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ABSTRACT 

Numerical simulation of turbulent flows is identified as one of the grand challenges in high-performance 

computing. The straight forward approach of solving the Navier-Stokes (NS) equations is termed Direct 

Numerical Simulation (DNS). In DNS the majority of computational effort is spent on resolving the 

smallest scales of turbulence, which makes this approach impractical for most industrial applications 

even on present-day supercomputers. A more feasible approach termed Large Eddy Simulation (LES) has 

evolved over the last five decades to facilitate turbulent flow predictions for reasonable Reynolds (Re) 

numbers and domain sizes. LES theory uses the concept of convolution with a spatial filter, which allows 

it to compute only the major scales of turbulence as determined by the diameter of the filter. The rest of 

the length scales are not resolved posing the so-called closure problem of LES. For bounded domains, 

besides the closure problem, an equally challenging issue of LES is that of prescribing the suitable 

boundary conditions for the resolved-scale state variables. Additional problems arise because the 

convolution operation does not generally commute with differentiation in the presence of boundaries. 

This dissertation details derivation of an essentially analytical closure theory for the unsteady three-

dimensional space filtered thermal-incompressible NS partial differential equation (PDE) system on 

bounded domains. This is accomplished by the union of rational LES theory, Galdi and Layton, with 

modified continuous Galerkin theory of Kolesnikov with specific focus on correct adaptation of a 

constant measure filter near the Dirichlet type boundary. The analytical closure theory state variable 

organization is guided by classic fluid mechanics perturbation theory. Derivation and implementation of 

suitable boundary conditions (BCs) as well as the boundary commutation error (BCE) integral is 

accomplished using the ideas of approximate deconvolution (AD) theory. Non-homogeneous BCs for the 

auxiliary problem of arLES theory are derived. 
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1. INTRODUCTION 

Turbulent flows are omnipresent in nature and are an integral part of our everyday life. The variety of 

turbulent flows is probably as diverse as the number of length scales they possess. The examples range 

from streams in small creeks to gigantic atmosphere and ocean currents, from blood stream in arteries 

to water torrents through Francis turbines used in dams, from flows over a golf ball to flows around 

aircraft wing tips. A wide variety of other examples of turbulence can be found in a book by Marcel 

Lesieur (2008). 

Numerical simulation of turbulent flows is required to gain better understanding of many processes in 

nature and in industry. Turbulence is made of an entire hierarchy of eddies over a wide range of length 

scales. The Navier-Stokes equations that describe turbulent incompressible flows can in general be used 

unaltered in order to resolve all details and scales of turbulence, i.e. the spatial and temporal evolution 

of the entire range of eddies. This straight forward approach of solving the Navier-Stokes equations is 

termed direct numerical simulation (DNS). The DNS approach is so computationally expensive that it is 

currently not feasible for Reynolds (Re) numbers encountered in most industrial applications and for 

reasonable domain sizes. To capture the smallest dissipative Kolmogorov’s scales using a 3D Cartesian 

uniform mesh an estimation of mesh cells required is given by 9/4N Re  (John, 2004). In addition, one 

can estimate that the number of floating point operations required to complete the simulation is 

proportional to the number of mesh points and the number of time steps. A good discussion of the 

computational cost of DNS is provided by Pope (2000), who concludes that the cost increases as the 

cube of the Reynolds number. In those applications for which DNS is currently feasible more difficulties 

arise from the fact that the boundary and initial conditions must have the precision which is required by 

the smallest scales of the flow. The conditions which are that precise seem to be impossible to provide 
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for most geophysical flows for instance. And even for smaller problems, surface roughness might 

significantly degrade the solution accuracy. 

While the direct numerical simulation approach of solving turbulent flows is still facing many issues even 

on present-day computers, two major alternatives exist. The Reynolds-averaged Navier-Stokes (RaNS) 

theory avoids full resolution of time and space evolution of turbulence by using the concept of time 

averaging. In RaNS every flow property is decomposed into its time-mean and fluctuating components. 

Applying time averaging to conservation principles yields a set of Reynolds-averaged Navier-Stokes 

equations that describe the spatial variations of time-averaged flow quantities. The consequence of 

applying this operation to non-linear NS equations is the appearance of an unknown turbulent inertia 

tensor for which no physical laws exist. A statistical or semi-empirical closure model is required to 

resolve this dilemma. Many different models have been proposed to resolve the closure problem, most 

of which are based on the Boussinesq eddy-viscosity approximation. A good discussion of these 

candidates is provided in a book by Wilcox (2006). Despite much success in using this approach for 

certain types of turbulent flows it shows very little applicability to most problems of interest. However it 

must be noted that although RaNS may now be yielding diminishing returns it is still far from obsolete as 

it is used in most of engineering analysis (White, 2006).  

The second alternative is termed Large Eddy Simulation (LES), the computational cost of which is 

generally placed somewhere in between the RaNS and DNS approaches. In LES the larger unsteady 

motions are directly resolved, while smaller ones require closure. Unlike RaNS where the flow quantities 

are averaged in time, the LES theory uses the concept of convolution with a spatial filter. The goal of LES 

is to compute only the scales defined by the diameter of the filter. Thus the flow quantities are 

decomposed into two parts, viz., the resolved scales and the unresolved scales. Filtering operation 

(generally defined via convolution) is applied to the conservation principles PDE system yielding a set of 
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Space Filtered Navier-Stokes equations. Unlike RaNS where time-averaging process generates only one 

turbulent inertia tensor in each equation, filtering operation in LES generates a quadruple of tensors a 

priori unknown. 

This dissertation focuses strictly on Large Eddy Simulation approach, while RaNS and DNS methods are 

only mentioned occasionally. 

1.1 BRIEF HISTORY AND CHALLENGES IN LES 

The Large Eddy Simulation concept was originally introduced in the pioneering work of Joseph 

Smagorinsky (1963) and the unique features of LES were first explored by James Deardorf (1970). In his 

work Smagorinsky introduced the concept of eddy viscosity, which is now known as the Smagorinsky 

model. To resolve the closure problem the eddy viscosity parameter was defined as a function of the 

filter radius, the magnitude of the resolved velocity gradient and a global constant. The Smagorinsky 

model is the first and the simplest subgrid-scale (SGS) model, the drawbacks of which are now well 

known and documented, e.g., see Zang et al. (1993). For example, the global constant used in this model 

cannot be uniquely determined and used in various turbulent flows. Also, it is easily identified that the 

backscatter of energy is completely prevented since the eddy viscosity is always positive. Finally, the 

Smagorinsky model generally provides too much diffusion and the eddy viscosity does not vanish for 

laminar flows. 

An improvement to the original Smagorinsky model is proposed by Germano et al. (1991) and their 

dynamic SGS model. The improved approach allows computing the unknown constant dynamically as a 

function of space and time. This means that the constant is no longer a global parameter specified a 

priori, but is instead computed internally by the program depending on the local flow conditions.  In 

contrast to the Smagorinsky model the dynamic SGS model does allow backscatter of energy due to its 
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ability to predict negative values of the unknown constant. However, numerical tests show that this 

constant can vary significantly in space and time, i.e., it may become a very non-smooth function (John, 

2004). Other improvements to the dynamic SGS model have been proposed with varying levels of 

success, e.g. see Ghosal et al. (1995), Yang and Ferziger (1993), Carati and Eijnden (1997) . 

It is now evident that the fundamental challenge in LES is to provide a satisfactory closure to the four 

unknown tensor fields that appear in the resolved-scale conservation principles. As just described, there 

exists a range of deviatoric SGS tensor model definitions which provide closure based entirely on the 

empirical insight. In distinction to a model, Galdi and Layton (2000) introduced a fundamentally new 

approach in LES which provides a mathematically elegant closure based strictly on analytical 

considerations. This approach is now known as the rational LES (rLES) theory. The second order rLES 

formulation is based on approximations in wave number space and computes the Fourier transform of 

the Gaussian filter using the rational subdiagonal Padé approximation. A good mathematical as well as 

numerical analysis of rLES can be found in a book by  Berselli et al. (2006). In this dissertation the 

rational LES theory is used as the base approach in deriving a new essentially analytical rational LES 

(arLES) formulation. 

For bounded domains, besides the closure problem, an equally challenging issue of LES is that of 

prescribing suitable boundary conditions for the resolved-scale state variables. Two major approaches 

to tackle this problem include either using a constant filter measure throughout the computational 

domain or a filter of spatially non-uniform which vanishes at the boundary. A constant filter measure 

approach is used throughout this dissertation while the appropriate formulation to face the challenges 

incurred by making this choice is derived. 
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1.2 THIS DISSERTATION 

This dissertation details derivation of an essentially analytical rational LES (arLES) theory closure for 

unsteady three-dimensional space filtered thermal-incompressible NS PDE system, well-posed for 

bounded domains. Original contributions of this work include 

1. Resolution of the problem of correctly adapting a filter of constant measure near the Dirichlet 

boundary through design of suitable boundary conditions based on Approximate Deconvolution 

(AD) combined with Galerkin weak forms. 

2. Derivation of an approximate solution for the Boundary Commutation Error (BCE) integral when 

filtering through a non-homogeneous Dirichlet boundary via Approximate Deconvolution 

Boundary Conditions (ADBC) methodology. 

3. Derivation of the suitable non-homogeneous Dirichlet boundary conditions for the auxiliary 

problem of arLES theory organized via perturbation theory. The BC closure of  2  is derived 

via direct evaluation of unfiltered tensors followed by the application of ADBC methodology. 

4. Assessment of arLES theory proper order subfilter scale (SFS) tensor implementation based on 

weak form CFD error annihilation theory. 

5. Extension of the arLES theory to the thermal NS with focus on BCs suitable for bounded 

domains. 
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2. LARGE EDDY SIMULATION 

Large eddy simulation (LES) has a five decade history in numerical simulation of turbulent flows. In LES 

the larger unsteady motions are directly resolved, while the action of smaller scales is modeled. The key 

hypothesis states that the large-scale motions are affected by the flow geometry and are not universal, 

whereas the small-scale motions are nearly isotropic and have a universal character. 

The computational cost of direct numerical simulation (DNS) is extremely high. A solution obtained by 

DNS requires a complete three-dimensional, time-dependent solution of the Navier-Stokes equations. 

However, over 99% of the computational effort in DNS is devoted to the smallest, dissipative scales, 

whereas the energy and anisotropy are contained predominantly in the larger scales of motion (Pope, 

2000). In LES, only the large-scale eddies are computed directly. The action of small-scale motions is 

represented by simple models. This allows having computational grids with cells that are much larger 

than the smallest scales of turbulence, viz., eddies of Kolmogorov scale (Kolmogorov, 1941). 

Additionally, much larger time steps can be taken in LES as compared to DNS. As a result, obtaining a 

solution at a given Reynolds number is much cheaper using LES as opposed to DNS. Conversely, for a 

given computational cost one can achieve a much higher Reynolds number solution with LES than with 

DNS. 

The approach of LES can be summarized in six steps: 

i. Define a filtering operation that will decompose every state-variable (velocity, pressure etc) into 

the sum of resolved and unresolved components. 

ii. Derive the equations for filtered quantities from the original conservation principles. This 

operation applied to the momentum equation generates a quadruple of unknown tensors which 

describe interactions between resolved and unresolved scales. 
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iii. Obtain a closure by modeling the four unknown tensor fields. This yields an LES subgrid-scale 

(SGS) model. 

iv. Provide the boundary conditions for space-filtered state variables, or a so-called Near Wall 

Model (NWM) in LES  

v. Discretize the domain appropriately. One may opt to resolve most of the scales in the near wall 

region directly instead of modeling them. This is called LES with Near-Wall Resolution (NWR) 

vi. Perform a simulation by solving the filtered equations numerically. 

2.1 CONSERVATION PRINCIPLES 

The PDE system of continuum mechanics conservation principles describing viscous thermal flow of an 

incompressible Newtonian fluid is collectively termed the Navier-Stokes equations, complemented with 

a temperature-driven body force and the energy equation. This system of closely coupled PDEs for mass, 

momentum and energy transport written in dimensional form is 

    0DM: 0i

i

u
div

x



  


u  (2.1) 

    
0

1
D :     0

 
i i

i j i ij ref i

j j

u u
u u u p T T g

t x x
  



   
           

P  (2.2) 

  DE: 0j

j j

T T
T u T

t x x


   
        

 (2.3) 

where iu  are components of the velocity vector u , p  is the pressure, T is the temperature, refT is some 

reference temperature, t  is the time, jx are the space coordinates, ig  are components of the gravity 

vector, 0  is the density,   is the coefficient of kinematic viscosity,   is the coefficient of thermal 

expansion,   is the coefficient of thermal diffusivity, ij  is the Kronecker delta. 
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The indices range 1 ,i j n  , where n is the dimension of the problem. The Boussinesq approximation 

(Boussinesq, 1987) derives the thermal body force in the momentum equation (2.2). 

To non-dimensionalize equations (2.1) through (2.3) the following scales are introduced 

o 
refL  – a characteristic length scale 

o 
refU  - a characteristic velocity scale 

o 
refT  - a characteristic temperature scale 

o /ref ref refLt U  - a characteristic time scale for the problem 

The following non-dimensional (non-D) groups are then used to rewrite equations (2.1) through (2.3) in 

non-D form 

 

2
0

;      ;     
/

;     

j i
j j

ref ref ref ref

ref

ref ref

x u t
x u t

L U L U

T Tp
p

U T

    


   



 (2.4) 

Dropping the primes non-D equations (2.1) through (2.3) become 

    0DM : 0div   u u  (2.5) 

   2

1
ˆD :     0

 
i i

i j i ij i

j j

u u Gr
u u u p g

t x Re x Re


   
            

P  (2.6) 

  
1

DE : 0j

j j

u
t x Pe x

   
          

 (2.7) 

where Reynolds, Peclet and Grashof numbers are defined as 

 
3

2
  ;          ;            ; ref ref ref ref ref refU L U L g T L
Re Pe Re Pr Gr



  


      (2.8) 
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2.2 SPACE FILTERING CONCEPTS 

Unlike DNS, which resolves all scales in the flow, the goal of LES is to compute only the scales defined by 

the diameter of the filter. The principal operation of LES is low-pass filtering, i.e., the scales associated 

with high frequencies are filtered out and scales associated with low frequencies are retained. The flow 

quantities which describe the flow (velocity, pressure etc.) are therefore decomposed into two parts, 

namely, the resolved scales and the resultant unresolved scales. 

In classical LES, the convolution operation defines the resolved larger scale motion. During the filtering 

operation, the conservation principles are convolved with a spatial filter function and the result is the 

space filtered conservation equations. Leonard (1974) defined a generalized filter as a convolution 

integral, hence 

      , ,i iu t F u t d    x x  (2.9) 

where the integration is performed over the entire domain, and the filter function, F , is normalized by 

requiring that 

   1F d   x  (2.10) 

The difference between the actual solution,  ,iu tx , and the space filtered quantity,  ,iu tx , forms the 

residual field,  ,iu t x , thus defined by 

      , , ,i i iu t u t u t  x x x  (2.11) 

There are many kinds of filter kernels available. Filters can be isotropic or non-isotropic, homogeneous 

or non-homogeneous. Despite of the specific choice the filter must always provide a measure (size of 
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the filter) which defines the smallest resolvable scales of the flow. The Gaussian filter is used throughout 

this dissertation. 

A visualization of how filtering works is shown in Figure B.1. All figures used in this manuscript are 

placed in Appendix B. Consider a random scalar one-dimensional function ( )u x that represents a sample 

velocity field and the corresponding filtered field ( )u x  obtained using the Gaussian filter with 0.35  . 

As can be seen the filtered velocity ( )u x follows the same pattern as the original unfiltered velocity field 

( )u x . This simply shows that the longer lengthscale fluctuations have been preserved. The shorter 

lengthscale fluctuations, however, have been removed. Figure B.1 shows the essence of how turbulent 

flows can be accurately approximated without resolving all the scales in the flow. The bottom part of the 

figure shows the LES theory residual ( )u x  which has also been filtered. It is important to notice that the 

filtered unresolved field is in general not zero, i.e.,   0u x  . 

After an appropriate filtering operator is chosen, a space filtered velocity iu , and a space filtered 

pressure p  can be defined. The filtering operator is assumed to have the following two properties: 

1) The filter is a linear operator 

    u v u v  (2.12) 

2) The filter is spatially uniform, so that filtering and differentiation commute 

 
i ix x

    
   

    

u u
 (2.13) 

The LES filtering operator, as defined by Leonard (1974), uses convolution with an appropriate filter 

function F , i.e., the space filtered velocity and pressure  ,iu p  are defined by convolving the NS 

primitive variables  ,iu p  with a filter function 
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         , , ,
d

i i iu t F u t F u t d      x x x  (2.14) 

         , , ,
d

p t F p t F p t d      x x x  (2.15) 

Linearity of integration property applied to (2.14) and (2.15) immediately proves that Leonard’s filtering 

operator is linear and property (2.12) is satisfied. If domain is unbounded and the functions  ,iu p  are 

sufficiently smooth in space and time, filtering and differentiation commute and property (2.13) is also 

satisfied. As will be shown later, this is not the case for bounded domains. 

With space filtered velocity and pressure  ,iu p  clearly defined in (2.14)-(2.15) the equations for these 

new variables are needed. These equations are derived in the next section. 

2.3 SPACE FILTERED NAVIER-STOKES EQUATIONS 

Space filtered conservation principles for mass, momentum and energy transport are derived by 

applying a filtering operation to equations (2.5)-(2.7). 

The continuity equation is filtered first. Using the assumption that filtering and differentiation commute 

the space filtered continuity equation is 

  0M: 0D i i

i i

u u

x x


 
 

 
  (2.16) 

Being linear, the continuity equation does not change after filtering. Notice also that if iu  in (2.16) is 

replaced by iu u  the following manipulations can be performed 

 
       

0i i i i ii

i i i i i

u u u u uu

x x x x x

      
     

    
 (2.17) 
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showing that the unresolved field is also solenoidal. 

Filtering of the momentum equation is performed in like manner. A filtering operator is applied to both 

sides of equation (2.6). Using properties (2.12) and (2.13) the space filtered momentum equation takes 

the form 

   2

1
ˆD :     0

 
i i

i j i ij i

j j

u u Gr
u u u p g

t x Re x Re


   
           

P  (2.18) 

Unlike the continuity equation which does not change after filtering, the filtered nonlinear momentum 

equation (2.18) is not the same as its non-filtered counterpart (2.6), because of the following inequality 

 j i j iu u u u . (2.19) 

Finally, space filtering of the energy equation yields 

  
1

DE : 0j

j j

u
t x Pe x

   
         

 (2.20) 

The irreversible work viscous dissipation term in (2.20) is ignored. 

As can be seen from (2.18) and (2.20) these equations are very similar to their non-filtered counterparts 

with exception that they poses new unknown quantities, namely j iu u and ju  . Using linearity of the 

filter property (2.12) these terms can be expanded as 

   j i j j i i j j i i ii j ju u u u u u u u u u u u u u            (2.21) 

 ( )( )j j j j j j ju u u u u u u               (2.22) 

Thus, instead of just one convective term in each momentum equation there is now a quadruple of 

tensors associated with convection processes in the flow. The first term in (2.21) is the resolved scale 
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tensor which describes convection processes of the large-scale motions. The second and third terms are 

the cross tensors which involve resolved and unresolved scale interactions. Finally, the last term is the 

unresolved subfilter scale tensor. 

Filtering of the Navier-Stokes equations generates four unknown tensors involving resolved and 

unresolved scale tensor products. The energy equation generates a system of four similarly unknown 

vector fields, as shown in (2.22). In order to close the system of space filtered NS equations the 

unknown tensors (and vectors) must be expressed in terms of the resolved scale state variable. 

Replacement of j iu u  in terms of iu and ju  (also ju   in terms of ju and  ) is the closure challenge in 

large eddy simulation. 

2.4 REYNOLDS AVERAGED NAVIER-STOKES 

The Reynolds averaged Navier-Stokes equations (RaNS) are derived by time averaging the conservation 

principle PDEs (as opposed to space filtering in LES) using Reynolds decomposition whereby the 

instantaneous velocity iu  is expressed as the sum of a mean, ˆiu , and a fluctuating part, u , so that 

 ˆ
i i iu u u   (2.23) 

In equation (2.23), the quantity ˆiu  is the time-averaged, or mean, velocity defined by 

 
1

ˆ lim
t T

i i
tT

u u dt
T




   (2.24) 

Since the time-average of the mean velocity is again the same time-averaged value, the time average of 

the fluctuating part of the velocity is zero, hence 

  
1 ˆˆ ˆ ˆ ˆlim 0

t T

i i i i i
tT

u u u dt u u
T




       (2.25) 
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For incompressible flows the time-averaged isothermal DP PDE in non-dimensional form is 

  
ˆ ˆ1ˆ ˆˆ ˆ ˆD :     0
 
i i

i j i j i ij

j j

u u
u u u u u p

t x Re x


   
          

P  (2.26) 

The only difference between RaNS and NS equations is the generated single unknown Reynolds stress 

tensor j iu u   in (2.26). A wide range of theoretical frameworks generate closure models for j iu u  . The 

pervasive basis is variations on mixing length theory leading to an eddy viscosity hypothesis of 

dimensionality 2 -1L t . The assumption pervading RaNS closure models is existence of a turbulent eddy 

viscosity t  multiplying the Stokes strain rate tensor based on time averaged velocity 

 ˆt
j i ij iju u       (2.27) 

Eddy viscosity non-dimensionalized by kinematic viscosity defines the turbulent Reynolds number tRe  

 /t tRe    (2.28) 

and the resultant non-D isothermal RaNS DP is 

  
ˆ ˆ1ˆ ˆˆ ˆ ˆD :     0
 

t
i i

i j i ij

j j

u Re u
u u u p

t x Re x


    
         

P  (2.29) 

When tRe  becomes very high, transparent in (2.29), the eddy viscosity closure modeling significantly 

augments the diffusion level in RaNS DP compared to NS, the “1” in 1 tRe . The computational benefit 

to RaNS algorithm performance is substantial diffusive moderation of the dispersion error mode intrinsic 

to discrete CFD algorithms addressing NS at large Re numbers. 
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2.5 SGS TENSOR CLOSURE MODELING FOR LES 

In distinction to RaNS, space filtering the NS PDEs generates a convective term j iu u  composed of the 

quadruple of tensors (2.21). One of the standard approaches to LES closure for DP is termed triple 

decomposition, well detailed in Sagaut (2004). This approach assumes all terms in (2.21) are expressible 

in the resolved scale variable, leading to the resultant SGS tensor closure model 

 
ij j i j i

ij ij ij

u u u u

L C R

  

  
 (2.30) 

where Leonard, cross-stress and Reynolds subgrid tensors are defined as 

 

ij j i j i

ij j i j i

ij j i

L u u u u

C u u u u

R u u

 

  

 

 (2.31) 

Rearranging (2.30) defines the unknown j i ij j iu u u u   which inserted into space filtered DP NS (2.18) 

gives 

  
1

D :     0
 

j
i i

i ii j

j

i j

j

u
u u

x e
uu p

t R x
 

   
         

P  (2.32) 

Note that (2.32) is absolutely identical with RaNS DP PDE (2.26). 

The pioneering spatial filtered NS DP isothermal turbulent flow simulation publication is Smagorinsky 

(1963). The single tensor model based only on the resolved scale velocity attempts to estimate the 

action of the LES dual resolved-unresolved scale plus strictly unresolved scale tensor triple in (2.21). This 

ends up placing the entire burden of prediction fidelity on physical insight. The Smagorinsky closure 

model is of mixing length theory (MLT) eddy viscosity hypothesis with a single model constant. It is 
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distinguishable from the RaNS MLT closure only by this constant replacing the Prandtl MLT definition 

with van Driest wall proximity damping function. The turbulent viscosity parameter in the Smagorinsky 

model is 

 
2t

sC    (2.33) 

where sC  is the Smagorinsky constant,   is the local grid size, and 2 ij ij . 

This ultimately simple Smagorinsky closure model soon proved inadequate, prompting numerous 

alterations catalyzed by the Leonard stress manipulation of resolved scale tensor equating to the 

resolved/unresolved scale interaction tensor field triple, Leonard (1974). The principally successful 

modifications, Germano et al. (1991), Lilly (1992), are termed dynamic subgrid-scale models which 

replace the Smagorinsky constant with distributions computed on the fly using dynamic solution-

adaptive mesh refinement processes. The excessive contribution of diffusion  2h  by these SGS 

models is attempted corrected via alteration of numerics to locally monotone FD schemes (Boris, 1990), 

(Boris et al., 1992). Monotone integrated LES (MILES), the original implicit LES (ILES) algorithm further 

alters the SGS model resolved scale velocity prediction via approximate deconvolution (AD) onto a finer 

mesh (Shah and Ferziger, 1995). AD augmented with a subgrid-scale estimation (SGSE) model is 

reported (Domaradzki and Saiki, 1997), (Domaradzki and Yee, 2000). 

AD utilization in the fully turbulent regime has generated a posteriori data in quantitative agreement 

with DNS data, c.f., (Stolz and Adams, 1999), (Stolz et al., 2001). An alternate ILES theorization addresses 

diffusive deficiencies via high resolution flux vector differencing schemes, (Grinstein and Fureby, 2004), 

(Margolin et al., 2006), (Grinstein et al., 2007). Numerics of this genre include flux-corrected transport 
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(FCT), the piecewise parabolic method (PPM), and total variation diminishing (TVD) differencing, c.f., 

(Harten, 1983). 

At transitional Re original Smagorinsky (1963) and the filtered structure function SGS tensor model 

(Metais and Lesieur, 1992) proved excessively diffusive. SGS tensor alterations seeking improved 

transitional Re fidelity include insertion of van Driest wall-damping and a Klebanoff-type intermittency 

correction (Piomelli et al., 1990), dynamic SGS model alterations (Germano et al., 1991), (Lilly, 1992), 

low Re corrections (Voke and Yang, 1995), high-pass filtered eddy viscosity models (Stolz et al., 2004). 

Schlatter et al. (2004) document a posteriori data validation for a transitional Re specification on rather 

coarse meshes using AD. 

Despite the truly consequential simplifications leading to DP (2.32), hence SGS tensor models based on 

MLT, the LES literature documents considerable success for a range of fully turbulent and select 

transitional Re simulations. Via the assumptions generating (2.32) the omission of the BCE integrals in 

(2.18) and (2.20), hence identification of resolved scale velocity genuine no-slip wall BCs, is of no 

consequence. As with RaNS closure modeling, usage of MLT based closure models in LES to state 

variable scalar members, if considered, requires turbulent Prandtl number hypothesis. 

The algorithm implementation of an SGS tensor model in LES presents no fundamental challenge. In 

fact, if there was no alternative to an SGS tensor model this section would not have been written. 

Fortunately mathematically rigorous convolution/deconvolution operations for (2.21)-(2.22) are 

identified leading to the opportunity to derive an essentially analytical LES closure as described in the 

next section. 
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2.6 THE RATIONAL LES CLOSURE FORMULATION 

The rational LES (rLES) theory closure of Galdi and Layton (2000) is based strictly on analytical 

considerations. It derives its name from the fact that the Fourier transform of the Gaussian filter is 

evaluated by the rational subdiagonal Padé approximation. The rLES theory closure provides analytical 

determination of the first three of the quadruple of stress tensors (2.21). 

Progressively higher order polynomial interpolations of the Gaussian Fourier transform are compared in 

Figure B.2, Gaussian the solid lines and interpolation the dashed lines. The second order Taylor series 

(TS), which leads to the SGS tensor gradient model closure, generates a truly poor approximation to the 

Gaussian distribution, becoming non-positive at roughly filter measure half-span. Therefore, the TS 

approximation is only good for small wave numbers and fails completely for high wave numbers. Since 

dumping of scales associated with high frequencies is the primary property of the Gaussian filter the 

Taylor polynomial approximation is inadequate. Second and fourth order rational polynomial 

interpolations are significant improvements. The polynomial definitions are 

 2nd order Taylor:    2 21iax
i ie ax a x    (2.34) 

 2nd order Padé:    2 21

1
iax

i

i

e a x
ax

 


 (2.35) 

 4th order Padé:    4 4

2 2

1

1
iax

i

i i

e a x
ax a x

 
 

 (2.36) 

For reference, the Gaussian filter is defined as 

  
/2

2

2 2 2
exp

n

g
 

 

   
    
   

x x  (2.37) 

Using the convolution theorem the Fourier transforms of the large scale and cross terms in (2.21) are 
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Since   0g  , the Fourier transforms of iu  and iu  are  
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Inserting (2.39) and (2.40) into (2.38) gives 
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 (2.41) 

In (2.41) the Fourier transform of the Gaussian  g  needs to be approximated by a simpler function. 

The Taylor LES legacy approach utilizes a second-order Taylor series interpolation of the Gaussian of 

measure   and shape factor  . The required approximations for  g  and  1 / g  are given in the 

form of quadratic polynomials, hence 
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Inserting (2.42) into (2.41) and using well known properties of Fourier transformations results in 
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 (2.43) 

Applying the inverse Fourier transform, closures for the lead three tensors in (2.21) are 
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Combining the terms in (2.44) and using well known kinematic relations generates the analytical closure 
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 (2.45) 

For isothermal  0Gr   flow and omitting the 1Re  term in (2.18), (2.45) inserted therein produces the 

gradient model reported in the LES literature. In a priori testing for isotropic decaying turbulence, 

comparison with experiment showed quality correlations (Winckelmans et al., 2001). Conversely, 

numerous reported a posteriori CFD data confirm the gradient model does not dissipate sufficient 

energy yielding an unstable algebraic solution process (Vreman, 1995). Stabilizing the algorithm via 

Smagorinsky model insertion generates excessive diffusion (Clark et al., 1979). 

The rLES theory resolution replaces TS interpolation with compact rational Padé polynomials, a 

formulation possessing ready extension to higher order approximations which are monotone and non-

negative, Figure B.2. 
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The rational Padé approximations of the exponential reads as 
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Using (2.46) to approximate  g  and  1 / g  gives  
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Inserting (2.47) into (2.41) and taking the inverse Fourier transform produces 
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 (2.48) 

Finally, (2.45) is replaced by the analytical closure 
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 (2.49) 

Similarly, the rLES theory second order Padé closure for the lead triple in (2.22) is 
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 (2.50) 

The 2nd order Padé closure (2.49) for the lead three tensors in (2.21) involves the matrix inverse 

differential operator 
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
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 
 (2.51) 

for   the identity matrix. 

Equation (2.51) constitutes a second order elliptic boundary value (EBV) operator via the Laplacian on 

resolved scale velocity strain rate tensor product. The rLES literature references (2.51) as the auxiliary 

problem, detailed in section 2.8. 

The closure requirement remaining is the fourth tensor in (2.21), LES theory predicted as the dissipation 

mechanism at the unresolved scale threshold replacing unfiltered NS viscous dissipation at molecular 

scale. Although the closure predicted via 2nd order Padé interpolations is formally negligible, the theory 

does predict a useful bound, i.e.,      4 2
j iu u    . Section 0 illustrates this fact as well as 

details the SFS tensor and vector closures used in this dissertation. 

Of truly substantial theoretical significance the rLES theory closure is absent the word turbulent! All 

manipulations are rigorous mathematical operations defined for/by NS PDE system convolution. 

Consequently, (2.18) with (2.21) replaced by closure (2.49) is Reynolds number unconstrained, hence 

potentially pertinent to prediction of laminar, transitional and/or fully turbulent resolved scale velocity 

vector distributions. 
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2.7 ANALYTICAL SFS TENSOR/VECTOR CLOSURES 

The remaining closure requirement is the fourth tensor in (2.21), also the fourth vector in (2.22), LES 

theory predicted as the dissipation mechanism at the unresolved scale threshold replacing unfiltered NS 

viscous dissipation at molecular scale. 

The SFS closures predicted by the 2nd order Taylor and 2nd order rational approximations of the Gaussian 

Fourier transform are, respectively 
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 (2.53) 

Both determinations are formally negligible since the lead term multiplier 4  is the truncation order in 

(2.45) and (2.49). This prediction is not trivial however, as rLES theory has analytically predicted the 

requirement      4 2
j iu u    . Thereby, LES closure deviatoric SGS tensor models, universally 

of  2 , are too significant to theoretically address LES dissipation at the unresolved scale threshold. 

A totally analytical space filtered Navier-Stokes closure is obtained by identifying the SFS tensor based 

on the weak form CFD theory for error annihilation. The companion SFS vector ju   appearing in the 

energy equation (2.20) is also provided. 

The CFD literature amply identifies discretization-induced dispersion error as the energetic mechanism 

requiring dissipation at the unresolved scale threshold. Since an LES SGS model in principle adds 

diffusion, the hypothesis is proposed stating that it should be possible to directly use numerical diffusion 
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supplied by a CFD algorithm in order to provide sufficient dissipation of mechanical energy at the 

unresolved scale threshold. 

Three decades of extensive research at the University of Tennessee’s CFD Laboratory generated various 

modifications to the NS conservation system via Taylor series manipulations (Kolesnikov, 2000),(Chaffin, 

1997), (Kim, 1988). Theory-generated analytical expressions augment the NS PDE system with 

dissipative flux terms that help increase stability and error control of finite element CFD algorithms. 

Following the idea of direct use of algorithm’s numerical diffusion an analytically-derived SFS tensor 

candidate is 
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 (2.54) 

for some constant ( )SC   to be determined. 

Interpretation of closure (2.54) as eddy viscosity type with dimensionality 2 -1L t  “viscosity coefficient” 

2 Re

6
j k

h
u u  is inaccurate, as the resolved scale velocity tensor products j ku u  and i ku u  therein are non-

positive definite. The fact that (2.54) can promote anti-diffusion matches theoretically with the LES 

theory requirement of closure admitting backscatter, the energetic cascade from smaller to larger 

scales. 

Adequate energetic capture requires 2h   and defining a non-constant   induces commutation error, 

detailed in section 3.2. Altering the capture constraint to an equality confirms the scalar multiplier on 

tensor product coefficients in (2.54) are  2 . Hence inserted CS cannot exceed    for this 

analytical SFS tensor closure candidate to be rLES theory admissible. Specifically, for any   1.0sC    

(2.54) exhibits the excessive  2  inherent in SGS tensor models of MLT type. 
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For thermal problems analytical derivation of the companion SFS vector closure candidate for the 

temperature equation is (Grubert, 2006) 
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2.8 THE AUXILIARY PROBLEM 

The rational LES closure (2.49) and (2.50) involves the matrix inverse differential operator 
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The operator in (2.56) describes an elliptic second order boundary value problem which in rLES 

literature is referenced as the auxiliary problem. 

John (2004) identifies two strategies for handling the auxiliary problem inverse differential operator    

in (2.56). From well-known properties of Fourier transformation and using the rational approximation 

(2.47) of  g  a simple computation yields 
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from what follows 
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Thus the auxiliary problem is an approximation to convolution leading to the replacement of (2.49) with 
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The alternative is an interpretation of the auxiliary problem as a backward Euler time integration 

algorithm for the IBV PDE statement 

  

 

2

2

4

0

0, 0

q
q f

t

n q

q






 



 

 

      

 

in (0, ],

on [0, ],

in ,

T

T







 (2.60) 

which for a single time step 2
1 / 4t    , and therefore the same final time 2 / 4T    lead to EBV 

PDE 
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The performance of these two approaches for handling the auxiliary problem was evaluated in (John, 

2004) using a mixing layer problem on an unbounded domain with initial condition (IC) characterized by 

a shear thickness 0 . Homogeneous Neumann, the natural BC for a weak formulation, is the precisely 

appropriate global BC, stated as appropriate for the auxiliary problem as well. 

The vorticity distributions at times 50,70,80n t  seconds are plotted in Figure B.3 comparing the 

performance of the auxiliary problem direct solution (2.61) and via convolution (2.59) with the 

benchmark. The results shown in Figure B.3 suggest that the solution of the auxiliary problem via 

convolution might be preferable to a direct process. 

An alternative theoretical resolution of the auxiliary problem is derived in this dissertation. It accrues to 

CFD discrete theory mesh measure h connection to the fundamental LES precept of resolved-unresolved 
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scales. From classic fluid mechanics perturbation theory, “Most useful approximations (in fluid 

mechanics theory) are valid when one or more of the parameters or variables in the problem is small (or 

large)”, Van Dyke (1975). This quotation correlates precisely with the filter measure   exponentiations 

in the rLES theory closure (2.49). 

The resolved scale velocity iu  is by definition (1) , which is valid as well for the convection tensor 

product second filtering j iu u . By definition the unresolved scale velocity iu  cannot exceed ( )h  since 

spectral content is not resolvable on a mesh of measure 2h . Via the constraint 2h   for adequate 

energetic capture iu  is thus of ( ) . 

The rLES theory predicts j iu u  is 3( ) , two orders smaller than that for iu . Thus ( )  and 3( )  must 

bound j i j iu u u u   hence the order cannot be other than nominally 2( ) . Therefore, via classic fluid 

mechanics perturbation theory (2.49) predicts 

 (j i j iu u u u      (2.62) 

Extracting (2.62) in the rLES theory second order Padé closure (2.49) 
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 (2.63) 

So indeed the cross stress tensor pair is rLES theory confirmed 2(  . 

This combination of CFD theory with classic fluid mechanics perturbation theory generates precise 

resolution of the arLES theory auxiliary problem for the 2nd order Padé closure. Multiplying (2.63) 

through by    yields 
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Denoting the cross stress tensor pair as 

 ( , )i j j i j ic t u u u u  x  (2.65) 

and coalescing coefficients in (2.64) generates the harmonic Poisson EBV PDE system characterization of 

the classic LES theory identification of the resolved-unresolved scale tensor pair 
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Note that (2.61) does bear functional resemblance to (2.64). Identification of suitable encompassing BCs 

for (2.66) is required. The proper boundary conditions for (2.66) are originally derived in this work and 

described in section 3.5. 

Returning to the space filtered energy equation (2.20), arLES closure auxiliary problem resolution for 

scalar state variable member   is the direct extension. The perturbation theory argument leads to 

 2( )j ju u     (2.67) 

and substitution into (2.50) generates 
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Denoting the theory resolved-unresolved scale interaction vector pair as 

 j j jv u u       (2.69) 
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generates the harmonic Poisson EBV PDE system characterization of the resolved-unresolved scale 

vector pair 
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As for (2.66), appropriate BCs for (2.70) are required. The development of suitable Dirichlet boundary 

conditions for (2.70) is presented in section 3.5. 
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3. SPACE FILTERING ON BOUNDED DOMAINS 

“LES continues to have difficulties predicting near wall turbulence 
and to have still more difficulties predicting turbulence driven by 
flow/boundary interactions.” 

(Berselli et al., 2006) 

“One would like to believe that the commutation error would be small 
for some reasonable class of non-uniform filters, but this has never 
been conclusively demonstrated . . .” 

(Ghosal and Moin, 1995) 

A truly significant challenge in large eddy simulation (LES) is obtaining a closure theory for bounded 

domains. Despite a five decades literature this research topic is still far from being closed. During the 

filtering operation, the conservation principle PDEs are convolved with a spatial filter function resulting 

in the space filtered PDE system, referenced in the literature as the LES PDE form of NS. The final form of 

the space filtered PDE system is obtained under the assumption that differentiation and filtering 

operations commute. It is this assumption that is precisely considered herein since filtering and 

differentiation operations do not generally commute in the presence of domain boundaries even for 

functions that are sufficiently smooth in space and time (Dunca et al., 2003). 

Besides the questionable assumption that differentiation and filtering operations commute, LES of 

bounded domain flows encounters yet another equally important problem. In order to fully describe the 

system and obtain a mathematically well-posed problem statement LES requires knowledge of suitable 

encompassing boundary conditions, as LES PDEs represent an elliptic boundary value problem. The 

presence of solid boundaries makes determining the proper boundary conditions a challenge. 
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3.1 NEAR WALL RESOLUTION AND NEAR WALL MODELING 

One approach to wall boundary conditions in LES consists in using spatially non-uniform filter measure 

  x  which tends to zero at the boundary. 

   0          as              x x . (3.1) 

This approach is termed Near Wall Resolution (NWR). The main advantage of NWR is that the 

homogeneous Dirichlet boundary conditions for the resolved-scale velocity u  can be retained 

   0        for         u x x  (3.2) 

However, it is intuitive that by considering a variable filter measure   x , the commutation errors i  

are introduced since, 

 0     for      1...i

i i

i n
x x


    

      
    

u u
 (3.3) 

Indeed, the flows in bounded domains are essentially nonhomogeneous and the required smallest 

resolved length scales vary throughout the flow field. 

Analysis of the commutation error is reported in the literature Ghosal and Moin (1995), Fureby and 

Tabor (1997), Vasilyev et al. (1998). The analysis in these references is based on one-dimensional Taylor 

series expansions for very smooth functions, which generally is not applicable in practice. Using special 

filter kernels it is shown that the commutation error is  2 , where   is the non-D grid spacing. 

Besides commutation errors introduced by using a variable filter measure in bounded domains, there is 

an even more substantial drawback to the NWR approach. As the filter size is decreased near the wall, 

the numerical resolution needed is greatly increased. In order to resolve the near-wall region, so that 
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no-slip condition can be accurately employed, the mesh size must be reduced accordingly. The 

computational cost scales like 2.4Re  in the near wall region, which is very close to that of DNS, see 

Chapman (1979). 

Another approach to treat the wall boundary conditions in LES, termed Near Wall Modeling (NWM), 

employs a constant measure filter throughout the entire domain and is said to filter through the 

boundary. The computational cost of this approach is greatly reduced because the filter measure is 

constant throughout the entire domain. The commutation error, however, is still present, but takes a 

different form. 

In NWM specifying boundary conditions for filtered quantities requires special treatment since the 

boundary conditions become inherently non-local. This non-locality simply implies that the filtered 

velocity u  on the boundary depends non-locally on the non-filtered velocity u near the boundary. 

Besides the difficulty of setting the proper boundary conditions in NWM, the filtered equations possess 

an extra source term that also requires closure. This term is originally derived by Fureby and Tabor 

(1997) and comes from the fact that in the presence of boundaries filtering with a constant filter does 

not commute with differentiation. Therefore the term itself is referred to as the Boundary Commutation 

Error (BCE) term (Berselli et al., 2006), or simply the commutator error (Layton and Trenchea, 2011). 

Although both approaches have their advantages and disadvantages, it is clear that due to the 

prohibitive computational cost of the near-wall resolution approach, the near-wall modeling is more 

feasible for practical applications. 

The BCE integral closure identification along with boundary conditions specification in case of wall 

bounded flows is presented in this dissertation. Throughout this manuscript a constant measure  x  

Gaussian filter is defined, unless noted otherwise. 
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3.2 THE BOUNDARY COMMUTATION ERROR INTEGRAL 

The derivation of the BCE integral starts by noting that the convolution operator in a bounded domain 

can only be applied if all functions (such as u , p , etc) are first extended outside of the domain. Upon 

this extension the functions begin to fulfill the NS system in a suitable distributional sense, c.f. 

(Kolmogorov and Fomin, 1975), (Schwartz, 1966). It can be shown that the first order weak derivatives 

of the extended velocity, i.e. tu , u , u  and  T uu , are well defined on d , since the extended 

functions possess the following regularities 

 
      

  

1 2
0 0

1

,         for   0, ,

0,     for   .

d
d d

d d

H p L t T

H T

  

 

u

u x
 (3.4) 

Since   2
d

dHu ,  1 dp H  the stress tensor terms   u  and p  must be defined in the 

sense of distributions. It then follows that the extended functions  ,pu  fulfill the following 

distributional form for the NS system 

             2 ,T
t pp dS 



      u u u s su n s sf u  (3.5) 

where    0
dC s  and  n s  is the outward unit vector normal to  . 

Once the LES state variable is well defined in the sense of distributions the convolution and 

differentiation commute and the convolution operator generates the LES PDE form for DP 

       ,2 T
t p A p     u u uu uf  (3.6) 

Herein   ,A p u  is the BCE integral 
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             , , , ,A p t g p t dS 



 u x x s u s n s s  (3.7) 

and the full NS stress tensor  ,pu  is 

    , 2p p u u  (3.8) 

Therefore the correct LES PDE arising from the NS PDE on a bounded domain possesses a boundary 

integral named the BCE. The BCE integrand contains unfiltered state variable members, with subsequent 

convolution with filter  g x s  transforming the completed integral to filtered state variable 

members. 

The BCE integral augmentation for the energy equation is a direct extension 

    tT T uT Af T         (3.9) 

where  A T   is 

           , ,A t g t dT ST  


  x x s s n s s  (3.10) 

John (2004) shows that the boundary commutation error is asymptotically negligible in  p n norm as 

0   (not to be confused with a non-constant filter radius) if and only if the normal stress vanishes 

almost everywhere on the boundary (the fluid and the boundary exert exactly zero normal force on each 

other). Of course, for most turbulent flows of interest this condition is not satisfied. It is also observed 

that the commutation error is largest near the solid wall and decays rapidly away from the wall. Finally, 

John (2004) notices that if the BCE term is dropped and the space filtered Navier-Stokes equations are 

discretized, the error committed is  1 ! 
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3.3 APPROXIMATE DECONVOLUTION BOUNDARY CONDITIONS 

To this point the necessity of retaining the BCE integrals in the resulting filtered conservation equations 

on a bounded domain is obvious. A separate issue in NWM approach is the specification of proper 

boundary conditions wherein the no-slip Dirichlet BC is generally replaced by some solution-dependent 

Neumann BC model. This complicating issue arises because the no-slip BC is satisfied by the unfiltered 

velocity, not the filtered resolved scale velocity! Slip-with-drag formulations are proposed by Piomelli 

and Balaras (2002), John et al. (2004), Sagaut (2004), John and Liakos (2006). 

One of the recent NWM advances is the derivation of boundary conditions that are based on an 

approximate deconvolution approach (Borggaard and Iliescu, 2006). The ADBC method is formulated 

using the same ideas of filtering and deconvolution that are used by Galdi and Layton (2000) for their 

rational LES closure. The derivation and mathematical analysis of three AD LES models can be found in 

Berselli et al. (2006). In short, the approximate deconvolution methodology uses an approximation for 

the filtered flow variables (such as u ) to recover an approximation for u . The AD formulae are derived 

using the mathematical properties of a particular spatial filter and are then applied to a numerical 

approximation of u  to recover an approximation for u . The pioneering AD LES model was proposed by 

Leonard (1974). 

The authors of ADBC use an approximate deconvolution formula to approximate not only the unknown 

boundary conditions for filtered variables, but to also the boundary commutation error term. They 

consider a one-dimensional heat conduction problem with time dependent boundary conditions to 

demonstrate their approach. Linearity of the heat equation allows them to separate the boundary 

condition considerations from the closure problem associated with non-linear equations such as Navier-

Stokes DP. The numerical analysis shows that the BCE term should not be dropped from the space 
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filtered equations and demonstrates appropriate numerical approximations for the BCE and the 

boundary conditions. 

The results of Borggaard and Iliescu (2006) are encouraging and the algorithm itself is very attractive 

due to its simplicity and generality. However, the ADBC approach requires extension to full 

dimensionality, starting with two-dimensional linear problems and eventually advancing to realistic NS 

PDEs addressing turbulent flow prediction. 

As stated, the problem of specifying boundary conditions for resolved scale variables (with constant 

radius) becomes complicated due to their non-local nature. The ADBC procedure can identify the 

unknown BCs for the resolved scale at the new time level 1nu  from the known quantities nu  inside the 

domain and 1nu  on the boundary. The derivation starts by defining the unknown filtered flow 

quantities 1nu  at b x  via convolution with a spatial filter 

         1 1 1n n n
b b bg g d 

  



   u x u x x y u y y ,   bx  (3.11) 

In order to approximate the integral in (3.11) on the entire domain  , 1nu  has to be known 

everywhere inside  , as well as on the boundary  . The derivation is simplified by the fact that the 

Gaussian g  decays rapidly to zero away from bx  and can therefore be neglected outside of the 

effective range of filter measure  . This observation suggests that (3.11) only needs be evaluated in   

vicinity of bx (shaded area in Figure B.4). 

Numerical integration via quadrature is used to approximate the convolution integral in (3.11). The gray 

nodes in Figure B.4 are the nodes included into an approximation for  1n
b

u x  and are therefore used 

in quadrature. The values of 1nu on the boundary are obtained from the given Dirichlet boundary 
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conditions, while an approximation to 1nu  at the interior nodes is obtained using the approximate 

deconvolution 

        
2

1 4

24
n n n

    u x u x u x  (3.12) 

The Laplacian term  nu x  in (3.12) can be approximated by finite differences (FD) or finite element 

(FE) trial space bases. Note that the AD (3.12) lies at the heart of the rational LES (rLES) closure, Galdi 

and Layton (2000), and a higher-order version of it, Berselli and Iliescu (2003). For a good summary and 

discussion of rLES an interested reader is referred to (Berselli et al., 2006) and (John, 2004). 

Using AD (3.12) and the integration methodology illustrated in Figure B.4, the numerical quadrature for 

approximating the convolution integral (3.11) is 

            
2

1 1
i i i i

24
n n n n

b i b i b i
i i

w g w g 

 

 

 
      

 
 u x x x u x u x x x u x , (3.13) 

where the index sets  and represent interior and boundary points, respectively; ix  represent 

quadrature points and iw  are the weights. 

Numerical evaluation of the BCE integral (3.7) depends on the approximations for  1nu s  and 

 1np  s . The approximate deconvolution formula (3.12) is again pertinent to generate needed 

approximations, along with standard FD techniques to approximate the derivatives. (Borggaard and 

Iliescu, 2006). 
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3.4 MODIFIED ADBC FORMULATION 

An accurate way of constructing the boundary conditions of non-homogeneous Dirichlet type is 

developed by including a buffer layer outside of the computational domain. A generalization of the 

ADBC to two dimensions is derived with a possibility of straight forward extension three dimensions. 

Consider an example of two-dimensional non-steady heat conduction problem described in section 

6.1.2. The approximate boundary conditions for space filtered q  are constructed using approach similar 

Borggaard and Iliescu (2006). However, the implementation herein has two major improvements over 

the original ADBC. The first is fundamental as it changes the way non-homogeneous Dirichlet BCs are 

estimated. As described in section 3.3, the original ADBC approach suggests that only the nodes that lay 

inside the shaded area (Figure B.4) should be included in an approximation to the convolution integral 

(3.11). Therefore, no extension of q  outside of   is considered. However, in Figure B.8 it is shown how 

this technique causes very large errors to occur near boundaries with non-homogeneous Dirichlet BCs. 

In Figure B.9 these errors are eliminated by extending the Gaussian filter outside   by adding the 

corresponding extension of q . A numerical implementation of this technique is shown in Figure B.5. The 

filled nodes are in the interior as well as on the boundary. The values of q  at these nodes are obtained 

via AD in the interior and given BCs on the boundary. The hollow nodes constitute the buffer layer 

placed outside of  . The values of q  at the hollow nodes are known a priori, they are prescribed 

according to the extension of q , which in turn is defined by the given Dirichlet boundary conditions. No 

buffer layer extension is necessary where the boundary condition is set to zero Dirichlet. This extension 

is trivial since    , , 0q x y b x y   and does not make any contribution to the final result. 

Simplified implementation constitutes the second aspect by which this approach is different from the 

original ADBC. Changing the number of nodes included in quadrature (3.13) makes implementation 
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much simpler and helps to generalize the approach to three dimensions. Consider a boundary node 

 ,b bx y  at which q  is prescribed non-homogeneous Dirichlet BC (Figure B.5). The space filtered q  at 

node  ,b bx y is defined via convolution with a spatial filter, hence 

      1 2 1 2 1 2, , ,b b b bq x y g x y q d d      


   ,    ,b bx y  (3.14) 

When the domain of integration is square (instead of circular), as in Figure B.5, the convolution integral 

in (3.14) can be accurately evaluated using a combination of two Newton-Cotes rules (one for each 

spatial direction), hence 

      
1 1

, , ,
yx

NN

b b b i b j i j i j
i j

q x y g x x y y q x y w w
 

    (3.15) 

where xN  and 
yN  are Newton-Cotes degrees in x  and y  direction respectively,  ,i jx y  are the 

quadrature points, and iw  and 
jw  are the corresponding weights. 

Since the Gaussian filter decays rapidly away from  ,b bx y  the inclusion of extra nodes outside of the 

dotted circle (Figure B.5) will not affect the result. This technique makes the implementation direct and 

general. An extension to three dimensions is straight forward by utilizing the same Newton-Cotes 

approximation in the z-direction. Another advantage of using this technique is the ease of performing 

calculations near domain corners as detailed in section 6.1.2. 

3.5 BOUNDARY CONDITIONS FOR THE AUXILIARY PROBLEM 

In three dimensions the auxiliary problem of arLES has been converted to six Poisson equations for 

cross-stress tensor ijc  (2.66) and three Poisson equations for cross-thermal vector jv   (2.70). Each of 

these equations is an elliptic boundary value problem requiring specification of proper boundary 
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conditions. Homogeneous Neumann boundary condition has been exclusively used in the literature, 

primarily for lack of a better idea. This type BC is appropriate only for unbounded domain flows, hence 

absolutely invalid for bounded domains. Herein derivation of the long-awaited non-homogeneous BCs of 

Dirichlet type for the auxiliary problem of arLES is presented for the first time. 

The development starts with recognition that it is possible to derive an approximation for the unfiltered 

“physically unrealistic” quantity 
ijc  using the AD formula (3.12), hence 

        
2

2 4

4
ij ij ijc c c





   x x x  (3.16) 

Multiplying equation (2.66) through by 
2

4




 yields 
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 
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 
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Substituting (3.17) into (3.16) yields the required approximation for unfiltered 
ijc  
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
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xx
x  (3.18) 

Identical analysis is performed to derive an approximation to the companion cross-thermal vector pair 

jv , yielding 

     
2

4( )( )
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j

j

k k

u
v

x x







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 
 

xx
x  (3.19) 

Approximations (3.18) and (3.19) are differential definitions easily evaluated via the Galerkin weak 

statement, discussed in chapter 5. Determination of  ijc x  and jv  depends strictly on solutions to the 
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space filtered velocity, u , and temperature,  , fields. These solutions are known on the entire domain 

including the boundary owing to the AD boundary condition specification described in section 3.4. 

Upon successful calculation of unfiltered mathematical entities 
ijc  and jv  using (3.18) and (3.19) 

respectively, determination of the required non-homogeneous Dirichlet boundary conditions for space 

filtered 
ijc  and jv   becomes straight forward. Using the same ideas of BC specification described in 

section 3.4 the unknown filtered quantity 
1n

ijc 
 at   is defined via convolution with a spatial filter as 

         1 1 1
1 2 1 2 1 2, , ,n n n

ij b b ij b b b ijc x y g c g x y c d d         



    x ,    ,b bx y  (3.20) 

An identical definition for  
1n

jv



 at   reads 

             
1 1 1

1 2 1 2 1 2, , ,
n n n

j b b j b b b jv x y g v g x y v d d       
  

  



    x  (3.21) 

Using the integration methodology illustrated in Figure B.5 and employing numerical quadrature to 

approximate the convolution integral in (3.20) and (3.21) the a priori unknown BCs are approximated 
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, , ,
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n n

ij b b b i b j ij i j i j
i j

c x y g x x y y c x y w w

 

 

   , (3.22) 

         
1 1
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n n

j b b b i b j j i j i j
i j

v x y g x x y y v x y w w

 
 

 

    (3.23) 

where xN  and 
yN  are Newton-Cotes degrees in x  and y  direction respectively,  ,i jx y  are the 

quadrature points, and iw  and jw  are the corresponding weights. 
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4. ESSENTIALLY ANALYTICAL RATIONAL LES THEORY CFD ALGORITHM 

Two very important conclusions can be made by analyzing the set of conservation principles (2.1)-(2.3). 

Firstly, the continuity equation (2.1) in its own glory states that the velocity vector field must be 

solenoidal, or divergence-free. Secondly, the system has five equations with five unknowns (namely 

, , , ,x y zu u u p T ), but there is no equation for determining the pressure distribution. Instead, the mass 

conservation equation (2.1) acts as a differential constraint on the solution to D +DEP  system of PDEs. 

This constraint requires any solution u  that is established to D DEP  system be divergence-free. 

The absence of a conservation principle for pressure can be remedied with a number of approaches. 

One of them is a vector field theory approach where the mass conservation equation is enforced exactly 

by converting it to an equation for some vector potential. In two dimensions this vector potential 

becomes a streamfunction. The existence of pressure is then completely eliminated by taking curl of the 

momentum equation. Although very effective this approach has a number of limitations, for instance, it 

is not capable of handling problems of pressure driven flows. Also the generalization of, say, 

streamfunction-vorticity method to three dimensions makes it extremely difficult to implement due to 

substantially increased mathematical burden. 

Another class of CFD algorithms is based on pressure-relaxation methods that produce an inexact 

enforcement of the continuity constraint, but can be easily extended to three dimensional 

implementations. The Continuity Constraint Method (CCM) (Williams, 1993)is the generalization of this 

idea and used for deriving the LES theory CFD algorithm. 

4.1 SPACE FILTERED CCM 

The LES theory CFD algorithm used in this dissertation is based on the CCM methodology and belongs to 

the class of “pressure relaxation” methods. The Continuity Constraint Method is a primitive-variable 
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FEM CFD algorithm developed by Williams (1993). The algorithm encompasses the original finite 

difference SMAC method (Amsden and Harlow, 1970), along with a classical finite element velocity-

correction method (Schneider et al., 1978). 

Space filtered incompressible Navier-Stokes equations accompanied by the arLES closure theory Poisson 

equations are 
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 (4.5) 

4.2 ERROR ANALYSIS 

Denoting n
iu  as a known vector of initial conditions at time nt  the Taylor series expansion is employed 

to find 1n
iu   at time 1nt   by marching one step forward, i.e., 

  1 2Δ     Δn n i
i i

n

u
u u t t

t
 
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
 (4.6) 
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A tilde symbol “~” signifies the fact that the computed velocity vector 1n
iu   does not satisfy the 

continuity equation, thus 1 0n
iu   . 

Substituting an expression for time derivative i

n

u

t




 obtained from (4.2) into (4.6) yields 
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 (4.7) 

It is then assumed that there exists a pressure correction to np  which can be identified such that the 

computed velocity field at 1nt   satisfies the continuity equation, i.e., 1 0n
iu   . Denoting the corrected 

pressure as *p  and keeping in mind that *p  cannot stay inside the brackets, as it is strictly hypothetical, 

yields 
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   (4.8) 

Note that there is no tilde on 1n
iu  . 

Subtracting (4.7) from (4.8) defines the error, i.e., the difference between the right answer and the 

computed solution, which reads as 

    1 1 * 2 n n n
i i

i

u u t p p t
x

  
     


 (4.9) 

Taking the curl of both sides of (4.9) and using the fact that curl of the gradient of any scalar field   is 

the zero vector gives 

  1 1 0n n
i iu u     (4.10) 
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Equation (4.10) then implies that the difference 1 1n n
i iu u   must be expressible in terms of some scalar 

potential function, namely 

 1 1n n
i iu u      (4.11) 

Therefore the error introduced in the explicit Taylor series approach is incurred only by lack of 

satisfaction of the continuity equation with measure scalar potential .  

The corrected pressure *p  is strictly hypothetical and cannot be established using an explicit Taylor 

series, correspondingly the forward Euler scheme (explicit). This means that *p  cannot be some kind of 

pressure distribution at time nt  and somehow have information from time 1nt  . Instead one needs to 

use at least a semi-implicit scheme. Therefore a much more feasible methodology in estimating *p  is to 

use a  -implicit Taylor series 
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 (4.12) 

The order of approximation in (4.12) is a function of  , i.e. 
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Substituting expressions for time derivatives 
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i
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 and i

n

u

t




 obtained from (4.2) into (4.12) yields 
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Integration of momentum equations with a guessed pressure field *p  results in a velocity field *
iu  that 

does not in general satisfy the continuity constraint. Equation (4.14) can then be rewritten using the 

guessed pressure and velocity fields. However the advection term for time 1nt   can no longer be 

expressed in the divergence form since that would imply satisfaction of the continuity equation, which is 

not true. Following this considerations equation (4.14) becomes 
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 (4.15) 

Subtracting (4.15) from (4.14) defines the error distribution as 
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(4.16) 

Taking the curl of equation (4.16) confirms the error field of  -implicit scheme is not irrotational, i.e., 

 1
  0

n

i
curl e


 . Equation (4.16) has six modes of error generation for the velocity field at 1nt  , namely 

due to advection, cross-stress tensor pair, SFS tensor, pressure, diffusion, and the buoyancy body force. 

Since only the error component associated with pressure can be represented by the gradient of a scalar 

potential function, all other terms in (4.16) are considered mathematically intractable, in the manner of 

the original CCM theory (Williams, 1993). The error generated by the remaining term must be reduced 

by insuring that 
*

11i i nn
u u


 . This is done by employing an iterative cycling through momentum 
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equations and, in case of thermal flow, the energy equation. This approach is implied in most pressure 

correction methods, but is rarely stated. If a pressure correction can direct the solution to momentum 

equations towards satisfaction of the continuity equation then the scheme has to be not only implicit 

but also iterative. 

An iteration strategy is devised to drive the divergence error to below some specified level. The first step 

is to assume that the divergence error at iteration 1k   can be approximated by the gradient of a 

potential function, hence 
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Using (4.17) and neglecting the intractable terms in (4.16) yields 
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 (4.18) 

Equation (4.18) is integrated and the constant of integration is set to zero. This results in a pseudo-

pressure correction equation of the form 
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Equation (4.19) states that the pressure correction at iteration k  depends on the unknown solution 

at iteration 1k  . To remedy this problem a computable strategy relies on accumulation of   solutions 

over the iterative sequence, i.e., 
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where ( )
n

p  is the known, mass conserving kinematic pressure at the previous converged solution time 

station. 

4.3 POISSON EQUATION FOR   

The development of a Poisson equation for continuity constraint potential function   proceeds as 

follows. Recall from (4.11) that the defining equation for   is 

  *  i i

i

u u
x


  


 (4.21) 

where iu  is the solenoidal velocity for which 0iu  , and *
iu  is the computed velocity not satisfying 

the continuity equation, i.e., * 0iu  . Using these two facts and taking the divergence of (4.21) results 

in the Poisson equation for   of the form 
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  
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 (4.22) 

Hence, the continuity constraint function   is the solution to an elliptic boundary value problem (4.22). 

The Galerkin weak statement for (4.22) reads 
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Applying the Green-Gauss theorem to (4.23) the Galerkin weak statement for   becomes 
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 (4.24) 

In his dissertation Williams describes six types of boundary conditions, namely, inflow, outflow, 

entrainment, symmetry, no-slip, and free-slip. The natural boundary condition for (4.22) is the 

projection of the gradient of   onto the outward-pointing normal at the boundary. From (4.21) this 

projection is related to the error in velocity field at the boundary as 

  *
i i i i

i

n u u n
x


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

 (4.25) 

The analysis of five types of boundary conditions (leaving off the free-slip condition) can be summarized 

as follows. 

For inflow, symmetry, and no-slip boundaries the homogeneous Neumann BC is valid, hence 

 0i

i

n
x





 

For outflow and entrainment boundaries the homogeneous Dirichlet BC is prescribed, hence 

 0   

4.4 PRESSURE POISSON EQUATION 

Although it appears that the method is now complete there is still no equation for calculating the 

pressure field. Thus derivation of a filtered pressure Poisson equation (PPE) is required. The PPE is 
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implied by the space-filtered INS equations and is derived from there by taking the divergence of 

momentum equation (4.2) and invoking the continuity equation, yielding 
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 (4.26) 

Assuming sufficient regularity, the continuity equation 0 u  can be invoked in three places to 

simplify equation (4.26). Assuming that temporal and spatial derivatives commute, the first term in 

(4.26) associated with time derivative is simplified as 
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Likewise, assuming that spatial derivatives commute and noticing that reference Reynolds number does 

not vary over the flow field, the diffusion term in (4.26) also vanishes, hence 

 
2 2

2 2

1 1
0i i

i j j i

u u

x Re x Re x x

      
          

 

Finally, the convective acceleration term can be further simplified upon the same assumption of 

commuting spatial derivatives. The continuity equation is used to rewrite convective acceleration term 

in its final simplified form as 
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Therefore the pressure Poisson equation for a divergence-free space-filtered velocity vector field is 
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The construction of Galerkin weak statement for PPE in the form presented in (4.27) poses two 

problems. The first problem is associated with appearance of a spatial derivative on temperature in the 

buoyancy term, which poses a real challenge to the GMRES solver. Secondly, the natural pressure 

boundary conditions are hard to define. 

To solve both of these problems the PPE is rewritten by introducing a new quantity  *
iu  as 

       *
i2

    Θ 0ˆi
i j

i i j

i j j

ij

i

u
c

p Gr
p u u g

x x x x x
u

Re
u

     
           



 

 , (4.28) 

where  *
iu  is defined as 
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 (4.29) 

Applying the Green-Gauss theorem to (4.28) the Galerkin weak statement for PPE becomes 
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Using the definition for  *
iu  the Galerkin weak statement for pressure results in 
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At this point the boundary conditions for the pressure must also be prescribed. The BCs are obtained by 

projecting momentum equations onto the boundary itself (Gresho and Sani (1987),Orszag et al. (1986)). 

This can be done in two ways: either using the normal projection, or using two tangential projections of 

momentum equation onto the boundary. Projection onto the normal direction (outward-pointing) 

produces genuine non-homogeneous Neumann boundary condition for PPE in (4.27) on those 

boundaries where the normal velocity is specified, hence 
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 (4.32) 

The tangential projection with subsequent integration over the boundary gives a Dirichlet pressure 

boundary condition. Gresho and Sani (1987) demonstrate that if Neumann BC (normal) is applied to the 

pressure Poisson equation, the solution to the pressure field will also satisfy the Dirichlet BC 

(tangential). However, unlike Neumann boundary condition that applies for both 0t   and 0t  , the 

tangential momentum equation on the boundary only applies for 0t  . 
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Note that the Galerkin weak statement (4.31) by virtue of Green-Gauss theorem ‘automatically’ implied 

the Neumann boundary equations shown in (4.32). Indeed, using an alternative definition of  *
iu , 

namely  
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 the Galerkin weak statement for pressure is 
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 (4.33) 

The same result is obtained by substituting (4.32) in (4.31). 

4.5 SPACE FILTERED CCM SOLUTION STRATEGY OVERVIEW 

The solution strategy for LES theory CCM algorithm is now devised, recalling a  -implicit scheme 

requirement for an iterative procedure within the time-step. During iteration, CCM replaces genuine 

pressure with a continuity constraint variable, 1 ,p
nC 

 where the superscript p  denotes iteration index. 

Therefore, the  -implicit scheme for momentum equations is 
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The CCM iterative solution strategy modified to include arLES closure equations proceeds as follows 

(1) Initialize the constraint state variable by either 1 1
1

p
n nC C 

   or 1
1

n
nC p  , where np  is the 

pressure from the previous time step converged solution 
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(2) Solve the momentum and energy equations implicitly for * p
u  and * p

 : 
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 (4.35) 

(3) Solve Poisson equation for p : 
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(4) Update approximation for 1nC   by 
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(5) Repeat steps (2) – (4) until  

p
E  , convergence tolerance 

(6) Solve Poisson equations for i jc : 
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(7) Solve Poisson equations for jv  : 
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(8) Prior to advancing the time step, solve the PPE: 
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5. ARLES WEAK FORM FE IMPLEMENTATION 

The set of LES theory partial differential equations (PDEs) augmented with boundary commutation 

integrals and two Poisson equations generated by the continuity constraint algorithm is 
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With BCE definitions 
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The irreversible work viscous dissipation term in (5.2) is ignored. 
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The SFS tensor and vector closure candidates are, respectively 
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The system of space filtered equations described in (5.1)-(5.2) constitutes a nonlinear set of coupled 

initial-value PDEs, whose solutions are constrained by the incompressibility condition. PDEs (5.1)-(5.2) 

can be expressed in the flux vector form 
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where q  is a state-variable place-holder, jf  is the kinematic flux vector, 
d
jf  is the dissipative flux vector 

and s  is the source term. For three-dimensional analysis the following definitions apply 
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The quasi-linear Poisson PDEs (5.3)-(5.6) for i jc , jv  ,  and p  all of general from 

    2 0sq q q       (5.12) 

where q  is a state-variable place-holder and s  is the source term. In three dimensions the following 

definitions apply 
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5.1 GALERKIN WEAK STATEMENT 

The implementation of arLES theory is performed via finite element spatial discretization of a Galerkin 

weak statement (GWS) for the LES theory-identified PDE system (5.1)-(5.6). The GWS FE approach is 

marvelously described in a book by Baker (1983), and more recently in Baker (2006) and Baker (2012). 

The FE discrete implementation is summarized in six steps. 

Step 1. The analysis starts by constructing a continuous approximation of the state-variable q  and q  

with an assumption that space and time can be separated, hence 

      
1

,
N

N
j i j i

i

q x t q x Q t


    (5.15) 

where  i jx  is the trial space function set and  iQ t  is the set of unknown expansion coefficients 

that are determined during the computations. The summation over N  denotes the inner product of the 

known trial function set and the set of unknown coefficients. 

Step 2. The difference between the exact and approximate solutions defines the error function. The 

minimization of approximation error is accomplished via forming a weak statement (WS ) as 

    ,   0N N
i jWS x t q d



    (5.16) 

The weak statement ensures that the error due to   0Nq   is made orthogonal to a set of test space 

functions  ,  i jx t . The optimal choice for the test space function set  ,  i jx t  is the one that produces 

the absolute minimum approximation error. For a wide range of engineering problem statements this 

minimization is achieved when the trial and test space function sets are identical (Baker, 2006). This 
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choice yields what is historically called the Galerkin form for NWS , or simply the Galerkin weak 

statement ( NGWS ), hence 

     0N N
i jGWS x q d



   (5.17) 

Using (5.17) the NGWS  form for the differential equation system (5.10) is 
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Similarly, the NGWS  form of (5.12) 
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 (5.19) 

In (5.18) and (5.19) the Green-Gauss theorem is applied to lower the order of the flux term derivatives 

and the Laplacian operator, respectively. This process also produces a surface integral creating a 

placeholder for all natural boundary conditions in the NGWS . 

Step 3. The FE approach utilizes a spatial semi-discretization h  of the continuum solution domain  . 

This discretization represents a union of non-overlapping subdomains e  or finite elements, such that 

 h
e

e

    (5.20) 
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Step 4. The FE approximation Nq  is then formed as the union of FE approximations eq  with local 

support on e , hence 

        , , , ,N h
j j j e j

e

q x t q x t q x t q x t    (5.21) 

Therefore for any FE domain e  the approximate functions  ,e jq x t  can be expressed in the general 

form as 

      ,
T

e j k e
q x t N Q  (5.22) 

where  
T

kN  is a vector of FE trial space basis functions, also called the FE basis set. The number of 

elements in the basis set corresponds to the number of nodes in e . 

Step 5. All integrals in the NGWS  (5.18) are evaluated locally for each element, and the resulting 

element matrices are then assembled into a global matrix statement. For unsteady PDEs, hGWS  

produces a set of ordinary differential equations, coupled via the mass matrix  MASS , i.e., 

  
 

    0h d Q
GWS MASS RES Q

dt
    (5.23) 

where  MASS is a square matrix whose entries are evaluated during the integration and assembly 

processes,  RES  is a residual column vector containing contributions from all terms in (5.18) except the 

time term,  Q is a column vector of state-variable approximation coefficients at every node of the 

mesh. 

Step 6. The remaining time derivative in (5.23) is discretized using the  -implicit scheme, resulting in an 

algebraic statement 
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                 1 1
Δ 1 0n n n n

FQ MASS Q Q t RES RES  
       (5.24) 

The FE implementation of (5.19) for i jc , jv   directly produces an algebraic system  

         0FQ DIFF MASS Q s       (5.25) 

which for pure Poisson equations for   and p  is reduced to 

         0FQ DIFF Q s      (5.26) 

A coupled nonlinear system of algebraic equations (5.24) produced by the hGWS  must be solved 

iteratively. Constructing the Jacobian matrix      
1 1

/
n n

JAC FQ Q
 
    the classic Newton method is 

used with the following iterative cycle 

 

       

 

 
   

     

1

1 1

1

1 1

1 1 1

0 0

1 !
;    

for 0,1,2, ... until convergence

Δ

p

p p

n n

n

p p p

n n

n n n

n

n

RES
MAS

Q

S t Q FQ

Q FQ F

Q Q Q

Q

p

Q
 





 



 

 







 
   





 



 



 (5.27) 

The solution to (5.12) for i jc , jv   is obtained directly via the matrix statement 

     DIFF MASS Q s     (5.28) 

and for   and p  via 

     DIFF Q s    (5.29) 
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5.2 FINITE ELEMENT TEMPLATE STATEMENT 

The finite element (FE) template concept described in Baker (2006) states that the FE implementation of 

a weak statement produces six types of data for each FE domain e . Removing two data types from the 

original description, namely element average and metric data, the remaining four types are used in this 

work to represent the weak statement in the template format as 

  
 e

e e

global element master unknown
WS

constant variable matrix or data

      
       

      
 (5.30) 

where e  denotes element dependence. 

The following matrix identification convention is used for the master matrix 

  Mbccc : 

  M  A , B , or C . Denotes the dimension of the problem 1n , 2 , or 3 . 

  b  an integer. Denotes the number of FE basis kN  in the  eWS  term. 

  c  x , y , z , or 0  repeated b  times. Indicates if the basis is differentiated. 

Using this notation the weak forms of equations (4.35) can be expressed in the template format. To 

avoid cluttering the SFS tensor and vector contributions are not included herein. Their FE templates are 

discussed in section 5.3. Denoting  TDT t  ,   TDT1 1 t   , and the values of the state-variables at 

the previous time step as UL , VL , WL , TL  etc., the momentum equation in the x-direction is 
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      

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

   

2

1 200 TDT 200

1 200 TDT1 200

TDT 300 TDT1 300

TDT 300 TDT1 300

TDT 300 TDT1 300

TDT 20 11 TDT1 20

TDT 20 12

TDT 20 13

TDT 2

TDT 20

TDT* * 1 200

UBCE

UBCEL

FU c U c

c UL c

U c x U UL c x UL

V c y U VL c y UL

W c z U WL c z UL

c x C c x

c y C

c z C

Re c kk U

c x C

Gr Re g c T

 

 

 

 

 

 





 



 

 

    

    

    

    

    2

11

TDT1 20 12

TDT1 20 13

TDT1 2

TDT1 20

TDT1* * 1 200

C L

c y C L

c z C L

Re c kk UL

c x P

Gr Re g c TL





 



 

 (5.31) 

Note that the diffusion matrix  2c kk  includes all three second-order spatial derivatives with respect to 

x, y, and z. The sign of the diffusion term changed due to the application of Green-Gauss theorem. The 

templates for y- and z-momentum equations can be expressed in exactly the same manner 



65 

 

      

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

   

2

1 200

1 200

TDT 300

TDT 300

TDT 300

TDT 20 12

TDT 20 22

TDT 20 23

TDT 2

TDT 20

TDT* * 1 200

TDT 200

TDT1 300

TDT1 300

TDT1 300

TDT1 20 12

TDT1 20

V

V

V

V

VB

FV c V

c VL

U c x

V c y

W c z

c x C

c y C

c z C

Re c kk

c y C

Gr Re g c T

c

UL c x VL

VL c y VL

WL c z VL

c x C L

c y C

CE

















 



 











  

    

    

    

    

    

      

    

    

    

    

    

    

    

    

    

    2

2

1 200

1 200

TDT 300

TDT 300

TDT 300

TDT 20 13

TDT 20 23

TDT 20 33

TDT 2

TDT 20

TDT* * 1 200

T

22

TDT1 20 23

TDT1 2

TDT1 20

TDT1* * 1 200

TDT1 200

FW c

c WL

U c x

V c y

W c z

c x C

c y C

c z C

Re c kk

c z C

Gr Re g c T

L

c z C L

Re

W

W

W

W

W

c kk VL

c y P

Gr

VB

Re g

CE

c TL

Lc

















 



 





 



 



    

    

    

    

    

    

    

    

    

    

    

2

DT 200

TDT1 300

TDT1 300

TDT1 300

TDT1 20 13

TDT1 20 23

TDT1 20 33

TDT1 2

TDT1 20

TDT1* * 1 200

TDT1 200

c

UL c x WL

VL c y WL

WL c z WL

c x C L

c y C L

c z C L

Re c

WBCE

W

kk WL

c z P

Gr Re g c

c CE

TL

B L













 



 

  (5.32) 

Using the same notation the energy equation is expressed in the following template form 

      

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

1 200 TDT 300 TDT1 300

1 200 TDT 300 TDT1 300

TDT 300 TDT1 300

TDT 20 1 TDT1 20 1

TDT 20 2 TDT1 20 2

TDT 20 3 TDT1 20 3

TDT 2 TDT1 2

TDT 200 TDTT

FT c T U c x T UL c x TL

c TL V c y T VL c y TL

W c z T WL c z TL

c x V c x V L

c y V c y V L

c z V c z V L

Pe c

BCE

kk T Pe c kk TL

c

  

  

 

 

 

 

   

     1 200 Tc BCEL  (5.33) 
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The Galerkin weak statements for   and p  are given by equations (4.24) and (4.33), respectively. 

Multiplying both equations through by -1, the resulting template forms are 

 

      

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    2

2

1 2 1 2

1 30 1 2

1 30 1 2

1 30 1 2

1 30 1 2

1 30 1 2

1 30 1 2 0

1 30

1 30

1 30

1 2

12

22

23

13

23

33

1

1 2

1 2

1

12

13

FPRES c kk PRES c yx

U c xx U c yy

U c yx V c yz

U c zx W c zx

V c xy U c zy

V c yy V c zz

V c zy W Gr Re g c x T

W c xz U Gr Re

W c yz V

W c zz W

c xx

c xy

c x

C

C

C

C

C

C

C

C

z C

 

 

 

 

 

 

   

   











    

    

      

    

    

    

2

2 2 0

3 2 0

1 2

1 20

1 20

1 20

g c y T

Gr Re g c z T

FPHI c kk PHI

c x U

c y V

c z W

  









 (5.34) 

Note that the SFS tensor contribution to (5.34) consists of 54 differential terms. The remaining 

templates for ijc  and jv   are (only 12c  and 2v   are presented) 

       

    

    

    

    

      

    

    

    

    

2 2

12 1 2 12 2 1 2 2

200 200

3 0 2

4 / 12 4 / 2

2 2

2 2

2

0

2

3 0 2 0

3 0 2 0

FC c kk C FV c kk V

c c

U c x x c x x

U c y y V c y y

U c z z

C V

V V

c z z

T

V T

V V T

   

 

 

 

 

 

 (5.35) 

Finally, the template for the continuity constraint variable C  represents an algebraic update operation 

replacing the master matrix with an identity matrix, hence 

 
      

    

1

1 TDT

FC I C

I PHI



 
 (5.36) 
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5.3 THE GWS AND TEMPLATE FOR THE SFS CLOSURE 

Following the idea of direct use of algorithm’s numerical diffusion an analytically-derived SFS tensor 

candidate is 

 
2

( )
6

ji
j i S j k i k

k k

uh Re u
u u C u u u u

x x


 
    

  
 (5.37) 

For thermal problems analytical derivation of the companion SFS vector closure candidate for the 

temperature is 

 
2

( )
12

j S j k

j

h Pe
u C u u

x


 
     

 
 (5.38) 

The SFS tensor and vector closures (5.37) and (5.38) are associated with convection processes in the 

flow. These terms appear in conservation principles (4.2) and (4.3) with a partial derivative / jx  . 

Including this fact and expanding (5.37) and (5.38) written in index form, yields 

 

 
2

2

6

6

ji
S i

k k

i i

j i j k

i i i i

i i i
S i i
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The Galerkin weak statement for (5.39) is readily identified as 
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Similarly the Galerkin weak statement for (5.40) reads as 
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 (5.42) 

In integral relations (5.41) and (5.42) the measure of the mesh, h , is assumed constant, which is only 

true for uniform meshes. For non-uniform meshes this measure is element dependent thus has to stay 

as part of the integrand. In FEM the determinant of the Jacobian of coordinate transformation in three 

dimensions is defined as 

 det
8

eV
  (5.43) 

where eV  is the element’s volume. 

Assuming that the element is not severely skewed, the following assumption is reasonable 

 3
eh V  (5.44) 

Performing simple arithmetic manipulations the relation between the mesh measure (squared) and the 

determinant of the Jacobian of coordinate transformation is 

 2 2/34deth   (5.45) 

The differential terms constructing the SFS tensor and vector closures include two spatial derivatives, 

each contributing a factor of 1det  into the metric data (Baker, 2006). Accounting for the coordinate 
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transformation itself (a factor of det ), the resulting exponent on the determinant is 1 . Including 2h  

multiplier and using approximation (5.45) gives an algebraic alteration to the metric data as 

 
2

3

4

det det

h
  (5.46) 

instead of the original 1det . 

The SFS tensor and vector weak form construction requires special treatment. To avoid higher order 

matrices like  40000c  the two-variable products of velocity components (  etc.UU, UV, UW ) are treated 

as one variable, meaning that only one shape function is used in constructing the GWS. 

The FE templates for the SFS tensor and vector closures are given below. For the SFS tensor only the 

terms contributing to the x-momentum equation are presented, i.e., ju u  . The alteration to the metric 

data (5.46) is indicated by adding " "h  symbol to the name of the matrix. 
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5.4 FINITE ELEMENT AD FORMULA IMPLEMENTATION 

Determination of proper boundary conditions for space filtered state-variables iu ,  , ijc  and jv   via 

approximate deconvolution approach requires implementation of the AD formula, i.e., 

      
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24
q q q


  x x x  (5.49) 

Equation (5.49) represents a differential definition involving Laplacian operator and requiring 

discretization. Finite element evaluation of the unfiltered quantity  q x  is readily established via 

Galerkin weak statement for (5.49), hence 
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The FE template statement for (5.50) is 
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The application of the Green-Gauss theorem to the Laplacian term in (5.49) generates an efflux 

boundary integral (last term in (5.50)) which is not known a priori. These slopes are calculated using 

third order forward finite difference formula based on four nodal values, i.e., 
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 (5.52) 
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6. DISCUSSION AND RESULTS 

Verification and validation of an essentially analytical rational LES (arLES) formulation with focus on 

bounded domains is established by conducting computational experiments for four pertinent 

benchmark problems. 

First the feasibility of the ADBC formulation is examined for a two-dimensional non-steady heat 

conduction problem with known analytical solution. The linear problem is chosen to separate the 

boundary condition considerations from the closure problem associated with non-linear equations such 

as the Navier-Stokes PDE system. The AD approach is utilized to approximate the unknown boundary 

conditions, as well as the BCE term. 

During the second computational experiment the ADBC theory implementation is closely examined 

using two-dimensional fully-developed flow in a channel with time-averaged turbulent boundary layer 

(BL). Proper filter measure specification along with appropriate mesh construction technique is sought 

utilizing a typical turbulent BL profile. 

The third computational experiment is conducted for three-dimensional external laminar flow over a flat 

plate. Since the arLES theory closure is absent the word turbulent it is Reynolds number unconstrained. 

Therefore validation of arLES theory applicability in predicting laminar flows on bounded domains is 

pertinent. This three-dimensional benchmark also helps to set the stage for implementing a more 

complicated three-dimensional and thermal analysis of buoyancy driven flow in a cavity. 

Finally the arLES theory closure is fully examined for a three-dimensional thermally driven flow in a 

differentially heated cavity of aspect ratio 1x8x8. The spatial structure of the flow includes such 

complexities as vertical and horizontal boundary layers, corner structures, stratified core and so on 

which sensitively depend on the aspect ratio, Rayleigh and Prandtl numbers and thermal boundary 
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conditions. The buoyancy-driven cavity flow exhibits a critical Rayleigh (Ra) number responsible for 

transition from steady to various modes of unsteady cyclic flow with subsequent generation of a 

significant range of eddy scales for progressively larger Ra number. 

6.1 NON-STEADY HEAT CONDUCTION PROBLEM 

The first computational experiment examines feasibility of the ADBC formulation using one- and two-

dimensional non-steady heat conduction problems with known analytical solutions. Originally the ADBC 

approach is demonstrated using one-dimensional heat conduction problem with time dependent 

boundary conditions (Borggaard and Iliescu, 2006). The linear problem is chosen to separate the 

boundary condition considerations from the closure problem associated with non-linear equations such 

as the Navier-Stokes PDE system. In this dissertation the original one-dimensional analysis is repeated 

with almost identical results. A numerical validation of ADBC for two-dimensional heat conduction 

problem is sought next. 

6.1.1 ONE-DIMENSIONAL ANALYSIS 

One-dimensional heat equation accompanied by initial and boundary conditions reads as 
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 (6.1) 

The source term f , the boundary condition b , and the initial condition 0q  are chosen such that the 

heat equation has an exact solution 

      , sin 2 sin 8q x t t x x     (6.2) 
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This yields      2 2, 1 4 sin 2 64 sin 8f x t x x      ,  b t t  and      0 sin 2 sin 8q x x x   . The 

domain of interest is  0,1  and the final time is 0.05T  . The above functions need to be extended 

outside  0,1  in order to convolve the heat equation with a spatial filter. Therefore, the exact 

solution for q  is extended by its values at the boundary, thus  ,q x t t  for  0,1x . This yields the 

following extensions for f  and 0q :  , 1f x t  ,  0q x t  for  0,1x . One-dimensional Gaussian filter 

function,  g x , has the form 
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 (6.3) 

where the filter measure   is chosen to be 0.2 . The interval  0,1  is divided into 20 equidistant 

subintervals  0.05x  . In order to compute the convolved functions, the computational domain 

 0,1  is extended to the left and right by 0.2  . To eliminate the effects of time integration a very 

small time-step is used, i.e., 0.0001t  . 

The space filtered version of the heat equation is derived by extending q , f , b  and 0u  to 1 , and 

then convolving the heat equation with a spatial filter, resulting in 
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 (6.4) 

In (6.4) the boundary commutation error (BCE) integral is evaluated at two end points via direct 

multiplication of a Gaussian function with a spatial derivative. These derivatives are approximated via 

first order finite differences as 
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The unknown components  ,q x t  and  1 ,q x t  that lie strictly inside   are evaluated using an 

approximate deconvolution formula, hence 
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 (6.6) 

Finally the boundary conditions for q  are established using the ADBC approach detailed in section 3.3. 

Borggaard and Iliescu (2006) conducted a set of four numerical experiments as described below. Their 

results are provided in Figure B.6 showing the plots of error in approximating space-filtered q  (in the 

original paper u  was used instead of q ). The numerical experiments are summarized as 

Test 1: Exact BCE Terms, Exact Boundary Conditions (Figure B.6, top left). This test represents the 

benchmark. 

Test 2: No BCE Terms, Exact Boundary Conditions (Figure B.6, top right). This experiment was conducted 

to illustrate the importance of the BCE integral. 

Test 3: Approximate BCE Terms, Exact Boundary Conditions (Figure B.6, bottom left). In this test the BCE 

integral is approximated using finite differences and the AD formula as described in (6.5)-(6.6). 

Test 4: Approximate BCE Terms, Approximate Boundary Conditions (Figure B.6, bottom right). Both the 

BCE integral and the boundary conditions are approximated. 

These four experiments are repeated herein achieving almost identical results. Unfortunately, the 

original paper does not specify how the error in q  is calculated, therefore there is a slight discrepancy in 

the results. In this study the error is defined as the difference between exact and computed solutions. 
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The plots of error in approximating q  as produced in this study are shown in Figure B.7. The results of 

both studies are now compared. 

Our result of Test 1 is significantly different from the result of Borggaard and Iliescu. A possible 

explanation might be that the error for Test 1 is defined differently from Tests 2, 3 and 4. The fact that it 

is strictly negative for a solution that consists of two sine functions makes I think this could be the 

reason.  

In Test 2 the error distributions look almost identical. Both figures indicate a huge increase in error as 

compared to the result of Test 1. This increase proves the utmost importance of the BCE term and 

suggests that it should never be dropped from the space filtered equations. 

In Test 3 the maxima and minima of error are in very good agreement. Both studies indicate a fourfold 

reduction in error as compared to Test 2. These results indicate the correct and efficient implementation 

of the BCE integral approximation as described above. 

Finally the results of Test 4 agree very well also. In this test the exact boundary condition is replaced by 

an approximation. Both studies show a slight decrease of accuracy on the boundary, as compared to 

Test 3, which does not degrade the overall solution accuracy.  

6.1.2 TWO-DIMENSIONAL ANALYSIS 

Two-dimensional heat equation is used to continue numerical validation of ADBC. As before, the linear 

problem is chosen to decouple the boundary treatment from the closure problem. The heat equation in 

two dimensions along with the boundary and initial conditions reads as 
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 (6.7) 

where domain  0 1;0 1x y     . 

The source function  ,f x y  is prescribed to be 

      2, 2 sin sinf x y x y    (6.8) 

To shorten the analytical solution a non-homogeneous boundary condition is prescribed only at 0y  . 

The other three segments of the boundary are assigned homogeneous Dirichlet BCs, hence 

    

0, for x = 0; x,y = 1

, sin
, for y = 0

2

b x y x






 



 (6.9) 

The initial condition is identified from the analytical solution by setting time to zero, hence 

  
   

 
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, sin sin

2 sinh 2

x y
q x y x y

  
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  


   (6.10) 

The analytical solution to (6.7) reads as 
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  

 
     (6.11) 

which satisfies the initial condition (6.10), as well as the boundary condition (6.9). 

6.1.2.1 ANALYTICAL SOLUTION OF THE HEAT EQUATION 

Derivation of the analytical solution (6.11) is presented next. The solution to an initial-boundary value 

problem (6.7) with nonhomogeneities in both the heat equation and the boundary condition is obtained 
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in two steps. First keeping the non-homogeneous BC while removing the source term ( , )f x y  the 

solution to the homogeneous heat equation is sought, i.e., 1q . This solution is further divided into a sum 

of steady and non-steady solutions using the following theorem 

Theorem (Without proof): Let ( , )w x y  be the solution to a Dirichlet problem 
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 (6.12) 

and let ( , , )v x y t  be the solution to an IBVP 
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 (6.13) 

Then 1( , , )q x y t  satisfies 

 
1

1

( , , ) ( , , ) ( , )

lim ( , , ) ( , )
t

q x y t v x y t w x y

q x y t w x y


 


 (6.14) 

 

The second part of the solution to (6.7) satisfies the following IBVP problem 
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 (6.15) 

The final solution is comprised of the individual solutions to problems (6.12), (6.13) and (6.15), hence 
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 1 2 2( , , ) ( , , ) ( , , ) ( , , ) ( , ) ( , , )q x y t q x y t q x y t v x y t w x y q x y t      (6.16) 

Solution to the Dirichlet problem (6.12) with boundary condition (6.9) can be established using the 

integral transform method, see Example 2.14 in  z   k (1   ) and Example 5.8 in Mikha lov and  z   k 

(1984). The solution is written in its final form as  

  
   

 

sin sinh
,

2 sinh

x y
w x y

  

 


  (6.17) 

The initial condition in (6.13) depends on  ,w x y  as well as the initial condition  0 ,q x y . The latter has 

not been chosen yet. To simplify the solution to (6.13) the initial condition  0 ,q x y  is chosen to be 

        
   

 
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
     (6.18) 

This yields the following initial condition for (6.13) 

          0 2

1
, ,0 , , sin sin

2
v x y q x y w x y x y 


    (6.19) 

Using the separation of variables method an analytical solution for  , ,v x y t  is obtained as 

      
22

2

1
, , sin sin

2
tv x y t e x y  



  (6.20) 

Finally the solution to an IBVP (6.15) with zero boundary and initial conditions is obtained using either 

the integral transform method or the Duhamel’s principle. The solution for  2 , ,q x y t  is 

        
22

2 , , 1 sin sintq x y t e x y     (6.21) 

Combining all three intermediate solutions, namely (6.17),(6.20) and (6.21) the solution to the original 

problem stated in (6.7) is 
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satisfying the initial condition (6.18) and the boundary condition (6.9). 

6.1.2.2 COMPUTATIONAL SETUP 

The space-filtered version of the heat equation is obtained by extending q , f , b  and 0q  to 3 . The 

heat equation can then be convolved with a spatial filter resulting in 

      tq q g q d f



      x s s n s s     3in 0,T . (6.23) 

The solution u , the source term f , the boundary condition b , and the initial condition 0q  are extended 

outside of   by their values at the boundary, yielding the extensions 
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 (6.24) 

And the source term is extended by 0, hence 

 0, for ,extf x y   (6.25) 

In two dimensions the Gaussian filter  ,g x y  is constructed as a product of two one-dimensional 

Gaussians defined in (6.3), one for each spatial direction, thus 

  
 2 2

2 2

66
, exp

x y
g x y

 

  
        

 

where the filter measure   is chosen to be 0.2 . 
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A two-dimensional mesh is constructed by uniformly placing 21 nodes in each spatial direction making it 

a total of 441 nodes with 0.05x y h      . The explicit Euler scheme is used with 0.001t   and 

final time 0.05T  . 

A set of numerical experiments is conducted similar to that of Borggaard and Iliescu (2006). The ADBC 

analysis starts by establishing an analytical solution for space-filtered q  based on the exact solution for 

q  shown in (6.11). The exact boundary conditions needed for the first three tests are extracted from 

the exact solution for q . This solution is also used for measuring the error in approximating q . The 

error is evaluated by subtracting the computed solution from the exact one. The BCE term 

     g q d



   x s s n s s  is computed exactly using the analytical solution for q . Finally, the space-

filtered version of the source term  ,f x y  is calculated the same way as q , i.e., analytically, using the 

convolution with a spatial filter formula, thus 

      q g q d



 0 0x x y y y  (6.26) 

      f g f d



 0 0x x y y y  (6.27) 

where q  is the exact solution (6.11), and f  is a given source function (6.8). 

Analytical evaluations of q , f  and the BCE term are performed using Wolfram Mathematica® software 

(Wolfram Research Inc, 2008). 
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6.1.2.3 NUMERICAL ANALYSIS 

The first attempt to calculate q  analytically was to evaluate the integral in (6.26) precisely on 

 0 1;0 1x y     , i.e.,  without extending q  outside of  . The boundary conditions extracted 

from this solution are used during the first test, which is supposed to represent our benchmark problem. 

However, the error in approximating q  turns out to be unacceptable near the wall which has non-zero 

Dirichlet boundary condition, i.e., 0y  . Figure B.8 illustrates this error at final time 0.05T   peaking at 

4.9E-02. As can be clearly seen the error is dominant near the boundary 0y  , where the non-zero 

Dirichlet BC is prescribed. 

We believe that this error is due to the fact that q  has to remain smooth and continuous when filtering 

through the boundaries. When filtering operation is performed the Gaussian filter continues to operate 

outside of  0 1;0 1x y      for a distance of at least the filter measure  , and then decays 

rapidly to 0. It is this region outside of   that has to be included in the computation of q . This region 

will be called an “outside buffer layer”. The size of the buffer layer is defined by the filter measure  . 

For those boundaries with homogeneous Dirichlet BCs, the extension for q  in the buffer layer is zero, 

thus no extra treatment is required. Conversely, if the boundary condition is non-homogeneous 

Dirichlet, the function q  should be extended outside of the boundary and the limits of integration in 

(6.26) should be increased outside of   by  . In our case, the non-homogeneous Dirichlet BC is 

prescribed at 0y  , therefore the limits of integration should be changed from 
1

0 to 
1

 in the y-

direction. No extension in the x-direction is necessary since 0q   at 0x   and 1x  , and the extension 

is trivial. Figure B.9 shows the error in calculating q  at 0.05T   after the buffer layer is added. The 

error droppes by one order of magnitude compared with the result shown in Figure B.8, with the peak 

of 4.3E-03. 
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In Test 1b the exact boundary conditions at 0y   are different from those of Test 1a. They not only 

depend (non-locally) on the values of q  inside   and on the boundary  , but they also depend on 

the fictitious values of q  outside of  . As can be seen from Figure B.9, modified boundary conditions 

completely eliminate the dominant error mode shown in Figure B.8. Based on this observation, a new 

methodology for approximating space filtered boundary conditions is developed (see section 3.4). But 

before constructing and testing the new boundary conditions (Test 4), two more tests are performed 

focusing attention on the BCE term. 

In Test 1a and Test 1b the boundary commutation error term is calculated analytically as a line integral 

along each of the four bounding line segments. It acts as an additional source term in the heat equation 

(6.23). Test 2 is performed to illustrate the importance of the BCE term by not including it into the 

formulation. The boundary conditions are kept the same as in Test 1b (Figure B.9) and are exact. The 

error in approximating q  is shown in Figure B.10 at final time 0.05T  . As can be observed, the 

solution is severely polluted by the absence of the BCE term, especially near the boundaries. The error 

has increased by one order of magnitude compared with the results of Test 1b, peaking at an absolute 

of 2.7E-02. This result once again suggests that the BCE term plays an important role in the LES 

formulation and cannot be omitted. 

The next challenge in numerical implementation of (6.23) is the fact that the BCE integral therein is not 

known a priori. A numerical approximation is required to evaluate this term. Moreover, the integrand 

itself is also unknown as it depends on the normal component of the derivative of q  at the boundary. 

For our two-dimensional problem the BCE integral consists of four line integrals, one for each boundary 

segment, i.e., 
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 (6.28) 

Note that each of the four line integrals in (6.28) is a function of x  and y . The partial derivatives of q  

are approximated using a second-order  3-point forward (and backward) difference approximation 
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Unlike the original one-dimensional analysis, where the derivatives are approximated using the standard 

2-point difference approximation of first-order  h , the 3-point difference formula gives a much more 

accurate result. The 3-point difference approximation requires knowing values of unfiltered q  on the 

boundary (first point) and inside the domain (the other two points). While q  on the boundary is 

obtained from given Dirichlet boundary conditions (6.9), the values of q  inside the domain are not 

known a priori. An approximate deconvolution formula is used to recover unfiltered q  from q , hence 

        
2

1 4, , ,
24

n n nq x y q x y q x y


      (6.30) 

The Laplacian in (6.30) is approximated using the 2nd-order FD approximation on a quincunx, commonly 

referred to as two-dimensional five-point stencil 
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To check the accuracy of the approximate deconvolution formula (6.30), the exact solution (6.11) is 

compared with an approximation of q  recovered from q  using (6.30) and (6.31). For this comparison 

an approximation of q  is computed in Test 1b. As a reminder, in Test 1b the boundary conditions and 

the BCE term are evaluated exactly. The error mode should then be primarily associated with the error 

incurred from using the AD formula (6.30). The infinity norm of the pointwise absolute error is plotted in 

Figure B.11 and is defined as 

 . . 100%exact appr deconv

exact

q q
e

q



  (6.32) 

As can be seen, the AD formula gives sufficiently accurate approximation of non-filtered q . 

We proceed with establishment of an approximation to the BCE integral. The line integrals in (6.28) are 

numerically integrated using Newton-Cotes quadrature rules. These rules are based on the evaluation of 

the integrand at equally spaced points and are therefore a natural choice for uniform Cartesian mesh. 

Although the Newton-Cotes formulae can be constructed for any degree n , for large n  these rules can 

sometimes suffer from catastrophic Runge’s phenomenon (Runge, 1901) where the error grows 

exponentially. To avoid this problem the interval of integration  0,1  is broken down into smaller 

subintervals so that a lower degree rule can be used on each of these segments. This technique is called 

a composite rule. A five-point Newton-Cotes formula of closed type, or the Boole’s rule is used (Boole 

and Moulton, 1960). This requires breaking the original interval of 21 nodes into five subintervals of 

length 0.2 (5 points per interval) and then adding the results. The same technique is used to evaluate all 

four line integrals in (6.28). 
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In Test 3 the exact BCE integral is replaced by its approximation as described above, while the boundary 

conditions are kept exact. Figure B.12 illustrates the resulting error in approximating q  at the final time 

0.05T  . The result shows that the error is almost identical to that of Test 1b. A slight variation is 

noticeable near the boundaries where the BCE term has the greatest effect. This indicates the 

appropriateness of the BCE term approximation technique and advances the analysis to the final test 

where the exact boundary conditions are replaced by an approximation. 

In Test 4 the approximate boundary conditions for space filtered q  are constructed using a similar 

approach to that presented in Borggaard and Iliescu (2006). However, the implementation presented 

herein has two major improvements over the original ADBC approach. The details of this 

implementation are presented in section 3.4. 

In this test problem the calculation of q  at 0y   is performed using a square domain of integration as 

shown in Figure B.5. Considering that 0.2   and 0.05h   this square is composed of 9 9 81   

nodes. In order to evaluate the convolution integral (3.14) and to take advantage of the composite rule 

of numerical integration, this square is broken down into four subsquares ( 5 5 25   nodes each). The 

double integral is then numerically evaluated in each quarter using the Boole's rule applied in both x  

and y  directions. 

The boundaries with homogeneous Dirichlet BCs are treated differently. Since no buffer layer is 

included, the shaded area in Figure B.5 is reduced to a rectangle that lies solely inside  . Again, in our 
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test case this rectangle is made up of 9 5 45   nodes. This time the rectangle is broken down into two 

(not four) identical squares ( 5 5 25   nodes each) and the numerical integration proceeds as before. 

Finally, the boundary nodes  ,b bx y  that are less than   away from corners require special attention. 

The domain of integration becomes smaller near the corners. This fact poses no problem for this 

integration technique. Since the composite rule used to evaluate the convolution integral (3.14) 

combines regions of different sizes, 4-, 3-, and 2-point Newton-Cotes formulae are easily employed to 

perform the integration, hence 
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 (6.34) 

The approximate boundary conditions along with an approximate BCE term are implemented and the 

resulting error in approximating q  at the final time 0.05T   is shown in Figure B.13. The error at the 

boundary nodes is not zero. However, the error in approximating the boundary conditions is rather 

small and does not degrade the overall solution accuracy. This verifies the overall appropriateness of the 

ADBC approach and gives encouragement to continue to DP. 
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6.1.3 ASYMPTOTIC CONVERGENCE, ERROR QUANTIFICATION 

The energy norm is an integral measure intrinsic to boundary value problems like the heat conduction 

PDE system studied herein. The energy norm definition for (6.7)-(6.10) is  

 
1

2E
q q qd 



 
   

 
  (6.35) 

where   denotes the thermal conductivity. 

Weak form theory, c.f., Baker (2012) enables a posteriori estimation of approximation error via a regular 

mesh refinement process generating the solution sequence. 

 /2 /2 ...h h h h

EE E E E
q e q q e         (6.36) 

where he  and  /2he represent the discrete approximation error fields for mesh levels  h  and  /2h

respectively.  

The weak form intrinsic asymptotic error estimate for (6.7)-(6.10) is 

 2 1maxh k k
eE

e Cl q    (6.37) 

for C a constant and  1max k q  the extremum  1
st

k  derivative of the exact solution q . 

For FE basis completeness degree k , this Taylor series-analogous multiplier quantifies how smooth the 

solution to (6.7)-(6.10) must be for the k -dependent weak form algorithm error estimate (6.37) to be 

valid. 

This apparent limitation to the theory, i.e., exact solution q  extremum derivative, is eliminated by 

bound replacement with the data driving the problem statement (Baker, 2012). Everything provided 
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beforehand in the problem statement, e.g., boundary conditions, filter measure, domain span, 

conductivity constitutes data. The refinement of (6.37) is 

 
22

2
, min( 1 , )h

e LE
e Cl data k m r m        (6.38) 

with additional parameters m , the integer order (1 or 2) of the underlying variational principle, and r , 

the measure of solution differentiability domination by non-smooth data. Of importance replacing the 

TS derivative with the data L2 norm generates a quantitative measure of error “size.”  

Using equalities in (6.38) for h

E
e  and /2h

E
e  while clearing C , noting m = 1 for (6.7), assuming 

smooth data and that 
2

2L
data  is mesh insensitive 

 2 /22h k h

E E
e e   (6.39) 

Substituting (6.39) into (6.36) leads to 

  /2 /2 2 /22 1h h h k h

E E E E
q q q e         (6.40) 

The resultant error estimate for the finer mesh solution of regular mesh refinement is 

 

/2

/2

22 1

h

h E
kE

q
e









 (6.41) 

Solution adherence to asymptotic error estimate (6.38) for the finer mesh solution is verifiable via the 

slope calculation 

 

/2log / log

log2

h h

E E
e e

slope

 

  (6.42) 
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Table A.1 summarizes a posteriori data generated from a uniform mesh refinement convergence study. 

All tables used in this manuscript are placed in Appendix A. Asymptotic convergence is clearly confirmed 

and monotone, however it is predicted suboptimal at approximately linear. The likely cause for 

suboptimal convergence is the filter measure 0.5   being reduced by a factor of two for each 

successive mesh refinement, which likely alters 
2

2L
data  in (6.38) which thus does not cancel out in the 

process leading to (6.41). 

6.1.4 SUMMARY AND CONCLUSIONS 

The original one dimensional ADBC approach of Borggaard and Iliescu (2006) is tested using a one-

dimensional heat conduction problem. After repeating the 1D analysis and getting almost identical 

results numerical validation of ADBC for a two-dimensional heat conduction problem is sought. The 

linear problem is chosen to separate the boundary condition considerations from the closure problem 

associated with non-linear equations such as the Navier-Stokes PDE system. The AD approach is utilized 

to approximate the unknown boundary conditions for filtered variables, as well as to approximate the 

boundary commutation error term. The finite element analysis is performed using piecewise linear basis 

functions. The significance of the BCE term is demonstrated by simply removing it from the formulation 

and measuring the resulting error. The analysis suggests that no accurate solution can be established if 

the BCE term is not included in the formulation. This result is in perfect agreement with the numerical 

analysis of Borggaard and Iliescu (2006). The significance of the BCE term is also shown in John (2004) by 

measuring the convergence rate of the weak form BCE as   tends to zero. It is shown therein that the 

rate of convergence is almost of order one if the test function is sufficiently smooth. An accurate 

approximation of the BCE integral is also offered using standard Newton-Cotes quadrature rules. The 

implementation is straight forward and efficient, however, other methods of numerical integration can 

be used, if necessary. The approximate boundary conditions for space filtered q  are constructed using a 
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similar approach to that presented in Borggaard and Iliescu (2006). A modification to the original ADBC 

approach is proposed in case of non-homogeneous Dirichlet BCs. In conclusion, the 2D analysis 

presented herein extends and generalizes the original 1D study of (Borggaard and Iliescu, 2006) while 

providing encouraging results for further analysis of more realistic turbulent flows. 

6.2 TWO-DIMENSIONAL CHANNEL FLOW 

The second computational experiment is for two-dimensional fully-developed channel flow with time 

averaged turbulent boundary layer profile. The fundamental difference of the solution to this problem, 

as compared to the heat conduction problem, is that the typical turbulent boundary layer profile looks 

nothing like a sine function. Thorough understanding is required as to what filter measure and mesh 

resolution would be reasonable to use. With this in mind the experiment’s objectives are 

 Perform validation of the ADBC formulation on a typical turbulent BL profile 

 Provide insight into the process of choosing the suitable filter measure 

 Establish the appropriate meshing technique, especially near the boundaries 

6.2.1 TIME-AVERAGED BOUNDARY LAYER PROFILE 

The reference turbulent boundary layer profile is obtained from the “PIPE” program as part of the 

companion software supplied in Turbulence Modeling for CFD by Wilcox (2006). The program allows 

choosing between twelve different turbulence models and provides freedom in placing the first node of 

the wall. The boundary layer profile used in this dissertation is generated via k   two-equation 

turbulence model with Reynolds number based on the friction velocity, u , and channel’s half-width, H , 

set to 

 180
u H

Re 



    (6.43) 
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The number of nodes used is 201 and the first node off the wall is placed at 

 0.1y   (6.44) 

The velocity profile is determined by solving the following two-point boundary value problem 

 
1 /

1

du y H

dy 

  

 





 (6.45) 

where /H u H    and /     are dimensionless half-width and dynamic viscosity, respectively. 

The standard similarity coordinates for dimensionless velocity and normal distance are defined as  

    and   
u u y

u y
u



 

    (6.46) 

where the friction velocity is defined as /wu   . 

Figure B.14 illustrates a comparison between the computed solution and the DNS data of Mansour et al. 

(1988). The results show very good agreement in the velocity as well as shear stress distributions. The 

computed solution can therefore be regarded as experimental or reference solution for the purposes of 

this dissertation. 

The established profiles are converted from the similarity space to physical space by specifying the 

following properties 

 

 
6 2

3

0.01 m

1.004 10  m /s

998.01 kg/m  

H









    

   

 (6.47) 

where H  is the channel’s half-width,   is the kinematic viscosity and   is the density. 
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A comparison between the similarity space and physical space representation is shown in Figure B.15 for 

three Reynolds numbers. Notice how all three solutions fall on the same curve in the similarity space 

coordinate system. 

The physical space Reynolds number based on the averaged velocity and channel’s width becomes 

 
(2 )

5430ave
H

u H
Re




   (6.48) 

where the averaged velocity is calculated as 

 
2

0 0

1 1

2

H H

aveu udy udy
H H

    (6.49) 

For fully developed channel flow time-averaged incompressible Navier-Stokes equations reduce to 

    
ˆ1

ˆ ˆ ˆ 0lam trb

p
u

x y
 



 
   

 
 (6.50) 

where the turbulent and laminar shear stresses (per density) are defined as 

 

ˆ
ˆ

ˆ

lam

trb

u

y

u v

 








  

 (6.51) 

The hat symbol designates time-averaging. 

Since ˆ /p x   is constant and therefore independent of y  equation (6.50) can be integrated with 

respect to y , yielding 

 int

ˆ1
ˆ ˆ

lam trb

p
y C

x
 



 
   

 
 (6.52) 

The constant of integration is determined using the fact that ˆ ˆ 0lam trb    at y H , hence 
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 int

ˆ1 p
C H

x

 
 





  (6.53) 

As a result, the sum of the shear stresses is determined to be a linear function of y , i.e., 

  
ˆ1

ˆ ˆ
lam trb

p
y H

x
 



 
   

 
 (6.54) 

where the constant slope is determined by 

 2ˆ1
3.264 10

p

x

 
   

 
 (6.55) 

Both laminar and turbulent shear stress profiles as well as their sum are plotted in Figure B.16. Note that 

ˆ ˆ
lam trb   is indeed a linear function of y  as derived in (6.54) with a slope identified in (6.55). 

Using the reference profiles for û , t̂rb  and ˆ /p x  in physical space a two-dimensional channel flow 

benchmark is set up in PICMSS environment. Predetermined Reynolds stress and pressure gradient 

distributions are imposed throughout the channel for all time steps with an idea to drive the problem to 

a steady-state solution û also known a priori. The velocity field is initialized as zero. The pressure 

distribution is linear as determined from (6.55). The Reynolds stress distribution  t̂rb y  is imposed for 

all x . The time-averaged Navier-Stokes equations solved in this problem reduce to 

 

 
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ˆˆ ˆ1
ˆ 0

 

ˆ1
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u p u
u u v

t x y y
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    
      

    


 



 (6.56) 

with the second equation being trivial. 
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The solution to (6.56) as well as all of the channel flow solutions described in this dissertation are 

obtained using the backward Euler implicit scheme. The computational mesh is always 2-element long 

and only the number of elements across the channel is mentioned. For this benchmark the mesh is 150-

element wide. The Reynolds stress distribution  t̂rb y  originally obtained with 201 nodes to the mid-

channel is interpolated to a new mesh of 75 nodes. Since the solution is axisymmetrical the 75-node 

profile is mirrored onto the other half of a 151-node profile. The channel flow benchmark is intentionally 

constructed for a full-width channel so that problems with space filtering across the line of symmetry 

can be avoided in further analysis. 

After just a few time steps a fully developed turbulent velocity profile is established. The comparison 

between the computed and reference velocity profiles is shown in Figure B.17. The perfect agreement 

verifies the correctness of implementation and advances the analysis to the next step where the space 

filtered equations are solved. 

6.2.2 SPACE FILTERED BOUNDARY LAYER PROFILE 

Space filtered incompressible Navier-Stokes equations for fully developed channel flow simplify to 

 

 

 
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 (6.57) 

where    
u

A g p dS
y

 


 
      
 x s n n s  is the BCE integral and trb u v     is the SFS tensor. 

The goal here is the same as before, i.e., using predetermined solutions for shear stress and pressure 

gradient drive the problem to a steady-state solution. However, in equations (6.57) the BCE integral 

must also be included and non-homogeneous Dirichlet BCs must be prescribed. The computed steady-
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state solution is then compared to the reference velocity solution. The five necessary components just 

described, namely space filtered velocity, Reynolds stress, pressure gradient, BCE integral and the 

boundary conditions are determined analytically via space filtering of time-averaged profiles obtained in 

the previous section. The analytical evaluations are performed using Wolfram Mathematica® software 

(Wolfram Research Inc, 2008). The computed solution is denoted as u , while the reference solution 

obtained by space filtering the time-averaged profile is denoted as û . Filtered and non-filtered velocity, 

Reynolds stress and pressure gradient profiles are illustrated in Figure B.18, Figure B.19 and Figure B.20, 

respectively. In all three figures space filtering operation causes significant errors to occur near the 

boundaries. The boundary commutation error integral provides means to account for these errors. 

Realizing that 




u

y
 is independent of x  and assuming that pressure is zero at the boundary the BCE 

integral simplifies to just two terms evaluated at the boundary nodes, hence 

    
0 0.02

ˆ ˆ
0 0.02

y y

u u
A g y g y

y y
   

 

 
   

 
 (6.58) 

where the 
0

325.11
ˆ

5
y

u

y






 and 

0.02

325.1
ˆ

15
y

u

y



 


 are easily established analytical quantities. 

Note that the BCE integral is a function of filter measure   as illustrated in Figure B.21. 

The importance of the BCE integral is illustrated in Figure B.22. Using analytically determined BCs and 

the BCE integral a steady state solution is obtained for different filter measures. Each test is performed 

twice, with and without the BCE term. The computed solutions are then compared to the reference 

velocity profile. As can be seen from Figure B.22 for all filter measures, the BCE term plays an extremely 

important role in obtaining an accurate solution. 
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6.2.3 DIAGNOSTICS OF SPACE-FILTERING 

Moving away from the manual environments used in the previous two sections, the rest of section 6.2 is 

devoted to the question of identifying a suitable filter measure and appropriate meshing technique. 

First of all, it is necessary to understand how the filter measure   affects the original time-averaged 

velocity profile ( û ) when the convolution operation is performed. With the time-averaged velocity 

profile at hand a mesh of 1,001 nodes (501 nodes to the mid-channel) with progression ratio of 1.00438 

is constructed placing the first node off the wall at   0.1y . Using the definition of convolution the 

space-filtered velocity ( û ) is obtained by performing numerical integration of the time-averaged 

velocity distribution, hence  

         u y g u y g y u d 



        (6.59) 

Six filter measures are selected to perform the analysis, namely   36; 18; 9; 4.5; 2.25; 1.125 . The 

resulting space-filtered velocity profiles ( û ) are compared with the time-averaged velocity distribution (

û ). Figure B.23 illustrates the first four profiles of 


û  and compares them with the original time-

averaged û . As can be clearly seen depending on the filter measure   space-filtered û


 attains 

different non-zero values at the solid wall. The wall slopes of û  are calculated using a third-order 

forward FD formula at nodes 1 through 4 and are summarized in Table A.2. The values of û  at the wall 

presented in Table A.2 and the overall behavior of û  shown in Figure B.23 lead to an expected 

conclusion about the action of space-filtering operation, i.e. the smaller the filter measure, the better û  

approximates û . As can be seen from Table A.2 the value of ˆ /du dy  has approached a constant value of 

approximately 162. This behavior is caused by the fact that for all 5    the filter is operating in the 

viscous sublayer where the velocity is linear. 
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Before the boundary commutation error integral (6.58) can be evaluated the unfiltered velocity field has 

to be computed first. Indeed, to evaluate the derivatives in (6.58) the unfiltered velocity ( u ) is 

computed from the analytically determined û  using the approximate deconvolution (AD) formula 

written in a homogeneous form as 

         
2

ˆ ˆ 0
24

AD ADu y u y u y u y


      (6.60) 

In what follows u  and ADu  are used interchangeably. In order to compute, or recover ADu  from û  the 

linear differential equation (6.60) is implemented in the weak form as a differential definition as 

described in section 5.4. The application of the Green-Gauss theorem to the Laplacian term in (6.60) 

generates an efflux boundary integral (last term in (5.50)) that is not known a priori. 

Using the same mesh of 1,001 nodes the unfiltered velocity ( ADu ) is computed for each of the space-

filtered velocity profiles shown in Figure B.23. The boundary integral in (5.50) is evaluated using 

analytical values of ˆ /du dy  presented in Table A.2. The resulting unfiltered velocity profiles ( ADu ) are 

compared with the time-averaged velocity distribution ( û ). Figure B.24 illustrates the first four profiles 

of ADu  and compares them with the original time-averaged û . 

The unfiltered velocity profiles, shown in Figure B.24, have very good agreement with the original time-

averaged velocity profile except for the near wall region. Figure B.24b allows for a closer examination of 

the computed profiles near the wall. The size of the error region can be approximately correlated with 

filter measure. For all of the profiles the error region ends at approximately one-fourth of the filter 

measure, i.e. 0.25y   . 
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Figure B.24 also shows that similarly to the space-filtered û


the unfiltered ADu  has a non-zero slope at 

the wall. The wall values and the slopes of u are summarized in Table A.3. The wall slopes are calculated 

using third order forward FD formula at nodes 1 through 4. 

6.2.4 SOLUTION ADAPTIVE MESH REFINEMENT 

Gaining enough understanding of filtering effects the non-practical mesh of 1,001 nodes is replaced by a 

set of more reasonable ones. Defining the filter measure as  2h , where h  is the element length, the 

six previously used values of   correspond to six levels of uniform mesh refinement study, namely 11, 

21, 41, 81, 161 and 321 nodes to the mid-channel. Indeed, the channel’s half-width is defined as 

180H   (or 0.01H  ). The element size is calculated as 
1

H
h

nnodes


 


 (or 

1

H
h

nnodes



). If 

11nnodes   then   


180
18

11 1
h  (or 

0.01
0.001

11 1
h  


) and the filter measure is    2 36h  (or 

2 0.002h   ). Similarly, the other five filter measures of 18, 9, 4.5, 2.25 and 1.125    correspond to 

the meshes of 21, 41, 81, 161 and 321 nodes, respectively. 

The same analysis, as the one performed for the dense mesh of 1,001 nodes, is repeated for uniform 

meshes. An analytical profile of û  is first determined via numerical integration of the time-averaged 

data. The wall slopes are then calculated using third order forward FD formula at nodes 1 through 4. The 

results of the mesh refinement study are compared with the results obtained from a dense mesh of 

1,001 nodes and summarized in Table A.4. Since all six profiles are determined analytically the nodal 

values of  ˆ 1u  for all meshes including 1,001-node mesh are identical, these are the boundary 

conditions. The calculation of slopes ˆ /du dy , however, depends greatly on the mesh resolution. As can 

be seen from Table A.4 none of the six cases gave an adequate prediction of slope ˆ /du dy , which was 

obtained using 1,001-node mesh. 
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There are two independent factors that play an important role in predicting the slope accurately, i.e., the 

filter measure and the mesh resolution. By defining the filter measure as  2h  these two factors are 

kept dependent upon each other. The results of Table A.4 suggest that a uniform mesh refinement study 

needs to be performed for each of the chosen filter measures, while keeping it at a constant value. 

Note, however, that not all of the mesh levels can be used with any one of the chosen filter measures. In 

order to resolve the spectral content of a turbulent flow the filter measure must satisfy the condition 

 2h   (6.61) 

As can be seen from Table A.5 through Table A.9 for a uniform mesh the slope ˆ /du dy  can only be 

predicted accurately if the filter measure satisfies the following condition 

 4h   (6.62) 

If the mesh is not uniform the data suggests that placing the first node off the wall at 0.25y   will 

ensure an accurate prediction of ˆ /du dy . However, it is also observed that the region of 0.25y   

corresponds to the region where ADu  does not agree with û . Therefore placing the first node off the 

wall at exactly 0.25y   will allow accurate calculation of /ADdu dy  as well. Of course, the first parasitic 

node (1) 0ADu   has to be excluded from the calculation of slope /ADdu dy . The calculation of /ADdu dy  

using second order forward FD formula at nodes 2 through 4 have also been included into the mesh 

refinement process presented in Table A.5 through Table A.9. The results indicate that for those cases 

where 4h  (in other words the first node off the wall is placed at 0.25y  ) the accuracy of 

predicting analytical slope 
ˆ

325.20ADdu du

dy dy
   drops. This is because the first node is placed inside the 

error region where ADu  does not agree with û , shown in Figure B.24. On the other hand, if 4h  , or 

simply 2h  (in other words the first node off the wall is placed at 0.25y  ) then the accuracy of 
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predicting the analytical slope also drops. This is not only because the mesh resolution becomes more 

coarse, but also because the 2nd , 3rd  and 4th nodes are placed further away from the linear viscous 

sublayer where the slope 
ˆ

325.20
du

dy
  is constant. 

6.2.5 OPTIMAL MESH CONSTRUCTION AND FINAL TESTS 

The optimal mesh construction consists in placing several auxiliary nodes in region 0 / 4y    followed 

by a non-uniform mesh resolution with element sizes ranging from / 4  to / 2 . Placement of the 

auxiliary nodes in a near-wall region allows for an accurate prediction of /du dy  with a third order 

forward FD approximation. The actual mesh construction for 0 y H  , where H  is channel’s half-width, 

is illustrated in Figure B.25 with three hollow nodes denoting the auxiliary nodes. Nodes 1, 2, 3 and 4 are 

used to calculate /du dy . Once this slope is computed it is then used in the Galerkin weak statement 

for the differential statement (6.60) to recover ADu  from u . The slope of /ADdu dy  necessary for 

evaluation of BCE is computed using nodes that lie in region / 4y  , i.e. nodes 5, 6 and 7. 

The set of three final tests is performed with filter measure 16    and a uniform mesh of 37 nodes 

across channel’s half-width constructed in the manner shown in Figure B.25. The velocity is initialized by 

constant value 0.3u  . In Test 1 the exact boundary conditions and exact BCE integral are used to 

establish the benchmark. The velocity time evolution is shown in Figure B.26. In Test 2 the BCs and the 

BCE integral are computed using approximate deconvolution. In Test 3 the BCE integral is removed to 

illustrate its importance. Figure B.27 shows the computed solutions for all three tests. The absence of 

the BCE integral clearly produces the erroneous result. A perfect agreement in velocity profiles between 

Test 1 and Test 2 validates the optimal mesh construction technique illustrated Figure B.25 as well as 

overall fidelity of the AD approach. The error distribution defined as the difference between the 

computed steady-state solution and the exact reference solution for Test 1 and Test 2 is shown in Figure 
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B.28. The error of Test 2 with approximations of BC and BCE is only slightly higher than that of Test 1 

where the exact values are used. 

6.3 THREE-DIMENSIONAL FLOW OVER A FLAT PLATE 

The third computational experiment is conducted for three-dimensional external laminar flow over a flat 

plate. The arLES theory closure is absent the word turbulent. It is based on rigorous mathematical 

operations defined for/by NS PDE system convolution and is Reynolds number unconstrained. The 

theory is potentially pertinent to prediction of laminar, transitional and/or fully turbulent resolved scale 

velocity vector distributions. A successful solution to the laminar flat plate problem is pertinent to 

validating Reynolds unconstrained applicability of the essentially analytical rational LES closure theory 

for bounded domain flows. The benchmark considered herein also helps to set the stage for 

implementing a more complicated three-dimensional and thermal analysis described in section 0. 

6.3.1 ESTABLISHING A BENCHMARK PROBLEM 

Three-dimensional laminar flow over a flat plate is described by incompressible Navier-Stokes equations 

(2.1)-(2.2) absent the buoyancy body force term. The NS equations are solved in dimensional form with 

Reynolds number based on the plate’s length. The coordinate system is arranged such that the fluid 

flows in the x-direction with a boundary layer developing in the y-direction, as illustrated in Figure B.29. 

A symmetry plane is imposed at z=0 to initialize the third component of the velocity. 

The computational mesh is Cartesian with 101, 51 and 21 nodes in the x-, y- and z- direction, 

respectively. The flat plate is along the lower boundary of the domain (y=0) starting at x=0 m and is of 

length 0.1 m (0.3281 ft). The flow is initialized with a free-stream velocity of 1 m/s (3.2808 ft/s). 

The domain extends a distance upstream of the plate’s leading edge with a no-through-flow boundary 

condition simulating a free-stream approaching the plate. The domain also extends downstream of the 
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plate’s trailing edge where similar no-through-flow boundary conditions apply. The detailed summary of 

the boundary conditions for u , v , w  and   are summarized in Figure B.30. 

Axial stretching of the mesh is used to aid in resolving the region near the start and end of the plate, 

where the no-slip Navier-Stokes boundary condition begins at x=0 m and ends at x=0.1 m, as shown in 

Figure B.29. As usual for viscous flows, the mesh spacing at the wall is important, and an appropriate 

level of fineness is required to capture the viscous boundary layer. 

Numerical solutions of the full NS equations are compared to the solution of the ordinary differential 

equation of Blasius (1908). H. Blasius found a celebrated solution for flat-plate flow based on boundary 

layer approximations, hence the solution is accurate for 1000LRe   (White, 2006). Three Reynolds 

numbers based on the plate’s length are considered herein, i.e., 1E3, 1E4 and 1E5LRe  . Computed 

velocity profiles obtained at the trailing edge of the plate in the symmetry plane (x=0.1, z=0) are 

compared against Blasius similarity solution. For 1E3LRe   the profiles vary slightly near the wall and 

close to the free stream, see Figure B.32. This result is expected since the boundary layer approximation 

is not fully applicable yet sufficiently accurate. Figure B.33 illustrates a much better agreement between 

computed and similarity solutions for 1E4LRe  . Finally, Figure B.34 completes verification of the flat-

plate benchmark exhibiting excellent agreement between computed and Blasius solutions. 

Of particular interest are the second and third velocity component distributions since the full NS 

equations are solved. Figure B.35 through Figure B.37 illustrate distribution of v  at the symmetry plane,  

z=0, for three selected Reynolds numbers. Figure B.38 through Figure B.40 illustrate distribution of w  at 

the plane opposite to the symmetry plane, z=0.05, for all three Reynolds numbers. As expected the 

normal velocity v  is not zero at the edge of the boundary layer. There must be a slight upwelling of flow 

because of the displacement of the outer stream (Panton, 1995). Qualitative similarity of v  and w  
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velocity distributions, well-illustrated for 1 3LRe E , confirms the action of continuity constraint as mass 

preserving. 

6.3.2 DISPERSION ERROR CONTROL FOR RE=1E5 

As Reynolds number increases the adverse effect caused by the leading edge BC singularity becomes 

more and more prominent. Figure B.41 illustrates this effect for 1 5LRe E  where unphysical 

fluctuations in u  (bottom plane, y=0) are caused by the well-known "2 "x dispersion error. While the 

maximum possible value of u  is 1 m/s (free stream velocity), the legend of Figure B.41 indicates an 

unrealistic peak velocity of 1.4 m/s caused by these fluctuations. This problem is solved by adding 

additional terms to the conservation principle PDEs as dictated by Kolesnikov’s theory (Kolesnikov, 

2000). Besides the higher order accuracy, namely  4h , new differential terms provide just enough 

artificial diffusion to prevent huge velocity gradients at the leading edge BC singularity. The resulting 

solution is smooth and monotonic as shown in Figure B.42. Notice also that the flow upstream of the 

leading edge is still able to “sense” the BC singularity caused by the leading edge, however no dispersion 

error is present. 

6.3.3 AD FORMULATION VERIFICATION 

Consider a laminar boundary layer flow past a flat plate with 1 6LRe E . This problem identifies the 

main benchmark test considered herein. The computational grid is of 101x69x21 nodes in the x-, y- and 

z-direction, respectively. The size of the domain  0.02 1.12;  0.0 0.001;  0.0 0.5x y z        . 

As before, the flat plate is along the lower boundary of   (y=0) starting at x=0 m and is of length 0.1 m. 

While Kolesnikov’s additional terms resolve BC singularity very well it is important to verify that the 

computed solution still agrees with Blasius similarity profile. The comparison between computed (with 

Kolesnikov theory) and Blasius solutions is illustrated in Figure B.43. The agreement is very good with an 
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average absolute error not exceeding 4%. The arLES terms are then added to the established INS 

formulation and the result is added to Figure B.43. Since C11 term from arLES formulation is significantly 

aggravated by the plate’s leading edge BC singularity it is not included in the computation. Again the 

agreement between computed arLES and analytical Blasius solutions is excellent with an average 

absolute error not exceeding 3%. 

Following the ideas of mesh construction and ADBC implementation outlined in section 6.2 the AD 

boundary conditions and the BCE integral are added to complete the flat-plate problem formulation. 

The filter measure used is 8   . The results of ADBC formulation implementation are illustrated in 

Figure B.44. First, the AD boundary conditions are added replacing the no-slip BCs for all three velocity 

components. The first profile in Figure B.44 (solid line) is a reference solution for which no-slip boundary 

conditions are used. This profile is exactly the same as the one shown in Figure B.43 (dashed line), which 

agrees with analytical Blasius solution extremely well. Again, for this reference solution only Kolesnikov’s 

terms are implemented and no arLES terms are added yet. The second profile in Figure B.44 (dashed 

line) represents the solution where no-slip BCs are replaced with AD BCs. In the absence of BCE integral 

the usage of non-homogeneous Dirichlet boundary conditions results in significant deviation of the 

computed solution from the reference one. The result of adding the BCE term to the formulation is the 

third profile in Figure B.44 (dash-and-dot line). The computed solution agrees very well with the 

reference one except for a short region near the wall, i.e., 0.25 2y    . As described earlier for a 

channel flow problem this is the region where AD formula fails to provide adequate result while 

recovering u  from u . The fourth profile in Figure B.44 (dotted line) represents the result with arLES 

terms added to the formulation, which is virtually identical to the previous one. This validates Reynolds 

number unconstrained applicability of the essentially analytical rational LES closure theory. 
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6.4 THREE-DIMENSIONAL BUOYANCY-DRIVEN CAVITY FLOW 

Thermally driven flow in a differentially heated cavity is a well-known benchmark problem for testing 

CFD algorithms. This model of convective heat transfer should not be underestimated in its complexity. 

The spatial structure of the flow includes such complexities as vertical and horizontal boundary layers, 

corner structures, stratified core and so on which sensitively depend on the aspect ratio, Rayleigh and 

Prandtl numbers and thermal boundary conditions. In many cases the sensitivity of buoyancy-driven 

cavity flows can be attributed to the presence of multiple bifurcation points that yield laminar thermal 

convective processes which can transit from steady to various modes of unsteady flow (Winters, 1988). 

The buoyancy driven cavity flow problem is based upon the geometry shown in Figure B.45 where W is 

the width, D is the depth and H the height of the cavity. The enclosure aspect ratio can be quantified as 

the ratio of the height to width R=H/W and in the present analysis takes on the value R=8. The depth of 

the cavity is D=8 with a symmetry plane imposed at z=8 and a solid insulated wall at z=0. The gravity 

vector is directed in the negative y-coordinate direction, and the Boussinesq approximation is assumed 

to be valid, i.e. only small temperature excursions from the mean temperature are admitted 

(Boussinesq, 1987). 

6.4.1 PROBLEM STATEMENT 

The partial differential equation (PDE) system of continuum mechanics conservation principles 

describing thermal viscous flow of an incompressible fluid in non-dimensional form are presented in 

(2.5)-(2.7). These equations contain three non-dimensional groups, namely Reynolds, Peclet and 

Grashof. The equations used herein are non-dimensionalized slightly differently, with reference velocity 

chosen such that the Grashof number is not present in the final form. The following non-dimensional 

groups are used to obtain a new non-dimensional form 
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With reference quantities defined 
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Dropping the primes, equations (2.6) and (2.7) are rewritten in an alternative non-dimensional form 
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where Rayleigh and Prandtl numbers are defined as 
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Using definition ref ref refU g L T   non-dimensional parameters in (6.65) can also be expressed in terms 

of Re  and Pe  numbers, which will become useful in defining subfilter scale entities 
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where Grashof and Boussinesq numbers are defined as 



109 

 

3

2

3

2

ref ref

ref ref

g T LRa
Gr

g T L
Bo

r

Pra

P

R










 


  

 (6.69) 

Throughout the analysis of differentially heated cavity the Prandtl number is assumed 0.7Pr   and the 

Rayleigh number range is 4 810 ÷10Ra  . The domain of interest is comprised of five solid walls with no-

slip boundary conditions and one symmetry plane with no-through flow. Temperature BCs imposed at 

the “cold” and “hot” walls are, respectively 
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Referring to Figure B.45, the “top”, “bottom” and “back” walls are insulated, hence 
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The symmetry plane is imposed at z=8, hence 
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The boundary conditions for   and p  are vanishing Neumann everywhere. 

The initial conditions for transient simulation describe an isothermal fluid initially at rest. To speed up 

computations the temperature is initialized via linear distribution between cold and hot walls, hence 
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Considering air at room temperature and standard atmospheric pressure non-dimensional units can be 

readily converted to dimensional ones via identification of reference length and velocity defined as, 

respectively 
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3ref

ref

Ra
L

g T Pr




      ref ref refU g L T   (6.74) 

The needed properties in BG units include 

 Constant of gravitational acceleration, 232.17405 [ft/s ]g   

 Coefficient of thermal expansion (gas), 1531.67  [1/ R]    

 Reference temperature gradient, 200 [ F]refT    

 Kinematic viscosity of air at 72 F , 4 21.6485 10  [ft /s]    

 Prandtl number of air at 72 F , 0.71517Pr   

 Rayleigh number, 810Ra   

Using these values the reference length and velocity are, respectively 

  0.6797 ftrefL        2.8681 ft / srefU   (6.75) 

For 710Ra   and 20 [ F]refT    the reference velocity is  .90700  ft / srefU  . 

6.4.2 EFFECTS OF NON-DIMENSIONALIZATION ON PRESSURE DISTRIBUTION 

Preliminary computational experiments for square thermal cavity benchmark indicate that the genuine 

pressure distribution is significantly influenced by the choice of reference temperature used during non-

dimensionalization. This effect appears to be significant only for the cases of low Ra  numbers, well 

below the transitional specification. Defining non-dimensional temperature as ) /( ref refT T T    with 
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ref H CT T T    and choosing the reference temperature as ref CT T  the boundary conditions for T  

imposed at the “cold” and “hot” walls are 

 0   and   1
cold hot

     (6.76) 

Similarly, if   / 2Href CT T T  these boundary conditions become 

 
1 1

   and   
2 2cold hot

      (6.77) 

Although the choice of reference temperature is not expected to play any role, the results of this 

preliminary study prove otherwise. A qualitative analysis of the laminar square thermal cavity at 

410Ra   is performed on a uniform mesh of 33x33 nodes. Figure B.46 illustrates the pressure contours 

generated using temperature variations (6.76) and (6.77). The main conceptual difference between 

these two results lies in the behavior of pressure distribution along the cold wall, i.e., pressure rise when 

(6.76) is used and pressure drop when (6.77) is used. It is worth noting that the continuity constraint 

potential function   exhibits the same behavior. 

It is then established that this discrepancy is solely due to 0  specification at the cold wall, which is 

believed to be the only reasonable choice since non-positive temperature specifications are not natural. 

The pressure distribution, as well as  , are affected by this temperature specification only because the 

buoyancy force is uni-directional, i.e., not symmetric. In case of 0  the buoyancy is approximately 

equivalent to the adverse pressure gradient for flow moving downwards along the cold wall, while along 

the hot wall this gradient assists in moving the flow upwards. This effect disappears for higher Rayleigh 

numbers where the buoyancy effects become dominant rendering an almost linear pressure distribution 

for both definitions, (6.76) and (6.77). 
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6.4.3 MODIFIED CCM  -IMPLICIT PROCEDURE 

The requirement to solve a Poisson equation for the genuine kinematic pressure distribution can be 

eliminated by coupling the equation for the continuity constraint potential function   with the set of 

four main equations, producing a 5 by 5 Jacobian matrix. This change will also free the algorithm from 

the outside iterative loop used in the original CCM formulation. Instead, the iterations will be embedded 

in the Newton’s procedure by aptly modifying the update of the continuity constraint variable 1nC 
. 

As demonstrated earlier the original CCM formulation requires an iterative procedure within the time-

step. During these iterations the CCM replaces genuine pressure with a continuity constraint variable, 

1 ,p
nC   where p  is an iteration index. The modified CCM formulation herein does not require an iterative 

procedure as the Poisson equation for   is coupled with the Navier-Stokes and energy equations. The 

continuity constraint variable 1
p
nC   is updated during the Newton’s iterative procedure. The initial 

iterative value 1
1nC   at every time step is defined as the global sum for   solutions accumulated over 

time, hence 

 1
1 1
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 
  

 
   (6.78) 

The iteration index p  represents Newton iterations within the time step. 

6.4.4 TEMPLATE STATEMENT 

Following the ideas of template construction and matrix identification conventions described in section 

5.2 the FE template statement is developed herein for a thermally driven cavity. 

Ignoring irreversible work viscous dissipation term, the set of five coupled LES theory PDEs describing 

buoyancy-driven flow in a differentially heated cavity in three dimensions is 
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Augmented with nine arLES generated Poisson equations 
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Ignoring the pressure contribution the BCE definitions are 
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The SFS tensor and vector closure candidates are, respectively 
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Three velocity components, the temperature and the continuity constraint potential function are 

denoted as        ,  ,  , U V W TEMP  and  PHI , respectively. Multiplying equation (6.78) through by t  

the continuity constraint variable C  is redefined as ΔnewC C t   and then newC  is denoted as  SPHI . 

Upon application of the Green-Gauss theorem the negative sign of these terms as well as the Laplacian 

terms in (6.79) and (6.80) switches to positive. 

Denoting  TDELT Δt , MTDELT Δt  , 
1

ITDELT
t




, PAR1
Pr

Ra
 , 

1
PAR2

Ra Pr



, ONE 1 , and 

state-variables at the previous time step as ,  , UL VL WL  and TEMPL , and assuming 1.0   for simplicity, 

the momentum equation in x-direction in template form is 

       

    

    

    

    

    

    

    

    

    

    

    

200 TDELT 20 12

200 TDELT 20 13

TDELT 300 TDELT*PAR1 2

TDELT 300 ONE 20

TDELT 300 ONE 20

TDELT 20 11 MTD

ONE

MONE

ELT 200

FU c U c y C

c UL c z C

U c x U c kk U

V c y U c x SPHI

W c z U c x PHI

UBCEc x C c

 

 

 

 

 

 

 (6.83) 

The SFS tensor contribution of eighteen terms to (6.83) is given by (5.47) with Re  replaced by /Ra Pr . 

Note that the diffusion matrix  2c kk  includes all three second-order derivatives with respect to x, y, 

and z coordinates. The templates for y- and z-momentum equations can be expressed in exactly the 

same manner. However the momentum equation in y-direction will also include the buoyancy term. 
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      

    

    

    

    

    

    

    

    

    

    

    

    

      

    

  

ONE 200 ONE 200

MONE 200 MONE 200

TDELT 300 TDELT 3

TDELT 300

TDELT 300

TDELT 20 12

TDELT 20 22

TDELT 20 23

TDELT*PAR1 2

ONE 20

ONE 20

MTDELT 200

MTDELT 200

FV c FW c

c VL c WL

U c x U c

V c y

W c z

c x C

c y C

c z C

c kk

c y

V W

V

V

V

V

V

SPHI

c y PHI

c

c T P

E

E

BC

M

 

 

 





















  

    

    

    

    

    

    

    

    

    

00

TDELT 300

TDELT 300

TDELT 20 13

TDELT 20 23

TDELT 20 33

TDELT*PAR1 2

ONE 20

ONE 20

MTDELT 200

x

V c y

W c z

c x C

c y C

c z C

c kk

c z SPHI

c z PHI

W

W

c

W

W

WBCE



















 (6.84) 

Using the same notation the energy equation and the Poisson equation for   are expressed in the FE 

template form. Note that the equation for   is multiplied through by ITDELT  in order to improve the 

condition number of the final Jacobian matrix that is passed to the linear equation solver. 

 

      

    

    

    

    

    

    

    

    

    

      

    

    

    

ONE 200 ITDELT 2

ITDELT 20MONE 200

ITDELT 20TDELT 300
ITDELT 20TDELT 300

TDELT 300

TDT 20 1

TDT 20 2

TDT 20 3

TDELT *PAR2 2

MTDELT 200

FTEMP c TEMP FPHI c kk PHI

c x Uc TEMPL

c y VU c x TEMP
c z WV c y TEMP

W c z TEMP

c x V

c y V

c z V

c kk TEM

TB

P

CEc

 




















 (6.85) 

Finally, the template for the continuity constraint variable is 

 
      

    

ONE

ONE

FSPHI I SPHI

I PHI




 (6.86) 
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6.4.5 THERMAL CAVITY AT RA=108. 

The objective of this benchmark is to examine the fidelity of the essentially analytical rational LES theory 

closure for a turbulent Rayleigh number specification, i.e., 810Ra  . The transition from laminar to 

turbulent flow is facilitated via a sequence of numerical tests with increasing Rayleigh number, hence 

Reynolds number. The first computational experiment utilizes 410Ra   and a linear distribution of 

temperature (6.73) to start the simulation. The steady-state solution is then used as an initial condition 

for the next test with higher Rayleigh number, i.e., 510Ra  . This sequence of Rayleigh numbers is 

continued until 810Ra   is reached. The Prandtl number for all numerical experiments is constant at 

0.7Pr  . The required parameters for each Rayleigh number specification are summarized in Table 

A.10. 

The flow in a differentially heated cavity transitions from steady to multi-scale unsteady above some 

critical Rayleigh number (Le Quere, 1994). Numerical tests for two-dimensional 8x1 cavity mark the 

transition from steady to a time-dependent flow at 53.1 10critRa    (Xin and Le Quere, 2002). This has 

been further verified by the FEM results provided by Salinger et al. (2002). In the present study a 

computational experiment at a slightly above-critical Rayleigh number of 54 10  is conducted, resulting 

in a Reynolds number of 756. Temperature profiles at t=80, 120, 217.5 seconds are illustrated in Figure 

B.47. At 170t   seconds the flow becomes non-steady and cyclic clearly defining the incipient unsteady 

laminar flow. At the end of both vertical thermal boundary layers located at the top-right and bottom-

left corners of the cavity, the flow starts to ripple continuously indicating transition to a non-steady 

regime. This is illustrated by taking four consecutive time samples of temperature distribution as shown 

in Figure B.48. The highlighted peaks of temperature change their position up-and-down, left-and-right 

in a sinusoid-like fashion. This experiment clearly verifies the correctness of algorithm implementation 

via establishment of a non-steady transitional flow for a slightly above-critical Rayleigh number. 
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Full implementation of arLES theory closure is enabled at 810Ra  . The flow is initialized using the INS 

algorithm solution for 710Ra  . The approximate deconvolution approach is used to determine the 

boundary conditions and the BCE integral as described in Chapter 3. Non-uniform mesh of 65x207x41 

nodes is refined near the solid walls according to the optimal mesh construction technique described in 

section 6.2.5 and illustrated in Figure B.25. Again, this technique requires placing a total of eight nodes 

within distance   from the wall. DNS data for a 4x1 thermal cavity at 1010Ra   is used for determining 

reasonable filter measure   (Trias et al., 2010). Averaged temperature as well as vertical and horizontal 

velocity profiles extracted from the horizontal mid-height plane all indicate the existence of peaks some 

distance away from the wall. The filter measure used herein is chosen such that it does not exceed any 

of these three distances, hence the space-filtered profiles are not expected to change their convexity 

within distance   off the wall. The chosen filter measure is 

 0.05   (6.87) 

The AD boundary conditions for the velocity components are implemented everywhere except for the 

symmetry plane. The AD BCs for temperature are imposed only at the hot and cold walls. In order to 

conserve mass no flow should be allowed across the boundaries. With this in mind the AD BCs for the 

velocity are only implemented for the two tangential components, fixing the normal component at zero. 

Evidently, this approach of imposing non-homogeneous Dirichlet BCs creates vector fields directly on 

the boundary, as illustrated in Figure B.49. 

The existence of three-dimensional thermal and momentum boundary layers is visualized by plotting 

iso-surfaces of temperature and velocity vector magnitude, respectively. Iso-surfaces of ten 

temperature levels are illustrated in Figure B.50. A clearly visible thermal boundary layer exhibits 

laminar to turbulent transition. In a similar fashion, fourteen iso-surfaces of the velocity vector 
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magnitude are illustrated in Figure B.51 (view from the symmetry plane) and Figure B.52 (view from the 

solid wall). Both views nicely illustrate the transition from laminar to turbulent regime in the momentum 

boundary layer. 

Temperature and velocity vector distribution contours extracted from different depths, Figure B.53 and 

Figure B.54, respectively, provide an alternative view of a fully three-dimensional thermal and 

momentum boundary layers. The stratified core is clearly visible in Figure B.53. 

Figure B.55 visually compares the filtered (left) and the AD (right) velocity fields. The AD-generated noise 

at the first four auxiliary nodes placed in region 0.25y  is clearly visible. However, as explained in 

section 6.2.5, these parasitic values of AD state-variable members are not included in computations of 

BCs or BCE. The auxiliary nodes aid only in determining the wall gradients of space filtered quantities.  

An illustrative “velocity bound” between laminar and turbulent regimes is established by plotting 

laminar and turbulent boundary layer profiles on the same graph using the standard ( y , u ) similarity 

coordinates, as defined in (6.46). Figure B.56 illustrates this idea by combining a typical turbulent 

boundary layer profile obtained from RaNS solution (denoted here as Wilcox) with three Blasius 

solutions for different Re  numbers. The data shows that all three Blasius profiles plotted using ( y , u ) 

similarity coordinates remain in very good agreement with y u   curve up to 99%0.5y   , or half-way 

through the boundary layer thickness. The laminar and turbulent boundary layer profiles remain almost 

identical in the viscous sublayer ( 5y  ) as illustrated in Figure B.57. 

To quantify the boundary layer behavior four V-velocity profiles are extracted from the thermal cavity 

symmetry plane ( 8z  ) at different heights, i.e., different locations along the boundary layer, Figure 

B.58. As can be seen, a very thin boundary layer characterizes the flow as an attached wall jet. These 

profiles are truncated at their peaks and scaled to fit onto the graph with Blasius and Wilcox solutions, 



119 

Figure B.59. As can be seen, the profiles extracted from 1y   and 3y   tend to lie closer to the Blasius 

laminar solution, whereas for 5y   and 7y   these profiles resemble the RaNS turbulent solution. The 

interpolated profiles for 1y   and 5y   are also illustrated in Figure B.60 visually quantifying the 

transition from laminar to turbulent regimes. 

An interesting feature of the 810Ra   resolved scale velocity vector field is the hot/cold wall traversing 

vortex entities that generate translating thermal fingers protruding wall normal into the cavity, 

illustrated in the unitized scale temperature flood with velocity vector overlay, Figure B.61. As can be 

seen, the central one-third of the cavity’s symmetry plane is predicted isothermal. The arLES theory 

state variable diagnostics focus is the wall-normal thermal finger encircled on the right in the unitized 

scale graph, Figure B.61. The arLES theory solution state variable floods with velocity vector overlay, 

Figure B.62, illustrate: 

 Top left. Resolved scale temperature   is  010 . The wall normal thermal finger is generated 

by an attached eddy, as clearly identified from the velocity vector overlay. 

 Top right. Resolved-unresolved scale interaction cross-thermal vector second component 

2 2 2v u u       is  110 . The value of 2v   is minimized towards the vertex center. 

 Middle left. Resolved scale convection tensor 1 2u u  is  110 , the most significant of the 

closure tensor quadruple. The thermal finger region is only a fraction of the extrema. 

 Middle right. Resolved-unresolved cross-stress tensor 12 1 2 1 2c u u u u    at  210  is one order 

smaller than 1 2u u . 

 Bottom. SFS tensor 1 2u u   resolution extrema at  210  is located above and below the thermal 

finger dissipating energy from large motions to this smaller eddy. 
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These 810Ra   arLES solution data snapshots contribute to qualitative validation of arLES theory order 

predictions for tensor/vector quadruples (2.21)-(2.22), as well as classic fluid mechanics perturbation 

theory ordering underlying arLES theory state variable organization. The resolved scale velocity tensor 

product, iju u , should exceed    
22 0.05 0.0025 E-02    . Figure B.62 (middle left) graphs arLES 

theory convection tensor product, 1 2u u , with data range ±E-01 , hence exceeding E-02  by an order of 

magnitude. The arLES closure assumes the cross-stress tensor is  2 . Figure B.62 (middle right) 

indicates the data range ±E-02  confirming quantitative agreement with  2 E-02  . The perturbation 

theory order requirement for the SFS term is    
33 0.05 0.000125 E-04    . The SFS tensor/vector 

uniform constant coefficient is therefore   . In this dissertation this constant is set identical to the 

filter measure 0.05sC   . The arLES closure SFS tensor term, 1 2u u  , illustrated in Figure B.62 (bottom) 

has the data range E-02 . These extrema exists in wall-adjacent roll vortex structures only, which is not 

surprising since this is where  2h  dissipation is principally required. Elsewhere throughout the cavity 

1 2u u   ranges ±E-04  in excellent quantitative agreement with perturbation theory ordering. 

Finally, Figure B.63 through Figure B.71 illustrate thermal cavity’s rich spectral content by plotting cross-

stress tensor and cross-thermal vector pair distributions. 
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7. SUMMARY AND CONCLUSIONS 

This dissertation details derivation of an essentially analytical rational LES (arLES) closure theory for the 

unsteady three-dimensional space filtered thermal-incompressible NS PDE system on bounded domains. 

This model-free approach is established by the union of 2nd order rational LES theory, Galdi and Layton, 

with modified continuous Galerkin theory of Kolesnikov. The arLES theory is successfully extended to 

the thermal NS with specific focus on correct adaptation of a constant measure filter near the Dirichlet 

type boundary. The analytical closure theory state variable organization is guided by classic fluid 

mechanics perturbation theory generating a well-posed EBV solution strategy for the LES tensor/vector 

quadruples. 

Derivation and implementation of suitable boundary conditions as well as the boundary commutation 

error integral is accomplished using the ideas of approximate deconvolution theory. An accurate way of 

constructing the boundary conditions of non-homogeneous Dirichlet type is developed by including a 

buffer layer outside of the computational domain. The suitable non-homogeneous Dirichlet boundary 

conditions for the auxiliary problem of arLES theory are newly derived. This auxiliary problem BC closure 

of  2  is derived via direct evaluation of unfiltered tensors followed by the application of an 

improved ADBC methodology. Finally, the correct implementation of the AD formula with proper non-

homogeneous Neumann BCs completes this mathematically elegant arLES formulation. 

Verification and validation of arLES theory closure is established by conducting computational 

experiments for four pertinent benchmark problems. All tests confirm that the BCE integral, universally 

omitted in SGS modeled LES, plays an essential role in establishing an accurate solution. Uniform mesh 

refinement process for a linear problem confirms monotone asymptotic convergence, as part of the 

verification process. Validation of an improved ADBC formulation for a typical turbulent BL profile 



122 

identifies an optimal mesh construction technique suitable for any constant filter measure. The resulting 

solution-adaptive mesh refinement process exhibits convergence completing validation analysis. The 

arLES theory closure is absent the word turbulent. It is based on rigorous mathematical operations 

defined for/by NS PDE system convolution and is Reynolds number unconstrained. Successful validation 

of arLES theory applicability in predicting laminar flows on bounded domains is performed herein as 

compared with the Blasius solution. 

Thermally driven cavity solution provides turbulent flow validation of arLES theory order predictions for 

tensor/vector quadruples. The results are in excellent quantitative agreement with classic fluid 

mechanics perturbation theory ordering underlying arLES theory state variable organization. The 

transition from laminar to turbulent regimes in the momentum boundary layer is validated with laminar 

Blasius and turbulent RaNS boundary layer profiles, respectively. 

In conclusion, the essentially analytical closure theory derived herein provides a model-free, Reynolds 

number unconstrained LES formulation fully closed with analytical BC and BCE integral derivations based 

strictly on rigorous mathematical considerations. 
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Table A.1: Convergence data under uniform mesh refinement 

Mesh 
E

q   /2h

E
q   /2h

E
e  slope  

8x8 0.4359 - - - 

16x16 0.7558 0.3199 0.1066 - 

32x32 0.9174 0.1615 0.0538 0.9857 

64x64 0.9875 0.0702 0.0234 1.2033 
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Table A.2: Analytical values and the slopes of û at the wall 

      ˆ 1u  ˆ /du dy  

36 2.0E-03 0.0563 108.64 

18 1.0E-03 0.0344 142.23 

9 5.0E-04 0.0184 158.36 

4.5 2.5E-04 0.0093 161.53 

2.25 1.25E-04 0.0047 162.25 

1.125 6.25E-05 0.0023 161.62 
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Table A.3: Computed values and the slopes of u at the wall 

      1ADu  /ADdu dy  

36 2.0E-03 0.0392 137.28 

18 1.0E-03 0.0203 164.53 

9 5.0E-04 0.0096 170.09 

4.5 2.5E-04 0.0047 174.12 

2.25 1.25E-04 0.0023 184.58 

1.125 6.25E-05 0.0011 198.26 
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Table A.4: Comparison of computed space-filtered velocity slopes at the wall 

     
nnodes  
(to mid-
channel) 

(1)h   ˆ 1u  
ˆ /du dy  

(uniform) 

ˆ /du dy  

(1,001 
nodes) 

Factor * 

36 2.0E-03 11 18 0.0563 159.35 108.64 0.682 

18 1.0E-03 21 9 0.0344 209.51 142.23 0.678 

9 5.0E-04 41 4.5 0.0184 206.42 158.36 0.767 

4.5 2.5E-04 81 2.25 0.0093 192.49 161.53 0.839 

2.25 1.25E-04 161 1.125 0.0047 196.59 162.25 0.822 

1.125 6.25E-05 321 0.5625 0.0023 197.31 161.62 0.819 

* 
ˆ /  (1,001 nodes)

ˆ /  (uniform)

du dy
Factor

du dy
  

  



136 

Table A.5: Uniform mesh refinement study for a constant filter measure 36    

 
 nnodes  (1)h  

  

definition 
2 3 4

ADdu

dy
 

 
 
 

  ˆ 1u  
ˆ /du dy  

(uniform) 

ˆ /du dy  

(1,001 nodes) 
Factor  . (%)Abs Err  

36 11 18 2h 77.10 0.0563 159.35 108.64 0.682 46.68 

36 21 9 4h 192.44 0.0563 117.82 108.64 0.922 8.45 

36 41 4.5 8h 184.00 0.0563 108.31 108.64 1.003 0.30 

36 81 2.25 16h 157.64 0.0563 108.46 108.64 1.002 0.17 

36 161 1.125 32h 146.02 0.0563 108.61 108.64 1.000 0.03 

36 321 0.5625 64h 140.87 0.0563 108.64 108.64 1.000 0.00 
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Table A.6: Uniform mesh refinement study for a constant filter measure 18    

 
 nnodes  (1)h  

  

definition 
2 3 4

ADdu

dy
 

 
 
 

  ˆ 1u  
ˆ /du dy  

(uniform) 

ˆ /du dy  

(1,001 nodes) 
Factor  . (%)Abs Err  

18 11 18 - - - - - - - 

18 21 9 2h 179.28 0.0344 209.51 142.23 0.678 47.30 

18 41 4.5 4h 291.39 0.0344 146.51 142.23 0.970 3.01 

18 81 2.25 8h 234.18 0.0344 140.77 142.23 1.010 1.03 

18 161 1.125 16h 193.16 0.0344 141.92 142.23 1.002 0.22 

18 321 0.5625 32h 176.23 0.0344 142.43 142.23 0.998 0.14 
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Table A.7: Uniform mesh refinement study for a constant filter measure 9    

 
 nnodes  (1)h  

  

definition 
2 3 4

ADdu

dy
 

 
 
 

  ˆ 1u  
ˆ /du dy  

(uniform) 

ˆ /du dy  

(1,001 nodes) 
Factor  . (%)Abs Err  

9 11 18 - - - - - - - 

9 21 9 - - - - - - - 

9 41 4.5 2h 316.90 0.0184 206.42 158.36 0.767 30.35 

9 81 2.25 4h 329.60 0.0184 156.31 158.36 1.013 1.29 

9 161 1.125 8h 245.29 0.0184 156.48 158.36 1.012 1.19 

9 321 0.5625 16h 200.13 0.0184 158.03 158.36 1.002 0.21 
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Table A.8: Uniform mesh refinement study for a constant filter measure 4.5    

 
 nnodes  (1)h  

  

definition 
2 3 4

ADdu

dy
 

 
 
 

  ˆ 1u  
ˆ /du dy  

(uniform) 

ˆ /du dy  

(1,001 nodes) 
Factor  . (%)Abs Err  

4.5 11 18 - - - - - - - 

4.5 21 9 - - - - - - - 

4.5 41 4.5 - - - - - - - 

4.5 81 2.25 2h 350.59 0.0093 192.49 161.53 0.839 19.17 

4.5 161 1.125 4h 325.34 0.0093 160.07 161.53 1.009 0.90 

4.5 321 0.5625 8h 244.73 0.0093 159.90 161.53 1.010 1.01 
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Table A.9: Uniform mesh refinement study for a constant filter measure 2.25    

 
 nnodes  (1)h  

  

definition 
2 3 4

ADdu

dy
 

 
 
 

  ˆ 1u  
ˆ /du dy  

(uniform) 

ˆ /du dy  

(1,001 nodes) 
Factor  . (%)Abs Err  

2.25 11 18 - - - - - - - 

2.25 21 9 - - - - - - - 

2.25 41 4.5 - - - - - - - 

2.25 81 2.25 - - - - - - - 

2.25 161 1.125 2h 342.68 0.0047 196.59 161.53 0.822 21.70 

2.25 321 0.5625 4h 325.73 0.0047 161.12 161.53 1.003 0.25 
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Table A.10: Thermal cavity problem parameters for 0.7Pr   and 0.05sC    

Ra  

 
 

Re  

 
(TTTT97) 

Pe  

 
(TTTT99) 

Pr

Ra
 

(TTTT29) 

1

Ra Pr
 

(TTTT47) 
24
sC Re

 

(TTTT58) 
12
sC Pe

 

(TTTT88) 

2

24


 

(TTTT54) 

2

24


 

(CE1) 

1.0E+04 1.195E+02 8.367E+01 8.367E-03 1.195E-02 2.490E-01 3.486E-01 

9.600E+03 1.042E-04 

1.0E+05 3.780E+02 2.646E+02 2.646E-03 3.780E-03 7.874E-01 1.102E+00 

4.0E+05 7.559E+02 5.292E+02 1.323E-03 1.890E-03 1.575E+00 2.205E+00 

1.0E+06 1.195E+03 8.367E+02 8.367E-04 1.195E-03 2.490E+00 3.486E+00 

1.0E+07 3.780E+03 2.646E+03 2.646E-04 3.780E-04 7.874E+00 1.102E+01 

1.0E+08 1.195E+04 8.367E+03 8.367E-05 1.195E-04 2.490E+01 3.486E+01 
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Figure B.1: A sample of the velocity field u  and the corresponding space filtered velocity u (bold line, 
top). The unresolved velocity field u , and the corresponding space filtered unresolved 

velocity u  (bold line, bottom) (Pope, 2000) 
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Figure B.2: Polynomial interpolation of  g . Top, 2nd order Taylor series; middle, 2nd order Padé; 

bottom, 4th order Padé 
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Figure B.3: Vorticity distributions from level 5 hGWS + TS  rLES solutions hu , at times 50,70,80n t  s 

(left to right) corresponding to (top to bottom): benchmark, auxiliary problem direct solution, 
auxiliary problem via convolution (John, 2004) 
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Figure B.4: Domain of integration for  1n

b
u x  
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Figure B.5: Filtering through the wall with extended q  
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Figure B.6: Errors in q  (Borggaard and Iliescu, 2006) 
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Figure B.7: Errors in q  (this study) 
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Figure B.8: Test 1a - Exact boundary conditions ( q  is not extended outside of  ), exact BCE integral 
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Figure B.9: Test 1b - Exact boundary conditions ( q  is extended outside of  ), exact BCE integral 
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Figure B.10: Test 2 - Exact boundary conditions, no BCE integral 
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Figure B.11: Test 1b - Absolute error in approximating q  using the AD formula 
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Figure B.12: Test 3 - Exact boundary conditions, approximate BCE integral 
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Figure B.13: Test4 - Approximate boundary conditions, approximate BCE integral 
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Figure B.14: Comparison of the computed and DNS solutions for Re 180   
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Figure B.15: Similarity space (top) and physical space (bottom) velocity profiles 
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Figure B.16: Shear stress profiles for Re 180   
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Figure B.17: Comparison of computed (PICMSS) and reference (WILCOX) velocity profiles in similarity 
space (top) and physical space (bottom) 
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Figure B.18: Action of space filtering on the velocity profile with 0.001   
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Figure B.19: Action of space filtering on the Reynolds stress profile with 0.001   
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Figure B.20: Action of space filtering on the constant pressure gradient profile, / 32.595p x    , with 

0.001   
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Figure B.21: The BCE integral as a function of filter measure 
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Figure B.22: The importance of the BCE term. Solid line – analytical û  , circle – computed u   with BCE 

term, diamond – computed u   without BCE term 
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Figure B.23: Comparison of a time-averaged velocity profile with four space-filtered velocity profiles for 

different filter measures: (a) full-size profile with logarithmic scale; (b) close-up of the viscous 
sublayer without the logarithmic scale. 
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Figure B.24: Comparison of a time-averaged velocity profile with the unfiltered velocity profiles for 

different filter measures: (a) full-size profile with logarithmic scale; (b) close-up of the viscous 
sublayer without a logarithmic scale 
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û

, 9AD
u

 





y

, 4.5AD
u

 





, 18AD
u

 





, 36AD
u

 





 a  b



167 

 

Figure B.25: Optimal mesh construction 
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Figure B.26: Evolution of the space-filtered velocity profile for Re 180  (exact BCs, exact BCE) 
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Figure B.27: Computed solutions for three case studies 
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Figure B.28: Error analysis: solid line – exact BCs and BCE; dashed line – approximate BCs and BCE 
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Figure B.29: Boundary layer development for flow over a flat plate. Free stream velocity 1u  m/s 
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 u  v  w    

Front 1   0w    

Front 2    0   

Front 3    0   

Bottom 1  0v     

Bottom 2 0u   0v   0w    

Bottom 3  0v     

Back 1   0w    

Back 2   0w    

Back 3   0w    

Top 1  0v     

Top 2    0   

Top 3    0   

Inlet 1u   0v   0w    

Outlet    0   

 
Figure B.30: Dirichlet boundary conditions for a flat plate with symmetry plane. Empty cells in the table 

imply zero Neumann, or do-nothing BCs 
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Figure B.31: Computational mesh for flow over a flat plate 
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Figure B.32: Flat-plate computed and similarity solutions for Re 1 3E  
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Figure B.33: Flat-plate computed and similarity solutions for Re 1 4E  

  

0.325Time s
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Figure B.34: Flat-plate computed and similarity solutions for Re 1 5E  
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Figure B.35: Flat-plate second velocity component distribution for Re 1 3E  
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Figure B.36: Flat-plate second velocity component distribution for Re 1 4E  
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Figure B.37: Flat-plate second velocity component distribution for Re 1 5E  
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Figure B.38: Flat-plate third velocity component distribution for Re 1 3E  
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Figure B.39: Flat-plate third velocity component distribution for Re 1 4E  
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Figure B.40: Flat-plate third velocity component distribution for Re 1 5E  
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Figure B.41: Dispersion error distribution caused by the leading edge BC singularity, Re 1 5E  
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Figure B.42: Dispersion error control using Kolesnikov's theory, Re 1 5E  
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Figure B.43: Comparison of the Blasius and two computed solutions for Re=1E6. The profiles are 
extracted from the trailing edge of the flat plate (x=0.01, y=0) 
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Figure B.44: Computed velocity profiles with and without ADBC formulation 
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Figure B.45: Differentially heated enclosure with 1:8:8 aspect ratio (not to scale) 
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Figure B.46: Pressure contours for square thermal cavity at 410Ra  . The choice of reference 

temperature, i.e. ref CT T  (left) and   / 2Href CT T T  (right), significantly affects the pressure 

distribution. 
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Figure B.47: Temperature distribution at t=80, 120 and 217.5 seconds for an incipient non-steady 

laminar flow at 54 10Ra   , 756Re  . 
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Figure B.48: Temperature samples in the upper-right corner of the cavity at t=172.5, 177.5, 182.5 and 187.5 seconds indicating an incipient non-

steady laminar flow at 54 10Ra   , 756Re  . 
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Figure B.49: Velocity vectors directly on the surface (top and right planes). Symmetry plane is shown in 
front (z=8) 
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Figure B.50: Iso-surfaces of temperature. Solid wall is shown in front (z=0) 
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Figure B.51: Iso-surfaces of velocity magnitude. Symmetry plane is shown in front (z=8) 
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Figure B.52: Iso-surfaces of velocity magnitude. Solid wall is shown in front (z=0) 
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Figure B.53: Temperature contours 
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Figure B.54: Velocity magnitude contours 
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Figure B.55: Iso-surfaces of velocity magnitude. Comparison of the filtered (left) and AD (right) velocity 
fields. Symmetry plane is shown in front (z=8) 
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Figure B.56: Comparison of laminar and turbulent velocity profiles 
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Figure B.57: Comparison of laminar and turbulent velocity profiles (viscous sublayer) 
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Figure B.58: Thermal cavity V-velocity profiles extracted from the symmetry plane (z-8) at different 
heights 

  

1y 

3y 
5y 

7y 



201 

 

 

Figure B.59: Thermal cavity V-velocity profiles extracted from the symmetry plane (z-8) at different 
heights 
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Figure B.60: Interpolated thermal cavity V-velocity profiles extracted from the symmetry plane (z-8) at 
y=1 and y=5. 
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Figure B.61: Thermal cavity symmetry plane unitized scale temperature flood with velocity vector 
overlay. Dashed circles highlight the traversing vortex entities at hot/cold walls 
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Figure B.62:Thermal cavity symmetry plane arLES theory close-up flood with velocity vector overlay, 
810Ra  , t=382.1s. Left to right, top to bottom:  , 2 2u u    , 1 2u u , 1 2 1 2u u u u  , 1 2u u    
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Figure B.63: The arLES statistics – 11C  component 

  



206 

 

Figure B.64: The arLES statistics – 12C  component 
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Figure B.65: The arLES statistics – 13C  component 
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Figure B.66: The arLES statistics – 22C  component 
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Figure B.67: The arLES statistics – 23C  component 
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Figure B.68: The arLES statistics – 33C  component 
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Figure B.69: The arLES statistics – 1V  component 
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Figure B.70: The arLES statistics – 2V  component 
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Figure B.71: The arLES statistics – 3V  component 
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APPENDIX C 

PICMSS THERMAL CAVITY FE TEMPLATE 
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  PRIMARY_VARIABLES 27 

  U V W TEMP PHI 

  SPHI 

  C11 C12 C13 C22 C23 C33 

  T1 T2 T3 

  DUBDY DVBDY DWBDY DTBDY 

  UAD VAD WAD TAD 

  UBCE VBCE WBCE TBCE * 

 

  SECONDARY_VARIABLES 0 

  * 

 

  FIXED_VARIABLES 5 

  DCONST XCVAL YCVAL ZCVAL TCVAL * 

 

  INVERSE_VARIABLES 0 

  * 

 

  DERIVED_VARIABLES 6 

  UU  2  U U 

  UV  2  U V 

  UW  2  U W 

  VV  2  V V 

  VW  2  V W 

  WW  2  W W 

  * 

 

  OPERATORS 93 

  OP_1   *    c200t  * 

  OP_2   *    c20x   * 

  OP_3   *    c20y   * 

  OP_4   *    c20z   * 

  OP_5   U    c300x  * 

  OP_6   V    c300y  * 

  OP_7   W    c300z  * 

  OP_8   *    c2kk   * 

  OP_9   U    c3x00  * 

  OP_10  U    c3y00  * 

  OP_11  U    c3z00  * 

  OP_12  V    c3x00  * 

  OP_13  V    c3y00  * 

  OP_14  V    c3z00  * 

  OP_15  W    c3x00  * 

  OP_16  W    c3y00  * 

  OP_17  W    c3z00  * 

  OP_18  UU   c30xxh * 

  OP_19  UV   c30xyh * 

  OP_20  UW   c30xzh * 

  OP_21  UV   c30yxh * 

  OP_22  VV   c30yyh * 

  OP_23  VW   c30yzh * 

  OP_24  UW   c30zxh * 

  OP_25  VW   c30zyh * 

  OP_26  WW   c30zzh * 

  OP_27  TEMP c3x00  * 

  OP_28  TEMP c3y00  * 

  OP_29  TEMP c3z00  * 

  OP_30  *    c200   * 

  OP_31  UU   c30xxt * 

  OP_32  UV   c30xyt * 

  OP_33  UW   c30xzt * 

  OP_34  UV   c30yxt * 

  OP_35  VV   c30yyt * 

  OP_36  VW   c30yzt * 

  OP_37  UW   c30zxt * 

  OP_38  VW   c30zyt * 

  OP_39  WW   c30zzt * 

  OP_40  U    c30xx  * 

  OP_41  U    c30yx  * 

  OP_42  U    c30zx  * 

  OP_43  V    c30xy  * 

  OP_44  V    c30yy  * 

  OP_45  V    c30zy  * 

  OP_46  W    c30xz  * 

  OP_47  W    c30yz  * 

  OP_48  W    c30zz  * 

  OP_49  *    c2y0   * 

  OP_50  U    c3x0x  * 

  OP_51  U    c3y0y  * 

  OP_52  U    c3z0z  * 

  OP_53  V    c3x0x  * 

  OP_54  V    c3y0x  * 

  OP_55  V    c3z0z  * 

  OP_56  W    c3x0x  * 

  OP_57  W    c3y0y  * 

  OP_58  W    c3z0z  * 

  OP_59  TEMP c3x0x  * 

  OP_60  TEMP c3y0y  * 

  OP_61  TEMP c3z0z  * 

  OP_62  UV   c30xxh * 

  OP_63  UW   c30xxh * 

  OP_64  VV   c30yxh * 

  OP_65  VW   c30yxh * 

  OP_66  VW   c30zxh * 

  OP_67  WW   c30zxh * 

  OP_68  VV   c30xyh * 

  OP_69  VW   c30xzh * 

  OP_70  VW   c30xyh * 

  OP_71  WW   c30xzh * 

  OP_72  UU   c30yxh * 

  OP_73  UV   c30yyh * 

  OP_74  UW   c30yzh * 

  OP_75  UW   c30yxh * 

  OP_76  VW   c30yyh * 

  OP_77  WW   c30yzh * 

  OP_78  UU   c30zxh * 

  OP_79  UV   c30zyh * 

  OP_80  UW   c30zzh * 

  OP_81  UV   c30zxh * 

  OP_82  VV   c30zyh * 

  OP_83  VW   c30zzh * 

  OP_84  VV   c30xxh * 

  OP_85  VW   c30xxh * 

  OP_86  WW   c30xxh * 

  OP_87  UU   c30yyh * 

  OP_88  UW   c30yyh * 

  OP_89  WW   c30yyh * 

  OP_90  UU   c30zzh * 

  OP_91  UV   c30zzh * 

  OP_92  VV   c30zzh * 

  OP_93  *    cn200  * 
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NUMBER_OF_SETS 7 

 

UVWPHI_EQUATION_SET 0: 

 

OPERATORS 61 

  OP_1  OP_2  OP_3  OP_4  OP_5  OP_6  

OP_7  OP_8  OP_9  OP_10 

  OP_11 OP_12 OP_13 OP_14 OP_15 OP_16 

OP_17 OP_18 OP_19 OP_20 

  OP_21 OP_22 OP_23 OP_24 OP_25 OP_26 

OP_27 OP_28 OP_29 OP_30 

  OP_62 OP_63 OP_64 OP_65 OP_66 OP_67 

OP_68 OP_69 OP_70 OP_71 

  OP_72 OP_73 OP_74 OP_75 OP_76 OP_77 

OP_78 OP_79 OP_80 OP_81 

  OP_82 OP_83 OP_84 OP_85 OP_86 OP_87 

OP_88 OP_89 OP_90 OP_91 

  OP_92 

 

EQUATIONS 5 

 

RHS_U 29 

  ONE OP_1 U 

  ONE OP_5 U 

  ONE OP_6 U 

  ONE OP_7 U 

  ONE OP_2 C11 

  ONE OP_3 C12 

  ONE OP_4 C13 

  ITDELT OP_2 PHI 

  ITDELT OP_2 SPHI 

  ONE OP_30 UBCE 

  TTTT47 OP_8 U 

  TTTT58  OP_18 U 

  TTTT58  OP_19 U 

  TTTT58  OP_20 U 

  TTTT58  OP_21 U 

  TTTT58  OP_22 U 

  TTTT58  OP_23 U 

  TTTT58  OP_24 U 

  TTTT58  OP_25 U 

  TTTT58  OP_26 U 

  TTTT58  OP_18 U 

  TTTT58  OP_19 U 

  TTTT58  OP_20 U 

  TTTT58  OP_72 V 

  TTTT58  OP_73 V 

  TTTT58  OP_74 V 

  TTTT58  OP_78 W 

  TTTT58  OP_79 W 

  TTTT58  OP_80 W 

 

RHS_V 30 

  ONE OP_1 V 

  ONE OP_5 V 

  ONE OP_6 V 

  ONE OP_7 V 

  ONE OP_2 C12 

  ONE OP_3 C22 

  ONE OP_4 C23 

  ITDELT OP_3 PHI 

  ITDELT OP_3 SPHI 

  ONE OP_30 VBCE 

  TTTT47 OP_8 V 

  MONE OP_30 TEMP 

  TTTT58  OP_18 V 

  TTTT58  OP_19 V 

  TTTT58  OP_20 V 

  TTTT58  OP_21 V 

  TTTT58  OP_22 V 

  TTTT58  OP_23 V 

  TTTT58  OP_24 V 

  TTTT58  OP_25 V 

  TTTT58  OP_26 V 

  TTTT58  OP_62 U 

  TTTT58  OP_68 U 

  TTTT58  OP_69 U 

  TTTT58  OP_21 V 

  TTTT58  OP_22 V 

  TTTT58  OP_23 V 

  TTTT58  OP_81 W 

  TTTT58  OP_82 W 

  TTTT58  OP_83 W 

 

RHS_W 29 

  ONE OP_1 W 

  ONE OP_5 W 

  ONE OP_6 W 

  ONE OP_7 W 

  ONE OP_2 C13 

  ONE OP_3 C23 

  ONE OP_4 C33 

  ITDELT OP_4 PHI 

  ITDELT OP_4 SPHI 

  ONE OP_30 WBCE 

  TTTT47 OP_8 W 

  TTTT58  OP_18 W 

  TTTT58  OP_19 W 

  TTTT58  OP_20 W 

  TTTT58  OP_21 W 

  TTTT58  OP_22 W 

  TTTT58  OP_23 W 

  TTTT58  OP_24 W 

  TTTT58  OP_25 W 

  TTTT58  OP_26 W 

  TTTT58  OP_63 U 

  TTTT58  OP_70 U 

  TTTT58  OP_71 U 

  TTTT58  OP_75 V 

  TTTT58  OP_76 V 

  TTTT58  OP_77 V 

  TTTT58  OP_24 W 

  TTTT58  OP_25 W 

  TTTT58  OP_26 W 

 

RHS_TEMP 18 

  ONE OP_1 TEMP 

  ONE OP_5 TEMP 

  ONE OP_6 TEMP 

  ONE OP_7 TEMP 

  ONE OP_2 T1 

  ONE OP_3 T2 

  ONE OP_4 T3 

  TTTT29 OP_8 TEMP 
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  ONE OP_30 TBCE 

  TTTT88  OP_18 TEMP 

  TTTT88  OP_19 TEMP 

  TTTT88  OP_20 TEMP 

  TTTT88  OP_21 TEMP 

  TTTT88  OP_22 TEMP 

  TTTT88  OP_23 TEMP 

  TTTT88  OP_24 TEMP 

  TTTT88  OP_25 TEMP 

  TTTT88  OP_26 TEMP 

 

RHS_PHI 4 

  ITDELT OP_2 U 

  ITDELT OP_3 V 

  ITDELT OP_4 W 

  ITDELT OP_8 PHI 

 

JAC_U_by_U 18 

  MONE OP_1 

  MONE OP_5 

  MONE OP_6 

  MONE OP_7 

  MONE OP_9 

  TTTT48 OP_8 

  TTTT59 OP_18 

  TTTT59 OP_19 

  TTTT59 OP_20 

  TTTT59 OP_21 

  TTTT59 OP_22 

  TTTT59 OP_23 

  TTTT59 OP_24 

  TTTT59 OP_25 

  TTTT59 OP_26 

  TTTT59 OP_18 

  TTTT59 OP_19 

  TTTT59 OP_20 

 

JAC_U_by_V 4 

  MONE OP_10 

  TTTT59 OP_72 

  TTTT59 OP_73 

  TTTT59 OP_74 

 

JAC_U_by_W 4 

  MONE OP_11 

  TTTT59 OP_78 

  TTTT59 OP_79 

  TTTT59 OP_80 

 

JAC_U_by_TEMP 0 

 

JAC_U_by_PHI 1 

  MITDELT OP_2 

 

JAC_V_by_U 4 

  MONE OP_12 

  TTTT59 OP_62 

  TTTT59 OP_68 

  TTTT59 OP_69 

 

JAC_V_by_V 18 

  MONE OP_1 

  MONE OP_5 

  MONE OP_6 

  MONE OP_7 

  MONE OP_13 

  TTTT48 OP_8 

  TTTT59 OP_18 

  TTTT59 OP_19 

  TTTT59 OP_20 

  TTTT59 OP_21 

  TTTT59 OP_22 

  TTTT59 OP_23 

  TTTT59 OP_24 

  TTTT59 OP_25 

  TTTT59 OP_26 

  TTTT59 OP_21 

  TTTT59 OP_22 

  TTTT59 OP_23 

 

JAC_V_by_W 4 

  MONE OP_14 

  TTTT59 OP_81 

  TTTT59 OP_82 

  TTTT59 OP_83 

 

JAC_V_by_TEMP 1 

  ONE OP_30 

 

JAC_V_by_PHI 1 

  MITDELT OP_3 

 

JAC_W_by_U 4 

  MONE OP_15 

  TTTT59 OP_63 

  TTTT59 OP_70 

  TTTT59 OP_71 

 

JAC_W_by_V 4 

  MONE OP_16 

  TTTT59 OP_75 

  TTTT59 OP_76 

  TTTT59 OP_77 

 

JAC_W_by_W 18 

  MONE OP_1 

  MONE OP_5 

  MONE OP_6 

  MONE OP_7 

  MONE OP_17 

  TTTT48 OP_8 

  TTTT59 OP_18 

  TTTT59 OP_19 

  TTTT59 OP_20 

  TTTT59 OP_21 

  TTTT59 OP_22 

  TTTT59 OP_23 

  TTTT59 OP_24 

  TTTT59 OP_25 

  TTTT59 OP_26 

  TTTT59 OP_24 

  TTTT59 OP_25 

  TTTT59 OP_26 
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JAC_W_by_TEMP 0 

 

JAC_W_by_PHI 1 

  MITDELT OP_4 

 

JAC_TEMP_by_U 1 

  MONE OP_27 

 

JAC_TEMP_by_V 1 

  MONE OP_28 

 

JAC_TEMP_by_W 1 

  MONE OP_29 

 

JAC_TEMP_by_TEMP 14 

  MONE OP_1 

  MONE OP_5 

  MONE OP_6 

  MONE OP_7 

  TTTT30 OP_8 

  TTTT89 OP_18 

  TTTT89 OP_19 

  TTTT89 OP_20 

  TTTT89 OP_21 

  TTTT89 OP_22 

  TTTT89 OP_23 

  TTTT89 OP_24 

  TTTT89 OP_25 

  TTTT89 OP_26 

 

JAC_TEMP_by_PHI 0 

 

JAC_PHI_by_U 1 

  MITDELT OP_2 

 

JAC_PHI_by_V 1 

  MITDELT OP_3 

 

JAC_PHI_by_W 1 

  MITDELT OP_4 

 

JAC_PHI_by_TEMP 0 

 

JAC_PHI_by_PHI 1 

  MITDELT  OP_8 

 

NO_NEU_BC_TYPE_U 0 

 

NO_NEU_BC_TYPE_V 0 

 

NO_NEU_BC_TYPE_W 0 

 

NO_NEU_BC_TYPE_TEMP 0 

 

NO_NEU_BC_TYPE_PHI 0 

 

SPHI_EQUATION_SET 1: 

 

OPERATORS 0 

 

EQUATIONS 1 

 

RHS_SPHI SPHI 2 

  ONE 1 SPHI 

  ONE 1 PHI 

 

CIJ_EQUATION_SET 2: 

 

OPERATORS 11 

  OP_8 OP_30 OP_50 OP_51 OP_52 OP_53 

OP_54 OP_55 OP_56 OP_57 OP_58 

 

EQUATIONS 6 

 

RHS_C11 5 

  ONE    OP_8  C11 

  TTTT54 OP_30 C11 

  TTTT56 OP_50 U 

  TTTT56 OP_51 U 

  TTTT56 OP_52 U 

 

RHS_C12 5 

  ONE    OP_8  C12 

  TTTT54 OP_30 C12 

  TTTT56 OP_50 V 

  TTTT56 OP_51 V 

  TTTT56 OP_52 V 

 

RHS_C13 5 

  ONE    OP_8  C13 

  TTTT54 OP_30 C13 

  TTTT56 OP_50 W 

  TTTT56 OP_51 W 

  TTTT56 OP_52 W 

 

RHS_C22 5 

  ONE    OP_8  C22 

  TTTT54 OP_30 C22 

  TTTT56 OP_53 V 

  TTTT56 OP_54 V 

  TTTT56 OP_55 V 

 

RHS_C23 5 

  ONE    OP_8  C23 

  TTTT54 OP_30 C23 

  TTTT56 OP_53 W 

  TTTT56 OP_54 W 

  TTTT56 OP_55 W 

 

RHS_C33 5 

  ONE    OP_8  C33 

  TTTT54 OP_30 C33 

  TTTT56 OP_56 W 

  TTTT56 OP_57 W 

  TTTT56 OP_58 W 

 

JAC_C11_by_C11 2 

  MONE   OP_8 

  TTTT55 OP_30 

JAC_C11_by_C12 0 

JAC_C11_by_C13 0 

JAC_C11_by_C22 0 

JAC_C11_by_C23 0 

JAC_C11_by_C33 0 
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JAC_C12_by_C11 0 

JAC_C12_by_C12 2 

  MONE   OP_8 

  TTTT55 OP_30 

JAC_C12_by_C13 0 

JAC_C12_by_C22 0 

JAC_C12_by_C23 0 

JAC_C12_by_C33 0 

 

JAC_C13_by_C11 0 

JAC_C13_by_C12 0 

JAC_C13_by_C13 2 

  MONE   OP_8 

  TTTT55 OP_30 

JAC_C13_by_C22 0 

JAC_C13_by_C23 0 

JAC_C13_by_C33 0 

 

JAC_C22_by_C11 0 

JAC_C22_by_C12 0 

JAC_C22_by_C13 0 

JAC_C22_by_C22 2 

  MONE   OP_8 

  TTTT55 OP_30 

JAC_C22_by_C23 0 

JAC_C22_by_C33 0 

 

JAC_C23_by_C11 0 

JAC_C23_by_C12 0 

JAC_C23_by_C13 0 

JAC_C23_by_C22 0 

JAC_C23_by_C23 2 

  MONE   OP_8 

  TTTT55 OP_30 

JAC_C23_by_C33 0 

 

JAC_C33_by_C11 0 

JAC_C33_by_C12 0 

JAC_C33_by_C13 0 

JAC_C33_by_C22 0 

JAC_C33_by_C23 0 

JAC_C33_by_C33 2 

  MONE   OP_8 

  TTTT55 OP_30 

 

NO_NEU_BC_TYPE_C11 0 

 

NO_NEU_BC_TYPE_C12 0 

 

NO_NEU_BC_TYPE_C13 0 

 

NO_NEU_BC_TYPE_C22 0 

 

NO_NEU_BC_TYPE_C23 0 

 

NO_NEU_BC_TYPE_C33 0 

 

TJ_EQUATION_SET 3: 

 

OPERATORS 5 

  OP_8 OP_30 OP_59 OP_60 OP_61 

 

EQUATIONS 3 

 

RHS_T1 5 

  ONE    OP_8  T1 

  TTTT54 OP_30 T1 

  TTTT56 OP_59 U 

  TTTT56 OP_60 U 

  TTTT56 OP_61 U 

 

RHS_T2 5 

  ONE    OP_8  T2 

  TTTT54 OP_30 T2 

  TTTT56 OP_59 V 

  TTTT56 OP_60 V 

  TTTT56 OP_61 V 

 

RHS_T3 5 

  ONE    OP_8  T3 

  TTTT54 OP_30 T3 

  TTTT56 OP_59 W 

  TTTT56 OP_60 W 

  TTTT56 OP_61 W 

 

JAC_T1_by_T1 2 

  MONE   OP_8 

  TTTT55 OP_30 

JAC_T1_by_T2 0 

JAC_T1_by_T3 0 

 

JAC_T2_by_T1 0 

JAC_T2_by_T2 2 

  MONE   OP_8 

  TTTT55 OP_30 

JAC_T2_by_T3 0 

 

JAC_T3_by_T1 0 

JAC_T3_by_T2 0 

JAC_T3_by_T3 2 

  MONE   OP_8 

  TTTT55 OP_30 

 

NO_NEU_BC_TYPE_T1 0 

 

NO_NEU_BC_TYPE_T2 0 

 

NO_NEU_BC_TYPE_T3 0 

 

DUBDY_EQUATION_SET 4: 

 

OPERATORS 0 

 

EQUATIONS 4 

 

RHS_DUBDY DUBDY -222 

  U 

 

RHS_DVBDY DVBDY -222 

  V 

 

RHS_DWBDY DWBDY -222 

  W 
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RHS_DTBDY DTBDY -222 

  TEMP 

 

UVWTAD_EQUATION_SET 5: 

 

OPERATORS 3 

  OP_8 OP_30 OP_93 

 

EQUATIONS 4 

 

RHS_UAD 3 

  ONE  OP_30 UAD 

  MONE OP_30 U 

  CE1  OP_8  U 

 

RHS_VAD 3 

  ONE  OP_30 VAD 

  MONE OP_30 V 

  CE1  OP_8  V 

 

RHS_WAD 3 

  ONE  OP_30 WAD 

  MONE OP_30 W 

  CE1  OP_8  W 

 

RHS_TAD 3 

  ONE  OP_30 TAD 

  MONE OP_30 TEMP 

  CE1  OP_8  TEMP 

 

JAC_UAD_by_UAD 1 

  MONE OP_30 

JAC_UAD_by_VAD 0 

JAC_UAD_by_WAD 0 

JAC_UAD_by_TAD 0 

 

JAC_VAD_by_UAD 0 

JAC_VAD_by_VAD 1 

  MONE OP_30 

JAC_VAD_by_WAD 0 

JAC_VAD_by_TAD 0 

 

JAC_WAD_by_UAD 0 

JAC_WAD_by_VAD 0 

JAC_WAD_by_WAD 1 

  MONE OP_30 

JAC_WAD_by_TAD 0 

 

JAC_TAD_by_UAD 0 

JAC_TAD_by_VAD 0 

JAC_TAD_by_WAD 0 

JAC_TAD_by_TAD 1 

  MONE OP_30 

 

NO_NEU_BC_TYPE_UAD 1 

 

NEU_RHS_UAD 1 

  CE1 OP_93 DUBDY 

 

NEU_JAC_UADUAD 0 

NEU_JAC_UADVAD 0 

NEU_JAC_UADWAD 0 

NEU_JAC_UADTAD 0 

 

NO_NEU_BC_TYPE_VAD 1 

 

NEU_RHS_VAD 1 

  CE1 OP_93 DVBDY 

 

NEU_JAC_VADUAD 0 

NEU_JAC_VADVAD 0 

NEU_JAC_VADWAD 0 

NEU_JAC_VADTAD 0 

 

NO_NEU_BC_TYPE_WAD 1 

 

NEU_RHS_WAD 1 

  CE1 OP_93 DWBDY 

 

NEU_JAC_WADUAD 0 

NEU_JAC_WADVAD 0 

NEU_JAC_WADWAD 0 

NEU_JAC_WADTAD 0 

 

NO_NEU_BC_TYPE_TAD 1 

 

NEU_RHS_TAD 1 

  CE1 OP_93 DTBDY 

 

NEU_JAC_TADUAD 0 

NEU_JAC_TADVAD 0 

NEU_JAC_TADWAD 0 

NEU_JAC_TADTAD 0 

 

UBCE_EQUATION_SET 6: 

 

OPERATORS 0 

 

EQUATIONS 4 

 

RHS_UBCE UBCE -444 

  UAD 

 

RHS_VBCE VBCE -444 

  VAD 

 

RHS_WBCE WBCE -444 

  WAD 

 

RHS_TBCE TBCE -444 

  TAD 

 

END SYSTEM 
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