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ABSTRACT 

This dissertation studies a supply system consisting of a retailer, a manufacturer, and 

multiple transportation stages. The manufacturer fulfills the demand from the retailer for 

a single product. The replenishment process is not instantaneous. Orders may take more 

than one time period to be shipped from the manufacturer’s location, and shipped orders 

pass through multiple transportation stages until they reach the retailer. Each stage may 

represent a physical location or a step in the delivery process. Shipments are not allowed 

to cross over in time. The movement of each shipment depends on the congestion and 

movements of shipments ahead of it.  

A stochastic model is developed to evaluate the long-run average cost incurred by the 

retailer. The cost is modeled for a myopic order-up-to-level policy. Depending on the 

availability of real-time order tracking information, the cost function can have different 

expressions. The behavior of the cost functions with or without real-time tracking 

information and the difference between the two are studied for different parameters.  

The first main section studies a model with the manufacturer’s delays in the shipping 

process. Orders may take several time periods to leave the manufacturer’s site. Numerical 

examples for various transportation congestion scenarios and for different shipping 

policies show which settings guarantee the lowest long-run average cost.  The model also 

helps to draw some insights on how and when the retailer should place orders with the 

manufacturer. 

The second section studies a model with no manufacturer’s delay but with a limited 

number of tracking devices. The model calculates the long-run average cost using 

information collected from the tracking devices. The numerical examples help to 

determine the optimal placement of a given number of tracking devices to minimize the 

long-run average cost. The model also suggests the optimal number of tracking devices 

that brings the long-run average cost as close as possible to the long-run average cost 

with full real-time tracking information. 
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CHAPTER 1  

INTRODUCTION 

Techniques such as just in time and lean are very effective approaches to reduce 

investment in inventory and, thereby, increase free cash flow. While the implementation 

of these techniques varies widely based on the business model, structure, domain, and the 

market served, they all require knowledge of the inventory status at different stages in the 

supply system. 

Advances in information technology make it possible to obtain data that can be used to 

track order status in real time through all stages in the supply chain.  This data can 

potentially be used to track partial orders and shipments even at the item level (Angeles, 

2005; Kohn et al., 2005; and Murphy-Hoye et al., 2005).  Such real-time tracking data 

can enable better supply chain management (Grahovac and Chakravarty, 2001; 

Karkkainen et al., 2004). However, the value of this tracking information is not 

adequately understood (Zhang et al., 2006).  The lack of a firm understanding can lead to 

incorrect decisions on when, where, and to what extent these technologies should be 

deployed. It presents a challenge and an opportunity for quantitative methods to model 

and analyze the value of real-time information. 

This thesis develops a stochastic model to evaluate the value of real-time shipment 

tracking information in a supply system.  The supply system consists of a retailer, a 

manufacturer, and multiple stages of transportation.  The retailer aggregates demand for a 

single product from his end customers and places orders on the manufacturer.  The 

replenishment process between the manufacturer and the retailer is not instantaneous.  

Delays can occur at the manufacturer’s site and during transportation. The manufacturer’s 

lead time, the time it takes for a given order to leave the manufacturer’s site after it is 

placed by the retailer, is a random variable that is also affected by the number of orders 

outstanding at the manufacturer’s site.  
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Products shipped from the manufacturer also incur a transportation lead time; they pass 

through a series of transportation stages before the retailer receives them.  Each 

transportation stage can represent a physical location for shipments or a step in the 

delivery process.  During a given time period, each shipment moves through a random 

number of stages in the supply chain.  The number of stages a shipment moves in one 

time period also depends on the movement of shipments ahead of it.  Shipments are not 

allowed to cross over in time.  That is, they are not allowed to cross shipments ahead of 

them.  The lead time for a given shipment is thus a random variable that depends on the 

distribution of shipments at various stages.  The total lead time is the sum of the 

manufacturing and the transportation lead times. 

The stochastic model analyzes the long-run average cost for the retailer.  The model is 

applied to quantify the value of real-time order tracking information along with the 

associated cost savings and to draw insights on how and when the retailer should place 

orders with the manufacturer. When real-time tracking information is not available from 

all transportation stages, beacons are placed to monitor one or several stages and collect 

aggregated information. The model presents two types of beacons. The type I beacon can 

detect the presence or absence of shipments only at the stages it is monitoring. The type 

II beacon can give information about the number of occupied stages. The model 

calculates the long-run average cost using information collected from the beacons. From 

the retailer’s point of view, it is important to decide where to place the available beacons 

to achieve the minimum average cost. The other important point of interest is to 

determine the number of beacons that brings the average cost as close as possible to the 

average cost using full real-time tracking information. 
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CHAPTER 2   

LITERATURE REVIEW 

Supply chain models with information sharing are well studied.  The literature on supply 

chain information sharing is growing rapidly (see, for instance, Lee and Padmanabhan 

(1997), Gavirneni et al. (1999), Cachon and Fisher (2000), Chen et al. (2000), Lee et al. 

(2000), Raghunathan (2001), Karaesmen et al. (2002), Dejonckheere et al. (2004), Gaur 

et al. (2005) and Kim et al. (2006)). Most work has focused on the value of demand 

information. Only a small body of work studies the value of upstream information, such 

as information on the supplier’s inventory status and order lead times (Whitt, 1999; Chen 

and Yu, 2005; and Li et al., 2006). Furthermore, these models focus on uncertainties 

caused by the production or inventory condition at the supplier and assume no 

uncertainties due to the shipping or manufacturing processes that can affect lead times 

under review.  

Some of the models analyze the benefits of providing the retailer with access to the 

inventory status at a manufacturer’s warehouse (Jain and Moinzadeh, 2005; Zhang, 2006; 

Croson and Donohue, 2006; Zhang et al., 2006).  Zhang (2006) studies the effect of 

horizontal information sharing on the inventory status between suppliers in a two-echelon 

assembly system. Dobson and Pinker (2006) use an M/M/1 queuing model to analyze the 

factors that determine whether or not sharing state-dependent lead-time information can 

benefit a firm. Croson and Donohue (2006) investigate the “bullwhip” effect when 

inventory information is shared across a supply chain. Zhang et al. (2006) analyze the 

impact of sharing information on uncertain shipment quantity in a simple linear supply 

chain with stochastic demand for a single product. 

Kaplan (1970) achieves a major breakthrough in the study of stochastic lead-time supply 

systems. His paper studies the supply chain with stochastic lead times and random 

demands.  The model assumes no crossover for shipments, linear ordering costs and fixed 

non-negative setup costs.  The parameters in his model are not related to the lead-time 
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distribution in a simple manner.  Sufficient conditions for the optimality of myopic 

ordering policies are also not specified. Ehrhardt (1984) extends Kaplan’s work by 

establishing conditions for the optimality of myopic base-stock policies and for the 

optimality of (s, S) policies for both finite and infinite planning horizons. Both Kaplan 

and Ehrhardt assume that the orders (shipments) cannot cross over but do not present 

details about how shipment congestions happen and affect the order lead times. 

Song and Zipkin (1996) model the supply chain as a Markov chain.  An exogenous 

random variable that models the Markov chain is assumed to be independent of the 

demand and of outstanding orders.  A state-dependent, base-stock inventory policy is 

shown to be optimal for the inventory model.  The optimal policy has the same structure 

as in standard models, but its parameters depend on the supply conditions.  

The papers by Kaplan, Ehrhardt, and Song and Zipkin do not take into account the 

locations of outstanding orders and assume that the location does not affect order lead 

times. Eppen et al. (1988), Ray et al. (2004), and Krever et al. (2005) make a similar 

assumption. They come to the conclusion that the inventory position information is 

adequate to make efficient ordering decisions. While this assumption simplifies 

problems, some valuable information is omitted.  

For example, Song and Zipkin (1996) assume that order lead times are dependent on 

supply conditions. While they show that observing supply status information is valuable, 

they also assume that supply conditions are independent of the real-time outstanding 

order status and conclude that real-time information on the location of outstanding orders 

is unnecessary for generating efficient decisions. Chen and Yu (2005) analyze the value 

of lead time information in a single-location inventory system consisting of a supplier 

and a retailer. Assuming that the lead time is modeled as a Markov chain, they quantify 

the value of lead-time to the retailer under two information scenarios: whether or not the 

supplier shares lead-time information with the retailer. Song and Zipkin (1996) and Chen 

and Yu (2005) also assume that shipments do not cross over in time; that is, shipment 

congestion can occur wherein some shipments may be blocked by other shipments 

against orders placed earlier in time. However, they only model shipment congestion 
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implicitly by simply regulating the characteristics of lead-time distributions. For example, 

Chen and Yu (2005) assume that the congestion happens at the supplier’s queue and not 

in transit. The transition matrix of the Markov chain that models the lead-time is 

restricted to a semi-upper triangular form to ensure no shipment crosses over. This 

restriction leads to the invariance of the lead time distribution with or without shipment 

congestions. 

Liu et al.  (2009) model a supply chain with multiple stages between a manufacturer and 

a retailer.  A stochastic model is used to evaluate the value of real-time shipment tracking 

information in a supply system with a manufacturer that fulfills demand from a retailer 

for a single product using a periodic review, order-up-to-level inventory control policy.  

Shipment congestions are modeled explicitly so that the lead time has different 

distributions depending on whether or not shipment congestion is present. The order-up-

to levels explicitly depend on the number and position of the outstanding orders. Liu 

shows that when the supply status depends on the location of outstanding orders, real-

time information on the location of outstanding orders is valuable and he quantifies this 

value under different information scenarios. However, it is assumed that the manufacturer 

has unlimited capacity and is able to fulfill any order immediately, thus eliminating any 

delays (congestion) from the manufacturer’s site. In addition, it is assumed that the 

retailer orders every time period. Furthermore, Liu’s approach is limited to supply chains 

with up to only 4 transportation stages. 

This thesis studies a more generalized supply system where the manufacturer has limited 

ability to ship orders immediately and the retailer does not have to order every time 

period. There are multiple stages in the supply chain between the manufacturer and the 

retailer. Shipment congestion in the supply chain and the number of unshipped orders at 

the manufacturer’s site are modeled explicitly so that the lead time has different 

distributions depending on transportation congestion and outstanding orders.  

The model shows how real-time tracking information affects the retailer’s ordering 

decision. The new approach to using transitions gives the model the ability to study 

supply chains with 8, 9, 10 or more transportation stages. Clearly the cost of operating the 
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system is reduced when the retailer has information on the supply status at the 

manufacturer’s site and has access to real-time information on shipments in transit as 

well as on unshipped orders. When the retailer has limited access to real-time tracking 

information but can choose a stage to collect partial information, the model can choose 

the location of one or more beacons. It can also determine the number of beacons 

necessary to give a desired level of closeness to the long-run average cost of the full-

information case. 
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CHAPTER 3  

THE SUPPLY SYSTEM WITH MANUFACTURER’S LAG 

3.1    The Supply System 

Consider a supply system consisting of a manufacturer that supplies goods to a retailer 

through a transportation channel.  The retailer aggregates demand for a single product 

and places orders with the manufacturer using a periodic review, state-dependent, order-

up-to-level inventory control policy.  The retailer demand is assumed to be independent 

and identically distributed (i.i.d.) over time.  Products shipped by the manufacturer pass 

through a number of transportation stages before the retailer receives them.   

The supply status in this system is determined by the orders outstanding at the 

manufacturer’s site and by the status of orders in transit that have not yet reached the 

retailer’s site.  The lead time for the retailer is the sum of two components: 

a) The manufacturing lead time, which is the time period from the instant an order is 

placed with the manufacturer until it is shipped from the manufacturer’s site.  This 

lead time is a random variable that can be affected by the number of orders 

outstanding at the manufacturer’s site at the time the order is placed. 

b) The transportation lead time, which is the time period from the instant an order is 

shipped from the manufacturer until the shipment is received by the retailer.  This 

lead time is a random variable that also depends on the locations of shipments 

already in transit at the time the order is shipped. 

The following sequence of events takes place during each time period. 

• At the start of each time period, the retailer receives zero or more shipments from 

the supply system against orders placed in earlier periods. 
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• The retailer fulfills customer demand to the extent possible with inventory on 

hand and updates his inventory level.  Any unsatisfied part of customer demand is 

backlogged. 

• The retailer next reviews his inventory on hand and the total supply chain status 

and decides whether to order, and if so, what the order quantity should be. It is 

assumed that retailer’s orders are conveyed immediately to the manufacturer, but 

the manufacturer can take multiple time periods to process the order. 

• The manufacturer ships any orders that have completed processing.  Clearly, if 

there are no ready-to-ship orders, no shipments take place, but all completed 

orders ready to ship are aggregated and dispatched in one shipment.   

• Shipments against orders move downstream in the same sequence as the order in 

which the retailer places the orders, through multiple transportation stages.  These 

shipments do not cross each other while in transit.  In other words, they are not 

allowed to overtake other shipments already in transit. 

The supply system described above is analyzed with a stochastic model to determine the 

optimal cost of operating the system.  The retailer incurs two types of costs: the holding 

cost for any positive inventory on hand at the end of each time period, and the shortage 

cost whenever a demand is not met.  In addition to analyzing the cost of system 

operation, one item of interest is to determine the value of tracking information that 

provides real-time data on the status of orders at various stages in the supply system. 

It is assumed that the unit holding cost and the unit shortage cost are both constant over 

time.  It is also assumed that the retailer has full knowledge of the mechanics of the 

supply system and the distribution of customer demand.  Liu et al.  (2009) study a special 

case of this model in which the retailer orders every time period and where the 

manufacturer is able to fulfill each order immediately. 
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3.2    The Stochastic Model 

Let m(t) denote the number of orders outstanding at the manufacturer’s site at the end of 

time period t - 1.  Note that m(t) can take values from 0 up to N.  If the retailer places a 

new order at the beginning of the time period t, the number of orders outstanding at the 

manufacturer’s site prior to any shipment increases to m(t) + 1.   

The number of orders shipped out of the manufacturer’s site each time period is governed 

by a random variable, Ym, that is independent of customer demand and of time t.  There 

is, however, a limit, N, on the number of outstanding orders at the manufacturer’s site at 

the end of each time period.  Thus, if the manufacturer starts with N outstanding orders at 

time t, and if the retailer places a new order during that time period, the number of 

outstanding orders will increase to N + 1, implying that the manufacturer must ship at 

least 1 order by the end of that time period.  The number N models either the physical 

size of the manufacturer’s facility (there’s no room to store more than N orders) or the 

maximum lead time agreed between the retailer and the manufacturer (the order cannot 

take more than N time periods to ship out of the manufacturer’s site). 

Let 
1 2,m mq  denote the probability that the manufacturer has m1 orders before a shipment 

occurs but after the retailer places a new order (if any) that time period, and there are m2 

orders left after the shipment of any orders during that same time period.  Thus, Ym has 

the following distribution: 

Pr[Ym = y] =
def

qm,y ,                                                                   

with           (1)  

,
0

1
m

m y
y
q

=

=∑ , for m < N+1,      with  1,
0

1
N

N y
y
q +

=

=∑ . 

After an order ships from the manufacturer, it goes through a series of transportation 

stages before it reaches the retailer.  The transportation process through the supply system 
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follows a similar process to the one studied by Liu et al. (2009). This process takes up to 

K stages, labeled 1, 2, …, K, as shown in Figure 3.1. Each stage can represent a physical 

location or a step in the process.  Orders shipped by the manufacturer (stage 0 in the 

process) progress through zero or more stages during each time period and are finally 

received by the retailer (at stage K + 1). 

Shipments against individual orders are not allowed to cross over in time and, therefore, a 

shipment at a downstream stage can block the movement of an order from upstream 

stages.  More specifically, a shipment against an order can only move forward as far as 

the next downstream shipment’s location.  When order shipments from upstream stages 

move to the same downstream stage, they merge into a larger shipment and continue to 

move as one shipment from then onwards until the shipment reaches the retailer.   

The number of stages a shipment at stage k moves during time period t is governed by the 

status of other shipments in the system, and an exogenous i.i.d.  random variable, Xk, that 

is independent of customer demand and of t.  The new location of this shipment is 

updated at the start of time period t + 1.  As noted earlier, shipments are not allowed to 

cross over in time. Axsater (2000) notes that this assumption simply reflects common 

practice.  The movement of the shipment at stage k is independent of the location of 

shipments at stages upstream from it, but is dependent on the status of shipments at 

downstream stages due to possible shipment congestions.   

 

 

Figure 3.1. The K transportation stages between the manufacturer and the retailer, with m 

orders outstanding at the manufacturer’s site. 

 

Manufacturer                                                                                                          Retailer 
  (Stage 0)                                                                                                           (Stage K+1) 
 

    Stage1   Stage 2 …  Stage k  ………  Stage K-1   Stage K    

m 
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Let pk,x represent the probability that the shipment at stage k will move to stage x in a 

single time period, if shipment congestions are absent.  Thus, Xk has the following 

distribution: 

Pr[Xk = x] =
def pk,x, if 0 ≤ k ≤ K,   k ≤ x ≤ K +1,   

0, otherwise,

"
#
$

%$
                       

with           (2) 

pk,x =1,
x=k

K+1

∑ 1≤ k ≤ K,       and       p0,x =1
x=1

K+1

∑ . 

Equation (2) implies that shipments do not move backward. 

Let the binary variable, sk(t), denote the presence or absence of a shipment at stage k at 

time period t.  That is, 

sk (t) =
def 1, if there  is  a  shipment  present  at  stage  k   at  time  t,

0, otherwise.

!
"
#

$#
   (3) 

Let )](),...,(),([)( 21 tstststs K=
  denote the supply status in the transportation process 

between the manufacturer and the retailer at the end of time period t.  Note that )(ts  can 

take on one of 2K possible states denoted by K
j js 2,...,2,1, =
 .  Let   ,...}2,1),({ == ttss  

and let },...,,{1
221 Ksss 

=Θ  denote the state space of s. Figure 3.2 shows an example of the 

supply status vector.  The shaded circles indicate occupied stages. 

 

 

 

Figure 3.2. Example for K=4,  ]0,1,1,0[)( =ts . 

 

        1            2               3                4 
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As noted earlier, shipments are not allowed to cross over and a shipment at a downstream 

stage can block movement of shipments at upstream stages.  As in Liu et al. (2009), for 

each shipment located at stage k at the start of time period t, let Mk, 0 ≤ k ≤ K, represent 

the location of this shipment at the start of time period t+1.  The movement of a shipment 

is regulated by this function, defined recursively as follows: 

 Mk =
def X k if sk̂ (t) = 0 for any k < k̂ ≤ K ,

min{Xk ,Mk
} otherwise,

"

#
$

%
$

 (4) 

where  ˆ
ˆ ˆmin{ : , ( ) 1}.

def

kk k k k K s t= < ≤ =  

The shipment movement function, Mk, models shipment congestions explicitly. If 

shipments at downstream stages progress slowly, shipments at upstream stages may be 

blocked and shipment congestion is present. If shipments at downstream stages move fast 

enough or there are no shipments at upstream stages, there is no shipment congestion and 

Xk solely determines the movement of a shipment.   

Since there may not be a new shipment at the beginning of a time period, the transitions 

from one state vector to another are modeled in two different ways.  If a new shipment is 

released at the beginning of time period, the transition from state )(ts  to )1( +ts  follows 

the same logic as in Liu et al.  (2009), as illustrated in Figure 3.3. 

 
 
 
 
 
 
 
 

Figure 3.3. Possible transitions from ]0,1,1,0[)( =ts  to s(t +1) = [1, 0,1,1]  with a new 

shipment. 

        1            2               3                4 
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Note that if a new shipment is not released, the transition from ]0,1,1,0[)( =ts  to  

]0,1,1,1[)1( =+ts  is not possible.  Figure 3.4 shows possible transitions with and without 

a new shipment. Figure 3.4.a shows the transitions with a new shipment while Figure 

3.4.b shows the transitions without a new shipment. 

The retailer’s decision to place a new order when the on-hand inventory level is lower 

than the specified order-up-to-level depends on the supply status )(ts  and the number of 

orders outstanding at the manufacturer’s site m(t).  Define the retailer’s supply status as a 

pair ))();(()( tstmtsR 
= .  Note that since m(t) can take any one of N+1 values, and )(ts  

can take any of 2K values, )(tsR


 takes on one of (N+1)2K possible values, 

Rsj ,   j =1,2,...,(N +1)2K.   Let ,...}2,1),({ == ttsR


Rs  and let },...,,{2

2)1(21 KNsRsRsR
+

=Θ


 

denote the state space of Rs. 

It is assumed that for each state 

Rsj ,   j =1,2,...,(N +1)2K  the retailer places an order with 

pre-specified probability 𝜌!. After fulfilling the customer’s demand, the retailer observes 

the supply status vector, jsR


, at the end of each time period and places a new order with 

probability 𝜌!. If the decision is to place an order but the on-hand inventory is greater 

than the pre-specified order-up-to-level, a pseudo order with an infinitesimally small 

amount is placed. Pseudo orders are necessary for mathematical tractability, and as noted 

in Liu et al. (2009) they have a low effect on the system’s performance. To ensure that 

the state (0,0,…,0) is not absorbing, it is assumed that there is a non-zero probability of 

an order being placed while in this state. 

 

 

 

 

       a) Transition with a new shipment                   b) Transition without a new shipment  

Figure 3.4. Possible transitions from ]0,1,1,0[)( =ts  to ]0,1,0,0[)1( =+ts . 

        1            2               3                4         1            2               3                4 
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Let the binary variable o(t) denote the presence or absence of a new order from a retailer.  

That is, 

o(t) =
def 1, if  the  retailer  placed  a  new  order  at  time   t,

0, otherwise.

!
"
#

$#
   (5) 

With this definition, the complete supply status vector is )]();();([)( tstmtotsT 
= .  Note 

that )(tsT


 takes on one of (N+1)2K+1 possible states, 

Tsj , j =1,2,...,(N +1)2

K+1 .  Let  

,...}2,1),({ == ttsT


Ts  and let },...,,{3 12)1(21 ++
=Θ KNsTsTsT


 denote the state space of Ts. 

Property 3.1: Process Rs is a time-homogenous Markov chain. 

Proof:  Since process s is independent of the number of orders at the manufacturer’s site, 

Pr{(m(t); s(t)) | (m(t −1); s(t −1)), (m(t − 2); s(t − 2)),..., (m(0); s(0))}
  = Pr{m(t) | (m(t −1); s(t −1)), (m(t − 2); s(t − 2)),..., (m(0); s(0))}
     xPr{s(t) | (m(t −1); s(t −1)), (m(t − 2); s(t − 2)),..., (m(0); s(0))}.

 (6) 

By definition, the number of orders at the manufacturer’s site at time t does not depend 

on transportation state vectors; moreover, it is completely determined by the number of 

orders at the manufacturer’s place at time t-1 and the realization of the exogenous random 

variable Ym in time period t. That is, 

   

Pr{m(t) | (m(t −1); s(t −1)),(m(t − 2); s(t − 2)),...,(m(0); s(0))}
= Pr{m(t) |m(t −1),m(t − 2),...,m(0)}
= Pr{m(t) |m(t −1)}.

            (7)  

Also by definition, )(ts , the supply status vector at time t, is a K-length binary string 

with 2K possible states.  The status of stage k in time period t+1 is completely determined 

by )(ts , the realization of the exogenous random variable Xk in time period t, and the 

presence/absence of a new shipment at the beginning of time period t+1, which can be 

determined as the difference between m(t-1) and m(t).  And since m(t) is completely 
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determined by m(t-1) and the realization of the exogenous random variable Ym in time 

period t, it follows that   

Pr{s(t) | (m(t −1); s(t −1)), (m(t − 2); s(t − 2)),..., (m(0); s(0))}
     = Pr{s(t) | (m(t −1); s(t −1))}.

                          (8) 

Thus  

Pr{(m(t); s(t)) | (m(t −1); s(t −1)), (m(t − 2); s(t − 2)),..., (m(0); s(0))}

= Pr{m(t) |m(t −1)}Pr{s(t) | (m(t −1); s(t −1))}

= Pr{(m(t); s(t)) | (m(t −1); s(t −1))},

 (9) 

or    

Pr{

Rs(t) |


Rs(t −1),


Rs(t − 2),...,


Rs(0)} = Pr{


Rs(t) |


Rs(t −1)} .  (10)  n 

Thus Rs is Markovian.  As Xk and Ym are i.i.d. over time, )}1(|)(Pr{ −tsRtsR


 is 

independent of time period t. 

Property 3.2: Process Ts is a time-homogenous Markov chain. 

Proof:  By definition, the retailer’s ordering probability for time period t depends only on 

the retailer’s supply status vector at time t.  As noted earlier, the retailer’s supply status 

vector at time t is determined only by the retailer’s supply status vector at time t-1, and so 

it follows that  

)}1(|)(Pr{)}0(),...,2(),1(|)(Pr{ −=−− tsTtsTsTtsTtsTtsT


,   (11) 

and so Ts follows a Markov chain.                                                                                    n 

As the retailer’s ordering probabilities are time independent and process Rs is time-

homogenous, process Ts is also time-homogenous.   

Let PTs denote the one-step transition matrix for process Ts.  The algorithm to evaluate 

PTs is presented in the appendix. 
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It is assumed that Rs and Ts are ergodic.  This is not a restrictive assumption, since 

ergodicity is satisfied whenever stage K+1 is reachable from stage 0 and 1 0,ρ >  where 

Rs1 = (0, 0, ..., 0).  

Since Ts is ergodic, it has a unique limiting distribution.  Let ][ jππ =
  denote the limiting 

distribution for Ts. That is, 

π j =
def

lim
t→∞
Pr[

Ts(t) =


Tsj ], 1≤ j ≤ (N +1)2K+1.     (12) 

3.3  Order Lead Time 

Let the random variable, L(t), denote the lead time for the order placed in time period t. 

The retailer is interested in the conditional lead time for each pair of ))();(( tstm   as this is 

the information the retailer needs to make his decision about the order-up-to level.  This 

information, paired with the ordering probabilities, either results in a new order or the 

absence of an order during a time period.  The conditional lead times are found for each 

)]();();([)( tstmtotsT 
=  with o(t) = 1, in other words for each supply status vector with a 

new order.  Note that if o(t) = 0, there is no new order and the lead time is not defined for 

that time period. The calculation of the conditional distribution of L(t) is given in the 

appendix.  

Note that the order placed at the end of time period t is still outstanding in time period 

t+L(t) but arrives (is accounted for) at stage K + 1 at the beginning of time period 

t+L(t)+1. 

Let Γ be the set of all indices in sT


 that correspond to vectors )]();();([)( tstmtotsT 
=  

with o(t) = 1. That is, 

}2j1any  and Nm0any for  );;1(  :{ K≤≤≤≤==Γ ji smsTthatsuchi


. (13) 
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The limiting probability distribution for lead times is 

ν l =
def
lim
t→∞
Pr[L(t) = l]= π i Pr[L(t) = l |


Tsi ].

i∈Γ
∑     (14) 

The following section presents the analysis for the long-run average cost under different 

information scenarios. 

3.4    Ordering Decisions and Long-Run Average Cost  

It is assumed that the retailer adopts a state-dependent, myopic order-up-to-level policy.  

That is, the optimal order-up-to level for each time period is obtained by minimizing the 

one-period expected cost.  It is also assumed that the retailer has predetermined ordering 

probabilities for each state.  For the linear cost structure assumed in this paper, a state-

dependent, order-up-to-level policy is optimal; and the optimal policy tends to follow the 

same qualitative pattern as the simple state-dependent, myopic, base-stock policy (Song 

and Zipkin, 1996).  For ease of exposition, Table 3.1 summarizes the important notations 

presented so far, as well as the notation used in the ensuing analysis. 
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Table 3.1. Notations. 

Symbol Definition 

N The maximum number of orders pending shipment at the manufacturer’s site 

K The number of transportation stages 

Ym Random variable that governs # orders shipped by manufacturer each time 

period 

1 2,m mq  Pr{m2 out of m1 unshipped orders are left at manufacturer’s site after a 

shipment}  

Xm Random variable that governs # transportation stages moved each time 

period 

pk,x Pr{shipment at stage k will move to stage x in a single time period} 

o(t) The presence or absence of a new order from a retailer at time period t 

sk(t) The presence or absence of a shipment at stage k during time period t 

m(t) The number of orders outstanding at the manufacturer’s site at time period t 

Ts(t)  The supply status vector: )]();();([)( tstmtotsT 

=  

L(t) The lead time for an order placed at time period t 

jρ  Pr{the retailer places an order while the system is in state (m(t); s(t)) j } 

d(t) External demand during time period t 

µd Average demand per time period 

σd Standard deviation of the demand per time period 

h Unit holding cost per period 

r Unit shortage penalty cost per period 

C* The minimum long-run average cost with real-time tracking information 

Cs* The minimum long-run average cost without real-time tracking information 
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3.4.1  Long-Run Average Cost with Real-Time Tracking Information 

Let D(t, η), η ≥ 0 denote the sum of all external demands made during (t, t+η+1]. That is, 

∑
=

++=
η

η
0

)1(),(
i

def

itdtD .       (15) 

Let’s assume that the retailer placed an order at the end of some time period t.  As he may 

not order all the time, the next order may not be placed at the end of the time period t+1.  

Let’s define the time period the next order is placed by t + τ.  Let IP(t) be the inventory 

position at the end of time period t after the current order is placed and IL(t) be the 

inventory level at the end of time period t.  Since orders cannot cross over, the following 

relationship between demand, the inventory position and the inventory level holds: 

IL(t+η+1) = IP(t) − D(t,η),    L(t) ≤ η ≤ L(t+τ)+ τ-1.    (16) 

Therefore, the distributions of the inventory levels, IL(t+η+1), for L(t) ≤ η ≤ L(t+τ)+τ-1, 

are determined by the inventory position IP(t).  Given L(t) and L(t+τ), it is proper to 

assign the cost incurred in periods t+L(t)+1, t+L(t)+2, …, t+L(t+τ), to the order placed in 

period t.  That is, the order placed in period t will cover the periods from when it is 

received until the time the next order is received.  If L(t+τ) = L(t) - τ, i.e., the orders 

placed in periods t and t + τ arrive in the same period, zero cost is charged to the order 

placed in period t.  For any y ≥ 0, define 

g(l, y) =
def
E[ h max(0, y−D(t, l))− r min(0, y−D(t, l))], l ≥ 0.  (17) 

Let G(

Ts j , y), j∈ Γ,  denote the one-period expected cost, i.e., the expected cost charged to 

the order placed in period t, given jsTtsT


=)(  and IP(t) = y.  Then, 

G(

Tsj , y)= Pr[L(t) ≤ l ≤ L(t +τ )+τ −1|


Ts(t) =


Tsj ]g(l, y)

τ≥1
∑

l≥0
∑ ,  (18) 

where 
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Pr[L(t) ≤ l ≤ L(t +τ )+τ −1|

Ts(t) =


Ts j ]  

     =  Pr[L(t) ≤ l |

Ts(t) =


Ts j ]− Pr[L(t) ≤ l,L(t +τ )+τ −1< l |


Ts(t) =


Ts j ]  

     =  Pr[L(t) ≤ l |

Ts(t) =


Ts j ]− Pr[L(t +τ )+τ −1< l |


Ts(t) =


Ts j ]    (19) 

              =  Pr[L(t) ≤ l |

Ts(t) =


Ts j ]− Pr[L(t +τ )+τ −1< l |


Ts(t +τ ) =


Tsk ]

k∈Γ
∑ NO( j,k,τ )      

and NO( j, i,τ )  is the probability that the system transitions from state isT


 to state jsT


 in 

τ steps with all intermediate states ksT


 satisfying the condition that k∉Γ  (i.e., there are 

no new orders placed until the time period t + τ).  The algorithm to compute ),,( τkjNO  

is given in the appendix.  

Let *
jIP  be the optimal order-up-to level minimizing the one-period expected cost, given 

that the real-time complete supply status vector is jsTtsT


=)(  when an order is placed. 

That is, 

),(minarg* ysTGIP j
y

def

j


= .       (20) 

Then, by the Ergodic theorem for Markov chains (Norris, 1997), 

C* =
def
lim
n→∞

E[1
n

G(

Ts(t + i), IP(t + i))]= π j

j∈Γ
∑

i=1

n

∑ G(

Tsj, IPj

*) ,   (21) 

where C* is the minimum long-run average cost under the myopic policy.  
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3.4.2  Long-Run Average Cost without Real-Time Tracking 
Information 

Suppose the retailer does not have any information on the supply status when the current 

order is placed, and suppose that the retailer uses the limiting distribution of Ts to 

determine the optimal order-up-to level, which is a constant. 

Let Cs (y) denote long-run average cost for the retailer when the order-up-to level is y, 

under the assumption that no information is available on the supply status.  Thus 

Cs (y) = π j
j∈Γ
∑ G(


Tsj, y) ,       (22) 

where y is the constant order-up-to level.  Let Cs
* denote the minimum long-run average 

cost for the retailer without real-time tracking information.  That is, 

Cs
* =min

y
π j

j∈Γ
∑ G(


Tsj, y) .       (23) 

Note that the optimal ordering policy and the myopic policy are identical in this case.   

It can be argued that the retailer always knows if there are no outstanding orders. In other 

words, he does not need real-time tracking information to identify that the complete 

supply status vector is either 

Ts1 = (0,0,...,0)  or any other 


Tsj ≠ (0,0,...,0),

1≤ j ≤ (N +1)2K+1 . Thus one may say that the minimum long-run average cost for the 

retailer without real-time tracking information can be defined as  

  

Cs
* = π1G(


Ts1, IP1

*)+min
y

π j
j∈Γ
j≠1

∑ G(

Tsj, y).                                                         (24) 

But to calculate Cs
*  the retailer needs to know π j  limiting distribution as well as the 

conditional lead-time distribution. If this information is not available, the long-run 

average cost should be calculated as in formula 23. The numerical investigation in the 

next section assumes that “no information” means that the retailer does not have real-time 
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tracking information nor the information about the complete supply status vectors’ 

limiting probabilities. 

3.5  Numerical Investigation of Performance 

This section presents the results of a systematic investigation to determine scenarios 

under which the retailer benefits from real-time tracking information, using a wide range 

of parameters and settings.  Note first that the relative advantage provided by real-time 

tracking information is fairly small when shipments progress in a rather deterministic 

manner.  This conclusion is based on the following property. 

Property 3.3:  If the retailer orders every time period with probability 1, the exogenous 

variable Xk has the distribution pk,k+1 = 1 for all 0 ≤ k ≤ K, and the exogenous variable Yk 

has the distribution , 1n nq − = 1, for all n > 0 and 0,0q = 1, then C*  =  Cs
* . 

Proof.  When , 1n nq −  = 1, the manufacturer ships one order every time period.  Also with 

pk,k+1 = 1 for all 0 ≤ k ≤ K, shipments progress from the manufacturer to the retailer in a 

completely deterministic manner.  With such a progression of orders and shipments, it 

can be readily observed that, in steady state, there are no orders at the manufacturer’s site 

besides the one that is received at the beginning of the time period and that every 

transportation stage is occupied by a shipment.  Thus, the limiting distribution of Ts has 

only one state, )1,...,1;0;1(=asT


 for which πa = 1. 

From equation (21) 

C*= π̂ j
j∈Γ
∑ G(


Ts j , IPj

*) = π aG(

Tsa , IPa

*) =G(

Tsa , IPa

*) . 

Similarly, from equation (23) 

Cs
* =min

y
π̂ j

j∈Γ
∑ G(


Ts j , y) =miny G(


Tsa , y).  
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Since IPa
* =min

y
G(

Tsa , y) , the result follows.                                                                      n   

Property 3.3 implies that there is perfect information available and in such a situation no 

further cost savings are possible. 

3.5.1  Parameter Settings 

For orders at the manufacturer’s site, two shipping scenarios are considered:   

• An expedited shipment scenario: Under this scenario, there is a high probability 

that all unshipped orders will leave the manufacturer’s site in a single shipment. 

There is only a small probability that a shipment will not take a place. If the number 

of unshipped orders reaches the maximum, at least one order is shipped with a non-

zero probability. For this scenario, the values of qi , j  are set as follows: qn,0 = 0.9 and 

qn,n = 0.1, for 0<n≤N and qN+1,0 = 0.9 and qN+1,N = 0.1 . 

• A batch shipment scenario: Under this scenario, most of the shipments contain 

two orders. If there are n unshipped orders at the manufacturer’s site, there is a high 

probability that two of them are shipped at a time, leaving behind n-2 unshipped 

orders.  There is a non-zero but small probability that a shipment contains only one 

order.  For this scenario, the values of qi , j  are set as follows: 1,0q = 0.1, 1,1q = 0.9, and 

, 2n nq − = 0.9, and , 1n nq − = 0.1 for n > 1.   

For both shipment scenarios, 0,0q = 1. 

Three delivery modes are considered for shipments from the manufacturer’s site: 

premium, priority, and economy.  Under these modes of delivery, the shipper attempts to 

dispatch orders leaving the manufacturer’s site directly to the retailer’s site with a high, 

medium, or low probability, respectively.  If none of the transportation stages are 

occupied, there is no congestion in the transportation channel, and a shipment dispatched 

directly to the retailer’s site gets delivered in the next time period.  However, if there is 
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congestion in the transportation channel, this shipment merges with the shipment at the 

first occupied stage downstream since orders are not allowed to cross over.  Orders that 

are not dispatched directly to the retailer’s site proceed to the first transportation stage. 

The parameters for the 3 scenarios are set as follows: 

• Premium delivery mode: p0,K+1 = 0.9  and p0,1 = 0.1. 

• Priority delivery mode: p0,K+1 = 0.7  and p0,1 = 0.3. 

• Economy delivery mode:  p0,K+1 = 0.3  and p0,1 = 0.7. 

The congestion at transportation stages is modeled using two settings: low and high.   

• For the low-congestion transportation setting, a shipment in location 0 < k < K 

either stays in the same location during the next time period with probability pk,k = 

0.1, moves to the next stage with probability pk,k+1 = 0.8, or moves two stages 

downstream with probability pk,k+2 = 0.1.  As a shipment at the stage K cannot 

move two stages downstream, the probabilities are as follows: pK,K = 0.1 and 

pK,K+1 = 0.9.  

• For the high-congestion transportation setting, pk,k = 0.5, pk,k+1 = 0.4 and pk,k+2 = 

0.1 for 1 ≤ k < K.  And for the shipments at stage K the probabilities are as 

follows: pK,K = 0.5 and pK,K+1 = 0.5. 

It is possible to set non-zero values for pi,j for j>i+1. However, in practice it is less likely 

for a shipment to move across multiple stages during a single time period unless there is 

some expediting taking place. 

For the low-congestion transportation setting, the expected time a shipment stays at stage 

k is 1.11, while for the high-congestion transportation setting a shipment at location k < K 

stays in that location for an average of two time periods.   

In addition, a scenario with uniformly distributed probabilities for both unshipped orders 

and for orders at the transportation stages is studied.  For this scenario, ,n yq = 1/(n+1) for 
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any y = 0, 1, …, n, and pk,x = 1/(K−k+2) for x = k,…,K+1 and k > 0, with  p0,x = 1/(K+1) 

for x = 1, …, K+1. 

Using these parameter settings for the manufacturer’s shipping process and the 

transportation process, a series of experiments was carried out for values of K, ranging 

from 1 to 8.  The effect of shortage cost was investigated by varying the shortage cost 

while keeping the holding cost fixed.  Demand was generated from a normal distribution 

with different values of µd and σd.  The effect of premium delivery and the effect of 

varying jρ , the retailer’s ordering probabilities, were also studied.  For each case, the 

difference in cost between C* and Cs
*, referred to as the cost savings, is also computed. 

3.5.2  Case Where the Retailer Orders Every Time Period   

The following set of examples assumes that the retailer orders every time period. That is, 

ρi =1, for any i =1,...,(N +1)2K.
 

3.5.2.1 The Long-Run Average Cost  

To investigate the effect of each above-mentioned parameter on the long-run average 

costs, a full factorial design was carried out. Some results of the experiment were 

intuitive and uniform, but some of them were not as anticipated. Starting from the 

intuitive results, the long-run average costs (with real-time tracking information as well 

as with no information) increase whenever 

• the number of transportation stages (K) increases,  

• the shortage cost increases, 

• the demand variation increases, or 

• the transportation setting is at high-congestion. 

All these results are easy to explain. It is harder to manage on-hand inventory with high 

variation in demand. With high shortage costs the retailer tries to order more every time 
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period. The high-congestion and higher values of K tend to increase the lead times. All 

this complicates inventory management and contributes to higher long-run average costs. 

Some results were less intuitive. For example, an increase in N, the maximum number of 

pending shipments at the manufacturer’s site, does not affect much the long-run average 

cost values. The values are very close for different values of N with the expedited 

shipment scenario as well as with the batch shipments scenario. This result can be 

explained by observing that the model considers costs only from the retailer's point of 

view. Hence, the maximum number of unshipped orders at the manufacturer's site has 

relatively little influence on the retailer's cost.  

3.5.2.1.1 Expedited Shipment vs. Batch Shipment Scenario 

While the expedited shipment scenario does not always give the lower long-run average 

costs (with full real-time tracking information and with no information) compared to the 

batch shipment scenario, analyzing which shipment scenario provides the lower long-run 

average cost revealed an interesting trend. For some values of K there is a 

forward/backward switch. The shipment scenario that provides the lower long-run 

average cost switches from the expedited to the batch as the shortage cost increases 

(forward switch) or from the batch to the expedited (backward switch). The results vary 

mostly according to the delivery modes.  

• With the economy delivery mode the expedited shipment scenario always gives 

the lower long-run average costs compared to the batch shipment scenario.  

• With the priority delivery mode the expedited shipment scenario gives the lower 

long-run average costs when the transportation congestion is low and, in most 

cases, when the transportation congestion is high. For the high-congestion 

transportation setting there are some instances with low values of K (K = 1, 2) 

with forward/backward switch. A forward switch is observed with K = 1, and a 

backward switch is observed with K = 2.  
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• With the premium delivery mode the expedited shipment scenario gives the lower 

long-run average costs for small values of K. As K increases, forward switches are 

observed. For even greater values of K the lower long-run average costs are 

always achieved with the batch shipment scenario. And for the highest values of 

K, backward switches are observed. The corresponding values of K are higher 

with the high-congestion transportation setting. 

Table 3.2 shows some of the results for the priority and premium delivery modes. It 

shows which shipment scenario gives the lower long-run average cost. The letter “E” 

stands for the expedited shipment scenario, and the letter “B” stands for the batch 

shipment scenario. The forward/backward switches can be observed from the table. For 

example, with premium delivery mode and high-congestion transportation setting the 

forward switches can be observed for K=1 and 2. For K=3, 4 and 5 the batch shipment 

scenario gives the lower long-run average costs. Backward switches can be observed for 

K=6, 7 and 8. 

In trying to explain the results, it should be noted that the batch shipment affects the 

congestion. In this scenario a new shipment finds the system “less congested” compared 

to the expedited shipment scenario as on average there are two time periods between two 

consecutive shipments and shipments already on their way have two time periods to 

move forward and clear upstream stages. Thus the transportation part has less impact on 

the whole system, making it a bit more predictable. Also it is more likely that the new 

shipment does not find any congestion in the transportation channel and gets delivered 

directly to the retailer’s site. It can be noted, though, that when the value of K is small 

and congestion is low or the value of K is high and congestion is high the batch shipment 

scenario has less influence on the system. 
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Table 3.2. Shipment scenarios providing the minimum long-run average cost with real-

time tracking information (E=expedited shipment scenario; B=batch shipment scenario). 
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K
=3

 

K
=4

 

K
=5

 

K
=6

 

K
=7

 

K
=8

 

5 10 Low Priority E E E E E E E E 
30 10 Low Priority E E E E E E E E 
5 10 Low Premium E E E E E E B B 

30 10 Low Premium E B B B B B E E 
5 10 High Priority E B B E E E E E 

30 10 High Priority B E E E E E E E 
5 10 High Premium E E B B B B B B 

30 10 High Premium B B B B B E E E 
5 30 Low Priority E E E E E E E E 

30 30 Low Priority E E E E E E E E 
5 30 Low Premium E E E E E B B B 

30 30 Low Premium E E B B B B B E 
5 30 High Priority E B E E E E E E 

30 30 High Priority B E E E E E E E 
5 30 High Premium E E B B B B B B 

30 30 High Premium B B B B B E E E 
 

 

When the batch shipment scenario is combined with high delivery modes, there is a high 

probability that a new shipment will proceed directly to the retailer’s site. This translates 

into lower long-run average costs compared to the expedited shipment scenario and the 

lower delivery modes. This phenomenon combined with the impact of the shortage cost 

explains the results.  

In general, it appears that the expedited shipment scenario is more beneficial for the 

retailer than the batch shipment scenario, but there are situations (the premium delivery 
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mode with only some values of K) when the batch shipment scenario can guarantee lower 

long-run average cost for the retailer. 

3.5.2.1.2 Economy, Priority and Premium Delivery Modes 

Since freight costs are not included in the long-run average cost of inventory, differences 

in delivery costs are entirely irrelevant to this analysis. For this reason, intuition would 

say that long-run average costs with the premium delivery mode are always lower than 

with the economy and the priority delivery modes, but the results show that this is true 

only for small values of K (K = 1, 2). As the number of transportation stages increases, 

the transportation channel has more impact on the system and managing it becomes more 

complicated. As K increases, the delivery mode that gives the lowest long-run average 

cost is the economy delivery mode. The first transition happens for the high shortage cost 

(r=30) with the low-congestion transportation setting and the expedited shipment 

scenario with demand variation σd = 10. As K increases, the economy delivery mode 

gives the lowest long-run average costs with even smaller values of the shortage cost and 

high demand variation. With the batch shipment scenario the transition happens with 

higher values of K, and the batch shipment with high-congestion and the low shortage 

cost is the last one to change. Figure 3.5 and Figure 3.6 show the long-run average costs 

with real-time tracking information for different shortage costs and the three delivery 

scenarios. Figure 3.5 shows the results for expedited shipment scenario with low-

congestion transportation setting and σd=30. Figure 3.6 shows the results for batch 

shipment scenario with low-congestion transportation setting and σd=10.  

From both figures it can be seen that the premium delivery mode gives the lowest long-

run average cost for smaller values of K and the shortage cost. While premium delivery is 

most beneficial with small values of K and lower values of shortage cost, with higher 

values of K and higher values of shortage cost, economy delivery mode yields the lowest 

long-run average cost. As K increases, order lead-times increase and managing inventory 

becomes more difficult. This is especially true in the case of high shortage cost where 

further variation in the system is particularly disadvantageous for the retailer. The 
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premium delivery mode has more variation in the system than the economy delivery 

mode and therefore the shipment movement in the transportation channel is less 

predictable. It is intuitive for the retailer to protect against the high shortage cost by 

ordering more, thus driving up the average cost. 

 

 

a)  K=4 

 

    b)  K=8 

Figure 3.5. Long-run average costs with real-time tracking information with economy, 

priority and premium delivery modes; expedited shipment scenario with low-congestion 

transportation setting; σd=30. 
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a) K=4 

 

b) K=8 

Figure 3.6. Long-run average costs with real-time tracking information with economy, 

priority and premium delivery modes; batch shipment scenario with low-congestion 

transportation setting; σd=10. 
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Table 3.3 presents more detailed results. It shows which delivery mode provides the 

lowest long-run average cost. The letter “P” stands for the premium delivery mode, and 

the letter “E” stands for the economy delivery mode. It can be seen that for K=1 the 

Premium delivery mode gives the minimum long-run average cost for all settings and for 

K=9 the economy delivery mode gives the minimum long-run average cost for all 

settings. In can be observed that the first factor that contributes to the switch from the 

premium to the economy delivery mode is the high shortage cost. The second factor is the 

low-congestion and the last one is the expedited shipment scenario.  

 

Table 3.3. Minimum long-run average cost with real-time tracking information by 

delivery modes (P=premium, E=economy). 
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5 10 Low Expedited P P P P P E E E E 
30 10 Low Expedited P E E E E E E E E 
5 10 High Expedited P P P P P P E E E 

30 10 High Expedited P P P E E E E E E 
5 30 Low Expedited P P P P P E E E E 

30 30 Low Expedited P P E E E E E E E 
5 30 High Expedited P P P P P P E E E 

30 30 High Expedited P P P E E E E E E 
5 10 Low Batch P P P P P P P E E 

30 10 Low Batch P P P E E E E E E 
5 10 High Batch P P P P P P P P E 

30 10 High Batch P P P P E E E E E 
5 30 Low Batch P P P P P P P P E 

30 30 Low Batch P P P E E E E E E 
5 30 High Batch P P P P P P P P E 

30 30 High Batch P P P P E E E E E 
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As noted above, batch shipment affects congestion and makes the premium delivery 

mode more efficient. This combination is especially beneficial with small values of K. 

When there are many transportation stages, the premium delivery mode loses its benefit 

as there is a higher chance that a new shipment will be blocked somewhere in the 

transportation channel. The results indicate that with higher values of K the economy 

delivery mode guarantees more steady passage of the shipments through the 

transportation channel and results in lower long-run average costs.  

To summarize, it can be said that the premium delivery mode is most beneficial with the 

batch scenario. It is also beneficial with the high-congestion transportation setting and 

low shortage cost and small values of K. But when the transportation channel has many 

stages the economy delivery has more advantage. 

3.5.2.1.3 Additional Investigation of the Effect of the Delivery Mode 

To further investigate the effect of different delivery modes the following experiment was 

run. The congestion scenario and shipping scenario are fixed, and the delivery mode is 

varied by setting p0,K+1=0.1*i  (and p0,1=1 - p0,K+1) for i=0,1,2,…,9. The results show that 

the long-run average cost functions (with full real-time tracking information and with no 

information) are convex for smaller values of K and they are attaining their minimums at 

a border point. As K increases, the cost functions stay convex with r = 5 but become 

increasing functions of p0,K+1 for higher values of the shortage cost. The minimums are 

attained at p0,K+1=0.1. Figure 3.7 shows the long-run average costs with real-time tracking 

information for different delivery modes with expedited shipment scenario and low-

congestion transportation setting. It can be said that, when transportation congestion is 

present and downstream shipments block new shipments, the long-run average costs are 

smaller when there is more steady movement from the manufacturer’s site. Only for 

smaller values of K do high delivery modes guarantee lower long-run average costs. With 

high values of K any parameter setting that steadies the movement of shipments through 

the system appears to result in lower cost. It would not be beneficial to adopt high 
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(relatively more premium) delivery modes with high values of K, especially if the retailer 

incurs fixed costs with the high delivery mode.  

 

 

a) K=2 

 

b) K=8 

Figure 3.7. Long-run average costs with real-time tracking information for different 

delivery modes; expedited shipment scenario with low-congestion transportation setting. 
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3.5.2.2 Cost Savings  

This section compares the long-run average cost with full real-time tracking information 

to the long-run average cost without any information. Figure 3.8, Figure 3.9, Figure 3.10 

and Figure 3.11 show the percentage difference between these two costs (cost savings) 

for K = 8 and N = 2 for a fixed holding cost h = 10 and varying shortage cost r.  In these 

figures, the demand follows a normal distribution with µd = 100. Figure 3.8 and Figure 

3.9 show cost savings for the expedited shipment scenario, and Figure 3.10 and Figure 

3.11 show cost savings for the batch shipment scenario.  Table 3.4 and Table 3.5 present 

some of these results in a tabular form. 

The results for both shipment scenarios follow a similar pattern. It can be seen from these 

figures that the uniform delivery mode does not have significant cost savings. Moreover, 

even the economy delivery mode does not have any significant cost savings for shortage 

costs more than 5. 

The results show that the priority delivery mode gives the best cost savings for smaller 

values of the shortage cost.  When the shortage cost is higher than the holding cost, the 

best cost savings are obtained with the premium delivery mode. It can be observed from 

Figure 3.8, Figure 3.9, Figure 3.10 and Figure 3.11 that for all delivery modes except 

premium the cost savings decrease as the shortage cost increases. With the premium 

delivery mode the cost savings increase for smaller values of the shortage cost (r = 1, 5, 

10) and start decreasing after the shortage cost reaches 15.  

It can be seen from Figure 3.8 that the cost savings can be as high as 75% (the low-

congestion transportation setting under the priority delivery mode, with σd = 10) for r=1. 

This result is more of an analytical value as in practice it is not usual to have such a low 

shortage cost. Cost savings are substantial for higher, more realistic values of r. The 

premium delivery mode with low-congestion gives cost savings of 31% for both shortage 

costs r = 5 and r = 10 (σd = 10). The priority delivery mode with low-congestion gives 

cost savings of 36% for shortage cost r = 5 (σd = 10).  
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It can be observed from Figure 3.10 and Figure 3.11 and from Table 3.5 that the batch 

shipment scenario gives substantial savings too. For example, the low-congestion 

transportation setting with the priority delivery mode gives 38% for r = 5 (σd = 10), and 

the high-congestion transportation setting with the premium delivery mode gives 26% for 

r = 10 (σd = 10).  

   

a) low-congestion                              
 

  

b) high-congestion 

Figure 3.8. Cost savings with h = 10, K = 8, N=2; µd = 100 and σd = 10; expedited 

shipment scenario. 
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a) low-congestion                                

 

   

b) high-congestion 

Figure 3.9. Cost savings with h = 10, K = 8, N=2; µd = 100 and σd = 30; expedited 

shipment scenario. 
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a) low-congestion  

 

  

b) high-congestion 

Figure 3.10. Cost savings with h = 10, K = 8, N=2; µd = 100 and σd = 10; batch shipment 

scenario. 
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a) low-congestion  

 

  

b) high-congestion 

Figure 3.11. Cost savings with h = 10, K = 8, N=2; µd = 100 and σd = 30; batch shipment 

scenario. 
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Table 3.4. Cost savings with normal distribution for demand with h = 10, K = 8 and 

expedited shipment scenario with N = 2. 
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C
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- Uniform 5 966.2 972.0 0.6% 1011.4 1017.1 0.6% 

- Uniform 10 1521.3 1524.8 0.2% 1596.9 1603.7 0.4% 

- Uniform 15 1940.1 1953.5 0.7% 2021.3 2028.4 0.4% 

Low Economy 5 814.9 846.6 3.9% 929.8 963.5 3.6% 

Low Economy 10 1198.6 1227.1 2.4% 1380.1 1407.3 2.0% 

Low Economy 15 1459.5 1478.0 1.3% 1684.7 1708.7 1.4% 

Low Priority 5 1193.1 1632.9 36.9% 1257.1 1673.9 33.2% 

Low Priority 10 1839.8 2211.4 20.2% 1939.3 2299.1 18.6% 

Low Priority 15 2248.2 2552.0 13.5% 2377.8 2686.2 13.0% 

Low Premium 5 1101.0 1446.4 31.4% 1159.9 1482.3 27.8% 

Low Premium 10 2050.7 2693.9 31.4% 2086.3 2704.9 29.7% 

Low Premium 15 2806.3 3496.5 24.6% 2848.3 3522.2 23.7% 

High Economy 5 2061.1 2083.7 1.1% 2134.1 2156.5 1.0% 

High Economy 10 3161.6 3185.8 0.8% 3271.4 3295.4 0.7% 

High Economy 15 3932.0 3956.6 0.6% 4066.5 4091.2 0.6% 

High Priority 5 2266.4 2608.1 15.1% 2322.0 2657.7 14.5% 

High Priority 10 3488.3 3823.4 9.6% 3574.6 3908.0 9.3% 

High Priority 15 4331.1 4657.0 7.5% 4439.4 4765.3 7.3% 

High Premium 5 2319.9 3188.1 37.4% 2356.2 3196.0 35.6% 

High Premium 10 4050.9 5059.0 24.9% 4087.3 5086.8 24.5% 

High Premium 15 5252.5 6176.3 17.6% 5301.9 6225.7 17.4% 
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Table 3.5. Cost savings with normal distribution for demand with h = 10, K = 8 and 

batch shipment scenario with N = 2. 
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- Uniform 5 1008.8 1023.3 1.4% 1053.0 1059.6 0.6% 

- Uniform 10 1579.1 1585.5 0.4% 1651.5 1659.0 0.5% 

- Uniform 15 1996.6 2003.0 0.3% 2083.5 2091.3 0.4% 

Low Economy 5 1011.2 1067.2 5.5% 1105.9 1160.6 4.9% 

Low Economy 10 1449.4 1480.4 2.1% 1609.4 1646.2 2.3% 

Low Economy 15 1736.3 1765.3 1.7% 1938.2 1968.4 1.6% 

Low Priority 5 1426.2 1980.5 38.9% 1475.9 1999.0 35.4% 

Low Priority 10 2314.3 2793.8 20.7% 2379.8 2847.9 19.7% 

Low Priority 15 2862.9 3245.9 13.4% 2954.2 3334.3 12.9% 

Low Premium 5 1063.4 1220.6 14.8% 1095.5 1245.4 13.7% 

Low Premium 10 1849.5 2149.7 16.2% 1925.9 2221.6 15.4% 

Low Premium 15 2552.9 3037.7 19.0% 2634.8 3081.9 17.0% 

High Economy 5 2135.2 2183.1 2.2% 2206.4 2253.0 2.1% 

High Economy 10 3258.2 3302.8 1.4% 3365.6 3410.8 1.3% 

High Economy 15 4039.2 4082.5 1.1% 4171.8 4215.9 1.1% 

High Priority 5 2501.4 3077.0 23.0% 2544.9 3111.7 22.3% 

High Priority 10 3897.2 4422.0 13.5% 3967.7 4489.9 13.2% 

High Priority 15 4831.7 5314.4 10.0% 4923.9 5408.3 9.8% 

High Premium 5 2109.4 2548.4 20.8% 2142.7 2589.0 20.8% 

High Premium 10 3762.5 4764.3 26.6% 3815.5 4771.9 25.1% 

High Premium 15 5206.6 6245.9 20.0% 5236.0 6269.6 19.7% 
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Comparison of the two transportation settings shows that the high-congestion 

transportation setting gives lower cost savings than the low-congestion transportation 

setting for 

• the economy delivery mode, 

• the priority delivery mode, 

• the premium delivery mode with the expedited shipment scenario for K>5 and 

r≥10. 

The low-congestion transportation setting gives lower cost savings than the high-

congestion transportation setting for 

• the premium delivery mode with  K≤ 5, 

• the premium delivery mode with  the batch shipment scenario, 

• the premium delivery mode with the expedited shipment scenario for K>5 and 

r≤5. 

It is intuitive that the high-congestion transportation setting gives the lower cost savings, 

as it is harder to manage high congestion. As for the premium delivery mode, when it is 

combined with the batch shipment scenario, congestion has less impact on the system and 

the results are reversed. Obtaining real-time tacking information has greater value for the 

low-congestion transportation setting for the economy and priority deliveries. With the 

premium delivery mode, real-time tacking information gives more benefits for small 

values of K and for the batch shipment scenario.    

The next step is to compare cost savings with the expedited and batch shipment 

scenarios. The results show that with the low-congestion transportation setting the cost 

savings are always higher with the expedited shipment scenario than with the batch 

shipment scenario. Since the batch shipment scenario clears up transportation congestion, 

the probability that a new shipment will get delivered the next time period is high, 

especially with the low-congestion transportation setting. Thus the long-run average cost 

with full real-time tracking information is very close to the "no-information" cost. 
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With the high-congestion transportation setting, cost savings are higher with the batch 

shipment scenario than with the expedited scenario for the economy and priority delivery 

modes. The same result holds for the premium delivery mode but only with certain values 

of K. In case of the high-congestion transportation setting, probabilities of immediate 

delivery with batch shipment scenario are lower. Thus managing the system is getting 

harder and real-time tracking information gains more value. The batch shipment and the 

premium delivery combination can still overcome high congestion for small values of K, 

making cost savings with the batch shipment scenario less than with the expedited 

shipment scenario. 

In general, the cost savings obtained with real-time tracking information are more 

pronounced with σd = 10 than with σd = 30. This is intuitive as it is more difficult to deal 

with high variation.  

As discussed in section 3.5.2.1, increasing N, the maximum allowable number of orders 

at the manufacturer’s site, does not really change the long-run average cost values. As a 

result the cost savings stay the same too.   

As K increases, the cost savings are almost identical for the economy delivery mode. For 

the priority delivery mode with both low- and high-congestion transportation settings, the 

difference in cost savings is observed only for the low shortage cost r = 1 or 5.  The cost 

savings with premium delivery mode increase as K increases with shortage cost value 

less than 20 (for the expedited shipment scenario) or 35 (for the batch shipment scenario), 

and they are almost identical for the higher values of r. The initial difference in cost 

savings is more pronounced with the low-congestion transportation setting. The results 

follow the same pattern regardless of the demand variation size. Figure 3.12 shows the 

cost savings for the expedited shipment scenario, and Figure 3.13 shows the cost savings 

for the batch shipment scenario for different values of K with N = 2. In Figure 3.12 

σd=10, and in Figure 3.13 σd=30. In both figures the low-congestion transportation setting 

and the premium delivery mode were used. 
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Figure 3.12. Cost savings with h=10, µd=100 and σd=10; expedited shipment scenario 

with low-congestion transportation setting and premium delivery mode with N=2. 

 

 

Figure 3.13. Cost savings with h = 10, µd = 100 and σd = 30; batch shipment scenario 

with low-congestion transportation setting and premium delivery mode with N=2. 

 
 

With the premium delivery mode, real-time tracking information has a greater value for 

small values of the shortage cost. As K increases, the long-run average costs with and 

without information are getting farther from each other; thus, the value of real-time 

tracking information increases. 
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3.5.2.2.1 Additional Investigation of the Effect of the Delivery Mode  

The priority delivery mode gives the best cost savings for smaller values of the shortage 

cost while the premium delivery mode gives the best cost savings for higher shortage 

costs. To further investigate the effect of different delivery modes the results of the 

experiment from section 3.5.2.1.3 were used.  Both long-run average cost with real-time 

tracking information and the long-run average cost with no information are convex for 

smaller values of K and for high values of K with the small shortage cost r = 5. For high 

values of K with high shortage cost, the long-run average costs become increasing 

functions of  p0,K+1=0.1. The results show that the two long-run average costs are very 

close to each other for small values of p0,K+1 and the difference becomes more 

pronounced for the higher values of  p0,K+1. Figure 3.14 shows the long-run average costs 

for the low-congestion transportation setting and expedited shipment scenario with N = 2 

and K=6. It can be seen from Figure 3.14 that the difference between the long-run 

average cost with real-time tracking information and the long-run average cost with no 

information is more pronounced for the range of p0,K+1 ∈ [0.5;0.9] .  

The results show that the maximum difference between the long-run average cost with 

real-time tracking information and the long-run average cost with no information are 

attained at p0,K+1 = 0.9 for high values of K and the shortage cost. For smaller values of K 

and the smaller values of the shortage cost, the maximum difference is attained at p0,K+1 < 

0.9. Figure 3.15 shows the cost savings for the expedited shipment scenario and the low-

congestion scenario. For K = 2 and r = 5 the maximum cost savings are attained at p0,K+1 

= 0.6 while for the higher values of r the maximum cost savings are attained at p0,K+1 = 

0.8. For K = 8 and r = 5 the maximum cost savings are attained at p0,K+1 = 0.8 while for 

the higher values of r the maximum cost savings are attained at p0,K+1 = 0.9. With the high 

congestion transportation setting the maximum cost savings are attained at the higher 

values of p0,K+1. The results are similar for the batch shipment scenario with the 

difference that the maximums are attained at one step lower p0,K+1.  
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a) r = 5 

 

b) r = 30 

Figure 3.14. Expected costs with real-time tracking information (C*) and with no 

information (Cs
*) with h = 10, µd = 100 and σd = 10; low-congestion transportation 

setting; expedited shipment scenario with N = 2 and K=6. 
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a) K=2                                                                 

 

b) K=8 

Figure 3.15. Cost savings for different delivery modes; expedited shipment scenario with 

low-congestion transportation setting. 

 

To sum up, congestion has less impact when shipments don’t occur every time period.  

There are settings when obtaining real-time tracking information can bring substantial 

benefits to the retailer. 
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3.5.3 The Lowest Long-Run Average Cost as a Function of the 
Retailer’s Ordering Probabilities   

The model allows the retailer to vary his ordering probabilities based on the total state 

vectors.  This section investigates the expected system cost as a function of these 

ordering probabilities.  The investigation shows that it makes sense for the retailer to 

order every time period if he does not have full information on the supply status.   

3.5.3.1 The Retailer’s Ordering Process with Partial or No Information  

The following cases regarding the availability of information were considered: 

i. The retailer knows how many orders are at the manufacturer’s site and how many 

stages are occupied.  But he has no information about how orders are being 

handled at the manufacturer’s site and no information on how orders shipped from 

the manufacturer’s site move downstream.  In other words, he has no information 

about the behavior of the random variables X and Y. Lacking such information, it 

is assumed that the retailer proceeds on the assumption that the number of orders 

shipped during a given time period follows a uniform distribution, and that 

shipments are equally likely to move to any of the downstream stages.  In other 

words, the p and q matrices are the same as in the uniform scenario in section 

3.5.1.   

ii. The retailer has information on the number of orders awaiting shipment at the 

manufacturer’s site and on how shipped orders move downstream (information on 

the behavior of X).  However, he does not have any information on how orders are 

shipped from the manufacturer’s site (no information about the behavior of Y).  

He therefore proceeds on the assumption that the number of orders shipped during 

a given time period follows a uniform distribution. 

iii. The retailer has information on how orders at the manufacturer’s site are handled 

(the random variable Y), and he has knowledge on which stages are occupied.  
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However, he has no information about the shipment movement (no information 

on the behavior of X). Lacking information on the behavior of X, he assumes that 

shipments are equally likely to move to any of the downstream stages. 

The baseline expected cost is the long-run average cost that results when the retailer 

orders every time period.  Two ordering approaches were considered:  

• Order according to the number of unshipped orders: set the retailer’s ordering 

probabilities to 0 when there is a pre-specified number, i, of unshipped orders at 

the manufacturer’s site, for i = 0, 1, …, N.  This provides N + 1 different 

ordering scenarios.  This approach was used for cases i and ii. 

• Order according to the number of occupied stages: set the retailer’s ordering 

probabilities to 0 when there is a pre-specified number, j, of occupied stages, for 

j = 1, …, K.  This provides K different ordering scenarios.  This approach was 

used for cases i and iii. 

The goal is to find out what probabilities give the retailer the lowest long-run average 

cost.  Different settings for the number of transportation stages (K) and the maximum 

number of unshipped orders at the manufacturer’s place (N) were studied.  To model the 

manufacturer’s known shipping policies, the expedited and batch shipment scenarios 

were used (see section 3.5.1).  To model the known transportation policies, the premium, 

priority and economy delivery modes were used combined with the high- and low-

congestion transportation settings (see section 3.5.1). The retailer's ordering probabilities 

assume values 0 (order) or 1 (do not order). The parameters are 

ρ1 =1,  ρi = 0 or 1,  for i = 2,...,(N +1)2K.  Values other than 0 or 1 are hard to implement 

in practice and were not considered.  

For all cases, the results show that the lowest expected cost is achieved when the retailer 

orders every time period.  The results are in agreement with intuition.  When there is a 

lack of information, it is better for the retailer to protect himself by ordering every time 

period. Some of these results are shown in Table 3.6 for the case when demand is 

normally distributed with µd = 100, σd = 30, and K=6, N=3, h = 10, and r=5.   
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Case i in Table 3.6 shows the results when the retailer has no information on either the 

shipping policy or the shipment movement.  The results show that the retailer should 

order every time period regardless of the number of occupied stages or the number of 

unshipped orders. The lowest expected cost is C*=1090.2.  Note that the static policy 

gives the expected cost Cs
*=1390.2, which is higher than C*, further underscoring the 

observation that a little information is better than no information at all. 

Case ii in Table 3.6 shows results for the premium delivery and low-congestion 

transportation setting with no information from the manufacturer’s side.  It is observed 

that the expected cost gradually increases as the retailer orders less and less frequently.   

Case iii in Table 3.6 shows the results for the expedited shipment scenario with no 

information on the movement of shipments. Once again, the lowest expected cost is 

achieved when orders are placed every time period. 

 

Table 3.6. Ordering with partial or no information. 

Ordering policy 
Expected cost 

Case i Case ii Case iii 

Order every time period 1090.2 994.0 974.5 

Order only if at most 1 stage is empty 1102.2  974.6 

Order only if at most 2 stages are empty 1102.2  974.6 

Order only if at most 3 stages are empty 1102.2  974.7 

Order only if at most 4 stages are empty 1104.5  979.7 

Order only if at most 5 stages are empty 1150.3  1035.3 

Order only if all stages are empty 1446.6  1324.9 

Order only if # unshipped orders is ≤ 2 1153.1 1047.3  

Order only if # unshipped orders is ≤ 1 1221.1 1102.8  

Order only if there are no unshipped orders 1424.9 1288.0  
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To summarize, when there is a lack of information on the supply status, it is better for the 

retailer to order every time period. This result holds for all values of K and for the 

expedited shipment scenario as well as the batch shipment scenario. 

3.5.3.2 The Retailer’s Ordering Process with Full Information  

A series of experiments was run for different scenarios and different values of K and N 

for the case where the retailer has complete information on the behavior of the p and q 

matrices.  

The results show that the retailer should order every time period for the batch shipment 

scenario. For the expedited shipment scenario, the results follow the same pattern with 

the exception of the premium delivery mode with the high-congestion transportation 

setting. In this special case the results suggest that the retailer should order only when all 

the stages are empty if the shortage cost r=5. If the shortage cost is high (r=15), the 

retailer should order more often, specifically when there are less than K or K-1 occupied 

stages. This result is in agreement with intuition. When the shortage cost is low, the 

retailer can wait until the congestion clears out. As with the premium delivery mode 

p0,K+1=0.9, no congestion in the transportation channel guarantees that the new shipments 

will reach the retailer’s site basically in one time period. When the shortage cost is 

higher, the retailer tends to order more often to protect himself from the expected high 

shortage cost. The results for the high-congestion scenario and the premium delivery 

mode also suggest that the retailer should order only when there are no unshipped orders. 

Table 3.7 shows some results for the expedited shipment scenario with the premium 

delivery mode and the high-congestion transportation setting with K=6, N=3, holding cost 

h=10, shortage cost r=5 and 15 and the normally distributed demand with µd = 100, σd = 

30.  
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Table 3.7. Ordering for the premium delivery mode with the high-congestion 

transportation setting. 

Ordering policy 
Expected Cost 

r=5 r=15 

Order every time period 1767.6 4232.3 

Order only if at most 1 stage is empty 1767.2 4231.7 

Order only if at most 2 stages are empty 1767.2 4231.7 

Order only if at most 3 stages are empty 1767.2 4231.8 

Order only if at most 4 stages are empty 1767.2 4235.9 

Order only if at most 5 stages are empty 1767.5 4288.4 

Order only if all stages are empty 1753.3 4509.7 

Order only if # unshipped orders is ≤ 2 1764.1 4226.5 

Order only if # unshipped orders is ≤ 1 1737.1 4181.8 

Order only if there are no unshipped orders 1553.1 3795.4 
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CHAPTER 4   

MANAGING THE SUPPLY CHAIN WITH PARTIAL 

INFORMATION 

In today’s globalized business environment, many companies ship their products, 

subassemblies, parts and raw materials over great distances. The destination point may be 

in the same country, in a neighboring country, or overseas. Transportation of these 

products and parts requires sophisticated methods and varying means of travel (by rail, 

sea, air, and road, for example) by a single carrier or by a multimodal transport operators 

(MTO). Multimodal transport is performed under a single contract, using at least two 

different means of transport. The carrier is liable for the entire carriage, even though the 

carrier does not necessarily possess all the means of transport. In practice, sub-carriers 

often perform at least a portion of the carriage.  

When transportation involves many sub-carriers, especially when the transportation 

channel goes through several countries, the process for tracking a shipment can become 

complex and full real-time visibility of shipments may not be available at all times during 

the transportation process; however, real-time information about which sub-carrier is 

handling the shipment is generally available. A similar situation may occur in a 

production line. Information on which machine is working on a part may not be tracked, 

but information on which department is working on this part usually is.   

For some situations tracking shipments may be challenging or not possible. Some 

carriers use passive RFID (radio frequency identification devices), i.e. devices that only 

emit signal queried by an outside source. In order to track shipments that are equipped 

with passive RFIDs, readers (either hand-held or fixed) need to be installed to collect 

information. Installation of these readers adds additional costs and may not be always 

possible. In addition, to work properly, specific frequencies will need to be designated 

for RFID use only. Government assistance and cooperation is needed in order to prevent 

interference with other existing devices and applications.  
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In some situations collecting information is very challenging. Prater et al. (2001) describe 

the following case study with VAI, a large international producer of steel products. 

Seeking an expansion of its production capabilities, VAI set up a joint venture with steel 

mills in the Ural Mountains of Russia. This operation is coordinated from VAI’s offices 

in Austria. The joint venture allows VAI to deal with increased demand in steel while 

keeping costs fairly low. However, VAI has to deal with the transportation difficulties. 

The steel is first transported by rail from the Ural in Russia to Odessa, Ukraine on the 

Black Sea, then by ship to Southeast Asia.  

VAI works with both Russian and Ukrainian freight forwarders. The main problem is the 

flow of information and reliability of transportation times. A three-week lead time is 

required for the first sequence of the main transport plan. The first sequence includes the 

following steps: 

• The mills order railway wagons through the Moscow railway mission. 

• Odessa is informed that VAI wants rail capacity for 10,000 tons of pallets. 

• Odessa informs Ukrainian railway ministry of rail needs. 

• Ukrainian railway tells Russian railway ministry of its needs. 

The next step is to get railway confirmation from the freight forwarders and set up the sea 

transportation. All this must be done using telegrams since email is non-existent and 

phone service is unreliable. To track the progress of shipments, VAI hires people to 

observe various points of the rail line. As each train passes by, the observer notes the 

apparent loads of the rail cars (in order to check for theft) and sends a telegram to VAI 

giving the train’s location. This is the “information system.” 

These situations where real-time tracking information is not available throughout all 

stages of transportation and processing create an interesting supply chain management 

problem. 

This chapter develops a methodology to evaluate the value of partial real-time order 

tracking information in a supply system through a stochastic model. The modeled supply 

system consists of a retailer, a manufacturer, and multiple stages of transportation.  The 

retailer aggregates demand for a single product from his end customers and places orders 
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to the manufacturer. The replenishment process between the manufacturer and the retailer 

is instantaneous but the transportation process may incur some amount of delay. 

Shipments pass through a series of transportation stages before the retailer receives them.  

Each transportation stage represents either a physical location for shipments or a step in 

the delivery process. Shipments are not allowed to cross over in time and real-time 

tracking information is available only for some of the transportation stages.  

The stochastic model computes the retailer’s long-run average cost when only partial 

real-time tracking information is available. The model also compares the partial 

information long-run average cost to the full information long-run average cost, i.e. the 

cost with real-time tracking information from all the transportation stages. The 

calculations demonstrate the relationship between full, partial and no information long-

run average costs and draw insights as to the optimum locations of tracking devices at 

different stages. 

4.1 The Supply System 

The supply system discussed in this chapter is similar to the supply system discussed in 

the previous chapter (when N=0 and ρi =1,  for i =1,...,(N +1)2K ) with the following 

exceptions: 

• The retailer orders every time period. During those time periods when the order 

quantity is zero, it is assumed that the retailer places a pseudo order. Pseudo orders 

are necessary for mathematical tractability. As noted in Liu et al. (2009) the effect of 

pseudo orders is very low on the system’s performance.  

• It is assumed that the manufacturer is able to fulfill all orders placed by the retailer 

completely and ship them in a single shipment.  

• Products shipped from the manufacturer’s site pass through K transportation stages 

before they reach the retailer’s site. Even when the shipment movement behavior 
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across all the transportation stages is known, the real-time tracking information about 

a shipment's presence/absence can be collected from less than K transportation stages.  

4.2  The Stochastic Model 

To track shipments, tracking devices called beacons are placed at M < K unique stages.  

Each tracking device monitors the progress of shipments from its location to the location 

of the next tracking device.  

For instance, consider a system with K = 5 stages and M = 2 tracking devices, and 

suppose these devices are located at stages 1 and 4.  In this example, the tracking device 

at stage 1 monitors stages 1, 2 and 3.  The tracking device at stage 4 monitors stages 4 

and 5, as illustrated in Figure 4.1. To account for situations when the first tracking device 

is located at a stage downstream from stage 1, information on the status of shipments at 

the stages upstream from it is monitored by a zero-beacon that is placed at the 

manufacturer’s location.    

 

 

 

Figure 4.1. Example of two beacons for K = 5. 

 

 

 

        1             2               3                4                5 

B B 

Stages monitored  
by beacon 1 
 

Stages monitored  
by beacon 2 
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The monitoring can be configured in two different ways according to the information that 

can be collected from the beacons.  

• Type I beacon: This beacon can detect the presence or absence of shipments at 

monitored stages. In other words, the beacon can provide data as to whether a 

shipment or shipments passed the beacon but did not reach the next beacon.  

• Type II beacon: This beacon can identify how many stages are occupied among 

monitored stages.  

Define a tracking device vector 

b(t) =[b0 (t),b1(t),b2 (t),...,bM (t)],  where the variable 

bi (t), i=0,...,M  is binary and indicates the presence or absence of shipments among the 

monitored stages for type I beacons and the number of occupied stages among stages 

monitored by tracking device i at time t for type II beacons.  Let il  denote the location of 

tracking device i, for i=1,...,M ,  and set l0 =0 and lM+1=K +1.  Thus, for i=0,…,M ,  

 

bi (t)=
1,  if there is an occupied stage among the stages li ,...,li+1 −1

0,  otherwise
,

"
#
$

%$
  for type I beacon

and

bi (t)=number of occupied stages among the stages li ,...,li+1 −1,   for type II beacon.

 

If a tracking device is placed at the first stage, the variable b0 (t)  can be omitted from a 

tracking device vector 

b(t)  as it does not carry any information in such a situation. 

For type I beacons there are 2M possible values for the tracking device vector if the first 

beacon is placed at the first stage, and there are 2M+1 possible values if the zero-beacon is 

used. For type II beacons, each bi (t),  for i =1,...,M variable can assume values from 0 to 

li+1 − li  and if l1 >1  the variable b0 (t)  can assume values from 0 to l1 −1.  Thus the 

number of all possible values for the tracking device vector is  
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 bn =
def

2M
2 if  l1 >1
1 f  l1 =1

!
"
#

$#
for Type I beacons

(li+1 − li +1)
1

M

∏
l1 if  l1 >1
1 f  l1 =1

!
"
#

$#
for Type II beacons.

!

"

#
#
#

$

#
#
#

 

Let 

bi , i=1,…,bn  denote a tracking device vector. Let b={


b(t), t=1,2,…} and let Θ4= 

{

b1,

b2 ,…,


bbn}  denote the state space of b. To illustrate the relationship between the 

tracking device vector and the supply status in the transportation process vector, suppose 

there are K = 4 stages and M = 2 tracking devices located at stages   l1=1  and   l2 =3.  The 

tracking device vector values and the values of the corresponding supply status vector in 

the transportation process values are shown below. 

Each tracking device vector, 

bi , i=0,…,bn,  thus accounts for (“covers”) a set of supply 

status vectors.  Let Bi ={ j}  denote the set of supply status vector indices covered by 

tracking device vector 

bi .  Given this, the following equation holds: 

i=1

bn

Bi ={1,2,…,2K}.  

Note that since tracking devices are placed at unique locations, we have 

Bi  Bj =∅  for any 1≤ i, j ≤ bn  

Table 4.1 and Table 4.2 illustrate the relationship between tracking device vectors and 

supply status vectors. In these examples K=4 and beacons are placed at stages 1 and 3. 
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Table 4.1. Type I beacons and the total supply status vectors. 

Tracking device vector (

b ) 

 

Supply status vectors in the transportation 

process ( s ) 

[0,0] (0,0,0,0) 

[0,1] (0,0,0,1) 

(0,0,1,0)  

(0,0,1,1) 

[1,0] (0,1,0,0)  

(1,0,0,0) 

(1,1,0,0) 

[1,1] (0,1,0,1)  

(0,1,1,0) 

(1,0,0,1)            

(1,0,1,0)  

(0,1,1,1)  

(1,0,1,1) 

(1,1,0,1) 

(1,1,1,0) 

(1,1,1,1) 
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Table 4.2. Type II beacons and the supply status vectors. 

Tracking device vector (

b ) 

(Type II beacons) 

Supply status vectors in the transportation 

process ( s ) 

[0,0] (0,0,0,0) 

[0,1] (0,0,0,1) 

(0,0,1,0)  

[0,2] (0,0,1,1) 

[1,0] (0,1,0,0)  

(1,0,0,0) 

[1,1] (0,1,0,1)  

(0,1,1,0) 

(1,0,0,1)            

(1,0,1,0)  

[1,2] (0,1,1,1)  

(1,0,1,1) 

[2,0] (1,1,0,0) 

[2,1] (1,1,0,1) 

(1,1,1,0)  

[2,2] (1,1,1,1) 
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Property 4.1: Process b is a time-homogenous Markov chain. 

Proof:  First, note that when the retailer places orders every time period, process s is a 

time-homogenous Markov chain (see Liu et al., 2009). The value of 

b(t)  is determined 

only by the value of s(t) , and the value of 

b(t −1)  is determined only by the value of 

s(t −1) . Pr{s(t) | s(t −1), s(t − 2),..., s(0)} = Pr{s(t) | s(t −1)}  as process s is Markovian. 

Thus, it can be concluded that  

Pr{

b(t) |


b(t −1),


b(t − 2),...,


b(0)} = Pr{


b(t) |


b(t −1)}                                   n 

Note that the limiting probability that the system is in state 

bi  is ωl

l∈Bi

∑ , where ωi is the 

limiting distribution for process s.  

All the characteristics of process s can be obtained using the same algorithm and methods 

as described in Chapter 3 by setting all the retailer’s ordering probabilities to 1 ( ρ j =1) 

and the maximum number of orders pending shipment at the manufacturer’s site to 0 

(N=0). 

4.3  The Long-Run Average Cost 

When the system is in state si , the one-period expected cost (the expected cost charged to 

the order placed in period t, given s(t) = si  and IP(t) = y ) is as follows: 

G(s j , y)= Pr[L(t) ≤ l ≤ L(t +1) | s(t) = s j ]g(l, y)
l≥1
∑ , 

where L(t) is the conditional lead-time for an order placed at time period t and g(l, y)  is 

defined as  
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g(l, y) =

def
E[ h max(0, y−D(t, l))− r min(0, y−D(t, l))], l ≥ 0.  

Then when the system is in state 

bi  it is appropriate to define the one-period expected 

cost (the expected cost charged to the order placed in period t, given 

b(t) =


bi  and IP(t) = y ) as follows:  

GB(

bi , y) =

ω j

ωl
l∈Bi

∑
G(s j , y)

#

$

%
%
%

&

'

(
(
(j∈Bi

∑   

where ωi-s are limiting probabilities for the process s. 

Let IPi
*  be the optimal order-up-to level that minimizes the one-period expected cost, 

given that the system is in state 

b(t) =


bi  when an order is placed. That is, 

           IPi
* =
def

argmin
y
GB(

bi , y).  

Thus the optimal (myopic) long-run average cost is 

CB
* = ωl

l∈Bi

∑
#

$
%
%

&

'
(
(GB(


bi , IPi

*)
i=1

bn

∑ . 

Property 4.2: C* ≤CB
* ≤Cs

* . 

Proof: 

1. Relationship between *C  and CB
*
 

C* = ω j
j=1

2K

∑ G(s j , IPj
*) = ω j

j=1

2K

∑ min
y
G(s j , y) = min

y
ω jG(

s j , y)
j=1

2K

∑  
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= min
y
ω jG(

s j , y)
j∈Bi

∑
i=1

bn

∑ ≤ min
y

ω jG(
s j , y)

j∈Bi

∑
i=1

bn

∑

= min
y

ωl
l∈Bi

∑
$

%
&
&

'

(
)
)

ω j

ωl
l∈Bi

∑
$

%
&
&

'

(
)
)

G(s j , y)
j∈Bi

∑
i=1

bn

∑

= min
y

ωl
l∈Bi

∑
$

%
&
&

'

(
)
)GB(


bi , y)

i=1

bn

∑ = ωl
l∈Bi

∑
$

%
&
&

'

(
)
)miny GB(


bi , y)

i=1

bn

∑

= ωl
l∈Bi

∑
$

%
&
&

'

(
)
)GB(


bi , IPi

*) =CB
*

i=1

bn

∑

 

2. Relationship between Cs
*  and CB

*  

Cs
* =min

y
ω j

j=1

2K

∑ G(s j , y) =miny ω jG(
s j , y)

j∈Bi

∑
i=1

bn

∑

≥ min
y

ω jG(
s j , y)

j∈Bi

∑
i=1

bn

∑ = min
y

ωl
l∈Bi

∑
$

%
&
&

'

(
)
)

ω j

ωl
l∈Bi

∑
$

%
&
&

'

(
)
)

G(s j , y)
j∈Bi

∑
i=1

bn

∑

= ωl
l∈Bi

∑
$

%
&
&

'

(
)
)miny GB(


bi , y)

i=1

bn

∑ = ωl
l∈Bi

∑
$

%
&
&

'

(
)
)GB(


bi , IPi

*) =CB
*

i=1

bn

∑

 

Thus we have C* ≤CB
* ≤Cs

* .                                                                                               n 

Type II beacons provide more information than type I beacons. In addition to the 

presence or absence of the shipments, type II beacons also supply information about the 

number of occupied stages. Because of the capability to provide this additional 

information, the expected long-run average cost with type II beacons is less than the 

corresponding cost with type I beacons.  

To illustrate the relationship between the two types of beacons, suppose a beacon is 

covering 3 stages. Let superscript I denote the variables for type I beacons and the 

superscript II denote the corresponding variables for type II beacons. If the beacon value 

bI(t) is 0 then for both types of beacons the stages are empty or, in other words, the 
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representation of the monitored 3 stages is (0,0,0). If the type I beacon value bI(t) is 1 

(there is at least 1 shipment among the 3 monitored stages), then the corresponding value 

of type II beacon bII(t) is 1, 2, or 3 (there is only 1 stage occupied, or there are 2 or 3 

stages occupied). Thus for each set of supply status vector indices covered by each type II 

tracking device vector, BIIj , there is a set of supply status vector indices covered by a 

type I tracking device vector, BIi for which BIIj∈ B
I
i . Each BIIj completely belongs to 

only one of BIi . Let Ωi be the set of all BIIj that are subset of BIi .  

Let C
BI
*  be the long-run average cost obtained using type I beacons and C

BII
*  be the 

corresponding long-run average cost obtained using type II beacons. An important 

assumption is that the beacons are placed at the same positions and only the type of 

information provided is different.  

Property 4.3: C
BII
* ≤C

BI
* .  

C
BII
* = ωl

l∈BIIi

∑
#

$

%
%

&

'

(
(
GB(

b IIi , IPi
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Combining property 4.2 and 4.3 gives 

C* ≤C
BII
* ≤C

BI
* ≤Cs

* . 
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4.4  Numerical Investigations 

A wide range of parameters and settings was tested to investigate the value of long-run 

average costs and cost savings with a different number of beacons as well as to determine 

the optimal number of beacons.  

4.4.1 Transition Matrices from Chapter 3 

The same congestion transportation settings and delivery modes as described in 

paragraph 3.5.1 were used. It is assumed that the retailer knows the one-step transition 

matrix p; in other words, he has theoretical knowledge about the movements of shipments 

through the transportation stages. But the real-time information can be collected from less 

than K stages if any.  

As anticipated, all the calculation results are in agreement with Property 4.2 and 4.3: 

C* ≤CB
* ≤Cs

*
 and C

BII
* ≤C

BI
* . The next step was to investigate how the number and the 

placement of beacons impact the long-run average cost. If there are K transportation 

stages but only a small number of beacons can be placed, what would be the better 

position to lower the long-run average cost as much as possible? Implementation of this 

decision can be as wide as just placing beacons to choosing different carriers.  

4.4.1.1  “Baseline” Expected Cost 

It is appropriate to assume that the retailer knows whether there are any outstanding 

orders. In other words, he knows whether the supply system is in state s1=(0,0,…,0) or in 

any other state even without collecting information from the transportation stages. 

Mathematically this corresponds to situation when there is only one zero-beacon placed 

at the manufacturer’s location and the tracking device vector is 

b(t) =[b0 (t)].  Let be 

the corresponding long-run average cost. 

CB0
*
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The first experiment investigates cost difference between the full real-time tracking 

information long-run average cost (C*) and the “baseline” cost ( ). The difference 

between the full real-time tracking information long-run average cost (C*) and the long-

run average cost with no information (Cs
* ) is also calculated.   

If the retailer does not have real-time information about occupied stages but has 

information about the shipment's movement and the transition probabilities, it is better to 

use the “baseline” cost function to determine order-up-to levels. Still this cost will be 

higher than the long-run average cost with real-time tracking information. Table 4.3 

shows the long-run average cost values and cost savings for K = 8 with the holding cost 

of 10, normally distributed demand with  µd = 100 and σd = 10.  

It can be seen that the cost savings are more pronounced with the shortage cost of 5. The 

low-congestion transportation setting always gives better cost savings (difference 

between C* and ) than the high-congestion transportation setting. Using the 

“baseline” cost gives the better approximation to the real-time information cost, but the 

difference between and C* still can be as high as 19.9% (low-congestion 

transportation setting with the priority delivery mode), thus emphasizing the importance 

of real-time tracking information. 

The difference between the long-run average costs with and without full information is 

not high for the economy delivery mode. The maximum difference is achieved for a low-

congestion transportation setting with K = 4, the shortage cost r = 5, and the standard 

deviation σd  = 30. 

  .  

And the difference can get as small as 0.4%. In these situations the “baseline” cost stays 

closer to the long-run average cost with no information.  
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Table 4.3. The long-run average cost values and cost savings for K = 8 with h = 10. 

 

Figure 4.2 shows long-run average costs , , and  for the priority delivery mode 

with h = 10, r = 5 for different values of K. Figure 4.2.a shows the results for the low-

congestion transportation setting and σd =30 and Figure 4.2.b shows the results for the 

high-congestion transportation setting and σd =10. Figure 4.3 shows the corresponding 

cost savings. It can be observed that as K increases the difference between and  

and the difference between  and  are getting closer to each other. In other words, 

as K increases  gets closer to . 

C* CB0
* Cs

*

C* Cs
*

C* CB0
*

CB0
* Cs

*

Congestion  

Setting 

Delivery 

Mode r 

µd = 100, σd = 10 

 

 

  

100% 

( -C*)/ 

C* 

100% 

(Cs
*- C*)/ 

C* 

Low Economy 5 741.9 764.3 764.7 3.0% 3.1% 

Low Economy 15 1326.5 1341.4 1341.6 1.1% 1.1% 

Low Priority 5 1107.4 1328.1 1509.3 19.9% 36.3% 

Low Priority 15 2065.7 2215.0 2340.4 7.2% 13.3% 

Low Premium 5 1075.6 1268.7 1473.1 17.9% 36.9% 

Low Premium 15 2775.7 2935.0 3479.1 5.7% 25.3% 

High Economy 5 1922.9 1940.1 1940.2 0.9% 0.9% 

High Economy 15 3698.4 3716.0 3716.1 0.5% 0.5% 

High Priority 5 2096.6 2280.0 2399.0 8.7% 14.4% 

High Priority 15 4031.0 4219.8 4319.7 4.7% 7.2% 

High Premium 5 2137.7 2362.5 3044.0 10.5% 42.4% 

High Premium 15 4894.0 5092.4 5776.1 4.1% 18.0% 

C* CB0
*

Cs
*

CB0
*



 
 

68 

 

a) low-congestion transportation setting; σd = 30 

 

 

b) high-congestion transportation setting; σd = 10 

Figure 4.2. Long-run average costs for and the priority delivery mode with h = 10, r = 5. 
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a) low-congestion transportation setting; σd = 30 

 

 

b) high-congestion transportation setting; σd = 10 

Figure 4.3. Cost savings for the priority delivery mode with h = 10, r = 5. 
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4.4.1.2 One Beacon 

The next experiment investigates the impact of only one beacon on the long-run average 

cost. The beacon monitors stages downstream from its location. It is assumed that the 

stages upstream from the only beacon are monitored by the zero-beacon. The tests were 

run for the normally distributed demand with mean µd = 100 and standard deviation σd = 

10 or 30. The holding cost is 10 and the shortage cost varies.  

In general the results depend mostly on the delivery scenario, as summarized in Table 

4.4. The value of the shortage cost and the variation in demand have little effect on the 

placement of the only beacon. With the economy deliver mode the beacon is always 

placed at the stage 3 regardless of the size of K (K = 4, 5, …, 11) and the congestion 

transportation setting.  The economy delivery mode does not give initial high cost savings 

and that can be the reason why the beacon placement does not depend on any other 

parameter. 

With the priority delivery mode the only beacon is placed at stage 4 for smaller values of 

K and at stage 5 for higher values of K. The size of K when the beacon moves from stage 

4 to the stage 5 depends on the shortage cost and the congestion transportation setting. 

High shortage cost and the high-congestion transportation setting tend to keep the beacon 

at stage 4 for higher values of K. 

With the premium delivery mode the beacon is placed further downstream. With the low-

congestion transportation setting placement is at the K - 1 stage (with lower shortage 

cost) or at stage K (with higher shortage cost). The results with the premium delivery 

mode and the high-congestion transportation setting are a little different. The beacon is 

placed at the last stage with K = 4, 5, 6, 7 and sometimes 8, but as K increases the beacon 

is kept at stage 7 or 8. The demand variation does not affect the results. The value of the 

shortage cost has a little effect for higher values of K. The beacon is mostly placed at 

stage 8 for lower shortage cost and at stage 7 for the higher value of shortage cost.   
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Table 4.4. The only beacon position for the shortage cost r = 15 and σd = 30. 

 Economy Delivery 

Mode 

Priority Delivery 

Mode 

Premium Delivery 

Mode 

 

K 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

6 3 3 4 4 6 6 

7 3 3 4 4 7 7 

8 3 3 4 4 8 7 

9 3 3 5 5 9 7 

10 3 3 5 6 10 7 

11 3 3 5 5 11 7 

 

The above results are the same for both types of beacons. Table 4.4 shows the beacon 

position for the shortage cost r = 15 and the standard deviation σd =30.  

4.4.1.3 Two or Three Beacons 

The next experiment investigates the impact of two or more beacons. As mentioned 

earlier, it is assumed that the stages upstream from the first beacon are monitored by the 

zero-beacon. The tests were run for the normally distributed demand with µd = 100 and σd 

= 10 or 30. The holding cost is 10, the shortage cost varies, and K = 6 and up.  

As for the one beacon case, with the economy delivery mode, congestion transportation 

settings and demand variation have little effect on the beacon placements with two 

beacons. Two beacons are mostly placed at stages 2 and 4 or at stages 2 and 3.  With 

three beacons the first two beacons are always placed at stages 2 and 3 and the third one 

is placed at stage 5 (with the lower shortage cost) or at stage 4 (with the higher shortage 

cost).  
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With the priority delivery mode beacons are placed a little further downstream than with 

the economy delivery mode. With the low-congestion transportation setting two beacons 

are placed at stages 3 and 6 (for lower values of K) or at stages 4 and 7 (for higher values 

of K). The switch depends on the shortage cost value. With higher shortage costs, the 

beacons are kept at stages 3 and 6 for higher values of K. The high-congestion 

transportation setting keeps the beacons at stages 3 and 6 for higher values of K. With 

three beacons the first two beacons are placed almost always at stages 3 and 5 and the 

third one is placed at the last stage 7 (for K ≤ 8) or at stage 8 (for K ≥ 9). The demand 

variation, the shortage cost and the congestion transportation settings do not affect this 

result. 

With the premium delivery mode beacons are placed closer to the last stage. The demand 

variation, congestion transportation settings and the shortage cost do not affect the 

placement of beacons. The only factor seems to be the size of K. With two beacons the 

second beacon is always placed at stage K - 1 and the placement of the first beacon 

changes as K increases.  The first beacon is mostly placed at stage 4 for K = 6, at stage 5 

for K = 7, 8, 9 and at stage 6 for K = 10, 11. Similar to the two beacon case, with three 

beacons the third one is always placed at the last stage. The first two beacons are placed 

at stages 4 and 6 (or 4 and 7) for lower values of K and at stages 5 and 8 for higher values 

of K. 

The above results are the same for both types of beacons with very little difference, 

which is an occasional shift by one stage. Table 4.5 shows positions of two beacons and 

Table 4.6 shows positions of three beacons. Both results are for the shortage cost r = 15 

and the standard deviation σd = 30.  
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Table 4.5. Positions of two beacons for the shortage cost r = 15 and σd = 30. 

 Economy Delivery 

Mode 

Priority Delivery 

Mode 

Premium Delivery 

Mode 

 

K 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

6 2, 3 2, 3 3, 6 3, 6 4, 6 4, 6 

7 2, 4 2, 3 3, 6 3, 6 4, 7 4, 7 

8 2, 4 2, 3 3, 6 3, 6 5, 8 5, 8 

9 2, 4 2, 3 3, 6 3, 6 5, 9 5, 9 

10 2, 4 2, 3 4, 7 3, 6 5, 10 6, 10 

11 2, 4 2, 4 4, 7 4, 7 6, 11 6, 11 

 

 

Table 4.6. Positions of three beacons for the shortage cost r = 15 and σd =30. 

 Economy Delivery 

Mode 

Priority Delivery 

Mode 

Premium Delivery 

Mode 

 

K 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

6 2, 3, 4 2, 3, 4 2, 4, 6 3, 4, 6 3, 5, 6 3, 5, 6 

7 2, 3, 4 2, 3, 4 3, 5, 7 3, 5, 7 3, 6, 7 4, 6, 7 

8 2, 3, 4 2, 3, 4 3, 5, 7 3, 5, 7 4, 7, 8 4, 6, 8 

9 2, 3, 4 2, 3, 4 3, 5, 8 3, 5, 7 4, 7, 9 4, 7, 9 

10 2, 3, 4 2, 3, 4 3, 5, 8 3, 5, 8 4, 7, 10 4, 7, 10 

11 2, 3, 4 2, 3, 4 3, 5, 8 3, 5, 8 4, 8, 11 5, 8, 11 
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4.4.1.4 Comparison of  C, Cb0, Cb1, Cb2, Cb3,…, Cs    

When K is large enough for more than three beacons, the natural question is to ask what 

the optimum number of beacons is. At some point placing more than that number does 

not give much benefit. It is more appropriate to investigate this problem for those settings 

that give large initial cost savings. 

As noted above, the economy delivery mode does not give very large cost savings. The 

maximum cost saving achieved for this delivery mode is 4% with the low-congestion 

transportation setting, the shortage cost r = 5, and the standard deviation σd = 30.  The 

“baseline” cost is as close to the real-time tracking information cost as 3.4%. This result 

is for K = 4. Placement of one beacon gives the cost savings of 1.98% and with two 

beacons the savings are 0.72%. Moreover, it is of no importance to investigate placement 

of more than three beacons for K = 4.  

The priority delivery mode for the shortage cost r = 5 and the premium delivery mode for 

the shortage cost r = 15 give high initial cost savings (between C* and Cs
*). The next 

experiment investigates these settings.  

Let’s define the tolerance level to be 1%. In other words, the experiment starts with the 

zero-beacon; then one beacon is added at a time and the corresponding long-run average 

cost is calculated. There will be no additional beacons if the cost difference between the 

long-run average cost using beacons and the long-run average cost with full real-time 

tracking information is less than the pre-specified tolerance level, in this case 1%. 

The results show that in most cases four beacons are enough to achieve less than 1% 

difference between the long-run average costs. For the premium delivery mode with the 

shortage cost of 15 it is enough to have only three beacons. The priority mode with the 

shortage cost of 5 requires five beacons to achieve the desired level for K = 10 and 11. 

The results are basically the same for both types of beacons with an occasional difference 

of one less beacon for the type II beacons. Table 4.7 shows the long-run average costs 

and corresponding cost savings for the low-congestion transportation setting with the 

priority delivery mode for K = 11, the shortage cost r = 5, the holding cost h = 10 and 
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normally distributed demand with mean µd = 100 and standard deviation σd = 10.  Note 

that the cost difference drops significantly from three beacons to four beacons and three 

beacons can be considered enough if the tolerance level does not have to be strict. Table 

4.8 illustrates a small difference between type I and II beacons. The results are for the 

low-congestion transportation setting with the premium delivery mode for K = 11, the 

shortage cost r = 15, the holding cost h = 10 and normally distributed demand with mean 

µd = 100 and standard deviation σd = 30.   

In such cases when obtaining real-time tracking information is difficult or involves more 

investments, a carrier may argue that providing real-time tracking information from only 

four beacons should be sufficient for the retailer as he can lower his long-run average 

cost and make it only 1% off from the full real-time tracking information long-run 

average cost.    

 

Table 4.7. The long-run average cost values and cost savings for K = 11; low-congestion 

transportation setting with priority delivery mode; h = 10, r = 5; µd = 100, σd =10. 

  Type I beacons Type II beacons 

  

Expected 

Cost 

Difference 

from C* 

Expected 

Cost 

Difference 

from C* 

 No information (Cs
*) 1655.6 32.8% 1655.6 32.8% 

 “Baseline” cost ( ) 1527.3 22.5% 1527.3 22.5% 

 Cost with 1 beacon 1476.8 18.5% 1387.1 11.3% 

 Cost with 2 beacons 1440.7 15.6% 1366.8 9.7% 

 Cost with 3 beacons 1404.7 12.7% 1346.8 8.0% 

 Cost with 4 beacons 1262.5 1.3% 1260.6 1.1% 

 Cost with 5 beacons 1255.6 0.7% 1254.7 0.7% 

 Full information (C*) 1246.5 

 

      1246.5 

  

CB0
*
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Table 4.8. The long-run average cost values and cost savings for K = 11; low-congestion 

transportation setting with premium delivery mode; h = 10, r = 15; µd = 100, σd =30. 

  Type I beacons Type II beacons 

  

Expected 

Cost 

Difference 

from C* 

Expected 

Cost 

Difference 

from C* 

 No information (Cs
*) 4622.2 23.8% 4622.2 23.8% 

 “Baseline” cost ( ) 3938.1 5.4% 3938.1 5.4% 

 Cost with 1 beacon 3819.7 2.3% 3804.3 1.9% 

 Cost with 2 beacons 3794.7 1.6% 3784.5 1.3% 

 Cost with 3 beacons 3778.9 1.2% 3772.0 0.99% 

 Cost with 4 beacons 3741.2 0.2% 

   Full information (C*) 3735.0 

 

3735.0 

  

In summary, 

• Economy delivery mode requires beacons closer to the manufacturer’s site. 

• Priority delivery mode requires beacons a little further downstream than the 

economy delivery mode. 

• Premium delivery mode requires beacons closer to the end of the transportation 

channel. 

• In most cases placing four beacons is enough to be only 1% off from the full real-

time tracking information long-run average cost. 

4.4.2 Sling Matrices  

For the following set of tests the transition matrices discussed above are modified. It is 

assumed that there is a special “sling” stage S from where shipments can be dispatched 

directly to the retailer; in other words, the stage has the same “sling effect” as stage 0 

(manufacturer’s site). These special stages can be warehouses or some sort of distribution 

centers. For shipments that leave the manufacturer’s site, the same three delivery modes 

CB0
*
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discussed earlier are considered: premium, priority, and economy. Shipments from the 

sling stage follow the same delivery modes. Under these modes of delivery, the shipper 

(the manufacturer as well as the sling stage) strives to dispatch orders leaving the stage 

directly to the retailer’s site with a high, medium, or low probability, respectively.  If 

there is no congestion in the transportation channel shipments arrive directly to the 

retailer’s site the next time period.  However, if there is congestion in the transportation 

channel, this shipment will merge with the shipment at the first occupied stage 

downstream. The congestion is modeled with the two settings discussed above, low-

congestion and high-congestion.  

The parameters for the three delivery modes are set as follows: 

• Premium delivery mode: p0,K+1 = 0.9  and p0,1 = 0.1,  pS,K+1 = 0.9  and pS,S+1 = 0.1 

• Priority delivery mode: p0,K+1 = 0.7  and p0,1 = 0.3,  pS,K+1 = 0.7  and pS,S+1 = 0.3 

• Economy delivery mode:  p0,K+1 = 0.3  and p0,1 = 0.7, pS,K+1 = 0.3  and pS,S+1 = 0.7 

The parameters for the two congestion transportation settings are the same as in Chapter 

3. Note that there still is a positive probability of 0.1 (for both congestion transportation 

settings) that a shipment at stage S - 1 will move to stage S + 1, thus avoiding the 

warehouse.  

The tests were run for the normally distributed demand, varying number of transportation 

stages (K) and shortage cost (r). The sling stage was set for S = 4, 5, … K-2. As before all 

the results are in agreement with Property 4.2 and 4.3: C* ≤CB
* ≤Cs

*
 and C

BII
* ≤C

BI
* . 

4.4.2.1  “Baseline” Expected Cost and Cost Savings 

The results show that when a sling stage is present all long-run average costs, C* , , 

andCs
* , are lower than corresponding long-run average costs without a sling stage. This 

result holds for all delivery modes. Orders at the sling stage move forward faster than 

from a regular stage. The retailer benefits from having a sling stage as order lead times 

CB0
*
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are getting shorter and managing inventory is becoming easier. The results also show that 

in the cases of the economy and priority delivery modes all long-run average costs, C* , 

, andCs
* , are decreasing as the sling stage is moved further downstream. With the 

premium delivery mode the long-run average costs are increasing as the sling value 

increases. This result is intuitive as it is less important to use premium delivery when the 

sling stage gets closer to the end of the transportation channel. Figure 4.4 shows the long-

run average costs for K = 10, holding cost h = 10, shortage cost r = 5 for the normally 

distributed demand with mean µd = 100 and standard deviation σd = 10.  

Table 4.9 shows the long-run average cost values and cost savings for K = 10 with the 

shortage cost r = 5, normally distributed demand with the mean µd = 100 and standard 

deviation σd = 10 for different values of the sling stage and low-congestion transportation 

setting with priority delivery mode. 

Table 4.10 shows the long-run average cost values and cost savings for K = 10 with the 

shortage cost r = 5, normally distributed demand with the mean µd = 100 and the standard 

deviation σd = 10 for different values of the sling stage and high-congestion 

transportation setting with premium delivery mode. 

It can be seen that the difference between the long-run average cost with real-time 

tacking information and no information increases as S increases for both delivery modes. 

The difference between the long-run average cost with real-time tacking information and 

the “baseline” cost keeps steady for the premium delivery mode and increases as S 

increases for the priority delivery mode.  

The difference from the real-time tracking information long-run average cost can be as 

high as 42% for long-run average cost with no information and 16% for the “baseline” 

cost. Once again the results emphasize the importance of real-time tracking information. 

 

 

CB0
*
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a) low-congestion transportation setting with priority delivery mode 

 

b) high-congestion transportation setting with premium delivery mode 

Figure 4.4. The long-run average costs for K = 10, with h = 10, r = 5 and σd = 10. 

 

As before the economy delivery mode does not give high cost savings. The cost savings 

are almost non-existent with the high-congestion transportation setting. The maximum 

difference of around 3.7% is achieved for the low-congestion transportation setting with 

K = 8, the shortage cost r = 5, and the standard deviation σd =10 when the sling stage is at 

stage 6. The difference can get as small as 0.4% with the high-congestion transportation 

setting.  
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Table 4.9. The long-run average cost and cost savings for K=10; low-congestion 

transportation setting with priority delivery mode; h=10, r=5; µd=100, σd =10. 

Sling Stage 
 

 

 

100% 

( -C*)/ C* 

100% 

(Cs
*- C*)/ C* 

No sling stage 1208 1471 1617 21.8% 33.9% 

4 1508 1648 1818 9.3% 20.6% 

5 1446 1566 1741 8.3% 20.4% 

6 1366 1494 1681 9.4% 23.1% 

7 1286 1453 1628 13.0% 26.6% 

8 1222 1429 1599 16.9% 30.9% 

 

Table 4.10. The long-run average cost and cost savings for K=10; high-congestion 

transportation setting with premium delivery mode; h=10, r=5; µd=100, σd=10. 

Sling Stage 
 

 

 

100% 

( -C*)/ C* 

100% 

(Cs
*- C*)/ C* 

4 1624 1787 1944 10.0% 19.7% 

5 1771 1944 2234 9.8% 26.1% 

6 1931 2119 2582 9.7% 33.7% 

7 2097 2308 2926 10.1% 39.5% 

8 2270 2510 3244 10.6% 42.9% 

No sling stage 2671 2956 3836 10.7% 43.6% 
 

In summary, having a sling stage is beneficial for the retailer for all delivery modes. For 

the economy and priority delivery modes, the further a sling stage is placed from the 

manufacturer's site the lower the retailer's long-run average cost. For the priority delivery 

mode it is more beneficial for the retailer if a sling stage is placed closer to the 

manufacturer's site.  

C* CB0
* Cs

*

CB0
*

C* CB0
* Cs

*

CB0
*
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4.4.2.2 One Beacon 

The following set of experiments investigates the placement of only one beacon. As 

mentioned above, it is assumed that the stages upstream from the only beacon are 

monitored by the zero-beacon. The results of the experiment reveal that the placement of 

the only beacon depends mostly on the delivery scenario.  

With the economy delivery mode the only beacon is placed mostly at stage 3. There are 

occasionally cases when the beacon is placed at stage 2. For example with K = 8 the 

experiments with lower demand variation (σd = 10) place the beacon at the stage 2. The 

results are same regardless the value of the sling stage. It has to be noted that even with 

the lowest value of the sling stage (S = 4), the beacon is placed upstream from it. The 

results are similar for both type I and type II beacons.  

With the priority delivery mode the beacon is placed somewhere halfway between the 

manufacturer and the retailer and the placement does not depend on the sling stage value. 

The beacon is always placed at stage 4 or 5. In most cases if the beacon is placed at stage 

5 it corresponds to the smaller value of the shortage cost (r = 5). The congestion 

transportation setting does not have a big effect on beacon placement. The results are in 

general the same for both types of beacons. The difference between beacon placements is 

never more than one stage. The beacons are always placed either at stage 4 or 5. 

With the premium delivery mode the only beacon is always placed at the sling stage. 

Results are the same regardless of the size of variation in demand, shortage cost, value of 

K or congestion transportation setting.  Table 4.11 shows the only beacon position for the 

shortage cost r = 5 and the standard deviation σd =30 with the sling stage at stage 6.  
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Table 4.11. The only beacon position for the shortage cost r = 5 and σd = 30; S = 6. 

 Economy Delivery 

Mode 

Priority Delivery 

Mode 

Premium Delivery 

Mode 

 

K 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

8 3 3 5 4 6 6 

9 3 3 5 4 6 6 

10 3 3 4 4 6 6 

 

4.4.2.3 Two or Three Beacons 

To investigate the impact of two or more beacons the tests were run for the normally 

distributed demand with mean µd = 100 and standard deviation σd = 10 or 30. The holding 

cost was 10 and the shortage cost varied. The tests were run for K = 8 and up and the 

sling value of S = 4 up to S = K - 2.  

With the economy delivery mode the further downstream the sling stage (S = 6 and up) is 

the more likely it is to place the two beacons at the beginning of the transportation 

channel at stages 2 and 4. With smaller sling values (S = 4 and 5) combined with higher 

values of K, beacons are placed a little further downstream than stages 2 and 4. 

Sometimes the beacons are placed at both sides of the sling stage. For example with K = 

9 and S = 4, the beacons are placed at stages 3 and 6. This result is more prominent with 

the high-congestion transportation setting. The same pattern is observed with three 

beacons. For larger values of K and S the three beacons are mostly placed at stages 2, 3, 

and 4 or 2, 3, and 5. With higher values of K and smaller values of S and mostly for the 

high-congestion transportation setting the third beacon is placed after the sling stage.  

With the priority delivery mode beacons are placed mostly upstream from the sling stage. 

The placement changes as K and S increase. For the sling value equal to 4 the first beacon 
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is placed at stage 3 and the second beacon is placed at stage 4 or the sling stage. As the 

sling value increases, beacons are placed upstream from the sling stage. The second 

beacon is mostly placed at the sling stage and the first one is placed two or three stages 

upstream. As K increases both beacons are placed upstream from the sling stage. The 

second is placed at stage S - 1 or S - 2 and the first one is placed at stage S - 2 or S - 3. 

The placement of three beacons shifts as the sling stage moves towards the end of the 

transportation channel. For small values of S = 4, the three beacons are placed at stages S, 

S + 1, and S + 3 or S + 4. For S = 5, the three beacons are placed at stages S - 2, S, and S + 

1 or S + 2. For higher values of S, the third beacon is placed at stage S and the first two 

beacons are placed upstream from the third one with one or two stages apart.  

With the premium delivery mode results are slightly different for different congestion 

transportation settings. For the high-congestion transportation setting two beacons are 

placed downstream from the sling stage at stages S and S + 1 unless the sling stage is too 

close to the retailer's site. When K – S = 2 or sometimes even 3, the beacons are placed at 

stages 4 and S, or 5 and S. The low-congestion transportation setting follows the same 

pattern, except for smaller values of S with the small shortage value r = 5 the beacons are 

placed a couple of stages closer to the manufacturer. With three beacons the third beacon 

is placed at stage K for smaller values of S (S = 4, 5, 6). When the sling stage is close to 

the retailer’s site, the third beacon is placed at stage S and the first two beacons are placed 

upstream from the third one with one or two stages apart.  

The above results are the same for both types of beacons with very little difference, 

which is a small occasional shift by one stage.  Table 4.12 shows positions of two 

beacons and Table 4.13 shows positions of three beacons. Both results are for the 

shortage cost r = 15 and the standard deviation σd = 30.  
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Table 4.12. Positions of two beacons for the shortage cost r = 15 and σd = 30. 

 Economy Delivery 

Mode 

Priority Delivery 

Mode 

Premium Delivery 

Mode 

K 

 

S Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

8 5 2, 3 2, 3 3, 5 3, 5 5, 6 5, 6 

8 6 2, 3 2, 3 3, 6 3, 5 3, 6 4, 6 

9 5 2, 4 2, 4 3, 5 3, 5 5, 6 5, 6 

9 7 2, 4 2, 3 3, 6 3, 5 4, 7 4, 7 

10 5 2, 4 2, 4 3, 5 3, 5 5, 6 5, 6 

10 8 2, 4 2, 4 3, 6 3, 6 4, 8 5, 8 

 

Table 4.13. Positions of three beacons for the shortage cost r = 15 and σd = 30. 

 Economy Delivery 

Mode 

Priority Delivery 

Mode 

Premium Delivery 

Mode 

K 

 

S Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

Low 

Congestion 

High 

Congestion 

8 5 2, 3, 4 2, 3, 4 3, 5, 8 3, 5, 6 5, 6, 8 5, 6, 8 

8 6 2, 3, 4 2, 3, 4 2, 4, 6 3, 4, 6 3, 6, 7 4, 6, 7 

9 5 2, 3, 4 2, 3, 5 3, 5, 9 3, 5, 6 5, 6, 9 5, 6, 9 

9 7 2, 3, 4 2, 3, 4 3, 5, 7 3, 5, 7 4, 7, 8 4, 7, 8 

10 5 2, 3, 5 2, 3, 5 3, 5, 6 3, 5, 6 5, 6, 10 5, 6, 10 

10 8 2, 3, 4 2, 3, 4 3, 5, 8 3, 6, 7 3, 5, 8 4, 6, 8 
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4.4.2.4 Comparison of  C, Cb0, Cb1, Cb2, Cb3,…, Cs    

This section investigates how many beacons are needed to be as close to the real-time 

tracking information long-run average cost as some predetermined tolerance level. As 

noted earlier the economy delivery mode does not give high cost savings. All the cost 

savings fall under 3% and in most cases adding only one beacon gives the desired 

tolerance level. Thus this section concentrates on the priority and premium delivery 

modes.  

As before let’s assume that the tolerance level is 1%. The goal of the experiment is to 

investigate how many beacons are needed to achieve less than 1% difference between the 

long-run average cost with full real-time tracking information and the long-run average 

cost with the information from beacons.  

In most cases placing three beacons is enough to achieve less than 1% difference in long-

run average costs. In rare cases four beacons are needed for the same result. The number 

of beacons does not depend on where the sling stage is.   

It is interesting to note that there are settings when the difference in costs falls from 

around 13% to 1% or less from three beacons to four beacons. The difference decreases 

slowly from the “baseline” to the three-beacon cost and then falls sharply when the fourth 

beacon is added, as illustrated earlier in Table 4.7. The results are basically the same for 

both types of beacons with an occasional difference of one less beacon for the type II 

beacons.  

Since the shortage cost r=5 gives high initial cost savings, the following tables present 

results for this setting. Table 4.14 shows the long-run average costs and corresponding 

cost savings for the low-congestion transportation setting with the priority delivery mode 

for K = 10 and the sling stage S = 4, the shortage cost r = 5, the holding cost h = 10 and 

the normally distributed demand with mean µd = 100 and standard deviation σd = 10.  In 

this table the number of type I beacons needed is one greater than the number of type II 

beacons needed to achieve the tolerance level.  
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Table 4.14. The long-run average cost values and cost savings for K = 10 and S = 4 with 

holding cost h = 10, shortage cost r=5 and standard deviation σd =10. 

  Type I beacons Type II beacons 

  

Expected 

Cost 

Difference 

from C* 

Expected 

Cost 

Difference 

from C* 

 No information (Cs
*) 1818 20.6% 1818 20.6% 

 “Baseline” cost ( ) 1648 9.3% 1648 9.3% 

 Cost with 1 beacon 1625 7.8% 1590 5.4% 

 Cost with 2 beacons 1620 7.4% 1587 5.2% 

 Cost with 3 beacons 1619 7.4% 1584 5.0% 

 Cost with 4 beacons 1525 1.1% 1521 0.9% 

 Cost with 5 beacons 1518 0.7% 

   Full information (C*) 1508 

 

        1508 

  

Table 4.15 shows the results for the high-congestion transportation setting with the 

premium delivery mode for K = 10 and the sling stage S = 8, the shortage cost r = 5, the 

holding cost h = 10 and the normally distributed demand with mean µd = 100 and 

standard deviation σd = 10.  

 

 

 

 

 

 

 

CB0
*
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Table 4.15. The long-run average cost values and cost savings for K = 10 and S = 8 with 

holding cost h = 10, shortage cost r = 5 and standard deviation σd = 10. 

  

Type I beacons Type II beacons 

 

  

Expected 

Cost 

Difference 

from C* 

Expected 

Cost 

Difference 

from C* 

 No information (Cs
*) 3244 42.9% 3244 42.9% 

 “Baseline” cost ( ) 2510 10.6% 2510 10.6% 

 Cost with 1 beacon 2481 9.3% 2447 7.8% 

 Cost with 2 beacons 2473 8.9% 2443 7.6% 

 Cost with 3 beacons 2336 2.9% 2321 2.2% 

 Cost with 4 beacons 2277 0.7% 2276 0.6% 

 Full information (C*) 2270 

 

2270 

  

In summary, 

• The beacon placement depends on the delivery mode. The economy delivery 

mode requires beacons closer to the manufacturer’s site. The priority delivery 

mode requires beacons a little further downstream and the premium delivery 

mode requires beacons closer to the end of the transportation channel. If there is 

only one beacon with the premium delivery mode, it is placed at the sling stage. 

• Four or sometimes five beacons are enough to be only 1% off from the full real-

time tracking information long-run average cost regardless of the sling stage 

value. 

Also it must be noted that 

• Long-run average costs for type I beacons are greater than the long-run average 

costs for type II beacons. The difference is achieved by setting different order-

CB0
*
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up-to levels, which need to be a little higher for type II beacons than for the type 

I beacons.  

• Beacon placement and the number of beacons needed to be close to the long-run 

average cost with full real-time tracking information in general do not depend on 

the type of beacons. 
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CHAPTER 5  

CONCLUSIONS 

 

A stochastic model was used to evaluate the value of real-time information on supply 

status on both the manufacturer’s process and on the transportation process when the 

order lead time is dependent on the distribution of the locations of outstanding orders and 

the number of unshipped orders at the manufacturer’s site.  Shipment congestions were 

explicitly modeled. 

With the optimal myopic ordering policy, the long-run average cost for the retailer is 

higher when he does not have any information available.  The numerical examples 

indicate that the cost savings are especially significant when real-time tracking 

information and the manufacturer’s shipping policies are available. When the retailer has 

no or partial information, it is better to order every time period.  When full information is 

available, there are situations when the retailer does not need to order every time period 

to lower his long-run average total cost.  The retailer may adjust his ordering policy 

according to the information he has available.   

When the retailer knows the supply chain behavior, it is better to use the knowledge of 

whether the supply system is empty or not and calculate the long-run average cost to 

define two order-up-to levels, one when the system is empty (no congestion present) and 

another one when there is at least one outstanding order.  The cost incurred by the retailer 

using two order-up-to levels is much less than the long-run average cost with no 

information or the cost when using just one order-up-to level. Moreover, using beacons 

lowers the long-run average cost even further. There is an optimum number of beacons 

that gives a good approximation to the full information real-time tracking long-run 

average cost.    
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The thesis assumes that orders do not cross in time.  Order crossover cases are somehow 

less resolved. Among the limited literature on order crossover there are Robinson et al.  

(2001), Bradley and Robinson (2005) and Hayya et al. (2008). As noted in Robinson et 

al. (2001), in order crossover cases it is better to use shortfall distribution instead of the 

distribution of demand during the lead time. The model in Robinson et al. (2001) studies 

the order-up-to level approach where the level does not depend on the supply chain 

status.  

The attempt to model the crossover case with the same approach as the no-crossover case 

was not successful. The basic idea for the current model is that for each complete supply 

status vector the conditional lead times can be calculated. As the orders arrive in the same 

sequence as they were shipped, it is mathematically possible to track the on-hand 

inventory and calculate the long-run average costs charged to each complete supply status 

vector. When crossover is allowed, any order can move downstream freely and 

congestion is no obstacle. The lead times for any order are the same regardless of the 

congestion, thus regardless of the complete supply status vector at the time when the 

order left the manufacturer’s site. Moreover, as orders can cross over it is impossible to 

track the value of on-hand inventory, thus making it impossible to calculate the long-run 

average cost. One approach to tackle the problem would be instead to model the supply 

chain by only the number of outstanding orders to implicitly track the quantities of 

outstanding orders. This approach would make the model cumbersome and, moreover, 

the only way to find the order-up-to levels would be the linear programming approach. 

That is basically the same approach taken by Robinson et al. (2001) in the paper's 

supplement, which describes the linear programing formulation for a crossover case with 

order-up-to-levels that depend on the supply status. Robinson is able to solve the problem 

only for a simple policy of two possible replenishment lead times. Even with the simple 

example the linear programing is too big and requires placing bounds to be manageable. 

As noted by Robinson et al. (2001), the problem is too big to have any practical use and it 

is more of theoretical interest.   

The thesis assumes a myopic ordering policy for the retailer.  For future studies it would 

be of interest to investigate the value of information in the case of lost sales. Although the 
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supply system is modeled with multiple stages, the model is still only considering a two-

echelon supply system consisting of a manufacturer and a retailer. It would be of interest 

to identify how the value of real-time information changes as the number of levels in the 

supply system increases.  
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A.  The Transition Probabilities for Process s 

Define the variable z(t) to be the first non-zero stage in the vector . For example, if 

 then .    

Define  to be a vector  but with its first non-zero element set to 0. For example 

if   then  Thus for any 1≤ i ≤2K   

si
0 ( j) =

si ( j), if j ≠ z(t)

0, if j = z(t)

"
#
$

%$

 
It is assumed that states are ordered lexicographically; i.e., each state vector  
from the first non-zero state to the last state is the binary representation of index i-1. For 

example when i=7,  

For modeling convenience it is assumed that a shipment received by the retailer has 

reached its final destination and thus remains in stage K+1 thereafter. Also for 

convenience, the time period index for a variable is omitted, and the superscript "+" is 

used to indicate the next period, whenever such an omission does not obscure clarity.  For 

example,  x represents x(t) and x+ represents x(t + 1). 

Let Ps
0 (s j | si ) = Pr[

s + = s j |
s = si ,  no new shipment]  denote the one-step transition from 

 to  without a new shipment for any 1≤ i, j ≤2K, and let 

Ps
1(s j | si ) = Pr[s + = s j | s = si ,  new shipment]  be the corresponding transition with a new 

shipment. 

 

 

)(ts

)0,1,1,0,1,0()( =ts z(t) = 2

s 0 (t) )(ts

)0,1,1,0,1,0()( =ts s 0 (t) = (0, 0, 0,1,1, 0).

ists 
=)(

s7 = (0,..., 0,1,1, 0).

ists 
=)( jsts 

=+ )1(
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A.1.  Transitions for Process s without a New Shipment  

The state s1=(0,0,…,0) transitions to the state s1=(0,0,…,0) without a new shipment with 

probability of 1; i.e.,  Ps
0 (s1 | s1) =1 and Ps

0 (s j | s1) = 0 for any j >1.  For any i, such as 

1<i≤2K, state  transitions into the state s1=(0,0,…,0) if all the 

shipments at all the occupied stages move to the K+1 stage; thus the transition 

probability is Ps
0 (s1 | si ) = p(k,K +1)

for all k  such as
       si (k )=1

∏    

To calculate transition probability from state  to state 

, for any i and j, such as 1< i ≤2K and 1< j ≤2K,  three different 

situations are possible.  

• z(i)>z(j). The transition is not possible, as shipments do not go backward, so the 

transition probability equals zero.  

• z(i)=z(j). The transition is possible only when the shipment at stage z(i) stays at 

z(i) and state transitions to state 

 

For example, state (0,1,1,0) transitions to 

state (0,1,0,1) when the shipment at stage 2 stays at the same stage and state 

vector (0,0,1,0) transitions to state (0,0,0,1). Figure A.1 illustrates this example. 

• z(i)<z(j). The shipment at stage z(i) moves to stage z(j) and the shipments 

downstream from stage z(i) move downstream from stage z(j) ( transitions to 

the state ), or all the shipments downstream from z(i) move to the stages from 

z(j) to K+1 ( transitions to the state )  and the transition from z(i) is blocked 

by the shipment at the stage z(j). 

Figure A.2 illustrates an example with z(i)<z(j). The state (0,1,1,0) transitions to the state 

(0,0,1,0) when the shipment at stage 2 transitions to stage 3. The state vector (0,0,1,0) 

transitions to the state (0,0,0,0) (Figure A.2, left) or the state vector (0,0,1,0) transitions to 

the state (0,0,0,0) and the movement of the shipment from stage 2 is blocked by the 

shipment at stage 3 (Figure A.2, right). 

si = (si (1), si (2),..., si (K ))

si = (si (1), si (2),..., si (K ))
sj = (sj (1), sj (2),..., sj (K ))

s 0i
s 0j.

s 0i
s 0j
s 0i

s j
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Figure A.1. Transition from the state (0,1,1,0)  to the state (0,1,0,1) without a new 

shipment. 

 

 

 

 

Figure A.2. Two possible transitions from (0,1,1,0)  to (0,0,1,0) without a new shipment. 

 

Thus the transitions without a new shipment are as follows: 

Ps
0 (s1 | s1) =1 and Ps

0 (s j | s1) = 0 for any j >1

Ps
0 (s1 | si ) = p(k,K +1),  for any i >1

for all k  such as
       si (k )=1 

∏

Ps
0 (s j | si ) =

0, if z(i) > z( j)
p(z(i), z( j))Ps

0 (s j
0 | si

0 ), if z(i) = z( j)

p(z(i), z( j))Ps
0 (s j

0 | si
0 )+ p(z(i),k)Ps

0 (s j | si
0 )

k=z ( j )

K+1

∑ , if z(i) < z( j)

#

$

%
%
%

&

%
%
%

,  for any i, j >1.

 

        1            2               3                4 

        1            2               3                4         1            2               3                4 
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A.2.  Transitions for Process s with a New Shipment  

The logic to calculate transitions for the process s with a new shipment is similar to the 

one without a new shipment.  

Transition from s1=(0,0,…,0) state to s1=(0,0,…,0) state with a new shipment happens 

when the new shipments move directly to the retailer’s site, i.e. Ps
0 (s1 | s1) = p(0,K +1) . 

The state vector s1=(0,0,…,0) can transition into a state with only one stage occupied 

with the probability Ps
0 (s j | s1) = p(0, z( j)) with s j (k) = 0 for all k  such as k ≠ z( j).      

Transition from any state to the state s1=(0,0,…,0) can happen when all outstanding 

shipments get delivered in a single time period; in other words, the given state transitions 

to the state s1=(0,0,…,0) without a new shipment and the new shipment moves to the 

retailers site too. 

For any i and j, such as 1< i, j ≤2K, the logic is similar to the no new shipment case 

assuming that z(i)=0. Thus the transitions without a new shipment are as follows: 

Ps
1(s1 | s1) = p(0,K +1)

Ps
1(s j | s1) = p(0, z( j)) for all j  such as s j  has only one occupied stage

Ps
1(s1 | si ) = p(0,K +1)Ps

0 (s1 | si ),  for any i >1

Ps
1(s j | si ) = p(0, z( j))Ps

0 (s j
0 | si )+ p(0,k)Ps

0 (s j | si )
k=z ( j )

K+1

∑ ,  for all i, j >1.  
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A.3.  Transitions for Process Ts  

Using transitions of process s it is possible to find transition probabilities for process Ts. 

Let  denote the probability that the complete supply status vector  

transitions into the complete supply status vector  in one time period; then  

Pr(

Ts+ |


Ts) = q

o+m,m+

ρi if o+ =1

1− ρi if o+ = 0

"
#
$

%$

&

'

(
(

)

*

+
+

Ps
1(s + | s ), if o+m <m+

Ps
0 (s + | s ), otherwise

"
#
$

%$

&

'

(
(

)

*

+
+

 

where 

o =

Ts(1)

m =

Ts(2)

s =

Ts(3 :K + 2)

o+ =

Ts+(1)

m+ =

Ts+(2)

s + =

Ts+(3 :K + 2)

i = index such that

Ts(2 :K + 2) = (m, s ) =


Rsi.  

 

  

P(

Ts+ |


Ts)


Ts


Ts+
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B. Conditional Lead Times  

B.1. Conditional Lead Time for Process s 

To find the distribution of transportation lead times, a “backward” approach is used. For 

each state vector , the conditional lead time for the shipment at the first non-zero stage 

(stage z(i)) is calculated starting from the state with z(i)=K and proceeding to the states 

with z(i)=K-1,K-2,…,1. Each step uses conditional lead times for shipments that are 

situated downstream from the current shipment of interest. The last step is to calculate 

conditional lead times for new shipments. 

Let’s consider a shipment at stage k. First let’s note that only shipments downstream from 

it (shipments at stages k+1, k+2,…, K) can influence its movement and thus its lead time. 

Shipments at stages 1, 2,…, k-1 do not interfere with its movement.  

Let  denote the probability that given state , such as , the shipment 

situated at stage k will reach the retailer in  time periods.  

If k = K, there is only one state with z(i)=K. This is state .  It is easy to 

see that   

                               . 

For 1 ≤ k < K, the conditional lead time is 1 only if transitions to s1 = (0, 0,..., 0)without 

a new shipment. The conditional lead time is , >1, if the current state  transitions to 

a new state, , j>1, without a new shipment and then the shipment takes time 

periods to reach the retailer’s site. Thus the conditional lead times are calculated as 

follows: 

 

si

LTk (i, l)
si k = z(i)

l

s2 = (0, 0,..., 0,1)

LTK (2, l) = p(K,K +1)p(K,K )
l−1

si

l l
si

sj l −1

LTk (i,1) = Prs
0 (s1 | si )

LTk (i, l) = Prs
0 (sj | si )LTz( j ) ( j, l −1)

j=2

2K

∑ ,  for K -1≥ k ≥1 and l >1



 
 

104 

The logic for k =0 or for the new shipments (shipments coming from the manufacturer’s 

site) is similar.  Let  be the transportation lead time and denote the probability 

that given state , the new shipment will reach the retailer in  time periods. Then       

  

 

B.2. Conditional Lead Time for Process Ts  

The lead time of the new order is the sum of two components, the time it takes for a new 

order to leave the manufacturer’s site plus the time it takes a new shipment to reach the 

retailer’s site (transportation lead time).  

Consider a tagged unshipped order, Z, placed by the retailer that is still at the 

manufacturer’s site. Let n(t) denote the position of the tagged order in the queue at the 

manufacturer’s site before the retailer made a decision about placing a new order before 

the transition takes place. Assume that n(t)=0 to tag a new order just placed. 

If n(t) > 0, the implicit assumption is that there are at least n(t) orders outstanding at the 

manufacturer’s location before the retailer made his ordering decision. Let's recall that 

the retailer’s decision about placing a new order is defined by o(t), where o(t) =1 if the 

new order was placed and o(t) = 0 otherwise. Thus after the decision was made there are 

m(t)+o(t) orders at the manufacturer’s site. The position n(t)>0 implies that there are 

m(t)-n(t) orders ahead of the tagged order at the manufacturer's site at time period t. 

Let  be the conditional lead time and denote the probability that an order at the 

nth position in the queue at the manufacturer’s site will reach the retailer’s site in  time 

periods given that the total supply vector is . 

LT0 (i, l)
si l

LT0 (i,1) = Prs
1(s1 | si )

LT0 (i, l) = Prs
1(sj | si )LTz( j ) ( j, l −1)

j=2

2K

∑ ,  for l >1

LM (n, j, l)

l

Ts(t) = Tsj
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If n=M and a new order is placed or, in other words, the number of unshipped orders at 

the manufacturer’s site reached the maximum after the retailer’s ordering decision and 

the tagged order is at the Mth position, at least one order will be shipped including the 

tagged order and the time it reaches the retailer is equal to the new shipment lead time for 

process s. Thus           

               LM (M, j, l) = L0 (i, l),  for all Tsj = (1,M, si ).                                               (A.1)          

If 0<n<M, or n=M but the new order was not placed (o(t) = 0), the tagged order either 

stays at the manufacturer’s site or gets shipped. If the shipment takes place, then the lead 

time is calculated as in formula A.1. If the tagged order was not shipped, its position 

becomes n+ = n + o and proceeds further from this position. If the original conditional 

lead time equals , for the tagged order at position n, given the current state is Tsj , this 

means that the state transitions to a new state Tsk  with the tagged order at the position n+ 

= n + o and from there takes time periods to reach the retailer’s site. Thus the 

conditional lead times are calculated as follows: 

LM (n, j, l) = L0 (i, l) q
o+m,m+

m+=0

n−(1−o)

∑ + q
o+m,m+

m+=n+o

M

∑ LM (n+o,k, l −1)
k
∑  

 

                

for any j  such as  Ts =

Tsj = (o,m, si ) with o+m <M +1,

for any k such as all Ts+ =

Tsk = (o+,m+, s+ ) with m+ ≥ n+o,

and for any l > 0  

 

It is assumed that LM (n, j, 0) = 0 for any n >1 and any j.   

If n=0, the tagged order has been just placed by the retailer. The conditional lead time 

can be calculated only for the total supply vectors Tsj = (o,m, s) with o =1.  The logic is 

the same as above. Note that, if a newly placed order ships out the same time period then 

there are no unshipped orders left at the manufacturer's site. Thus 

 

l

l −1



 
 

106 

LM (0, j, l) = L0 (i, l)qo+m,0 + (1− qo+m,0 ) LM (1,k, l −1)
k
∑  

 

    
for any j  such as Ts =


Tsj = (1,m, si ),  

for any k  such as Ts+ =

Tsk = (o+,m+, s+ ) with m+ ≥1.

 

The conditional probability distribution of lead times for the process Ts is given as   

           Pr[L(t) = l |

Ts(t)]= LM (0, j,l),  for all j  such as 


Ts(t) =Ts j = (1,m,s) . 

 

C.  The Probabilities NO(i,j,τ) 

For any i and j, let  be the probability that a complete supply status vector  

transitions into a complete supply status vector  in τ steps with all intermediate 

complete supply status vectors  satisfying the condition ; in other words,  is 

a complete supply status vector without a new order. It's the probability that if the supply 

chain status is any complete supply status vector , the next ordering happens at time 

t+ τ and the complete supply status vector at that time is 

Tsj = (1,m, s) . 

If τ = 1 the calculation is straightforward: 

NO(i, j,1) = Pr(

Tsj |

Tsi )  for any i and any j ∈ Γ.  

If τ > 1, the probability that the next ordering happens in τ periods is equal to the 

probability that a complete supply status vector will transition to some complete 

supply status vector 

Tsk = (0,m, s)  and from there the next ordering happens in τ – 1 

periods. That is,  

NO(i, j,τ ) = Pr(

Tsk |

Tsi )

k∉Γ
∑ NO(k, j,τ −1) for any i and any j ∈ Γ.
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