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ABSTRACT 

 
Plant-insect interactions provide an opportunity to examine fundamental 

ecological and evolutionary processes, including mechanisms of species co-

occurrence and adaptations to herbivory and predation. An example is the 

interaction between butterflies in the Troidini tribe (Papilionidae), a group that 

sequesters chemical defenses from its host plants in the genus Aristolochia 

(Aristolochiaceae). 

In this dissertation, I examined the ecological and evolutionary 

consequences of variation in aristolochic acids, the chemical compounds 

sequestered by Troidini from it host plants, through a combination of 

observational, experimental and laboratory studies. I conducted studies at 

several sites throughout the Americas where different levels of knowledge about 

this interaction are available. These differences allowed me to ask specific 

questions in areas where there is ample background information (i.e. North 

America) and to ask more general, but fundamental questions in areas where 

little is known (i.e. South America). 

In North America, I showed for a Troidini species, Battus philenor, that 

larvae preferentially fed on less tough, younger leaves, and found no evidence 

that aristolochic acid content influenced larval foraging. For these herbivores, 

mechanical resistance might be a more important determinant of larval foraging 

behavior and development compared to plant chemical defenses. In another 
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study in North America, with data from three consecutive seasons, I found that 

larger egg clutches of B. philenor suffer less predation compared to small 

clutches. This study suggests that, for eggs protected with toxic chemicals, there 

is a clear benefit in laying eggs in large clusters in areas with high levels of 

predator threat. 

In Iguazú National Park, Argentina, little is known about Troidini-

Aristolochia interaction; therefore I studied general and specific aspects of this 

interaction. Our main finding, in contrast to what has been reported in North 

America, is that many Aristolochia and Troidini are not defended with aristolochic 

acids, contrary to the currently accepted paradigm that all Troidines are toxic. 

Studying these species in areas where they are understudied and reach higher 

diversity gives a more complete picture of this plant-butterfly interaction. My 

results contribute to furthering our understanding of the role of chemical ecology 

in shaping evolutionary dynamics and ecological processes. 
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INTRODUCTION 
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Introduction 

 
Plant-insect interactions provide an opportunity to examine fundamental 

ecological and evolutionary processes, including mechanisms of species co-

occurrence and adaptations to herbivory and predation (Ehrlich and Raven 1964, 

Johnson et al. 2003, Zovi et al. 2008). Plants can impose strong selection 

pressures on herbivorous insects, and their effects can extend to the third trophic 

level (Braby 1994, Thompson 1999, Fordyce and Nice 2008). The interaction 

between butterflies and their host plants has a long history of investigation for 

understanding the ecological and evolutionary consequences of plant-insect 

interactions. An example is the interaction between butterflies in the tribe Troidini, 

a group that sequesters chemical defenses from it host plant (Rausher and Papaj 

1983, Sime 2002, Fordyce et al. 2010). 

Swallowtail butterflies in the tribe Troidini (Papilionidae) specialize on 

plants of the genus Aristolochia (Aristolochiaceae), commonly called pipevines. 

Aristolochia spp. contain toxic alkaloids (nitrophenanthrene carboxylic acids), 

called aristolochic acids (AAs), that serve as a defense against most insect 

herbivores (Chen and Zhu 1987, Racheli and Oliverio 1993). Troidini are found 

from temperate to tropical areas, but they are predominantly tropical and 

subtropical, with most species concentrated in the lowland forests of Central and 

South America and in the Indo-Australian region (Weintraub 1995). There are 

two Troidini genera in the new world, Battus and Parides, and members of these 
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genera are known to posses plant-derived aristolochic acids (Brower 1958, 

Klitzke and Brown 2000, Fordyce et al. 2005). The butterflies obtain these 

chemicals as larvae, rendering both larvae and adults chemically defended 

against most predators, including ladybird beetle larvae, spiders, and birds 

(Rothschild et al. 1970, Brower 1984, Fordyce 2000) (Fig. I.1.). 

The most studied species in the Troidini tribe is the pipevine swallowtail, 

Battus philenor, which is distributed mostly in North America (Rausher 1981, 

Allard and Papaj 1996, Fordyce 2000, Sime et al. 2000). Examples of studies on 

this butterfly species include those by Pilson and Rausher (1988) who 

investigated whether females modify clutch size in response to variation in host 

plant quality, and by Rausher and Papaj (1983), who studied the oviposition 

selection of females on conspecific host plants and its effect on larval growth 

rates, predispersal mortality, and larval size at dispersal. The existence of 

numerous studies of this species allow us to ask very specific questions about 

the ecology and evolution of the interaction between B. philenor and Aristolochia 

spp., such as the ones explored in chapters II and III of this dissertation (see 

below). 

Although the interaction between the Troidini species Battus philenor and 

Aristolochia spp. is documented in North America, there is a paucity of studies in 

Central and South America, where the greatest diversity of the Troidini tribe is 

found. Chapter IV of this dissertation explores different aspects of the chemical 
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ecology of a Troidini community and its Aristolochia host plants in an 

understudied area in South America (see below). 

In my dissertation research, I used observational and experimental 

approaches to quantify and examine different aspects that contribute to the 

understanding of the ecological and evolutionary consequences of the Troidini 

tribe and their Aristolochia host plant interaction. This research was conducted in 

three study areas including Texas and Tennessee in the USA, and Iguazú 

National Park in Argentina. 

In Chapter II, I report on the study conducted with Drs. Fordyce and Nice  

on the effect of aristolochic acids and leaf toughness on larval preference and 

performance in a population of B. philenor in Texas, USA. I also examined if 

heritable variation in larval sequestration or host plant aristolochic acid content is 

the predominant determinant of larval chemical phenotype. 

In Chapter III I report on the study conducted with Dr. Fordyce on the role 

egg clutch size has on egg mortality in B. philenor. I examined the hypothesis, 

proposing that larger egg clutches frequently observed in toxic butterflies play a 

defensive role for eggs by reducing the probability of egg mortality due to 

predation. I tested this idea in Norris Dam State Park in east Tennessee. 

Finally, chapter IV is focused on the chemical ecology of a Troidini 

community and its Aristolochia host plants in Iguazú National Park, Argentina. 

Since very little is known about this interaction in this area (and actually in many 

places of the Americas outside of the USA), I started asking a series of very 
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general natural observation questions that guided us into more specific questions 

about the chemical ecology of the Troidini-Aristolochia interaction. 

The studies presented in this dissertation are the first of their kind for this 

group of toxin-sequestering specialists. By studying aspects of this plant-insect 

relationship not previously explored, as well as examining the general biology of 

this herbivore in areas where it reaches higher diversity and abundances and in 

areas previously understudied (i.e., outside North America), I hope to provide 

fundamental information to further our understanding of the ecology and 

evolution of this complex plant-insect interaction. 
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Figure I.1. Typical life cycle of butterflies in the Troidini tribe showing some of the 

life stages studied in my thesis (adults, eggs and larvae). Troidini butterflies 

obtain the toxic alkaloids (aristolochic acids, AAs) by feeding on Aristolochia 

plants as larvae, rendering both larvae and adults chemically defended. 
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CHAPTER II.  

FAMILY MATTERS: EFFECT OF HOST PLANT VARIATION IN 

CHEMICAL AND MECHANICAL DEFENSES ON A 

SEQUESTERING SPECIALIST HERBIVORE 
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The following section is a slightly modified version of a manuscript published in 

the journal Oecologia: 

 

Dimarco, R. D., C. C. Nice, and J. A. Fordyce. 2012. Family matters: Effect of 

host plant variation in chemical and mechanical defenses on a sequestering 

specialist herbivore. Oecologia 170:687-693. 

 

The use of “we” in this chapter refers to my co-authors and me. As the lead 

author of this article, I was responsible for this paper. My primary contributions to 

this paper included the formulation of ideas, chemical and data analyses, and 

writing. 
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Abstract 

 
Insect herbivores contend with various plant traits that are presumed to 

function as feeding deterrents. Paradoxically, some specialist insect herbivores 

might benefit from some of these plant traits, for example, by sequestering plant 

chemical defenses that herbivores then use as their own defense against natural 

enemies. Larvae of the butterfly species Battus philenor (L.)(Papilionidae), 

sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, 

rendering larvae and adults unpalatable to a broad range of predators. We 

studied the importance of two putative defensive traits in Aristolochia erecta, leaf 

toughness and aristolochic acid content; and we examined the effect of intra- and 

inter-plant chemical variation for determining the chemical phenotype of B. 

philenor larvae. It has been proposed that genetic variation for sequestration 

ability is "invisible to natural selection" because intra- and inter-individual 

variation in host plant chemistry will largely eliminate a role for herbivore genetic 

variation in determining an herbivore’s chemical phenotype. We found substantial 

intra- and inter-plant variation in leaf toughness and in the aristolochic acid 

chemistry in A. erecta. Based on field observations and laboratory experiments, 

we showed that first instar larvae preferentially fed on less tough, younger leaves 

and avoided tougher, older leaves, and found no evidence that aristolochic acid 

content influenced first instar larval foraging. We found that most variation in the 

amount of aristolochic acids sequestered by larvae was explained by larval 
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family, not by host plant aristolochic acid content. Heritable variation for 

sequestration is the predominant determinant of larval, and likely adult, chemical 

phenotype. This study shows that for these highly specialized herbivores that 

sequester chemical defenses, traits that offer mechanical resistance, such as leaf 

toughness, might be more important determinants of early instar larval foraging 

behavior and development compared to plant chemical defenses. 
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Introduction 

 
All plants encounter generalist and specialist insect herbivores, and they 

employ a number of strategies to deter them (Levin 1973; Karban and Myers 

1989). Plants can invest in structures that impede herbivore foraging, such as 

trichomes (Hulley 1988; Ågren and Schemske 1993), or in defenses that directly 

compromise an herbivore’s ability to process food, such as latex or leaf 

toughness (Dussourd and Eisner 1987; (Pérez-Harguindeguy et al. 2003). Plants 

can also employ chemical defenses that can function as herbivore deterrents. 

However, plants that invest in chemical defenses are presented with a particular 

challenge when, for example, insects sequester plant secondary compounds that 

provide the insect a defense against natural enemies (Price et al. 1980; Malcolm 

and Zalucki 1996; Fordyce 2001). There can be substantial intra-plant variation in 

the allocation of chemical defenses, and it is reasonable to assume that 

herbivore foraging behavior might be affected by the distribution of plant 

defensive chemistry (Rank 1992), as predicted by the optimal defense theory 

(McKey 1974). Although this theory has been developed to address how plant 

quality might affect herbivore foraging decisions (Zangerl and Bazzaz 1992), 

there remains limited understanding of the relationship between intra-plant 

defensive chemical variation and the foraging decisions of herbivores. 

Herbivore foraging decisions in response to plant chemical variation can 

be considered in various ways. If herbivores sequester plant defensive 
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chemicals, they might preferentially forage on parts of the plant with the highest 

concentration of secondary metabolites in order to maximize their defense 

against natural enemies (Rank 1992; Martinsen et al. 1998; Van Alstyne et al. 

1999). On the other hand, if sequestration is costly, herbivores might forage on 

parts of the host plant that are less toxic (Murakami 1998). Alternatively, 

herbivore foraging behavior might not be directly determined by plant chemistry, 

rather it may be more strongly influenced by structural or mechanical defenses 

(e.g., trichomes or leaf toughness). Beyond plant defensive traits, herbivore 

foraging decisions might also be influenced by the nutritional quality of plant 

tissues, the presence of herbivore natural enemies, or microclimate. 

Little is known about the evolutionary dynamics of herbivore chemical 

sequestration. In the laboratory, Müller et al. (2003) studied three populations of 

the sawfly Athalia rosae ruficornis that harbor glucosinolates, a defensive 

compound derived from sequestered bioactive host-plant metabolites (Boevé and 

Schaffner 2003). Concentrations of sequestered chemical compounds in the 

insect were highly correlated with chemical concentrations in the host plant such 

that host plant chemical variation was a more important determinate of variation 

in the glucosinolate defenses of the sawfly compared to the heritable variation for 

glucosinolate sequestration. However, the relationship between sequestration 

ability and survivorship of herbivores has been scarcely studied in the field. In a 

rare study of variation in sequestration, Fordyce and Nice (2008) found that the 

probability of larval survivorship through the first instar for Battus philenor 
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(L.)(Papilionidae) was positively correlated with larval sequestration ability. Thus, 

natural selection might operate on the sequestration ability in wild populations. 

The pipevine swallowtail, B. philenor, is a specialist herbivore on plants in 

the genus Aristolochia (Aristolochiaceae) (Racheli and Pariset 1992; Fordyce et 

al. 2010). Plants in the family Aristolochiaceae are known to possess toxic 

alkaloids, nitrophenanthrene carboxylic acids, commonly called aristolochic 

acids. The primary aristolochic acid (AA) constituents of North America 

Aristolochias spp. are: AA-I and AA-II (Fordyce 2000; Sime et al. 2000). 

Aristolochic acids are bitter and highly toxic, inducing vomiting in vertebrates 

when consumed; they are nephrotoxic and hepatotoxic, and are known 

mutagens (Chen and Zhu 1987). Larvae of B. philenor sequester these 

metabolites, rendering both larvae and adults chemically defended against many 

invertebrate and vertebrate predators (Brower 1958; Rothschild et al. 1970; 

Codella and Lederhouse 1989; Fordyce 2001). 

Beyond chemical defenses, leaf toughness is a physical barrier that is 

especially important to first instar larvae (Farrow et al. 1994; Casher 1996; 

Zalucki et al. 2002). From natural observations and field experiments, it is known 

that larvae of B. philenor, especially neonate and first instar larvae, preferentially 

feed on growing tips of their Aristolochia host plants (Fordyce and Agrawal 

2001). Leaf toughness and leaf secondary compounds are characteristics of leaf 

tissue that might explain B. philenor larval feeding behavior. Larvae of B. philenor 

might forage on the growing tips of their Aristolochia host plants because young, 
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growing leaves are less tough than older leaves. Alternatively, they might be 

feeding on the tip leaves because these leaves contain higher concentrations of 

aristolochic acids, thereby providing more resources for larval chemical defense. 

In this study, we examined the role of two plant traits, leaf toughness and 

leaf chemistry, that serve as putative defenses against B. philenor larvae, and 

examined the importance of plant chemical variation in determining the chemical 

phenotype (chemotype) of larvae. Specifically we addressed the following 

questions: 1) Is there intra-plant variation in aristolochic acid content and /or leaf 

toughness? 2) Where on the plant (tip, middle or bottom leaves) do first instar 

larvae tend to feed? 3) Does larval performance vary depending on larval feeding 

location on the plant and, if so, is this best explained by aristolochic acid content 

or leaf toughness? 4) Does larval family or host plant chemistry best predict 

aristolochic acid content of larvae? 

 

Materials and Methods 

 

Laboratory and Field experiments 

Intra-plant variation in aristolochic acid content and leaf toughness 

To assess plant variation at the individual level in aristolochic acid content 

and leaf toughness, we collected bottom, intermediate and tip leaves (total of five 
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leaves per individual) of Aristolochia erecta, a commonly used host plant species 

of B. philenor in central Texas. We rank ordered the leaves from bottom to top, 

with leaf number 1 indicating the bottom leaf and leaf number 5 indicating the tip 

leaf. We sampled leaves from 20 plants in Hays County, TX, USA. We measured 

leaf toughness (g/cm2) by averaging three measurements with a force gauge 

penetrometer (Type 516; Chatillon, Largo, Florida, USA) on fresh leaf material. 

The leaf penetrometer measures the mass (in grams) needed to puncture a leaf 

using a 3 mm diameter rod. Tip leaves are always the youngest leaves for this 

Aristolochia species, and leaves become progressively older as you proceed 

down the stem. Comparisons of toughness and aristolochic acid content (see 

below) among leaves (tip, three intermediate, and bottom leaves), were 

performed using a mixed model ANOVA implemented in JMP (v. 9.02) software 

(SAS Institute 2010). Individual plant was considered a random effect, with leaf 

position as a fixed effect. Variance components for the random effect were 

estimated using restricted maximum likelihood (REML). We also examined the 

correlation between leaf toughness and aristolochic acid content for all A. erecta 

individuals combined. 

Larval feeding position on A. erecta 

To assess and quantify the preference of B. philenor larvae for leaves of 

varying ages and toughness, we conducted a choice test using neonate larvae at 

Freeman Ranch in south-central Texas (Hays County), a field station operated by 
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Texas State University. At this site, A. erecta, was the only naturally occurring 

host plant available for B. philenor. Wild-caught females were induced to lay 

eggs in the laboratory. We removed eggs from plant material and allowed them 

to hatch. On the day of hatching, larvae were transported to the Freeman Ranch 

study site. In the field, we placed each neonate larva (N=30) on an individual 

stem of A. erecta for 24 hours. Neonate larvae were randomly assigned to plants 

and leaf position. After placing larvae on the stem next to their designated 

starting leaf, the larvae were allowed to move and begin feeding. After 24 hours 

we recorded the position on the plant (i.e. leaf number) where larvae were 

feeding. We grouped the position data into two groups: feeding on the tip leaf 

(leaf 6) and feeding on any other leaf (leaves 1-5). We tested the differences in 

numbers of larvae in each group using a Wilcoxon signed-rank test under the null 

expectation that the larvae would be equally distributed among the two groups. 

Effects of aristolochic acid content and leaf toughness on larval 

performance 

We examined larval performance in response to leaf chemistry and leaf 

toughness using tip (less tough) and middle (more tough; see Results) leaves of 

A. erecta, with or without aristolochic acid supplementation. This design allowed 

us to simultaneously assess the effect of chemistry while controlling for leaf 

toughness and vice versa. We supplemented leaves with aristolochic acid using 

a saturated solution (100 µg AA-I & AA-II/100 ml ethanol), resulting in nearly 
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threefold increase in concentration compared to concentrations that naturally 

occur in leaf tissue in the field (Fordyce 2001; Fordyce and Nice 2008). The 

saturated solution was applied to leaves by spraying each leaf three times with 

three standardized applications. We sprayed control leaves in the same manner 

with ethanol only. Neonate larvae were permitted to feed on leaves for 48 hours 

after which two measures of larval performance were made: leaf area consumed 

and larval dry weight. We quantified leaf area consumed by digitizing the leaves, 

and the area missing relative to total leaf area was assessed using Image J 

software (Rasband 2003). Each larva was dried under reduced pressure and 

weighed to the nearest microgram. We assessed differences in larval 

performance (dry weight) using an analysis of variance (ANOVA), with 

aristolochic acid supplementation and leaf toughness as factors and leaf area 

consumed as a covariate. 

Heritable variation in larval sequestration versus variation in host plant 

chemistry 

To examine the relative importance of larval family vs. variation in host 

plant chemistry for aristolochic acid sequestration, we conducted a field study at 

Freeman Ranch (Hays Co., TX). We placed sibling neonate larvae, obtained 

from 12 wild-caught females, in the field in groups of five, the average clutch size 

in this population (Fordyce and Nice 2004). We permitted larvae to feed for 3 

days, after which larvae and plant material were collected for chemical analyses. 
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Larvae from each individual plant were pooled, providing a single response 

variable of larval chemotype for each plant. We estimated variation in aristolochic 

acid content explained among families (broad sense heritability) and plant 

chemistry using a mixed model ANCOVA, where family was considered a 

random effect. Because the number of replicate groups varied among females 

we used restricted maximum likelihood (REML) implemented in JMP (v. 9.02) 

software (SAS Institute 2010) to estimate the among-female variance 

component. 

Chemical analysis 

Larvae and leaves were dried under reduced pressure prior to acid 

extraction. We weighed larvae to the nearest 0.1 microgram and leaves were 

weighed to the nearest milligram. We extracted aristolochic acids from larvae 

twice in 0.4 mL of 100% ethanol, sonicated for 20 minutes at 50 °C, and dried the 

resultant extract under reduced pressure. Leaf aristolochic acids were extracted 

twice in 5 mL of 100% ethanol and sonicated for 20 min at 50 °C. These extracts 

were similarly dried under reduced pressure. The ethanol extracts from larval and 

leaf samples left a yellow residue. Larval extracts were resuspended in 0.04 mL 

of 100% methanol and placed into total recovery autosampler vials for HPLC 

analysis. Leaf extracts were resuspended in 1 mL of 100% methanol and passed 

through a 0.45 µm filter into an autosampler vial for HPLC analysis. 
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We performed HPLC analyses using a Waters Alliance HPLC system with 

a 2996 diode array detector and Empower Pro Software (Waters Corporation, 

Milford, MA). Each injection was 10 µl eluted isocratically with a mixture of 

methanol, water, and 1% acetic acid (52:47:1) at a rate of 1 ml/min on a Waters 

Symmetry C-18 reverse phase column (3.5 mm, 4.6 x 75 mm). Aristolochic acids 

were identified based on their retention times and unique absorption spectra. We 

quantified aristolochic acid concentrations by comparing peak retention times 

and areas to a standard curve generated with chemical standards as described 

in Fordyce and Nice (2008). 

 

Results 

 

Intra-plant variation in aristolochic acid content and leaf toughness 

Leaf toughness and aristolochic acid content varied with leaf age (Fig. 

II.1.). The top-most, youngest leaves, were less tough compared to older leaves 

(F4, 74 = 18.64, P < 0.001). Aristolochic acid content varied among leaves, with 

bottom and top leaves having the highest concentrations of aristolochic acids 

compared to intermediate leaves (F4, 74 = 8.29, P < 0.001). After removing 

among-plant variation, we found a negative correlation between residual leaf 

toughness (g/cm2) and residual leaf aristolochic acid content (log µg AA/ mg dry 

weight) (r = -0.41, n =98, P < 0.001). This negative correlation indicates that 
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there is a tendency for less tough, younger leaves to have higher concentrations 

of aristolochic acid compared to tougher, older leaves. 

Larval feeding position on A. erecta 

From analyses of 30 B. philenor first instar larvae, we found that 24 out of 

30 larvae (80%) established a feeding site on the tip leaf after 24 hours of 

feeding in the field (N = 30; Wilcoxon signed-rank test, Z = -139.5, P = 0.0002) 

despite the fact that only 3 of the 30 were initially placed next to a tip leaf. 

Effect of aristolochic acid content and leaf toughness on larval 

performance  

When we examined the effect of leaf chemistry vs. leaf toughness on 

larval performance, we found that leaf toughness best predicted larval 

performance (dry weight) (F1, 67 = 63.24, P < 0.01), whereas we failed to find an 

effect of leaf chemistry on larval performance (F1, 67 = 0.11, P = 0.73). In this 

manipulative experiment we failed to detect a significant interaction between 

aristolochic acid supplementation and leaf toughness on larval performance (F1, 

67 = 2.95, P = 0.112) (Fig. II.2.).  

Heritable variation in larval sequestration versus variation in host plant 

chemistry  

When we examined the relative importance of larval family variation for 

sequestration vs. the variation of host plant chemistry, we found that 44.3% of 
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the variation in larval aristolochic acid content was explained by family identity. 

This serves as our broad-sense heritability estimate for sequestration ability (Fig. 

II.3.). To explore how much of the remaining variation in larval chemistry was 

explained by host plant chemistry, we performed a mixed model ANCOVA of 

plant chemistry on the residual variation in larval chemistry after removing the 

effect of family. Here, we found that plant chemistry explained an additional 14% 

of the variation in larval aristolochic acid content (F1, 29 = 4.885, P = 0.035). 

 

Discussion 

 
We found large intra-plant variation in leaf toughness and aristolochic acid 

chemistry in A. erecta individuals. Regardless of the amount of aristolochic acids 

present in the leaves, first instar larvae of B. philenor preferred to feed on 

younger, tender leaves. This indicates that leaf toughness is likely an important 

characteristic of plant resistance to herbivory by B. philenor larvae, as has been 

observed frequently in other insect groups (Matsuki and Maclean 1994). In A. 

erecta, leaf toughness showed a consistent pattern with younger leaves being 

less tough than older leaves. Using the same procedures as with A. erecta we 

also found a similar pattern in two other Aristolochia species commonly used by 

other populations of B. philenor (unpublished data). It is important to note that 

many factors change with leaf position, due to ontogeny. Therefore, leaf 
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toughness may not be the sole factor responsible for the patterns observed in 

this study, because other factors might co-vary with leaf ontogeny. However, 

from previous studies we know that leaf toughness plays a fundamental role in 

deterring early instar larvae of other butterfly species (Zalucki et al. 2002). In 

previous examinations of B. philenor larval behavior, Fordyce and Agrawal 

(2001) found that a structural defense (trichomes) on A. californica notably 

reduced the rate of herbivory of early instar larvae. This result also suggested 

that defenses other than chemical ones can be important agents for deterring 

herbivory by a specialist herbivore. 

Although A. erecta leaves analyzed in this study showed different 

concentrations of aristolochic acids, with younger leaves containing higher 

concentrations of aristolochic acids, leaf aristolochic acid content appears to play 

a less important role in predicting first instar larval performance compared to leaf 

toughness. This is an interesting result given that aristolochic acids are an 

important defensive resource for B. philenor, providing them with a chemical 

defense against natural enemies (Fordyce 2001; Sime 2002; Fordyce and Nice 

2008). In our system, we found that aristolochic acid content had no measurable 

effect on B. philenor first instar larval performance, contrary to at least one other 

well-studied system involving chemical sequestration, the interaction between 

monarch butterflies (Danaus plexippus) and their milkweed host-plant (Asclepias 

spp.) (Zalucki et al. 1990; Zalucki and Brower 1992). It would be interesting to 

examine if later instars of B. philenor show the same performance and 
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consumption patterns, since they may be less influenced by leaf toughness, 

given their larger size. 

Surprisingly, we found that a substantial amount of variation in larval 

aristolochic acid chemistry was explained by larval family, despite considerable 

variation in aristolochic acid content among individual plants. This suggests that 

heritable variation for sequestration ability is an important determinant of larval 

aristolochic acid concentration and adult chemotypes. This is at odds with the 

hypothesis that plant chemical variation will overshadow insect genetic variation 

for sequestration as proposed by Müller et al. (2003), and suggests that the 

ability to sequester can likely respond to natural selection, despite the variation in 

aristolochic acid content observed among individual plants. 

The role that plant chemical defenses play in the foraging decisions and 

performance of herbivores has often been emphasized (Zangerl and Bazzaz 

1992; VanDam et al. 1996; Zangerl and Rutledge 1996; Asplund et al. 2010). In 

this study, we found that leaf toughness was a better predictor of first instar 

larvae preference and performance, compared to plant chemical defense 

(aristolochic acids); and although there was substantial variation in plant 

aristolochic acid content, larval family was a better predictor of larval aristolochic 

acid content. In both field observations and experiments, larvae were more likely 

to feed on the young, actively growing leaves near the tips of the stems, 

regardless of the amount of artistolochic acids present. Although the intra-plant 

distribution of aristolochic acids in A. erecta was consistent with the predictions of 
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optimal defense theory, namely that younger leaves with potentially higher fitness 

value contained higher levels of the putative anti-herbivore defense; there was no 

evidence that the distribution of these chemicals affected larval preference and 

performance. This study shows that for highly specialized herbivores that 

sequester chemical defenses from their host plants, mechanical resistance, such 

as leaf toughness, might be a more important determinant of herbivore foraging 

patterns than chemical defenses. 
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Figure II.1. Boxplots of leaf toughness (A) and total leaf aristolochic acid content 

(B) in A. erecta individuals. Leaves were numbered from 1 to 5 with leaf 1 the 

oldest and leaf 5 the youngest (tip leaf).  
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Figure II.2. Larval dry weight (±SE) on less tough and more tough leaves of A. 

erecta without supplemented aristolochic acid (control treatment) or with 

supplemented aristolochic acids (+AA treatment) (F(3,76) = 18.162 P < 0.001). 
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Figure II.3. Among-family variation in sequestered aristolochic acids (ln µg AA/ 

mg dry weight ±SE) after controlling for among-plant variation in 12 families (full 

siblings) of Battus philenor. 
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CHAPTER III.  

LARGER CLUTCHES OF CHEMICALLY DEFENDED 

BUTTERFLIES REDUCE EGG MORTALITY: EVIDENCE FROM 

BATTUS PHILENOR 
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The following section is a slightly modified version of a manuscript published in 

the journal Ecological Entomology: 

 

Dimarco, R. D., and J. A. Fordyce. 2013. Larger clutches of chemically defended 

butterflies reduce egg mortality: evidence from Battus philenor. Ecological 

Entomology 38:535-538. 

 

The use of “we” in this chapter refers to my co-author and me. As the lead author 

of this article, I was responsible for this paper. My primary contributions to this 

paper included the formulation of ideas, data collection, chemical and data 

analyses, and writing. 
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Abstract 

 
Many toxic butterflies lay eggs in clusters and their eggs are 

aposematically colored to warn predators. The pipevine swallowtail, Battus 

philenor (L.) (Papilionidae), is a specialist herbivore on plants in the genus 

Aristolochia, from which it sequesters toxic alkaloids (aristolochic acids, AAs). 

Eggs of this group of butterflies are laid singly or in clusters of different sizes, are 

aposematic and can possess AAs. We conducted a field study during three 

consecutive summers in Tennessee where we manipulated the exposure of B. 

philenor eggs of different clutch sizes to predators to assess the defensive role of 

egg clustering. We found that larger egg clutches suffer less predation compared 

to small clutches, and we failed to detect a relationship between clutch size and 

AA content in the eggs. Crawling predators seem to play the most important role 

in egg mortality. 

This study suggests that, for toxic eggs, there is a clear benefit in laying eggs in 

large clusters in areas with high levels of predator threat. 
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Introduction 

 
Oviposition strategies of butterflies and other insects vary broadly. 

Generally, studies examining oviposition behavior focus on the location where 

clutches are laid by females and on variation in egg clutch sizes (Clark and Faeth 

1998, Desouhant et al. 2000, Faraji et al. 2002). After encountering a host plant, 

a female must choose when, where, and how many eggs to oviposit. Female 

butterflies oviposit eggs either singly or in clutches with many eggs, and clutch 

size can vary within and among species (Stamp 1980). Variation in clutch size is 

thought to be an adaptive mechanism to reduce larval mortality, thereby 

increasing females’ realized fecundity (Courtney 1984, Fordyce and Nice 2004). 

Aggregative feeding of larvae often occurs as a consequence of egg clustering. A 

number of hypotheses have been proposed to explain the evolution of egg 

clustering and the adaptive value of aggregative feeding (Stamp 1980, Fordyce 

2005). 

Many species of butterflies that lay eggs in clusters are unpalatable and 

aposematically colored (Stamp 1980, Sillén-Tullberg and Leimar 1988, Hunter 

1991). It has been proposed that in chemically defended insects, grouping has 

the potential to increase the individual per capita survivorship of the prey, even 

though a group might be more apparent to predators (Clark and Faeth 1998, 

Hunter 2000). One explanation of this behavior might be enhanced 

aposematism, because a group of prey that are aposematically colored display a 
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more conspicuous signal to predators compared to a single aposematic prey, 

thereby enhancing learning in predators (Sillén-Tullberg and Leimar 1988, 

Gagliardo and Guilford 1993). 

The present study aims to further our understanding on the potential role 

clutch size might play for egg survival. By conducting field observations and 

experiments during three consecutive years we ask: 1) Do large egg clutches 

reduce the risk of predation in this toxic specialist herbivore?  2) Broadly, what 

are the important invertebrate predators (crawling or flying) of B. philenor eggs? 

 

Material and methods 

 

Species description 

The pipevine swallowtail, Battus philenor L., is a butterfly in the tribe 

Troidini (Papilionidae) that specializes on plants in the genus Aristolochia 

(Aristolochiaceae) (Racheli and Oliverio 1993). Aristolochia contain toxic 

alkaloids called aristolochic acids (AAs) that serve as defences against most 

herbivores (Chen and Zhu 1987). B. philenor sequester these chemicals as 

larvae, rendering both larvae and adults chemically defended against many 

invertebrate and vertebrate predators (Fordyce 2000, Sime et al. 2000). Eggs of 

B. philenor are bright orange, possess AAs on their surface, and are often laid in 

clusters (Sime et al. 2000). Although eggs are chemically defended, the highest 
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mortality occurs during the egg and first instar larval stages, due in part to 

predation (Tatar 1991, Fordyce and Nice 2004). Clutch size can vary within and 

among populations (Fordyce 2003, Fordyce and Nice 2004). The average clutch 

size of B. philenor in Tennessee is 8.4 eggs per clutch ranging from 1 to 26 eggs 

per clutch (personal observations), whereas in Texas the average clutch size is 5 

eggs/clutch with a range of 1 - 17 eggs/clutch (Fordyce and Nice 2004), and in 

California is 13 eggs/clutch ranging from 1 - 86 eggs/clutch (Fordyce 2003, 

2005). Although B. philenor has been widely studied, there is a paucity of 

empirical studies on the relationship between clutch size of B. philenor and egg 

predation. 

Study area 

Norris Dam State Park is a 1,634 hectare park, located in east Tennessee 

(36° 13’N, 84° 5’W). Aristolochia macrophylla is the common host plant of B. 

philenor in this area. Oviposition by B. philenor in Tennessee begins in May and 

continues until September. 

Clutch size and egg predation experiment 

To assess if clutch size explains variation in mortality of B. philenor eggs, we 

conducted a field experiment over three consecutive summers (2009-2011) 

during with clutch size and accessibility to predators were manipulated. 

Accessibility to predators was manipulated through the application of Tanglefoot 

pest barrier (Tanglefoot Company, Grand Rapids, MI, USA) to the stem below 
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each clutch. The application of Tanglefoot allowed us to elucidate the foraging 

strategy of important egg predators in this system. Hereafter, we refer to crawling 

predators as those that are effectively excluded by the application of Tanglefoot, 

and flying/jumping predators as those that could circumvent the sticky barrier. 

From extensive observations in the area and in our experiments, we found that 

velvet mites, Trombidium holosericeum (Trombidiidae), are the most common 

generalist crawling predator of B. philenor eggs at our study site. 

Egg clutches where obtained by confining individual, wild-caught B. 

philenor females in cages where portions of A. macrophylla stems were provided. 

Clutch sizes range from 1 to 26 eggs, the range observed for naturally laid clutch 

in the field at this location. Each stem with clutches of variable size was placed 

back in the field attached to a branch of an A. macrophylla plant. In total, we had 

54 clutches ranging from 2 to 26 eggs, 20 singleton clutches without Tanglefoot, 

and 37 clutches and 16 singleton clutches with the addition of Tanglefoot. 

Clutches were assigned to the Tanglefoot and no Tanglefoot treatment 

haphazardly. Egg survival was estimated as the proportion of eggs that 

successfully hatched. The clutches were observed once a day until larvae 

hatched (on average 7 days after eggs were laid), and predation was recorded 

by looking at the characteristic predator damage on the eggs (i.e. a small hole in 

the egg chorion).  
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Chemical analysis of egg’s aristolochic acid content 

To determine if AA content of B. philenor eggs varies depending on 

whether eggs were laid in large or small clutches, we analyzed AA content of 

individual eggs that were laid in the field in clutches of various sizes (n = 25 

clutches). An individual egg from each clutch was dried under reduced pressure 

and weighted to the nearest 0.1 µg. AAs were extracted twice from each egg in 

0.75 mL of 100% ethanol and sonicated once for 20 minutes at 50 �C. The 

resultant extract from each egg was passed through a 0.45 µm filter and dried 

under reduced pressure. The residue was resuspended in 0.04 ml of 100% 

methanol and placed into a total recovery autosampler vials for HPLC analysis. 

HPLC analyses were performed following Dimarco et al. (2012). 

Statistical analysis 

Data on clutch size and egg survival were analyzed using logistic 

regression in R 2.14.2 (R development core team 2012). The model included the 

presence or absence of the Tanglefoot barrier and log clutch size as factors and 

egg survival as the dependent variable. We also ran a linear regression to see if 

there was a relation between clutch size and AA content. 
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Results 

 

Clutch size and egg predation experiment 

The full model detected an effect of predator exclusion treatment on egg 

survival (z = -4.607, P < 0.001); however, the interaction between predator 

exclusion and clutch size was significant (z = 2.473, P = 0.013); thus, we ran two 

separate models to examine how clutch size might affect egg survival. For 

clutches where crawling predators were excluded, there was no evidence that 

clutch size explained the probability of egg survival (z = -0.513, P = 0.61). 

However, when crawling predators had access to clutches, clutch size affected 

the probability of egg survival (z = 5.792, P < 0.001), with larger clutches having 

a higher probability of survival (Fig. III.1.). The percentage of eggs eaten in the 

treatment where eggs were protected against crawling predators was 4.6%, while 

the percentage of eggs eaten in the treatment when crawling predators were not 

excluded was 55.1%. Based on the parameter estimates of the model, we 

estimated that egg survival exceeds 50% when a clutch is larger than 6.9 eggs 

(SE = 0.16).  

Chemical analysis of eggs 

We failed to detect a relationship between clutch size and total AA content 

per egg (F1,23 = 1.118, P = 0.301). We also failed to detect a relationship between 
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clutch size and AA concentration per egg (µg of AAs / mg of dry weight) (F1,23 = 

0.206, P = 0.654). 

 

Discussion 

 
We found that, for B. philenor, egg predation decreased as a function of 

clutch size (Fig. III.1.). Further, we found that crawling predators, those that were 

successfully excluded by the Tanglefoot barrier, are the important predators in 

this system. Our results are consistent with the hypothesis that larger clutches 

frequently observed in toxic butterflies plays a defensive role (Stamp 1980). 

Although enhanced aposematism is frequently championed as the function of 

aggregation for chemically defended prey (Stamp 1980, Sillén-Tullberg and 

Leimar 1988, Hunter 1991); the role vision plays for the important predators that 

were observed in our study is uncertain. For example, it is unclear what role 

enhanced aposematism might play against the velvet mite (T. holosericeum). 

One possible explanation for the lower incidence of predation on larger clutches 

might be satiation of the predator. However, this explanation is perhaps not likely 

given that our experimental clutches remained in the field for a long enough 

period of time (7 days on average) so there should have been ample opportunity 

for multiple predator encounters. Moreover, for many large clutches (with more 

than 20 eggs), only on average 20% of the eggs suffered predation, leaving most 
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of the siblings untouched. We found no evidence that egg toxicity varies with 

clutch size. This suggests that larger clutches of toxic eggs might suffer less 

predation not because of increased toxicity associated with larger clutches, 

rather because predators reject larger clusters of unpalatable eggs after 

sampling few members of the clutch (Alatalo and Mappes 1996, Hunter 2000). 

More research is needed to elucidate the importance of these different factors in 

explaining the behavior of egg predators. 

The existence of variability in egg clutch sizes in different regions and 

species, and geographic variation in the benefit of being gregarious and toxic at 

the first instar larval stage among populations of B. philenor (Fordyce and Nice 

2004) suggest that the benefit of being in aggregation might vary. These 

differences in oviposition strategies could be affected by ecological factors (e.g. 

climate, presence of other species of Troidini), and are likely maintained by 

variation in the types and abundance of local predators. 

Our results suggest that predation rate is reduced as a function of 

increased clutch size, but this fact does not imply that maximizing clutch size is 

the optimal egg-laying strategy. It is possible that egg clutch size might also 

affect other factors that can have detrimental effects, such as competition among 

larvae for food resources. However, evidence that larger clutches benefit toxic 

eggs can also be found in the fact that non-toxic species of Lepidoptera often lay 

eggs solitarily and rely on crypsis for defence (Hunter 1991). In species with toxic 

eggs, it might be expected that under conditions of high levels of predator threat, 
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larger clutches might be adaptive. The variation observed in clutch size within 

and between Troidini species, might be a response to different levels of predation 

risk. This study suggests that in toxic organisms, in some circumstances, egg 

clustering is an effective strategy to reduce predation risk. In areas where egg 

predation is common, as in our study site, there appears to be a clear defensive 

benefit in laying eggs in large clusters. 
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Appendix III: Figures 
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Figure III.1. Probability of survival for individual eggs of B. philenor in clutches of 

different sizes; (a) is clutches protected from crawling predators with the 

application of Tanglefoot, and (b) are clutches not protected from crawling 

predators. Dots are scaled to represent duplicate data points. Lines represent the 

fit of the logistic regression model.  
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CHAPTER IV: PATTERNS OF CHEMICAL SEQUESTRATION, 

LARVAL PREFERENCE AND PERFOMANCE IN A SUBTROPICAL 

COMMUNITY OF TROIDINI SWALLOWTAILS AND THEIR 

ASSOCIATED ARISTOLOCHIA HOST PLANTS 
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The following section is a version of a manuscript to be submitted for publication.  

 

The use of “we” in this chapter refers to my co-author, James A. Fordyce, and 

me. As the lead author of this article, I was responsible for this paper. My primary 

contributions to this paper included the formulation of ideas, data collection, 

chemical and data analyses, and writing. 
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Abstract 

 
Swallowtail butterflies in the tribe Troidini (Papilionidae), a group that 

sequesters chemical defenses from its host plant, have been a model group for 

development of theory on host plant chemical sequestration. Troidini butterflies 

specialize on plants in the genus Aristolochia (Aristolochiaceae), which possess 

toxic alkaloids called aristolochic acids (AAs), and sequester AAs as larvae, 

rendering both larvae and adults chemically defended against most natural 

enemies. Although Troidini butterflies are predominantly tropical, with many co-

occurring species concentrated in the lowland forests of Central and South 

America, most work on this group has focused on a single species in North 

America at the northern most range of the distribution of this group. The goal of 

this study is to examine the AA concentration of both swallowtail butterflies and 

their Aristolochia host plants in areas where greater diversity of Troidini 

butterflies is found. We also examine variation in host plant preference and 

performance among co-occurring butterfly species reared on different 

Aristolochia host plants. We conducted this study in Iguazú National Park, 

Argentina where five known Troidini butterfly species and two species of 

Aristolochia co-occur. 

We found that one of the two host plant species used by Troidini 

possessed the alkaloids that these butterflies sequester as larvae. Individuals of 

Aristolochia triangularis, a very abundant species commonly used by Troidini 
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butterflies, did not possess detectable levels or had trace amounts of AAs. In the 

larval preference experiments, larvae showed preference for A. triangularis 

individuals over Aristolochia macroura. Further, contrary to the currently 

accepted paradigm, in our study system most Troidini individuals do not possess 

AA chemical defense, showing that toxicity itself can be polymorphic within a 

population. This suggests that not only are these butterflies involved in a 

Batesian mimicry complex, they might also be involved in automimicry, where 

butterflies without AAs are benefiting from the presence of toxic con-specifics. 

We also found that larvae chose to feed on tender leaves when given the choice; 

however, host plant AAs did not influence larval feeding choice. Experimental 

evidence showed that higher levels of AAs in the diet increased larval mortality, 

which might indicate a cost associated with sequestration of the chemical 

defense for protection against natural enemies, and might explain the observed 

polymorphism for sequestration. 

By studying Troidini species in regions previously understudied (i.e., 

outside of North America), and in areas where they reach higher diversity, we are 

obtaining a more complete picture of the chemical ecology of this model group. 
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Introduction 

 
Plants employ a number of strategies to deter insect herbivores. These 

strategies can involve the investment in mechanical defenses (e.g., trichomes, 

increased leaf toughness and latex production) or the production of chemical 

defenses that could deter herbivores (Hulley 1988, Pérez-Harguindeguy et al. 

2003, Clissold et al. 2009). Herbivores, however, also have evolved strategies for 

circumventing physical and mechanical plant defenses (Rathcke and Poole 1975, 

Dussourd and Eisner 1987, Hulley 1988) and overcoming plant chemical 

defenses either through tolerance to plant toxins (e.g., cytochromes p-450) 

(Schuler 1996, Li et al. 2000) or by possessing substantially reduced sensitivity 

towards the toxin (e.g. target-site insensitivity) (Holzinger et al. 1992, Agrawal et 

al. 2012). Additionally, some herbivores sequester these plant secondary 

compounds, not only giving them the ability to consume the plant, but also 

obtaining chemical defense against their natural enemies (Duffey 1980, Malcolm 

and Zalucki 1996, Fordyce 2000, Karban and Agrawal 2002, Nishida 2002). 

Co-evolutionary interactions between plants and herbivores can be 

complex. Plants and herbivores can engage in an “evolutionary arms race”, 

where plant defenses (e.g. production of toxic secondary compounds) and 

herbivore counter defenses to overcome plant defenses continue to escalate 

(Thompson 1999, Karban and Agrawal 2002, Musser et al. 2002). Plants can 

also invest in other types of defenses that might augment the effect of the 
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chemical ones to deter insect herbivores. For example, they might invest in traits 

that provide mechanical resistance, such as a tougher leaf, to reduce damage by 

specialized insect herbivores that sequester the plant-synthesized toxic 

compounds (Dimarco et al. 2012). There are several groups of insects that are 

able to sequester plant secondary compounds by ingesting and storing them in 

the integument or body tissue. The sequestration of these toxic compounds 

provides the insect with a defense against their natural enemies (Duffey 1980, 

Opitz and Müller 2009). For herbivores, there might be a cost associated with the 

ability to sequester a plant’s toxic compounds, which could produce a tradeoff 

between an increased ability to defend against predators but decreased overall 

performance defined as a measure of offspring survival, growth, or reproduction. 

(Camara 1997, Rieger et al. 2004, Fordyce and Nice 2008). 

One of the best-studied groups of butterflies that sequester chemical 

defenses from their host plants is swallowtail butterflies in the Troidini 

(Papilionidae) group (Nishida et al. 1993, Fordyce 2000, Klitzke and Brown 2000, 

Sime 2002, Papaj et al. 2007). Troidine swallowtails are predominantly tropical, 

with most species concentrated in the lowland forests of Central and South 

America and in the Indo-Australian region (Weintraub 1995). These butterflies 

specialize on plants of the genus Aristolochia (Aristolochiaceae), commonly 

called pipevines. Aristolochia spp. contain toxic alkaloids (nitrophenanthrene 

carboxylic acids) called aristolochic acids (AAs) that serve as a defense against 

most insect herbivores (Chen and Zhu 1987, Racheli and Oliverio 1993). There 
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are two Troidini genera in the New World, Battus and Parides, and the other 

genera in the Indo-Australian region. Members of this group are largely tropical 

or subtropical and are known to possess plant-derived aristolochic acids. These 

alkaloids are sequestered by larvae from their host plant, rendering both larvae 

and adults chemically defended against many predators, such as ladybird beetle 

larvae, spiders, and birds (Brower 1958, Rothschild et al. 1970, Brower 1984, 

Klitzke and Brown 2000, Fordyce et al. 2005). 

The most intensively studied Troidini species is the pipevine swallowtail, 

Battus philenor, which is largely restricted to North America. Most of the studies 

on B. philenor- Aristolochia spp. have been done in areas in the USA where it is 

not sympatric with other Troidini species (e.g. Rausher and Feeny 1980, Rausher 

1981, Allard and Papaj 1996, Fordyce 2000, Sime et al. 2000, Fordyce et al. 

2010, Dimarco et al. 2012). Although the interaction between B. philenor and 

Aristolochia spp. is well documented in North America, there is a paucity of 

studies in tropical areas where the Troidini group is notably more diverse and 

where many species of this group co-occur (but see, Brown et al. 1980, Klitze 

and Brown 2000, Mebs and Schneider 2002). 

Here, we present one of the first comparative studies in a single location 

of Troidini-Aristolochia relationships in subtropical forests with multiple Troidini 

species. In this study, we examined the interaction between five co-occurring 

Troidini butterflies species and their associated Aristolochia host plants in Iguazú 

National Park, Argentina. We consider that by studying Troidini butterflies and 
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their Aristolochia host plants in an understudied rainforest in South America, we 

may be able to contribute to the understanding on this complex plant-insect 

interaction. Our goal was to address general questions about variation in host 

plant quality and chemical sequestration, and the ecological processes that might 

produce these patterns. We address the following: 1) Do local Aristolochia 

species differ in their leaf toughness and aristolochic acid concentration? 2) Do 

different patterns of chemical sequestration exist in co-occurring Troidini 

species? 3) Is there variation in larval preference among Aristolochia species? 

and if so, is larval preference affected by aristolochic acid content?: 4) Is larval 

performance affected by the aristolochic acid content present in their diet?  

 

Materials and methods 

 

Study site  

Iguazú National Park, Argentina, is located in the northeastern Argentina 

(25.65 S, 54.33 W). Iguazú hosts a diversity of plants and animals, including five 

species of butterflies in the Troidini group (Parides agavus, Parides anchises 

nephalion, Parides neophilus eurybates, Battus polydamas and Battus 

polystictus) (Canals 2003) and two Aristolochia host plant species (Aristolochia 

triangularis and Aristolochia macroura). Extensive observations showed that P. 
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anchises nephalion and B. polydamas are the most abundant species of the five 

Troidini species in the area. 

Sampling of the local Troidini butterflies and Aristolochia plants 

During April and May of 2008 and from September to March of 2009-2010 

and 2010-2011, we sampled individuals of the local Troidini community and their 

Aristolochia host plants. During daily trips by two persons, we used nets to collect 

butterflies and searched for Aristolochia plants. When we found Aristolochia 

plants we took leaf tissue samples and recorded their location. This sampling 

allowed us to obtain preliminary estimates about the relative abundance of 

butterfly and plant species and provided samples for chemical analyses. We had 

a total of 191 full days of sampling across all field seasons. 

Analysis of aristolochic acid concentration and leaf toughness in local 

Aristolochia spp. 

We collected leaves from the two Aristolochia species, Aristolochia 

triangularis and Aristolochia macroura to measure leaf toughness and 

aristolochic acid concentration. Leaf toughness (g/cm2) was measured on 30 

fresh leaves from each Aristolochia species with a force gauge penetrometer 

(type 516; Chatillon, Largo, FL, USA) by averaging three measurements per leaf. 

Measuring leaf toughness is important because it is a trait shown to offer 

mechanical resistant to phytophagous insects (especially first instar butterfly 

larvae) and is correlated with larval performance (Clissold et al. 2009, Dimarco et 
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al. 2012). The leaf penetrometer measures the force needed to puncture a leaf 

using a 3 mm diameter rod. 

To assess variation in aristolochic acid concentration (µg of AAs / mg of 

dry weight) of Aristolochia plants we extracted AAs from a total of 114 individual 

leaf samples (46 from A. macroura and 68 from A. triangularis). Leaves from 

each host plant were dried under reduced pressure prior to extraction and 

weighed to the nearest milligram. AAs were extracted twice in 5 mL of 100% 

ethanol in a 10 mL borosilicate test tube, and sonicated twice for 20 min at 50 °C. 

The ethanol extracts were dried under reduced pressure and left a yellow residue 

in the glass tube. Leaf extracts were resuspended in 1 mL of 100% methanol and 

passed through a 0.45 µm filter into an autosampler vial for HPLC analysis. We 

performed HPLC analyses using a Waters Alliance HPLC system with a 2996 

diode array detector and Empower Pro Software (Waters Corporation, Milford, 

MA, USA). Each injection was 10 µl, eluted isocratically with a mixture of 

methanol, water, and 1 % hydrochloric acid (52:47:1) at a rate of 1 ml/min on a 

Waters Symmetry C-18 reverse phase column (3.5 mm, 4.6 x 75 mm). We 

identified AAs based on their retention times and unique absorption spectra and 

quantified AA concentration by comparing peak retention times and areas to a 

standard curve generated with chemical standards as described in Fordyce and 

Nice (2008). We tested for differences in leaf toughness and leaf AA 

concentration (µg of AAs / mg of dry weight) between the two Aristolochia 

species using t-tests (JMP v. 9.02) software (SAS Institute 2010). 
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Analysis of aristolochic acid concentration in the local Troidini 

We collected 315 wild adult butterflies that represented four species (136 

from B. polydamas, 137 from P. anchises nephalion, 20 from P. neophilus 

euribates and 22 from B. polystictus). To extract the AAs, each adult butterfly 

was dried under reduced pressure prior to extraction and weighed to the nearest 

milligram. The AAs were extracted from the defatted butterfly tissue (see below 

defatting methods) in 5 mL of 100 % ethanol and sonicated for 20 min at 50 °C. 

The extraction was repeated once to ensure AAs removal from each sample. The 

ethanol extracts were dried under reduced pressure, resuspended in 1 mL of 

100% methanol and passed through a 0.45 µm filter into an autosampler vial for 

HPLC analysis. We performed HPLC analyses using a Waters Alliance HPLC 

system with a 2996 diode array detector and Empower Pro Software (Waters 

Corporation, Milford, MA, USA). Each injection was 10 µl, eluted isocratically with 

a mixture of methanol, water, and 1 % acetic acid (52:47:1) at a rate of 1 ml/min 

on a Waters Symmetry C-18 reverse phase column (3.5 mm, 4.6 x 75 mm). 

Aristolochic acids were identified based on their retention times and unique 

absorption spectra. Aristolochic acid concentration (µg of AAs / mg of dry weight) 

was quantified by comparing peak retention times and areas to a standard curve 

generated with chemical standards. 
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Larval preference between different Aristolochia species and with different 

levels of AAs 

To assess if the two most common co-occurring Troidini species (B. 

polydamas and P. anchises nephalion) show variation in use of the two locally 

available Aristolochia species, and if aristolochic acid content influence larval 

preference, we conducted two larval feeding preference experiments. Assessing 

larvae preference is relevant because Troidini larvae are known to wander long 

distances between food plants (Rausher 1979). Further, individuals of different 

Aristolochia host species can be observed growing adjacent to one another in 

some regions (R. Dimarco, personal observation). To determine larval 

preference, we collected 12 B. polydamas females and 11 P. anchises nephalion 

females and let them oviposit eggs in the laboratory. After larvae emerged from 

the eggs, we placed individual larvae (44 B. polydamas and 34 P. anchises 

nephalion) in small arenas (10 cm diameter Petri dishes) and provided them with 

freshly cut leaves of similar size from each Aristolochia species (A. triangularis 

and A. macroura). Neonate larvae fed for 48 hours (leaf material was replaced 

after 24 hours) and then we removed remaining leaf material to assess how 

much of each leaf area was consumed. We quantified leaf area consumption by 

digitizing the leaves using Image J software (Rasband 2003) and then assessing 

the area missing relative to the total leaf area. We tested for differences in 

preference between the two Aristolochia host plant species using a Wilcoxon 

signed-rank test JMP (v. 9.02, software, SAS Institute 2010). We tested for 
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differences in percentage of leaf area consumed between the two host plants 

species using also a Wilcoxon signed-rank test. 

Because the two locally available Aristolochia species differed in AA 

concentration and leaf toughness (see result section), we conducted a second 

larval preference experiment to examine the role AAs play in larval choice. We 

used only A. triangularis, which has more tender leaves and was typically devoid 

of or contained only trace amounts of AAs. For this experiment, we manipulated 

A. triangularis leaf chemistry by adding aristolochic acids to A. triangularis leaves 

of similar sizes. We sprayed one half of each A. triangularis leaf with a mixture of 

equal amounts of AA I and AA II (saturated solution, 100 µg / 100 ml Ethanol) 

obtained from Fisher Scientific Company. The addition of the AAs solution to A. 

triangularis leaves made it reach similar natural levels of AAs found in A. 

macroura (the plant species with higher leaf toughness and levels of AAs). The 

other half of the leaf was sprayed with 100% Ethanol as a control. We left the 

ethanol to evaporate before leaf tissue damage occurred, leaving leaves with an 

AA supplemented and a control side (see Fordyce 2001). We placed 20 neonate 

larvae from each butterfly species (B. polydamas and P. anchises nephalion) in 

individual arenas and provided them with the A. triangularis leaf with manipulated 

AA content (with and without the addition of AAs). After 48 hours of feeding 

(replacing leaf material after 24 hours), we removed the uneaten leaf material. 

We recorded on which half of the leave each larvae fed and we quantified the 

leaf area consumed by each larvae as described in the previous experiment. We 
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tested for differences in preference between the two A. triangularis leaf halves 

(with and without the addition of AAs) using a Wilcoxon signed-rank test JMP (v. 

9.02, software, SAS Institute 2010). We tested for differences in percentage of 

leaf area consumed between A. triangularis leaves halves, also using a Wilcoxon 

signed-rank test. 

Larval performance and its relation to aristolochic acids presence in their 

diet 

To evaluate the effect of aristolochic acid content on larval performance 

we reared individual B. polydamas and P. anchises nephalion larvae under the 

following three treatments: 1) A. triangularis leaves with the addition of AAs; 2) A. 

triangularis leaves with their natural levels of AAs (i.e., no detectable or trace 

amounts of AAs); and 3) A. macroura leaves with their natural levels of AAs (i.e., 

typical levels of AAs found in an Aristolochia species).This was not a full factorial 

experiment since it was not possible to reduce the amount of AAs in A. 

macroura. To modify A. triangularis AA content, we sprayed leaves with a 

mixture of aristolochic acid I and II (saturated solution, 100 µg/100 ml Ethanol) 

(see full methods in previous sections). To control for effects of Ethanol, we 

sprayed 100% Ethanol on unmodified A. triangularis and A. macroura leaves 

(treatments 2 and 3). We assessed the variation in survivorship, adult fat content, 

and adult dry weight across all three feeding treatments. We collected 22 P. 

anchises nephalion and 8 B. polydamas females and let them oviposit eggs in 
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the laboratory. Eggs were separated from their clutch and pooled per butterfly 

species. Each individual egg was placed in a Petri dish. Each neonate larva was 

reared individually. We consider each rearing container as an experimental unit. 

We obtained information from 70 neonates of P. anchises nephalion and 24 

neonates of B. polydamas. The difference in the number of neonates between 

the two butterfly species was due to differences in adult female abundances at 

the time of the experiment. To obtain the fat content from the adult butterflies, 

each individual was dried under reduced pressure prior to extraction and 

weighed to the nearest milligram. The fat was extracted from each individual 

butterfly twice by homogenizing in 5 ml of hexane, and sonicated for 20 min at 50 

Cº. The fat-containing hexane was placed in a pre-weighed 10 mL borosilicate 

test tube. We left the hexane to evaporate and quantified fat concentration (g of 

fat / g of dry weight) by subtracting the weight of the tube with fat from the weight 

of the pre-weighed tube. 

We analyzed survivorship with a Chi-square test to assess differences 

among the different treatments (A. triangularis + AAs, A. triangularis, and A. 

macroura) and butterflies species (P. anchises nephalion and B. polydamas). 

Our response variable was the number of neonate larvae that reached the adult 

stage. Adult fat content, adult dry weight and AA content were analyzed with 

ANOVAs to assess the differences among the three different feeding treatments 

of the two species. 
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Results 

 

Analysis of aristolochic acid concentration and leaf toughness in local 

Aristolochia spp. 

The two studied Aristolochia plants differed in their AA concentrations (t = 

17.47, DF = 112, P < 0.0001, Fig. IV.1.), with most individuals of A. triangularis 

having no detectable or trace amounts of AA, and A. macroura having AA levels 

similar to the ones reported for North American Aristolochia species. 

A. triangularis leaves are notably more tender than A. macroura leaves. A. 

triangularis leaves have a mean toughness of 1.51 gr/cm2 versus 39.78 gr/cm2 of 

A. macroura leaves (t = 18.89, DF = 82, P < 0.0001).  

Analysis of aristolochic acid concentration in the local Troidini 

We found significant differences in AA concentration among the different 

butterfly species (F3, 311 = 14.4, P < 0.0001). We found large intra- and 

interspecific variation in AA concentration across butterflies. Most individuals of 

the abundant Battus polydamas (N = 136) and the rare B. polystictus (N = 22) 

had undetectable or very low AA levels. The abundant species P. anchises 

nephalion (N = 137) had high average levels of AAs, but also had large 

intraspecific variation with AA concentration of individuals. The less abundant 

species P. neophilus euribates (N = 20) had the highest mean AA levels and less 

intraspecific variation than other species (Fig. IV.2.). Sample size of each species 
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was variable (ranging from N = 20 to N = 137), which reflects the variable 

abundances of the different butterflies species. Results from a post hoc Tukey 

HSD test showed that P. neophilus eurybates have the highest levels of AAs and 

B. polystictus and B. polydamas having the lowest levels of AAs (see Fig. IV.2.). 

Larval preference for different Aristolochia species and with different levels 

of AAs 

We found a significant larval preference for the two locally available 

Aristolochia host plant species. Both B. polydamas and P. anchises nephalion 

larvae preferred to feed on A. triangularis (S = -604.5, DF = 60, P < 0.001) and 

consumed a greater amount of A. triangularis leaves (B. polydamas: S = -207, 

DF = 34, P < 0.001; P. anchises nephalion: S = -133.5, DF = 26, P < 0.001) (Fig. 

IV.3.). This result is consistent with our field observations, where larvae of both 

species were more commonly seen feeding on A. triangularis than on A. 

macroura. 

We found that B. polydamas and P. anchises nephalion larvae show no 

preference between A. triangularis leaf halves with and without the addition of 

AAs (S = -70, DF = 38, P < 0.2678). Area removed by B. polydamas showed no 

significant differences between the two treatments (S = -32, DF = 18, P = 

0.2101). Area removed by P. anchises nephalion showed also no significant 

differences (S = -43, DF = 20, P = 0.1337) (Fig. IV.4.). 
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Larval performance and its relation to aristolochic acids presence in their 

diet 

We found that larval survivorship of B. polydamas and P. anchises 

nephalion decreased by more than 50% when reared on A. macroura leaves or 

on A. triangularis leaves with the addition of AAs than when reared on A. 

triangularis leaves without the addition of AAs (�2 = 10.95, DF = 2, P = 0.0042). 

Survivorship was 2.2 times higher in individuals fed on A. triangularis leaves 

without the addition of AAs than in the other treatments. In these treatments we 

failed to detect a difference in larval survivorship when comparing B. polydamas 

and P. anchises nephalion (χ2 = 0.072, DF = 1, P = 0.788). When comparing the 

two treatments with high levels of AAs (A. macroura vs. A. triangularis with the 

addition of AAs), we failed to detect a difference in larval survivorship (χ2 = 0.081, 

DF = 1, P = 0.776). These results indicate that a cost associated with feeding on 

leaves with aristolochic acid might exist.  

For surviving individuals, we failed to detect an effect on adult fat content 

with the addition of AAs in larvae diet, in both butterfly species (P. anchises 

nephalion F2, 23 = 0.409, P = 0.668; B. polydamas F2, 7 = 0.417, P = 0.67). We 

also failed to detect an effect on adult dry weight with the addition of AAs (P. 

anchises nephalion F2, 23 = 0.09, P = 0.913; B. polydamas F2, 7 = 1.66, P = 0.256). 

When we looked at AA content, we found that P. anchises nephalion and B. 

polydamas larvae have the ability to sequester AAs when it is present in their 

diet. We found a treatment effect, and a post-hoc Tukey’s test showed that when 
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larvae fed on A. macroura or on A. triangularis with the addition of AAs; the adult 

butterflies have similar and significantly higher AAs levels than in the treatment 

with A. triangularis with no addition of AAs (P. anchises nephalion F2, 22 = 25.8, P 

< 0.0001; B. polydamas F2, 6 = 107.9, P < 0.0001). In the treatment with A. 

triangularis with no addition of AAs, we found that larvae had no detectable or 

very low levels of AAs. 

 

Discussion 

 
We found that one abundant plant and most individuals of the two most 

common swallowtail butterfly species do not possess detectable levels of 

aristolochic acids (AAs) or contain trace amounts. Larval preference does not 

appear to be affected by leaf AA content; instead, leaf toughness seems to be 

more important in deterring first instar B. polydamas and P. anchises nephalion 

larvae from feeding on their host plant. This agrees with Dimarco et al. (2012) 

who found that, for B. philenor leaf toughness was more important in determining 

the preference of early instar larvae compared to aristolochic acid content. Our 

analyses showed that larvae fed indiscriminately in the treatments with or without 

addition of AAs on A. triangularis leaves. This host plant species possesses 

tender leaves and largely lacks aristolochic acids. This result suggests that, if the 
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opportunity to feed on a more tender host plant is given, larvae might choose to 

feed on this host plant irrespective of its aristolochic acid content.  

Although AAs did not influence larval feeding choice, larval performance 

was affected by the amount of AA present in their diet. In the treatment with 

leaves with supplemented AAs, survivorship was lower compared to treatments 

with trace amounts or no detectable levels of AAs (i.e., larvae reared only on A. 

triangularis). These results may shed some light on why so many Troidine 

swallowtails in Iguazú did not possess AAs. The lack of AAs in wild caught adults 

might be also explained by females choosing to lay egg on A. triangularis. This 

could also be the case for other Troidine swallowtails from other regions that feed 

on Aristolochia species (e.g. A. galeata, A. momandul, A. elegans) (Klitze and 

Brown 2000, Mebs and Schneider 1996, Urzúa & Priestap 1985) that have trace 

amounts or non detectable amounts of AAs, so AAs are not available to be 

sequestered by the developing larvae. 

This potential tradeoff between chemical defenses and survivorship may 

be one reason why automimicry might be happening in this system. Automimicry 

complexes develop when chemical defenses are costly (as is the case with AAs). 

Since there is no individual survival benefit in being toxic, some individuals of a 

population (the cheaters) produce little or nothing of the costly defense. These 

individuals can still get protection because other members of the same 

population that are similar in appearance (the non-cheating individuals) are 

defended and deter predators (Brower et al. 1970, Brower et al. 1975, Tuskes 
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and Brower 1978, Daly et al. 2012). In tropical and subtropical areas, where 

species richness is typically higher than in temperate areas, cheating might be 

more common given the high richness of phenotypically similar-butterflies but 

relatively low abundance of each species. High richness and low abundance 

could make distinguishing between truly toxic individuals and their mimics harder 

to learn for predators (which are also highly diverse). 

Sequestration of aristolochic acids has been proposed to be costly 

through a reduction in adult fat content in Troidine. A previous study reported a 

negative relationship between B. philenor adult AA content and fat content, 

suggesting a cost associated with the sequestration of the aristolochic acids by 

B. philenor larvae (Fordyce and Nice 2008). However, we failed to detect an 

effect of the amount of AA in adult fat content and adult dry weight, suggesting 

that this cost of adult fat content may not exist in our study system. 

The main limitation of this study is that it has been conducted in at a single 

site (Iguazú National Park). However, preliminary results from Costa Rica 

(Dimarco and Fordyce, unpublished data) suggest that lack of sequestered AAs 

in this group might be the rule, not the exception. In concordance with results 

from Iguazú, we found that some Costa Rican Aristolochia and Troidini do not 

posses AAs. In a study of neotropical Troidine collected in different regions of 

Central, South America and the Caribbean, Klitzke and Brown (2000) found 

variable concentrations of aristolochic acids in adult butterflies. Another study by 

Mebs and Schneider (1996) in South-East Asia, also found also high variability in 
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aristolochic acid concentration among Troidine adults, with some individuals 

containing no detectable or trace amounts. Although these studies found similar 

results to the one presented here, they were limited by small sample sizes. 

Klitzke and Brown (2000) used an average of eight adults per species collected 

from different sites throughout Central and South America, and Mebs and 

Schneider (1996) had an average of three adults per species collected from 

different sites in South-East Asia. More detailed studies in other areas of the 

Americas and Asia are needed to fully understand this phenomenon. 

In North America, B. philenor, the most abundant and best studied Trodini 

species, possess AAs as does their locally available Aristolochia host plant (Sime 

2002, Fordyce and Nice 2008, Fordyce et al. 2010). Our study sheds light on the 

fact that, for the same butterfly group, results from temperate areas can differ 

from results obtained in warmer and more diverse environments. Some regions 

of the world are notably more studied than others, producing a substantial bias in 

ecological knowledge that can be problematic (Martin et al. 2012). Working in 

understudied areas that have higher biological diversity and warmer climates, 

such as Iguazú National Park has its difficulties, but more studies in these areas 

may be needed to get a more complete picture of plant-insect interactions. This 

seems to be the case for understanding interactions, like that of the Troidini 

butterflies and their Aristolochia host plants, which occur from tropical to 

temperate areas and from sites with a rich ecological knowledge to sites that 

have been rarely studied. 
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Figure IV.1. Aristolochic acid concentration (µg of AAs / mg of dry weight) in 

leaves of A. macroura and A. triangularis found in Iguazú National Park. We 

found significant differences in aristolochic acid content between the two plant 

species. 
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Figure IV.2. Aristolochic acid concentration (µg of AAs / mg of dry weight) in 

adults of four butterfly species found in Iguazú National Park, Argentina. Different 

letters show significant difference following a post-hoc Tukey’s test. 
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Figure IV.3. Results from a preference experiment between fresh leaves of A. 

macroura and A. triangularis by the two butterfly species, Parides anchises 

nephalion (P.a.n) and Battus polydamas. The box plots presented here show the 

area removed (in mm2) by larvae. Both butterfly species removed significantly 

more area of A. triangularis leaves than A. macroura leaves. 
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Figure IV.4. Results from a preference experiment by the two studied butterfly 

species, Parides anchises nephalion (P.a.n) and Battus polydamas between 

fresh leaves of A. triangularis that had aristolochic acids added to half of the leaf 

(+AAs) and no AAs addition to the other half (control). The box plots presented 

here show the area removed (in mm2) by larvae of each species. We failed to 

detect differences between the two treatments in both butterfly species. 
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CHAPTER V. 

CONCLUSION 
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Conclusion 

 
In this dissertation, I examine the ecological and evolutionary 

consequences of the interactions between swallowtail butterflies in the Troidini 

tribe (Papilionidae) and their host plants in the genus Aristolochia 

(Aristolochiaceae). Butterflies in the tribe Troidini specialize on plants of the 

genus Aristolochia. Plants in the family Aristolochiaceae are known to possess 

toxic alkaloids (nitrophenanthrene carboxylic acids) called aristolochic acids that 

serve as a defense against most insect herbivores (Chen and Zhu 1987, Racheli 

and Oliverio 1993). Troidini butterflies sequester these toxic alkaloids as larvae 

rendering both larvae and adult chemically defended against most predators 

(Rothschild et al. 1970, Sime et al. 2000, Fordyce 2001). Through a combination 

of observational, experimental, and laboratory studies with different Troidini-

Aristolochia species combinations, I am able to further our understanding of how 

plant chemical and mechanical defenses affect evolutionary dynamics and 

ecological processes for butterflies including mechanisms of species co-

occurrence and adaptations to herbivory and predation. I conducted my research 

in two biogeographical regions. My research in North America (Texas and 

Tennessee, USA) focused on the Troidini butterfly B. philenor and its Aristolochia 

host plants, for which there is ample background information. I also conducted 

research in South America (Iguazú, Argentina), which is a region with high 
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diversity and several co-occurring butterfly species of the Troidini tribe but a 

paucity of research. 

In Chapter II, reports a study of the role of two Aristolochia erecta traits, 

leaf toughness and leaf chemistry, on the larval foraging decision and 

performance of the Troidini butterfly, Battus philenor. I also examined the 

importance of plant chemical variation in determining the chemical phenotype of 

larvae in a Troidini-Aristolochia system from Texas, USA. I found that A. erecta 

had substantial intra- and interplant variation in leaf toughness and in aristolochic 

acid content. The top (youngest) leaves were less tough and had higher 

concentrations of aristolochic acid than older leaves. Despite this substantial 

variation in plant aristolochic acid content among individual plants, B. philenor 

heritable variation for sequestration was a better predictor of larval aristolochic 

acid content indicating that an individual’s genetic ability to sequester the toxic 

alkaloids has a greater influence than variation in plant chemistry. I also found 

that B. philenor first-instar larvae preferentially fed on less tough, younger leaves 

and avoided tougher, older leaves, but I found no evidence that aristolochic acid 

content influenced first instar larval foraging. Furthermore, larval performance 

(measured as larval dry weight) was better predicted by leaf toughness than 

aristolochic acids content. 

My study of the defensive role that B. philenor clutch size plays on egg 

survival in Tennessee, USA is reported in Chapter III. It has been noted before 

that toxic species tend to lay eggs in clutches, and not in singletons as other 
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species and their eggs are aposematically colored to warn predators (Stamp 

1980, Sillén-Tullberg and Leimar 1988). I showed that larger egg clutches suffer 

less predation than small clutches; however, I failed to detect a relationship 

between clutch size and aristolochic acid content in the eggs. Furthermore, 

crawling predators seem to play the most important role in B. philenor egg 

mortality. My research suggests that there is a clear benefit in laying eggs in 

large clusters in areas with high levels of predator threat. 

In Chapter IV, I report my findings on Troidini-Aristolochia interactions in a 

subtropical forest in Misiones, Argentina, an area with no previous information on 

this system. I found that one of the most abundant Aristolochia host plant 

species, A. triangularis, did not possess detectable levels of aristolochic acids or 

only contained trace amount of the toxic alkaloids. Further, contrary to the 

currently accepted paradigm that all Troidini butterflies are toxic, and have 

numerous mimicry relationships; in our study system, most Troidini butterflies did 

not possess an aristolochic acid chemical defense, showing that toxicity can be 

polymorphic within a population. This suggests that not only are these butterflies 

being involved in a Batesian mimicry complex, they might also be involved in 

automimicry, such that butterflies without aristolochic acids are benefiting from 

the presence of toxic co-specifics (Brower et al. 1967, Brower et al. 1970). These 

were unexpected results since the Aristolochia-Troidini system is a textbook 

example of an interaction between a toxic plant and its sequestering herbivores. I 

also found that when given the opportunity to feed on a more tender host plant, 
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these butterflies choose to feed on tender leaves regardless of their aristolochic 

acid content. Experimental evidence showed that higher levels of aristolochic 

acid in the diet increased larval mortality, which could be a mechanism behind 

the apparent automimicry in these species. The observed increase in larval 

mortality might also indicate a tradeoff between fitness and sequestration of the 

chemical defense for protection against predators. 

By studying the Troidini-Aristolochia interaction in three different 

ecosystems I have discovered some generalities. In the studies reported in 

Chapters II and IV, I found that, for highly specialized herbivores that sequester 

chemical defenses from their host plants, mechanical resistance, such as leaf 

toughness, seems to be a more important determinant of herbivore foraging 

patterns than chemical defenses. These results are from Texas (USA) and 

Iguazú (Argentina), which are very different localities in several aspects (e.g., 

different biogeographical regions with different climates and the presence or not 

of other co-occurring species of Troidini). My findings, that feeding preferences is 

determined more by plant mechanical resistance, might be the rule rather than 

the exception for this highly specialized group of butterflies. 

My work in an area where the Troidini tribe has higher diversity helps form 

a more complete picture of the chemical ecology of the Troidini-Aristolochia 

complex. It seems evident that future work should explore different aspects of the 

interaction between Troidini and Aristolochia in understudied geographical areas 

as this may allow us to make new discoveries and develop a better 
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understanding of plant-insect interactions (Lindenmayer et al. 2010, Martin et al. 

2012). 
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