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Abstract

Modeling the equilibrium properties and dynamic response of the colloidal and

polymeric solutions provides valuable insight into numerous biological and industrial

processes and facilitates development of novel technologies. To this end, the center-

piece of this research is to incorporate the long range electrostatic or hydrodynamic

interactions via computationally efficient algorithms and to investigate the effect of

these interactions on the self-assembly of colloidal particles and dynamic properties

of polymeric solutions. Specifically, self-assembly of a new class of materials, namely

bipolar Janus nano-particles, is investigated via molecular dynamic simulation in

order to establish the relationship between individual particle characteristics, such

as surface charge density, particle size, etc., and the final structure formation.

Furthermore, the importance of incorporating the long range electrostatic interaction

in achieving the corresponding final morphology is discussed.

The dynamic properties of polymeric solutions are investigated via two parallel

pathways. In the first approach, force-extension behavior of the flexible polyelec-

trolytes is probed via fine-grained Brownian dynamics simulation of the bead-rod

model. The presented model accurately incorporates the excluded volume interaction

in order to capture the effect of salt concentration on the force-extension response of

polyelectrolyte chain as observed in the single chain experiments. It is shown that

accurate incorporation of the excluded volume effect on a long chain of more than

500 Kuhn segments is necessary to reach the universal scaling both for equilibrium

properties and force-extension response. Next, a new force law is extracted using a
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novel discrete Padè approximant from the constant-force ensemble result of the bead-

rod model. The new force law is implemented in the coarse-grained meso-scale bead-

spring model with hydrodynamic interactions in order to investigate the dynamics of

flexible macromolecules in the athermal solvent.

In the second approach the computational cost of the long range hydrodynamic

interaction in dilute solution of polymeric chains with constrains is reduced via

development of a new computational technique based on the conjugate gradient and

Krylov subspace methods. Moreover, an algorithm for estimating the contribution

of various forces to the transient polymeric stress tensor is introduced and employed

in order to investigate transient dynamics of the solution of the flexible polymeric

chains.
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nm, rsur.ch = 2.5Å for (a), (c) and (d). . . . . . . . . . . . . . . . . . 21

2.9 Effect of defects on assembly (aggregation) of JPs. σ = 0.63 e/nm2,

normalized |~p|=0.7 (20% random defect),1% volume fraction, Cs = 1

mM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Loss of directionality upon introduction of random defects on structure

formation for a = 5.5 nm and Cs = 1 mM. Values in the last row

are surface charge density (e/nm2) and values in the first column are

normalized magnitudes of polar vector. . . . . . . . . . . . . . . . . . 22

2.11 Importance of long range interaction on structure formation of bipolar

JPs is shown through each row at different electrolyte concentration of

0 and 1 mM (shown on the left of the corresponding system). . . . . . 23

x



3.1 Different regimes separated based on the relative scaling of the

characteristic length scales of the PE dilute solution. Based on the

practical magnitude of the model rigid or flexible macromolecules,

regions that are not accessible by the respective chain is shaded gray. 28

3.2 The scaling exponent of re for various magnitude of time steps vs. the

WCA potential pre-factor. The bottom graph, (b), demonstrates the

same data vs. rescaled values of ε with the corresponding magnitude

of time step; for instance 10dt0.5 means ε =
√
dt× 10 . . . . . . . . . 35

3.3 Probability distribution function of the ideal chain (a) and real chain

(b) obtained from simulation is compared to the theoretical curves

(solid lines calculated from Rubinstein and Colby (2003)). . . . . . . 36

3.4 Magnitude of re for different chain sizes in a log-log plot. Scaling

exponents agree with the theoretical values of 0.5 for ideal chain (theta

solvent condition) and 0.6 for a real chain (good solvent condition). . 37

3.5 The fractal dimension of the PE chain for a wide range of salt

concentration and A values. In both plots the repulsion effect of ionized

groups are presented via the excluded volume σ (a) or via the excluded

volume diameter of the bead rescaled with A0.6 (b). In the later case

all the data collapses on a single curve. . . . . . . . . . . . . . . . . 38

3.6 The logarithmic plot of the expansion factor illustrates two distinct

regions as parameter B increases for various chain sizes for A = 2.

The slopes are highlighted by the two linear fit (dashed line for B < 1

and solid line for B > 1). Plot on the right compares radius of gyration

of A = 1 with A = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 The power law decorrelation of squared bond auto-correlation function

for the chain in the athermal solvent. Three different slopes (in the log-

log plot of cos(θ(s)) = sβ shown as β with the r-squared value (eˆ2) in

the legend) can be identified via linear fit of the autocorrelation function. 40

xi



3.8 Normalized bond autocorrelation function along the chain in Athermal

solvent. Note that for the small chain (n = 61) the intermediate scaling

region is absent and for large n curves reach a universal behavior. . . 41

3.9 The electrostatic Kuhn length for four different values of A over the

range of B parameters encompassing regions (IV) and (V) of 3.1. While

for small A, lES tends to grow linearly, as A increases a quadratic

function fits the data in both regions (IV) and (V). . . . . . . . . . . 42

3.10 Application of alternative measures of Kuhn length, confirms the

findings of Fig.3.9 and demonstrates that the total Kuhn length

depends linearly on parameter B. . . . . . . . . . . . . . . . . . . . 43

3.11 The n dependence of the Kuhn length follows a power-law function

with a fixed universal exponent (0.41) and a known coefficient, cos θ(1),

which depends on the salt concentration. . . . . . . . . . . . . . . . . 43

3.12 Comparison with theoretical force law shows that constant force

ensemble and the proposed method predict the Ideal chain elasticity

with great accuracy even for very small forces. Standard deviation is

less than 5% for any f > 0.1 and for the sake of clarity error bars are

not included in the graphs. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.13 Normal plot of force extension. Notice that extensional behavior does

not collapse on the Ideal chain F-X curve immediately after 1 but rather

until about 60% extension it still shows a significant difference. This

difference completely disappears at higher extensions (see Fig.3.14) . 47

3.14 Logarithmic plot shows different regions of FE curve. Distinction

between these regions obscures as n decreases. The universal limit

can be reached for a chain with large number of Kuhn steps as shown

in Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xii



3.15 Effect of salt concentration on the F-X curve of sufficiently long chains

(n = 720). Data shows agreement with the experimental measurement

Saleh et al. (2009). As the salt concentration increases, F-X behavior

approaches the ideal F-X curve and the non-linear region disappears. 48

3.16 Effect of fraction of ionized group, represented by parameter A, on the

first non-linear region of F-X curve. . . . . . . . . . . . . . . . . . . . 48
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Chapter 1

INTRODUCTION

In the past three decades, innovative synthesis methods of colloidal particles and single

chain manipulation techniques of macromolecules has emerged as effective means to

respond to the growing demand for engineered micro-structures and materials in a

variety of applications such as: drug delivery systems, high throughput screening,

microfluidics, liquid optics, etc. Advancing these technologies and scaling up the

lab protocols up to the industrial level, demands fundamental understanding of the

equilibrium properties and dynamics of these complex systems.

While the nonlinear and multivariate nature of such complex liquids discourages

pure theoretical approaches, fermented by the steady improvement of available

computational power, simulations have gradually moved to the forefront of scientific

advancement in the past few decades as the indispensable tool to elucidate the

underlying physics necessary in development of the new technologies. Micro- and

meso-scale modeling techniques are specifically distinguished due to the general

applicability in nanotechnology and microfabrication where thorough understanding

of equilibrium properties (such as self-assembly of colloidal systems) and dynamic

properties (such as stress relaxation of polymeric chains) of the individual particle or

chain are the key elements in the continuum level response of the system.
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Two of the most prominent methods for modeling systems at these scales are

the molecular dynamics method and the Brownian dynamics simulations. Evolution

of the particle trajectories in both methods is based on the Newton’s second law

(inertial less in the latter) and therefore their accuracy depends directly on the

accuracy of the estimation of the force exerted on each particle. Long range forces

correspond to any distance dependent force law, f(r), for which if r is the distance

from the force action point then F (r) =
∫
r
f(r)dV does not converge with increasing

r for an admissible particle distribution. For a uniform distribution of particles, a

spatial dependence equal or slower than 1/rd−1, where d corresponds to the system

dimensionality, constitutes long range effects such as electrostatic or hydrodynamic

interactions. Accurate and efficient incorporation of these effects and the investigation

of their influence on the time evolution of the phase-space is the center piece of this

research. As demonstrated in this work, long range interactions have a major effect

on the collective motion of particles and significantly alters both self-assembly and

dynamical properties of colloidal and polymeric systems.

Self-assembly is the spontaneous organization of system components (particles,

polymeric segments, functional groups etc...) directed via specific interactions of

the constituent and/or indirectly via the environmental parameters such as wall

interactions or ion concentration (Grzelczak et al., 2010). Therefore the design of the

interaction sites on building blocks is the key factor in achieving the desired pattern

or functionality for applications such as nanosystem fabrications, microelectronics

(Whitesides and Grzybowski, 2002), drug delivery systems, etc. Patchy particles

with ionic electrostatic interactions are an excellent choice for directed self-assembly

since their interaction range, strength and directionality can be regulated through

environment characteristics, external electric fields and size and number of patches.

Innovative synthesis techniques have enabled fabrication of asymmetrically charged

spherical particles called Janus particles in various sizes and shapes (see chapter

2). A host of visualization techniques ranging from SEM (Erhardt et al., 2003) to

2



epi-fluorescence microscopy (Hong et al., 2006) have been utilized to study the self-

assembly of nano- to micrometer size spherical Janus particles. These developments

plea for a detailed study that incorporates long range electrostatic effect on the

structure formation of this class of material in order to establish the relationship

between the characteristics and the self-assembly of the Janus particles.

The second part of this dissertation focuses on dynamical properties of polymeric

systems consisting of flexible polymeric chains with long range hydrodynamic

interactions (HI). This study intends to discover and/or capture distinct properties of

flexible macromolecules compared to semi-flexible and rigid chains and connect these

findings to experimental observations through Brownian Dynamics simulation.

The probability of transition between the gauche and the trans states and hence

chain flexibility is mainly determined by the chemical structure of the backbone,

such as side groups, existence of double bonds etc. In the Kuhn and Grün (1946)

representation of a polymer chain where detail chemical structure is ignored in favor

of set of connected uncorrelated statistical segments, flexibility translates into the

size of the statistical segments per chain, and therefore when comparing two chains

with similar contour length it translates into the number of Kuhn segments, i.e. more

flexible chains consists of more Kuhn steps. For instance, at fixed contour length,

double stranded DNA (dsDNA) with chemical bonds between the strands has less

Kuhn steps compared to a flexible macromolecule such as single stranded DNA. Since

most commercial polymers and numerous biomacromolecules fall under the flexible

category, understanding the dynamics and force-extension behavior of this class of

macromolecules has attracted significant interest in the last two decades.

A major breakthrough for such investigations is due to introduction of single

macromolecule manipulation and microscopy techniques (Smith et al., 1992a; Perkins

et al., 1997; Rief et al., 1997; Smith et al., 1999; Bustamante et al., 2000). Recently a

series of novel experiments utilizing single molecule manipulation (Saleh et al., 2009;

Brockman et al., 2011) have shown the distinctive behavior of flexible polymer chains

with large contour length, which had not been addressed in previous experimental
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or computational studies. Another important aspect of the single chain dynamics

is the interaction with functional walls such as cell membranes or silicon substrates.

Experimental measurement of diffusion in the vicinity of a functional substrate (Maier

and Rdler, 1999; Sukhishvili et al., 2000) has shown that diffusion scaling exponent

has a strong dependence on the substrate-polymer interactions. A clear picture of

macromolecular flow in the vicinity of functional substrate, in confined geometries and

finally in the semi-dilute regime, can also be rendered via a hi-fidelity hi-performance

modeling technique developed in the course of this research. In fact, while the

methods developed in this study are used to study the dilute regime of polymeric

solutions, some developments such as application of multipole method are suited well

for the semi-dilute regimes.

In this work a new computational approach is proposed in order to investigate

the effect of long range electrostatic interactions and hydrodynamic interactions on

colloidal systems and polymeric solutions, respectively. Specifically in the case of

the colloidal system of Janus particles, a relationship between single nanoparticle

properties and environmental variables with the structure formation can also describe

the current experimental observations. In the case of the polymeric solutions, two

approaches to a hi-fidelity model of polymeric system with hydrodynamic interactions

and excluded volume is proposed. Firstly, upon construction of the new force-law for

flexible polymer chains with the excluded volume, subsequent modeling of polymer

chains with the hydrodynamic interactions is performed via the new force law in a

coarse-grained representation. The second path revolves around establishing a novel

method in Brownian Dynamics simulations of the bead-rod model of flexible chains

with excluded volume and hydrodynamic interactions using the hybrid MPI/OpenMP

programming concept.

In both of these systems, long range interaction effects are predominant and must

be incorporated accurately and efficiently into any hi-fidelity modeling technique. To

this end, this research is focused on addressing the following objectives:

4



• Establishing the relationship between the constituent characteristics and struc-

ture formation through molecular dynamics simulation that incorporates long

range interaction effects in bipolar Janus particles.

• Efficient incorporation of hydrodynamic interaction effects on dynamical prop-

erties of flexible polymer chains. This objective is fulfilled via two parallel

pathways; first by developing a new entropic/energetic force law from Brownian

Dynamics simulation of the bead-rod model, and importing the new potential

in the coarse-grained bead-spring model which enables efficient estimation of

the hydrodynamic effects. An alternative approach pursues a similar objective

via development of a novel algorithm for temporal evolution of the Langevin

stochastic differential equation subject to constraints for the bead-rod Brownian

Dynamics simulations.
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Chapter 2

SELF ASSEMBLY OF

SPHERICAL JANUS

PARTICLES IN ELECTROLYTES

Experimental studies on nano- and micrometer sized Janus particles (JPs) have

demonstrated a plethora of simple and complex self-assembled structures. In this

study, molecular dynamic simulations that include long range Coulombic interaction

have been utilized to elucidate the underlying physics of self-assembly of nano-scale

spherical bipolar JPs as a function of surface charge density, salt concentration

and particle size. Specifically, two distinct sub-structures at low JP concentration,

namely, strings and rings, have been identified. As the concentration of JPs is

increased these sub-structures join and/or hierarchically assemble into larger porous

clusters. Moreover, it has been demonstrated that surface charge defects lead to

precipitous loss of directional self-assembly. Finally, a direct connection between

the ionic cloud around a single JP and the self-assembled structure morphology

has been demonstrated. Overall, the results of this study should pave the way

for future coordinated experimental/computational studies towards development of a

mechanistic understanding of morphology development in this class of material.
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2.1 Introduction

The introduction of molecular anisotropy on particles via innovative synthesis

techniques has led to the development of a large class of self assembled micro-

and nano-scale morphologies with long range order, specific interaction with polar

solvents, desired charge distribution and reactivity. To this end, this class of material

has found widespread use in many fields of science and engineering, including drug

delivery, waste water treatment, oil recovery, emulsion stabilization, liquid optics and

optical probes (Torchilin, 2001; Bucaro et al., 2008; Kim et al., 2008; Jiang et al.,

2008).

Although, different JP building blocks such as cylindrical or pallet shapes have

been introduced, the most commonly studied JPs are spheres with two distinct

hemispheres. Specifically, a host of visualization techniques ranging from SEM

(Erhardt et al., 2003) to epi-fluorescence microscopy (Hong et al., 2006) have been

utilized to study the self-assembly of nano- to micrometer sized spherical Janus

particles. For bipolar JP, in which two hemispheres have functional groups carrying

opposite charges, these studies have demonstrated that chains and porous structures

consisting of rings and chains are the predominant self-assembled structures for micro-

and nanometer size bipolar particles, respectively (Suzuki et al., 2007; Jiang et al.,

2008; Xu et al., 2010). On the other hand, for micron sized amphiphilic particles,

aggregates and spiral structures are observed (Chen et al., 2011), while for nanometre

sized particles porous structures have been detected (Xu et al., 2010).

Although experimental studies of structure formation as a function of particle

size, concentration and polarity in JPs have provided insight into the self-assembly

of this class of patchy particles, they do not provide the much needed connection

between individual particle properties and the resulting self assembled structures.

Clearly, development of rational design and optimization strategies to guide specific

self-assembled micro- and nano-structure formation, based on individual particle
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properties is a critical step in translating bench-top synthesis protocols to large-

scale fabrication techniques. To this end, modeling and simulation tools, namely,

coarse grained Monte Carlo (MC) and molecular dynamic (MD), have been used

to develop phase diagrams for self-assembled JPs as a function of volume fraction

and effective surface charge. Specifically, MC simulations with the particle modeled

as a dipole inside a hard/soft sphere or with square well attractions between two

hemispheres have been performed to ascertain the influence of particle volume fraction

and effective surface charge on the morphology of the self-assembled structures.

Specifically, it has been shown that when the attraction potential range is on the order

of the particle diameter, strings and mixture of strings and body-cantered-tetragonal

phase are observed for dipolar soft particles (Hynninen and Dijkstra, 2005) at low

to intermediate (≈ 0.3) particle densities. On the other hand, spherical micellar

clusters of amphiphilic JPs grow into larger spherical aggregates (vesicles) as the

packing fraction increases (Sciortino et al., 2009). Furthermore, Miller and Cacciuto

(Miller and Cacciuto, 2009), based on extensive MD simulations with varying surface-

surface interaction modeled via modification of the onset angle of a smooth step

potential, have suggested that subtle changes in patchiness of the individual large

(relative to the interaction range) particles can lead to development of a host of

morphologies, including micellar-aggregates, hexagonal bi-layers, and clusters with

face-centerd cubic (FCC) order.

To date, MC and MD simulations of structure formation in spherical JPs

have been based primarily on coarse-grained particle and inter particle interaction

models. Specifically, particle-particle interactions have been modeled with simple

angle dependent potentials between the unit normal vectors of particle hemispheres.

Moreover, long range Coulombic interactions have not been taken into consideration.

Although, Hong et al. (2006) have observed that aggregate formation in micron sized

bipolar JPs is insensitive to the precise range and shape of potential as long as this

range is about one third of the particle diameter, long range Coulombic interactions

can prevent symmetrical solvation of surface charges with ions in the system. This
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is even more important for nanometer sized bipolar JPs where the effective range

of Coulombic interaction is on the order of the particle diameter. To this end, MD

simulations with realistic representation of the JPs charge distribution and explicit

treatment of long range interactions can play a central role in establishing the critical

link between the individual particle properties and the resulting structures under

different environmental conditions. Hence, we have performed detailed molecular

dynamic simulation of the self-assembly of spherical nanometer sized JPs inclusive

of long range Coulombic interactions with evenly distributed opposite charged

hemispheres in electrolytes. In turn, the simulation results have been utilized to

elucidate the underlying physics of self assembly of nano-scale bipolar JPs as a

function of surface charge density, salt concentration, particle size, and surface charge

defect density.

2.2 Simulation method

In order to realize the aforementioned objectives, MD simulations with a detailed

particle model have been carried out. Specifically, the total interaction of a JP is

considered to be the sum of interactions between charges distributed uniformly on

a fixed radius from the center, screened by the presence of free conjugate ions in

the solvent. This representation explicitly includes the orientational dependence of

particle-particle interaction and multi-pole effects.

Charges are represented by the restrictive primitive method for free ions in the

solution and JP surface charges. Solvent molecules are modeled as coarse grained

neutral hard sphere and the electrostatic effect of the solvent is implicitly present

through its dielectric constant. The aforementioned solvent model neglects hydrogen

bonding. In this work, it is assumed that hydrogen bonding has a negligible effect

on cluster formation, compared to the electrostatic interactions. The validity of this

assumption and the exact effect of hydrogen bonding on cluster formation of Janus

nano-particles with surface charges requires further investigation.
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A uniform charge distribution on the JP surface is guaranteed by using a

specialized spherical code (see Hardin et al., 2008) that enforces uniform cap

distribution over a spherical surface, i.e., the distance between each charge and its

immediate neighbors is equal for all charges. In total, 60 interaction sites were

considered on the surface of the nano-particles. Different surface charge densities

are realized by changing the number of elementary charges at each interaction site.

All interaction sites are bonded with a very stiff harmonic spring to the center of

the particle (See Fig.2.1). A secondary hard shell covers all surface charges to create

the desired excluded volume effect. The total radius of the particle (restrictive shell)

is the sum of bond length and radius of charges. Excluded volume effect for both

JPs and electrolyte ions is incorporated via the Weeks-Chandler-Anderson (WCA)

potential, which is a shifted Lennard-Jones (LJ) potential so that its minimum is zero

at the cut off radius. Interaction sites are divided into two hemispheres, and sites

in one hemisphere are charged positively while those on the other hemisphere carry

negative charges. Electrostatic interaction up to a JP diameter from each charge is

calculated in real space, for charges beyond this distance the particle-mesh method

is used.

The self-assembly process was investigated via MD simulations with LAMMPS

in an NVT ensemble at T=300K using the Nóse-Hoover thermostat. The solvent

relative dielectric constant is set to that of pure water at 300K. Positive and negative

free ions (electrolytes) are modeled as mono-valent charges with radius of 1.02 .

A variety of environmental conditions and JP characteristics were studied to

ascertain their influence on morphology development. Specifically, JP diameter, a,

ranging from 5.5 to 7.5 nm with surface charge densities, σ, of 0.5 to 2 e/nm2 in

absence of additional salt (hence maximizing electrostatic interaction range) and also

in electrolyte concentrations, Cs, of 1 and 3 mM have been studied.

Elucidating the pathway of assembly necessitates a quantitative approach for clus-

ters characterization, especially as the clusters become more populated. Borrowing

basic concepts of weighted adjacency matrix and connectivity list from graph theory,
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an in-house code was developed for cluster characterization. Specifically, the weighted

adjacency is constructed following a simple strategy, namely, the ijth element is zero

whenever two particles are not neighbors. If they are neighbors, the element value

is equal to the cosine of the angle between connector vector of two connected JPs

and the vector that connects the center of JP to the center of charge of positive

hemisphere. Upon formation of the weighted adjacency matrix for each cluster, sub-

clusters are identified based on this weighted adjacency matrix to resolve the building

blocks of that specific cluster. Finally, each sub-cluster is quantitatively characterized

based on various geometrical measures, including an angle between connector vectors,

dihedrals, etc.

2.3 Results and discussion

As mentioned above, our interest lies in developing rational strategies to guide specific

self-assembled micro- and nano-structure formation, based on individual particle

Figure 2.1: Schematic of a single Janus particle. Center of each surface charge is
connected with a stiff spring to the center of the particle. Charges are placed at the
center of each interaction site shown as black (positive) and green (negative) spheres.
Θ-direction and Janus boundary are also defined in the schematic.
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properties. To achieve this objective, the hierarchy of the self-assembly process

is examined. In this approach JPs assemblies are literally followed as the system

concentration is increased until the observed incipient structures can successfully

predict the next level assemblies. To this end, the best starting point for the analysis

is that of single JP and the electrolyte. As it will be shortly demonstrated with

this simple hierarchical approach, development of complicated and more populated

structures at higher concentrations can be rationalized. Subsequently, the system

without salt is considered.

Investigating the unperturbed electrolyte spatial distribution around a single JP

reveals two important facts about bipolar JPs. As shown in Fig.2.2, the angular

dependence (Θ-direction) of free ion radial pair distribution around an isolated JP

demonstrates that the Debye electrostatic screening length (κ−1) of the counter

ion reduces rapidly as one moves from poles to the equator of the particle. To

this end, surface charges near the equator experience almost no significant net

attraction/repulsion; hence, they are not likely sites for cluster growth (see Fig.2.2-

inset). A detailed examination of charge concentration contour plots (Fig.2.3) around

each hemisphere revealed two nonzero extrema along the Θ-direction. Since exterma

occur at locations with highest electrostatic attraction (repulsion) for each counter

ion, they will correspond to locations with highest probability for further addition

of JPs. The primary addition site is marked by the maximum concentration of

counterion. The minimum of counterion concentration (at around 55-60 degree in

Fig.2.3-right) represents the secondary interaction site. As it will be shown later,

this weaker interaction site comes into play when small incipient assemblies are

formed. Formation of this secondary interaction site is a direct consequence of the

double layer formation around the cap region (dark borders in Fig.2.3-right) and high

concentration of counter ions atΘ > π/2.

Formation of the incipient structures indeed adheres to the aforementioned

scenario. With 7-8 particles in 1203 nm3 periodic boxes two major assemblies were

found: rings and strings (Fig. 2.4-e and f). Specifically, particles tend to form chains
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at higher electrolyte concentrations. Also, for larger particles (7.5 nm vs. 5.5 nm) the

chain structure is the preferred structure provided all other parameters of the system

are fixed. Transition from ring (e) to chain (f) is observed for a=5.5 nm for σ=1.26

and 1.58 (e/nm2) as electrolyte concentration increases from 0 to 1 mM. Both of these

observations suggest that when κa ≈ O(1), i.e. long range electrostatic interactions

between particles is effectively screened, the cluster grows by addition of particles on

the polar interaction site ultimately, leading to string formation. This observation

is consistent with observation of string (Suzuki et al., 2007; Jiang et al., 2008), in

micron size JPs where κa > 1. On the other hand, when long range interactions

are not screened (lower salt concentration or very high surface charge density), ring

structures are observed.

Figure 2.2: Angular dependence of radial pair distribution function of the positive
free ions shows the dependence of the Debye screening length on the Θ-direction for
a = 7.5 nm, σ = 1.1 e/nm2, rsur.ch = 1.2 nm. Inset compares the similarity of ion
distribution at the region around the Janus boundary with the distribution around
hard sphere with no surface charge. Θ-direction is divided into equal slices with θ in
the legend pinning the initial coordinate of the slice in Θ-direction.
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As the number of JPs in the system increases, there are two pathways to larger

structures: one is longer string and the other is assembly of strings alongside each

other. In the first case, strings will assume a chiral shape and in the later case they

form a curvilinear chain assembly with three or more strands (Fig. 2.4-(c) and (d)

respectively). A similar scenario is followed in ring structures. That is, they either

form larger rings (more particles per closed circle) or rings assemble on top of each

other (Fig. 2.4-(a) and (b) panels) to form a porous structure. Figure 2.5 depicts a

connection map between JPs centers when chains or rings are assembled alongside

each other (second pathway); the triangular elements formed in these clusters show

the hexagonal packing of the particles.

Further insight into the cluster growth mechanism can be obtained via geometrical

measures. If particle i is followed by particle j and k in the cluster, then the

supplementary angle that two subsequent connector vectors (
−→
ij and

−→
jk) make with

each other is called the connector vector angle (ψ). For each particle, ~p is defined

Figure 2.3: Charge distribution of the free ions around a single JP. Both panels
show distribution of positive ions, with negative cap at Θ >90 degree. Legend bands
are optimized to enhance visualization of maxima and local minima (in left and right
panels respectively) for a = 7.5 nm, σ = 2.2 e/nm2, rsur.ch = 1.2 nm, Cs = 1 mM.
Darker areas correspond to higher positive ion local concentration. Y-axis is distance
from the center of JP and the curvilinear axis is the Θ-direction with Janus boundary
at 90 degree.
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as the vector that connects the center of the particle to the center of charge of the

positive hemisphere. The angle between the ~p and the
−→
ij vector is denoted as φ

(Fig. 2.6-right).

The ensemble averaged (over time and clusters) probability distribution function of

the connector vector angle, 〈ψ〉, is depicted in Fig. 2.6. For ring formation 〈ψ〉 ≈ 2π/n,

where n is the number of JPs per ring. Significant deviations of the 〈ψ〉 from zero

clearly demonstrates that the chain like structure has a curved contour.

Figure 2.7 shows values of 〈ψ〉 and 〈φ〉 for different surface charge densities and

salt concentrations. Higher values indicate enhanced curvature of the cluster contour.

Figure 2.4: Cluster growth regimes at very low concentration region (no cluster-
cluster interaction). Similar transition from single chain (c) to chains assembled
alongside each other (d) occurs for 5.5 nm particles at fixed σ for increasing Cs from
1 to 3 mM. Transition from (e) to (f) is observed only when κa < 1.
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As surface charge density increases up to a critical value, both 〈ψ〉 and 〈φ〉 drop

nonlinearly toward zero. At higher σ a plateau is reached. However further increase

of surface charge density will result in ring formation.

Ring formation is due to the competition between two different mechanisms, both

acting to minimize the structure Gibbs energy: G = U − TS. On one hand, ring

formation will decrease entropy of the system, S, since it decreases degrees of freedom

Figure 2.5: Connection pattern obtained by connecting the neighboring particles for
assembly of three rings on top of each other; the final cluster is porous and particles
have hexagonal packing on the surface.

Figure 2.6: Probability Distribution functions of ψ for two different surface charge
densities. On the right sketch ψ and φ definitions are shown.
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of the cluster by formation of an additional bond. Additionally, transition from a

chain into a ring isomer requires extra tilting of the chain contour, which acts as

a barrier in the energy landscape. If the chain like structure at equilibrium has an

average angle of 〈ψch〉, then the equivalent ring consisting of n JPs will cause an over

bending of ∆ψt ≈ 2π/n− 〈ψch〉. On the other hand, the total potential energy, U , of

the system will drop if two additional hemispheres of opposite charges participate in

the formation of an additional contact area (bond) and form a ring.

As σ increases, ∆ψt reaches a plateau and the drop in electrostatic potential

due to the formation of the new bond (∆Ubondσ̃
2) will ultimately compensate for

the competing mechanism, namely bending penalty, therefore a ring can be formed.

At lower surface charge densities, although the deviation from 〈ψch〉 to form a ring

is small, the drop in potential energy cannot compensate for the lower entropy.

Since ∆ψt also decreases with n, it is expected that clusters with more JPs can

transform from chain to rings at lower σ. In fact, this was observed in simulations

where the number of JPs in system was increased from 7 to 14 (while keeping other

characteristics constant).

The importance of studying assembly of a limited number of particles lies in the

fact that larger assemblies at higher volume fractions are the result of hierarchical

co-assembly of these smaller building blocks. This effect is shown in Fig. 2.8-a, where

three spiral shape strings have come together to form a curvilinear structure before the

structure bifurcate into smaller branches. In these larger systems, coexistence of rings

and strings leads to formation of an ordered porous structure (Fig. 2.8) consistent

with experimental observations for nano-meter sized JPs (Xu et al., 2010).

Synthesis methods based on masking, particle at interfaces (Lattuada and Hatton,

2011) or cap deposition (Ren et al., 2012) are prone to defects such as anomalous Janus

boundary (Park et al., 2011), which can only become more severe at nano-scale since

the relative magnitude of thermal perturbations are large compared to particle size.

To investigate how such defects can influence self-assembly from the aforementioned

path for JPs devoid of charge defects, the effect of surface charge defect is investigated
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by random translation of the surface charges to the counter hemisphere. Effect

of random translation is characterized by a decrease in normalized magnitude of

polar vector (~p): for a perfect JP this value is equal to 1 and for a completely

random arrangement of positive and negative surface charges it will become zero.

As shown in Fig. 2.10, upon introduction of about 20 and 27% defects (corresponding

to normalized polar vector of 0.7 and 0.6 respectively), particles aggregates in a

visibly less ordered structure, namely aspect ratio of aggregates approaches one and

directionality of the assemblies is reduced. Also, at a fixed concentration the average

number of JPs per cluster decreases. This behavior also manifests itself at higher

volume fractions resulting in formation of spherical aggregates as depicted in Fig. 2.9.

These findings underline the role of uniformity of surface charge distribution in the

self-assembly process. Specifically, loss of directed assembly in presence of defects is

observed. Although aggregation pathways and exact configuration of the structures

depend on the precise location of the defects, repeating the above procedure with

different seeds, particle size (7.5 nm vs. 5.5 nm) and electrolyte concentration (0

Figure 2.7: 7 Ensemble averaged equilibrium connector vector angles, 〈ψ〉 and 〈φ〉,
decrease with increasing surface charge density until a transition point after which
rings are formed, a = 5.5 nm.
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or 3 mM vs. 1 mM) confirms the aforementioned conclusion. Finally, in order to

underline the significance of long range interaction in development of long chains and

ring type structures, a series of simulations at 0 and 1 mM electrolyte concentration at

various surface charge densities for 5.5 nm JPs were performed where the electrostatic

interaction was cut off at 2a, a and , a/2, i.e. range of electrostatic interaction

between pair of charges is explicitly bounded by the above cut off values. For Cs = 1

mM where κ−1 ≈ 10 nm, the system with a cutoff radius of 2a ≈ 11 nm produced

similar structures as that of the control runs (full long range Coulombic interaction),

while those with shorter interactions gave rise to very short chains and triangular

trimers (see Table 2 second row). As expected, long range interactions become more

important when screening is insignificant, κ−1 > 2a. As depicted in the first row

of Fig. 2.11, when the interaction range is reduced to the order of particle radius,

triangular trimers and tetrahedrons are formed, as opposed to double rings in the

control run.

2.4 Conclusions

Structure formation in bipolar JPs and its correlation with single JP characteristics

was studied via MD simulation with a realistic representation of the (bipolar) JP

charge distribution and explicit treatment of long range interactions. It is shown

that a plethora of self-assembled structures, namely rings, chains and aggregates

can be achieved by judicious manipulation of κa and the surface charge density.

Furthermore, a simple mechanism based on the thermodynamic driving forces for

the assembly of the incipient chain and ring structures has been proposed and

validated. The importance of electrostatic interactions in JPs self-assembly has

been underscored by manipulating the interaction range. Specifically, when the

electrostatic interactions are bounded below the particle diameter, string formation

commensurate with experimental structures of micron size JPs is observed. It has

also been demonstrated that at the higher JP concentration, rings and strings will
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enact as building blocks by either joining into the same structure but with larger

population of JPs or by hierarchical co-assembly into larger porous structures or

spiral chains. Furthermore, the current model for JP provides a unique opportunity

to investigate effect of defects on structure formation. To this end, presence of random

defects has been shown to lead to the loss of directional growth of incipient structures

and formation of aggregates. Overall, this study provides a qualitative relationship

between characteristics of the individual particle and the final morphology of bipolar

JPs, which in turn facilitates a bottom up approach towards directed self assembly

of Janus nano-particles.
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Figure 2.8: Formation of porous structures and elongated chain assemblies at higher
concentrations (volume fraction is 0.1 for (b) and 0.01 for all other snapshots). a = 6.2
nm, rsur.ch. = 0.6 nm for (b) and a = 5.5 nm, rsur.ch = 2.5Å for (a), (c) and (d).

Figure 2.9: Effect of defects on assembly (aggregation) of JPs. σ = 0.63 e/nm2,
normalized |~p|=0.7 (20% random defect),1% volume fraction, Cs = 1 mM
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Figure 2.10: Loss of directionality upon introduction of random defects on structure
formation for a = 5.5 nm and Cs = 1 mM. Values in the last row are surface charge
density (e/nm2) and values in the first column are normalized magnitudes of polar
vector.
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Figure 2.11: Importance of long range interaction on structure formation of bipolar
JPs is shown through each row at different electrolyte concentration of 0 and 1 mM
(shown on the left of the corresponding system).
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Chapter 3

MESOSCOPIC SIMULATION OF

DILUTE SOLUTIONS OF

FLEXIBLE POLYELECTROLYTE

CHAINS: EQUILIBRIUM

PROPERTIES AND

FORCE-EXTENSION

BEHAVIOR

Macromolecules with ionizable groups are ubiquitous in biological and synthetic

systems. Due to complex interaction between chain and electrostatic decorrelation

lengths, both equilibrium properties and micro-mechanical response of polyelectrolyte

(PE) dilute solutions are more complex than the neutral macromolecular dilute

solutions. In this work, upon construction of conceptual diagrams of the relevant

non-dimensional units, hi-fidelity Brownian Dynamics (BD) simulation utilizing the
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bead-rod description of polyelectrolyte dilute solutions is performed in order to

explore universal equilibrium behavior, scaling of the Kuhn step length (lES) with salt

concentration cs and the force-extension behavior of the PEs. Our results indicate

that for a chain with nKuhn segments lES ∼ cs
−0.5 as linear charge density approaches

1/n, in agreement with the previous theoretical predictions. Moreover, the constant

force ensemble modeling results accurately predict the initial non-linear region of

PEs recently examined via single chain experiments. Finally, inspired by Cohan’s

extraction of Warner’s force law from the Inverse Langevin force law, a new numerical

scheme is developed in order to extract a new elastic force law for real chains from

the discrete set of force-extension data similar to Padè expansion, which incorporates

the initial non-linear region.

3.1 Introduction

Hi-Fidelity prediction of equilibrium and non-equilibrium responses of biological and

synthetic macromolecules are essential in a wide array of biological processes as

well as many emerging technologies, including DNA mechanics, cell locomotion and

molecular motors (Bao and Suresh, 2003). To this end, acquiring insight into the

complex micro-mechanical deformation of macromolecular systems has motivated

single chain studies. These include experimental techniques such as single molecule

force spectroscopy and complimentary meso- or nano-scale simulation. Beyond

equilibrium properties, an indispensable step towards interpreting experimental

results or making sound material property predictions requires an accurate force-

extension (F-X) relationship, which predicts the deviation of the free energy due to

the change in the conformation of the chain and vice e versa. If the macromolecule

backbone consists of intermittent ionizable groups (polyelectrolyte), the interplay of

repulsive electrostatic potential and entropy alters both the equilibrium properties

and F-X relationships, depending on the salt concentration and solvent properties.
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Properties of PE at equilibrium have been extensively explored theoretically in

two distinct regions. First, when screening of the electrostatic interaction is negligible,

mean field and scaling theories with non-uniform chain extension predict that the root

mean squared end-to-end distance, re, scales with the number of bonds along with

a logarithmic correction due to aspherical conformation, i.e. re∼n(1/lq)
2/3[ln(αn)]1/3

(Katchalsky et al., 1950, 1953; Dobrynin, 2005). Here lq is the distance between

charged units in terms of the number of bounds along the chain contour and α

is a function of lq and bond length. In the second region, which has significantly

higher practical implications, screening of the ionized groups of the polymer backbone

due to free solvated ions reduces the electrostatic decorrelation length (κ−1) when

compared to the non-ionized bond decorrelation length of the macromolecule i.e., the

polymer intrinsic Kuhn length (lo). The screened electrostatic interaction at this limit

perturbs the random Gaussian distribution and increases the decorrelation length of

the polymeric chain to lk. The exact scaling of this additional correlation, lE = lk− lo,

with κ−1 has been debated in literature: The theory pioneered by Odjik-Skolnick and

Fixman (Skolnick and Fixman, 1977) estimated lE ∼ κ−2/A2 for long worm-like

chains while Barrat and Joanny and Muthukumar (Muthukumar, 1987; Barrat and

Joanny, 1993; Muthukumar, 1987; Everaers et al., 2002) estimated the scaling as

lE ∼ κ−1. Meanwhile, experimental observations in the second region have confirmed

both scaling laws and have even provided an interim scaling exponent (≈ −1.6) (Chen

et al., 2012). Nevertheless, the common underlying assumption in both methods is

the fact that the electrostatic interaction at this limit can be approximated with a

repulsive excluded volume interaction.

The schematic Fig. 3.1 depicts the six possible regimes of PE for the semi-flexible

and the flexible polymeric chains in terms of the two nondimensional ratios: A = lq/lo

which is the relative distance of two ionized groups along the backbone to the intrinsic

Kuhn step and B = κ−1/lo, which quantifies the ratio of the charge decorrelation to

the chain decorrelation length. Parameter A represents the fraction of charged units

and their relative distance along the contour, positioned at the center of the beads.
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Parameter B relates the salt concentration to the excluded volume radius through

κ−1 and ionic strength, i.e. κ ∼ cs
0.5 where cs is the salt concentration. For small

charge fractions (the upper limit of the diagram), fluctuation of re due to thermal

energy is equal to that caused by the electrostatic energy of the chain, which can be

described in terms of the electrostatic blob and the thermal blob concept (Dobrynin

and Rubinstein, 2005); hence the electrostatic effects are minor at best. At high

linear charge density along the backbone (the lower boundary of horizontal axis)

the Manning condensation limit is reached, i.e., the Bjerrum length (lB) is equal to

the charge distance. Region (I) is mainly encountered for semi-flexible chains where

charges along the backbone will practically increase the chain thickness along the

contour.Due to strong repulsive force at distances less than the polymer Kuhn length

(lo), in region (II) the repulsive forces of the electrostatic interaction will first stretch

the chain locally at the level of Kuhn length until it reaches region (I) with a new

bare Kuhn length (l
′
o), reducing the problem back to region (I). Region (III), which

shows highly ionized chains with negligible screening along with region (VI) where

1 < A < B and incorporates mean field Flory type approaches, are not of interest of

this research since the conclusive theoretical work on these regions already exists and

these systems are rarely encountered in practice. In regions (IV) and (V) , B < A,

lE is added to intrinsic persistence length of the neutral polymer, which is the focus

of this research.

As previously mentioned, not all of these six regions are commonly encountered

in practice. For example, typical value of dsDNA Kuhn length is about 120nm and

comparing this length to the screening length in the presence of 1 mM monovalent

salt , κ−1
Cs=1mM = 9.6 nm indicates (B < 1). Hence, for most flexible chains the right

side of regions (I) and (IV), shaded as gray in Fig. 3.1a, is not accessible. For a

semi-flexible chain such as ds-DNA, salt concentration below 1e-5mM is required for

region (III), (V) and (VI) to be accessible. Similarly for ssDNA, a typical flexible

chain with the Kuhn length of order 1 nm, and considering the Bjerrum length of

water at room temperature (≈ 0.7 nm), the regions below the dashed line in Fig. 3.1b,
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Figure 3.1: Different regimes separated based on the relative scaling of the
characteristic length scales of the PE dilute solution. Based on the practical
magnitude of the model rigid or flexible macromolecules, regions that are not
accessible by the respective chain is shaded gray.

i.e. regions (I)-(III), are not of prime importance as compared to regions (IV, V).

Therefore the focus of this research is mainly on the properties of PE in these two

regions, i.e. (IV) and (V). In this study, not only the scaling of the equilibrium

properties as a function of A and B is thoroughly investigated, but also the F-X

response of single macromolecules and the dependance of the initial non-linear region

on the salt concentration (B) and distance between charged groups (A) is studied.

In turn, a new force law for the special case of A = B = 1 is developed, which

incorporates the initial non-linear regime of the elastic response in the region where

the nondimensional force is small, specifically fl/kT < 1 .

The F-X response of flexible PEs has been recently investigated via single chain

experiments (Dessinges et al., 2002; Saleh et al., 2009) with observation of a distinct

nonlinear region at small extensions, which is in contrast to ideal chains. For neutral

ideal polymeric chains, two classical force laws, one based on a freely jointed chain

(FJC, flexible) and the other based on the worm-like chain (WLC, semi-flexible)

model have been developed. FJC consists of two limiting F-X behavior: at low

extensions, the elastic force results in the linear behavior (Hookian spring with
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stiffness of 3kT/n where kT is the thermal energy and n is the number of Kuhn

steps), while at high extension the limited extensibility of polymer chain causes the

force to become tangential to the 1/(1−x) curve where x is the measure of extension.

The WLC force law models semi-flexible polymeric chains such as ds-DNA with a

continuous contour and an inherent stiffness. Similar to the FJC, F-X curve for the

WLC also commences with a linear region; however at medium extensions, it predicts

a stiffer chain and as the chain end-to-end distance approaches its contour length

(x → 1), the retracting force approaches the 1/(1− x)0.5 curve. For flexible PEs at

low salt concentration, a nonlinear region where x ∼ fγ=2/3 has been observed in

line with the scaling prediction of Pincus for self-avoiding random walk chains (SAW)

for flo/kT < 1. It has also been shown that the PE F-X gradually resumes to the

linear behavior, γ → 1, as the salt concentration increases. Moreover, at higher forces

Saleh et al. (2009) observed a logarithmic scaling where x ∼ ln(f). Hsu and Binder

(2012) concluded that excluded volume interaction is essential for accurate prediction

of F-X in two-dimensional systems regardless of stiffness. Furthermore, they have

performed the first 3-dimensional modeling of sufficiently long macromolecules in

order to investigate the F-X behavior of semi-flexible chains with EV. Their results

indicate that in the presence of EV, the Kratky-Porod model only applies to the

rigid and short chains. However, the on-lattice Monte-Carlo (MC) predictions of

(Hsu and Binder, 2012) are affected by the lattice model at the high extension region

(x → 1), as the bond radius is fixed at lattice spacing. Also their adopted MC

method, unlike BD or molecular dynamic (MD), is unable to predict dynamical

properties robustly. Stevens et al. (2012) attributed the logarithmic region of the

F-X curve observed in ss-DNA single chain stretching to the unwrinkling of small

crumpled segments of the chain, formed due to the condensation of the counterion

along the backbone of the polymer in presence of the free ions via the MD simulation

of short PE chains (n = 200). Similarly, Toan and Thirumalai (2012) related the F-X

logarithmic scaling to the same physical concept, although their model includes only

the screened Coulomb potential and no explicit salt, they point to the long range
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electrostatic interaction as the possible cause of the logarithmic scaling in F-X. In the

Toan and Thirumalai (2012)’s MC model the postulated power law decay of bond

correlation was reproduced via incorporation of a salt dependent Debye length. As

demonstrated shortly, such logarithmic region can be captured without inducing any

charge clusters along the polymer chain. Also MD simulation of PE with explicit

solvent is costly, especially since the universal elastic behavior can only be obtained

for chain with around 1000 Kuhn steps. This limit of Kuhn steps can be explored

via BD simulation of the bead-rod model of polymeric chains via highly efficient and

parallel algorithm. Cranford and Buehler (2012) utilized MD in order to investigate

the relationship between the electroestatic contour length and intercharge distance,

and provided a modified equation for the OSF formulation to encompass both flexible

and rigid chains. The PE model in their MD model has finite length and the solution

is in the salt-free condition. Both Pattanayek and Prakash (2008); Stoltz et al. (2007)

modelled PE solutions as a chain of swollen blobs via the BD with FENE springs.

The bead-spring model inherently cannot capture the effect of salt concentration on

the Kuhn length nor can it capture the 2/3 non-linear region discussed above due to

linear nature of FENE force law at small extension.

In this work, in order to construct the universal map for the fractal dimension

of the polymeric chain in terms of fraction of charged units and salt concentration,

hi-fidelity BD of macromolecules with the bead-rod micro-mechanical model with

excluded volume constraints of varying range is utilized to model the flexible PE

chains. Our results show that the scaling behavior of the chain correlation measure

against the salt concentration is linear, in agreement with the Muthukumar, Barrat

and Joanny prediction (Muthukumar, 1987; Barrat and Joanny, 1993), only when

charge density is close to 1/lo for regions (IV) and (V).

Finally, the F-X behavior of chain in various salt concentrations is explored, and

the result is compared to the theoretical scaling laws and experimental curves found

via the single chain experiments. In addition, in an important step towards coarse-

graining PE chains, a new spring force law that correctly includes the repulsion effects
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of screened ionized groups or the good solvent effect is established, similar in spirit

to the Cohen methodical extraction of FENE force law from Inverse Langevin force

law (Cohen, 1991). To this end, a new method for real function approximation is

developed, verified and applied to the result of BD simulation in order to obtain the

corresponding force law from of the discrete set of data points.

3.2 Simulation method and model parameters

In BD simulations of the bead-rod model (BDRD) of macromolecules, trajectories

are evolved in time by stochastic integration of inertialess Langevin equation.

Corresponding thermodynamic properties of this ergodic system at steady state can

be found by averaging over all trajectories or over time. In the BDRD, forces act on

the beads. Hence on each bead:

F (B) + F (C) + F (D) + F (EV ) = 0 (3.1)

where F (EV ) is the exclude volume force, F (B) is the Brownian force, F (C) is the

connector force applied along the connected rods and

F (D) = ζ (ṙi − usi ) (3.2)

where ζ is the isotropic hydrodynamic drag, ṙi velocity of bead i, usi solvent velocity

at bead i. These beads are connected by rods with constant length lo :

(ri+1 − ri)2 = lo
2 (3.3)

where ri is ith bead position in the Cartesian coordinates. The constant force

ensemble is adopted in order to measure the F-X behavior. Specifically, on the first

and last bead the applied tensile force (f) acting along the end-to-end (EtE) direction

of the chain, is added to the Langevin equation. The Langevin equation subject to the
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constraint in the equation (. 3.3) is solved via a predictor-corrector scheme (Liu, 1989;

Öttinger, 1996; Somasi et al., 2002). At the first step, the unconstrained displacement

of beads is due to the forces calculated at the last time step plus the random force:

r∗i = ri +
[
u∞i +K.ri + ζ−1.FEV

i

]
∆t+

√
2kBTζ−1∆Wi (3.4)

here K is velocity gradient tensor, ∆Wi is the Wiener process represented by a

Gaussian random number with a mean of zero and variance equal to ∆t and the

screened electrostatic repulsion force, represented by the exclude volume potential, is

calculated based on the positions of all beads at the beginning of the step from the

WCA potential:

U(|ri − rj|) =

4ε

[(
σ

|ri−rj |

)12

−
(

σ
|ri−rj |

)6
]

+ ε |ri − rj|< 2( 1
6)σ

0 |ri − rj|≥ 2( 1
6)σ

, (3.5)

therefore the force cut-off is determined by κ−1 ∼ dbead = 2( 1
6)σ and ε is related to

the field strength.

At the corrector step, all the constraint must be satisfied. This includes finding

the Lagrange multipliers from equation (3.3) and ensuring that any two beads closer

than dbead are moved away based on the WCA force.

[
r∗i+1 − r∗i + (F

(C)
i+1 + F

(EV )
i+1 − F

(EV )
i − F (C)

i )
λ

]2

= lo
2 (3.6)

Subscript λ ∈ [0, 1] here indicates that the term in parentheses is evaluated at

the configuration (1 − λ)ri + λr∗i . Selection of λ = 0 and λ = 1/2 corresponds

to Ito and Stratonovich integration, respectively; in the absence of HI, λ can be

chosen arbitrarily. It was observed that λ = 1 will reduce the number of iteration,

increases performance, and has no effect on the properties of the macromolecule

presented in this paper when compared to Ito restoration of constraint, thus this

value was set for λ. The aforementioned algorithm is implemented in a parallel
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programming environment. Equations were nondimensoinalized as follows: lo serves

as the characteristic length scale, the characteristic time scale is bead diffusion time

ζlo
2/kBT and forces are made dimensionless with kBT/lo. To solve the nonlinear

set of equations, an iterative method must to be adopted. The Newton-Raphson

(NR) method generally converges faster than Picard method, provided the gradient of

matrix of coefficient is found analytically and the initial guess is a good approximation

of the solution. The weakly coupled set of constraints allow analytical calculation of

the gradient of the nonlinear equations and construction of the matrix of coefficients.

To overcome the later shortcoming and take advantage of the quadratic convergence

of the NR method, both methods are combined in the code: specifically, if the NR

solutions do not converge after a certain number of iterations, the solution algorithm

at the corrector step automatically switches to Picard method. This usually happens

in the few steps at the beginning of the run. Both methods must satisfy the

convergence criterion: each rod length relative error must be less than 1e-7 and

contour length variation must not exceed 1e-5. Results presented here are obtained

with ∆t = 10−4 − 0.8 × 10−3, n ranges from 50 to 1000 and number of trajectories

is either 128 or 256. Bead diameter was set to 0.9 at the athermal limit and ε is set

equal to
√

∆t. The relation between ε and dt is further discussed in the next section.

Padé approximants of a function, f(x), is found by finding coefficients of the

rational function of order (k,m) which preserves possible presence of poles in function

comparing to a simple Taylor expansion. Normally this is done by a Maclaurin

expansion of the analytical function and then finding the coefficient of polynomial

Pk(x) in numerator and Qm(x) in the denominator.

R(k,m)(x) =
Pk(x)

Qm(x)
. (3.7)

Cohen applied this technique to find a more accurate approximation of the Inverse

Langevin force law than the force law proposed by Warner (Cohen, 1991)and also
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showed that Warner force law (FENE) is in fact a rounded form of Cohen’s Padé

approximation.

To construct a force law in the form of a rational function (Eq. 3.7) from BD or

single molecule experimental results, a new method is developed. Our approach starts

by taking k+m+ 1 data point in order to find the k+m+ 1 unknown coefficients of

R. Afterwards, P and Q are divided by their common factors, and finally, coefficients

of the new P ′k′(x) and Q′m′(x) are normalized by the coefficient of the x zeroth order

of the polynomial at the demoninator (Q′m′(x)) to determine coefficient of the new

force law R′(k′,m′). In order to show its accuracy, this method was first tested against

Cohen’s Padé expansion of IL function and successfully predicted the coefficients of

the force law for m′ = 2.

3.3 Results and discussion

In the following section, probability distribution function and EtE distance scaling

with number of Kuhn steps obtained from simulation are compared with the

theoretical values which confirms accuracy of modeling technique and parameters.

Furthermore, fractal dimension of the chain in the A and B variable space is discussed

in order to construct a universal map of the chain fractal dimension as a function

these two dimensionless variables for large n. First, the equilibrium properties are

discussed, followed by the discussion of the F-X properties and the effect of both

A and B parameters as well as the chain length on the aforementioned properties.

Finally, this section is concluded with introduction of the new discrete Padè expansion

and force law at the limit of real chain.

3.3.1 Equilibrium properties

The Magnitude of the pre-factor of the WCA potential is chosen according to the

magnitude of the time step in order to insure accurate incorporation of the excluded
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Figure 3.2: The scaling exponent of re for various magnitude of time steps vs.
the WCA potential pre-factor. The bottom graph, (b), demonstrates the same data
vs. rescaled values of ε with the corresponding magnitude of time step; for instance
10dt0.5 means ε =

√
dt× 10

volume around each bead. At equilibrium, the magnitude of the Flory exponent from

various time steps and choices of ε (Fig. 3.2-a) collapsed on the same curve when

plotted against ε/∆t (Fig. 3.2-b) and for σ = 0.8. The correct scaling is achieved

when ε/
√

∆t is on the order of unity or ε ≈
√
dt ≈ O(dxran), where dxran is the

displacement due to the random force.

The probability distribution of the mean squared end-to-end distance, P (re) is

known theoretically for both the neutral ideal chain and SAW chains, which is the

limit of the PE chain when A = B = 1, i.e. the crossing point of the axis in Fig. 3.1a

and Fig. 3.1b. Fig. 3.3 depicts the result obtained from the BDRD as well as the

theoretical limits, which verifies the accuracy of the BDRD in both cases. It also

demonstrates the higher accuracy at small re compared the Gaussian EV potential

(Rey et al., 1992). The observed Higher accuracy at low re in this work is expected

since, unlike the Gaussian potential which reaches a finite value (i.e. zero force) at

very small bead distances, the WCA potential repulsive force increases monotonically.

Furthermore, scaling arguments state that at equilibrium, re scales with n0.5 for
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Figure 3.3: Probability distribution function of the ideal chain (a) and real chain (b)
obtained from simulation is compared to the theoretical curves (solid lines calculated
from Rubinstein and Colby (2003)).

a chain with no excluded volume constraint (Ideal chain) and n0.6 for chains with

excluded volume (Real chain or good solvent condition). The excellent agreement of

the current BDRD with the theoretical prediction of re scaling vs. number of Kuhn

segments is further demonstrated in Fig. 3.4, for both ideal and real chains with

various time steps.

Next, the possibility of creating a universal plot for the set of fractal chain

dimensions (Flory exponent) is investigated as a function of both A and B. Blob

theory suggests that PE chain can also be considered as Gaussian chain of electrostatic

blobs, where the blob diameter is increased due to the electrostatic repulsion between

the ionized groups in the blob. The translation of this assumption to the present

model, suggests renormalization of the bead electrostatically induced excluded volume

diameter with the number of bonds between the consecutive ionized units. The

universal curve obtained with the aforementioned renormalization is depicted in

Fig. 3.5-b. There are three distinct regions in this plot: for very small diameters

chains do not swell, while in the second region the fractal dimension changes almost

linearly, as B exceeds unity, a nonlinear thirds region with smaller slope is found.

The two later regions are highlighted by the observed jump in the scaling exponent
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Figure 3.4: Magnitude of re for different chain sizes in a log-log plot. Scaling
exponents agree with the theoretical values of 0.5 for ideal chain (theta solvent
condition) and 0.6 for a real chain (good solvent condition).

of the expansion factor (rg/rg,θ) vs. the B parameter (Fig. 3.6). As depicted in

Fig. 3.6-b, at intermediate salt concentration the relative magnitude of the radius of

gyration linearly varies with κ−1 with slope less than one. The comparison between

A = 3 vs. A = 1 in Fig. 3.6-b reveals that the effect of salt concentration on the

equilibrium expansion factor drops rapidly as the distance of ionized unit along the

contour increases. These findings are in qualitative agreement with the experimental

data for K-PolyStyren Sulfonate (lo ≈ 2.4 nm) (Hara, 1993).

As shown previously for WLC chains via MC simulation (Schäfer and Elsner,

2004; Hsu et al., 2013), the bond auto correlation of the chains with excluded volume

potential does not follow the single exponential decay and the resulting decorrelation

length. Hence, in order to investigate the dependency of lES on salt concentration,

first it is necessary to introduce the measure of decorrelation length for chains with EV

interaction. The linear or quadratic relationship between the Kuhn step and the salt

concentration is then investigated through the relationship between the introduced

measure of decorrelation and parameters A and B. A measure of decorrelation length
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Figure 3.5: The fractal dimension of the PE chain for a wide range of salt
concentration and A values. In both plots the repulsion effect of ionized groups
are presented via the excluded volume σ (a) or via the excluded volume diameter of
the bead rescaled with A0.6 (b). In the later case all the data collapses on a single
curve.
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Plot on the right compares radius of gyration of A = 1 with A = 3
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for these chains can be found through the bond auto correlation function defined as

cos θ(s) = ri.ri+s/lo
2, which characterizes the projection of bonds s link down the

contour length on the direction of ith bond. As correlation dies out along the chain,

bonds orientation becomes independent at distance s′ measured along the chain,

this value (cos θ(s′)) approaches zero. The ensemble average of these single bond

projections is considered as the measure of the lES in this research; as expected lES is

zero for the neutral chain in Θ-solvent. Three power law scaling regions are observed

in Fig. 3.7, which depicts cos2θ(s) for PE chain for A = B = 1, suggesting that the

β exponent of cos θ(s) = s−β is respectively equal to 0.84, 0.95 and 1.03. The first

exponent is in good agreement with that of the WLC chain models in good solvent,

while the last region is characteristic of the FJC and characterizes the decorrelation

of EV in a bonded chain. As shown in Fig. 3.8 the intermediate scaling region is not

observed for small chains (n = 60); meanwhile as n increases, the bond correlation

function approaches a universal behavior with all three regions of the power law

scaling.

In the case of A = 1, Fig. 3.9-a clearly demonstrates the linear effect of salt

concentration, represented by bead radius, on the electrostatic Kuhn length in both

regions (IV) and (V) confirming results of (Barrat and Joanny, 1993). Similar scaling

was also found utilizing the alternative measures of maximum Kuhn length defined

elsewhere (lo,max ∼ (n/2)2ν−1) (Schäfer and Elsner, 2004) as depicted in Fig. 3.10.

However, as the distance between ionic groups along the contour increases (Fig. 3.9-b

through d), the electrostatic Kuhn length across both regions demonstrates quadratic

behavior. This observation suggests that the transition from the linear scaling into

the quadratic scaling, proposed by the OSF theory, depends on the fraction of ionized

groups relative to the Kuhn length, and as this value approaches unity the linear salt

concentration dependence of the lES is recovered. In order to obtain the universal

mapping of lES, its dependency on the chain length should be investigated. For

A = 1, power law function in the form of b(n− 2)α with α = 0.41 fits the data for

all n values, and the constant b is equal to cos θ(1) which is independent of n for any
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Figure 3.7: The power law decorrelation of squared bond auto-correlation function
for the chain in the athermal solvent. Three different slopes (in the log-log plot of
cos(θ(s)) = sβ shown as β with the r-squared value (eˆ2) in the legend) can be
identified via linear fit of the autocorrelation function.

given κ−1 (Fig. 3.11). Although not explored here, a similar approach can be used to

resolve the variation of lES for 1 < A.

3.3.2 F-X response

Salt concentration dependence of F-X scaling of PE with various ionized unit fraction

is investigated via constant force ensemble for various numbers of Kuhn steps. In

order to establish the universal limit, the special case of A = B = 1 is considered

first. Next, the influence of salt concentration in the context of our model of PE is

investigated. In turn, the excellent agreement between modeling predictions with the

recent single molecule experiments is discussed.

In Fig. 3.12, FE curve for a real chain (A = B = 1,n = 500) is compared with

an Ideal chain (n = 500). Ideal chain data fit perfectly on the Langevin function,

which is the theoretical limit as n→∞. Real chains deviate from this behavior and

show a nonlinear region; also, their response to the constant tensile force depends
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Figure 3.8: Normalized bond autocorrelation function along the chain in Athermal
solvent. Note that for the small chain (n = 61) the intermediate scaling region is
absent and for large n curves reach a universal behavior.

on the number of Kuhn steps. The later fact is further investigated by varying n

ranging from 100 to 1000. As Fig. 3.14 depicts, for chain with limited number of

Kuhn segments, FE curve hardly deviates from the linear response at forces less than

unity and its behavior is close to a FENE force law, whereas chain reaches a universal

behavior for n larger than about 500.

This gradual shift from a FENE force law to the excluded volume limit is

investigated on a logarithmic plot of extension versus force. The logarithmic plot

(Fig. 3.14) clearly divides a real chain response into 4 regions for long chains, i.e

n > 500. At the first region (Reg.I), close to equilibrium, the chain response in

slightly sub linear, which means that chain resists against extension a bit more

in comparison with the theoretical 2/3 limit. Although linear response close to

equilibrium is expected, the slight variation is due to the virial pressure that arises

from the excluded volume potential. The order of force due to internal pressure can be

found by assuming that the polymer is bounded inside a sphere with radius equal to

the chain radius of gyration. This force in Reg.I is almost comparable to the applied
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Figure 3.9: The electrostatic Kuhn length for four different values of A over the
range of B parameters encompassing regions (IV) and (V) of 3.1. While for small A,
lES tends to grow linearly, as A increases a quadratic function fits the data in both
regions (IV) and (V).
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Figure 3.10: Application of alternative measures of Kuhn length, confirms the
findings of Fig.3.9 and demonstrates that the total Kuhn length depends linearly on
parameter B.

Figure 3.11: The n dependence of the Kuhn length follows a power-law function with
a fixed universal exponent (0.41) and a known coefficient, cos θ(1), which depends on
the salt concentration.
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tensile force; however, as end-to-end distance increases, pressure drops rapidly. In

other words the additional force acting towards swelling of the polymer coil goes to

zero, and therefore the net force assisting the extension decreases and this creates an

effective resistance to chain extension. At the second region (Reg.II), the slope for

large n is about 0.66, which perfectly agrees with the scaling, arguments discussed

before. The third region (Reg.III) slope gradually changes from 0.6 for n = 50 (same

value can be obtained from a FENE force law) to 0.5 for a real chain at the universal

limit. The third region is a prelude to the finite extensibility region (4th region), and

sometimes is not regarded as a separate response region. (Scaling exponents extracted

from this plot are tabulated in Table 3.1.)

The experimental result for the F-X of ssDNA concludes that γ increases from

2/3 to 1 as the salt concentration increases for flo/kT < 1, however all the F-X

curves for various salt concentration collapse for large values of force. Fig. 3.15

demonstrate similar behavior in the BDRD as κ−1 decreases. This finding is in

perfect agreement with the aforementioned single chain experiments (Saleh et al.,

2009). Decreasing parameter A, at a fixed κ−1, can also increases the nonlinear F-X

behavior, i.e. increasing the charge fraction or closer distance of charged unit along

the backbone increases the nonlinear response up to the limit observed in Fig. 3.15

for A = 1.

Due to the importance of excluded volume interaction, weather it originates from

the good solvent effect or electrostatic repulsion, an explicit F-X law, that accurately

captures all the non-linear regions, is established in the form of a real function

for these limits via the discrete Padé expansion. Fig. 3.17 shows the accuracy of

the proposed method for the Inverse Langevin function. The rational function has

accurately captured finite extensibility and linear initial region of the original curve,

even with limited number of data points. R′(3, 2) approximation to the IL force law

exactly fits on the Cohan’s Padé expansion, using only 8 data points in the mid

extension region. The higher order approximation shows even better agreement with

the IL force law. Inset plot compares the accuracy at high extension region.
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Fig. 3.18 shows the approximated F-X curve for a Real chain (n = 700). If points

are merely chosen from the 2/3 scaling regions force law is generally more concise

however region (I) slope would not be greater than 0.7. Note that even in this case,

the difference in the magnitude of force in the whole region is negligibly small. A more

precise force law is obtained by involving data points from all four regions (Table 3.2);

this new force law is shown in Eq. 3.8 and captures forces in all extensions accurately.

In summary, it is shown that incorporation of EV divides the flexible chain F-X

curve into four distinct regions. The curve always starts with a close to linear region

and then goes to the theoretical limit where extension is scaled with f 2/3 for chain

with enough statistical segments. Finally, the results were transformed into a real

function:

f(x) =
1.5674x3 − 0.669x2 + 1.237x

−1.92x3 + 3.25x2 − 2.285x+ 1.0
(3.8)

the polynomial nature of this form of force law enables accelerated study of polymeric

chains using the established methods for bead-spring methods

3.4 Summary

In summary, equilibrium properties and F-X behavior of PE chain were explored via

BDRD model of polymeric chain in three important regions, namely (I), (IV) and

(V) (B < A), and results were closely compared to available experimental data. The

proposed model captured several regions of the postulated phase diagram based on

non-dimensional parameters A and B, and the Flory exponent universal curve was

established for various linear charge densities. In addition, at equilibrium we confirm

the theoretical work of MBJ that lES ∼ κ−1 ∼ cs
−0.5. Furthermore, lES scaling was

mapped into the two parameter (A andB) space for a wide range of salt concentration.

F-X curve was explored utilizing this model and our results indicate good

agreement with the available single chain experimental data obtained for ssDNA.

Effect of salt concentration and fraction of ionized groups where explored in regions
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Figure 3.12: Comparison with theoretical force law shows that constant force
ensemble and the proposed method predict the Ideal chain elasticity with great
accuracy even for very small forces. Standard deviation is less than 5% for any
f > 0.1 and for the sake of clarity error bars are not included in the graphs.

(IV) and (V). In addition, for the important case of A = B = 1, which correspond also

to athermal solvent, a novel force law capable of capturing all the different regions of

F-X curve was extracted via a new method, i.e. discrete Padè expansion.
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Figure 3.13: Normal plot of force extension. Notice that extensional behavior
does not collapse on the Ideal chain F-X curve immediately after 1 but rather until
about 60% extension it still shows a significant difference. This difference completely
disappears at higher extensions (see Fig.3.14)
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Figure 3.14: Logarithmic plot shows different regions of FE curve. Distinction
between these regions obscures as n decreases. The universal limit can be reached for
a chain with large number of Kuhn steps as shown in Table 3.1.
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Inset shows relative accuracy at the finite extensibility region.
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Figure 3.18: Various D-Padé approximations. In general, accuracy increases with
increasing initial polynomial order and sampling data points from all regions. The
coefficient of each approximation is shown in Table 3.2.
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Table 3.1: Exponent γ of x ∝ fγ ,where x is extension, for real chain on different
regions extracted from linear curve fitting of log-log plot. In order to make comparison
more objective, region III were assumed to end at 0.6 extension for all n. Fitting
goodness (the R2 value) for all fittings is greater than 0.990.

n I II III IV
(near equil.) (I < f < 1) (1 < f < IV ) (entropic limit)

50 0.98 0.832 0.606
non linear100 0.95 0.800 0.590

0 < γ << 1150 0.99 0.742 0.534
250 0.92 0.706 0.526
500 0.94 0.684 0.528
700 0.93 0.661 0.495
Ideal
chain

1 non linear

Table 3.2: Coefficients of Discrete Padé approximation are shown here. Fig.3.18
shows accuracy of each force law along with the point that was used to extract the
force law.

Rn′,m′(x) term
order of
polynomial

0 1 2 3

(2,2) from (3,3)
P
coefficients

-0.0007 1.3942 – –

Q
coefficients

1.000 -0.9685 – –

(3,3) from (6,6)
P
coefficients

0.0032 1.1467 7.0553 –

Q
coefficients

1.000 2.9255 -3.6081 –

(3,3) from (9,9)
P
coefficients

0.0015 1.2145 2.5658 –

Q
coefficients

1.000 0.0395 -0.8606 –

(4,4) from (11,11)
P
coefficients

0.001 1.2371 -0.6689 1.5674

Q
coefficients

1.000 -2.2853 3.250 -1.9198
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Chapter 4

HI-FIDELITY BROWNIAN

DYNAMICS SIMULATION OF

NON-EQUILIBRIUM

PROPERTIES OF

MACROMOLECULES IN GOOD

SOLVENTS: A BOTTOM-UP

APPROACH

Recently, through the Hi-Fidelity Brownian Dynamics (BD) of the bead-rod model

of the polymeric chain, a new force law in the form of a real function was developed,

which accurately represents force-extension behavior of a single macromolecule in

good solvents. Here, both analytical and BD methods are employed in order to explore

the effect of solvent quality on both equilibrium properties and dynamical behavior,

through this bottom-up approach. Results indicate that the new force law captures
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features such as higher shear-thinning at mid range of Weissenberg number (Wi)

and decreasing the slope of the coil to stretch transition, which is absent in models

constructed by simply superimposing the excluded volume on the purely entopic force

laws.

4.1 Introduction

In the previous chapter, a novel force law with accurate incorporation of both

the entropic and the excluded-volume effects on the force extension behavior was

developed based on a bead-rod macromolecular model. The high computational

cost of bead-rod models makes the coarse-grained bead-spring model the preferred

method in applications such as multi-scale modeling where coarse-graining certain

features of the internal chain dynamics in favour of performance does not jeopardize

the validity of the final result. In the bead-spring model, the elastic response of the

chain is represented through the spring force law. Theoretical treatment of these

models for simple linear force law, i.e., ns connected linear Hookian springs, leads

to the well-known freedraining Rouse model or alternatively the Zimm model in

presence of pre-averaged hydrodynamic interaction (HI). The integral form of the

constitutive equation and scaling laws of these models are extensively discussed in

the literature (Bird et al., 1987; Öttinger, 1996; Rubinstein and Colby, 2003). In the

case of nonlinear force laws such as finitely extensible non-linear (FENE) spring, for

the elastic dumbbell model, equilibrium properties and rheological quantities at the

limiting flow strengths (Wi << 1 or 1 << Wi) are found analytically, while closed

form constitutive equations are developed through the closure approximations (Du

et al., 2005). Therefore, BD simulation of bead-spring model (BDSP) provides an

accurate description of the polymeric chain unaccessible via theoretical treatments

when nonlinear effects and configuration dependent potential are significant. BDSP

have been used in various flow kinematics (Fetsko and Cummings, 1995; Doyle et al.,

1997; Lyulin et al., 1999; Hur et al., 2000; Jendrejack et al., 2002; Somasi et al., 2002;
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Hsieh and Larson, 2004; Pamies et al., 2005) to analyze phenomena such as coil-

stretch transition (C-S)(Schroeder et al., 2004; Somani et al., 2010; Radhakrishnan

and Underhill, 2012, 2013), polymer adsorption (Panwar and Kumar, 2005; Hoda and

Kumar, 2008) and even behavior under confinement(Jendrejack et al., 2004; Trahan

and Doyle, 2010).

Nevertheless, the underlying assumption of Gaussian chain model at equilibrium

and the resulting linear elastic behavior at low extension, which is the common

feature of the entropic force laws used in BDSP, is inaccurate for real chains and

the Gaussian distribution is perturbed, for instance, in a good solvent (Pincus, 1976),

under confinement, close to solid boundaries (Woo et al., 2004), and as it was shown

in the previous chapters for polyelectrolytes. Therefore, either through detailed

theoretical approaches (Woo et al., 2004) or ad-hoc force laws (Radhakrishnan and

Underhill, 2012), there have been several efforts to incorporate the non-linear effects at

low and medium extension regions into the spring force law. The process introduced

in chapter 3 combines hi-fidelity efficient BDRD and discrete Padè expansion in order

to provide an invaluable tool in development of new spring force laws that accurately

represent the various scaling regimes of the macromolecules elastic response. In this

chapter, the R44 force law, A = B = 1, i.e., at the limit of athermal solvent, is

investigated both theoretically and via BDSP. Furthermore, the rheological properties

of the new force law are compared to the standard FENE dumbbell model in the

presence or absence of HI. In the remainder of this chapter, after a brief discussion of

the kinetic theory of the elastic dumbbell model and BD of bead-spring model with

HI, the equilibrium end-to-end distance and its dependence to the nondimensoinalized

maximum extensibility of the chain (
√
b = q∗mkBT/h where h is the spring constant

and q∗m is the contour length) is found theoretically and through BDSP. Next,

rheological properties and C-S transition of the polymeric chain subject to shear

and extensional flow is studied respectively, followed by comparison with the well-

established results of the FENE chain.
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4.2 Theory and method

In the absence of an external field, the Hamiltonian of the individual macromolecule is

H(R,P ) = φ(R)+kKIN(P ) where φ(R) is the potential as a function of beads position

vector and kKIN is the momenta dependent kinetic energy. If the pair potential energy

is only a function of the subsequent beads linked in the chain, and with the assumption

of Maxwellian distribution of momenta, the equilibrium distribution function will

become (Bird et al., 1996):

ψeq(Q) =
e−φ/kT∫
e−φ/kTdQ

(4.1)

The time evolution of distribution function is found from the Liouville equation:
∂ψ

∂t
=

∂ψ

∂R
· Ṙ where Ṙ can be found from the Langevin equation. In the Langevin

equation, the random force acts effectively as a diffusion mechanism of the probability

distribution function in the phase space while other forces drive the convection

mechanism:

ζṘ = Vo + (∇Vs)† ·R + F + kT
∂

∂R
lnψ (4.2)

The corresponding stochastic differential equation can be written in terms of a random

Gaussian force via the fluctuation-dissipation theorem:

dR = (Vo + K ·R + F/ζ) dt+
√

2kBT/ζW, (4.3)

where R is the vector of structureless bead positions, Vo is uniform solvent velocity,

K is the block diagonal matrix with Ki,i = (∇V )†, scalar ζ is the single bead Stokes

friction coefficient, F is the sum of all forces acting on the bead, except the Brownian

force which is represented by the independent Wiener process in the W vector and

dt is the time step. In presence of HI, the random forces on beads become correlated

through mobility tensor (Y), which at the first level of perturbation is approximated

via the regularized Oseen tensor, i.e, the Rotne-Prager-Yamakawa (RPY) tensor, and
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eq. 4.3 becomes:

Rt+dt
i = Rt

i + dt (Vo + K.Ri + Y.Fi) +Wi, (4.4)

with 〈Wi(t+ dt)Wj(t)〉 = 2kTYδ(dt) and zero mean value. Details of the formulation

in terms of connector vector (Q) and numerical evolution algorithm is given in

(Somasi et al., 2002) and Appendix B. While the corrector step in the aforementioned

algorithm is a semi-implicit, i.e. the unknown force coefficients on the left hand side

of the corrector step equation for segment s are calculated at time t:

Q∗∗s +Mss·F ∗∗s = Qn
s+

1

2
(Kss ·Q∗s + Kss ·Qn

s )+Ms,1:s−1·F ∗∗1:s−1+Ms,s+1:ns·F
∗
s+1:ns+F

(random)

it is possible to perform the second step fully implicitly for force laws in the from

of a real function (See Appendix B for definition of all terms in the above equation

and detailed resolution of the all implicit left hand side). The following section

investigates equilibrium and rheological properties of the new force law through a

mixture of analytical and computational techniques.

4.3 Result and discussion

The elastic response of the FENE dumbbell model with the maximum contour length

of qm is given as:

F ∗s =
hFENEQ

∗

1−
(
q∗�q∗m

)2 .

Here Q∗ = q∗~eQ∗ is the connector vector, and hFENE is the spring constant. There

are two ways to nondimensionalize the spring force law. The first set of reduced

units, which is suitable for further analytical investigation, consists of the extension

(x = q∗/q∗m) and the force scaled with the linear factor of the force law. For this set

of reduced units the FENE force law is given as:

f =

(
1

1− x2

)
x
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Similarly, the most accurate force law from the d-Padé expansion, R44, will become:

f =

(
1.267x2 − 0.54x+ 1

−1.92x3 + 3.25x2 − 2.285x+ 1

)
x.

Alternatively for numerical simulation, the equilibrium length of the corresponding

linear elastic spring,
√

limx→0 (f(x)/x) /kBT , is used to non-dimensionalize the length

scale which is equal to 3kBT/re
2 (Hsu and Binder, 2012) for both ideal and real

chains. Therefore unlike the ideal chain (the FENE force-law) for which the pre-

factor of modulus is universal, i.e.hFENE/re
2 = hFENE/qm = 3, in case of the chain

with excluded volume interaction hR44/re
2 ∼ n−0.176, and hence the equilibrium length

scale will be n-dependent. Although this conclusion does not affect quantities rescaled

with qm or stress values, it is especially important in the coarse-graining process of

the real chain into arbitrary number of springs. In case of the FENE force law,

the length is non-dimensionalized with the equilibrium length of one dimensional

Hookian oscillator:
√
kBT/hFENE and force is non-dimensionalized with

√
hFENEkT ,

the magnitude of the FENE force law can be rewritten as (the subscript * is dropped

for the non-dimensional quantities):

F s =
Q

1− q2 kT
hFENEq2m

=

(
1

1− q2/b

)
q~eQ

which introduces the dimensionless extensibility parameter (b ≡ q∗2m hFENE�kT ). The

corresponding nondimensional format of the R44 force law, obtained using
√
kT/hR44

as the length scale in the BDSP simulation, is:

F s =

 1.267
(

q√
b

)2

− 0.54
(

q√
b

)
+ 1

−1.92
(

q√
b

)3

+ 3.25
(

q√
b

)2

− 2.285
(

q√
b

)
+ 1

 q~eQ
Fig. 4.1 compares the R44, FENE force law and the worm-like chain (WLC) force

law(Marko and Siggia, 1995). The R44 F-X curve follows closely the FENE force law
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curve at the initial linear region and at the high extension limit; since the initial region

encompasses very small perturbation from the equilibrium chain end-to-end distance

(x << 1), higher powers of x are negligible and since both forces are normalized with

their equilibrium values near re the agreement is expected. At the high extension

limit (x > 0.8) the EV effects are screened by the chain tension, and hence again

F-X behavior is reduced to that of an ideal chin. Meanwhile for the intermediate

extensions, R44 force law briefly approaches the WLC F-X curve. This is likely due

to the induced bending rigidity imposed by the EV constraint, i.e., hindered rotation

due to the finite bead size, and it highlights another unique feature of R44: the over-

prediction of extension from Langevin force law compared to the experimental F-X

curves does not exist in the proposed new force law.

The equilibrium properties of flexible dumbbell are found from the equilibrium

normalized partition function: ψ(Q) = e−φ/kT/Jeq, where φ is the potential of the

spring and Jeq is the total partition function at equilibrium (see Table 1). Due

to the complexity of the spring potential for both Cohen-Padé force laws and R44

we have opted for numerical integration of the moments of the partition function.

The result of this numerical integration accurately matches those obtained from the

BDSP. The equilibrium end-to-end distance of R44 demonstrates strong dependency

the on maximum extensibility parameter (Fig. 4.2). In order to illustrate that the

aforementioned dependency is a characteristic of the non-linear F-X region of the R44

real chain force law, a new F-X function is introduced and due to its resemblance to

the linear-locked (Tanner-locked) dumbbell model (Tanner and Stehrenberger, 1971),

it is named the Pincus-locked model. While the Tanner-locked model enforces a linear

force extension behavior, the Pincus-locked model assumes a power-law relation with

the exponent equal to 2/3. In both models the extensibility is limited (0 ≤ x < 1) and

the potential is identically zero anywhere outside this range (see Table 2). Since the

linear region of R44 is small, at equilibrium this force law is expected to behave similar

to the Pincus-locked model. The Pincus-locked re
2 is significantly lower compared

to that of the linear models, while relatively close to the R44 value (see Table 4.3),
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Figure 4.1: Comparison between various force laws with R44 spring

which confirms the increased influence of the extensibility parameter for polymeric

chains in athermal (good) solvents.

These findings facilitate the interpretation of the BDSP results; for instance,

at equal b, for the R44 force law due to the steeper free energy gradient around

equilibrium configuration as seen in the Pincus-locked model, lower equilibrium non-

dimensionalized RMS end-to-end distance is expected as confirmed by Fig 4.2. Due to

the n−0.176 scaling of linear modules and the additional 2/3 force law regime inherent

in the R44 force law, the equilibrium results of the FENE force law for (b0.824)
4/5

or b0.66 should be comparable to the equilibrium results of the R44 force law. The

rescaling exponent determined from the simulation results reported in Fig. 4.2 is

≈ 0.55.

4.3.1 Bead-Spring BD simulation

Next, the non-equilibrium properties of R44 dumbbell are compared with the FENE

elastic dumbbell both for shear and planar extension in a range of Pe or Wi. This

treatment is further extended to the bead-spring model with ns = 20 for a range of

b. Unlike the dumbbell model in dilute solution, HI plays an important role in the

dynamics of multi-spring model and therefore it is implemented in the code via the
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Figure 4.2: Equilibrium end-to-end distance from the BD simulation of the dumbbell
model shows strong dependency of Real chain on maximum extensibility factor
compared to the FENE force law

Table 4.1: Two entropic springs are compared with the R44 spring in terms of
force, potential and the equilibrium end-to-end distance.

FENE Cohen R44

F (x), x = q/qm
x

−x2 + 1

−0.3375x3 + x

−0.9428x2 + 1
1.267x3−0.54x2+x

−1.92x2+3.25x2−2.285x+1

φ(x)/b =∫
F (x)dx

−1

2
ln(1− x2)

0.1818x2 −
0.3375 ln(1−

0.971x)−
0.3375 ln(1 + 0.971x)

−0.66x+
0.1952[arctan(0.5344−

1.5857x)−
arctan(0.5344)]−

1.085 ln(1− 0.98x) +
0.125 ln(1− 1.32x+

1.95x2)

〈q2〉eq =

4πq3mq
2
m

1∫
0

ψeq(x)x4dx

Jeq

3
2
q2
m

Γ
(
b
2

+ 5
2

)
Γ
(
b
2

+ 7
2

) See Fig.4.2
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Table 4.2: Pincus-locked model. Here [hLL] = [F ][L]−1 ; [hPL] = [F ][L]−3/2 ;
c = (hPL

hLL
) ∗ b5/4 = (hPL

hLL
) b
√
qm ∼ b

√
qm[L]−0.5

Model f(x) (x ≤ 1) φ = qm
∫ 1

0
f(x)dx ψeq = eφ(x)/kT

Linear-
locked

hLLQ =
hLLqmx

hLLqm
2

2
x2


exp(
−hLLqm2

2kT
x2) = e−bx

2/2 x ≤ 1

0 x 6∈ [0, 1]

Pincus-
locked

hPLQ
2
3 =

hPL(qmx)
2
3

2hPLqm
5/2

5
x5/2


exp(
−2hPLqm

5/2

5kT
x5/2) = e−2cx5/2/5 x ≤ 1

0 x 6∈ [0, 1]

Table 4.3: Theoretical prodiction of the re for Real chain vs. Ideal chain. Pincus-
locked model value is close to that of the R44, which demonstrates the importance of
the non-linear initial region on the qm dependence of the equilibrium properties.

Model FENE R44 Linear-locked Pincus-locked

h

kT

q2m

1∫
0

ψeq(x)x4dx

Jeq/(4πq3m)
3
2
q2
m

Γ
(
b
2

+ 5
2

)
Γ
(
b
2

+ 7
2

) Num. b

(
3
b
−

√
2b

√
πeb/2 erf

(√
b/2
)
−
√

2b

)
b

−5ce−c+5(1−e−c)
c4/5(−5 5√ce−c−Γ( 1

5
,c)+Γ( 1

5))

h
kT
〈Q.Q〉b=500 2.97 2.55 3.00 for any b ≥ 18 2.27 using c = b

5�4

RPY tensor, and the effect of variation of the HI strength is studied by adjusting the

non-dimensionlized hydrodynamic radius (ah).

The extrapolation of both η1 and ψ1 to zero shear rates, for the FENE force

law, agrees perfectly with the theoretical prediction for the FENE elastic dumbbells

(Fig. 4.3a and 4.3b). Similarly in case of R44, when b is rescaled with b0.55 similar

relationships relate b with extrapolated zero-shear rate properties. Furthermore, in

agreement with the bead-rod model, R44 demonstrates a slower shear thinning region

at small shear rates, irrespective of the b value for both ns. However both FENE and

R44 reach an asymptotic shear thinning exponent at higher shear rates, shown with

the solid line in Fig. 4.3d and collapse of data points at Pe > 10 in Fig. 4.3a and

4.3b, which corresponds to the screening of the EV interactions. The weak shear-

thinning behavior observed at small Pe for the FENE force law is the consequence

of small finite extensibility (b) and disappears rapidly as b is increased to 5000 when
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compared to the second shear-thinning regime. However, for the R44 force law, shear

thinning remains pronounced even at higher b values compared to the second regime

of shear thinning (Fig. 4.5). Comparing Fig. 4.4b with Fig. 4.3b also demonstrates

that the shear thinning exponent for ψ11 of FENE force law (≈ −1) drops rapidly

by increasing b (-0.16 for b = 5000), i.e., the shear-thinning behavior is primarily due

to finite extensibility, while for the R44 force law the drop with increasing b (from

≈ −0.66 to −0.37 for Pe < 10) is drastically lower, hinting to the fact that the

nonlinear F-X behavior has a greater contribution to the shear-thinning behavior and

thus this behavior is preserved for low Pe even at higher b values.

Pincus (1976) analysis of flexible chains with f ∼ x2/3 F-X regime under high

velocity gradients, concludes that the nonlinear stress-strain relationship forces the

transition into stretched state to higher shear rates and suppresses the separation

between first-order and second-order transition. Neither of these phenomena is

observed for FENE models that incorporate the EV interaction (Cifre and de la

Torre, 1999) or predicted slight decrease in the transition Pe in extensional flows

(Pham et al., 2008).In fact, the linear Hookian F-X relationship at the small extension

region (x < 0.35) embedded within the spring force law of the FENE chain ensembles,

dominates the elastic behavior of the polymer model even after incorporation of the

EV. Therefore, the inability of the FENE based BDSP to accurately capture the

behavior of flexile chain with excluded volume is expected. On the other hand, the

R44 force law carries over the non-linear region to the next coarse-grained model

and therefore, it is expected to show reasonable agreement with Pincus’s predictions.

The reduction of the slope of transition between coil states and stretched state is

demonstrated in Fig. 4.6 for uniaxial elongation flow, and Fig. 4.7a in case of the

shear flow. In both cases, uniaxial elongation and shear flows, the slope of transition

decreases in the case of R44 force law, i.e., the fist order transition is dampened

and approaches a smooth second order transition. The probability distribution of

the mean square end-to-end distance (Fig. 4.5) reveals formation of a stronger peak
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Figure 4.3: Comparison of shear viscosity and first normal stress coefficient. The
dashed line on all graphs is the theoretical value obtained for the corresponding Rouse
chain (for FENE dumbbell η = b

b+5
and ψ = 2b2

(b+5)(b+7)
)
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Figure 4.4: Comparison of the shear viscosity (top) and the first normal stress
coefficient (bottom) for long chains modeled as dumbbells.

63



 P e = 0 ,  W i = 0
 P e = 1 ,  W i = 0 . 5
 P e = 8 ,  W i = 4
 P e = 1 5 ,  W i = 7 . 7
 P e = 2 2 ,  W i = 1 1 . 2

0 1 2 3 4 5 6 70 . 0 0 0
0 . 0 0 5
0 . 0 1 0
0 . 0 1 5
0 . 0 2 0
0 . 0 2 5
0 . 0 3 0  W i = 0

 W i = 0 . 9 3
 W i = 7 . 4
 W i = 1 3 . 8  
 W i = 2 0 . 2

0 1 2 3 4 5 6 7

 W i = 0 . 6 4
 W i = 5 . 1
 W i = 9 . 6
 W i = 1 4

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

( R 4 4 )

r e

Pro
bab

ilit
y 

r er e

( F E N E ) ( R 4 4 )

(a) Dumbbell

0 4 0 8 0 1 2 00 . 0 0 0
0 . 0 0 5
0 . 0 1 0
0 . 0 1 5
0 . 0 2 0
0 . 0 2 5
0 . 0 3 0
0 . 0 3 5

0 4 0 8 0 1 2 0 0 4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 0 2 8 0 3 2 0

 P e = 0 . 0 3 ,  W i = 1 . 4 4
 P e = 0 . 3 6 3 ,  W i = 1 7 . 4
 P e = 0 . 6 9 7 ,  W i = 3 3 . 5
 P e = 1 . 0 3 ,  W i = 4 9 . 4

( R 4 4 ,  5 0 ) ( F E N E ,  5 0 )

r e

Pro
bab

ilit
y

 P e = 0 . 0 3 ,  W i = 2 . 3
 P e = 0 . 3 6 3 ,  W i = 2 8
 P e = 0 . 6 9 7 ,  W i = 5 3 . 7
 P e = 1 . 0 3 ,  w i = 7 9

r e

( R 4 4 ,  5 0 0 )

r e

 P e = 0 . 0 3 ,  W i = 1 . 7
 P e = 0 . 3 6 3 ,  W i = 2 0
 P e = 0 . 6 9 7 ,  W i = 3 8 . 7
 P e = 1 . 0 3 ,  W i = 5 7

(b) Bead-spring n = 21

Figure 4.5: Comparison of the probability distribution of the end-to-end distance of
dumbbells (top) and bead-spring chain with n = 21 in shear flow. The middle plots
correspond to the FENE with b = 50 model, while the left and right are based on the
R44 force law with b = 50 and b = 500, respectively.
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Figure 4.6: Polymer contribution to the elongational viscosity obtained from
dumbbell subjected to the uniaxial flow. ah has minimal effects in case of dumbbells
and can be ignored. In the limit of large elongation ηE ∼ 2b for both force laws and
near equilibrium ηE ≈ 3 for the FENE force law in agreement with the theoretical
predictions. ah is the hydrodynamic radius of the bead.

at low extension for the R44 force law, and slower diffusion of the phase-space into

highly extended chains.

The effect of HI on the C-S transition is investigated for ns = 20. Increasing the

hydrodynamic radius in both types of springs decreases the C-S transition pace with

increasing Pe and slightly increases the onset of transition, which is expected since

HI decreases the longest relaxation time of the chain if critical Wi is supposed to

remain at 0.5, as observed in the BDRD simulation of chapter 5. However, HI affects

the R44 chain less in comparison with the FENE chains as shown in Fig. 4.8.

4.4 Summary

In summary, the R44 force law for real chain, which was developed from the fine-

grained bead-rod model, was compared with the FENE force law both for the elastic

dumbbell model and the bead-spring model. In order to isolate the effect of initial non-

linear region where f ∼ x2/3 the Pincus-locked model was introduced and compared
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Figure 4.7: Comparison of steady state chain extension in shear flow between FENE
and R44 dumbbell. The HI for each b HI parameter increases from the free draining
case (no HI) to ah = 0.15 and ah = 0.24.

with the linear-locked model via analytical calculation of probability distribution

function. Moreover, the BDSP analysis revealed that the nonlinear F-X of the

R44 force law induces higher shear thinning at mid range of Wi. Furthermore, in

agreement with Pincus’s theory, the implicit EV incorporation via the R44 force law

tends to decrease the slope of coil to stretch transition in uniaxial and shear flow,

which was not observed in models with the FENE springs with EV potential between

beads.
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(a) FENE, b = 50 (b) R44, b = 50

(c) FENE, b = 5000 (d) R44, b = 5000

(e) FENE and R44, all bs, FD (f) FENE and R44, all bs, with HI and EV

Figure 4.8: HI effect on the C-S transition for n = 20. The error bars are shown
only for ah = 0.24 for the sake of clarity, other data points have similar error bars at
same Pe.
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Chapter 5

A NOVEL ALGORITHM FOR

BROWNIAN DYNAMICS

SIMULATION OF LONG

FLEXIBLE MACROMOLECULES

MODELED AS BEAD-ROD

CHAINS

The computational efficiency of Brownian Dynamics (BD) of the constrained model

of the polymeric chain (bead-rod) with n beads is reduced to the order of n2.

Moreover, the Barnes and Hut multipole method is employed to calculate the HI

effect in order to further reduce the computational scaling, and its feasibility in BD

of polymeric solutions is discussed. Furthermore, a new stress algorithm is developed

which accurately captures the transient stress growth in the start-up of the flow for

the bead-rod model with HI and excluded volume for the first time. Rheological

properties of the chains up to n = 350 in the presence of excluded volume and
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hydrodynamic interaction is discussed, utilizing the former algorithm which depicts

qualitative difference in shear thinning behavior compared to ideal chains with HI in

the mid range of the Weissenburg number (Wi).

5.1 Introduction

Molecular models with constraints are the backbone of various computational efforts

aimed to investigate the dynamics of the individual or assembly of macromolecules,

therefore any improvement in simulation techniques will consequently impact closely

related problems with holonomic constraints in classical molecular dynamic (Ryckaert

et al., 1977; Miyamoto and Kollman, 1992), quantum chemistry (Echenique et al.,

2006) and econophysics (Schulz, 2003; Janovà, 2011). Since consideration of

macromolecules as a chain of uncorrelated segments by Kuhn, several constrained

models of polymeric chain such as freely jointed and freely rotating chains have been

introduced, which successfully predict equilibrium and non-equilibrium properties

of macromolecules via retarded motion expansion and variational methods. These

findings have in turn facilitated development of coarse-grained bead-spring models

and eventually connect the continuum constitutive equations of polymeric fluids to

the underlying micromechanical model via kinetic theory (Bird et al., 1996).

While theoretical treatment of dynamics of constrained macromolecular models,

mainly in generalized coordinates, is limited to a few rigid segments (n < 4) or

small Peclet numbers(Pe) (Kramers, 1946; Kirkwood and Riseman, 1948; Hassager,

1974), development of robust integration techniques (Öttinger, 1994) for stochastic

differential equations along with the steady improvement of computational resources

allow dynamic simulation of constrained models of longer, or equivalently more

flexible, chains with hydrodynamic interaction (HI) and excluded volume (EV) via BD

simulation. Meanwhile, single polymer techniques have provided tools to investigate

and perturb semi-flexible chain (e.g. Smith et al., 1992b) , and recently flexible chain

(Saleh et al., 2009; Marciel and Schroeder, 2013), at the molecular level, which further
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motivates development of efficient computational methods, in order to extend current

algorithm capable of modeling of about 150-200 statistical segments suitable for semi-

flexible chains (e.g λ-DNA), into models with about a thousand beads for flexible

macromolecules such as single stranded DNA.

Temporal evolution of bead-spring chains can be performed via the well-known

sweeping or semi-implicit algorithms; however, in bead-rod model, in order to impose

the constraint equations, the set of Lagrangian multipliers must be found via solution

of a non-linear set of equations. For free draining chains, no HI, this is typically done

via well known Picard or Newton-Raphson methods (Somasi et al., 2002), through

formation of a tri-diagonal coefficient matrix. Since the computational cost scales

with O(n),for n beads, the only obstacle is the inherent longest relaxation time of

the polymeric chain which scales with O(n≈2) and this translate to a O(n3) scaling in

computational cost as degree of polymerization increases. The combination of various

parallelization techniques in order to reach the limit of 1000 beads, similar to the

path taken in Chapter 3, alleviates this high computational demand. However, in

the presence of HI the aforementioned coefficient matrix is dense , and in order to

take advantage of the multipole or Conjugate-gradient (CG) methods, it has to be

rewritten as an operation between a set of known vectors rather than matrix-vector

products, which immediately rules out any second order method such as Newton-

Raphson. In order to remove this obstacle, an iterative conjugate gradient method

based on Krylov subspace is embedded within the Picard method iteration in the

algorithm presented below; this combination significantly improves performance of

BD simulation of bear-rod model and reduces the scaling exponent from 3 to about

the scaling of estimation of the matrix-vector product, i.e, 2.

Irrespective of the computational platform (GPU, CPU, shared or distributed

memory paradigms), the inherent O(n3) cost of Cholesky decomposition required

in the BD simulation to find the correct weighting matrix of the random forces

from diffusion tensor, is the major obstacle to reducing the computational scaling

exponent in the presence of HI. Several techniques have been introduced, in order
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to effectively reduce the computational cost to O(n2.25) for long chains (Jendrejack

et al., 2000; Schmidt et al., 2011; Ando et al., 2012) which acts as the new bottleneck

for systems with no constraints, along with O (n(n− 1)/2) operations of formation

of the HI tensor. Recently using fast multipole method , FMM, (Liang et al., 2013)

developed an algorithm to drop the cost of this former step toO(n log n). Here we have

introduced O(n log n) operation using the Barnes and Hut (B&H) method (Barnes

and Hut, 1986) for mobility matrix formation. The B&H method is preferred to the

FMM in this case since it can be modified to ensure fulfillment of Newton’s third

law of motion (Dehnen, 2000), which ensures accurate scaling of diffusion and other

dynamic properties. The correlation tensor is then constructed via Krylov subspace

method Ando et al. (2012), which removes the second bottleneck.

The first major contribution of this work is the development of an algorithm

that reduces the computational cost of BD. Specifically, as far as non-zero elements

of the normal contra-variant tensor remain near diagonal and count as order of

n log n, a criterion imposed by metric force calculation, dynamics of the polymeric

chain with long range hydrodynamic interaction is effectively evolved as O(n2.125) or

O(n1.25) scheme with the algorithm developed in this research. The former, which

is significantly faster than the direct method of matrix inversion, is achieved by

combining the Picard method with the Conjugate Gradient (CG) method. The near

linear scaling utilizes the Barnes and Hut multipole method for the HI calculation

bottleneck. The second contribution of this work is the implementation of a new

algorithm capable of dividing the stress into contribution from each force, with

accurate prediction of the transient region within the framework set up by Morse

(2004). Moreover, the above techniques are utilized in order to examine the non-

equilibrium behavior (diffusion ,shear and extensional flow) of polymeric solutions

with HI and EV. Considering the importance of the number of segments on F-X

behavior in presence of the EV interaction, the results from the present work are

compared with the previous attempts, which as discussed below were conducted with

fewer segments and discussion on the transient stress behavior for the system with HI
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is absent. (Details of accurate incorporation of EV and the effect of n on the chain

F-X in presence of EV are already discussed in chapter 3.)

It has been shown that translational diffusivity scales as ∼ n−0.579 (Rey et al.,

1992) in good agreement with other simulation and the experimental observations,

D ∼ nb
−0.55<γ<−0.68, as discussed in the next section. Petera and Muthukumar (1999)

have explored the steady state material functions of BDRD model with HI and EV

for small chains (n < 20 ) under shear flow. Their results depict that HI has three

effects on the shear properties. First, shear thinning disappears at smaller Wi in

presence of the HI. Second, HI lowers the viscosity at small shear rates. Third, the

first normal stress coefficient (ψ1) of systems with HI and EV is smaller than the

FD chain at low shear rate and larger after a transition shear rates, i.e., the power

law scaling exponent with shear rate is smaller. Utilizing the same BDRD method,

Liu et al. (2004) studied the chain in elongation flow and found that at the coil-

stretch transition ėc ∼ n−α, for n ≤ 60 and α = 1.4 compared to the experimental

prediction, i.e., 1.5, irrespective of the solvent quality. Neelov et al. (2002) found the

scaling exponent as α = 1.96 with HI (n < 100 ) and 1.55 for the FD case. Sim

et al. (2007) employed BDRD model to investigate scission due to segmental tensions

(n < 150) and showed that ėc ∼ n−2 with no HI and ėc ∼ n−1.7 with HI. HI effectively

shields the inner beads from bulk flow and increases the time required for coil-stretch

transition at ėc (Agarwal et al., 1998). In the result and discussion section, both

shear thinning and coil stretch transition are discussed for the chain with HI and EV

for n = 350.

Dalal et al. (2012) investigated tumbling dynamics utilizing bead-spring with the

stiff Frankeal springs in Θ-solvent. Via comparison between the stiff Frankel springs

with united atom polystyrene chains, Dalal et al. (2012) concluded that explicit

solvent molecules and side chains are required to capture the single mode relaxation

behavior of short polymeric chains. It is known that stiff spring does not produce

the same probability distribution as that of the constrained chains, and away from

equilibrium, the spring modulus should be adjusted based on the Peclet number Pe
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(Dalal et al., 2012). Moreover, stress tensor of stiff chain cannot be found accurately

since the contribution of bond spring to the momentum transfer arbitrarily changes

with the highly stiff spring modulus.

5.2 Theory of constrained Brownian motion

5.2.1 Problem formulation

The contour length of the polymeric chain (l) is divided into ns segments with fixed

length (lo) representing the equilibrium Kuhn length of free rotating chains with no

intramolecular interactions. Mathematically, the fixed Kuhn length can be shown as

a set of ns constraints: C({R}) = |Rν,ν+1|−1 = 0 where Rµ,ν ≡ Rµ−Rν and Ri is the

position vector of bead i. The phase-space trajectory evolution of 2ns − 1 degrees of

freedom of such chain can be expressed via a stochastic differential equation subject

to a set of constraints for the Kuhn length:

∆R/dt = P · (V s + κ ·R + Y · F ) + kT
∂

∂R
· (P ·Y · P) (5.1)

where P is the dynamical projection tensor and Y is the Rotne-Prager-Yamakawa

(RPY) hydrodynamic interaction tensor.R is the vector of 3nb bead positions

subjected to the solvent flow field with the velocity gradient (3 × 3 block diagonal)

tensor of rank 3ns, ¯̄κ, and uniform velocity V s at the bead center. Vector F in Eq. 5.1

is the sum of the random force, metric force and the conservative force resulting from

the inter-bead potential.

Random force is constructed as F (r) =
√

2/dtζ · B ·W , where ζ is the Cartesian

friction tensor, W is the vector of random numbers with variance of one and mean

of zero, and B is found via Krylov subspace method (Ando et al., 2012) such that

Y=B·B. The metric force is defined as F (m) = kT
2

∂
∂R

ln
[
det
(

Ĝ
)]

, where Ĝ = 1
m

N·N†

and Ni
µ = ∂ci

∂Rµ
is the vector normal to the constraint surface. Calculation of the
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metric force is facilitated using the following identity: F (m) = kT
2

∂
∂R

ln
[
det
(

Ĝ
)]

=

kT
2

Ĝ
−1

:∂Ĝ
∂R

and which allows utilization of the bidiagonal format of N(See Appendix

A). Finally, the inter-bead potential is limited to the hard sphere potential, hence

the conservative force will be F (hs) = ∂
∂R
φ(Rνµ) where φ(r) = 4ε

[(
σ
r

)12 −
(
σ
r

)6
]

for

r < 2(1/6)σ and zero otherwise.

5.2.2 Numerical evolution algorithm

It is not necessary to form the projection matrix in Eq.5.1 explicitly; instead, a two

step algorithm with an Ito unconstrained move followed by a Stratonovich corrector

step will reproduce the SDE in Eq.5.1. The Predictor step evolves the bead position

vector (R(t)) to R̃, with the velocity equal to that of the terms inside the parenthesis in

the first term of the right hand side of Eq.5.1, with all the configurationally dependent

terms calculated at time t. The costly part is the determination of the Lagrange

multipliers from the following set of non-linear coupled equations:

[
R∗µ+1 + Yµ+1 · F (c)δt−R∗µ − Yµ · F (c)δt

]2
= 1 (0 < i < n) (5.2)

which keep the trajectory path in the space bounded by the constraints. Both Y

and N terms are calculated at R∗ =
(
R(t) + R̃

)
/2, so that R(t + dt) = R̃ + Y ·

N · Λ = R̃ + F (c)dt, where Λ is the vector of the ns = n− 1 Lagrange multipliers,

and in the right hand side expression F (c) is interpreted as the constrained force.

The new numerical iteration scheme reduces the computational cost of this step to

the order of calculation the RPY kernel (see 5.4) on the force vector, instead of the

typical O(n3) scaling required to solve the dense ns non-linear system of equation

that arises from the constraint enforcement at the corrector step. While utilizing the

straight forward diffusion matrix formation and performing the Y · F matrix-vector

multiplication will result in an O(n≈2
s ) algorithm, flexibility of the new numerical

algorithm allows for incorporation of multipole methods. Specifically, the B&H tree
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method can be exploited as described in the next section to achieve the theoretical

n log(n) scaling. However, it is demonstrated that this approach reduces the bead-rod

simulation algorithm to O(n≈1.25) as opposed to n log(n).

Definition of the following vectors and matrices will facilitate the discussion:

Ui = Rµ+1 −Rµ

Ũi = R̃µ+1 − R̃µ

U ≡



U1 o o o

−U1 U2 o o

o −U2 ... Unb−1

o o o −Unb−1



, bidiagonal matrix (3n× ns)

Ũ ≡



Ũ †1

. . .

Ũ †nk


, diagonal matrix (3n× ns)
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S: Grand Rouse matrix (3ns × 3nb) =



−ι ι o o o

o −ι ι o o

o o
. . . . . . o

o o o −ι ι



, ι ≡



1 0 0

0 1 0

0 0 1


So the coupled system of equations to determine Λ vector for the segment i is

found from the following:

[(
Ũ + S · Y · S† · U · Λ

)
i,i

]2

= 1

2
(

Ũ · S · Y · S† · U · Λ
)
i,i

= 1−
(
S · Y · S† · U · Λ

)
i,i

(
S · Y · S† · U · Λ

)
i,i
− Ũi,iŨi,i (5.3)

The solution algorithm is summarized in algorithm 1.

Algorithm 1 Picard+CG corrector step algorithm -Part 1

1: ite← 0
2: repeat
3: ite← ite+ 1
4: V ← Y ·

(
S† · U · Λ(t)

)
% can be performed via B&H or direct

method
5: W ← S · V
6: for 0 < i < n do
7: V

(2)
i ← Wi.Wi

8: end for
9: for 0 < i < n do

10: Ei ←
(

1− V (2)
i − Ũi

2
)
/2 % Calculating the RHS of Eq. 5.3

11: end for
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Next part is mainly the CG solution of the linear system
(

Ũ · S · Y · S† · U
)

, which

allows utilization of the suitable routine (direct or B&H) method for matrix-vector

multiplications.

Algorithm 2 Part 2: Solution of A ·X(ite) = E trough CG

12: X(0) ← Λ(t)

13: i← 0

14: repeat

15: J ← E − A ·X(0)

16: E(0) ← J

17: Z ← A · V % B&H or direct

18: α← V † · V
V † · Z

19: E(i+1) ← E(i) − αZ

20: β ← E(i+1) · E(i+1)

E(i) · E(i)

21: V = E(i+1)−βV

22: X(i+1) ← X(i) + αV

23: i← i+ 1

24: until alpha|V |< tolerance

25: Λ(t) ← X(i)

26: until
∣∣Λ(t) − Λ(ref)

∣∣ > tolerancepicard

27: Rt+dt ← R̃ + Y · U · Λ

5.2.3 Application of the Barnes and Hut method in con-

strained BD

For the bead-rod model of linear chain, the 3 × 3 blocks of the RPY HI tensor,

nondimensionalized with kT/ζ, can be written as (a is the hydrodynamic radius in
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this chapter):

Ωij =


3a

4|Rij |

[(
1 + 2a2

3|Rij |2

)
ι+
(

1− 2a2

|Rij |2

)
RijRij
|Rij |2

]
|Rij|≥ 2a

[(
1− 9|Rij |

32a

)
ι+
(

3
32a|Rij |

)
RijRij

]
|Rij|< 2a

(5.4)

The matrix-vector kernel is then:

V=Ω · F

In the above V is the perturbation velocity due to HI, Ω is hydrodynamic tensor

and F is the force vector on the particles creating the velocity perturbation (source

particles). The above equation can be rewritten for the RPY matrix at distances

greater than the bead diameter (α ∈ {x, y, z} and rij ≡ |Rij| ):

Vα,i =
∑
j 6=i

(
c1

1

rij
Fj,α + c2

1

r3
ij

Fj,α + c1

Rij ,α (Rij · Fj)
r3
ij

− c2
3Rij,α (Rij · Fj)

r5
ij

)

with c1 ≡ 3a/4 and c2 ≡ a3/2 .Substituting Rij in the above equation:

Vα,i =
∑
j 6=i

(
c1

1

rij
Fj,α + c2

1

r3
ij

Fj,α + c1

(Ri −Rj)γRij,αFj,γ

r3
ij

− c2

3(Ri −Rj)γRij,αFj,γ

r5
ij

)

Vα,i = c1

∑
j

1

rij
Fj,α + c2

∑
j

1

r3
ij

Fj,α − c1ri,γ
∑
j

d

drα

(
Fj,γ
rij

)
+ c2ri,γ

∑
j

d

drα

(
Fj,γ
r3
ij

)
+ c1

∑
j

d

drα

(
rj,γFj,γ

rij

)
− c2

∑
j

d

drα

(
rj,γFj,γ

r3
ij

)
Vα,i = c1φ1/r,α,i + c2φ1/r3,α,i − c1ψ1/r,α,i + c2ψ1/r3,α,i + c1χ1/r,α,i − c2χ1/r3,α,i (5.5)

The above equation defines φ(F,R), ψ(F,R) and χ(F,R). Both φ and ψ can

be constructed from the same multipole moments and sources, therefore reducing

the overhead significantly as demonstrated below. The χ terms also share the same
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multipole moments, so they are efficiently merged into a united tree formation (built

up) and force calculation routine.

Consider the above potential at Rij = Ri −Rj = Ri −Rc,m + (Rc,m −Rj), where

Rc,m is center of force of m particles:

Rij = Ri,c + δRc,m

R = R̄i,c ≡ Ri −Rc,m

δR = δRc,j ≡ (Rc,m −Rj)

Note R is only function of the jth particle position and not each individual source

particle hence it can be factored out of the sum. From the Taylor expansion of the

kernel,

fα,i(R + δR) =
N∑
j

[
fα,i(R) +

∂fα,i(ri)

∂ri
|R · δRc,j +

1

2
δR · ∂

2fα,i(ri)

∂ri∂ri
|R · δRc,j

]

, each term on the RHS of Eq. 5.5 is found (Appendix A.II).

Barnes and Hut method in BDRD: summary of implementation

The classical implementation of the B&H method starts by hierarchical division of the

simulation box space (tree) into sub-spaces (tree branches) until every source point is

assigned to one and only one sub-space (leaf). In 2-dimension for instance, the first

division of the two dimensional box-square leads to four squares with sides half the

size of the original square (quad-trees), which each in turn is divided into 4 smaller

squares. Each branch has a center of force and the center of force of the leaves is

indeed the position vector of the bead. If certain condition is met, the HI between the

cluster of charges in a sub-space will not sum over every individual particle in the sub-

space, but through indirectly through the multipole components of that specific box.

The aforementioned condition is determined by a preset value θ: for each particle i
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and box with center of force rcm and side size of lbox if θ <
lbox
ri,cm

then the multipole

effects are considered, otherwise one should move one level down the tree and consider

the branches (children) of the original box. In the case of HI in BDRD, consideration

of four unique observations in the code results in significant enhancement in the

computational efficiency. One since in the corrector step bead positions are not

changed, subsequent Picard iterations are not required to update the tree. Two,

considering the number of flops required to estimate RHS of Eq 5.5 for any branch

with less than 3 beads regardless of whether θ HI effect is calculated directly from

each bead. Three, the direct interactions amongst all bead pairs can be summarized

in the grand sparse mobility tensor of rank 3n, which is also unchanged during the

corrector step. Four the indirect multipole interactions are also summarized in a

tensorial format, which should be recalculated in each iteration. This is the most

time consuming sub-algorithm of the B&H method for HI in BDRD simulation; future

efforts should especially target higher efficiency of this section.

5.2.4 Stress calculation

While formulation of stress tensor in terms of force vector and conformation tensor is

readily available for both free draining and polymer solution with HI (Bird et al., 1996;

Öttinger, 1994, 1996), the existing algorithms for estimation of the transient stress

tensor in polymeric systems with constrains from stochastic modeling is limited to

the case with no HI (Sim et al., 2007). These algorithms discuss the various methods

of noise reduction either via Stratonovich, with separation of Brownian and viscous

contribution, (Doyle et al., 1997) or Ito formulations (Schieber and Obasanjo, 2005).

The exception are the works discussed in the previous section that have successfully

applied the formulation due to Öttinger to approximate the steady state stresses, but

does not include the transient data or implement a noise reduction technique. There

are no established algorithms that provides transient stress tensor for BDRD (Sim

et al., 2007) due to relatively large error caused by the stochastic force, especially in
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small Wi. Consequently, transient stress for the bead-rod micro-mechanical model is

not reported in the literature for any flow kinematics. A summary of stress algorithms

can be found in the excellent review by Morse (2004). It should be noted that while

small statistical error for limited number of trajectory (accuracy) and capturing all

characteristics of transient stress evolution (fidelity) are major concerns in any stress

calculation algorithm, computational cost is generally an unrelated concern since the

cost of stress calculation is insignificant compared to the time integration cost, and

therefore, will not be discussed here.

Our proposed algorithm decomposes the stress into deterministic and stochastic

portions using the projection matrix; this also determines the contribution of each

deterministic force such as metric force or potentials individually. Hence, in the

transient regime, due to noise reduction, this method produces accurate results with

limited number of trajectories.

Stress calculation: summary of implementation

In order to find the noise reduced stress, it is necessary to decompose the tensions

(constraint forces) into the stochastic and deterministic parts. In the Öttinger

algorithm the total drift velocity in terms of all forces is determined as:

dR/dt = Y ·
(
F (r) + F (f) + F (φ) + F (e)

)
+ Ỹ · Ñ · Λ (5.6)

In the above equation F (r) =
√

2/dtζ ·B ·W , where ζ is the Cartesian friction tensor,

N ≡ ∇rC and W is the vector of random number with Gaussian distribution and

standard deviation of dt, averaged at zero. All star (*) superscripted quantities refer

to the values calculated at mid-step, consistent with the Stratonovich integration.

The total drift velocity must occur adjacent to the hyper surface defined by the

constraints:

N ·∆R = 0 = N ·
[
Y ·
(
F (r) + F (f) + F (φ) + F (e)

)
+ Y∗ · N∗† · Λ

]
(5.7)
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For a linear chain this condition clearly can be rewritten as−2Ui·dRi−1+2Ui.dRi =

0 withUi = Ri−Ri−1. This in turn can be rewritten as 2Ui ·dUi = dU2
i = 0 or constant

bond length if N is calculated at the end of time step. The tension values then will

be

[N ·Y* ·N∗†]−1 ·N·Y·
(
F (r) + F (f) + F (φ) + F (e)

)
= Λ = Λ(r) +Λ(f) +Λ(φ) +Λ(e) (5.8)

Each tension term on the RHS is defined corresponding to the decomposition of

total force on the LHS, respectively. The stochastic and deterministic portion of the

constraint forces are then easily defined via the following expressions, F (c,r) = n∗† ·Λ(r)

and F (c,d) = n∗† ·
(
Λ(f) + Λ(φ) + Λ(e)

)
. The deterministic drift velocity due to each of

the forces is simply found from: H · F , where H is the projection tensor. Therefore

for RPY HI tensor with no external force, the polymer contribution to stress tensor

will be:

¯̄τ =
∑

Rµζ̃ · (Ṽµ − Vo) + kT (tr(P)− ι) (5.9)

where ζ̃ is the modified effective friction tensor as defined in equation (5.4) of Öttinger

(1996) and P = I-[N · H∗ · N∗†]−1 · H∗ is the projection tensor corresponding to the

numerical midpoint algorithm.

5.3 Result and discussion

In this section, first the computational efficiency of various models is discussed, in

order to determine the relative computational efficiency of each method in terms of

the number of beads in a chain for dilute solutions. Our focus will be on the relative

performance, computational cost and accuracy of the Barnes and Hut method vs. the

direct formation of the mobility tensor. The subsequent estimation of the correlation

tensor of the stochastic force is performed through the Krylov subspace method;

however for the sake of comparison, Cholesky decomposition of the mobility tensor

82



is also discussed. The proposed Picard-CG method increases the performance in the

final modeling bottleneck, namely, the corrector step in which the constraint forces are

calculated. Although the näıve matrix inversion is not explicitly tested, an optimistic

value for the näıve method is obtained through the estimation of n3 operation on the

targeted CPU for a general matrix inversion.

In order to determine the accuracy of the B&H method, the single chain trajectory

obtained via the B&H method is compared with the trajectory obtained from the

direct formation of the RPY HI tensor. As shown in Fig. 5.1-a, two trajectories almost

exactly follow the same path and there is no error accumulation for a chain with 25

beads. Moreover, the random error falls within a few percentage of the observable

value. The Decomposition times, compared for a wide range of n, reveals that the

direct formation of mobility tensor with Krylov subspace method is the most efficient

method for a wide range of practical chain sizes, and the B&H method becomes more

efficient at about n∗ ≈ 12000. The Corrector time (Fig. 5.1-c) illustrates similar trend;

it also shows that the parameter θ , which determines the threshold of substitution of

the multipole effect of the source instead of the direct effect, reduces the n∗ value as

expected. The theoretical computational cost of the code using the näıve method is

O(n3) for large n, however the scaling exponent of the elapsed time vs. the number

of beads is about 1.25 for the B&H method, compared to the value of 2.25 for the

direct method.

In interpreting the aforementioned results, it is important to consider three

important facts. First, the bottleneck of calculation within both decomposition

and corrector steps is the matrix-vector multiplication. In case of direct method,

all multiplications are performed via the highly optimized Intel MKL library, while

the B&H method relies on the inferior optimization offered by the authors. It is

highly likely that a tailor-made code targeted for an optimized B&H method reduces

the n∗ value. Next, the timings reported here are estimated from a single chain at

equilibrium. The equilibrium condition in which the chain bead-to-bead distance

distribution follows the Gaussian distribution constitutes an unfavorable condition
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Figure 5.1: Single chain trajectory of the chain is followed with high accuracy
by the B&H method (a). The Krylov decomposition algorithm can utilize both
B&H and direct formation of the diffusion tensor. Plot (b) demonstrates the relative
performance of each method and compares them to the Cholesky method in terms of
user-time (sec.) per one step. The corrector time and the scaling factor in the B&H
method both are reduced by increasing the θ criterion (c), terms until the first dipole
are considered in obtaining the above results. Finally the scaling of the computational
cost of each method is shown in (d), the dotted line is the n3 scaling.
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for the B&H method compared to uniform distribution or the chain stretched due

to flow kinematics. Moreover, for the semi-dilute regime where several chains are

present in the simulation box and their center of mass distances are far apart, which

corresponds to favorable θ values, and multipole effect of the whole neighboring chain

replaces the contribution of the individual beads, the B&H method gains a significant

advantage.

The long-time limit (t > λ) of the translational diffusion coefficient of the center

of mass of the chain (D) follows theoretically determined power law scaling with the

size of the chain. For the free-draining Gaussian chainD ∼ n−1.0, while for a Zimm

model, HI enhances the diffusion so that D ∼ n−3/5. The corresponding value from

the simulation:

D ∼ 1

nt
limt→∞

(〈∑
rij(t)

〉
−

〈∑
rij(0)

〉)

of each chain type, is shown in Fig.5.2. The ideal and real free-draining chains scaling

coefficient agrees well with the theoretical predictions of the Rouse model. For the

chain with HI, both in Θ- and good-solvent, the scaling exponent is in good agreement

with theory and experiment (Smith et al., 1996).

The longest relaxation time of the polymer chain was found via Birefringence

value as described by Doyle et al. (1997). Similar values obtained via an exponential

fit to the last 10% of the conformational relaxation of the fully-extended chains are

also shown in Table 5.1; however, in order to rescale the Pe to Wi, the former

values where utilized (λ = λ∆). Closer examination of the relaxation plot of re

reveals the two regimes of relaxation spectrum: at high extension (x < 0.6) the

relaxation is influenced by the HI effects; therefore, irrespective of the excluded

volume interactions, chains with HI demonstrate similar relaxation behavior. On

the other hand, below x = 0.5, Fig.5.3 clearly illustrates by the equal slope of the

curves for the {Ideal free draining, HI in Θ-solvent} and {Real free draining, HI in

good-solvent} pairs, that the relaxation process is greatly influenced by the excluded
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Figure 5.2: Scaling of the translational diffusion coefficient of the chain center of
mass. HI significantly increases the diffusion coefficient and excluded volume effect
on the scaling is only significant in presence of HI.

volume effects. Notice that the extension at which the transition between regimes

happens is roughly equal to the extension at which Langevin and R44 force laws

intercept (see chapter 3).

In order to test the proposed stress estimation algorithm, in the remainder of

this chapter rheological properties of the chain with HI in good solvent are examined.

The contribution of the polymer chain to the stress tensor is calculated for both shear

flow and uniaxial extension flow kinematics and examined over a broad range of Wi

values for chains with n = 100 and n = 350. The latter chain is at least twice the

larger chain considered in the literature, and based on the result of chapter 3, should

provide a better estimate of the effect of EV close to the universal behavior.

The transient viscosity (η+) and first normal stress coefficient (ψ+) for shear

start-up flow is shown in Fig. 5.4 and Fig. 5.5. The overshoot of first normal stress

coefficient, for Wi > 10, occurs at about 10-30 strain units (Fig. 5.4a and Fig. 5.5a).

The magnitude of the overshoot ψ+
max ∼ Wi−0.635.In the case of transient viscosity, the
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Table 5.1: Longest relaxation time of BDRD chains obtained via birefringence and
re relaxation of fully extended chains.

Ideal FD Real FD HI Θ-solvent HI Good-solvent

n ∆ re ∆ re ∆ re ∆ re

49 43 38 51 43 15 22 19 32

99 162 198 189 260 43.8 66 60 114

199 595 904 751 1007 119 197 172 265

349 1783 2600 2037 5891 230 - 420 -

(a) Longest relaxation time scaling (b) Relaxation of the end-to-end distance

Figure 5.3: Scaling of the longest relaxation time (a). HI significantly decreases
relaxation time and excluded volume effect on the scaling is only significant in presence
of HI. Relaxation plot of re for n = 50 with λ ≤ 50 (b). The dotted line qualitatively
separates the two regions.
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Figure 5.4: Transient rheological properties of chain with HI in good solvent (n =
350) at the start-up the shear flow. The legend is the (Pe;Wi) pair.

maximum occurs at slightly smaller Henky strain, and more importantly, at large Wi

it is followed by a minima before it plateaus at the steady state level. Although the

maxima is well characterized by the Henky strain and it is in exact agreement with

experimental observation of start-up of DNA solutions(Hur et al., 2001), the minima

in the shear viscosity shifts to higher Henky stresses as Wi increases. The magnitude

of the maximum shear viscosity contribution of the polymer in the range shown in

Fig. 5.4b follows η+
max ∼ Wi0.266, for ideal free draining chain this exponent is 0.4-0.45.

The overshoot and oscillatory behavior of the shear stress components also appears

in the conformational relaxation of the polymeric chain (Hur et al., 2002). However

as shown in Fig. 5.6a, the overshoot in re as a measure of chain conformation is out of

phase compared to the overshoot of the stress tensor, which consistently occurs around

10-30 strain units (10 < γmax < 30). This self-inconsistency between conformation

and stress results in an oscillator behavior that extends beyond the longest relaxation

time, and the frequency of the oscillation increases with Wi as shown in Fig. 5.6b.

EV and HI also affect the shear-thinning behavior of the rheological properties. In

general, our results indicate that the shear-thinning behavior for both shear viscosity

(η) and first normal stress coefficient (ψ1) is close to the estimation of (Doyle et al.,

1997) (ψ ∼ Wi−14/11) only at higher Wi, while for mid-range Wi the absolute value
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Figure 5.5: Transient rheological properties of chain with HI in good solvent (n =
100) at the start-up the shear flow. The Wi for each data set is shown in the legend.

Figure 5.6: Transient conformational properties of chain with HI in good-solvent
(n = 350) at the start-up the shear flow. The Wi for each data set is shown in the
legend. The left figure illustrates the oscillatory behavior which continues over couple
of relaxation time and the on the right, wide variation of the the strain of overshoot
γmax with flow strength is depicted.
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of the power law exponent is less, and the exponent is not fixed at −4/3 (ψ ∼

Wi−4/3), irrespective of HI and EV as it was concluded earlier for n < 150 (Lyulin

et al., 1999). In the case of shear viscosity, Petera and Muthukumar (1999) roughly

attained a power-law exponent of -0.5 (η ∼ Wi−0.5 ) in the presence of HI and

EV, which is similar to the exponent of free-draining chain ((Liu, 1989; Doyle et al.,

1997)), while Hur et al. (2000) found a scaling of -0.257 (Shaqfeh, 2005) from bead-

spring simulations. Fig. 5.7 demonstrates the shear thinning properties of chains in

good solvent calculated in this work for both n = 100 and n = 350. Both chains

demonstrate a power-low behavior as expected for 10 < Wi for n = 100 and 30 <

Wi < 1000 in case of the longer chain (n = 350), and the shear thinning exponents are

−0.281 and −0.4315, respectively. In the case of n = 350 the pronounced non-linear

region in the log-log plot 0.8 < Wi < 4 corresponded to the non-linear F-X regime

of the initial linear extension of polymeric chain due to the shear flow. This initial

regime for small Wi also appears in the scaling of the first normal stress coefficient

(ψ1) with a smaller absolute power-law exponent. While in this first shear-thinning

regime (as depicted in Fig. 5.7b) ψ ∼ Wi−1.13, in the second regime ψ ∼ Wi−1.4.

Although similar trend exists for n = 100, the difference between two exponents is

smaller (-1.09 and -1.14 for the second regime), in agreement with the smaller non-

linear effects of EV for n = 100(see Fig. 3.14).

Recent investigation of conformational properties of polymeric chain subject to HI

and EV modelled as stiff Franckeal springs by Sendner and Netz (2009) followed by

Dalal et al. (2012) have revealed the second region in the extension of the chain due to

the flow in which the chain extension decreases asWi increases. This effect is captured

in the BDRD presented in this research as well(Fig.5.8). It has been demonstrated

that the shear plateau at x ≈ 0.5 is due to the tumbling effect.Larson has recently

argued that partial fumbling of chain segments is the mechanism of shrinkage at very

high Wi. The partial fumbling argument does not describe the qualitatively different

behavior of re observed for chains without HI or excluded volume interaction at high

Wi (See Fig. 5.8b and Dalal et al. (2014)).
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(a) Shear viscosity (b) First normal stress coefficient

Figure 5.7: Steady-state scaling of the shear rheometry for the single chain in good
solvent as obtained from the BDRD simulation. Left graph, illustrates the shear shear
viscosity and at right, first normal stress coefficient. After the initial near plateau
behavior, longer chain visits at last two regimes of shear thinning as discussed in the
text.

An alternative explanation for the shrinkage observed in the aforementioned

region is the existence of meta-stable folded conformations. The meta-stable folded

conformations occur at high shear rates when the small portion of the chain folded on

itself is frozen due to the strong aligning shear flow. For instance, in a chain with 100

segments a small dynamic existence of a folded region with length 2 (total of 5 beads)

can decrease re by 10%. If ideal free draining chain is considered as the reference,

interactions that increase the possibility of such folds will result in a more significant

shrinkage regime. For instance, HI as a overall cohesive potential will significantly

enhance shrinkage. HI with no EV will results in beads that are unrealistically close

together; the velocity of these two beads with small distance is strongly correlated

due to large coefficient of the HI tensor and other forces are relatively small, their

translational degrees of freedom will be highly correlated forming a permanent folded

region. When excluded volume is present (no HI), formation of meta-stable folds are

not permitted since the strong velocity gradient in the second direction will convect

the beads away from each other. When both HI and EV are present, adjacent beads
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Figure 5.8: Variation of the root mean squared end-to-end distance with Wi in
shear flow. The plot on left demonstrates three distinct regions in the log-log plot of
re(Wi)− re(0). On the left re is shown for ideal and real free draining chain and also
chain only with HI and no excluded volume interaction.

in a folded configuration can move into the neutral direction (~z) and create two folds

in xz-plane. Detailed inspection of diagonal components of the radius of gyration

reveals that when rg,y → 1 rg,z → 2, which is about thickness of two beads, and

stays constant as Wi increases (Fig. 5.9). Meanwhile, the τzz component of stress

tensor increases, although the second normal stress coefficient stays close to zero, as

demonstrated in Fig. 5.9c.

The uniaxial flow kinematics, such as the flow in filament stretching rheometer,

include the interesting coil to stretch transition feature. Indeed, such effect is

also observed in our BDRD flow simulation; as shown in Fig. 5.10a the transition

approaches the first order transition as the number of segments increases. However,

the critical Wi remains constant at ≈ 0.5, which suggests that the critical strain rate

scales as n1.6 for the chain in the athermal solvent. This result is in good agreement

with the experimental observation and Sim et al. (2007) and corrects the findings of

Neelov et al. (2002).
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Figure 5.9: Diagonal components of the radius of gyration tensor (a) and the
corresponding stress tensor components(b). Despite the growth of stress diagonal
components in gradient and neutral direction, the second normal stress coefficient
remains about zero.
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Figure 5.10: The elongational viscosity (right) and coil to stretch transition for
dilute solution subject to uniaxial flow kinematics

5.4 Summary

In summary, a new method for BD simulation of bead-rod model of macromolecules

is developed, which reduces the computational cost scaling to n≈2. The efficiency of

the B&H based method in BDRD model with HI was discussed and concluded that

although B&H method decreased the computational cost scaling exponent further

(to about 1.2), it is not most suited for dilute solutions and near equilibrium in the

current elaboration and efficiency level of the underlying code. A new algorithm for

estimation of the stress tensor has been deployed to study the polymer dynamics and

transient rheological properties both in the shear and uniaxial flows. In the shear

flow, consistent with the result of chapter 3, at least two shear thinning regimes for

shear rheological properties were observed.
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Chapter 6

CONCLUSION AND FUTURE

WORK

This research has focused on efficient incorporation of long range interactions and

analysis of their effects on equilibrium properties and dynamic behavior of colloids

and polymeric solutions through computational methods such as MD and BD.

Investigation of the self-assembly of the Janus particles with oppositely charged

hemisphere via molecular dynamic concluded that the long range effect, incorporated

via Ewald-mesh summation, introduces ordered growth and inaccurate estimation

of these effects will significantly perturb the final structure from ordered-growth

to spherical packed aggregates. Two distinct building blocks were spotted in

self-assembly of JPs, and it has also been demonstrated that at the higher JP

concentration, the building blocks, i.e., rings and strings, enact as building blocks

by either joining into the same structure but with larger population of JPs or by

hierarchical co-assembly into larger porous structures or spiral chains. Moreover, the

crucial effect of random defects in synthesis of spherical JP was exposed through

allocation of random surface defects on the model JP and inspection of their self-

assembly deviation compared to perfect JPs. In order to obtain further insight into the

dynamics of JPs, it is constructive to look into the correlation between rotational and
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translational diffusion. Addition of a more fine-grained surface functional groups and

explicit water molecules will enable prediction of realistic values for both rotational

and translational diffusion for future analysis.

Next, the equilibrium properties and the elastic response of polyelectrolyte were

discussed within the framework of Brownian Dynamics. Specifically, the electrostatic

Kuhn length in the two regimes, in which electrostatic interaction can be effectively

replaced by excluded volume interaction, demonstrated linear dependency with salt

concentration which was represented through the ratio of excluded volume radius

to the intrinsic Kuhn length. However, the slope of this linear dependency in each

regime was distinct and as the relative magnitude of the distance between charged

groups along the contour length increases with respect to the intrinsic Kuhn length,

a parabolic function fairly fits both regimes. The analysis was extended to the F-X

behavior which manifested good agreement with the single chain F-X experiments on

ssDNA published elsewhere. Finally, similar to the treatment of the Inverse Langevin

force-law via Padé expansion, at the limit of athermal solvent a novel force-law in

form of a real function was extracted from the discrete set of data points utilizing a

newly developed discrete Padé expansion.

The aforementioned force law (R44) was then implemented in the Bead-Spring

model. It was demonstrated that the transition from coil state to the stretched state

in case of R44 elastic dumbbell or chain is dampened compared to the FENE force law

for both shear and uniaxial flow kinematics when plotted against the Pe. The shear-

thinning behavior of dilute polymeric solution of R44 chains is reduced at intermediate

Pe compared to the FENE chains. However when the finite extensibility of the chain

increases, at small Pes FENE chain demonstrated no shear-thinning while the R44

chain preserved the shear-thinning properties. Therefore, the shear-thinning behavior

of R44 chains at small Pe is inherent to the elastic response of the chain with EV.

Brownian dynamics of Bead-rod (BDRD) model of polymer chain with good

solvent confirms the above observations and provides the scaling exponents of the

shear-thinning, relaxation time and the onset and slope of coil-stretch transition. The
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effective n5 scaling of number of operation (2 from relaxation time scaling and 3 for

solution of the constraints equation) renders such simulation inefficient for n > 150

,which is the limit previously accomplished in literature. A new BDRD algorithm

based on a mixed Picard-CG (conjugate gradient) method was developed to drop

the exponent as much as one unit. Moreover, this exponent can further drop by the

new method for the estimation of the HI and diffusion matrix decomposition based

on the multipole tree algorithm (B&H) method. Complementary to aforementioned

effort, a new method for stress calculation of bead-rod model with EV and HI was

developed with accurate predictions even in the transient regime. For chain lengths

up to n = 350 computed rheological properties are in general agreement with the

R44 force law; specifically, there will be an additional shear-thinning region for both

η and ψ1 at low Wi corresponding to the small affine extension. The exponent of the

second shear-thinning regime with increasing Wi is smaller for chains, with excluded

volume and HI compared to the free-draining Kramer’s chains. At largeWi chain with

EV and HI reaches asymptotic regime predicted for the free-draining chains which

corresponds to the screening of EV and small influence of HI at large extensions.

The framework and algorithm developed in this research lays the foundation for

future investigation of flexible macromolecules. Specifically, efficiency of the Bead-rod

model can be employed to study the intra-molecular knot dynamics in single chains.

The stress algorithm is potentially able to separate contribution of each individual

force to the polymer stress tensor and predict their relative prevalence at various

flow kinematics and Wi similar in order to extend the previous effort which was

limited only to the viscous and brownian contribution in Kramers chains. From the

computational perspective, although B&H method threshold of efficiency is large for

dilute solutions, efficient version of the multipole methods developed here can be

effective in dealing with semi-dilute solutions dynamics, especially when such efforts

are combined with CPU/GPU implementation of the code.
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Appendix A

A.1 The Metric force formulation

The metric force is defined as F (m) = kT
2

∂
∂R

ln
[
det
(

Ĝ
)]

, where Ĝ = 1
m

N · N† and

Ni
µ =

∂ci

∂Rµ
. It is more convenient to calculate the metric force using the following

identity:

F (m) =
kT

2

∂

∂R
ln
[
det
(

Ĝ
)]

=
kT

2
Ĝ
−1

:
∂Ĝ

∂R
(A.1)

Since N is a bidiagonal matrix, Ĝ will be a (symmetric) tridiagonal matrix:

Ĝi,i = (∇RC)i,i · (∇RC)i,i+(∇RC)i,i+1 · (∇RC)i,i+1 = 4ui ·ui+4(−ui) · (−ui) = 8ui ·ui

Ĝi,i+1 = (∇RC)i,i+1 · (∇RC)i+1,i+1 = −4ui · ui+1

which is basically the same result as Pasquali and Morse (2002), however a factor of

4 is missing in their original work. Calculation of Ĝ
−1

is trivial and ∂Ĝ
∂R

produces a

3rd rank tensor: Aijk =
∂Ĝij
∂Rk

. Since Ĝ is tridiagonal, its only necessary to consider

limited terms in the A tensor, namely:

Ĝi,i = f(Ri+1, Ri)

Ĝi+1,i = Ĝi,i+1 = f(Ri+2, Ri+1, Ri)
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∂Ĝi,i

4∂Ri

= −4ui
∂Ĝi+1,i

4∂Ri

=
∂Ĝi,i+1

4∂Ri

= +ui+1

∂Ĝi,i

4∂Ri+1

= 4ui
∂Ĝi+1,i

4∂Ri+1

=
∂Ĝi,i+1

4∂Ri+1

= −ui+1 + ui

∂Ĝi+1,i

4∂Ri+2

=
∂Ĝi,i+1

4∂Ri+2

= −ui

In other words the non-zero elements of A are:



o ai−2,i−1,i o o

ai−1,i−2,i ai−1,i−1,i ai−1,i,i o

o ai,i−1,i ai,i,i ai,i+1,i

o o ai+1,i,i o



=



o ai−2,i−1 o o

ai−1,i−2 ai−1,i−1 ai−1,i o

o ai,i−1 ai,i ai,i+1

o o ai+1,i o


i

= 4



o −ui−2 o o

−ui−2 4ui−1 −ui + ui−1 o

o −ui + ui−1 −4ui ui+1

o o ui+1 o


i
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(A.2)
F

(m)
k = gijAijk

= gkkAkkk + gk−1,k−1Ak−1,k−1,k

+ 2
(
gk,k+1Ak,k+1,k + gk−1,kAk−1,k,k + gk−2,k−1Ak−2,k−1,k

)
This means O(5N) operation is required in order to assemble the metric force

vector.

A.2 Multipole expansion of RPY-HI tensor

A.2.1 Recursive formulas for Multipole moments of the tree

Multipole expansion of 1/r potential of a group of particles is performed around their

center of mass (charge or force):

rC,α,N =

N∑
1

|vi,α|ri
N∑
1

|vi,α|
,

which reads as center of α-component of v for N particles. Obviously:
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rC,α,N+1 =

N+1∑
i=1

|vi,α|ri
N+1∑
i=1

|vi,α|

=

N∑
i=1

|vi,α|ri + |vN+1,α|rN+1

N∑
i=1

|vi,α|+ |vN+1,α|

=

rC,α,N
N∑
i=1

|vi,α|+ |vN+1,α|rN+1

N∑
i=1

|vi,α|+ |vN+1,α|

=

rC,α,N
N∑
i=1

|vi,α|+ rC,α,N |vN+1,α|−rC,α,N |vN+1,α|+|vN+1,α|rN+1

N∑
i=1

|vi,α|+ |vN+1,α|

= rC,α,N +
|vN+1,α|(rN+1 − rC,α,N)

N∑
i=1

|vi,α|+ |vN+1,α|

Therefor if variable M|v|,α,N =
N∑
i=1

|vi,α| has already been calculated, the new center

of v can be found easily based on the previously calculated values of rC and M|v|:

rC,α,N+1 = rC,α,N +
|vN+1,α|(rN+1 − rC,α,N)

M|v|,α,N + |vN+1,α|
(A.3)

Similarly, this method can be utilized for the higher order expansion coefficients.

Monopole term is simply the coefficient of the first term in the Taylor expansion of

the objective potential around the center of mass:

Mα =
N∑
i=1

vi,α

Dipole term is:

~Dα =
N∑
i

vi,α (ri − rC,N,α)
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In order to find Dα,N+1 from ~Dα:

~Dα,N+1

= vN+1,α (rN+1 − rC,N+1,α) +
N∑
i

vi,α (ri − rC,N+1,α)

= vN+1,α (rN+1 − rC,N+1,α) +
N∑
i

vi,α

(
ri − rC,α,N −

|vN+1,α|(rN+1 − rC,α,N)

M|v|,α,N + |vN+1,α|

)

= vN+1,α (rN+1 − rC,N+1,α) +
N∑
i

vi,α (ri − rC,α,N)− |vN+1,α|(rN+1 − rC,α,N)

M|v|,α,N + |vN+1,α|

N∑
i

vi,α

= vN+1,α (rN+1 − rC,N+1,α) + ~Dα,N −
|vN+1,α|(rN+1 − rC,α,N)

M|v|,α,N + |vN+1,α|
Mα,N

Further simplification by substitution in the first term:

~Dα,N+1 = vN+1,α

(
rN+1 − rC,α,N

− |vN+1,α|(rN+1 − rC,α,N)

M|v|,α,N + |vN+1,α|

)
+ ~Dα,N −

|vN+1,α|(rN+1 − rC,α,N)

M|v|,α,N + |vN+1,α|
Mα,N

= ~Dα,N + vN+1,α (rN+1 − rC,α,N)− |vN+1,α|(rN+1 − rC,α,N)

M|v|,α,N + |vN+1,α|
(vN+1,α +Mα,N)

~Dα,N+1 = ~Dα,N + vN+1,α (rN+1 − rC,α,N)− |vN+1,α|(rN+1 − rC,α,N)

M|v|,α,N + |vN+1,α|
Mα,N+1 (A.4)

If |vα|= vα then the Dipolar term will become ~Dα,N+1 = ~Dα,N = ~Dα,1 = 0.

Finally the quadrupole term (for 1/r potential):

¯̄Qa,N = 3
N∑
i=1

vi,a (ri − rC,α,N) (ri − rC,α,N)−
N∑
i=1

vi,a (ri − rC,α,N) · (ri − rC,α,N) ¯̄I

This can be written as:

¯̄Qα,N = 3 ¯̄Sα,N − tr(Sα,N) ¯̄I

When a new particle is added to the box, quadrupole term must be updated as:

¯̄Qα,N+1 = 3 ¯̄Sα,N+1 − tr(Sα,N+1) ¯̄I
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Sα,N+1 =



Sα,N +

(
vN+1,a −

(
|vN+1,α|
M|v|,α,N+1

)2

Mα,N+1

)
(rN+1 − rC,α,N) (rN+1 − rC,α,N)

−
(
|vN+1,α|
M|v|,α,N+1

)
Dα,N+1 (rN+1 − rC,α,N)

−
(
|vN+1,α|
M|v|,α,N+1

)
[Dα,N+1 (rN+1 − rC,α,N)]†


(A.5)

Rewriting the quadropole equation:

¯̄Qα,N+1 =

¯̄Qα,N

+



3

(
vN+1,a −

(
|vN+1,α|
M|v|,α,N+1

)2

Mα,N+1

)
(rN+1 − rC,α,N) (rN+1 − rC,α,N)

− 3

(
|vN+1,α|
M|v|,α,N+1

)
Dα,N+1 (rN+1 − rC,α,N)

− 3

(
|vN+1,α|
M|v|,α,N+1

)
[Dα,N+1 (rN+1 − rC,α,N)]†−

tr


(
vN+1,a −

(
|vN+1,α|
M|v|,α,N+1

)2

Mα,N+1

)
(rN+1 − rC,α,N) (rN+1 − rC,α,N) +

2

(
|vN+1,α|
M|v|,α,N+1

)
Dα,N+1 (rN+1 − rC,α,N)

 ¯̄I


defining C =

(
|vN+1,α|
M|v|,α,N+1

)
:

¯̄Qα,N+1 = ¯̄Qα,N +



3
(
vN+1,a − C2Mα,N+1

)
(rN+1 − rC,α,N) (rN+1 − rC,α,N)

− 3CDα,N+1 (rN+1 − rC,α,N)− 3C[Dα,N+1 (rN+1 − rC,α,N)]†−

tr

 (
vN+1,a − C2Mα,N+1

)
(rN+1 − rC,α,N) (rN+1 − rC,α,N) +

2CDα,N+1 (rN+1 − rC,α,N)

 ¯̄I


(A.6)
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A.2.2 Computationally Efficient Multipole expansion of RPY

The objective here is to calculate the matrix-vector multiplication:

F=D · v

, where F is the Hydrodynamic force (without the self term),D is hydrodynamic tensor

and v is the sum of all forces on the source particle. For RPY matrix at distances

greater than the bead diameter D will have the form:

Fα,i = c1
1

rij
vj,α+c2

1

r3
ij

vj,α+c1

rij ,α (rij · vj)
r3
ij

−c2
3rijα (rij · vj)

r5
ij

(Sum for all thej 6= i)

Substituting rij in the above formula:

Fα,i =
∑
j

(
c1

1

rij
vj,α + c2

1

r3
ij

vj,α + c1

(ri − rj)γrij,αvj,γ
r3
ij

− c2

3(ri − rj)γrij,αvj,γ
r5
ij

)

Fα,i =


c1

∑
j

1

rij
vj,α + c2

∑
j

1

r3
ij

vj,α − c1ri,γ
∑
j

d

drα

(
vj,γ
rij

)
+ c2ri,γ

∑
j

d

drα

(
vj,γ
r3
ij

)
+ c1

∑
j

d

drα

(
rj,γvj,γ

rij

)
− c2

∑
j

d

drα

(
rj,γvj,γ

r3
ij

)


(A.7)

Fα,i = c1φ1/r,α,i + c2φ1/r3,α,i − c1ψ1/r,α,i + c2ψ1/r3,α,i + c1χ1/r,α,i − c2χ1/r3,α,i (A.8)

The above equation defines φ(v, r), ψ(v, r) and χ(v, r). Both φ and ψ can be

constructed from the same multipole moments and sources, therefore reducing the

overhead significantly as its shown below. The χ terms also share the same multipole

moments and with additional analytical work it’s calculation in the code can be

merged into one tree built up and force calculation routine. Consider the above
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potential at rij = ri − rj = ri − rc,N + (rc,N − rj)

r̄ij = R̄i,c + δR̄c,N

R = R̄i,c ≡ ri − rc,N

δR = δR̄c,j ≡ (rc,N − rj)

Note R is only function of the destination not the sources and it can be factored out

of the sum.

fα,i(R + δR) =
N∑
j

[
fα,i(R) +

∂fα,i(ri)

∂ri
|x=R · δRc,j +

1

2
δR · ∂

2fα,i(ri)

∂ri∂ri
|x=R · δRc,j

]

Therefore:

φ1/r,α(v, r) =
Mα

R
+
R.Dα

R3
+

1

2

R.Qα.R

R5
(A.9)

φ1/r3,α(v, r) =
Mα

R3
+ 3

R.Dα

R5
+

15

2

R.Q1/r3,α.R

R7
(A.10)

With M̄ =
∑
j

v̄j , ¯̄D = δαδγDαγ = δαδγ
∑
j 6=i

vj,α(rj − rc,N)γ and
¯̄̄
Q =

N∑
j 6=i

vj(rj − rc,N)(rj − rc,N).

Now for the first type of field terms:

ψ1/r,α,i = ri.
dφ1/r

drα
= ri,γ

dφ1/r,γ

drα

dφ1/r,γ

dr
=

d

drα

(
Mγ

R
+
R.Dγ

R3
+

1

2

R.Qγ.R

R5

)

(
dφ1/r

dr

)
γ,α

=
dφ1/r,γ

drα
= −

(
RαMγ

R3
+

3RαR.Dγ

R5
− Dγ,α

R3
+

5

2

Rα(R.Qγ.R)

R7
− RαQγ,α

R5

)

ψ1/r,α,i = ri.
dφ1/r

drα
= −ri,γ

(
RαMγ

R3
+

3RαR.Dγ

R5
− Dγ,α

R3
+

5

2

Rα(R.Qγ.R)

R7
− R.Qγ,α

R5

)
(A.11)
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ψ1/r3,α,i = ri.
dφ1/r3

drα
= ri,γ

dφ1/r3,γ

drα

dφ1/r3,γ

dr
=

d

drα

(
Mγ

R3
+ 3

R ·Dγ

R5
+

15

2

R ·Q1/r3;γ ·R
R7

)

dφ1/r3,γ

drα
= −

(
3
RαMγ

R5
+ 15

RαR ·Dγ

R7
− 3

Dγ,α

R5
+

105

2

RαR ·Q1/r3;γ ·R
R9

− 15
Q1/r3;γ,α ·R

R7

)

ψ1/r3,α,i = −ri ·
(

3RαMγ

R5 + 15RαR·Dγ
R7 − 3Dγ,α

R5 + 105
2

RαR·Q1/r3;γ ·R
R9 − 15

Q1/r3;γ,α·R
R7

)
ψ1/r3,α,i = ri,γ

dφ1/r3,γ

drα
=

−ri,γ
(

3
RαMγ

R5
+ 15

RαR ·Dγ

R7
− 3

Dγ,α

R5
+

105

2

RαR ·Q1/r3;γ ·R
R9

− 15
Q1/r3;γ,α ·R

R7

)
(A.12)

The last two field terms can be found in a similar fashion, provided that the source

term is calculated as rj.vj:

χ1/r,α =
∑
j

d

drα

(
rj,γvj,γ

rij

)
=
dφ1/r(rj · vj, r)

drα

χ1/r3,α =
∑
j

d

drα

(
rj,γvj,γ

r3
ij

)
=
dφ1/r3(rj · vj, r)

drα

Note that rj.vj is scalar therefore in this case the subscript α is removed from the

φ potential.

χ1/r,α =
∑
j

d

drα

(
rj,γvj,γ

rij

)
= −

(
RαM

R3
+

3RαR.D

R5
− Dα

R3
+

5

2

Rα(R.Q.R)

R7
− RαQa

R5

)
(A.13)

(A.14)

χ1/r3,α =
∑
j

d

drα

(
rj,γvj,γ

r3
ij

)
=

−
(

3
RαM

R5
+ 15

RαR ·D
R7

− 3
Dα

R5
+

105

2

RαR ·Q1/r3 ·R
R9

− 15
Q1/r3,α ·R

R7

)
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In χ equations, M =
∑
j

rj.vj, D̄ =
∑
j

(rj.vjδR) and ¯̄Q =
∑
j

(rj.vjδRδR).

Assembling back the force vector from potential and fields

Fα,i = c1φ1/r,α,i + c2φ1/r3,α,i − c1ψ1/r,α,i + c2ψ1/r3,α,i + c1χ1/r,α,i − c2χ1/r3,α,i

Fα,i =



c1

(
Mα

R
+
R ·Dα

R3
+

1

2

R ·Qα ·R
R5

)
+
c2

R2

(
Mα

R
+ 3

R ·Dα

R3
+

15

2

R ·Q1/r3;α ·R
R5

)
+ c1ri,γ

(
RαMγ

R3
+

3RαR ·Dγ

R5
− Dγ,α

R3
+

5

2

Rα(R ·Qγ ·R)

R7
− Qγ,α ·R

R5

)

− c2ri,γ

 3
RαMγ

R5
+ 15

RαR ·Dγ

R7
− 3

Dγ,α

R5
+

105

2

RαR ·Q1/r3;γ ·R
R9

− 15
Q1/r3;γ,α ·R

R7


− c1

(
Rαm

R3
+

3RαR.d

R5
− dα
R3

+
5

2

Rα(R.q.R)

R7
− Rα · qa

R5

)
+ c2

(
3
Rαm

R5
+ 15

RαR · d
R7

− 3
dα
R5

+
105

2

RαR · q1/r3 ·R
R9

− 15
q1/r3,α ·R

R7

)


(A.15)

It is also possible to rewrite the cell (multipole) contribution to the force in terms

of matrix-vector multiplication which is only practical up to the dipole term.

A.3 Fully implicit corrector step of bead-spring

BD simulation

Definitions

ns: Number of entropic springs

nb: Number of beads =ns + 1
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R: Bead position vector of 3nb members. Laid out as :

xbead=1 ybead=1 zbead=1 xbead=2
ybead=2 .... ybead=nb

zbead=nb


†

rij: Bead to bead vector of 3 members =Ri −Rj

Q: Connector vector with 3ns elements =rv+1,v

F : Spring force vector of 3ns members, (e.g. for the dimensionless FENE = Q

1−Q·Q
b

)

I : Identity matrix of rank 3ns

ι: Identity matrix of rank 3

Ω: RPY diffusion tensor with elements

Ωij =


3a

4|rij |

[(
1 + 2a2

3|rij |2

)
ι+
(

1− 2a2

|rij |2

)
rijrij

|rij |2

]
rij ≥ 2a

[(
1− 9|rij |

32a

)
ι+
(

3
32a|rij |

)
rijrij

]
rij < 2a

Υ=
kTdt

ζ
(I+Ω) = S · S†

with dt defined as magnitude of time step (In non dimensional format:Υ=dt
4

(I + Ω))

B: Grand Rouse matrix (3ns × 3nb) =



−ι ι o o o

o −ι ι o o

o o
. . . . . . o

o o o −ι ι



122



K: Tridiagonal Grand κ matrix of rank 3ns (In non dimensional diagonal terms

are consisting of dtPeκ3×3)

W : Vector with 3nb Gaussian random number with variance of 1�2dt

Formulation

Subsequent to nondimensionalization, for predictor step:

Q∗ = Qn + K ·Q− B ·Υ · B† · F + B · S ·W

If now we define:

M = B ·ΥB† = Σ · Σ† = B · S · S† · B†

Diagonal terms of M are:

Diagonal terms of M are found to be :

Mii = −2Υi,i+1 + Υi+1,i+1 + Υi,i = 2ι− 2Υi,i+1

2Υi,i+1 = 2dtΩi,i+1 =


3adt
2|Qi|

[(
1 + 2a2

3|Qi|2

)
ι+
(

1− 2a2

|Qi|2

)
QiQi
|Qi|2

]
rij ≥ 2a

2dt
[(

1− 9|Qi|
32a

)
ι+
(

3
32a|Qi|

)
QiQi

]
rij < 2a

(A.16)

In the corrector step, segment s will be updated according to the following equation:

Q∗∗s +Mss·F ∗∗s = Qn
s+

1

2
(Kss ·Q∗s + Kss ·Qn

s )+Ms,1:s−1·F ∗∗1:s−1+Ms,s+1:ns ·F
∗
s+1:ns+Σ·W

(A.17)

The coefficient of F ∗∗ is explicitly determined in the established approach. The rest

of this appendix proves that this inconsistency in the semi-implicit method can be

resolved for FENE force law, or in general, for any force law that is formulated in

terms of a real function. At the end of each iteration, values of Q∗ are replaced by

those of Q∗∗. If iteration converges under the imposed tolerance the variables are
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substituted in Qn+1. For the FENE chain with C∗s defined as the right hand side of

eq. A.17:

Q∗∗s +
Mss ·Q∗∗s
1− |Q∗∗s |

2

b

= C∗s

(
1− |Q

∗∗
s |

2

b

)
Q∗∗s + Mss ·Q∗∗s = C∗s

(
1− |Q

∗∗
s |

2

b

)
Substitution for Mss:(

1− |Q
∗∗
s |

2

b

)
Q∗∗s + (2ι− 2Υi,i+1) ·Q∗∗s = C∗s

(
1− |Q

∗∗
s |

2

b

)
(

3− |Q
∗∗
s |

2

b

)
Q∗∗s − 2Υi,i+1 ·Q∗∗s = C∗s

(
1− |Q

∗∗
s |

2

b

)
For Qs > 2a:(

3− |Q
∗∗
s |

2

b

)
Q∗∗s

− dt3a
2

[(
1 +

2a2

3|Qs|

)
ι+

(
1− 2a2

|Qs|2

)
QsQs

]
·Q∗∗s = C∗s

(
1− |Q

∗∗
s |

2

b

)
(

3− |Q
∗∗
s |

2

b

)
Q∗∗s

− 3adt

2

[(
1 +

2a2

3|Q∗∗s |

)
ι ·Q∗∗s +

(
1− 2a2

|Q∗∗s |
2

)
Q∗∗s Q

∗∗
s ·Q∗∗s

]
= C∗s

(
1− |Q

∗∗
s |

2

b

)
(A.18)

At the last step we have introduced M∗∗s instead of Mn
s . This is more accurate since

now the largest value of mobility tensor is calculated implicitly. In any case, since

∇·Υ = 0 and for small δt, this modification affects accuracy of order O
(
(dt)2) which

is negligible. Now using identity δiδj · δk = δi (δj · δk), Eq. A.18 becomes:(
3− |Q

∗∗
s |

2

b

)
Q∗∗s −

3adt

2

[(
1 +

2a2

3|Q∗∗s |

)
ι ·Q∗∗s +

(
1− 2a2

|Q∗∗s |
2

)
Q∗∗s |Q∗∗s |

2

]
= C∗s

(
1− |Q

∗∗
s |

2

b

)
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(
3− |Q

∗∗
s |

2

b

)
Q∗∗s −

3adt

2

(
1 +

2a2

3|Q∗∗s |

)
Q∗∗s −

3adt

2
Q∗∗s |Q∗∗s |

2 +
2a2

|Q∗∗s |
2Q
∗∗
s |Q∗∗s |

2 = C∗s

(
1− |Q

∗∗
s |

2

b

)
Now we can easily take the magnitude of both sides to be equal:(

3− |Q
∗∗
s |

2

b

)
|Q∗∗s |−

3adt

2

(
1 +

2a2

3|Q∗∗s |

)
|Q∗∗s |−

3adt

2
|Q∗∗s ||Q∗∗s |

2 + 2a2|Q∗∗s |= |C∗s |

(
1− |Q

∗∗
s |

2

b

)
For convenience we define q = Q∗∗s and c = |C∗s | then:

(
3− q2

b

)
q − 3adt

2

(
1 +

2a2

3q

)
q − 3adt

2
q3 + 2a2q = c

(
1− q2

b

)

2
(
3b− q2

)
q − 3abdt

(
1 +

2a2

3q

)
q − 3abdtq3 + 4a2bq = 2c

(
b− q2

)
6
(
3b− q2

)
q − 3abdt

(
3q + 2a2

)
− 9abdtq3 + 12a2bq = 6c

(
b− q2

)
(
18bq − 6q3

)
−
(
9abdtq + 6a3bdt

)
− 9abdtq3 + 12a2bq = 6bc− 6cq2

(
18bq − 6q3

)
−
(
9abdtq + 6a3bdt

)
− 9abdtq3 + 12a2bq − 6bc+ 6cq2 = 0

(−6− 9abdt) q3 + 6cq2 +
(
18b− 9abdt+ 12a2b

)
q − 6a3bdt− 6bc = 0

q3 − 2c

2 + 3abdt
q2 − (6b− 3abdt+ 4a2b)

2 + 3abdt
q +

2a3bdt+ 2bc

2 + 3abdt
= 0 (A.19)

Eq. A.19 is the new cubical equation for multi segment chain with HI whenq ≥ 2a.

For the case whereq < 2a similar treatment yields:(
3− |Q

∗∗
s |

2

b

)
Q∗∗s −2

[(
1− 9|Q∗∗s |

32a

)
ι+

(
3

32a|Q∗∗s |

)
Q∗∗s Q

∗∗
s

]
·Q∗∗s = C∗s

(
1− |Q

∗∗
s |

2

b

)
(

3− |Q
∗∗
s |

2

b

)
Q∗∗s −2

(
1− 9|Q∗∗s |
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