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ABSTRACT 

 

The objective of this work is the development of an on-line monitoring and data analysis framework that 

could detect the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and 

uranium hexafluoride in a natural uranium conversion plant (NUCP) using a multivariate statistical 

approach. This was an initial effort to determine the feasibility of this approach for safeguards 

applications. This study was limited to a 100 metric ton of uranium (MTU) per year NUCP using the wet 

solvent extraction method for the purification of uranium ore concentrate. A key component in the 

multivariate statistical methodology was the Principal Component Analysis (PCA) approach for the 

analysis of data, development of the base model, and evaluation of future operations. The PCA 

approach was implemented through the use of singular value decomposition of the data matrix. 

Component mole balances were used to model each of the process units in the NUCP. The decision 

framework developed in this research could be used to determine whether or not a diversion of 

material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards 

system. The IAEA goal for NUCPs of this size is to have a 50% probability of detecting the diversion of 

10 MTU over a period of one year; this was also used as the goal of detection for the monitoring 

framework. An initial sensitivity analysis was also performed on the relationship between the 

component molar flow rates (state variables) and the process parameters. This sensitivity study 

identified a few parameters to which some of the state variables were highly sensitive. Several faulty 

scenarios were developed to test the monitoring framework after the base case or “normal operating 

conditions” of the PCA model was established. In nearly all of the scenarios, the monitoring framework 

was able to detect the fault. The detection limit varied depending on the scenario, but it satisfied the 

limit stated above in nearly of the all cases. For the cases that the goal was not achieved, additional 

scaling may be able to lower the detection limit to satisfy the goal. Overall this study was successful at 

meeting the stated objective. 
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1. INTRODUCTION 

 

The objective of this work is the development of an on-line monitoring and data analysis framework that 

would be capable of detecting the diversion or introduction of intermediate products [e.g., uranium 

dioxide (UO2), uranium tetrafluoride (UF4), and uranium hexafluoride (UF6)] in a natural uranium 

conversion plant (NUCP) using a multivariate statistical approach. The decision framework developed in 

this research could be used to determine whether or not a diversion of material has occurred at an 

NUCP. This monitoring framework can be used by the International Atomic Energy Agency (IAEA) in a 

safeguards system. This study was developed for a 100 metric ton of uranium per year (MTU/yr) NUCP 

using the wet solvent extraction method for the purification of uranium ore concentrate.  

 

1.1 BACKGROUND AND MOTIVATION 

This section provides the background necessary to understand the motivation of the research discussed 

in this dissertation. Included in this section is a brief overview of the nuclear fuel cycle, methods for the 

conversion of uranium ore concentrate to uranium hexafluoride, and the current IAEA safeguards policy 

for natural uranium conversion plants.  

 

1.1.1 Overview of the Nuclear Fuel Cycle 

The work discussed here applies to the upstream conversion process of the nuclear fuel cycle of which 

the final product is UF6. A short overview of the nuclear fuel cycle is provided to describe where in the 

cycle conversion takes place.  

The nuclear fuel cycle is a series of industrial processes in which uranium is recovered from the earth for 

use in nuclear reactors for power production or for the production of nuclear weapons. The activities 

associated with the nuclear fuel cycle (Figure 1.1) include: uranium mining and milling, conversion of 

triuranium octoxide (U3O8) to gaseous uranium hexafluoride (UF6), enrichment in the 235U isotope, fuel 

fabrication, energy production at power reactors, spent fuel storage, and finally direct disposal or 

reprocessing and recycling of the spent fuel. The nuclear fuel cycle is well known and discussed in detail 

by Benedict, Pigford, and Levi 1981; Cochran and Tsoulfanidis 1990; and Moghissi, Godbee, and Hobert 

1992.  
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Figure 1.1. The Nuclear Fuel Cycle. The step where safeguarding is being discussed here is the ‘Conversion’ 

process. (Source: International Atomic Energy Agency (IAEA), 

http://www.iaea.org/OurWork/ST/NE/NEFW/Technical_Areas/NFC/home.html). 

 

  

http://www.iaea.org/OurWork/ST/NE/NEFW/Technical_Areas/NFC/home.html
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1.1.2 Methods of Converting Uranium Ore to Uranium Hexafluoride 

The uranium oxide product of the uranium mining and milling process is not directly usable for 

enrichment or fuel fabrication and must undergo additional processing. Conversion plants purify the 

uranium ore received from the mining and milling operation of the nuclear fuel cycle and then convert it 

to a gaseous form prior to shipment to an enrichment plant. According to the IAEA Nuclear Fuel Cycle 

Information System (http://www-nfcis.iaea.org), operating conversion plants are located worldwide 

with a total estimated design capacity of ~175,000 MTU/yr. The actual production rate is less than half 

the design capacity which supports more than 400 nuclear power plants. Conversion plants can be 

classified into three categories based on production capacity: small (100 MTU/yr), medium 

(1,000 MTU/yr), or large (10,000 MTU/yr). These plants use some variation of the two processes 

discussed in this section. The work reported here is focused specifically on a 100 MTU/yr NUCP using the 

wet solvent extraction process. 

The following is a review of common conversion methods used in various NUCPs. Moghissi, Godbee, and 

Hobert 1992 states that the reason for conversion is “uranium concentrate from milling operations is 

free of the bulk of the ore components, but is still far from pure enough for use in fuel.” The uranium 

ore concentrate (UOC) from the mining and milling operation contains at least 75% U3O8. The UOC 

becomes the feed material to a conversion plant. At the conversion plant the UOC is submitted to a 

series of operations which remove impurities and eventually convert the U3O8 to gaseous UF6 which is 

then in the necessary form for subsequent isotopic enrichment by the gaseous diffusion or gas 

centrifuge process (Moghissi, Godbee, and Hobert 1992). Two methods are available for purification 

from the uranium ore concentrate (dry hydrofluor process or wet solvent extraction process). The wet 

solvent extraction method is the most common method and will be discussed below. 

The wet process uses solvent extraction to purify the U3O8 feed material before eventual conversion to 

UF6. This method separates impurities by preferentially extracting the uranium into an organic solvent, 

leaving other constituents in the aqueous phase. The method generally consists of the following 

operations: 

a) Preprocess handling, weighing, sampling, and storage; 

b) Digestion in hot nitric acid; 

c) Countercurrent solvent extraction with tributyl phosphate (TBP) in kerosene; 

d) Reextraction of uranium as uranyl nitrate solution [UO2(NO3)2]; 

e) Calcination to uranium trioxide (UO3), precipitation of ammonium diuranate (ADU), or 

precipitation of ammonium uranyl carbonate (AUC); 

f) Fluidized-bed reduction with hydrogen from cracked ammonia to UO2; 

g) Fluidized-bed hydrofluorination in a two-stage countercurrent reactor to form UF4 using 

anhydrous hydrogen fluoride (HF); and 

http://www-nfcis.iaea.org/
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h) Flame reactor fluorination to UF6 by reaction with fluorine gas (F2) (Moghissi, Godbee, and 

Hobert 1992). 

The actual wet conversion method employed by an NUCP is based on the size of the plant. Figure 1.2 

shows a simplified flow diagram of the conversion process; the left side represents the processing steps 

most frequently used in small-scale chemical conversion plants while the right side shows the processes 

used in medium and large plants. A generic production process for natural uranium conversion using the 

wet method begins with yellowcake dissolution with nitric acid, followed by purification using solvent 

extraction techniques, and then evaporation to produce a concentrated, purified uranyl nitrate solution. 

For small plants, ammonia or ammonium hydroxide/carbon dioxide are used to convert uranyl nitrate to 

a precipitate of ADU or AUC, respectively. After precipitation, calcination in the presence of hydrogen 

produces UO2 powder. Precipitation processes can be operated in a continuous mode, but are well 

suited to batch production techniques typical of small-scale plants. Medium and large plants typically 

utilize a denitration process which is more commonly used in continuous operations where higher 

production capabilities are required. The denitration process uses heat to dehydrate and denitrate the 

purified uranyl nitrate solution and produce UO3, followed by oxide reduction with hydrogen to produce 

UO2. Then irrespective of the size of the plant, the UO2 is hydrofluorinated to UF4 using HF. The UF4 can 

then be fluorinated into UF6 using F2. However, the UF4 can also be reduced to uranium metal using 

magnesium or calcium and heat (Faulkner et al. 2004). Additionally, other intermediate materials could 

be diverted from the process or clandestinely produced and/or obtained material could be substituted 

into the process. For example, as shown in Figure 1.2, clandestinely produced UF6 (green arrow) could 

be fed into the process at the precipitation step or UO2 from the calcination or oxide reduction steps 

could be diverted for reactor fuel production.  

 

1.1.3 Current IAEA Safeguards Policy for Conversion Plants 

The objective of IAEA safeguards is outlined in paragraph 28 of INFCIRC/153 (corrected) (IAEA 1972). 

The objective of safeguards is the timely detection of diversion of significant quantities 

of nuclear material from peaceful nuclear activities to the manufacture of nuclear 

weapons or of other nuclear explosive devices or for purposes unknown, and 

deterrence of such diversion by the risk of early detection. 

Operating in accordance with international agreements, the IAEA has had limited ability to monitor the 

front end of the nuclear fuel cycle because safeguards programs have been constrained to control 

nuclear materials at the start of the uranium enrichment processes, with UF6 as its feedstock and 

designated as the chemical form of interest (Ferrada 2004). Since the final product of an NUCP is UF6, 

IAEA accountability data begins at the final step of the NUCP process when the product is declared.   
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Figure 1.2. Simplified Flow Diagram of the Wet Solvent Extraction Process Used to Convert Yellowcake to UF6 or 

U Metal. Note that the left side represents the processing steps most frequently used in small-scale chemical 

conversion plants. (Source: R. L. Faulkner, J. M. Begovich, J. J. Ferrada, R. D. Spence, J. M. Whitaker, W. J. Bicha, 

and L. G. Loden. 2004. “Oak Ridge Efforts to Enhance Conversion Plant Safeguards.” Proceedings 45th Annual 

Meeting of Institute of Nuclear Materials Management (INMM), July 18–22, 2004, Orlando.) 
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Without information to ascertain a uranium mass balance between the yellowcake feed stock and the 

final product, there are no assurances that the declared product was the total possible uranium 

produced by an NUCP.  

Traditionally, only the final product materials (UO2, UF6, and U metal) of the NUCPs, and not 

intermediate materials, have been considered as being materials subject to the full safeguards 

procedures. However, IAEA policy in this area was recently revised. IAEA now considers all highly 

purified uranium compounds as candidates for safeguarding which includes the intermediate products 

of an NUCP (Doo et al. 2003). This revised policy gives the IAEA the possibility of detecting a diversion or 

undeclared production of nuclear material for clandestine uranium enrichment or plutonium production 

facilities at the NUCP. The following provides an overview of the current safeguards policy as it applies 

to NUCPs.  

Doo et al. 2003 outlines a new approach developed by the IAEA for safeguards at NUCPs. Current IAEA 

policy, as stated in paragraph 34(c) of INFCIRC/153 (corrected) (IAEA 1972), considers any purified 

aqueous uranium solution or any purified uranium oxides to be considered nuclear material of a 

composition and purity suitable for isotopic enrichment or fuel fabrication, respectively;  

When any nuclear material of a composition and purity suitable for fuel fabrication or 

for being isotopically enriched leaves the plant or the process stage in which it has been 

produced, or when such nuclear material, or any other nuclear material produced at a 

later stage in the nuclear fuel cycle, is imported into the State, the nuclear material shall 

become subject to the other safeguards procedures specified in the Agreement.  

Additionally, paragraph 34(c) of INFCIRC/153 (corrected) requires that full safeguards procedures should 

be applied no later than the first point in the conversion process at which such material leaves the 

process stage or the plant in which it is produced. This may not be practicable or economical. In such 

cases, the procedures should be applied at the first practicable point earlier (i.e., “upstream”) in the 

plant which could be as early as the UOC input at the beginning of the conversion process. However, the 

IAEA has not been consistent with the technical interpretation of this requirement or the 

implementation of safeguards at NUCPs. 

Additional information about IAEA safeguards can be found in “IAEA Safeguards Glossary, 2001 Edition” 

(IAEA 2002), “Safeguards Techniques and Equipment, 2003 Edition” (IAEA 2003), and “IAEA Safeguards: 

Staying Ahead of the Game” (IAEA 2007). 
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1.1.4 Motivation 

Due to the revision in IAEA policy for uranium conversion plants, the U.S. Department of Energy (DOE) is 

interested in developing instruments, tools, strategies, and methods that could be of use to the IAEA in 

the application of safeguards to the front end of the fuel cycle (Boyer et al. 2004, Faulkner et al. 2004). 

Some of the DOE studies are discussed in Chapter 2. According to Boyer et al. 2004, DOE’s Office of 

Nonproliferation and International Security is using a systematic approach to identify the functions of a 

safeguards system needed for NUCPs having a range of throughputs, the safeguards that could be 

applied, the attractive diversion possibilities, and the effectiveness of the safeguards system. 

The work discussed in this dissertation could be applied if on-line process monitoring is utilized for 

safeguarding uranium conversion plants. Although a simple accounting system for assessing uranium 

inputs and outputs will provide some assurance that undeclared material is not leaving an NUCP, the use 

of on-line monitoring instruments can validate accountability data and significantly improve a 

safeguards program. On-line monitoring methods also offer an effective means for detecting the 

processing of undeclared materials in a model NUCP. The purpose of on-line monitoring is to determine 

the uranium flow through a particular process stage. 

 

1.2 PROBLEM STATEMENT AND OBJECTIVES 

This section outlines the purpose, the importance, and the scope and limitations of the study.  

 

1.2.1 Purpose of the Study 

The objective of this work was to develop an on-line monitoring and data analysis framework that will 

be capable of detecting the diversion or introduction of intermediate products (e.g., UO2, UF4, and UF6) 

in an NUCP using a multivariate statistical approach. The intermediate products are of interest for 

international safeguards because the products are all suitable uranium feed stocks for producing special 

nuclear materials. Under current safeguards procedures, these intermediate products could supply feed 

material for virtually any nuclear weapons program without detection by the IAEA, which has not 

historically begun safeguards until the purified UF6 product was declared as feed stock for enrichment 

plants (IAEA 1968). According to Faulkner et al 2004, “The function of a safeguards system at a uranium 

chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted 

for use in a nuclear weapons program.” The IAEA now considers all highly purified uranium compounds 

as candidates for safeguarding (Doo et al. 2003). 
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1.2.2 Importance of the Study 

The monitoring and decision framework developed in this research could be used to determine whether 

or not a diversion or addition of material has occurred at an NUCP. This monitoring framework can be 

used by the IAEA in a safeguards system. The work reported here can also be used to determine 

optimum sensor placement to provide the best possible safeguards monitoring system and to determine 

sensitivity of certain measurements to changes in concentrations of intermediate compounds. The goal 

of IAEA safeguards is the timely detection of a diversion of a significant quantity (SQ) of nuclear 

material. For facilities that process only natural uranium, the IAEA has declared that 10 MT of natural 

uranium is a SQ with a timeliness period of one year and a detection probability of 50%. In other words, 

the IAEA goal for NUCPs is to have a 50% probability of detecting the diversion of 10 MTU over a period 

of one year. The detection goal of the monitoring and decision framework reported here was set at 10% 

of the uranium throughput of the plant (i.e., 10 MTU) based on the IAEA limit discussed above.  

Multivariate statistical process monitoring and fault detection approach considers all the process 

variables simultaneously instead of analyzing individual variables, one at a time. Because all the process 

variables are correlated, examining and analyzing each process variable behavior over time individually 

may not indicate a shift and/or a change in its relationship with the behavior of other process variables. 

A fault may not manifest itself in detectable variations in a few process variables, or in any variable to 

beyond its normal range of variation, but would often result in the coordinated change in clusters of 

correlated variables that move together in a certain direction depending on their inter-relationships. The 

univariate (i.e., one at a time) approach does not reflect the interactions between process variables. It is 

not possible to develop individual confidence interval for a process variable independent of those for 

others because of the correlation among them. Monitoring the behavior of one variable at a time most 

often misses the detection of a fault and the nature of the fault if a fault has been detected in that 

variable. Multivariate statistical analysis of measured process variables as a whole gives the potential of 

detection of variation of a process from its ‘normal’ behavior, thus the detection of a possible fault that 

has occurred.  

 

1.2.3 Scope and Limitations 

This was an initial effort to determine the feasibility of this approach for safeguards. This study was 

developed for a 100 MTU/yr NUCP using the wet solvent extraction method for the purification of UOC. 

The data needed for the decision model were obtained from subject matter experts in uranium 

processing and conversion plant operations. Ideal and steady-state operation was assumed. All 

intermediate process variables were assumed to be available where required. Principal Component 

Analysis (PCA) methodology was used to analyze the process data to develop an empirical model; and 

various multivariate diagnostic plots were developed for monitoring and analysis. In future work, 

relaxing the requirement of on-line accessibility of all intermediate process variable values will be 
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investigated. Since all state variables are correlated, only a small subset of the variable values need to be 

known at all times to provide the necessary operating data for analysis. 

The small-sized plant (100 MTU/yr) was selected since a diversion of 10 wt-% uranium throughput is 

significant. Additionally, medium and large size plants use the denitration method as opposed to 

precipitation. However, this approach would work no matter the throughput of the model plant. 

Additionally, this work assumes that the plant was operating continuously and was at steady-state. If the 

plant is experiencing transient dynamics, one should wait until the operation has reached steady state 

before monitoring continues. Small-sized plants typically operate in a batch-wise manner but larger 

plants operate continuously. The throughput was chosen for the detection limit not the operating style. 

Again, this approach should work on plants with larger throughputs as well. This approach could be 

applied to any chemical process and is not limited in application to just the natural uranium conversion 

process. 

 

1.3 ORIGINAL CONTRIBUTIONS 

To date, no report of the application of multivariate statistical methodology, such as PCA, in an NUCP 

operation or as a safeguards monitoring approach has been found in the open literature. Work and 

results reported here are among the first attempts of this kind. 

Multivariate statistical process monitoring and fault detection began to gain attention in the early 

1990s. Some recent applications of PCA include process monitoring, fault diagnostics, gross error 

detection, multivariate statistical process control, data rectification, disturbance detection and isolation, 

gene expression analysis, facial recognition, signal processing, factor analysis, chemometrics, and 

chemical processes data analysis (Brauner and Shacham 2000; Valle, Li, and Qin 1999; Bakshi 1998). In 

chemical engineering, PCA is used to monitor batch and continuous processes to monitor product 

quality control, missing value replacement, identify and reconstruct sensor and/or process faults, and 

detect disturbances (Valle, Li, and Qin 1999). PCA is also being applied to nuclear processes (Hines, 

Upadhyaya, and Henkel 2008) and to nuclear forensics (Robel, Kristo, and Heller 2009).  

There have been significant research efforts in safeguarding uranium conversion plants since the change 

in the IAEA policy. Much of this work has focused on development and placement of instrumentation.  

 

1.4 ORGANIZATION OF DISSERTATION 

This work is described in the next four chapters. Chapter two provides a literature survey which includes 

background information related to process monitoring along with fault and diversion detection, as well 

as provides additional information on current efforts for safeguarding conversion plants. Chapter two 



 

10 
 

also presents an overview of PCA, the workhorse of the multivariate statistical method. Additionally, 

Chapter two provides an overview of previous research related to these fields. Chapter three presents a 

description of the methodology used to develop and test the monitoring framework. Chapter four 

presents the detailed results of the development of the base case model with sensitivity analysis. 

Chapter four also details the results of the monitoring framework’s ability to detect the diversion 

scenarios selected for testing. Chapter five presents the conclusions reached during this research and 

recommendations for future work.  
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2. LITERATURE REVIEW 

 

This chapter provides a review of the literature pertinent to this research effort. This section is broken 

down into three subsections. Each subsection provides an overview of the topic and a review of the 

historical and current efforts related to that subject area. Since the objective of this work is the 

development of an on-line monitoring and data analysis framework that would detect the diversion of 

intermediate products from a natural uranium conversion plant (NUCP) using Principal Component 

Analysis (PCA), those subsections cover process monitoring and fault detection, safeguards and 

diversion in conversion plants, and PCA.  

 

2.1 PROCESS MONITORING AND FAULT DETECTION 

This section discusses both process monitoring and the use of multivariate statistical process control 

(MSPC) for fault detection. 

MacGregor and Kourti 1995 presented an overview on both traditional and MSPC methods for 

monitoring and diagnosing process operating performance. MSPC began to gain attention in the early 

1990s. As computers continued to increase in power, speed, and storage capacity, process computers 

were routinely collecting measurements on large numbers of process variables. These data led to the 

development of multivariate statistical methods for the analysis, monitoring, and diagnosis of process 

operating performance. Manufacturers used these methods to improve process performance, reduce 

downtime, and reduce costs. The objective of statistical process control (SPC) is to monitor the 

performance of a process over time in order to verify that the process is remaining in a state of 

statistical control. That is when certain process or product variables remain close to the desired values 

and the only source of variation is the normal variation which affects the process all of the time and is 

essentially unavoidable within the current process. In the case of this work, that is the base case model 

which allows for a set amount of variation in the input variables.  

SPC charts are used to monitor key product variables in order to detect the occurrence of any event that 

is “off-normal” or having a “special” or “assignable” cause. “By finding assignable causes, long-term 

improvements in the process and in product quality can be achieved by eliminating the causes or 

improving the process or its operating procedures” (MacGregor and Kourti 1995). In most industries, 

traditional univariate control charts such as Shewhart, CUSUM, and EWMA, are used to separately 

monitor key measurements on the final product which in some way define the quality of that product. 

The problem with a univariate approach is that the variables are not independent and any one of them 

alone cannot adequately define product quality. Product quality is only defined by the correct 

simultaneous values of all the measured properties and is therefore a multivariate property.  
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PCA is one of the multivariate statistical projection methods presented in MacGregor and Kourti 1995. 

(The mathematical basis of PCA is presented in Section 2.3.) When the number of measured quality 

variables is large, then the variables are likely highly correlated with one another and their covariance 

matrix is nearly singular. A common procedure for reducing the dimensionality of the quality variables is 

PCA. Most of the variability in the data is captured in the first few principal components, so two or three 

principal components are often sufficient to explain most of the predictable variations in the product. 

Multivariate control charts are based on Hotelling's   . However, monitoring product quality via   
  

based on the first few ( ) principal components is not sufficient as this will only detect whether or not 

the variation in the quality variables represented by the first   principal components is greater than can 

be explained by normal variation. If a completely new type of fault occurs which was not present in the 

reference data used to develop the PCA model, then new principal components will appear and the new 

observations will move off the plane. These new faults can be detected by computing the squared 

prediction error (   ) of the residuals of new observations when fitted with the PCA model developed 

for ‘normal’ operation. This statistic is also referred to as the  -statistic or distance to the model, and it 

represents the squared perpendicular distance of a new multivariate observation from the reference 

hyperplane. When the process is operating under normal conditions, the value of     or   should be 

small. Under normal operating conditions,     represents unstructured fluctuations (noise) that cannot 

be accounted for by the model. A high value of     means that the projection model is not valid for 

that observation. Therefore, a very effective set of multivariate control charts is a    chart on the   

dominant orthogonal principal components plus a     chart. Control limits for both charts are 

developed from the ‘normal’ operation data profile. 

According to MacGregor and Kourti 1995, traditionally, massive amounts of process data are being 

collected and stored in databases for most industrial processes, but very little analysis and 

interpretation of these data are being performed. The lack of analysis is due to the overwhelming size of 

the databases and the very ill-conditioned nature of the routine operating data being collected. 

Additionally, the signal-to-noise ratio can be poor in these data, and there are often significant amounts 

of missing data. However, all of these problems can be addressed by multivariate statistical projection 

methods, such as PCA. Uranium conversion plants also collect large amounts of routine process data 

which may or may not be available to IAEA inspectors. If the detection framework developed in this 

work was extended to be used as part of a monitoring system for safeguards, additional instrumentation 

would be required to monitor the plant operations.  

The main approach of statistical quality control methods developed throughout the statistical literature 

has been to monitor only product quality data while ignoring all of the data on the process variables. For 

SPC, both process data and quality data must be considered. There are often hundreds of process 

variables which are measured much more frequently and usually more accurately than the product 

quality data. Additionally, any faults that occur will also impact the process data. In the case of this 

work, product quality could be thought of as the uranium concentration or the uranium assay. The most 

practical approaches to MSPC appear to be those based on multivariate statistical projection methods 
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such as PCA and Partial Least Squares (PLS). These methods are ideal for handling the large number of 

highly correlated and noisy process variable measurements that are being collected by process 

computers on a routine basis, and these methods can also handle missing data. 

MacGregor and Kourti 1995 provided the following overview for monitoring processes using MSPC. 

Kourti 2002 presents additional information on process analysis techniques and the use of MSPC for 

fault detection. MacGregor and Kourti 1995 state that an essential part of SPC is to establish 

multivariate control charts to detect special events or faults and to diagnose possible causes. These are 

referred to as diagnostic plots in this work. The philosophy used for the univariate or multivariate 

Shewhart charts can be used for the development of MSPC procedures based on projection methods. 

This philosophy starts with choosing an appropriate reference set which defines the normal operating 

conditions for the particular process of interest. Therefore, a PCA model is built based on data collected 

during normal process operations; any periods containing abnormal variations that one would like to 

detect in the future are omitted. It is of critical importance to the successful application of this 

procedure that an appropriate reference set be selected. This work follows the same philosophy; a PCA 

model was built based on normal operating conditions and was used to test abnormal conditions using 

the    and     charts. 

According to Martin, Morris, and Zhang 1996, SPC is a tool for achieving and maintaining product 

quality. Classical univariate statistical techniques monitor one quality variable at a time and are not 

appropriate for analyzing process data where variables are highly correlated. This results in minimal 

information being derived on the interactions between variables which are very important in complex 

processes. These limitations can be addressed through the application of MSPC. The bases of MSPC are 

the projection techniques of PCA and projection to latent structures since both approaches are used to 

reduce the dimensionality of the problem by forming a new set of latent variables (principal 

components) to obtain an enhanced understanding of the process behavior.  

Two types of information are typically monitored on a process: (1) quality measurements (e.g., color, 

texture, strength, weight, size, moisture content, material properties, etc.) and (2) process information 

(e.g., temperature, pressure, flow rates, speed, etc.). For this application, these would be the uranium 

content or assay (quality) and the process information (e.g., temperature, pressure, flow rates, etc.). 

Only a limited number of quality variables are taken at a much lower frequency compared to the large 

number of variables that are monitored in process measurements. According to Martin, Morris, and 

Zhang 1996, “MSPC methods address some of the limitations of univariate monitoring techniques by 

considering all the data simultaneously and extracting information on the directionality of the process 

variations, that is the behavior of one variable relative to the others.” Projection techniques, such as 

PCA, allow for the efficient handling of large amounts of monitored process data which includes 

measurement errors and is ill-conditioned and highly correlated. 
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PCA reduces the dimensionality of the process data set by defining a series of new variables, called 

principal components, each of which is a linear combination of the original measured variables and 

would explain the maximal amount of variability embedded in the data. In other words, PCA defines a 

few linear combinations which can be used to summarize the data with minimal loss of information. 

“The primary objectives of PCA are data summarization, classification of variables, outlier detection, 

early warning of potential malfunctions and ‘fingerprinting’ for fault identification” (Martin, Morris, and 

Zhang 1996).  

The variables that contribute the most to the individual principal components are determined based on 

the loadings vectors, or the principal components. Information on the clustering of the samples and the 

identification of transitions between different operating regimes is obtained from the scores, or the 

projections of the samples onto the set of principal components.  

The scales used to measure the variables are of critical importance to PCA. If a set of data contains 

measurements of completely different types (e.g., pressures, temperatures, flow rates), then the 

structure of the principal components derived from this data set will depend essentially upon the 

arbitrary set of units of measurement. If there are large numerical differences between the variances of 

the data, those variables whose variances are large will tend to dominate the first few principal 

components even if those variables are not actually important in the detection of process malfunctions. 

Therefore, care needs to be taken when scaling the data. Additionally, different scaling of the process 

variables can produce different results thus different interpretation of results.  

According to Martin, Morris, and Zhang 1996, there are “three possible ways to scale the data: select 

‘natural units’ by ensuring all the variables measured are of the same type; variables can be mean-

centered; or the variables can be scaled to zero mean and unit variance.” The principal components are 

then calculated based upon the new scaled matrix. For this work, the third scaling option was used. In 

addition, differential weighted scaling was also applied in this work to some of the key process variables 

to bring out the variations of these variables in the presence of a much larger set of intermediate 

process variables whose values are of less interest in monitoring. 

“One of the features of PCA is that the less important components often describe the noise in the data” 

(Martin, Morris, and Zhang 1996). Therefore, a smaller number (in comparison to the original variables) 

of principal components are required to explain the variability in the data, and it is desirable to exclude 

these less important components. Also according to Martin, Morris, and Zhang 1996, “the number of 

principal components that provide an adequate description of the data can be assessed using a number 

of techniques.” In this work, a Scree test was applied. In practice two or three principal components are 

frequently sufficient for MSPC.  

As mentioned before, the primary requirement for the development of MSPC charts is the acquisition of 

data that are representative of normal process operation. This ‘normal operating’ data set can be 

obtained from historical databases or designed experiments. A predictive model based on normal 
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operating data can be constructed using either PCA or PLS. Future behavior is then compared to this 

‘in-control’ model. “The basis of the success of this approach is the recognition that many of the 

measurements are highly correlated and thus different combinations of the variables may define the 

same underlying disturbances or events occurring in the process” (Martin, Morris, and Zhang 1996). 

Therefore, it can be assumed that when the process is operating within normal conditions, the 

dimensionality of the process can be substantially reduced to a few principal components.  

This information is typically presented graphically in terms of time series plots, as well as two and three 

dimensional representations of the principal components. According to Martin, Morris, and Zhang 1996, 

“the three most common forms of monitoring charts are those of the scores against time, two and three 

dimensional plots of the scores, and the squared prediction error (   ). The     is sum of the squared 

difference between the observed values and the predicted values from the reference model. The     

plot provides a way to identify a previously unidentified event, (i.e., a change that is not included in the 

model). Typically, principal components one and two and the calculated value of the     are plotted in 

a three-dimensional diagram. 

As stated by Martin, Morris, and Zhang 1996, “a process malfunction can lead to one of the following 

two situations.” First, the fault can change the correlation structure between the measured process 

variables meaning that the nominal PCA model is no longer valid and significant prediction errors will 

result which can be detected from the     plot. Second, the process malfunction may not alter the 

correlation structure among the process variables, in which case, the     will remain within the control 

limits but the scores will move outside the boundary of normal operation. The variables which primarily 

determine the direction of the individual principal components are those that have the largest absolute 

loadings (i.e., those that contribute the heaviest to the individual principal components). If a fault is 

identified, then the principal component that is no longer behaving as expected based on the reference 

model may be used to determine why the process has moved away from the nominal operating region. 

Valle, Li, and Qin 1999 discussed the difficulties in selecting the correct number of principal components 

for a MSPC model and presented an overview and comparison of ten methods to determine the number 

of principal components, including the Scree test mentioned above as the method selected for this 

work. A key issue in developing a PCA model is the selection of an adequate number of principal 

components to represent the system in an optimal way. If too few principal components are selected, a 

poor model will be obtained resulting in an incomplete representation of the process. On the contrary, if 

too many principal components are selected, the model will be over-parameterized and will include 

noise. The Scree test is an empirical procedure to guide the selection of the number of principal 

components to retain using the cumulative percent variance. The method looks for a “knee” or “elbow” 

point in the cumulative percent variance plotted against the number of principal components. The break 

point corresponds to the number of principal components to represent the process.  
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Kourti 2002 reminded us “that these methods [PCA and PLS] will not be able to unequivocally identify 

the cause of any problem (because of the highly correlated and non-causal nature of the data). 

However, they can almost always identify unusual operating periods and can usually isolate the region 

of the plant and the group of process variables that are related to the problem. Thus, they are a 

powerful tool for focusing the attention of the operations engineers to a much smaller area, allowing 

them to better use their engineering knowledge to diagnose the cause of any abnormal situations and 

thereby improve the process.” This same philosophy applies to using MSPC as a safeguards tool where it 

is IAEA inspectors who would be using the information to determine the location and cause of a fault 

and to determine if it resulted in a deliberate diversion of uranium.  

Process monitoring is beginning to be applied to nuclear processes as discussed in Hines, Upadhyaya, 

and Henkel 2008. The nuclear process applications have been mostly for on-line safety-related sensor 

calibration monitoring. Process monitoring for safeguards monitoring of a uranium enrichment facility 

has also been explored by Hines, Upadhyaya, and Henkel 2008. 

 

2.2 SAFEGUARDS AND DIVERSION IN CONVERSION PLANTS 

As discussed in Chapter 1, the IAEA policy for safeguards in conversion plants has been revised. 

According to Doo et al. 2003, IAEA now considers all highly purified uranium compounds as candidates 

for safeguarding which includes the intermediate products of an NUCP. The revision of the safeguards 

policy resulted in significant amounts of research in the area of the application of safeguards to uranium 

conversion plants. Much of that research was conducted by the U.S. Department of Energy (DOE), which 

is interested in developing instruments, tools, strategies, and methods that could be of use to the IAEA 

in the application of safeguards to the front end of the fuel cycle (Boyer et al. 2004, Faulkner et al. 

2004). The following is a review of the available literature on the studies in the area of conversion plant 

safeguards and diversion scenarios. 

Doo et al. 2003 identified the following as potential diversion pathways in an NUCP: “uranium oxides, 

UF6 product or uranium intermediates at NUCPs may be produced without declaration to the IAEA and 

diverted without efforts at concealment; or a diversion may be concealed by falsification of records to 

understate feed, overstate process losses, or overstate in-process inventories; or by substitution of 

dummy materials.”  

Four companion papers were presented at the 45th Annual Meeting of Institute of Nuclear Materials 

Management (INMM) in 2004. The first paper authored by Boyer et al. 2004 discussed an international 

safeguards approach for an NUCP and suggested that one approach for safeguarding conversion plants 

could be the use of “unattended process monitoring equipment to measure the flows of uranium 

through various unit processes.” In traditional safeguards, the plant operator makes a declaration of the 

material balance for the plant and the IAEA verifies that declaration through verification of plant design 
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information, auditing of records and reports, and independent measurement of a portion of the nuclear 

materials that comprise the flows and inventories of the declared material balance. However, 

verification of the declared material balance has many limitations and in general will not detect the 

processing of undeclared feed to produce undeclared product. Therefore, additional safeguards 

measures are required to detect undeclared processing. Traditional IAEA methods (e.g., application of 

containment and surveillance measures) could provide some detection capability. The IAEA has revised 

their approach to NUCP safeguards to include more short notice random inspections during the year to 

gain more flexibility and unpredictability in conducting inspections. The IAEA has made increasing use of 

unattended monitoring to verify operations at safeguarded facilities, which could offer an effective 

method for detecting the processing of undeclared materials in an NUCP (Boyer et al. 2004). 

In an ideal situation, safeguards would involve the continuous presence of IAEA inspectors at the plant 

and the installation of unattended monitors on each of the process vessels, but in practice, such 

intensive and intrusive approaches are not feasible because of cost, shortage of IAEA manpower, 

difficulty in operator acceptance, and existing political constraints (Boyer et al. 2004). Boyer et al. 2004 

proposed that a safeguards approach capable of detecting the processing of undeclared materials in a 

small NUCP might include the following components: 

 IAEA unattended monitoring instruments to measure the uranium content of intermediate 

process flow streams at key points in the process, primarily to detect the processing of 

undeclared feed; 

 IAEA verification of the declared uranium balance, primarily to detect the diversion of declared 

uranium; and  

 Operator declarations of specified nuclear material quantities and operating parameters on a 

daily basis. 

Boyer et al. 2004 identified the two principal safeguards concerns at an NUCP as: “1) diversion of pure 

materials for further processing or use elsewhere and 2) processing of undeclared feed to produce 

undeclared pure products (e.g., UO2, UF6).” Additionally, the paper listed the following as the most 

important diversion and undeclared processing scenarios: 

 “Diversion of uranium from the declared material balance; 

 Processing of undeclared UOC through production of UF6; 

 Processing of undeclared impure uranium feed materials (e.g., UOC or uranyl nitrate) through 

the solvent-extraction purification process and the production of purified uranyl nitrate; and  

 Processing of undeclared pure uranium feed materials (e.g., uranyl nitrate, uranium precipitant, 

UO2, or UF4) through the UF6 production step” (Boyer et al. 2004). 

The second INMM paper was authored by Faulkner et al. 2004 and discussed the Oak Ridge National 

Laboratory (ORNL) efforts to enhance conversion plant safeguards. The ORNL work was focused on 
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defining generic conversion facilities as well as reviewing various natural uranium conversion plants and 

process flowsheets in order to create a technical basis for selecting an effective safeguard program. 

Additionally, Oak Ridge used the most appropriate process configurations to constitute a set of process 

models that were used to determine logical locations for mass balance evaluations. ORNL also 

completed in-depth analyses of diversion scenarios which will be summarized below. 

According to Faulkner et al. 2004, “a clear understanding of the chemical conversion process is essential 

in selecting an appropriate set of safeguard controls.”  However, traditional IAEA inventory controls do 

not begin until the last step of an NUCP when the UF6 product is certified for use as feed to an 

enrichment facility. Faulkner et al. 2004 states the reasoning behind safeguarding NUCPs: “Each NUCP 

processing step increases the nuclear material attractiveness for diversion as the uranium is purified and 

as the chemical form is converted to one that is more suitable for use in a nuclear weapon[s] program. 

The quantity of uranium available, the ease of removal from the process, and the ability to obfuscate 

diversion were special considerations in the diversion analysis. Safeguard controls must include defense-

in-depth approaches to achieve a reasonable level of detection capability.” 

Faulkner et al. 2004 performed a diversion analysis by analyzing the generic conversion process to 

determine potential diversion routes for intermediate products. After the uranium is in the form of a 

purified uranyl nitrate solution, it becomes attractive for use in a weapons program and therefore in 

need of safeguarding. The purified uranyl nitrate solution can be denitrated to form UO3 or UO2. Either 

of which is well suited for production of UCl4 by chlorination, which is the preferred chemical form for an 

electromagnetic isotope separation (EMIS) enrichment process or for a chemical/ion exchange 

enrichment process. In addition, UO2 can be hydrofluorinated to produce UF4, which can be 

metallothermically reduced to uranium metal for use in an AVLIS enrichment process or in plutonium 

production. Moreover, uncertified UF6 is not currently monitored by IAEA safeguards and could be 

shipped to a clandestine site for fractional distillation prior to feeding to a gas centrifuge or gaseous 

diffusion enrichment plant. Figure 2.1 provides a pictorial view of the potential diversion paths for 

intermediate products from an NUCP.  

Diversion scenarios also include other options such as,  

1. Material substitution (substitution of feed materials that have higher uranium content than 

declared or the clandestine removal of uranium-bearing material in exchange for materials of 

similar characteristics but with less or no uranium content) (Faulty Cases 2 and 6),  

2. Equipment alterations (addition of bypass piping, valves, or other equipment used to divert or 

introduce materials clandestinely; or modification to equipment (e.g., heating), resulting in 

incomplete conversions or inefficient operation with excess uranium in the waste or tails) 

(Faulty Cases 5, 8, 9, and 11), 

3. Modified operations (intentionally operating processes inefficiently so that more uranium is 

contained in recycle, sample, or waste streams), (Faulty Cases 3, 4, 7, and 10) and  
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Figure 2.1. Pictorial View of the Potential Diversion Pathways for Intermediate Products from an NUCP. Note 

that the solid black arrows follow the steps in a typical uranium conversion process. The dashed black arrows 

denote alternate routes in the conversion process. The dashed red lines show attractive diversion paths. The 

dashed blue line shows the feed point for clandestinely obtained uranium. (Source: R. L. Faulkner, J. M. Begovich, J. 

J. Ferrada, R. D. Spence, J. M. Whitaker, W. J. Bicha, and L. G. Loden. 2004. “Oak Ridge Efforts to Enhance 

Conversion Plant Safeguards.” Proceedings 45th Annual Meeting of Institute of Nuclear Materials Management 

(INMM), July 18–22, 2004, Orlando.) 
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4. Data tampering (keeping two records of operation with one showing less throughput than 

actually processed; declaration of understated records to inspectors) (Faulkner et al. 2004). 

A safeguards system that uses a combination of accountability principles with unattended monitors to 

verify data would significantly enhance a diversion detection system. Faulkner et al. 2004 proposed that 

“the optimum system would include verifiable accountability data for feed and the withdrawal streams 

plus several inline detection systems.”  Eight points in an overall uranium conversion process were 

identified by Faulkner et al. 2004 for possible monitoring or accountability (Figure 2.2). The first 

monitoring point is the accountability data for the declared yellowcake receipt at the plant inlet 

(Figure 2.2, Point 1). A comparison of the record of the rate and amount of uranium mass exiting the 

plant in the UF6 product (Figure 2.2, Point 8) against that of a record of the uranium mass entering the 

plant in the feed provides the means for an overall plant uranium mass balance, minus the uranium 

leaving as waste. The yellowcake exiting the feed hopper into the dissolver (Figure 2.2, Point 2) is the 

first opportunity in the process to verify the uranium mass recorded in the accountability data for the 

yellowcake received at the NUCP. One possible location for inline monitoring is at the point just after 

dissolution, downstream of the uranyl nitrate tank (Figure 2.2, Point 3). This would be the first point 

where uranium is in solution. Both the aqueous stripping solution loaded with uranium (Figure 2.2, 

Point 4) and the organic solution stripped of uranium exiting the strip column (Figure 2.2, Point 5) 

should be monitored. These points help to prevent inefficient stripping by the operator and provide a 

mass check after the purification of the uranium. The concentrated solution from the evaporator can be 

measured at one of two locations: (1) just out of the evaporator before the pump (Figure 2.2, Point 6a) 

or (2) downstream of the reflux lines and valves but before the cooler (Figure 2.2, Point 6b). Point 7 

(Figure 2.2), the last in-line process monitor, would be located at the end of the precipitation or 

denitration step. Point 7 (Figure 2.2) also helps to verify the uranium dissolved and purified. With two 

accountability points and six in-line monitors in place, it is possible that this defense-in-depth safeguards 

approach could detect a significant quantity of uranium diversion with a reasonably high probability of 

detection for the small-scale plant. A minimum case for the small-scale (100-MTU/yr) plant is probably 

one in-line monitor, preferably at Point 4 (Figure 2.2), plus the accountability data at Points 1 and 8 

(Figure 2.2) (Faulkner et al. 2004).  

Ferrada 2004 provided the following information on possible monitors that could be used at the points 

shown in Figure 2.2. These monitoring points are mainly driven by mass balance principles. Therefore, 

the monitoring points should be supported by instrumentation that can verify mass balances. 

Flowmeters, to measure flow of material, and instruments that measure concentration of uranium are 

ultimately required for this analysis. Real-time, inline monitoring may be practical for a uranium 

solution, after the uranium is extracted from the yellowcake and before the uranium is changed into a 

solid form (Figure 2.2, Points 3–6). This type of monitoring requires the liquid flow rate (typically volume 

per unit time) and uranium concentration (mass per unit volume). Volumetric flowmeters are readily 

available from commercial suppliers. Mass flowmeters are also available, many of which also measure 

density. Monitoring of liquid density can help verify the uranium concentration since density is a   
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Figure 2.2. Uranium Conversion Process for a Small Size Plant with Proposed Safeguards Monitoring Points 

Identified. Note: Points 1 and 8 are existing accountability data; Point 8 is also the traditional start of IAEA 

safeguards. The remaining points are proposed in-line process monitoring points; values at all 8 points are 

correlated through material balance constraints and process operating conditions. (Source: R. L. Faulkner, J. M. 

Begovich, J. J. Ferrada, R. D. Spence, J. M. Whitaker, W. J. Bicha, and L. G. Loden. 2004. “Oak Ridge Efforts to 

Enhance Conversion Plant Safeguards.” Proceedings 45th Annual Meeting of Institute of Nuclear Materials 

Management (INMM), July 18–22, 2004, Orlando.) 
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function of the uranium concentration. According to Ferrada 2004, the primary monitoring should be a 

direct measurement of the uranium concentration and flow rate and monitoring of density should be 

secondary to verify that the primary monitoring is working properly. Inline meters for measurement of 

uranium concentration directly are more problematic. Low uranium concentrations result in impractical 

count times for the low-energy gamma from radio decay daughters. Photometric meters for inline 

measurement of uranium concentration exist, but matching safeguard needs with instrument 

capabilities has not been done. Picking monitoring points where higher concentrations are expected 

(e.g., after evaporators) would help. For a solid material stream, inline monitoring of uranium is 

impractical. Gravimetric feeding of solids accompanied by real-time recording of the mass fed per unit 

time is possible. However, it is necessary to know the uranium assay of the yellowcake being fed into the 

dissolver in order to obtain the uranium mass fed per unit time into the dissolver. In order to determine 

the uranium assay, grab samples would have to be taken at regular intervals followed by destructive 

analysis of the uranium concentration. Gamma spectroscopy of the low-energy gamma from the 

uranium decay daughters is being used with good success for qualitative, semi-quantitative, and even 

quantitative analysis, especially with regard to the relative ratio of 235U and 238U. However, it is 

questionable whether this technique or others will provide practical real-time monitoring of the 

uranium concentration in a process flow of a solid material with the precision and accuracy required for 

detecting undeclared production. A gravimetric feed and monitoring system may provide the total mass 

per unit time, but grab sampling and analysis would still be required to obtain the uranium mass per unit 

time. In addition, the facilities accountability records (e.g., number of drums and their weights with the 

date and time filled) can be verified using onsite monitoring (e.g., cameras), random checking of drum 

weight, and a sampling program for the uranium concentration. No matter the location in the plant, 

real-time process monitors that can compare NUCP accountability data with actual process data can be 

very useful, especially if the software can indicate trends in the relationship of accountability and actual 

data using statistical control charts to document anomalies (Ferrada 2004). 

The third INMM paper was authored by Elayat, Lambert, and O’Connell 2004 and covered systems 

analysis. As part of the multi-laboratory effort covered in the four companion INMM papers, Lawrence 

Livermore National Laboratory provided systems modeling and analysis of facility and safeguards 

operations, diversion path generation, and safeguards system effectiveness using directed graphs 

(digraphs) and fault trees. The purpose of the digraph-fault tree methodology was to systematically 

generate and analyze diversion scenarios. The final INMM paper is authored by Miller et al. 2004 and 

discussed nuclear source terms (neutron and gamma-ray) in support of the other papers. The fourth 

paper was not applicable to this effort and was not reviewed but is mentioned here for completeness.  

The work by Faulkner et al. 2004 was used as a starting point for defining the ideal plant modeled in this 

effort. The faulty cases that were used to test the detection framework were based on the diversion 

scenario analyses by Faulkner et al. 2004. In relation to the proposed approach by Boyer et al. 2004, the 

decision framework developed in this research could be expanded to provide the following for 

safeguarding conversion plants: 
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 An unattended system that could monitor key process parameters at specific locations within 

the plant and provide an alarm if a parameter varies outside a specified range; 

 Provide verification that the declared uranium balance is concurrent with monitored process 

parameters; and 

 Provide verification that operator declarations are reasonable based on monitored parameters. 

 

2.3 PRINCIPAL COMPONENT ANALYSIS 

The core of the research method applied in this study is the use of a multivariate statistical approach to 

analyze data to develop a reduced dimensional framework that would be able to detect the diversion of 

intermediate products in an NUCP. One of the multivariate statistical methodology’s workhorses is the 

PCA approach in analyzing data, establishing the base model, and monitoring future operations. The 

implementation of PCA will be through the use of singular value decomposition (SVD) of the base case 

data matrix,   (Wang 2006). The data matrix is     with     where each row represents an 

observation and each column represents a state variable. 

  [

         
   
         

] 

Each row of the data matrix,  , has   elements and can be viewed as a point in an  -dimensional space. 

The   rows of   can be depicted as ‘ ’ points in this  -dimensional space. Even though the points are 

in an  -dimensional space, the span of the points is such that they occupy a much reduced dimensional 

space. This is similar in notion as points in a 2-D space scattered mostly along one dominant line if the   

and   coordinates for the sample points are correlated.  

Principal component analysis is a data analysis method used to reduce a correlated data set which 

consists of a large number of interrelated process variables by reducing the dimensionality while 

retaining as much of the variations present as possible (Jolliffe 1986). The discarded dimensionality 

corresponds to the last (   ) outer products of the SVD of  , where   is deemed the ‘true’ 

dimensionality of the process data matrix and   is the total number of original process variables. 

Sources for more information on PCA include Jolliffe 1986; Jackson 2003; Martin, Morris, and Lane 2002; 

and Martin, Morris, and Zhang 1996. PCA is used to reduce the dimensionality of a system by creating 

orthogonal latent variables (i.e., principal components) which correspond to the   vectors of the SVD of 

the process data matrix,  . Each of these principal components is a weighted, linear combination of the 

original process variables. PCA was first introduced in 1901 by Pearson and later independently 

developed by Hotelling in 1933. As mentioned in the Introduction, some recent applications of PCA 

include process monitoring, fault diagnostics, gross error detection, multivariate statistical process 

control, data rectification, disturbance detection and isolation, gene expression analysis, facial 

recognition, signal processing, factor analysis, chemometrics, and chemical processes data analysis 
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(Brauner and Shacham 2000; Valle, Li, and Qin 1999; Bakshi, 1998). In chemical engineering, PCA is used 

to monitor batch and continuous processes, monitor product quality control, missing value replacement, 

identify and reconstruct sensor and/or process faults, and detect disturbances (Valle, Li, and Qin 1999). 

PCA is also being applied to nuclear processes (Hines, Upadhyaya, and Henkel 2008) and to nuclear 

forensics (Robel, Kristo, and Heller 2009). 

Some relevant mathematical concepts will now be presented. A basis for a linear vector space,  , of 

dimension   is a set of   independent vectors         with the property that every vector,  , in the 

space,  , can be expressed uniquely as a linear combination of these basis vectors, i.e., for every  , there 

exists a unique set of {  }      such that   ∑     
 
    for all    . One property of linear algebra 

of fundamental importance is the ability to transform the representation of a vector from one basis to 

another. This is called a change of basis. Change of basis to a particularly convenient basis allows one to 

detect the relatively weak dimensions of a data set; thus allowing one to reduce the dimension of a data 

matrix without losing much meaningful information. One can do a change of basis for a data matrix,  , 

from one set of basis vectors,  , to that of another, for instance  , where all the vectors of   will come 

from the right singular vectors of the SVD of   (all the    vectors chosen are already orthogonal to each 

other). Each row of the data matrix represents a measurement vector of the various process variables at 

a particular time point. If there is a strong correlation between the   variables, then the sum of the 

squares of the projection of   along the first singular vector of   (  ) will be much greater than   along 

the second singular vector and any subsequent basis of   (       ). Therefore,    is the vector of all 

possible chosen vectors that maximizes the sum of squares of the projections of the original data sample 

points. For instance, for a 2-dimensional   data matrix when the two   variables are highly correlated, 

‖   ‖ 
 will be much less than ‖   ‖ 

, where ‖ ‖  denotes the 2-norm of a vector. The components of   

along    can be considered to come from noise in nature and the system can be reduced from a 

2-dimensional representation to a 1-dimensional representation of the original data without losing any 

meaningful information contained in the original data matrix. Therefore, a reduction of rank of the data 

matrix has occurred. The key to this approach is determining how many of the new basis vectors to 

transform   to and which vectors to project onto. Singular Value Decomposition (SVD) provides 

guidance.  

SVD is used to determine the orthogonal basis vectors which best represent the original data where the 

sum of squares of the projections of the original data onto each successive orthogonal basis vector in   

becomes less and less. According to the theory of SVD, every matrix,   (of dimension    ), can be 

decomposed into the product of three special matrices,  ,  , and  , according to Eq. (2.3.1) (Strang 

2006) 

            (2.3.1) 

where   and   have orthonormal columns and   is a diagonal matrix with positive elements (i.e., the 

singular values) arranged in a descending order. After singular value decomposition of  , the right 
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singular vectors, i.e., the   columns of the   matrix, are unit length and orthogonal to one another. The 

columns of the   matrix provide a new set of basis vectors. The first   vector,   , or the first principal 

component (PC), is such that it is the direction vector upon which the sum of squares of the projections 

of all the   row vectors of   is the maximum of all possible direction vectors that can be chosen in the 

 -dimensional space. The second   vector,   , or the second principal component, being orthogonal to 

  , is one such that the sum of squares of the projections of the residual of the   points (after 

projection onto    is subtracted) is maximum. It is likewise for the subsequent   vectors. Therefore, the 

sum of squares of the projections onto the last few vectors of   are the least. And if the last few vectors 

of   capture less variation than that of the first few, then projections along these basis vectors are 

considered as to have come from noise and uncertainty associated with the measurement of the 

process variables represented in  . The vector of projections of the rows of   along a particular basis 

vector,   , are called the scores and are given by Eq. (2.3.2). 

             (2.3.2) 

The scores (unnormalized) of a sample point refer to the magnitude of the projections of the sample 

point (or a row of the original data matrix) onto each of the principal component vectors. This projection 

process can be viewed as a change of basis from that of the original to a new set of mutually orthogonal 

basis vectors given by the ‘ ’   vectors. The scores of a sample point can be viewed as the new 

coordinate of the sample point along   , along   , etc. The scores for a sample point, for example, the 

first row of   (   ), are calculated by finding the inner product (dot product) of     with each of the ‘ ’ 

vectors in   to give a vector with   components (or scores) for the first sample point. The inner product 

of     with    gives a number that is equal to the magnitude of the projection of    , or the first sample 

point, onto   , which is referred to as the score along   , or the score along PC1 for sample 1 from the 

data matrix,  . The inner product of     with    gives a number that is equal to the magnitude of the 

projection of the first sample, onto   , of PC2, which is referred to as the score along    or PC2. It is 

likewise for the inner product of     with the subsequent   vectors. Through the use of SVD, a data 

matrix can be decomposed into mutually orthogonal outer product components of decreasing 

significance as shown below Eq. (2.3.3);  
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  ∑            (2.3.3) 

The first outer product,       
 , through the associated   , which being the largest of all singular values, 

captures the most variation in one dimension represented by the original data matrix; meaning       
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is the best rank-1 approximation of the   data matrix. Each subsequent outer product makes 

progressively less and less contribution to  . Therefore, the first term of the outer products of the SVD 

of   contributes to the most original information captured in  , while the second term contributes the 

next most, and the last term contributes the least information. Each term of the outer products of the 

SVD of the data matrix,  , will be an     matrix if   is    , and each outer product matrix is 

independent of all other outer products because all of the   ’s are mutually orthonormal and all of the 

  ’s are mutually orthonormal. 

The following basic approach to PCA was adapted from Wang 2006; Martin, Morris, and Lane 2002; and 

Kourti 2002. The overall approach for this work is located in Chapter 3. PCA can be performed in two 

ways: with or without normalizing the data matrix to have unit or weighted standard deviation in each 

variable. Normalization must be used when the data set contains variables with different physical units. 

Therefore it is common to standardize all the data (columns of  ) to have zero mean and unit standard 

deviation. Weighted scaling is used when certain process variables need to be brought out as more 

important than other variables, such as the uranium-bearing product streams in this work. Therefore, 

the first step in applying PCA is to standardize the data matrix,  , which contains   samples of   

variables with    . The data matrix is standardized by mean centering each column to give a zero 

mean and dividing each centered column by its standard deviation, see Eq. (2.3.4) 

     
    ̅ 

  
                (2.3.4) 

where      for process variable   denotes the  -th standardized   variable;    is the  -th original process 

variable vector;  ̅  is the mean of the    column vector; and    is the standard deviation for the  -th 

mean-centered   . Therefore, the resultant data matrix has a mean of zero and a standard deviation of 

one for each column. In weighted scaling, the standard deviation is divided by a scaling factor before 

normalization such that the resultant data matrix has a mean of zero and a standard deviation of the 

value of the scaling factor for each column. After the variables have been normalized, SVD is performed 

according to Eq. (2.3.5) (Wang 2006) 

  √   ⁄             (2.3.5) 

where    is the standardized data matrix. A key consideration in developing a PCA model is to choose an 

appropriate number of principal components to represent the original data in an optimal way; if too few 

PCs are selected, a poor model will be obtained and an incomplete representation of the process 

results; if more PCs than necessary are selected, the model will be over-parameterized and will include a 

modeling component for noise (Valle, Li, and Qin 1999). The diagonal values of the   matrix can be used 

to determine the effective rank of the    data matrix by doing a Scree test. In the Scree test, the 

cumulative singular values,   , are plotted in a simple curve against the index count. The point at which 

the slope changes and appears to level off to the right of the plot suggests the break point to discard 

additional principal components. The discarded principal components are assumed to represent the 
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process noise and reflect redundancy of the process variables. Using this method, PCA can effectively 

separate the signal from the noise in a process (Martin, Morris, and Lane 2002).  

The original observations (i.e., rows of  ) are then projected onto the smaller principal component 

subspace spanned by the chosen set of reduced number PCs or the ‘ ’ number of retained mutually 

orthogonal principal component vectors to give principal component scores ( ). The   matrix, as shown 

in Eq. (2.3.6), is the product of   with    where ‘ ’ refers to the number of PCs selected to be retained 

to build the PC model to represent the original data.  

              (2.3.6) 

Usually, ‘ ’ is much smaller than ‘ ’, because ‘ ’ represents the ‘true’ degree of freedom exhibited by 

the sample points, even though they reside in a much larger  -dimensional space. The ‘ ’ process 

variables represented in  , are all correlated through conservation of mass equations. The underlying 

degree of freedom is a function of the number of physically independent input variables that the 

process is operated under. The response of the process variables to their variations under normal 

operations with anticipated variation in the various input variables are what are captured in the data 

matrix,  . Therefore the ‘true’ degree of freedom reflects the number of ‘independent’ acting inputs to 

the process which bring about the responses in the dependent process variables whose values are 

measured and go into the data matrix,  . The residuals matrix,  , is to be computed using Eq. (2.6.7). 

  (            )      (2.3.7) 

The  -th Mahalanobis distance of    which is the  -th diagonal element of the    matrix shown below, 

and the  -th diagonal element  -statistic are to be calculated using Eq. (2.3.8) and (2.3.9), respectively, 

   (    
  )  (    

  )             (2.3.8) 

   ‖  ‖ 
        (2.3.9) 

where ‖  ‖  denotes the 2-norm (or Euclidean norm) of the  -th residual vector (row) in  . The 

normalized scores of a sample data point refer to the scores along the ‘ ’ principal components after 

normalization with the respective singular value for the PC. Since the singular value gives the square 

root of the sum of squares of the projections of all sample points onto a given principal component, the 

scores of a sample point along the various PCs are scaled differently by their respective singular value. In 

order to bring the scores to equal scale, the score along a PC is normalized by its respective associated 

singular value. This normalization is achieved by multiplying the individual score in a scores vector by the 

inverse of the respective singular value. Equation (2.3.8) shows this operation. Normalization of the 

scores can be thought of as rescaling the coordinate axis by the inverse of the respective singular value. 

The relative positions of the scores points of the original sample points are not changed by the process 

of normalization. The various diagnostic plots presented in this dissertation used to detect possible 

faults utilize normalized scores. Qualitatively, these diagnostic plots would look exactly the same if 



 

28 
 

‘unnormalized’ scores are used instead. In this case, the actual scale labeling along PC1, PC2, and PC3 

will be different from that of the normalized case, but the relative positions of the scores points on the 

plot would not appear any differently.  

The 95% confidence threshold for {  
 } and {  } are established as shown in Eq. (2.3.10) and (2.3.11), 

respectively, 

  
  

 (   )(   )

 (   )
   (     )     (2.3.10) 

where   is the number of samples,   is the number of PCs retained for the model, and    is the critical 

value for the  -distribution that leaves  % area to the right for [     ] degrees of freedom. 

     [
      √   

  
   

      (    )

  
 ]

 

  
      (2.3.11) 

The   terms are defined as 

   ∑   
   

           (2.3.12) 

for         and    is defined as 

     
     

   
        (2.3.13) 

where    is the critical value for a normal distribution that leaves  % area to the right and    is the  -th 

singular value of the   √   ⁄  matrix. 

As mentioned previously, one common way of presenting the information obtained from PCA models is 

through two-dimensional plots of the scores of the principal components or through plots of the scores, 

  , and the     or  -statistic. In monitoring, a time series of the    and the     can be plotted against 

time to show trending behavior. The     is the sum of the squared difference between the observed 

values and the predicted values from the base case PCA model, and reflects the residuals after fitting 

with the PCA model. If a change among the relative relationship between the process variables has 

occurred, the PCA model constructed from historical operating data is not expected to fit as well, thus 

leading to increased residuals. The    statistic is a measure of the Mahalanobis distance in the reduced 

scores space between the position of a sample and the origin that defines those samples exhibiting 

minimal variation (i.e., average behavior of the process) derived from the historical data set. The     

plot allows one to identify the onset of a new event not previously captured in the data. However, if the 

process change is caused by a larger than normal shift in one or more of the process variables, but the 

basic relationship between the quality and/or process variables remains unchanged, then a translation 

in the scores plane will result, with the     remaining under an acceptable level. In this instance, an 

‘out-of-control’ signal will be seen in the    plot, but not in the  -statistic plot. 
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3. METHODOLOGY 

 

The methodology that was used for the development of the diversion detection framework is outlined 

below. This methodology starts with an overview of the overall approach followed by the material 

balances of the processes in the conversion plant. A description of the sensitivity analysis is followed by 

descriptions of the normal and faulty cases including the application of PCA to the problem. 

As a reminder, this study was developed for a 100 MTU/yr NUCP using the wet solvent extraction 

method for the purification of uranium ore concentrate in the form of U3O8. It was assumed that the 

process was operating continuously and was at steady-state.  

 

3.1 OVERALL APPROACH 

The overall approach used to develop the monitoring framework is shown in the flow diagram in 

Figure 3.1.  

The first major step in the overall approach was to define the base case and generate the ‘normal’ data 

set. First, the process equations that describe the steady-state system were defined. These equations 

are based on concentration of mass of the various chemical species and are a function of the state 

variables and the input variables of interest, where   and   denote the full state variables of interest 

(   ) and full input variables (   ), and ‘ ’ denotes the nonlinear algebraic equations. The change 

in the system,  ̇, is zero when the system is at steady-state. 

 ̇   (   ) 

For this work, the system of equations was based on the material balances, and the component molar 

flow rates of the various streams were the state variables. A total of 273 process variables were chosen 

to be monitored. All of the parameters and input variables were then defined. The input variables were 

the operational variables whose values can be set to drive the system operation, e.g., flow rate and 

concentration in the inlet stream to a reactor, etc. A total of seven input variables were chosen. For the 

input variables, the normal range profile for each variable was established, i.e., ‘normal’ flow rate of 

elemental uranium into the plant was specified as 50 kg/h. Next, the steady-state solution to all the 

material balance equations at the specified nominal input operating profile was obtained. The ‘fsolve’ 

function in MATLAB® was used to determine the steady-state solution. According to the MATLAB® 

2013a Documentation, ‘fsolve’ is used to find a root or zero of a system of   nonlinear functions in   

variables by the trust-region-dogleg algorithm (MATLAB® 2013). The algorithm is a variant of the Powell 

dogleg method, a numerical method for solving nonlinear equations. The steady-state solution was 

substituted back into the equations to check that the solution to the system of equations was indeed   
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Figure 3.1. Flow Diagram of the Overall Approach Method for Developing a Modeling Framework. 

  

Base Case 

•Define the process equations used to describe the system based on 
material balances 

•Identify all parameters associated with the process operation 

•Identify overall input variables of interest and establish input variable’s 
normal range profile 

•Obtain the initial, nominal steady-state solution for the initial set of input 
variables 

•Generate base case data  

Principal 
Component Model 

•Add random Gaussian noise to base case data set 

•Pre-process data (normalize, mean-center, and scale) 

•Extract PC model using SVD 

•Determine effective rank 

•Establish statistical bounds 

Faulty Cases 

•Simulate several ‘faulty’ or ‘off-normal’ operations 

•Regress faulty data against base case model 

•Evaluate ability to detect ‘fault’ 

•Conclusion 
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essentially zero. Once the nominal state-steady values were determined, it was possible to generate a 

set of ‘base case’ operating values from which the PCA model was built. The set of chosen input 

variables were varied around the nominal operational point to simulate ‘normal’ variation of these 

variables in actual operation. The reasonable range on either side of the nominal values was established, 

e.g., ±10% for flow rates. Thousands of data points were needed to build the base case PCA model. This 

was accomplished through the use of nested loops that cycle through all possible combinations of the 

levels of input variables. For example, assume that three input variables have been chosen to vary over 

20 different values in the range of each variable; the simulation would generate 203 = 8000 data points. 

Therefore, the base case data matrix was generated by determining the steady-state intermediate 

variable measurements in response to normal variation in the input variables based on material 

balances. Each newly calculated steady-state solution ( ) and the corresponding input variable values 

( ) are stored as a row vector of the large base case data matrix (   ). Each row represents a process 

response to a different combination of input variable values. There are a total of 273 state variables and 

seven input variables. The input variable values were placed as the last seven variables in the data 

matrix [Xss(274)–Xss(280)]. 

The next major step in the overall approach was to determine the reduced-dimension base case model 

following the procedure discussed in Chapter 2. The base case or ‘normal’ principal component model 

using the PCA approach was established based on normal operating profiles and expected normal 

variations. Before PCA could be applied to the base case data, random Gaussian white noise was added 

to all the measurement variables to simulate measurement noise. The data set was then pre-processed, 

i.e., standardized by mean centering each column to give a zero mean and normalized each column to 

have unit or weighted variance by dividing each centered column by its standard deviation. Singular 

value decomposition (SVD) was used to extract the principal components. The effective rank was 

determined in order to select the appropriate number of principal components to retain to represent 

the normal state of operation. The statistical bounds of    and   of the PCA model were established 

from the reduced-dimensional principal component framework. 

The next step in the approach was to test the monitoring framework using faulty operational cases. 

Several faulty scenarios were simulated by introducing ‘faults’ into the operation. The faulty data sets 

were analyzed using the base case principal component model and the established statistical bounds. 

The ability of the model to detect each fault was evaluated. 

 

3.2 MATERIAL BALANCES 

A flowsheet of the overall NUCP is shown in Figure 3.2. Component mole balances were used to model 

each of the process units in the NUCP. The general form quoted for a mass balance is “the mass that 

enters a system must, by conservation of mass, either leave the system or accumulate within the 

system” (Himmelblau 1967). The general equation for material balances is shown in Eq. (3.2.0.1). 
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Figure 3.2. Block Diagram of a Natural Uranium Conversion Plant (NUCP). This diagram represents a small-size 

plant that processes 100 MTU/yr using the wet solvent extraction method. The primary input, product, and waste 

streams are labeled. The state variable numbers associated with each Module are listed along with the variable 

numbers for the input variables. The state variable numbers for the components in each stream are given as well. 
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                                                   (3.2.0.1) 

At steady state, the accumulation is zero and Eq. (3.2.0.1) can be rewritten as shown in Eq. (3.2.0.2). 

                                        (3.2.0.2) 

A material balance can be done around the entire NUCP (see Figure 3.2), around any given section of the 

plant (blue dashed boxes in Figure 3.2), or around each unit and/or piece of equipment within the plant. 

Any diversion of an intermediate will distort the expected relative proportions of the components at 

steady state leading to a deviation from the ‘normal’ pattern of relative proportions of components 

based on material balances.  

In order to simplify model construction and debugging, the flowsheet for a natural uranium conversion 

plant (Figure 3.2) was divided into five modules to represent the major processing units within the plant, 

which are shown in Figure 3.2 as blue dashed boxes. Each module was further subdivided as needed to 

facilitate material balance calculations. The five modules were 1) Dissolution, 2) Solvent Extraction, 3) 

Evaporation and Precipitation, 4) Conversion to UO2 and UF4, and 5) Conversion of UF4 to UF6.  

Additionally, each chemical component used in the model was assigned a component number which 

was used in the model instead of the chemical formula. Table 3.1 lists each component number, 

chemical name, chemical formula, molecular weight, and which modules the chemical components 

were used. 

For the material balances discussed below, the component molar flow rate is represented by     , where 

  denotes the stream number and   denotes the chemical component number as defined in Table 3.1. 

These      are the state variables, also denoted by    . Tables 3.2–3.6 list the state variable numbers, 

stream numbers, and chemical component numbers associated with each module. The values in 

Tables 3.2–3.6 provide a map of which      corresponds to each    . For example, the      for water in 

Stream 1 is      which is also Xss(1). Another example is that Xss(73) is        which is the molar flow 

rate of the soluble component (#21) in Stream 13. Table 3.7 provides a summary of the modules 

including streams and the associated state variable numbers.  

Table 3.8 lists the primary state variables for each module. Each state variable was a component molar 

flow rate for a stream within that module. Additionally, each of the primary state variables was a 

uranium-bearing component molar flow rate. The type of stream in the table refers to whether the 

stream was an intermediate stream within the specified module, a waste stream that exited the process 

completely, a module-specific product which became a feed stream to the subsequent module, or in the 

case of the final stream, the overall product. The primary state variables are the most important state 

variables to track throughout the system. Some streams did not have a uranium component or the 

uranium component was so small that it was unreasonable to track.   
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Table 3.1. List of Chemical Components  

Component 
Number Chemical Name Chemical Formula 

Molecular Weight 
(g/mol) Module 

1 water H2O 18.0153 1, 2, 3, 4 

2 nitrogen N2 28.0134 4, 5 

3 ammonia NH3 17.0305 3, 4 

4 nitrogen dioxide NO2 46.0055 1 

5 hydrogen H2 2.0159 4 

6 hydrogen fluoride HF 20.0063 4 

7 fluorine F2 37.9968 5 

8 carbon dioxide CO2 43.9987 3, 4 

9 nitric acid HNO3 63.0128 1, 2, 3 

10 methanol CH3OH 32.0365 3 

11 tributyl phosphate (TBP) (CH3CH2CH2CH2O)3PO 228.0000 2 

12 ammonium nitrate NH4NO3 80.0434 3 

13 ammonium carbonate (NH4)2CO3.H2O 114.1011 3 

14 uranyl nitrate (UN) UO2(NO3)2 394.0375 1, 2, 3 

15 uranium hexafluoride UF6 352.0193 5 

16 uranium tetrafluoride UF4 314.0225 4, 5 

17 uranium dioxide UO2 270.0277 4 

18 triuranium octoxide U3O8 842.0819 1, 2, 3, 4, 5 

19 
ammonium uranyl 
carbonate (AUC) (NH4)4UO2(CO3)3 522.1489 3, 4 

20 impurities in U3O8 insoluble 500 (assumption) 1, 2 

21 impurities in U3O8 soluble 500 (assumption) 1, 2, 3 

 

 

Table 3.2. State Variable Numbers for Module 1 [Xss(1–73)] 

 
  Stream Number 

Chemical Component 1 2 3 4 5 6 7 8 9 10 11 12 13 

Component Number Xss Number 

H2O 1 1 -- 8 14 20 26 32 38 44 50 56 62 68 

NO2 4 -- 7 -- -- -- -- -- -- -- -- -- -- -- 

HNO3 9 2 -- 9 15 21 27 33 39 45 51 57 63 69 

UO2(NO3)2 14 3 -- 10 16 22 28 34 40 46 52 58 64 70 

U3O8 18 4 -- 11 17 23 29 35 41 47 53 59 65 71 

Insoluble 20 5 -- 12 18 24 30 36 42 48 54 60 66 72 

Soluble 21 6 -- 13 19 25 31 37 43 49 55 61 67 73 
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Table 3.3. State Variable Numbers for Module 2 [Xss(74–120)] 

 
  Stream Number 

Chemical Component 14 15 16 17 18 19 20 

Component Number Xss Number 

H2O 1 74 81 88 95 102 109 114 

HNO3 9 75 82 89 96 103 110 115 

TBP 11 76 83 90 97 104 -- 116 

UO2(NO3)2 14 77 84 91 98 105 111 117 

U3O8 18 78 85 92 99 106 112 118 

Insoluble 20 79 86 93 100 107 -- 119 

Soluble 21 80 87 94 101 108 113 120 

 

 

 

 

 

 

Table 3.4. State Variable Numbers for Module 3 [Xss(121–172)] 

 
  Stream Number 

Chemical Component 21 22 23 24 25 26 27 28 29 30 31 

Component Number Xss Number 

H2O 1 121 126 131 -- -- 134 141 -- 152 161 164 

NH3 3 -- -- -- 132 -- 135 142 150 -- -- -- 

CO2 8 -- -- -- -- 133 136 143 151 -- -- -- 

HNO3 9 122 127 -- -- -- 137 144 -- 153 -- 165 

CH3OH 10 -- -- -- -- -- -- -- -- 154 -- 166 

NH4NO3 12 -- -- -- -- -- -- 145 -- 155 -- 167 

(NH4)2CO3.H2O 13 -- -- -- -- -- -- -- -- 156 -- 168 

UO2(NO3)2 14 123 128 -- -- -- 138 146 -- 157 -- 169 

U3O8 18 124 129 -- -- -- 139 147 -- 158 162 170 

(NH4)4UO2(CO3)3 19 -- -- -- -- -- -- 148 -- 159 163 171 

soluble 21 125 130 -- -- -- 140 149 -- 160 -- 172 
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Table 3.5. State Variable Numbers for Module 4 [Xss(173–220)] 

 
  Stream Number 

Chemical Component 32 33 34 35 36 37 38 

Component Number Xss Number 

H2O 1 -- -- 176 -- 187 -- 193 

N2 2 -- 174 177 -- 188 192 194 

NH3 3 173 -- 178 -- 189 -- 195 

H2 5 -- 175 179 -- 190 -- 196 

HF 6 -- -- -- -- -- -- -- 

CO2 8 -- -- 180 -- 191 -- 197 

UF4 16 -- -- -- -- -- -- -- 

UO2 17 -- -- 181 184 -- -- -- 

U3O8 18 -- -- 182 185 -- -- -- 

(NH4)4UO2(CO3)3 19 -- -- 183 186 -- -- -- 

 
  Stream Number 

Chemical Component 39 40 41 42 43 44   

Component Number Xss Number 

H2O 1 -- -- -- 204 211 -- 
 

N2 2 -- -- 202 205 212 -- 
 

NH3 3 -- -- -- -- -- -- 
 

H2 5 -- -- -- -- -- -- 
 

HF 6 -- 201 203 206 213 -- 
 

CO2 8 -- -- -- -- -- -- 
 

UF4 16 -- -- -- 207 214 218 
 

UO2 17 198 -- -- 208 215 219 
 

U3O8 18 199 -- -- 209 216 220 
 

(NH4)4UO2(CO3)3 19 200 -- -- 210 217 --   
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Table 3.6. State Variable Numbers for Module 5 [Xss(221–273)] 

 
  Stream Number 

Chemical Component 45 46 47 48 49 50 51 52 

Component Number Xss Number 

N2 2 -- -- -- 228 233 -- 242 -- 

F2 7 -- -- 227 229 234 -- 243 -- 

UF6 15 -- -- -- -- 235 -- 244 246 

UF4 16 221 224 -- 230 236 239 245 -- 

UO2 17 222 225 -- 231 237 240 -- -- 

U3O8 18 223 226 -- 232 238 241 -- -- 

 
  Stream Number 

Chemical Component 53 54 55 56 57 58 59 60 

Component Number Xss Number 

N2 2 247 251 257 263 -- -- -- -- 

F2 7 248 252 258 264 -- -- -- -- 

UF6 15 249 253 259 -- 265 -- 272 273 

UF4 16 250 254 260 -- 266 269 -- -- 

UO2 17 -- 255 261 -- 267 270 -- -- 

U3O8 18 -- 256 262 -- 268 271 -- -- 

 

 

 

Table 3.7. Summary of the Modules 

Module 
Number of 

External 
Inputs 

Number of 
Intermodular 

Inputs 

Number of 
Output 
Streams 

Number of 
Streams 

1 4 0 4 13 

2 5 1 3 7 

3 1 1 4 11 

4 2 1 3 13 

5 1 1 4 16 

Module 
Stream 

Numbers 

Number of 
Chemical 

Components 

Number of 
State 

Variables 

State 
Variable 
Numbers 

1 1–13 7 73 1–73 

2 14–20 7 47 74–120 

3 21–31 11 52 121–172 

4 32–44 10 48 173–220 

5 45–60 6 53 221–273 
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Table 3.8. Primary Uranium Bearing State Variables within Each 
Module 

State 

Stream 

Component Type of 

Variable Formula Number Stream 

Module 1 

Xss(3) 1 UN 14 Intermediate 

Xss(10) 3 UN 14 Intermediate 

Xss(16) 4 UN 14 Intermediate 

Xss(40) 8 UN 14 Waste 

Xss(41) 8 U3O8 18 Waste 

Xss(64) 12 UN 14 Product 

Xss(70) 13 UN 14 Waste 

Module 2 

Xss(77) 14 UN 14 Intermediate 

Xss(84) 15 UN 14 Intermediate 

Xss(91) 16 UN 14 Waste 

Xss(92) 16 U3O8 18 Waste 

Xss(98) 17 UN 14 Intermediate 

Xss(111) 19 UN 14 Product 

Xss(117) 20 UN 14 Waste 

Module 3 

Xss(123) 21 UN 14 Waste 

Xss(128) 22 UN 14 Intermediate 

Xss(138) 26 UN 14 Intermediate 

Xss(148) 27 AUC 19 Intermediate 

Xss(159) 29 AUC 19 Intermediate 

Xss(163) 30 AUC 19 Product 

Xss(169) 31 UN 14 Waste 

Xss(171) 31 AUC 19 Waste 

Module 4 

Xss(181) 34 UO2 17 Intermediate 

Xss(184) 35 UO2 17 Intermediate 

Xss(198) 39 UO2 17 Intermediate 

Xss(207) 42 UF4 16 Intermediate 

Xss(208) 42 UO2 17 Intermediate 

Xss(214) 43 UF4 16 Waste 

Xss(215) 43 UO2 17 Waste 

Xss(217) 43 AUC 19 Waste 

Xss(218) 44 UF4 16 Product 

Xss(219) 44 UO2 17 Product 
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Table 3.8. Primary Uranium Bearing State Variables within Each 
Module (continued) 

State 

Stream 

Component Type of 

Variable Formula Number Stream 

Module 5 

Xss(221) 45 UF4 16 Intermediate 

Xss(222) 45 UO2 17 Intermediate 

Xss(224) 46 UF4 16 Intermediate 

Xss(225) 46 UO2 17 Intermediate 

Xss(230) 48 UF4 16 Intermediate 

Xss(235) 49 UF6 15 Intermediate 

Xss(239) 50 UF4 16 Waste 

Xss(240) 50 UO2 17 Waste 

Xss(244) 51 UF6 15 Intermediate 

Xss(246) 52 UF6 15 Intermediate 

Xss(249) 53 UF6 15 Intermediate 

Xss(253) 54 UF6 15 Intermediate 

Xss(254) 54 UF4 16 Intermediate 

Xss(259) 55 UF6 15 Intermediate 

Xss(265) 57 UF6 15 Intermediate 

Xss(269) 58 UF4 16 Waste 

Xss(270) 58 UO2 17 Waste 

Xss(272) 59 UF6 15 Intermediate 

Xss(273) 60 UF6 15 Product 
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3.2.1 Module 1: Dissolution 

Yellowcake (also known as, uranium ore concentrate) contains impurities at a level such that it cannot 

be used directly as feed for producing uranium compounds or metal for a nuclear program and must be 

purified. Purification of yellowcake generally starts with a dissolution process. The dissolution process 

was used as the start of the ideal natural uranium conversion plant that was the focus of this effort.  

Module 1, Dissolution, encompassed the receipt of yellowcake at the facility to the transfer of uranyl 

nitrate to the solvent extraction process. Module 1 has been further subdivided into five sub-modules. 

The flowsheet for Module 1 is shown in Figure 3.3. 

Yellowcake dissolution is typically performed using nitric acid in some type of stirred, heated vessel. The 

uranium concentration in the dissolver product solution is varied, depending upon the downstream 

process requirements (typically ranging between 200400 g U/L of solution). Both batch and continuous 

modes of operation can be used in the dissolution process. The equipment utilized must be constructed 

of materials that are resistant to nitric acid corrosion (e.g., stainless steels). This effort has been limited 

to only consider a conversion plant that processes 100 MTU/yr. Although the model assumes continuous 

operation at steady state, the input flow rate of uranium was based on operation of 8 h/day, 

5 days/week, and 50 weeks/yr. This resulted in an input flow rate of 50 kg U/h. 
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Figure 3.3. Module 1: The Dissolution Process of a Natural Uranium Conversion Plant. In this figure, the plant is 

processing 100 MTU/yr and utilizing uranium recovery to reduce uranium losses to waste. 
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Module 1 (Figure 3.3) started with the dissolution of yellowcake in nitric acid to produce uranyl nitrate 

[UO2(NO3)2]. Yellowcake, as impure U3O8, was fed into a material feed hopper that feeds a dissolver tank 

by means of a screw conveyor. The dissolution process was carried out at 80°C. Heat was provided 

indirectly through a steam jacket surrounding the dissolver tank. After dissolution, the material was sent 

to a slurry-aging vessel; this is especially necessary if silicas were present in the incoming yellowcake. 

The slurry-aging vessel was also heated at 90–95°C indirectly by means of a steam jacket. The final 

concentration of uranium was expected within the range of 400–450 g U/L with a 2.5 N free HNO3. The 

slurry was then cooled with chilled water and sent to a vacuum filter system. The liquids from the 

vacuum filter were pumped to a centrifuge that separates the last solid particles from the liquid. The 

retained solid particles were part of the solid waste, and the liquid was then sent to the solvent 

extraction purification system. This liquid was sent to a uranyl nitrate holding tank. The concentration in 

this tank reached 350–400 g U/L with a concentration of HNO3 ranging from 1.5 N to 2 N free acid. 

Uranium losses in the waste stream from the centrifuge can range from less than 0.2% with uranium 

recovery to 2% for a low efficiency case in a small plant. Module 1 included uranium recovery. The solids 

from the vacuum filter were transferred to a resuspension tank. This tank was agitated at 25–50 rpm, 

and water was added. The suspended slurry was sent to a secondary vacuum filter where the filtrate 

was sent back to the dissolver unit, and the wet solids constituted solid waste.  

 

3.2.1.1 Module 1A 

The inputs to the dissolver were the uranium ore concentrate which was assumed to be 85-wt% U3O8 

and 15-wt% impurities (7.5-wt% soluble impurities and 7.5-wt% insoluble impurities), nitric acid, water, 

and a recycle stream from Module 1D (internal to Module 1). There were two outputs from the 

dissolver: 1) the liquid product stream and 2) NO2 which was vented as waste. The reaction that 

occurred in the dissolver is shown in Eq. (3.2.1.1).  

               (   )               (3.2.1.1) 

Equation (3.2.1.1) is the idealized form of the reaction. In reality, various forms of NOx are formed. 

Additionally, the reaction does not go to completion; the extent of reaction is 0.9799, meaning that 

97.99% of the uranium in the U3O8 is converted to uranyl nitrate [UO2(NO3)2]. Figure 3.4 shows a block 

diagram of Module 1A with the input and output streams labeled.  

Stream 1A was the uranium-bearing input stream which was assumed to be 85 wt-% U3O8 and 15 wt-% 

impurities (7.5 wt-% soluble impurities and 7.5 wt-% insoluble impurities). The molecular weight of U3O8 

is 842.1 g/mol. Also, U3O8 is insoluble in water but soluble in nitric acid. The flow rate of elemental 

uranium to the dissolver was specified at 50 kg/h. Additionally, the soluble and insoluble impurities do 

not participate in the reaction. The molecular weight for each impurity was assumed to be 500 g/mol. 

These impurities are the other metal oxides that would be present following the mining and milling  
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Figure 3.4. Block Diagram of the Module 1A Showing Input and Output Streams. 

 

operations that are performed prior to the conversion process. The mass flow rate of U3O8 in Stream 1A 

based on the assumptions above was 69.37 kg/h. 

Stream 2A was the nitric acid input stream to the dissolver. It was assumed that the nitric acid feed 

stream was commercially available nitric acid which was 70 wt% HNO3 (15.698 M) with a density of 

1.413 g/mL and a molecular weight of 63.01 g/mol. Using the flow rate of uranium into the dissolver and 

the stoichiometric coefficients from the reaction, the volumetric flow rate of nitric acid needed for the 

reaction was calculated to be 35.68 L/h. Stream 2A was fed in 20% excess, so the actual flow rate of 

nitric acid was 42.82 L/h. Nitric acid recycle is not considered as part of this work but it is expected that 

a plant of this size, especially feeding nitric acid in excess, would use a nitric acid recovery system for 

cost savings. 

Stream 3A was the water input stream. This stream was used to adjust the nitric acid concentration in 

the dissolver to 6 N, which was the specified concentration. The volume of water needed was calculated 

using the dilution equation,          . Based on the flow rate of nitric acid, the flow rate of water 

was 69.21 L/h. Stream 11 was a recycle stream from Module 1D and was calculated simultaneously 

when Module 1 was simulated. 

A reaction rate for the dissolution of U3O8 in nitric acid based on concentration was not found. However, 

the dissolution rate based on particle surface area was available. Both Inoue and Tsujino 1984 and 

Yasuike, Ikeda, and Takashima 1995 provide dissolution rate information for U3O8 powders in nitric acid. 
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The flux,   (mol/cm2/min), was defined as the dissolution rate per unit surface area of U3O8 powder. In 

order to determine the dissolution rate, the following assumptions were made: the U3O8 powders were 

spherical particles and dissolved homogeneously from their external surface. The dissolution rate from 

Yasuike, Ikeda, and Takashima 1995 is shown in Eq. (3.2.1.2) 

        (        
    )[    ]        (        

    )[    ]  [    ]
         (3.2.1.2) 

where   ,   ,  , and   are 35 cm/min, 2.0×104 cm7/mol2·min, the gas constant (8.314 J/mol·K), and the 

absolute temperature (K), respectively. The units of the concentration are mol/cm3. In order to use the 

rate equation in the development of state equations, it would have been necessary to make many 

assumptions. Due to this and since the extent of reaction was known, it was determined to be 

reasonable to use the extent of reaction instead of the dissolution rate especially since this process was 

being modeled at steady-state. 

The component mole balance equations used to model the dissolver are shown below. There are 

seven chemical components present in Module 1: U3O8, HNO3, H2O, UO2(NO3)2, NO2, insoluble and 

soluble impurities. Equation (3.2.1.3) is the conversion of the input mass flow rate of U3O8 to moles, 

where     is the mass flow rate of input stream    (kg/h),      is the mass fraction of component   in 

stream   (wt-%),     is the molecular weight of component   (g/mol), and      is the molar flow rate of 

component   in stream   (mol/h). Equations (3.2.1.4) and (3.2.1.5) is the conversion of the input mass 

flow rate of water to moles in Streams 2A and 3A, respectively.  

           
    

    
           (3.2.1.3) 

          
    

   
          (3.2.1.4) 

          
    

   
          (3.2.1.5) 

Water entered the reactor from input streams 2A and 3A as well as the recycle stream, Stream 11. 

Additional water was produced in the dissolver during the reaction of U3O8 with nitric acid. Equation 

(3.2.1.6) is the mole balance for water, where         is the stoichiometric coefficient of the  -th 

component of the dissolution reaction and       is the extent of reaction for the dissolution reaction. 

The stoichiometric coefficients are positive for products and negative for reactants.  

                                     (             )       (3.2.1.6) 

Nitric acid entered the reactor from input stream 2A as well as the recycle stream, Stream 11. Nitric acid 

was consumed in the dissolver during the reaction of U3O8 with nitric acid. Since nitric acid was fed in 

excess and the reaction does not go to completion, it was expected that there would be nitric acid 

present in the product stream. Equation (3.2.1.7) is the mole balance for nitric acid. 
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                          (             )       (3.2.1.7) 

Equation (3.2.1.8) is the mole balance for uranyl nitrate. It entered the reactor from the recycle stream 

(Stream 11) and was produced in the dissolver during the reaction of U3O8 with nitric acid. 

                            (             )        (3.2.1.8) 

Equation (3.2.1.9) is the mole balance for U3O8, which entered the reactor from input stream 1A as well 

as the recycle stream and was partially consumed in the reaction. 

                                   (             )        (3.2.1.9) 

Equations (3.2.1.10) and (3.2.1.11) are the mole balances for the insoluble and soluble impurities, 

respectively. Both impurities entered the reactor from input stream 1A as well as the recycle stream, but 

did not participate in the reaction. 

           
    

    
                     (3.2.1.10) 

           
    

    
                     (3.2.1.11) 

Equation (3.2.1.12) is the mole balance for NO2 which was the waste stream, Stream 2. It was produced 

during the reaction but did not enter as an input or from the recycle stream. For this ideal case, it was 

assumed that no other NOx compounds were produced and that all NO2 exited in Stream 2 and that only 

NO2 was present in Stream 2.  

                    (             )        (3.2.1.12) 

The remainder of Module 1A included the heat exchangers and a slurry-aging vessel. The heat 

exchangers and vessel do not change the composition and were not included in the model. 

 

3.2.1.2 Module 1B 

Module 1B included a stream mixer and the primary vacuum filter. The stream mixer was used to mix 

the output of the dissolver with a recycle stream from Module 1D. The vacuum filter separated the 

liquid product from any undissolved solids. The liquid was sent to Module 1E, and the solids were sent 

to Module 1C to be recycled through the process. Figure 3.5 shows a block diagram of Module 1B with 

the input and output streams labeled.  
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Figure 3.5. Block Diagram of the Module 1B Showing Input and Output Streams. 

 

The component mole balances for the stream mixer are shown below in Eqs. (3.2.1.13)–(3.2.1.18). 

                        (3.2.1.13) 

                        (3.2.1.14) 

                           (3.2.1.15) 

                           (3.2.1.16) 

                           (3.2.1.17) 

                           (3.2.1.18) 

The vacuum filter separated Stream 3 into two streams. The separation was defined as the fraction that 

went to the liquid stream from the input stream by parameter,         , where each component,  , had 

a different fractionation. Equations (3.2.1.19)–(3.2.1.24) define the separation of Stream 3 into 

Stream 4. 

                           (3.2.1.19) 

                           (3.2.1.20) 

                              (3.2.1.21) 

                              (3.2.1.22) 

                              (3.2.1.23) 

                              (3.2.1.24) 
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Equations (3.2.1.25)–(3.2.1.30) calculate the mole balances for Stream 5. 

                         (3.2.1.25) 

                         (3.2.1.26) 

                           (3.2.1.27) 

                           (3.2.1.28) 

                           (3.2.1.29) 

                           (3.2.1.30) 

 

3.2.1.3 Module 1C 

Module 1C encompassed the resuspension tank and the secondary vacuum filter. The resuspension tank 

had inputs of the solid stream exiting the primary vacuum filter, a recycle stream from Module 1D, and a 

new input stream of water which was used to resuspend the solids. There was only one output from the 

resuspension tank which was fed to the secondary vacuum filter. Figure 3.6 shows a block diagram of 

Module 1C with the input and output streams labeled.  
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Figure 3.6. Block Diagram of the Module 1C Showing Input and Output Streams. 
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Equations (3.2.1.31)–(3.2.1.36) are the component mole balances for the resuspension tank. 

              
    

   
              (3.2.1.31) 

                         (3.2.1.32) 

                           (3.2.1.33) 

                           (3.2.1.34) 

                           (3.2.1.35) 

                           (3.2.1.36) 

The secondary vacuum filter separated the remaining solid waste from the liquid which was sent to a 

splitter to be recycled upstream in the process. The separation was defined as the fraction that was sent 

to the liquid stream from the input stream by parameter,         , where each component,  , had a 

different fractionation. Equations (3.2.1.37)–(3.2.1.42) define the separation of Stream 6 into Stream 7. 

                           (3.2.1.37) 

                           (3.2.1.38) 

                              (3.2.1.39) 

                              (3.2.1.40) 

                              (3.2.1.41) 

                              (3.2.1.42) 

Equations (3.2.1.43)–(3.2.1.48) calculate the mole balance for Stream 8, which was a waste stream that 

completely exits Module 1 and the process. 

                         (3.2.1.43) 

                         (3.2.1.44) 

                           (3.2.1.45) 

                           (3.2.1.46) 

                           (3.2.1.47) 

                           (3.2.1.48) 
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3.2.1.4 Module 1D 

Module 1D was the splitter which creates the recycle streams for the previous sub-modules. This recycle 

reduced the amount of uranium that was lost to waste. The input stream was evenly split into three 

output streams, as shown in Eqs. (3.2.1.49)–(3.2.1.66). Figure 3.7 shows a block diagram of Module 1D 

with the input and output streams labeled.  

     (
 

 
)               (3.2.1.49) 

     (
 

 
)               (3.2.1.50) 

      (
 

 
)                (3.2.1.51) 

      (
 

 
)                (3.2.1.52) 

      (
 

 
)                (3.2.1.53) 

      (
 

 
)                (3.2.1.54) 

     (
 

 
)                (3.2.1.55) 

     (
 

 
)                (3.2.1.56) 

      (
 

 
)                (3.2.1.57) 

      (
 

 
)                (3.2.1.58) 

      (
 

 
)                (3.2.1.59) 
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Figure 3.7. Block Diagram of the Module 1D Showing Input and Output Streams. 
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      (
 

 
)                (3.2.1.60) 

                              (3.2.1.61) 

                              (3.2.1.62) 

                                 (3.2.1.63) 

                                 (3.2.1.64) 

                                 (3.2.1.65) 

                                 (3.2.1.66) 

 

3.2.1.5 Module 1E 

Module 1E was the final sub-module in Module 1. In this module, the liquid from the primary vacuum 

filter was centrifuged to remove additional solid particulates. There were two outputs from the 

centrifuge: 1) the impure liquid uranyl nitrate stream which was sent to solvent extraction for 

purification and 2) the solid waste. The separation was defined as the fraction that was sent to the liquid 

stream from the input stream by parameter,         , where each component,  , had a different 

fractionation value. Figure 3.8 shows a block diagram of Module 1E with the input and output streams 

labeled.  
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Figure 3.8. Block Diagram of the Module 1E Showing Input and Output Streams. 
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Equations (3.2.1.67)–(3.2.1.72) define the separation of Stream 4 into Stream 12. Stream 12 exits 

Module 1 and was one of the feed streams to Module 2. 

                            (3.2.1.67) 

                            (3.2.1.68) 

                               (3.2.1.69) 

                               (3.2.1.70) 

                               (3.2.1.71) 

                               (3.2.1.72) 

Equations (3.2.1.73)–(3.2.1.78) calculate the mole balances for Stream 13, the waste stream. Stream 13 

completely exited Module 1 and the process. 

                          (3.2.1.73) 

                          (3.2.1.74) 

                             (3.2.1.75) 

                             (3.2.1.76) 

                             (3.2.1.77) 

                             (3.2.1.78) 

 

3.2.1.6 Module 1: Overall Material Balance 

The overall material balances served as an internal check that the calculations of the sub-module 

component balances were correct. Component mole balances were used to model each of the process 

units in all of the modules, but the same method was applied to the overall module as well. 

The streams used for the overall material balances were those that cross the dark dashed boundary that 

enclosed all of Module 1. There were four input streams and four output streams for Module 1. 

Additionally, there was one reaction in Module 1 that occurred in the dissolver and was described by 

Eq. (3.2.1.1). 
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               (   )               (3.2.1.1) 

The overall component material balances are Module 1 are shown in Eqs. (3.2.1.79)–(3.2.1.85).  

                  (                (             ))                      

 (3.2.1.79) 

(                (             ))             (3.2.1.80) 

          
    

   
 (                (             ))                       (3.2.1.81) 

(                 (             ))                           (3.2.1.82) 

           
    

    
 (                 (             ))                        

 (3.2.1.83) 

           
    

    
                            (3.2.1.84) 

           
    

    
                            (3.2.1.85) 

 

3.2.2 Module 2: Solvent Extraction 

The uranyl nitrate solution obtained from dissolution is typically purified using liquid-liquid solvent 

extraction. The organic solvent that is most commonly used for the extraction of uranium from uranyl 

nitrate solutions is tributyl phosphate (TBP) diluted in kerosene. 

Module 2, Solvent Extraction, encompassed the purification of the dissolved uranium ore concentrate 

using TBP. Module 2 was further subdivided into four sub-modules. The flowsheet for Module 2 is 

shown in Figure 3.9.  

The uranyl nitrate from the dissolution process was sent to a feed-adjustment tank where the 

concentration was expected to be in the range of 350–400 g U/L, and the concentration of free acid was 

expected to be 1.5–2 N. Water and HNO3 were used to adjust the feed to the desired values (typically 

250–350 g U/L and 1–4 N free acid).  

The purification process typically consists of three parts, where each of the parts performs a different 

function in the purification process. The first part extracts the uranium from the aqueous solution into 

the organic phase, referred to as extraction. The second part removes impurities from the 

uranium-bearing organic stream, referred to as the scrubbing section. In the third part, uranium is  
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Figure 3.9. Module 2: The Solvent Extraction Process of a Natural Uranium Conversion Plant. 

 

stripped (back-extracted) from the scrubbed uranium-bearing organic stream back into an aqueous 

stream, referred to as the stripping or re-extraction section.  

The organic phase leaves the extraction column at the top, and the raffinate was collected at the 

bottom. Raffinate constituted another waste stream of the process. The organic phase was pumped to 

the bottom of the scrubbing column, where impurities contained in the organic phase were washed into 

demineralized water in a counter current mode. The bottom aqueous liquid was sent back to the 

adjustment tank to be returned to the extraction column, and the top organic stream was sent to the 

stripping column. The uranium was stripped from the scrubbed uranium-bearing organic stream back 

into an aqueous stream. The top product was organic material that was sent to the solvent storage or to 

the organic cleanup facility. The bottom product was the purified uranyl nitrate that was sent to a 

storage tank. The expected concentration of this liquid was 80–100 gU/L with very little contaminants. 

In an actual conversion plant, solvent extraction takes approximately 6 hours with a 2 hour equilibrium 

period. The uranium losses to the raffinate and organic waste streams are 0.6–1.0% due to limited 

separation capability as well as phase carryover. 

Various types of extraction equipment (e.g., mixer-settlers, pulsed columns, packed columns, 

mixer-agitated columns, and centrifugal contactors) are used in conversion facilities. Because the 
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aqueous stream containing uranium is nitric acid, the equipment utilized in purification must be 

constructed of materials that are resistant to nitric acid corrosion (i.e., stainless steels). The extraction 

process in this study, for example, utilized pulse columns.  

The solvent, TBP, tends to degrade over time, especially in the presence of acids. The presence of the 

degradation products, such as the dibutyl phosphate (DBP), mono-butyl phosphate (MBP), and 

phosphoric acid, can have a detrimental effect on the extraction process. Some of the problems 

encountered include poor phase separation in the extraction equipment, extraction of other elements in 

addition to uranium, loss of uranium caused by the formation of stable complexes in the organic phase, 

and the formation of precipitates. Thus, the degradation products are periodically removed from the 

organic stream in order to maintain purification of the uranyl nitrate solutions to the desired level. 

Typically, the organic stream leaving the extraction strip column is periodically cleaned by mixing with a 

dilute sodium carbonate solution (~5-wt% Na2CO3). The degradation products readily dissolve in the 

solution forming soluble sodium salts. The organic, after treatment, is washed with water and dilute 

nitric acid to remove emulsions and to neutralize any residual alkalinity prior to returning it to the 

extraction process. The cleaned organic, which contains residual uranium, is returned to the extraction 

process for reuse. The organic recovery process is outside the scope of this work but is important to 

note for potential diversion scenarios. The formation of DBP, MBP, and phosphoric acid are not 

considered in the material balance calculations for this ideal case. 

 

3.2.2.1 Module 2A 

Module 2A encompassed the feed adjustment tank. In the feed adjustment tank, the concentration of 

the uranyl nitrate and the amount of acid were adjusted to the desired levels by the addition of water 

and nitric acid. The solution was typically adjusted to 250–350 g U/L and 1–4 N free acid. The inputs to 

the feed adjustment tank included the uranyl nitrate stream from Module 1, water, nitric acid, and a 

recycle stream from Module 2C (internal to Module 2). There was one output from Module 2A which 

was the adjusted uranyl nitrate solution. Figure 3.10 shows a block diagram of Module 2A with the input 

and output streams labeled.  

Component mole balances were used to model each of the process units in Module 2. The component 

mole balances for the feed adjustment tank are shown below in Eqs. (3.2.2.1)–(3.2.2.7). Streams 5A and 

6A are pure water and pure nitric acid, respectively. Tributyl phosphate enters with the recycle stream. 

The amount of TBP in the recycle stream is based on a set level of solvent carryover. 

          
    

   
                    (3.2.2.1) 

          
    

   
                  (3.2.2.2) 
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Figure 3.10. Block Diagram of the Module 2A Showing Input and Output Streams. 

 

                       (3.2.2.3) 

                             (3.2.2.4) 

                             (3.2.2.5) 

                             (3.2.2.6) 

                             (3.2.2.7) 

 

3.2.2.2 Module 2B 

Module 2B encompassed the extraction column, where uranium was extracted from the aqueous uranyl 

nitrate solution into the organic phase using TBP. The stripping of uranium from the aqueous phase to 

the organic phase is explained by Eq. (3.2.2.8). 

   (   )      (  )      (  )
 
↔   (   )      (  )      (  )  (3.2.2.8) 

The inputs to Module 2B were the output of Module 2A and the TBP/diluent mixture. There were two 

outputs from Module 2B: (1) the raffinate to waste and (2) the uranium-bearing organic stream to 

scrubbing. Figure 3.11 shows a block diagram of Module 2B with the input and output streams labeled.  
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Figure 3.11. Block Diagram of the Module 2B Showing Input and Output Streams. 

 

The extraction column separated Stream 14 along with Stream 7A into two streams. Stream 7A was 

defined as pure TBP, where TBP here actually represented the TBP/diluent mixture. The separation was 

defined as the fraction that was sent to the organic stream from the input stream by parameter, 

        , where each component,  , had a different fractionation. Equations (3.2.2.9)–(3.2.2.15) define 

the separation of Stream 14 and Stream 7A into Stream 15. 

                             (3.2.2.9) 

                             (3.2.2.10) 

          (           
    

    
)               (3.2.2.11) 

                               (3.2.2.12) 

                               (3.2.2.13) 

                               (3.2.2.14) 

                               (3.2.2.15) 

Equations (3.2.2.16)–(3.2.2.22) calculate the mole balances for Stream 16. 

                           (3.2.2.16) 

                           (3.2.2.17) 
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(           
    

    
)                        (3.2.2.18) 

                              (3.2.2.19) 

                              (3.2.2.20) 

                              (3.2.2.21) 

                              (3.2.2.22) 

 

3.2.2.3 Module 2C 

Module 2C encompassed the scrubbing column, which removed impurities from the uranium-bearing 

organic phase. The inputs to Module 2C were the output of Module 2B and water. There were two 

outputs from Module 2C: (1) the recycle which was returned to Module 2A and (2) the uranium-bearing 

organic stream to stripping. Figure 3.12 shows a block diagram of Module 2C with the input and output 

streams labeled.  

The scrubbing column separated Stream 15 along with Stream 8A into two streams. Stream 8A was pure 

water. The separation was defined as the fraction that was sent to the organic stream from the input 

stream by parameter,         , where each component,  , had a different fractionation. Equations 

(3.2.2.23)–(3.2.2.29) define the separation of Stream 15 and Stream 8A into Stream 17. 
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Figure 3.12. Block Diagram of the Module 2C Showing Input and Output Streams. 
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         (          
    

   
)             (3.2.2.23) 

                             (3.2.2.24) 

                               (3.2.2.25) 

                               (3.2.2.26) 

                               (3.2.2.27) 

                               (3.2.2.28) 

                               (3.2.2.29) 

Equations (3.2.2.30)–(3.2.2.36) calculate the mole balances for Stream 18. 

(          
    

   
)                      (3.2.2.30) 

                           (3.2.2.31) 

                              (3.2.2.32) 

                              (3.2.2.33) 

                              (3.2.2.34) 

                              (3.2.2.35) 

                              (3.2.2.36) 

 

3.2.2.4 Module 2D 

Module 2D encompassed the stripping column, which back extracted the purified uranium out of the 

organic phase into the aqueous phase. The inputs to Module 2D were the output of Module 2C and 

water. There were two outputs from Module 2D: (1) the organic waste stream and (2) the 

uranium-bearing aqueous stream to Module 3. Figure 3.13 shows a block diagram of Module 2D with 

the input and output streams labeled.  

The stripping column separates Stream 17 along with Stream 9A into two streams. Stream 9A was pure 

water. The separation was defined as the fraction that was sent to the aqueous stream from the input 

stream by parameter,         , where each component,  , had a different fractionation. Equations  
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Figure 3.13. Block Diagram of the Module 2D Showing Input and Output Streams. 

 

(3.2.2.37)–(3.2.2.41) define the separation of Stream 17 and Stream 9A into Stream 19. All of the TBP 

and the insoluble impurities were sent to the organic waste stream. 

         (          
    

   
)             (3.2.2.37) 

                             (3.2.2.38) 

                               (3.2.2.39) 

                               (3.2.2.40) 

                               (3.2.2.41) 

Equations (3.2.2.42)–(3.2.2.48) calculate the mole balances for Stream 20. 

(          
    

   
)                      (3.2.2.42) 

                           (3.2.2.43) 

                       (3.2.2.44) 

                              (3.2.2.45) 

                              (3.2.2.46) 
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                       (3.2.2.47) 

                              (3.2.2.48) 

 

3.2.2.5 Module 2: Overall Material Balance 

The streams used for the overall material balances were those that cross the dark dashed boundary that 

enclosed all of Module 2. There were six input streams and three output streams for Module 2. One of 

the input streams was an output of Module 1. There was no reaction in Module 2. The overall 

component material balances for Module 2 are shown in Eqs. (3.2.2.49)–(3.2.2.55). 

                                              (3.2.2.49) 

    
    

   
                              (3.2.2.50) 

    
    

    
                     (3.2.2.51) 

                                  (3.2.2.52) 

                                  (3.2.2.53) 

                            (3.2.2.54) 

                                  (3.2.2.55) 

 

3.2.2.6 The Kremser Equation 

The Kremser Equation provides an algebraic solution for analyzing   ideal equilibrium stages connected 

with countercurrent flow. The Kremser Equation, also known as the Kremser Group Method, was 

originally designed for countercurrent gas absorption. It is a group method because it is an approximate 

calculation method to relate compositions of streams entering and exiting cascades to the number of 

equilibrium stages required but does not consider detailed changes in temperature, flow rates, and 

composition in the individual stages. The Kremser equation can be applied to liquid-liquid separations 

such as the solvent extraction process in a natural uranium conversion plant. It assumes dilute solutions, 

so that solvent density is solution density. 

The following explanation of the Kremser equation was taken from Benedict, Pigford, and Levi 1981. A 

full derivation is provided in Appendix A. When the distribution coefficients are independent of stage 

number, an equation can be derived for analytical calculation of the number of stages. A material 
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balance on one extractable component can be written as Eq. (3.2.2.56), where      is the concentration 

of the     stage for component  ,    is the initial concentration of component   in the solvent,    is 

the concentration of component   in the  -th stage,    is the concentration of component   in the 

raffinate,   is the flow rate of the extractant, and   is the flow rate of the feed. 

        
 

 
(     )     (3.2.2.56) 

Concentrations in the organic and aqueous phases leaving a stage are related by the equilibrium relation 

in Eq. (3.2.2.57), where    is the distribution coefficient at the conditions of the  -th stage. 

             (3.2.2.57) 

For any extractable component with a constant distribution coefficient, Eqs. (3.2.2.56) and (3.2.2.57) can 

be rewritten in terms of the constant extraction factor,  , as shown in Eq. (3.2.2.58). 

    (       )          (3.2.2.58) 

The extraction factor,  , is defined in Eq. (3.2.2.59). 

  
  

 
       (3.2.2.59) 

Then, Eq. (3.2.2.56) can be written as 

            (3.2.2.60) 

For    , Eq. (3.2.2.60) becomes 

            (3.2.2.61) 

For    , Eq. (3.2.2.60) becomes 

   (   )            (3.2.2.62) 

Proceeding this way to stage  , Eq. (3.2.2.60) becomes 

   (       
   )    (     

   )      (3.2.2.63) 

Which is identical to  

   
    

   
(      )         (3.2.2.64) 

Equation (3.2.2.64) is a form of the Kremser equation.  
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Additional information about the Kremser Equation can be found in McCabe, Smith, and Harriott 1993; 

Benedict, Pigford, and Levi 1981; and Seader and Henley (1998). This discussion was included for 

completeness as the Kremser Equation was considered as a means to describe the process in Module 2 

for the base case model. It was decided to treat each pulsed column as a “black box” and to treat each 

one as separators as done in the other modules for filters, separators, etc. This allows for greater 

flexibility to test sensitivity and diversions within Module 2. No reaction rate information was found for 

the solvent extraction process. 

 

3.2.3 Module 3: Evaporation and Precipitation 

The purified uranyl nitrate solution from the solvent extraction process is converted into a solid 

substance, such as UO3, U3O8, ammonium diuranate (ADU), ammonium uranyl carbonate (AUC), or 

uranyl peroxide (UO4). The uranyl nitrate solution is converted to solid forms using either a thermal 

denitration or precipitation process. The thermal denitration process is used to produce a uranium oxide 

(i.e., UO3 or U3O8) and is the preferred process for larger NUCPs. The precipitation process produces an 

intermediate material (i.e., ADU, AUC, UO4) that is subsequently converted to UO2 or other oxides and 

appears to be the preferred process for smaller NUCPs.  

The uranyl nitrate solution may also be used to produce UO2 that is suitable for use in nuclear fuel. 

Production of UO2 for this purpose is typically done in a precipitation type process where ammonium 

diuranate [(NH4)2U2O7], generally referred to as ADU, or ammonium uranyl carbonate [(NH4)4UO2(CO3)3], 

known as AUC, are formed. Uranyl peroxide is another precipitation product that can be used in the 

production of UO2, but has not typically been utilized in conversion facilities. 

ADU is precipitated from uranyl nitrate solution with ammonium hydroxide according to Eq. (3.2.3.1). 

    (   )         (   )                     (3.2.3.1) 

AUC is precipitated from uranyl nitrate solution with ammonia (NH3) and carbon dioxide (CO2) or 

ammonium bicarbonate [(NH4)HCO3], according to Eq. (3.2.3.2). 

   (   )                 (   )    (   )          (3.2.3.2) 

In the case of the research presented here, the scope of the work was limited to small NUCPs and was 

further limited to the precipitation process used to produce AUC. 

Module 3, Evaporation and Precipitation, encompassed the processes to concentrate the purified liquid 

uranyl nitrate stream from solvent extraction and then convert the concentrated product to a solid. 

Module 3 was further subdivided into four sub-modules. The flowsheet for Module 3 is shown in 

Figure 3.14.  
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Figure 3.14. Module 3: The Evaporation and Precipitation Processes of a Natural Uranium Conversion Plant. 

 

The purified uranyl nitrate from the solvent extraction process was pumped to an evaporator for further 

concentration of the uranium constituent. The concentrated solution of uranyl nitrate was cooled and 

pumped to a uranyl nitrate storage tank. The concentration at this point was to 350–400 g U/L. The 

concentrated solution was sent to a mixer-reactor where the solution was mixed with CO2 and NH3 to 

form a solid precipitate of AUC. The slurry was pumped to an agitated AUC cooling vessel. The vessel 

was cooled with a chilled water jacket. The agitation was between 50 and 100 rpm. The cooled 

suspended AUC slurry was pumped to a rotary vacuum filter and washed with methanol, water, and 

ammonium carbonate. The filtrate was sent to various waste streams, and the solid AUC was sent to a 

collection hopper where the AUC may be dried with heated air.  

Some uranium could have been in the condensate stream from the evaporator, but how much depends 

on how the evaporator was operated. The vent from the precipitation stage could also contain residual 

uranium material. The filtration process after the precipitation stage produced a solid product and a 

liquid stream that was considered a waste. Solid from the precipitation system was sent to a collection 

vessel from which it was sent to the next processes (calcining and hydrofluorination). 
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3.2.3.1 Module 3A 

Module 3A encompassed the evaporation process. The evaporation process was used to remove some 

of the water from the purified uranyl nitrate stream from the solvent extraction process prior to 

precipitation. The input to the evaporation process was the uranyl nitrate stream from Module 2. There 

were two output streams from Module 3A; one output was the condensate which was sent to waste. 

Figure 3.15 shows a block diagram of Module 3A with the input and output streams labeled.  

Component mole balances were used to model each of the process units in Module 3. The evaporator 

separated Stream 19 into two streams. The separation was defined as the fraction that was sent to the 

condensate stream from the input stream by parameter,         , where each component,  , had a 

different fractionation. Equations (3.2.3.3)–(3.2.3.7) define the separation of Stream 19 into Stream 21. 

                             (3.2.3.3) 

                             (3.2.3.4) 

                               (3.2.3.5) 

                               (3.2.3.6) 

                               (3.2.3.7) 

Equations (3.2.3.8)–(3.2.3.12) calculate the component mole balances for Stream 22. 

                           (3.2.3.8) 

                           (3.2.3.9) 
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Figure 3.15. Block Diagram of the Module 3A Showing Input and Output Streams. 
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                              (3.2.3.10) 

                              (3.2.3.11) 

                              (3.2.3.12) 

 

3.2.3.2 Module 3B 

Module 3B represented the mixer that was used to mix the reactants prior to the precipitation process. 

The inputs to Module 3B were the output of Module 3A along with water, ammonia, and carbon 

dioxide. There was one output from Module 3B. Figure 3.16 shows a block diagram of Module 3B with 

the input and output streams labeled.  

The reactants (Streams 23–25) were fed into the process in excess based on the amount of uranyl 

nitrate in Stream 22 according to parameter,       , as shown in Eqs. (3.2.3.13)–(3.2.3.15) for water, 

ammonia, and carbon dioxide, respectively, where          was the stoichiometric coefficient of the  -

th component. 

             |        |              (3.2.3.13) 

             |        |              (3.2.3.14) 

             |        |              (3.2.3.15) 

 

24

NH3

MixNH3

22

From Mod3A

26

To Mod3C

23

Water
25

CO2

 

Figure 3.16. Block Diagram of the Module 3B Showing Input and Output Streams. 
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Equations (3.2.3.16)–(3.2.3.22) calculate the component mole balances for Stream 26. 

                         (3.2.3.16) 

                   (3.2.3.17) 

                   (3.2.3.18) 

                   (3.2.3.19) 

                     (3.2.3.20) 

                     (3.2.3.21) 

                     (3.2.3.22) 

 

3.2.3.3 Module 3C 

Module 3C encompassed the precipitation process. The input to Module 3C was the output of Module 

3B, and there was one output from Module 3C which was the solid AUC and ammonium nitrate along 

with the unreacted water, ammonia, and carbon dioxide. Module 3C was the only sub-module in 

Module 3 in which reaction occurred. The reaction that occurred in Module 3C is shown in Eq. (3.2.3.2). 

   (   )                 (   )    (   )          (3.2.3.2) 

The reaction was actually a composite of three reactions which were equivalent to Eq. (3.2.3.2), as 

shown in Eqs. (3.2.3.23a–c). The three simultaneous reactions take place immediately and go 100% to 

completion. 

   (   )          (   ) (   )    (3.2.3.23a) 

   (   ) (   )          (   ) (   ) (   )   (3.2.3.23b) 

   (   ) (   ) (   )       (   )    (   )           (3.2.3.23c) 

Figure 3.17 shows a block diagram of Module 3C with the input and output streams labeled. Equations 

(3.2.3.24)–(3.2.3.32) describe to the precipitation reaction, where        was the extent of reaction for 

the precipitation process. The stoichiometric coefficients are positive for products and negative for 

reactants.  

      (                      )            (3.2.3.24) 



 

66 
 

Precipitation

Process

27

To Mod3D

26

From Mod3B

 

Figure 3.17. Block Diagram of the Module 3C Showing Input and Output Streams. 

 

      (                      )            (3.2.3.25) 

      (                      )            (3.2.3.26) 

                  (3.2.3.27) 

(                       )              (3.2.3.28) 

       (                       )             (3.2.3.29) 

                    (3.2.3.30) 

(                       )              (3.2.3.31) 

                    (3.2.3.32) 

Mellah, Chegrouche, and Barkat 2007 describes the kinetics of the precipitation of AUC using ammonia 

and carbon dioxide. Mellah, Chegrouche, and Barkat 2007 states that “the predominant chemical 

reaction of AUC precipitation was 

   (   )      (  )      ( )      ( )  (   )    (   ) ( )         (  )  

    ( ).” It is unclear from the article what was meant by “predominant” reaction. The kinetics of the 

above reaction was the only one given. However, the reaction used in the model [Eq. (3.2.3.2)] was 

discussed in the article. According to Mellah, Chegrouche, and Barkat 2007 and in reference to the 

above reaction, the reaction best fits a second order rate equation. The rate constants,   , were 

0.310 L/mol/min at  =313.15 K and 0.437 L/mol/min at  =330.15 K, and the activation energy,   , 

determined using the Arrehenius equation was found as 17.4 kJ/mol. This information was provided for 

completeness, but the reaction rate information was not used in the model.  
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3.2.3.4 Module 3D 

Module 3D was the post-precipitation processing of the solid product before transfer to the calciner for 

conversion to UO2. This processing included a cooling vessel, a vent, and a filter. The inputs to Module 

3D were the output of Module 3C and a filter wash stream. There were three outputs from Module 3D, 

one from the vent and two from the filter. Figure 3.18 shows a block diagram of Module 3D with the 

input and output streams labeled.  

The precipitation process vent (Vent_PP) separated Stream 27 into two streams. It was assumed that 

only gaseous components exited in the vent and that all of the gaseous components exited to the vent. 

Equations (3.2.3.33) and (3.2.3.34) are the component mole balances for the vent waste stream. 

                  (3.2.3.33) 

                  (3.2.3.34) 

Equations (3.2.3.35)–(3.2.3.43) calculate the component mole balances for Stream 29. 

      (            
    

   
)            (3.2.3.35) 

                  (3.2.3.36) 

(             
    

    
)              (3.2.3.37) 

                    (3.2.3.38) 
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Figure 3.18. Block Diagram of the Module 3D Showing Input and Output Streams. 
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(             
    

    
)              (3.2.3.39) 

                    (3.2.3.40) 

                    (3.2.3.41) 

                    (3.2.3.42) 

                    (3.2.3.43) 

The precipitation process filter (Filter_PP) separated Stream 29 into two streams. The separation was 

defined as the fraction that was sent to the product stream from the input stream by parameter, 

        , where each component,  , had a different fractionation. Equations (3.2.3.44)–(3.2.3.46) define 

the separation of Stream 29 into Stream 30. 

                           (3.2.3.44) 

                              (3.2.3.45) 

                              (3.2.3.46) 

Equations (3.2.3.47)–(3.2.3.55) calculate the component mole balances for Stream 31. 

                         (3.2.3.47) 

                   (3.2.3.48) 

                     (3.2.3.49) 

                     (3.2.3.50) 

                     (3.2.3.51) 

                     (3.2.3.52) 

                            (3.2.3.53) 

                            (3.2.3.54) 

                     (3.2.3.55) 
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3.2.3.5 Module 3: Overall Material Balance 

The streams used for the overall material balances were those that cross the dark dashed boundary that 

enclosed all of Module 3. There were five input streams and four output streams for Module 3. One of 

the input streams was the output of Module 2, and three of the input streams were dependent. 

Additionally, there was one reaction in Module 3 that occurs in the precipitation process and is 

described by Eq. (3.2.3.2). 

   (   )                 (   )    (   )          (3.2.3.2) 

The overall component material balances for Module 3 are shown in Eqs. (3.2.3.56)–(3.2.3.66). 

                   (                      )                       (3.2.3.56) 

      (                      )             (3.2.3.57) 

      (                      )             (3.2.3.58) 

      (                      )                  (3.2.3.59) 

             
    

    
              (3.2.3.60) 

(                       )               (3.2.3.61) 

             
    

    
              (3.2.3.62) 

       (                       )                    (3.2.3.63) 

       (                       )                           (3.2.3.64) 

(                       )                     (3.2.3.65) 

                           (3.2.3.66) 

 

3.2.4 Module 4: Conversion to Uranium Dioxide then Uranium Tetrafluoride 

Uranium Dioxide Production 

One of the primary products of an NUCP is UO2 that can be used in reactor fuel. Uranium dioxide is also 

generated as an intermediate material in the NUCP in the conversion of yellowcake to uranium 

tetrafluoride (UF4). Uranium dioxide may be produced via calcination and reduction of precipitates (ADU 

or AUC) or the reduction of UO3 with hydrogen. 
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If the precipitation process is used, the ADU and AUC powders are readily converted to UO2 by heating 

(calcining) in a reducing environment that has a hydrogen atmosphere. ADU generally consists of 

agglomerates of small irregularly shaped crystals (1 to 20 micron) and is usually converted to UO2 in a 

calciner (rotary furnace) or a fixed-bed type of furnace. The use of fluidized beds for conversion of ADU 

to uranium oxides is generally not considered practical because of the poor flowability of ADU and the 

large amount of particles lost to the fluid bed off-gas stream. The following reaction [Eq. (3.2.4.1)] takes 

place when ADU is contacted with hydrogen in a heated vessel. 

(   )                            (3.2.4.1) 

Ammonium uranyl carbonate is a coarser, more free-flowing powder as compared to ADU. Ammonium 

uranyl carbonate can be calcined/reduced in a fluidized bed, as well as a rotary calciner or a fixed-bed 

type of furnace. The following reaction [Eq. (3.2.4.2)] takes place when AUC is contacted with hydrogen 

in a heated vessel. 

(   )    (   )                          (3.2.4.2) 

Uranium oxides [i.e., yellowcake in the form of uranium oxide (U3O8 or UO3) from the denitration 

process] can be directly reduced using H2 to produce UO2. Typically, this UO2 is an intermediate 

compound produced in an NUCP that is subsequently reduced to UF4. Direct reduction of the yellowcake 

(that has been converted to either UO3 or U3O8) takes place when the yellowcake is fairly pure, thus the 

need for dissolution and solvent extraction of the yellowcake is not warranted. UO3 and U3O8 are readily 

reduced to UO2 by heating the oxides in a hydrogen atmosphere. The reactions involved in the reduction 

of these oxides are shown in Eqs. (3.2.4.3) and (3.2.4.4).  

      
    
→              (3.2.4.3) 

       
    
→                (3.2.4.4) 

This discussion is limited to the conversion of AUC to UO2. 

Different types of heated vessels, such as a fixed bed, rotary calciners, stirred bed, fluidized bed, or 

vibrating-tray type reactors are used in the reduction of UO3 or U3O8 to UO2. The material of 

construction for this equipment is typically stainless steel. The hydrogen used is typically generated 

on-site at an NUCP via dissociation of ammonia. 

Uranium Tetrafluoride Production 

Uranium tetrafluoride is an intermediate compound that is generated in an NUCP that is utilized in the 

production of UF6 or uranium metal. Uranium tetrafluoride is typically produced by reacting UO2 with 

anhydrous hydrogen fluoride (AHF) in what is known as a hydrofluorination process. The chemical 

reaction that takes place in hydrofluorination is shown in Eq. (3.2.4.5). 
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       ↔              (3.2.4.5) 

Different types of heated vessels, such as screw reactors, rotary calciners, fluidized beds, stirred beds, or 

vibrating-tray type beds are used in the hydrofluorination process. Because hydrogen fluoride (HF), 

which is extremely corrosive, is used in this reaction, the equipment involved in hydrofluorination must 

be fabricated from materials resistant to HF (e.g., Hastelloy®, Monel®, and Inconel®).  

Module 4, Conversion to UO2 and UF4, encompassed the processes to convert the solid AUC to solid UO2 

and then convert the UO2 to UF4. Module 4 was subdivided into six sub-modules. The flowsheet for 

Module 4 is shown in Figure 3.19.  

Nitrogen and hydrogen were preheated to 500–1000°C and fed countercurrently to the calciner. The 

washed and dried AUC was introduced via a feed hopper to the rotary calciner by means of a screw 

conveyor. The rotary calciner operates at 550–650°C. Uranium dioxide was produced in the calciner and 

subsequently cooled to less than 100°C in a UO2 screw conveyor with a cooling jacket. The UO2 was 

collected in a UO2 collection hopper where it was eventually transferred to storage containers (i.e., 

drums). 
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Figure 3.19. Module 4: The Hydrofluorination Process of a Natural Uranium Conversion Plant. 
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The hopper fed UO2 into the fluidized bed reactor where it was reacted with anhydrous HF (AHF) in the 

presence of N2 to produce UF4. The reactor operates between 300 and 550°C. The AHF was superheated 

to approximately 150°C. Nitrogen was added to the system and the mixture was preheated to 

approximately 250°C before entering the fluidized bed reactor. The UF4 was withdrawn from the bottom 

of the reactor into a UF4 hopper that fed a screw conveyor where the solid was cooled indirectly by a 

cooling jacket. The UF4 left the conveyor at a temperature below 100°C and was collected in a UF4 

collection hopper. The hopper was used to feed the UF4 blender. The gaseous stream, which contained 

unreacted HF, left the reactor through the top. The HF could be condensed into liquid HF in a storage 

tank. Anhydrous HF could also be recovered and stored in a liquid AHF storage tank for reuse. Residual 

HF remaining in the off-gas stream was removed using a packed bed scrubber with potassium hydroxide 

(KOH) solution. The scrubbed off-gas was discharged from the top of the scrubber, and the bottom 

liquid was part of the waste streams.  

Complete recovery of UO2 and UF4 from the fluidized bed was assumed. However in actual operation, 

filtration and recycle would be required to recover the product powders that would be entrained in the 

reactor. Waste streams could contain from 0.2% to 2.0% uranium depending on recovery systems. 

 

3.2.4.1 Module 4A 

Module 4A was the ammonia cracking process which was used to produce hydrogen for the conversion 

of AUC to UO2. In industrial processes, it is safer and more economical to crack ammonia in order to 

obtain hydrogen rather than supplying hydrogen directly. The input to the cracking process was pure 

ammonia. The output stream from Module 4A was hydrogen and nitrogen. The ammonia cracking 

chemical reaction is shown in Eq. (3.2.4.6). 

                 (3.2.4.6) 

Figure 3.20 shows a block diagram of Module 4A with the input and output streams labeled.  

Component mole balances were used to model each of the process units in Module 4. Ammonia 

(Stream 32) was fed into the process in excess based the amount of AUC in Stream 30 that was fed to 

the calciner according to parameter,       , as shown in Eq. (3.2.4.7), where          was the 

stoichiometric coefficient of the  -th component of the dissociation reaction and          was the 

stoichiometric coefficient of the  -th component of the conversion of AUC to UO2. The stoichiometric 

coefficients are positive for products and negative for reactants. 

             |
        

         
|  |

        

        
|             (3.2.4.7) 
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Figure 3.20. Block Diagram of the Module 4A Showing Input and Output Streams. 

 

The dissociator separated the incoming ammonia into nitrogen and hydrogen, as shown in Eqs. (3.2.4.8) 

and (3.2.4.9), where        was the extent of reaction for the dissociation of ammonia. These 

equations assumed complete conversion of ammonia so that no ammonia was in the stream feeding the 

calciner. 

(                     )             (3.2.4.8) 

(                     )             (3.2.4.9) 

 

3.2.4.2 Module 4B 

Module 4B encompassed the calciner and associated separator. The inputs to Module 4B were the 

output of Module 3 and the output of Module 4A. There were two outputs from Module 4B, (1) the UO2 

solid product and (2) the off-gas which was sent to waste after mixing with additional off-gas in Module 

4C. The reaction that occurs in Module 4B is shown in Eq. (3.2.4.2). Figure 3.21 shows a block diagram of 

Module 4B with the input and output streams labeled.  

(   )    (   )                          (3.2.4.2) 

Equations (3.2.4.10)–(3.2.4.17) describe to the conversion of AUC to UO2 using hydrogen, where        

was the extent of reaction for the conversion of AUC to UO2. 

      (                      )            (3.2.4.10) 

      (                      )            (3.2.4.11) 

(                      )             (3.2.4.12) 
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Figure 3.21. Block Diagram of the Module 4B Showing Input and Output Streams. 

 

      (                      )            (3.2.4.13) 

(                      )             (3.2.4.14) 

(                       )              (3.2.4.15) 

       (                       )             (3.2.4.16) 

       (                       )             (3.2.4.17) 

It was assumed that all solid components were sent to Stream 35 and that all other components left this 

sub-module as waste according to Eqs. (3.2.4.18)–(3.2.4.25). 

                    (3.2.4.18) 

                    (3.2.4.19) 

                    (3.2.4.20) 

                  (3.2.4.21) 

                  (3.2.4.22) 

                  (3.2.4.23) 

                  (3.2.4.24) 

                  (3.2.4.25)  

Reaction rate data for the conversion of AUC to UO2 using hydrogen was not available. 
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3.2.4.3 Module 4C 

Module 4C included the UO2 post-processing equipment and the off-gas from the calciner. Module 4C 

included the following equipment: a cooler, UO2 vent, gaseous waste blender, and UO2 blender. The 

inputs to Module 4C were both outputs from Module 4B and nitrogen to the UO2 vent. There were two 

outputs from Module 4C, the gaseous waste stream and the blended UO2 product. Figure 3.22 shows a 

block diagram of Module 4C with the input and output streams labeled.  

It was assumed that the stream leaving the UO2 vent was pure nitrogen according to Eq. (3.2.4.26). 

(            
    

   
)             (3.2.4.26) 

The off-gas blender was used to blend the nitrogen exiting the UO2 vent and the gaseous waste stream 

from Module 3B as shown in Eqs. (3.2.4.27)–(3.2.4.31). 

                  (3.2.4.27)  

                       (3.2.4.28)  

                  (3.2.4.29)  

                  (3.2.4.30)  

                  (3.2.4.31)  
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Figure 3.22. Block Diagram of the Module 4C Showing Input and Output Streams. 
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The solid product from the calciner passed through the UO2 vent to the UO2 blender according to Eqs. 

(3.2.4.32)–(3.2.4.34). 

                    (3.2.4.32)  

                    (3.2.4.33)  

                    (3.2.4.34)  

 

3.2.4.4 Module 4D 

Module 4D was the HF feeding process for the hydrofluorination process. The input and output of 

Module 4D were HF and nitrogen. Figure 3.23 shows a block diagram of Module 4D with the input and 

output streams labeled.  

The HF input stream was assumed to be pure. Additionally, the feed of hydrogen fluorine must always 

be sufficient for the conversion in Module 4E based on parameter,       , as shown in Eq. (3.2.4.35). 

However, HF was never fed in excess so as there was little to no residual HF after the reaction. 

             |
        

         
|             (3.2.4.35) 

Nitrogen was mixed with the HF and pre-heated prior to being fed to the fluidized bed reactor [Eqs. 

(3.2.4.36) and (3.2.4.37)]. 

(            
    

   
)             (3.2.4.36) 

                  (3.2.4.37) 
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Figure 3.23. Block Diagram of the Module 4D Showing Input and Output Streams. 

 



 

77 
 

3.2.4.5 Module 4E 

Module 4E was the fluidized bed reactor where UO2 was hydrofluorinated in HF to produce UF4 

[Eq. (3.2.4.5)]. The inputs to Module 4E were the output of Module 4C and 4D. There was one output 

from Module 4E which was the solid UF4. In an actual plant, approximately 117 kg AUC/h is processed 

with 0.2–2.0% uranium lost to waste streams. 

       ↔              (3.2.4.5) 

Figure 3.24 shows a block diagram of Module 4E with the input and output streams labeled. Equations 

(3.2.4.38)–(3.2.4.44) describe the conversion of UO2 to UF4 using HF, where          was the 

stoichiometric coefficient of the  -th component of the hydrofluorination reaction and        was the 

extent of reaction for the hydrofluorination reaction in terms of hydrogen fluoride. The stoichiometric 

coefficients are positive for products and negative for reactants.  

(                     )             (3.2.4.38) 

      (                     )            (3.2.4.39) 

      (                     )            (3.2.4.40) 

(                      )              (3.2.4.41) 

       (                      )             (3.2.4.42) 

       (                      )             (3.2.4.43) 

       (                      )             (3.2.4.44) 
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Figure 3.24. Block Diagram of the Module 4E Showing Input and Output Streams. 
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According to Nicole et al. 1996, “the kinetics of the transformation of uranium dioxide to uranium 

tetrafluoride by hydrofluorination have been studied with the aid of thermogravimetric experiments 

performed at temperatures from 220 to 450°C in a nitrogen-diluted hydrogen fluoride atmosphere.” The 

Grainy Pellet Model coupled with an optimization program was used to determine the reaction rate. The 

reaction rate was determined to be first order with respect to hydrogen fluoride. The reaction rate 

constant varies with temperature in the range 220–450°C according to an Arrhenius law, with an 

activation energy of 25 kJ/mol, and a frequency factor of 5.88 x 10-3 m/s. Additionally, it follows a 

chemical or intermediate regime, depending on the pellet diameter. Diffusion in the bulk of the small 

grains comprising the pellets is not rate-controlling. It was also shown that the ideal pellet size in the 

industrial process is of the order of 1 mm in diameter. 

The following discussion was taken from Nicole et al. 1996. The Grainy Pellet Model assumes the pellets 

to be composed of initially non-porous grains of identical shape and size. The shrinking core model is 

applied locally to each grain within the pellet. As the reaction progresses, a layer of solid product forms 

around the shrinking core of reactant. Mass transport involves several mechanisms: transfer from the 

bulk of the gas to the pellet surface, followed by diffusion between the grains composing the pellet 

(intergranular diffusion) and diffusion from the grain surface to the reaction front (intragranular 

diffusion), and the chemical reaction itself at the interface between the layer of reaction product and 

the shrinking core of solid reactant. The overall reaction kinetics are determined by the slowest of these 

steps, known as the rate-controlling mechanism(s).  

Nicole et al. 1996 makes the following simplifying assumptions: 

a) Pseudo-steady-state approximation is appropriate for describing the concentration of the 

gaseous species within the pellet. This assumption is valid whenever the ratio CA/CB between the 

concentrations of the gaseous reactant CA and the solid reactant CB remains small, which is 

verified in most gas-solid systems. 

b) The resistance to external transfer is negligible. 

c) The system is isothermal. In spite of the exothermic nature of the reaction, this assumption is 

justified by the experimental conditions, which involved a small mass of pellets, dilution of the 

gaseous reactant and a high total gas flowrate.  

d) The convective flux resulting from non-equimolar reaction is negligible since reactant and 

product gases were strongly diluted. 

e) The reaction is irreversible. Although the reaction is normally reversible, under the conditions 

employed, involving a reaction temperature below 500°C and a gaseous reactant concentration 

small but well above the equilibrium level, the reverse reaction was negligible.  

f) The chemical reaction has first-order kinetics with respect to gaseous reactant.  

g) Pellet and grains are spherical. 

The information was provided for completeness but was not used in the model. 
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3.2.4.6 Module 4F 

Module 4F included the UF4 post-processing equipment which was a filter, two coolers, and a UF4 

blender. The input to Module 4F was the output of Module 4E. There were two outputs from Module 

4F, one from a cooler and one from the UF4 blender. Figure 3.25 shows a block diagram of Module 4F 

with the input and output streams labeled.  

The filter separates Stream 42 into two streams. The separation was defined as the fraction that was 

sent to the waste stream (Stream 43) by parameter,         , where each component,  , had a different 

fractionation. Equations (3.2.4.45)–(3.2.4.51) define the separation of Stream 42 into Stream 43. 

                           (3.2.4.45) 

                           (3.2.4.46) 

                           (3.2.4.47) 

                              (3.2.4.48) 

                              (3.2.4.49) 

                              (3.2.4.50) 

                              (3.2.4.51) 
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Figure 3.25. Block Diagram of the Module 4F Showing Input and Output Streams. 
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Equations (3.2.4.52)–(3.2.4.54) calculate the component mole balances for Stream 44. 

                           (3.2.4.52) 

                           (3.2.4.53) 

                           (3.2.4.54) 

 

3.2.4.7 Module 4: Overall Material Balance 

The streams used for the overall material balances were those that cross the dark dashed boundary that 

enclosed all of Module 4. There were five input streams and three output streams for Module 4. One of 

the input streams was the output of Module 3 and two of the input streams were dependent. 

Additionally, there were three reactions in Module 4. The first occurred in the dissociator and was 

described by Eq. (3.2.4.6). The second occurred in the calciner and was described by Eq. (3.2.4.2). The 

third occurred in the fluidized bed reactor and was described by Eq. (3.2.4.5). 

                 (3.2.4.6) 

(   )    (   )                          (3.2.4.2) 

       ↔              (3.2.4.5) 

The overall component material balances for Module 4 are shown in Eqs. (3.2.4.55)–(3.2.4.64). 

      (                      )  (                     )                     (3.2.4.55) 

              (                     )                 (3.2.4.56) 

      (                     )  (                      )           (3.2.4.57) 

(                     )  (                      )           (3.2.4.58) 

      (                     )            (3.2.4.59) 

(                      )             (3.2.4.60) 

(                      )                     (3.2.4.61) 

(                       )  (                      )                   (3.2.4.62) 

       (                       )                    (3.2.4.63) 
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       (                       )              (3.2.4.64) 

 

3.2.5 Module 5: Conversion of Uranium Tetrafluoride to Uranium Hexafluoride 

Uranium hexafluoride is one of the main products of an NUCP. The process that is primarily utilized 

throughout the world in the production of UF6 is the reaction of UF4 with fluorine gas. Uranium 

tetrafluoride reacts rapidly with fluorine in a highly exothermic reaction to form UF6 according to Eq. 

(3.2.5.1). 

                    (3.2.5.1) 

Different types of vessels, such as a tube furnace, a vertical open-pipe reactor (known as a flame tower), 

or a fluidized bed can be used in the conversion of UF4 to UF6. Fluorine is an extremely corrosive gas, 

thus the equipment utilized must be fabricated from materials resistant to F2 (e.g., Monel®, Hastelloy®, 

and Inconel®).  

If fairly pure U3O8 and UO3 are available, then one may choose direct fluorination of the oxides for the 

production of UF6. Note that direct fluorination of oxides requires significantly more fluorine for 

conversion than does that required for UF4. The oxide fluorination reactions are shown in Eqs. (3.2.5.2) 

and (3.2.5.3). 

                          (3.2.5.2) 

                          (3.2.5.3) 

Different types of vessels such as a fixed bed reactor or a fluidized bed containing inert materials (such 

as calcium fluoride) are used in the conversion of uranium oxides to UF6. As with UF4 fluorination, the 

equipment utilized must be fabricated from materials resistant to F2 (e.g., Monel®, Hastelloy®, and 

Inconel®). This work was limited to the fluorination of UF4 and did not cover oxides. 

Module 5, Conversion of UF4 to UF6, encompassed the processes necessary to convert the solid uranium 

tetrafluoride to gaseous uranium hexafluoride. Module 5 was further subdivided into six sub-modules. 

The flowsheet for Module 5 is shown in Figure 3.26. Figure 3.26 illustrates the process of fluorination of 

UF4 utilizing a flame tower. From the UF4 feed hopper (not modeled), UF4 was fed into the flame tower 

reactor where it reacted with the F2 that was produced from local electrolytic cells or supplied from F2 

bottle storage. The fluorine gas was preheated in the presence of nitrogen to a temperature between 

300 and 400°C. Gaseous UF6 was condensed to a solid in a cold trap. Unreacted solids, known as ash, 

were collected at the bottom of the flame tower reactor. The vent stream from the flame reactor could 

contain some uranium material. There was a secondary flame reactor that was used to remove the 

excess fluorine contained in the primary flame reactor’s off-gas stream via reaction with UF4.  



 

82 
 

Heater1 UF6Cool

CoolerHeater2

Gas
Separator

UF6-UF4
Separator

Separator

SepSlag

Flame
Reactor

FlameSec

Mixer1

Mixer2

47
F2

48
48 49

51
52

53

54
55

55

57

56
UF6vent

58
Solid Waste

50
Slag_to_Waste

13A

N2

Mod5A

Mod5B

Mod5C

Mod5F

Mod5E
Mod5D

Splitter

44

From Mod 4

46

45

Mixer3

59 60

UF6 product

Figure 3.26. Module 5: The Fluorination Process of a Natural Uranium Conversion Plant. 

 

Uranium hexafluoride collected in the cold traps was heated to increase the UF6 temperature above the 

triple point, and the liquid UF6 was gravity drained into UF6 cylinders. After the cylinders were filled to 

the appropriate level, the cylinders were disconnected from the process and moved to a storage pad for 

the liquid UF6 to cool to a solid before shipment. The waste streams were relatively low, 0.1% to 0.2%. 

 

3.2.5.1 Module 5A 

Module 5A included the stream splitter, a mixer, and the gas pre-heater. The stream splitter was used to 

send a fraction of the incoming UF4 further down the process for secondary reaction that removed 

excess fluorine from the process. The inputs to Module 5A were the UF4 product stream from Module 4, 

fluorine, and nitrogen. There were two output streams from Module 5A. Figure 3.27 shows a block 

diagram of Module 5A with the input and output streams labeled.  

The splitter separation was defined as the fraction that was sent to the secondary reactor from the input 

stream by parameter,       . Equations (3.2.5.4)–(3.2.5.6) define the separation of Stream 44 into 

Stream 45. 
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Figure 3.27. Block Diagram of the Module 5A Showing Input and Output Streams. 

 

                             (3.2.5.4) 

                             (3.2.5.5) 

                             (3.2.5.6) 

Equations (3.2.5.7)–(3.2.5.9) calculate the mole balances for Stream 46. 

                              (3.2.5.7) 

                              (3.2.5.8) 

                              (3.2.5.9) 

Pure fluorine (Stream 47) was fed into the process in excess based the amount of UF4 in Stream 44 that 

was fed to the reactor according to parameter,       , as shown in Eq. (3.2.5.10), where          was 

the stoichiometric coefficient of the  -th component of the fluorination reaction. The stoichiometric 

coefficients are positive for products and negative for reactants. 

             |
        

         
|              (3.2.5.10) 

Equations (3.2.5.11)–(3.2.5.15) define Stream 48. 

(            
    

   
)             (3.2.5.11) 
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                    (3.2.5.12) 

                      (3.2.5.13) 

                      (3.2.5.14) 

                      (3.2.5.15) 

 

3.2.5.2 Module 5B 

Module 5B was the flame reactor where UF4 was converted to UF6 using fluorine gas Eq. (3.2.5.1). The 

input to Module 5B was the output of Module 5A. There was only one output from Module 5B which 

was predominately gaseous UF6 product with the remainder being N2, F2, UF4, UO2, and U3O8. 

Figure 3.28 shows a block diagram of Module 5B with the input and output streams labeled.  

Equations (3.2.5.16)–(3.2.5.21) describe to the fluorination of UF4 to UF6, where        was the extent 

of reaction in terms of UF4. 

      (                      )             (3.2.5.16) 

      (                      )             (3.2.5.17) 

(                       )               (3.2.5.18) 

       (                       )              (3.2.5.19) 

       (                       )              (3.2.5.20) 

       (                       )              (3.2.5.21) 
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Figure 3.28. Block Diagram of the Module 5B Showing Input and Output Streams. 
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The following discussion of the kinetics of the fluorination of UF4 to form UF6 was adapted from Labaton 

and Johnson 1959. It was deduced from the reaction studied that the reaction is first order with respect 

to fluorine pressure. The UF6 production rate is in agreement with the kinetics expected for reaction 

between a gas and a solid at a spherical interface which is continuously diminishing due to reaction with 

the gas. The rate of reaction depends on the temperature, and no reaction is detectable below 220°C. 

The activation energy for UF4 that was produced by hydrofluorination was determined to be 

19.1 kcal/mol. A linear relationship is shown to exist between the reaction rate and partial pressure of 

fluorine, but within the range examined the reaction rate is not affected by the velocity of gaseous 

reactant past the solid. The rate of UF6 production is dependent on an "effective" surface area of UF4, 

rather than the surface area determined by gaseous adsorption. The information was provided for 

completeness, but was not used in the final model.  

 

3.2.5.3 Module 5C 

Module 5C encompassed the separations following the primary flame reactor which included two 

separators and a cooling vessel. The output from Module 5B was the input to Module 5C. There were 

three outputs from Module 5C, one from the first separator to the waste and two from the second 

separator. Figure 3.29 shows a block diagram of Module 5C with the input and output streams labeled. 

The first separator removed any unreacted uranium to the waste. The separation was defined as the 

fraction that was sent to the waste by parameter,          , where each component,  , had a different 

fractionation. Equations (3.2.5.22)–(3.2.5.24) define the separation of Stream 49 into Stream 50. It is 

assumed at any residual UO2 and U3O8 exited in this waste stream. 
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Figure 3.29. Block Diagram of the Module 5C Showing Input and Output Streams. 
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                              (3.2.5.22) 

                              (3.2.5.23) 

                              (3.2.5.24) 

Equations (3.2.5.25)–(3.2.5.28) define Stream 51. 

                  (3.2.5.25) 

                  (3.2.5.26) 

                    (3.2.5.27) 

                           (3.2.5.28) 

The second separator separated most of the UF6 product from any remaining UF4 and all of the F2. 

Stream 52 was assumed to be pure UF6 at this point and was sent to Module 5F where it was blended 

with the product from the secondary reactor. Stream 53 contained any unreacted UF4 and the excess 

unreacted F2 that was consumed in the secondary reactor. The separation was defined as the fraction 

that was sent to the UF6 product by parameter,        . Equation (3.2.5.29) defines the separation of 

Stream 51 into Stream 52.  

                            (3.2.5.29) 

Equations (3.2.5.30)–(3.2.5.33) define Stream 53. 

                  (3.2.5.30) 

                  (3.2.5.31) 

                           (3.2.5.32) 

                    (3.2.5.33) 

 

3.2.5.4 Module 5D 

Module 5D included the mixer and heater for the secondary reactor. The inputs to Module 5D included 

the UF4 from the splitter in Module 5A and the unreacted compounds from the second separator in 

Module 5C. There was one output from Module 5D. Figure 3.30 shows a block diagram of Module 5D 

with the input and output streams labeled.  
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Figure 3.30. Block Diagram of the Module 5D Showing Input and Output Streams. 

 

The component mole balances for Stream 54 are shown in Eqs. (3.2.5.34)–(3.2.5.39). 

                  (3.2.5.34) 

                  (3.2.5.35) 

                    (3.2.5.36) 

                           (3.2.5.37) 

                    (3.2.5.38) 

                     (3.2.5.39) 

 

3.2.5.5 Module 5E 

Module 5E was the secondary flame reactor. The secondary flame reactor was used to remove excess 

fluorine from the system for safety and equipment preservation based on Eq. (3.2.5.1). There was a 

small fraction of UF4 split off in Module 5A to provide sufficient UF4 to react the excess fluorine. The 

other input to Module 5E was the output of Module 5D. There was one output from Module 5D. Figure 

3.31 shows a block diagram of Module 5E with the input and output streams labeled.  

Equations (3.2.5.40)–(3.2.5.45) describe to the fluorination of UF4 to UF6 in the secondary flame reactor, 

where        was the extent of reaction in terms of UF4. 

      (                      )             (3.2.5.40) 

      (                      )             (3.2.5.41) 
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Figure 3.31. Block Diagram of the Module 5E Showing Input and Output Streams. 

 

       (                       )              (3.2.5.42) 

       (                       )              (3.2.5.43) 

       (                       )              (3.2.5.44) 

       (                       )              (3.2.5.45) 

 

3.2.5.6 Module 5F 

Module 5F encompassed the final separations of the UF6 product. The equipment included in Module 5F 

was a cooler, two separators, and a mixer. The inputs to Module 5F included the output of Module 5E 

and the UF6 product from the second separator in Module 5C. There were three outputs from Module 

5E, a gaseous waste stream, a solid waste stream, and the UF6 product line. Figure 3.32 shows a block 

diagram of Module 5F with the input and output streams labeled.  

The first separator removed all of the gaseous components except the UF6 product, as shown as in Eqs. 

(3.2.5.46) and (3.2.5.47).  

                  (3.2.5.46) 

                  (3.2.5.47) 

The component mole balances for Stream 57 are shown in Eqs. (3.2.5.48)–(3.2.5.51). 

                    (3.2.5.48) 

                    (3.2.5.49) 

                    (3.2.5.50) 
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Figure 3.32. Block Diagram of the Module 5F Showing Input and Output Streams. 

 

                    (3.2.5.51) 

The second separator removed any remaining solid components to the waste. Stream 59 was assumed 

to be pure UF6 and was blended with the UF6 from Module 5C. Equations (3.2.5.52)–(3.2.5.54) define 

Stream 58 and Eq. (3.2.5.55) defines Stream 59. 

                    (3.2.5.52) 

                    (3.2.5.53) 

                    (3.2.5.54) 

                    (3.2.5.55) 

The pure UF6 from both Module 5C and 5F were blended before exiting the facility as the final product, 

according to Eq. (3.2.5.56). 

                           (3.2.5.56) 

 

3.2.5.7 Module 5: Overall Material Balance 

The streams used for the overall material balances were those that cross the dark dashed boundary that 

enclosed all of Module 5. There were three input streams and four output streams for Module 5. One of 

the input streams was the output of Module 4 and one of the input streams was dependent. 
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Additionally, there was one reaction in Module 5 that occurred in both of the flame reactors and is 

described by Eq. (3.2.5.1). 

                    (3.2.5.1) 

The overall component material balances for Module 5 are shown in Eqs. (3.2.5.57)–(3.2.5.62). 

            
    

   
             (3.2.5.57) 

      (                      )  (                      )           (3.2.5.58) 

(                       )  (                       )             (3.2.5.59) 

       (                       )  (                       )                  

(3.2.5.60) 

       (                       )  (                       )                  

(3.2.5.61) 

       (                       )  (                       )                  

(3.2.5.62) 

 

3.3 SENSITIVITY ANALYSIS 

Sensitivity analysis is the development of the degree of sensitivity of a process state or output variable 

to a change in a process input variable or process parameter. Sensitivity analysis served several 

purposes in this study, including:  

 Testing the robustness of the results of the model with regard to uncertainty, i.e., which 

parameters the model was most sensitive to. 

 Increasing understanding of the relationships between the input and output variables. 

 Model simplification (fixing parameters such as incoming flow rates that had no effect on the 

output and ignoring changes in input variables). 

 Selection of parameters to change for faulty operations testing (testing both highly sensitive and 

less sensitive parameters without testing parameters that had no effect on the output). 

 Identification of optimum sensor placement or locations that require more frequent monitoring. 
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There were a total of 82 parameters tested for the sensitivity analysis. These parameters included items 

that may be controlled by an operator in the facility or would vary naturally due to equipment fouling or 

other equipment modifications. The parameters were input flow rates, flow parameters used to control 

dependent input streams, extent of reactions, and fractionation factors for separators. All of the flow 

rates of the incoming streams (Table 3.9) and all of the module-specific parameters (Table 3.10) were 

tested. 

For the sensitivity analysis, each of the parameters was varied by ±10% using a one-at-a-time approach 

to determine a new steady-state solution for all of the state variables. The one-at-a-time approach 

involved changing one parameter while keeping all of the others at their nominal values and 

determining the output, then returning that parameter to its nominal value and repeating for each of 

the other parameters in the same way. This approach was logical since any change observed in the 

output was unambiguously due to the single variable changed. Since this approach does not take into 

account the simultaneous variation of parameters, it was incomplete and cannot detect the presence of 

interactions between parameters or any nonlinear effect of the input variables. Additionally, it shows 

cases were the process is nonlinear when the response is not the same for both ±10%. However, the 

sensitivity analysis utilized in this study was an initial effort and additional study would be required to 

fully understand this detection framework in a facility. For parameters that could not vary by +10% such 

as an extent of reaction with a value of one, the parameter was only varied by -10%.  

For the sensitivity analysis, the sensitivity factor for each parameter and each steady-state state variable 

was determined. The sensitivity factor is unit-less and defined as shown in Eq. (3.3.0.1), where      is the 

sensitivity factor for the percent change of the  -th state variable ( ) to the percent change in the  -th 

parameter ( ) at steady state. For example, a   value of 1 means that a 10% change in the parameter 

resulted in a 10% change in the state variable. 

     
       ⁄

       ⁄
     (3.3.0.1)  
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Table 3.9. Base Case Flow Rates (kg/h) for Input Streams for Each Module 

 
Identifier Stream Value Chemical Component 

 

 
F1A,U 1A 50.00 Uranium 

 

 
F4A 4A 8.00 Water 

 

 
F5A 5A 4.00 Water 

 

 
F6A 6A 0.80 Nitric Acid 

 

 
F7A 7A 60.00 TBP 

 

 
F8A 8A 42.00 Water 

 

 
F9A 9A 95.00 Water 

 

 
F10A 10A 14.00 Wash Solution 

 

 
F11A 11A 14.00 Nitrogen 

 

 
F12A 12A 42.00 Nitrogen 

 

 
F13A 13A 14.00 Nitrogen 
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Table 3.10. Base Case Parameters for Each Module 

Identifier Value Description 

Module 1 

Mod1A 1.2 Flow parameter that insures sufficient HNO3, Mod1A 

XMod1A 0.9799 Extent of Reaction (moles U3O8 reacted/moles U3O8 fed), Mod1A 

KMod1B,1 0.9 

Component Filter Fractionation Factors (mol-%), Mod1B 

KMod1B,9 0.97 

KMod1B,14 0.98 

KMod1B,18 0.02 

KMod1B,20 0.01 

KMod1B,21 0.97 

KMod1C,1 0.75 

Component Filter Fractionation Factors (mol-%), Mod1C 

KMod1C,9 0.9 

KMod1C,14 0.8 

KMod1C,18 0.7 

KMod1C,20 0.01 

KMod1C,21 0.99 

S1Mod1D 0.333 Splitter, fraction of flow from Stream 7 to Stream 9, Mod1D 

S2Mod1D 0.333 Splitter, fraction of flow from Stream 7 to Stream 10, Mod1D 

KMod1E,1 0.999 

Component Filter Fractionation Factors (mol-%), Mod1E 

KMod1E,9 0.9999 

KMod1E,14 0.9999 

KMod1E,18 0.9999 

KMod1E,20 0.2 

KMod1E,21 0.9999 

Module 2 

KMod2B,1 0.001 

Column component mole fraction fractionation (mol-%), Mod2B 

KMod2B,9 0.001 

KMod2B,11 0.999 

KMod2B,14 0.995 

KMod2B,18 0.001 

KMod2B,20 0.001 

KMod2B,21 0.1 

KMod2C,1 0.001 

Column component mole fraction fractionation (mol-%), Mod2C 

KMod2C,9 0.005 

KMod2C,11 0.999 

KMod2C,14 0.999 

KMod2C,18 0.001 

KMod2C,20 0.001 

KMod2C,21 0.05 
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Table 3.10. Base Case Parameters for Each Module (continued) 

Identifier Value Description 

Module 2 (continued) 

KMod2D,1 0.9999 

Column component mole fraction fractionation (mol-%), Mod2D 

KMod2D,9 0.995 

KMod2D,14 0.999 

KMod2D,18 0.001 

KMod2D,21 0.995 

Module 3 

KMod3A,1 0.6 

Evaporator component mole fraction fractionation (mol-%), Mod3A 

KMod3A,9 0.6 

KMod3A,14 0.0001 

KMod3A,18 0.0001 

KMod3A,21 0.0001 

Mod3B 1.5 Flow parameter that insures sufficient reactants (H2O, NH3, and CO2), Mod3B 

XMod3C 0.9999 Extent of Reaction (moles uranyl nitrate reacted/moles uranyl nitrate fed), Mod3C 

KMod3D,1 0.06 

Filter component mole fraction fractionation (mol-%), Mod3D KMod3D,18 0.995 

KMod3D,19 0.995 

Module 4 

Mod4A 1.25 Flow parameter that insures sufficient NH3 is fed for conversion, Mod4A 

XMod4A 1 Extent of reaction (moles NH3 reacted/moles NH3 fed), Mod4A 

XMod4B 0.9999 Extent of reaction (moles AUC reacted/moles AUC fed), Mod4B 

Mod4D 0.95 Flow parameter that insures sufficient HF is fed for conversion, Mod4D 

XMod4E 0.9999 Extent of reaction (moles HF reacted/moles HF fed), Mod4E 

KMod4F,1 1 

 Filter component mole fraction fractionation (mol-%), Mod4F  

KMod4F,2 1 

KMod4F,6 1 

KMod4F,16 1E-05 

KMod4F,17 0.001 

KMod4F,18 0.001 

KMod4F,19 1 

Module 5 

Mod5A 1.1 Flow parameter that insures sufficient F2 is fed for conversion, Mod5A 

XMod5B 0.999 Extent of reaction (moles UF4 reacted/moles UF4 fed), Mod5B 

SMod5A 0.1 Splitter fractionation (mol-%), Mod5A 
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Table 3.10. Base Case Parameters for Each Module (continued) 

Identifier Value Description 

Module 5 (continued) 

K1Mod5C,16 0.99 

 Filter component mole fraction fractionation (mol-%), Mod5C (UF6-UF4 Separator) K1Mod5C,17 1 

K1Mod5C,18 1 

K2Mod5C,15 0.99  Filter component mole fraction fractionation(mol-%), Mod5C  (Separator) 

XMod5E 0.999 Extent of reaction (moles UF4 reacted/moles UF4 fed), Mod5E 

 

 

3.4 BASE “NORMAL” CASE 

Following the overall approach outlined in Figure 3.1, this section explains how the base case data set 

was obtained. The first step was to define the process equations used to describe the system. These 

were the material balance equations provided in Section 3.2. Next, all of the parameters were identified. 

In this work, parameters are constants and do not vary in the base case model. The parameters are 

listed in the tables in Section 3.3. Based on the sensitivity analysis (results of which are discussed in 

Chapter 4), seven parameters were selected as input variables. For the input variables, the normal range 

profile for each variable was established, i.e., ‘normal’ flow rate of uranium into the plant was 50 kg/h 

and varied by ±10%. The input variables with variations are summarized in Table 3.11 with more 

description for each below. 

The first and most important input variable selected was the flow rate of uranium to the facility 

[Xss(274)]. This was the impure uranium ore or yellowcake that was the feedstock to the facility from 

the mining and milling operation. This effort assumed that the incoming yellowcake was 85% U3O8 and 

15% impurities (7.5% soluble and 7.5% insoluble). The feed rate of uranium was 50 kg U/h, based on the 

assumption that this model represented a small-sized conversion plant that processed 100 MTU/yr with 

an operating schedule of 8 h/day, 5 days/week, and 50 weeks/yr. This rate was elemental uranium, not 

U3O8, and it was expected to vary some since the operators would be loading drums into a feed hopper 

to supply the dissolver. The model included a variation of ±10% of the 50 kg U/h nominal flow rate. 

The second input variable selected was the uranyl nitrate filter fractionation parameter in Module 1B 

[Xss(275)]. That was the amount of uranyl nitrate that was separated from Stream 3 to Stream 4. Stream 

3 was the exit of the stream mixer in Module 1B which included the dissolver output and the recycle for 

the splitter in Module 1D. Stream 4 was the input stream to Module 1E where the Module 1 product 

was separated from any remaining solids that were not dissolved. This parameter was selected due to 

the sensitivity analysis which showed that 42% of the state variables were sensitive to this parameter. 

Additionally, 62% of those sensitive state variables were uranium-bearing components.  
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Table 3.11. List of Input Variables 

Module 
Input 

Variable 
Name 

Variable 
Number 

Nominal 
Value 

Units 
Variation 
for Base 

Case 
Description 

1 F1A,U Xss(274) 50.00 kg/h ±10% 
Flow rate of uranium in stream 
1A, Mod1A 

1 KMod1B,14 Xss(275) 0.98 mol-% -5% 
Uranyl Nitrate Filter 
Fractionation, Mod1B 

2 KMod2B,14 Xss(276) 0.995 mol-% -5% 
Uranyl Nitrate Filter 
Fractionation, Mod2B 

2 KMod2D,14 Xss(277) 0.999 mol-% -5% 
Uranyl Nitrate Filter 
Fractionation, Mod2D 

3 KMod3D,19 Xss(278) 0.995 mol-% -5% 
Ammonium Uranyl Carbonate 
Filter Fractionation, Mod3D 

4 Mod4D Xss(279) 0.95   ±5% 
Flow parameter, insures 
sufficient HF is fed for 
conversion, Mod4D 

5 SMod5A Xss(280) 0.1 mol-% ±10% Splitter fractionation, Mod5A 

 

 

The third and fourth variables selected as inputs were the uranyl nitrate filter fractionation parameters 

in Module 2 [Xss(276) and Xss(277)]. These parameters were from the extraction column (Module 2B) 

and the stripping column (Module 2D). The uranyl nitrate component was selected because uranium 

was the species of interest throughout this process. Additionally, over 35% of the state variables were 

sensitive to changes in these parameters with over 50% of those sensitive state variables being 

uranium-bearing components. The initial value given was the maximum so the variation was a reduction 

in the fractionation. 

The fifth input variable selected was the AUC filter fractionation parameter in Module 3D [Xss(278)]. 

That was the amount of AUC that was separated from Stream 29 and sent to Stream 30. This 

determined how much of the solid AUC became the Module 3 product and how much was waste. 

Depending on the filter media, amount of washing, and particle size, it was reasonable that there would 

be some variation in the amount of AUC in the Module 3 product. Again, the initial value given was the 

maximum so the variation was a reduction in the fractionation. Additionally, 28% of the state variables, 

58% of which contained uranium, were sensitive to this parameter.  

The sixth input variable selected was the flow parameter that was used to ensure sufficient hydrogen 

fluoride was fed for the hydrofluorination reaction in Module 4D [Xss(279)]. This parameter was used to 

define the amount of HF that was fed to the system; the incoming HF stream was a dependent input 

stream and therefore an unknown since it was based on the amount of UO2 that was fed to the fluidized 

bed reactor. Hydrogen fluoride was the rate controlling reactant in the hydrofluorination reaction. The 
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amount of HF was fed in less than stoichiometric amounts so that minimal HF remained after the 

reaction. This parameter affected the uranium components from Module 4D downstream which was 

expected since it affected the amount of UF4 produced and the amount of UO2 consumed. Almost 18% 

of the state variables, 71% of which contained uranium, were sensitive to this parameter.  

The final input variable selected was the splitter fractionation in Module 5A [Xss(280)]. A splitter was 

different from the other separators since it split the stream into multiple streams but retained the same 

component ratios of the initial stream. The stream splitter was used to send a fraction of the incoming 

UF4 further down the process for secondary reaction used to remove excess fluorine from the process. A 

change in this parameter affected most of the unknowns in Module 5. Over 77% of the state variables in 

Module 5 were sensitive to this parameter; 68% of the sensitive state variables contained uranium. It 

was also reasonable from an operations standpoint to expect this split to vary slightly. 

Once all of the equations, parameters, and input variables were defined, the ‘fsolve’ function in 

MATLAB® was used to determine the initial steady-state solution at the nominal parameter and input 

variable settings. This was the solution for the material balance equations solved simultaneously using 

the nominal values from Table 3.11. The base case data set was generated by systematically calculating 

the steady-state solution for each combination of values of the input variables using the range of 

variation provided in Table 3.11. Each row of the data matrix represented one steady-state solution.  

Figure 3.33 lists the MATLAB® files used to generate the base case data. A description of each file is also 

provided in the figure. 

 

3.5 PRINCIPAL COMPONENT MODEL 

Once the base case data set was generated, the principal component model could be obtained. It was 

necessary to do some pre-processing of the data before application of SVD. First, random Gaussian 

white noise was added. The addition of white noise simulates measurement and instrumentation error. 

After adding white noise at 1% of the respected nominal value, each data column was mean-centered to 

move the origin to the mean of each column. 

Scaling is very important in PCA. If there are large differences between the variances of the data, those 

variables whose variances are large will tend to dominate the first few principal components even if 

those variables are not actually important in indicating process malfunctions (Martin, Morris, and Zhang 

1996). The data matrix consisted of state variables of all the same type (molar flow rates) but with very 

large variances. Therefore, the mean-centered noisy data matrix was scaled so that the standard 

deviation of each column was one. Weighted scaling was used for all of the input variables and the 

primary uranium-bearing output of each module. For those state variables that weighted scaling was 

used, the standard deviation was the scaling factor as opposed to one as stated above. Singular Value   



 

98 
 

 

Figure 3.33. List and Description of the MATLAB® files used to Generate the Base Case Data. 

 

  

fsolve_BC.m 

•Solves the system of nonlinear equations  that describe the operation of the 
conversion plant 

•Calls the function file Xss_BC.m 

•Outputs the steady-state state variable solution (Xss) at the stated input 
variable values 

parameters_
BC.m 

•Loads the base case parameters for the subsequent files 

•Must match the parameters in Xss_BC.m 

•Also loads the steady-state input variables 

Xdot_BC.m 

•Checks the steady-state solution to give Xdot=0 

•The system of equations must match those in Xss_BC.m 

•Output is Xdot and should be equal to evaluated from fsolve_BC.m 

•The solution of Xdot should be zero 

OMB_BC.m 

•Checks the overall material balance for each module 

•The solution of OMB should be zero 

BC_data.m 

•Calls NUCP_BC.m 

•The system of equations must match those in Xss_BC.m 

•Generates the base case data matrix by varying the input variables using 
nested loops 
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Decomposition (SVD) was used to extract the principal component model as described in Chapter 2. The 

effective rank was determined using a Scree plot. The effective rank determines the most likely degree 

of freedom the data matrix exhibits and suggests the number of principal components that should be 

retained to represent the overall model. The scores and residuals were calculated as described 

previously. The Mahalanobis distance and the  -statistic along with the 95%-confidence threshold for 

the scores in the principal component space were calculated. Loadings plots were generated to 

determine which state variables contribute the most weight to each principal component and therefore 

which group of state variables dominates each degree of freedom that was represented by each 

principal component. The scores plots were generated for the base case for future comparison with 

faulty cases. Additionally, plots of the Mahalanobis distance and the  -statistic were generated for the 

base case to serve as the reference for the detection of ‘faults’ in the faulty cases. Figure 3.34 lists the 

MATLAB® files used to generate the base case principal component model and initial plots. A description 

of each file is also provided in the figure. 

The base case PCA model was verified by means of a control case. For the control case, all of the 

parameters and input variables were set within the set of base case values. Table 3.12 lists the input 

variables with both the base case and control case variations. Once the control case data were 

generated, the data matrix was pre-processed in the same manner (Gaussian noise added, mean-

centered, and scaled) as the base case data. However, the original base case mean and standard 

deviation were used to mean-center and scale the control case. The associated scores, the Mahalanobis 

distance, and the  -statistic were computed. The diagnostic plots [scores (2-D and 3-D),   ,  -statistic, 

and 2-D scores vs.    ] were plotted with the base case confidence boundaries superimposed onto the 

plots to detect presence of a fault. Since all of the control case data should be within the base case data, 

it was expected that all of the control case data would lie within the base case confidence boundaries. 

 

Table 3.12. List of Control Case Variable Variations 

Variable  Base Case Variation Control Case Variation 

F1A,U ±10% ±8% 

KMod1B,14 -5% -4% 

KMod2B,14 -5% -4% 

KMod2D,14 -5% -4% 

KMod3D,19 -5% -4% 

Mod4D ±5% ±4% 

SMod5A ±10% ±8% 
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Figure 3.34. List and Description of the MATLAB® files used to Generate the Principal Component Model. 

  

PCA_nonoise
.m 

•Pre-processes the data (normalize, mean-center, and scale) 

•Determines the effective rank using the singular values from SVD 

Add_noise.m 

•Adds Gaussian white noise to the base case data matrix 

•Checks that noise is properly scaled 

PCA_noise.m 

•Pre-processes the noisy data (normalize, mean-center, and scale) 

•Extracts the principal component model from SVD 

•Determines the effective rank using the singular values from SVD 

PCA_BCmod
el.m 

•Determines the number of factors to keep based on the effective rank 

•Plots the loadings vectors 

•Computes the scores 

•Computes the Mahalanobis distance and 95% confidence interval 

•Computes the Q-statistic and 95% confidence interval 

PCA_BCfigur
es.m 

•Draws the 2-D and 3-D scores plots and 95% confidence boundary 

•Plots the Mahalanobis distance and 95% confidence boundary 

•Plots the Q-statistic and 95% confidence boundary 

•Draws the 3-D plot of PC1 scores, PC2 scores, and SPE 
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3.6 FAULTY “OFF-NORMAL” CASES 

This section discusses the potential diversion scenarios in a conversion plant along with which faulty 

cases were selected for testing. Figure 3.35 lists the MATLAB® files used to generate the faulty case data 

and the diagnostic plots. A description of each file is also provided in the figure. 

 

3.6.1 Potential Diversion Scenarios in Conversion Plants 

This section covers the potential diversion scenarios that could occur in the operation of a conversion 

plant and the scenarios that were selected for testing the detection framework of this research. For 

each potential diversion scenario, a description of each case is provided along with an explanation of 

why it is of interest. Potential diversion scenarios are listed for each of the modules. The faulty cases 

should test the model’s response using both the Mahalanobis distance and the  -statistic. The 

Mahalanobis distance is used to measure the variation in the scores space and to determine if the 

variations fall outside the 95% confidence boundary (i.e., are the input values outside the accepted 

normal range?). The  -statistic is used to determine if the process is operating normally as defined by 

the model (i.e., does the model still fit?).  

 

3.6.1.1 Module 1 

Potential diversion scenarios that involve alterations to Module 1 include:  

1. Additional uranium added to dissolver;  

2. Different purity of uranium fed to the dissolver; 

3. Uranium not completely dissolved (inefficient operations); or 

4. Withdrawal of uranyl nitrate stream downstream of the dissolver but still within the same 

module. 

Addition of uranium could be accomplished through an additional port or existing sample line, 

instrument line, or observation port (temporary hook-up) to the dissolver or through other process 

input lines (nitric acid or water supply). The result would be that more uranium is processed in the plant 

than declared with excess uranium being diverted prior to downstream sampling points. It is not likely 

that diversion would occur until after the purification step. Modeling of this scenario would involve 

adding an additional input stream to the dissolver. For scenario 2 of Module 1, it is expected that the 

purity of the incoming uranium ore would vary slightly. However, a much higher purity fed could result 

in more uranium being processed than declared by the plant. Modeling this would require changing the 

mass fractions of the incoming uranium ore. Inefficient operations (scenario 3) would result in uranium 

that could be diverted from the process in filter cake solids. However, diversion at this point in the   
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Figure 3.35. List and Description of the MATLAB® files used to Generate the Faulty “Off-Normal” Cases and 

Diagnostic Plots.  

fsolve_cas
e#.m 

•Solves the system of nonlinear algebraic equations describing the faulty 
operation of the conversion plant for the specified case 

•Calls the function file Xss_case#.m 

•Outputs the steady-state state variable solution (Xss) at the stated faulty input 
variable and/or parameter values 

parameter
s_c#.m 

•Loads the specified faulty case parameters for the subsequent files 

•Must match the parameters in Xss_case#.m 

•Also loads the steady-state input variables 

Xdot_case
#.m 

•Checks the steady-state solution for the specified faulty case 

•The system of equations must match those in Xss_case#.m 

•Output is Xdot and is equal to that evaluated from fsolve_case#.m 

•The solution for Xdot should be zero 

OMB_cas
e#.m 

•Checks the overall material balance for each module 

•The solution for the overall mass balance should be zero 

C#_data.
m 

•Calls NUCP_case#.m 

•The system of equations must match those in Xss_case#.m 

•Generates the faulty case data matrix by varying the input variables using 
nested loops 

PCA_mod
el_#.m 

•Adds Gaussian white noise to the faulty case data matrix and checks that noise 
is properly scaled 

•Pre-processes the noisy data (normalize, mean-center, and scale) using the 
base case mean and standard deviation(s) 

•Computes the scores, the Mahalanobis distance, and the Q-statistic using the 
base case reduced scores and singular values 

•Draws the diagnostic plots as done with PCA_BCfigures.m using the base case 
confidence boundaries and including the base case data for comparison 
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process would require a duplicate clandestine NUCP facility somewhere else to process the diverted 

solids. Modeling of this scenario would involve changing the extent of reaction for the dissolution 

reaction. Finally, withdrawal of uranyl nitrate could be accomplished through an additional port or 

existing sample or instrument line (with a temporary hook-up) downstream of the dissolver (between 

the dissolver and the uranyl nitrate storage tank) and the water or filter wash solution could be 

increased to ensure flow rates to the tank remain as expected for declared input. Diversion at this point 

in the process would require a duplicate clandestine facility somewhere else to process the diverted 

solution. Modeling of this scenario can be accomplished either by changing the fractions so that more 

uranyl nitrate would go to waste or by adding an additional output stream at the appropriate point. 

 

3.6.1.2 Module 2 

Potential diversion scenarios that involve alterations to Module 2 include:  

1. Additional uranium added to extraction column; 

2. Inefficient extraction of uranium from aqueous stream; 

3. Withdrawal of uranyl nitrate downstream of the scrub or stripping columns; or 

4. Inefficient re-extraction of uranium from organic stream. 

The addition of uranium could be accomplished through an additional port or existing sample line, 

instrument line (temporary hook-up) to dissolver or through other process input lines (nitric acid or 

water supply). The result is that more uranium is processed in the plant than declared with excess 

uranium being diverted prior to downstream sampling points. Modeling of this scenario would involve 

adding an additional input stream to the extraction column. Inefficient extraction of uranium from the 

aqueous stream would result in diversion of uranium in the raffinate stream from extraction column. 

Withdrawal of uranyl nitrate could be done through an additional port or existing sample or instrument 

line (with a temporary hook-up) downstream of the scrub or re-extraction columns and the purified 

uranyl nitrate storage tank along with an increase in strip solution to ensure flow rates to product tank 

remains as expected for declared input. Inefficient re-extraction of uranium from the organic stream 

would result in diversion of uranium in the organic waste stream from re-extraction (stripping) column. 

For scenarios 2–4 in Module 2, diversion would require a duplicate clandestine facility (from purification 

on) somewhere else to process the diverted material. Modeling scenarios 2–4 of Module 2 would 

require altering the fractionation parameters for each of the columns to direct uranium into the waste 

streams. 
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3.6.1.3 Module 3 

Potential diversion scenarios that involve alterations to the evaporation process in Module 3 include:  

1. Additional uranium, in the form of uranyl nitrate, added to evaporator; 

2. Evaporator reflux is operated such that more condensate is produced; or 

3. Withdrawal of concentrated uranyl nitrate stream downstream of evaporator. 

The addition of uranium to the evaporator feed could be accomplished through an additional port or 

existing sample line, instrument line (temporary hook-up) or through other process input lines (water 

supply). The result is that more uranium is processed in the plant than declared with excess uranium 

being diverted prior to downstream sampling points. Modeling of this scenario would involve adding an 

additional input stream to the evaporator. The evaporator reflux could be operated such that more 

condensate is produced resulting in more uranium being diverted in the condensate stream. Withdrawal 

of concentrated uranyl nitrate could be done through an additional port or existing sample or 

instrument line (with a temporary hook-up) downstream of the evaporator. For scenarios 2 and 3 in the 

evaporation process of Module 3, diversion would require a duplicate clandestine facility (downstream 

of purification) somewhere else to process the diverted material. Modeling these scenarios would 

require altering the fractionation parameters for the evaporator to direct uranium into the waste 

streams. For scenario 3, modeling could also be accomplished by adding an additional output stream at 

the appropriate point. 

Potential diversion scenarios that involve alterations to the precipitation process in Module 3 include:  

1. Additional uranium added to the precipitation process; 

2. Inefficient precipitation operations; or 

3. Withdrawal of uranium powder through the exhaust system. 

The addition of uranium to the precipitation process feed could be accomplished through an additional 

port or existing sample line, instrument line or recirculation (temporary hook-up) to the precipitator or 

through other process liquid input lines. The result is that more uranium is processed in the plant than 

declared with excess uranium being diverted prior to downstream sampling points. Modeling of this 

scenario would involve adding an additional input stream to the precipitator. Inefficient precipitation 

operations would result in uranium that could be diverted in the waste stream from the precipitator 

product filter. Uranium diverted through the filtrate stream could easily be retrieved in a separate 

process. Modeling of this scenario would involve changing the extent of reaction for the precipitation 

reaction. In order for additional uranium to be withdrawn, a vacuum would need to be applied to the 

powder collection point so that more powder is entrained in the exhaust system. Modeling of this 

scenario would be accomplished by changing the fractions so that more uranium would go to exhaust. 
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3.6.1.4 Module 4 

Potential diversion scenarios that involve alterations to Module 4 include:  

1. Additional uranium added to the calciner; or 

2. Withdrawal of uranium powder through the exhaust system in either Module 4C or 4F. 

The addition of uranium to the calciner could be accomplished through an additional port. The result is 

that more uranium is processed in the plant than declared with excess uranium being diverted prior to 

downstream sampling points. Modeling of this scenario would involve adding an additional input stream 

to the calciner. In order for additional uranium to be withdrawn, a vacuum would need to be applied to 

the powder collection point so that more powder is entrained in the exhaust system. Modeling of this 

scenario can be accomplished by changing the filter fractionations so that more uranium would go to 

exhaust streams in either Module 4C or 4F. 

 

3.6.1.5 Module 5 

Potential diversion scenarios that involve alterations to Module 5 include:  

1. Withdrawal of uranium powder through the exhaust system of the secondary fluorination 

system; 

2. Withdrawal of UF6 upstream of the cold traps; 

3. Inefficient operation of the fluorination unit; or 

4. Inefficient operation of the UF6 collection units. 

In order for additional uranium to be withdrawn through the exhaust system, a vacuum would need to 

be applied to the powder collection point on the secondary fluorination system so that more powder is 

entrained in the exhaust system. Modeling of this scenario would be accomplished by changing the filter 

fractionations so that more uranium would go to exhaust stream in Module 5F. Uranium hexafluoride 

could also be diverted from the process and collected in separate cold traps or a chemical trap. 

Modeling this scenario would also involve changing the filter fractionations at the appropriate point. 

Inefficient fluorination operations would result in additional UF4 that collects in the ash and could be 

sent to another facility for recovery. Modeling of this scenario would involve changing the extent of 

reaction for the fluorination reaction for either the primary or secondary reactions. Inefficient operation 

of the UF6 collection units would result in additional UF6 that exits the vent system and is collected on 

chemical traps that are diverted to another facility. Modeling this would involve adding an additional 

output to the last unit operation in Module 5F. 
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3.6.1.6 Multiple Modules 

Potential diversion scenarios that involve alterations to more than one Module include:  

1. Adjusting the flow parameters that ensure sufficient reactants; 

2. Data spoofing; or 

3. Changing two parameters that may cancel each other’s effects. 

Adjusting the flow parameters would affect how much uranium is converted and also how much 

reactant is left after the reaction. These parameters exist in all of the modules except Module 2, so more 

than one scenario could be tested. Data spoofing is a concern for actual operations. It would be possible 

to test the data spoofing by generating a random set of data where each of the unknowns varies within 

the acceptable range. However, the relationship between the unknowns of one sample may not fit the 

model. Finally, it is possible that two parameters could cancel one another’s effects. This is mostly the 

scenario for the flow parameters and extents of reaction.  

 

3.6.2 Selected Faulty “Off-Normal” Cases 

This section discusses the actual faulty “off-normal” cases that were selected for study. Table 3.13 

provides a summary of each of the cases. Following Table 3.13, each case is described along with a brief 

analysis of why the case is important. The first three cases test processes included in Module 1. The 

fourth case applies to Module 2. Cases 5–7 are specific to Module 3. Case 8 applies to Module 4. Cases 

9–11 are specific to Module 5. Cases 12–14 test the effect of changing multiple parameters or inputs 

which could result in cancellation of the fault detection or an additive effect to the fault. 

 

3.6.2.1 Case 1 

The first faulty case that was investigated was an increase in the total throughput of the facility. In this 

case, all incoming flow rates (Streams 1A, 4A–13A) were increased with no other changes in the model. 

The initial test was to increase the throughput by 50% to determine the model’s response. This was 

done by multiplying all eleven incoming base case flow rates (see Table 3.9) by 1.5. Since up to 10% 

change was built into the base case model for the incoming uranium flow rate, an increase in total 

throughput of 10% was also tested. In this case, the  -statistic was expected to be outside of the 

accepted range since most of these flow rates were parameters and therefore the relative relationships 

between the parameters and the state variables would change. The Mahalanobis distance was expected 

to show that the values are outside of the accepted range. Additionally, only the incoming uranium flow 

rate was increased leaving all other parameters and inputs unchanged from the base case.  
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Table 3.13. Summary of Faulty Cases 

Case 
# 

Safeguards 
Priority 

Module 
Fault 

Variable 

Base 
Case 

Value 

Fault 
Value 

Description 

1A High 1 
All F 

values 
Varies +50% 

Increase total plant throughput by 
50% 

1B High 1 
All F 

values 
Varies +10% 

Increase total plant throughput by 
10% 

1C High 1 F1A,U 50 kg/h 57.5 kg/h Increase uranium throughput by 15% 

1D High 1 F1A,U 50 kg/h 62.5 kg/h Increase uranium throughput by 25% 

2 Low 1 x1A,18 0.85 0.90 
Increase the incoming uranium purity 
by 5.9% 

3 Medium 1 XMod1A 0.9799 0.95 
Inefficient dissolver operations, 
reduce extent of reaction by 3% 

4 High 2 KMod2D,14 0.999 0.9 
Inefficient re-extraction operations, 
reduce uranyl nitrate extraction by 
9.9% 

5 High 3 SMod3A N/A 0.0025 
Diversion of 0.25% of the uranium 
from the evaporator 

6 High 3 F14A N/A 10 kg/h 
Addition of uranyl nitrate to the 
precipitation process 

7 Low 3 XMod3C 0.9999 0.9 
Inefficient precipitation process 
operations, reduce extent of reaction 
by 10% 

8 Medium 4 
KMod4F,16; 
KMod4F,17 

0.00001; 
0.001 

0.0001; 
0.01 

Inefficient separation downstream of 
the hydrofluorination reaction 

9 Medium 5 SMod5F,1 N/A 0.75 Diversion of 75% of the UF6 from the 
secondary fluorination process 

10 High 5 
XMod5B; 
XMod5E 

0.999 0.95 
Inefficient operations of the 
fluorination processes, reduce extent 
of reaction by 4.9% 

11 High 5 SMod5F,2 N/A 0.2 Diversion of 20% of the purified UF6  

12 High 1 and 5 
F1A,U; 

SMod5F,2 
50 kg/h; 

N/A 
62.5 kg/h; 

0.2 multiple parameters  

13 High 3 and 5 
XMod3C; 
XMod5B;  
XMod5E 

0.9999; 
0.999 

0.9; 0.95 

multiple parameters  

14 Low 1 
x1A,18; 
XMod1A 

0.85; 
0.9799 

0.90; 0.95 
multiple parameters  
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An increase in throughput of a facility was a highly likely scenario. It was expected that a plant would 

have some variation in throughput. This expected variation was built into the model by varying the 

incoming uranium flow rate by ±10% as part of the base case. Since most plants have a design capacity 

that is greater than normal operating conditions, detection of an increase above the accepted range is of 

great importance to safeguards since additional material could be processed and diverted before 

safeguards declarations. 

 

3.6.2.2 Case 2 

The second faulty case that was selected for testing was to change the purity of the uranium fed to the 

dissolver in Module 1. It is possible that higher purity uranium could arrive in drums and be fed to the 

plant. Conversion plants operate with a very narrow band of purity. The amount of uranium and 

impurities drive the amount of reactants needed and it is desired that there not be much variability in 

uranium purity. No variation in uranium purity was built into the model due to this. However, higher 

purity uranium could result in additional uranium being processed in a plant than is declared. This is of 

low priority for safeguards since it is expected that material substitution of this manner would not occur 

until later in the process. For this case, the uranium input stream was changed from 85 wt-% U3O8 and 

15 wt-% impurities (7.5 wt-% soluble impurities and 7.5 wt-% insoluble impurities) to 90 wt-% U3O8 and 

10 wt-% impurities (5 wt-% soluble impurities and 5 wt-% insoluble impurities). It was expected that the 

 -statistic would produce a fault since this was a change in a parameter and therefore a change in the 

relative relationships between the state variables. 

 

3.6.2.3 Case 3 

The third test case investigated inefficient dissolver operations in Module 1. Inefficient operations would 

result in the uranium not being completely dissolved. This would cause uranium to be diverted to waste 

where it could be recovered and further processed elsewhere. Inefficient operations could be a result of 

equipment malfunction such as the heated jacket not reaching the necessary temperature due to a 

faulty thermocouple or it could be an operator purposely operating inefficiently to divert material. This 

is a medium priority case for safeguards. This case was modeled by changing the extent of reaction for 

the dissolution reaction,       , from 0.9799 to 0.95. It was expected that all of the diagnostic plots 

would produce a fault since this was outside normal conditions and changed the relative relationships 

between the state variables. This was outside normal operating conditions since it changed the amount 

of uranium that proceeded through the process downstream of the dissolver.  
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3.6.2.4 Case 4 

The fourth test case investigated inefficient operations in Module 2, specifically the re-extraction of 

uranium from the organic phase. Inefficient re-extraction results in additional uranium being diverted to 

the organic waste stream. The waste stream could be processed at an undeclared facility to recover 

purified uranium that could be further converted to desirable forms. This scenario is of high priority for 

safeguards. As with Case 3, this fault could be due to faulty equipment or intentional diversion. This case 

was modeled by changing the column fractionation parameter for the uranyl nitrate in Module 2D, 

         . This parameter was one of the input variables and was varied in the computation of the base 

case. For this case, the initial value of this input was reduced from 0.999 to 0.9. It was expected that all 

of the diagnostic plots would produce a fault since this was outside normal conditions and changed the 

relative relationship between the state variables. 

 

3.6.2.5 Case 5 

Case five tested the model’s ability to detect the diversion of a fraction of the stream exiting the 

evaporator in Module 3A. The faulty case block diagram of Module 3A is shown in Figure 3.36. A new 

stream (Stream 61) was added to represent the diversion stream. The condensate stream (Stream 21) 

remained unchanged in the model. The new stream was modeled as a split of Stream 22 and therefore 

had the same composition as Stream 22. A new parameter,       , which was the fraction of Stream 22 

that was split to Stream 61 was created. Diversion of intermediate products such as the uranyl nitrate 

that was diverted for this case becomes of greater concern as the material becomes more purified. The 

material is considered to be highly purified anywhere downstream of the solvent extraction process that 

is represented by Module 2. Therefore, this diversion is a high priority for safeguards. It was expected 

that all of the diagnostic plots would produce a fault since this was outside normal conditions and 

changes the relative relationship between the state variables. This was a change in the normal operating 

conditions because it reduced the amount of uranium available for conversion downstream of the 

evaporator.  

 

3.6.2.6 Case 6 

Case six tested the model’s ability to detect the addition of uranium to the system prior to precipitation 

in Module 3B. The faulty case block diagram of Module 3B is shown in Figure 3.37. A new stream was 

added as an additional input stream (Stream 14A). This new stream was assumed to be pure uranyl 

nitrate. The flow rate of the stream was assumed to be 10 kg/h which corresponds to an additional 

12.4% based on the amount of uranyl nitrate in Stream 22 which also feeds the precipitator. It was an 

additional 12% based on the nominal flow rate of the uranium fed to the plant in Module 1. No other  
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Figure 3.36. Block Diagram of the Module 3A Showing Input and Output Streams According to Faulty Case 5. 
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Figure 3.37. Block Diagram of the Module 3B Showing Input and Output Streams According to Faulty Case 6. 
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parameters or inputs were changed from the base case. The processing of undeclared uranium is of high 

concern for safeguards. The addition of undeclared material was suggested in Figure 1.2. It was 

expected that all of the diagnostic plots would produce a fault since this was outside normal conditions 

and changes the relative relationship between the state variables.  

 

3.6.2.7 Case 7 

The seventh test case investigated inefficient precipitation process operations in Module 3. Inefficient 

operations would result in incomplete conversion of the uranyl nitrate to ammonium uranyl carbonate. 

This would cause uranium to be diverted to waste where it could be recovered and further processed 

elsewhere. Inefficient operations could be a result of equipment malfunction, or it could be an operator 

purposely operating inefficiently to divert material. This is a low priority case for safeguards since the 

reaction goes to 100% completion immediately but could simulate a diversion of AUC to waste which is 

a high priority safeguards concern. This case was modeled by changing the extent of reaction for the 

precipitation reaction,       , from 0.9999 to 0.9, which was a 10% reduction. It was expected that all 

of the diagnostic plots would produce a fault since this was outside normal conditions and changes the 

relative relationship between the state variables. Again, this was outside normal operating conditions 

since it affected the amount of uranium available for conversion later in the plant and increased the 

uranium in the waste.  

 

3.6.2.8 Case 8 

The eighth test case investigated inefficient separation in Module 4, specifically the filtration system 

downstream of the hydrofluorination reaction. Inefficient filtration results in additional uranium being 

diverted to the off-gas waste stream. The waste stream could be processed at an undeclared facility to 

recover the uranium that could be further converted as desired. Any diversion of uranium to a waste 

stream is of great concern for safeguards. This case was considered medium priority for safeguards 

because the likelihood of it occurring is lower than other cases and the fractionation was so low. This 

case was modeled by changing the filter fractionation parameters for the UF4 and UO2 in Module 4F, 

          and          , respectively. For both, the base case value was increased ten times. 

Therefore, the value of           was increased from 0.00001 to 0.0001, and the value of           

was increased from 0.001 to 0.01. It was expected that all of the diagnostic plots would produce a fault 

since this was outside normal conditions and changes the relative relationship between the state 

variables. This was outside normal operating conditions because it changed the amount of uranium that 

proceeded through the remainder of the process and increased the uranium in the waste. The 

detectability of a fault in the scores and Mahalanobis distance would depend on how far outside of 

normal operating conditions this was. Even though the increase was large, the fractions were very small 
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even after the increase. The fault in the  -statistic was expected to be large since this was a large 

change in two parameters which should result in a detectable change in the relative relationship 

between the state variables. 

 

3.6.2.9 Case 9 

The ninth faulty case tested the ability of the model to detect the diversion of UF6 from the secondary 

fluorination process in Module 5. In this case, the model was modified to allow for UF6 to exit the 

process at the gas separator in Module 5F. In the base case, only F2 and N2 were assumed to exit at that 

point. It was necessary to add a UF6 component stream to Stream 56. Then the UF6 exiting in the vent 

was defined as the percentage of the incoming UF6 in Stream 55 that exited in Stream 56. The remaining 

UF6 proceeded to the slag separator. Several percentages were tested; only the 75% results are 

presented in Chapter 4. This appears to be a very large diversion but since only 10% of the incoming 

uranium to Module 5 was diverted to the secondary reactor this diversion was not significant. Again, any 

diversion of uranium to a waste stream is of great concern for safeguards, especially purified UF6. 

However, since this is from the secondary fluorination process, it was considered medium priority for 

safeguards. Since this was the secondary fluorination section and only a small fraction of the material 

was included in this process, it was expected that the  -statistic would detect the fault due to the 

change in the relative relationship between the state variables. No faults were expected in the scores or 

the Mahalanobis distance plots since this corresponds to an overall diversion of 7.5% which would be 

within normal operating conditions even though the diversion itself was outside normal operating 

conditions. 

 

3.6.2.10 Case 10 

The tenth faulty case tested the ability of the model to detect inefficient operations of the fluorination 

processes in Module 5. In this case, the extents of reaction for both the primary and secondary 

fluorination reactions were changed from 0.999 to 0.95. In real operations, this would result in less UF4 

being converted to UF6 and would cause an increase in the amount of UF4 in the waste streams which 

could be recovered and processed elsewhere. As with the other diversion scenarios, any diversion of 

uranium to a waste stream is high priority for safeguards, especially later in the process. It was expected 

that all diagnostic plots may produce a fault since this was outside normal conditions and the relative 

relationship between the state variables. Reduction in the amount of uranium converted was a change 

in the normal operating conditions since it changed the amount of final product outside the normal 

levels. However, since this was only approximately a 5% reduction and ±10% change in the incoming 

uranium was built into the base case model, there may not be a detectable fault in the scores or 
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Mahalanobis distance. A fault in the  -statistic was expected since this was a change in the relative 

relationship between the state variables. 

 

3.6.2.11 Case 11 

Case eleven tested the model’s ability to detect the diversion of purified UF6 from Module 5. The 

scenarios assumed that the UF6 collection system was operated inefficiently either due to equipment 

failure or for the purposes of diversion of material. The faulty case block diagram of Module 5F is shown 

in Figure 3.38. A new stream (Stream 61) was added to represent the diversion stream. Streams 52 and 

59 were pure UF6 that were mixed to form the final product of the process. In this case, the new stream 

was formed by diverting a percentage of the streams that were inputs to the mixer. Several percentages 

were tested, but only the results of the 20% diversion case are presented in Chapter 4. This case is of 

extremely high concern for safeguards. At this point the material is completely purified and can be used 

for enrichment to support a weapons program. Since current safeguards policy is not applied until the 

product is declared it is feasible that material could be diverted before declaration. It was expected that 

only the  -statistic would detect this fault since this stream was exiting the model and there was no 

longer any interaction with the model and since a new parameter was introduced which would change 

the relative relationship between the state variables. 
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Figure 3.38. Block Diagram of the Module 5F Showing Input and Output Streams According to Faulty Case 11. 
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3.6.2.12 Case 12 

Faulty Case 12 was the first case used to test the effect of changes to multiple parameters or inputs. This 

case was a combination of Case 1D and Case 11. In Case 1D, the uranium input flow rate was increased 

by 25% in Module 1. In Case 11, 20% of the UF6 product was diverted through a new output stream in 

Module 5. This test was investigated since it is a likely scenario of concern for safeguards. This case 

models the scenario where additional uranium is fed to the process and then additional purified 

uranium is diverted before declaration at the end of the process. It was expected that this case would 

produce faults in all of the diagnostic plots since this was outside normal conditions and changes the 

relative relationship between the state variables.  

 

3.6.2.13 Case 13 

Faulty Case 13 was the second case used to test the effect of changes to multiple parameters or inputs. 

This case was a combination of Case 7 and Case 10. In Case 7, inefficient precipitation process 

operations were investigated by changing the extent of reaction for the precipitation reaction,       , 

from 0.9999 to 0.9 in Module 3. In Case 10, inefficient operations of the fluorination processes in 

Module 5 were investigated by changing the extents of reaction for both the primary and secondary 

fluorination reactions from 0.999 to 0.95. Inefficient operations results in additional uranium in the 

waste streams which can be recovered and further purified as needed at an undeclared location. As with 

the other diversion scenarios, any diversion of uranium to a waste stream is of great concern for 

safeguards, especially later in the process. Since this was diversion of material in two locations, it was 

considered high priority. It was expected that all diagnostic plots would produce a fault since this was 

outside normal conditions and changes the relative relationship between the state variables. Since this 

case was a combination of inefficient operations, it was also expected that the faults could be larger due 

to additive effects of the faults which was one of the reasons this case was selected for testing. 

 

3.6.2.14 Case 14 

Faulty Case 14 was the third case used to test the effect of changes to multiple parameters or inputs. 

This case was a combination of Case 2 and Case 3. In Case 2, the effect of changing the purity of the 

uranium feed was investigated by changing the uranium input stream from 85 wt-% U3O8 and 15 wt-% 

impurities (7.5 wt-% soluble impurities and 7.5 wt-% insoluble impurities) to 90 wt-% U3O8 and 10 wt-% 

impurities (5 wt-% soluble impurities and 5 wt-% insoluble impurities) in Module 1. In Case 3, inefficient 

dissolver operations in Module 1 were investigated by changing the extent of reaction for the 

dissolution reaction,      , from 0.9799 to 0.95. This case was selected as one possible case in which 

two faults could cancel each other out and result in no detection of the fault. This case was low priority 

for safeguards.  
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4. RESULTS AND DISCUSSION 

 

The results of the sensitivity analysis, modeling of the base case model, the control case, and the 

numerous faulty test cases are detailed in this chapter.  

 

4.1 SENSITIVITY ANALYSIS 

As stated in the Chapter 3 discussion of the approach for the sensitivity analysis, each of the parameters 

was varied by ±10% using a one-at-a-time approach to determine a new steady-state solution for all of 

the state variables. For parameters that could not vary by +10%, such as an extent of reaction with a 

value of one, the parameter was only tested at -10%. 

Also discussed in Chapter 3, the sensitivity analysis involved the derivation of a sensitivity factor for each 

parameter and steady-state state variable solution combination. The sensitivity factor is unit-less and 

calculated using Eq. (3.3.0.1), where      is the sensitivity factor for the  -th state variable ( ) of the  -th 

parameter ( ) at steady state. 

     
       ⁄

       ⁄
     (3.3.0.1) 

For the sensitivity analysis, only the primary uranium-bearing streams (as listed in Table 3.8) were 

considered. For simplification of the sensitivity matrices shown below and since all of the parameters 

tested did not result in a response in the primary streams, Table 4.1 lists the parameters that are part of 

the sensitivity factor matrix.  

For the sensitivity factor matrix, the bold numbers across the top correspond to the parameter ( ) 

numbers listed in Table 4.1 and the bold numbers listed in the first column correspond to the state 

variable ( ) number. The   numbers are also the same as the Xss numbers (refer to Table 3.8 for primary 

state variables). The numbers within the table are the sensitivity factor ( ) for the specific combination 

of parameter and state variable. Any empty cells mean that the value of that sensitivity factor was 

below the selected threshold value of ±0.10. Values equal to one mean that a 10% change in the specific 

parameter resulted in a 10% change in the corresponding state variable. For values less than one, a 10% 

change in the specific parameter resulted in less than a 10% change in the corresponding state variable. 

The reverse of that was also true for values greater than one where a 10% change in the specific 

parameter resulted in more than 10% in the corresponding state variable. In the case of negative values, 

a 10% increase in a specific parameter resulted in a decrease in the corresponding state variable or a 

10% decrease in a specific parameter resulted in an increase in the corresponding state variable.  
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Table 4.1. Parameters for the Sensitivity Analysis 

Parameter 
Number 

Parameter 
Name 

Nominal 
Value 

Description 

1 F1A,U 50 Flow rate of uranium in stream 1A, Mod1A 

2 XMod1A 0.9799 
Extent of Reaction (moles U3O8 reacted/moles U3O8 fed), 
Mod1A 

3 KMod1B,14 0.98 Uranyl Nitrate Filter Fractionation Factor (mol-%), Mod1B 

4 KMod1B,18 0.02 U3O8 Filter Fractionation Factor (mol-%), Mod1B 

5 KMod1C,14 0.8 Uranyl Nitrate Filter Fractionation Factor (mol-%), Mod1C 

6 KMod1C,18 0.7 U3O8 Filter Fractionation Factor (mol-%), Mod1C 

7 S1Mod1D 0.333 Splitter, fraction of flow from Stream 7 to Stream 9, Mod1D 

8 S2Mod1D 0.333 Splitter, fraction of flow from Stream 7 to Stream 10, Mod1D 

9 KMod1E,14 0.9999 Uranyl Nitrate Filter Fractionation Factor (mol-%), Mod1E 

10 KMod1E,18 0.9999 U3O8 Filter Fractionation Factor (mol-%), Mod1E 

11 KMod2B,14 0.995 Uranyl Nitrate Column Fractionation Factor (mol-%), Mod2B 

12 KMod2C,14 0.999 Uranyl Nitrate Column Fractionation Factor (mol-%), Mod2C 

13 KMod2D,14 0.999 Uranyl Nitrate Column Fractionation Factor (mol-%), Mod2D 

14 KMod3A,14 0.0001 Uranyl Nitrate Filter Fractionation Factor (mol-%), Mod3A 

15 XMod3C 0.9999 
Extent of Reaction (moles uranyl nitrate reacted/moles uranyl 
nitrate fed), Mod3C 

16 KMod3D,19 0.995 AUC Filter Fractionation Factor (mol-%), Mod3D 

17 XMod4B 0.9999 Extent of reaction (moles AUC reacted/moles AUC fed), Mod4B 

18 Mod4D 0.95 
Flow parameter that insures sufficient HF is fed for conversion, 
Mod4D 

19 XMod4E 0.9999 Extent of reaction (moles HF reacted/moles HF fed), Mod4E 

20 KMod4F,16 1 × 10
-5

 UF4 Filter Fractionation Factor (mol-%), Mod4F 

21 KMod4F,17 0.001 UO2 Filter Fractionation Factor (mol-%), Mod4F 

22 KMod4F,19 1 AUC Filter Fractionation Factor (mol-%), Mod4F 

23 SMod5A 1.1 Splitter, fraction of flow from Stream 44 to Stream 45, Mod5A 

24 XMod5B 0.999 Extent of reaction (moles UF4 reacted/moles UF4 fed), Mod5B 

25 K1Mod5C,16 0.99 
UF4 Mole Fraction Fractionation (mol-%), Mod5C (UF6-UF4 
Separator) 

26 K1Mod5C,17 1 
UO2 Mole Fraction Fractionation (mol-%), Mod5C (UF6-UF4 
Separator) 

27 K2Mod5C,15 0.99 UF6 Mole Fraction Fractionation(mol-%), Mod5C  (Separator) 

28 XMod5E 0.999 Extent of Reaction (moles UF4 reacted/moles UF4 fed), Mod5E 
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Table 4.2 is the sensitivity factor matrix for all of the modules for a 10% increase of the parameters 

included in the matrix. There are only a few parameters listed since many of the parameters could not 

be increased by 10%. Only ten of the 82 parameters tested resulted in a sensitivity factor above the 

threshold value for the 51 primary state variables for a 10% increase in nominal value of the parameter. 

All of the primary state variables (see Table 3.8) were sensitive to changes in the incoming flow rate of 

elemental uranium in the U3O8 fed to the plant,      . This was expected since uranium was the species 

of interest for this work and participated in nearly all of the reactions throughout the process. 

Additionally, the sensitivity factor for each of the primary state variables/incoming elemental uranium 

flow rate was one. This was also expected due to the stoichiometry of the reactions. For all of the 

reactions involving uranium, the stoichiometric coefficient for the uranium compound was one.  

For most of the other parameters, only a few of the state variables had a sensitivity factor above the 

threshold. For           (parameter 5) only one state variable had a sensitivity factor above the 

threshold. Sensitivity factor       was -3.8. This state variable was the uranyl nitrate in Stream 8 which 

was a waste stream in Module 1. This state variable was very sensitive to changes in this parameter. The 

negative response was expected because increasing the parameter increased the amount of uranyl 

nitrate in Stream 7 and therefore reduced the amount of uranyl nitrate in Stream 8. The high sensitivity 

was also expected because Stream 7 was part of the recycle that was internal to Module 1 so that at 

steady state multiple recycle passes have occurred and the amount of uranyl nitrate in Stream 8 would 

have decreased with each recycle. Therefore, it is recommended that this stream be monitored 

frequently to detect the presence of excess uranium in the waste. 

For        (parameter 23), several state variables had sensitivity factors above the threshold. Sensitivity 

factors        ,        , and         were one. These state variables were the UF4 and UO2 in Stream 45 

and UF4 in Stream 54 which were intermediate streams in Module 5. Stream 45 was directly related to 

the parameter since it was the stream directly downstream of the splitter. Stream 54 was immediately 

downstream of Stream 45 following the mixer that mixed Stream 45 with Stream 53. The sensitivity 

factors for ten of the state variables with respect to parameter 23 were -0.11. These state variables 

were the primary uranium components in the primary fluorination section of Module 5. The negative 

response was expected as well as the sensitivity factor value being the same of all of the state variables 

because the parameter determined the amount of Module 5 feed that was directed to the secondary 

fluorination process and therefore reduced the amount available for the primary fluorination process. 

Sensitivity factors         and         were one. These state variables were the UF4 and UO2 in Stream 58 

which was a waste stream in Module 5. Sensitivity factors        ,        , and         were 0.91. These 

state variables were the UF6 in Streams 55, 57, and 59 which were an intermediate streams in Module 5 

in the secondary fluorination process. These streams were impacted by the amount of material that was 

directed to the secondary process as well as the amount of material that was recycled from the primary 

process. 
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Table 4.2. Sensitivity Factors for the Primary State Variables for 10% Increase in Each 
Parameter (All Modules) 

u         
y 

1 4 5 6 7 8 14 20 21 23 

Module 1 

3 1.0                   

10 1.0                   

16 1.0                   

40 1.0   -3.8   0.37           

41 1.0     -1.6 0.45 0.44         

64 1.0                   

70 1.0                   

Module 2 

77 1.0                   

84 1.0                   

91 1.0                   

92 1.0 1.0   0.63 0.13 0.44         

98 1.0                   

111 1.0                   

117 1.0                   

Module 3 

123 1.0           1.0       

128 1.0                   

138 1.0                   

148 1.0                   

159 1.0                   

163 1.0                   

169 1.0                   

171 1.0                   

Module 4 

181 1.0                   

184 1.0                   

198 1.0                   

207 1.0                   

208 1.0                   

214 1.0             1.0     

215 1.0               1.0   

217 1.0                   

218 1.0                   

219 1.0                   
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Table 4.2. Sensitivity Factors for the Primary State Variables for 10% Increase in Each 
Parameter (All Modules) (continued) 

u         
y 

1 4 5 6 7 8 14 20 21 23 

Module 5 

221 1.0                 1.0 

222 1.0                 1.0 

224 1.0                 -0.11 

225 1.0                 -0.11 

230 1.0                 -0.11 

235 1.0                 -0.11 

239 1.0                 -0.11 

240 1.0                 -0.11 

244 1.0                 -0.11 

246 1.0                 -0.11 

249 1.0                 -0.11 

253 1.0                 -0.11 

254 1.0                 1.0 

259 1.0                 0.91 

265 1.0                 0.91 

269 1.0                 1.0 

270 1.0                 1.0 

272 1.0                 0.91 

273 1.0                   
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Table 4.3 is the sensitivity factor matrix for all modules for a 10% decrease of the parameters included in 

the matrix. Twenty-eight of the 82 parameters tested at a 10% decrease resulted in a sensitivity factor 

above the threshold value for the 51 primary state variables. A decrease in some of the parameters such 

as fractionation factors resulted in very large negative sensitivity factors (e.g., -999). One would expect 

that a change in these fractionations would be very small unlike the 10% that was tested for sensitivity. 

Therefore, in some cases, the state variables that were extremely sensitive were excluded from the 

faulty case analysis so as to not bias the results. The matrices also have a lower triangular form because 

a state variable cannot be sensitive to a parameter that was changed in a module downstream of that 

state variable since there was no recycle between modules. This provided an additional check to the 

model.  

As with a 10% increase, all of the primary state variables were sensitive to changes in the incoming flow 

rate of elemental uranium in the U3O8,      . For        (parameter 2), all of the sensitivity factors 

were above the threshold, and all of the sensitivity factors were 0.61 except for two. Sensitivity factor 

      and       were -51.3. These state variables were the U3O8 in Streams 8 and 16 which were waste 

streams in Modules 1 and 2, respectively. This high sensitivity factor indicates that these streams need 

to be monitored frequently for the presence of excess uranium. The parameter was extent of reaction 

based on U3O8 for the dissolver in Module 1. A decrease in extent of reaction resulted in additional U3O8 

that was unreacted which increased the amount of U3O8 in the waste streams.  

For           (parameter 3), all of the sensitivity factors were above the threshold, and all of the 

sensitivity factors were 0.30 except for three. Sensitivity factors     ,      , and       were -0.39, -0.78, 

and -53.6, respectively. The first two state variables were the uranyl nitrate in Streams 1 and 3 which 

were intermediate streams in Module 1, and the third state variable was the uranyl nitrate in Stream 8. 

This parameter was the filter fractionation for the vacuum filter in Module 1B. It determined the amount 

of uranyl nitrate that was sent from Stream 3 to Stream 4. A decrease in this fractionation would 

increase the amount of uranyl nitrate that was sent to the recycle section of Module 1. Therefore, the 

uranyl nitrate in the intermediate and waste streams was increased. Additionally, the uranyl nitrate in 

Stream 8 should be monitored frequently due to its high sensitivity. 

For           (parameter 5), only one state variable had a sensitivity factor above the threshold. 

Sensitivity factor       was -3.5. For a 10% increase, the sensitivity factor was -3.8. There was a slight 

nonlinear response from the model to this parameter. Nonlinearity is discussed below. For           

(parameter 9), nearly all of the primary state variables downstream of this parameter had a sensitivity 

factor above the threshold. Sensitivity factor      was one. This parameter determined the amount of 

uranyl nitrate that would be sent to waste in Module 1E. The other uranium components were sensitive 

because uranyl nitrate was the major component exiting Module 1 and was the uranium component in 

the first downstream reaction. A decrease in this component resulted in a decrease in all of the 

downstream state variables except Stream 16 which was waste and exited the process prior to the first 

downstream reaction from this parameter. The values were all one due to stoichiometry. 
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Table 4.3. Sensitivity Factors for the Primary State Variables for 10% Decrease in Each Parameter (All 
Modules) 

u        
y 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Module 1 

3 1.0 0.61 -0.39                     

10 1.0 0.61 -0.78                     

16 1.0 0.61 0.30                     

40 1.0 0.61 -53.6   -3.5   0.34             

41 1.0 -51.3       -1.3 0.41 0.40           

64 1.0 0.61 0.30           1.0         

70 1.0 0.61 0.30           -9999         

Module 2 

77 1.0 0.61 0.30           1.0     -1.1   

84 1.0 0.61 0.30           1.0   1.0 -1.1   

91 1.0 0.61 0.30           1.0   -199 -1.1   

92 1.0 -51.3   1.0   0.52 0.12 0.40   1.0       

98 1.0 0.61 0.30           1.0   1.0     

111 1.0 0.61 0.30           1.0   1.0   1.0 

117 1.0 0.61 0.30           1.0   1.0   -999 

Module 3 

123 1.0 0.61 0.30           1.0   1.0   1.0 

128 1.0 0.61 0.30           1.0   1.0   1.0 

138 1.0 0.61 0.30           1.0   1.0   1.0 

148 1.0 0.61 0.30           1.0   1.0   1.0 

159 1.0 0.61 0.30           1.0   1.0   1.0 

163 1.0 0.61 0.30           1.0   1.0   1.0 

169 1.0 0.61 0.30           1.0   1.0   1.0 

171 1.0 0.61 0.30           1.0   1.0   1.0 

Module 4 

181 1.0 0.61 0.30           1.0   1.0   1.0 

184 1.0 0.61 0.30           1.0   1.0   1.0 

198 1.0 0.61 0.30           1.0   1.0   1.0 

207 1.0 0.61 0.30           1.0   1.0   1.0 

208 1.0 0.61 0.30           1.0   1.0   1.0 

214 1.0 0.61 0.30           1.0   1.0   1.0 

215 1.0 0.61 0.30           1.0   1.0   1.0 

217 1.0 0.61 0.30           1.0   1.0   1.0 

218 1.0 0.61 0.30           1.0   1.0   1.0 

219 1.0 0.61 0.30           1.0   1.0   1.0 
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Table 4.3. Sensitivity Factors for the Primary State Variables for 10% Decrease in Each Parameter (All 
Modules) (continued) 

u        
y 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Module 5 

221 1.0 0.61 0.30           1.0   1.0   1.0 

222 1.0 0.61 0.30           1.0   1.0   1.0 

224 1.0 0.61 0.30           1.0   1.0   1.0 

225 1.0 0.61 0.30           1.0   1.0   1.0 

230 1.0 0.61 0.30           1.0   1.0   1.0 

235 1.0 0.61 0.30           1.0   1.0   1.0 

239 1.0 0.61 0.30           1.0   1.0   1.0 

240 1.0 0.61 0.30           1.0   1.0   1.0 

244 1.0 0.61 0.30           1.0   1.0   1.0 

246 1.0 0.61 0.30           1.0   1.0   1.0 

249 1.0 0.61 0.30           1.0   1.0   1.0 

253 1.0 0.61 0.30           1.0   1.0   1.0 

254 1.0 0.61 0.30           1.0   1.0   1.0 

259 1.0 0.61 0.30           1.0   1.0   1.0 

265 1.0 0.61 0.30           1.0   1.0   1.0 

269 1.0 0.61 0.30           1.0   1.0   1.0 

270 1.0 0.61 0.30           1.0   1.0   1.0 

272 1.0 0.61 0.30           1.0   1.0   1.0 

273 1.0 0.61 0.30           1.0   1.0   1.0 
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Table 4.4 is the sensitivity factor matrix for Modules 3–5 for a 10% decrease of the parameters included 

in the matrix. Table 4.3 and 4.4 were divided this way for readability.  

For        (parameter 18) and        (parameter 19), all of the sensitivity factors were above the 

threshold, and most of the sensitivity factors were one downstream of this parameter. Additionally, the 

sensitivity factors for parameters 18 and 19 were the same for all of the primary state variables. Seven 

of the sensitivity factors were -19. These state variables were all UO2 streams in Modules 4 and 5. Due to 

the high sensitivity of these state variables, the product and waste streams in Modules 4 and 5 should 

be frequently monitored for uranium content. Parameter 18 was a flow parameter that was used to 

insure sufficient HF was fed for conversion Module 4D, and parameter 19 was the extent of reaction for 

the hydrofluorination reaction that used HF to convert UO2 to UF4. If less HF was fed to the process or if 

less UO2 was converted to UF4 due to a change in the extent of reaction, then additional UO2 would be 

present downstream. Additionally, four times the number of moles of HF is required to convert each 

mole of UO2. Therefore, it is reasonable for these seven state variables to be very sensitive to changes in 

parameters 18 and 19. 

For        (parameter 24), six of the sensitivity factors were above the threshold, and five of the 

sensitivity factors were one. The sixth sensitivity factor,        , was 0.89. The other state variables were 

Xss(235), Xss(244), Xss(246), Xss(249), and Xss(253). These were all downstream of the primary 

fluorination but upstream of the secondary fluorination except Xss(273) which was the final product. 

The parameter was the extent of reaction based on UF4 for the primary fluorination process in Module 

5. A decrease in extent of reaction resulted in a decrease in the amount in all of the uranium streams 

downstream of the process until it reached the secondary fluorination process. All of the values are one 

based on stoichiometry. The sixth sensitivity factor,        , which was less than one did not follow the 

stoichiometry since that state variable included the additional material from the secondary fluorination 

process.  

For            (parameter 27), four state variables had sensitivity factors above the threshold. 

Sensitivity factors        ,        , and         were -8.2. These state variables were the UF6 in Streams 

55, 57, and 59 which were intermediate streams in Module 5. These streams should be monitored 

frequently for uranium content due to the high sensitivity factor values. This parameter determined the 

amount of UF6 that was directed to Module 5D or Module 5F. For        (parameter 28), four of the 

sensitivity factors were above the threshold. The parameter was the extent of reaction based on UF4 for 

the secondary fluorination process in Module 5. Sensitivity factor         was 0.1, and sensitivity factors 

       ,        , and         were 0.92. These were all UF6 streams downstream of the secondary 

fluorination process. A decrease in extent of reaction resulted in a decrease in the amount in all of the 

UF6 streams downstream of the process. These were not one as would have been expected based on 

stoichiometry because there was already some UF6 in the streams from the primary fluorination 

process.  
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Table 4.4. Sensitivity Factors for the Primary State Variables for 10% Decrease in Each Parameter  
(Modules 3-5) 

u        
y 

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Module 3 

123 1.0                             

128                               

138                               

148   1.0                           

159   1.0                           

163   1.0 1.0                         

169   -9999                           

171   1.0 -199                         

Module 4 

181   1.0 1.0 1.0                       

184   1.0 1.0 1.0                       

198   1.0 1.0 1.0                       

207   1.0 1.0 1.0 1.0 1.0                   

208   1.0 1.0 1.0 -19 -19                   

214   1.0 1.0 1.0 1.0 1.0 1.0                 

215   1.0 1.0 1.0 -19 -19   1.0               

217   1.0 1.0 -9999         1.0             

218   1.0 1.0 1.0 1.0 1.0                   

219   1.0 1.0 1.0 -19 -19                   

Module 5 

221   1.0 1.0 1.0 1.0 1.0       1.0           

222   1.0 1.0 1.0 -19 -19       1.0           

224   1.0 1.0 1.0 1.0 1.0       -0.11           

225   1.0 1.0 1.0 -19 -19       -0.11           

230   1.0 1.0 1.0 1.0 1.0       -0.11           

235   1.0 1.0 1.0 1.0 1.0       -0.11 1.0         

239   1.0 1.0 1.0 1.0 1.0       -0.11 -999 1.0       

240   1.0 1.0 1.0 -19 -19       -0.11     1.0     

244   1.0 1.0 1.0 1.0 1.0       -0.11 1.0         

246   1.0 1.0 1.0 1.0 1.0       -0.11 1.0     1.0   

249   1.0 1.0 1.0 1.0 1.0       -0.11 1.0     -99   

253   1.0 1.0 1.0 1.0 1.0       -0.11 1.0     -99   

254   1.0 1.0 1.0 1.0 1.0       1.0           

259   1.0 1.0 1.0 1.0 1.0       0.91       -8.2 0.92 

265   1.0 1.0 1.0 1.0 1.0       0.91       -8.2 0.92 

269   1.0 1.0 1.0 1.0 1.0       1.0         -999 

270   1.0 1.0 1.0 -19 -19       1.0           

272   1.0 1.0 1.0 1.0 1.0       0.91       -8.2 0.92 

273   1.0 1.0 1.0 1.0 1.0         0.89       0.1 
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It was determined during the sensitivity analysis that the system was not linear. If the system was linear 

then both +10% and -10% would have the same value for sensitivity factor. Table 4.5 summarizes the 

cases where nonlinearity was observed. Four of the parameters resulted in nonlinear responses from 

three of the state variables. All four parameters were from Module 1 and the state variables were waste 

streams in Modules 1 and 2. 

 

4.2 BASE “NORMAL” CASE 

This section discusses the results of the base case model. This section includes the steady-state solution 

obtained using the ‘fsolve’ function in MATLAB®, the results for the overall material balances, and the 

generation of the base case data set and PCA model. This section also includes the results of the control 

case that was used to verify the base case data. 

 

4.2.1 Base Case  

The steady-state solution (the molar flow rate of each component in each of the streams) was obtained 

from MATLAB® using ‘fsolve’ and the nominal values of the input variables shown in Table 3.11. The 

steady-state solutions for Module 1–5 are shown in Tables 4.6–4.10, respectively. Table 4.11 shows the 

steady-state solution for the primary streams. Remember that as defined in Chapter 3, the primary state 

variables are the most important state variables to track throughout the system. Additionally, each of 

the primary state variables was a uranium-bearing component molar flow rate. 

 

 

 

Table 4.5. Comparison of Sensitivity Factors for the Primary State Variables for ±10% Changes in 
Selected Parameters (All Modules) 

u 5 6 7 8 

y +10% -10% %Diff +10% -10% %Diff +10% -10% %Diff +10% -10% %Diff 

40 -3.8 -3.5 7.7       0.37 0.34 7.1       

41       -1.6 -1.3 17.5 0.45 0.41 8.6 0.44 0.40 8.4 

92       0.63 0.52 17.5 0.13 0.12 8.6 0.44 0.40 8.4 

 

  



 

126 
 

Table 4.6. Steady-State Component Molar Flow Rate (mol/h) for Module 1 

  
Stream Number (Stream Type) 

Component 1A 2A 3A 1 2 3 

Formula # (Input) (Input) (Input) (Intermed.) (Waste) (Intermed.) 

H2O 1 0 1.01 × 10
3
 3.84 × 10

3
 5.47 × 10

3
 0 5.81 × 10

3
 

NO2 4 0 0 0 0 138 0 

HNO3 9 0 672 0 120 0 122 

UO2(NO3)2 14 0 0 0 209 0 211 

U3O8 18 70.0 0 0 1.42 0 2.02 

Insoluble 20 10.4 0 0 10.4 0 10.5 

Soluble 21 10.4 0 0 10.6 0 10.7 

    Stream Number (Stream Type) 

Component 4 5 4A 6 7 8 

Formula # (Intermed.) (Recycle) (Input) (Recycle) (Recycle) (Waste) 

H2O 1 5.23 × 10
3
 581 444 1.37 × 10

3
 1.03 × 10

3
 342 

NO2 4 0 0 0 0 0 0 

HNO3 9 118 3.65 0 5.22 4.69 0.522 

UO2(NO3)2 14 206 4.21 0 5.75 4.60 1.15 

U3O8 18 4.05 × 10
-2

 1.98 0 2.59 1.81 0.776 

Insoluble 20 0.105 10.4 0 10.4 0.104 10.3 

Soluble 21 10.4 0.322 0 0.480 0.475 4.80 × 10
-3

 

    Stream Number (Stream Type) 

Component 9 10 11 12 13 
 

Formula # (Recycle) (Recycle) (Recycle) (Product) (Waste)   

H2O 1 342 342 342 5.22 × 10
3
 5.23 

 
NO2 4 0 0 0 0 0 

 
HNO3 9 1.56 1.56 1.56 118 1.18 × 10

-2
 

 
UO2(NO3)2 14 1.53 1.53 1.53 206 2.06 × 10

-2
 

 
U3O8 18 0.603 0.603 0.603 4.05 × 10

-2
 4.05 × 10

-6
 

 
Insoluble 20 3.47 × 10

-2
 3.47 × 10

-2
 3.47 × 10

-2
 2.09 × 10

-2
 8.38 × 10

-2
 

 
Soluble 21 0.158 0.158 0.158 10.4 1.04 × 10

-3
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Table 4.7. Steady-State Component Molar Flow Rate (mol/h) for Module 2 

  
Stream Number (Stream Type) 

Component 12 5A 6A 14 7A 

Formula # (Input) (Input) (Input) (Intermed.) (Input) 

H2O 1 5.22 × 10
3
 222 0 7.78 × 10

3
 0 

HNO3 9 0 0 12.7 131 0 

TBP 11 118 0 0 0.263 263 

UO2(NO3)2 14 206 0 0 207 0 

U3O8 18 4.05 × 10
-2

 0 0 4.05 × 10
-2

 0 

Insoluble 20 2.09 × 10
-2

 0 0 2.10 × 10
-2

 0 

Soluble 21 10.4 0 0 11.5 0 

  
Stream Number (Stream Type) 

Component 15 16 8A 17 
 

Formula # (Intermed.) (Waste) (Input) (Intermed.)   

H2O 1 7.78 7.77 × 10
3
 2.33 × 10

3
 2.34 

 
HNO3 9 0.131 131 0 6.54 × 10

-4
 

 
TBP 11 263 0.263 0 263 

 
UO2(NO3)2 14 206 1.03 0 205 

 
U3O8 18 4.05 × 10

-2
 4.05 × 10

-2
 0 4.05 × 10

-8
 

 
Insoluble 20 2.10 × 10

-2
 2.09 × 10

-2
 0 2.10 × 10

-8
 

 
Soluble 21 1.15 10.3 0 5.75 × 10

-2
   

  
Stream Number (Stream Type) 

Component 18 9A 19 20 
 

Formula # (Recycle) (Input) (Product) (Waste)   

H2O 1 2.34 × 10
3
 5.27 × 10

3
 5.28 × 10

3
 0.528 

 
HNO3 9 0.130 0 6.51 × 10

-4
 3.27 × 10

-6
 

 
TBP 11 0.263 0 0 263 

 
UO2(NO3)2 14 0.206 0 205 0.205 

 
U3O8 18 4.05 × 10

-5
 0 4.05 × 10

-11
 4.05 × 10

-8
 

 
Insoluble 20 2.09 × 10

-5
 0 0 2.10 × 10

-8
 

 
Soluble 21 1.09 0 5.72 × 10

-2
 2.87 × 10

-4
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Table 4.8. Steady-State Component Molar Flow Rate (mol/h) for Module 3 

  
Stream Number (Stream Type) 

Component 19 21 22 23 24 

Formula # (Input) (Waste) (Intermed.) (Dep. Input) (Dep. Input) 

H2O 1 5.28 × 10
3
 3.17 × 10

3
 2.11 × 10

3
 923 0 

NH3 3 0 0 0 0 1.85 × 10
3
 

HNO3 9 6.51 × 10
-4

 3.91 × 10
-4

 2.60 × 10
-4

 0 0 

UO2(NO3)2 14 205 2.05 × 10
-2

 205 0 0 

U3O8 18 4.05 × 10
-11

 4.05 × 10
-15

 4.05 × 10
-11

 0 0 

soluble 21 5.72 × 10
-2

 5.72 × 10
-6

 5.72 × 10
-2

 0 0 

  
Stream Number (Stream Type) 

Component 25 26 27 10A 
 

Formula # (Dep. Input) (Intermed.) (Intermed.) (Input)   

H2O 1 0 3.03 × 10
3
 2.42 × 10

3
 311 

 
NH3 3 0 1.85 × 10

3
 616 0 

 
CO2 8 923 923 308 0 

 
HNO3 9 0 2.60 × 10

-4
 2.60 × 10

-4
 0 

 
CH3OH 10 0 0 0 87.4 

 
NH4NO3 12 0 0 410 0 

 
(NH4)2CO3.H2O 13 0 0 0 49.1 

 
UO2(NO3)2 14 0 205 2.05 × 10

-2
 0 

 
U3O8 18 0 4.05 × 10

-11
 4.05 × 10

-11
 0 

 
(NH4)4UO2(CO3)3 19 0 0 205 0 

 
soluble 21 0 5.72 × 10

-2
 5.72 × 10

-2
 0   

  
Stream Number (Stream Type) 

Component 28 29 30 31 
 

Formula # (Waste) (Intermed.) (Product) (Waste)   

H2O 1 0 2.73 × 10
3
 164 2.56 × 10

3
 

 
NH3 3 616 0 0 0 

 
CO2 8 308 0 0 0 

 
HNO3 9 0 2.60 × 10

-4
 0 2.60 × 10

-4
 

 
CH3OH 10 0 87.4 0 87.4 

 
NH4NO3 12 0 410 0 410 

 
(NH4)2CO3.H2O 13 0 49.1 0 49.1 

 
UO2(NO3)2 14 0 2.05 × 10

-2
 0 2.05 × 10

-2
 

 
U3O8 18 0 4.05 × 10

-11
 4.03 × 10

-11
 2.02 × 10

-13
 

 
(NH4)4UO2(CO3)3 19 0 205 204 1.03 

 
soluble 21 0 5.72 × 10

-2
 0 5.72 × 10

-2
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Table 4.9. Steady-State Component Molar Flow Rate (mol/h) for Module 4 

  
Stream Number (Stream Type) 

Component 30 32 33 34 35 36 

Formula # (Input) (Dep. Input) (Intermed.) (Intermed.) (Intermed.) (Intermed.) 

H2O 1 164 0 0 776 0 776 

N2 2 0 0 85.1 85.1 0 85.1 

NH3 3 0 170 0 816 0 816 

H2 5 0 0 255 51.1 0 51.1 

HF 6 0 0 0 0 0 0 

CO2 8 0 0 0 612 0 612 

UF4 16 0 0 0 0 0 0 

UO2 17 0 0 0 204 204 0 

U3O8 18 4.03 × 10
-11

 0 0 4.03 × 10
-11

 4.03 × 10
-11

 0 

(NH4)4UO2(CO3)3 19 204 0 0 2.04 × 10
-2

 2.04 × 10
-2

 0 

  
Stream Number (Stream Type) 

Component 11A 37 38 39 12A 
 

Formula # (Input) (Intermed.) (Waste) (Intermed.) (Input)   

H2O 1 0 0 776 0 0 
 

N2 2 500 500 585 0 1.50 × 10
3
 

 
NH3 3 0 0 816 0 0 

 
H2 5 0 0 51.1 0 0 

 
HF 6 0 0 0 0 0 

 
CO2 8 0 0 612 0 0 

 
UF4 16 0 0 0 0 0 

 
UO2 17 0 0 0 204 0 

 
U3O8 18 0 0 0 4.03 × 10

-11
 0 

 
(NH4)4UO2(CO3)3 19 0 0 0 2.04 × 10

-2
 0 

 

  
Stream Number (Stream Type) 

Component 40 41 42 43 44 
 

Formula # 
(Dep. 
Input) 

(Intermed.) (Intermed.) (Waste) (Product)   

H2O 1 0 0 388 388 0 
 

N2 2 0 1.50 × 10
3
 1.50 × 10

3
 1.50 × 10

3
 0 

 
NH3 3 0 0 0 0 0 

 
H2 5 0 0 0 0 0 

 
HF 6 776 776 7.76 × 10

-2
 7.76 × 10

-2
 0 

 
CO2 8 0 0 0 0 0 

 
UF4 16 0 0 194 1.94 × 10

-3
 194 

 
UO2 17 0 0 10.2 1.02 × 10

-2
 10.2 

 
U3O8 18 0 0 4.03 × 10

-11
 4.03 × 10

-14
 4.02 × 10

-11
 

 
(NH4)4UO2(CO3)3 19 0 0 2.04 × 10

-2
 2.04 × 10

-2
 0   
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Table 4.10. Steady-State Component Molar Flow Rate (mol/h) for Module 5 

  
Stream Number (Stream Type) 

Component 44 45 46 13A 47 48 

Formula # (Input) (Intermed.) (Intermed.) (Input) (Dep. Input) (Intermed.) 

N2 2 0 0 0 500 0 500 

F2 7 0 0 0 0 213 213 

UF6 15 0 0 0 0 0 0 

UF4 16 194 19.4 174 0 0 174 

UO2 17 10.2 1.02 9.19 0 0 9.19 

U3O8 18 4.02 × 10
-11

 4.02 × 10
-12

 3.62 × 10
-11

 0 0 3.62 × 10
-11

 

  
Stream Number (Stream Type) 

Component 49 50 51 52 53 54 

Formula # (Intermed.) (Waste) (Intermed.) (Intermed.) (Intermed.) (Intermed.) 

N2 2 500 0 500 0 500 500 

F2 7 39.0 0 39.0 0 39.0 39.0 

UF6 15 174 0 174 173 1.74 1.74 

UF4 16 0.174 0.173 1.74 × 10
-3

 0 1.74 × 10
-3

 19.4 

UO2 17 9.19 9.19 0 0 0 1.02 

U3O8 18 3.62 × 10
-11

 3.62 × 10
-11

 0 0 0 4.02 × 10
-12

 

  
Stream Number (Stream Type) 

Component 55 56 57 58 59 60 

Formula # (Intermed.) (Waste) (Intermed.) (Waste) (Intermed.) (Product) 

N2 2 500 500 0 0 0 0 

F2 7 19.6 19.6 0 0 0 0 

UF6 15 21.1 0 21.1 0 21.1 194 

UF4 16 1.94 × 10
-2

 0 1.94 × 10
-2

 1.94 × 10
-2

 0 0 

UO2 17 1.02 0 1.02 1.02 0 0 

U3O8 18 4.02 × 10
-12

 0 4.02 × 10
-12

 4.02 × 10
-12

 0 0 
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Table 4.11. Primary State Variables Steady-State Solution 

State 

Stream 

Component Type of Molar Flow 

Variable Formula Number Stream Rate (mol/h) 

Module 1 

Xss(274) 1A U3O8 18 Input 70.0 

Xss(3) 1 UN 14 Intermediate 209 

Xss(10) 3 UN 14 Intermediate 211 

Xss(16) 4 UN 14 Intermediate 206 

Xss(40) 8 UN 14 Waste 1.15 

Xss(41) 8 U3O8 18 Waste 0.776 

Xss(64) 12 UN 14 Product 206 

Xss(70) 13 UN 14 Waste 2.06 × 10
-2

 

Module 2 

Xss(77) 14 UN 14 Intermediate 207 

Xss(84) 15 UN 14 Intermediate 206 

Xss(91) 16 UN 14 Waste 1.03 

Xss(92) 16 U3O8 18 Waste 4.05 × 10
-2

 

Xss(98) 17 UN 14 Intermediate 205 

Xss(111) 19 UN 14 Product 205 

Xss(117) 20 UN 14 Waste 0.205 

Module 3 

Xss(123) 21 UN 14 Waste 2.05 × 10
-2

 

Xss(128) 22 UN 14 Intermediate 205 

Xss(138) 26 UN 14 Intermediate 205 

Xss(148) 27 AUC 19 Intermediate 205 

Xss(159) 29 AUC 19 Intermediate 205 

Xss(163) 30 AUC 19 Product 204 

Xss(169) 31 UN 14 Waste 2.05 × 10
-2

 

Xss(171) 31 AUC 19 Waste 1.03 

Module 4 

Xss(181) 34 UO2 17 Intermediate 204 

Xss(184) 35 UO2 17 Intermediate 204 

Xss(198) 39 UO2 17 Intermediate 204 

Xss(207) 42 UF4 16 Intermediate 194 

Xss(208) 42 UO2 17 Intermediate 10.2 

Xss(214) 43 UF4 16 Waste 1.94 × 10
-3

 

Xss(215) 43 UO2 17 Waste 1.02 × 10
-2

 

Xss(217) 43 AUC 19 Waste 2.04 × 10
-2

 

Xss(218) 44 UF4 16 Product 194 

Xss(219) 44 UO2 17 Product 10.2 
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Table 4.11. Primary State Variables Steady-State Solution (Con't.) 

State 

Stream 

Component Type of Molar Flow 

Variable Formula Number Stream Rate (mol/h) 

Module 5 

Xss(221) 45 UF4 16 Intermediate 19.4 

Xss(222) 45 UO2 17 Intermediate 1.02 

Xss(224) 46 UF4 16 Intermediate 174 

Xss(225) 46 UO2 17 Intermediate 9.19 

Xss(230) 48 UF4 16 Intermediate 174 

Xss(235) 49 UF6 15 Intermediate 174 

Xss(239) 50 UF4 16 Waste 0.173 

Xss(240) 50 UO2 17 Waste 9.19 

Xss(244) 51 UF6 15 Intermediate 174 

Xss(246) 52 UF6 15 Intermediate 173 

Xss(249) 53 UF6 15 Intermediate 1.74 

Xss(253) 54 UF6 15 Intermediate 1.74 

Xss(254) 54 UF4 16 Intermediate 19.4 

Xss(259) 55 UF6 15 Intermediate 21.1 

Xss(265) 57 UF6 15 Intermediate 21.1 

Xss(269) 58 UF4 16 Waste 1.94 × 10
-2

 

Xss(270) 58 UO2 17 Waste 1.02 

Xss(272) 59 UF6 15 Intermediate 21.1 

Xss(273) 60 UF6 15 Product 194 
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The MATLAB® ‘fsolve’ function provides the steady-state solution to the set of simultaneous algebraic 

equations that represent the mass balance in the NUCP. Additionally, the steady-state solution was 

checked by substituting the values of the steady-state solution back into the set of simultaneous 

equations and determining the result. As expected, the equations all resulted in ‘0’ for the rate of 

change values using both ‘fsolve’ and for substitution to check the ‘fsolve’ solution. The rate of change 

of the overall material balances served as an internal check that the calculations were correct. 

Table 4.12 lists the rate of change of the overall material balances for each Module. As expected, each 

was approximately zero. 

There were 273 state variables and seven input variables. In order to generate the base case data, the 

input variables were varied within the range given in Table 3.11. To generate a reasonable amount of 

data, each input variable was used at five evenly spaced intervals over the range provided in Table 3.11 

including the initial value. Such that for an input variable that was varied over a range of ±10%, the input 

variable was used at the initial value and 90%, 95%, 105%, and 110% of that value. This resulted in a 

base case data matrix of 78,125×280, where the 280 included the 273 state variables and the seven 

input variables. The variable index numbers for the input variables were 274–280 (see Table 3.11).  

Continuing to follow the overall approach for the development of the detection framework laid out in 

Figure 3.1, Gaussian white noise was added to the base case data set. A matrix of normally distributed 

random numbers with mean of zero and standard deviation of one was generated. The random 

numbers of each column was scaled by the nominal steady-state values of the respective variable times 

the percent of noise desired. In this case, 1% noise was added. One percent is small but not 

unreasonably so with current advances in electronic equipment. Additionally, the primary state 

variables that represented the uranium-bearing component(s) of the product stream in each module 

and the input variables were scaled to give a heavier standard deviation, using the values shown in 

Table 4.13. Weighted scaling was accomplished by dividing the standard deviation of the appropriate 

state variable by the desired scaling factor. This resulted in a new standard deviation, which was equal 

to the scaling factor, for the mean-centered and weighted-scale state variables since the mean-centered 

columns were divided by the new scaled standard deviation. Since there are just a few product variables 

and seven input variables out of the 280 total state variables, the variations in these few variables would 

be overwhelmed by the variations in the more than two hundred intermediate state variables. 

Therefore, the product and input variables were weighted more heavily during the normalization stage. 

This weighted scaling was done because all of the intermediate and waste streams contain uranium and 

it was important to ensure that the product streams were not masked by the other streams. The final 

scaling factors were chosen after some trial and error testing to see what scaling factor would bring 

forth these state variables to be heavily contributing components in the first principal component. 

 

 



 

134 
 

Table 4.12. Rate of Change of the Overall Material 
Balances 

 
Module Solution 

 

 
1 1 × 10

-11
 

 

 
2 1 × 10

-10
 

 

 
3 1 × 10

-12
 

 

 
4 1 × 10

-12
 

 

 
5 1 × 10

-13
 

 
 

 

 

 

Table 4.13. Scaling Factors for Selected State Variables in 
the Base Case 

Variable 
Number 

Scaling 
Factor 

Type of Variable 

Xss(64) 5 

Primary State Variables/ 
Product Streams 

Xss(111) 5 

Xss(163) 5 

Xss(218) 5 

Xss(219) 5 

Xss(273) 5 

Xss(274) 5 

Input Variable 

Xss(275) 1.1 

Xss(276) 2 

Xss(277) 2 

Xss(278) 2 

Xss(279) 5 

Xss(280) 1 
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In order to ensure that there was not too much noise added to the data, it was necessary to determine 

the effective rank of the base case data. The effective rank was determined by performing SVD on the 

data prior to the addition of noise. The Scree plot for the base case data without added noise is shown in 

Figure 4.1.  

As shown in Figure 4.1, there is a strong elbow at two which retains 90.2% percent of the original 

information. However, keeping only two principal components does not fully model the system. There is 

another elbow at three which retains 94% of the original information. Four principal components were 

needed to retain at least 95% of the original data. Therefore, the effective rank without noise was 

determined to be four. The first ten singular values ( ) from SVD of the base case data with and without 

noise and the cumulative sum (  
 ∑   

 
   ⁄ ) are listed in Table 4.14.  

During the data processing, it became expedient to remove some of the variables from the data matrix. 

The variables that were removed are listed in Table 4.15. These variables turned out to be completely 

extraneous and did not add any useful information to the model. Additionally, these variables did not 

vary at all with the changes in the input variables, resulting in a standard deviation of zero. All of these 

state variables represented components that did not participate in any reactions in the process. A total 

of twenty-five state variables were removed from the base case. 

The Scree plot for the base case data with noise is shown in Figure 4.2. As seen, there is a strong elbow 

at two which retains 87.4% percent of the original information. However, keeping only two principal 

components does not appear to fully model the system. As shown in the top plot of Figure 4.2, there is 

another elbow at three which retains 91.1% of the original information. Six principal components were 

needed to retain at least 95% of the original data. Based on this analysis, the effective rank after the 

addition of noise was determined to be five where 94.4% of the original data was retained. Further 

analysis of the loadings vectors, it was determined that five principal components would be retained for 

the model. Retaining too many principal components results in noise being retained as part of the base 

case model. A bar chart of the loadings vectors for all the variables of the base case model is shown in 

Figure 4.3.  
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Figure 4.1. Scree Plot of the Base Case Data before the Addition of Gaussian White Noise. 

 

Table 4.14. First Ten Singular Values for the Base Case 

Index 
Without Noise With Noise 

Singular Value Cumulative Sum Singular Value Cumulative Sum 

1 18.4070 74.2676 18.0998 71.8095 

2 8.5192 90.1764 8.4354 87.4068 

3 4.1977 94.0388 4.0830 91.0611 

4 2.8477 95.8164 2.8002 92.7798 

5 2.7068 97.4223 2.6896 94.3655 

6 2.5482 98.8457 2.4719 95.7048 

7 2.2583 99.9636 2.2094 96.7748 

8 0.3127 99.9851 1.1535 97.0664 

9 0.1584 99.9906 1.0005 97.2858 

10 0.1298 99.9943 0.9995 97.5048 
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Table 4.15. State Variables (25 Total) Removed from the Base Case Model 

State 
Variable 

Stream 
Chemical 

Component 
Component 

Number 
Reason for Removal 

Module 2 

Xss(76) 14 TBP 11 

TBP acts as a diluent and does not participate in 
any of the reactions 

Xss(83) 15 TBP 11 

Xss(90) 16 TBP 11 

Xss(97) 17 TBP 11 

Xss(104) 18 TBP 11 

Xss(116) 20 TBP 11 

Xss(109) 19 H2O 1 Water acts as a wash solution in this case and 
does not participate in any of the reactions Xss(114) 20 H2O 1 

Module 3 

Xss(121) 21 H2O 1 Water acts as a wash solution in this case and 
does not participate in any of the reactions Xss(126) 22 H2O 1 

Xss(154) 29 CH3OH 10 
Both methanol and ammonium carbonate are a 

wash solution and do not participate in any of the 
reactions 

Xss(166) 31 CH3OH 10 

Xss(156) 29 (NH4)2CO3.H2O 13 

Xss(168) 31 (NH4)2CO3.H2O 13 

Module 4 

Xss(192) 37 N2 2 

Nitrogen is a carrier gas and does not participate 
in any of the reactions 

Xss(202) 41 N2 2 

Xss(205) 42 N2 2 

Xss(212) 43 N2 2 

Module 5 

Xss(228) 48 N2 2 

Nitrogen is a carrier gas and does not participate 
in any of the reactions 

Xss(233) 49 N2 2 

Xss(242) 51 N2 2 

Xss(247) 53 N2 2 

Xss(251) 54 N2 2 

Xss(257) 55 N2 2 

Xss(263) 56 N2 2 
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Figure 4.2. Scree Plot of the Base Case Data after the Addition of Gaussian White Noise. 
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Figure 4.3. Base Case Loadings Vectors for All State Variables.
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The variable index was preserved when the state variables listed in Table 4.15 were removed. A plot of 

each principal component loadings vector is separately shown below. Figure 4.4 shows the bar chart of 

the first principal component loadings vector for all the state variables of the base case model. The 

heaviest contributors to PC1 are shown in Figure 4.4 in red, and the heaviest contributors correspond to 

the main input and product variables out of the modules, the ones that have been scaled differentially 

with a heavier normalization factor. Table 4.16 provides a summary of how the primary state variables 

contributed to the first principal component.  

Heavy contributors to PC1 are the input uranium feed flow rate [Xss(274)] to Module 1 and the output 

uranium-bearing product flow rates from each of the five modules [Xss(64), Xss(111), Xss(163), Xss(218), 

and Xss(273)], thus showing the effect of the uranium feed flow rate on the molar flow rates of uranium 

out of each of the five modules. (Please refer to Figure 3.2 for a flowsheet of the process). This 

correlation pattern is highly anticipated, since the molar flow rates of the uranium-bearing output 

streams should all be highly correlated to the main feed flow rate. This correlation pattern only became 

apparent after these state variable data column values were differentially weighted (as shown in Table 

4.13) to exert their influence on the subsequent singular value decomposition. The internal state 

variables of all the modules representing the intermediate uranium-bearing flow rates contributed 

moderately to PC1, also as expected since these are all correlated to the product flow rates out of the 

modules. Since they are not differentially weighted, their contributions to PC1 are nominally lower than 

those representing the primary uranium-bearing product flow rates. 

Figure 4.5 shows the bar chart of the second principal component loadings vector for all the state 

variables of the base case model. The heaviest contributors to PC2 are shown in Figure 4.5 in red, 

displaying the effect of        [Xss(279)] on the UO2 flow rate out of Module 4. Table 4.17 provides a 

summary of how the primary state variables contributed to the second principal component.  

Figure 4.5 shows that PC2 mainly captures the variation of two state variables; that of the UO2 product 

flow rate [Xss(219)] from Module 4, correlated with the input variable        [Xss(279)]. The input 

variable        is a flow parameter that insures sufficient HF is fed to the hydrofluorination reaction for 

the conversion of UO2 to UF4. The UO2 product flow rate [Xss(219)] from Module 4 is negatively 

correlated with the input variable        [Xss(279)] because increasing that input variable causes more 

HF to be available for reaction which results in more UO2 being converted to UF4 therefore reducing the 

UO2 in the Module 4 output. 
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Figure 4.4. Base Case Principal Component 1 Loadings Vector. 
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Table 4.16. Primary State Variable Contributions to the First Principal Component 

Contribution 

Heavy Moderate 

Xss Module Stream Chemical Xss Module Stream Chemical 

64 1 12 UN 3 1 1 UN 

111 2 19 UN 10 1 3 UN 

163 3 30 AUC 16 1 4 UN 

218 4 44 UF4 41 1 8 U3O8 

273 5 60 UF6 70 1 13 UN 

274 Input 1 1A U 77 2 14 UN 

Slight 84 2 15 UN 

Xss Module Stream Chemical 92 2 16 U3O8 

221 5 45 UF4 98 2 17 UN 

254 5 54 UF4 123 3 21 UN 

259 5 55 UF6 128 3 22 UN 

265 5 57 UF6 138 3 26 UN 

269 5 58 UF4 148 3 27 AUC 

272 5 59 UF6 159 3 29 AUC 

None 169 3 31 UN 

Xss Module Stream Chemical 181 4 34 UO2 

40 1 8 UN 184 4 35 UO2 

91 2 16 UN 198 4 39 UO2 

117 2 20 UN 207 4 42 UF4 

171 3 31 AUC 214 4 43 UF4 

208 4 42 UO2 217 4 43 AUC 

215 4 43 UO2 224 5 46 UF4 

219 4 44 UO2 230 5 48 UF4 

222 5 45 UO2 235 5 49 UF6 

225 5 46 UO2 239 5 50 UF4 

240 5 50 UO2 244 5 51 UF6 

270 5 58 UO2 246 5 52 UF6 

275 Input 2 4 & 5 UN 249 5 53 UF6 

276 Input 3 15 & 16 UN 253 5 54 UF6 

277 Input 4 19 & 20 UN 
    

278 Input 5 30 & 31 AUC 
    

279 Input 6 40 HF 
    

280 Input 7 45 UF4         
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Figure 4.5. Base Case Principal Component 2 Loadings Vector.
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Table 4.17. Primary State Variable Contributions to the Second Principal 
Component 

Contribution 

Heavy None 

Xss Module Stream Chemical Xss Module Stream Chemical 

219 4 44 UO2 3 1 1 UN 

279 Input 6 40 HF 10 1 3 UN 

Moderate 16 1 4 UN 

Xss Module Stream Chemical 40 1 8 UN 

64 1 12 UN 41 1 8 U3O8 

208 4 42 UO2 70 1 13 UN 

215 4 43 UO2 77 2 14 UN 

218 4 44 UF4 84 2 15 UN 

222 5 45 UO2 91 2 16 UN 

225 5 46 UO2 92 2 16 U3O8 

240 5 50 UO2 98 2 17 UN 

270 5 58 UO2 117 2 20 UN 

273 5 60 UF6 123 3 21 UN 

274 Input 1 1A U 128 3 22 UN 

Slight 138 3 26 UN 

Xss Module Stream Chemical 148 3 27 AUC 

111 2 19 UN 159 3 29 AUC 

163 3 30 AUC 169 3 31 UN 

207 4 42 UF4 171 3 31 AUC 

214 4 43 UF4 181 4 34 UO2 

221 5 45 UF4 184 4 35 UO2 

224 5 46 UF4 198 4 39 UO2 

230 5 48 UF4 217 4 43 AUC 

235 5 49 UF6 275 Input 2 4 & 5 UN 

239 5 50 UF4 276 Input 3 15 & 16 UN 

244 5 51 UF6 277 Input 4 19 & 20 UN 

246 5 52 UF6 278 Input 5 30 & 31 AUC 

249 5 53 UF6 280 Input 7 45 UF4 

253 5 54 UF6 
    

254 5 54 UF4 
    

259 5 55 UF6 
    

265 5 57 UF6 
    

269 5 58 UF4 
    

272 5 59 UF6         
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Figure 4.6 shows the bar chart of the third principal component loadings vector for all the state variables 

of the base case model. The heaviest contributors to PC3 are shown in Figure 4.6 in red. Table 4.18 

provides a summary of how the primary state variables contributed to the third principal component. 

Figure 4.6 shows that PC3 captures the relationships between five of the seven input variables to all of 

the uranium-bearing product flow rates from the five modules and uranium-bearing waste streams from 

Modules 2 and 3.  

The uranyl nitrate flow rate [Xss(91)] in the waste stream from Module 2B was negatively correlated 

with the input variable           [Xss(276)] as expected since input variable           controls how 

much of the uranyl nitrate in Stream 14 goes to Stream 15. Therefore, if           increases then the 

uranyl nitrate in Stream 15 increases and the uranyl nitrate in Stream 16 [Xss(91)] must decrease. The 

uranyl nitrate output flow rate [Xss(111)] is positively correlated with the input variable           

[Xss(276)] as expected for the same reason as above. Additionally, Xss(111) is negatively correlated with 

Xss(91) because more uranyl nitrate in the product results in less uranyl nitrate in the waste. 

The uranyl nitrate flow rate [Xss(117)] in the waste stream from Module 2D was negatively correlated 

with the input variable           [Xss(277)] as expected since input variable           controls how 

much of the uranyl nitrate in Stream 17 goes to Stream 19. Therefore, if           increases then the 

uranyl nitrate in Stream 19 increases and the uranyl nitrate in Stream 20 [Xss(117)] must decrease. The 

uranyl nitrate output flow rate [Xss(111)] is positively correlated with the input variable           

[Xss(277)] as expected for the same reason as above. Additionally, Xss(111) is negatively correlated with 

Xss(117) because more uranyl nitrate in the product results in less uranyl nitrate in the waste. 

The AUC flow rate [Xss(171)] in the waste stream from Module 3D was negatively correlated with the 

input variable           [Xss(278)] as expected since input variable           controls how much of the 

AUC in Stream 29 goes to Stream 30. Therefore, if           increases then the AUC in Stream 30 

increases and the AUC in Stream 31 [Xss(171)] must decrease. The AUC output flow rate [Xss(163)] is 

positively correlated with the input variable           [Xss(278)] as expected for the same reason as 

above. Additionally, Xss(163) is negatively correlated with Xss(171) because more AUC in the product 

results in less AUC in the waste. 
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Figure 4.6. Base Case Principal Component 3 Loadings Vector.
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Table 4.18. Primary State Variable Contributions to the Third Principal Component 

Contribution 

Heavy Slight 

Xss Module Stream Chemical Xss Module Stream Chemical 

64 1 12 UN 16 1 4 UN 

91 2 16 UN 41 1 8 U3O8 

111 2 19 UN 70 1 13 UN 

117 2 20 UN 77 2 14 UN 

163 3 30 AUC 92 2 16 U3O8 

171 3 31 AUC 123 3 21 UN 

218 4 44 UF4 128 3 22 UN 

219 4 44 UO2 138 3 26 UN 

273 5 60 UF6 148 3 27 AUC 

274 Input 1 1A U 159 3 29 AUC 

276 Input 3 15 & 16 UN 169 3 31 UN 

277 Input 4 19 & 20 UN 207 4 42 UF4 

278 Input 5 30 & 31 AUC 208 4 42 UO2 

279 Input 6 40 HF 214 4 43 UF4 

Moderate 215 4 43 UO2 

Xss Module Stream Chemical 221 5 45 UF4 

3 1 1 UN 222 5 45 UO2 

10 1 3 UN 224 5 46 UF4 

40 1 8 UN 225 5 46 UO2 

181 4 34 UO2 230 5 48 UF4 

184 4 35 UO2 235 5 49 UF6 

198 4 39 UO2 239 5 50 UF4 

217 4 43 AUC 240 5 50 UO2 

275 Input 2 4 & 5 UN 244 5 51 UF6 

None 246 5 52 UF6 

Xss Module Stream Chemical 249 5 53 UF6 

84 2 15 UN 253 5 54 UF6 

98 2 17 UN 254 5 54 UF4 

280 Input 7 45 UF4 259 5 55 UF6 

   
  265 5 57 UF6 

   
  269 5 58 UF4 

   
  270 5 58 UO2 

        272 5 59 UF6 
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Since the contributions made by PC4 and PC5 were so small, the detailed correlation patterns cannot 

realistically be interpreted meaningfully. Therefore, those figures are not included here. Table 4.19 

summarizes how the primary state variables loaded each of the principal components including PC4 and 

PC5. The state variables that represent the uranium component in the product stream from each 

module are highlighted in red.  

According to Table 4.19, PC4 captured variation in input variable           and the uranyl nitrate flow 

rate [Xss(40)] in the waste from Stream 8 in Module 1. These were negatively correlated which was 

expected since           controls how much of the uranyl nitrate in Stream 3 goes to Stream 4. An 

increase in           would increase the uranyl nitrate in Stream 4 and reduce the uranyl nitrate in 

Stream 5 thereby reducing the uranyl nitrate in Stream 8.  

Also according to Table 4.19, PC5 captured variation in input variable        and several of the molar 

flow rate of the uranium-bearing streams in Module 5, most of which were in the secondary fluorination 

section of Module 5. All of these variables were positively correlated. This correlation pattern was 

expected since        controls how much of the feed stream to Module 5 is split to the secondary 

process. An increase in        would result in increases in molar flow rate of the uranium-bearing 

streams in this section of Module 5.  

Table 4.20 lists the first five loadings vectors for the input variables. This shows that the first input 

variable was the heaviest contributor to the first principal component while the other input variables did 

not contribute at all. For the second principal component, only the sixth input variable contributed 

heavily. Input variables 1, 3–6 contributed heavily to the third principal component. Additionally in PC3, 

input variables 2–5 and 7 are positively correlated to one another and negatively correlated to input 

variables 1 and 6. For the fourth principal component, input variable 2 contributed heavily. Input 

variable 7 contributed heavily to the fifth principal component. Table 4.20 also shows that it is necessary 

to retain the first five principal components in order to capture variation in all of the input variables.  
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Table 4.19. Summary of How the Primary State Variables within Each Module Load 
Each Principal Component 

State 
Variable 

PC1 PC2 PC3 PC4 PC5 
Type of 
Stream 

Module 1 

Xss(274) Heavy Moderate Heavy None None Input 

Xss(275) None None Moderate Heavy Slight Input 

Xss(3) Moderate None Moderate Slight None Intermediate 

Xss(10) Moderate None Moderate Moderate None Intermediate 

Xss(16) Moderate None None Slight None Intermediate 

Xss(40) None None Moderate Heavy None Waste 

Xss(41) Moderate None None None Slight Waste 

Xss(64) Heavy Moderate Heavy Moderate None Product 

Xss(70) Moderate None None Slight None Waste 

Module 2 

Xss(276) None None Heavy Moderate Slight Input 

Xss(277) None None Heavy Moderate Slight Input 

Xss(77) Moderate None None Slight None Intermediate 

Xss(84) Moderate None None Slight None Intermediate 

Xss(91) None None Heavy Slight Slight Waste 

Xss(92) Moderate None None None None Waste 

Xss(98) Moderate None None Slight None Intermediate 

Xss(111) Heavy Slight Heavy Slight Slight Product 

Xss(117) None None Heavy Slight Slight Waste 

Module 3 

Xss(278) None None Heavy Moderate Slight Input 

Xss(123) Moderate None None None None Waste 

Xss(128) Moderate None None None None Intermediate 

Xss(138) Moderate None None None None Intermediate 

Xss(148) Moderate None None None None Intermediate 

Xss(159) Moderate None None None None Intermediate 

Xss(163) Heavy Slight Heavy Slight Slight Product 

Xss(169) Moderate None None None None Waste 

Xss(171) None None Heavy Moderate Slight Waste 

Module 4 

Xss(279) None Heavy Heavy Slight Slight Input 

Xss(181) Moderate None Moderate None None Intermediate 

Xss(184) Moderate None Moderate None None Intermediate 

Xss(198) Moderate None Moderate None None Intermediate 

Xss(207) Moderate Slight None None None Intermediate 

Xss(208) None Moderate None None None Intermediate 

Xss(214) Moderate Slight None None None Waste 

Xss(215) None Moderate None None None Waste 

Xss(217) Moderate None Moderate None None Waste 

Xss(218) Heavy Moderate Heavy Slight Slight Product 

Xss(219) None Heavy Heavy Slight None Product 
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Table 4.19. Summary of How the Primary State Variables within Each Module Load 
Each Principal Component (continued) 

State Variable PC1 PC2 PC3 PC4 PC5 Type of Stream 

Module 5 

Xss(280) None None None Slight Heavy Input 

Xss(221) Slight Slight None Slight Heavy Intermediate 

Xss(222) None Moderate None None Slight Intermediate 

Xss(224) Moderate Slight None None Slight Intermediate 

Xss(225) None Moderate None None None Intermediate 

Xss(230) Moderate Slight None None Slight Intermediate 

Xss(235) Moderate Slight None None Slight Intermediate 

Xss(239) Moderate Slight None None Slight Waste 

Xss(240) None Moderate None None None Waste 

Xss(244) Moderate Slight None None Slight Intermediate 

Xss(246) Moderate Slight None None Slight Intermediate 

Xss(249) Moderate Slight None None Slight Intermediate 

Xss(253) Moderate Slight None None Slight Intermediate 

Xss(254) Slight Slight None Slight Heavy Intermediate 

Xss(259) Slight Slight None Slight Heavy Intermediate 

Xss(265) Slight Slight None Slight Heavy Intermediate 

Xss(269) Slight Slight None Slight Heavy Waste 

Xss(270) None Moderate None None Slight Waste 

Xss(272) Slight Slight None Slight Heavy Intermediate 

Xss(273) Heavy Moderate Heavy Slight Slight Product 

 

 

 

Table 4.20. The First Five Loadings Vectors for the Input Variables 

State Input Loadings Vectors 

Variable Variables V1 V2 V3 V4 V5 

Xss(274) u1 -0.2674 0.0698 -0.2220 -0.0088 0.0123 

Xss(275) u2 -0.0019 -0.0011 0.0521 -0.3414 -0.0408 

Xss(276) u3 -0.0111 -0.0094 0.2615 0.0691 0.0740 

Xss(277) u4 -0.0115 -0.0096 0.2613 0.0709 0.0682 

Xss(278) u5 -0.0082 -0.0125 0.2096 0.1269 -0.0697 

Xss(279) u6 -0.0265 -0.5755 -0.1417 -0.0238 0.0265 

Xss(280) u7 -0.0010 -0.0014 0.0106 0.0390 -0.3602 
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The scores,  , were calculated using the noisy, mean-centered, scaled base case data matrix,   , and the 

reduced set of loadings vectors,   , as discussed earlier. Additionally, the residuals, the Mahalanobis 

distance (  ), and the  -statistic were calculated for the base case. The scores plot can be used later on 

to monitor if the input values are outside the accepted normal operating range resulting in a larger than 

normal responses in the key state variables. In monitoring future operations, the Mahalanobis distance 

would be used to measure the variation in the scores space and to determine if the variations fall 

outside the 95% confidence boundary. The 95% confidence level on    was determined to be ~11. 

Figures 4.7–4.9 show the scores plots for PC1 versus PC2, PC1 versus PC3, and PC2 versus PC3, 

respectively. Figures 4.10 shows a 3D plot of the scores for PC1, PC2, and PC3 where the 95% boundary 

is a transparent ellipsoid. For each of these plots, only a few points lie outside the bounding ellipse as 

expected. Figure 4.11 shows the Mahalanobis distance and its 95% confidence level. Again most points 

are within the 95% confidence level. When monitoring future operations, the  -statistic would be used 

to determine if the process is operating normally as defined by the base case PCA model (i.e., does the 

model still fit). The 95% confidence level on Q was ~62. Figure 4.12 shows the  -statistic and its 95% 

confidence level. Figure 4.13 shows a 3D plot of   vs. PC1 and PC2 scores. The patterns in the data were 

an artifact of how the data were generated and were not significant to the model. The data were 

generated in a stepwise fashion by systemically changing each input variable and calculating the result. 

The nominal steady-state solution showed a 92% recovery of the uranium in the system from feed to 

the plant to conversion to the final UF6 product. This means that 92% of the uranium feed to the plant 

was converted to UF6 for the nominal steady-state solution. Therefore, 8% of the uranium feed was lost 

to waste streams throughout the plant. Additionally, the variation of the UF6 product in comparison to 

the nominal base case solution was -27.8% to +15.5%. 
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Figure 4.7. Base Case Scores Plot for PC1 and PC2. 
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Figure 4.8. Base Case Scores Plot for PC1 and PC3. 
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Figure 4.9. Base Case Scores Plot for PC2 and PC3. 
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Figure 4.10. Base Case 3D Scores Plot for PC1, PC2, and PC3. 
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Figure 4.11. Base Case Mahalanobis Distance and 95% Confidence Boundary. 
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Figure 4.12. Base Case  -Statistic and 95% Confidence Boundary. 
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Figure 4.13. Base Case PC1, PC2, and  -Statistic with 95% Confidence Boundary. 
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4.2.2 Control Case  

The control case was used to partially validate the base case PCA model. For the control case, all of the 

parameters and input variables were set at the base case values. The variations of the input variables 

were made such that the variations were still within the ranges of the base case variations (see Table 

3.12). Once the control case data were generated, the data matrix was pre-processed in the same 

manner (Gaussian noise added, mean-centered, and scaled) as the base case data using the base case 

means and standard deviations. The same number of data points were generated for the control case as 

the base case. Figures 4.14–4.16 show the scores plots for PC1 versus PC2, PC1 versus PC3, and PC2 

versus PC3, respectively. Figures 4.17 shows a 3D plot of the scores for PC1, PC2, and PC3 where the 

95% boundary is a transparent ellipsoid. Figure 4.18 shows the Mahalanobis distance and its 95% 

confidence level. Figure 4.19 shows the  -statistic and its 95% confidence level. Figure 4.20 shows a 3D 

plot of   vs. PC1 and PC2 scores. Since all of the control case variation was contained within the 

variation of the base case data, all of the control case data points were also within the base case 

confidence boundaries as expected. 
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Figure 4.14. Control Case Scores Plot for PC1 and PC2. 
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Figure 4.15. Control Case Scores Plot for PC1 and PC3. 
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Figure 4.16. Control Case Scores Plot for PC2 and PC3. 
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Figure 4.17. Control Case 3D Scores Plot for PC1, PC2, and PC3. 
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Figure 4.18. Control Case Mahalanobis Distance and 95% Confidence Boundary. 



 

165 
 

 

Figure 4.19. Control Case  -Statistic and 95% Confidence Boundary. 
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Figure 4.20. Control Case PC1, PC2, and  -Statistic with 95% Confidence Boundary. 
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4.3 FAULTY “OFF-NORMAL” CASES 

For each faulty case, both the steady-state solution and the overall material balances were checked to 

verify that the model was correctly simulated. As with the base case, the steady-state state variable 

solution was substituted back into the set of simultaneous equations to verify that the right side of the 

result for the material balance equations was the same as that provided by ‘fsolve’ and also that the 

result was approximately zero to be within round-off error of the computer. The overall material 

balances were also checked especially in the cases where additional streams were added. The overall 

rate of change was approximately zero (at least 1×10-10) in all cases. For all of the plots below, only the 

faulty case data points are displayed with the 95% confidence boundaries from the base case PCA model 

superimposed. In all cases, the same number of data points as the base case were generated. 

Within each faulty case, recommendations are made for which streams should be monitored in order to 

detect the particular fault. These recommendations are to provide data for the monitoring framework 

and a never meant to be recommendations for considering individual measurements separately. One of 

the benefits of the multivariate statistic approach is that the system is considered as a whole and the 

individual measurements need not be considered separately. The multivariate approach reveals 

correlations with the data which may not be noticeable in the individual measurements.  

Also for each faulty case, the detectability of the specific fault using the diagnostic plots is reference in 

two ways: clearly detectable or detectable in trending monitoring. A clearly detectable fault is one 

where all of the simulated faulty data is outside the 95% confidence boundary. This means that the fault 

is detectable under all possible operations conditions that were considered in this model. A fault that is 

not clearly detectable may still be detectable using trend monitoring. In these cases, the data points are 

shifted by may still be partially or completely within the 95% confidence boundary. Monitoring for a 

continuous trend in the data may reveal this shift in the operating conditions before the process is 

completely out of bounds. 

 

4.3.1 Case 1 

For the first faulty case, the total throughput of the facility was increased. Initially, all incoming flow 

rates (Streams 1A, 4A–13A) were increased by 50% with no other changes in the model. Refer to Table 

3.9 for the nominal values of these incoming flow rates. This initial test was used to determine the 

extent of the model response. The results show that the change in the PC1 scores and the Mahalanobis 

distance was significant as expected. There was also a significant increase in the  -statistic. The flow 

rate of one of the incoming streams (1A) was also an input variable [Xss(274)] while the other incoming 

flow rates appear as model parameters. This result implies that the base case model no longer fits the 

current process operation when a change in total flow rates to the plant was introduced, which was 

expected since most of the incoming flow rates appear as model parameters. It was also expected that a 
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fault would occur in the scores on the first principal component since the incoming uranium flow rate 

was a heavy contributor. Results for both a 50% and 10% increase in all incoming flow rates are 

presented below. In an additional faulty case, only the incoming uranium flow rate was increased 

leaving all other parameters and inputs unchanged from the base case. Results for both 15% and 25% 

increases in only the incoming uranium flow rate are also presented below. A summary of the Faulty 

Case 1 simulation is provided in Table 4.21. 

Based on the sensitivity analysis, only a few state variables would be sensitive to changes in the 

incoming flow rates except the incoming uranium flow rate. None of the primary state variables were 

sensitive to any changes in the incoming flow rates except for the incoming uranium flow rate, which all 

of the primary state variables were sensitive to with a sensitivity factor value of one. 

In order to detect these types of faults, it is recommended that the uranium feed to the plant be 

monitored for both flow rate and uranium content. Additionally, it is recommended that the streams 

exiting each major process (e.g., dissolution, solvent extraction, fluorination) as product or waste be 

monitored for flow rate and uranium content. 
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Table 4.21. Summary of Faulty Case 1 

Summary of Faulty Case 

Case Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical 
Description 

1A High 1 All F values Varies +50% 
Increase total 
plant throughput 
by 50% 

1B High 1 All F values Varies +10% 
Increase total 
plant throughput 
by 10% 

1C High 1 F1A,U 50 kg/h 57.5 kg/h 
Increase uranium 
throughput by 
15% 

1D High 1 F1A,U 50 kg/h 62.5 kg/h 
Increase uranium 
throughput by 
25% 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

1A 
Direction --- + 0 ++ ++++ 

Detectability Yes No No Yes Yes 

1B 
Direction 0 0 0 ~+ ++ 

Detectability No No No No Yes 

1C 
Direction - 0 0 ~+ 0 

Detectability No No No Not likely No 

1D 
Direction - 0 0 + 0 

Detectability Possibly No No Yes No 
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4.3.1.1 Case 1A – Fifty Percent Increase in Total Flow Rate 

For this case, the incoming flow rate of uranium [      also Xss(274)] was increased by 50% along with 

the other incoming flow rates (Streams 4A–13A). The results show that this fault was clearly detected in 

PC1 scores, the Mahalanobis distance, and the  -statistic.  

There was a significant fault in PC1 scores which was expected since Xss(274) was a heavy contributor to 

PC1 (Figures 4.21–4.22). There was a very slight shift in PC2 scores (Figure 4.23). However, the shift in 

PC2 scores was not detectable since many of the data points are within the confidence boundary of the 

base case model. The 3D plot of the scores for PC1, PC2, and PC3 also shows the fault in PC1 scores 

(Figure 4.24). As expected since increasing the total flow rate by 50% was outside of normal operating 

conditions and resulted in a fault in the PC1 scores, there was a significant increase in the Mahalanobis 

distance (Figure 4.25). There was also a significant increase in the  -statistic (Figure 4.26) as expected 

since increasing total throughput changed the relative relationship between the state variables since all 

of the incoming flow rates except the incoming uranium flow rate appear as model parameters. The 

faults in both PC1 scores and the  -statistic are visible in the 3D plot of   vs. PC1 and PC2 scores (Figure 

4.27). 
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Figure 4.21. Faulty Case 1A Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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Figure 4.22. Faulty Case 1A Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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Figure 4.23. Faulty Case 1A Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a slight shift in PC2 scores but the fault was not detectable. 
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Figure 4.24. Faulty Case 1A 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed as an ellipsoid. There was a detectable fault in PC1 scores. 
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Figure 4.25. Faulty Case 1A Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.26. Faulty Case 1A  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% 

confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.27. Faulty Case 1A PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault. 
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4.3.1.2 Case 1B – Ten Percent Increase in Total Flow Rate 

Since the base case model included a ±10% variation in the incoming uranium flow rate, this faulty case 

provided a new incoming flow rate that was 10% over the nominal base case value with no variation 

allowed. Therefore,       [Xss(274)] was set at 55 kg/h for this case. The other incoming flow rates (for 

which variations were not included in the base case) were also increased by 10% for this case. The 

results show that the fault in this case was only detectable in the  -statistic (Figures 4.28–4.29). An 

increase in the  -statistic was expected since the flow rates other than       appear as model 

parameters and this change resulted in a change in the relative relationship between the state variables. 

The Mahalanobis distance was not expected to exhibit a fault since the change in       was within the 

normal range of the base case. There was a slight increase in the number of data points above the 95% 

confidence boundary (Figure 4.30), but the fault was not detectable. There were no detectable changes 

in the scores plots. 
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Figure 4.28. Faulty Case 1B  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% 

confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.29. Faulty Case 1B PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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Figure 4.30. Faulty Case 1B Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was no detectable fault. 
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4.3.1.3 Case 1C – Fifteen Percent Increase in Uranium Flow Rate 

For the case of a 15% increase in the incoming uranium flow rate only,       [Xss(274)] was set at 

57.5 kg/h with no variation in this input variable during data generation. The other input variables were 

allowed to vary as specified in the base case and all parameters were set at the nominal base case 

values. The results show that the fault in this case would most likely not be detectable in a clean since 

the only change occurred in the Mahalanobis distance and most of the data points were still within the 

95% confidence boundary (Figure 4.31). This was only 5% over the allowed maximum for the model and 

the goal for detection was 10% diversion.  

In this case, the model was expected to fit based on the  -statistic, but it was expected that the 

Mahalanobis distance would show that the values would be somewhat outside of the accepted range 

which turned out to be the case. However, since this was only 5% above the maximum allowed flow rate 

of uranium in the base case, there was only a slight increase in the Mahalanobis distance which may not 

be detectable depending on operating conditions. There were no detectable faults in the scores or the 

 -statistic. These results showed that the model still fits well enough based on the  -statistic and 

therefore all of the relative relationships between the state variables were as expected but the range 

was slightly above what was expected based on the Mahalanobis distance. There was only slight 

increase in the Mahalanobis distance which may not be detectable and there was a slightly negative 

shift in the PC1 scores that was within the confidence boundary. This shift in PC1 scores was enough to 

increase the number of points above the 95% confidence boundary in the Mahalanobis distance. 
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Figure 4.31. Faulty Case 1C Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a slight increase but it may not be a detectable fault. 
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4.3.1.4 Case 1D – Twenty-Five Percent Increase in Uranium Flow Rate 

Since the Case 1C fault was not detectable unambiguously, higher flow rates of incoming uranium were 

tested. Twenty percent increase over the base case nominal value was still likely not clearly detectable 

since many of the data points were still within the 95% confidence boundary. The 20% increase 

corresponded to 10% over the maximum allowed variation in that input variable and the detection goal 

stated for this framework. The results of the 25% increase are shown below. As shown, this faulty case 

was notably detectable in the Mahalanobis distance. 

This case was modeled in the same manner as Case 1C with       [Xss(274)] set to a constant 62.5 kg/h. 

There was a fault in PC1 scores which was expected since Xss(274) was a heavy contributor to PC1. 

However, some of the data points were still within the 95% confidence boundary meaning that there are 

some operating conditions under which that fault would not be detectable using just PC1 scores 

monitoring. There were no detectable changes in PC2 or PC3 scores. The scores plots are shown in 

Figures 4.32–4.35. There was a significant increase in the Mahalanobis distance (Figure 4.36) which was 

expected since this case was outside the normal operating conditions and an overall shift in the PC1 

scores. There were no detectable faults in the  -statistic which was also expected since no parameters 

were changed (Figures 4.37–4.38). The results for a 25% increase were expected to be the same as for 

the 15% increase but with larger and more clearly detectable faults which was the case. Based on these 

results, a 25% increase in uranium feed rate is deemed detectable.  
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Figure 4.32. Faulty Case 1D Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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Figure 4.33. Faulty Case 1D Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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Figure 4.34. Faulty Case 1D Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was no detectable fault. 
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Figure 4.35. Faulty Case 1D 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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Figure 4.36. Faulty Case 1D Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.37. Faulty Case 1D  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% 

confidence boundary displayed in red. There was no detectable fault. 
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Figure 4.38. Faulty Case 1D PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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4.3.2 Case 2 

For the second faulty case, the purity of the uranium fed to the dissolver was changed by changing the 

uranium input stream composition from 85 wt-% U3O8 and 15 wt-% impurities (7.5 wt-% soluble 

impurities and 7.5 wt-% insoluble impurities) to 90 wt-% U3O8 and 10 wt-% impurities (5 wt-% soluble 

impurities and 5 wt-% insoluble impurities). No variation in uranium purity was built into the base case 

PCA model. The results show that the fault in this case was clearly detectable in the  -statistic and may 

also be detectable in PC3 scores and the Mahalanobis distance depending on operating conditions. 

Since this parameter was not tested in the original sensitivity analysis, a quick sensitivity analysis was 

completed for the uranium purity. The sensitivity of all of the state variables to this parameter was 

developed by changing the purity of the incoming uranium by ±10%. The uranium purity was changed by 

changing the mass fractions in Stream 1A. The mass fractions of the impurities were also changed so 

that the mass fractions totaled one. Additionally, the soluble and insoluble impurities were assumed to 

be equal fractions as in the base case. The results show that none of the uranium-bearing streams were 

sensitive to changes in the purity of the incoming uranium because the feed to the plant was specified 

based on mass of elemental uranium not concentration, therefore changing the purity did not change 

the incoming amount of uranium. The 43 state variables that were sensitive to changes in mass fractions 

of Stream 1A were the insoluble and soluble components in Modules 1–3. The sensitivity factor was -6.1 

for a +10% change in purity and -7.4 for a -10% change in purity. Therefore, the response to changes in 

uranium purity was nonlinear. 

Based on the fact that the incoming uranium flow rate is specified based on the mass elemental 

uranium, the total flow rate of Stream 1A (   ) was calculated as discussed in Section 3.2.1.1 and shown 

in Eq. (4.3.2.1) in terms of Xss(274). Therefore,     changes with changes in purity but Xss(274) does 

not. 

    
   (   )

     
 
    

      
      (4.3.2.1) 

Therefore, the equations where the changes in uranium purity appear in the model are in Eqs. (3.2.1.10) 

and (3.2.1.11) which are restated here in terms of the state variables. These are the material balances 

for the insoluble and soluble impurities in Stream 1 of Module 1. 

           
    

    
    (  )     ( )         (3.2.1.10) 

           
    

    
    (  )     ( )         (3.2.1.11) 

The 43 state variables that were sensitive to changes in mass fractions of Stream 1A moderately loaded 

PC1 and slightly loaded PC3. Those same 43 state variables result in a nominal reduction of 

approximately 37% in comparison with the nominal base case solution. There was a slight shift in both 
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PC1 and PC2 scores but no detectable fault was observed since all of the data points were within the 

95% confidence boundary for normal operation (Figure 4.39). There was also a shift in PC3 scores 

(Figures 4.40–4.42). However, this fault would only be detectable in PC3 scores under certain operating 

conditions since approximately 50% of the data points were still within the 95% confidence boundary. 

There was also an increase in the Mahalanobis distance (Figure 4.43), but this shift may not result in a 

detectable fault because many of the data points were within the 95% confidence boundary. This 

increase was not initially expected since this fault did not change the operating ranges. However, 

increasing the uranium purity decreases the impurities and therefore changes the molar flow rates of 

the waste streams that contain the impurities. Therefore, this case does change the operating 

conditions for non-uranium components. There was a significant increase in the  -statistic (Figures 

4.44–4.45). An increase was expected in the  -statistic since changing the purity changes some of the 

parameter values and therefore the relative relationship between the state variables would be different. 

A relatively small (~6%) increase in the purity of the uranium feed produced a highly detectable fault in 

the  -statistic as well as potentially detectable faults in PC3 scores and the Mahalanobis distance.  

Monitoring the uranium feed for both flow rate and uranium content would be the recommended 

approach for detecting this type of fault. However, monitoring the streams exiting each major process 

(e.g., dissolution, solvent extraction, fluorination) as product or waste for flow rate and uranium content 

would also detect this fault. A summary of Case 2 results is provided in Table 4.22. 

 

 

Table 4.22. Summary of Faulty Case 2 

Summary of Faulty Case 

Priority Module 
Faulty  

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

Low 1 x1A,18 0.85 0.90 

Increase the 
incoming uranium 
purity by 5.9% and 
decrease the 
impurities 

Summary of Results 

  
PC1  

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction + - + ~+ +++ 

Detectability No No Possibly Possibly Yes 
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Figure 4.39. Faulty Case 2 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a slight shift in both PC1 and PC2 scores but no fault was 

detectable. 
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Figure 4.40. Faulty Case 2 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift in PC3 scores but the fault may not be detectable 

depending on operating conditions. 
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Figure 4.41. Faulty Case 2 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift in PC3 scores but the fault may not be detectable 

depending on operating conditions. 
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Figure 4.42. Faulty Case 2 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed as an ellipsoid. There was a shift in all PC scores with the most 

noticeable shift being in PC3 scores but the fault may not be detectable depending on operating conditions. 
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Figure 4.43. Faulty Case 2 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift but the fault may not be detectable depending on 

operating conditions. 
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Figure 4.44. Faulty Case 2  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% confidence 

boundary displayed in red. There was a detectable fault. 
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Figure 4.45. Faulty Case 2 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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4.3.3 Case 3 

For the third faulty case, the effect of inefficient dissolver operations in Module 1 was investigated. 

Inefficient operations would result in the uranium not being completely dissolved and therefore 

additional uranium would leave the process as waste. This case was modeled by changing the extent of 

reaction for the dissolution reaction,       , from 0.9799 to 0.95. Based on the sensitivity analysis, all 

of the primary state variables were sensitive (      ) to a decrease in       . Two of the primary 

state variables [Xss(41) and Xss(92)], which were the U3O8 in waste Streams 8 and 16, were extremely 

sensitive to a decrease in        and resulted in a sensitivity factor of -51.3. An additional 39 non-

primary state variables also had a sensitivity factor of -51.3. These state variables were the U3O8 

throughout the process; these were not considered primary because the molar flow rate value was very 

small. The results show that this fault was clearly detectable in PC3 scores, the Mahalanobis distance, 

and the  -statistic. 

This parameter appears in the Module 1A component mole balances [Eqs. (3.2.1.6)–(3.2.1.9)] which are 

restated here in terms of state variable numbers. 

               (  )     ( )                 (          (  ))      (4.3.3.1) 

          
    

   
    (  )     ( )                 (          (  ))       (4.3.3.2) 

   (  )     ( )                  (          (  ))        (4.3.3.3) 

          (  )     ( )                  (          (  ))        (4.3.3.4) 

The 41 state variables that were most sensitive to changes in this parameter increased 152% due to this 

fault. These state variables were mostly moderate contributors to PC1 and slight contributors to PC3. 

There was a slight overall shift in both PC1 and PC2 scores which would result in a detectable fault using 

trend monitoring (Figure 4.46). There was a significant shift in PC3 scores(Figures 4.47–4.49) which 

would result in a clearly detectable fault under all operating conditions since all of the data points were 

outside the 95% confidence boundaries. The fault in PC3 scores was expected because PC3 was heavily 

loaded by state variables that represented the uranium components in both the product and waste 

streams of Modules 1–3 and the product streams in Modules 4–5. These state variables would be 

directly affected by this change. This change resulted in a significant increase in the Mahalanobis 

distance (Figure 4.50). This fault was expected since a change in the extent of reaction would affect the 

amount of material in the streams downstream of that parameter. There was also a significant increase 

in the  -statistic (Figures 4.51–4.52). Additionally, a fault was expected in the  -statistic since changing 

the extent of reaction constitutes a change in the parameters and therefore the relative relationship 

between the state variables would be different. A relatively small (~3%) reduction in the extent of 

reaction produced a significant and clearly detectable faults in PC3 scores, the Mahalanobis distance, 

and the  -statistic diagnostic plots. Such drastic deviations from that of the base case profile reflect the 
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higher sensitivity of the process operation to the incomplete dissolution of U3O8. Due to this, it is 

recommended that the waste streams from both the dissolution and solvent extraction processes be 

monitored for both flow rate and uranium content. Table 4.23 summarizes this faulty case. 

 

 

 

Table 4.23. Summary of Faulty Case 3 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical 
Description 

Medium 1 XMod1A 0.9799 0.95 

Inefficient dissolver operations 
resulted in less U3O8 converted 
to UN and more U in waste 
streams 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction - + -- +++ ++++ 

Detectability Possibly  Possibly Yes Yes Yes 
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Figure 4.46. Faulty Case 3 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift in both PC1 and PC2 scores but the fault may not be 

detectable. 
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Figure 4.47. Faulty Case 3 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a fault in both PC1 and PC3 scores. 
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Figure 4.48. Faulty Case 3 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a fault in both PC2 and PC3 scores. 
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Figure 4.49. Faulty Case 3 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed as an ellipsoid. There was a detectable fault in all three scores. 
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Figure 4.50. Faulty Case 3 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.51. Faulty Case 3  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% confidence 

boundary displayed in red. There was a detectable fault. 
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Figure 4.52. Faulty Case 3 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault. 
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4.3.4 Case 4 

For the fourth faulty case, inefficient operations of the re-extraction of uranium from the organic phase 

in Module 2 were investigated. Inefficient re-extraction would result in additional uranium being 

diverted to the organic waste stream. This case was modeled by changing the initial value of the column 

fractionation parameter for the uranyl nitrate in Module 2D,          , which corresponds to the fourth 

input variable [Xss(277)], from 0.999 to 0.9. The results show that this reasonably sized (~10%) reduction 

in the filter fractionation may be detectable in the PC3 scores, the Mahalanobis distance, and the 

 -statistic but it would only be detectable under certain operating conditions, or would be detectable as 

a trending shift when the data points are still be within the 95% confidence boundary. 

This parameter appears in only one place in the model as shown in Eq. (3.2.2.39) and restated here in 

terms of state variable numbers. The state variables in Eq. (4.3.4.1) also appear in Eq. (3.2.2.45) which is 

also restated here as Eq. (4.3.4.2) in terms of state variable numbers. 

   (   )     (  )     (   )          (4.3.4.1) 

   (  )     (   )      (   )         (4.3.4.2) 

State variable Xss(117) was extremely sensitive to a change in this parameter resulting in a sensitivity 

factor of -999. Since this was a change at the end of Module 2, only variables from state variables 

downstream of the change should be affected. The first three principal components had heavy 

contributors downstream of the point this parameter controls. Therefore, it was expected that there 

would be shifts in all three scores. It turns out that there was a slight shift in both PC1 and PC2 scores in 

the positive direction, but the fault would not necessarily be detectable since all of the data points were 

still within the 95% confidence boundary for normal operation (Figure 4.53) but may be detectable in a 

trending shift. There was a slightly negative shift in PC3 scores (Figures 4.54–4.56), but the fault may not 

be detectable depending on operating conditions since many of the data points were inside the 95% 

confidence boundaries, again,a shift in the trend of PC3 scores may be detectable to indicate a possible 

fault. The fault in PC3 scores was expected because Xss(277) heavily loaded PC3 along with Xss(117). 

This resulted in an increase in the Mahalanobis distance (Figure 4.57), but the fault may not be 

detectable depending on operating conditions since many of the data points were inside the 95% 

confidence boundary, although a shift in the trend of    may be detectable. An increase in the 

Mahalanobis distance was expected since this was one of the input variables and the change was 

greater than the allowed variation of the base case. There was a shift in the  -statistic (Figures 4.58–

4.59). However, this fault may also not be detectable depending on operating conditions since some of 

the data points were within the 95% confidence boundary. A fault was expected in the  -statistic since 

changing the filter fractionation changes the parameters and therefore the relative relationship 

between the state variables would be different. This fault, though reasonably sized at approximately 

10%, was not significant enough to be detectable by any of the diagnostic plots except at certain 

operating conditions or in trend monitoring. Due to this and since this is a high priority for safeguards, it 
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is very strongly recommended that the product and waste streams from the solvent extraction process 

be monitored for both flow rate and uranium content. A summary of this case is shown in Table 4.24. 

 

 

Table 4.24. Summary of Faulty Case 4 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

High 2 
KMod2D,14, 
Xss(277) 

0.999 0.9 

Inefficient re-
extraction operations, 
reduce uranyl nitrate 
extraction in Module 
2 resulting in more U 
in Module 2 waste 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction + + - ~+ ++ 

Detectability No No Possibly Possibly Possibly 
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Figure 4.53. Faulty Case 4 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was no detectable fault. 
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Figure 4.54. Faulty Case 4 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift in PC3 scores but the fault may not be detectable. 
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Figure 4.55. Faulty Case 4 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift in PC3 scores but the fault may not be detectable. 
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Figure 4.56. Faulty Case 4 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed as an ellipsoid. There was a shift in PC3 scores but the fault may not 

be detectable. 
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Figure 4.57. Faulty Case 4 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift but the fault may not be detectable. 
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Figure 4.58. Faulty Case 4  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% confidence 

boundary displayed in red. There was a shift but the fault may not be detectable. 
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Figure 4.59. Faulty Case 4 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift in the  -statistic but the fault may not be detectable. 
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4.3.5 Case 5 

For the fifth faulty case, a small amount of uranium was diverted from the evaporator in Module 3A. 

Stream 21, the condensate, was left unchanged from the base case and was still treated as a waste 

stream. A new parameter,       , was created. This parameter was used to specify how much of the 

material in the evaporator was diverted. Since the condensate stream was not changed, this parameter 

basically specified how much of the other evaporator output stream (Stream 22) was diverted. 

Additionally, the new stream and Stream 22 are to have the same composition. Initially,        was set 

at 0.1 such that 10% of the evaporator output was diverted. This produced an enormous fault to which 

the base case 95% confidence boundary was not visible on the same diagnostic plots. The final value of 

       was set at 0.0025 such that only 0.25% was diverted. This still produced enormous faults as 

discussed below. The model was extremely sensitive to that new parameter because diverting material 

at this point in the process reduces the amount of material available downstream and therefore affects 

other very sensitive parameters based on the sensitivity analysis. The results show that this fault was 

clearly detectable on all of the diagnostic plots. 

The equations used to determine the component molar flow rates in the new output stream are shown 

below in terms of state variable numbers, where Xss(281)–Xss(285) represent the components of the 

new stream. 

          (   )     (   )        (4.3.5.1) 

          (   )     (   )        (4.3.5.2) 

          (   )     (   )        (4.3.5.3) 

          (   )     (   )        (4.3.5.4) 

          (   )     (   )        (4.3.5.5) 

This change resulted in all of the uranyl nitrate, U3O8, and soluble components [Xss(123), Xss(124), and 

Xss(125), respectively] of Stream 21 to go to zero meaning that there was none of these compounds in 

Stream 21 under this fault. The results show that there was a detectable fault in all of the scores plots 

(Figures 4.60–4.63). A fault in the scores was expected since the model is highly sensitive to changes in 

the uranium bearing streams throughout the process. The largest scores shift occurred in the positive 

direction for PC1 scores. There was a significant shift in the PC3 scores in the positive direction. There 

were some operating conditions where this fault would not be detectable in PC1 and PC2 scores plot 

only. This change only affected Stream 21 and those downstream. The first principal component was 

heavily loaded by the product streams from each module including those in Modules 3–5 which would 

be affected by this diversion of material. The first principal component was also moderately loaded by 

most of the primary state variables in Modules 3–5 which were also impacted by this diversion. These 

loadings explain why this diversion resulted in the largest shift being in PC1 scores. The second principal 
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component was loaded heavily by one of the products from Module 4 which would be affected by this 

change as well but less so thus resulting in the smallest shift in the scores plots being in PC2 scores. The 

third principal component was also heavily loaded by the product streams from Modules 3–5 and the 

waste stream in Module 3 which were all affected by this diversion, and therefore resulted in the shift in 

PC3 scores. 

The faults in the scores also resulted in a detectable fault in the Mahalanobis distance (Figure 4.64). This 

fault was expected since an additional output stream was outside normal operating conditions. 

Additionally, this diversion would result in less uranium downstream which is also outside normal 

operating conditions. There was also a significant increase in the  -statistic (Figures 4.65–4.66). A fault 

was expected in the  -statistic since diverting material changes the relative relationships between state 

variables downstream of the diversion. The  -statistic increase was significant while the Mahalanobis 

distance was within the same order of magnitude as the base case. Therefore, a very small diversion of 

material from the evaporator was clearly detectable.  

From a safeguards perspective, it would be expected that a diversion of this nature would be very small 

so as not to be detected. It is recommended that the stream leaving the evaporator to feed the 

precipitation process be monitored for both flow rate and uranium content. This area of the plant 

should also be inspected for additional piping which may be diverting material to another location. 

Additionally, the waste stream from the evaporator should be monitored for flow rate and uranium 

content as well in case material is being diverted to the waste directly. Table 4.25 provides a summary of 

this case. 

 

 

Table 4.25. Summary of Faulty Case 5 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

High 3 SMod3A N/A 0.0025 
Diversion of 0.25% of 
the uranium from the 
evaporator 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction + - + + +++++ 

Detectability Possibly Possibly Yes Yes Yes 
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Figure 4.60. Faulty Case 5 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in PC1 and PC2 scores. There were some 

operating conditions where this fault would not be detectable in PC1 and PC2 scores only. 
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Figure 4.61. Faulty Case 5 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in PC1 and PC3 scores. 
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Figure 4.62. Faulty Case 5 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in PC2 and PC3 scores. 
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Figure 4.63. Faulty Case 5 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed as an ellipsoid. There was a detectable fault in all three scores.  
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Figure 4.64. Faulty Case 5 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.65. Faulty Case 5  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% confidence 

boundary displayed in red. There was a detectable fault. 
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Figure 4.66. Faulty Case 5 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the scores and the  -statistic. 
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4.3.6 Case 6 

For the sixth faulty case, a small amount of uranium was added to the precipitation process in 

Module 3B. This simulated the processing of undeclared uranium which is of great concern of 

safeguards. The flow rate of the new stream (14A) was set at 10 kg/h and was assumed to be pure 

uranyl nitrate. The results show that the fault in this case was clearly detectable using the  -statistic. 

Equation (4.3.6.1) shows the calculation of the uranyl nitrate balance for Stream 26 where Stream 14A 

has been added to Stream 22. 

   (   )     (   )               
    

    
      (4.3.6.1) 

Both Xss(128) and Xss(138) moderately loaded PC1. State variable Xss(142), Xss(143), Xss(150), and 

Xss(151) decreased by 25% in comparison with the base case nominal solution with the addition of this 

stream. These were the ammonia and CO2 in Streams 27 and 28. The addition of this new stream caused 

an additional 82 state variables to increase by 12% when compared to the base case nominal solution. 

These 82 state variables included state variables that were heavy contributors to PC1, PC2, or PC3.  

There was a slight shift in both PC1 and PC2 scores (Figure 4.67), but the fault was not detectable since 

nearly all of the data points were still within the 95% confidence boundary. There was a slightly larger 

shift in PC3 scores (Figures 4.68–4.70), but the fault may not be detectable depending on operating 

conditions since approximately 50% of the data points were within the normal operation confidence 

boundaries, but the fault may be detectable using trend monitoring. These shifts in the scores were 

expected since the model was highly sensitive to changes in the uranium bearing streams throughout 

the process and based on the loadings discussed above.  

The shifts in the scores resulted in an increase in the Mahalanobis distance (Figure 4.71) which may be 

detectable depending on operating conditions and by using trend monitoring. An increase in the 

Mahalanobis distance was expected since the addition of material would increase the amount of 

uranium downstream of the addition which would be outside of normal operating conditions. There was 

a significant increase in the  -statistic (Figures 4.72–4.73), as expected. A fault in the  -statistic was 

expected since material addition changes the relative relationships of the state variables downstream of 

the new input. Therefore, an addition of material was detectable but only in the  -statistic. Since the 

base case incoming uranium was allowed to vary by ±10%, it was reasonable that the scores and 

Mahalanobis distance plots did not produce a clearly detectable fault since this was only slightly more 

than a 10% addition of uranium material. Therefore, this was mostly within the normal operating 

conditions but the relative relationship between the state variables was no longer as modeled. For this 

case, it is recommended that the uranium feed to the plant be monitored for both flow rate and 

uranium content. It is also recommended that the streams exiting each major process (e.g., dissolution, 

solvent extraction, fluorination) as product or waste be monitored for flow rate and uranium content. 
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Additionally, this area of the plant should be inspected to determine that there is not additional uranium 

being fed to the process. Table 4.26 summarizes this faulty case. 

 

 

Table 4.26. Summary of Faulty Case 6 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

High 3 F14A N/A 10 kg/h 
Addition of uranyl 
nitrate to the 
precipitation process 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction - - + ~+ ++ 

Detectability No No Possibly Possibly Yes 
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Figure 4.67. Faulty Case 6 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a slight change in PC1 and PC2 scores, but there was no 

detectable fault. 
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Figure 4.68. Faulty Case 6 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a slight change in PC1 and PC3 scores, but the fault was only 

detectable under certain operating conditions. 
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Figure 4.69. Faulty Case 6 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a slight change in PC2 and PC3 scores, but the fault was only 

detectable under certain operating conditions. 
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Figure 4.70. Faulty Case 6 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed as an ellipsoid. There was a slight change in all scores, but the fault 

is likely undetectable at most operating conditions. 
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Figure 4.71. Faulty Case 6 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a slight change in the Mahalanobis distance, but the fault is 

likely undetectable at most operating conditions. 
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Figure 4.72. Faulty Case 6  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% confidence 

boundary displayed in red. There was a detectable fault. 

 



 

236 
 

 

Figure 4.73. Faulty Case 6 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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4.3.7 Case 7 

For case seven, the effect of inefficient precipitation process operations in Module 3 was investigated. 

Inefficient operations results in uranyl nitrate not being completely converted to AUC and therefore 

additional uranium would leave the process as waste. This case was modeled by changing the extent of 

reaction for the precipitation reaction,       , from 0.9999 to 0.9. During the sensitivity analysis, three 

state variables were identified as being extremely sensitive to changes in this parameter, such that the 

sensitivity factor was -9999. Those state variables were Xss(146), Xss(157), and Xss(169) which 

correspond to the uranyl nitrate in Streams 27, 29, and 31, respectively. In order to get a realistic 

response from the PCA model, these state variables were excluded from the faulty case analysis so as to 

not bias the scores of the new sample runs. Additionally, the molar flow rates of these components 

were very small, so excluding them from analysis was reasonable. The results show that the fault in this 

case was clearly detectable using the  -statistic. 

The extent of reaction for the precipitation reaction,       , appears in the model as shown in Eqs. 

(3.2.3.24)–(3.2.3.32) which are restated here in terms of state variable numbers. 

   (   )  (                   (   ))     (   )      (4.3.7.1) 

    (   )  (                   (   ))     (   )      (4.3.7.2) 

   (   )  (                   (   ))     (   )      (4.3.7.3) 

(                    (   ))     (   )       (4.3.7.4) 

   (   )  (                    (   ))     (   )     (4.3.7.5) 

(                    (   ))     (   )       (4.3.7.6) 

State variables Xss(142), Xss(143), Xss(150), and Xss(151) increased by 20% in comparison with the base 

case nominal solution with the addition of this stream. These were the ammonia and CO2 in Streams 27 

and 28. An additional 78 state variables decreased by 10% when compared to the base case nominal 

solution. These 78 state variables included state variables that were heavy contributors to PC1, PC2, or 

PC3. 

There was a slight shift in all of the scores (Figures 4.74–4.77). However, the fault was not clearly 

detectable in the scores plots because most of the data points were within the 95% confidence 

boundaries, but the fault may be detectable using trend monitoring. A fault in the scores was expected 

since the model is highly sensitive to changes in the uranium bearing streams throughout the process, 

but the fault was not large enough to be detectable in the scores based on all state variables except 
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Xss(146), Xss(157), and Xss(169) which were found to be highly sensitive to changes in this parameter. 

The largest increase was in the third principal component which was heavily loaded by both the product 

and waste streams at the end of Module 3 which were directly affected by this fault. There was also a 

shift in the Mahalanobis distance (Figure 4.78), but some of the data points were within the confidence 

boundary making the fault only detectable under certain operating conditions or by using trend 

monitoring. An increase in the Mahalanobis distance was expected since additional uranium leaving as 

waste was the outside normal operating conditions. Since the fault was not large enough to be clearly 

detectable it showed that this fault was not large enough to be outside of normal operating conditions. 

There was a significant increase in the  -statistic (Figures 4.79–4.80). The  -statistic fault was expected 

since changing the extent of reaction changes the model parameters and therefore the relative 

relationship between the state variables would be different. A 10% reduction in the extent of reaction 

produced a clearly detectable fault only in the  -statistic.  

It is recommended that the product and waste streams in the evaporation and precipitation process 

areas of the facility be monitored for both flow rate and uranium content. For this fault specifically, it is 

recommended that the outlet stream from the precipitation process be monitored for flow rate and 

uranium content as well as type of uranium compound. Table 4.27 summarizes the Case 7 results. 

 

 

Table 4.27. Summary of Faulty Case 7 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

Low 3 XMod3C 0.9999 0.9 

Inefficient precipitation 
process operations 
resulted in less UN 
converted AUC and 
more U in waste 
streams 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction + + - ~+ ++ 

Detectability No No Not likely Possibly Yes 
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Figure 4.74. Faulty Case 7 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was no detectable fault. 
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Figure 4.75. Faulty Case 7 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a slight change in PC3 scores but no detectable fault. 
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Figure 4.76. Faulty Case 7 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a slight change in both PC2 and PC3 scores but no detectable 

fault. 
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Figure 4.77. Faulty Case 7 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed as an ellipsoid. There was a slight change in both PC2 and PC3 scores 

but no detectable fault. 
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Figure 4.78. Faulty Case 7 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was shift but the fault may not be detectable depending on 

operating conditions. 
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Figure 4.79. Faulty Case 7  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% confidence 

boundary displayed in red. There was a detectable fault. 
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Figure 4.80. Faulty Case 7 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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4.3.8 Case 8 

For the eighth faulty case, inefficient separation operations of the filtration system downstream of the 

hydrofluorination reaction in Module 4 were investigated. Inefficient filtration resulted in additional 

uranium being diverted to the off-gas waste stream. This case was modeled by changing the filter 

fractionation parameters           and           for the UF4 and UO2 in Module 4F, respectively. For 

both, the base case value was increased ten times. Therefore, the value of           was increased 

from 0.00001 to 0.0001, and the value of           was increased from 0.001 to 0.01. The results show 

that this fault was only detectable in the  -statistic. 

These parameters appear in the model as shown in Eqs. (3.2.4.48) and (3.2.4.49) which are restated 

here in terms of state variable numbers. 

             (   )     (   )        (4.3.8.1) 

             (   )     (   )        (4.3.8.2) 

The base case nominal value for Xss(214) was 0.002 while the faulty case 8 value was 0.02. The base 

case nominal value for Xss(215) was 0.01 while the faulty case 8 value was 0.1. This is an increase of ten 

times in both cases. Based on the sensitivity analysis, Xss(214) was the only state variable sensitive to 

changes in           and Xss(215) was the only state variable sensitive to changes in          . The 

sensitivity factors for each of these were one, which was corroborated by the results. Xss(207) and 

Xss(214) moderately loaded PC1 while Xss(208) and Xss(215) moderately loaded PC2. 

There was no detectable fault in any of the scores plots even though there were slight shifts in the 

scores. There was a slight increase in the Mahalanobis distance (Figure 4.81), but most of the data 

points were still within the 95% confidence boundary so the fault was not likely to be detectable. An 

increase in the Mahalanobis distance was expected since additional material in the waste is outside 

normal operating conditions. However, since this was such a small change, it was not significant enough 

to be outside of normal conditions. Even though the increase was large, the actual amounts from the 

fractionations were still very small even after the increase. A significant increase occurred in the 

 -statistic (Figures 4.82–4.83). This fault was expected in the  -statistic since changing the filter 

fractionation changes the parameters and therefore the relative relationship between the state 

variables would be different. The fault in the  -statistic was expected to be large since this was a large 

change in two parameters which should result in a detectable change in the relationships between the 

parameters and state variables. If a fault of this nature needs to be detectable, then the state variables 

Xss(214) and Xss(215) need to be weighted much more during the scaling stage in the data pre-

processing since they are the only two state variables affected by a change in           and           

according to the results of the sensitivity analysis. These parameters were increased significantly 

(approximately 900% over the nominal base case values) even though the values were very small so that 

there was not a significant change in the amount of uranium diverted to waste. The diversion was 
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clearly detectable in the  -statistic. It is recommended that the off-gas stream from the 

hydrofluorination process be monitored for uranium content. This case is summarized in Table 4.28. 

 

 

Table 4.28. Summary of Faulty Case 8 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

Medium 4 
KMod4F,16 and 

KMod4F,17 
0.00001; 

0.001 
0.0001; 

0.01 

Inefficient separation 
downstream of the 
hydrofluorination 
reaction results in more U 
in Module 4 waste 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction - - + ~+ ++++ 

Detectability No No No Not Likely Yes 
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Figure 4.81. Faulty Case 8 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was shift, but the fault may not be detectable under most 

operating conditions. 
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Figure 4.82. Faulty Case 8  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% confidence 

boundary displayed in red. There was a detectable fault. 
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Figure 4.83. Faulty Case 8 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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4.3.9 Case 9 

The ninth faulty case tested the ability of the model to detect the diversion of UF6 from the secondary 

fluorination process in Module 5. In this case, the model was modified to allow for UF6 to exit the 

process at the gas separator in Module 5F. Several percentages of diversion were tested to reach a 

detectable scenario; only the 75% diversion results are presented below. This appears to be a very large 

diversion but since only 10% of the incoming uranium to Module 5 was diverted to the secondary 

reactor this diversion was not significant. Therefore, this corresponded to an overall diversion of 

approximately 8%. The results show that this fault was only detectable in the  -statistic.  

Equation (4.3.9.1) shows the UF6 balance for the gas separator, where Xss(281) represents the UF6 in 

Stream 56. 

            (   )     (   )       (4.3.9.1) 

   (   )     (   )     (   )      (4.3.9.2) 

   (   )     (   )       (4.3.9.3) 

In this faulty case, both Xss(265) and Xss(272) result in a reduction of 75% in comparison to the base 

case nominal values as expected. The final product [Xss(273)] results in an 8% reduction in comparison 

to the base case nominal values which would be within the range of normal operation. 

There was no detectable fault in any of the scores plots. It was expected that there would be no fault in 

the scores because the primary state variables [Xss(265), Xss(269), Xss(270), and Xss(272)] that were 

most directly affected by this fault contributed only slightly if at all to the first four principal components 

because they were not differentially weighted. There was also no detectable change in the Mahalanobis 

distance. It was expected that there would not be a fault in the Mahalanobis distance since this reduced 

the final uranium product by only 8% which should be within the allowed ±10% variation of the base 

case model. There was an increase in the  -statistic (Figures 4.84–4.85). The  -statistic fault was 

expected since this changed a parameter and therefore the relative relationship between the state 

variables. The fault in the  -statistic was detectable at this percentage of diversion but may not be 

detectable at lower percentages of diversion. It is highly recommended that the final product from the 

NUCP be monitored and correlated to the uranium feed to the plant. Table 4.29 summarizes this faulty 

case. 
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Table 4.29. Summary of Faulty Case 9 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

Medium 5 SMod5F,1 N/A 0.75 

Diversion of UF6 
through the off-gas of 
the secondary 
fluorination process 
in Module 5 

Summary of Results 

  
PC1 

Scores 
PC2 

Scores 
PC3 

Scores 
T2 Q 

Direction 0 0 0 0 ++ 

Detectability No No No No Yes 
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Figure 4.84. Faulty Case 9  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% confidence 

boundary displayed in red. There was a detectable fault. 
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Figure 4.85. Faulty Case 9 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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4.3.10 Case 10 

The tenth faulty case tested the ability of the model to detect inefficient operations of the fluorination 

processes in Module 5. In this case, the extents of reaction for both the primary and secondary 

fluorination reactions were changed from 0.999 to 0.95. During the sensitivity analysis, seven variables 

were identified as being extremely sensitive to changes in these parameters. Those state variables were 

Xss(236), Xss(239), Xss(245), Xss(250), Xss(260), Xss(266), and Xss(269) which correspond to the UF4 in 

Streams 49, 50, 51, 53, 55, 57, and 58, respectively. The results show that this fault was only detectable 

in the  -statistic.  

The extents of reaction for both the primary and secondary fluorination reactions appear in the model 

as shown in Eqs. (3.2.5.17)–(3.2.5.19) and Eqs. (3.2.5.41)–(3.2.5.43) which are restated here in terms of 

state variable numbers. 

   (   )  (                   (   ))     (   )      (4.3.10.1) 

(                    (   ))     (   )       (4.3.10.2) 

   (   )  (                    (   ))     (   )      (4.3.10.3) 

   (   )  (                   (   ))     (   )      (4.3.10.4) 

   (   )  (                    (   ))     (   )      (4.3.10.5) 

   (   )  (                    (   ))     (   )      (4.3.10.6) 

Both Xss(258) and Xss(264) which correspond to the fluorine in Streams 55 and 56, respectively, 

increased by 48% over the base case nominal value due to this change in the extent of reaction. Another 

nine state variables decreased between 4.5% and 4.9% in comparison to the base case nominal values as 

well. These were the UF6 in Streams 49, 51–55, 57, 59, and 60.  

There was no detectable fault in any of the scores plots. It was expected that there would be no fault in 

the scores because the primary state variables in Module 5 with the exception of Xss(273) contributed 

at most moderately and in most cases only slightly if at all to the first four principal components. There 

was also no detectable change in the Mahalanobis distance. It was expected that there would not be a 

fault in the Mahalanobis distance since this was only approximately a 5% reduction in the final uranium 

product which may be within the normal variation of the base case model. There was an increase in the 

 -statistic (Figures 4.86–4.87). The  -statistic fault was expected since this changed parameters and 

therefore the relative relationship between the state variables. The fault in the  -statistic was clearly 
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detectable. It is recommended that the feed, product, and waste streams in the fluorination process 

area be monitored for flow rate and uranium content. Table 4.30 summarizes this faulty case. 

 

 

Table 4.30. Summary of Faulty Case 10 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

High 5 
XMod5B and 

XMod5E 
0.999 0.95 

Inefficient operations 
of the fluorination 
processes in Module 
5 results in less UF4 
converted to UF6 and 
more U in the waste 
streams 

Summary of Results 

  
PC1 

Scores 
PC2 

Scores 
PC3 

Scores 
T2 Q 

Direction 0 0 0 0 ++ 

Detectability No No No No Yes 
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Figure 4.86. Faulty Case 10  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% 

confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.87. Faulty Case 10 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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4.3.11 Case 11 

For the eleventh faulty case, a percentage of the UF6 product was diverted from the final mixer in 

Module 5. Streams 52 and 59 were pure UF6 that were mixed to form the final product of the process. In 

this case, a new stream (61) was formed by diverting a percentage of Streams 52 and 59. Several 

percentages were tested; the diversion of 20% is presented below. The results show that this fault was 

only detectable in the  -statistic.  

Equations (4.3.11.1) and (4.3.11.2) show the material balance for the UF6 in Streams 60 and 61, where 

Xss(281) represents the UF6 in Stream 61. 

   (   )     (   )     (   )     (   )      (4.3.11.1) 

         [   (   )     (   )]     (   )      (4.3.11.2) 

There was no detectable fault in any of the scores plots. It was expected that there would be no fault in 

the scores because the diversion stream and the final product [Xss(273)] both exit the plant and have no 

additional interaction with the model. Even though Xss(273) was a heavy contributor to both PC1 and 

PC3, it was the only primary state variable affected by this diversion and the diversion was not 

significant enough to result in a detectable fault in the scores plots. There was also no detectable change 

in the Mahalanobis distance. It was expected that there would not be a detectable fault in the 

Mahalanobis distance since only one primary state variable was affected even though the diversion was 

above the 10% allowed variation. There was an increase in the  -statistic (Figures 4.88–4.89). The 

 -statistic fault was expected since this changed the relative relationship between the state variables. 

This case is of extremely high concern for safeguards and the goal of this detection framework was to be 

able to detect 10% diversion. However, since the final product in the base case data matrix varied from  

-27.8% to +15.5% based on the nominal steady-state solution for Xss(273), this diversion of UF6 could be 

within the normal variation of the base case. It is highly recommended that the final product from the 

NUCP be monitored and correlated to the uranium feed to the plant. Table 4.31 summarizes this faulty 

case. 
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Table 4.31. Summary of Faulty Case 11 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

High 5 SMod5F,2 N/A 0.2 
Diversion of 20% of 
the purified UF6  

Summary of Results 

  
PC1 

Scores 
PC2 

Scores 
PC3 

Scores 
T2 Q 

Direction 0 0 0 0 ++ 

Detectability No No No No Yes 

 

 

 

Figure 4.88. Faulty Case 11  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% 

confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.89. Faulty Case 11 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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4.3.12 Case 12 

Faulty Case 12 was the first case used to test the effect of changes in multiple parameters or inputs. It 

combined changes in two previous faulty cases: Case 1D and Case 11. The uranium input flow rate was 

increased by 25% in Module 1 for Case 1D and 20% of the UF6 product was diverted through a new 

output stream in Module 5 for Case 11. This case models the scenario where additional uranium is fed 

to the process and then additional purified uranium is diverted before declaration at the end of the 

process. In Case 1D, the uranium input flow rate was not allowed to vary for data generation however in 

this case variation was set at ±10% as in the base case. The results show that this combination of faults 

was clearly detectable under all conditions using the  -statistic. Additionally, under some conditions, 

this fault was detectable using PC1 scores and the Mahalanobis distance. 

There was a shift in PC1 scores as expected based on Case 1D because the incoming uranium flow rate 

[Xss(274)] was a heavy contributor to PC1. However, the fault in PC1 scores was not clearly detectable 

under all conditions since approximately 50% of the data points were still within the 95% confidence 

boundary. However, since the shift was rather significant, a shift in the trend of the PC1 scores may be 

easily detectable when monitored. There were also slight shift in PC2 and PC3 scores but these were not 

clearly detectable under nearly all conditions. The scores plots are shown in Figures 4.90–4.93. There 

was an increase in the Mahalanobis distance as well (Figure 4.94). However, there are some conditions 

under which this fault would not be detectable using the Mahalanobis distance since some of the data 

points were within the 95% confidence boundary, but a shift in the trend in    may be more detectable. 

The shift in the Mahalanobis distance was expected based on Case 1D and because an increase in the 

throughput by 25% is outside the normal operating conditions of ±10% variation in incoming uranium 

flow rate. There was a significant increase in the  -statistic (Figures 4.95–4.96) to well outside the 95% 

confidence boundary. The fault was clearly detectable under all operating conditions using the 

 -statistic. The fault in the  -statistic was expected based on Case 11 and because the diversion was 

based on a parameter change which changes the relative relationship between the state variables. It is 

recommended that the uranium feed to the plant be monitored for both flow rate and uranium content. 

Additionally, it is recommended that the streams exiting each major process (e.g., dissolution, solvent 

extraction, fluorination) as product or waste be monitored for flow rate and uranium content. It is highly 

recommended that the final product from the NUCP be monitored and correlated to the uranium feed 

to the plant. This faulty case along with a comparison of the Case 1D and Case 11 results are provided in 

Table 4.32. 
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Table 4.32. Summary of Faulty Case 12 

Summary of Faulty Case 

Priority Modules 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical 
Description 

High 1 and 5 
F1A,U and 
SMod5F,2 

50 kg/h; N/A 
62.5 kg/h; 

0.2 

Increase uranium 
throughput by 
25% then divert 
20% of the 
purified UF6 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction - + - + ++ 

Detectability Possibly No No Possibly Yes 

Comparison to Individual Faulty Case Results 

  
PC1 

Scores 
PC2 

Scores 
PC3  

Scores 
T2 Q 

Case 1D 

Direction - 0 0 + 0 

Detectability Possibly No No Yes No 

Case 11 

Direction 0 0 0 0 ++ 

Detectability No No No No Yes 
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Figure 4.90. Faulty Case 12 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift in PC1 scores which may not be detectable depending 

on operating conditions. 
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Figure 4.91. Faulty Case 12 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift in PC1 scores which may not be detectable depending 

on operating conditions. 
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Figure 4.92. Faulty Case 12 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was no detectable fault. 
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Figure 4.93. Faulty Case 12 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed as an ellipsoid. There was a shift in PC1 scores which may not be 

detectable depending on operating conditions. 
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Figure 4.94. Faulty Case 12 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift, but it may not be detectable depending on operating 

conditions. 
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Figure 4.95. Faulty Case 12  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% 

confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.96. Faulty Case 12 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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4.3.13 Case 13 

Faulty Case 13 was the second case used to test the effect of changes in multiple parameters or inputs. 

It combined changes in two previous faulty cases: Case 7 and Case 10. Both of the previous cases 

investigated inefficient operations. In Case 7, inefficient precipitation process operations were 

investigated by changing the extent of reaction for the precipitation reaction,       , from 0.9999 to 

0.9 in Module 3. In Case 10, inefficient operations of the fluorination processes in Module 5 were 

investigated by changing the extents of reaction for both the primary and secondary fluorination 

reactions from 0.999 to 0.95. The results show that this combination of faults was clearly detectable 

using the  -statistic. 

There was a slight shift in PC1, PC2, and PC3 scores with PC3 scores having the greatest shift. However, 

there were no clearly detectable faults in the scores plots. The responses in the scores were very similar 

to those from Case 7. There was also an increase in the Mahalanobis distance (Figure 4.97) which was 

similar to Case 7. The fault would only be detectable under certain conditions since many of the data 

points were still within the 95% confidence boundary or detectable in trend monitoring. There was an 

increase in the  -statistic (Figures 4.98–4.99) which was larger than that from both Case 7 and Case 10. 

Since this case was a combination of inefficient operations, it was also expected that the effects of the 

faults would be larger due to an additive effects of the faults which was the case for the  -statistic, since 

it was the only diagnostic plot that resulted in a clearly detectable fault for both individual cases. It is 

recommended that the outlet stream from the precipitation process be monitored for flow rate and 

uranium content as well as type of uranium compound. It is also recommended that the feed, product, 

and waste streams in the fluorination process area be monitored for flow rate and uranium content. 

This faulty case along with a comparison of the Case 7 and Case 10 results are provided in Table 4.33. 
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Table 4.33. Summary of Faulty Case 13 

Summary of Faulty Case 

Priority Modules 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

High 3 and 5 
XMod3C, 

XMod5B,  and 
XMod5E 

0.9999; 0.999 0.9; 0.95 

Inefficient operations 
in Module 3 and 5 
resulted in less U 
converted to desired 
products and more U 
in waste streams 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction + + - ~+ ++ 

Detectability No No Not likely Possibly Yes 

Comparison to Individual Faulty Case Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Case 7 

Direction + + - ~+ ++ 

Detectability No No Not likely Possibly Yes 

Case 10 

Direction 0 0 0 0 ++ 

Detectability No No No No Yes 
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Figure 4.97. Faulty Case 13 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a shift but the fault may not be detectable depending on 

operating conditions. 
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Figure 4.98. Faulty Case 13  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% 

confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.99. Faulty Case 13 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was detectable fault in the  -statistic. 
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4.3.14 Case 14 

Faulty Case 14 was the third case used to test the effect of changes in multiple parameters or inputs. It 

combined changes in two previous faulty cases: Case 2 and Case 3. In Case 2, the effect of changing the 

purity of the uranium feed was investigated by changing the uranium input stream from 85 wt-% U3O8 

and 15 wt-% impurities (7.5 wt-% soluble impurities and 7.5 wt-% insoluble impurities) to 90 wt-% U3O8 

and 10 wt-% impurities (5 wt-% soluble impurities and 5 wt-% insoluble impurities) in Module 1. In Case 

3, inefficient dissolver operations in Module 1 were investigated by changing the extent of reaction for 

the dissolution reaction,      , from 0.9799 to 0.95. The results show that the combination of faults 

was clearly detectable in all of the diagnostic plots. 

There was a shift in all of the scores plots (Figures 4.100–103) with the largest fault being in PC3 scores. 

There was a detectable increase in the Mahalanobis distance (Figure 4.104). There was also a significant 

increase in the  -statistic (Figures 4.105–106). The results from Case 2 produced shifts in all of the 

scores but no detectable faults, a shift in the Mahalanobis distance which may not be detectable 

depending on operating conditions, and a large increase in the  -statistic (see Figures 4.39–4.45). The 

results from Case 3 produced faults in all of the scores plots, along with a large increase in the 

Mahalanobis distance, and a significant increase in the  -statistic (see Figure 4.46–4.52). For Case 14, it 

was hypothesized that based on the direction of the faults in the scores of Cases 2 and 3 that it was 

possible for these faults to cancel one another out. However, the faults caused by Case 3 were so large 

that the overall faults were not canceled but the fault magnitude was reduced slightly in both the scores 

and the Mahalanobis distance. For the  -statistic the combined fault was larger than the individual 

cases showing an additive effect such as that in Case 13. It is recommended that the streams exiting 

each major process (e.g., dissolution, solvent extraction, fluorination) as product or waste be monitored 

for flow rate and uranium content would also detect this fault. It is possible that there is a combination 

of faults that could cancel out one another’s effects such that the fault is not detectable. This faulty case 

along with a comparison of the Case 2 and Case 3 results are provided in Table 4.34.  
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Table 4.34. Summary of Faulty Case 14 

Summary of Faulty Case 

Priority Module 
Faulty 

Variable 
Base Case 

Value 
Faulty 
Value 

Physical Description 

Low 1 
x1A,18 and 

XMod1A 
0.85; 0.9799 0.90; 0.95 

Decrease the impurities in 
the uranium feed and 
reduce the amount of U3O8 
converted to UN resulting 
in more U in waste 
streams 

Summary of Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Direction - + -- ++ ++++ 

Detectability Possibly  Possibly Yes Yes Yes 

Comparison to Individual Faulty Case Results 

  
PC1 

Scores 
PC2  

Scores 
PC3  

Scores 
T2 Q 

Case 2 

Direction + - + ~+ +++ 

Detectability No No Possibly Possibly Yes 

Case 3 

Direction - + -- +++ ++++ 

Detectability Possibly  Possibly Yes Yes Yes 
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Figure 4.100. Faulty Case 14 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was shift in both PC1 and PC2 scores, but the fault may not be 

detectable depending on operating conditions. 
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Figure 4.101. Faulty Case 14 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was shift in both PC1 and PC3 scores, and the fault was 

detectable. 

 



 

280 
 

 

Figure 4.102. Faulty Case 14 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was shift in both PC2 and PC3 scores, and the fault was 

detectable. 
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Figure 4.103. Faulty Case 14 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed as an ellipsoid. There was a detectable fault. 
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Figure 4.104. Faulty Case 14 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was detectable fault. 
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Figure 4.105. Faulty Case 14  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% 

confidence boundary displayed in red. There was detectable fault. 
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Figure 4.106. Faulty Case 14 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the base 

case 95% confidence boundary displayed in red. There was detectable fault in the  -statistic. 
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4.3.15 Summary of Faulty Case Results 

Table 4.35 summarizes which diagnostic plots detected the fault represented by each case. The goal of 

detectability was to detect the diversion of 10% of the uranium throughput on this size conversion plant 

which was satisfied in the case of total plant throughput. Faulty Case 1 tested increasing the total 

throughput (10% and 50%) and the uranium throughput (15% and 25%). Increasing the total throughput 

resulted in a fault in PC1 scores, the Mahalanobis distance, and the  -statistic. For a 10% increase in 

total throughput, the  -statistic fault was the only detectable fault while the 50% increase caused both 

the fault in PC1 scores, the Mahalanobis distance, and the  -statistic to be detectable. Based on these 

results and the magnitude of the fault in the  -statistic, a 10% increase in all incoming flow rates was 

still clearly detectable which indicates that a smaller increase in total throughput may be detectable as 

well. Increasing the uranium throughput by 25% resulted in a fault in PC1 scores, a detectable increase 

in the Mahalanobis distance, and no obvious change in the  -statistic. The fault in PC1 scores was 

expected since the loadings vector for PC1 was dominated by the incoming uranium flow rate and the 

model was very sensitive to changes in the incoming uranium. The 15% increase in uranium throughput 

was not detectable in any of the diagnostic plots. However, this was still reasonable since ±10% variation 

was built into the base case for the incoming uranium. Therefore, the minimum detectable level was 

between 5–15% and the goal was 10% which means that the goal was also met for the case of increasing 

uranium throughput only. Additional scaling may improve the detectability of this fault. It is 

recommended that the uranium feed to the plant be monitored for both flow rate and uranium content. 

Additionally, it is recommended that the streams exiting each major process (e.g., dissolution, solvent 

extraction, fluorination) as product or waste be monitored for flow rate and uranium content. 

Increasing the purity of the uranium feed by approximately 6% (Case 2) was clearly detectable in the 

 -statistic and may also be detectable in PC3 scores and the Mahalanobis distance depending on 

operating conditions. Since the model was developed based on the feed to the plant being specified as 

the mass of elemental uranium not concentration, this case physically represented a reduction in the 

impurities that were also fed to the plant along with the uranium. Monitoring the uranium feed for both 

flow rate and uranium content would be the recommended approach for detecting this type of fault. 

However, monitoring the streams exiting each major process (e.g., dissolution, solvent extraction, 

fluorination) as product or waste for flow rate and uranium content would also detect this fault. 

Even a relatively small (~3%) reduction in the efficiency of the dissolver operation (Case 3) was clearly 

detectable in PC3 scores, the Mahalanobis distance, and the  -statistic. Inefficient operations would 

result in the uranium not being completely dissolved and therefore additional uranium would leave the 

process as waste. The U3O8 component in the waste from both the dissolution and solvent extraction 

processes was extremely sensitive to a decrease the extent of the dissolution reaction. Due to this, it is 

recommended that the waste streams from both the dissolution and solvent extraction processes be 

monitored for both flow rate and uranium content.  
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Table 4.35. Summary of Faulty Case Results 

Case 
# 

Safeguards 
Priority 

Description Detectable Faults 

1A High Increase total plant throughput by 50% PC1 scores, T2, Q 

1B High Increase total plant throughput by 10% Q 

1C High Increase uranium throughput by 15% None, maybe T2 

1D High Increase uranium throughput by 25% T2, maybe PC1 scores 

2 Low Increase the incoming uranium purity by 5.9% Q, maybe PC3 scores and T2 

3 Medium 
Inefficient dissolver operations, reduce extent 

of reaction by 3% 
PC3 scores, T2, Q, maybe PC1 

scores and PC2 scores 

4 High 
Inefficient re-extraction operations, reduce 

uranyl nitrate extraction by 9.9% 
PC3 scores, T2, Q but only 
under certain conditions 

5 High 
Diversion of 0.25% of the uranium from the 

evaporator 
All diagnostic plots 

6 High 
Addition of uranyl nitrate to the precipitation 

process 
Q, maybe PC3 scores and T2 

7 Low 
Inefficient precipitation process operations, 

reduce extent of reaction by 10% 
Q 

8 Medium 
Inefficient separation downstream of the 

hydrofluorination reaction 
Q 

9 Medium 
Diversion of 75% of the UF6 from the 

secondary fluorination process 
Q 

10 High 
Inefficient operations of the fluorination 

processes, reduce extent of reaction by 4.9% 
Q 

11 High Diversion of 20% of the purified UF6  Q 

12 High multiple parameters  Q, maybe PC1 scores and T2 

13 High multiple parameters  Q, maybe T2 

14 Low multiple parameters  All diagnostic plots 
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A reduction of approximately 10% in the efficiency of the re-extraction of uranium from the organic 

phase (Case 4) may be detectable in the PC3 scores, the Mahalanobis distance, and the  -statistic but 

only under certain operating conditions. Additional scaling may improve the detectability of this fault. 

Inefficient re-extraction results in additional uranium being diverted to the organic waste stream where 

it could be recovered and purified at an undeclared location. Due to this and since this is a high priority 

for safeguards, it is very strongly recommended that the product and waste streams from the solvent 

extraction process be monitored for both flow rate and uranium content. 

Diverting only 0.25% of the material in the evaporator in Module 3A to waste (Case 5) produced large 

faults in all of the diagnostic plots (scores, Mahalanobis distance, and  -statistic). From a safeguards 

perspective, it would be expected that a diversion of this nature would be very small so as not to be 

detected. The model was extremely sensitive to diversion of material within the evaporation and 

precipitation portion of the process. It is recommended that the stream leaving the evaporator to feed 

the precipitation process be monitored for both flow rate and uranium content. This area of the plant 

should also be inspected for additional piping which may be diverting material to another location. 

Additionally, the waste stream from the evaporator should be monitored for flow rate and uranium 

content as well in case material is being diverted to the waste directly.  

Case 6 determined that adding a small amount (~12% of the original incoming uranium) of pure uranyl 

nitrate to the precipitation process was clearly detectable in the  -statistic. This fault may also be 

detectable in PC3 scores and the Mahalanobis distance depending on operating conditions. Since the 

base case incoming uranium was allowed to vary by ±10%, it was reasonable that the scores and 

Mahalanobis distance plots did not produce a detectable fault under all conditions since this was only 

slightly more than the normal operating conditions. For this case, it is recommended that the uranium 

feed to the plant be monitored for both flow rate and uranium content. It is also recommended that the 

streams exiting each major process (e.g., dissolution, solvent extraction, fluorination) as product or 

waste be monitored for flow rate and uranium content. Additionally, this area of the plant should be 

inspected to determine that there is not additional uranium being fed to the process. 

A 10% reduction in the efficiency of the precipitation process in Module 3 (Case 7) produced a clearly 

detectable fault in the  -statistic. Inefficient operations results in uranyl nitrate not being completely 

converted AUC and therefore additional uranium would leave the process as waste. It is recommended 

that the product and waste streams in the evaporation and precipitation process areas of the facility be 

monitored for both flow rate and uranium content. For this fault specifically, it is recommended that the 

outlet stream from the precipitation process be monitored for flow rate and uranium content as well as 

type of uranium compound. 

Inefficient separation operations of the filtration system downstream of the hydrofluorination reaction 

Module 4 (Case 8) resulted in additional uranium being diverted to the off-gas waste stream. This fault 

was only detectable in the  -statistic. These parameters were increased significantly even though the 
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values were very small so that there was not a significant change in the amount of uranium diverted to 

waste. It is recommended that the off-gas stream from the hydrofluorination process be monitored for 

uranium content.  

Case 9 tested the ability of the model to detect the diversion of UF6 from the secondary fluorination 

process in Module 5; several diversion scenarios were tested but 75% was determined to be the 

minimum detectable limit and the fault was only detectable in the  -statistic. This appeared to be a very 

large diversion but since only 10% of the incoming uranium to Module 5 was sent to the secondary 

reactor this diversion was not significant (~7.5% overall diversion). Additionally, this was within the 

detection goal for the monitoring framework. Additional scaling may improve the detection limits of this 

fault. It is highly recommended that the final product from the NUCP be monitored. The final product 

should also be related back to the uranium feed to the plant. 

A small reduction (~5%) in the efficiency of both of the fluorination processes in Module 5 (Case 10) 

produced a detectable fault the  -statistic. In real operations, this would result in less UF4 being 

converted to UF6 and would cause an increase in the amount of UF4 in the waste streams which could be 

recovered and processed elsewhere. It is recommended that the feed, product, and waste streams in 

the fluorination process area be monitored for flow rate and uranium content.  

A diversion of 20% of the UF6 product from the final mixer in Module 5 to an undeclared product stream 

(Case 11) was detectable in the  -statistic plot only. This case is of extremely high concern for 

safeguards and the goal of this detection framework was to be able to detect 10% diversion which was 

possible since this case represents 10% over the maximum of the base case allowed variation in uranium 

of ±10%. It is highly recommended that the final product from the NUCP be monitored and correlated to 

the uranium feed to the plant.  

Case 12 combined two previous cases: Case 1D (uranium input flow rate increased by 25%) and Case 11 

(20% of the UF6 product diverted through a new output stream). This case models the scenario where 

additional uranium is fed to the process and then additional purified uranium is diverted before 

declaration at the end of the process. This fault was detectable under all conditions using the  -statistic. 

Additionally, under some conditions, this fault was detectable using PC1 scores and the Mahalanobis 

distance. It is recommended that the uranium feed to the plant be monitored for both flow rate and 

uranium content. Additionally, it is recommended that the streams exiting each major process (e.g., 

dissolution, solvent extraction, fluorination) as product or waste be monitored for flow rate and 

uranium content. It is highly recommended that the final product from the NUCP be monitored and 

correlated to the uranium feed to the plant. 

Case 13 also combined two previous cases that both investigated inefficient operations: Case 7 

(precipitation process) and Case 10 (fluorination processes). There was a large fault in the  -statistic 

which was larger than that of the individual cases showing that multiple faults can have an additive 

effect on the diagnostic plot results. Case 13 had similar results to Case 7 in the scores and Mahalanobis 
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distance. There were no detectable faults in the scores or Mahalanobis distance in Case 10 to impact the 

results of Case 13. However, the faults in Case 13 would only be detectable under certain conditions 

using the scores or Mahalanobis distance since many of the data points were still within the 95% 

confidence boundary. Since this case was a combination of inefficient operations, it was also expected 

that the faults would be larger due to an additive effects of the faults which was the case for the 

 -statistic since it was the only diagnostic plot that resulted in a fault for both individual cases. It is 

recommended that the outlet stream from the precipitation process be monitored for flow rate and 

uranium content as well as type of uranium compound. It is also recommended that the feed, product, 

and waste streams in the fluorination process area be monitored for flow rate and uranium content. 

Case 14 combined two previous cases: Case 2 (increased purity of uranium feed) and Case 3 (inefficient 

dissolver operations). The results show that the fault in this case was detectable in all of the diagnostic 

plots. For Case 14, it was hypothesized that based on the direction of the faults in the scores of Cases 2 

and 3 that it was possible for these faults to cancel one another out. However, the faults caused by Case 

3 were so large that the overall faults were not canceled but the fault magnitude was reduced slightly in 

both the scores and the Mahalanobis distance. For the  -statistic the combined fault was larger than 

the individual cases showing an additive effect such as that in Case 13. It is recommended that the 

streams exiting each major process (e.g., dissolution, solvent extraction, fluorination) as product or 

waste be monitored for flow rate and uranium content to detect this fault. It is possible that there is a 

combination of faults that could cancel out one another’s effects such that the fault is not detectable. 

 

4.3.16 Recommendations for Safeguards Monitoring 

Based on the results of this work, the following recommendations are made for monitoring an NUCP for 

safeguards. At a minimum, the uranium feed to the plant must be monitored both for feed rate and 

uranium content as well as the final product from the plant. These need to be correlated such that it can 

be determined that all of the uranium feed was converted and exited the plant in the final UF6 product 

with the exception of acceptable losses to waste (total loss of up to 10%). The loss to waste in the ideal 

plant model was nominally 8%. If the uranium losses are greater than expected, then it must be 

determined where the uranium was lost/diverted. Since the IAEA safeguards goal for a small NUCP 

(100 MTU/yr) is to detect the diversion of 10 MT of natural uranium with a timeliness period of one year 

and a detection probability of 50%, a loss of 10% to waste may not be too much to achieve the detection 

goal. Therefore, it is also recommended that all of the waste streams be monitored to detect excess 

uranium. Since the process operates serially where the product of one process becomes the feed to the 

next process, monitoring the feed, final product, and all waste streams provides the minimum 

monitoring necessary to close the material balance and offer any certainty that uranium has not been 

diverted or additional uranium has not been fed to the plant. If it is not reasonable to monitor all wastes 

then the waste streams that are most likely to contain diverted uranium must be monitored. These 
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would be Module 1 Stream 8, Module 2 Stream 20, Module 3 Stream 31, Module 4 Stream 43, and 

Module 5 Stream 50. 

The second option for monitoring that is recommended would be to add monitoring of the intermediate 

products throughout the process to the recommendation above. These are the products from each 

module that becomes the feed to the next module: Module 1 Stream 12, Module 2 Stream 19, Module 3 

Stream 30, and Module 4 Stream 44. Since there is normally some time lag between processes in actual 

plants, these would need to be monitored as the product of one process and then the feed to the next 

process. Monitoring both the flow rate and the uranium content would be necessary to determine that 

diversion of uranium had not occurred.  

The third option for monitoring that could confirm that diversion had not occurred would be the 

monitoring of select intermediate streams. These streams could be correlated with the feed, product, 

and waste streams in that process area to determine that uranium was not diverted or added to the 

process. These streams are Module 1 Streams 1 and 4; Module 2 Stream 14; Module 3 Streams 22 and 

27; Module 4 Streams 34, 39, and 42; and Module 5 Streams 46, 49, 52, 55, and 59. Based on this 

research, it is unnecessary to monitor this number of streams in the plant. 

The final level of monitoring that would be able to completely close the material balance and ensure 

that no additional uranium is fed to the process and that no uranium is diverted from the process would 

require monitoring all of the streams throughout the plant for both flow rate and uranium content. 

However, this would be too challenging to implement both from the perspective of the plant and the 

costs required to purchase and install that number of monitoring points. Additionally, based on this 

research, it is extremely unnecessary to monitor all of the streams in the plant.  

Therefore, if not cost prohibitive, the second option would be the best safeguards monitoring system to 

be applied with this detection framework. Since all of the intermediate and product stream content are 

highly correlated, monitoring of selected subset of stream flow rates and uranium content would be 

adequate. This framework could also be applied to the less intrusive option 1 as well. However, the 

likelihood of detection is reduced as the number of monitoring points is reduced.  

 

4.3.17 Reduced State Variable Monitoring Framework Test Case 

As recommended above, the second option would be the best safeguards monitoring system to be 

applied with this detection framework. However, this framework could also be applied to the less 

intrusive option 1 as well. Due to this, a cursory test of the monitoring framework was completed to 

determine whether or not option 2 would be a viable option for fault detection. 
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4.3.17.1 Reduced Base Case 

For this reduced case monitoring framework, the original base case system was reduced from 273 state 

variables to 23 state variables. The state variables retained for the reduced base case along with the 

nominal steady-state solution is shown in Table 4.36. The only state variables retained for the reduced 

case were the uranium-bearing components in the product stream of each module and the 

uranium-bearing components in the waste streams from each module. A total of fourteen streams not 

including input streams are represented in the reduced case as opposed to sixty streams in the original 

case. 

The reduced case data matrix was generated in the same manner as the original base case data matrix. 

The parameters were set at the same values and the same input variables and variation ranges were 

used in the reduced case. The data matrix was pre-processed in the same manner except that 

differential weighted scaling was not used in the reduced case; the data matrix was scaled to unit 

standard deviation. One percent Gaussian white noise was also added to the reduced case. For the 

reduced case, the columns of the data matrix which represented the state variables that were retained 

(Table 4.36) were extracted to form the new reduced case data matrix. Singular value decomposition 

was applied to this new reduced case data matrix to extract the principal component model. Based on 

the Scree plot (Figure 4.107), six principal components were retained for the reduced case PC model. 

This retains approximately 92% of the original information. The 95% confidence boundaries were 

established for the new PC model. 

The first principal component is an average of the behavior of the system where most of the state 

variables are equal contributors including the first input variable [Xss(274)]. The second principal 

component represents variables within Module 4. The third principal component represents correlations 

between the input variables and state variables within Modules 1–3. 

Three of the faulty cases were used to test the new reduced PC model for the detection of diversion of 

uranium in an NUCP. The cases were 1D, 4, and 11. In each case, the fault was clearly detectable in at 

least one of the diagnostic plots. The faulty case data matrices were generated in the same manner as 

before. Noise was added and the data matrices were also pre-processed in the same manner as before 

but without differential weighted scaling. As with the reduced base case, the columns of the data matrix 

which represented the state variables that were retained (Table 4.36) were extracted to form the new 

reduced faulty case data matrix which was then regressed against the PC model to determine the 

detectability of the fault. Each faulty case is briefly discussed below. Based on these initial results, it is 

possible to detect diversion in an NUCP by monitoring only the uranium input, the final UF6 product, the 

intermediate uranium-bearing products from each module, and the uranium-bearing waste streams. 

Therefore, option 2 is sufficient as a safeguards monitoring system to be applied with this detection 

framework. 
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Table 4.36. Reduced Case Steady-State Solution 

State 

Stream 

Component Type of Molar Flow 

Variable Formula Number Stream Rate (mol/h) 

Module 1 

Xss(40) 8 UN 14 Waste 1.15 

Xss(41) 8 U3O8 18 Waste 0.776 

Xss(64) 12 UN 14 Product 206 

Xss(65) 12 U3O8 18 Product 4.05 × 10
-2

 

Xss(70) 13 UN 14 Waste 2.06 × 10
-2

 

Module 2 

Xss(91) 16 UN 14 Waste 1.03 

Xss(92) 16 U3O8 18 Waste 4.05 × 10
-2

 

Xss(111) 19 UN 14 Product 205 

Xss(117) 20 UN 14 Waste 0.205 

Module 3 

Xss(123) 21 UN 14 Waste 2.05 × 10
-2

 

Xss(163) 30 AUC 19 Product 204 

Xss(169) 31 UN 14 Waste 2.05 × 10
-2

 

Xss(171) 31 AUC 19 Waste 1.03 

Module 4 

Xss(214) 43 UF4 16 Waste 1.94 × 10
-3

 

Xss(215) 43 UO2 17 Waste 1.02 × 10
-2

 

Xss(217) 43 AUC 19 Waste 2.04 × 10
-2

 

Xss(218) 44 UF4 16 Product 194 

Xss(219) 44 UO2 17 Product 10.2 

Module 5 

Xss(239) 50 UF4 16 Waste 0.173 

Xss(240) 50 UO2 17 Waste 9.19 

Xss(269) 58 UF4 16 Waste 1.94 × 10
-2

 

Xss(270) 58 UO2 17 Waste 1.02 

Xss(273) 60 UF6 15 Product 194 
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Figure 4.107. Scree Plot of the Reduced Case Data after the Addition of Gaussian White Noise. 
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4.3.17.2 Reduced Case 1D 

Case 1D tested the detectability of a 25% increase in the uranium flow rate to the process. The results 

showed that this faulty case was clearly detectable in PC1 scores and the Mahalanobis distance using 

the reduced case PC model.  

This case was modeled in the same manner as the original Case 1D with       [Xss(274)] set to a 

constant 62.5 kg/h. There was a fault in PC1 scores which was expected since Xss(274) was a heavy 

contributor to PC1. However, some of the data points were still within the 95% confidence boundary 

meaning that there are some operating conditions under which that fault would not be detectable using 

only PC1 scores monitoring but may be detectable using trend monitoring as was the case with the 

original Case 1D. There were only slight changes in PC2 or PC3 scores. The scores plots are shown in 

Figures 4.108–4.111. There was a significant increase in the Mahalanobis distance (Figure 4.112) which 

was expected since this case was outside the normal operating conditions. There were no detectable 

faults in the  -statistic which was also expected since no parameters were changed (Figures 4.113–

4.114). Based on these results, a 25% increase in uranium feed rate is deemed detectable using the 

reduced case PC model.  
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Figure 4.108. Reduced Faulty Case 1D Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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Figure 4.109. Reduced Faulty Case 1D Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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Figure 4.110. Reduced Faulty Case 1D Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was no detectable fault. 
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Figure 4.111. Reduced Faulty Case 1D 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown 

with the base case 95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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Figure 4.112. Reduced Faulty Case 1D Mahalanobis Distance Plot. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.113. Reduced Faulty Case 1D  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was no detectable fault. 
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Figure 4.114. Reduced Faulty Case 1D PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with 

the base case 95% confidence boundary displayed in red. There was a fault in PC1 scores. 
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4.3.17.3 Reduced Case 4 

For the fourth faulty case, inefficient operations of the re-extraction of uranium from the organic phase 

in Module 2 were investigated. Inefficient re-extraction would result in additional uranium being 

diverted to the organic waste stream. The reduced case was modeled the same as the original Case 4 

which was modeled by changing the initial value of the column fractionation parameter for the uranyl 

nitrate in Module 2D,          , from 0.999 to 0.9. This was the fourth input variable [Xss(277)]. The 

results show that the fault in reduced Case 4 was clearly detectable in the Mahalanobis distance and 

may be detectable in the PC3 scores under certain operating conditions. 

There was a slight shift in the PC1 scores and no change in the PC2 scores; the fault would not be 

detectable since all of the data points were still within the 95% confidence boundary for normal 

operation (Figure 4.115). The PC1 scores shift may be detectable using trending monitoring. There was a 

slightly negative shift in PC3 scores (Figures 4.116–4.118), but the fault may not be detectable 

depending on operating conditions since many of the data points were inside the 95% confidence 

boundaries. The PC3 scores shift may be detectable using trending monitoring. The fault in PC3 scores 

was expected because Xss(277) heavily loaded PC3 along with Xss(117). This resulted in an increase in 

the Mahalanobis distance (Figure 4.119). An increase in the Mahalanobis distance was expected since 

this was one of the input variables and the change was greater than the allowed variation of the base 

case. There was a no detectable shift in the  -statistic (Figures 4.120–4.121).  
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Figure 4.115. Reduced Faulty Case 4 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was no detectable fault. 



 

304 
 

 

Figure 4.116. Reduced Faulty Case 4 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a shift in PC3 scores but the fault may not be 

detectable. 
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Figure 4.117. Reduced Faulty Case 4 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a shift in PC3 scores but the fault may not be 

detectable. 
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Figure 4.118. Reduced Faulty Case 4 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown 

with the base case 95% confidence boundary displayed as an ellipsoid. There was a shift in PC3 scores but the fault 

may not be detectable. 
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Figure 4.119. Reduced Faulty Case 4 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a shift but the fault may not be detectable. 
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Figure 4.120. Reduced Faulty Case 4  -Statistic Plot. Note: Only the faulty data are shown with the base case 95% 

confidence boundary displayed in red. There was not a detectable shift. 
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Figure 4.121. Reduced Faulty Case 4 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was not a detectable shift. 
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4.3.17.4 Reduced Case 11 

For the eleventh faulty case, a percentage of the UF6 product was diverted from the final mixer in 

Module 5. Streams 52 and 59 were pure UF6 that were mixed to form the final product of the process. In 

this case, a new stream (61) was formed by diverting a percentage of Streams 52 and 59. Reduced Case 

11 tested the diversion of 20% of the UF6 product as was tested in the original faulty Case 11. The results 

show that the fault in this case was not detectable using the reduced case PC model until the final UF6 

product stream was scaled by a factor of 10. After the differential weighted scaling was applied, this 

fault was clearly detectable in the  -statistic and may be detectable in the scores and Mahalanobis 

distance depending on operating conditions.  

There was a slight shift in the scores plots (Figures 4.122–4.125), but the fault was not detectable under 

certain operating conditions since many of the data points were within the 95% confidence boundaries. 

The scores faults may be detectable using trend monitoring. The final output of the plant [Xss(273)] was 

a heavy contributor to both PC1 and PC3. There was also an increase in the Mahalanobis distance 

(Figure 4.126) which was expected since this fault may be outside normal operating conditions. There 

was an increase in the  -statistic (Figures 4.127–4.128). The  -statistic fault was expected since this 

changed the relative relationship between the state variables.  
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Figure 4.122. Reduced Faulty Case 11 Scores Plot for PC1 and PC2. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a shift in PC1 and PC2 scores but the fault may not 

be detectable depending on operating conditions. 



 

312 
 

 

Figure 4.123. Reduced Faulty Case 11 Scores Plot for PC1 and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a shift in PC1 and PC3 scores but the fault may not 

be detectable depending on operating conditions. 
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Figure 4.124. Reduced Faulty Case 11 Scores Plot for PC2 and PC3. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a shift in PC2 and PC3 scores but the fault may not 

be detectable depending on operating conditions. 
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Figure 4.125. Reduced Faulty Case 11 3D Scores Plot for PC1, PC2, and PC3. Note: Only the faulty data are shown 

with the base case 95% confidence boundary displayed as an ellipsoid. There was a shift in all three scores but the 

fault may not be detectable. 
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Figure 4.126. Reduced Faulty Case 11 Mahalanobis Distance Plot. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a shift but the fault may not be detectable. 
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Figure 4.127. Reduced Faulty Case 11  -Statistic Plot. Note: Only the faulty data are shown with the base case 

95% confidence boundary displayed in red. There was a detectable fault. 
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Figure 4.128. Reduced Faulty Case 11 PC1, PC2, and  -Statistic Plot. Note: Only the faulty data are shown with the 

base case 95% confidence boundary displayed in red. There was a detectable fault in the  -statistic. 
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4.3.17.5 Reduced Case Summary 

For this reduced case monitoring framework, the original base case system was reduced from 273 state 

variables to 23 state variables. The only state variables retained for the reduced case were the 

uranium-bearing components in the product stream of each module and the uranium-bearing 

components in the waste streams from each module. A total of fourteen streams not including input 

streams are represented in the reduced case as opposed to sixty streams in the original case. Six 

principal components were retained for the reduced case PC model which retained approximately 92% 

of the original information. Three of the faulty cases were used to test the new reduced PC model for 

the detection of diversion of uranium in an NUCP. In each case, the fault was clearly detectable in at 

least one of the diagnostic plots. Based on these initial results, it is possible to detect diversion in an 

NUCP by monitoring only the uranium input, the final UF6 product, the intermediate uranium-bearing 

products from each module, and the uranium-bearing waste streams. Therefore, option 2 is sufficient as 

a safeguards monitoring system to be applied with this detection framework. 

 

4.3.18 Implementation of Monitoring Framework 

Individually monitoring and analyzing the flow rates and uranium content of the recommended streams 

would be labor intensive and complicated since the limiting variation of each in combination with the 

others needs to be understood beforehand in order to properly interpret the monitored measurements. 

This consideration is behind the work reported in this dissertation. By subjecting all the measured values 

to a multivariate statistical analysis framework, deviations and the patterns of the deviations may be 

detectable and possible causes revealed can be followed up by the operator or IAEA inspector. 

Therefore, it is expected that the recommended streams would be monitored for flow rate and uranium 

content to provide the data for the monitoring and analysis framework but the individual measurements 

would not be analyzed independently. 

Table 4.37 provides a lookup table to determine which type of fault may be occurring based on the 

results from the various diagnostic plots. If this framework was applied to an operating plant, the 

operator or in the case of safeguards applications, an IAEA inspector, would be monitoring the 

diagnostic plots each time new monitoring data was supplied (hourly, daily, etc.). The plots would 

include the 95% confidence boundary for normal operations at that particular plant and the recent 

operating data (data points representing the last few weeks or months of operations). A lookup table 

such as Table 4.37 can provide possible causes if new data points are outside the boundary or if new 

data points exhibit a trend of continuous migration from inside the boundary toward the boundary, and 

may end up crossing the boundary and ending up outside the boundary if the faulty continues. This 

table is based on the results of the faulty cases investigated in this work; additional faults could occur 

that may not be on the table or may have the same result as a different type of fault than is included in   
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Table 4.37. Lookup Table of Possible Faults Based on Results from PCA Diagnostic Plots* 

Faults (Direction, Detectable) 

Possible Cause of Fault 

Example 

Q T2 
PC1 

Scores 
PC2 

Scores 
PC3 

Scores 
Case 

++++, Yes ++, Yes ---, Yes +, No 0, No 
Large increase in all flow 
rates 

1A 

++, Yes ~+, No 0, No 0, No 0, No 
Slight increase in all flow 
rates 

1B 

0, No 
~+, Not 
likely 

-, No 0, No 0, No Increase in F1A,U only slightly 
above normal 

1C 

0, No +, Yes 
-, 

Possibly 
0, No 0, No 

Increase in F1A,U above 
normal 

1D 

++, 
Possibly 

~+, 
Possibly 

+, No +, No 
-, 

Possibly 

Inefficient re-extraction 
operations, reduce uranyl 
nitrate extraction in Module 
2 resulting in more U in 
Module 2 waste 

4 

+++++, 
Yes 

+, Yes 
+, 

Possibly 
-, 

Possibly 
+, Yes 

Slight diversion from the 
evaporator in Module 3 

5 

++, Yes 
~+, 

Possibly 
-, No -, No 

+, 
Possibly 

Addition of uranyl nitrate to 
the precipitation process 

6 

++, Yes 0, No 0, No 0, No 0, No 
Diversion of uranium in 
Module 5 

9, 10, 11 

++, Yes +, Possibly 
-, 

Possibly 
+, No -, No 

Increased throughput of 
uranium and diverted a 
fraction of final product 

12 

++, Yes 
~+, 

Possibly 
+, No +, No 

-, Not 
likely 

Multiple inefficient 
operations resulting more U 
in more than one waste 
stream 

13 

++++, Yes +++, Yes 
-, 

Possibly 
+, 

Possibly 
--, Yes 

Inefficient dissolver 
operations resulting in a 
reduction of  the amount of 
U3O8 converted to UN and 
more U in waste streams 

3 

++++, Yes 
~+, Not 
likely 

-, No -, No +, No 

Inefficient separation 
downstream of the 
hydrofluorination reaction 
results in more U in Module 
4 waste 

8 

*‘Yes’ indicates that all faulty data points were outside the confidence boundary while a ‘no’ 
indicates that there was no clearly detectable fault and most if not all of the data points were 
within the confidence boundary. ‘Possibly’ indicates that approximately 50% or more of the data 
points were outside the boundary while ‘not likely’ indicates that less than 50% of the data points 
were outside the boundary. 
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Table 4.37. Lookup Table of Possible Faults Based on Results from PCA Diagnostic Plots* 
(continued) 

Faults (Direction, Detectable) Possible Cause of Fault Example 

Q T2 
PC1 

Scores 
PC2 

Scores 
PC3 

Scores   
Case 

+++, Yes 
~+, 

Possibly 
+, No -, No 

+, 
Possibly 

Decrease in impurities of 
uranium feed to plant 

2 

++, Yes 
~+, 

Possibly 
+, No +, No 

-, Not 
likely 

Inefficient precipitation 
process operations resulted 
in less UN converted AUC 
and more U in waste streams 

7 

++++, Yes ++, Yes 
-, 

Possibly 
+, 

Possibly 
--, Yes 

Decrease the impurities in 
the uranium feed and reduce 
the amount of U3O8 
converted to UN resulting in 
more U in waste streams 

14 

*‘Yes’ indicates that all faulty data points were outside the confidence boundary while a ‘no’ 
indicates that there was no clearly detectable fault and most if not all of the data points were 
within the confidence boundary. ‘Possibly’ indicates that approximately 50% or more of the data 
points were outside the boundary while ‘not likely’ indicates that less than 50% of the data points 
were outside the boundary. 
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the table. The person monitoring the new data would not only be looking for data points outside the 

boundary but also be watching if the data that are trending in one direction or another such that it may 

be approaching the confidence boundary but not yet outside the boundary. The table could possibly be 

used to determine the cause of the trend as well. It is also expected that data will occasionally be 

outside of the boundary, if this is only an occasional occurrence and the following few data points return 

within the boundary there is likely no cause for concern about an actual fault occurring.  

Additionally, it is important that the system be allowed to return to steady-state following any upset 

conditions which might result in a false positive using the detection framework. Depending on the type 

of upset, the system may return to steady-state in a few hours or it may take more than a day. It is 

recommended that data only be recorded no more often than about every twelve hours in a conversion 

plant since the processing operations require several hours to complete. An additional consideration for 

implementation is that the “normal operation” model would need to be updated periodically as 

conditions within the plant change, particularly if a process is changed. If one of the processes is 

changed (i.e., more efficient equipment is installed) then the “normal operation” model would need to 

be changed with the new operation data to represent the new process. 

Table 4.37 shows both the direction and the detectability of the possible faults. Direction refers to 

whether the fault in is in the positive or negative direction for the scores. The  -statistic and 

Mahalanobis distance are positive valued and can only show an increase. Additionally, an indication of 

magnitude of the fault was provided by using multiple ‘+’ or ‘-‘ signs. If there was no shift in the 

diagnostic plot then ‘0’ was used. The detectability is given as ‘yes’, ‘no’, ‘possibly’, or ‘not likely’. A ‘yes’ 

indicates that all faulty data points were outside the confidence boundary while a ‘no’ indicates that 

there was no clearly detectable fault and most if not all of the data points were within the confidence 

boundary. If ‘possibly’ or ‘not likely’ was listed then some of the data points were outside the boundary; 

‘possibly’ indicates that approximately 50% or more of the data points were outside the boundary while 

‘not likely’ indicates that less than 50% of the data points were outside the boundary. 

The Mahalanobis distance is not independent of the scores and one would not expect to have a fault in 

the Mahalanobis distance without a clear fault or shift in all of the points in at least one of the scores. 

However in Case 1B, there was an increase in the number of data points above the Mahalanobis 

confidence boundary without a clear scores fault. The slight increase in the Mahalanobis distance was 

not truly a detectable fault and there was a only very slight shift in the PC1 scores. In this case, 

monitoring for a continuous shift in the trending pattern of the scores or the  -statistic toward the 

boundary may be applicable. 

Figures 4.129–4.131 provide examples of what actual diagnostic plots may look like. Figure 4.129 is a 

PC1 scores vs. PC2 scores plot based on Faulty Case 1A. The cluster of normal data (blue) are within the 

95% confidence boundary and close to one another while the faulty data (green) are outside the 

boundary if the fault introduced is a step change from none to all over a short time span. Figure 4.130 is 
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a Mahalanobis distance plot based on Faulty Case 1A. The normal data (blue) are within the 95% 

confidence boundary while the faulty data (green) are outside the boundary. Figure 4.131 is a  -statistic 

plot based on a slight increase over normal operation. The normal data (blue) are within the 95% 

confidence boundary while the faulty data (green) are outside the boundary. The Mahalanobis and 

 -statistic plots also represent a step change for the fault because the faulty was introduced as a step 

change, instead of a trend. In regular operation, a fault may occur as a step fault, or it may manifest 

itself gradually as equipment deteriorate over time, or a deliberate fault is introduced slowly over time. 

Therefore, monitoring of the trending behavior of process operation is also applicable. 

 

 

 

Figure 4.129. Example of PC1 vs. PC2 Scores for Implementation of the Monitoring Framework. Note: The base 

case data are shown in blue while the faulty data are shown in green. The base case 95% confidence boundary 

displayed in red.  
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Figure 4.130. Example Mahalanobis Distance Plot for Implementation of the Monitoring Framework. Note: The 

base case data are shown in blue while the faulty data are shown in green. The base case 95% confidence boundary 

displayed in red.  
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Figure 4.131. Example Case 14  -Statistic Plot for Implementation of the Monitoring Framework. Note: The base 

case data are shown in blue while the faulty data are shown in green. The base case 95% confidence boundary 

displayed in red.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

The objective of this work was to develop a monitoring and data analysis framework using a multivariate 

statistical approach that would detect operational faults and/or the diversion of intermediate products 

such as UO2, UF4, and UF6 in an NUCP. This was an initial effort to determine the feasibility of such 

approach for safeguards applications. The decision framework developed in this research has been 

shown to be able to detect various faults including the simulated diversion of material in the idealized 

NUCP. This study was developed for a 100 MTU/yr NUCP employing the wet solvent extraction method 

for the purification of uranium ore concentrate.  

A workhorse in the multivariate statistical methodology was the PCA approach for the analysis of data, 

development of the base model from historical data, and evaluation of current and future operations. 

The PCA approach was implemented through the use of singular value decomposition of the data 

matrix. Component mole balances were used to model each of the process units in the NUCP. The 

decision framework could be used to determine whether or not a diversion of material has occurred at 

an NUCP as part of an IAEA safeguards system. The IAEA goal for NUCPs of this size is to have a 50% 

probability of detecting the diversion of 10 MTU over a period of one year; this was also used as the goal 

of detection for the monitoring framework. Therefore the detection goal of this effort was to be able to 

detect the diversion of 10% of the uranium fed to the plant.  

An initial sensitivity analysis was performed on the relationship between the component molar flow 

rates (state variables) and the process parameters. The analysis results showed that the system was 

most sensitive to changes in the incoming flow rate of uranium. This was to be expected since all of the 

compounds of interest contain uranium and which values depend on the level of uranium in the 

incoming stream. This was a limited sensitivity analysis, and it is recommended that a complete 

sensitivity analysis be conducted to include all possible model parameters and input variables as part of 

the full development of this approach for safeguarding conversion plants. 

Differential weighting of selected state variables was required during the data pre-processing step. The 

base case system was reduced in dimensionality from 273 state variables and seven input variables to 

five degrees of freedom using PCA. Heavy contributors to PC1 are the input uranium feed flow rate 

[Xss(274)] to Module 1 and the output uranium-bearing product flow rates from each of the five 

modules [Xss(64), Xss(111), Xss(163), Xss(218), and Xss(273)]. This correlation pattern is highly 

anticipated, since the molar flow rates of all uranium-bearing output streams should all be highly 

correlated to the main feed flow rate. The first principal component represented those state variables 

with the most variation in the data matrix. This makeup was expected for two reasons: (1) the first 

principal component represents 71.8% of the original data and (2) the uranium input flow rate to the 

process was the input variable that the uranium-bearing streams were most sensitive to as determined 

by the sensitivity analysis.  
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Fourteen faulty scenarios were developed to test the monitoring framework after the base case or 

“normal operating conditions” of the PCA model was established. The faulty cases tested the model’s 

ability to detect an increase in total throughput or uranium throughput, an increase in uranium purity, 

inefficient operations in several of the processes, withdrawal of uranium at different points within the 

processes, addition of uranium to one of the processes, and a combination of faults. In each scenario, at 

least one of the diagnostic plots (scores, Mahalanobis distance, or  -statistic) produced a detectable 

fault. The detection limit varied depending on the scenario, but it satisfied the limit stated above in most 

cases. Additional scaling may improve the detection limits in those cases where the fault was only 

detectable under certain operating conditions, such as Case 4. 

Based on the results of this work, four safeguards monitoring schemes were recommended. At a 

minimum, the uranium feed to the plant must be monitored both for feed rate and uranium content as 

well as the final product from the plant. It is also recommended that all of the waste streams be 

monitored to detect excess uranium. However, if it is not reasonable to monitor all wastes then the 

waste streams that are most likely to contain diverted uranium must be monitored (Module 1 Stream 8, 

Module 2 Stream 20, Module 3 Stream 31, Module 4 Stream 43, and Module 5 Stream 50). Since the 

process operates serially where the product of one process becomes the feed to the next process, 

monitoring the feed, product, and all waste streams provides the minimum monitoring necessary to 

close the material balance and offer any certainty that uranium is not being diverted or additional 

uranium is not being fed to the plant.  

The second option for monitoring that is recommended would be to add monitoring of the intermediate 

products throughout the process to the first option. These are the products from each module that 

becomes the feed to the next module: Module 1 Stream 12, Module 2 Stream 19, Module 3 Stream 30, 

and Module 4 Stream 44. Since there is normally some time lag between processes in actual plants, 

these would need to be monitored as the product of one process and then the feed to the next process. 

Monitoring both the rate and the uranium content would be necessary to determine that diversion of 

uranium had not occurred.  

The third option for monitoring that could confirm that diversion had not occurred would be the 

monitoring of select intermediate streams. These streams could be correlated with the feed, product, 

and waste streams in that process area to determine that uranium was not diverted or added to the 

process. These streams are Module 1 Streams 1 and 4; Module 2 Stream 14; Module 3 Streams 22 and 

27; Module 4 Streams 34, 39, and 42; and Module 5 Streams 46, 49, 52, 55, and 59. 

The final level of monitoring that would be able to completely close the material balance and ensure 

that no additional uranium is fed to the process and that no uranium is diverted from the process would 

require monitoring all of the streams throughout the plant for both flow rate and uranium content. 

However, this would be too challenging to implement both from the perspective of the plant and the 
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costs required to purchase and install that number of monitoring points. Additionally, based on this 

research, it is likely unnecessary to monitor all of the streams in the plant. 

Therefore, if not cost prohibitive, the second option would be the best safeguards monitoring system to 

be applied with this detection framework. This framework could also be applied to the less intrusive 

option 1 as well. However, the likelihood of detection is reduced as the number of monitoring points is 

reduced. Based on the initial results from the reduced case PC model, it is possible to detect diversion in 

an NUCP by monitoring only the uranium input, the final UF6 product, the intermediate uranium-bearing 

products from each module, and the uranium-bearing waste streams. Therefore, option 2 is sufficient as 

a safeguards monitoring system to be applied with this detection framework. 

Individually monitoring and analyzing the flow rates and uranium content of the recommended streams 

would be labor intensive and complicated since the limiting variation of each in combination with the 

others needs to be understood beforehand in order to properly interpret the monitored individual 

measurements. This consideration is behind the work reported in this dissertation. By subjecting all the 

measured values to a multivariate statistical analysis framework, deviations and the patterns of the 

deviations may be detectable and possible causes revealed can be followed up by the operator or IAEA 

inspector. Therefore, it is expected that the recommended streams would be monitored for flow rate 

and uranium content to provide the data for the monitoring and analysis framework but the individual 

measurements would not be analyzed independently. 

The implementation of this monitoring and analysis framework in an operating plant would require 

monitoring the diagnostic plots each time new monitoring data was supplied (hourly, daily, etc.). The 

plots would include the 95% confidence boundary for normal operations based on that particular plant 

and the recent operating data (data points representing the last few weeks or months of operations). A 

lookup table such as Table 4.37 can provide possible causes if new data points are outside the boundary 

or if new data points exhibit a trend of continuous migration from inside the boundary toward crossing 

the boundary and ending up outside the boundary. The person monitoring the new data would not only 

be looking for data points outside the boundary but also be watching if the data that are trending in one 

direction or another such that it may be approaching the confidence boundary but not yet outside the 

boundary.  

The following are recommendations for continuing this work in the future. These recommendations 

include research that is outside the scope of this effort. 

 Complete sensitivity analysis of how all parameters and input variables affect the state 

variables. 

 Update the detection framework to work for a less ideal case. 

 Test the framework against real data. 
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 Test the limitations/uncertainty of the framework if data were unavailable by testing additional 

faulty cases and reducing the amount of the fault in the existing faulty cases to determine the 

detection limits. 

 Identify the minimum number of streams that must be monitored to detect at least the high 

priority diversion scenarios (partially explored).  

 Apply the monitoring approach to individual modules to see what faults can be detected. 
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APPENDIX. DERIVATION OF THE KREMSER EQUATION 

 

The following is the full derivation of the Kremser Equation to supplement the information provided in 

Section 3.2.2.6. This was adapted from Benedict, Pigford, and Levi 1981; McCabe, Smith, and Harriott 

1993; and Seader and Henley (1998). 

The Kremser Equation provides an algebraic solution for analyzing   ideal equilibrium stages connected 

with countercurrent flow. The Kremser Equation, also known as the Kremser Group Method, was 

originally designed for countercurrent gas absorption. It is a group method because it is an approximate 

calculation method to relate compositions of streams entering and exiting cascades to the number of 

equilibrium stages required but does not consider detailed changes in temperature, flow rates, and 

composition in the individual stages. The Kremser Equation can be applied to liquid-liquid separations 

such as the solvent extraction process in a natural uranium conversion plant. It assumes dilute solutions, 

so that solvent density is solution density. 

This derivation starts with an extracting cascade where a feed solution containing one or more 

extractable components is contacted countercurrently with an organic solvent. Figure A.1 shows the 

nomenclature for the flow rates, concentrations, and stage numbers of the cascade with   ideal stages. 

It was assumed that equilibrium was reached between the aqueous and organic phases leaving each 

stage. Changes in the volume flow rates of the aqueous and organic phases were neglected. 

A material balance on one of the extractable components in the section of the cascade below stage   is 

shown in Eq. (A.1). 

                     (A.1) 

The input is equal to the output since there cannot be accumulation or depletion within the system. 

Equation (A.1) can be rewritten as Eq. (A.2). 

        
 

 
(     )    (A.2) 

Concentrations in the organic and aqueous phases leaving a stage are related by the equilibrium 

relationship where    is the distribution coefficient at the conditions of the  -th stage. 

            (A.3) 

Figure A.2 is the McCabe-Thiele diagram which provides a visual representation of Eqs. (A.2) and (A3). 

The material balance [Eq. (A.2)] is represented by the operating line that passes through the point 

(     ) and has the slope    . The equilibrium relationship [Eq. (A.3)] is represented by the equilibrium 

line. When   is constant, the equilibrium line is a straight line. This would occur for the extraction of 

trace  
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Figure A.1. Nomenclature for Cascade of Solvent Extraction Stages. (Source: Benedict, M., T. Pigford, and H. Levi. 
1981. Nuclear Chemical Engineering. 2nd ed., McGraw-Hill, New York. Pg. 174.) 

 

 

 

Figure A.2. Stage Concentration Diagram for Solvent Extraction Cascade. (Source: Benedict, M., T. Pigford, and H. 
Levi. 1981. Nuclear Chemical Engineering. 2nd ed., McGraw-Hill, New York. Pg. 174.) 
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quantities of solutes in the presence of non-extractable salting agents, with constant concentration of 

uncombined complexing agent. In general,   varies from stage to stage, resulting in a curved 

equilibrium line. Figure A.2 illustrates the equilibrium line typical for the extraction of a single 

component in the presence of a non-extractable salting agent. 

The overall material balance for the cascade of solvent extraction stages (Figure A.1) can be written as 

shown in Eq. (A.4) because    is the virtual aqueous effluent concentration from stage    .  

      
             (A.4) 

By rearranging Eq. (A.4), it is apparent that the ratio of organic flow rate to aqueous flow rate is given by 

Eq. (A.5). 

 

 
 
     

     
     (A.5) 

When the distribution coefficients are independent of stage number, meaning the distribution 

coefficients are constant, an equation can be derived for the analytical calculation of the number of 

stages. For any extractable component with a constant distribution coefficient, a constant extraction 

factor,  , can be defined as Eq. (A.6). 

  
  

 
       (A.6) 

Equation (A.3) can be written for the constant distribution coefficient. 

           (A.7) 

Equations (A.1) and (A.3) can be rewritten in terms of  . 

                     (A.1) 

Rearrange Eq. (A.7) for   . 

   
  

 
       (A.8) 

Substitute for    in Eq. (A.1). 

     
  

 
               (A.9) 

Rearrange Eq. (A.9) to solve for   . 

   
  

 
(       )  

  

 
       (A.10) 

Substitute   or   in Eq. (A. 10) as appropriate to obtain Eq. (A.11). 
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    (       )          (A.11) 

When    , Eq. (A.11) becomes 

           (A.12) 

When    , Eq. (A.11) becomes 

    (     )          (A.13) 

Equation (A.13) becomes Eq. (A.14) when Eq. (A.12) is substituted for   . 

   (   )            (A.14) 

When    , Eq. (A.11) becomes 

    (     )          (A.15) 

Equation (A.15) becomes Eq. (A.16) when Eq. (A.14) is substituted for   . 

   (     
 )    (   

 )       (A.16) 

Continuing in this way to stage  , Eq. (A.17) is obtained. 

   (       
   )    (     

   )      (A.17) 

Combining the series in Eq. (A.17) yields Eq. (A.18). 

   (       
   )(      )        (A.18) 

The series in Eq. (A.18) is a geometric series which can be written as shown in Eq. (A.19). 

           
    

   
    (A.19) 

Substituting Eq. (A.19) into Eq. (A.18) and multiplying top and bottom by (   ) gives Eq. (A.20) which 

is a form of the Kremser Equation. 

   
    

   
(      )         (A.20) 
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