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ABSTRACT 

 

Brittleness largely restricts promising applications of the metallic glasses as a new 

engineering material. Understanding fundamental amorphous structure, deformation 

mechanisms and search for ways to enhance its ductility is imperative. Among these, 

establishing a valid structure-property relationship is particularly important.  Following 

these thoughts, a series of research works are conducted.  

Both the finite element simulation and in-situ transmission electron microscopy 

were conducted to investigate the size effect in amorphous ZrCu nanopillars. Studies 

demonstrate that the deformation is localized near the top of the metallic glass pillars, 

which looks absent from outside, but form inside. 

By assigning the free volume constitutive relation to the metallic glass, the radial 

shear bands were observed when indenting directly a bulk metallic glass, while extra 

semi-circular shear bands were found when a bonded-interface is introduced as in 

experiments.  

Ductility enhancement mechanisms in the titanium thin film coated bulk metallic 

glasses were investigated with both the Rudnicki-Rice instability theory and free volume 

model. Reflection of the shear band at the film/substrate interface and shear band 

branching were observed.  On top of that, the effect of adhesion between the film and 

substrate and the film thickness were also investigated.  
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Shear bands in the BMG composites are found initiate from the second 

phase/matrix at an angle or ~45 
o
, forming a blocking mechanism to the shear bands 

propagation, contributing to ductility improvement.  

Finally, statistical nanoindentation experiments were employed to study the 

structure-mechanical property relationship of the metallic glass. The statistical 

nanoindentation technique finds that the pop-in load and the corresponding maximum 

shear stress increases gradually with increasing degree of structural relaxation, 

accompanied with a decrease in the statistical variation. A quantitative model 

incorporating both thermally-activated and defect-assisted processes is developed to 

understand the pop-in statistics, in which the pre-existing defects, or soft zones, are 

distributed randomly in the hard amorphous matrix.  

Before performing nanoindentation tests, for reliability of the results, the spherical 

indenter tip radii were calibrated by taking the machine stiffness into the classic Hertzian 

solution rather than assuming a constant machine stiffness. By this method, the machine 

stiffness of the nanoindentation system was also explicitly evaluated.  
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CHAPTER 1 

                                          Introduction 

 

Amorphous solids exist in various material systems, like silicate glasses and 

amorphous polymers in the non-metallic material system. The metallic glass (also called 

amorphous alloys or glassy alloys) is an amorphous counterpart in the metallic material 

system, a relatively newcomer to the amorphous material family. The first metallic glass 

was fabricated at Caltech on Au75Si25 alloy by Klement et al. using the rapid-quenching 

experiments in 1960 
1
. Upon invention, it has attracted numerous scientific attentions and 

interests due to its unique mechanical properties, including high strength, large elastic 

limit, high fracture toughness and good corrosion resistance, and potential engineering 

applications 
2, 3

. A comparison of the mechanical properties of the metallic glass with 

traditional materials is shown in Fig. 1.1. Such superior mechanical properties attributes 

to its amorphous structure characterized by lack of long-range order in atomic structure, 

opposed to periodic atomic arrangement in crystalline materials.  
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Figure 1.1 A comparison of mechanical properties of the metallic glass with traditional 

materials 
3
. 

Afterwards, many different techniques were developed to fabricate a wide variety 

of metallic glasses. However, early fabrication of metallic glasses only limited to the thin 

film, ribbon or sheet because of the high cooling rate requirement during solidification. 

Accordingly, lowering down the required cooling rate and producing large sized metallic 

glass samples became the focus of the research. Such a need partly facilitated 

development and maturity of theories on formation of the glassy structure. One of the 

indices that successfully predict the glass forming ability (GFA) of an arbitrary 

combination of elemental constituents is the reduced glass transition temperature 

Trg=Tg/Tm (ratio of the glass transition temperature to the melting point) 
4
. It is believed 

that a liquid having Trg=2/3 can easily bypasses crystallization and cool to the amorphous 

state 
5
. Advances in the experimental techniques and theoretical frameworks on formation 

of the amorphous structure ultimately provoked emergence of the bulk metallic glass in 



 

3 

 

Pd-Cu-Si alloy in 1970s, whose dimensions is in millimeter scale 
6
.  Around twenty years 

later, larger sized bulk metallic glasses (in excess of 1 cm) were proven to be able to be 

fabricated at a cooling rate of ~100 K/s in mulitcomponent Zr-based, La-based and Mg-

based alloy systems 
7, 8

.  So far, the critical cooling rate for formation of metallic glasses 

can be as low as 10
-1

 K/s and the maximum sample thickness can be over 10 cm 
9
.  It 

need to be emphasized that emergence of the quinary Zr-based bulk metallic glasses, like 

Vitalloy 1 (Zr41Ti14Cu12.5Ni10Be22.5), is another milestone of development of the bulk 

metallic glasses 
10

. This family of metallic glasses exhibits high thermal stability and can 

form into ~10 cm diameter amorphous rods at a cooling rate of 1K/s. Owing to its 

attractive GFA, Zr-based metallic glasses had draw extensive attentions and were applied 

in industries only 3 years after its invention 
11

. Currently, numerous metallic glass 

systems have being developed and studied  and more attentions turn to Fe-, Cu-based 

metallic glasses and bulk amorphous steels 
6-8, 12-19

.  

Generally, development of metallic glasses systems started with expensive metals, 

like Au, Pd and Pt, followed by less expensive Zr, Ti, Ni and further followed by much 

cheaper Fe and Cu and finally turn to the amorphous steel 
11

. Such a development trace 

reflects human’s desire to push new materials into engineering applications, which is the 

destination of any new materials.  
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1.1. Deformation Behaviors of the Metallic Glass 

1.1.1. Atomistic deformation mechanism 

As one knows, in crystalline materials, dislocation activities govern the 

deformation 
20

. Unlikely, in the metallic glass, owing to absence of the crystalline 

defects, the dislocation mechanism no longer exist and a scenario of local atomic 

rearrangement is believed to be responsible for the deformation 
21-27

. Two most 

extensively used atomistic deformation mechanism models in the metallic glass are the 

free volume model 
28, 29

 and shear transformation zone model (STZ) 
30, 31

.  The free 

volume model was first applied to the case of the metallic glass by Spaepen 
28

 via 

borrowing similar concept from conventional glasses and liquid 
32, 33

. In this model, a 

conceptual state variable, the free volume, is introduced to control strain evolution in the 

metallic glass. The free volume is defined as the average excess atomic volume in a real 

material compared to an ideally ordered structure. Deformation of the metallic glass is 

caused by a series of discrete atomic jumps. In the pure shear case, the macroscopic 

plastic flow occurs as a result of net forward atomic jumps in the direction of applied 

stress, as depicted by Fig. 1.2 (a).  

The STZ model is somehow similar with the free volume model in the sense of 

atomistic description of the deformation except that it interprets a cluster of atom 

containing ~100 atoms as the deformation unit 
34-39

. Operation of a STZ under shear 

stress is shown in Fig. 1.2(b). Both of these two mechanisms are thermally activated with 
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comparable activation energy scale of around tens of kTg, with k the Boltzmann constant 

and Tg the glass transition temperature 
28, 33

.  

 

 

Figure 1.2 Schematic illustration of (a) the free volume deformation mechanism and (b) 

shear transformation zone (STZ) deformation mechanism 
21

.  

1.1.2. Homogeneous deformation 

The homogeneous deformation in the metallic glasses normally happens at elevated 

temperatures and the materials can experience large strain under loading without failure. 

Particularly, if an equilibrium between the structural disordering and ordering can be 

instantly achieved, a steady-state homogeneous flow is obtained. From atomistic point of 

(b) 

 
(a) 
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view, the free volume creation equals annihilation and no biased accumulation occurs 
21, 

28
. In the framework of STZ model, the plastic flow under uniaxial compression or 

tension can be described by 
39, 40

 

                          ̇    
           

 

  
       

  

√   
                                                (1-1) 

where υo is frequency of the vibration;   
  is a constant that could incorporate state 

variables like the free volume;  ̇  and   are uniaxial strain rate and stress;   is the 

characteristic strain of each net forward operation; V=    , with Ωo the characteristic 

STZ volume.  Fig. 1.3 is the representative steady-state plastic flow for 

Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass studied by experiments along with theoretical 

fits with Eq. (1-1) 
41

.  

 

Figure 1.3 Steady-state homogeneous flow of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic 

glass at elevated temperatures, along with fittings with Eq. (1-1) 
41

. 
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 As one can sees from Eq. (1-1) and Fig. 1.3, the plastic flow is in nature strain rate 

sensitive. At the low stress level, the stress is linearly proportional to the strain rate and 

the flow is Newtonian. In this condition, the metallic glasses can be deformed up to 1000% 

42
.  With increase of the strain rate, non-Newtonian flow will become dominant and 

deformability of the metallic glass will be largely reduced 
43, 44

.  

Another form of homogeneous flow of the metallic glass is the non-steady-state 

flow. The reason why it is called non-steady-state is that the free volume creation and 

annihilation is not balanced but the deformation is still homogeneous. Reflecting on the 

stress-strain relationship, a stress overshoot can be observed when the plastic deformation 

initially starts. This is followed by a strain softening until the equilibrium of free volume 

creation and annihilation is reached, as shown in Fig. 1.4 
41

. 

 

 

Figure 1.4 Non-steady-state homogeneous flow of the metallic glass, in which a typical 

stress overshoot can be observed before a steady-state condition is achieved 
41

. 
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1.1.3. Inhomogeneous deformation 

The inhomogeneous deformation in the metallic glass occurs at high stresses and 

low temperatures through the shear band operations 
45, 46

. Mechanistically, shear band is a 

result of strain localization caused by softening via localized accumulation of the free 

volume 
47-49

, which will lead to a local reduction of the viscosity 
50, 51

.  This can be 

understood by a separation of the strain rate in the localized shear band and surrounding 

matrix, which was theoretically interpreted by Argon and depicted in Fig. 1.5 
31

.  

 

 

Figure 1.5  Development of the strain rate in the forming shear band,  ̇ , and 

surrounding matrix,  ̇ , normalized by the applied shear strain rate  ̇  
31

. 

An alternative interpretation is the local adiabatic heating within the shear band, 

which is believed to be the cause of local viscosity decrease 
52-54

. This is solidly 

supported by Lewandowski and Greer’s experimental observations, in which a fusible 

coating of tin was covered on a Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass and the coating 
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was melted promptly during deformation, forming beads on the slip steps (shear bands), 

as in Fig. 1.6 
55, 56

. This is indicative of heat generation within the shear bands and makes 

them argue that the temperature rise in the metallic glasses is a result, rather than a cause, 

of shear banding events.  

 

 

Figure 1.6 A scanning electron micrograph showing formation of tin beads by melting of 

the pre-covered fusible tin coating during deformation, providing evidence of heat 

generation within the operating shear bands 
55

. 

Macroscopically, the shear banding is responsible for catastrophic failure of the 

bulk metallic glass at the room temperature, particularly under uniaxial loading 

conditions. This makes many bulk metallic glasses exhibit low plasticity under either 

compression or tension, as representatively shown by the Zr-based metallic glass in Fig. 

1.7 
57

. Consequently, understanding the shear band initiation and propagation has been a 

central subject to study the inhomogeneous deformation mechanism of the metallic glass 

and avoid brittle failure.  
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Figure 1.7  Brittle failure of the metallic glass under uniaxial (a,b) compression and (c,d) 

tension. Only limited plasticity can be achieved due to sudden fracture along a major 

shear band 
57

. 

1.1.4. The constitutive law 

The shear band formation and evolution form fundamental deformation mechanism 

of the metallic glass. From microscopic level, the shear band formation is believed to be 

associated with evolution of the local structural order. One atomistic mechanism 

capturing shear band formation and evolution in bulk metallic glasses is the free volume 

model proposed by Spaepen 
28

 and further developed by Steif et. al 
29

. From continuum 

mechanics point of view, the shear band is a result of strain softening and can be 

considered as a strain localization phenomena. The free volume model treats the free 

volume as the state variable and controls the structural change at the atomic level in bulk 

metallic glasses.  
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The free volume is a measure of the departure from the ideally ordered structure 

and can be regarded as difference between the average atomic volume in real materials 

and that in the ideally ordered structure. In this model, it assumes that in pure shear case, 

the macroscopic plastic flow occurs as a result of net forward atomic jumps in the 

direction of the applied stress. The general flow equation can be represented by 

                     

*

2 exp exp sinh
2

p m

f B B

v G
f

t v k T k T

         
             

                           (1-2) 

where f  is frequency of atomic vibration;   is a geometric factor of order 1; *v  is the 

hard-sphere volume of an atom; fv  is the average free volume per atom; mG  is the 

activation energy;   is the atomic volume;   is the applied shear stress; Bk  is the 

Boltzmann constant, and T  is the absolute temperature. The average free volume fv is 

treated as the order parameter and control the structural change in metallic glasses.  Fig. 

1.8 schematically demonstrates an individual atomic jump with assistance of the free 

volume, responsible for the macroscopic plastic flow 
28

.  
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Figure 1.8 Atomic jumps in metallic glasses responsible for macroscopic plastic flow 
28

. 

The structural rearrangement with applied stress is controlled by competition 

between a stress-induced disordering process and a diffusional reordering process. 

Consequently, the net increase of the free volume is given as  

*
* 2 1

exp exp cosh 1
2

m
f B

f B f eff B D

v k Tv G
v f

t v k T v C k T n

           
                                    (1-3) 

where nD is the number of atomic jumps needed to annihilate a free volume equal to υ
*
 

and is usually taken to be 3-10, and the effective elastic modulus is Ceff=E/3(1-υ). This is 

still a stress-controlled process. In other words, at low stress level, the free volume 

created by the stress can be readily annihilated and the homogeneous deformation is 

maintained, while at high stress level, a net increase of the free volume arise and hence 
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shear banding occurs. Fig. 1.9 shows how the free volume is created in an amorphous 

structure 
28

.  

 

  

Figure 1.9 Creation of the free volume by squeezing an atom of volume v* into a 

neighboring hole of smaller volume v 
28

. 

Eq. (1-2) along with Eq. (1-3) form the basics of the constitutive relation applicable 

for both the homogeneous and inhomogeneous flow in the metallic glasses. With a J2-

type, small strain viscoplasticity framework, the free volume model can be generalized 

into multiaxial stress states 
58

.  The strain rates can be decomposed into the elastic and 

plastic parts:  

                                                   ij ij

e p

ij   
                                                      (1-4) 

The elastic part can be described by the general Hooke’s law,  
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1
( )

1ij

e

ij kk ij
E

 
   




 

                                               (1-5) 

With a characteristic time  scale 
* 1 exp( G / k T)m

Bt f   , the plastic part, namely, 

the flow equation (Eq. (1-1)) can be described as,  

                                 0

1
exp( )sinh

ij

ijp e

f e

S


  

 
   

                                                (1-6) 

where / 3ij ij kk ijS     is the deviatoric stress tensor and 
e ij ijS S  is the Mises 

stress.  

The free volume evolution equation (Eq.(1-2) ) under multiaxial stress states is  

            

0

0

1 1 3(1 ) 1
exp( ) cosh 1e

f

f f DE n

 


   

      
        

                            (1-7) 

where 0 2 /Bk T   is the reference stress; 
*/f f    is the normalized free volume 

and 
* /   . Eq. (1-4)~(1-7) define the constitutive relationship for the metallic glass. 

Note in the above questions, a dot over a quantity denotes 

1( ) exp( G / k T)( () / t)m

Bf     . Detailed description can be found in Ref. 58.  

1.2. Ductility Enhancement in the Metallic Glass 

To promote real structural applications of the bulk metallic glasses, preventing the 

catastrophic shear band propagation and enhancing ductility is of primary importance.  

Given the reason for brittle failure of the metallic glass is that the shear displacement 

along a dominant shear band can easily reach a critical value of fracture, a thought of 
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improving ductility is in fact to limit propagation of an individual shear band and 

distribute the plastic strain over many shear bands 
21

.  Practically, following this idea, two 

categories of approaches are proposed for the ductility enhancing purpose.  

1.2.1. Enhanced by geometrical constraints 

One way to enhanced ductility is to impose geometrical constraints onto the shear 

band propagation, which could be achieved by a couple of approaches. Some researchers 

increase ductility by coating a thin layer of film onto the bulk metallic glasses. Since 

motion of the shear bands is restricted when propagating to the substrate/film interface 

and multiple shear band formation is stimulated, the ductility of the metallic glass is 

increased by 3~10 times 
59-61

. One of such examples is presented in Fig. 1.10 
60

.  

 

 

Figure 1.10 Enhancing ductility of the metallic glass by Cu coating and (b) schematic 

illustration of the enhancing mechanism 
60

. 

(b) 

(a) 
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In addition, some other people enhance ductility of the metallic glasses by 

artificially creating a stress gradient 
62

. Such a stress gradient will introduce the stress 

concentration locally and promote formation of multiple shear bands and hence increase 

the ductility, as shown in Fig. 1.11.  Other geometrical constraints to enhance ductility 

include rolling or bending 
63

, laminated composites in which layers of ductile metals 

alternate with layers of metallic glasses 
64, 65

 and porous metallic glasses in which 

randomly distributed pores play a role of restricting motion of the shear bands 
66, 67

.   

 

 

Figure 1.11 Enhanced ductility of the bulk metallic glass by artificially creating a stress 

gradient 
62

. 

1.2.2. Enhanced via bulk metallic glass composites  

Another way is to fabricate composite materials consisting of an amorphous matrix 

and crystalline phases.  The crystalline phases can help induce initiation of a large 

amount of shear band and inhibit the shear band propagation. Possible approaches to 
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introduce crystalline phases into the amorphous matrix include partial devitrification of a 

metallic glass, forming in situ metallic glass composite through precipitation of the 

crystalline phases during solidification and produce ex situ composites by adding second-

phase particles in to a melt 
68-72

.  For instance, a bulk metallic glass with soft dendrite 

inclusions can possesses substantially good ductility, as shown in Fig. 1.12 
73

.  

   

Figure 1.12 (a) Scanning electron microscopy of the Zr-based bulk metallic glass 

composite with dendrite crystalline phases. (b) Corresponding strees-strain curve 

showing substantially improved plasticity. The inset shows the deformed metallic glass 

composite 
73

. 

During deformation, significant stress concentrations will be developed around the 

second-phase particles. This will trigger formation of multiple shear bands since a yield 

criterion could be easily satisfied around these particles. The stress concentration at the 

matrix/precipitate could contribute to residual stress caused by thermally mismatched 

strains 
74, 75

, differences in elastic properties 
76

 and the plastic deformation mismatch 
77

.  
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1.3. Fracture Behaviors of the Metallic Glass 

Due to characteristic amorphous structure, fracture behaviors of many metallic 

glasses are much like that in oxide or silicate glasses. However, this does not mean 

fracture of all metallic glasses is brittle. In reality, the fracture behavior the metallic 

glasses could be in either ductile or brittle manner, depending on a couple of factors 
78-80

. 

Note ductile fracture here in the metallic glass is not the same as that in the crystalline 

materials due to lack of the dislocation micromechanism, although some metallic glasses 

do possess toughness comparable to the crystalline materials. Fracture is considered 

ductile if large plastic deformation is involved. The fracture surface morphology in the 

ductile fracture exhibits typical vein pattern, as shown in Fig. 1.13 
80-82

.  By contrast, 

brittle fracture occur with zero plasticity and usually has a relatively flat surface with 

very fine vein pattern that only can be observed at high magnifications 
80

.  

 

Figure 1.13 (a) Scanning electron microscopy of fracture surface of the ductile metallic 

glass, showing the characteristic vein patter. (b) Fracture surface of the brittle metallic 

glass, in which the vein pattern can only be observed at a large magnification 
80

. 

(b) (a) 
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Sharp ductile-brittle fracture transition was also observed. Basically, annealing 

induced structural relaxation and devitrification could transform the metallic glass from 

ductile fracture to brittle fracture 
82, 83

, which was attributed to the free volume drop 
84, 85

.  

However, the free volume is only a conceptual stuff and is not persuasive to 

account for brittle or ductile fracture in the metallic glasses. Investigation on a large 

collection of the metallic glasses finally makes Lewandowski and co-workers correlate 

the fracture energy Gc with their elastic properties. To be specific, they believe metallic 

glasses with Poisson’s ratio υ>0.41 tends to have large fracture energy and hence fracture 

plastically. On the contrary, metallic glasses with small Poisson’s ratio fracture in the 

brittle manner. Alternatively, metallic glasses with μ/B<0.41 are tough, while those with 

μ/B>0.43 are brittle, with μ and B being the shear modulus and bulk modulus 
86

, as shown 

by Fig. 1.14. Poisson’s ratio and μ/B can be correlated by 
 

 
 

       

      
. 

 

Figure 1.14 (a) Variation of the fracture energy with Poisson’s ratio and (b) bulk-to-shear 

modulus ratio. Both shows sharp brittle-to-ductile fracture transition at certain a critical 

value 
86

. 

(b) (a) 
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    This argument is interpreted as a competition between the shear and dilatation 
46

.  

A low value of G is weakly resistant to plastic shear deformation, while a large B 

indicates strong resistance to the dilatation necessary for mode I crack propagation 
21, 68

. 

1.4. Motivation and objectives 

Invention of the metallic glass has been over half a century and the bulk metallic 

glasses have also emerged for over 30 years. Unique mechanical properties of the 

metallic glasses have attracted extensive scientific interests. Particularly, success of 

fabricating bulk metallic glasses with featured dimension larger than 1 mm makes people 

see the hope of driving the metallic glasses into practical applications. However, these 

nice wishes were found hard to be realized, which are mainly hindered by intrinsic 

brittleness of the metallic glasses. With unremitting research efforts, it is increasingly 

realized that without fundamental understanding, it is impossible to prompt the metallic 

glasses into industrial applications. Researches then turn to study essential deformation 

mechanisms of the metallic glasses and develop approaches to prevent brittle failure and 

enhance ductility of the metallic glasses. Among various research efforts, investigating 

inhomogeneous deformation mechanism of the bulk metallic glass has become very 

popular. This is because catastrophic fracture normally occurs when the inhomogeneous 

deformation begins through formation of a dominant shear band. Accordingly, shear band 

behaviors of the metallic glasses is of special interest.  
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Given aforementioned development traces of metallic glasses, the present work 

intends to investigate how the shear band inside the metallic glass controls ductility or 

brittleness. To be specific, the following scientific issues will be addressed: 

(1)  Size effect study in the metallic glass. The size effect in the metallic glasses has 

been widely studied using the micro- or nano-pillar samples. Some reported that when the 

size of the pillar samples were brought down to a critical value, like 200 nm, the 

deformation of the metallic glass would become homogeneous and brittle failure could be 

avoided. However, some others claimed that the size effect was not supposed to be 

existing in the metallic glass because of absence of dislocation mediated plasticity like in 

the crystalline materials. If the size effect does exist as that in the crystalline materials, 

fabricating small sized metallic glasses  can provide products combining the high strength 

and good ductility, and the real application of the metallic glasses would be hopefully 

realized in MEMS. Accordingly, size effect study in the metallic glasses is of much 

significance. Study on this can be found in Chapter 2. 

(2) How the shear bands develop under multiaxial stress states in indentation. 

Indentation on the bulk metallic glasses generally introduces multiaxial stress states, 

which help prevent brittle failure of the metallic glasses. Visualizing the shear band 

pattern under indentation and examining how they are formed and interact with each 

other is useful in understanding mechanisms that contribute to prevention of the brittle 

fracture. This part is also included in Chapter 2.  
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(3)  Enhanced ductility in the thin film coated bulk metallic glasses and metallic 

glass composites. To push the metallic glass into industrial applications, seeking various 

possible ways to enhance its ductility has been a vital practice in the metallic glass 

community. Coating the bulk metallic glass with a thin layer of ductile metals fabricating 

metallic glass composite containing reinforced crystalline phases were found to be 

effective in increasing ductility. Studying the ductility enhancement mechanism in these 

samples can help design optimal methods to resolve the long-standing brittleness issue 

existing in the metallic glasses. Investigation on this work is in Chapter 3.  

 (4) Spherical nanoindentation is an important technique for probing mechanical 

properties of metallic glasses and many other materials, including elastic modulus, 

hardness and fracture toughness. The accuracy of the testing results largely depends on 

the correctness of the indenter tip radius and influence of the machine stiffness. In 

practice, the indenter tip normally does not present a perfect spherical shape, which is 

determined by the manufacturing process. Accordingly, the indenter tip radius given by 

the manufacturers are unbelievable. Although fitting with the Hertzian theory could give 

acceptable tip radius value, it still possibly become give incorrect values when subjecting 

to influence of other factors, like the machine stiffness.  The machine stiffness becomes 

particularly important at high load levels. Given these facts, it is a necessity to accurately 

evaluate the indenter tip radius and machine stiffness. This is present in Chapter 4.  

(5) The structure-property relationship in the metallic glasses. The amorphous 

structural nature of the metallic glass makes it pretty difficult to characterize it structure 
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with conventional experimental techniques like the crystalline materials. Without 

necessary structural knowledge, many long-standing fundamental mechanical behaviors 

of the metallic glass, like the shear band mechanism and ductile-to-brittle transition, can 

not be unveiled. Consequently, it is an imperative task to explore proper approach to 

establish an effective structure-property relationship.  This work can be found in Chapter 

5. 

A general introduction on the metallic glass is given in Chapter 1 and discussions 

and perspectives are presented in Chapter 6.  
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CHAPTER 2 

Shear band prediction under geometric constraints 

 

2.1. Introduction 

Deformation of the metallic glasses can be divided into homogeneous and 

inhomogeneous counterparts.  The homogeneous deformation normally happens at 

elevated temperatures, at least above the glass transition temperature and large 

deformation can be achieved, while the inhomogeneous deformation occurs at low 

temperatures with formation of shear bands. The metallic glasses accommodated by the 

inhomogeneous deformation generally exhibit limited plasticity, which is a great obstacle 

for its commercial applications. Accordingly, studying the shear band governed 

deformation mechanism in the metallic glasses is fundamentally important for avoiding 

brittle failure and improving ductility. In this sense, one the one hand, it is suggested that 

when the size of the metallic glass sample is reduced to nano or micron-scale, the shear 

banding will disappear and the deformation will transform from inhomogeneous to 

homogeneous mode. On the other hand, multi-stress state is believed to be able to impose 

geometric constraints to the deformation and hence help improve ductility of the metallic 

glasses. In the following, these two subjects will be studied with simulation methods, 

given the modeling could give novel perspectives on the problem identification and 

solution.  Meanwhile, necessary experiments are carried out as well.  
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2.2. Shear bands in BMG nanopillars
1
 

One of the most intriguing questions in the recent development of nanoscience is 

whether the fundamental laws of physics would break down when the characteristic 

dimension of the test sample approaches the dimension of atoms (i.e. the subnanometer 

scale). It is conceivable that when the critical dimension is reached the properties of the 

sample will undergo a drastic change, the so-called “size effect”. 

In the case of metallic glasses, the deformation can be divided into inhomogeneous 

and homogeneous deformation. Homogeneous deformation occurs typically near and 

above the glass transition temperature (Tg) 
87

. By contrast, inhomogeneous deformation 

typically occurs at ambient temperature well below the Tg and the deformation mode is 

localized shear band formation 
88

. Many attempts have been made to assess the critical 

sample size below which shear band localization disappears and the sample deforms 

homogeneously 
89-98

. Based upon scanning electron microscopy (SEM) observations of 

de-formed pillar samples, the length scale necessary for homogeneous deformation to 

prevail was claimed to be less than 100 nm 
89, 90, 92

, Volkert et al.  
91

 reported that the 

length scale at the transition from shear band localization to homogeneous deformation 

occurred in 400 nm pillar. In comparison, Chen et al.  
93

 predicted 200 nm to be the 

minimum length scale below which a shear band would not form. On the other hand, 

Schuster et al.  
99

 and Dubach et al.  
100

 claimed that there is no evidence of deformation 

                                                 

 
1
 This work was completed with collaboration with M.C. Liu et al. at National Sun Yat-Sen University. 

They did the experiments and our side at University of Tennessee did the modeling analysis. Refer to Liu 

MC, et al. Scripta Mater 2012;66:817. 
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mode transition at a pillar diameter as small as 200 nm. Wu et al.  
97

 also conducted an in 

situ compression experiment, using a 150 nm diameter pillar in a trans-mission electron 

microscope, and concluded that there was no size effect. Despite these research efforts, it 

is still unclear whether there exists an inhomogeneous to homogeneous transition 
101, 102

. 

Moreover, Kuzmin et al. 
103

 recently investigated experimentally the size effect on the 

inhomogeneous-to-homogeneous deformation transition in a bulk metallic glass and 

showed the effect of sample tapering. They demonstrated that taper-free pillars with 

smaller diameters would exhibit ductile behavior during compression almost without 

shear banding. 

It is worth noting that most of these size-effect studies used micro- or nanopillar 

samples fabricated by focus ion beam (FIB) techniques 
104

, with only a few exceptions 

105
. It is also known that FIB can cause damage to the sample surface and subsequently 

change its properties 
96, 106, 107

. 

Moreover, the ion beam is not a delta function but has a Gaussian distribution. This 

results in the production of tapered pillar samples with a dome-shaped top. The exact 

shape of an FIBed sample is dependent upon the energy and angle of the incident ion 

beam. Usually, the curvature of the dome top becomes sharper when the diameter of the 

pillar sample is reduced. The taper and the non-flat top make plastic analysis difficult. It 

is conceivable that testing of dome-shaped pillar samples could lead to some 

misinterpretations of plasticity. However, for brevity, we will not discuss the effect of the 

dome shape here but, rather, will focus on the effect of sample tapering. 
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To study the effect of sample tapering on the plastic deformation mode, our 

collaborators, M.C. Liu, J.C. Huang and K.W. Chen et al. at National Sun Yat-Sen 

University and National Cheng Kung University performed in situ compression tests in a 

transmission electron microscope on the ZrCu pillar samples fabricated by FIB. We 

(University of Tennessee side) carried out, in parallel, finite element simulations of the 

compressive deformation and compared with the experimental observations. 

2.2.1. Experimental details  

Experimental samples with composition of Zr50Cu50 were deposited on Si (100) 

wafers by the magnetron co-sputtering method using the parameters developed by 

Dudonis et al. 
108

. The total amorphous film thickness was fixed at ~1500 nm. The nature 

of as-deposited thin films was characterized by X-ray diffraction (Siemens) and 

transmission electron microscopy (TEM; JOEL 3010). To further explore the microscale 

mechanical properties of the as-deposited thin films, nanopillars were pre-pared from the 

resultant films using the dual FIB system (Seiko SMI3050 SE). In situ TEM compression 

tests were conducted by a novel and recently developed Hysitron pico-indenter TEM 

holder (Hysitron Inc., Minneapolis, MN) on a JEOL 2010F transmission electron 

microscope, equipped with a diamond flat punch, 1.5 lm in diameter. The nano-

compression is also performed in the displacement-control mode and the corresponding 

strain rate is 5×10
-3

 s
-1

. Nanopillar samples with a length of ~1.5 lm were fabricated by 

FIB. These nanopillars have a 140 nm diameter top and an ~250 nm diameter bottom. 

The aspect ratio is > 6, which is higher than the aspect ratio of 2–5 convention-ally used 
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for compression specimens. Such a high aspect ratio was used in order to minimize 

possible accidental collision between the indenter tip and the sample base. 

2.2.2. The free volume model 

The free-volume model, proposed by Spaepen, is a classic constitutive description 

for MGs, which assumes that the macroscopic plastic flow occurs as a result of net 

forward atomic jumps in the direction of the applied stress in a pure shear case 
109

. The 

general flow equation can be represented as: 

  

  
        

   

  
       

   

   
       

  

    
   (2-1) 

where   is the frequency of the atomic vibration,   is a geometric factor of order 1,    is 

the hard-sphere atomic volume,    is the average free volume per atom,     is the 

activation energy,   is the atomic volume,   is the applied shear stress,    is the 

Boltzmann constant, and T is the absolute temperature. The average free volume,   , is 

treated as the order parameter and controls the structural change in MGs. The structural 

rearrangement with the applied stress is controlled by the competition between a stress-

induced disordering process and a diffusional reordering process. Consequently, the net 

increase of the free volume is given as: 
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where    is the number of atomic jumps needed to annihilate a free volume equal to    

and is usually taken to be 3 - 10, and the effective elastic modulus is              . 
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The trend is a stress-controlled process. At a low-stress level, the free volume created by 

the stress can be readily annihilated, and homogeneous deformation is maintained, while 

at a high-stress level, a net increase in the free volume arises, and, hence, shear banding 

occurs. Equations (3) and (4) form the basis of the constitutive relation, which can be 

applied for both homogeneous and inhomogeneous flows in MGs. The flow equation is 

generalized into a multiaxial stress state with the small-strain, J2-type viscoplasticity 

framework and implemented in the ABAQUS model using an user-defined material 

subroutine written by Gao 
110

.  

2.2.3. In-situ TEM observation  

Several predetermined displacements (100, 200 and 300 nm) were initially selected 

for the in situ compression of ZrCu nanopillars. After several trials, it was found that only 

displacement >200 nm produces sufficiently useful results. Subsequently, most 

examinations were conducted on samples compressed to a displacement of 300 nm. The 

load–displacement (similar to engineering stress– strain) curves from several samples are 

summarized in  Fig. 2.1. There are some variations in the data, probably caused by the 

initial misalignment of samples, though the shapes and trends of the curves are similar. 

The yield strength is obtained from the departure of the linearity of the early portion of 

the curve. Because the sample is tapered, yielding will occur from the top of the sample, 

which is the location with the smallest cross-sectional area. Accordingly, the yield 

strength can be extracted from the departure load divided by the top area. The yield 

strength varies between 1.8 and 2.5 GPa, which are within the range reported in the 
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literature  
97, 111, 112

. 

 

Figure 2.1 Representative stress–strain curves for nanocompression tests on the ZrCu 

thin film metallic glass pillars 
112

. 

The compressive load typically reaches its maximum level at a displacement of 

about 75 nm, followed by a gradual decrease. This load decrease resulted from severe 

buckling or bending, as will be shown below for the in situ TEM observations. The 

bending or buckling phenomenon is inevitable due to the sample high aspect ratio (~6) 

and, possibly, sample bending due to misalignment. In fact, it has been pointed out by 

Zhang et al. 
113

 that bending or buckling is significant when the aspect ratio of the test 

pillar is greater than 5. Therefore, for the current ZrCu nanopillars, the reasonable 
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maximum compressive strength without significant buckling or bending should be the 

upper-bound value of about 2.0–2.5 GPa. 

 
To view the in situ deformation, a series of cropped TEM video frames recording 

the deformation of ZrCu nanopillar are shown in sequence in  Figure 2.2(a)–(h), together 

with the corresponding load–displacement curve (inset). The bottom part of the sample 

(gray area) is the silicon substrate. The pillar is tapered (~3
o
). Perfectly aligning the 

nanometer-sized compressive sample is so difficult it is almost impossible to achieve. As 

shown in  Figure 2, the sample axis is slightly off the compressive axis (~2-3
o
). To 

simplify the analysis, we ignore the effect misalignment in this paper. Sample 

misalignments will lead to preferable initiation of shear bands from the pillar corner, and 

these shear bands may not propagate through the entire sample because of the additional 

bending stress 
62, 101

. While these effects are also present in our work, the sample taper 

plays a more intriguing role in confining shear bands to the pillar top. Our free-volume 

constitutive law and finite element simulations later on in this paper are essentially the 

same as those used by Wu et al. 
62

, from which we can qualitatively understand the 

misalignment effects. Thus, in our following analysis, we focus on the sample tapering 

effects. 
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Figure 2.2 Video snaps taken from the in situ TEM compression showing the 

deformation of a Zr-based pillar (Pillar 1). The different stages of the nanocompression 

process are depicted by individual frames (a–h) at different strains: (a) undeformed, (b) 

~2%, (c) ~4%, (d) ~6%, (e) ~8%, (f) ~10%, (g) ~15%, (h) ~20%. The corresponding 

stress–strain curve is inset at the bottom left corner for point-to-point correspondence 
112

. 

Plastic deformation in the sample is noted to be local, occurring mainly in the upper 

portion of the sample. The change in cross-sectional area as a function of distance from 

the top of the pillar sample after being deformed 300 nm is shown in  Figure 3(a). 

Apparently, the dimension of the bottom part of the sample remains practically 

unchanged even after being compressed to a 300 nm displacement. This is primarily 

because metallic glasses are perfectly plastic materials and the test sample is tapered. The 

strain localization near the top of the sample was additionally supported by the 

observation that the initial TEM contrast of the top part of the sample was brighter, 

resulting from a smaller diameter because of tapering. After compression, the top part of 

the pillar gradually became darker as a result of increasing diameter. It is particularly 
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noted in  Fig. 2.2 that, despite the strain localization near the top of the sample, there is 

no visible evidence of localized shear across the sample and the de-formed sample has a 

mushroom-shaped top, just like that observed by Volkert et al. 
91

. According to the 

conventional wisdom, one would conclude that the pillar was homogeneously deformed; 

however, this is not, in fact, the case. As demonstrated later in the simulation on tapered 

nanopillars, shear bands initiate from the contact corner between the sample and punch 

and form an in-verse cone, with the tip of the cone located along the centerline of the 

compressive axis. 

Whereas an SEM micrograph can show the three-dimensional (3-D) morphology of 

a deformed pillar and the presence of surface offset caused by shear banding, TEM only 

provides a 2-D view. It is therefore hard to detect the sudden formation of individual 

shear bands from the current TEM images. The difficulty is caused by the facts that the 

width of a shear band is particularly thin (~10–20 nm), requiring the use of a high-

resolution TEM for observation 
114

, and also because shear band propagation speed is 

extremely rapid (~4 mm s
–1

) 
115

. It is estimated to take less than 0.1 ms to propagate a 

shear band through the entire pillar sample. However, the current TEM video speed is 

only 13 frames s
–1

; thus there is insufficient temporal resolution to capture shear bands. 

Also, the pillar specimen fails after deformation, and cannot be examined by lattice 

imaging to search for the possible existence of shear bands. 
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Figure 2.3 (a) Change in cross-sectional area vs. distance for  Figure  2.2(b), (d), (f) and 

(h). Distance stands for distance at the top of the pillar sample. (b) Area change ratio as a 

function of the distance from the specimen top (normalized by the base diameter) at three 

representative deformation stages, with free volume contours in the insets. Contour plots 

are given in the deformed mesh, with displacement magnification ratios being 1 in all 

three directions. 

2.2.4. Prediction with the free volume model  

To investigate the tapering effects on the shear band formation and deformation 

behavior, finite element simulations were performed using the free volume model 
28, 58

. 

Our simulations are based on the nonlinear finite element method developed previously 

58
. A 3-D tapered pillar with the aspect ratio of 4 was constructed for simulation in 

ABAQUS, with a total number of 38,401 C3D8 elements. A flat-ended indenter is used 

to apply the compressive load from the above while the sample bottom is completely 

clamped. The constitutive parameters were specified as 0.05fv  , and a Poisson’s ratio 
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of 0.333. The normalized loading rate 0(L/ )exp( G / K T)m

BL   can be calculated to be 

2.5 ×10
-6

, where L  is the strain rate and 0L is the original length of the sample.  

As a result of sample tapering, the stress distribution in the initial elastic stage of 

compression test is non-uniform. Usually, for a Mises solid obeying classic continuum 

plasticity, the plastic zone gradually extends from the pillar top to the entire sample, and 

the entire deformation history is smooth and continuous, as shown in  Fig. 2.4(a). The 

taper angle has an insignificant effect on the final barrel-like deformed shape. For 

metallic glasses, however, the scenario is radically different. Strain localization in the 

form of shear band is initiated near the pillar top because of the stress concentration. This 

is clearly shown in Fig. 2.4(b), in which a series of shear bands are initiated 

symmetrically from the top edge of the specimen and keep propagating downward 

toward the center until an inverse cone is formed. Macroscopically, this did not lead to 

large shear displacement, nor a large discontinuous shape on the surface. In other words, 

the shear bands are formed inside the pillar and are not observable on the sample surface. 

Thus, the shear band trace and the shear band offset cannot be observed easily under in 

situ TEM. Continuous deformation after the cone is formed would lead to the spread of 

localized deformation, but would still be confined to the vicinity of the top of the pillar. 

 
A view of the entire sample deformed to a large strain is shown in Fig. 2.3(b). It is 

evident that there is a drastic increase in the cross-sectional area, although the absolute 

strain level is generally small except in the shear bands. The shear bands are contained 

inside the pillar and are therefore not observable from the outside. In contrast to the 
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catastrophic failure in large pillar compression tests, these shear bands will not evolve 

into cracks be-cause the taper angle results in a geometric hardening effect. The slight 

work hardening is an artifact resulting from tapering of the pillar sample, and the ever-

increasing cross-sectional area during compression testing. 

 

Figure 2.4 (a) Compression of a Mises plastic pillar with a stiffness to yield stress ratio 

of 240; (b) compression of the same pillar but with the free volume constitutive law 

(where SDV1 indicates the free volume). Barreling deformation can be seen in the Mises 

solid. By contrast, highly localized deformation of metallic glass occurs with the shear 

band evolution procedure demonstrated by the free volume contour, which is given in the 

deformed mesh, with displacement magnification ratios being 1 in all three directions. 

The comparison between the simulations and experiments indicate a significant 

effect of the taper angle, so that the deformation becomes highly localized near the top 

and the resulting force–displacement curve cannot be directly or easily translated into the 
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constitutive behavior of the material. It is also noted that our predicted area change ratio 

is much larger than in experiments (Fig. 2.4(a)), which is mainly due to the 

misalignment-induced bending in the experiments that accommodates the compressive 

displacement. Nevertheless, the general trends for the experiment and the simulation are 

similar. 

2.2.5. Summary  

According to the findings in section 2.2, it is anticipated that inhomogeneous 

deformation prevails down to 140 nm pillars. First, if homogeneous deformation were to 

dominate at small scales, localized deformation near the tip of the tapered pillars would 

not have occurred. Fully homogeneous deformation, such as the superplasticity behavior 

that occurs in many crystalline metals 
116

, would lead to uniform straining throughout the 

specimen. Both the taper angle and the tip rounding do not change the general 

deformation behavior, while the degrees of deformation localization depend on these two 

parameters. Second, previous observations of inhomogeneous to homogeneous 

deformation are often explained by the lack of mechanical energy input when the pillar 

size is reduced. In fact, it is well known that whether strain localization leads to a sudden 

load-drop or to catastrophic failure depends on the mechanical stiffness. Shear bands may 

not be observable in small-sized pillars because they are often inside the pillar, as shown 

by our simulations in  Fig. 2.3(b). Finally, we note that a constitutive model incorporating 

a length scale would truly predict the transition from inhomogeneous to homogeneous 

deformation mode. However, the experiments presented here found localized 
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deformation even for 140 nm pillar, suggesting that such a length scale will be much 

smaller. This agrees with the hypothesis that a material’s length scale is governed by its 

free volume diffusion or other atomistic mechanisms. In summary, compressive testing of 

tapered pillar samples with an aspect ratio of 6 is not a viable technique for the 

identification of the transition from inhomogeneous to homogeneous deformation mode 

in metallic glasses. 

2.3. Shear band pattern under indentation
2
 

2.3.1. Motivation  

Experimentally, shear band under indentation can be visualized by the bonded-

interface technique 
117-124

. In this technique, two samples are bonded together using the 

super glue and subsequent indentation is made in to the center, as shown in Fig. 2.5(a). 

After indentation, the shear bands on the bonded interface can be observed by splitting 

two bonded parts. It is found the bonded interface contains two family of shear bands: 

radial shear band, like these blue curves, and semi-circular shear bands, like these red 

curves as demonstrated in Fig. 2.1(b). However, since the stress fields will be 

significantly affected by the interface, it is necessary to understand whether the 

experimentally observed shear band using the bonded interface technique represent actual 

ones when the interface is absent.  

                                                 

 
2
 This work was done by collaborating with Z.N. An at University of Tennessee. Z.N. An predicted the 

shear band directions under indentation with the Rudnicki-Rice instability theory, while W.D. Li did that 

using the free volume model.  
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Figure 2.5 (a) Zr52.5Al10Ti5Cu17.9Ni14.6 bulk metallic glass sample indented with the 

bonded interface technique.  (b) Shear bands observed on the bonded interface after 

splitting two parts and removing the super glue 
125

.  

Predictions with the Rudnicki-Rice instability theory by Z.N. An found that 
126

 

when the bonded-interface is absent, only the radial shear bands are formed, as depicted 

in Fig. 2.6 (a). As a bonded-interface is present, which is realized by releasing the motion 

in the direction normal to the symmetric surface in a 3D half-symmetric finite element 

model, both the radial shear bands and the semi-circular shear bands are observed, as 

shown in Fig. 2.6 (b). Based on these theoretical predictions, it appears that the semi-

circular shear bands observed in experiments are a result of stress relaxation of the 

bonded-interface in practice. To confirm this, further studies with the free volume model 

is performed, given its capability of predicting shear band propagation paths. 

(b) (a) 
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Figure 2.6 (a) Shear band patterns on the half-symmetric interface of the metallic glass 

substrate (without interface constraints) under spherical indentation. (b) Radial shear 

bands and (c) semi-circular shear bands on the half-symmetric interface of the bonded 

interface metallic glass substrate under spherical indentation 
126

. 

2.3.2. Direct spherical indentation  

The Fig. 2.7 shows the finite element model used for predicting shear band 

behavior under indentation. Because of symmetry, a quarter of the substrate was 

constructed for 3D indentation simulation using 37,490 C3D8 elements in ABAQUS, and 

(a) 

(b) (c) 
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the region underneath the indenter was finely meshed for accurate calculation 

consideration. The spherical indenter was modeled as a rigid body with a radius of R  and 

the contact between the indenter and the substrate was frictionless. Symmetric boundary 

conditions were assigned to two lateral faces (normal to positive X and positive Z) and 

the bottom was completely pinned. Specifically, the initial free volume is given by 

* 0.05fv v  , and other constitutive parameters are 2 240BE k T  ,  =0.333, 

3Dn  ,  =0.15, and 
*v  =1. The normalized loading rate is 

7exp 3.0 10
m

B

h G

Rf k T

 
  

 

. When 0.14a R  , the first shear band has initiated and 

extended to a distance of about 0.5a .  

 

Figure 2.7 Finite element model used for predicting shear band under spherical 

indentation. 
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Two interesting observations can be obtained from the cut-and-view plots in Fig. 

2.8. First, the first shear band is actually a conical shear surface, which resembles a radial 

shear band from the side view. Such a perfect axisymmetry may not be attained in reality 

because of sample defects or loading misalignment. Second, how far a shear band 

extends depends on material constitutive parameters and, most importantly, the strain and 

strain rate fields. Indentation-induced stress fields decay rapidly, so the observed shear 

bands rarely extend far beyond about twice the contact size.   
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Figure 2.8 To clearly visualize the three-dimensional conical shear band, free volume 

contours (SDV1) were plotted on a vertical plane that makes an angle of 60º from the 

backside surface in (a), and on a horizontal plane at a distance of 0.07R below the top sur 

surface in (b). Finite element simulations were performed in a quarter of the substrate 

under spherical indentation with symmetry boundary conditions prescribed on the two 

side surfaces. These plots are given in deformed mesh with displacement magnification 

ratios being 10, 2, and 10 in X, Y, and Z directions, respectively.  
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2.3.3. Bonded-interface indentation  

 The bonded-interface case can be simulated by prescribing traction-free boundary 

conditions on one side surface as shown in Fig. 2.9. Different from the conical shear 

surface, a spade-like shear band is initiated inside the specimen but away from the 

contact axis and then extends to the center of the contact area. Subsequent loading leads 

to the second shear band initiated on the traction-free surface as shown in Fig. 2.9(c). 

Note the change of view direction in Fig. 2.9(c). Further simulations were not performed 

since the shear band simulation suffers mesh sensitivity problem, i.e., shear band width is 

set by the mesh resolution, and a fine mesh calculation is not readily feasible. The mesh 

sensitivity problem can be resolved by introducing a length scale in the constitutive law 

125, 127
. Nevertheless, these simulations clearly demonstrate that the interface relaxation 

has a critical effect on the shear band formation, and after the first shear band (which is 

hidden in the sample), semi-circular shear bands are initiated on the bonded interface.  
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Figure 2.9 When the traction free boundary condition is prescribed on one side surface, 

the first shear band becomes spade like with the initiation site marked by “X” in (a). A 

horizontal cut at a distance of 0.03R below the top surface is given in (b). These two plots 

are given in deformed mesh with displacement magnification ratios being 10, 2, and 2 in 

X, Y, and Z directions, respectively. (c) A slight increase of the indentation load leads to 

the second shear band which is initiated on the free surface, as shown by the free volume 

contours in undeformed mesh. 
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2.3.4. Summary  

Based on the result in section  2.2, it can be concluded that the radial shear bands 

are actually intrinsic for indentation, while the semicircular shear bands are caused by the 

stress relaxation on the bonded interface in experiments.  
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CHAPTER 3 

Deformation mechanisms in the coated BMG and BMG                   

composites 

 

3.1. Introduction 

Under deformation, the plastic flow in BMGs is accommodated by shear bands, 

thus, the catastrophic failure happens, due to the unconstraint propagation of individual 

shear bands. Thus, the most efficient way to improve the ductility is to geometrically 

constrain these shear bands, so that the plastic strain in each shear band can be 

minimized, therefore preventing crack initiation from a shear band. The application of 

surface coatings is a typical approach to constrain the shear-band propagation and, thus, 

promote the proliferation of shear bands. For instance, Li et al. 
128

 studied the effect of 

the nanocrystalline Ni–15%Fe (weight percent, wt.%) coating on a Zr-based BMG and 

ascribed the ductility enhancement to the increase of the shear-band density. They 

proposed that the multiplication of shear bands was due to the resistance of the 

nanocrystalline coating to shear-band propagation at the interface. An alternative to 

prevent catastrophic failure of the bulk metallic glass along a major shear band is by 

forming BMG composite. By having certain fractions of second phases randomly 

distributed in the metallic glass matrix, more shear band initiation locations would be 

introduced at the second phases/matrix interface. Meanwhile, the shear band propagation 

could be blocked by the crystalline phase. Both these features will result in formation of 
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multiple shear bands, which allow strain to be shared by a large amount of shear bands 

and hence help enhance ductility.  

Although the general pictures for enhanced ductility in the coated metallic glasses 

and metallic glass composites are easy to be understood, explicit micro-deformation 

mechanisms are still not very clear and needed to be elucidated. For instance, in the 

coated metallic glasses, what contributes to enhance ductility and what factors affect the 

effectiveness of the ductility improvement are still unclear. In the BMG composites, how 

the deformation of the crystalline phases and metallic glass matrix compromise with each 

other is still need to be understood. Given limitation of experimental techniques, using 

simulation approach could provide insightful understanding on these issues. In the 

Chapter, we will use the Rudnicki-Rice instability theory 
129, 130

 and free-volume model 

110, 131
 to understanding fundamentals of  deformation in the coated metallic glasses and 

bulk metallic glass composites.  

3.2. Enhanced ductility in the coated BMG
3
 

3.2.1. Motivation 

This work was motivated by experimental observation by our Taiwan colleagues. 

They found that the bulk metallic glasses coated with thin films, including Titanium film, 

metallic film and others, have better ductility than uncoated bulk metallic glasses, as 

shown by the bending tests in Fig. 3.1 
59

. Subsequent indentation tests found that the 

                                                 

 
3
 This work was completed with collaboration with C. Rullyani and Chu J.P. at National Taiwan University 

of Science and Technology. They made the experimental observation and we performed modeling. 
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titanium coated bulk metallic glass has large density of shear band compared to uncoated 

bulk metallic glass 
132

, as revealed by the top view of the indented uncoated and coated 

bulk metallic glasses in Fig. 3.2. Under this background, it is a necessary task to 

understand what mechanism contributes to enhanced ductility in bulk metallic glasses. 

Given limitation of experiments, modeling with the Rudnicki-Rice instability theory and 

the free volume model would be employed to uncover this.  

 

Figure 3.1 Bending stress vs. bending strain for the uncoated bulk metallic glass and 

coated bulk metallic glasses with different materials 
59

. 
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Figure 3.2 Top view of the indented (a) bulk Zr52.5Cu17.9Ni14.6Al10Ti5 (Vitreloy 105) 

metallic glasses and (b) the same sample coated with 200 nm think pure Ti. More shear 

bands are observed in the coated sample  
132

. 

3.2.2. Study with the Rudnicki-Rice instability theory 

Strain localization is a phenomenon of instability, from continuum mechanics point 

of view, and can be described by a general bifurcation theory, in which the shear-band is 

resulted from bifurcation of a homogeneous elastic-plastic flow. The shear band angle in 

the principal stress space is given by 
129, 130

:  

        √
      

      
                             (3-1) 

where   
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 , and     

  are principal deviatoric stresses. υ is the Poisson’s ratio, µ is the 

coefficient of internal friction and β is the dilatancy factor. Accordingly, the shear-band 
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plane will make an angle of ±θ with the first principal stress direction and parallel to the 

second principal stress direction. 

To predict the shear-band initiation and propagation under deformation, in 

coating/substrate systems with a film/substrate thickness ratio of 1/20, compared with the 

bare substrate case, a three-dimensional (3-D) half-symmetric ABAQUS model under 

Rockwell indentation was developed, as shown in Fig.3.3(a) 
133

. In this model, both the 

MG substrate and film are treated as a pure elastic body, which means that the 

deformation behavior of the substrate and coating is merely determined by Young’s 

moduli (E) and Poisson’s ratios ( ). In our case,  E  and   for substrate and film are 88.6 

GPa, 122GPa, and 0.3, 0.34, respectively. The Rudnicki-Rice instability theory is 

employed to predict the directions of shear bands for both the monolithic (Fig. 3.3(b)) 

and coated BMGs (Fig. 3.3(c)) 
133

, with µ + β = 0 in the MG substrate, where µ + β =0 

indicates that the materials deformation is pressure insensitive and associative. The 

detailed explanation on the µ + β from the mechanics point of view can be found in the 

work 
130

. The prediction, from the instability theory, gives typical radial shear-band 

patterns under indentation for both the bare substrate and film/substrate cases, which is 

consistent with many reported experimental results 
122, 126

. In Fig. 3.3(b), the blue solid 

curves indicate the predicted shear-band directions, while the red dashed curves are along 

principal shear stress directions. Since there are no shear-band constraint conditions on 

the surface of the monolithic BMG specimen, only major shear bands appear and 

propagate in the MG substrate. However, in the coating/substrate material system, more 
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shear bands appear, most of which are less than the major shear bands in the bare-

substrate case, as shown in Fig. 3.3(c).  It can be observed that a lot of short solid black 

and dashed green curves, which are the corresponding shear-band directions and principal 

shear-stress directions, respectively, occur at the coating/substrate interface, together with 

some larger shear bands (blue solid curves). This phenomenon suggests that the local 

strain of the BMG produced in the deformation process can be dispersed by more shear 

bands, which reduce the shear strain in each shear band. Therefore, the plasticity of BMG 

substrate is increased by a surface coating.  

Moreover, in the TFMG-substrate material systems, shear bands are “reflected”, 

resulting in the occurrence of more short and minor shear bands (solid curves, Fig.3.3(c)), 

when major shear bands propagate and arrive at the film/substrate interface during 

deformation, as shown in Fig.3.3(c). It should be noted that in our simulations, shear 

bands start from the substrate material, while shear bands can be initiated at the interface 

in the real case. The term “reflection” means the shear-band directions change, since two 

families (before and after reflection) of shear bands may be initiated simultaneously. This 

trend causes the formation of multiple shear bands at the interface, so that each shear 

band will not endure a large amount of shear strains. Thus, enhanced ductility can be 

achieved in the coated MG during experiments. 
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Figure 3.3 (a) Half-symmetric Rockwell indention model on the metallic glass used for 

predicting shear band directions in (b) the bulk metallic glass and (c) titanium film coated 

bulk metallic glass, with µ+β=0 and υ=0.3. The blue solid curves indicate predicted s 

shear band directions and the red dashed curves are principal shear stress directions. The 

short solid black and dashed green curves are corresponding shear band directions and 

the principal shear stress directions. For clarity, the material coordinate space beneath the 

indenter is normalized by the contact half width a.  
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3.2.3. Study with the free volume model 

Fatigue behavior of the film-substrate material system is significantly dependent on 

the adhesion between the film and substrate. However, the effects of the adhesion 

properties between film and substrate are difficult to be simulated with the Rudnicki-Rice 

instability theory, although the deformation mechanism, as well as the shear bands 

propagation direction, in the film-substrate materials is in-depth studied by the 

indentation simulation using the ABAQUS model and Rudnicki-Rice instability theory in 

the previous section. Alternatively, a free-volume model will be employed to investigate 

the film-substrate adhesion on the fatigue behavior of the coating specimens in the 

following. 

A two dimensional (2D) ABAQUS model consisting of four-node plane strain 

elements, with an element type of C3D4, is built under indentation loading, with the 

substrate as metallic glass and thin film being a Ti-based alloy. To explore the effects of 

the coating thickness and adhesion on the enhanced plasticity, films with varied 

configuration and constitutive laws was employed. A rigid Rockwell indenter was 

applied to indent specimen, and the sample bottom is completely constrained for any 

motion. The contact between the indenter and sample was frictionless, while the 

substrate/coating interaction varies for different simulation purposes, as explained in 

detail below. For substrate materials in all cases, the constitutive parameters are given as 

     
      ,            ,   = 0.33,      ,   = 0.15, and       . The 
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normalized loading rate is  ̇  
 ̇

  
   (

   

   
)           s

-1
. Different constitutive 

relations are assigned to coatings and substrate, which will be given below.  

To investigate the effects of coating adhesion on the ductility and fatigue 

enhancement of BMGs, different indentation contours were simulated in Fig. 3.4 
132

. The 

coating material used in the present work is Ti, which is treated as a purely elastic body 

in the ABAQUS model, with a Young’s modulus of E = 122 GPa and a Poisson ratio of   

= 0.34. In Fig. 3.4(a), it is demonstrated that the indentation of the bare BMG substrate 

results in several major pairs of intersecting shear bands. By contrast, the indentation of 

Ti-coated MG specimen to the same displacement induces the formation of multiple 

shear bands, for both infinite-adhesion and zero-adhesion cases, as displayed in Fig. 

3.4(b) and (c), respectively. This shear-band multiplication phenomenon in the coating 

case is attributed to two mechanisms: (1) shear-band reflection occurs at the film/BMG 

interface, and (2) abundant minor shear-band branches appear inside the coated 

specimens. Both mechanisms are triggered by the geometrical constraint of coatings and 

responsible for the enhanced plasticity in MGs. This result agrees well with the previous 

predictions by the Rudnick-Rice instability theory on shear-band multiplication in 

coating/substrate materials 
129, 130

.  

Experimental studies 
134

 reveal that film/substrate adhesion plays a crucial role in 

enhancing the ductility of BMGs. To examine this effect, two extreme cases are 

simulated in the present work with the ABAQUS model: (1) indentation of a Ti-coated 

MG substrate with perfect adhesion (Fig. 3.4(b)) and (2) the same sample with zero 
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adhesion (Fig. 3.4(c), which is realized by defining a frictionless film/substrate contact 

between the film and substrate. Consistent with the experimental observations, poor 

film/substrate adhesion tends to bring about less shear-band reflection and branching, 

which is attributed to film delamination occurring easily in the poor adhesion case. As a 

result, only relatively limited enhanced plasticity is obtained in the poorly-bonded coating 

material, thus leading to poor fatigue improvement. For the perfect film-adhesion 

condition, the fatigue-crack initiation stage is significantly elongated, thus prolonging the 

overall fatigue life of this coating material. However, it should be noted that geometrical 

constraints by coatings will lose their effect on the ductility and fatigue improvement of 

substrate materials once the fatigue crack starts to propagate. 
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Figure 3.4 Free volume contour plots on different indentation configurations. (a) 

Indentation on the bulk metallic glass, without any coating. (b) Indentation on a thin film 

coated BMG with a bulk/ film thickness ratio of 20. The substrate and film is completely 

bonded, corresponding to the perfect adhesion case in practice. (d) Indentation on a same 

film coated BMG, but with zero adhesion. Practically, the film is simply put above the 

substrate and their interaction is frictionless. All plots are given in deformed mesh with 

displacement magnification ratio of 1 in three directions.  

 

 

 

 

 

  



 

60 

 

              

  

             

 

(c) Ti Film 

Indenter 

BMG 

Indenter 

BMG 

Ti Film  

(b) 

Indenter 

BMG 

 

(a) 



 

61 

 

Experiments also reveal that fatigue behavior of the thin film coated bulk metallic 

glass system also strongly depends on the coating thickness 
135

. To elucidate what 

mechanism behind control this and what thickness of the coating should be selected for 

optimal ductility enhancement, two different cases, with a film/substrate thickness ratio 

of 20 (thin-film) and 5 (thick-film) are comparatively studied. In both cases, the perfect 

film/matrix adhesion is adopted. The results reveal that a large amount of shear bands are 

triggered in the thin-coating case (Fig. 3.5(a)), while less shear bands happen to the thick 

film coated metallic glasses (Fig. 3.5(b)). This is because in the thick-coating case, the 

coating itself will have to sustain large deformation. This makes damage or delamination 

easily happen to the thick film, resulting relatively worse ductility enhancement effect. A 

clue from the simulation is that in the thick-coating case the deformation in the metallic 

glass mainly sustained by two major intersecting shear bands, which is more likely to 

lead to delamination when they arrive at the film/substrate interface, as revealed in Fig. 

3.5 (b).  

These simulation results are essentially consistent with experimental findings 
136

 

and account for why many fatigue works are conducted on the BMG specimens coated 

with thin metallic glass films having a thickness of around 200 nm, rather than 1 μm or 

larger, although some exceptions exist
134, 137, 138

. 
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Figure 3.5 An indentation model with free-volume contour plots in different film-

thickness cases: (a) a BMG substrate with a thin TFMG, having a film/substrate thickness 

ratio of 1/20 and (b) a BMG substrate with a thick TFMG, having a film/substrate 

thickness ratio of 1/5. 

 

Indenter 

Ti Film 

BMG 

(b) 

Indenter 

BMG 

Ti Film 
(a) 



 

63 

 

 

3.2.4. Summary 

Simulation with the Rudnicki-Rice instability theory and free volume support the 

experimental observation that coating the bulk metallic glass with Titanium film helps 

improve the ductility. The radial shear bands pattern under indentation of the bulk 

metallic glass is successfully predicted with both approaches, while the enhanced 

ductility attributes to formation of multiple shear bands caused by two mechanisms: shear 

band reflection at the matrix/film interface and shear band branching inside the material. 

Goode adhesion between the coating and metallic glass matrix is also critical in 

guaranteeing effectiveness of the ductility enhancement.  Besides, choosing appropriate 

film thickness is equally important. The intuition that the thicker the coating is, the better 

the ductility will be is incorrect and a proper coating thickness for different 

coating/substrate system needs to be selected carefully.  

3.3. Deformation mechanisms in the BMG composites
4
  

3.3.1. Lattice strain evolution in BMG composites 

The bulk metallic glass has very limited plasticity and one way to increase its 

ductility is to fabricate in-situ BMG composites. A recently developed bulk metallic glass 

composite has soft crystalline dendrite randomly distributed in the metallic glass matrix, 

                                                 

 
4
 Study of this part was in collaboration with H.L. Jia at University of Tennessee. H.L. Jia carried out 

synchrotron diffraction experiments and crystal plasticity simulations to investigate the lattices strain 

evolution. W.D. Li performed the free volume modeling.  
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serving as a reinforcement phase, as shown in Fig. 3.6(a) 
139-142

. By incorporating the soft 

dendritic crystals, the ductility of the bulk metallic glass composite can be substantially 

improved, as indicated by Fig. 3.6(b), which is believed to attribute the arrested 

propagation of shear bands by soft crystalline phases 
143-145

. Since the deformation of the 

bulk metallic glass composites is accommodated by both the metallic glass matrix and 

crystalline phase, to build up a clear picture about the deformation mechanism of the 

metallic glass composite it is necessary to understand how the deformation of the matrix 

and crystalline phases accommodated with each other. In this sense, deformation of the 

dendritic inclusions needs to be investigated.  
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Figure 3.6 (a) Bulk metallic glass composite Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0, with soft 

dendritic crystals randomly distributed in the matrix. (b) The compressive stress versus 

strain, showing apparent plasticity 
139

. 

(a) 

(b) 
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The high energy X-ray diffraction technique (Synchrotron diffraction) has excellent 

penetration capability and is able to measure the in-situ deformation of the second phase 

146-151
. The deformation of the second crystalline phases is normally characterized by the 

lattice strain, which indicates the elastic lattice distortion of grains in various 

crystallographic directions and can be calculated from shift of the diffraction peaks. From 

the micromechnism point of view, the lattice strain reflects the intergranular interactions 

between neighboring grains. Experimental measurement by the Synchrotron diffraction 

found that the lattice strain evolution in the dendritic crystals first experiences elastic 

deformation followed by nonlinear behavior after yielding and further followed by a 

strain ‘turnover’ behavior at high level stress, as depicted in Fig. 3.7 
139

. Meanwhile, 

simulation with the crystal plasticity model by H.L. Jia through assigning various 

crystallographic orientations but identical properties based crystal plasticity theory 
152, 153

 

found the similar trend, as in Fig. 3.7. To understand the lattice strain evolution in the 

crystalline phases in more depth, further modeling studies with the elastic-perfectly-

plastic model and free volume model will be performed. Besides, prediction with the free 

volume model reveal more details in the deformation mechanism in the metallic glass 

composite because it is capable to capture the shear band feature existing in the metallic 

glasses.   
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Figure 3.7 Stress versus lattice strain in the crystalline phase of the bulk metallic glass 

composite studied by both the Synchrotron diffraction measurement and crystal plasticity 

modeling, showing characteristic ‘tunrover’ behavior at large stress level 
139

. 

3.3.2. Lattice strain prediction with elastic-plastic model   

To reduce the simulation efforts, a two dimensional (2-D) uniaxial compression 

model is first applied to study the lattice strain evolution of the crystalline phases in the 

metallic glass composite and only one dentritic inclusion is considered, as shown in Fig. 

3.8 (b) and 3.9 (b). Both the matrix and inclusion are simulated as elastic-perfectly-plastic 

bodies, with Young’s modulus, Poisson’s ratio and yield stress being 89 GPa, 0.37, 1.4 

GPa and 60 GPa, 0.37, 0.45 GPa, respectively. In addition, compression simulations on 

the bulk metallic glass composites (MGMCs) with 45
o 
and 90

o
 oriented dendrite 
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inclusions were comparatively studied to investigate the influence of orientations of the 

dendrite inclusions on the lattice-strain evolution. It is found that in the MGMCs with a 

45
o
-oriented dendrite inclusion, no relaxation occurs, as indicated by (iii) and (iv) in Fig. 

3.8(a). In contrast, slight relaxation can be observed in the model with a 90
o
-oriented 

dendritic inclusion, as shown in Fig. 3.9(a). In the 45
o
 dendritic model, the stress 

concentration initiates from four corners of the dendrite inclusion and propagates 

throughout the entire sample, as shown in the Mises stress contour evolution (i) - (iv) 

in Fig. 3.8(b). In contrast, stress concentration only starts from two horizontal dendrite 

vertexes, and the other two perpendicular dendrite vertexes have low stress, as shown in 

the Mises stress contour evolution (i) - (iv) in Fig. 3.9(b). 
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Figure 3.8 Compressive stress as a function of the lattice strain for the composite with 

90
o
 oriented dendrite inclusion, and corresponding Mises stress evolution contours at 

representative stages (I)~(IV) are shown in (b). Both the matrix and inclusion are 

simulated as elastic-perfectly-plastic bodies, with Young’s modulus, Poisson’s ratio and 

yield stress being 89 GPa, 0.37, 1.4 GPa and 60 GPa, 0.37, 0.45 GPa, respectively. 
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Figure 3.9 (a) Compressive stress as a function of the lattice strain for the composite with 

45
o
 oriented dendrite inclusion, and corresponding Mises stress evolution contours at 

representative stages (I)~(IV) are shown in (b). Properties of the matrix and inclusion are 

the same as the previous. 
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Therefore, this inclusion geometry study can provide some guidance on the design 

and preparation of MGMCs. The 90
o
-oriented dendritic inclusions should have a better 

preference on the strength and ductility of MGMCs, compared to the 45
o
-oriented 

dendritic inclusions, since the 45
o
 dendritic case can bring more severe stress 

concentration into MGMCs upon loading. 

3.3.3. Shear band evolution and deformation mechanism  

The previous studies successfully predict the lattice strain evolution of crystalline 

phases in MGMCs, the micro-mechanism responsible for the localized deformation in 

shear bands in MG matrix, however, remains unclear. To understand this, the free-

volume-based constitutive model for MG matrix is used to investigate the shear bands 

initiation and propagation in MGMC upon uniaxial compression. The material 

parameters for MG matrix are * 0.05fv v  , 2 200BE k T  ,  =0.37, 3Dn  , =0.15, 

and 
*v =1, and applied strain rate  is 1.0×10

-3
 s

-1
. The crystalline inclusions are elastic-

perfectly plastic body, with Young’s modulus, Poisson’s ratio, and yield stress being 60 

GPa, 0.37 and 0.45 GPa, respectively. For comparison, two types of MGMCs with 

different inclusion shapes, dendritic and circular, are employed for calculations. 

Fig. 3.10(a) shows the lattice strain evolution for both MG matrix and crystalline 

inclusion in the circular inclusion model under compressive loading. Here, the lattice 

strain is in fact the elastic strain in loading direction and applied stress is the one on the 

entire specimen. The ultimate lattice strain in the crystalline inclusion is obtained by 

averaging the values of all inclusion grains. As observed in Fig. 3.10(a), with increasing 



 

76 

 

applied stress, the lattice strain in both matrix and inclusion rises linearly at the beginning 

till a deviation occurs at a stress of ~ 0.8 GPa. Afterwards, the lattice strain of MG matrix 

still increase linearly, while that of inclusions turns to evolve at a much lower rate with 

the applied stress elevating, implied by the consistent and reduced stress/lattice-strain 

slope of the matrix and inclusion, respectively. This is due to the load partitioning 

following the yielding of crystalline inclusion. When the applied stress reaches ~ 1.7 GPa, 

the difference of stress/lattice-strain slope between MG matrix and inclusion becomes 

more significant. With the further increase of the applied stress, the lattice strain of the 

matrix increases significantly, while that of the inclusions begins to decrease, namely, a 

‘turnover’ phenomenon. To obtain insights on the micro-mechanism responsible for the 

stress/lattice-strain slope change in the matrix and inclusion, particularly on the ‘turnover’ 

behavior, the free volume evolution at four representative stages (i) - (iv) are plotted 

in Fig. 3.10(b), corresponding to the four positions in the stress - lattice strain curves 

in Fig. 3.10(a). At stage (i), although inclusions have already yielded at a nominal yield 

stress of 0.45 GPa and the free volume in matrix starts to localize around the 

matrix/second phase interface, no stress/lattice-strain slope change occurs. This indicates 

that the load partitioning in the MGMC does not happen immediately following the 

yielding of inclusions. When the load is increased to 1.2 or 1.7 GPa, localized 

deformation begins to form in shear bands, typically as demonstrated in stage (ii) and (iii). 

At these two stages, more loads will be transferred to matrix, resulting in much increased 

lattice strain, while the lattice strain in crystalline inclusion tends to evolve slowly. The 



 

77 

 

shear bands can be observed to initiate at an angle of ~ 45 
o
 from the matrix/inclusion 

interface and propagate outward. Ultimately, when the localized shear bands propagate 

and link with each other, the lattice strain relaxation in the inclusions become more 

significant and the ‘turnover’ behavior will emerge, as depicted in (iv) in Fig. 3.10(b). 

Moreover, the simulation with the free volume model is helpful in understanding 

the mechanism responsible for the enhanced macroscopic plasticity in MGMCs. In a 

monolithic BMG, a major shear band will cut through the entire sample once it initiates 

from some weak locations, since no blocking mechanism exists. In contrast, the shear 

band propagation in MGMCs could be blocked or deflected by the second phases. As 

revealed by Fig. 3.10(b), the shear bands do not propagate catastrophically after they 

initiate from the matrix/inclusion interface. Instead, the propagation of shear bands is 

refined to a local area enclosed by neighboring shear bands. This second-phase blocking 

mechanism contributes to the improved plasticity of MGMCs by avoiding the formation 

of a major shear band. Till a dominant shear band is formed through the linkage of many 

minor shear bands at large applied loads, a potential rupture path can be formed leading 

to the fracture of MGMCs, as demonstrated in stage (iv) in Fig. 3.10(b). 

Study on the dendritic-inclusion embedded MGMCs with free volume model is 

shown in Fig. 3.10(a) and (b), which exhibit similar trends with the circular-inclusion 

model. The only difference is that the shear bands preferentially initiate from vertexes of 

the dendritic inclusions, as observed in Fig. 3.10(b). This demonstrates that geometry of 
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the inclusions does not exert significant influence on the lattice strain evolution and 

micro-mechanism responsible for this. 
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Figure 3.10 (a) Applied stress as a function of the    
       for both inclusion and matrix in 

the composite with multiple circular inclusions, and (b) the corresponding Mises stress 

evolution contours at representative stress levels (i) - (iv). The matrix is described by the 

free volume constitutive model through a UMAT subroutine in ABAQUS, with Young’s 

modulus and Poisson’s ratio being 200 GPa and 0.37, respectively. Other parameters can 

be found in text. The inclusion phase is elastic-perfectly plastic solid with Young’s 

modulus, Poisson’s ratio, and yield stress being 60 GPa, 0.37, and 0.45 GPa, respectively. 

All figures are given in deformed mesh with a displacement magnification ratio of 1 and 

the state dependent variable 1 (SDV1) specifies the free volume. 

 

 

 

 

 

 

 



 

80 

 

 

(a) 

 

 

 

 

 

 



 

81 

 

     

         

 

(b) 

 

 

 

 

(IV) (III) 

(II) (I) 



 

82 

 

Figure 3.11 (a) Applied stress as a function of the    
        for both inclusion and matrix 

in the composite with multiple dendrite inclusions, and (b) the corresponding Mises stress 

evolution contours at representative stress levels (i) - (iv). All the parameters are the same 

as those in Fig. 3.10. 
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Note that in the present model MGMCs contain roughly 20% (volume percent) of 

crystalline inclusions, however, in the real specimens, the volume percentage of crystals 

is ~50%. The only difference between the high-volume and low-volume percentage cases 

is that the chance of forming a dominant shear band by connecting many minor ones is 

much smaller for the high-volume percentage case, due to the enhanced blocking effect 

of second phase. Clearly, the success of the MGMCs in ductility enhancement needs to 

reach this percolation limit. 

3.3.4. Summary  

The lattice strain evolution in the crystalline phases reinforced bulk metallic glass 

matrix shows a ‘turnover’ behavior at a high level of stress. Simulation supports that this 

attributes to the load partitioning followed yielding of the metallic glass matrix. Modeling 

with simple elastic-plastic model also finds that the lattice strain relaxation also relies on 

the orientation of the dendrite crystalline inclusion. The improved ductility in the bulk 

metallic glass composites attributes to existence of the shear band blocking mechanism 

via presence of the second phases. The shear bands are found initiate from the second 

phase/matrix interface and propagate at an angle of around 45
o
. The sample will not 

fracture till a major shear band is formed by connecting many small propagating shear 

bands.  
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CHAPTER 4 

Effects of machine stiffness on the loading-displacement curve 

during spherical nano-indentation 

 

4.1. Introduction 

The instrumented indentation technique (or nanoindentation) has become a 

ubiquitous tool for the characterization of mechanical properties of materials at micro- 

and nano-scales. It can provide resolution of the load and penetration of depth down to 

micro-Newtons and nanometers 
154, 155

. Early applications lead to direct mechanical 

characterization of thin film systems and materials under confined conditions, and current 

applications can be found across multiple disciplines 
156-159

. In a typical indentation test, 

by precisely controlling the movement of indenters, the depth of penetration and the 

applied load are simultaneously recorded as an experimental load-displacement curve 

(frequently termed P-h curve), from which many mechanical properties of test specimens 

can be extracted. The most common use is for the measurement of hardness and stiffness 

154, 155
. In addition, other elastic or plastic mechanical properties, such as hardening 

exponents 
157, 160

, fracture behavior 
161, 162

, creep deformation 
163-165

, and residual stresses 

166-168
, can also be evaluated. 

Spherical indentation tests have several advantages over sharp indentations (i.e., 

conical and pyramidal indenters), and thus have been used extensively for probing 

various mechanical properties of a wide variety of materials recently 
167, 169, 170

. Unlike 
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the self-similar deformation fields in sharp indenters, the plastic deformation field under 

spherical indentations changes gradually. For spherical indentations, the P-h curves have 

both the initial elastic response and the subsequent elasto-plastic behavior, while sharp 

indentation responses will be elasto-plastic immediately from the beginning. This enables 

spherical instrumented indentation to investigate many material properties that cannot be 

obtained by sharp indentation. For example, by solely using a single spherical indentation 

test, plastic properties of materials can be determined 
170-173

. In contrast, for sharp 

indentations, either the stress-strain relation cannot be uniquely determined or multiple-

indenter tests are needed 
156, 174, 175

. For another example, the evident elastic-plastic 

transition in spherical indentations makes it ideal in investigating elastic behavior and 

incipient plasticity at small scales, marked by pop-ins on the P-h curve in both crystalline 

materials 
176-179

  and amorphous metals 
159, 180, 181

. Also, spherical indentations can be 

used to study the size effects in that hardness changes with respect to indenter tip radii 
182

 

as well as a newly discovered different type of size effect in which the pop-in stresses 

increase with decreasing indenter tip radii 
178, 183

. All these applications with spherical 

instrumented indentation, however, rely upon a knowledge of the correct indenter tip 

radius. If the incorrect indenter tip radii were used, all subsequent calculations would 

become erroneous.  

In practice, the uncertainty of the nominally measured tip radii offered by 

providers, which originates from difficulties in measurements at small scales, leads to 

researchers avoiding using these values directly. A routinely adopted method, which is 
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believed to be able to give correct R values, is to use the Hertzian elastic fitting 
155, 184

, in 

which the load P should be proportional to R
1/2

h
3/2

 with h being the depth of penetration 

if the load-displacement curve is entirely elastic. Clearly the correctness of the indenter 

tip radius obtained this way relies on accurate measurement of both the load and 

displacement. Experimentally, the displacement measured by the displacement gauge (as 

shown in Fig. 4.1(a)) actually consists of two parts: the penetration into the sample, 

hsample, and the deflection of the loading frame, hmachine, so that htotal=hsample+hmachine. The 

loading frame may be modeled as a spring with hmachine = P/Smachine, where Smachine is the 

machine stiffness, as schematically shown in Fig. 4.1(b). The Hertzian theory merely 

considers the relation between the depth of penetration and load. In other words, when 

the load frame deflection is large enough, e.g., approaching the same order of magnitude 

as the depth of penetration, the Hertzian theory would become invalid on the 

experimental P-h curve if treating the displacement reading as solely from the contact 

response. As a result, the indenter tip radii determined using the direct Hertzian fitting 

become incorrect. This occurs particularly at high loads or indenting on stiff materials. It 

should also be noted that the machine stiffness may vary as a function of the applied load.  
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Figure 4.1 (a) Schematic illustration of the instrumented indentation system (reproduced 

after Oliver and Pharr, 1992) and (b) schematic diagram showing that the experimentally  

measured displacement is the sum of the loading frame deflection, hmachine, and the  

penetration into the sample, hsample, i.e., htotal=hsample+hmachine.  
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The purpose of the present work is to develop a method that is capable of 

determining the correct indenter tip radius under any conditions, and simultaneously 

evaluating the machine stiffness quantitatively. This is achieved by simply incorporating 

the machine stiffness into the Hertzian theory and testing two materials with known 

material stiffness. The tip radius values obtained from our approach are compared with 

those from the routinely used method (i.e., direct Hertzian fitting), and differences are 

carefully examined. The machine stiffness is systematically analyzed for various 

indenters and loads, which provides insights in identifying when the direct Hertzian 

fitting is suitable for deriving indenter tip radii and when is not.  

4.2. Method 

The classic Hertzian contact solution is applicable for elastic half-spaces indented 

by indenters described by parabolae of revolution, or for elastic bodies with initial 

separation gaps described by parabolae of revolution 
185, 186

. The indentation load, P, is 

related to the indentation depth, elastich , (or more rigorously, the approaching of faraway 

reference points on the two elastic solids in contact) by  

                                                       
* 3 24

3
elasticP E Rh ,                                        (4-1) 

where R is the indenter radius and the reduced modulus 
*E  is given by 

                                             
2 2

*

1 11 s i

s iE E E

  
  ,                                        (4-2) 
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for isotropic elastic materials with E and υ being the Young’s modulus and Poisson’s 

ratio, respectively. The subscripts s and i denote the sample and indenter, respectively. 

For anisotropic elastic materials, Eq. (4-1) holds true but the representation in Eq. (4-2) is 

significantly complicated. The indentation modulus plays a critical role in procedures that 

determine material hardness such as the Oliver-Pharr approach  
154, 155

. 

This paper is built upon the notion that the displacement data as obtained from the 

instrumented indentation technique has the contributions from the contact response as in 

Eq. (4-1), the deflection of the loading apparatus due to the finite machine stiffness 

(Smachine=P/hmachine), and the uncertainty in identifying the onset of contact, as shown in 

Fig. 4.1 (b).  Since a constant machine stiffness, Sdefault, is predefined in the data 

processing software prior to testing, the reported displacement reading differs from that 

measured by the displacement gauge by 

                                        reported total

default

P
h h

S
  ,                                                (4-3) 

where htotal is the total displacement measured from the gauge in Fig. 4.1(a), and hreported 

is the reported displacement reading from the data processing software. If solely 

considering the displacement measured by the gauge, we have  

                             
2/3 * 2/3

0

4
( )
3

total

machine

P
h P E R h

S

   ,                                   (4-4) 

in which the first term on the right hand side is the deflection of the loading frame and the 

second term is due to the contact response, as schematically shown in Fig. 4.1(b). Smachine 

is the overall machine stiffness to be determined, which in principle is a complicated 
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function of the load, P. A constant 0h  is introduced to account for the uncertainty of 

onset of contact. Combining Eqs. (4-3) and (4-4) gives  

                 
2/3 * 2/3

0

4
( )
3

reported

machine default

P P
h P E R h

S S

    .                              (4-5) 

Our method to determine R and Smachine is based on indentation tests on two 

different materials with known moduli. Thus, taking the difference of the following two 

equations, 

             
2/3 * 2/3

, 0,

4
( )
3

reported I I I

machine default

P P
h P E R h

S S

    ,                            (4-6) 

  
2/3 * 2/3

, 0,

4
( )
3

reported II II II

machine default

P P
h P E R h

S S

    ,                         (4-7) 

we get 

 
2/3 2/3 * 2/3 * 2/3

, , 0, 0,

4
( ) ( ) ( )
3

reported I reported II I II I IIh h P R E E h h       .                    (4-8) 

Provided with 
*E  of these two materials, we can find the indenter radius by a linear 

fitting between hreported,I-hreported,II and 
2 3P . It is obvious that the success of this method 

relies on the assumption that the machine stiffness is only a function of the applied load, 

and the subtraction between the two sets of P-h curves should be conducted at the same 

load. Subsequently, with a known indenter radius, we can plot 

2/3 * 2/34
( ) /
3

reported defaulth P E R P S   against P, which will lead us to determine Smachine 

and h0 as in Eq. (4-5).  
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4.3. Experimental 

Instrumented indentation tests were carried out on a MTS XP Nanoindenter (MTS 

Nano Instruments, Oak Ridge, TN) using diamond spherical indenters (E=1141 GPa, 

ν=0.07) with nominal tip radii of 2.55, 5.0, 8.3, 9.0, 50.0 and 100.0 μm and sapphire 

spherical indenters (E=433 GPa, ν=0.2) with nominal tip radius of 100.0 and 250.0 μm, 

respectively. The nominal indenter tip radii were provided by the manufacturer. During 

all tests, a machine stiffness of 9.1 N/µm was pre-selected in the current nanoindenter, 

according to manufacturer suggestion for routine hardness and modulus measurement 

using a Berkvoich diamond indenter. Fused silica (E=73 GPa, ν=0.17) and sapphire 

(E=433 GPa, ν=0.2) were selected for indentation tests because of their substantially 

different indentation moduli. This enables us to obtain two sets of P-h data having 

radically distinctive penetration depth at the same load, and consequently the calculation 

will be more reliable in Eq. (4-8). Moreover, the reduced modulus to hardness ratio Er/H 

for those two materials is small, having =13.9 and =6.14 for the 

sapphire and fused silica, respectively. All tests were limited to the elastic region by 

using the continuous stiffness mode with a constant rate of P P =0.05 s
-1 

and the 

displacement oscillation is 1 nm. We select those experiment conditions to reduce the 

possibility of the loss contact problem 
187, 188

. On a given specimen, about 9 indents were 

made by each indenter and the indents were placed far enough apart to avoid interference. 

The indenter radii and machine stiffness were determined by the averaged results from 

these tests. In addition, indentations on a tin sample were also made with each indenter 

/sp sp

rE H /fs fs

rE H
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for measuring the indentation impressions using a white light interferometer. Because of 

the extreme low value of hardness in tin and almost no elastic recovery after indenting, it 

is believed that the residual impression left on the sample surface accurately reflects the 

shape of the indenter tip. 2D and 3D profiles of the impressions were acquired using a 

Wyko NT 9100 white light interferometer, as shown in the insert of Fig. 4.2. 

Subsequently, the indenter radius was extracted by fitting the 2D profile to a spherical 

cap. This procedure was repeated multiple times to obtain the average and standard 

deviation values reported in Table 1. It is worth noting that, under current resolution, the 

optical profiler can only accurately measure an indenter radius larger than 50 μm.  
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Figure 4.2 Line scan and three dimensional view of the indentation impression on tin 

characterized by a white light interferometer, from which the indenter tip radius can be 

determined. Dash curve represents spherical tip with radius of 253 μm. 

As listed in Table 4.1, out of a total of 8 indenters, indenters with tip radii equal to 

or greater than 50 μm are marked as large indenters including Tip #1, Tip #2 , Tip #3 and 

Tip #4, while those smaller than 50 μm are marked as small indenters, consisting of Tip 

#5, Tip #6, Tip #7 and Tip #8. The nominal tip radius is generally considered inaccurate 

and the “actual indenter tip radius” is routinely derived from direct Hertzian fitting to the 

experimental P-h data 
155,183,185

. In the present work, both the Herzian theory in Eq. (4-1) 

and the modified Hertzian model in Eq. (4-5) were applied to determine the indenter tip 
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radii and the differences were examined. These methods are compared to the optical 

profile measurements. 

4.4. Results  

4.4.1. Determination of indenter radius R 

Results from the indenter Tip #2 (nominal radius =100 μm) are used for illustrative 

purpose and processes for other tips are essentially the same.  All the final results are 

given in Table 4.1. Typical P-hreported curves on the fused silica and sapphire with Tip #2 

are plotted in Fig. 4.3(a). Deformations in all cases are limited to the elastic region, as 

confirmed by the full unloading path that collapses onto the loading path. This helps to 

avoid difficulties in identifying the elastic-plastic transition points in the plastically 

deformed materials and ensure applicability of the Hertzain theory to all data.  Due to the 

large difference in indentation moduli, sapphire and fused silica have distinct 

displacements, 
fsh  and 

sph , at the same loads and this large difference enables quality of 

data for the fitting in Eq. (4-8).  

We first directly use the Hertzian theory to fit the experimental P-hreported curves 

(i.e., implicitly assuming Sdefault as the machine stiffness) to get tip radii, as indicated by 

the black dashed curves in Fig. 4.3(a). All calculations yield smaller indenter tip radii 

compared to the nominal radii, as listed in Table 1. These fittings are seemingly 

reasonable, but we will show that the results are significantly different from both the 

optical profiler measurement and our subtraction method. Also such a fitting gives 

different tip radii for the two materials, which clearly indicates the invalidity of this 
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method. In the subtraction method in Eq. (4-8), data points  , fsP h  and  , spP h  at the 

same loads on Fig. 4.3(a) are used. The linear fitting between 
fs sph h  and 

2 3P in Fig. 

4.3(b) clearly demonstrates the success of our method in Eq. (4-8). Note that only several 

data points are plotted on Fig. 4.3(b); the fitting curves are obtained from all the data 

points in the designated load range. The tip radius can be determined from the slope, 

which equals to  
2 3

* 2 3 * 2 3

I II

4

3
R E E



  
 

 
. The fitted intercept corresponds to 

0,I 0,IIh h , 

which reflects the difference in the uncertainty of onset of contact for these two materials, 

and can be positive and negative.  
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Figure 4.3 Determination of the indenter tip radius. (a) Experimental P-hreported data on 

sapphire and fused silica using the Tip #2 indenter, shown by symbols. Direct Hertzian 

fitting is shown by the black solid curves and the Hertzian solutions with indenter radii 

obtained from our subtraction method are given by the red dashed curve. (b) The 

subtraction method is used to fit hfs-hsp (fs: fused silica; sp: sapphire) to 
2 3P  as in Eq. (4-

8). The slope can be used to determine the indenter tip radius. 
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The indenter tip radii obtained from the above procedure can be found in Table 4.1. 

For large indenters, the subtraction method gives indenter radii that are very close to the 

optical profile measurements, but deviate significantly from the direct Hertzian fitting. 

Thus it is concluded that the subtraction method gives correct tip radius values, while 

routinely determined radii by the direct Hertzian fitting tend to be underestimated at least 

for large indenters. The error could be as large as 25%, and using tip radii obtained by the 

direct Hertzain fitting may lead to incorrect conclusions in practice. For smaller 

indenters, tip radii obtained by both direct Hertzian fitting and subtraction method are 

similar, as shown in Table 4.1. Although confirmation by the optical profile measurement 

is not feasible for these cases, the agreement of these two methods suggests that the 

Hertzian fitting is applicable for finding the indenter tip radius but only for small 

indenters. The subtraction method developed in this work is rather universal. The critical 

condition (i.e., how low the load and displacement may be) regarding the validity of the 

direct Hertzian fitting is discussed in the Discussion section.  

4.4.2. Determination of machine stiffness Smachine 

To examine the significance of the machine stiffness, the Hertzian solutions for two 

materials, with correct indenter tip radii obtained from our subtraction method, are 

plotted to compare with the experimental P-hreported curves. As representatively shown in 

Fig. 4.3(a) for the indenter Tip #2, the Hertzian solutions given by the red dashed curves 

collapse onto the experimental P-hreported curves at the initial loading stage and then 

deviate to lower displacements, and this deviation becomes increasingly significant with 
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the increase of the indentation load. The coincidence of the Hertzian solutions with 

experimental curves at the low loads in Fig. 4.3(a) indicates that the displacement 

resulting from the deflection of the loading frame is smaller than the contact response. 

With a further increase of the applied load, a significant amount of extra displacement 

results as shown by the P/Smachine term in Eq. (4-5), which cannot be accounted for by the 

predefined machine stiffness. Consequently, the Hertzian solutions deviate from the 

experimental curves beyond a critical load, being roughly 0.05 N for Tip #2. For 

convenience, the region below this critical load is termed “coincidence region”, while 

that above this load is termed “deviation region”. Similar behavior is found for all other 

large indenters. For small indenters, the Hertzian solutions overlap nicely with the 

experimental data throughout all loads, as representatively shown by the indenter Tip #7 

in Fig. 4.4. In other words, small indenters only have “coincidence region”, because 

deformation in these cases is restricted to low loads. The predefined machine stiffness 

can account for deformation of the loading frame at low load levels and hence only a 

negligibly small deviation is observed. To find out a critical load when the deviation 

begins and the predefined machine stiffness is no longer applicable, critical loads are 

systematically analyzed, as shown in Fig. 4.5. This critical deviation load is found to be 

around 0.05 N.  
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Figure 4.4 Load-displace curves using the small tip-radius indenter (Tip #7). Symbols 

represent experiment P-hreported curves. Direct Hertzian fitting by using Eq. (4-1) is 

shown by the black solid curves and the Hertzian solutions with indenter radii obtained 

fro from our subtraction method are given by the red dashed curve. Notes that the black 

solid curves overlap the red dashed curve. 
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Figure 4.5 Maximum indentation loads and deviation loads for various indenters. The 

deviation load denotes load where the Hertzian solutions deviate noticeably from 

experimental P-hreported curves, as shown in Fig. 4.3(a). For small indenters, negligibly 

tiny deviation occurs, and the maximum loads equal to the deviation loads. The deviation 

load is around 0.05 N for the large indenters. 

The machine stiffness can be quantitatively evaluated from Eq. (4-5) after obtaining 

the correct indenter tip radius, R, from the subtraction method. The parameter 0h  was 

found to be on the order of nanometers, one or two orders of magnitude smaller than the 

used displacement. Calculated machine stiffness at selected load ranges for various 

indenter tips are presented in Table 4.1. For all four indenter tips, it is found that the 

machine stiffness increases approximately linearly with the applied load, as 
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representatively demonstrated for the Tip #2 indenter in Fig. 4.6. This linear dependence 

of the machine stiffness on the applied load can be described with a linear relationship, 

Smachine=kP+S0, with k and S0 being fitting parameters as summarized in Table 4.1. With 

the load range extending upward and downward, it resembles more like a power law 

relationship. For small indenters, because the Hertzian solution almost overlaps with 

experimental P-hreported curves, the machine stiffnesses in these cases are indeed very 

close to the pre-defined value, 9.1 N/μm, as shown by our data in Fig. 4.6. It is noted that 

different indenters result in different calculated machine stiffness because, as shown in 

Fig. 4.1(b), the machine stiffness calculated by using our method include all factors into 

consideration except the contact between the tip end and the sample. These include the 

deflection of the loading frame, deformation of the indenter tip and mounting materials 

between the frame and indenter tip. For different indenters, the tip size, shape, tip holder 

and the tip mounting materials (glue) are slightly different, resulting in different machine 

modulus. 
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Figure 4.6 Machine stiffness under different loads with selected indenter tips. The 

machine stiffness approximately shows linear dependence on the load and can be 

described with 0machineS S kP  , in which fitting parameters k and S0 can be found in 

Table 1. For small indenters, the calculated machines stiffness is close to the pre-defined 

machines stiffness, Sdefault=9.1 N/μm. Machine stiffness at loads below 10% of the 

maximum load were not calculated because of great system errors. 

4.5. Discussion 

Many previous researches assumed that the machine stiffness remains constant 

throughout the entire indentation testing procedure or only interpret their data with a 

default machine stiffness, which is provided in the software by the manufacturer. Such an 

assumption may cause measurement errors in realistic applications, given that the 
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machine stiffness is actually a function of the applied load and may vary for different 

tips. At low load levels, e.g., < 0.05 N in our case, it is justifiable to employ a constant 

value for the machine stiffness, because the contact stiffness is much lower than the 

machine stiffness and its variations associated with increases in the load are small. As a 

result, directly fitting the experimental P-hreported data with the classic Hertzian solution is 

appropriate and can give correct indenter tip radii. This is confirmed by our studies on 

smaller indenter tips, in which the predefined machine stiffness value is taken and 

ultimately the calculated tip radii are relatively accurate. Our results in Table 4.1 clearly 

demonstrate that this is not the case for large indenter tips. The assumption of a constant 

machine stiffness will lead to significant errors. For instance, incorrect indenter tip radii 

were attained when directly using the Hertzian fitting as in Table 1. Consequently, it can 

be concluded that the constant machine stiffness assumption is only valid for deriving 

indenter tip radii with Hertzian theory at small load cases. The critical load value is 

around 0.05 N for the present instrumented indentation, and may vary for different 

indentation system. However, our subtraction method can be used to simultaneously 

obtain tip radii and machine stiffness regardless of the tip radii and load ranges.  

To further verify our findings, the contact stiffness for all indenters was calculated 

for comparison with the calculated machine stiffness. The experimental P-hreported curves 

were first fitted directly with the Hertzian solution, although the obtained R values are 

smaller than the actual ones, as has been shown in Table 4.1. Nevertheless, this gives us a 

contact stiffness by  



 

107 

 

                                                     
*2

dP
E Rh

dh
 .                                               (4-9) 

Two typical results are selected for illustration purposes; one is Tip #2 representing 

large indenters, and the other is Tip #7 representing small indenters, as plotted in Fig. 4.7. 

As expected, the contact stiffness increases exponentially with loads, and is generally 

higher on the stiff sapphire than the relatively compliant fused silica. It is worth noting 

that, for large indenter tips, below our proposed critical load level of ~0.05 N, the contact 

stiffness is one order of magnitude smaller than the machine stiffness; but above this 

value, it is approaching the same order of magnitude. This is particularly apparent for 

sapphire because of its high material stiffness. For small indenter tips, like Tip #7, the 

contact stiffness is one order of magnitude smaller than the machine stiffness throughout 

the whole loading process. Equivalently speaking, the contribution from deflection of the 

load frame is smaller than that from the contact response. Thus the displacement obtained 

from the indenter can be trusted as the material deformation only at the nanoindentation 

regime (e.g., in our case, P<50 mN).  
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Figure 4.7 Plots of contact stiffness versus load for the two materials using large indenter 

Tip #2 in (a) and small indenter Tip #7 in (b). 

(a) 

(b) 
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4.6. Summary 

Our studies on instrumented indentation with spherical indenter tip radii ranging 

from several microns to hundreds of microns shows that the routinely utilized method, 

i.e., direct Hertzian fitting, for determining the indenter tip radius is not appropriate for 

large indenter tips or above a critical load. Great caution is needed when directly using 

Hertzian fitting to derive the tip radius. It is acceptable to use at low loads, in our case, 

P<50 mN. The indenter tip radius is likely to be underestimated by direct Hertzian fitting. 

A new approach for simultaneously determining the spherical indenter tip radius 

and the machine stiffness has been developed by incorporating the contribution of 

machine stiffness into the classic Hertzian solution. This approach requires two materials, 

desirably with radically different material stiffness, to be indented. The indenter tip radius 

can be derived form linear fitting of the displacement differences at the same loads for 

two materials, (hI-hII), against P
2/3

. The machine stiffness at various loads, which has 

been a potential error source in many instrumented indentation applications, can also be 

determined once the indenter tip radius is known from the previous step. Indentations 

tests were done on fused silica (relatively compliant material) and sapphire (stiff 

material) with spherical indenter tip radii in the range of several microns to hundred of 

microns. Comparisons were made among indenter tip radii obtained from three methods: 

direct Hertzian fitting, optical profiler measurement and our approach, from which the 

following conclusions can be drawn.  
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 Utilizing the classic Hertzian theory to fit individual experimental P-h data cannot 

be guaranteed to give the correct spherical indenter tip radius. Large errors will 

occur when dealing with high load indentations because of machine stiffness, and 

the tip radius value thus obtained could be underestimated by as much as 25%. In 

our experiments, the critical load below which Hertzian theory is applicable is 

suggested to be ~0.05 N when the instrumented indentation system has a machine 

stiffness of ~10 N/µm.  

 The subtraction method developed in this work can give relatively accurate 

indenter tip radii, regardless of load levels at which the indentation test is 

performed. This is particularly important when large indenter tips are used, e.g., 

those with radii of about tens of microns.  

 The machines stiffness can be simultaneously obtained from this approach. It is 

found to be dependent on the applied load and can be described by a linear 

relationship. Explicit evaluation of the machine stiffness is potentially useful for 

eliminating the system error and makes the instrumented indentation a more 

precise technique.  

 The contact stiffness increases with the applied load, so that if it eventually 

reaches the same order of magnitude as the machine stiffness, the deflection of the 

loading frame contributes substantially to the final displacement readings. And 

hence the variation of the machine stiffness with respect to the load, i.e., 
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Smachine(P), has to be taken into consideration rather than assuming a constant 

machine stiffness.  

 

 Our method has great potential applications in area of the instrumented 

indentation with spherical indenters, such as the size effect study, modulus and 

hardness measurement, and determination of contact radius or contact area, 

among many others. 
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Table 4.1 Indenter tip radii provided by the manufacturer (denoted as nominal), measured by the optical image of the 

indentation impressions on tin, derived by fitting to Eq. (4-1) and by our subtraction method in Eq. (4-8) using two materials 

(sapphire and fused silica). The corresponding machine stiffness can be fitted to the form of 
0machineS S kP  . 

 

  

  Large indenters                                                              Small indenters 

Tip #1 Tip #2 Tip #3 Tip #4 Tip #5 Tip #6 Tip #7 Tip #8 

Indenter materials Sapphire Sapphire Diamond Diamond Diamond Diamond Diamond Diamond 

Nominal R (μm) 250.00 100.00 100.00 50.00 9.00 8.30 5.00 2.55 

R by optical profiler (μm) 253.26±7.97 98.05±5.54 115.98±9.52 46.66±2.70 n/a n/a n/a n/a 

Load range in calculation (N) 0.025-0.25 0.025-0.25 0.025-0.25 0.02-0.20 0.01-0.05 0.01-0.05 0.01-0.03 0.001-0.005 

R by Hertzian fitting Sapphire 

Fused silica 

170.25±0.29 

210.00±0.12 

60.05±0.29 

80.60±0.42 

110.00±0.22 

120.10±0.32 

30.00±0.00 

39.83±0.24 

8.85±0.07 

8.88±0.05 

5.23±0.02 

5.25±0.03 

3.63±0.05 

3.65±0.03 

1.64±0.05 

1.64±0.04 

R by subtraction method (μm) 255.68±0.43 96.93±0.58 126.47±0.44 47.48±0.47 8.90±0.05 5.26±0.03 3.66±0.03 1.64±0.05 

                 Smachine (N/μm) 3.81-5.04 

 

3.25-4.43 

 

6.44-7.33 

 

2.46-3.53 

 

8.64-8.75 

 

8.47-8.72 

 

8.12-8.40 

 

8.86-8.96 

 
                 k (μm

-1
) 4.62 4.44 3.17 10.57 6.54 6.28 14.98 63.73 

                S0 (N/μm) 

 

 

3.86 3.50 6.53 2.48 7.89 8.41 7.88 8.40 
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                                                          CHAPTER 5 

Nanomechanics of structural origin of the transition from pure 

glass to metal-like behavior in metallic glasses 

 

5.1. Introduction 

Although they have unique mechanical properties such as high strength and good 

corrosion resistance and thus have attracted significant scientific interests in the past 

several decades, metallic glasses (or called amorphous alloys) still find a huge gap in 

technical applications and commercialization 
11, 21, 189

. The main culprit is the lack of 

ductility and the brittle fracture of this class of materials. The deformation mode in the 

metallic glasses is inhomogeneous below the glass transition temperature, i.e., the strain 

field will localize into narrow shear bands. Under unconstrained loading conditions such 

as uniaxial compression, sudden fracture will be observed along a major shear band. 

Therefore an extrinsic method to improve the ductility is by introducing geometric 

features, such as second phase and thin film coating, to block the propagation of shear 

bands and thus to avoid sudden failure along these shear bands 
126, 190

. On the other hand, 

the toughness measurements from cracks or notches under K-fields (K being the stress 

intensity factor) have found a range of 1~100 MPa·m
1/2

 for a wide range of metallic 

glasses. The ductile-brittle transition is believed to be governed by the competition 

between the cleavage fracture and the crack tip blunting by shear bands, in analogy to the 

competition between cleavage and dislocation nucleation in crystalline materials. The 
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resolution of this critical issue clearly relies on a fundamental understanding of the 

structure-property relationship on the nanoscale.  

 Because of the amorphous nature, the structural characterization tools such as 

electron microscopy and X-ray and neutron diffractions hardly reveal useful information 

on the atomic structure of metallic glasses. For instance, the processing history can 

dramatically alter mechanical properties of metallic glass, but no noticeable changes in 

the transmission electron microscope image can be observed in practice 
191

. An explicit 

structure-property relationship for the metallic glass, as that in crystalline materials, is 

hard to establish. Atomic scale computer simulations, such as reverse Monte Carlo 

modeling, molecular dynamics, and ab initio simulations, provide an alternative to study 

the structure of the metallic glass 
191-193

. With the aid of model glasses, Shi and Falk 
194-

196
 found that less structural relaxation during quenching a metallic glass sample leads to 

higher degree of short-range order (SRO) and percolation, macroscopically responsible 

for the high strength and easy initiation of localized deformation. Cheng et al. 
197

 also 

observed a considerably increased fraction of icosahedra in the Cu-Zr MG system in a 

similar scenario. Recent studies by Lee et al. 
198

, however, suggested that not only the 

population of icosahedra itself but also the medium-ranged order (MRO) in terms of 

connectivity of the icosahedra significantly affect the local and global mechanical 

properties of the metallic glasses. On the other hand, from the continuum mechanics 

point of view, the inelastic deformation is a result of the evolution of one or many state 

variables that characterize the atomistic/mesoscale structure. For instance, the free 
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volume concept has been used to develop a plastic flow model and the stress-driven 

evolution of free volume leads to a strain softening behavior, which provides a 

constitutive reason for the strain localization in shear bands. Macroscopic mechanical 

properties such as strength and toughness, however, cannot be used to distinguish these 

various structural models and the corresponding constitutive theories. The atomistic 

nature of these state variables is still unclear 
199

, and these state variables often find 

difficulties in explaining atomic-structure-dependent properties such as the annealing 

effects on the embrittlement of metallic glasses 
200-202

. Atomic-level stress developed by 

Egami and coworkers 
181

 and the SRO and MRO concepts investigated by atomistic 

simulations, although providing sound physics-based scenarios, are still hard to link to 

the constitutive model and the macroscopic properties. The lack of an effective structure-

property model substantially constraints resolution of many fundamental issues in the 

metallic glasses, and a novel approach for effective characterization of this relationship is 

eagerly needed accordingly.  
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5.2. Three point-bending tests 

 We start this paper by showing a wide range of ductile versus brittle behavior of 

the same metallic glass under different annealing conditions but with undetectable 

structural change. A metallic glass, BAM11 (Zr52.5Al10Ti5Cu17.9Ni14.6 in atomic percents), 

was fabricated by arc melting and detailed procedures were reported elsewhere 
181

. The 

as-cast samples were subsequently annealed at 200
o
C, 250

o
C and 300

o
C for 1 week for 

structural relaxation. Three point bending tests on these as-cast and annealed Zr-based 

bulk metallic glass samples were tested with the load-deflection curves given in Fig. 5.1. 

The as-cast sample displays a limited degree of inelastic deformation and fractures in a 

more-or-less ductile manner, while the annealed samples gradually transitions into a 

purely brittle fracture as the annealing temperature increases. The inelastic energy 

absorbed by the samples during bending tests, calculated as the area beneath the load-

deflection curves subtracted by the elastic energy, decreases substantially as the 

annealing temperature increases. Fractography examination reveals a transition from the 

rough fracture surface to a flat, mirror-like state as the samples are being annealed at 

higher temperatures, as shown in Fig. 5.1(a) for the as-cast and 300
o
C-annealed samples.  

 To reveal changes in the atomic structure in these as-cast and annealed samples, 

high energy synchrotron X-ray diffraction tests were carried out at the 6-ID beamline, 

Advanced Photon Source, Argonne National Laboratory. Detailed experimental 

procedure can be found elsewhere 
203

. It is found that all annealed samples still retain 

amorphous structures as in the as-cast state, indicated by the example in Fig. 5.1(b). 



 

117 

 

Furthermore the pair distribution functions (PDFs) for three representative samples are 

shown in Fig. 5.1(c), with the inset giving detailed view of the first peak. With increasing 

annealing temperature, the first peak becomes slightly narrower and shaper, indicating 

that the positions of the atomic pairs become more well-defined after annealing. 

Meanwhile, no shift on the peak positions has been found which implies that the average 

atomic distance of dominant atomic pairs remains the same before and after annealing. 

Therefore the synchrotron measurement reveals little useful information to explain the 

sharp change in the ductile/brittle behavior of these as-cast and annealed samples. Other 

traditional microscopy tools will not be helpful either, due to the featureless 

characteristics of the amorphous structure. Consequently, an effective approach to 

characterize the nanoscale structural nature of these metallic glasses is imperative.   
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Figure 5.1 (a) Load-deflection curves for the as-cast Zr-based metallic glass and 

variously annealed samples under three point bending test, illustrating the ductile-to-

brittle fracture transition. Insets show the fracture surfaces. (b)  The synchrotron X-ray 

diffraction pattern of the annealed sample (at 300ºC). Diffuse rings reveal characteristic 

amorphous structure. (c) Pair distribution function (PDF) of the as-cast and annealed 

samples (at 200 ºC and 300ºC) . 
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5.3. Statistical nanoindentaiton tests 

 While an explicit structure-property relationship is difficult to establish based on 

either the traditional structural characterization techniques or the atomic-scale or 

continuum simulations, a possible solution is to use mechanical testing at small stressed 

volumes as a nanoscale structure-property probe. It has been found both numerically and 

experimentally that the metallic glass structure fluctuates intrinsically from site to site 
204-

207
. Such a spatial fluctuation of the structure suggests the use of the statistical 

mechanical mapping for the characterization of the amorphous structure. The 

nanoindentation technique is an ideal tool along this line. In crystalline materials, 

nanoindentation using spherical indenters has discovered the pop-in behavior, i.e., the 

sudden excursion on the load-displacement curves. These tests can be conveniently 

repeated to gain hundreds or thousands of statistical data, thus providing a spatial 

sampling of the material of interests. The statistical analysis of the first pop-ins have 

found that when the crystal is free of dislocations, the pop-in corresponds to the thermally 

activated, homogeneous dislocation nucleation, while the use of larger indenters or the 

test on crystals with pre-existing defects demonstrate a stochastic behavior that relies on 

the stressed volume size and the pre-existing defect density 
179, 180, 184

. Likewise, by 

performing statistical nanoindentation pop-in tests on metallic glass samples with various 

degrees of structural relaxation, the structural nature of the metallic glass may be 

thoroughly evaluated.  
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 Nanoindentation tests were performed on both the as-cast and annealed samples at 

room temperature with a Nanoindenter® XP system with a constant loading rate of 

   ̇ =0.05 s-1. Three spherical indenters with radii being 0.40, 1.78, and 3.80 μm were 

employed to probe the load-displacement relationships. These radii were calibrated using 

a newly developed method in 
208

. The surface of materials to be indented was 

mechanically ground with SiC paper down to 1000 grit followed by a 24 hour polishing 

with colloidal silica. Displacements (h) and loads (P) were measured at the resolutions of 

0.16 nm and 0.3 μN, respectively. Around 121 indents were made on each sample, and 

loads where displacement bursts occur were termed as pop-in loads (Ppop-in). A 

representative nanoindentation load-displacement curve with the indenter tip R=1.78 μm 

is shown in Fig. 5.2(a) for the as-cast metallic glass. The initial stage of the load-

displacement curve is elastic and follows the classic Hertzian solution for spherical 

elastic contacts by   
 

 
  √     , where the reduced modulus is 

   
1

2 21 1r s s i iE E E 


    
 

 with Ei and υi being the Young’s modulus and 

Poisson’s ratio for the indenter and Es and υs for the specimen. At a critical load of around 

2.0 mN, a sudden displacement excursion occurs which marks the onset of inelastic 

deformation. Beyond this first pop-in, the material will deform plastically as shown by 

the irreversible unloading curve. Repeating test pop-in tests with the other two indenters, 

R=0.04 μm and R=3.80 μm, on various annealed samples (200, 250 and 300 
o
C) gives the 

results in Fig. 5.2(b). An important observation is that the Ppop-in increases with the degree 

of structural relaxation (a higher temperature annealing means a larger degree of 
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structural relaxation) for all the three indenters. It is also noted that the small fluctuation 

of the Ppop-in data features the highly relaxed specimens while the large fluctuation occurs 

for the as-cast and less annealed samples. The corresponding maximum shear stress 

occurs roughly at a distance of half the contact radius right under the indenter, given by 

                                          

1/3
2

max 3 2

16
0.445

9

pop in rP E

R





 

   
 

.                                    (5-1) 

The diamond indenters have elastic constants 
iE =1141 GPa and 

i =0.07. The Zr-

base metallic glass has elastic constants 
sE =89 GPa and 

s =0.37 
181

. As shown in Fig. 

5.2(c), with the increase of the degree of structural relaxation, the maximum shear stress 

at pop-in is found to increase monotonically while its variation decreases. These tests 

with four types of materials and three indenters all approach the same highest value of 

about 4.1 GPa.  
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Figure 5.2 (a) A representative nanoindentation P-h curve showing the pop-in as the 

onset of the plastic deformation. (b) Dependence of the first pop-in loads on the 

annealing temperature and the indenter tip radius (R=0.40, 1.78 and 3.80 μm). (c) 

Dependence of the maximum shear stress at the first pop-in on the annealing temperature 

and the indenter tip radius. 
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 The statistical analysis of the nanoindentation pop-in data over a relatively large 

surface area of an indented material was found to be particularly advantageous in 

revealing the structural information 
179, 180, 184

. From the 1111 nanoindentation pop-in 

tests, the cumulative pop-in probability curves are generated as a function of the 

maximum shear stress in Fig. 5.3. As in Fig. 5.2(c), the most relaxed Zr-based metallic 

glasses (300 
o
C) have the largest pop-in stress and the narrowest distribution ranging 

from ~3.5 GPa to 3.7 GPa. In contrast, the as-cast samples have the smallest 
max  values 

distributed over a larger range from ~2.5 to 3.5 GPa. For the intermediately relaxed 

states, the cumulative probability distribution is in between; most data are in the range of 

~3.0 to 3.5 GPa although a few discrete data points extend to low 
max  values.  
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Figure 5.3 Cumulative pop-in probability as the function of the maximum shear stress 

τmax under various annealing temperatures and indenters: (a) R=0.40 μm, (b) R=1.78 μm 

and (c) R=3.80 μm. Solid curves are prediction from our unified structural model. 
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5.4. A quantitative structure-property relation  

 Pop-in statistics in Figs. 5.2 and 5.3 are a result of spatial sampling of the metallic 

glasses. As shown in Fig. 4, we propose a structural model – the metallic glass consists of 

a pure-glass matrix with randomly distributed “soft zones”. The pure-glass state is fully 

annealed and the deformation mechanism is the intrinsic, thermally-activated process 

near the athermal theoretical strength, 
th . The as-cast and intermediately relaxed 

samples are characterized by the spatial distribution of the pre-existing defects (i.e., the 

soft zones) and the distribution of their strength. For simplicity, the latter distribution is 

assumed to be a Dirac delta function at a defect strength of def . The effects of annealing 

condition and indenter radius can be rationalized as follows. Referring to each individual 

plot in Fig. 5.3, the increase of annealing temperature is equivalent to reducing the pre-

existing defect density, def . This is supported by previous findings that the structural 

inhomogeneity in the metallic glass decreases by annealing the glass below Tg 
209

. In the 

as-cast sample, as illustrated in Fig. 5.4(a), the statistical measurements have comparable 

chances of sampling th  or def , leading to large variations in max . In the annealed 

samples as illustrated in Fig. 5.4(b), the statistical sampling gradually favors the intrinsic, 

thermally activated process, so that the mean value approaches th  and the variation in 

max  decreases.  Now comparing the results for the same annealing temperature but with 

different indenters in Fig. 5.3, it is found that the larger the indenter, the lower the pop-in 

stress and the higher the variation in the pop-in stress. The contact radius at pop-in, given 
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by max1.7pop in ra R E   , increases with the increase of indenter radius, so that the 

increase of the stressed volume size will lead to the increased probability of sampling the 

pre-existing defects. In summary, a low defect density and a small stressed volume will 

approach the intrinsic, thermally activated process with narrow variation of 
max  near 

th , 

and the opposite will see the dominance of stochastic, spatial sampling of the pre-existing 

defects. Next we follow the model in 
180, 184

 to quantify the unified structural model in 

Fig. 5.4 and to explain the results in Fig. 5.3.  

 For the thermally activated process, the nucleation rate per unit volume of 

material subject to an applied shear stress   can be written as 

 *

0 exp Bn v k Tn    
 

  where 
0n  is a pre-factor,   is the intrinsic nucleation energy 

barrier, *v  is the activation volume, 
Bk  is the Boltzmann constant, and T  is the absolute 

temperature 
210-212

. For a first-order system, the survivability 
thermalq  (i.e., probability for 

no pop-in) is related to the nucleated rate by thermal thermalq q nV   with V  being the 

stressed material volume. With a boundary condition of lim 0f


 , the cumulative 

probability can be written as  

             
max

*

max
0 max

max

1
1 1 exp exp

pop in

thermal thermal

v
f q A d

kT

 








  
      

  
 ,                  (5-2) 

or further simplified as  *

0 max1 exp pop in

i BA E v k T   
 

, where   1
x

t

iE x t e dt


   is the 

exponential integral and 
0 03 exp

B

P
A n V

P k T

 
  

 
; A0 and *v are fitting parameters. When 
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the stressed volume is defect-free and the maximum resolved shear stress reaches the 

theoretical strength of the material, a shear band will be activated homogeneously and 

induce displacement extrusion on the load-displacement curve.  

 On the other hand, the heterogeneous pop-in mechanism is governed by the pre-

existing defects in the material. We assume that a pop-in instability will be triggered 

when a pre-existing defect is sampled in a given volume 
sV  where the applied stress 

exceeds the defect strength def . As discussed in 
180, 184

, the probability 
heteroq  of finding 

no defect can be described by the Poisson distribution,   

                                             , exp( )hetero def s def sq V V   ,                               (5-3) 

where 
sV  is given by a dimensionless function  3

max
ˆ

s s defV a V    that can be 

determined from the elastic contact analysis 
180, 184

. The contact radius is 

1/3

3

4 r

PR
a

E

 
  
 

. 

Accordingly the cumulative probably for the heterogeneous mechanism is 

1hetero heterof q  . Combining Eqs. (5-2) and (5-3), the cumulative pop-in survivability 

(i.e., finding neither the intrinsic pop-in or the defect-assisted process) is 

total thermal heteroq q q  , and the cumulative pop-in probability is 1total totalf q  , 

                             *

0 max1 exp pop in

total i B def sf A E v k T V     
 

.                       (5-4)   

 Predictions using the unified structural model in Eq. (5-4) are given by the solid 

curves in Fig. 5.3 by fitting four parameters, *v  and 0A  for the thermal activation 

process, and def  and def  for the heterogeneous pop-in mechanism. These parameters 
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are summarized in Table 5.1. Since annealing will not affect the intrinsic behavior, we 

first fit the 300ºC-annealed case by only using the model in Eq. (5-2), and the obtained *v  

and 
0A  will be used as initial trials for the model in Eq. (5-4). Indeed in Table 1, *v  only 

varies slightly for various annealing conditions and various indenters around ~0.06 nm
3
. 

On the contrary, the defect density def  decreases by almost two orders of magnitude as 

the increase of the degree of structural relaxation. This implies that compared to the 

thermally activated mechanism, the defect-governed process is more dominant in 

determining mechanical response of metallic glasses. The defect strength 
def  is found to 

be around 1.0 GPa, close to the shear flow strength of the BAM11 
181, 213, 214

. The 

dependence of 
max  on the indenter radius is naturally captured in this model, as 

evidenced by almost the same parameters obtained for these three indenters. It should be 

noted that using the thermal activation model in Eq. (5-2) blindly for all the curves will 

give *v  decreases from ~0.06 nm
3
 (for 300ºC-annealed sample) to ~0.02 nm

3
 (for the as-

cast sample) but with relatively poor fitting quality. This trend agrees with the work using 

the same fitting procedure by Choi et al. 
215

, which has attempted to correlate this 

activation volume change to the annealing-induced structural change. However, the 

undetectable structural change in Fig. 5.1 suggests the invalidity of solely using the 

thermal activation model.  

 Ductile to brittle transition upon annealing in metallic glasses can be interpreted 

by our unified structural model in Fig. 5.4. The as-cast metallic glasses contains a large 

amount of defects and the mechanical behavior and shear band mediated deformation 
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process in this case are mainly coordinated by the defect-assisted process. Not only the 

initiation of shear band is considerably facilitated, but also the propagating shear band 

will find large probability to pass through the soft zones. These soft zones will be capable 

of deflecting or deferring the shear band propagation, and accommodating a larger degree 

of inelastic deformation than the pure-glass state. Therefore, the as-cast samples usually 

exhibit low strength but good ductility, exhibiting a metal-like behavior. With the 

increasing degree of structural relaxation, the density of soft zones decreases as in Fig. 

5.4(b), and an extreme case corresponds to their complete elimination as in Fig. 5.4(c) for 

300ºC annealed samples. Under these circumstances, the initiation of shear band becomes 

considerably difficult since the athermal theoretical strength is approached, and the 

propagation of shear band will experience little or no internal resistance. Cleavage 

fracture is thus more likely to happen since crack tip blunting by shear bands is difficult 

to realize. This “pure glass” state corresponds to a steep slope on the cumulative pop-in 

probability curve. 
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Table 5.1 Fitting parameters in the unified structural model that incorporates both the 

thermal activation process and defect-assisted stochastic behavior. 

 

Indenter radius R, μm 0.40 1.78 3.80 

Annealing 

temperature, oC 
As-cast 200 250 300 As-cast 200 250 300 As-cast 200 250 300 

v*, nm3 0.059 0.061 0.060 0.059 0.072 0.067 0.062 0.061 0.073 0.072 0.060 0.061 

A0  (×10-22) 2.86 1.09 2.37 3.76 6.56 4.99 2.07 2.16 3.32 3.80 6.52 2.82 

τdef, GPa 0.98 0.98 0.98 0.98 0.98 1.14 1.14 0.98 1.20 0.98 0.98 0.98 

ρdef (×1015), m-3 4.70 2.48 1.3 0.12 5.40 3.04 1.24 0.11 3.80 2.35 0.88 0.11 
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Figure 5.4 Schematic illustration of the structural origin of the transition from metal-like 

to pure glass behavior in metallic glasses: (a) the as-cast condition, (b) intermediately 

relaxed state, and (c) extremely relaxed state (i.e., pure glass). Soft zones, as pre-existing 

defects, will facilitate ductile deformation, while the pure-glass state experiences the 

intrinsic, thermally-activated deformation. 
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5.5. Summary  

 In summary, as-cast and variously annealed samples show undetectable changes 

on the pair distribution functions, but their mechanical responses range dramatically from 

ductile to brittle behavior. This work demonstrates that the nanoindentation pop-in tests 

provide a nanomechanics-based method to statistically probe the structural information of 

these metallic glasses. The observed mechanical heterogeneity is a consequence of the 

convolution of the intrinsic thermal activation process (characterized by *v  and 
0A ) and 

the structural heterogeneity (characterized by 
def  and 

def ). Our model does not specify 

the details of the heterogeneous deformation process, so that clearly our unified model 

can be improved with knowledge on structural information such as the atomic-level 

stress, SRO and others obtained from X-ray/neutron diffraction or molecular dynamics 

simulation. To this end, important issues such as the ductile-brittle transition can 

hopefully be resolved.  
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CHAPTER 6 

Conclusions and perspectives 

 

 

 

 

 As concluding remarks, the objective of this thesis work is to understand 

deformation mechanism of the metallic glasses and it structural origin. To achieve this 

goal, finite element simulations with both the Rudnicki-Rice instability theory and free 

volume model were performed to investigate mechanisms contributing to ductility 

enhancement in the thin film coated BMG and dendritic crystal reinforced BMG 

composites, and shear band pattern under direct indentation and bonded-interface 

indentation.  Experimentally, spherical nanoindentation tests with calibrated indenter tip 

radii were conducted to statistically study maximum shear stress for establishing a 

effective structure-property relationship of the metallic glasses.  Based on the modeling 

and experimental studies, the following conclusions can be drawn. 

(1)  Even when the size of the nanopillar sample is reduced to 140 nm, 

inhomogeneous deformation still dominates the metallic glass, which is supported by 

large localized deformation at the pillar top. This attributes to a taper angle in the pillar 

top, which is inevitable during its fabrication using focused ion beam (FIB). The shear 

bands are invisible from outside, but can be explicitly observed inside the pillar top by 

using the free volume model simulation. Accordingly, studying size effect in the metallic 

glass with FIB-fabricated tapered nanopillar sample is not a viable technique for the 
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identification of the transition from inhomogeneous to homogeneous deformation mode 

in metallic glasses 

(2) With free volume modeling, only the radial shear bands were observed in the 

case of direct indentation on the bulk metallic glasses, but both the radial and semi-

circular shear bands were found in the case of bonded-interface indentation. This 

concludes that the radial shear bands are intrinsic to the metallic glasses, while the semi-

circular shear bands are a result of stress relaxation on the bonded-interface. 

Experimentally observed radial and semi-circular shear bands by the bonded-interface 

technique are a combination of both effects. 

(3) The enhanced ductility in the titanium thin film coated bulk metallic glasses 

attributes to shear band reflection at the coating/substrate interface and shear band 

branching inside the metallic glass substrate. Good adhesion and relatively small coating 

thickness are also contributing factors for good ductility in the coating/BMG system.  

 (4) As in experiments, modeling successfully predicts a relaxation on the lattice 

strain of the crystalline phases in the dendritic reinforced bulk metallic glass composites. 

This attributes to load partitioning after metallic glass matrix yields. This lattice strain 

relaxation was also found depends on the orientation of the dendritic crystalline phases. 

The improved ductility of the metallic glass composite results from more shear band 

initiation at the second phase/matrix interface and blockage of the shear band propagation 

by the second phases.  
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(5)  By taking the machine stiffness into the classic Hertzian solution rather than 

assuming a constant machine stiffness, the spherical indenter tip radius and machine 

stiffness in arbitrary ranges of loads and indenter radii can be simultaneously derived. In 

contrast, the direct Hertzian fitting method tends to underestimate the radius, especially 

for larger indenter tips. The success is based on indention tests on two materials with 

known material stiffness, and the displacement difference under the same load is not 

affected by the machine stiffness. A total of eight spherical indenter tips with the radius 

ranging from a few microns to hundreds of microns have been indented on fused silica 

and single crystal sapphire. Our method gives correct indenter radii for all indenters, The 

machine stiffness is found to indeed vary with the indentation load and indenter radius.  

 (6) The statistical nanoindentation pop-in tests provide a nanomechanics-based 

statistical method to probe the structural information of these metallic glasses. Prediction 

with a structural model incorporating both the thermally-activated shear band formation 

process and defect-assisted shear band generation indicates that the defect is a dominate 

factor in determining mechanical properties of the metallic glasses. When a large amount 

defects exist, the metallic glass exhibit relative ductile behavior since the shear bands 

could be deflected by the defects during propagation, like the as-cast metallic glasses. In 

contrast, complete brittle fracture behavior, like a pure glass, features those glasses with 

less defects, like the substantially annealed samples.  

This dissertation presents a couple of original works on the mechanical property 

and structure-mechanical property relation in the metallic glasses, aiming to uncover 
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structural nature and deformation mechanism of the metallic glasses.  Although many 

insightful findings are obtained, these works can be further extended along following 

lines.  

(1)  The size effect claimed by others previously based on the observation that the 

shear bands were not observed when compressing tapered metallic glass nanopillars may 

be misleading. The length scale below which the homogeneous deformation will 

dominate could be much smaller. In this sense, a constitutive relation which could 

incorporate a small length scale is hopefully to predict the transition from the 

inhomogeneous to homogeneous deformation mode.  

(2) In practice, to achieve optimal ductility improvement for the bulk metallic 

glasses, good adhesion should be ensured and careful attention should be paid in the 

choice of the coating thickness. Furthermore, in experiments the coating type is also 

found to have significant influence on the ductility improvement. Simulation with proper 

technique could reveal underlying mechanisms.  

(3) Our method for simultaneously determining the indenter tip radius and machine 

stiffness has many potential applications in area of the nano-indentation with spherical 

indenters, such as indentation size effect, modulus and hardness measurement, 

micropillar testing. 

(4) The present structural model of the metallic glass could still be valid by 

replacing 
* and 

def with other structural parameters, like the atomic-level stress, SRO 

and others obtained from X-ray/neutron diffraction or molecular dynamics simulation. 
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Accordingly, this approach will become more versatile if the scaling relation of various 

structural parameters can be constructed. One possible line to improve and perfect this 

structure-property relationship in the metallic glass is to combine the present statistical 

nanoindentation analysis and the small-scale simulation by taking its advantage of being 

able to reveal key features of the short-to-medium range order. In this sense, many long-

standing fundamental issues in the metallic glass community, such as shear banding 

behavior and size effect, is hopefully to be resolved. And the underlying physical 

principles responsible for special strong-but-brittle mechanical properties of the metallic 

glasses could be unveiled.  
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