tn i s  s u b r ou t i n e  C h i C k S  t h l t  C C O )  > C C i )  i : l ,  . . , H  
1 n d  t h i t  C C O l  > 0 

It a s  C i l l l d  o n l y  i f  I TYPE < > I 

C - Re a l  Aut o c o r r e l at i o n  .t.r r l.y 
NC - H u m b e r  of p o 1 n t s  in C 
DT - Equ a v i. l e n t  l i.Mp l a n g  t 1 MI f or C 
IER - E r r o r  c o n d a t i o n  

PAGE 8 

c - - - -------------- - - - - - - - -- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c ----------------------------------------------- - -------------------
c 

c 

REAL *4 C C O : HC l . DT 
INTEGER •2 N C , I ER 

c -------------- - - - - - - - - - - -- - -- - - - - -- - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - -

c ••••••••••• • •• • • • • • • • •• • • • • • • • ••••••••••••••••••••••••••••••••••••• 

c - - - - - - - - - - - - - -- - - - - - - - - - - - - -- - -- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

!00 

I E R : O  
D O  1 0 0  I : 1 . HC: 
I F C C C i l . GT . C C O l l 
I F C C C O l . LE . O .  l 
RETURN 
END 

IER: -4 
I ER : - 5 

N 
VI 
0 
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c 
c 
c 

c 
c •• 
c 
c •• 
c • •  
c 
c •• 
c 
c •• 

c 
c 

SUBROU T I NE CORREL < PS D . N � . D T . C l  

Th i s  subr o u t i n e  i n v e r s e  �r rs PSD . 

PSD 
c 

- Rr • l  PSD •r r •y 
- Rt i l  c or r t i l t i o n  a r r •y 

SUBROUTINES CALLE D :  

��T - Rt i l  F a s t  Four a tr Tr i n S f o r •  

c 
c 

. • . . . • . • • . • • . . . • . . .. • . • . . . ...... •..•.•..•• • . • •• • . • •• • • • . • . . . . . . . . • •  

c 
PARAMETER NPM� : ZS6 ! MA� I MUM HUMBER 0� �RE Q .  POINTS 

c 
c ----------------- --------------------------------------------------
c 

c 

REAL •4 PSD < O : N� J . C C O : N� l  
I N T EGER • 2  N� 

c -------------------------------------------------------------------
c ••••••••••••••••••••••••••••••••••••••••• • • • • • • • •••••••••••••• • • • • •  

c ------------------- ---------------------- - - - - ----------------------
c 
c 

c 
c 

c 

c 

c 

c 

1 0  

100 

1 1 0  

120 

COMPLE� TMP < NPM�*Z l 

L H : O  
D� : 1 . / ! �LOA T < N� l * 2 . •DT l 
J'UNK:HF'"*Z 
JUN I< : JUNI</2 
LN : LN+ 1 ! LOGAR I TH BASE 2 0� BLOCK S I Z E  C �OR �� T l  
I � C JUNK . G T . 1 l  GO TO 1 0  

D O  1 0 0  I : O . N� 
L : I + 1  
TMP < L J :CMPL � < PS D ! I l •D�/2 . •  0 . ) 
DO 1 1 0 L : 2 ,  H� 
K : 2•N�-L+2 
TMP ! K l :COHJ G < TMP < L l l  

CALL FFT < 1 · LH . TMP l 

DO 1 2 0  I : O , HF 
C < I ) �R£AL < TMP C I + 1 ) )  

RETURN 
END 

' 2 BECAUSE 0� NEGAT I V E  �RE Q .  

S T AB . F T N  20 - JU N - 9 4  1 1 : 1 0 : 4 7 PAGE 1 0  

c 
c 
c 

c 
c •• 

c •• 

c •• 

c .. 
c •• 

c .. 
c 
c * *  

c •• 

c .. 
c .. 
c •• 

c .. 
c •• 

c .. 
c .. 
c .. 
c •• 

c 
c 

SUBROu T I NE DRCORR < C . NF , DT. DRC , FN C . I ERC l 

Th i s  s u b r ou t i n e  t l t • • a t t s  t n t  ip i r t n t  d t c a� r 1 t a o  o f  
t n t  • u t o c o r r t l it i o n .  
I f  t h e  f 1 r s t  p t ik i n  C i s  n o t  t h t  • • x , •u •  p t ik v • l u e ,  
'" e r r o r  c o n d i t • o n  i s  r l' t u r ne d .  Th i s  me a n s  t n • t 1 l ow e r  
f r e q u e n c y  p 1 1k • i g h t  a n f l u t n c t  t h e  r e s u l t s ,  o r  t n a t  • 
f 1 r s t  p e ak c o u l d  n o t  bt f o u n d . 

c 
NF 
D T  
DRC 
FNC 
I ER C  

- Rt i l  c o r r t i l t • on 
- Nu moer of p o 1 n t s  
- S•mp l a n g  t i •l i n  
- A p p o r e n t  DR o f  C 

arr 1.y 
'" c 

c 

- App •r r n t  N • t u r • l  r rr q .  o f  C 
- Er r o r  c o n d i t a o n  1 f  < O  

- 1  : Pe •k c o u l d  n o t  b e  f o u n d  
- z  : Low f r e q u e n c i e s  i n f l u e n c e  C 

-3 
( f i r s t  • i n i au •  n o t  n e g •t • ve l  

The r e  a s  a l o w f r e q . p 1 1.k w 1 th 
s m 1. l l 1 r  r t & l  p 1.r t .  

c 
c 

* * * * * * * * * * * * * * * * * * * * * ** * * * * ** * * * * * * * ** * * * * ** ** * * * * * * ** * * * * * * * * * * * * *  

c 

c 

REAL •4 C < O : Hr l . DT . DR C , FNC 
INTEGER • Z  N F , I ERC 

c ----------------------------- --------------------------------------
c * * * * * * * * * * * * * * * * * * * * * ** ** * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * *  
c -------------------------------------------------------------------
c 

c 

1 0  

100 
c 

I E R C : O  
V 1 : -999 . 
C 1 : -9 9 9 .  
I l  = 1 
CMAX : - 999 . 
DRC : - 999 . 
FNC : - 999 . 

DO 1 0 0  I : 1 , H� 
D 1 : C < I l -C ! I - 1 l  
D2 : C ! I l -C ! I + 1 l  
I F < D l . LE . O  . .  O R .  D Z . LE . O .  l GO TO 1 0  ' HOT A PEAK 
I F < C 1 . EQ . -99 9 .  l I 1 : I  
I F < C l . EQ . -999 . l C 1 : C < I l  ' F I RST PEAK 
I F < C < I l . G T . CMAX l CMA X : C ! I l I H I GHEST PEAK 
GO TO 100 
I F < D l . GT . O  . .  OR . D2 . GT . O .  l GO TO 100 I NOT A VALLEY < M I N .  l 
I, < V 1 . EQ . - 9 9 9 .  l V 1 : C C ! l  I F I RST VALLEY 
CONT I NUE 

I F C C l . NE . -999 . AH D .  V I . NE . -999 . l DRC : <  < C 1 - V 1 l / C C ! O l -V l l ' * *2 
I F ! C 1 . NE . -99 9 l  F NC : 1 . / C FL O AT C I 1 l •D T l  
I F < C l . EQ . -99 9 l  I E RC : - 1  I PEAKS NOT FOuND 

N 
lJ1 
,_. 
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I F" C V 1 . EQ . -99 9 l  

It C V l . GE . O . l 
I t c  C 1 . H E .  CMAX l 

RETURN 

END 

I E R C : - 1  

I ERC : -2 

I ER C : -3 

2:1 - JUN--34 1 1 :  ! :: :  47 PAGE 1 !.  

' v���EYS H O T  rOUND 

; I RST VALLEY HOT < 0  

' �!RST PEAK NOT H I GHEST 

S T AB . � T N  

c 
c 
c 

c 

2 0 - J L "-1 - 8 4  1 1 : ! 0 : 4 7  

SUBROU T I NE ARMODL C C , NF . DT , N BK . NAR . A , DTAR . VAR2 , I ERA l 

P A G E  1 2  

c ** 

c ** 

c ** 

c 

Tr"l 1 1  s u b r ou t t n r  r r t u r ns t n r  " o p t i m a l "  AR mo d r l  of o r cs r r  NAR 

" o p t i M A l "  as a r f i n r o  AI tnr b r s t  A I C  c r 1 t r r a o n 

c ** 

c 
c ** 

c ** 
c ** 

c ** 

c ** 

c ** 

c ** 

c 

x C t l : s u m  A ( k ) • x < t -k •D T ) + w < t >  k = 1 � NAR 

CAL L I NG PARAMETERS : 

c - Au t o c o rr r l � t a o n  f u nc t i o n  < m a g n 1 t u d r  u n 1 mp o r t a n t l 
D T  - S a mp l 1 n g  t 1 •1 ' "  c o r r r l l t 1 0 n  
NAR - O r d • r  O f  AR •od R I  
A 

DTAR 

VAR2 

! ER A 

- Ar r ay c o n t & t n a n g  t n r  AR � lr & m r t r r s  
- S a •p l t ng t t ar u s r d  f o r  A R  m o d r l 
- R! S l CI U & l  r r r or v&r l & n c e  
- E r r o r  c o n d i t 1 o n  

C * *  SUBROUTINES CALLE D :  

c 
C •• A R  - C a l c u l �t r  AR p ar aar t r r s  

c 
c 
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • •  

c -------------------------------------------------------------------
c 

c 

PARAMETER H A R M H : S  

P A R A M E T E R  HARMX : 30 

PARAMETER HAR I H C : S  

t M IN I MUM ORDER TO F" I T  

t MAX I HUH O R D E R  T O  F" I T  

' ORDER I NCREMENTS 

c -------------------------------------------------------------------
c 

c 

I NTEGER •2 H F" . HAR 

REAL *4 C c O : Nr > . DT , D T A R , CAR C O : NARMX l 

REAL • B A C 1 : NA R >  

c -------------------------------------------------------------------
c •• • • • • • • • • • • • • • • • • • • • •• • •• • •• • •• • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • •  

c -------------------------------------------------------------------
c 

c 

c 

c 

I E R A : O  

PO I H T S : 2 . •tLOAT C HF" l *F"LOA T C HBK l 

O T A R : DT 

NC : Hr 

NC A R : H C  

I SK I P : 1  

1 0  A I C MX : - 1 . £38 

DO 200 ! : O , NARMX 

C AR C ! l : C C I • I SK I P >  

200 C O N T I NUE 

DO 100 I AR : H A R H H , NARMX . HAR I NC 

C AL L  AR C CAR . NA RMX , D T , ! A R . A . UAR 2 l  
A I C = P O I �: S• A L 0 G ( A 8 5 ( V A R 2 /C ( 0 ) J }  + 2 . *F'"LOAT < NA R l  

N 
Vl 
N 
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1 0 0  

c 

c 
2 0  

c 

30 
c 

A l C , A8S ( A lC l  ' NOTE. UAR2/C ( 0 ) ( 1 .  SO A I C < O  
l f ( A l C . GT . A I CMX l NAR , IAR 
lF ( A l C . G T . A I CMX l A I CMX, A I C  
C O N T INUE 
L AS T , I AR -NARINC 

lF ( NA R . N E . L AST l GO TO 30 
! SK I P '  I S K I P + 1  
DTAR , D U I SI< I P  
NCA R , NC/ ( ! SI< ! P l  

' IF MODEL NOT LARGE ENOUGH DOUBLE SAMPLING T I ME 

IERA , I ERA + 1  ! NUMBER OF 
! F ( DTAR . GT . 0 . 5 1 l  GO TO 20 
l f ( NC AR . L T . NARI'IXl GO TO 20 
GO TO 1 0  

SAMPL IG T I ME DOUB L I NGS 
! MAXIMUM FREQUENCY TOO SMALL 
' NOT ENOUGH LOW FREQUENCY 

ISI< I P , I S I< I P - 1  
NCAR ,NC• I SK I P  
DTAR , DT * I SK I P  
IERA, - 1 ! MODEL ORDER USED WAS NOT LARGE ENOUGH 

CALL A R ( CAR . NARMX , DT . NA R . A , UAR2 l 

RETURN 
END 

S T A B . FTN 

c 

c 

c 

c 

c •• 
c .. 

c 

c • •  
c 

2 0 - JU N - 9 4  1 1 :  1 0 : 4 7  

SUBROUT I NE AR ( C , NF . D T . NAR , A . UAR2 l 

Th i s  s u b r ou t i n e  r e tu r n s  1n AR •o d e l of o r � e r  NAR 
x < t l :s u •  A < k ) •x < t -k • D T l + w < t )  k : l , NAR 

CALL I NG PARAMET E R S :  

PAGE 1 4  

c •• 

c •• 
c •• 

c .. 

c 

C - Au t o c o r r e l .t t i o n  f u nc t i o n  C M .J.Qn 1 t u de u n a mp o r t .tn t ) 

c •• 
c 

c •• 
c •• 
c 

DT - S • •P l , ng t a me i n  c o r r e l .J.t l o n  
NAR - Or d t r  of AR •od t l  
A - Ar r ly c o n t 1 1 n a n g  t h e  AR p • r •me t e r s  

SUBROUTINES CALLE D :  

DECO"P - Tr i 1n gu 1 1r m At r i x  d e c o•p o s i t • on 
SOLVE - So l ve • s y s t • •  of e q u .J. t i on s  

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -
c • • • • • • • • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c - - - - - - - - - - - - - - - -- -- - - - - - - - - - - - - - - - - - - - - - - - - ------------- - - - - - - - - - - -

c 

PARAMETER NARMX,30 
c 

c - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

REAL *4 C ( O : NF l . DT . VAR2 
REAL •8 A ( 1 : NAR l , WM ( NARMX, NARMX l . COND 
INTEGER •4 N D I M . NORDER. I PVT ( NARI'IX l 
INTEGER •2 NF, NAR 

c - - - - - - - - - - - - - - - -- - -- - - - - - - - - - - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - - - - -

c ******************************************************************* 
c - - - - - - - - - - - - - - - -- - -- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -

c 

c 

c 

c 

c 

c 

c 

c 

ND I M , NARI'IX 
NORDER,NAR 

DO 1 0 0  l , 1 , NAR 
DO 100 J d , NAR 
W I'I ( ! , J l , C ( l A BS < I - J l l  

1 0 0  WI'I ( J , I l , WM ( I , J l  

CALL DECOMP ( NO I M , NORDER . WI'I . COND. I PU T , A l  

DO 200 I , 1 , NAR 
200 A ( l l , C ( l l  

CALL SOLUE ( ND I I'I . NORDER · WM . A . IPVT l 

UAR2 , C C 0 l  

' AR PAR . CALC . 

300 
DO 300 I '  1 .  NAR 
UAR 2 , UAR2-A ( l l *C ( l l  ' RES I DUAL VAR IANCE 

RETURN 

END 

N 
Vl 
w 
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c 

c 

c 

c 

c • •  
c • •  
c 
c •• 
c 

c ** 

c ** 

c ** 

c • •  
c .. 

c ** 

c ** 

c ** 

c 

c 

20 - JUH-8 4  1 1 : 1 0 : 4 7 

SUBROU T I NE DRT I KE < A . HAR . DT · DRS . F"HS. IERS l 

Tn i s  s u b r ou t i n e  c & l c u l & t e s  t n e  DR &nd N & t . r r e q .  
f r o• t n e  i •p u l l l r e s p o n s e  o f  t n e  A R  •oae t .  

CALL I NG PARA�ETERS : 

- AR mo d e l p &r &• e t e r s  
- A R  •o d e l o r d e r  
- S & •p l i n g  t i •e a n  c o r r e l • t • o n  
- I •p u l s e r e s p o n s e  DR 
- I mp u l s e  r • s p o n s e  H .  � .  

P A GE 1 6  

A 
HAR 
DT 
DRS 
FHS 
IERS - Error c o n d i t 1 0 n  ( u s e d  ' "  d e t e r m • n i n g  

t h e  D R  c o n f i de n c e  1 n  COHF" I D l  
I F"  < O  ERROR. 

c • • • • • • • • • • •• • • • • • • • •• • • • • • • •• • •• • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - / - - - - - - - - - - -
c 

! SA�E AS HAR IH S T A B I L  

STAB . F T H  20 - J U H - 8 4  1 1 : 1 0 : 4 7  PAGE 1 7  

c 

c 

c 

c 

c 

c 

20 

A2: < X < 2 l -2 . • X < 1 l + X < O l l / 2 ,  0 PARABOLA F I T  T O  EXTREMA 
A 1 : ( X ( 1 l -X < O l l -A2 
TEXT : < -A 1 / ( 2 . •A2 l l •DT 
I F" < TEXT . GT . 2 . • D T  . OR .  TEXT . LT . O .  l TEXT : DT 
E X T : X < O l +A 1 *TEXT+A2•TEXT••2 
TEXT : < T- 2 . • D T l +TEXT 
HPEAKS :HPEAKS+1 

CALL COHVRG < EX T . TEXT , DR S , f"HS , F" I RS T , EHD . IERS l 

I F" < . HO T . EHD l GO TO 1 0  

RETURN 

DRS : -999 . 
F"HS : -999 . 

! HOT CONVERGED 

I E R S : - 2  ! HOT CONVERGED I H  �XSTP T IME STEPS < PEAKS FOUH D l  
IF" < HPEAK S . EQ . O l  IERS : - 3  ! HO PEAKS FOUND 
RETURN 
END 

PARA�ETER HARMX:30 
PARA�ETER M X S T P : 3000 o �AX I MUM HUH�ER O F"  T I�E STEPS FOR CONVERGENCE 

c 

c - - - - - - - - - - - - ----- ---------------------------- - - - -------------------

c 

c 

REAL •B A < 1 : HA R J , X < O : HAR�X l 
REAL *4 D T . DRS. rHS 
I N TEGER *2 HAR . IERS 
LOGI CAL *1 F I RST. EHD 

c ----------------------------------------------- - - -- - - - - - - - - - - - - - - - -

c * * * * * * * * ** * * * * * * * * ** * * * * * * * * * * * * * ** * * * * ***** * * * * * * * * * * * * * * * * * * * * * * *  

c ------------ -- -------------- ----- - ---------- - -- - - - - - - - - - - - - - - - - - - - -

c 

c 

c 

1 00 

F I RST : .  TRUE . 
HPEAK S : O  
DRS : O .  
F"HS : O .  
T : O .  
D O  100 I : O , HARMX 
X < I l : O .  
V :  1 .  0 I MPULSE �AGH I TUDE 

1 0  D O  1 1 0  I : HA R , 1 , - 1 
1 1 0  X < I l : X < I - 1 l  

X < O l : V 
V : O .  ° FORCING FUNC T ION 
DO 1 2 0  I : 1 . HAR 

120 X ( O l : X < O l +A < I l •X < I l  0 I�PULSE RESPONSE 
T : T + D T  0 T I ME 
IF" < T . GT .  FLOA T < �XSTP l •DT l GO TO 20 

D 1 : X < 1 l -X < 2 l  
D2 : X C 1 l - X ( 0 l 

1 .  

I r < D 1 * D2 . LE .  0 .  l GO TO 1 0  ' H O T  AH EXTREMA 

N 
Ln 
� 
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c 
c 
c 

c 
c •• 
c •• 
c •• 
c •• 
c •• 
C n 
c •• 
C n 
c 
c •• 
c 
c 
c •• 
c •• 
c •• 
c •• 
c •• 
c •• 
c •• 
c •• 
c 

SUBROUTINE CONVRG ( X , T . DR . rN . r i RS T . END. I ER S I  

Th a s  s ub r ou t a n l  c & l c u l &t t s  t n e D R  &nd N & t . F r e q . 
&n d c h e c k s  f o r  c o n vt r gt n c t  c i .  1 .  i f  i t  i 1 a s y • p t o t  a c  > 

Th t D . R .  I S t l m & t i O M U S I S  I f o r •u l &  t h l t  l l l O WI f o r  
• b a as a n  t h t  r e s p o n s e  C a . e .  a f  i. t  w & s  1 S T E P  r e sp o n s e  
tn a s  s u b r o u t i n e  wo u l d  1 1 10 wor k l .  
The c & l l a ng s u b ro u t t n t h iS t o  do • l t & r ch & n f  f a n u 
t h l  I X t r i M I  ( M IX . Or m a n ) ,  COHVRG 1 1  C & l l t d  t h i n  
w a t h t h l  V & l ut o f  t h l  t x tr e • a  ( 5 1 1  DRT I M£ ) .  

CALL I NG PARAME TER S :  

X 
T 
DR 
F"H 
F" IR S T  
END 
I ER S  

- IMpu l s e  r e s p o n s e ' s  c u r re n t  e x t r • • •  
- Cu r r e n t  t i •• 
- Imp u l s e r e s p o n s e  DR 
- Imp u l s e r e s p o n s e  H .  F .  
- : .  TRUE . i. f 1 t i I f i r I t  C & I  1 
- When : . TRUE . •  DR &nd FN & r t  c o n v e r g e d  
- Er r or c o n d a t i on < u s e d  a n  d t t t r m i n a n g  

t h e  D R  c o nf i d e n c e  i n  COHF" I D l  
I F"  < O  ERROR . 

c - - - - - - - - - - - - - - - - - - - - - -- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * **••••········ · · · · · · · · · · · · · · · · · · · · · · ·  
c - - - - - - - - - - - - - - - - - - - ---------- - -- - ----------- - - - - - - - - - - - - - - - - - - - - - - -
c 

c 

PARAMETER CONV : l . E - 1 
PARAMETER HOLDMX : I O  
PARAMETER ROUHD : I . E - 1 5  

CONVERGENCE C R I T ER I UM F"OR DR 
HUMBER OF" DR ' S  W I TH I N  CONV F"OR CONVRG . 
ROUNDorr C R I TER I UM 

c - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - -------- ------ - - - -- - - -- - - - - - - - - - - - - - -
c 

c 
c 

REAL * 4 X . T . DR . rN . DROLD C O : NOLDMX I . rNOLD C O : NOLDMX l 
I N TEGER •2 I ERS 
LOGICAL • I  r i R S T . END 

c * * * * * * * * * * * * * * * ** * * * * ** * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * *  
c - - - -- - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -

c 
c 

c 
c 

I E R S : O  
EHD : . F" A L S E .  
I F" < . HO T . F" I RS T I  G O  T O  1 0  
r i RST : .  rALSE . 
EX l : - 999 . 
E X 2 : - 999 . 
TEX l : O .  
TEX2 = 0 .  
NOL O : O  
HPEAK S : O  
EXF"RS T : X  

STAB . FTH 2 0 - J U H - 8 4  1 1 : 1 0 : 4 7  PAGE 1 9  

c 

c 
c 

c 

c 

c 

c 

c 

1 0  

1 1 0  

I S  

1 2 0  

1 6  

2 0  

3 0  

c . .  

E X 3 : X  
TEX3 : T  
NPEAK S :NPEAKS+I 
IF"! E)( I. EQ. - 999 . I GO TO 16 

D I : EX3-EXZ 
D2 : EX 1 -EX3 
IF"! DZ . NE . O . I G M : D l /D2 
IF"! DZ . EQ . O .  > G M : l . E 3 2  
I F"! GM . NE . - 1 .  l DR: C GM / ( I . +GM I I *•Z 
F"N : I . / ( TEX3- TEX 1 1  
DROLD C O I : DR 
rNOLD ( O I : F" N  
I f" ( NO LD . L T . HOLDMX I GO T O  1 5  

DRERR : O .  
DRAV : O .  
F"NERR : O .  
F"NAV : O .  
D O  1 1 0  I : O . NOLD 
DRAV: DRAV+DROL D ( I I /f"LOA T ( NO LD + l l 
F"NAV:F"HAV+F"NOLD ( I I /f"LOAT ( HO LD + l l 
DRERR : AM AX I C DRERR . ABS C DROLD ( O l -DROLD ( I I I I  
F"NERR: AMAX I ( f"NERR . ABS C FHOLD C O I -F"NOLD ( I I I I  
CON T I NUE 
I f" ( DRERR . LT . DRAV•CONV . AN D . F"NERR . L T . F"NAV•CONV I GO T O  20 

DO 120 I = HOLDMX . l . - 1 
DROLD ( I I : DROLD ( I - 1 1  
F"HOLD ( I I : rHOLD ( I - 1 1  
If" ( NO LD . L T . HOLDMX I HOL D : HOLD + I  

If" ( A8S ( D2 1 . L T . ROUND . AN D .  ABS < D l i . L T . ROUN D I GO TO 3 0  

E X !  : E X 2  
E X 2 : E X 3  
TEX 1 : TEX2 
TEX2 : TEX3 
EHD : . rALS E .  
RETURN 

END: . TRUE . 
I E R S : O  
DR : DRAV 
r H : F"HAV 
RETURN 

END : . TRU E .  

! I F  CONVERGED RETURN AVERAGE DR 

I CONVERGED 

! ROUNDOF"F" 

I E R S : - 1 ' OR HOT CONVERGED AND RESPONSE W I T H I N  ROUNDOF"F" 
NPEAKS:NPEAKS/2 ' NOTE HALr ARE VALLEYS 
THE F"OLLO W I HG ARE APPROX IMATED UALUES 
r N : FLOAT ( HPEAKS l / T  ' TAKE AVERAGE PER I OD 
YR : A B S ( X / EXF"RS T l  
DR : YR • • < I . / r L O A T C NPEAKS I I  ' DECAYED F"ROM I TO YY IN NPEAKS 
RETURN 
END 

N 
VI 
VI 
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c 
c 
c 

c 
c • •  
c • •  
c • •  
c • •  
c * *  
c . .  
c 
c * *  
c 
c 
c .. 
c ** 
c .. 
c •• 
c •• 
c 
c • •  
c . .  
c 
c 

2 0 - J U N - 8 4  1 1 : 1 0 : 4 7  

SUBROU T I N E  DRFR£Q ( A , NAR . DT, DR, fN, IERP J 

Th a s  suDr ou t i n t  e s t a m a t t s  & DR and a H . � .  f r o •  t n t  
A R  MOd t l  i n  t n t  f r e q u e n c y  d D M &  ' " . 

PAGE: 2 0  

I t  f i r s t  gt t s  1 r o ugh e s t a m a t r  D y  l o ok a ng at t h t  m a x a mu m  
v a l u e o f  t h e  d t r a v & t t vt o f  t n t  p h as e  w a t h r e s pe c t  t o  
fr e q u e n c y .  Th e n ,  i t  a mp r o v t s  t h t  e s t a 11 1 t 1  D y  d o t n g  • p o l e  
s t ar c h  u i s a n g  Newton ' s  m e t h o d  a n  t n t  c o mp t x  d O II & i n .  

CALL I NG PARAMETER S :  

A 
N AR 
D T  
D R  
f N  
I ERP 

- AR p a r am e t e r s  
- AR mo d e l  o r d e r  
- Samp l a ng t a •• f o r  A A  Mo d e l 
- De c ay r at a o  e s t i m a t e  
- N a t ur a l  t r e q u t n c y  t s t a m &t t  
- E r r o r  c a d t  < or r  or ' f  IERP< 0 l 

SUBROUTINES CALLE D :  
ZERO - E s t a m a t r s  a zero of a p o l y n o• a a l  

c 
c 

. . . . . . . . . . . . . . . .. . ........................ ........................• 

c 

c 

PARAMETER W M I N : O . Z  
PARAMETER WMAX : 0 . 9  
PARAMETER N W : B  

' M I N I MUM fREQ f O R  SEARCH 
! MAXIMUM fREQ fOR SEARCH 
' NUMBER Of INCREMENTS fOR SEARCH > : 3  

c - - - - - - - - - - - - - - - ---------------------------- - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 
c 

COMPLEX £ W , £WN , Tf , £ST , Z  
REAL • 8  A < 1 : NAR J 
REAL •4 D T , DR , fH, DR£ < 3 J , fH£ < 3 l  
INTEGER • 2  HAR , IERP 

c * * * * * * * * * * * * * * * * * **** ********** ********** * * * * ** * * * * * * * * * * * * * * * * * * * *  
c 
c 

c 

I E R P : O  
P I : 3 . 1 4 1 5 9Z 6 5  
DW : < WMAX-WM I N l /fLOAT < HW- 1 l  
WO : WM I N  
I PHASE ' 1 

PSDMX , O .  
DPHMX : O .  
D O  1 00 I W , 1 . HW 
W : WO+fLOAT < I W- 1 l •DW 
E w : CE X P < CI'tPLX < O . , -2 .  • P hW• D T l  l ' BACK S H i f T  OPERATOR 
T f : CMPL X (  1 . ,  0. l 
£WH ,CMPL X < 1  . •  0 . l 
DO 1 1  0 I ' 1 , NAR 
EWH:EWH•EW 
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1 1 0  

1 0  

1 1  

zo 

1 0 0  

c 
c * *  
c 

7 1  

7 2  

7 3  

c 

Tf : Tf -A (  I l •EWN 
P S D : 1 . / ( Tf•CONJG < Tf l l 
I f < RE AL < Tf l . N£ . 0 , 1 PH : -A T AH < A I MAG < Tf l /R[AL < Tf l l  
I f < RE AL ( Tf l . LT . O . l P H : PH-P I 
I f < IW . £Q . 1 l  GO TD 20 
I f ( PS D . L T . PSDMX l GO TO 1 0  
PSDMIC:PSD 
WPSDMX:W 
DPH:PHOLD -PH 
S I G N : DPH/ABS < DPH J 
l f < ABS < DPHJ . GT . 2 . •P I J  DPH : S I G H • < ABS < DP H l - 2 . •P i l 
I f < ABS < DP H J . GT . 2 . •P I J GO TO 1 1  
If < ABS < DPH l . LT . A B S < DPHMX l l  GO TO 20 
DPHMIC : DPH 
WDPHMJC:W 
PHOLD:PH 
PSDOLD:PSD 
CONT I NUE 
If < PS D MX . [Q . O .  l WPSDMX:WDPHMX ' If HO PEAK fOUND SAM£ AS PHASE 
GO T O  < 7 1 . 7 2 . 7 3 l  ! PHASE 

DEf iNE M A X I MA MORE ACCURATELY < f iNER MESH J 

DW: DW/fLOAT < HW J  
WP : WPSDMX-fLOAT < NW l •DW/ 2 .  ' PSD MAX f i R S T  I TERAT I O N  
W D : WDPHMX-fLOA T < HW J •DW/ 2 .  ' DPH MAX f i RST I TERAT I O N  
WO :WD 
IPHAS£ : 2  
G O  TO 1 
DPHMA X : DPHMX/DW 
ARR : - 1 . /DPHMAX 
AR I :WDPHMX 

! REAL 
' d < PHA5£ l / d ( fR £ Q l  RAD/HZ 

PART Of POLE < H Z J  

Ir < WD . EQ . WP )  G O  T O  7 3  
WO : WP 

' I MAG PART Of POL£ < HZ l  
t SAM£ RANGE THAN PSDMAX 
' D i fERENT RANGES 

IPHAS £ , 3  
G O  T O  1 
DPHMAX :DPHMX/DW 
ARR P : - 1 .  /DPHMAX 
AR I P : WDPHMX 

' d < PHASE l / � ( fR[Q l RAD/HZ 
' REAL PART Of POLE < H Z J  

' ! MAG PART O f  POL£ < HZ l  

C ** IMPROVE EST I MATES 
c 
C fROM d P / d W  

c 

EST :C£XP < -2 . •P I • D T •CMPL X < ARR . ARi l l  ! HOT£ EST : t x p < - s •d t l 
CALL Z£RO < HA R . A , £ST , Z , I £ R J  
I f < I ER . [Q . O l  Z : -CLOG < Z l / C 2 . •P I •D T l  ' ZERO IN HZ < s -d a m i i n l  
I f < I ER . EQ . O l  DR£ < 1 J : £XP < 2 . • P I •R£AL < Z l /ABS < AI MAG < Z l l l  ! D . R .  
I f < IER . EQ . O l  fHE < 1 l ,ABS < A I M AG < Z l l • N . f .  fROM MAX d P / d W  
I f < I ER . L T . O l  DR£ < 1 J : -999 .  
I r < IER . L T . O l  fHE < 1 J : -999 . 

C fROM MAX PSD 
£5T :C£XP < -2 . • P I •DT•CMPL X < O  . •  wPSDM X l l ' HOT£ EST : e x p < -s •d t l 
CALL Z £ R O < NAR . A , £ ST . Z , I £ R J  
I f < I ER . EQ . O l  Z : -C L OG < Z l / ( 2 . •P I • D T l  ' ZERO IN HZ < s -d a m • • n l  
I f < I E R . EQ . O l  DR£ ( 2 l : E XP < 2 . • P I •R£AL ( Z l / ABS < A I MAG < Z l l l  ' D . R .  
I f < I ER . [Q . O J  fH£ < 2 l , A BS < A I MAG < Z l l  ' H . f .  
I f < I ER . L T . O l  DR£ < 2 J : -999 . 

N 
\.J1 
"' 
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I F" C I E R . L T . O l  F" H E ! Z l : - 999 . 
c 

1 1 :  1 0 : 4 7 PAGE 22 

C FROM � s t t MA t l  of CI P/ d •  e MAX PSD 
£ S T : C£XP C -Z . •P l *DT •CMPL X C ARRP . AR I P l l ' HOT£ £ST : o x p < -s •d t l 

c 
c 
c .. 
c 

c 

c 

c 

Z 1 0  
zoo 

40 

so 

CALL Z £R O C HA R , A o £ST , z , I £ R l 
I F" < l£R . £Q . O l  Z : -CLOGC Z l / C Z . •P l •DT l ' ZERO IH HZ c s - d o • • • n l  
IF" C I£R . £Q . O l  DR£! 3 l : £ XP < Z . • P I •R£AL ! Z l /ABS < A I MAG ! Z l l l  ' D . R .  
IF" < lER . £Q . O l  r H£ 1 3 l : A BS C A I MAG C Z l l ! H . r .  FROM MAX d P / d W  

I F" ! I £R . LT . O l  DRE < 3 l : -999 . 
I r < IER . L T . O l  F" N£ ! 3 ) : - 999 . 

£VALU A T I ON OF" RESULTS 

D R : -9'3'3. 
F"N : -9 9 9 .  
Y 1 : 0 .  
Y Z : O .  
Y 3 : 0 .  
Y4 : 0 .  
D O  ZOO I : 1 . 3  
I F" < F"H£ < I l . GT . WMAX . OR . F"NE C I J . LT . WM I N l  GO TO Z 1 0  ' OUTS I DE RANGE 
l f" I DR£ ! l l . GT . DR l  F" N : F" NE ! I l  
I F" < DR E < I J . GT . DR l  D R : DRE < I l  
Y 1 : Y 1 + DR 
YZ : V2 +DR**2 
Y 3 : Y3+F"N 
v • : Y4+F"N••Z 
GO TO ZOO 
IERP : - Z  • AT LEAST OH£ POL£ O U T  OF" F"R£Q . RANGE 
COHTIHUE 

I F" C DR . EQ . -999 . l GO TO 40 
I F C I E RP . EQ . -Z l  RETURN A T  LEAST ONE POLE OUT OF" F"RE Q .  RAHG£ 

DRAU : Y 1 / 3 .  
DRVAR : YZ / 3 . - DRAU**Z 
F"HAV : Y 3/ 3 .  
F"NUAR : Y4 / 3 . -FNAV*•Z 
I F" C DRVAR . GT . DRAV• < O . OS••Z J J  GO TO 50 
I F" ! F"NUAR . GT . F"NAU• < 0 . 0 5 • • 2 J J  GO T O  50 
IERP : O  
RETURN ! EVERYTH I NG ALL R I GHT 

ALL POLES O U T  OF" RAHG£ 

' 5� STANDARD DEV I A T ION 
' 5� STANDARD DEV I A T ION 

I E R P : -3 
RETURN 
I E RP : - 1  
RETURN 
END 

HO DR EST I MATE < DR : -999 . J 
ALL POLES IH RANGE, BUT HOT THE SAME 
DR EST IMATE GOOD BUT HOT R E L I ABLE 

S TAB . r TH 

c 
c 
c 

c 
c ** 
c •• 
c •• 
c 
c .. 
c .. 
c .. 
c •• 
c •• 
c •• 
c 
c .. 
c .. 
c 
c 

2 0 - JuN-a4 

SUBROU T I NE Z£R O ! H , A . x . z , I £ R J 

1 1 ! 1 0 : 4 7 PAGE 2 3  

Th i S  s u D r ou t i n l  f i nd & z • r o  o f  & p o l yn o • • • t  o f  t ne f o r M  
1 . -s u • <  � ( a ) *Z** • > : 0 

Nor ll i l l y ,  i t  w i l l  f i n d • z e r o  c l o s e  to t n e  i n t t t a l g u e s s  x .  

CALL I NG PARAMET ER S :  
H 
A 
X 
z 
l £R 

- Or d e r  of p o l y  
- Po l y  c oe f f .  
- F' i r s t t s t a m a t t  ' "  1 - CIO ift i a n  ( l xp < -Zp i w d t l l  
- Onr o f  t h e  zer o s  o f  t he p o l y  i n  1 -d o m a a n  
- E r r o r  p a r •me t e r  ( er r or t f  I ER < O l  

SUBROUT I NES CALLE D :  
POLY - Ev a l u & t e s  • p o l yn o • • • l  and i t s  d e r i v & t t vr 

c 
c 

············································•·· · · · · · · · · · · · · · · · · · · · ·  

c 

c 

PARAMETER COHV : 1 . £ -5 
PARAMETER M X I T E R : 5 0  

' COHVERGEHCE C R I T E R I UM 
' MAX HUMBER OF" I TERA T I ONS 

c -- - - - - - -- - - - -- -- - - -- - -- - - - - - - - - - - - - - - - - - - - -- - -- - --- -- - - - - - - -- -- - - - -
c 

c 

COMPLEX x , z , P . DP . P 1 . DP 1 , DX 
REAL •B A < 1 : N l  
IHTEG£R H 

c - - - - - - -- - - - - -- - - - - - - - - - - -- - - - - - - - -- - - - - -- - - - - -- - - - - - - - - -- - - -- -- - - - -
c ···-····································· · · · · · · · · · · · · · · · · · · · · · · · · · ·  
c -- - -- - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - --- - - - - - - -- - -
c 

I E R : O  
£ P S : AMAX 1 C CABS < X J •CONV, 1 . £ -S l  
K : O  
CALL POL Y C H , A , X , P , DP >  

1 0  J : O  
3 0  O X : C P / 0P ) / ( 2 •• J >  

20 

Z : X-D X 
CALL POLY ( H , A . Z . P 1 , DP 1 l 
I f" ( CABS < DX J . LT . EPS l RETURH 
IF" ! CA B S < P 1 l . L£ . CA8S < P l l  GO TO 20 
J : J + 1  
I F" < J . L T . 1 0 l  GO TO 30 
P : P 1  
D P : D P 1  
X : Z  
K : K + l 
I F" < K . L £ . M X I T £ R l GO TO 1 0  
Z : CMPLX C 1 . £ 3 2 . 1 . £ 3Z J 
I £ R : - 1 
RETURN 
£HD 

• STEP COHTROL 

N 
lJ1 
" 



s : AB . f  ... N 

c 

c 

c 

z o - J u N - 0 4  

SUBROU T I Nt POLY < N . A. X , P . OP >  

1 1 :  ! 0 :  A ?  P..:tG£ 24 

C •• Th & s  s u b . e v a l u at e '  t ne p o t yn o m 1 & l  A @  X a n d  1 t s  a • r 1 v 1t 1 �  
C ** 511 s u b .  ZERO f o r  Ol t l t l s 
c 

c -------------------------------------------------------------- -----

c • • • • • • • • • • • • •• • • • • •• • • • • • • •••••••••••••••• •• • • • • • • • • • • •• • • • • • • • •• • •  

c -------------------------------------------------------------------

c 

c 

COMPLEX P , OP . X , XK 
REAL •B A < 1 : N > 

c -------------------- -----------------------------------------------

c • • • • • • • • • • • • • • • • • • • • • •• • ••••••••••••••••••• • • • • • • • • • • • •• • •• • • • • • • • •  

c -------------------------------------------------------------------

c 

P : CI'IPL X C  1 . 0 .  0 .  > 
O P : CMPLX C -SNGL C A C  1 > > ,  0. > 
XK : CMPLX C 1 . 0 . 0 . > 
00 1 0 0  K : 1 , N- 1  
X K : XK • X  
P : P-A C K > • X K  

1 00 O P : DP-tLOAT < K+ 1 > * A C K + 1 > •XK 
P : P-A C N > •XK*X 
RETURN 
END 
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c 

c 
c 

1 1 ;  1 G :  4 7 P A G ::  2 5  

SUBRO U T I Nt CONt i D C A . NAR , I E R A , DRC . tNC . I E R C . DR S , r N S , I ERS 
, DR P , rNP . I tRP . O R , tH . I COH> , I E R >  

c 
C •• Th t s  s u D r ou t t n •  I V & l u at e s  t n •  DR ' s  a n d  tN ' s  c a l c u l &t e d  
C ** 1n DRCOR R ,  D R T I I'IE ond DRtREQ ond t h •  e r r o r  c o d e s  g • n o r o t o d . 
C ** I t t S t t m & t i S  t h e  b i S t  OR a n d  H t .  
c 
C ** CALL I NG PARAMETER S :  
C • •  A - AR p a r ame t 1 r s  
C ** NAR - AR o r d • r  
C •• I ER A  - E r r o r  p a r am1 t 1 r  r t t u r n l d  b y  ARMODL 
c •• ORC - Ap p ar • n t  DR o f  au t o c o r r l l &t • o n  
c •• tHC - N a t u r a l  f r 1 q u 1 n c y  o f  au t o c o r r l l &t i o n  
C • •  I ER C  - E r r o r  p ar am1 t 1 r  r 1 t u r n e d  b y  DRCORR 
c •• DRS - As y � p t o t 1 c  D R  o f  i •p u l s •  r 1 sp o n s 1  
c •• tNS - N a t u r a l  f r 1 qu 1 n c �  o f  a mp u l s e  r 1 s p . 
c ** I ERS - Error p a r ••• t • r  r • tu r n • d  b y  D R T I M E  
C * *  DRP - As y m p t O t i C  D R  I V a l u &t l d  1n DRtR£Q 
C ** tNP - N a t u r a l  f r • q u 1 n c y  
C •• I ERP - E r r o r  p or ame t o r  r e t u r n e d  � y  DR>REQ 
c •• DR - Be s t  1 1 t 1 • 1 t 1  d • c ay r at i o  < r • t ur n e d  by CONt i D )  
c ** �H - Bt s t  o s t • • • t •  n ot .  f r t q .  < r o t ur n • d  oy CONt i D l  
c ** ICONr - Co n f t d • n c •  l •v• l o f  • s t 1 ma t 1  
C •• +1 h i g n • s t  c o n f i O • ne e  
c •• 1 f  I CONF" < o • s t t M a t e  t s  no g o a d  

C • •  I ER - Er r or c o d l  

C * *  I f I E R : O  no 1 r r ar 
C •• I f I E R >O s o • •  • r r o r  a c c u r r 1 d  < no t  n • c • s ar i l l W f at a l )  
C •• Notl t h at if I E R < O  t n • r •  w as a f at a l  1 r r o r  
C • •  d u r i n g  i n p u t  C h i C k 1 n g  a n d  n e v • r  g o t  t o  
C •• t h t l  s u b r ou t 1 n 1 . 
c 

c -------------------------------------------------------------------

c • • • • • • • • • • • • • • • •• • •• • •• • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

c -------------------------------------------------------------------

c 

c 

PARAMETER W M I N : O . Z5 
PARAMETER WMAX : O . B 

' M I N I MU M  �REQUENCY � O R  BWR RESONANCE 
' M A X I MUM >REQUEHCY 

c -------------------------------------------------------------------

c 

c 

REAL • B A C 1 : NA R >  
REAL *� DRC , r HC . DR S . r N S , DRP , �NP . DR . rN 
I N TEGER •Z I E RA . I ERC . I E R S . I ER P  

c -------------------------------------------------------------------

c • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

c -------------------------------------------------------------------
c 

c 

c 

I E R : O  

I t C I E RA . EQ . - 1 > I ER : 1  

l ' C I E RC . EQ . - 1 >  I ER : I ER + 2  
I � � I E QC . E Q . - 2 >  I E R : ! ER + 4  

• A R  O R D E R  HOT L A R G E  ENOUGH 

• N O  PEAK IN CORRELAT I ON 
' ' I R S T  UALLEY IN CORR . > 0  

N 
\Jl 
00 
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c 

c 

c 

IF C I E R C .  E Q .  - 3 l 

I F < IERS . EQ . - 1 )  
IF C IERS . EQ . - 2 1  
I F < I E RS . E Q . - 3 1  

I F  C I E: R P .  E Q .  - 1  l 
I F < IERP . EQ . -2 1  
I F < IERP . EQ. - 3 )  

I E ii : IEii+B 

I E 1i : I ER + 1 6  
I ER : I ER+32 
lER: IER+6o4 

IER: I E R + 1 28 
I ER : I ER+256 
I E ii : IER+512 

o LOWER FREQUENCY I S  IMPORTANT 

! IMPULSE RESP. NEUER CONVERGED 
' MX T I ME REACHED W I THOUT CONV IN IMP 
' NO PEAKS IN IMPULSE RESPONSE 

ALL PEAKS I H  RANGE, NOT SAME 
AT LEAST 1 POLE OUT OF FREQ RANGE 
ALL POLES OVT OF FREQ RANGE 

C •* BEST EST IMATE FOR DR AND NF 
c 

c 

c 

c 

c 
c 

c 

c 
c 

c 

c 

c 

c 

c 

c 

DR: -999. 
FN: -9 9 9 .  

I F C FNS . GT . WMAX . Oii .  FHS . LT . WM I H  . OR .  FHS . GT . WMAX 
. OR .  FHS . L T . WM I N l  GO TO 10 

Dli : DR S  
F N : FNS 
I F C DR P . GT . DR S l  Dli : DRP 
I F < DRP . G T . DRS l FN : FHP 
IF C IERS . NE . - 1 . OR .  DR . EQ . DR P l  GO TO 20 

IF < DR S . LT . DRP• 1 . 25 l  GO T O  20 
DR : DRS 
F N : FNS 
GO T O  20 

1 0  IF C FNS . G T . WMAX . OR .  FHS . LT . WM I H l  Dli : DRP 
I F C FNS . GT . WMAX . OR .  FNS . LT . WM I N l  FH:FNP 
I F C FNP . GT . WMAX . OR .  FNP . LT . WM I H l  DR:DRS 
IF < FNP . GT . WMAX . OR .  FHP . L T . WM I H l  FH:FNS 

I F < DR . EQ . -9 9 9 .  l I CONF : -7 
IF C DR . EQ . -9 9 9 . ) RETURN 

20 ICONF : S  

I F < I E RA . E Q . - 1 1  I COHF : I COHF -3 
I F C I E RA . GT . O l  ICONF : I COHF - 1 

I F < IERC . EQ . - 1 . AND . DR . GT . 0 . 3 l  
I F C IERC . E Q . -2 1  I CONF : I CONF - 1 
IF < IERC . EQ . -3 1  I CONF : I CONF-1 

I F C I E RS . E Q . - 1 . AND . Dii . EQ . OR S l  
I F < IERS . E Q . -2 1  I CONF : I CONF - 1 
I F C IERS . EQ . -3 . AHD . DR . GT . 0 . 3 l  

I F C IERP . EQ . - 1 1  
I F < I E iiP . EQ .  - 2 1  
I F C I E RP . EQ . - 3 )  

ICONF: ICOHF- 1 
I CONF : ICONF - 1 
ICONF : I CONF - 1 

ICONF : I COHF- 3 

ICONF : I COHF- 3 

ICONF : I CONF- 3 

!F C C AB S C DRS- DRP l . L T . O . OS•DR l . AND . < AB S C FNS -FNP l . L T . O . OS•FN l l  

S T A B . F T N  2 0 - JUN-84 1 1 : 1 0 : 4 7  PAGE 2 ?  

I CONF : I CONF + 1  
I F C C AB S < ORC - DR l . L T . O . OS • DR l . AN D . < ABS < FNC-FN l . LT . O . OS•FN l l 

ICONF: I CONF+ 1 
RETURN 
END 

N 
lJl 
'-0 
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c 
c 
c 

c 
c ** 

c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c 

SUBROU T I NE £RR£ST I DR . FN. DRSTCK . FNSTC K . "XSTCK 
. IFLAGZ. DR£RR. FN£RR , I £ R )  

Th t s  s u b r ou t i n e  c & l c u l & t l l  & n  e r r o r  e s t i m a t e  f o r  DR a n d  r N .  
I t  ' "  i n t tn d t d  t o  b t  U 5 t d  W i t h  t n t  PSDR£C s y s t t m .  
SuD . STAB I S  c & l l l d  N t • •t s  W 1 th PSDZ ' S  &I i Mp u t . Th e n ,  t n t  
&vl r &g l  o f  t h l  PSDZ ' s  1 1  d O n i  &nd STAB C l l l t d  19 1 1 n  W t th 
t h i S  IVI r &g t . Tht t r r o r  I S t i • & t l  I S  t h l  M AX I MU M  Of t h l  
d i s p1r s a o n  o f  a l l t h a s  e s t i ma t e s . Th i s  e r r o r  a c c o u n t s  f o r  t h e  
s t an d ar d  d t v a &t i o n  o f  t h t  DR ' s  e va l u at e d  f r o •  PSDZ ' s .  &nd & l s o  
t &k e s  i n t o  & c c o u n t  t n t  b a a s ,  s i n c e  t h t  &vt r &g t  P S D  e s t i m & t t  
i s  • o r e  & c c u r a t e  t h &n w a tn PSDZ � s .  
�tve r t n t l ts s .  t h t s  a s  j u s t  &n e s t i M a t e  a n d  i s  n o t  g u & r &n t a t d  
t o  b t  c o n s e r v & t t v t . 

CALL I NG PARA"£T£RS : 
DR - Cur r e n t  d t C IU r it t O  
F" N  - C u r r e n t  n • t ur & l  f r t q .  
DRSTCK - Ar r oy t o  5 t D r t  o l d  D R  
FNSTCK - Ar r oy to s t ar t  o l d  F N  
MXSTCK - M&x i •u •  l en g t h  of t h l  p r t v t O U I  1r r 1 y 1  
I FLAGZ - I f  : 0 .  t h t n  t h l l  c o l i i s  w i th PSDZ ' s  o n d  

DR£RR 
FNERR 
I£R 

o n l y  u p d l t a n ;  of the 1r r 1y s  1 1  d o n e  
I f  : N  > O .  t n e n  a n  • • t a • • t •  a s  o tl t & i n • a .  
N 1 S  t n •  numb•r o f  PSDZ • s  t n a t  n •v• & l r • ad �  
D • • n  • v • l u &t l d  

- E s t  u n • t •  of • r r o r  i n  DR 
- E s t 1 m 1 t •  of e r r o r  i n  FN 
- E r r o r  c o n d 1 t i o n  

c - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
' ******************************************** * * * * * * * * * * * * * * * * * * * * * * *  
c - - - - - - - - - - - - - - --- - - - - ------- ----------- ---- - - - - - - - - - - - - - - - - - - - - - - - -
c 

REAL •4 D R , f N , DRSTCK ( 1 : "XSTCK ) , fNSTCK ( 1 : "X S TC K l 
, DR ERR , FNERR 

INTEGER •2 M X S T CK . IFLAGZ . I ER 
c 
c - - - - - - - - - - - - - - - - -- - - - -- - ---- -------------- - - - - - - - - - - - - -- - - - - - - - - - - -
c ******************************************** * ********************** 
c - - - - - - - - - - - - - -- - - - - - - -- - -- - ---------------- - - - - - - - - - - - - - - - - - - - - - - - -
c 

c 

c 

DRERR :-999 . 
FNERR : -999 . 
I F I I F L AG Z . L T . 2 )  RETURN 

! F ( IfLAGZ . G T . O )  GO TO 10 

DO 1 00 I : "XSTCK . 2 . - 1 
DRSTCK ( l ) :0RSTCK t i - 1 l 

1 0 0  FNSTCK l l l : F NSTCK ( I - 1 ) 
DRSTCK t 1 l : DR 
FNSTCK t 1 ) :f N  
RETURN 

S T A B . F TN 

c 
1 0  

200 
c 

c 

DR"X : DR 
DR"N:DR 
FN"X:FN 
FN"N:FN 

2 0 - J U N - 8 4  

I F I IFLAGZ . G T . "XSTC K )  IFLAGZ:"XSTCK 
DO 200 I : 1 , I FLAGZ 

I F I DRSTCK I I ) . GT . DR"X ) DR"X:DRSTCK l l )  
I F l DRSTCK l l ) . L T . DR"N l DR"N:DRSTCK I I )  
I F I FNSTCK I I ) . GT . FN"X ) FN"X :FHSTCK I I )  
l f ( fNSTCK l i l . LT . FN"N ) FN"N:FHS TCK I I ) 

DRERR : DRMX- DA"N 
FNERR:FN"X-FN"N 

RETURN 
END 
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c 
c 
c 

2 0 - JUN-84 

SUBROUT I NE ffT < I D I R · LN. f >  
c 

C fAST fOUR I E R  TRANSfORM ALGORITHM 
c 
C I D I R : O  fORWARD TRANSfORM 
C : 1  INUERSE TRANSfORM 
C LN : THE BLOCKSIZE I S  Z • •LN 

1 1 :  1 0 :  4 7 PAGE 3 0  

C f : COMPLEX ARRAY CONT A I N I NG ARRAY TO BE TRANSfORMED ON INPUT 
C AND CONTA INS TRANSfORM ON OUTPUT 
c 
C fOR I CHANNEL rORWARD TRANSfORM, THE T I ME DATA GOES I NTO THE 
C REAL PART Of f .  ON OUTPUT , THE TRANS>ORM IS PROPERLY ORDERE D .  
C >OR Z CHANNEL fORWARD TRANSfORM, THE T I ME DATA >OR CHANNEL 1 
C GOES I N T O  THE REAL PART or r AND CHANNEL 2 INTO THE 
C I M A G I NARY PART Of r. ON OUTPUT, THE TRANSfORMS ARE JUMBL E D .  
C USE >UNC T I ON TWOSP IN T H I S  L I BRARY TO UHJUMBLE THE TRANSfOR M .  
c 
C TH I S  ROU T I N E  HAS NOT BEEN USED fOR 2 CHANNEL INVERSE TRANSfORM . 
C THEREfOR E ,  I TS APPL I C AB I L I TY IS NOT KNOWN. 
c 

COMPLEX r . u , w . T . CMPL X . CONJG 
D I MENS ION r <  1 l  
P I : 3 . 1 4 1 592654 
N :::: 2 • •LN 
I > < I D I R . E Q . O > GO TO 7 
DO a I : 1 . N  

a > < I > : CONJG < > < I > >  
7 NU2 :N / 2  

NM 1 : N- 1 
J : l  
DO 3 I : 1 , NM 1  
I r < I . GE . J > GO T O  1 
T : r < J >  
r < J > : r < I >  
f <  I >  : T  

1 K : NUZ 
2 I > < K . GE . J > GO TO 3 

] : J -K 
K = K / Z  
GO T O  2 

3 J : J+K 
DO 5 L : 1 , LN 
L E : Z • • L  
LE I : LE / 2  
U : < t . O . O . O >  
W : CMPLX < COS < P I /LE I > . - S I N < P I /L E 1 > >  
DO S J : I . LE 1  
DO 4 I : J , N, LE 
I P : I +L E 1  
T : f < I P > •U 
r< I P >  : r <  I > - T  

4 r < I > : f < I > +T 
5 U : U•W 

I f < I D I R . E Q . I > RETURN 
DO 6 I : 1 . N  

S TA B . >H <  

6 r < I > : f C i l /f L OA T < N >  
RETURN 
END 

2 0 - JU N - 8 4  1 1 '  1 0 : 4 7  PAGE 3 1  

N 
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c 

c 

c 

c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 

c 
c 

c 
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SUBROUT I NE DECO� < N D I M . N • A • COND. IPVT. WORK I 

I M PL I C I T  REAL • B < A-H . O- Z l 
I M PL I C I T  I N TEGER * 4 < I -N l  
INTEGER * 4  N D I M . N  
REAL •B A ( N D IM . N l . COND. WORK < N l  
INTEGER * 4  IPVT < N l  

DECOMPOSES A REAL MATR I X  B Y  GAUSSIAN E L I M I NA T I O N  
A N D  E S T I MATES T H E  COND I T ION 0� THE MAT R I X  

USE SOLVE T O  COMPUTE SOLUT I ONS T O  L I NEAR SYSTEM S .  

INPUT • .  

PAGE 3 2  

N D I M : DECLARED R O W  D I MENSION 0� T H E  ARRAY CONTA I N I N G  A .  

N : ORDER 0 �  THE MATR I X  

A : MATR I X  TO I E  T R I ANGULARI ZED 

OUTPUT . .  

A C ON T A I N S  AN UPPER TRI ANGULAR MATR I X  U AND A PERMUTED 
VERSI O N  0� A LOWER T R I ANGULAR MATRIX I -L SO THAT 
< PERMUTAT I O N  MATR I X I •A=L*U 

COND: AN EST IMATE 0� THE COND I T I ON 0� A .  
�OR THE L INEAR SYSTEM A*X : B .  CHANGES I N  A AND 8 
MAY CAUSE CHANGES COND T IMES AS LARGE IN X .  
I �  COND+ 1 . 0  . EQ .  COND, A I S  S I NGULAR T O  WORKING 
PREC I S I O N .  COND I S  SET TO 1 . 0E+32 I �  EXACT 
S I NGULAR I TY IS DETECTED. 
I P V T : THE P I VOT VECTOR 
I P VT < K l : THE INDEX 0� THE K-TH P I VOT ROW 
I P V T < N l : < - 1 l * * < NUMBER 0� I NTERCHANGES !  

WORK SPACE . . THE VECTOR WORK MUST BE DECLARED AND INCLUDED 
IN THE CAL L .  I T S  INPUT CONTENTS ARE IGNORED . 
I T S  OUTPUT CONTENTS ARE USUALLY UNINPORTAN T .  

THE DETERMI NANT 0 �  A CAN B E  OBTAINED O N  OUTPUT B Y  
DET < A l : I PUT < N l *A ( l , l l •A < 2 . Z l * · · · *A < N . H l . 

REAL •B EK . T , ANORM , YNORM. ZNORM 
INTEGER *4 NM 1 . I , J , K , KP 1 , K B . KM 1 . M  

IPVT < N l : 1  
IF < N . EQ . 1 l  G O  T O  SO 
NM 1 : H - 1  

COMPUTE 1 -NORM 0 �  A 

ANORM : O . O  
DO 1 0  J : 1 , N  
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5 

1 0  
c 

c 

c 

c 
c 

c 

c 
c 

c 

c 

c 

c 

1 5  

20 
c 
c 

c 

c 

c 
c 

c 

c 
c 
c 

c 

c 

c 

25 
30 
35 

T : O . O  
DO 5 I : l , N  
T : T+DAIS < A < I , J l l 
CONTI NUE 
I � < T . GT . AHD R M l  ANOR M : T  
CONTI NUE 

GAUS S I AN EL I M I NA T I ON W I T H  PAR T IAL P I VO T I N G  

D O  35 K : 1 , NM l  
KP 1 : K + 1  

f i ND P IV O T  

M : K  
DO 1 5  I : KP1 • N  
I� < DABS < A < I . K l l . GT . DABS < A < M · K > l l  M : I 
CON T I NUE 
IPUT < K l  : M  
I F" < M . NE . K l  IPUT ( N l : - I PVT < N l  
T : A ( M , K l  
A ( M , K l :A ( K , K l  
A < K . K l :T 

S K I P  STEP I� P I VOT IS ZERO 

I � < T . EQ . O . O l  GO T O  35 

COMPUTE MUL T I PL IERS 

DO 20 I : KP 1 • N  
A ( I , K l : -A < I . K l / T 
CONT I NUE 

INTERCHANGE AND E L I M I NATE BY COLUMNS 

DO 30 J : K P 1 • N  
T : A ( M ,  1 l  
A ( M , J l :A O ( , ] )  
A < K . J l : T 
I� < T . EQ . O . O l  GO TO 30 
DO 25 I : K P 1 • N  
A C I , J ) : A ( l , J ) + A ( I , K ) • T 
CONT I NUE 
CONT I NUE 
CONT I NUE 

COND: < 1-NORM 0� A l * < AN E S T I MATE 0� 1 -NORM 0� A- I NUERSE l 
ES T IMATE OBTAINED BY ONE STEP 0� INVERSE I TERAT I ON �OR THE 
SMALL S I NGULAR VECTOR . THIS I NUOLUES SOLV ING TWO SYSTEMS 
0� EQUAT IONS , < A-TRANSPOSE > •Y : E  AND A• Z : Y  WHERE E 
IS AUECTOR OF" + 1  OR -1 CHOSEN TO CAUSE GROWTH IN Y .  

E S T I MATE : ( 1 -NORM O F"  Z l / ( 1 - NORM 0� Y l  

SOLVE < A-TRANSPOSE > •Y : E  

D O  5 0  K : 1 . N  
T : O . O  

N 
"' 
N 
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4 0  
45 

50 

55 

60 
c 

65 
c 
c 

c 

c 

70 
c 
c 

c 

c 
c 

c 

c 
c 
c 

8 0  

90 

I F C K . EQ . 1 l  GO TO 45 
I<M1 : 1< - 1  
DO 4 0  I : 1 . 1<1'1 1  
T : T+A C I , K l •WORK C l l  
CONT I NUE 
El< : l .  0 
I F C T . �T . O . O I  El<:-1 . 0  
I F C A C K , I< I . E Q . O . O I G O  TO 90 
WORI< C I< I : - C EI<+T I /A ( I< , K l  
CONT I NUE 
DO 60 1<8: 1 . NI'I I  
K : N-1<8 
T : O . O  
I<P 1 : K + I  
D O  :5 5  I : Kf'l # H  
T : T+A C I . K I •WORI< C K l  
CONT I NUE 
WORK C K  l : T  
M : I P V T C I< l  
I F C I'I . EQ . I< l  G O  T O  60 
T : WORI< C I't l  
WORK C I't l :WORK C K l  
WORK C I<  l : T  
CONT I NUE 

VNORI't : O . O  
D O  6 5  I : 1 . N  
VNORI't:VNORI't+DABSC WORK C i l l  
C O N T I NUE 

SO�vE A * Z : V  

C A L L  SOLVE < ND I M , H , A , WORK , IPVT l 

ZNORM : O . O  
D O  70 I :  1 ,  N 
ZNORM: ZNORM+DAI S C WORK C i l l  
CONT I NUE 

E S T I MATE COND I T ION 

COND: ANORM*ZNORM/YNORM 
I F C CO ND . �T . ! . O l  COND : I . O  
RETURN 

1 -BY 1 

COND: 1 .  0 
I F C A C 1 , ! l . NE . O . O l RETURN 

EXACT SI NGULAR I TY 

COND : I . OE+32 
RETURN 
END 
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c 

c 

c 

c 

c 

c 

c 
c 

c 
c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 
c 

c 

c 

c 
c 

1 0  
z o  

c 

c 
c 

30 
40 
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SUBROUT I N E  SOLVE C ND I M . N . A . B . IPVT l 

IMP� I C I T  REA� •8 I A- H . O- Z l  
IMP� I C I T  IHTEGER •4 C I - N l  
INTEGER •4 ND I M . N . I P vT C N l  
REA� • 8  A C N D IM . N l , & C N l  

SOLUTION Of L I NEAR SYSTEM• A• X : B  

1 1 ' 1 0 : 4 7  

D O  NOT USE I f  DECOMP H A S  DETECTED S I NGULAR I T Y  

INPUT . . .  

N D I M : DECLARED ROW D I MENS I ON Of ARRAY CONT A I N I NG A 

N : ORDER Of MAT R I X  

A : T R I ANGULAR I ZE D  MATR I X  OBTAINED F R O M  DECOMP 

& : R IGHT HAND S I DE vECTOR 

IPvT : P I VOT VECTOR OBTAINED FROM DECOMP 

OUTPUT . . .  

&: SOLUTION vECTOR , X .  

INTEGER * 4  K B . K M I , NM I · KP I • I • K • M  
REAL • B  T 

FORWARD E L I M I N A T I O N  

I F C N . EQ . I l  GO TO 50 
NM 1 : N - 1  
D O  2 0  K :  1 . NM 1  
KP 1 : K + I  
M : IPVT C K l  
T : B C M l  
8 C M l  : B C K  l 
8 C K l : T 
DO 10 I : KPI • N  
B C i l : B C i l +A C I . K l •T 
CONT I NUE 
CONTINUE 

BACK SUBS T I TUT I ON 

DO 40 K B : 1 . NM 1  
KM1 : N - K B  
K : K M ! + I  
B C K l : B C K l /A C K , K l  
T : - 8 C K l  
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DO 30 I : 1 , KM 1  
B C i l : B C i l +A C I , K l • T  
CONTINUE 

50 8 C 1 l : 8 C 1 l /A C 1 , 1 J  
RETURN 

CONTI NUE END 

N 
0\ 
w 
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c 

c ** 
c •• 
c •• 
c 

c .. 

c 

c 

I T  SOLVES THE NON L I NEAR EQUA T I ONS REPRESE N T I NG A BWR 
W I TH NON-LINEAR rEEDBACK 
AND RECIRCULATION LOOP < ONLY ONE CHANNEL l 

I T  I NCLUDES 2-NODE rUEL AND PO I NT K I NET I C S  

PARAMETER NEQMX:ZO 
PARAMETER MXND : 1 2  
IMPL I C I T  REAL•& < A-H , O- Z l  
COMMON /MODEL/ 

NND , A 1 · AZ , ETA, DZ, XKr , PSHP 
, XL A . DPrO , DPO , rLOW 
, H, RHOL , RHOG , GC , XKC 
� XK S , RCO£Y , HL , HG , A�LOW 
, WH I TE , IMPUL , STEP , H S I N  

R E A L  • B  A 1 , AZ , H . RHOL , RHOG , G C . XKr . XKC 
· XL A . DPrO , DPO, rLOW 
. XK S . RCOEr , ETA. HL. HG. PSHP< MXND l , DZ 

LOG I CAL • 1  W H I T E . IMPUL . S TE P . H S I N  
c - - - - - - - - - - - - -- - - - - - - - -------------------- - - - - -- - -- - - - - - - - - - - - - - - - - - -

COMMON /BOUND/ yz , xz . rHZ . EC Z . r R . QDOT 
REAL • B  Y Z I O : MXND. 3 l , XZ I O : MXND l , rHZ I O : MXND l . ECZ I O : MXND l 

, rR I I : MXND J , QDO T < t : MX N D l  
COMMON / S T E A D Y /  YZO. XZO . ECZO 
REAL •8 YZO < O : MXND . 3 l . XZO < O : MXND l , ECZO < O : MXN D l  

c - - - -- - - - - - - - -- - - - - ------------ -------------- - - - - - - - - - - - - - - - - - - - - - - - -

EXTERNAL f 
REAL •B ATOL < NEQMX l . Y I NEQMX l 
INTEGER I CH < NEQMXT 1 l  
COMMON /PERTUR/ R . WPER T , PHPERT 
LOG ICAL • 1  f iL E < 2 8 l  

c - - - - - - -- - - - - - - - - - - -- - -------------------- - - - - - - - -- - - - - -- - - - - - - - - - - - -

c 

COMMON /NEUT/ XL , GT , BETA , f3 , DOP , REACO 
REAL •8 REAC O < MXN D l  
COMMON /HTR/ U . A3 , A� . AS , PO W , PSUM2, DRCM 
COMMON / IN2/ POWPC. rLOWPC 

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

COMMON / O U T P /  P R I N T , PRALL . DSK 
L O G I CAL * I  P R I N T , PRAL L , DSK 
COMMON / U N I T 4 /  DEV 
L O G I CAL •1 DEV < 28 l  

c - - - - - - - - - - - - - - - -- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

c 

c 

c 

CALL INPUT ! NEQ , f , JAC . D T , T . Y , ATOL . RTOL . Mr . r iL E . I C H . NCH l 

1 0  CALL I NPf l r i LE l 

CALL STEADY < D T . Y , r i LE > 

CALL DTGE N < N£Q , r , JAC . D T , T , Y . ATOL . RTOL . Mr , f i L £ , I CH . NCH l 

GO TO 1 0  
E N D  
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c 

c 

c 

SUBROUTINE INPUT I N£Q , r , JAC . DT . T . Y . ATOL . RTOL. Mr . r i L £ , I C H . NCH l 
PARAMETER NEQMX:ZO 
PARAMETER MXND : 1 2  
IMPL I C I T  REAL•& I A -H . O-Z l 
COMMON /MODEL/ 

NND · A 1 . A2 • ETA. DZ. xKr . PSHP 
. XL A · DPfO, DPO . rLOW 
, H , RHOL . RHOG , GC , XKC 
. XK S . RCO£r , HL . HG • ArLOW 
. WH I T £ , IMPUL , STEP . H S I N  

REAL • B  A 1 , AZ , H , RHOL , RH OG , GC . XKr , xKC 
. XL A , DPrO , DPO , fLOW 
, XK S . RCO£r , ET A , HL · HG . PSHP I MXND J , DZ 

LOGI CAL • 1  WHI T E , I MPUL . ST£P , HS IN 
c --------------------------------------------------------------------

COMMON /BOUND/ yz , xz . rHZ · EC Z . r R , QDOT 
REAL • B  YZ < O : MXND. 3 J , XZ < O : MXND J , rH2 ( 0 : MXND l . EC2 < 0 : MxND l 

. rR I 1 : MxND l , QDOT < 1 : MXND l 
COMMON /STEADY/ Y 20 . x 2 0 , £CZO 
REAL • B  YZO < O : MXND. 3 l . XZO < O : MXND l . EC 20 < 0 : MXND l 

c · - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
EXTERNAL r 
REAL •B ATOL < NEQMX l , Y < NEQMX l 
INTEGER I CH < N£QMX + 1 l 
COMMON /PERTUR/ R . WP£RT , PHP£RT 
L O G I CAL •1 r iLE < ZB l  

c - - - - - - - - - -- - - - - -- - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -

COMMON / H [ U T /  X L , G T , B£TA, r 3 . DO P , R£ACO 
REAL • B  REACO C MXND l 
COMMON /HTR/ u . A 3 . A4 , A5. POW, PSUM2. DRCM 
COMMON / I NZ/ POWPC, rLOWPC 

c - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - ----- - - - - - -- - - - - -

COMMON / O U T P /  P R I H T , PRAL L , DSK 
L O G I CAL *1 P R I H T , PRAL L . DSK 
COMMON /UNI T4/ DEU 
LOGI CAL * 1 D£V < 28 l  
LOGI CAL • 1  I ANS . r i L£6 < 2 8 l  

c - - - - - - - - - - - - - - - - - - ----- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -
c 

c 

1 
1 000 

1 0 1 0  

1 020 

1 030 

1 04 0  

> 

WR I TE < S ,  1 000 1 
FOR"AT ( / / / 1  *• PROGRAN TLAP * * ' / / 
' ENTER HUMBER Of NODES [ 0£ r : 1 2 l  : ' . S l  
R£AD < 4 · 1 0 1 0 l  HHD 
rORMAT < B I ! O l  
I r < HHD . L[ . O l  HHD : 1 2  
tr < HND . G T . MXND l G O  T O  
H£Q: NHDT 1 +2 + 1 + 1  ' ALr A ,  INLET fLOW , 2 TEMP. N£UTR, DELAYED 
WR I T£ <  s. 1 020 l 
rORMAT < '  DEL TAT [ 0£ F : O . O Z J : ' , S l 
R£AD < 4 , 1 0 30 l DT 
rORMA T t �rzO . O l 
I r < DT . L£ . 0 . l DT : o . oz 
WR I T £ < 5 . 1 040 1 
rORMAT < '  TOTAL T I M£ [ 0£r : 2 o 0 l  : ' , S l 

N 
0' 
\.Jl 
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c 

c 

1 07 0  

1 075 

1 080 

1 090 

2000 

1 1 0  

2 0 1 0  

1 0 0  

2020 

2030 

2025 

READ C 4 ,  1 0 30 ) T 

I F < T . �E . O . l T : 20 0 .  

wR i n: c s .  1070 > 

FOR�AT C '  ENTER 1 - FOR WH I TE NO I SE PERT . ' /  

2 - FOR ! �PULSE RES P .  ' /  

3 - F O R  DAMPED S I NE RESPONSE. C DEF J ' /  

4 - F O R  STEP R E S P .  

READ C 4 . 1 0 1 0 l  ! OPT 

I F < IOP T . �E . O . OR . I O PT . GT . 4 l  IOPT : 3  

WH I TE : . FA�S E .  

IMPU�: . F"A�SE . 

STEP: . F"A�SE . 
I F" < IOPT . EQ . 1 l  W H I TE : . T R U E .  

I F <  ! O P T . E Q .  2 l !MPU�= . TRUE. 

I F < I O P T . EQ . 3 l  HS I N : . TRUE . 
I F < I O P T . GE . 4 >  STEP : . TRUE . 

WR I TE < 5• 1 07 5 l  

: ' ,  S l  

FORMA T ( ' PERTURBA T I O N  MAGNITUDE C DO��ARSl C DE F : 0 . 1 l : ' , S l  

READ C 4 . 1 030 l R 

I F < R . �E . O . l R : 0 . 1  

WR I TE C 5 ,  1080 l 
FORMAT < '  ENTER A T O L . RTO� C DEF : 1 . E - 8 . 1 . E- 4 l : ' , S l  

READ C 4 . 1 030 l A T 0� < 1 > , RTO� 

I F" < AT OL C 1 l . EQ . O . l  A T O L < 1 l : 1 . E-8 

I F" < RT OL . EQ . O . > RTOL : 1 . E-4 

WR I TE C 5 , 1 09 0 >  

FORMAT < '  ENTER DRC MULT I PL I ER C DEF : 1 J : ' , S >  

READ < 4 . 1 0 30 l DRCM 

I F < DR C M . E Q . O . l DRCM: 1 ,  

WR ! TE < 5 . 200 0 J  

FORMAT < '  POWER SHAPE C BO T ,  . . • T O P l ' l  

F 1 :F�OAT < NH D > + 2 . 5  
F 2 : FLOAT < NN D > + 2 .  

DO 1 1 0  I : l . ><N D  

P5HP < I > :SQRT C A BS C S ! N C 3 . 1 4* < < F 1 -FLOA T < ! l l / F2 > • •2 > l l  

DO 1 0 0  l : 1 , NN D  

WR ! TE C 5 , 2 0 1 0 l  I . PSHP < I >  

FORMA T < ' P S H P < ' . I 2 , ' l : C DE F : ' . G 1 2 . Z • ' l  : ' , 1 >  

READ C 4 , 1 03 0 >  P P P  

I F < PPP . NE . O . l PSHP < I l :PPP 

CONTI NUE 

PR I NT : . FALS E .  

PRALL : . FALS E .  

DSK : . F"AL S E .  

WR I TE ! $ . 202 0 >  

FORMAT < '  PR I NT PROGRESS� C DEF" : NO J  : ' , S J 

REA D C 4 , 2030 J I . IANS 

F"ORMAT < Q , BO A 1 >  

! F C I A NS . EQ . ' Y ' > P R I N T : . TRU E .  

! F < PR I NT l  W R I T E C 5 o 202 5 l  

FORMA T < ' PR I N T  ALL V A R I A BLES� C DEF: ONLY POWERl : ' , S l  

I F C PR ! NT l  READ C 4 , 2030 l I , I ANS 

! F C ! A N S . EQ .  ' Y ' l PRALL : . TRUE . 

loiR ! T E  < 5 ,  2050 > 

2050 FORMAT < '  SAUE A�L VAR I AB � E S  IN D I SK �  C D E F : N O J  : ' , S J  

Q E A D ( 4 . 2 030 J .I , I A N S  

T L PF . F" T �o.t  2 0 - J U N - 3 4  1 1 : 2 3 : 4 5 P A G£ 

2060 

c 

2040 

c 

I F < IANS . EQ .  ' Y ' l D SK : . T R U E .  

WR I T E < 5 , 2060 l 

FORMAT < '  DEV I C E  F O R  STEADY AND DR OUTPUT C DE F : C� : J : ' , I l  

READ ! 4 , 2030 > NCHR • < DE V < J > . J : 1 . NCHR l 

! F ! NC HR . EQ . O >  DEU C 1 l : ' C '  

I F < NC HR . EQ . O l  DEU ! 2 l : ' L '  
IF < NCHR . EQ . O >  NCHR:2 

IF" < DE U < '<CHR l . [Q .  ' :  ' l  NC HR: NCHR-1 

0£1J ( NCHR+ l ) : � : ' 

D E U < NCHR+2l : 0  

CLOSE C UN I T : 6 l  

CA�L A55 I GN < 6 . 0[V , NCHR+ 1 >  

WR I TE C 5 • 2040 l 

FORMAT ! '  DEV I C E  F O R  POWER AND FLOW INPUT C DE F : T I : J  : ' . l l 
READ < 4 . 20 3 0 l NCHR . ! DE U ! J ) , J : l , NCHR > 

It < NCHR . EQ . O l  DEU ! 1 l : ' T '  

IF < NCHR. EQ. O >  DEU < 2 > : ' I '  

IF < NCHR . EQ . O l  NCHR : 2  

I F" < DEU ! HC HR l . EQ . • :  ' l  NCHR: NCHR-1 

D£V ( N C I-fR+ 1 l : '  : ' 

DEV < NCHR+2 l : O 

CLOSE ( UN I T • 4  l 

CALL A S S I GN ! 4 . D EU . NCHR+ 1 l 

I'!F : 23 

RETURN 

END 

' D I AGONAL JAC. < NO T  SUPL I E D l  

N 
0\ 
0\ 
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c 
c 
c 

SUBROUTINE I NPF < F I LE l 
PARA"ETER NEQ"X:ZO 
PARA"ETER "XND : l2 
IMPL I C I T  REAL*& I A-H . O-Z l 
CO""ON /MODEL/ 

NND� A 1 , A2 . E TA . DZ, XK�. PSHP 
. XL A . DPFO . DPO , fLOW 
, H , RHOL . RHOG . GC , XKC 
. XK S , RCOEF . HL . HG . AfLOW 
. WH I TE . IMPUL . STEP . HS I N  

REAL oB A l . AZ . H . RHOL . RHOG . G C , X K f , XKC 
. XL A . DPFO . DPO . FLOW 
. XK S . RCOEF . E TA. HL . H G . PSHP IMXND l . DZ 

LOGI CAL • I  W H I T E . IMPUL . STEP . HS I N  
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

COMMON /BOUND/ vz , xz , rH Z . ECZ , fR , QDOT 
REAL *B VZ < O : MXND . 3 l . XZ I O : MXND l , fHZ I O : MXND l , EC Z < O : MXND l 

. FR < l : MXND l . QDOT < l : MXNDl 
COMMON /STEADY/ VZO . XZO . ECZO 
REAL •B V ZO < O : MXND. 3 l . XZO < O : MXHD l . ECZO I O : MXHD l  

c -------------------- ------------------------ - - - - - - - - - - - - - - - - - - - - - - - -

c 

COMMON /HEUT/ XL . GT . BETA , f 3 , DOP . REACO 
REAL •B REAC O < MXHD l  
COMMON /PERTUR/ R . WPERT, PHPERT 
COMMON /HTR/ U . A3 , A4 . A5 . POW . PSUMZ . DRCM 
COMMON / I N2 /  POWP C . F LOWPC 
COMMON / U N I T 4 /  DEV 
LOGI CAL * 1  DEV < ZB l  

c -- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c 

c 

c 

c 

1 00 0  

L O G I CAL * l  F I L E < 2 8 l  

I F < DEV I I l . EQ .  ' T ' l  WR I TE < S . 1 00 0 l  
FORMAT < '  POWER . fLOW [ % , DEF : 1 00% J 
REA0 ( 4 , 1 0 1 0 l  POWP C , fLOWPC 

1 0 1 0  FORMA T < 6f20 . 0 l  
I F < POWPC . EQ . O . l POWPC : 1 0 0 .  
I F < FLOWP C . EQ . O . l FLOWPC : 1 00 . 

I P : I F I X < SNGL I POWPC l l  
I F = I f i X < SNGL < FLOWPC l l  
I F < I P . EQ . O , AHD . I F . EQ . O l  STOP 
EHCODE < 8 . 1 0 30 , F I LE I I l l  I P . I F  

1 03 0  FORMA T <  ' P '  . t 3 .  ' f '  . t 3 l  

1 T E R M I NAL I N P U T  
: ' ,  S l  

c •• fiLE FOR STEADY STATE INfORMAT I ON * *  
F I L E < '3 l : ' . '  
F I L E <  I O l  = ' S '  
F I L E ( l l ) :: " T '  
F I L E < 1 2 l : ' D '  
F I L E <  1 3 l  : 0  
CLOSE < UH I T : 6 l  
OPEH < UH I T : 6 , HAME : f i L E . TVPE : ' H E W ' , ACCESS : ' SEQUEN T I A L ' 

T L AP , F i N  

c 

2 0 - J U N - 8 4  

, fORM: ' fORMATTED ' , SHARED l 

CLOSE < UN I T : I l  

F I LE < S l : O  ! . DA T  

RETURN 
END 

1 1 : 2 3 : 4 5 PAGE 6 
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c 

c 

c 

SUBRO U T I NE STEADY I DT , Y l  
c - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0 0  

PARAMETER NEQMX : Z O  
PARAMETER MXND : 1Z 
I M PL I C I T  REAL*B I A-H , O- Z l  
REAL • B  Y < 1 : NEQMX l 
COMMON / MODEL/ 

NND , A 1 · A Z , ETA, DZ. XKF , PSHP 
, XL A , DPFO , DP O , FLOW 
, H , RHOL , RHOG , GC , XKC 
, XK S , RCOEF , HL , HG , AFLOW 
, WH I T E , IMPUL , STEP , HS I N  

REAL • 8  A 1 , A2 , H . RHOL . RHOG . GC , XK� . XKC 
, XL A , DPFO , DP O , FLOW 
, XK S , RCOEF , E T A , H L , HG, PSHP I MXND l , DZ 

L O G I CAL * 1 W H I T E , I MPUL, STEP , HS I N  
DATA H / 3 .  iS/ I CORE H E I G T H  

, RHOL / 0 . 74E3/ 1 SATURATED WATER DENS I T Y  K Q / M3 
, RHOG/0 . 035E3/ 1 SATURATED STEAM DEN S I T Y  Kg/M3 
• Gc / 9 . 8 1 /  1 9 < •/ s c l  
. >O<C/30 . 0/ 1 Kc f or rou. r t t n e l l a  Ne l s o n  < s • •  Ped r o s  t h  
• X K S / 0 ,  8 /  • K s  
• RCOEF / 3 . 97/ ! r 
. HL / 1 . 25[6/ ! S i t . WAter e n th a l p �  ( J/ M 3 ) 
. HG / c . 77Ei/ 1 S o t . s t o u  o n t n • l p y  I J/ 11 3 1  
, Af"LOW/ 3 , 98/ ! F' l o w  irtl < M 2 >  
, XLA/4 . 0/ ! L / A  r At i o  f o r  R . L . < m- 1 )  

c 

c 

c 

c 

c 

1 1 0 

c - - - - - - - - - - - - -- - - - ------------------------ - - - - - - - --------------------

COMMON /BOUND/ y z , x z , FHZ , E C Z , FR, QDOT 
REAL •B Y Z I O : MXND, 3 l , XZ I O : MXND l , FHZ I O : MXND l , ECZ I O : MXND l 

, FR < 1 : MXND l , QDOT I 1 : MXND l 
COMMON /STEADY/ yzo , xzo, ECZO 
REAL • B  YZO c O : MXND , 3 l , X Z O I O : MXND l , ECZO I O : MXND l 

t e o  
c 

c ** 
c 

c - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - - - - - - - -

c 

c 

c 

c 

DATA POW 1 00 / 0 , 45E9/ ! ]/Ill t n e r • • l V . Y . 
DATA f"L0 1 00 ,.. 1 . 5E 3 /  ! Kg ,.. sm2 U . 'r' .  
COMMON /NEUT/ XL , GT , BETA , F ] , DOP . REACO 
REAL •B REACO I MXND l 
DATA XL / 0 . 08/ 0 DEALYED H .  LAMBDA 

, QT / 4 . E-5/ 0 GENERATION T I ME < s l  

1 0  

, BE T A/O . OOSi/ 1 DELAYED N .  BETA cOO 
. DO P /- 1 . 4E-5/ 1 DOPPLER REAC T I V .  COEFF 1 Ko l v l n - 1 l  
, A3 / 0 . c3c5/ 1 FUEL T I ME CONSTANT < F ROM LAPUR F I T l  s - 1  
, A4 / 0 . 048/ ! A 4 : A3• < RHOCPFUE L l / I RHOCPCLAD l 
. A5 / 7 , 54/ 1 CLA D I N G  T I ME CONSTANT I LAPU R l s - 1 C 
, U/ c . 96E8/ 1 SEE BWR 5 < Z -NODE HEAT TR. COErr l C 

COMMON / H T R /  U . A] , A4 , AS , POW . PSUMZ, DRCM 

COMMON / I N2 /  POWPC, FLOWPC 

POWo POWPC•POW t 00 / 1 0 0 .  
RCPVF o 6 . 62• 3 . t 25E6 
F 3 : POW*H/RCPVF 

1 J ,.. ms t ne r m • l 
I J /K ( BWR5 ) 
' FOR USE IN FUEL E Q .  

c 

c 

c 

) 
2 1 0  

FLOW:FLOWPC•FL O t 0 0 / 1 0 0 .  
D Z : H/FLOA T C  NND l 
SUM : O . 
DO 1 0 0  I : t . NND 
SUI1:SUM+PSH P 1 I l  
SUM : SUM/FLOA T I NND l 
PSUM2 : 0 .  
DO 1 1 0 I : t . NND 
PSHP < I l : POw•PSHP I I l / SUM 
PSUM2 : PSUMc+PSHP I I l * * c  
CONT I NUE 

Y Z I 0. 1 l : O . O  ! ALFA 0 

20- J U N - 8 4  I t :  2 3 : 45 

! Kg ,..s m 2  

I ] /IllS 
I FOR DRC WE I GH T I N G  

YZ I NND . c l :O . O  1 P I H l  UPPER PLENUM PRES S . CONSTANT 
Y Z I 0. 3 l : FLOW ! GO 
X Z < O l : O . O  I XO 
A 1 : 1 . / I DZ • < RHOL -R H OG l l  
Ac : I HG•RHOG- HL *RHOL l 
ETA : I RHOL-RHOG l /RHOL 
D Z : H/FLOA T I NND l 

PAGE a 

FM00DY: 0 . 0 1 9 • 1 . 4  1 FOR Ro : 70000 TURBULENT REG I ON APROX CONS T . 
DE : 0 . 0 1 3 4  ! '" 
XJONES : 1 . 9- S . E -4•FLOW I JONES CORRECT I ON FACTOR rOR MAR T INELL I -NELSON 
XKr : XJONES•rM00DY/ I OE • 2 . •RHOL l 1 S I NG L E  PHASE r R I C T I O N  COErr . 

DO 1 20 I : 1 . NND 
YZ < I , 3 l : FLOW I G I Z i l  
XZ < I l : XZ < I - 1 l +DZ•PSHP < I l / I AFLOW•FLOW • < HG-H L l l  
YZ I I . 1 l : X Z 1 I l  1 F IR S T  GUESS 

I TERA T I O N  FOR ALFA CONVERGENCE 

K : O  
CONU :FLOA T I NHD l * 1 . E- 1 0  
SUM : O . O  
DO 200 I N o 1 , NNO 
ALF : Y Z I  IN, 1 l 
I F I ALF . L T . O .  l ALF : O .  I ALF < O  NOT ALLOWED 
SL I P o l 1 . -ALF l / 1  XKS-ALF+ < 1 . -X K S  > • < ALF••SNGL < RCOEF l l  l 
YZ < I N . 1 l : XZ I I N l / I SL I P • < 1 . -E TA l +X Z I I N l • < 1 . -SL I P• < 1 . -ETA l l l  
SUM:SUM+ABS I ALF -YZ < I N , 1 l l  
K : K + l  
IF I K . GT . 1 00 l  STOP ' STEADY -- TOO MANY ALrA I TERAT I ONS ' 
I F < SUM . GT . CONV l GO TO 1 0  

D O  2 1 0  I N : 1 , NN D  
ALF : I Y Z I I N . 1 l +Y Z I I H- 1 · 1 l l / 2 .  0 NODAL ALFA 
REACO I IH l : - 1 0 . B*ALF -20 . 7 /2 . •ALr**2 + 1 4 . 03/ 3 . •ALF••3 

- 1 3 . 54 / 4 . •ALr••• 1 R : I N T < DR/ DALF * OLA F >  
REACO I IN l : 0 . 9 7 • DRCM*REACO I I N l / 1 0 0 .  1 NODAL REACT I V I TY < m- 1 1  

0 . 97 ADJUSTED S O  UY 7N I S  THE START Or L I M I T  CYCLE OPERAT I ON 

DO 300 I Z o O , NND 

N 
0\ 
CIJ 



T L AP , F T N  

c 
c * *  
c 

c 

c 

c 
c 

c 

300 

> 
400 

c 
c 

c 

500 

5 1 0  

c .... 
c ... 

c ... 
c 

c 
c 

1 1 1  
2000 

> 

20 - JUN-8 4  1 1 : 2 3 : 4 5 

COMPTUTE XZ COMPATIBLE W I TH THE CONVERGED ALF'A 

ALF' : Y Z !  I Z · l l 
G : YZ < I Z . 3 l  

PAGE 

SL I P : !  1 . -ALF' ) / (  XKS-ALF'+ < 1 . -XKS l *ALF'* * RCOEF' l 
XZ ! IZ l :ALF'• S L I P• < 1 . -E T A l / (  1 . -ALF'• < 1 . -SL I P • < 1 . -E T A  l l l 

rHZ ! I Z l : G • <  HL + <  HG-HL l •XZ ! l Z l  l I F'LOW ENTHALPY 

'3 

EC Z < I Z l : O .  ' K I N E T I C  EHERGY 
I F'  ( ALr .  HE . 1 .  l 
ECZ < I Z l : ECZ < I Z l + . � • < G••2 l • <  < 1 . -XZ < I Z l l ** 2 / !  RHOL• < 1 . -ALr l l l  
I F' < AL F' . NE . 0 .  l 
ECZ < I Z l : E CZ < I Z l + . S• < G••2 l • < < X Z < I Z l • •Z l / ( RHOG*AL F' l 

ECZO < I Z l : ECZ < l Z l  
XZO < I Z l : XZ < I Z l  
CONT I NUE 

DO 400 I N : NN D , 1 . - 1 
X I : ! XZ < I H l +XZ < l N- 1 ) 1 /2 .  1 NODE AVE R G .  QUAL I TY 
rR < I H l : x K r• < 1 . + 3 1 . •X I l • < rLow• • 2 l  1 r R I C T I O N  
I r < I N . EQ . l l  rR < IN l : rR < I N l +XKC • < Y Z ! 0 . 3 l ••2 l / ! Z . •DZ•RHOL l I E N T R . 

Y Z < IH- 1 . 2 l : YZ < I N . 2 l  + < ECZ < IN l -ECZ < I H- 1 l l  
• OZ • < RHOL- < RHOL -RHOG > •Y < I N > l •GC +DZ*�R ( IH )  ! PRESSURE Hw/m2 
CONTI HUE 

DO 500 1 = 1 · 3  
DO 500 I : O , NHD 
YZO < l , J l : YZ < l . J l  
Y Z < I , J l : O . O  
COHT I HUE 
DO 5 1 0  I : 1 , NEQMX 
Y< I l : 0 .  
CON T I NUE 

THE RE C I RC .  LOOP CONSTANTS ARE CALCULATED SO THAT THE NATURAL 
C I RCULAT I ON T I ME COHSTAHT BE APPROX . 0 . 3  SEC 
THE F' R I C T I OH IS ASSUMED PROPORT I ONAL TO THE F'LOW • • Z  

ORIF 

RL TNC : 0 . 3 ! R . L .  T I ME CONSTANT A T  NAT . C I RCULAT I ON < APPRO X l  
DPrNC: rLOW•ArLOW•XLA/ ! 2 . *RLTNC l I f R I C T ION D P  A T  NAT . C I R C .  
DPF'O : DPF'NC• < rLOWPC/32 . 1 ••2 ' 3Zxr : NAT . C I RC .  
DPO : - YZO < NN D . 2 l  I DPO :PO-PH 

LUH : 6  
WRI TE ! LU N . ZOOO l POW, POWP C , FLOW, FLOWPC 
f"ORMAT C 1 H l / / '  POWER : ' , GZ0 . 5 , ' ]/1 

' FLOW : ' . G20 . 5 • ' Kg/5 
// ' NODAL VALUES ' / '  
. 1 3X 
, ' ALF'A 
• / l 3X 

DRC REAC T I V I T Y  

' ,  F" B .  3 ,  • Y. '  / 
· . rs . 3 .  · % ' / / /  

PRESSURE POWER SHAPE ' 

NW/mZ ] / ms ' )  

r L AP . F"" T N  

700 

2020 

2030 
7 1 0  

c 

c 

c 
c 

2040 

2050 
7 1 1  

2060 

7 1 2  

2070 

> 
> 

2 0 - J U N - 8 4  1 1 : 2 3 : 4 5 PAGE 1 0  

D O  700 I : l , NH D  
ALr : < YZO < I . 1 l + Y ZO < I - 1 . 1 l l / 2 .  
DRC : - 1 0 . 8-Z 0 . 7 • ALF + 1 4 . 03*ALF'**Z- 1 3 . �4*ALF' • • 3  I DRC r i T  LAPUR XSEC 
DRC : 0 . 97oDRCMoDRC / 1 00 .  ' LAPUR U H I T S  : �K/K 
PP : < YZ O ! l , 2 l +Y ZO < l - 1 • 2 l l /2 .  
WR I TE ! LU N . 2050 l I . ALF . DR C . REACO ! l l . PP . PSHP ! I l  
C O N T I NUE 
WR I T E < LUN · 2020 l 
FORMAT ! / / / '  BOUNDARY VALUES ' / '  ' , 1 3X 
, • QUAL I TY ALrA PRESSURE FLOW ' /  
. 1 3 X  

Nlll/ • 2  K g / S IIIIZ ' ) 
DO 7 1 0  l : O , NN D  
WR 1 TE ! LUH . 2030 l J , X Z O ! I l . < YZO < I , J l , ] : 1 , 3 l 
F"ORMAT < ' ' ,  1 3 ,  J X ,  4G 1 6 .  3 > 
C O N T I NUE 
WR I T E < LUN • 2040 l 
FORMA T ( / / / '  BOUNDARY VALUES ' / '  ' 
o 1 3 X  

' ECZ F' H Z  F'R K I N E T I C  D P  H E A D  DP ' 
o / 1 3X 
, • NW/•2 ] / S M 2  N•/M2 NW/M2 
DO 7 1 1  l : O , HHD 
IF' < l . NE . O l  P 1 : (  ECZ ! l l -E CZ < I - 1 l  l 
I F' < l . HE . O l  P2 : (  RHOL- ! RHOL-RHOG l oY ! I l  l •GCoDZ 
lF < l . EQ . O l  P 3 0 : XK C • < YZO ! Q , 3 l •* 2 l / ( 2 . •RH0L l 
I F < l . NE . O l  P 3 : DZ•F'R ! I l  
I F' < I . EQ . l l  P 3 : P3 -P 3 0  ! ONLY F I R S T  NODE CONTR I BU T I ON 
I F' < l . EQ . O l  WR I T E ! LU N . 2050 l I . EC Z ! l l • F'H Z ! l l . P30 
IF' ! l . NE . O l  WR I T E ! L UN. 2050 l I , E C Z ! l l , fNZ ! I l . P3 . P 1 , P2 
fORMA T ! '  ' , I 3 . 3 X . 5G 1 4 . 3 l  
C O N T I NUE 

WR I TE < L U N , 2060 l 
rORMA T ( / / / '  BOUNDARY VALUES ' ' '  ' , 1 3X 
, ' V < L I Q l  V < STEAM l SL I P '  
, / 1 3X 

10/ 5  
D O  7 1 2  I : O , NND 
ALF : Y Z O <  I . l  l 
G : YZO < I . 3 l  

lft/ 5 , ) 

S L I P : <  1 . -ALF' l / (  XKS-ALr + <  1 . -XKS l •ALr••RCOEr l 
UL : G• < 1 . - XZ ! I l l / ! RHOL • < 1 . -ALF l l 
US : SL I P•VL 
IF < I . NE . O l  W R I T E < LU N , 2050 l I , UL , US , SL IP 
IF < l . EQ . O l  W R 1 T E < LUH, 2050 l I , VL 
C O N T I NUE 

RLG : rLOW, < Z . •DPrO l 
RLt : RLG•AF'LOW•XLA 
WR I TE < LU N • 2070 l RLG. RLT 
F"ORMAT C / / '  I f  l 1 n e �r 1 Ze d �  ' /  

Nu.vmZ ' > 

! NO l N LE T l  

R e c 1 r c .  L o o p  G � 1 n  
R e c 1 r c .  L o o p  T 1 me C o n s t �n t  

' , G 1 4 . 3 , ' C KQ / S m2 ) / ( Hut / m2 ) ' '  
· . G 1 4 . 3 � ' s ' )  

WR I TE ( L U N ,  2080 l 
NHD . A 1 , A2 , E TA . O Z , �KF 

N 
0\ 
"' 



TLAP . FT N  

zoso 
c 

) 
) 
) 

2 0 - J U N - 8 4  

, ! PSHP ! I l , I • 1 · MXND > 
o XL A o DPFO. DPO . FLOWo H 
. RHOLo RHOG o GC , XKC, XKS 
. RCOEF o HL o HG , AFLOW 

1 1 ! 2 3 : 4 5 

FORMAT ! / / / ' COMMON /MODEL/ ' / / I 1 0 o B I /S G 1S . • > > 

RETURN 
END 
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c 

c 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
c 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

c 
c ** 

c ** 
c •• 
c * *  
c 

TH I S  IS THE NONLINEAR MODEL OF A S I NGLE CHANNEL BWR 
THE REC I R C .  LOOP IS INCLUDED. 

24-AUG-83 
DP / D T  I S  ASSUMED UERV SMALL ! NO ACUS T I C  PHENOMENAl 

SUBROUT I NE F I NE Q , T , V , YDOT >  
c --------------------------------------------------------------------

PARAMETER NEQMX•ZO 
PARAMETER MXND • 1 Z  
IMPL I C I T  REAL•B ! A-H . O- Z l  
REAL • B  Y ! NEQMX l . YDO T ! NEQM X l  
COMMON /MODEL/ 

NND . A 1 . AZ . ET A . D Z . X K F . PSHP 
. XL A . DPFO . DP O . FLOW 
. H , RHOL . RHOG . GC . XKC 
. XK S . RCOEF o HL . HG . AFLOW 
. wH I TE . IMPUL . STEP . H S I N  

REAL •B A 1 o AZ . H . RHOL . RHOG . GC . X K F . XKC 
• XL A . DPFO . DPO . FLOW 
• XK S . RCOEF , ETA . HL , HG o PSHP I MXND l . DZ 

L O G I C AL * 1  W H I T E . I MP UL . S TE P . H S I N  
c ----------------------- ---- - - - - - - - - - - - - - - - - - - - - - --------------------

COMMON /BOUND/ yz, xz , FHZ . E CZ . F R , QDOT 
REAL • B  YZ ! O : MXND. 3 l . XZ I O : MXND l . FHZ I O : MXND l o ECZ ! O : MXN D l  

. FR ! 1 ! MX ND l . QDOT I 1 : MXND l 
COMMON /STEADY/ V Z O o XZO. ECZO 
REAL •B YZO I O ! MXND. 3 l . X ZO ! O : MX ND l . ECZO ! O : MX N D l  

c -- - -- - -------------------------------- - - - - - - - - - - ------------ - - - - - - - -

COMMON /PERTUR/ R . WPER T o PHPERT 
COMMON /PP/ PER T . T O . D T O o TOLD 
DATA DGDT/0 . /  

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

COMMON /NEUT/ XL . G T. BETA . F 3o DOP. REACO 
REAL •B REAC O ! MXND l 
COMMON /HTR/ U . A3 o A4 . A5 . POW o PSUMZ . DRCM 

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

c .. 
c ** 
c 

c 

YZ ! I . J  l 

COMMON /NOI SE/ P 
REAL •B P ! O : ZO l  

! • NODE BOUNDARY 0 • . . •  NND 
J : S I GNAL 1 -A L F A .  Z - P .  3-G 

! F I S T E P l  PERT • R  
I F < STEP > G O  T O  1 0  
PER T : O .  
I F < TO . EQ . O  . .  AND . I MPUL I PERT • Z . •R•EXP ! - 3 . • T /DTO l 
I F ! IMPUL l GO TO 1 0  
! F < HS I N . AND . T . LT . I l  
PERT•R•EXP ! 1 . 5 - 3 • T > • S IN ! 3 . 1 4 1 5 92654•SNGL ! T l l  ' 0 . 5  Hz 
I F ! HS I N l  GO TO 10 
! F ! T . [Q , TOL D l  GO TO 1 0  

N 
-....J 
0 
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c ** 

c 
c 
c 
c .. 
c ** 
c 

c 
c 

c 
c 
c 

c 

c 

c 
c 

1 0  

1 0 0  

c .. 
c 
c 

TOL D : T 
** BAND L I M I TED N O I SE I N TERPOLAT ION ** 

D T D :DT0/ 1 0 .  ' INTERMEDIATE DT 
T I N T : SNGL I I T-TO I /DTD I 
I I : Ir i X I SNGL I T I HT I I  
I r < I I . GT . ZO l  I I :Z O  ' I f'  O U T S I D E  RANGE EXTRAPOLATE 
X I N T : T I N T-rLOAT I I I I  
PER T : R• < P < I I 1 * 1 1 . -X I N T I +P I I I + I l *X INT I 

NOT E .  ALL THE VARIABLES ARE NORMALIZED TO T H E I R  
STEADY STATE VALUE 

XZ < O I  : 0 .  
YZ I O . t 1 : 0 .  
YZ I 0 , 3 1 : Y I NND + I I 
YZ I NN D . Z I : O .  

' X I Z : O I 
' ALI'A < Z : O I  
' G I Z : O I  
! P C H l  

G02 : Z . • Y Z O C 0 , 3 > •YZ C 0 , 3 l + YZ C 0 , 3 l • •Z 
DO 1 0 0  I N : I . NN D  
YZ < I N . t i : 2 . • V < I N > - VZ I I N- I . t l  ' ALI'A I Z l  
ALr : V Z O < I N . 1 1 + Y Z I I N . 1 1  

CORRECTION f'OR SUBCOOLING OR SUPERHEAT I NG 

I r 1 ALI' . L T . 1 . .  AND . ALr . GT . O . I 
SL I P : ( 1 . -ALr l / (  XKS-ALr + <  1 . -XKS I *ALr**RCOEr I 
I r i ALr . L T . I .  A N D .  ALr . GT . O .  I 
XZ < I N I :ALr•SL I P• < I . -ETA I / (  1 . -ALr* l  I . -S L IP • <  I . -E T A  I I I 
I r i AL r . GE . I . I  X Z I I N I : I .  
Ir ! AL I' . LE . O . I X Z I I N I : O .  
If' I ALr . G E . I .  l ALr : t .  
I r < ALr . LE . O .  l ALr : O .  

X I : I XZ < I N l +XZ < I N- I l l /2 .  ' NODE AVERG . QUAL I T Y  
DX I : x i - I X ZO I IN l +XZO I I N - I l l /2 .  
DG : I Y Z I I N o 3 l +YZ I I N - I o 3 l l /2 .  ' NODE AVERAGE I G-GO l 
GZ = Z . •rLOW•DG+DG••Z • o • • 2 - G O • •Z 
f'R I I N I : XKI'• I G2 • 1 1 . +3 1 . • x i 1 + 3 1 . •DX I •rL0W•• 2 >  
I r 1 I N . EQ . 1 )  rR I I N l : rR I I N I +XKC• I G OZ l / I Z . •DZ•RHOL l ' ENTR . OR i r .  

G : VZO I IN . 3 1 +Y Z I IN , 3 1  
ECZ < I N I : O .  ' K IN E T I C  ENERGY 
I f' < AL r . L T . I . I 
ECZ I I N I : E CZ I IN I + . 5• C G••Z > • C  I I . -XZ I I N > > •• 2 / (  RHOL• I I . -ALr I l l  
I r i ALr . GT . O .  I 
ECZ C I N l : E CZ C IN l + . 5 • < G••Z > • < < XZ < I N > ••Z l / C RHOG•ALF l l 
ECZ I I N I : ECZ I I N > -ECZO I I N I  ! NORMA L I ZED 
CONT I NuE 
ECZ ( Q l : . 5• < < YZ0 < 0 , 3 l + YZ C 0, 3 l l ••Z l /RHOL - ECZO < O l  

NOTE DGD T : VDOT I NND + I I ' APPROX 2ND ALr DER . : O  

DGDT : I -DPrO• C Z . •VZO C Q , 3 1 •Y Z I 0 . 3 l +YZ C 0, 3 1 • • Z I / Y ZO C 0 , 3 > • •2 

T L RP . f T N  2 0 - j U N - 8 4  l l ' 2 3 ; 4 S  P11GE 1 4  

+ I VZ I NN D , 2 > - V Z I O . Z I I l / I AI'LOW •XL A I  ' REC I R C .  LOOP 
c ----------------------------------------------------------

DO ZOO I Z :NND • I • - 1  
VZ < I Z - I · Z I : VZ I J Z , z >  + I ECZ I IZ > -ECZ < I Z- I l l  + DGDT•DZ 

> +DZ• < - < RHOL-RHOG I *V < I Z > I •GC +DZ•rR < I Z I  ! PRESSURE Nw/•2 
ZOO CONT I NUE 

c 
c 

c 
c 

c 
c .. 
c ** 
c .. 
c 

c 
c ** 
c ** 
c .. 
c 

250 

c 
D 
D50 1 0  
D 
DSOOO 
c 
c 

c 

300 

YD0 T ( NND+ l l : C -DPrO• C 2 . •Y ZO C 0 , 3 l * Y Z C 0 , 3 l +Y Z C 0 , 3 l **2 ) /Y Z 0 < 0 , 3 l **Z 
+ I V Z I NN D . Z I -Y Z C O . Z I I  l / I ArLOW*XL A I  ! REC I RC . LOOP rLOW 

VrB : O .  
DO 250 I : I . NND 

REACT IS THE NODAL V O I D  REAC T I V I T Y  
I . E .  I N T I DRC * DALrAI 
WITH D R C : DRHO/DALrA: - I O . B - 20 . 7A+ I 4 . 03A2 - 1 3 . 5 4 A 3  ' LAPUR r i T  

ALI' : C VZO I I o l l +Y ZO < I - 1 , 1 1 1 / 2 .  + V I I I  

NOT E :  ALrA I S  ALLOWED HERE TO BE > 1  OR < O  . 
f'OR REAC T I V I TY rEEDBACK POURPOSES ,  Ir THERE IS SUPERHE A T I NG ,  
THE STEAM DENS I TY DECREASE S .  T H I S  I S  ONLY A N  APPRO X [ M A T I ON .  

REA C T : - 1 0 . B•ALr-20 . 7 / Z . *ALI' **Z+ I 4 . 03 / 3 . *ALr** 3 
- 1 3 . 54 / 4 . •ALr**4 ' DRC r i T  LAPUR XSEC 

REACT : 0 . 97•DRCM•REAC T / I OO . ' LAPUR U N I T S  : � K / K  
REAC T : REACT -REACO C I I  ' CHANGE I N  REACT I V I TY 
VrB : VrB+REAC T • PSHP < I > •• Z  ' V O I D  rEEDIACK 
V r i : Vri/PSUMZ ! NO T E : V r B : INT I DRC•ALr i Z > •PSHPZ•DZ I / I N T I PSHP Z • D Z I 
RHO :DOP• V C NND+Z I + V f' B  + PERT•BETA 
VDO T < NND+Z I : r 3 • V < NND+ 4 l -A3• < Y I NND+2 1 -V I NN D +3 1 1  
YDO T < NH0 + 3 l : A4 • < Y < NHD+Z l - Y < NN 0 + 3 > > -A5* Y C HND+ 3 )  
VDO T I NND+4 1 : C RHO-BETA > • V I NND+4 l /GT+XL*V C NND+ S I  
VDOT C NND+5 1 : B E T A• Y < NN D+ 4 1 /GT-XL * Y I NND+ 5 1  

WR I TE I S . SO I O I  A 3 . u 
f'ORMA T I ' ' , TzO . ZGZO . S l  
WR I TE I S . SOOO > T . C V I I l o YDOT I I I . I : I o NE Q I  
f'ORMA T I ' ' • G I 4 . 3 . < NE Q > I /2GZO. S > >  

DO 300 I N : I . NN D  
QDOT < IN I : U • V C NND+ 3 > •PSHP I ! N l /POW 
DEN I : C RHOG•HG-RHOL *HL > 

! rUEL 
' CLAD D I NG 

+ RHO/GT ' N 
! DELAYED N 

+ (  HL • I I . -XZ I I N I I + HG•XZ I I N I  > • < RHOL-RHOG I 
GX I : YZ O < I N - t . 3 > • < xZ < I N > - XZO I ! N l i +YZ I I N - I o 3 1 • x Z I I N I  
GXZ : Y ZO I I N- 1 . 3 1 • 1 XZ < I N- 1 > - x Z O I I N- I I l + VZ < I N- 1 . 3 > •XZ < I N- 1 1  
VDOT < I N I : I  QDOT C I N I /ArLOW 

-vz c r N- t , 3 l • < HG -HL > • < XZ < I N l - xz c rN - 1 > > / DZ l / DENI • DALrA/DT 
- < HG -HL > • < GX l -GXZ l / OZ ) / OEN I I DALFA/OT 

YZ I I N , J l : YZ I I N - 1 . 3 1  + DZ • I RHOL-RHOG > •VDOT < I N I  
CONTI NUE 
RETURN 
END 

N 
" 
....... 
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c 
c 
c 

c 
c .... 

c .... 
c .... 
c 

c 

c 
c .... 

c .... 
c 
c .. .. 

c .. .. 

c .... 
c .. .. 

c .. .. 

c .. .. 
c * *  

c .. ..  

c * *  
c .... 
c ** 

c .... 

c ** 

c ** 

c ** 

c ** 

c ** 

c ** 

c ** 

c 

c 

SUBROUTINE DTGENI HEQ, F, JAC. DT, T I �E. Y, ATOL. RTOL 
. KF . F I LE, I C H , HCH l 

T H I S  VERSION OF DTGEN STORES THE AVERAGE CHANNEL V O I D  FRAC T I ON .  
THE WH ITE NO I SE ,  THE INPUT FLOW �.HD PRESSURE. 
ALONG WITH THE POWER 

** TO BE USED ONLY W I TH PROGRA� HHLF B . FT N  * '"  

T H I S  SUBROUTINE SOLVES A SYSTE� O F  EQUATI ONS DEF I NED 
I N  SUBROUTINE F ! WI T H  JACOBIAN JAC I F  �r > 20 l . 

PARA�ET E R S :  
HEQ 
r 
JAC 
DT 

T IME 
y 
ATOL 
RTOL 

Mr 

r i L E  
I C H  
NCH 

- NU�BER or EQUATIONS < 1 0 
- HA�E OF THE FUNCTION SUBROUTINE ! DECLARED EXTERNAL ! 

HA�E OF THE JACOBIAN SUB . '' 

- DESIRED T I �E INCRE�EHT FOR OUTPUT 
LSODE CO�PUTES I T S  OWN T I �E I NCRE�EHT 
TO LI �IT ERRORS 

- TOTAL T I �E 
- I N I TI A L  VALUE 
- ABSOLUTE TOLERANCE 
- RELATIVE TOLERANCE 

LSODE �AKES THE ERROR APPROX . 
ERROR < RTOL*Y • ATOL 

- 1 0  FOR NOH ST I FF PROBLE� 
- 2 1  FOR S T I F F  PROBLE� W I TH FULL SUP L I E D  JACO B IAN 
- 23 FOR S T I FF PROBLE�S .  LSODE CO�PUTES A D I A G .  JAC 
- F I LE HA�E TO STORE DATA I N  MULSMH FORM 
- S I G NAL HU�BERS TO STORE I N  D I S K  
- NU�BER OF S I GNALS TO STORE 

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
PARAMETER MXND : 1 2 
PARAMETER NEQMX:20 
IMPL I C I T  REAL*B I A-H . O- Z l 

COMMON /MODEL/ 
NNO . A t , AZ , ET A . O Z , XKr . PSHP 

. XL A . DPFO . DPO. rLOW 

. H . RHOL . RH OG . GC . XKC 

. XK S . RCOEF , HL . HG . AFLOW 

. WH I T E . IMPUL · STEP, H S I N  
R E A L  • B  A 1 . A2 • H . RHOL . RHOG . GC , XKF , XKC 

. XL A . DPFO . DPO . FLOW 
, XK S , RCOEF , E TA, HL, HG, PSHP < MXND l , DZ 

L O G I CAL •1 WHIT E. IMPUL . STE P . H S I H  
c - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 

COMMON /BOUND/ y z , x z , rHZ . EC Z , r R , QDOT 
REAL • 8  Y Z < O : MXHD t 3 l . XZ < O : MXND l . � HZ ( 0 : MXND l . EC Z C O : MXN0 ) 

, FR C 1 : MXHD l , QDOT C 1 : MX H D l  
COMMON /STEADY/ YZO . X Z O . ECZO 
REAL * B  V ZO C O : MXHD . 3 l . XZ0 C O : MXHD l . EC ZO C O : MXND l 

REAL *B V ! NEQ l , ATOL C 1 l • RWORK C 256 l . R TOL , T . TOUT , Y 1 · Y 2 . YOLD < HE Q M X l 
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c . VDOT C N£GlM X l  
REAL * 4  YDAT C 256 l , VMAX C NEQMX l . DT4 . X 1  
INTEGER • 2  IWORK I 30 l . I D A T C 256 l . I C H 1 1 l  
LOGICAL * 1  F I L E 1 2S l . LHCH, L I CH . LB . AD. LO . IAHS 
EXTERNAL r 
COMMON /PP/ PERT. T O , DTO. TOLD 
REAL •& TO, D T O , TOLD 
COMMON /SEEDS/ 1 1 . 1 2  
D A T A  l l / Q / , 1 2/Q/ 
LOGICAL U ESC 
DATA ESC/27 / , RWORK/256*0 , /  

c --------------------------------------------------------------------
COMMON /OUT P /  P R I N T . PRALL . DSK 
LOGI CAL •1 P R I NT . PRALL · DSK 

c ----------------------------- - -- - -----------------------------------

COMMON /CHU/ F I RST . CONU . Y 1 · V2 . V3 , YE X 1 . YEX2 , DR 1 . DR2 . rH 1 • FH2 
> . I R E C . KOUNT 

LOG I CAL *1 EHD , F I R S T . COHU 
c --------------------------------------------------------------------

c 

c 

c 
c 

c 

c 

c 
c * *  

c 

c 
c 

DATA I TOL / l / • l TASk/ l / , I STAT£/ 1 / , J OP T / O / , LRW/256 / , L I W/30/ 

D T 4 : D T  
D T O : D T  
I F C NE Q . G T . NE GlM X l  STOP ' TOO MANY E QU A T I ONS ' 
lF I ATOL C 1 l . EGl . O . l ATOL I 1 l : 1 . E- 5  

ALFMX : O ,  
KALFO : O  
KALr l : O 
r i R ST : .  TRUE . 
EHD : . FAL S E . 
NCH : 6  
1BKSZ: 256 
HPB :256 
l F C HCH . HE . O l  HPB: I BK S Z / HCH 
I F C HCH . NE . O l  I BK S Z :HCH•HPB 
HBK : I F I X C SNGL C T IME/ C DT•FLOA T I HPB l l l  
I F C MF . LT . 2 1 . 0R . MF . GT . 25 l  M F : 2 3  

' HUMBER OF D A T A  PO I NT S  
1 < I BK S Z  

• 0 . 9999 1 
1 DEFAULT NON S T I FF 

I F I DSK l 
OPEN C UN I T : 1 , HAME : F I L E . TYPE : ' HEW ' , ACCESS : ' D IREC T ' 

. RECORDS I Z E : I BK S Z l 

START CALCULATIONS 

CALL CLREF C 40 l  

TOUT : O .  
D O  1 00 I B a ,  HBK 
TOUT : FLOA T C I B- 1 l •F LOAT C NPB l • D T  
1( : 1  
DO 1 1 0  I : 1 , HPB 
T O : TOUT 
T O U T : TOUhDT 

N 
-....J 
N 
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c 

c 

c 

c 

c 

9 1  

1 00 0  

1 020 

1 0 2 1  
D 
D > 
D3020 
D 
D3030 
c 

7000 

7 0 1 0  

1 1 5  
c 

7 0 1 5  
c 

) 
) 

If < WH I TE l  CALL BLGWN < I t . I 2 l  ' BAND L I M I TED N O I S E  FOR USE I N  FUNC C 

LKOUN T : O  
C A L L  LSODE ( f , H[Q, Y . T . TOUT . I TO L . RTOL . ATOL • I TA S K . I S T A T£ , 

I OP T . RWORK . LRW. I WORK . L i w . JAC . Mf l  
I f < I S TAT[ . [Q . - l l  G O  T O  90 
I F < I STAT[ . HE . 2 l  WR I T£ < 5 . 1000 1 ISTATE 
fORMAT < '  ERROR IN LSODE -- I S TATE : ' , I 7 l  
I f < I STATE . NE . Z l  STOP 

I f < . NO T . WH I T E  . AND . .  NOT . EN D l  CALL COHVRG < Y < HHD+ 4 l . T , f i L E . E H D l 

I f < PR AL L l  WR I TE ( 5 , 1 0 2 0 l  TOUT. < Y ( J l , J : t . NE Q l  
fORMA T <  • ' . t PG l l .  3 ,  ' :  ' ,  < T 1 4 .  6G 1 1 .  3 /  ' + '  l l 
PWR : Y < NND+4 l • I OO ' POWER IN � 
I f < PR I HT . AND . .  NOT . PRAL L l  W R I TE < 5 . t 0 Z l l TOUT. PWR 
fORMA T < ' ' ,  1 PG 1 1 .  3 , ' :  ' • < T 1 4 .  G 1 5 .  5, · � '  l l 
I f < PRAL L l  WR I TE < 6 . 302 0 l  

< < Y Z < L . J l , J : t . 3 l . XZ < L l · fHZ< L l . EC Z < L l . L : O . NN D l  
�ORMA T C ' YZ , XZ . YH Z , ECZ ' /4 C 3G 1 4 . 3 , ' / ' , 3G 1 4 . 3/ l )  
I f < PRALL l WR I TE < 6 , 3030 l < f R ( L l . L : l , NND l 
fORMAT ( '  fR ' , 4GZ0 . 5 l  

YDA T < K l :PERT 
K : K + l  
SUM : O .  

! WHITE NO I SE PERT 

DO 1 1 5  J : l , NND 
SUM : SUM+ Y < J l  
A L f : Y ZO < J , l l +Y Z < J . t l  
I f < ALf . GT . ALfMX l ALfMX:ALf 
Y < J l : ALf ! TEMPORARY STORAGE 
I f < ALf . GE . l  . .  AND . KALf l . EQ . O l  WRITE < 6 . 7000 l 
I f < ALf . GE . l . l KALf l : KAL f l + l  
FORMAf ( ; ; 60 C ' * ' l / 6 0 C ' - ' ) /  
' ALfA I S  GREATER THAN 1 .  ' / '  STANDARD CORRE C T I O N  TAKEN ' 
' - - NO MORE MESSAGES W I LL BE PRINTED ' /60 < ' - ' l / 6 0 < ' • ' l l  
If < AL f . L E . O  . .  AND . KALfO . EQ . O l  WRITE < 6 , 70 1 0 l  
I f < ALf . LE . O . l K ALf O : K ALfO+ l 
FORMAT C / / 60 C ' * ' l / 6 0 C ' - ' ) ;  

ALfA I S  GREATER THAN 1 .  ' / '  STANDARD CORRE C T I ON TAKEN ' 
' - - NO MORE MESSAGES W I LL BE PRINTED ' / 60 < ' - ' l / 6 0 < ' • ' l l  
C O N T I NUE 

I f < PRALL l WR I TE < 5 , 70 1 5 l  < Y < J l , J : I . NN D l  
fORMA T < ' ALfA : :  ' • 2 < T 1 4 , 6G l l . 3/ ' + ' l l  

YDA T < K l : SUM/fLOAT < NN D l  ' AVERAGE V O I D  
K : K + l  
YDAT < K l : Y < NND+4 l 
K : K + l  
YDAT ( K l : Y < NND+ I l  
K : K + l  
YDA T < K l : YZ < 0 . 2 l  
K : K + l  
YDAT < K l : Y < NND+Z l 
K : K + l  

' POWER 

' FLOW < Kg ; s m 2 > 

' PRESSURE < Nw/m2 l 

' fUEL TEMPERATURE < K l  

1 1 0  

c 

c .. 

c 

c 

c 

c 

c 

c 

100 

777 

7020 

c ** 
c 

70 

c 

c 7 2 0  

720 
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CONT I NUE 

WR I T£ RESULTS 

I f < EH D l  GO T O  777 
If < DSK l WRI TE < l ' I B l  < YDAT < I l . I : t . I BKSZ l 
NREC : I B  
CALL READEf < 40 . I D S l  ! SE T  E f  40 TO STOP 
If < I DS . HE . O l  GO T O  777 

CONT I NUE 

CLOSE < U N IT : l l  
If < . NO T . [ND . AN D  • .  H OT . WHI TE l  THEN 

PAGE 1 a 

END : . TRU[ . ! D I D  N O T  CONVERGE, BUT RUN OUT Of T I ME 
CALL COHVRG < Y < NN D+ 4 l . T • f i L E . END l 

END I f  
I f < KALfO . NE . O  . OR .  KALf l . NE . O l  WR I TE < 6 , 7020 J KALfQ , KALf l , ALFMX 
FORMAT ( / / 60 < ' • ' > ;6 0 ( ' - ' ) / '  ALFA WAS < 0 ' . IS ,  ' T IMES ' ;  

' ALfA WAS > 1 ' • I S ,  ' TI MES ' /  
' MAXIMUM ALfA : ' • Gl 5 . 4 / 
6 0 ( ' - ' ) /60 ( ' * ' ) )  

I f < . NO T . DSK l RETURN 

CREATE REDUCED ID f i L E  

NfL : O  
NFLMX: 1 0  
HfL :NfL+ l  
IF < f i LE < NFL l . EQ . ' : ' l NfLMX : NfLMX+HFL ! fiLE HOT I N  S Y :  
If ( HF L . L T . HFLMX . AH D .  

< F I L E <  NfL l .  HE . 0 .  AND .  F I LE < NfL J . HE . ' . '  l l G O  T O  7 0  
F I L E <  HfL l : '  . ' 
F I LE < HFL + I  l :  ' I '  
F I L E < HfL +2 l : ' D '  
F I L E <  NfL + 3 l  : 0  
OPEN < UH I T : l , HAME : f i L E . ACCESS : ' D I REC T ' . TYPE : ' HEW ' ,  
I MAXREC : I . I N I T IAL S I Z E : 2 . RECORDS I ZE : l65 l 
DO 720 I : l , NCH 
YMAX < I l : l . / YMAX ( I l  
DO 720 I :  1 ,  NCH 
YMAX < I l : l .  
LNC H : NCH 
LO : O  
L B : ' ' 
AD : ' N '  
X I :  1 .  
D l :  ' PERTURB . ' 
DZ : ' A V .  ALFA ' 
D 3 :  ' POWER 
D4 : ' fLOW 
D5 : ' PRESSURE ' 
D6 : ' F .  TEMP . ' 
DO : '  
WR I TE < I ' I l i BK S Z . NREC . LHCH. L O . DT4 . X I . LO . LO . LO . AD .  

N 

'..J 
w 
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c 

c 

c 
90 

3000 

> < YMAX < I l ,  I' 1 .  rKHl • < X I ·  I '  I• < 48-HC H l  l ,  < LB •  I : l , 446 l 

> ( YMAX < I ) .  I : I . HC H l .  < X I .  I : l .  < 48-NC H ! )  

. 0 1 . DO , DO . DZ . DO • DO . D3 . DO . DO . D4 . DO • DO . D5 · DO · DO . D6 · DO . DO 

• < LB . I = 1 •  302 1 

CLOSE < U N I T :  1 I 
RETURN 

WR I TE < 5 . 3000 1 
FORMAT < '  LSODE MADE MORE THAN 500 I TERATIONS ' /  

' CALCULATIONS RESUME ' >  
LKOUNT :LKOUH T + 1  
I F < LKOUHT . GT . 1 0 l  GO TO 777 
I S T AT E : Z  
G O  TO 9 1  
END 

T L AP . F T N  

c 
c 
c 

c 
c ** 
c 
c ** 

c ** 
c ** 
c 

c 
c ** 
c ** 
c ** 
c 

c 

c 
c 

1 0  

2 0 - J U N - 8 4  

SUBROUT I N E  BLGWH < I 1 . I 2 l  

1 1 : 2 3 : 4 5  PAGE 2 0  

FUNC T I O N  BLOWN BAND L I M I TE D  GAWSIAH WH I TE NO I SE 

W I T H  T H I S  PARAMETERS THE F I LTER IS SET AT 80� OF NYQU I ST FRE Q .  
WHEN SAMPLING ONE EVERY TEN PO INTS 
T H I S  NO I SE HAS A STANDARD DEV I A T I O N  OF 1 . 0  

IMPL I C I T  REAL*8 < A-H , O-Z l 
REAL •8 G · H < 8 l  
DATA G/0 . 00000 8 1 9 4 1793343/ , 
H/6 . 7 1 86 7 9 1 248246675 . - 1 9 . 8375452 1 28588596, 

3 3 . 6094741 679254439 . -35 . 72783289 1 7 1 72 1 6 3 .  
2 4 . 396089 1 362 1 92 9 1 0 . - 1 0 . 4474756767 1 1 3902. 

2 . 5649604 1 95750299. - 0 . 27635726 1 4 36 3 0 1 5/ 
HPOLE S /B / · ST DHRM/ 0 . 28335/ 

ARRAY Y CONTA I N S  THE BLGWN IN POS I T I ON 1 1 .  
I T  ALSO C ON T A I N S  1 0  P O I NTS BEFORE AND 1 0  P O I NTS AFTER 
I N  INCREMENTS OF D T / 1 0 .  

REAL • 8  Y < 2 1  l 
COMMON /NOI SE/ Y . F I RST 
DATA Y/2 1 *0 . /  

L O G I CAL * 1  F IR S T  
D A T A  F IRST/ . TRUE . /  

1< : 0  
D O  ZOO I B : 1 . 1 0  
X : GWH < l l •  I2 l 
DO 1 0 0  I :  1 .  20 

' CALCULATE NEW 1 0  P O I N T S  < DT / 1 0 . ) 

100 Y < I l :Y < I + 1 l  
c 

c 

Y < 2 1 l : G • X/STDHRM 
DO 1 1 0  I : 1 , NPOLES 

1 1 0  Y < 2 1 l : Y < Z 1 l +H < I l *Y < 2 1 - I l 
ZOO CONTI NUE 

WH : SNGL < Y < 1 1 l l  ! OUTPUT HEW BLGWN < REAL D T I  [ HOT RETURNED l 

I F < . NO T . F I R S T l  RETURN 
K : K + 1  
I F < K . L T . 25 l  G O  T O  1 0  
F I RST : . FALSE . 
RETURN 
END 

' I N I T I AL I ZE F I LTER 

N 
-...J 
+:--
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c 
c 
c 

c 
c •• 

c •• 

c •• 

c 

c 

c 

c 

c 
c 

z : - ;w N - a 4  1 1 : 2 3 : 4 5 

SUBROUTINE CONVRG C YY . TT , F I L E . END J 

T H I S  SUBROUT I N E  F I NDS THE �AXIMA AND M I NI MA 

OF A STEP RESPONSE GENERATED BY TLA� 

P A G( 2 1  

AND CALCULATES D . R .  AND WHEN I S  THE RESPONSE CONVERGED 

REAL •B DRSU� . DRS 2 , FNSU� . F N S 2 . SMAX, SMAX2 · SM I N . S M I N 2  

R E A L  •8 Y Y . T T  

LOGICAL • 1  r i LE C 28 l  

L O G I C A L  * 1  END , r i R S T . CONV 

COMMON /CNV/ F I RST . CONV . Y 1 , Y2 , Y3 , YE X 1 , YEX2 , DR 1 . DR2 , rN 1 , r N 2  

, IREC . K OUNT 

CO�MON /OUTP/ P R I N T , PRALL . DSK 

L O G I CAL *1 P R I N T . PRALL. DSK 

Y : SNGL C Y Y J 

T : SNGL C T T l  

I r c EN D l  G O  T O  1 0  

I r c . NO T . r iRST l G O  T O  1 

F" I R S T :  . FALSE. 

f" I L E C 9 l : ' . '  

r i L E C  1 0 l : ' E '  

F I L E C 1 1 l : ' X '  

F" I LE C 1 2 l : ' T '  

r i L E C  1 3 l  : 0  

CLOSE C UN I T : 3 J  

OPEN C UN I T : 3 , NAME : r i LE , TYPE : ' NE W ' , ACCESS : ' D I RECT ' 

· R ECORD S I Z£ : 2 l  

I R EC : l  

Y l : O  

Y 2 : 0  

Y 3 : 0  

YEX 1 : -99 9 .  

Y E X Z : -999. 

KOUNT : O  

DR l : -9 99 .  

DRZ : - 99 9 .  

C O N V : . FALSE. 

E N D : . rALSE. 

I r c KOUNT . GT . l O l  GO TO 1 0  

Y 3 : Y  

T 3 : T  

' CONVERGED 

· - AP . F - N  

c 

c 

I r c c Y2 . GT . Y l . AND . Y2 . GT . Y 3 l . OR . c Y2 . LT . Y 1 . AN D . Y2 . L T . Y 3 l  l THEN ' EXTREMA 

Y£X3 : Y2 
TEX3 : T 2  

D R : -999 . ' FOR�AT CHECK 

I r c YEXI . NE . -99 9 .  l THEN 

D 1 : YEX3-YEX2 

D 2 : YEX1 -YEX3 

DROUN D : A B5 C Y2•5 . E - 2 l  ' ROUNDOFr CUTOFF 
! F C �ROUND . LT . 2 . E- 3 J DROUND : 2 . £ - 3  

z_ .:, - �· ,_, N - 3 4 u ;  2 3 : 4 5  P A G E  2 2  

! F < AE S < D2 l . G T . DROUND . OR .  ABS C D 1 J . GT . OROU N D l THEN 

G M : O l / 02 

I F C GM . NE . - 1 . l  D R : G �/ ( 1 . +G M l 

I F C GM . EQ . - 1 .  J OR : - 1 . 

r N : 1 . / C TEX3-T£X l l  

ELSE 
I<OUNT : KOUNT+l 

END i r  

E N D i r  

YEX 1 : YEX2 

TEX 1 : TEX2 

YEX 2 : YEX3 

T E X 2 : TEX3 

I F C CONV . AN D .  Y EX 1 . GT . YEX2 l THEN 

YMX : YE X l  

Y P1 N : Y E X 2  

SMAX:SMAX+YMX 

SMAX2:S�AX2+YMX••2 

S M I N : S M IN+YMN 

S M I N 2 : SP1 I N2+YMN••2 

N N :: N N + 1  

END IF" 

I r C DR . N E . -999. l THEN 

I F < . NO T . CONU J THEN 

DRERR : A BS C D R 1 -DR l +AES C DR2-DR l 
I F C DRERR . LT . DR • . O l l  THEN � 

CON V : . TR U E .  � 
DRSU� : DR 1 +DR2+DR U1 
DRS2 : DR 1 • • 2 + DR2•• 2+DR••Z 

FNSU M : r N t + F N 2 + F N  

�NSZ : r N t • •2+FNZ**2+FN••Z 

NSUM : 3  

PRA U � DRSU�/FLOAT ( NSUM l 

DRS D : D SQR T C DABS C DRS2/FLOA T C NSU� l -DRAV•• 2 J l 

I r e  ABS C DRAV- 1 . l . GT .  0 . 00 2  l C OHV : . FALSE . ' N O T  L I M I T  CYCLE 

YP1X:AMAX 1 C YE X 1 , YEX 2 l  

Y�N : AM I N 1 C YE X 1 , YEX2 l 

SMA X : YMX 

SMAX2 : YM X • • 2  

S � I N : Y�N 

SM I N 2 : YMN••2 

NN : 1  

ELSE 

DR 1 :DR2 

DR2 : DR 

rN t : r N z  

r N z : r N  

E N D i r  

ELSE 
DRAV : DRSUM/rLOAT < NSU M l  

DRS0 ; 0$QRT C DA B S C ORS2/F"LOAT ( NSUM l -DRAU•*Z ) l  

DRERR : A B S C DR-DRAV l 

Ir C DRERR . LT .  5 . •DRSD l THEN 

DRSUM:DRSUM+DR 

DRS 2 : DRS2+DR••2 

tN.SU M : F" N S U M + � N  
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c 

c 

c 

c 
c 

c 

9000 

c ** 
c 

c 

c 

c 

1 0  

5000 

5005 

S O l O  

5020 

F'NS2 ' F'NS2+F'Nn2 
NSUI1,NSUI1+1 

ELSE 
KOUNT:I<OUN T + l  

E N D  I F'  
END I F'  

E N D  IF' 

2•)- J U N - 8 4  

I F' t PR I NT l  W R I T E t 5 . 9000 l DR . FN 
F'ORI1AT ( • • , 3 S t  ' - '  l ,  2 G l 5 .  4 l 
WR I TE t 3 ' I REC l T2 . Y2 
I RE C '  I RE C + l  

1 1 : 2 3 : 4 5 PAGE 2 3  

I F' t CDNV . AN D .  ABS t DRAU- l . l . L T . 3 . •DRS D l  KOUNT ,KOUNT + l  ' L I M I T  CYCLE 

£ N D I F'  

Y l : Y2 
n , rz 
Y2 : Y3 
r z , r 3  

RETURN 

CONVERGED 

END , .  TRUE . 
IF' t CDNV l THEN 

DRAV : DR SUI1/f'LOA T < HSUI1 l 
DRSD , DSQR T t DA85 t DRS2/f'LOA T t HSUI1 l - DRAU**Z l l  
F' H A V , f' H SUI1/f'LDA T t HSUI1 l 
F' H S D , D S QR T t DA B 5 t F'HS2/f'LDA T t HSUM l -F'HAU**Z l l  

w R I T £ < 6 · 5000 1 DRAV . DRSD, f'HAV . F'HSD 
F'ORMAT ( // / '  AVERAGE DECAY R A T I O  ' ' • G l B . 5 . ' + / - ' . G l B . S  

/ '  AVERAGE F'REQUEHCY ' ' , G l B . 5. ' + / - ' • G l B . 5 l  
wR I TE ! 6 . SOOS l HSUM 
F'ORMAT ! '  ' , I 6 , ' OSCILLAT I ONS USED F'OR AVERAG£ ' / l  

ELSE 
wR I TE t 6 . S0 1 0 l  
F'ORMAT ( // / '  DECAY RAT I O  D I D  NOT CONVERGED ' l  

END I F'  

I F' t AB S ! DRAV- l . l . LT .  DRSD•S . l  THEN 
AVMX , SMAX/f'LOAT ! HH l  
SDI1X , DSQR T ! DA8S ! SMAX2/f'LOAT t HH l -AUMX••2 l l  
AVM H , S M IH / f' LOAT t HH l  
SDMN ,DSQR T ! DA8S ! SM I HZ / f' L OAT ! HH l -AUMHoo2 l l  
w R I T E ! 6 . 5020 l AUMX . SDMX, AVMH. SDMH 
F'ORMAT ! / '  L I M I T  CYCLE : • / 

ELSE 
AVMX , -999 . 
AVMH, - 999 . 
S D M X , - 999 . 
SDMH , - 999 . 

MAX I MUM OSC ILLA T I ON ' • . t P G l B . S , ' + / - ' . G l 8 . 5/ 
M I N IMUM OSC ILLATION ' ' , lP G l B . S , ' + / - ' , G l B . S / / / l 

TLAP . F'T N  

c 

c 

c 

5030 

20 - JUN -84 1 1 : 2 3 : 4 5 

wR I TE t 6 . 5030 l 
FORMAT ! / '  L I M I T  CYCLE WAS HOT REACHED ' l  

END I F'  

XJHI<:-999. 
wR I TE ! 3 ' I RE C l ! XJHI< · I ' l • Z l  
I R EC , I RE C + l  
wR I TE ! 3 ' I RE C l  DRA V . DRSD 
I R EC , I RE C + I  
wR I TE ! 3 ' I RE C l F'HAV , f'HSD 
I R EC , I RE C + l  
WR I TE ! 3 ' IREC l AUM X . SDMX 
I RE C , I RE C + l  
wR I T E ! 3 ' I RE C l  AVMH . SDMH 
IREC , I RE C + l  
CLOSE ! UH I T ' 3  l 
RETURN 

END 

P"GE 24 

N 

..__, 
0\ 
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