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Abstract 

This study uses the vibration data of two full-scale bridges, subjected to controlled 

damage, along the I-40 west, near downtown Knoxville, TN, to evaluate the feasibility of 

time series-based damage identification techniques for structural health monitoring. The 

vibration data was acquired for the entrance ramp to James White Parkway from I-40 

westbound, and the I-40 westbound bridge over 4th Avenue, before the bridges were 

demolished during I-40 expansion project called Smartfix40. The vibration data was 

recorded using an array of triaxial geophones, highly sensitive sensors to record 

vibrations, in healthy and damaged conditions of the bridges. The vibration data is 

evaluated using linear stationary time series models to extract damage sensitive-features 

(DSFs) which are used to identify the condition of bridge. Two time series-based damage 

identification techniques are used and developed in this study. 

 In the first technique, the vibration data is corrected for sensor transfer function 

suitable for given geophone type and then convolved with random values to create input 

for autoregressive (AR) time series models. A two-stage prediction model, combined AR 

and autoregressive with exogenous input (ARX), is employed to obtain DSFs. An outlier 

analysis method based on DSF values is used to detect the damage. The technique is 

evaluated using the vertical vibration data of the two bridges subjected to three controlled 

amounts of known damage on the steel girders.  

 In the second technique, ARX models and sensor clustering technique is used to 

obtain prediction errors in healthy and damaged conditions of the bridges. DSF is defined 
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as the ratio of the standard deviations of the prediction errors. The proposed technique is 

evaluated using the triaxial vibration data of the two bridges. 

 This study also presents finite element analysis of the I-40 westbound bridge over 

4th Avenue to obtain simulated vibration data for different damage levels and locations. 

The simulated data are then used in the ARX models and sensor clustering damage 

identification technique to investigate the effects of damage location and extent, efficacy 

of each triaxial vibration, and effect of noise on the vibration-based damage identification 

techniques. 
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Chapter 1. Introduction 

 

1.1. Introduction and literature review 

The recent collapse of bridges in the U.S. and around the world such as the collapse of the I-35W 

Bridge in Minneapolis, Minnesota in 2007, Figure 1.1, have raised many concerns regarding the 

current condition of bridges (Mosavi 2010). In the collapse of the I-35W Bridge which was an 

eight-lane steel truss bridge, 13 people were killed and 145 people were injured. The bridge 

failure initiated at gusset plates on the center portion of the deck truss which caused it to have 

inadequate capacity for the expected loads on the structure (NTSB 2008).   

    

 

Figure 1.1. I-35W Bridge Collapse, Minneapolis, Minnesota 

(Stambaugh and Cohen 2007) 
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In January 1992, the Holston River Bridge, an eight-span bridge which consisted of four 

continuous longitudinal girders located in east Knox county, Tennessee, suffered a fatigue failure 

of the east bound fascia girder. The crack had propagated through the bottom flange of the girder 

and tore through the web to within a few inches of the top flange as shown in Figure 1.2 

(Deatherage et al. 1996). The damage was detected quickly so repairing and retrofitting was 

begun almost immediately, and no injuries or serious issues were reported.  
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Figure 1.2. Holston River Bridge girder-cracked section (Deatherage et al. 1996) 

 

Currently, bridges in the U.S. are inspected and rated during biennial inspections which 

rely heavily on visual techniques (Ragland 2011) while such methods for detecting damage are 
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relatively unreliable (FHWA 2001). As a result, there has been a large amount of effort during 

the past decade to develop structural health monitoring (SHM) and damage identification 

techniques. 

SHM refers to the observation of a structural system over time and obtaining structural 

responses using an array of sensors, extraction of damage-sensitive features (DSFs), and 

statistical analysis to detect changes that may indicate damage in the structure. A common 

approach for extracting the DSFs from SHM data is to use time series models. When a 

considered time series model approximates the vibration response of a structure and model 

coefficients or residual error are obtained, any deviations in these coefficients or residual error 

can be inferred as an indication of a change or damage in the structure. Depending on the 

technique employed, various DSFs are proposed to capture the deviations. For example, Sohn 

and Farrar (2001) presented a two-stage approach implementing combined autoregressive (AR) 

and autoregressive with exogenous input (ARX) to obtain DSF corresponding to the residual 

error, the difference between the measured vibration data, and the prediction obtained from the 

AR-ARX model developed from the healthy condition of the structure. They used an 8 degree-

of-freedom mass-spring system and showed that the proposed technique was able to detect and 

locate the damage. Nair et al. (2006) presented a time series-based damage identification 

technique within a pattern classification framework. They used autoregressive moving average 

(ARMA) models and defined the DSF as a function of the first three AR components. They used 

the analytical and experimental results of an ASCE benchmark structure and indicated that the 

proposed technique was able to detect and locate the damage. Recently, Gul and Catbas (2011) 

used ARX models and a sensor clustering technique to detect and locate the damage. They 
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defined a fit ratio based on the norms of measured output minus predicted output and measured 

output minus the mean of measured output and used the difference between the fit ratios of the 

models in healthy and damaged conditions of the structure as a DSF. They applied the technique 

to a laboratory steel grid structure subjected to different damage scenarios and indicated that 

damage was detected and located for most of the cases. They also used the data from Z24 bridge 

(Kramer et al. 1999) where different levels of pier settlement were applied as damage and 

showed that damage was detected and located with a minimum number of false alarms. 

A critical aspect of SHM is data acquisition which involves the source of vibration 

(ambient loading, drop test,...), the sensor type (unidirectional or triaxial sensors, accelerometer 

or geophone,...), the sensor’s number and location, and the storage and transmittal hardware, 

whose selections depend on economic considerations (Farrar and Worden 2007). In SHM of 

bridges, where several sensors are needed, use of unidirectional sensors instead of triaxial 

sensors can considerably reduce the cost of data acquisition. However, it is important to know 

the most effective direction of vibration so that the unidirectional sensors can be positioned along 

that direction. Several researchers have conducted numerical, laboratory and full-scale tests to 

study the most effective vibrations for SHM (Fasel et al. 2002, Ragland et al. 2011, Cheung et al. 

2008). Fasel et al. (2002) simulated a three story building driven by an electro dynamic shaker 

attached to the base of the structure and reported that sensors in line with the excitation were 

most effective while the sensors lined up perpendicular to the excitation were quite ineffective. 

Ragland et al. (2011) presented finite element analysis of a five-girder bridge subjected to 

vertical vibration source and indicated that horizontal response of the bridge was more sensitive 

to the damage than the vertical response. Cheung et al. (2008) used the triaxial vibration data of 
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the Z24 bridge (Kramer et al. 1999) obtained under the ambient loading and reported that similar 

results were obtained using horizontal and vertical vibration data. 

 In real-life bridge monitoring, environmental and operational effects, such as changes in 

temperature (Peeters and Roeck 2001) and noise (Zhang 2007), can make the use of vibration 

based-damage identification techniques difficult since they can affect the dynamic characteristics 

of a bridge in a way similar to the damage. Moreover, it has been shown that fundamental 

frequencies and mode shapes of real-life bridges may not be significantly influenced by local 

damage (Ragland 2009, Ragland et al. 2011). All of these facts invoke the need for some 

simplified studies of full-scale bridges to better understand the factors that can affect dynamic 

characteristics of the bridges and subsequently the ability of vibration-based damage 

identification techniques to identify the damage. 

The main objective of the current study is to develop time series-based damage 

identification techniques with suitable modifications so that the induced damage in the two full-

scale bridges already tested by Ragland (2009) using a drop weight source can be identified. The 

vibration data considered is unique, as it was obtained for full-scale bridges in undamaged states 

and after known amounts of damage had been induced in the steel girders. The two types of 

bridges chosen in the study represent about 70% of existing bridges in the state of Tennessee in 

terms of their spans, connectivity, and structural details; thus, a successful study will potentially 

have a large impact. Another objective of the current study is to present a sensitivity study using 

simulated vibration data obtained from finite element analysis to investigate the effects of 

damage location and extent, efficacy of each triaxial vibration, and effect of noise on vibration-

based damage identification techniques.  
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Chapter 2. Full-scale bridge damage identification using time series analysis 

of a dense array of geophones excited by drop weight 

 

Reza Vasheghani-Farahani and Dayakar Penumadu 

 

My primary contributions to this chapter included: (1) gathering and reviewing literature, 

(2) processing and analyzing all the vertical data, (3) filter designing, (4) writing and developing 

MATLAB codes for implementing time-series based damage identification technique, (5) 

adapting an outlier analysis method to detect the damage (6) developing the idea of using 

convolution with random values to create suitable input required for Autoregressive (AR) 

models, and (7) most of the writing. 
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2.1. Abstract 

This study presents an innovative technique for damage identification of full-scale bridge 

structures on I-40 through downtown Knoxville, Tennessee excited by a drop weight. The 

dynamic data, obtained using a dense array of geophones which are highly sensitive to record 

vibrations, is evaluated using time series analysis. The directly measured vibration data is 

convolved with random values to create suitable input for time series analysis of two full-scale 

highway bridges that were subjected to known amounts of damage to the bridge girder at chosen 

locations. A two-stage prediction model, combined autoregressive (AR) and autoregressive with 

exogenous input (ARX), is employed to obtain damage-sensitive features. An outlier analysis 

method is used to detect the damage. The proposed technique is evaluated using the vertical 

vibration data of the two full-scale bridges subjected to three controlled levels of known damage 

on the steel girders. The results of the analysis performed on the 126 data sets indicate that the 

proposed technique is able to detect the damage even when damage level is small and damage is 

located near a support. However, the proposed technique cannot consistently identify the location 

of damage. 

 

2.2. Introduction 

The recent collapse of bridges in the U.S. and around the world such as the collapse of the I-35W 

Bridge in Minneapolis, Minnesota in 2007 has significantly increased the awareness about bridge 

safety and the renewed need for reliable structural health monitoring techniques (Mosavi 2010). 

Currently, bridges in the U.S. are inspected and rated every two years based on visual techniques 

(Ragland 2011) which are useful for identifying visible damage in areas clearly accessible, but 
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are relatively unreliable for identifying fatigue or crack-based damage (Ragland et al. 2011, 

FHWA 2001) and are also very labor intensive. 

In recent years, Structural Health Monitoring (SHM) of bridges has received increasing 

attention for implementing a damage detection strategy. It consists of observation of a bridge 

system over time using an array of sensors and obtaining structural responses, extraction of 

damage-sensitive features from structural responses, and statistical analysis to detect changes 

that may indicate damage in the bridge. A common approach for extracting the damage-sensitive 

features (DSFs) from SHM data to identify the damage is to use time series models. When a 

considered time series model approximates the vibration response of a structure and model 

coefficients and residual error are obtained, any deviations in these coefficients or residual error 

can be inferred as an indication of a change or damage in the structure. Depending on the 

technique employed, various damage-sensitive features are proposed to capture the deviations. 

For example, Sohn and Farrar (2001) presented a two-stage approach implementing combined 

autoregressive (AR) and autoregressive with exogenous input (ARX). They used the residual 

error, the difference between the measured vibration data and the prediction obtained from the 

AR-ARX model developed from the healthy condition of the structure, as damage-sensitive 

feature. Nair et al. (2006) presented a time series-based damage identification technique within a 

pattern classification framework. They used autoregressive moving average (ARMA) models 

and defined the damage-sensitive features as a function of the first three AR components. 

Recently, Gul and Catbas (2011a) used ARX models and sensor clustering damage identification 

method to detect and locate the damage. They defined a fit ratio based on the norms of measured 

output minus predicted output and measured output minus mean of measured output and used the 
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difference between the fit ratios of the models in healthy and damaged conditions of the structure 

as a damage-sensitive feature.  

 The autoregressive (AR) models used in time series-based damage identification 

techniques require that the input to the system is white noise. This requirement is usually 

satisfied in either of two ways: (1) ambient vibrations are recorded (Conte et al. 2008; Farrar et 

al. 1994; Farrar et al. 2000; Kramer et al. 1999), and (2) a shaker is used to apply the white noise 

loading (Mosavi et al. 2012; Sohn and Farrar 2001). The present study extends and evaluates 

such approach for using vibration response to a deterministic excitation source, such as a simple 

and repeatable drop weight source, to evaluate the occurrence and spatial location of damage in 

bridge structures. It uses a technique based on the convolution of vibration response of sensors 

with white noise to simulate the response from the white noise excitation source. An averaging 

technique is then used to minimize the effect of added randomness on the final results. The 

proposed technique is applied to two full-scale damaged bridges tested by our research group in 

the recent past (Ragland 2009) using a drop source. The objective of the current study is to 

develop AR-ARX damage identification technique with suitable modifications so that the 

induced damage in the two full-scale bridges that were studied can form a basis for 

generalization of this simple and inexpensive structural health monitoring technique without the 

need for permanent instrumentation. The vibration data considered is unique, as it was obtained 

from full-scale bridges before and after inducing known amounts of damage to the steel girders. 

The two types of bridges chosen in this study are very common in the state of Tennessee in terms 

of spans, connectivity, and structural details; thus a successful study is expected to have a large 

impact. 
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2.3. Damage identification procedure 

2.3.1. Geophone sensors and transfer function 

A geophone is a passive velocity sensor which is inexpensive, highly sensitive for detecting very 

small amplitudes of vibrations, developed for oil industry and vibration monitoring market. It 

typically comprises of a magnetic mass moving within a wire coil surrounded by a casing as 

shown in Figure 2.1. Relative movement of the magnetic mass to the wire coil, resulting from a 

given vibration source, induces a voltage that can be converted to the velocity. 

 

Wire coil

Magnetic mass

Casing

 

Figure 2.1. A typical Mark Products LRS-1000 geophone 

 

 Geophones are more beneficial than accelerometers for structural health monitoring 

applications that involves large number of sensors and small amplitude dynamic data because 

their unit cost is usually less, and they do not need any additional amplification or conditioning 

(Ragland et al. 2010, 2011). However, the output of a geophone needs to be corrected for 

magnitude and phase shifts due to the nature of their frequency response function. The output of 

a geophone sharply reduces linearly below its natural frequency, 9.984 Hz for this study, and 

thus requires adjustments based on its transfer function. Furthermore, when the frequency 

content of the signal is around the natural frequency, the geophone output induces known 
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amount of phase shift which can also be readily corrected using the transfer function of a given 

geophone. To correct the geophone's output (voltage) for the magnitude and phase shifts the 

following transfer function shown in Eq. (2.1) is used. 
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(2.1) 

where V is the geophone output (voltage), X is the corrected geophone output (velocity), n is 

the natural frequency of the geophone,  is the damping ratio of the geophone, i  is the 

imaginary unit such that 12 i ,   is the excitation frequency and G is the sensitivity of the 

geophone. 

 

2.3.2. Linear stationary time series model 

A time series is a sequence of observations of a variable over time. A linear stationary time series 

model representing the input-output relationship maybe written as shown in Eq. (2.2) (Ljung 

1999)  

)()1()()()1()()1()( 111 cnbnan ntectectentubtubntvatvatv
cba

 

 
(2.2) 

where, v(t) is output at time t, )1( tv … )( antv  are previous outputs on which the current 

output depends, )1( tu … )( bntu  are previous inputs on which the current output depends, and 

e(t) is white noise. an , bn , and cn  are the model orders and ia , ib  and ic are model unknown 
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parameters. This difference equation can be written in a compact form as shown in Eq. (2.3) 

which is often referred in the literature as autoregressive moving average model with exogenous 

input (ARMAX). 

)()()()()()( teqCtuqBtvqA 
                                          

(2.3) 

where 1q  is the backward shift operator and A(q), B(q) and C(q) are polynomials represented in 

Eq. 2.4a to 2.4c.   

a

a

n
n qaqaqA   1

11)(                          (2.4a)                        

          
b

b

n
n qbqbqB   1

1)(                                                      (2.4b) 

   c

c

n
n qcqcqC   1

11)(                                                   (2.4c) 

When 0cn , the ARMAX model simplifies to the ARX model shown in Eq. (2.5). Similarly, 

when 0 cb nn , the ARMAX model simplifies to the AR model shown in Eq. (2.6). The 

present study uses these two time series models, shown in Eqs. (2.5) and (2.6), for identifying the 

induced damage in the two full-scale bridges. 

)()()1()()1()( 11 tentubtubntvatvatv bnan ba
 

            
(2.5) 

)()()1()( 1 tentvatvatv ana
 

                                 
(2.6) 

 

2.3.3. Drop weight excitation source and autoregressive models 

The autoregressive (AR) models require that the input to the system is white noise (Brockwell 

and Davis 1991) while the vibration data used in this study corresponds to response of bridges to 

a controlled drop weight source which is not a white noise type excitation; therefore, drop weight 
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vibration response cannot be used directly in AR models. To simulate the dynamic response of 

the bridges for white noise excitation; a new idea is implemented based on the convolution 

approach (Williams 2012). 

 Convolution is used in linear systems to obtain the response of a system under any 

excitation if the impulse response of the system is known (Sadiku 1987). In general, the 

convolution of two signals x(t) and h(t) is represented by the symbol ‘*’ and defined by Eq. 

(2.7): 





  dthxthtxty )()()(*)()(                        (2.7) 

where  is a dummy variable and y(t) is the convolution of x(t) and h(t). In order to obtain the 

response of a bridge for white noise input from drop test response, x(t) is defined as normally 

distributed random values with a mean of zero and unit standard deviation representing the white 

noise and h(t) is selected as the drop test response. This convolution technique is illustrated in 

Figure 2.2 for a typical drop weight source response employed in our research.  

In Figure 2.2(a), a typical drop test response of a bridge with a length of 4 seconds is 

shown. This response is convolved with white noise with a length of 4 seconds, shown in Figure 

2.2(b), to obtain the anticipated response of the system under the white noise input as shown in 

Figure 2.2(c). As can be seen, the convolved response will have a decay part which starts after 

the original response length and corresponds to unloading. Since the response of the bridge under 

the white noise loading is required in this study, this decaying part is disregarded. Figure 2.3 

summarizes the steps required to create random data from the drop weight source response 

recorded by an array of sensors (geophones) to use in AR models. 
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Figure 2.2. Convolution of a drop test response with white noise: (a) A typical drop test response (b) 
White noise (c) The drop test response convolved with the white noise 
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Figure 2.3. Creating random data from drop test response recorded by a geophone 
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After obtaining the vibration data for white noise input and before applying any autoregressive 

model, this data is normalized according to Eq. (2.8) to be comparable at a sensor location. 

i

ii
i

tv
tv





)(ˆ

)(
                     

(2.8) 

where iv̂ is the convolved velocity of geophone i and iv is the normalized convolved velocity of 

geophone i. i  and i  are mean and standard deviation of the convolved velocity of geophone i, 

respectively. 

 

2.3.4. Creating databases and selecting the reference signal 

For damage identification in which unknown signals are compared with the signals obtained 

during the healthy condition of a structure, it is important to create databases from the signals 

obtained in healthy condition of the structure under different ambient conditions so that the 

unknown signals can be compared with the reference signals obtained in similar ambient 

condition. Sohn and Farrar (2001) presented a methodology to find the most similar signal from 

the database based on the Euclidean distance. First, all the signals in a database and the unknown 

(damaged) signal are approximated with an autoregressive (AR) model with an order of an  as 

shown in Eq. (2.9) and Eq. (2.10) for undamaged and damaged cases, respectively. 

)()()1()( 1 tentvatvatv uaunuu a
 

                           
(2.9) 

)()()1()( 1 tentvbtvbtv dadndd a
 

             
(2.10) 
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where the subscripts of u and d denote the undamaged and damaged conditions, respectively. 

Then, from several signals in the database, the signal that minimizes the difference of AR 

coefficients shown in Eq. (2.11) is selected as the reference signal for that unknown signal. 

2

1

)( i

n

i
i baDifference

a

 
                                              (2.11) 

 

2.3.5. Damage-sensitive feature selection 

A two-stage prediction model combining an AR model and an ARX model (Sohn and Farrar 

2001) is used to compute the damage-sensitive features. In the first stage, at each sensor location, 

a reference signal is calculated and suitable model order of AR, an , is determined. Then AR 

models with the order of an , AR( an ), is constructed for the healthy and damaged conditions as 

shown in Eq. (2.12) and Eq. (2.13), respectively. 

)()()1()( 1,1 tentvatvatv uaunuu a
 

                  
(2.12) 

)()()1()( 1,1 tentvbtvbtv dadndd a
 

                   
(2.13) 

The second subscript of 1 denotes the first stage of the prediction model. For the construction of 

a two-stage prediction model, it is assumed that the error between the measurement and the 

prediction obtained in healthy case, )(1, teu , is mainly caused by unknown external input; 

therefore, an ARX model can be defined. ARX model with the orders of bn  and cn  are 

constructed in healthy condition as shown in Eq. (2.14). 

)()()1()()1()( 2,1,1,11 tentedtedntvctvctv ucunubunuu cb
 

        
(2.14) 
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where the second subscript of 2 denotes the second stage of the prediction model. The ARX 

model obtained in healthy condition is used for the damaged condition to investigate the 

relationship of )(1, ted and )(tvd : 

)()()1()()1()( 2,1,1,11 tentedtedntvctvctv dcdndbdndd cb
 

       
(2.15) 

If the model obtained from the healthy condition is not a good representation of the unknown 

signal, there would be a significant change in the standard deviation of the residual error. 

Therefore, the standard deviation ratio of the residual errors, )(/)( 2,2, ud ee  , is used as 

damage-sensitive feature to identify the existence and spatial location of the damage. 

 

2.3.6. Identification of the damage occurrence 

This study uses an outlier analysis method to identify the damage occurrence corresponding to 

the observed values falling above a threshold value by adapting a methodology similar to 

Worden et al. (2000) where a Monte Carlo method was used. First, random data are created for 

healthy condition of the structure by convolving the data obtained in healthy condition of the 

structure with white noise for various geophone sensors; corresponding to various spatial 

locations on the bridge and damage-sensitive features (DSFs) are calculated. The process is 

repeated many times and DSFs are saved (in this study, the process is repeated and 5,000 DSFs 

are saved). The DSFs are sorted and the value above which only 5% of the simulations occur is 

selected as the threshold value, below which the bridge structure can be considered healthy. 

Physical states corresponding to observed data falling above the threshold (outlier) can be 

considered as damaged states. 
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2.4. Full-Scale I-40 bridge data sets used for the analysis 

This study uses the data of two full-scale damaged bridges along the I-40 west downtown 

Knoxville, to evaluate the proposed approach for damage identification. The test data was 

acquired for two bridges corresponding to the entrance ramp to James White Parkway from I-40 

westbound, and the I-40 westbound bridge over 4th Avenue, before the bridges were demolished 

during I-40 expansion project called Smartfix40 (Ragland 2009). The test bridges corresponded 

to: (1) a three-girder bridge in which damage was located at the mid-span of an exterior girder 

(case 1), and (2) a five-girder bridge in which damage was located near a support on an interior 

girder (case 2). Information about these two bridges and related data acquisition aspects are 

briefly explained here.  

 

2.4.1. Case 1: A three-girder bridge damaged at mid-span 

The entrance ramp to James White Parkway from I-40 westbound was constructed in 1967 in 

Knoxville, TN. It was a 30° skewed bridge consisting of three spans supported by three steel 

girders as shown in Figures 2.4 and 2.5. 

  

 

Figure 2.4. Photo of the entrance ramp to James White Parkway from I-40 westbound 
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(b) 

Figure 2.5. Entrance ramp to James White Parkway from I-40 westbound (a) Longitudinal profile (b) 
Cross-section (modified from Ragland 2009) 

 

This bridge was instrumented with geophones made by Mark Products (LRS-1000) to measure 

the vertical vibrations. Figure 2.6 shows an example array of geophones installed on the bridge 

deck to measure the vibrations corresponding to locations along the center beam. Sensor 

parameters corresponding to natural frequency, damping ratio, and sensitivity of these vertical 

geophones were experimentally determined as 9.984 Hz, 0.6076 and 160.6 mV/(cm/s) to use in 

field data correction procedure using the transfer function described earlier. The bridge was 

excited by a drop source, a 22.7 kg sandbag, dropped from a height of one meter on the bridge 

deck at six locations shown in Figure 2.7 and the vibration data were recorded. 
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Figure 2.6. An array of Geophones installed on the bridge deck over the center beam 
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Figure 2.7. Plan view of the entrance ramp to James White Parkway 

 

Vibration data was recorded at a total of 72 geophone locations shown in Figure 2.7, with a 

sampling rate of 1000 Hz for a total of 4 seconds using a 48-channel seismograph. The 72 

measurement locations were divided into three groups along the beam lines and drop test was 

repeated for each beam line until all 72 measurements were covered. Three damage scenarios 

shown in Figure 2.8, were applied to the beam No. 3 at mid-span of the bridge’s center span by 

incrementally cutting the beam upward from the bottom flange. 
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                                (a)                                  (b)                                 (c) 

Figure 2.8. Induced damage scenarios: (a) Bottom flange cut (D1) (b) Bottom flange plus ¼ of the web 
cut (D2) (c) Bottom flange plus ½ the web cut (D3) 

 

The proposed technique is applied to the measured vertical data sets using a MATLAB code 

after correcting the data considering the sensor transfer function. A sine-squared tapered band-

pass filter with the corner frequencies of 2, 3, 55 and 60 Hz is used for the corrections. These 

corner frequencies are selected based on the fact that the resolution of geophones degrades at low 

frequencies and also the electrical noise frequency is largely 60 Hz in the U.S. All the signals are 

convolved with normally distributed random values with a mean of zero and unit standard 

deviation to simulate the bridge tests for white noise input. The convolved data are then 

normalized. A database is created from the signals obtained in healthy condition of the bridge for 

every sensor location. To find a suitable reference signal for comparing corresponding output for 

damaged state at each sensor location, an AR model with the order of 20 is implemented in this 

study to obtain the most similar signal from the database based on Eq. (2.11). At each sensor 

location, the suitable AR model order is determined using the reference signal. A maximum AR 

model order of 20 is set for the analysis based on the Akaike Information Criterion (AIC) (Ljung 

1999) and the suitable model order is determined using the Minimum Description Length (MDL) 

criterion (MATLAB 2011). When AR model order is determined at each sensor location, AR 
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models are created for all the signals in healthy and damaged conditions to find the residual 

errors. These residual errors are used as input to ARX models. The reference signals and their 

residual errors obtained from the AR models are used to find the suitable ARX model orders ( bn  

and cn ) at each sensor location. In order to determine the suitable ARX model orders, the 

maximum model orders are limited to 3 to prevent any overfeeding. The reference data are split 

to two parts, where the first part is used for the estimation and the second part is used for the 

validation. The best model is then selected by comparing the output of the models with orders 

ranging from 1 to 3 with the validation data set. When the appropriate model orders are 

determined, ARX models are constructed for all the signals in healthy condition to find the 

residual errors. For each sensor, the same ARX model obtained in healthy condition of the bridge 

is used for the damaged condition to obtain the residual error in damaged condition. Damage-

sensitive feature (DSFs) is computed as the ratio of the standard deviation of the residual error in 

damaged condition to the standard ratio of the residual error in healthy condition. Since the 

proposed technique is based on the convolution with random values and potentially the choice of 

randomness could affect the predictions, this process is repeated several times and the average of 

DSFs at each sensor location is identified as illustrated in Figure 2.9 for data set No. 4 when the 

drop source was located as DS1.  

As shown in Figure 2.9, the implemented technique has successfully detected outliers for 

damage scenarios D2 and D3 while no outlier is detected for damage scenario D1 which indicate 

that damage is just detected for damage scenarios D2 and D3. For both cases that the existence of 

damage is successfully identified, it is seen that the maximum outliers are found at locations 
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other than the induced damage location; therefore, damage is not located. The procedure is 

repeated for the other vertical vibration data sets and all the results are summarized in Table 2.1. 
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(c) 

Figure 2.9. Damage identification results of the entrance ramp to James White Parkway for the data set 
No. 4 when drop source was located as DS1 (a) Damage scenario D1 (b) Damage scenario D2 (c) 

Damage scenario D3 

  

As shown in Table 2.1, for all the damage scenarios, the approach implemented in this 

study using the vertical vibration data sets is able to identify the occurrence of damage with 

minimum false decision. It is seen that from 72 cases studied here, damage is not correctly 

detected for just 1 case which corresponds to small damage level.    
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While the used two-step prediction technique had already shown to be able to locate the 

damage in simple laboratory model (Sohn and Farrar 2001), the results of the analysis presented 

in Table 2.1 indicate that it cannot consistently locate the damage in a real-life structure. It is 

seen that from 72 vertical vibration data sets used in this study, just in 7 cases damage is spatially 

located and only in 19 cases the damaged beam is correctly identified. Failure in locating the 

damage in this real-life bridge can be related to the high degree of redundancy of the bridge, 

uncertainties in repeated tests and measurements, and different ambient conditions which all can 

affect the damage identification results. 

  

Table 2.1. Summary of damage identification results for the entrance ramp to James White Parkway 

Drop Source 
Location 

Data Set No. 
Damage scenario 

D1 D2 D3 

DS1 

1 ● □ □ 
2 □ □ □ 
3 □ □ □ 
4 --- □ □ 

DS2 

1 □ □ ○ 
2 □ □ ○ 
3 □ □ □ 
4 ○ □ □ 

DS3 

1 ● ● ● 
2 ○ □ ● 
3 ● □ ● 
4 ○ □ □ 

DS4 

1 ○ □ □ 
2 ○ □ □ 
3 □ □ □ 
4 ○ □ ○ 

DS5 

1 ○ □ □ 
2 □ □ □ 
3 □ □ □ 
4 □ □ ○ 

DS6 

1 □ □ □ 
2 □ □ □ 
3 □ □ □ 
4 ○ □ □ 

●Damage spatially located; ○ Damage located on the damaged beam. 
□ Damage detected but not located; --- Damage not detected. 
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It seems from Table 2.1 that damage localization results are improved when drop source 

is located on the middle girder causing the whole structure to vibrate. However, no success is 

found in locating the damage when drop source is located near the bent No. 2 shown in Figure 

2.7. The bridge drawings show that the girder-bent connections at the bent No. 2 resist the 

girders rotation around the bent axis causing the vibration of the bridge to be limited when drop 

source is located near the bent No. 2. Therefore, it seems that optimized results are obtained 

when the whole structure is vibrated and the vibration amplitudes are maximized. 

 

2.4.2. Case 2: A five-girder bridge damaged near a support 

The I-40 westbound bridge over 4th Avenue is used for evaluating the feasibility of damage 

identification proposed here when damage is located near a support for a highly structurally 

redundant bridge with very high chance of re-distribution of external loads. The considered 

bridge was a 45° skewed bridge consisting of three spans supported by five steel girders as 

shown in Figures 2.10 and 2.11. 

  

 

Figure 2.10. Photo of the I-40 westbound bridge over 4th Avenue 
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Figure 2.11. I-40 westbound bridge over 4th Avenue: (a) Longitudinal profile (b) Cross-section (modified 
from Ragland 2011) 

 

The bridge was excited by dropping the sandbag from a height of one meter on the bridge deck at 

nine locations shown in Figure 2.12. Data was recorded at a total of 120 measurement locations 

with a sampling rate of 1000 Hz for a total of 3 seconds using the 48-channel seismograph. The 

120 measurement locations were divided into five groups along the beam lines to obtain the 

vibration measurements. The same damage scenarios mentioned earlier for case 1 were 

implemented for this bridge as well. Damage was located on an interior girder close to a support 

to further study the effectiveness of damage identification techniques for cases where damage is 

near a support as it is expected that vibration-based damage detection is less reliable at locating 

the damage occurring near a support (Zhou et al. 2007).  
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Figure 2.12. I-40 westbound bridge over 4th Avenue: geophone layout (modified from Ragland et al. 
2011) 

 

The same damage identification procedure mentioned earlier for case 1 is repeated here to 

identify the induced damage on the I-40 westbound bridge over 4th Avenue. Table 2.2 

summarizes the results of the damage identification for all the vertical vibration data sets 

recorded during the test. 

As shown in Table 2.2, the proposed technique has successfully detected the induced 

damage located on an interior girder near a support for all the studied cases, even when the 

induced damage is small. However, just in two cases spatial location of the damage has been 

successfully identified which indicate that the proposed vibration-based damage identification 

technique cannot successfully locate the damage occurred near a support. It is also seen that from 

54 vertical vibration data sets studied, just in 15 cases damaged beam is correctly identified. 

Therefore, it is clear that the implemented damage identification technique cannot successfully 

identify the damaged beam too. Compared with case 1, it is seen that when damage is located on 

an interior girder near a support, the chance of spatially locating the damage considerably 

decreases. 
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Table 2.2. Summary of damage identification results for the I-40 westbound bridge over 4th Avenue 

Drop Source 
Location 

Data Set No. 
Damage scenario 

D1 D2 D3 

DS1 
1 □ ○ □ 
2 □ □ □ 

DS2 
1 ○ □ ○ 
2 ○ □ □ 

DS3 
1 □ □ □ 
2 □ ○ □ 

DS4 
1 □ □ □ 
2 □ □ □ 

DS5 
1 □ □ □ 
2 ● □ ● 

DS6 
1 □ □ □ 
2 □ ○ ○ 

DS7 
1 □ □ □ 
2 ○ □ □ 

DS8 
1 ○ □ □ 
2 □ □ □ 

DS9 
1 ○ ○ ○ 
2 □ ○ □ 

●Damage spatially located; ○ Damage located on the damaged beam. 
□ Damage detected but not located; --- Damage not detected. 

 

2.5. Conclusions 

This study presents an innovative technique for damage identification of bridge structures using 

a controlled drop weight source, inexpensive array of geophones, and time series analysis. The 

vibration data recorded by an array of geophones is corrected for magnitude and phase shifts and 

then convolved with white noise to create suitable input required for autoregressive time series 

models. A two-stage prediction model, combined autoregressive (AR) and autoregressive with 

exogenous input (ARX), is employed to calculate damage-sensitive feature which is defined as 

the ratio of the standard deviation of residual error in damaged condition to the standard 

deviation of residual error in healthy condition. An outlier analysis method is used to identify the 
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existence of damage. The proposed technique is verified using the vertical vibration data sets of 

two full-scale bridges subjected to controlled levels of known damage on the steel girders.  

- The damage detection results using the vibration data sets of the two test bridges indicate that 

the proposed damage identification technique is able to identify the existence of damage, even 

when damage level is small and damage is located at an obscure position such as near a support 

on an interior girder.  

- The damage localization results on the two full-scale bridges with three and five steel girders 

indicate that the proposed damage identification technique cannot consistently locate the 

damage. It is seen that when damage is located on an interior girder near a support, the chance of 

locating the damage using the implemented damage identification technique considerably 

reduces. 

- It is also seen from the analysis results of the three-girder bridge damaged at mid-span of an 

exterior girder that damage localization results are improved when the vibration source is located 

in a place that the whole structure vibrates and the vibration amplitudes are maximized.  
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Chapter 3: Triaxial damage identification of full-scale bridges excited by drop 

weight using time series analysis 

 

Reza Vasheghani-Farahani and Dayakar Penumadu 

 

My primary contributions to this chapter included: (1) gathering and reviewing literature, 

(2) processing and analyzing of all field data, (3) filter designing, (4) writing and developing 

MATLAB codes for implementing time-series based damage identification technique, (5) 

adapting an outlier analysis method to detect the damage (6) developing the idea of using 

convolution with random values (7) defining a new damage-sensitive feature, and (8) most of the 

writing. 
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3.1. Abstract 

This study presents a new technique for damage identification of bridges using a drop weight and 

time series analysis. In this technique, the bridge is excited by dropping the drop weight on the 

bridge deck and vibration data is recorded using a dense array of geophones, highly sensitive 

sensors. The vibration data is corrected with regard to the geophones properties and then 

convolved with random values to create vibration data under random loading. Autoregressive 

with exogenous input (ARX) models and sensor clustering technique is used to obtain prediction 

errors in healthy and damaged conditions of the bridge. Damage-sensitive features are defined as 

the ratio of the standard deviations of the prediction errors to identify the existence and location 

of damage. The proposed technique is verified using the triaxial vibration data of two full-scale 

bridges in Knoxville, Tennessee subjected to controlled level of damage to the bridge girder. The 

damage identification technique is performed independently for each triaxial vibration to 

investigate the efficacy of each vibration in detecting and locating the induced damage. The 

results of the analysis indicate that the proposed damage identification technique can detect the 

damage in real-life bridges, even when damage is located near a support on an interior girder. 

The triaxial analysis results indicate that for the two test bridges excited mainly vertically, all the 

triaxial vibration data are able to detect the damage; however, none of them can consistently 

identify the spatial location of the damage. 

 

3.2. Introduction 

In recent years, Structural Health Monitoring (SHM) of bridges has received increasing attention 

for implementing a damage detection strategy. It consists of observation of the bridge over time 
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and obtaining structural responses using an array of sensors, extraction of damage-sensitive 

features (DSFs), and statistical analysis to detect changes that may indicate damage in the 

structure. A common approach for extracting the DSFs from SHM data to identify the damage is 

using time series models. When a time series model approximates the vibration response of a 

structure and model coefficients or residual error are obtained, any deviations in these 

coefficients or residual error can be inferred as an indication of a change or damage in the 

structure. Several time series-based damage identification algorithms have been proposed and 

developed by different researchers to extract the DSFs which can identify the damage (Gul and 

Catbas 2011a,b, Lu and Gao 2005, Nair et al. 2006, Omenzetter and Brownjohn 2006, Sohn and 

Farrar 2001). Sohn and Farrar (2001) presented a two-stage prediction model, combined 

autoregressive (AR) and autoregressive with exogenous input (ARX), to obtain DSF 

corresponding to the residual error, the difference between the measured vibration data and the 

prediction obtained from the AR-ARX model developed from the healthy condition of the 

structure. Lu and Gao (2005) presented a new damage identification method based on linear 

dynamic equations and formulated in the form of ARX time series model. They defined DSF as 

the standard deviation of the residual error which was the difference between the measured 

signal and the predicted signal from the ARX model created from a reference state. Nair et al. 

(2006) presented a time series-based damage identification technique within a pattern 

classification framework. They used autoregressive moving average (ARMA) models and 

defined DSF as a function of the first three AR components. Recently, Gul and Catbas (2011a,b) 

presented a new damage identification technique based on ARX models and sensor clustering to 
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identify damage. They defined DSF based on the norms of measured output minus predicted 

output and measured output minus mean of measured output. 

 A critical aspect of SHM is data acquisition which involves the source of vibration 

(ambient loading, drop test,...), the sensor type (unidirectional or triaxial sensors, accelerometer 

or geophone,...), the sensors number and location, and the storage and transmittal hardware, 

whose selections depend on the economic consideration (Farrar and Worden 2007). In SHM of 

bridges, where several sensors are needed, use of unidirectional sensors instead of triaxial 

sensors can considerably reduce the cost of data acquisition. However, it is important to know 

the most effective direction of vibration so that the unidirectional sensors can be lined up in that 

direction. Several researchers have conducted numerical, laboratory and full-scale tests to study 

the most effective vibrations for SHM (Fasel et al. 2002, Ragland et al. 2011, Cheung et al. 

2008). Fasel et al. (2002) simulated a three story building driven by an electro dynamic shaker 

attached to the base of the structure and reported that sensors in line with the excitation were 

most effective while the sensors lined up perpendicular to the excitation were wholly ineffective. 

Ragland et al. (2011) presented finite element analysis of a five-girder bridge subjected to 

vertical vibration source and indicated that horizontal response of the bridge was more sensitive 

to the damage than the vertical response. Cheung et al. (2008) used the triaxial vibration data of 

the Z24 bridge (Kramer et al. 1999) obtained under the ambient loading and reported that similar 

results were obtained using horizontal and vertical vibration data. 

The objective of the current study is first developing the ARX model and sensor 

clustering damage identification technique with suitable modifications so that the induced 

damage in the two full-scale bridges tested by Ragland (2009) can be identified. These two 
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bridges represent about 70% of existing bridges in the state of Tennessee considering their span, 

connectivity and structural detail; thus, successful study is expected to have a large impact. 

Second, by applying the technique in three global directions, the efficacy of each triaxial 

vibration on SHM of the bridges is investigated. Several data sets are studied so that a 

generalized conclusion can be made for this simple and inexpensive SHM technique. 

 

3.3. Damage identification procedure 

3.3.1. An introduction to geophones 

A geophone is a passive velocity sensor which is inexpensive, highly sensitive to small 

vibrations, developed for oil industry and vibration monitoring market. It typically comprises of 

a magnetic mass moving within a wire coil surrounded by a casing as shown in Figure 3.1. 

Relative movement of the magnetic mass to the wire coil, resulting from a given vibration 

source, induces a voltage that can be converted to the velocity. 

 

Wire coil

Magnetic mass

Casing

 

Figure 3.1. A typical Mark Products LRS-1000 geophone  

  

Geophones are more beneficial than accelerometers for structural health monitoring 

applications that involve large number of sensors and small amplitude dynamic data because 
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their unit cost is usually less, and they do not need any additional amplification or conditioning 

(Ragland et al. 2010, 2011). However, the output of a geophone needs to be corrected for 

magnitude and phase shifts due to the nature of its frequency response function. The output of a 

geophone sharply reduces linearly below its natural frequency and thus requires adjustments 

based on its transfer function. Furthermore, when the frequency content of a signal is around the 

natural frequency of the geophone, the geophone output induces known amount of phase shift 

which can also be readily corrected using the transfer function of a given geophone. To correct 

the geophone's output (voltage) for the magnitude and phase shifts the transfer function shown in 

Eq. (3.1) is used. 
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(3.1) 

where V is the geophone output (voltage), X is the corrected geophone output (velocity), n is 

the natural frequency of the geophone,  is the damping ratio of the geophone, i  is the 

imaginary unit such that 12 i ,   is the excitation frequency and G is the sensitivity of the 

geophone. 

  

3.3.2. An introduction to ARX time series models 

A linear stationary time series model representing the input-output relationship can be written as 

shown in Eq. (3.2), which is known as the autoregressive moving average model with exogenous 

input (ARMAX) (Ljung 1999).  



 

 

41 

 

)()()()()()( teqCtuqBtvqA                                             (3.2) 

where )(tv  is output at time t, )(tu  is input at time t, and )(te is white noise. )(qA , )(qB  and 

)(qC  are polynomials shown in Eq. 3.3a to 3.3c. 
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                              (3.3b) 
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11)(                            (3.3c) 

where 1q  is the backward shift operator, an , bn , and cn are model orders and ia , ib  and ic are 

model unknown parameters. When 0cn , the ARMAX model simplifies to the ARX model 

shown in Eq. (3.4). The structure of this ARX model is shown in Figure 3.2. 

)()()()()( tetuqBtvqA 
                              

(3.4) 
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Figure 3.2. The ARX model structure (adapted from Ljung 1999) 

 

3.3.3. ARX models and sensor clustering damage identification technique 

In ARX models and sensor clustering damage identification technique (Gul and Catbas 2011a,b), 

several sensor clusters are defined and ARX models are created for each cluster in healthy 
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condition of the structure. These models are then employed for the data obtained in damaged 

condition of the structure to estimate DSFs. In this study, this technique is applied to vibration 

data obtained from drop weight test and convolved with random values with a mean of zero and 

unit standard deviation. For all sensors, the convolved data are first normalized according to Eq. 

(3.5) to be comparable at a sensor location: 
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ii
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tv
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)(ˆ

)(        
                                    

(3.5) 

where iv̂ is the convolved velocity of geophone i and iv is the normalized convolved velocity of 

geophone i. i  and i  are mean and standard deviation of the convolved velocity of geophone i, 

respectively. After normalizing the convolved vibration data, several sensor clusters are defined 

and ARX models shown in Eq. (3.6) are created for each cluster in healthy condition of the 

structure. 

)()()()()( tetvqBtvqA r                         (3.6) 

where )(tvr is the convolved velocity response at the reference sensor (geophone) of a cluster, 

and )(tv  is the matrix of the convolved velocity responses of the sensors inside the cluster.  

To explain the methodology, a bridge girder with 24 sensors is illustrated in Figure 3.3. 

As shown, for a girder with 24 sensors, 24 clusters are defined having one reference sensor each. 

The first cluster includes two sensors, the reference sensor and the sensor next to it. For the 

second cluster, there are three sensors in which the middle one is considered as the reference 

sensor. Clusters 3-23 are defined similarly to the second cluster. The last cluster is defined 

similarly to the first cluster where the reference sensor is the last sensor. For each of these 
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clusters, the inputs to the ARX models are the convolved outputs of the sensors in the cluster, 

while the ARX model output is the convolved output of the reference sensor.  

After creating the ARX models in healthy condition of the structure, these models are 

used for the convolved data obtained from damaged condition to estimate the prediction errors. 

A new damage-sensitive feature is defined as the ratio of the standard deviation of the prediction 

error in damaged condition to the standard deviation of the prediction error in healthy condition. 

 

v1 v2 v3 v4 v21 v22 v23 v24

Reference sensor

1st cluster

Reference sensor

2nd cluster

Reference sensor

3rd cluster

Reference sensor

24th cluster

v1 v2 v3 v4 v21 v22 v23 v24

v1 v2 v3 v4 v21 v22 v23 v24

v1 v2 v3 v4 v21 v22 v23 v24

Inputs
ARX Model1

Output v1

Inputs
ARX Model2

Output v2

Inputs
ARX Model3

Output v3

Inputs
ARX Model24

Output v24

Sensor No. 24Bridge girder

 

Figure 3.3. Creating ARX models for different sensor clusters along a bridge girder with 24 sensors 

 

To detect the damage, an outlier analysis method is used. A methodology similar to 

Worden et al. (2000) where a Monte Carlo method was used is adapted. A threshold is defined 

by using a numerical simulation technique where 5000 simulations are conducted. For each 
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simulation, the data obtained in healthy condition of the structure is convolved with random 

values with a mean of zero and unit standard deviation and DSF is calculated and saved. The 

DSFs are sorted and the value above which only 5% of the simulations occur is selected as the 

threshold value, below which the structure can be considered as healthy. 

 

3.4. Full-Scale I-40 bridge test data 

This study uses the data of two full-scale damaged bridges along the I-40 west downtown 

Knoxville, to evaluate the proposed damage identification technique. The test data was acquired 

for the entrance ramp to James White Parkway from I-40 westbound, and the I-40 westbound 

bridge over 4th Avenue, before the bridges were demolished during I-40 expansion project called 

Smartfix40 (Ragland 2009). The test bridges corresponded to: (1) a three-girder bridge in which 

damage was located at the mid-span of an exterior girder (case 1), and (2) a five-girder bridge in 

which damage was located near a support on an interior girder (case 2). Information about these 

two bridges and related data acquisition aspect are briefly explained here. More information 

about the experimental tests can be found in Ragland (2009). 

 

3.4.1. Case 1: A three-girder bridge damaged at mid-span 

3.4.1.1. Description of the bridge and data acquisition 

The entrance ramp to James White Parkway from I-40 westbound was constructed in 1967 in 

Knoxville, TN. It was a 30° skewed bridge consisting of three spans supported by three steel 

girders as shown in Figures 3.4 and 3.5.  
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Figure 3.4. Photo of the entrance ramp to James White Parkway from I-40 westbound 
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(b) 

Figure 3.5. Entrance ramp to James White Parkway from I-40 westbound (a) Longitudinal profile (b) 
Cross-section (modified from Ragland 2009) 

 

This bridge was instrumented with triaxial geophones to obtain vibration measurements. 

Inexpensive geophones, Mark Products LRS-1000 and Mark Products L-28LBH were used as 

vertical and horizontal geophones, respectively. Table 3.1 presents the geophones parameters 

determined experimentally.  
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Table 3.1. Experimentally determined geophone parameters 

Parameter 
Geophone Type 

LRS-1000 L-28LBH 

Frequency, ωn (Hz) 9.984 5.070 

Damping Ratio,   0.6076 0.4252 

Sensitivity (mV/(cm/s)) 160.6 348.0 

  

The bridge was excited vertically by a drop source, a 22.7 kg sandbag, dropped from a height of 

one meter at six locations, shown in Figure 3.6, on the bridge deck and vibration data was 

recorded in three global directions. 

  

DS4

C
L B

ent N
o.2

"D": Damaged location : Geophone location DS1-DS6: Drop source location

C
L B

ent N
o.1

Beam No.3

Beam No.2

Beam No.1

"D"
DS2

DS6

DS3

DS1

DS5Geophone 
No.1

Geophone 
No.24

22 spaces at 1.98 m 1.37 m

 

Figure 3.6. Plan view of the entrance ramp to James White Parkway from I-40 westbound 

 

Vibration data was recorded at a total of 72 geophone locations shown in Figure 3.6, with a 

sampling rate of 1000 Hz for a total of 4 seconds using a 48-channel seismograph. The 72 

measurement locations were divided into three groups along the beam lines. For each group of 

sensors, the sandbag was dropped and the vertical and transverse vibration data were recorded; 

then, the transverse sensors were rotated by 90° and the sandbag was dropped again to obtain the 

vertical and longitudinal vibration data. Once the data was recorded for all the three directions, 
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the line of sensors was shifted to the next beam line and the tests were repeated until all the 72 

measurement locations were covered. 

Progressive damage scenarios were induced on the beam No. 3 at mid-span of the 

bridge’s center span by cutting the bottom flange towards the half of the web height to simulate a 

crack that may occur due to fatigue or excessive vehicle weight (Ragland 2009). In this study, 

the vibration data corresponding to the bottom flange plus half of the web height cut is used for 

the analysis. 

 

3.4.1.2. Data analysis and results 

The triaxial vibration data already obtained by dropping a 22.7 kg sandbag at six locations shown 

in Figure 3.6, is used in the proposed damage identification technique. The vibration data 

recorded by the geophones are corrected for magnitude and phase shifts using Eq. (3.1) and a 

sine-squared tapered band-pass filter with the corner frequencies of 2, 3, 55 and 60 Hz is applied. 

These corner frequencies are selected based on the fact that the resolution of geophones degrades 

at low frequencies and also the electrical noise frequency is largely 60 Hz in the U.S. The 

corrected vibration data is first convolved with random values with a mean of zero and unit 

standard deviation to simulate the response of the bridge for random loading. 24 sensor clusters 

are defined along each beam line and ARX models are created for each cluster in healthy 

condition of the bridge. In order to determine the suitable ARX model orders, first maximum 

model orders are set to 5 to prevent any overfeeding. Then the convolved data obtained from 

healthy condition of the structure is split to two parts, where the first part is used for the 

estimation and the second part is used for the validation. The best model is then selected by 
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comparing the output of the models with orders ranging between 1 and 5 with the validating data 

(Matlab 2011). The ARX models determined in healthy condition of the bridge are used for the 

data obtained in damaged condition and convolved with random values to find the prediction 

errors and to calculate the damage-sensitive features. Since the proposed technique is based on 

the convolution with random values and potentially the choice of randomness could affect the 

predictions, this process is repeated several times and the average of DSFs at each sensor 

location is identified as illustrated in Figure 3.7 for the vertical data set of 1 when drop source 

was located at DS1.  

As shown in Figure 3.7, the implemented technique has successfully detected outliers 

which indicate that damage is detected. The maximum DSF is found at geophone No. 13 on the 

beam No. 3 where the damage was induced during the test. Therefore, spatial location of the 

damage is correctly identified. The procedure is repeated for other vibration data sets and all the 

results are summarized in Table 3.1. Here, longitudinal direction refers to the bridge length 

direction whereas transverse refers to the direction perpendicular to the bridge length. 
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Figure 3.7. Results of the damage identification for the entrance ramp to James White Parkway using the 
first vertical data set when drop source was located at DS1 
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Table 3.2. Damage identification results summary for the entrance ramp to James White Parkway 

Drop Source 
Location 

Data Set No. 
Vibration Component 

Longitudinal Transverse Vertical 

DS1 

1 N/A □ ● 
2 N/A □ □ 
3 ○ N/A □ 
4 ○ N/A □ 

DS2 

1 N/A □ ○ 
2 N/A □ □ 
3 □ N/A ○ 
4 □ N/A □ 

DS3 

1 N/A □ ● 
2 N/A □ ● 
3 ○ N/A ● 
4 ○ N/A □ 

DS4 

1 N/A □ □ 
2 N/A ○ □ 
3 □ N/A □ 
4 ○ N/A ○ 

DS5 

1 N/A □ □ 
2 N/A □ □ 
3 ○ N/A ○ 
4 ○ N/A ○ 

DS6 

1 N/A □ □ 
2 N/A ○ □ 
3 ○ N/A ○ 
4 ○ N/A ○ 

●Damage spatially located;  ○ Damage located on the damaged beam; 
□ Damage detected but not located; --- Damage not detected; N/A data is not available 

 

As shown in Table 3.2, the implemented damage identification technique is able to detect 

the induced damage in the entrance ramp to James White Parkway. It is seen that all the triaxial 

vibration data can be used to identify the existence of damage when bridge is damaged at mid-

span of an exterior girder and vibrated mainly vertically.  

From Table 3.2, it is clear that none of the triaxial vibrations can consistently locate the 

damage using the implemented damage identification technique. Side by side comparison of the 

vibrations recorded simultaneously reveals that vertical vibrations are better choices to locate the 

damage than the horizontal vibrations when the main excitation source is vertical. It is seen that 
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from 24 vertical vibration data sets, damage has been spatially located for 4 cases while none of 

the horizontal vibration data sets could locate the damage. Therefore, it seems that vibration 

along the dominant excitation source is the best option to line up the unidirectional sensors for 

SHM applications. 

 

3.4.2. Case 2: A five-girder bridge damaged near a support 

3.4.2.1. Description of the bridge and data acquisition 

The I-40 westbound bridge over 4th Avenue is used for evaluating the feasibility of damage 

identification proposed here when damage is located near a support for a highly structurally 

redundant bridge with very high chance of re-distribution of external loads. The considered 

bridge was a 45° skewed bridge consisting of three spans supported by five steel girders as 

shown in Figures 3.8 and 3.9. 

 

 

Figure 3.8. Photo of the I-40 westbound bridge over 4th Avenue 
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Figure 3.9. I-40 westbound bridge over 4th Avenue: (a) Longitudinal profile (b) Cross-section (modified 
from Ragland et al. 2011) 

 

This bridge was instrumented by the same geophones as case 1 in three global directions to 

obtain the vibration measurements. The bridge was vibrated by dropping a 22.7 kg sandbag from 

a height of one meter at nine locations shown in Figure 3.10 on the bridge deck.  
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Figure 3.10. I-40 westbound bridge over 4th Avenue: geophone layout (modified from Ragland et al. 
2011) 

  

Data was recorded at a total of 120 geophone locations with a sampling rate of 1000 Hz for a 

total of 3 seconds using the 48-channel seismograph. The 120 measurement locations were 
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divided into five groups along the beam lines. For each group of sensors, the sandbag was 

dropped and the vertical and transverse vibration data were recorded; then, the horizontal sensors 

were rotated by 90° and the sandbag was dropped again to obtain the vertical and longitudinal 

vibration data. Once the data was recorded for all the three directions, the line of sensors were 

shifted to the next beam line and the tests were repeated until all the 120 measurement locations 

were covered. The same damage scenarios mentioned earlier for case 1 were implemented for 

this bridge as well and the vibration data corresponding to the bottom flange plus half of the web 

cut is used for the analysis. For this case, damage was located on an interior girder close to a 

support to further study the effectiveness of damage identification techniques for cases where 

damage is near a support as it is expected that vibration-based damage detection is less reliable at 

locating the damage occurring near a support (Zhou et al. 2007).  

 

3.4.2.2. Data analysis and results 

The same damage identification procedure mentioned earlier for case 1 is repeated here for the 

triaxial vibration data of I-40 westbound bridge over 4th Avenue obtained from nine drop source 

locations shown in Figure 3.10 and the analysis results are summarized in Table 3.3. 

As shown in Table 3.3, the implemented damage identification technique has 

successfully detected the damage located on an interior girder near a support. It is seen that all 

the triaxial vibration data obtained from mainly vertical excitation source are able to detect the 

damage occurred on an interior girder near a support. However, none of them can locate the 

damage spatially or on the damaged beam. Compared with case 1 in which damage was located 
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at mid-span of an exterior girder, it is seen that when damage is located on an interior girder near 

a support, the chance of spatially locating the damage is considerably decreased. 

 
Table 3.3. Damage identification results summary for the I-40 westbound bridge over 4th Avenue 

Drop Source 
Location 

Data Set No. 
Vibration Component 

Longitudinal Transverse Vertical 

DS1 
1 N/A □ □ 
2 □ N/A □ 

DS2 
1 N/A □ ○ 
2 □ N/A □ 

DS3 
1 N/A □ □ 
2 □ N/A □ 

DS4 
1 N/A □ □ 
2 □ N/A □ 

DS5 
1 N/A □ □ 
2 □ N/A □ 

DS6 
1 N/A □ □ 
2 □ N/A ○ 

DS7 
1 N/A □ □ 
2 ○ N/A □ 

DS8 
1 N/A □ □ 
2 □ N/A □ 

DS9 
1 N/A □ □ 
2 ○ N/A □ 

●Damage spatially located;  ○ Damage located on the damaged beam;  
□ Damage detected but not located; --- Damage not detected; N/A data is not available 

 

3.5. Summary and conclusions 

This study presents a new damage identification technique for bridge structures using a drop 

weight source, inexpensive geophones and time series analysis. The vibration data obtained from 

drop test and recorded by geophones are corrected with regard to the geophones properties and 

then convolved with random values to simulate the tests for random loading. Several sensor 

clusters are defined along the structure and ARX models are created for each cluster in healthy 

condition of the structure. These ARX models are used for the data obtained in damaged 
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condition of the structure and convolved with random values to calculate the prediction errors. A 

new damage-sensitive feature is defined as the ratio of the standard deviations of the prediction 

errors to identify the existence and location of the damage. An outlier analysis method is used to 

identify the existence of damage. The validity of the proposed technique is demonstrated by 

using the triaxial vibration data of two full-scale bridges subjected to a controlled damage 

scenario induced to the bridge girder. The damage identification technique is repeated for the 

three global directions to investigate the efficacy of each longitudinal, transverse, and vertical 

vibration on structural health monitoring of the bridges. 

- The results of the analysis for the two test bridges indicate that the proposed damage 

identification technique can identify the existence of damage in real-life bridges, even when 

damage is located at an obscure position such as on an interior girder near a support. The triaxial 

analysis results show that all triaxial vibrations have the ability to identify the damage when the 

main excitation source on the bridge is vertical. 

- The damage localization results on a three-girder bridge in which damage was induced at a 

simple position, at mid-span of an exterior girder, show that damage cannot be consistently 

located. No success is found in locating the damage using the horizontal vibrations when the 

excitation source is applied mainly vertically but it is seen that a few vertical data sets can 

spatially locate the damage. Therefore, it seems that when bridge is excited mainly vertically, 

vertical vibrations are better choices for lining up the unidirectional sensors.   

- The damage localization results on a five-girder bridge damaged at an obscure position, on an 

interior girder near a support, and excited mainly vertically show that damage cannot be located 

regardless of the vibration orientation.  
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Chapter 4. Dynamic Analysis and Damage Identification of a Full-Scale 

Bridge Excited by a Drop Weight 

 

Reza Vasheghani-Farahani and Dayakar Penumadu 

 

My primary contributions to this chapter included: (1) gathering and reviewing literature, 

(2) developing and calibrating finite element model of the bridge for modal analysis and then 

explicit dynamic analysis (3) writing and developing MATLAB codes for implementing time-

series based damage identification technique, (4) adapting an outlier analysis method to detect 

the damage, and (5) most of the writing.  
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4.1. Abstract 

Recently tested a full-scale five-girder damaged bridge excited by a drop weight indicated that 

dynamic properties of the bridge did not significantly change after inducing the damage on an 

interior girder near a support while vibration-based damage identification techniques are 

typically based on the premise that dynamic characteristics of a structure change after the 

occurrence of a damage. This study presents finite element (F.E.) analysis of the bridge to verify 

the effect of damage to the bridge girder on the dynamic properties of the bridge and also to 

investigate the effects of damage location and extent, efficacy of each triaxial vibration, and 

additive noise to the vibration data on the vibration-based damage identification technique. 

Autoregressive with exogenous input (ARX) models and sensor clustering damage identification 

technique is used to identify the induced damage from vibration data obtained from F.E. models. 

The analysis results indicate that dynamic properties of the bridge do not significantly change 

after inducing the damage occurred near a support but the implemented damage identification 

technique can still detect the damage. Damage identification results show that for the bridge 

vibrated vertically: (1) the implemented technique can detect and locate the damage occurred at 

mid-span of an exterior girder for various damage levels (2) when damage is located near a 

support on an interior girder, damage is detected but not located (3) all the triaxial vibration data 

can be used to detect the damage but vertical vibration data is the best option to locate the 

damage (4) Additive noise to the vibration data reduces the damage localization resolution (5) 

the implemented damage identification technique can be still used to identify multi-damage 

scenarios if damage level is large. 
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4.2. Introduction 

One of the main objectives of Structural Health Monitoring of bridges is damage identification 

and integrity assessment (Zhang 2007). A variety of damage identification techniques have been 

proposed based on the premise that changes in the dynamic characteristics of a structure can be 

used as an indicator of damage or deterioration (Doebling et al. 1998). One of the common 

damage identification techniques is time series-based damage identification technique which 

relies on the fact that when a time series model approximates the vibration response of a 

structure and model coefficients or residual error are obtained, any deviations in these 

coefficients or residual error can be inferred as an indication of a change or damage in the 

structure. Several time series-based damage identification algorithms have been proposed and 

developed by different researchers to extract damage-sensitive features which can identify the 

damage (Gul and Catbas 2011a,b, Lu and Gao 2005, Nair et al. 2006, Omenzetter and 

Brownjohn 2006, Sohn and Farrar 2001). For example, Lu and Gao (2005) presented a new 

method for damage diagnostic based on linear dynamic equations and formulated in the form of 

autoregressive with exogenous input (ARX) model. They used the standard deviation of the 

residual error which was the difference between the measured signals from any state of the 

system and the predicted signals from the ARX model created from a reference state, as damage-

sensitive feature. They used two numerical mass-spring systems and indicated that their 

approach was successful to detect and locate the damage. Recently, ARX models and sensor 

clustering technique has been used for damage identification (Gul and Catbas 2011a,b). In this 

technique, ARX models are created for sensor clusters in healthy condition of the structure; then, 

these models are used for the data obtained in damaged condition of the structure to estimate the 
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damage-sensitive features. Gul and Catbas (2011a) used the ARX models and sensor clustering 

damage identification method for ambient vibration data to detect and locate the damage. They 

defined a fit ratio based on the norms of measured output minus predicted output and measured 

output minus mean of measured output and used the difference between the fit ratios of the 

models in healthy and damaged conditions of the structure as a damage-sensitive feature. They 

applied this technique to a laboratory steel grid structure subjected to different damage scenarios 

and indicated that damage was detected and located for most of the cases. They also used the 

data from Z24 bridge (Kramer et al. 1999) where different levels of pier settlement were applied 

as damage and showed that damage was detected and located with a minimum number of false 

alarms. 

In real-life bridge monitoring, environmental and operational effects; such as changes in 

temperature (Peeters and Roeck 2001) and noise (Zhang 2007), can make the use of vibration 

based-damage identification techniques difficult since they can affect the dynamic characteristics 

of a bridge similar to the damage. Moreover, it has been shown that fundamental frequencies and 

mode shapes of real-life bridges may not significantly influenced by local damage (Ragland 

2009, Ragland et al. 2011). All of these facts invoke the need for some simplified studies of full-

scale bridges to better understand the factors that can affect dynamic characteristics of the bridge 

and subsequently the ability of vibration-based damage identification techniques to identify the 

damage. 

This study presents F.E. analysis of a full-scale five-girder bridge excited by a drop 

weight on the bridge deck to obtain simulated vibration data for varying single-damage and 

multi-damage scenarios including those not imposed during the field tests to see if the induced 
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damage can be identified by vibration-based damage identification techniques for different levels 

of noise in the vibration data. It also investigates the efficacy of each triaxial vibration 

component in identifying the induced damage. The bridge considered in this study is a common 

bridge type in the U.S.; therefore, the obtained results can be applicable to a large number of 

bridges. 

 

4.3. Description of the bridge 

The I-40 westbound bridge over 4th Avenue was constructed in 1967 in Knoxville, TN.  It was a 

45° skewed bridge consisting of three spans supported by five steel girders as shown in Figures 

4.1 and 4.2. This bridge was used for evaluating the feasibility of vibration-based damage 

identification techniques when damage was located near a support for a highly structurally 

redundant bridge with very high chance of re-distribution of external loads.  

 

 

Figure 4.1. Photo of the I-40 westbound bridge over 4th Avenue 
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Figure 4.2. I-40 westbound bridge over 4th Avenue: (a) Longitudinal profile (b) Cross-section (modified 
from Ragland 2011) 

 

The bridge was excited by dropping a 22.7 kg sandbag from a height of one meter at nine 

locations shown in Figure 4.3. Data was recorded at a total of 120 sensor locations shown in 

Figure 4.3 with a sampling rate of 1000 Hz for a total of 3 seconds. 
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Figure 4.3. I-40 westbound bridge over 4th Avenue: sensor layout (modified from Ragland et al. 2011) 

 

During the field tests, three damage scenarios shown in Figure 4.4 were applied to an interior 

girder close to a support, DL2 location shown in Figure 4.3, to study the feasibility of vibration-
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based damage identification techniques for cases where damage is near a support as it is 

expected that vibration-based damage detection is less reliable at locating the damage occurring 

near a support (Zhou et al. 2007). 

  

H/4
Damage cut Damage cut Damage cut

H H

H/2

 
                                   (a)                               (b)                                (c) 

Figure 4.4. Induced damage scenarios: (a) Bottom flange cut (D1) (b) Bottom flange plus ¼ of the web 
cut (D2) (c) Bottom flange plus ½ the web cut (D3) 

 

4.4. Finite element modeling of the test bridge 

4.4.1. Description of the finite element model 

In this study, linear elastic finite element (F.E.) model of the I-40 westbound bridge over 4th 

Avenue is generated using the commercial package ABAQUS version 6.9 (2009) as shown in 

Figure 4.5. In this model, all the elements are selected as shell elements except the bent columns 

and bracings which are beam elements and the sandbag which is solid element. Handrails are not 

modeled and an equivalent mass is added to the model instead. The model simulates composite 

action between the girders and the concrete slab by tying the top flange of each girder to the 

concrete slab directly above the girder. The bent columns are modeled as fixed at the ground 

surface and steel girders are modeled as simply supported at the ends. The bottom flanges of 

girders are so tied to the bents at the bent-girder connections that identical X, Y and Z 
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translations are obtained. To match the experimental data, the horizontal (X and Z) translations 

of the slab at the abutment locations are restrained.  

 

 

Figure 4.5. F.E. model of the I-40 westbound bridge over 4th Avenue subjected to a drop weight 

 

The concrete and steel material properties used for the bridge elements are shown in Table 4.1. 

The concrete properties are defined based on the properties of the cores taken from the bridge 

deck. 

 
Table 4.1. Concrete and Steel Material Properties for FEMs 

Material E(GPa) Poisson’s ratio Density (kg/m3) 
Concrete 22.3 0.2 2400 

Steel 200 0.3 7850 

  

4.4.2. Simulated damage scenarios 

To simulate the damage scenarios induced during the field tests, the bridge girders are modeled 

as tied surfaces. These surfaces represent top flanges, webs and bottom flanges. Each of these 

surfaces is models as two independent parts at the damage location. For undamaged condition, 
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the two parts are tied together to have identical translational and rotational degrees of freedom at 

the damage location. The webs are so constructed at the damage location that nodes occur at the 

quarter and half points of the web so that damage scenarios D2 and D3 can be applied. To 

simulate damage scenario D1, the ties between bottom flanges at the damage location is untied 

which allow for independent translation and rotation of each part. Damage scenario D2 is 

simulated by untying the bottom flanges and the bottom quarter of the web parts at the damage 

location. Finally, damage scenario D3 is simulated by untying the bottom flanges and bottom 

half web parts at the damage location. 

 

4.4.3. Finite element model verification 

To verify the F.E. model of the bridge with the real bridge, modal analysis is carried out. The 

shell elements are selected as standard four-noded doubly curved shell with reduced integration, 

S4R, and beam elements are selected as standard three-noded quadratic beam in space, B32. The 

sandbag is removed from the F.E. model to do the modal analysis. The F.E. model is then 

verified by comparing its first three natural frequencies and mode shapes with those obtained 

from the field data. Table 4.2 presents natural frequencies obtained from the F.E. model and 

those measured from the test bridge for each damage scenario. As shown, a good agreement 

exists between the F.E. and measured frequencies. 
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Table 4.2. Fundamental natural frequencies identified from the field test and F.E. model 

Damage Scenario Mode 1 Mode 2 Mode 3 

Undamaged 
Field test 4.34 4.41 6.39 

F.E. model 4.27 4.40 6.48 
% Diff. -1.61 -0.23 1.41 

D1, Flange cut 
Field test 4.35 4.44 6.35 

F.E. model 4.27 4.40 6.48 
% Diff. -1.84 -0.90 2.05 

D2, Flange + 1/4 web cut 
Field test 4.29 4.43 6.38 

F.E. model 4.27 4.40 6.48 
% Diff. -0.47 -0.68 1.57 

D3, Flange + 1/2 web cut 
Field test 4.26 4.40 6.40 

F.E. model 4.27 4.40 6.48 
% Diff. 0.23 0.00 1.25 

 

To further verify the F.E. model of the bridge, Modal Assurance Criterion (MAC), shown in Eq. 

(4.1) for corresponding modes, is used to compare the first three mode shapes obtained from the 

F.E. model with those measured from the experimental tests. 
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where }{ F  is the F.E. modal vector and }{ E is the experimental modal vector. The MAC 

value indicates the degree of correlation between the F.E. mode shape and the experimental 

mode shape and varies from 0 to 1. If the modes are identical, a value of one will be obtained 

while for two different modes, a value of zero will be attained. In general, a MAC value greater 

than 0.9 indicates well-correlated modes while a value less than 0.1 indicates uncorrelated modes 

(Ewins 2000).  

To form the F.E. modal vectors and calculate the MAC, translational components in the 

X, Y, and Z directions are extracted from the F.E. model mode shapes at sensor locations for the 

first three modes and MAC values are calculated. Table 4.3 presents the MAC values comparing 
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the identified three first mode shapes from the F.E. models and the field tests for different 

damage scenarios.   

 
Table 4.3. MAC results: Field tests vs. F.E. models 

Damage 
scenario 

 Mode  

1 2 3 

Undamaged 0.96 0.92 0.96 

D1 0.96 0.92 0.96 

D2 0.96 0.92 0.96 

D3 0.96 0.92 0.97 

 

As shown in Table 4.3, good agreements exist between the F.E. modes and measured 

modes for all the damage scenarios indicating that the F.E. models accurately represent the three 

dimensional dynamic response of the bridge for healthy and damaged conditions. 

 

4.4.4. Dynamic analysis 

Vibration-based damage identification techniques are based on the dynamic response of 

structures measured before and after the damage occurs. To obtain dynamic response of the 

structure under the drop weight, dynamic explicit approach in ABAQUS is used. The shell 

elements are selected as explicit four-noded doubly curved shell with reduced integration, small 

membrane strains, and warping in small-strain formulation, S4RSW, and the beam elements are 

selected as explicit three-noded quadratic beam in space, B32, and solid element is selected as 

explicit 8-node linear brick with reduced integration, C3D8R. The sandbag is modeled just above 

the impact surface and an initial velocity reflecting the drop height of 1 meter is applied to the 

sandbag. The gravitational acceleration is applied to the sandbag.  
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4.5. Damage identification procedure 

In this study, ARX models and sensor clustering damage identification technique (Gul and 

Catbas 2011a,b) is used mainly because of its simplicity and promising results on the Z24 bridge 

data (Gul and Catbas 2011a). Similar results are obtained when the developed ARX models and 

sensor clustering approach, explained in Chapter 2, is used. The vibration data are normalized 

according to Eq. (4.2) to be comparable at a sensor location: 

i

ii
i

tv
tv





)(ˆ

)(
                                    

(4.2) 

where iv̂ is the velocity of geophone i and iv is the normalized velocity of geophone i. i  and i  

are mean and standard deviation of the velocity of geophone i, respectively. When data are 

normalized, several sensor clusters are created along each bridge beam line and ARX models 

shown in Eq. (4.3), are created for each cluster in healthy condition of the bridge. 

)()()()()( tetvqBtvqA r                            (4.3) 

where )(tvr is the velocity response at the reference sensor of a cluster, and )(tv  is the matrix of 

velocity responses of the sensors inside the cluster. This methodology is illustrated in Figure 4.6 

for a bridge girder with 24 sensors.  
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Figure 4.6. Creating ARX models for different sensor clusters along a beam with 24 sensors 

 

As shown, for a girder with 24 sensors, 24 clusters are defined having one reference 

sensor each. The first cluster includes two sensors, the reference sensor and the sensor next to it. 

For the second cluster, there are three sensors in which the middle one is considered as the 

reference sensor. Clusters 3-23 are defined similarly to the second cluster. The last cluster is 

defined similarly to the first cluster where the reference sensor is the last sensor. For each of 

these clusters, the inputs to the ARX model are the outputs of the sensors in the cluster, while the 

ARX model output is the output of the reference sensor. 

After creating the ARX models in healthy condition of the bridge, these models are used 

for the data obtained in damaged conditions to estimate the prediction errors, pe . Damage-

sensitive features (DSFs) are defined as the ratio of the standard deviation of the prediction error 
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in damaged condition to the standard deviation of the prediction error in healthy condition of the 

bridge. To identify the damage, an outlier analysis method is used. A threshold is defined by 

using damage-sensitive features obtained in healthy condition of the structure above which the 

structure is considered as damaged. 

 

4.6. Sensitivity analysis for damage identification 

This study investigates the effects of damage location and extent, efficacy of each triaxial 

vibration, and additive noise to the vibration data on the vibration-based damage identification 

technique. It also studies multi-damage scenarios to see if the implemented damage identification 

technique can identify the damage. 

 

4.6.1. Effects of damage location and extent 

To investigate the effects of damage location and extent on the vibration-based damage 

identification, two cases are studied: (1) damage is located at mid-span of an exterior girder and 

(2) damage is located on an interior girder near a support. 

 

4.6.1.1. Damage located at mid-span of an exterior girder 

The vertical vibration data obtained from F.E. models is first normalized according to Eq. (4.2). 

24 sensor clusters are defined along each girder line and ARX models are created for each cluster 

in healthy condition of the bridge. In order to determine the suitable ARX model orders, first 

maximum model orders are set to 3 to prevent any overfeeding. Then the vibration data obtained 

from the healthy condition of the structure is split to two parts, where the first part is used for the 
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estimation and the second part is used for the validation. The best model is then selected by 

comparing the output of the models with orders ranging between 1 and 3 with the validating data 

(MATLAB 2011). The ARX models determined in healthy condition of the bridge are used for 

the data obtained in damaged condition to find the prediction errors and to calculate the damage-

sensitive features. Figure 4.7 shows the results of the damage identification for noise free vertical 

vibration data obtained under different damage levels.  
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(c) 

Figure 4.7. Damage identification results for noise free vertical vibration data when damage is located at 
DL1 (a) Damage scenario D1 (b) Damage scenario D2 (c) Damage scenario D3 

 

As can be seen, the implemented damage identification technique can detect the induced 

damage even for small level of damage when damage is located at mid-span of an exterior 
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girder. It is also seen that the implemented technique is able to locate the damage for noise free 

data when damage is located at mid-span of an exterior girder. 

 

4.6.1.2. Damage induced on an interior girder near a support 

The procedure mentioned above is repeated for the case that damage is located on an interior 

girder near a support (DL2 location shown in Figure 4.3) to see if the implemented technique can 

still detect and locate the damage. Figure 4.8 presents the results of the analysis using the vertical 

noise free vibration data for different damage levels.  
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(c) 

Figure 4.8. Damage identification results for noise free data vertical vibration when damage is located at 
DL2 (a) Damage scenario D1 (b) Damage scenario D2 (c) Damage scenario D3 
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As shown, the implemented damage identification technique can successfully detect the damage 

occurred on an interior girder near a support even when damage level is small; however, it 

cannot locate the damage. 

 

4.6.2. Efficacy of each triaxial vibration on damage identification 

To investigate the effect of each triaxial vibration data on damage identification of bridges, the 

aforementioned technique is implemented independently in three global directions. Table 4.4 

presents the results of the analysis for longitudinal, transverse and vertical vibration data. Here, 

longitudinal refers to the bridge length direction whereas transverse refers to the direction 

perpendicular to the bridge length. 

  
Table 4.4. Damage identification results for the I-40 westbound bridge over 4th Avenue 

Damage 
location 

Damage scenario 
Vibration Component 

Longitudinal Transverse Vertical 

DL1 
D1 ○ ○ ● 
D2 □ □ ● 
D3 □ ○ ● 

DL2 
D1 □ □ □ 
D2 □ □ □ 
D3 □ □ □ 

●Damage spatially located; ○ Damage located on the damaged beam;  
□ Damage detected but not located; --- Damage not detected  

 

As shown in Table 4.4, when the excitation source is vertical, all the vibration data are 

able to identify the existence of damage even when damage is small and located on an interior 

girder near a support. It is seen that when damage is located at mid-span of an exterior girder, the 

vertical vibration data are able to identify the spatial location of the damage even when damage 
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is small. As shown, no success is found in locating the damage occurred on an interior girder 

near a support. 

 

4.6.3. Effect of additive noise to the vibration data 

To further investigate the implemented damage identification technique for noisy data, 10% 

white Gaussian noise is added to the vertical vibration data obtained from the F.E. models and 

damage identification technique is performed. To define the threshold level, an outlier analysis 

method is adapted similar to Worden et al. (2000) and Gul and Catbas (2011b) where a Monte 

Carlo method was used. First, 10% white Gaussian noise is added to the vertical vibration data 

obtained in healthy condition of the structure at various sensor locations and damage-sensitive 

features (DSFs) are calculated. The process is repeated many times and DSFs are saved (in this 

study, the process is so repeated that 1000 DSFs are saved). The DSFs are sorted and the value 

above which only 5% of the simulations occur is selected as the threshold value, over which the 

bridge structure can be considered as damaged.   

 

4.6.3.1. Damage located at mid-span of an exterior girder 

In this case, 10% white Gussian noise is added to the vertical vibration data obtained from the 

F.E. models for various damage levels and damage identification technique is performed. Figure 

4.9 shows the results of the damage identification for different damage levels occurred at mid-

span of an exterior girder (DL1 location shown in Figure 4.3) for noisy data.  
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(c) 

Figure 4.9. Damage identification results for noisy vertical vibration data when damage is located at DL1 
(a) Damage scenario D1 (b) Damage scenario D2 (c) Damage scenario D3 

 

As can be seen, for vibration data with 10% additive white Guassian noise, the 

implemented technique can still identify the existence and spatial location of the damage 

occurred at mid-span of an exterior girder when damage extent is large. In Figure 4.9(a) in which 

damage extent is small, it is seen that the location of the induced damage is not correctly 

identified due to the added noise to the vibration data. 
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4.6.3.2. Damage located on an interior girder near a support 

Similar analysis is repeated for the case that damage is located on an interior girder near a 

support, DL2 location shown in Figure 4.3, and the results are presented in Figure 4.10 for 

different damage extents. 
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(c) 

Figure 4.10. Damage identification results for noisy vertical vibration data when damage is located at 
DL2 (a) Damage scenario D1 (b) Damage scenario D2 (c) Damage scenario D3 

 

As can be seen, for vibration data with 10% additive white Guassian noise, the 

implemented damage identification technique can still identify the existence of damage occurred 

on an interior girder near a support even for small damage levels; however, no success is found 

in locating the damage. 
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4.6.4. Multi-damage scenarios 

To investigate the feasibility of the implemented damage identification technique for the cases 

that damage exists in more than one location, in this section both damage locations studied 

before, DL1 and DL2 shown in Figure 4.3, are considered simultaneously for the three damage 

scenarios mentioned earlier. The ARX models and sensor clustering damage identification 

technique is repeated for noise free and noisy vertical vibration data in which 10% white 

Gaussian noise is added to the data and the results are presented in Figures 4.11 and 4.12, 

respectively.  
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(c) 

Figure 4.11. Damage identification results for noise free vertical vibration data when damage is occurred 
simultaneously at DL1 and DL2 (a) Damage scenario D1 (b) Damage scenario D2 (c) Damage scenario 

D3 
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From Figure 4.11, it is seen that the implemented damage identification technique can 

still be used to detect and locate the multi-damage scenarios if the damage level is large. 

However, the damage occurred near a support on an interior girder cannot be still located. From 

Figure 4.11(a), it is clear that when damage level is small, the implemented damage 

identification technique can detect the damage but it cannot identify the spatial location of the 

damage. 
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 (c) 

Figure 4.12. Damage identification results for noisy vertical vibration data when damage is occurred 
simultaneously at DL1 and DL2 (a) Damage scenario D1 (b) Damage scenario D2 (c) Damage scenario 

D3 

 

From Figure 4.12, it is seen that when data are noisy, the implemented damage 

identification technique can still detect and locate the damage if damage level is large. When 
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damage level is small, the implemented technique can detect the damage but it cannot locate the 

damage correctly. As shown, by increasing the extent of induced damage, the resolution of 

damage localization is improved. 

 

4.7. Summary and Conclusion 

This study presents finite element analysis of a full-scale five-girder bridge subjected to 

controlled levels of known damage on the bridge girders and excited by a drop weight on the 

bridge deck. The F.E. model of the bridge is calibrated using dynamic response of the bridge 

already obtained using an array of dense sensors. Modal analysis is performed on the F.E. model 

to obtain natural frequencies and mode shapes to compare with those obtained from the field 

data. After calibrating the F.E. model of the bridge, dynamic explicit analysis is performed to 

simulate the experimental tests and to obtain vibration signals. Several damage scenarios are 

considered for finite element analysis including those not imposed during the field tests. 

Autoregressive with exogenous input (ARX) models and sensor clustering damage identification 

technique is used to obtain prediction errors in healthy and damaged conditions of the bridge. A 

new damage-sensitive feature is defined as the ratio of the standard deviation of the prediction 

error in damaged condition to the standard deviation of the prediction error in healthy condition 

of the bridge to identify the existence and location of damage. The analysis results indicate that 

dynamic properties of the bridge do not significantly change after inducing the damage occurred 

on an interior girder near a support but the implemented damage identification technique can still 

detect the damage even when damage level is small. It is seen that the implemented technique 

can detect and spatially locate the damage even for small damage level when it is occurred at 
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mid-span of an exterior girder. It is also seen that additive noise to the vibration data, reduces the 

resolution of damage localization. For small damage levels, adding 10% white Gaussian noise to 

the vibration data causes the location of damage not to be correctly identified while for larger 

damage levels, the implemented technique can still locate the damage. It is also shown that for 

the bridge vibrated vertically, all the triaxial vibration data can be used to detect the damage; 

however, just vertical vibration data can locate the damage occurred at mid-span of an exterior 

girder. It is seen that for damage located on an interior girder near a support, none of the triaxial 

vibration data can locate the damage. The multi-damage analysis results indicate that the 

implemented damage identification technique can be still used to detect and locate the damage if 

damage level is large. However, it cannot locate the damage occurred near a support on an 

interior girder. 
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Chapter 5: Conclusions and suggestions for future works 

 

5.1. Conclusions 

This study presents innovative techniques for damage identification of bridge structures using a 

controlled drop weight source, an inexpensive array of geophones, and a time series analysis. 

The most significant observations made from this study from analysis of vibration data obtained 

from real-life bridges and also from finite element simulations of a real-life bridge are as 

follows: 

- The implemented time series-based damage identification techniques, AR-ARX and ARX 

models and sensor clustering, are able to identify the existence of damage in real-life bridges, 

even when the damage level is small and damage is located at an obscure position such as near a 

support on an interior girder.  

- The implemented time series-based damage identification techniques cannot consistently locate 

the damage in real-life bridges. It is seen that when damage is located on an interior girder near a 

support, the chance of locating the damage is considerably reduced. 

- The analysis results using triaxial vibration data obtained from real-life bridges under vertical 

excitation source indicate that all the triaxial vibration data are able to detect the damage. 

- No success is found in locating the damage using the horizontal vibration data when the 

excitation source is applied mainly vertically, but it is seen that a few vertical data sets can 

spatially locate the damage. Therefore, it seems that when a bridge is excited mainly vertically, 

vertical vibration data is a better choice for lining up the unidirectional sensors.   
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- The damage localization results on a five-girder bridge damaged at an obscure position, on an 

interior girder near a support, and excited mainly vertically show that damage cannot be located 

regardless of the vibration data used. 

- The finite element (F.E.) analysis results indicate that dynamic properties of the bridge do not 

significantly change after inducing the damage occurred on an interior girder near a support, but 

the ARX models and sensor clustering damage identification technique can still detect the 

damage even when damage level is small. 

- The damage identification results, based on the vertical vibration data obtained from the F.E. 

models, indicate that damage which occurred at mid-span of an exterior girder could be detected 

and located. 

- The damage identification results, based on the vibration data obtained from the F.E. models, 

indicate that additive noise to the vibration data reduces the resolution of damage localization. It 

is seen that, for small damage levels, adding 10% white Gaussian noise to the vibration data 

causes the location of damage not to be correctly identified, while for large damage levels, the 

implemented technique can still locate the damage. 

- The damage identification results using the triaxial vibration data obtained from the F.E. 

models indicate that for the bridge vibrated vertically, all the triaxial vibration data can be used 

to detect the damage; however, vertical vibration data can alone locate the damage which 

occurred at mid-span of an exterior girder. 

- The damage identification results, based on the vibration data obtained from the F.E. models, 

indicate that for damage located on an interior girder near a support, none of the triaxial vibration 

data can locate the damage.  
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- The multi-damage analysis results using the vibration data obtained from F.E. models indicate 

that ARX models and sensor clustering damage identification technique can be used to detect 

and locate the damage if damage level is large. However, it cannot locate the damage occurred 

near a support on an interior girder. It is seen that for small damage levels, the implemented 

damage identification technique can detect the damage but it cannot locate the damage. 

 

5.2. Suggestions for future works 

Based on the analysis presented in this dissertation, some areas of possible future work are:  

- The damage identification results from the signals obtained from the finite element 

simulations indicate that damage could be detected and located when it occurred at mid-

pan of an exterior girder. However, damage identification results from the experimental 

data indicate that damage cannot be consistently identified. This inability is caused by the 

fact that, in real-life bridge structures, environmental and operational effects may affect 

the vibration data the same way as damage. Therefore, it is suggested that future work be 

focused on minimizing the environmental and operational effects. 

- This study is focused on damage identification of bridges in which damage is located on 

steel girders. It is suggested that for future work, damage which has occurred at abutment 

supports, bracing connections, and piers be considered. 

- This study is mainly focused on developing time series-based damage identification so 

that the induced damage to two full-scale bridges can be detected and located. It is 

suggested that for future work, the analysis results be interpreted from the point of view 
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of bridge redundancy. The finite element models developed in this study will help the 

interpretation. 

- This dissertation presents a limited study on multi-damage scenarios. It is suggested that 

for future work several damage locations be considered simultaneously under different 

loadings to see if the vibration-based damage identification techniques are still able to 

identify the damage. 

- In real-life bridges, disasters usually occur under large loadings in which damage is 

propagated through the structure. It is suggested that future research consider a nonlinear 

model of a bridge to study progressive collapse under different loadings to see at which 

stage damage in a bridge structure is suitably identified, and then to estimate the 

remaining load capacity of the bridge. 
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