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Abstract

The gypsy moth, Lymantria dispar (L.), is an invasive species and the most destructive

forest defoliator in North America. Gypsy moth outbreaks are spatially synchronized

over areas across hundreds of kilometers. Outbreaks can result in loss of timber and other

forestry products. Greater losses tend to occur to the ecosystem services that forests

provide, such as wildlife habitat, carbon sequestration, and nutrient cycling. The United

States can be divided in three different areas: a generally infested area (populations

established), an uninfested area (populations not established), and a transition zone

between the two. There are different management programs matching these different

areas: detection and eradication, the Slow-the-Spread program, and suppression of

outbreaks in areas that are infested by the gypsy moth as a means to mitigate impacts.

This dissertation focuses in optimal control techniques for models of areas where the

population is established or in the invasion front.

We develop an optimal control formulation for models of an established population of

the invasive pest gypsy moth. The models include interaction with a pathogen and a

generalist predator. The population of gypsy moth is assumed to be controlled with

the pesticide Bt. The assumed objective functional minimizes cost due to gypsy moth

and cost for suppressing the population of gypsy moth. Optimization techniques in our

numerical results, suggest the timing and intensity of control. Our results are consistent

over different parameter values and initial conditions

To model the population in the invasion front, we develop the theory of optimal control

for a system of integrodifference equations. Integrodifference equations incorporate

continuous space into a system of discrete time equations. We design an objective
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functional to minimize the cost generated by the defoliation caused by the gypsy moth and

the cost of controlling the population. Existence and uniqueness results for the optimal

control and corresponding states have been completed. We use a forward-backward sweep

numerical method, and our numerical results suggest appropriate spatial and temporal

location and intensity of optimal controls.
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Chapter 1

Introduction

1.1 The gypsy moth

Invasive species are one of the world’s most critical immediate environmental threats

[55, 79]. They can have a strong negative impact on ecosystem function and services, if

they are not properly removed in a reasonable time frame [87].

The gypsy moth, Lymantria dispar, is perhaps the most destructive forest defoliator in

North America. It was introduced into the United States near Boston in the late 1860s. In

1869, gypsy moth individuals were brought from France, by amateur entomologist Etienne

Lopold Trouvelot. He was conducting experiments to use gypsy moths as an alternative

for the production of silk. During this time, European silk production was severely affected

by a protozoan disease [77, 78]. Since then gypsy moths have gradually spread, and now

can be found in Virginia and North Carolina to the south, Indiana and Illinois to the

west, and Wisconsin to the Midwest [68, 69]; see Figure 1.1. Larvae from gypsy moths

are a highly polyphagous foliage feeder and can feed on over 300 species of trees. The

gypsy moth original geographic range is temperate Eurasia and the Mediterranean coast

of North Africa, where it sporadically presents damaging outbreaks [78].

There is one generation of gypsy moth per year. Eggs are dormant through the winter

and larvae hatch in the spring. Individuals remain in the larval stage about four to six

weeks, and the pupal phase lasts around two weeks. Adults come out in mid-summer and
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typically stay alive a week or less; usually males emerge a little earlier than females. Adults

do not feed. Females produce a sex pheromone that males use to locate mates. In some

Asia populations, females’ are able to fly. In European populations, the females ability

to fly is totally absent. North American populations originate from Europe, therefore

females are incapable of flight [78, 15].

Outbreaks, peaks of high density, have been environmentally and economically expensive

in North America. Since 1924, over 81 million acres of U.S forests have been defoliated

by the gypsy moth, including over 12 million acres just in 1981. Outbreaks in gypsy

moths are likely to be spatially synchronized over regions across hundreds of kilometers.

This can severely intensify the ecological and socioeconomic impacts of high density

populations and overcome managing resources designated to alleviate impacts. Gypsy

moth outbreaks defoliate several species of trees; repeated defoliation causes decreased

growth and mortality. Outbreaks frequently occur in forested inhabited locations where,

in addition to problems associated with defoliation, the presence of large amounts of

caterpillars generate considerable irritation to homeowners. Gypsy moth outbreaks can

result in loss of timber and other forestry products [69, 78].

Ecosystem services provided by forests, are also affected by outbreaks of gypsy moths,

including impacts on: wildlife habitat, carbon sequestration, and nutrient cycling.

Outbreaks are likely to change the composition of the community, creating indirect

changes to herbivores and changing forest succession [69, 78]. Gypsy moth outbreaks

can cause declines in populations of some avian species, since defoliation increases the

visibility of nests to predators. Infestations can reduce the abundance of closed canopy

species and increase the number of birds dependent on more open habitats. Outbreaks

also elevate tree mortality, augment the amount of snags and so may favor cavity-nesting

species [27, 75].

The United States can be separated in three different regions, shown in Figure 1.1,

based on the status of the gypsy moth populations: An infested region (populations are

established), an uninfested region (populations are not established), and a transition zone
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between the two previous regions. There are different management programs matching

these different regions [78, 77]:

• Detection/eradication, where the objective is to find and eliminate new colonies in

areas uninfested by the gypsy moth, for example, the west coast of the U.S.

• The Slow the Spread program, that creates a barrier zone along the invasion front

in the U.S.

• Suppression of outbreaks in regions that are infested by the gypsy moth with the

objective to diminish the negative impacts.

This dissertation focuses on optimal control techniques for models of areas where the

population is established (chapter 2) and in the invasion front (chapter 3). The control

represents intervention actions to optimally manage populations of gypsy moth.

Figure 1.1: U. S regions with presence of gypsy moth. Infested area (red), uninfested area

(white) and transition zone (yellow). Taken from [77], using values from 2000.
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1.2 Mathematical models for gypsy moth

Almost all models of gypsy moth have been focused on the interaction between gypsy

moth and the pathogen Lymantria dispar nucleopolyhedrosis virus (LdMNPV). The first

attempts to model the populations of gypsy moth, were based on Anderson and May’s

seminal work [1, 2, 3]. Foster and collaborators were one of the first to model the gypsy

model population dynamics [24]. They modified the analytical model of invertebrate-

pathogen dynamics from the work of Anderson and May to include vertical transmission.

They also included host fecundity, infected host mortality and pathogen production as

variables instead of constants. The next modeling efforts where made by Dwyer and

Elkinton [18]. Rather than focusing on long term dynamics, as in [1, 2, 3], they adapted

the model to focus on the within-season dynamics. In addition, they estimated parameters

based in field and experimental work.

In 2000 Dwyer and collaborators developed a model that includes seasonality in host

reproduction and heterogeneity among hosts in their susceptibility to the virus [16]. In

order to simplify computations, the model was discretized; as a result they obtained an

implicit equation to calculate the fraction of infected density of gypsy moth each year.

Using this model as a base line, several additions were made. Dwyer and collaborators

added a generalist predator using a type II functional response [17]. Others included

gypsy moth evolving resistance to the virus [19]. The model of Bjørnstad et al.[53] allowed

natural enemies of gypsy moth to operate in a sequential way, assuming the virus attacks

the larva, and the predator attacks the pupae. They also introduced a type III functional

response. Haynes et al., using modifications from [53], included different forms of types

II and III functional responses [32]. Finally, Fuller and collaborators developed a model

that included heritable virus resistance [25]. In the first part of this dissertation we use

the models developed by Dwyer and collaborators [16, 17], since they are the foundation

for many other models.

To our knowledge, the first work that applied optimal control theory to the management

of gypsy moths, was the paper by Whittle et al. [86]. Their model is a modification of the

Nicholson-Bayley model [51], which incorporates the effect of tannins in the mortality of
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gypsy moths. As the method of suppression they use a biocontrol. Their principal result

is that the application of the biocontrol should take place when the virus populations are

at their lowest levels. Also Whittle [85] generalized the work of [86] to optimal control of

an integrodifference system.

1.3 Optimal control theory

Optimal control theory is an extension of the calculus of variations. It is the mathematical

study of how to influence a dynamical system, with the aim to minimize or maximize the

value of a function of the system, which we refer as the objective functional [5, 23].

There is a control function(s) that can modify the dynamical system. The behavior

of the dynamical system is described by a state equation(s), and can have a variety of

forms: ordinary differential equations, partial differential equations, discrete difference

equations, stochastic differential equations or integrodifference equations [42]. In this

dissertation we focus on optimal control problems for discrete difference equations (chapter

2) and integrodifference equations (chapter 3), we employ extensions of the ideas from

Pontryagin’s Maximum Principle (PMP)[59, 42].

Pontryagin and collaborators developed optimal control theory for ordinary differential

equations (ODE) around 1950 in the Soviet Union. He had the idea of using the

adjoint functions to connect the differential equation to the objective functional. The

states satisfy ODEs containing control functions with initial conditions. They created

necessary conditions for optimal control theory, which means that if the control and the

corresponding states are optimal, then the conditions hold [59, 42].

Suppose we want to apply control to a single ordinary differential equation (ODE). Let

u(t) be the control and x(t) be the state that satisfies the following ODE

dx

dt
= x′(t) = g

(
t, x(t), u(t)

)
. (1.1)
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We assume that both u(t) and x(t) affect the goal represented by the objective functional.

The aim is to find an optimal control and corresponding state that achieve the maximum

(or minimum) of the objective functional. Consider the optimal control problem in which

the objective functional is defined as

J(u) =

∫ T

0

f
(
t, x(t), u(t)

)
dt. (1.2)

subject to

x′(t) = g
(
t, x(t), u(t)

)
(1.3)

where

x(0) = x0 and x(T ) is free, (1.4)

where f and g are continuous and differentiable functions. We assume the control set U

to be Lebesgue measurable functions. An optimal control, denoted by u∗(t), achieves the

maximum (or minimum) of the objective functional,

J(u∗) = max
u∈U

J(u) (1.5)

When the state equation (1.3) with (1.4) is solved with an optimal control in g, we get the

corresponding optimal state, x∗(t). Assume we seek to maximize the objective functional,

the first order necessary conditions using the simplest form of Pontryagin’s Maximum

Principle are below.

Theorem 1. (Pontryagin’s Maximum Principle (PMP)) If u∗(t) and x∗(t) are optimal

for problem in (1.2) - (1.4), then there exists adjoint variable λ(t) such that

H
(
t, x∗(t), u(t), λ(t)

)
≤ H

(
t, x∗(t), u∗(t), λ(t)

)
(1.6)

for all controls u ∈ U at each time t, where the Hamiltonian H is

H
(
t, x(t), u(t), λ(t)

)
= f

(
t, x(t), u(t)

)
+ λ(t)g

(
t, x(t), u(t)

)
, (1.7)
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and the adjoint equation satisfies

λ′(t) = −
∂H
(
t, x∗(t), u∗(t), λ(t)

)

∂x
(1.8)

λ(T ) = 0.

The boundary condition, λ(T ) = 0 , is called the transversality condition.

We also need to check for concavity conditions to be able to determine which controls

maximize the objective functional and which ones minimize it. We need

∂2H

∂u2
≤ 0 at u∗(t) (1.9)

for a maximization problem. Similarly

∂2H

∂u2
≥ 0 at u∗(t) (1.10)

holds for a minimization problem.

Pontryagin’s Maximum Principle has an extension for several states and controls.

Consider an optimal control with n state variables

max
u

∫ T

0

f
(
t, x1(t), x2(t), · · · , xn(t), u(t)

)
dt (1.11)

subject to

x′i(t) = gi
(
t, x1(t), x2(t), · · · , xn(t), u(t)

)
(1.12)

xi(0) = xi0 for i = 1, 2, · · · , n,
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where the functions f and gi are continuously differentiable in all variables. Define the

Hamiltonian as

H
(
t, x1(t), · · · , xn(t), u(t), λ(t)

)
=f
(
t, x1(t), · · · , xn(t), u(t)

)
(1.13)

+λ1(t)g1

(
t, x1(t), · · · , xn(t), u(t)

)

...

+λn(t)gn

(
t, x1(t), · · · , xn(t), u(t)

)
,

and the adjoint and transversality conditions satisfy

λ′i(t) = −
∂H

∂xi
, λi(T ) = 0 , for i = 1, 2, · · · , n. (1.14)

1.3.1 Discrete time state equations

For discrete states equations, the theory developed for ODE’s has been extended. In our

discrete time models, we use subscripts to indicate the time step. Define the control as

u =
(
u0, u1, · · · , uT−1

)
, (1.15)

and the difference state equation

xk+1 = g
(
k, xk, uk

)
, for k = 0, 1, 2, · · · , T − 1. (1.16)

Notice that the control vector has one less component that the state vector

(
x0, x1, · · · , xT

)
. (1.17)

Consider the objective functional

J(u) =
T−1∑

k=0

f
(
k, xk, uk

)
(1.18)
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subject to

xk+1 = g
(
k, xk, uk

)
, (1.19)

where the initial state x0 is given and xT is free. Given a control set U ⊆ R
T , an optimal

control u∗ satisfies

J(u∗) = max
u∈U

J(u). (1.20)

Necessary conditions for an optimal control and corresponding states can be found using

a generalization of Pontryagin’s Maximum Principle.

Theorem 2. (Pontryagin’s Maximum Principle for discrete time) If u∗ and x∗ are optimal

for the problem defined in equations (1.18) and (1.19), then there exists an adjoint vector

λ =
(
λ0, λ1, · · · , λT−1

)
such that

Hk

(
k, x∗k, uk, λk

)
≤ H

(
k, x∗k, u

∗
k, λk

)
(1.21)

for all controls u ∈ U at each time step k, where the Hamiltonian H at each time step k

is defined as

Hk

(
k, xk, uk, λk

)
= f

(
k, xk, uk

)
+ λk+1g

(
k, xk, uk

)
, (1.22)

and the adjoint vector satisfies

λk =
∂Hk

∂xk
, λT = 0. (1.23)

Similar to the continuous case, the final time condition of the adjoint is called the

transversality condition. Notice in the Hamiltonian, the adjoint component is one index

ahead of the state and control components forward in time. The concavity conditions

are the same as the ones in the continuous case (1.9 and 1.10). Extension to several

variables, is also possible using a similar procedure to the one used in the continuous
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case, we introduce an adjoint equation for each state equation. Given n state equations,

x1,k+1 = g1
(
k, x1,k, · · · , xn,k, uk

)
(1.24)

...

xn,k+1 = gn
(
k, x1,k, · · · , xn,k, uk

)

for k = 0, 1, 2, · · · , T − 1, we define the objective functional as

J(u) =
T−1∑

k=0

f
(
k, x1,k, · · · , xn,k, uk

)
(1.25)

The Hamiltonian becomes

Hk = f
(
k, x1,k, · · · , xn,k, uk

)
+

n∑

i=1

λi,k+1gi
(
k, x1,k, · · · , xn,k, uk

)
(1.26)

where the adjoint equations and the transversality conditions are given by

λi,k =
∂Hk

∂xi,k
, λi,T = 0, (1.27)

for all k = 0, 1, · · · , T − 1 and i = 1, · · · , n.

Since gypsy moths have a single generation each year it is appropriate to use discrete

models for the state equation. In chapter 2, we use discrete models of gypsy moth that

incorporate the interaction with a common pathogen and a generalist predator. First we

focus in the interaction of gypsy moth and the virus. In our system, the gypsy moth

individuals that survive the virus produce offspring. Dead infected gypsy moths become

infectious cadavers that have virus particles. A fraction of particles survive the winter,

to infect the next generation of gypsy moths. The fraction of infected individuals is an

implicit function that depends in the densities of gypsy moth and the virus. We control the

population of gypsy moth with aerial applications of a pesticide. We design an objective

functional to minimize the cost generated by the defoliation caused by the population of

gypsy moth and the cost of controlling the population with an aerial spray. Later we

incorporate the effects of a generalist predator that make the model more realistic.
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1.3.2 Integrodifference state equations

Spatial spread is a key element of the invasion processes. Movement of organisms has

been incorporated in many mathematical models, starting with the work of Skellam, who

used partial differential equations to describe movement in small mammals [71]. Since

then partial differential equations (PDE) have been used to model biological movement

[49, 10, 52, 48]. An alternative to the PDE approach is integrodifference equations in

which a dispersal kernel is used to describe the redistribution of species [40, 81, 39, 31].

As a result integrodifference model have better predictions for the speed of invasion [70, 38]

Integrodifference equations are particularly useful for populations with distinct growth

and dispersal stages. The dynamics of such population are better described by discrete

time (for generations) and continuous space (for dispersal) . For a population Nk(x) at

location x in the spatial domain Ω at time k subject to local population demographic

dynamics f(N) and with spatial redistribution kernel k(x, y), the model takes the form

Nk+1(x) =

∫

Ω

k(x, y)f
(
Nt(y)

)
dy.

The kernel can be selected from a variety of probability density functions, that represent

the dispersal patterns in a more realistic way. This provides more flexibility when

compared with PDE models that just allow a normal distribution kernel [40, 81, 39, 31, 38].

Optimal control theory for integrodifference equations is a relatively new research area.

The first work involved a harvesting model for a single population [36]. After that, several

problems for models with single species have been solved using optimal control theory

[26, 37, 89, 43, 41]. Nevertheless, there is little theory for optimal control for systems of

integrodifference equations.

The purpose of chapter 3 is to address this gap by demonstrating the formulation and

analysis of an optimal control problem in a system of two coupled integrodifference

equations that represent the densities of gypsy moth and the virus. This extends the

current literature which has focused on single population optimal control problems; such
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development is a natural extension in the modeling of biological and ecological processes

where interactions between populations are the norm. Following the analysis of the

existence and the characterization of the optimal control, we apply our results to the

control of gypsy moth populations that are in the invasion front. We design an objective

functional that includes the cost of the damage produce by gypsy moth and the cost of

using a biocontrol (we assume a quadratic cost). For the dynamics of the gypsy moth

and the LdMNPV virus we use a modification of the Nicholson-Bailey model.

1.4 Numerical methods

In chapters 2 and 3, after each problem formulation, analysis and parameter selection,

we employ numerical algorithms to approximate solutions for the optimal control and

state equations. In chapter 2 for our discrete time models, we have an example of an

optimal control problem for which the concavity condition on the Hamiltonian is not

fulfilled and we are not able to use Pontryagin’s Maximum Principle. Therefore we use

direct optimization techniques to minimize the objective functional. In chapter 3 for our

integrodifference system, we use optimal control theory and an iterative scheme, called

the forward-backwards sweep, to find the optimal control. We use the trapezoidal rule

for integral approximations.

1.4.1 Direct minimization of the objective functional

For our discrete models in chapter 2, we were not able to guarantee the concavity condition

for PMP, mostly because the derivatives of the Hamiltonian are very complex. Details

are in Appendix A.1. To avoid this problem, we consider algorithms that do not require

information on the derivative of the objective functional. We employ algorithms from the

Global Optimization Toolbox from Matlab. These algorithms solve optimization problems

in which the objective functional is discrete and there is not information on its derivatives

with respect to the states and the control. We use three different algorithms, one that

uses a local solver with several starting points, a direct search algorithm, and a genetic

algorithm.
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1.4.2 Forward-Backward sweep method

The Forward-Backward sweep method can be used to solve the optimality system, which

is the state and adjoint equations, coupled with the optimal control characterization. This

method can be used for discrete and continuous state equations. In general the iterative

method follows these steps:

1. Create an initial guess for the control variable.

2. Using the initial conditions of the states, solve for the state equations forward in

time using the integrodifference equation.

3. Given the transversality conditions and the values for the control and the state

equations, solve the adjoint equations backwards in time using the integrodifference

equation.

4. Calculate the new control value from the characterization, and then update the

control using a convex combination of the new value and old value.

5. Repeat previous steps until the consecutive iterates of the control and state

equations are close enough. If u is the control at current iteration and uold is the

control at previous iteration, then the values are close enough if

‖u− uold‖

‖u‖
≤ ε, (1.28)

where ε is the accepted tolerance.

13



Chapter 2

Discrete models

2.1 Introduction

In this chapter we will focus on models for gypsy moth populations that are already

established. Dynamics of these populations are influenced by a diversity of trophic

relations and generally oscillate among low and high densities [78, 20]. Many populations

of gypsy moth show some periodicity with the dominant period between five to ten

years . Low density populations are mainly influenced by small mammal predators like

Peromyscus spp [77, 20]. In outbreaks, populations achieve very high levels but eventually

decrease after one to three years, generally as a consequence of disease epizootics. In North

America, of the pathogens affecting gypsy moth, Lymantria dispar nucleopolyhedrosis

virus (LdMNPV) is the most common, and it only infects gypsy moths [78, 15].

First we focus in the interaction between gypsy moth and the virus, LdMNPV, which

belongs to the family Baculoviridae. This family of double-stranded DNA viruses is

exclusive to arthropods and frequent in Lepidoptera [8]. Infection happens when larva

ingest a sufficient amount of viral particles with the foliage. The virus attacks internal

tissues and organs of the larva, causing breakdown of internal tissues and death of the

individual [14, 11, 82].

Gypsy moth larvae typically die hanging from branches by their first pair of prolegs in a

reversed V pattern. Infection breaks down dermal cells, creating a host cadaver, which is
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easily broken and then allows release of the virus back into the environment. When virus

become assiciated with foliage after this release the virus is available to be consumed by

other gypsy moth larvae, creating a new round of infection [61, 82]. If particles of virus

are protected from ultraviolet rays, they can endure for at most one year, which can give

enough time to infect the next generation of gypsy moths [58].

Virus infection possibly starts at low densities and when the host population increases the

virus also multiplies [88] . LdMNPV is believed to be a strongly host density dependent

pathogen. It frequently generates high mortality rates in elevated density levels of gypsy

moth populations [44, 45]. Reilly and Hajek (2008) found that resistance of gypsy moth

larvae to the virus decreases at elevated densities of gypsy moth [63].

The United States can be divided in three areas, based on gypsy moth population status,

Figure 1.1: a generally infested area, an uninfested areas, and a transition zone between

the two [78]. There are different management programs matching these different areas:

detection/eradication, the Slow-the-Spread program, and suppression of outbreaks [78].

One treatment method that is being employed in all three management programs is the

biopesticide, Bacillus thuringiensis (Bt) [60].

Bacillus thuringiensis (Bt) is a gram positive, soil microbe that has been utilized

in management programs to control several insects, including species of the orders

Coleoptera, Diptera, Hymenoptera, and Lepidoptera [66]. The employment of Bt to

control gypsy moth populations has been studied at length [30, 73]. Applications of Bt

target early gypsy moth instars, which are the most vulnerable life stages [60].

Even though Bt is more host specific than chemical pesticides, its applications can have

harmful effects on many species of Lepidoptera [54, 83], one of the major insect orders,

with more than 11,000 species in the United States and Canada [9]. Since it is usually

accepted as the insecticide with least harmful human impacts, Bt has been chosen for use

in several eradication programs for gypsy moth [30].

15



2.2 Mathematical model

Since gypsy moths have a single generation each year, it is appropriate to use discrete

models. We start with a model that includes gypsy moth and the virus. Dwyer and

collaborators [16, 17] developed a model using data from studies of virus transmission in

field and laboratory experiments ,

1− I
(
Nk, Zk

)
=

{
1 +

vC2

µ

[
NkI

(
Nk, Zk

)
+ ρZk

]}− 1

C2

(2.1)

Nk+1 = γNk

[
1− I

(
Nk, Zk

)]

Zk+1 = fNkI
(
Nk, Zk

)
.

Here Nk and Zk are host(gypsy moth) and pathogen(LdMNPV) densities in generation

k, where the density is the number of individuals(or particles) per hectare. The net host

fecundity is denoted by γ and f is the pathogen over-winter survival times the average

number of particles release by an infected cadaver of the host. The fraction of infected

hosts, I
(
Nk, Zk

)
, is a function of the densities of both both species, µ is the rate at which

cadavers (gypsy moth individuals that die because of the pathogen) lose infectiousness,

and ρ is the susceptibility of hatchlings relative to later-stage larvae. Finally, v̄ is the

average transmission rate, and C represents the coefficient of variation of the transmission

rate [16, 17].

Using realistic values for the parameters (like the ones present in Table 2.1), this model

generates long-period, large-amplitude cycles in gypsy moth densities, Figure 2.1. The

amplitude and the period of these cycles are similar to the ones seen in gypsy moth

populations. Nevertheless, the cycle period is much more regular in the model than in

data [17].

Infection and control with Bt both occur at the larval stage. We need to decide which

order to use for these 2 events. There are two possibilities, both shown in Figure 2.2.
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The first option is that the control occurs before the infection (red arrow with number 1),

or after the infection (blue arrow with number 2).We use option one, since the majority

of management programs spray Bt as early as possible due to higher mortality in earlier

larval stages [60].

Using option one and host-pathogen model equation (2.1) we generate the following model:

1− I
(
Nk (1− uk) , Zk

)
=

{
1 +

vC2

µ

[
Nk (1− uk) I

(
Nk (1− uk) , Zk

)
+ ρZk

]}− 1

C2

(2.2)

Nk+1 = γNk (1− uk)
[
1− I

(
Nk (1− uk) , Zk

)]

Zk+1 = fNk (1− uk) I
(
Nk (1− uk) , Zk

)

where

U =
{
u = (u0, u1, u2, · · · , uT−1)|0 ≤ uk ≤ umax, k = 0, 1, · · · , T − 1

}
. (2.3)

The control, uk, is the fraction of the density of gypsy moths that die because of the aerial

spray of Bt at time k. We choose this control since most eradication programs use aerial

applications of Bt [78].

2.3 Optimal control problem

We design an objective functional to minimize the cost arising from defoliation caused by

the population of gypsy moth and the cost of controlling the population with an aerial

spray of Bt.

min
u

T−1∑

k=0

e−δk
[
EDNk + C(uk)

]
. (2.4)

We assume that the damage caused by gypsy moth is directly proportional to the density

of gypsy moth. The constant D has units of dollars per density of gypsy moth. For the

cost of applying Bt, we use a cost model specifically developed for gypsy moth . This

cost function assumes that one full Bt application kills a umax fraction of the target gypsy
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moth. For operational aerial spray programs the cost for one application is 54.4 dollars

per hectare [61, 76]. This cost function can be written as

cost = log(1−uk)
log(1−umax)/54.4

.

E is a weight constant balancing the importance of the two costs(damage and control).

The term e−δk is a discounting factor, taking into account that money now is worth more

that money in the future. Therefore we can rewrite our objective functional as:

min
u

T−1∑

k=0

e−δk
[
EDNk +

log(1− uk)54.4

log(1− umax)

]
(2.5)

Finally to simplify notation we define A = ED and B = 54.4
log(1−umax)

obtaining:

min
u

T−1∑

k=0

e−δk
[
ANk +B log(1− uk)

]
. (2.6)

To solve this optimal control problem we first tried using the version of Pontryagin’s

Maximum Principle (PMP) for discrete time models [59]. The convexity of the

Hamiltonian cannot be easily verified so we do not apply PMP. Complete calculation

of the convexity of the Hamiltonian is presented in Appendix A.1.

2.4 Methods

To reduce the number of parameters, we use a non-dimensionalized version of the model

in equation (2.1). To rescale the model, we divide the densities of both species by the

epidemic threshold, v/mu, which is the gypsy moth density needed for an epidemic to

happen as the initial virus density approaches to zero [16, 17], the resulting system is:

1− I
(
N̂k, Ẑk

)
=

{
1 + C2

[
N̂kI

(
N̂k, Ẑk

)
+ Ẑk

]}− 1

C2

(2.7)

N̂k+1 = γN̂k

[
1− I

(
N̂k, Ẑk

)]

Ẑk+1 = φN̂kI
(
N̂k, Ẑk

)
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where the new densities are N̂k = µNk

v
and Ẑk = ρµZk

v
. Then φ = fρ is defined, as

the product of the probability f that a pathogen particle survives the winter, times the

susceptibility of new emerging larvae ρ [16, 17].

The non-dimensionalized version has three parameters less than the original model. For

our control problem, new state equations are:

1− I
(
N̂k(1− uk), Ẑk

)
=

{
1 + C2

[
N̂k(1− uk)I

(
N̂k(1− uk), Ẑk

)
+ Ẑk

]}− 1

C2

(2.8)

N̂k+1 = γN̂k(1− uk)
[
1− I

(
N̂k(1− uk), Ẑk

)]

Ẑk+1 = φN̂k(1− uk)I
(
N̂k(1− uk), Ẑk

)
.

2.4.1 Numerical Methods

Given that we cannot utilize Pontryagin’s Maximum Principle(PMP), we must use

alternative optimization methods that directly minimize the objective functional,

min
u

T−1∑

k=0

e−δk
[
AN̂k +B log(1− uk)

]
. (2.9)

We can not guarantee the concavity condition for PMP basically because the fraction of

infected individuals is an implicit function, which makes derivatives of the Hamiltonian

fairly complex; see details in Appendix A.1. To avoid this problem, we consider algorithms

that only use of objective functional and the state system but do not need derivative

information for the objective functional. These algorithms are called derivative-free

algorithms [64].

We use the Global Optimization Toolbox from MATLAB R©. This toolbox offers multiple

methods that search for global solutions to problems including: global search, multistart,

pattern search, and genetic algorithms. This toolbox solves optimization problems for

which the objective functional and corresponding state are discrete and derivatives are

not needed [33].
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Optimization solvers attempt find a local optimal value for the objective functional. These

algorithms locate the optimal solution in the basin of attraction of the starting point of

the search. Global Optimization Toolbox solvers are intended to search in several basins

of attraction, to try to find a global solution. Nevertheless, none of the solvers has an

algorithm that can assure a global solution [33]. We use two different methods. The

MultiStart algorithm, that uses a local solver with a broad range of start points and

the Patternsearch algorithm that searches in several basins at once, using direct search

methods.

We chose the MultiStart algorithm because it generates uniformly distributed starting

points, runs all starting points, allows a choice for the local solver, and can run several

starting points in parallel. These characteristics allow this algorithm to search thoroughly

for a global minimum [33].

The Multistart algorithm works as follows [33]:

1. Create starting points: Generate random points within the provided bounds. The

points are uniformly distributed.

2. Run local solver: For each starting point we use the local solver fmincon.

3. Check stopping conditions: The algorithm stops when it has checked all starting

points. It can also end when the total running time goes over a set limit.

4. Create output: Sort local solutions by objective functional value from lowest to

highest and provides the best solution from all local results.

For local solver we use fmincon. The principal reason we chose fmincon as a local solver is

that it does not need information on the derivative of the objective functional. When the

gradient or Hessian are not provided the solver approximates the derivatives numerically.

Also fmincon is one of the best options for a smooth nonlinear objective functional with

bounds over the control, like our objective functional. Fmincon uses a trust region

approach to minimize the objective functional [34].
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To understand how fmincon works, suppose we want to find a minimum for the function

f . We have a point x in an n-space with value f(x) and we want to find a better value

for our objective functional. The central idea is that we approximate f with a simpler

function q (usually a quadratic function), that estimates the behavior of function f in a

neighborhood around the point x. The neighborhood is called the trust region. If we find

a better solution for the function f the current point is updated. If not, the region of

trust is decreased and the computation is repeated [34].

The algorithm stopping criteria limits the number of iterations in the optimization. In

the case of fmincon, the algorithm ends when the last step is smaller than TolFun or

TolX, as illustrated in Figure 2.3 [34]. TolFun is a bound on the change in the value of

the objective functional during each step. If

|f(xi)− f(xi+1)| < TolFun,

the iteration ends. The bound for the size of the step is TolX, therefore the solver stops

if [34, 33],

|xi − xi+1| < TolX.

1

2

3

4 5
TolFun

TolX

Figure 2.3: Stopping criteria. Adapted from [34]
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Alternative to MultiStart, we used Patternsearch is a direct search scheme that does

not involve any information on the derivatives of the objective functional. Direct search

methods search using nearby points of the current point, looking for one that has a lower

value of the objective functional. This method is commonly used when the objective

functional is not differentiable or not continuous [33].

The algorithm searches a group of points around the current one, at each iteration. This

set of points is called the mesh. The set of vectors vj used by the algorithm to determine

the points to search in each time step, is the pattern. This set is defined by the number

of independent variables, N , in the objective functional. In our case we use the maximal

basis, with 2N vectors as the pattern [33]. As an example, if we have 3 independent

variables, the 2N basis will be:

v1 =
[
1 0 0

]
v2 =

[
0 1 0

]
v3 =

[
0 0 1

]

v4 =
[
−1 0 0

]
v5 =

[
0 −1 0

]
v6 =

[
0 0 −1

]

In our case we have 20 independent variables, one for each year we want to apply the

control. For the Patternsearch algorithm, there is an additional stopping criteria besides

TolFun and TolX. The mesh tolerance generates a criteria, since if the current mesh size

is below the value of mesh tolerance, the algorithm stops.

For our numerical approximations we use the MultiStart and the Patternsearch algo-

rithms. For both we provide random starting points. For the Multistart approach we use

100 starting points. For both algorithms we use TolFun = TolX = 10−14. Patternsearch

uses a mesh tolerance of 10−6. Both algorithms have a limit for the number of iterations

and for the maximum number of objective functional evaluations used, and neither of

those was achieved in any of our searches. For the host-pathogen model, in all cases both

methods arrived to the same control solution.
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2.4.2 Parameter Selection

For the numerical approximations we use the following values for the parameters:

Table 2.1: Parameter values for the host-pathogen model

Parameter γ φ 1
C2 A δ umax

Values 74.6 100 1.06 50 0.02 0.8

Parameters for the model (γ, φ, 1
C2 ) were taken from Dwyer’s paper [17]. We assume that

one full Bt application kills 80% of the target gypsy moths [61, 76]. Parameters for the

objective functional, A and δ, are explained later in this section.

As we can see in Figure 2.4(a) and (b), initial conditions affect the initial behavior of the

system but after some time there is a repetitive cycle. To neglect the transient dynamics

due to initial conditions, we start all our analysis after 150 generations. For uniformity

we start all our numerical approximations with a density of 10 for both species.

Given that our objective is to minimize the damage caused by defoliation, we want

to include the time at which gypsy moth is at elevated densities(highest peaks). To

allow comparison between different sets of parameters, we start all of our numerical

approximations in the minimum density before the maximum peak of gypsy moth, as

shown in Figure 2.5(a). We display a time series of 120 years and point out the section

that we are going to use to find the optimal control, in Figure 2.5(b). Since planning and

funding for control would be for a limited time frame, we restrict the time horizon for the

optimal control to twenty years. Results for smaller time windows, seven and thirteen

years, are presented in Appendix A.3.
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Figure 2.4: Gypsy moth population for varying initial conditions. a. N0 = 0.1 and

Z0 = 10. b. N0 = 10 and Z0 = 0.1, with other parameters in Table 2.1
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Figure 2.5: Time interval used for control. a. Starting point for the control. b. Interval

of time to apply control, with parameters in Table 2.1
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To find an appropriate value for the weight constant, A, several simulations were carried

out, summarized in Table A.1 and in Figure 2.6. Each figure, has three graphs in each

column, going from top to bottom: first is the control, second is the population of gypsy

moth with control, and finally the population of the virus with control. Each column

provides results for a value for the parameter being varied, in this case A. All the other

parameters are constant at the values in Table 2.1. In the top right corner of the graph

of the control we display the value of the objective functional for that set of controls.

In Figure 2.6, we see that as we increase A, the amount of control applied increases. For

an A value of 1, small amounts of the control are applied. For A = 1000, control is applied

at almost all times. In Figure 2.6, for A=50 and A=1000, the values of the densities of

gypsy moth are almost the same, but the control values are much lower for A = 50. We

classified the values in Table A.1 using the number of times control is applied, in four

intervals of management: low or none (2 or less), medium (4 to 6), high (9 to 13), and

very high (more than 13). Given that we are controlling populations that are already

established we choose the level of management to be medium. High and very high will be

for areas where there are not established populations of gypsy moth, like in the west coast.

In the medium interval we choose 50, but our results will hold for values between 20 and 70.

Once a value for A is decided, choosing a value for δ is not complicated. Figure 2.7 and

Table A.2, show that different values of δ have a very minor impact in the type of control

selected. Even high values like 0.1 don’t change the values of the control much. The only

difference is in the final value of the objective functional, which decreases as expected

when we increase the value of δ. Since δ = 0.02 is a common value, for a 2% interest rate,

in discount factors of exponential form, we use it for all our numerical approximations.

Using our base set of parameters in Table 2.1, we modified one at a time and found the

numerical approximation of the optimal control for each new set of parameters. Most of

the sensitivity results are presented in Appendix A.4.
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Figure 2.6: Control, gypsy moth, and virus densities resulting from variation in A, with

other parameters in Table 2.1
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2.5 Results

Here we present results from the non-dimensionalized host-pathogen system [16, 17].

Unless otherwise noted the parameters used are in Table 2.1. In Figure 2.8(a), we present

the population without control, and in part (b) with control. As usual, from top to

bottom, the control, gypsy moth, and the virus densities are presented.

Our results, in Figure 2.8(b), show that with a limited number of spray applications

(nonzero control values), in this case 6 over twenty years, we can reduce substantially the

densities of gypsy moth and the objective functional. Of these applications just two are

at the maximum value possible. This occurs in years three and four, during the maximum

peak of gypsy moth. Values for the objective functional, present in the top-right corner of

the control graphs, display a significance reduction when control is applied as compared

to a nonmanagement scenario.

In general, our results for the control have a pattern of two peaks, as seen in Figure 2.8(b).

The first peak is higher. The peaks of the control are one year before the peaks of the

gypsy moth density in absence of control, years 3 and 9 in Figure 2.8(a). The number of

times that we spray the virus (number of applications that control is non-zero) is lower

in the second peak two times. We also investigate the cases where the time window for

the control is smaller, see Appendix A.3. The optimal control over a period of 7 years

(Figure A.2) has only one peak of control, very similar to the first peak found in the time

period for 20 years. In the case of 13 years (Figure A.3), the results were almost identical

to the ones in the window of 20 years. The only difference is that the second peak of

the control is lower. The similarity between these 3 scenarios: 7, 13 and 20 years, may

indicate that the optimal control does not depend much on the length of the period to

apply control.

To investigate the robustness of our findings, we modified all parameters. Using our

base set of parameters(Table 2.1), we varied one at a time and found the numerical

approximation of the control for each new set of parameters.
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Figure 2.8: Comparison of populations and objective functional values, without control(a)

and with control(b), with parameters in Table 2.1
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We present our figures in two parts: in part a(top), we show the dynamics without control.

In part b(bottom), results are with control. In part a, in each column, first the density

of gypsy moth followed by the density of the virus. In part b, the control is first, then

the gypsy moth and the virus densities. As in previous graphs each column represents

a value for the parameter we are changing. In each figure we present three different

values of the parameter. More results can be found at the Appendix A.4, in tables where

we show several values of the parameter with the corresponding optimal control value

for each year. In these tables an empty space means a value of zero for the control, and

the rows that are highlighted are the values in the corresponding graph for the parameter.

The first parameter that we changed was the gypsy moth fecundity, γ. In the system

without control, Figure 2.9(a), as we increase γ the density of gypsy moth and the virus

increase. Dynamics with control are in Figure 2.9(b). The most important feature, is that

when we apply the control the densities of gypsy moth are smaller in all three scenarios.

The pattern of two peaks, with the first one being the highest, is present for the three

values of the parameter. The number of times we apply control remains constant at six.

The level of control increases at years two and nine, at the beginning of the peaks of

the control. A small decrease occurs at years four and nine, at the end of the peaks

of the control. The objective functional value, in the top right corner of the control of

Figure 2.9(b), increases with γ since we apply more control and the densities of gypsy

moth are higher. In Appendix A.5, we present the long term dynamics for the three values

of γ and the window of 20 years for the control, Figure A.4. For these particular values,

the system changes from complex dynamics to simpler ones when we increase γ.

Table A.3, provides results for values of γ from 5 to 150. The patterns observed in

Figure 2.9 hold for most values of γ, close to our base value of γ = 74.6. When we

increase γ, we observe an increment in the number of applications and in the level of

control. For small values of γ, we have just one peak of control. At higher values we have

three peaks of control. For extreme values of γ(small and large), we start the control a

year later than usual.
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Figure 2.9: Variation in γ from 40, 75, to 110. a. Dynamics without control. b. Dynamics

with control. With other parameters in Table 2.1
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The next parameter that we modified was the between-season impact of the pathogen, φ.

In absence of control, Figure 2.10(a), densities of both species increase, with gypsy moth

at a slower rate than the virus. In Figure 2.10(b), we see that the control reduces the

density of gypsy moth at the three values of the parameter. Again we have the two peaks

scenario for the control. The number of applications of control is six, for the three values

of φ. The amount of control increases at all times, except for the ones that are already

at maximum value. There is not a clear pattern for the value of the objective functional.

More results for the control at different values of φ are in Table A.4. For values below

70, we have two peaks but the second peak is at the end of the time period. The value of

the objective functional, decreases with the rise of φ. For values over 70, we apply control

at the same times, and the amount of control increases with φ. The objective functional,

remains in the same range of values. Again to have a better idea of where the control

portion is in the long term dynamics, see Figure A.5. In this case the system changes

from simple dynamics to more complex when we increase φ.

We also made variations in 1
C2 and in initial conditions. Small variations in 1

C2 generate

several changes; that is expected since 1
C2 is an exponent in the function that calculates

the fraction of gypsy moth infected, I
(
Nk(1− uk), Zk

)
. In general, Table A.5, points out

that more control is applied as 1
C2 increases. For small values, there is just one peak at

the end. For higher values of 1
C2 , there are four peaks of control, with several values at

the maximum amount possible. Initial conditions have an impact only in the first few

generations. Since we disregard those transient dynamics, the effect is minimum on the

optimal control as we can observe in Table A.6.

In order to study the interactions between the parameters we perform a full factorial

experiment. The value of the parameter are ± 50% of the values in Table 2.1, except for

1
C2 , which was varied by ± 0.06 units. The difference in 1

C2 is due to its being an exponent

in the function that calculates the fraction of gypsy moth infected. The parameter levels

chosen are given below:
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Figure 2.10: Variation in φ from 75, 110, to 140. a. Dynamics without control. b.

Dynamics with control. With other parameters in Table 2.1
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Table 2.2: Parameter levels for the factorial experiment

A 25 50 75

δ 0.01 0.02 0.03

γ 37.3 74.6 111.9

φ 50 100 150

1
C2 1 1.06 1.12

Two response variables used for the experiment were the objective functional and the sum

of the control over the period of 20 years. In the case of the objective functional all main

effects were significant at the 1% level. All the two level interactions were also significant,

except for δ, 1
C2 and δ, φ. For the sum of the controls, all main effects where significant

except for δ. All two level interactions were significant except for the ones involving δ.

This is a consequence that δ only affects the values of the objective functional. However

δ have a very small effect in the level and number of applications in the optimal control,

as shown in Table A.2. We consider significant values of p below to 0.01. Details are in

Appendix A.6.

To further investigate the interaction effects, we provide the interaction plots in Figure A.8

and Figure A.9, where we display the largest two interactions (Aφ and 1
C2φ). The largest

interaction is between A and φ, and to explain this interaction we use Figure A.9(a). We

can observe that for A = 25 the sum of the control rises as φ increases. For higher values

of A the differences get smaller. When A = 75, the line is horizontal, which means the

response variable is basically the same for the three values of φ. Recall A is a weight

constant balancing the importance of the two costs (damage and control). High values of

A mean that the management program gives a high importance to controlling the gypsy

moth population. The interaction between A and φ implies that when we give a high

importance to suppress the population of gypsy moth, the population parameter for the

virus has little effect over the total amount of control applied. For the interaction between

1
C2 and φ, we use Figure A.9(b). We can observe that for high values of 1

C2 (for example,

1.06 (green line) and 1.12(blue line)), the response variable increases as we increase φ. On
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the other hand for the smallest value of 1
C2 = 1(red line), the response is almost invariant

as we increase φ.

In most of the cases we explore for the host-pathogen model with starting point in

the minimum density before the maximum peak of gypsy moth, we can say that six

applications of the control can substantially reduce the densities of gypsy moth. These

applications have two peaks, one in years 2 to 5 and another at years 9 and 10. In the

first one we have higher levels of the control. The peaks of the control occur a year before

the peaks of gypsy moth in the non-management scenario. Our results are consistent for

a broad range of parameter values.

So far for the optimal control problem, we have been starting the initial conditions at low

densities of gypsy moth. We want to evaluate how the optimal control will be affected

by starting at different levels of density. We consider the density of gypsy moth to be

at three possible different stages: low, medium, or high, and particular examples can be

observed in Figure 2.11. Using the values pointed out in Figure 2.11, we find the optimal

control for these three different cases, with parameter values in Table 2.1.
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Figure 2.11: Different values for starting point for the control with respect the density of

gypsy moth in the host-pathogen model, with parameters in Table 2.1
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Figure 2.12: Variation for initial conditions for the optimal control, low, medium and high

densities of gypsy moth in the host-pathogen model. a. Dynamics without control. b.

Dynamics with control. With parameters in Table 2.1
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Results are in Figure 2.12, using the same organization as in previous figures. As

expected the non-control dynamics are dependent on the starting points. Results for

the management option are in Figure 2.12(b), where the low density is in the left column,

and the right column is the high density case. We can observe a two peak pattern for

the optimal control in the three cases. The length of the first peak is shorter when the

density of the starting gypsy moth populations increases. The second peak also changes

when the density of the initial population increases; it is longer and the amount of control

is higher. The number of times we need to apply control is smaller at higher starting

densities. Most of these characteristics, could be a consequence of the fact that when we

start the control at high densities, the population of gypsy moth will naturally decline

because of the virus. On the other hand, when starting at low densities, the population

is growing. The value of our objective functional increases with the starting density. In

these three cases, the optimal control reduces the density of gypsy moth when compare

to non-management option. It is important to note that the peaks of the control occur a

year before the peaks of gypsy moth in the non-management option.

To understand better the effect of the starting point we ran 100 simulations with different

starting points. We chose 100 simulations since in the long term the population of gypsy

moth, after the transient dynamics of initial conditions, has behavior nearly cyclic with

a period around 80 years, which can be observed in Figure 2.4. With 100 consecutive

different starting points most of the behavior of the model will be taken into account.

Results of these simulations are in Figure 2.13. The bars represent the average of the

optimal control at each year, for the 20 years. The error bar represents the standard

deviation at each year. In Figure 2.13(a) we have the results for all 100 simulations. To

clarify this figure we divide our data into three categories based on the density of gypsy

moth at the starting point of the control. Low densities for values below one, medium for

values between one and fifteen, and high for values greater that fifteen.

Results are in Figure 2.13, with low densities in part (b) with 57 values, medium at (c)

with 23 values, and high in (d) with 21 values. At low densities, Figure 2.13(b), we have

two peaks with the first one being the highest and the longest. For medium densities,
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Figure 2.13(c), we have three peaks, with the first two very similar in length and in

amount of control and the third peak smaller than the first two. Finally, at high densities

we have three completely separate peaks, the first one has a duration of two years with

one application very high on average followed by a low application, second peak is the

longest one and with the two middle applications the highest ones. Finally the third peak

is the one with the lowest averages. One characteristic that all starting values share is

that after year 13 no more control is necessary. Box plots are display in Figure A.10.

To confirm the qualitative differences in the optimal control observed in Figure 2.13, we

performed and analysis of variance followed by a Tukey-Kramer HSD multiple comparison

test. The density of gypsy moth was the independent variable, with levels: low, medium,

and high. The objective functional, the sum of the controls, and the time of the maximum

control, were used as response variables. The time of the maximum control, refers to the

time (between 0 and 19) when the level of control is the maximum, if there are various

times at maximum level of control, we pick always the one that occurs first. For the

sum of the controls there were not significant differences, for the other two variables we

find difference at the 1% level. This shows that the amount of control used is similar

for different starting densities, but the corresponding objective functional is different.

The significant difference found for the time of the maximum amount of control applied,

confirms the distinct patterns observe in Figure 2.13. Details are in Appendix A.8.

In conclusion, the initial conditions and time in the cycle have an important influence

on the optimal control solution. In Figure 2.13, we provide three different alternatives of

optimal control base in initial populations of gypsy moth in the host-pathogen model. In

general, populations at low densities need more applications of the control. Populations at

high densities need fewer applications but at higher amounts of the control. Populations

at medium densities have an average between the scenarios of low and high densities.
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Figure 2.13: Summary statistics for the optimal control for the host-pathogen model. Bar

height represents the average value for the optimal control at each year, and the error

bar is the standard deviation. a. With 100 different starting conditions. b. Starting

conditions for the control at low densities. c. Medium densities. d. High densities. With

parameters in Table 2.1
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2.6 Inclusion of a generalist predator

The model that includes just the interaction between gypsy moth and the virus, has

cycle periods much more regular that the ones occurring in nature [17]. Generalist rodent

predators are recognized as the major cause of mortality on late stages of larva, and on

pupae, in low-density gypsy moth populations [7, 12, 72]. These generalist predators feed

on a range of fruits, seeds, and insects. As a result, their populations are not directly

affected by gypsy moth cycles [21, 35]. Therefore, we use a modified model that includes

a generalist small mouse predator, Peromyscus spp [17],

1− I (Nk, Zk) =

{
1 +

vC2

µ

[
NkI

(
Nk, Zk

)
+ ρZk

]}− 1

C2

(2.10)

Nk+1 = γNk

[
1− I(Nk, Zk)

][
1−

2abNk

b2 +N2
k

]

Zk+1 = fNkI(Nk, Zk)

The fraction of gypsy moths killed by the predator is

2abNk

b2 +N2
k

where a is the maximum fraction killed, and b is the gypsy moth density at which the

fraction killed is maximized [17].

The fraction consumed by the predator increases quickly when the prey density rises,

as the predator specializes on the new abundant prey, this is shown in Figure 2.14 [17].

However, at high densities, the predator is overwhelmed inducing a reduction in the

attack rate. As a result, the decrease in the gypsy moth population is maximized at

low to intermediate densities [17]. At high densities of gypsy moth, a generalist predator

has a small impact, but usually generates density dependent regulation at low densities

[46, 20, 21, 29]. The function used for predation in the model is consistent with these

ecological characteristics [17].
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Inclusion of the interaction with the generalist predator generates much more complex

dynamics in comparison with the host-pathogen model, as seen in Figure 2.15. The

presence of multiple equilibria explains in part this dynamics [17]. For realistic parameter

values, the model (2.10) with predation has a high-density equilibrium where the predator

is relatively unimportant and gypsy moth is controlled by the LdMNPV virus. There is

also a low-density equilibrium where the virus is less important, and the population of

gypsy moth is controlled by the predator. This low-density equilibrium is not present in

the host-pathogen model (2.1).

Comparison of the model with data is complicated. Since the model is very sensitive to

initial conditions, as displayed in Figure 2.15, and there are not estimates of the starting

densities of gypsy moth [17]. Even though, the authors contrast the statistical moments

of the model with the ones of the data, they compare the average and the coefficient

of variation of the time between outbreaks. The model with predation, creates high

variability in the time between outbreaks, and, long average times between outbreaks,

characteristics that are consistent with most of the data [17].

kN

2 2

2 k

k

abN

b N+

a

b

1

Figure 2.14: Fraction of gypsy moth density killed by predation, where a is the maximum

fraction killed, and b is the gypsy moth density at which the fraction killed is maximized
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Figure 2.15: Gypsy moth population in the model with predation and with no control,

for varying initial conditions. a. N0 = 10 and Z0 = 1. b. N0 = 100 and Z0 = 100. c.

N0 = 1000 and Z0 = 1, with other parameters in Table 2.3
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2.6.1 Methods

We use again a non-dimensionalized version of the model:

1− I
(
N̂k, Ẑk

)
=

{
1 + C2

[
N̂kI

(
N̂k, Ẑk

)
+ Ẑk

]}− 1

C2

(2.11)

N̂k+1 = γN̂k

[
1− I

(
N̂k, Zk

)][
1−

2ab̂N̂k

b̂2 + N̂k

2

]

Ẑk+1 = φN̂kI
(
N̂k, Ẑk

)
.

The new densities are N̂k =
µNk

v
and Ẑk = ρµZk

v
. While φ = fρ is defined, as the product

of the probability f that a pathogen particle survives the winter, times the susceptibility

of new emerge larvae ρ. Also b̂ = b/u
v
is the ratio of the density at maximum predation

to the epidemic threshold [16, 17].

Therefore our new state equations are:

1− I
(
N̂k (1− uk) , Ẑk

)
=

{
1 + C2

[
N̂k (1− uk) I

(
N̂k (1− uk) , Ẑk

)
+ Ẑk

]}− 1

C2

(2.12)

N̂k+1 = γN̂k (1− uk)
[
1− I

(
N̂k (1− uk) , Zk

)][
1−

2ab̂N̂k (1− uk)

b2 +
(
N̂k (1− uk)

)2
]

Ẑk+1 = φN̂kI
(
N̂k, Ẑk

)
.

with objective functional:

min
u

T−1∑

k=0

e−δk
[
AN̂k +B log(1− uk)

]
. (2.13)

The numerical approximation for the model with predation we start using the same

approaches employed in the host-pathogen model, but none of those algorithms converged.

We tried different modifications, like increasing the number of iterations or change the

values for TolFun, TolX, and the size of the mesh, but none of these changes were helpful.

Therefore we limit the possibilities for the values of the control. We discretize the control
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space U , in the interval [0, umax]. Define n as the number of values in the interval and let

h =
umax − 0

n− 1
=

umax

n− 1
.

Therefore, given a value of n, the discrete values for the control are given by:

Unew = {0, h, 2h, 3h, · · · , (n− 2)h, umax}

For our searches we choose a value of h = 0.01, therefore we use n = 81 and umax = 0.8,

to obtain

Unew = {0, 0.01, 0.02, 0.03, · · · , 0.79, 0.8}.

Evaluating the objective functional for all possible combination of the new set of controls

will be inefficient and will take a considerable amount of time. In the Global Optimization

Toolbox of MATLAB R©, the only algorithm that allows specific discrete values for the

control, is the genetic algorithm [33].

The GA is an optimization method based on natural selection. The GA repeatedly

changes a population of individual solutions. At each iteration, individuals from the

current population are, randomly selected to be the parents of the next generation. Over

iterations, the population may evolve to an optimal solution. Genetic algorithms are

useful when the objective functional is not continuous or not differentiable. The GA can

handle problems where the components are restricted to be integer-valued or discrete

spaced values [33].

To design the next generation, genetic algorithms employ three main types of rules [33]:

• Selection rules: Select the parents, that create the individuals for the next

generation.

• Crossover rules: Cross two parents to produce offspring for the next generation

• Mutation rules: Random changes are introduce to individual parent to form new

individuals
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Classical optimization approaches and genetics algorithms, have two main differences. At

each time step, classical algorithms create a single point, the sequence of these points

converge to an optimal value. In contrast, GA builds a population of points at each step.

The best individuals of the population approaches an optimal result. In classical schemes,

the selection of the next point is made by deterministic calculations. In GA, the selection

of the next individual follows a stochastic approach [33].

We use the following approach. First we use the genetic algorithm to do a preliminary

search of possible control, with at least 30 searches for each window of controls. Then we

use the output of the GA as the starting points for the Patternsearch algorithm. From

these results we pick the value that minimizes our objective functional. Since this approach

is more computational intensive, we use the Apps@UT cloud computing application. We

run our code in parallel, with four workers, using the command parfor from MATLAB R©.

For this model we use the following values for the parameters:

Table 2.3: Parameter values for the model with predation

Parameter γ φ 1
C2 a b̂ A δ umax

Values 74.6 60 1.06 0.967 0.14 50 0.02 0.8

Parameters for the model (γ, φ, 1
C2 , a, b) were taken from Dwyer’s work [17]. Other

parameters were the same used before.

2.6.2 Results

In this model, deciding in what interval to apply the control was more complicated. In

Figure 2.16, in top we present output of the model. We selected a particular section of

the top graph, and then we selected three sections of 20 years, and we perform numerical

approximations to find the control. These selections were made without any particular

criteria.
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Figure 2.16: Time intervals to control in the model with predation. The lower graphic

presents the windows to control. Initial conditions are N0 = 10 and Z0 = 10, with other

parameters in Table 2.3
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In Figure 2.17, we present the results of those approximations. Each column represents

the dynamics for the sections selected in Figure 2.16. In the three cases, the density

of gypsy moth is reduced from the case without management. The optimal control just

has one peak and more control is applied when densities of gypsy moth are higher (last

column); more results can be see in Appendix A.11.

We also explored the effect of different densities for starting conditions for applying the

control. In Figure A.22, low density is in the left column and high density is in the right

column. As expected, the initial density also affects the optimal control in the model with

predation. As we increase the starting density, we apply the control in the first year and

we have a second peak of control around year 5, that is not present when the we start at

low densities. To understand better the effect of the starting point we ran 200 simulations

with different starting points. Results of these simulations are in Figure 2.18. The error

bar represents the standard deviation at each year. For better interpretation we divide

our data into two categories based on the density of gypsy moth at the starting point of

the control. Low densities for values below two, and high for values greater that two. In

Figure 2.13, at low densities in part (a) with 100 values, and high in (b) with 100 values.

At low densities, Figure 2.13(b), we have one peak of control around years 2 and 3. At

high densities we have two separate peaks of control; the first one at the beginning is the

highest one, the second around years 5 and 6. One characteristic that all starting values

share is that after year 7 no more control is necessary. Box plots are display in Figure A.14.

We also carry out an analysis of variance, using as the independent variable the density

of gypsy moth (low and high). The objective functional, the sum of the controls, and the

time of the maximum control were used as response variables. As in the host-pathogen

model we find significant differences at the 1% level for the objective functional, and

the time of the maximum control. The sum of the control did not present significant

differences. These results confirm the distinct patterns observed in Figure 2.18. Details

are in Appendix A.10.
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Figure 2.17: Results for the model with predation. The three windows correspond to the

time interval selection in the long term dynamics in Figure 2.16. a. Dynamics without

control. b. Dynamics with control. Initial conditions are N0 = 10 and Z0 = 10, with

other parameters in Table 2.3
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Figure 2.18: Summary statistics for the optimal control for the model with predation.

Bar height represents the average value for the optimal control at each year, and the error

bar is the standard deviation. Starting conditions for the control at: (a) low densities ,

and (b) high densities. With parameters in Table 2.3

In conclusion, the starting conditions at the moment we start to implement the control

has an important influence on the optimal control solution. In Figure 2.18, we provide

two different alternatives of optimal control base in initial populations of gypsy moth for

the model that includes predation. In general, populations at low densities need to be

controlled after 1 or 2 years. Populations at high densities need more applications, with

one application at a high level of control immediately and subsequent applications around

years 5 and 6 at lower levels of the control.

2.7 Conclusions

In this chapter we developed an optimal control formulation for the invasive pest gypsy

moth. First we explored a model that includes the interaction of gypsy moths with the

virus LdMNPV, we refer to this model as the host-pathogen model. When we start the

control at low densities of gypsy moth, the optimal control has a pattern of two peaks,

with the first being higher and longer. The two peaks of control occur a year before
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the peaks of gypsy moth in the non-management scenario. These results hold for a wide

range of parameter values. We also investigated how the density at the starting time to

implement control can affect the optimal control solution in the host-pathogen model. We

divided the initial density in three cases: low (values below 1), medium (between 1 and

15), and high (more than 15). Using simulations at several different starting points, we

can conclude, that the optimal control is highly affected by the starting conditions. Low

densities need more control applications than high densities. This is mainly a consequence

that at high densities the population of gypsy moth is decreasing as a result of the virus

epidemic. We provided three general possible optimal control management options based

on the starting densities of gypsy moth.

In the host-pathogen model the gypsy moth is cycling regularly and with a short period

length. In the model with predation there is some greater lag time between outbreaks

because of predation effects. The optimal control for the model that includes predation,

as expected, is at a lower level as compared with the host-pathogen model. We also found

the optimal control is very sensitive to initial conditions, and we provided two general

options based in the starting densities of gypsy moth. Higher densities require action

intermediately. In general the peaks of the control occur a year or two before the peaks

of gypsy moth in the non-management scenario.

In the two models that we used the optimal control is highly dependent to the initial

conditions. These results highlight the importance of knowing the status of the

populations before starting any management program. This suggests the necessity to

have programs that monitor the densities of gypsy moth populations and have different

management programs that incorporate the initial densities as a parameter.
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Chapter 3

Integrodifference model

3.1 Introduction

In this chapter we will focus on models for gypsy moth populations that are in the invasion

front. In North America, gypsy moth females are incapable of flying and typically oviposit

within 2m of where they come out as adults [78, 20]. Dispersal happens during early instar

ballooning, promoted by atmospheric transport, and is relatively short ranged, at most a

few hundred meters. The typical behavior of late instars looking for hidden resting sites

often results in larvae pupating and consequently emerging females ovipositing on human-

made objects like motor vehicles [78, 46]. Unintentional transportation, in particular for

egg masses that overwinter, is a method of dispersal that plays a significant role in the

invasion spread [78, 77].

The spread of the gypsy moth is a process known as stratified dispersal, in which local

growth and dispersal is joined with the long range dispersal of early life stages by human

objects [78, 77]. Long distance dispersal allows the establishment of populations, beyond

the invasion front, which can eventually merge with the expanding population front. The

effect is a much quicker speed of expansion than the one estimated under local population

growth and diffusive spread [78, 47].

Spatial spread is a key element of invasion processes. There is a long history of modeling

movement of biological organisms, starting with Skellam [71] who explored the role of
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random motion to describe biological movement using a linear diffusion partial differential

equation. Many extensions to this structure have been proposed; see [48] for a recent

review and [49, 10, 52] for an overview of partial differential equation (PDE) approaches

to modelling biological movement and dynamics.

An alternative to the PDE approach to modeling invasive spatial spread uses integrodiffer-

ence equations in which a dispersal kernel is used to describe the redistribution of species

[40, 81, 39, 31]. Some classical approaches to the study of PDEs have been applied to

integrodifference systems within the ecological literature including calculation of traveling

wave speeds [84] and determination of the conditions required for spatial pattern formation

[39, 50]. In the case where the underlying dynamics are generational or best described in

discrete time, and the dispersal stage is separate from the growth stage, the population

dynamics can be represented by an integrodifference equation. For a population Nk(x)

at location x in the spatial domain Ω at time k subject to local population demographic

dynamics f(N) and with spatial redistribution kernel k(x, y), the model system takes the

form:

Nk+1(x) =

∫

Ω

k(x, y)f
(
Nk(y)

)
dy. (3.1)

The redistribution kernel can be chosen from a wide range of probability density functions

to best represent observed dispersal patterns. This increases model flexibility when

compared with a PDE approach, itself structured around a normal distribution, and

integrodifference equations have resulted in more accurate model predictions of spread

[70, 39, 38]. In chapter 3, we focus on integrodifference equations given the nature of the

dynamics for populations that are in the invasion front.

The management of invasive species leads to investigation of optimal control of interven-

tion actions in appropriate models. The first application of optimal control theory to

integrodifference equations was presented by Joshi and collaborators [36] for a harvesting

model of a single population. Since then, the mathematical framework proposed in that

work has been applied to a range of problems for single species [26, 37, 89, 43, 41].

However, to date, very little work (only [85])has been carried out to extend that theory
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to optimal control in a system of integrodifference equations.

In the previous chapter, we use control aerial sprays of Bacillus thuringiensis (Bt), because

it is the most popular management treatment for the gypsy moth; though there are

possible harmful effects on other species of Lepidoptera [54, 83]. In chapter 3, we assume

control by Gypchek. The theory developed in this chapter can be easily modified to allow

control with Bt instead of Gypchek.

In the 1950’s, the USDA Forest Service started to investigate the possibility of developing

the naturally occurring nucleopolyhedrosis virus (LdMNPV) as an alternative for the

management of the gypsy moth [57, 62]. The main reasons is that the LdMNPV virus has

an extremely narrow host range [4], does not have deleterious effects on beneficial insects

or vertebrates, [28, 61, 62], and is not known to be related to any human pathogen [80].

In 1978 the LdMNPV virus product, Gypchek, was registered by the U.S. Environmental

Protection Agency as an insecticide for the gypsy moth [57].

The majority of toxicological tests of Gypchek using laboratory animals, wild mammals,

birds and fish, revealed no deleterious effects [61]. In 1994, a seven year long research

project was started to assess the effects of the two insecticides, Bt and Gypchek, on non-

target arthropods and selected vertebrate [74]. This work concluded that Gypchek had less

impact on non-target organisms. The researchers state that “Gypchek is the preferred

option in gypsy moth control because it is environmentally benign and its toxicity is

specific to gypsy moth.”

Gypchek is produced using an in-vivo process that is very labor intensive, so applications

of Gypchek are more expensive than other control products [6, 56]. Research is currently

underway to develop in-vitro production; this could eventually provide a less expensive

product[62].

Next we formulate our model with control and the corresponding objective functional.

In section 3.3 we prove the existence of the optimal control. The characterization of an
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optimal control, in terms of the state and the adjoint variables is given in section 3.4.

In section 3.5 we show uniqueness of the optimal control. Finally in the last section, we

apply the optimal control theory developed to numerical simulations for the gypsy moth

problem.

3.2 Mathematical model

We form a bioeconomic model by creating an objective functional for the control of gypsy

moths which is constrained by the underlying spatio-temporal dynamics of the moth with

the nucleopolyhedrosis virus (NPV) control agent. To do this, we define the state variables

for the problem as

Nk(x) = Density of gypsy moths at generation k and spatial location x

Zk(x) = Density of LdMNPV virus at generation k and spatial location x

where k = 0, 1, ...T is the time index determined by the gypsy moth annual population

generations and x is the spatial variable in a one-dimensional bounded domain Ω.

The control, u =
(
u0(x), ..., uT−1(x)

)
, is the amount of spray of the biocontrol agent

Gypchek used at location x for each generation. We assume that there is a cost Ak

associated with the gypsy moth density Nk which includes the direct economic costs for

the forestry industry and the indirect costs resulting in a reduction of tourism in regions

where gypsy moth outbreaks are occurring. The cost of using Gypchek is a function of

the amount of spraying that is undertaken, and we assume a quadratic cost of the form,

Bkuk + Cku
2
k. The objective functional is defined as

J(u) =

∫

Ω

ATNT (x)dx+
T−1∑

k=0

∫

Ω

[
AkNk(x) +Bkuk(x) + Cku

2
k(x)

]
dx, (3.2)
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subject to the constraints of the population dynamics:

Nk+1(x) =

∫

Ω

k1(x, y)F
(
Nk(y), Zk(y)

)
dy (3.3)

Zk+1(x) =

∫

Ω

k2(x, y)G
(
Nk(y), Zk(y)

)
dy +

∫

Ω

k3(x, y)uk(y)dy

where k = 0, 1, 2, ...T − 1, x ∈ Ω, and

F (Nk, Zk) = γNke
−rNk−bZk (3.4)

G(Nk, Zk) = fZk + ρNk

(
1− e−bZk

)

with initial conditions specified as

0 ≤ N0(x) =Ninitial(x)

0 ≤ Z0(x) =Zinitial(x),

and Ak ≥ 0, Bk ≥ 0, and Ck > 0 for k = 0, 1, · · · , T . The kernels are bounded and

Lebesgue measurable such that

0 <

∫

Ω

ki(x, y)dy ≤ 1 for all x ∈ Ω, where i = 1, 2, 3 (3.5)

0 ≤ ki(x, y) ≤ K for (x, y) ∈ Ω.

We use a simple modification of the Nicholson-Bailey model [51]. In the absence of

the virus, gypsy moth dynamics are density dependent and can be represented by the

Ricker equation, where γ denotes the average per capita number of moths produced and

e−rNk is the density dependent probability that each new moth will survive until the next

generation. Addition of virus adds to the constraints on between generation survival for

the gypsy moths; we assume that in the presence of virus the probability that a moth

does not become infected at generation k is e−bZk . Thus e−rNk−bZk is the probability of

survival combining effects of the density dependence and the infection.
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For the virus, we assume a probability f that virus in the environment can survive between

moth generations (over winter survival). The probability that a gypsy moth individual

at time k will get the virus infection is 1− e−bZk . After gypsy moths die the cadaver will

provide ρ viral spores, on average, into the environment.

Given the set of bounded controls,

U =
{
u =

(
u0(x), ..., uT−1(x)

)
∈ (L∞(Ω))T |0 ≤ uk(x) ≤ umax, k = 0, 1, ..., T − 1

}
, (3.6)

we seek to find an optimal control, u∗ ∈ U , such that

J(u∗) = min
u∈U

J(u).

We denote the states corresponding to the control u ∈ U as N = N(u), Z = Z(u). The

redistributing kernels have the properties,

0 <

∫

Ω

ki(x, y)dy ≤ 1 where i = 1, 2, 3 (3.7)

0 ≤ ki(x) ≤ K for x ∈ Ω

3.3 Existence of an optimal control

We begin by verifying that there exists a solution to the optimal control problem for the

gypsy moth model. We first show that the states are bounded over a finite interval.

Lemma 1. There exists a constant D such that 0 ≤ Nk(x) ≤ D, 0 ≤ Zk(x) ≤ D for all

x ∈ Ω, k = 0, 1, ..., T .

Proof. The state equations are positive invariant, given fixed initial conditions N0, Z0 are

non-negative then Nk, Zk, are non-negative for all k. Therefore the states are bounded

below by zero. So it remains to show the states are bounded above. From the structure
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of F and G, there exists a constant D1 such that

F
(
N0(x), Z0(x)

)
≤ D1 (3.8)

G
(
N0(x), Z0(x)

)
≤ D1 for all x ∈ Ω.

Then substituting the bounds above into system (3.3), we have

N1(x) ≤ D1

∫

Ω

k1(x, y)dy (3.9)

Z1(x) ≤ D1

∫

Ω

k2(x, y)dy +

∫

Ω

k3(x, y)u0(y)dy.

Then from (3.6) and (3.7) we obtain

N1(x) ≤ D1 (3.10)

Z1(x) ≤ D1 + umax.

Therefore N1(x), Z1(x) are bounded above for all x ∈ Ω. Following the same idea we can

find bounds for N2(x), Z2(x). There exists a constant D2 such that:

F (N1, Z1) ≤ D2 (3.11)

G(N1, Z1) ≤ D2.

Substituting the bounds yields

N2(x) ≤ D2

∫

Ω

k1(x, y)dy (3.12)

Z2(x) ≤ D2

∫

Ω

k2(x, y)dy +

∫

Ω

k3(x, y)u1(y)dy

and then

N2(x) ≤ D2 (3.13)

Z2(x) ≤ D2 + umax.
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Subsequently it follows iteratively that Nk, Zk are bounded for all x ∈ Ω and all k =

0, 1, 2, ..., T .

Now we can use Lemma 1 to establish the existence of an optimal control.

Theorem 3. An optimal control u∗ ∈ U exists that minimizes the objective functional

J(u).

Proof. The objective functional is bounded below by zero. Thus let {ui} be a minimizing

sequence for the objective functional J and {N i} and {Zi} be the corresponding state

sequences. As the sequences are bounded (Lemma 1) there exists u∗ ∈ U and N∗, Z∗ ∈
(
L∞(Ω)

)T+1
such that on a subsequence

uik(x)⇀ u∗k(x) (3.14)

N i
k(x)⇀ N∗

k (x)

Zi
k(x)⇀ Z∗

k(x)

as i→ ∞, weakly in L2(Ω) for each k.

We now show that the states N∗ and Z∗ correspond to the control u∗. Using the structure

of the model, we show that the state sequences converge pointwise. Due to the fixed initial

conditions, we have from (3.3)

N i
1(x) =

∫

Ω

k1(x, y)F (N0(y), Z0(y))dy (3.15)

Zi
1(x) =

∫

Ω

k2(x, y)G(N0(y), Z0(y))dy +

∫

Ω

k3(x, y)u
i
0(y)dy.

Hence the sequence {N i
1} is constant with value N1 from (3.10). The weak convergence of

the sequence {ui0} gives Z
i
1(x) → Z∗

1 (x) pointwise for each x as i→ ∞. Thus this pointwise

convergence of the sequences {N i
1} and Zi

1 and the continuity of F,G gives convergence

pointwise of {F (N i
1, Z

i
1)}, {G(N

i
1, Z

i
1)} and then gives convergence of the integral terms

by Lebesque’s Dominated Convergence Theorem. Thus we obtain pointwise convergence

of N i
2, Z

i
2 and by iteration, the pointwise convergence of N i

k, Z
i
k as i→ ∞, k = 0, 1, ..., T .
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Hence N∗ = N(u∗) and Z∗ = Z(u∗).

Now we verify that u∗ is an optimal control. For the quadratic term of the control in

the objective functional, the lower semi-continuity of the L2 norm with respect to weak

convergence of control sequences gives:

min
u∈U

J(u) = lim
i→∞

∫

Ω

T−1∑

k=0

[
AkN

i
k(x) +Bku

i
k(x) + Ck(u

i
k(x))

2
]
dx+

∫

Ω

ATN
i
T (x)dx (3.16)

≥ lim
i→∞

∫

Ω

T−1∑

k=0

[
AkN

i
k(x) +Bku

i
k(x)

]
dx+ lim inf

k→∞

∫

Ω

T−1∑

k=0

Ck(u
i
k(x))

2dx

+ lim
i→∞

∫

Ω

ATN
i
T (x)dx

≥

∫

Ω

T−1∑

k=0

[
AkN

∗
k (x) +Bku

∗
k(x) + Ck(u

∗
k(x))

2
]
dx+

∫

Ω

ATN
∗
T (x)dx.

Consequently an optimal control u∗ exists with corresponding states N∗ and Z∗.

3.4 Characterization of an optimal control

We characterize an optimal control for our system of integrodifference equations. In order

to find this characterization we need to differentiate the objective functional with respect

to the control, in the sense

lim
ε→0+

(
J(u∗ + εl)− J(u∗)

ε

)
≥ 0 (3.17)

where l is a directional vector. We will refer to expression (3.17) as the directional

derivative. Since the states are involved in J , we must first be able to differentiate the

states with respect to the control, and the derivatives of the control → states map are

called “sensitivities”.

Notation 1. For simplicity we define

N ε(x) := N(u+ εl) Zε(x) := Z(u+ εl) (3.18)

N(x) := N(u) Z(x) := Z(u)
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Theorem 4. The mapping u → N,Z is differentiable in the following sense: For any

u ∈ U and l ∈ (L∞(Ω))T , such that (u + εl) ∈ U for ε small, there exists sensitivities

ψN
k (x), ψZ

k (x) ∈ (L∞(Ω))T+1 such that for k = 0, 1, ..., T :

N ε
k(x)−Nk(x)

ε
⇀ ψN

k (x) (3.19)

Zε
k(x)− Zk(x)

ε
⇀ ψZ

k (x)

pointwise on Ω as ε → 0+, for 0 < ε << 1 such that (u + εl) ∈ U . Furthermore the

sensitivities satisfy the following system for k = 0, 1, ..., T − 1

ψN
k+1(x) =

∫

Ω

k1(x, y)

(
∂F
(
Nk(y), Zk(y)

)

∂N
ψN
k (y) +

∂F
(
Nk(y), Zk(y)

)

∂Z
ψZ
k (y)

)
dy (3.20)

ψZ
k+1(x) =

∫

Ω

k2(x, y)

(
∂G
(
Nk(y), Zk(y)

)

∂N
ψN
k (y) +

∂G
(
Nk(y), Zk(y)

)

∂Z
ψZ
k (y)

)
dy

+

∫

Ω

k3(x, y)lk(y)dy

with initial conditions ψN
0 (x) = ψZ

0 (x) = 0.

Proof. We vary the control from u to u+ εl, where l is an arbitrary variation. Then from

the state equations (3.3) and notation (3.18) we have

N ε
k+1(x)−Nk+1(x) =

∫

Ω

k1(x, y)
[
F
(
N ε

k(y), Z
ε
k(y)

)
− F

(
Nk(y), Zk(y)

)]
dy (3.21)

Zε
k+1(x)− Zk+1(x) =

∫

Ω

k2(x, y)
[
G
(
N ε

k(y), Z
ε
k(y)

)
−G

(
Nk(y), Zk(y)

)]
dy

+

∫

Ω

k3(x, y) (uk + εlk − uk) (y)dy

Substituting the initial conditions into equations above and assuming N ε
0 = N0 and

Zε
0 = Z0 we find

N ε
1 (x)−N1(x) = 0 ⇒ ψN

1 (x) = 0 (3.22)

Zε
1(x)− Z1(x) = 0 +

∫

Ω

k3(x, y)εl1(y)dy ⇒ ψZ
1 (x) =

∫

Ω

k3(x, y)εl1(y)dy
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Thus the quotients
{

Nε
1 (x)−N1(x)

ε

}
,
{

Zε
1(x)−Z1(x)

ε

}
, are independent of ε, and thus give

directly the desired sensitivities ψN
1 (x), ψZ

1 (x), and the convergences in (3.19).

For the second components of the sensitivities, consider

N ε
2 (x)−N2(x) =

∫

Ω

k1(x, y)
[
F
(
N ε

1 (y), Z
ε
1(y)

)
− F

(
N1(y), Z1(y)

)]
dy (3.23)

Zε
2(x)− Z2(x) =

∫

Ω

k2(x, y)
[
G
(
N ε

1 (y), Z
ε
1(y)

)
−G

(
N1(y), Z1(y)

)]
dy +

∫

Ω

k3(x, y)(εl1)(y)dy.

Concentrating on the first equation, (3.24), we will use the simplified notation:

F (N ε
1 (y), Z

ε
1(y))− F (N1(y), Z1(y)) = F (N ε

1 , Z
ε
1)− F (N1, Z1).

We have the following quotients:

N ε
2 (x)−N2(x) =

∫

Ω

k1(x, y)
[
F (N ε

1 , Z
ε
1)− F (N1, Z1)

]
dy (3.24)

N ε
2 (x)−N2(x)

ε
=

∫

Ω

k1(x, y)

[
F (N ε

1 , Z
ε
1)− F (N1, Z1)

ε

]
dy

=

∫

Ω

k1(x, y)

[
F (N ε

1 , Z
ε
1)− F (N1, Z

ε
1)

ε
+
F (N1, Z

ε
1)− F (N1, Z1)

ε

]
dy

=

∫

Ω

k1(x, y)

[(
F (N ε

1 , Z
ε
1)− F (N1, Z

ε
1)

N ε
1 −N1

)(
N ε

1 −N1

ε

)

+

(
F (N1, Z

ε
1)− F (N1, Z1)

Zε
1 − Z1

)(
Zε

1 − Z1

ε

)]
dy.

From the uniform convergence of Zε
1(x) to Z1(x) and the differentiability of F and G, we

can pass the limit in the right hand side of (3.24) and get the pointwise convergence of

the quotient
{

Nε
2 (x)−N2(x)

ε

}
. Doing a similar process for Zε

2 − Z2, we obtain the existence
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of ψN
2 (x), ψZ

2 (x) solving

ψN
2 (x) =

∫

Ω

k1(x, y)

[
∂F
(
N1(y), Z1(y)

)

∂N
ψN
1 (y) +

∂F
(
N1(y), Z1(y)

)

∂Z
ψZ
1 (y)

]
dy (3.25)

ψZ
2 (x) =

∫

Ω

k2(x, y)

(
∂G
(
N1(y), Z1(y)

)

∂N
ψN
1 (y) +

∂G
(
N1(y), Z1(y)

)

∂Z
ψZ
1 (y)

)
dy

+

∫

Ω

k3(x, y)l1(y)dy.

In the next step, N ε
2 (x) → N2(x) and Zε

2(x) → Z2(x) uniformly, and we obtain the

pointwise convergence of
Nε

3 (x)−N3(x)

ε
,

Zε
3(x)−Z3(x)

ε
to ψN

3 (x), ψZ
3 (x). Continuing iteratively

it follows that
{

Nε

k
(x)−Nk(x)

ε

}
,
{

Zε

k
(x)−Zk(x)

ε

}
, converge pointwise to the desired sensitivities

ψN
k (x), ψZ

k (x), which satisfy system (3.20).

To obtain the adjoint system, we will rewrite the system (3.20), leaving all the sensitivity

terms on the left hand side and all other terms on the right hand side,

ψN
k+1(x)−

∫

Ω

k1

(
∂F
(
Nk(y), Zk(y)

)

∂N
ψN
k (y) +

∂F
(
Nk(y), Zk(y)

)

∂Z
ψZ
k (y)

)
dy = 0 (3.26)

ψZ
k+1(x)−

∫

Ω

k2

(
∂G
(
Nk(y), Zk(y)

)

∂N
ψN
k (y) +

∂G
(
Nk(y), Zk(y)

)

∂Z
ψZ
k (y)

)
dy =

∫

Ω

k3lk(y)dy.

By differentiating J(u) with respect to u and introducing the adjoint system, we can

characterize an optimal control.

Theorem 5. Given an optimal control u∗ with corresponding solutions N∗, Z∗, then there

exists adjoint variables λN , λZ, satisfying this system for k = 0, 1, ..., T − 1

λNk (x) =
∂F
(
N∗

k (x), Z
∗
k(x)

)

∂N

∫

Ω

k1(y, x)λ
N
k+1(y)dy (3.27)

+
∂G
(
N∗

k (x), Z
∗
k(x)

)

∂N

∫

Ω

k2(y, x)λ
Z
k+1(y)dy + Ak

λZk (x) =
∂F
(
N∗

k (x), Z
∗
k(x)

)

∂Z

∫

Ω

k1(y, x)λ
N
k+1(y)dy +

∂G
(
N∗

k (x), Z
∗
k(x)

)

∂Z

∫

Ω

k2(y, x)λ
Z
k+1(y)dy

with the transversality conditions
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λNT (x) = AT , λ
Z
T (x) = 0, ∀x ∈ Ω. (3.28)

Furthermore u∗k(x) is given by

u∗k(x) = max

(
0,min

(
−

∫
Ω
k3(x, y)λ

Z
k+1(y)dy +Bk

2Ck

, umax

))
(3.29)

for k = 0, 1, ..., T − 1.

Proof. We start by taking the directional derivative of the objective functional. Since

J(u∗) is the minimum value, for 0 < ε and directional vector l, for u∗ + εl ∈ U , we have

0 ≤ lim
ε→0+

(
J(u∗ + εl)− J(u∗)

ε

)
(3.30)

= lim
ε→0+

1

ε

[
T−1∑

k=0

∫

Ω

(
AkN

ε
k(x) +Bk(u

∗
k + εlk)(x) + Ck(u

∗
k + εlk)

2(x)
)
dx

+

∫

Ω

ATN
ε
T (x)dx

−
T−1∑

k=0

∫

Ω

(
AkN

∗
k (x) +Bku

∗
k(x) + Ck(u

∗
k)

2(x)
)
dx+

∫

Ω

ATN
∗
T (x)dx

]

= lim
ε→0+

T−1∑

k=0

∫

Ω

[
Ak

(
N ε

k(x)−N∗
k (x)

ε

)
+Bk

(
(u∗k + εlk)(x)− (u∗k)(x)

ε

)

+ Ck

(
(u∗k + εlk)

2(x)− (u∗k)
2(x)

ε

)]
dx+ lim

ε→0+

∫

Ω

AT
N ε

T (x)−N∗
T (x)

ε
dx

=
T−1∑

k=0

∫

Ω

[
Akψ

N
k (x) +Bklk(x) + Ck2u

∗
klk(x)

]
dx+

∫

Ω

ATψ
N
T (x)dx.

We will focus just on the terms:
∑T−1

k=0

∫
Ω
Akψ

N
k (x)dx +

∫
Ω
ATψ

N
T (x), and later we will

come back to the complete expression in (3.30). First we will add the term 0ψZ
k (x) and

then substituting from the adjoint system (3.27), we obtain
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T−1∑

k=0

∫

Ω

Akψ
N
k (x)dx+

∫

Ω

ATψ
N
T (x)dx (3.31)

=
T−1∑

k=0

∫

Ω

[
Akψ

N
k (x) + 0ψZ

k (x)
]
dx+

∫

Ω

ATψ
N
T (x)dx

=
T−1∑

k=0

∫

Ω

[(
λNk (x)−

∂F
(
N∗

k (x), Z
∗
k(x)

)

∂N

∫

Ω

k1(y, x)λ
N
k+1(y)dy

−
∂G
(
N∗

k (x), Z
∗
k(x)

)

∂N

∫

Ω

k2(y, x)λ
Z
k+1(y)dy

)
ψN
k (x)

+

(
λZk (x)−

∂F
(
N∗

k (x), Z
∗
k(x)

)

∂Z

∫

Ω

k1(y, x)λ
N
k+1(y)dy

−
∂G
(
N∗

k (x), Z
∗
k(x)

)

∂Z

∫

Ω

k2(y, x)λ
Z
k+1(y)dy

)
ψZ
k (x)

]
dx+

∫

Ω

ATψ
N
T (x)dx

=
T−1∑

k=0

∫

Ω

[
λNk (x)ψ

N
k (x) + λZk (x)ψ

Z
k (x)

]
dx

+
T−1∑

k=0

∫

Ω

[∫

Ω

k1(y, x)λ
N
k+1(y)dy

(
−
∂F
(
N∗

k (x), Z
∗
k(x)

)

∂N
ψN
k (x)−

∂F
(
N∗

k (x), Z
∗
k(x)

)

∂Z
ψZ
k (x)

)]
dx

+
T−1∑

k=0

∫

Ω

[∫

Ω

k2(y, x)λ
Z
k+1(y)dy

(
−
∂G
(
N∗

k (x), Z
∗
k(x)

)

∂N
ψN
k (x)−

∂G
(
N∗

k (x), Z
∗
k(x)

)

∂Z
ψZ
k (x)

)]
dx

+

∫

Ω

ATψ
N
T (x)dx.

We work first with the first sum and the last term. We introduce the term
∫
Ω
0ψZ

T (x)dx,

use the transversality conditions (3.28) and include these new terms in the first sum:

T−1∑

k=0

∫

Ω

[
λNk (x)ψ

N
k (x) + λZk (x)ψ

Z
k (x)

]
dx+

∫

Ω

ATψ
N
T (x)dx+

∫

Ω

0ψZ
T (x)dx (3.32)

=
T−1∑

k=0

∫

Ω

[
λNk (x)ψ

N
k (x) + λZk (x)ψ

Z
k (x)

]
dx+

∫

Ω

λNT (x)ψ
N
T (x)dx+

∫

Ω

λZT (x)ψ
Z
T (x)dx

=
T∑

k=0

∫

Ω

[
λNk (x)ψ

N
k (x) + λZk (x)ψ

Z
k (x)

]
dx.

Since the initial conditions for the sensitivities are all zero, we can exclude those two

terms from this sum. We also reindexed the first sum to match the other two sums
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T∑

k=1

∫

Ω

[
λNk (x)ψ

N
k (x) + λZk (x)ψ

Z
k (x)

]
dx (3.33)

=
T−1∑

k=0

∫

Ω

[
λNk+1(x)ψ

N
k+1(x) + λZk+1(x)ψ

Z
k+1(x)

]
dx.

Coming back to expression (3.31) and working just in the second and third sums, we first

change the order of integration and then interchange variables x and y:

T−1∑

k=0

∫

Ω

[
λN
k+1(y)

∫

Ω

k1(y, x)

(
−
∂F
(
N∗

k
(x), Z∗

k
(x)
)

∂N
ψN

k
(x)−

∂F
(
N∗

k
(x), Z∗

k
(x)
)

∂Z
ψZ

k
(x)

)
dx

]
dy (3.34)

+
T−1∑

k=0

∫

Ω

[
λZ
k+1(y)

∫

Ω

k2(y, x)

(
−
∂G
(
N∗

k
(x), Z∗

k
(x)
)

∂N
ψN

k
(x)−

∂G
(
N∗

k
(x), Z∗

k
(x)
)

∂Z
ψZ

k
(x)

)
dx

]
dy

=
T−1∑

k=0

∫

Ω

[
λN
k+1(x)

∫

Ω

k1(x, y)

(
−
∂F
(
N∗

k
(y), Z∗

k
(y)
)

∂N
ψN

k
(y)−

∂F
(
N∗

k
(y), Z∗

k
(y)
)

∂Z
ψZ

k
(y)

)
dy

]
dx

+

T−1∑

k=0

∫

Ω

[
λZ
k+1(x)

∫

Ω

k2(x, y)

(
−
∂G
(
N∗

k
(y), Z∗

k
(y)
)

∂N
ψN

k
(y)−

∂G
(
N∗

k
(y), Z∗

k
(y)
)

∂Z
ψZ

k
(y)

)
dy

]
dx.

Using the results from (3.33) and (3.34) we put the sums together and use sensitivities

(3.20):

T−1∑

k=0

∫

Ω

[
λN
k+1(x)ψ

N

k+1(x) + λZ
k+1(x)ψ

Z

k+1(x)
]
dx (3.35)

+

T−1∑

k=0

∫

Ω

[
λN
k+1(x)

∫

Ω

k1(x, y)

(
−
∂F
(
N∗

k
(y), Z∗

k
(y)
)

∂N
ψN

k
(y)−

∂F
(
N∗

k
(y), Z∗

k
(y)
)

∂Z
ψZ

k
(y)

)
dy

]
dx

+

T−1∑

k=0

∫

Ω

[
λZ
k+1(x)

∫

Ω

k2(x, y)

(
−
∂G
(
N∗

k
(y), Z∗

k
(y)
)

∂N
ψN

k
(y)−

∂G
(
N∗

k
(y), Z∗

k
(y)
)

∂Z
ψZ

k
(y)

)
dy

]
dx

=

T−1∑

k=0

∫

Ω

λN
k+1(x)

[
ψN

k+1(x)−

∫

Ω

k1(x, y)

(
∂F
(
N∗

k
(y), Z∗

k
(y)
)

∂N
ψN

k
(y) +

∂F
(
N∗

k
(y), Z∗

k
(y)
)

∂Z
ψZ

k
(y)

)
dy

]
dx

+

T−1∑

k=0

∫

Ω

λZ
k+1(x)

[
ψZ

k+1(x)−

∫

Ω

k2(x, y)

(
∂G
(
N∗

k
(y), Z∗

k
(y)
)

∂N
ψN

k
(y) +

∂G
(
N∗

k
(y), Z∗

k
(y)
)

∂Z
ψZ

k
(y)

)
dy

]
dx

=
T−1∑

k=0

∫

Ω

λN
k+1(x)

[
0
]
dx+

T−1∑

k=0

∫

Ω

λZ
k+1(x)

[∫

Ω

k3(x, y)lk(y)dy

]
dx.

Therefore we can say
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T−1∑

k=0

∫

Ω

Akψ
N
k (x)dx+

∫

Ω

ATψ
N
T (x)dx =

T−1∑

k=0

∫

Ω

λZk+1(x)

[∫

Ω

k3(x, y)lk(y)dy

]
dx. (3.36)

Using the last expression in inequality (3.30) gives

0 ≤

T−1∑

k=0

∫

Ω

[
Akψ

N
k (x) +Bklk(x) + Ck2u

∗
klk(x)

]
dx+

∫

Ω

ATψ
N
T (x)dx (3.37)

=
T∑

k=0

∫

Ω

[
λZk+1(x)

∫

Ω

k3(x, y)lk(y)dy +Bklk(x) + Ck2u
∗
klk(x)

]
dx

=
T−1∑

k=0

∫

Ω

[
λZk+1(x)

∫

Ω

k3(x, y)lk(y)dy

]
dx+

∫

Ω

[Bklk(x) + Ck2u
∗
klk(x)] dx

=
T−1∑

k=0

∫

Ω

[
lk(y)

∫

Ω

k3(x, y)λ
Z
k+1(x)dx

]
dy +

∫

Ω

[Bklk(x) + Ck2u
∗
klk(x)] dx

=
T−1∑

k=0

∫

Ω

[
lk(y)

∫

Ω

k3(x, y)λ
Z
k+1(x)dx

]
dy +

∫

Ω

[Bklk(y) + Ck2u
∗
klk(y)] dy

=
T−1∑

k=0

∫

Ω

lk(y)

[∫

Ω

k3(x, y)λ
Z
k+1(x)dx+Bk + Ck2u

∗
k

]
dy.

Recall we are calculating the directional derivative when 0 < ε and directional vector

l, for u∗ + εl. On the set 0 < u∗k(x) < umax, then lk(x) can have any sign, because the

optimal control can be modified in a small amount up or down and still be within bounds.

Thus on this set the integrand of (3.37) must be zero; therefore we obtain

u∗k(x) = −

∫
Ω
k3(y, x)λ

Z
k+1(y)dy +Bk

2Ck

.

If on the set of x ∈ Ω with u∗k(x) = 0, then lk(x) must be non-negative. Then the

integrand of (3.37) must be non-negative and rearranges to

u∗k(x) ≥ −

∫
Ω
k3(y, x)λ

Z
k+1(y)dy +Bk

2Ck

.
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Finally on the set of x ∈ Ω with u∗k(x) = umax, then lk(x) must be negative. The integrand

of (3.37) must be non-positive, giving

u∗k(x) ≤ −

∫
Ω
k3(y, x)λ

Z
k+1(y)dy +Bk

2Ck

.

Taking into account the previous three options, we obtain

u∗k(x) =





0 if −
∫
Ω
k3(y,x)λZ

k+1
(y)dy+Bk

2Ck

≤ 0

−
∫
Ω
k3(y,x)λZ

k+1
(y)dy+Bk

2Ck

if 0 ≤ −
∫
Ω
k3(y,x)λZ

k+1
(y)dy+Bk

2Ck

≤ umax

umax if umax ≤ −
∫
Ω
k3(y,x)λZ

k+1
(y)dy+Bk

2Ck

.

(3.38)

Therefore

u∗k(x) = max

(
0,min

(
−

∫
Ω
k3(y, x)λ

Z
k+1(y)dy +Bk

2Ck

, umax

))
(3.39)

and we get the adjoint system and control characterization as originally stated.

3.5 Uniqueness of the Optimal Control

We show uniqueness of the optimal control under a largeness assumption on the coefficients

of the quadratic cost term.

Notation 2. For simplicity we use the notation

N ε(x) := N
(
u+ ε(l − u)

)
Zε(x) := Z

(
u+ ε(l − u)

)
(3.40)

N ε+τ (x) := N
(
u+ (ε+ τ)(l − u)

)
Zε+τ (x) := Z

(
u+ (ε+ τ)(l − u)

)

N ε+τ
k (x)−N ε

k(x)

τ
⇀ ψNε

k (x) as τ → 0
Zε+τ

k (x)− Zε
k(x)

τ
⇀ ψZε

k (x) as τ → 0

Theorem 6. If Ck, k = 0, 1, ..., T − 1 are sufficiently large, then the optimal control is

unique.

Proof. We show uniqueness by showing strict concavity of the map:

u ∈ U → J(u).

The concavity follows from showing for all u, l ∈ U , 0 < ε < 1,
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g′′(ε) > 0,

where g(ε) = J
(
εl + (1− ε)u

)
= J

(
u+ ε(l − u)

)
.

First we calculate g′(ε):

g′(ε) = lim
τ→0

(
J
(
uk + (ε+ τ)(lk − uk)

)
− J

(
uk + ε(lk − uk)

)

τ

)
(3.41)

= lim
τ→0

T−1∑

k=0

1

τ

∫

Ω

{[
AkN

ε+τ
k (x) +Bk

(
uk + (ε+ τ)(lk − uk)

)
(x)

+ Ck

(
uk + (ε+ τ)(lk − uk)

)2
(x)
]

−
[
AkN

ε
k(x) +Bk

(
uk + ε(lk − uk)

)
(x) + Ck

(
uk + ε(lk − uk)

)2
(x)
]}

dx

+ lim
τ→0

1

τ

∫

Ω

[
ATN

ε+τ
T (x)− ATN

ε
T (x)

]
dx

= lim
τ→0

T−1∑

k=0

1

τ

∫

Ω

{
Ak

[
N ε+τ

k (x)−N ε
k(x)

]
+Bk [τ(lk − uk)] (x)

+ Ck

[
2
(
uk + ε(lk − uk)

)
τ(lk − uk) + τ 2(lk − uk)

2
]
(x)

}
dx

+ lim
τ→0

1

τ

∫

Ω

AT

[
N ε+τ

T (x)−N ε
T (x)

]
dx

= lim
τ→0

T−1∑

k=0

∫

Ω

{
Ak

[
N ε+τ

k (x)−N ε
k(x)

τ

]
+Bk(lk − uk)(x)

+ Ck

[
2
(
uk + ε(lk − uk)

)
(lk − uk) + τ(lk − uk)

2
]
(x)

}
dx

+ lim
τ→0

∫

Ω

AT

[
N ε+τ

T (x)−N ε
T (x)

τ

]
dx

=
T−1∑

k=0

∫

Ω

{
Akψ

Nε

k (x) +Bk(lk − uk)(x) + Ck2 [uk + ε(lk − uk)] (lk − uk)(x)

}
dx

+

∫

Ω

ATψ
Nε

T (x)dx.

The results in Theorem 2 were used in the limits of these quotients in g′(ε):

N ε+τ
k (x)−N ε

k(x)

τ
⇀ ψNε

k (x) (3.42)

Zε+τ
k (x)− Zε

k(x)

τ
⇀ ψZε

k (x) as τ → 0
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with

ψNε

k+1(x) =

∫

Ω

k1(x, y)

(
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N
ψNε

k (y) +
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z
ψZε

k (y)

)
dy (3.43)

ψZε

k+1(x) =

∫

Ω

k2(x, y)

(
∂G
(
N ε

k(y), Z
ε
k(y)

)

∂N
ψNε

k (y) +
∂G
(
N ε

k(y), Z
ε
k(y)

)

∂Z
ψZε

k (y)

)
dy

+

∫

Ω

k3(x, y)(lk − uk)(y)dy

ψNε

0 (x) =ψZε

0 (x) = 0

and

ψNε+τ

k+1 (x) =

∫

Ω

k1(x, y)

(
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂N
ψNε+τ

k (y) (3.44)

+
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂Z
ψZε+τ

k (y)

)
dy

ψZε+τ

k+1 (x) =

∫

Ω

k2(x, y)

(
∂G
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂N
ψNε+τ

k (y)

+
∂G
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂Z
ψZε+τ

k (y)

)
dy

+

∫

Ω

k3(x, y)(lk − uk)(y)dy

ψNε+τ

0 (x) =ψZε+τ

0 (x) = 0.

We want to estimate ψNε

k (x) in terms of the components l − u:

∣∣ψNε

1 (x)
∣∣ =
∣∣∣∣∣

∫

Ω

k1(x, y)

(
∂F
(
N ε

0 (y), Z
ε
0(y)

)

∂N
ψNε

0 (y) (3.45)

+
∂F
(
N ε

0 (y), Z
ε
0(y)

)

∂Z
ψZε

0 (x)

)
dy

∣∣∣∣∣

=0

∣∣ψZε

1 (x)
∣∣ =
∣∣∣∣∣

∫

Ω

k2(x, y)

(
∂G
(
N ε

0 (y), Z
ε
0(y)

)

∂N
ψNε

0 (y) +
∂G
(
N ε

0 (y), Z
ε
0(y)

)

∂Z
ψZε

0 (y)

)
dy

∣∣∣∣∣

+

∣∣∣∣
∫

Ω

k3(x, y)(l0 − u0)(y)dy

∣∣∣∣

≤E1

∫

Ω

|(l0 − u0)(y)| dy.
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Using these results we can obtain

∣∣ψNε

2 (x)
∣∣ =
∣∣∣∣∣

∫

Ω

k1(x, y)

(
∂F
(
N ε

1 (y), Z
ε
1(y)

)

∂N
ψNε

1 (y) (3.46)

+
∂F
(
N ε

1 (y), Z
ε
1(y)

)

∂Z
ψZε

1 (x)

)
dy

∣∣∣∣∣

=

∣∣∣∣∣

∫

Ω

k1(x, y)
∂F
(
N ε

1 (y), Z
ε
1(y)

)

∂Z
ψZε

1 (x)dy

∣∣∣∣∣

≤D2

∫

Ω

|(l0 − u0)(y)| dy

∣∣ψZε

2 (x)
∣∣ ≤
∣∣∣∣∣

∫

Ω

k2(x, y)

(
∂G
(
N ε

1 (y), Z
ε
1(y)

)

∂N
ψNε

1 (y) +
∂G
(
N ε

1 (y), Z
ε
1(y)

)

∂Z
ψZε

1 (y)

)
dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

Ω

k3(x, y)(l1 − u1)(y)dy

∣∣∣∣∣

≤

∣∣∣∣∣

∫

Ω

k2(x, y)
∂G
(
N ε

1 (y), Z
ε
1(y)

)

∂Z
ψZε

1 (y)dy

∣∣∣∣∣+
∣∣∣∣∣

∫

Ω

k3(x, y)(l1 − u1)(y)dy

∣∣∣∣∣

≤E2

[∫

Ω

|(l0 − u0)(y)| dy +

∫

Ω

|(l1 − u1)(y)| dy

]
.

If we continue this iterative process, we find

|ψNε

k+1(x)| ≤Dk+1

k∑

j=0

∫

Ω

|lj − uj|(y)dy (3.47)

|ψZε

k+1(x)| ≤Ek+1

k∑

j=0

∫

Ω

|lj − uj|(y)dy with k = 0, 1, ..., T − 1

where the constants Dk and Ek do not depend on ε.
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To find g′′(ε), using (3.43) and (3.44), we calculate the difference quotient for directional

derivative of ψNε

k and ψZε

k with respect (uk + ε(lk − uk)
)
in the direction lk − uk:

ψNε+τ

k+1 (x)− ψNε

k+1(x)

τ
(3.48)

=
1

τ

[∫

Ω

k1(x, y)

(
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂N
ψNε+τ

k (y) +
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂Z
ψZε+τ

k (y)

)
dy

−

∫

Ω

k1(x, y)

(
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N
ψNε

k (y) +
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z
ψZε

k (y)

)
dy

]

=
1

τ

∫

Ω

k1(x, y)

[(
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂N
ψNε+τ

k (y)−
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N
ψNε

k (y)

)

+

(
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂Z
ψZε+τ

k (y)−
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z
ψZε

k (y)

)]
dy

=
1

τ

∫

Ω

k1(x, y)

{[
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂N
ψNε+τ

k (y)−
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N
ψNε+τ

k (y)

+
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N
ψNε+τ

k (y)−
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N
ψNε

k (y)

]

+

[
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂Z
ψZε+τ

k (y)−
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z
ψZε+τ

k (y)

+
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z
ψZε+τ

k (y)−
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z
ψZε

k (y)

]}
dy

=
1

τ

∫

Ω

k1(x, y)

{[(
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂N
−
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N

)
ψNε+τ

k (y)

+
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N

(
ψNε+τ

k (y)− ψNε

k (y)
)]

+

[(
∂F
(
N ε+τ

k (y), Zε+τ
k (y)

)

∂Z
−
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z

)
ψZε+τ

k (y)

+
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z

(
ψZε+τ

k (y)− ψZε

k (y)
)]}

dy.

We will use σNε

k and σZε

k to represent the limit of the difference quotients for directional

derivative of ψNε

k and ψZε

k with respect (uk + ε(lk − uk)
)
in the direction lk − uk. From

estimates on these difference quotients and using the similar ideas as used in Theorem 2,
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we have the existence of σNε

, σZε

∈ (L∞(Ω))T+1 such that for k = 0, 1, ..., T :

ψNε+τ

k (x)− ψNε

k (x)

τ
⇀ σNε

k (3.49)

ψZε+τ

k (x)− ψZε

k (x)

τ
⇀ σZε

k

weakly in L2(Ω) as τ → 0+, for 0 < τ << 1 such that
(
u+ (ε+ τ)(l − u)

)
∈ U .

If we take the limit in both sides of (3.48) as τ → 0, we obtain

lim
τ→0

ψNε+τ

k+1 (x)− ψNε

k+1(x)

τ
(3.50)

=

∫

Ω

k1(x, y)

{[(
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂N2
ψNε

k (y) +
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂N∂Z
ψZε

k (y)

)
ψNε

k (y)

+
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N
σNε

k (y)

]

+

[(
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂Z2
ψZε

k (y) +
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂N∂Z
ψNε

k (y)

)
ψZε

k (y)

+
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z
σZε

k (y)

]}
dy

=

∫

Ω

k1(x, y)

[
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂N2

(
ψNε

k (y)
)2

+ 2
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂N∂Z
ψZε

k (y)ψNε

k (y)

+
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N
σNε

k (y) +
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂Z2

(
ψZε

k (y)
)2

+
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z
σZε

k (y)

]
dy.

Following the same ideas we can obtain

lim
τ→0

ψZε+τ

k+1 (x)− ψZε

k+1(x)

τ
(3.51)

=

∫

Ω

k2(x, y)

[
∂2G

(
N ε

k(y), Z
ε
k(y)

)

∂N2

(
ψNε

k (y)
)2

+ 2
∂2G

(
N ε

k(y), Z
ε
k(y)

)

∂N∂Z
ψZε

k (y)ψNε

k (y)

+
∂G
(
N ε

k(y), Z
ε
k(y)

)

∂N
σNε

k (y) +
∂2G

(
N ε

k(y), Z
ε
k(y)

)

∂Z2

(
ψZε

k (y)
)2

+
∂G
(
N ε

k(y), Z
ε
k(y)

)

∂Z
σZε

k (y)

]
dy.
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Note that the term
∫
Ω
k3(x, y)(lk − uk)(y)dy is the same in the ψZε+τ

k+1 equation (3.43) and

in the ψZε

k+1 equation (3.44); therefore it cancels.

Using the results of (3.49), (3.50) and (3.51) we obtain:

σNε

k (x) :=

∫

Ω

k1(x, y)

[
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂N2

(
ψNε

k (y)
)2

(3.52)

+ 2
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂N∂Z
ψZε

k (y)ψNε

k (y) +
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂N
σNε

k (y)

+
∂2F

(
N ε

k(y), Z
ε
k(y)

)

∂Z2

(
ψZε

k (y)
)2

+
∂F
(
N ε

k(y), Z
ε
k(y)

)

∂Z
σZε

k (y)

]
dy

σZε

k (x) :=

∫

Ω

k2(x, y)

[
∂2G

(
N ε

k(y), Z
ε
k(y)

)

∂N2

(
ψNε

k (y)
)2

+ 2
∂2G

(
N ε

k(y), Z
ε
k(y)

)

∂N∂Z
ψZε

k (y)ψNε

k (y)

+
∂G
(
N ε

k(y), Z
ε
k(y)

)

∂N
σNε

k (y) +
∂2G

(
N ε

k(y), Z
ε
k(y)

)

∂Z2

(
ψZε

k (y)
)2

+
∂G
(
N ε

k(y), Z
ε
k(y)

)

∂Z
σZε

k (y)

]
dy.

with σNε

0 = σZε

0 = 0.
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We now use an iterative method to estimate σNε

k and σZε

k in terms of the components of

(l − u)2. Using ψNε

0 = ψZε

0 = σNε

0 = σZε

0 = 0, we obtain

σNε

1 (x) =

∫

Ω

k1(x, y)

[
∂2F

(
N ε

0 (y), Z
ε
0(y)

)

∂N2

(
ψNε

0 (y)
)2

(3.53)

+ 2
∂2F

(
N ε

0 (y), Z
ε
0(y)

)

∂N∂Z
ψZε

0 (y)ψNε

0 (y) +
∂F
(
N ε

0 (y), Z
ε
0(y)

)

∂N
σNε

0 (y)

+
∂2F

(
N ε

0 (y), Z
ε
0(y)

)

∂Z2

(
ψZε

0 (y)
)2

+
∂F
(
N ε

0 (y), Z
ε
0(y)

)

∂Z
σZε

0 (y)

]
dy

=0

σZε

1 (x) =

∫

Ω

k2(x, y)

[
∂2G

(
N ε

0 (y), Z
ε
0(y)

)

∂N2

(
ψNε

0 (y)
)2

+ 2
∂2G

(
N ε

0 (y), Z
ε
0(y)

)

∂N∂Z
ψZε

0 (y)ψNε

0 (y)

+
∂G
(
N ε

0 (y), Z
ε
0(y)

)

∂N
σNε

0 (y) +
∂2G

(
N ε

0 (y), Z
ε
0(y)

)

∂Z2

(
ψZε

0 (y)
)2

+
∂G
(
N ε

0 (y), Z
ε
0(y)

)

∂Z
σZε

0 (y)

]
dy

=0.
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These results and inequalities (3.47) give

∣∣σNε

2 (x)
∣∣ ≤
∣∣∣∣∣

∫

Ω

k1(x, y)

[
∂2F

(
N ε

1 (y), Z
ε
1(y)

)

∂N2

(
ψNε

1 (y)
)2

(3.54)

+ 2
∂2F

(
N ε

1 (y), Z
ε
1(y)

)

∂N∂Z
ψZε

1 (y)ψNε

1 (y) +
∂F
(
N ε

1 (y), Z
ε
1(y)

)

∂N
σNε

1 (y)

+
∂2F

(
N ε

1 (y), Z
ε
1(y)

)

∂Z2

(
ψZε

1 (y)
)2

+
∂F
(
N ε

1 (y), Z
ε
1(y)

)

∂Z
σZε

1 (y)

]
dy

∣∣∣∣∣

≤

∣∣∣∣∣

∫

Ω

k1(x, y)

(
∂2F

(
N ε

1 (y), Z
ε
1(y)

)

∂Z2

(
ψZε

1 (y)
)2
)
dy

∣∣∣∣∣

≤L1

∫

Ω

(l0 − u0)
2(y)dy

∣∣σZε

2 (x)
∣∣ =
∣∣∣∣∣

∫

Ω

k2(x, y)

[
∂2G

(
N ε

1 (y), Z
ε
1(y)

)

∂N2

(
ψNε

1 (y)
)2

+ 2
∂2G

(
N ε

1 (y), Z
ε
1(y)

)

∂N∂Z
ψZε

1 (y)ψNε

1 (y)

+
∂G
(
N ε

1 (y), Z
ε
1(y)

)

∂N
σNε

1 (y) +
∂2G

(
N ε

1 (y), Z
ε
1(y)

)

∂Z2

(
ψZε

1 (y)
)2

+
∂G
(
N ε

1 (y), Z
ε
1(y)

)

∂Z
σZε

1 (y)

]
dy

∣∣∣∣∣

≤

∣∣∣∣∣

∫

Ω

k2(x, y)

(
∂2G

(
N ε

1 (y), Z
ε
1(y)

)

∂Z2

(
ψZε

1 (y)
)2
)
dy

∣∣∣∣∣

≤M1

∫

Ω

(l0 − u0)
2(y)dy,

using ψNε

1 = 0, σNε

1 = 0, and σZε

1 = 0.
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Next, we focus on σNε

3 (x):

∣∣σNε

3 (x)
∣∣ ≤
∣∣∣∣∣

∫

Ω

k1(x, y)
∂2F

(
N ε

2 (y), Z
ε
2(y)

)

∂N2

(
ψNε

2 (y)
)2
dy

∣∣∣∣∣ (3.55)

+ 2

∣∣∣∣∣

∫

Ω

k1(x, y)
∂2F

(
N ε

2 (y), Z
ε
2(y)

)

∂N∂Z
ψZε

2 (y)ψNε

2 (y)dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

Ω

k1(x, y)
∂F
(
N ε

2 (y), Z
ε
2(y)

)

∂N
σNε

2 (y)dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

Ω

k1(x, y)
∂2F

(
N ε

2 (y), Z
ε
2(y)

)

∂Z2

(
ψZε

2 (y)
)2
dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

Ω

k1(x, y)
∂F
(
N ε

2 (y), Z
ε
2(y)

)

∂Z
σZε

2 (y)dy

∣∣∣∣∣

≤L21

{∫

Ω

(l0 − u0)
2(y)dy

+

[∫

Ω

|(l0 − u0)(y)| dy +

∫

Ω

|(l1 − u1)(y)| dy

] ∫

Ω

|(l0 − u0)(y)| dy

+

[∫

Ω

|(l0 − u0)(y)| dy +

∫

Ω

|(l1 − u1)(y)| dy

]2

+

∫

Ω

(l1 − u1)
2(y)dy

}

≤L22

[ ∫

Ω

(l0 − u0)
2(y)dy +

∫

Ω

(l1 − u1)
2(y)dy

+

∫

Ω

(l0 − u0)(y)(l1 − u1)(y)dy

]

∣∣σNε

3 (x)
∣∣ ≤L22

[ ∫

Ω

(l0 − u0)
2(y)dy +

∫

Ω

(l1 − u1)
2(y)dy

+ 2

∫

Ω

(l0 − u0)
2(y)dy + 2

∫

Ω

(l1 − u1)
2(y)dy

]

≤L2

[ ∫

Ω

(l0 − u0)
2(y)dy +

∫

Ω

(l1 − u1)
2(y)dy

]
,

where the last step is justified by the inequality ab ≤ 1
2
a2 + 1

2
b2. Using the same ideas for

σZε

3 , we have:

∣∣σZε

3 (x)
∣∣ ≤M2

[ ∫

Ω

(l0 − u0)
2(y)dy +

∫

Ω

(l1 − u1)
2(y)dy

]
(3.56)
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Then by iteration, we obtain

∣∣σNε

k+1(x)
∣∣ ≤Lk

k∑

j=0

∫

Ω

(lj − uj)
2(y)dy (3.57)

∣∣σZε

k+1(x)
∣∣ ≤Mk

k∑

j=0

∫

Ω

(lj − uj)
2(y)dy with k = 1, ..., T − 1,

where the constants, Lk and Mk, do not depend on ε or τ .

From (3.57) and using the fact that

|a| ≤ b⇒ −b ≤ a ≤ b,

we obtain

σNε

k+1(x) ≥− Lk

k∑

j=0

∫

Ω

(lj − uj)
2(y)dy (3.58)

σZε

k+1(x) ≥−Mk

k∑

j=0

∫

Ω

(lj − uj)
2(y)dy.
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We can now take the second derivative of the function g:

g′′(ε) = lim
τ→0

g′(ε+ τ)− g′(ε)

τ
(3.59)

= lim
τ→0

1

τ

T−1∑

k=0

∫

Ω

{[
Akψ

Nε+τ

k (x) +Bk(lk − uk)(x)

+ Ck2 [uk + (ε+ τ)(lk − uk)] (lk − uk)(x)

]

−

[
Akψ

Nε

k (x) +Bk(lk − uk)(x) + Ck2 [uk + ε(lk − uk)] (lk − uk)(x)

]}
dx

+ lim
τ→0

1

τ

∫

Ω

AT

[
ψNε+τ

T (x)− ψNε

T (x)

]
dx

= lim
τ→0

T−1∑

k=0

∫

Ω

[
Ak
ψNε+τ

k (x)− ψNε

k (x)

τ
+ Ck2(lk − uk)

2(x)

]
dx

+ lim
τ→0

∫

Ω

AT
ψNε+τ

T (x)− ψNε

T (x)

τ
dx

=
T−1∑

k=0

∫

Ω

[
Akσ

Nε

k (x) + Ck2(lk − uk)
2(x)

]
dx+

∫

Ω

ATσ
Nε

T (x)dx

≥

T−1∑

k=0

[Ak(−Lk) + 2Ck]

∫

Ω

(lk − uk)
2dx+

∫

Ω

AT (−LT−1)(lT−1 − uT−1)
2dx

≥

T−1∑

k=0

(−Hk + 2Ck)

∫

Ω

(lk − uk)
2dx+

∫

Ω

(−HT−1)(lT−1 − uT−1)
2dx

≥

T−1∑

k=0

(2Ck −Hk)

∫

Ω

(lk − uk)
2dx

which gives the desire concavity for Ck’s sufficiently large. Thus the uniqueness of the

optimal control has been shown.

3.6 Numerical Solutions

We illustrate some numerical results for our optimal control problem. For the numerical

results shown in this section we use the functions in (3.4). For the results that we present

in this chapter we use a Laplace kernel for k1, k2, and k3. This kernel was chosen since

it has fat tails which represents well the stratified dispersal of the populations of gypsy
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moth:

ki(x, y) =
1

2
β exp

(
− β |x− y|

)
with i = 1, 2, 3. (3.60)

For the numerical approximations we use the following values for the parameters:

Table 3.1: Parameter values for the Integrodifference model

Parameter γ r b f ρ β

Values 6 0.008 0.03 0.3 1.5 10

Some of the parameters (γ, ρ, f) are taken from previous works [67, 24, 86], others (r, b)

are adjusted to have the characteristic oscillator behavior of gypsy moth populations. The

trapezoidal rule is used to numerically approximate the integrals. Accuracy results are in

Appendix B.1.

We start by showing outcomes of our spatial model. Our first objective is to observe

the effects of incorporating space in the model. We compare our spatial model with a

non-spatial version that uses the same functions F and G in (3.4),

Ñk+1 = F
(
Ñk, Z̃k

)
(3.61)

Z̃k+1 = G
(
Ñk, Z̃k

)
.

where Ñk and Z̃k are the densities of gypsy moth and the virus at time k, and the

parameters are the same ones in our spatial model. In Figure 3.1(a), we have graphs

of the discrete model with the cyclic oscillations, a characteristic of the populations of

gypsy moth. Figure 3.1(b) shows the corresponding integrodifference model. On the top

is the density of gypsy moth and on the bottom the density of the virus for a period of 50

years. The spatial model maintains the oscillations in time and the peaks occur at similar

time in different locations that gives the spatial synchrony, characteristic of gypsy moth

populations. Density of gypsy is scale by a factor of 10−1 and virus density by a factor of

101.
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a

b

Figure 3.1: Population dynamics of gypsy moth and the virus. a. Non-spatial model. b.

Integrodifference model. With parameters in Table 3.1
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We use the Forward-Backward sweep numerical method to approximate optimal control

solutions and corresponding state solutions. To find the optimal control we use an iterative

process, using initial conditions for the states and final time conditions for the adjoints.

Starting with the initial conditions of the state and a guess for the control, in our case

half of the maximum control, we solve the state equations forward in time. Using these

new values of the states, we solve the adjoint equations backwards. The adjoint values

are used in the control characterization to calculate a new control value. The control

is updated by taking a convex combination of the old value and the value calculated

from the characterization. The new estimate of the states and the optimal control are

compared with those from the previous iteration. We use a tolerance of 0.1% and when

relative errors in the states and control are below the tolerance, the iteration stops [42].

The trapezoidal rule is used to get integral approximations. We found that our numerical

simulations always converged in less than 30 iterations. We found no indications of any

non-uniqueness in the optimal control calculations.

We will display the optimal control results in the following way. The left part (a) will

present the results without control and the part right (b) the ones with control. For both

(a) and (b), we present in the top the density of the control, followed by the density of

gypsy moth and the density of the virus.

For the optimal control results, we start with constant initial conditions for both gypsy

moth and the virus, with densities of 10 for both species. In Figure 3.2 we can observe two

interesting results. First, the second peak of gypsy moth in Figure 3.2(b) is considerable

smaller that the one in Figure 3.2(a). Second, our results suggest timing and intensity

of the optimal control. In the top graph of Figure 3.2(b) we observe the control should

be applied at the beginning. We also should have a peak of the control around year six,

which is when both the virus and gypsy moth are at low densities. Controlling gypsy

moth at those times, does not eliminate the outbreak but the densities at the outbreak

are considerable lower.
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a b

Figure 3.2: a. No control. b. With Control. A = B = C = 1, with other parameters in

Table 3.1
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We explore the effects of changing spatial initial conditions, on the optimal control and the

states. Previously the initial conditions were constant over time. Here we explore different

spatial arrangements for the initial conditions of both gypsy moth and the LdMNPV virus.

We investigate two types of initial conditions: aggregate ones (Figure 3.3) where gypsy

moth and the LdMNPV virus share the same space, and shifted conditions (Figure 3.4)

where the two species are mostly in different locations. Most of the graphic output for

different initial conditions is in the Appendix B.2

We start with the aggregate spatial conditions. Results for the three spatial initial

conditions in Figure 3.3, are in Figure 3.5, Figure B.1, and Figure B.2. We present

the results in the following way. In the left part (a) will present the results without

control and part (b) the ones with control. For both (a) and (b), we present in the top

the density of the control, then the density of gypsy moth and last the density of the

virus. Finally part (c) is a rotation of the control graph presented in part(b).

a b c

Figure 3.3: Aggregate spatial initial conditions

a b c

Figure 3.4: Shifted spatial initial conditions
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First we investigate the dynamics of the system without control. As we can see in

Figure 3.5(a), spatially varying initial conditions have an impact in the dynamics of the

system. As expected where the density of the virus is higher, there will be a lower density

of the gypsy moth. This creates the two peaks effect observed in the gypsy moth around

year five in Figure 3.5(a).

When the initial conditions are aggregated in the center of the space, Figure 3.3(a) and

(b), the effects of the initial conditions are transient and around year 10, the densities

of gypsy moth and the virus become less heterogeneous through the space, and this can

be observed in Figure 3.5(a) and Figure B.1(a). When the species are aggregated in

the border of the space, as in Figure 3.3(c), the effects of the initial conditions last

longer, Figure B.2(a), and one can still see some aggregation effect around year 14.

Then we incorporate management into the population. In Figure 3.5(b), we observe

that the spatially varying initial conditions cause the control to be larger in the region

with less gypsy moth, which is consistent with our initial results with homogeneous initial

conditions. As expected we also observe a decrease in the density of gypsy moth. These

results are also shown in Figure B.1(b) and Figure B.2(b)

For the shifted spatial conditions, results for the three spatial initial conditions in

Figure 3.4, are shown in Figure B.3, Figure B.4, and Figure B.5. The effects of shifted

initial conditions on the dynamics without management are also transient. When initial

conditions of the species do not share any space, Figure 3.4(b) and (c), around year 10

the densities are less heterogeneous through space, Figure B.4(a), Figure B.5(a). When

species occupy partially the same space, Figure 3.4(a), the heterogeneity provide by the

initial conditions lasts longer, as in Figure B.3(a). The optimal control for shifted initial

conditions, also reflects the spatial arrangements of the corresponding initial conditions.

We also need to apply more control where gypsy moth is at low densities. The managed

density of gypsy moth is lower when compared to the non-management option; see

Figure B.5(a), Figure B.3(a), and Figure B.4(a).
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a b

c

Figure 3.5: Effect of the optimal control over a period of 15 years with aggregate spatial

initial conditions in Figure 3.3(b). a. Dynamics without control. b. Dynamics with

control. c. Different view of the control display in b
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3.7 Conclusions

Optimal control theory for integrodifference equations is a relatively new research area.

Several applications of optimal control in a single species model have been developed.

In this chapter, we present a new application of optimal control theory for a system of

integrodifference equations. We formulated a two species coupled integrodifference system

and its associated objective functional for the management of gypsy moth populations

and its biological control agent. Using appropriate analysis and control techniques, we

prove the existence of the optimal control for our system of integrodifference equations.

We also developed the characterization of the optimal control and proved the existence of

the sensitivity system and adjoint system. Finally we showed uniqueness of the optimal

control, under a concavity assumption on the objective functional.

We apply the theory developed to the invasive pest gypsy moth. Our results suggest

timing and intensity of the control. The optimal management strategy usually indicate

applying the biocontrol agent when the gypsy moth densities are at a low level. Applying

the control does not eliminate the outbreaks but reduces the density of gypsy moth at

the outbreaks. This result is consistent over several different spatial initial conditions.

The theory developed in this chapter give important tools that can be easily extended to

other integrodifference systems modeling a variety of populations. Other types of control

actions can be incorporated.
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Chapter 4

Conclusions and Future Extensions

This dissertation develops optimal control results to manage the invasive species gypsy

moth. Using a host-pathogen model and a model that includes a generalist predator, we

find that the optimal control should occur a year or two before the peaks of gypsy moth in

the non-management scenario for both models. For the host-pathogen model, the control

results hold for a variety of parameters. For the two models, the optimal control is highly

sensitive to the initial conditions at the moment we start to implement the control. For

the host-pathogen model, three general possible optimal control management options were

presented based on the starting densities of gypsy moth. For the model with predation

we illustrated two general control scenarios. For both models, when densities are high,

control is required immediately. The optimal control for the model with predation needs

fewer applications that in the host-pathogen model, which is expected since the predator

helps to suppress the population of gypsy moth.

We also completed new work on optimal control for systems of integrodifference equations.

We designed an objective functional to minimize the cost generated by the defoliation

caused by the gypsy moth and the cost of controlling the population. Existence,

characterization and uniqueness results for the optimal control and corresponding states

have been developed. We used a forward-backward sweep numerical method, and our

numerical results suggest spatial and temporal locations and intensity of optimal controls.
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The models and theory developed in this dissertation could be extended in several ways,

as discussed below.

4.1 Non-Spatial model

The discrete models used in Chapter 2 can be modified to incorporate other ecological

features. A more realistic timing in the sources of mortality would be to use models

that impose the mortality by the virus first and then allow predation [53, 32]. A second

modification would be to change the functional response of the predator. Experimental

studies show different results with respect to the intensity of predation when the density

of gypsy moth increases [22, 65]. Therefore we can incorporate a different functional

response, such as type III, that will allow for comparisons based on those responses.

Another expansion would be a model that includes a simple discrete spatial structure,

with two locations with gypsy moth populations. This would apply control to just one of

the populations and allow emigration from the other one. Therefore the population not

being controlled acts as a source for the other one, and creates a rescue effect.

Another avenue to investigate in future work is to add structured populations to the

model. The structure could be given by stage (eggs, larva, pupae, adult) or by gender

(male, female). The case of stage structure, is particularly important in the infection

process, since the larval stage can have up to six instars, and each instar has a different

susceptibility to the infection.

Currently we are investigating ways to change the model so that the gypsy moth

population comes back at a somewhat higher level after the completion of control actions.

This increase growth after management is indicated by field observations (Liebhold

personal communication).
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4.2 Spatial model

The theory developed in Chapter 3 can be used for implementing optimal control problems

for many integrodifference systems. Although chapter 3 focus on two integrodifference

equations, the theory is valid and easily extended for several equations.Chapter 3 results

could assist in developing optimal control for integrodifference equations for a variety of

applications ranging from dispersal of invasive species to dispersal of species as response

to climate change.

In the particular case of the invasion of gypsy moth developed in Chapter 3, future

work should include different functions for local dynamics, especially ones that include

predation. One can modify the model to implement a different type of control, in

particular pesticides like Bt. Finally in the spatial model, it may very important to

include Allee effects and stochastic features, given that both affect low density founder

populations.
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Appendix A

A.1 Pontryagin’s Maximum Principle approach

To make the expressions simpler we define Ik = I (Nk (1− uk) , Zk), q =
1
C2 , and a = v

µq
.

Therefore our system (2.1), is written as

1− Ik =

{
1 + a

[
Nk (1− uk) Ik + ρZk

]}−q

(A.1)

Nk+1 = γNk (1− uk)
[
1− Ik

]

Zk+1 = fNk (1− uk) Ik.

We form the Hamiltonian,

Hk =e
−δk [ANk +B log(1− uk)] (A.2)

+ λNk+1
γNk(1− uk)(1− Ik) + λZk+1

fNk(1− uk)Ik,
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with adjoint functions satisfying these backward difference equations:

λNk
=
∂Hk

∂Nk

(A.3)

= e−δkA+ λNk+1
γ(1− uk)

[
1−

(
Ik +NkI

N ′

k

)]
+ λZk+1

f(1− uk)
(
Ik +NkI

N ′

k

)

λZk
=
∂Hk

∂Zk

= −λNk+1
γNk(1− uk)I

Z′

k + λZk+1
fNk(1− uk)I

Z′

k

= Nk(1− uk)
[
−λNk+1

γ + λZk+1
f
]
IZ

′

k

λNT
= 0 and λZT

= 0

and

IN
′

k =
∂Ik
∂Nk

(A.4)

=
qa(1− uk)Ik {1 + a [Nk(1− uk)Ik + ρZk]}

−q−1

1− qa(1− uk)Nk {1 + a [Nk(1− uk)Ik + ρZk]}
−q−1

IZ
′

k =
∂Ik
∂Zk

=
qa {1 + a [Nk(1− uk)Ik + ρZk]}

−q−1 ρ

1− qa {1 + a [Nk(1− uk)Ik + ρZk]}
−q−1Nk(1− uk)

.

The Hamiltonian differentiated with respect to the control gives

∂Hk

∂uk
=
e−δkB

uk − 1
+ λNk+1

γNk

[
Ik − 1− Iu

′

k (1− uk)
]

(A.5)

+ λZk+1
fNk

[
Iu

′

k (1− uk)− Ik

]

where

Iu
′

k =
∂Ik
∂uk

(A.6)

=
−qaNk {1 + a [Nk(1− uk)Ik + ρZk]}

−q−1 Ik

1− qaNk {1 + a [Nk(1− uk)Ik + ρZk]}
−q−1 (1− uk)

.

103



If we assume that our objective functional is minimized with respect u, on the interior of

the control set, we set ∂Hk

∂uk

= 0, and obtain

0 =
e−δkB

uk − 1
+ λNk+1

γNk

[
Ik − 1− Iu

′

k (1− uk)
]

(A.7)

+ λZk+1
fNk

[
Iu

′

k (1− uk)− Ik

]
.

We can not solve explicitly for the control, but we can get the following implicit equation:

uk = 1−
e−δkB

λNk+1
γNk

[
Ik − 1− Iu

′

k (1− uk)
]
+ λZk+1

fNk

[
Iu

′

k (1− uk)− Ik

] . (A.8)

In order to utilize Pontryagin’s Maximum Principle, the Hamiltonian must satisfy the

concavity condition if we are to decide whether a control achieves the maximum or the

minimum. Since we are doing a minimization problem we need:

∂2Hk

∂u2k
≥ 0 at u∗ (A.9)

for all time steps k [13]. If we calculate the second derivative of the Hamiltonian with

respect to the control, we obtain

∂2Hk

∂u2k
=−

e−δkB

(uk − 1)2
+ λNk+1

γNk

[
Iu

′

k − Iu
′′

k + Iu
′′

k uk + Iu
′

k

]
(A.10)

+ λZk+1
fNk

[
Iu

′′

k − Iu
′′

k uk − Iu
′

k − Iu
′

k

]

=
−e−δkB

(uk − 1)2
+ λNk+1

γNk(−1)
[
− 2Iu

′

k + Iu
′′

k (1− uk)
]

+ λZk+1
fNk

[
Iu

′′

k (1− uk)− 2Iu
′

k

]

=
−e−δkB

(uk − 1)2
+ λNk+1

γNk(−1)
[
Iu

′′

k (1− uk)− 2Iu
′

k

]

+ λZk+1
fNk

[
Iu

′′

k (1− uk)− 2Iu
′

k

]

=
−e−δkB

(uk − 1)2
+Nk

[
Iu

′′

k (1− uk)− 2Iu
′

k

][
λNk+1

γ(−1) + λZk+1
f
]

=
−e−δkB

(uk − 1)2
+Nk

[
Iu

′′

k (1− uk)− 2Iu
′

k

][
λZk+1

f − λNk+1
γ
]
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where

Iu
′

k =
∂Ik
∂uk

(A.11)

=
−qaNk {1 + a [Nk(1− uk)Ik + ρZk]}

−q−1 Ik

1− qaNk {1 + a [Nk(1− uk)Ik + ρZk]}
−q−1 (1− uk)

Iu
′′

k =
∂2Hk

∂u2k

=
qaNk

{
1 + a [Nk(1− uk)Ik + ρZk]

}−q−1

1− qaNk

{
1 + a [Nk(1− uk)Ik + ρZk]

}−q−1

(1− uk)

∗

{
(−q − 1)

{
1 + a [Nk(1− uk)Ik + ρZk]

}−1

aNk

[
Iu

′

k (1− uk)− Ik

]2
− 2Iu

′

k

}
.

Since we can not guarantee that

∂2Hk

∂u2k
≥ 0 (A.12)

for all parameter sets, we will not utilize Pontryagin’s Maximum Principle for this problem.

Therefore we are going to use direct optimization methods to solve this particular optimal

control problem.
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A.2 Dynamics for the host-pathogen model
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Figure A.1: Gypsy moth and virus population from host-pathogen model. With long-

period, large-amplitude cycles in the densities.
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A.3 Optimal control results for smaller times
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Figure A.2: Comparison of populations and objective functional values for a shorter time

period of 7 years, without control(a) and with control(b), with parameters in Table 2.1
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Figure A.3: Comparison of populations and objective functional values for a shorter time

period of 13 years, without control(a) and with control(b), with parameters in Table 2.1
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A.4 Variation of Parameters in the host-pathogen

model

Table A.1: Effect of Variation of A on the optimal control. Empty space means a value

of zero for the control, rows highlighted are in Figure 2.6(b).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.1 10
0.5 51
1 0.48 0.07 102
3 0.8 0.71 181
6 0.05 0.8 0.8 0.02 265
9 0.15 0.8 0.8 0.24 343
10 0.19 0.8 0.8 0.26 0.07 368
20 0.39 0.8 0.8 0.24 0.47 606
30 0.52 0.8 0.8 0.27 0.3 0.49 834
40 0.6 0.8 0.8 0.45 0.35 0.46 1055
50 0.64 0.8 0.8 0.54 0.38 0.45 1273
60 0.66 0.8 0.8 0.59 0.4 0.44 1489
70 0.68 0.8 0.8 0.62 0.41 0.43 1705
80 0.69 0.8 0.8 0.64 0.43 0.42 0.05 0.02 0.08 1919
90 0.7 0.8 0.8 0.65 0.45 0.42 0.1 0.19 0.25 2133
100 0.7 0.8 0.8 0.65 0.46 0.42 0.14 0.31 0.37 2345
200 0.73 0.8 0.8 0.68 0.54 0.44 0.26 0.39 0.77 0.8 4424
300 0.73 0.8 0.8 0.69 0.56 0.42 0.27 0.05 0.45 0.8 0.8 6478
400 0.74 0.8 0.8 0.7 0.58 0.43 0.27 0.05 0.07 0.47 0.8 0.8 8530
500 0.74 0.8 0.8 0.7 0.58 0.43 0.27 0.08 0.07 0.48 0.8 0.8 10581
600 0.74 0.8 0.8 0.7 0.01 0.59 0.43 0.28 0.1 0.08 0.49 0.8 0.8 12632
900 0.74 0.8 0.8 0.72 0.09 0.59 0.45 0.29 0.14 0.08 0.5 0.8 0.8 18782
1000 0.74 0.8 0.8 0.72 0.11 0.6 0.45 0.29 0.15 0.08 0.5 0.8 0.8 20832
3000 0.74 0.8 0.8 0.74 0.24 0.63 0.53 0.43 0.34 0.27 0.22 0.22 0.26 0.58 0.8 0.8 61779
6000 0.75 0.8 0.8 0.74 0.28 0.64 0.56 0.48 0.41 0.35 0.31 0.3 0.32 0.61 0.8 0.8 123154
9000 0.75 0.8 0.8 0.75 0.29 0.64 0.57 0.49 0.43 0.37 0.33 0.32 0.33 0.62 0.8 0.8 184520
10000 0.75 0.8 0.8 0.75 0.29 0.64 0.57 0.5 0.43 0.37 0.34 0.32 0.34 0.62 0.8 0.8 204975

A
Control

OF

Table A.2: Effect of Variation of δ on the optimal control. Empty space means a value of

zero for the control, rows highlighted are in Figure 2.7(b).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.001 0.63 0.8 0.8 0.55 0.39 0.43 1447
0.002 0.63 0.8 0.8 0.54 0.39 0.43 1437
0.003 0.63 0.8 0.8 0.54 0.39 0.43 1427
0.01 0.64 0.8 0.8 0.54 0.38 0.44 1360
0.02 0.64 0.8 0.8 0.54 0.38 0.45 1273
0.03 0.64 0.8 0.8 0.54 0.37 0.46 1193
0.1 0.67 0.8 0.8 0.52 0.33 0.5 796
0.2 0.7 0.8 0.8 0.47 0.29 0.55 0.06 489
0.3 0.73 0.8 0.8 0.41 0.25 0.59 0.12 318

Delta
Control

OF
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Table A.3: Effect of Variation of γ on the optimal control.. Empty space means a value

of zero for the control, rows highlighted are in Figure 2.9(b).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 0.56 0.8 0.65 224
10 0.38 0.8 0.8 0.51 305
15 0.4 0.8 0.8 0.66 372
20 0.5 0.8 0.8 0.66 0.25 450
25 0.35 0.8 0.8 0.66 0.33 530
30 0.53 0.8 0.8 0.64 0.4 613
35 0.58 0.8 0.8 0.62 0.45 690
40 0.56 0.8 0.8 0.61 0.1 0.46 764
45 0.61 0.8 0.8 0.6 0.18 0.46 843
50 0.58 0.8 0.8 0.6 0.24 0.45 915
55 0.6 0.8 0.8 0.59 0.28 0.45 991
60 0.56 0.8 0.8 0.57 0.31 0.45 1057
65 0.59 0.8 0.8 0.56 0.34 0.45 1133
70 0.6 0.8 0.8 0.55 0.36 0.45 1202

74.6 0.64 0.8 0.8 0.54 0.38 0.45 1273
75 0.65 0.8 0.8 0.54 0.38 0.45 1280
80 0.65 0.8 0.8 0.53 0.39 0.44 1342
85 0.67 0.8 0.8 0.52 0.4 0.44 1407
90 0.65 0.8 0.8 0.5 0.4 0.43 1453
95 0.19 0.8 0.8 0.48 0.38 0.41 1441
100 0.65 0.8 0.8 0.48 0.4 0.42 1557
105 0.71 0.8 0.8 0.47 0.41 0.42 1628
110 0.8 0.8 0.8 0.31 0.43 0.43 1751
115 0.8 0.8 0.8 0.01 0.43 0.42 0.01 1853
120 0.8 0.8 0.8 0.01 0.5 0.24 1878
125 0.8 0.8 0.8 0.33 0.41 0.03 0.03 0.1 1925
130 0.8 0.8 0.6 0.46 0.42 0.07 0.09 0.16 1957
135 0.8 0.8 0.58 0.48 0.42 0.09 0.14 0.21 2034
140 0.8 0.8 0.6 0.49 0.43 0.11 0.19 0.25 2114
145 0.8 0.8 0.58 0.5 0.43 0.13 0.23 0.3 2190
150 0.8 0.8 0.62 0.5 0.43 0.15 0.27 0.33 2272
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Table A.4: Effect of Variation of φ on the optimal control. Empty space means a value

of zero for the control, rows highlighted are in Figure 2.10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 0.46 0.8 0.8 7898
10 0.44 0.8 0.8 4325
15 0.25 0.09 0.41 0.8 0.8 3017
20 0.52 0.38 0.2 0.4 0.8 0.8 2386
25 0.71 0.5 0.32 0.04 0.37 0.75 0.8 2072
30 0.79 0.6 0.41 0.15 0.29 0.69 0.78 1855
35 0.8 0.69 0.41 0.14 0.15 0.61 0.69 1690
40 0.16 0.8 0.76 0.41 0.13 0.53 0.57 1577
45 0.1 0.8 0.8 0.41 0.1 0.46 0.49 1480
50 0.8 0.8 0.44 0.35 0.4 1408
55 0.8 0.8 0.46 0.12 0.26 1349
60 0.8 0.8 0.44 0.1 0.17 1306
65 0.8 0.8 0.8 0.26 0.22 1283
70 0.67 0.8 0.8 0.42 0.1 0.21 1291
75 0.46 0.8 0.8 0.43 0.16 0.26 1249
80 0.43 0.8 0.8 0.44 0.21 0.3 1236
85 0.58 0.8 0.8 0.47 0.27 0.35 1261
90 0.58 0.8 0.8 0.49 0.31 0.39 1261
95 0.62 0.8 0.8 0.52 0.35 0.42 1270
100 0.64 0.8 0.8 0.54 0.38 0.45 1273
105 0.64 0.8 0.8 0.56 0.4 0.47 1270
110 0.65 0.8 0.8 0.59 0.42 0.49 1272
115 0.69 0.8 0.8 0.61 0.44 0.51 1280
120 0.64 0.8 0.8 0.63 0.45 0.52 1264
125 0.66 0.8 0.8 0.65 0.47 0.54 1268
130 0.61 0.8 0.8 0.66 0.48 0.55 1251
135 0.68 0.8 0.8 0.68 0.49 0.56 1268
140 0.69 0.8 0.8 0.7 0.5 0.57 1269
145 0.71 0.8 0.8 0.72 0.51 0.58 1271
150 0.72 0.8 0.8 0.73 0.52 0.59 1272
155 0.71 0.8 0.8 0.74 0.52 0.59 1269
160 0.63 0.8 0.8 0.75 0.52 0.6 1246
165 0.71 0.8 0.8 0.76 0.53 0.61 1268
170 0.75 0.8 0.8 0.77 0.54 0.62 1275
175 0.75 0.8 0.8 0.78 0.54 0.62 1273
180 0.73 0.8 0.8 0.79 0.55 0.63 1268
185 0.75 0.8 0.8 0.79 0.55 0.63 1273
190 0.79 0.8 0.8 0.8 0.56 0.64 1278
195 0.74 0.8 0.8 0.8 0.56 0.65 1270
200 0.72 0.8 0.8 0.8 0.56 0.66 1266

Phi
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Table A.5: Effect of Variation of 1
C2 on the optimal control. Empty space means a value

of zero for the control.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.8 0.24 0.45 0.73 0.72 1387
0.82 0.12 0.34 0.65 0.63 1255
0.84 0.26 0.58 0.55 1139
0.86 0.16 0.53 0.47 1039
0.88 0.49 0.38 951
0.89 0.46 0.34 911
0.9 0.43 0.32 874
0.91 0.4 0.3 839
0.92 0.36 0.28 806
0.94 0.29 0.23 746
0.95 0.25 0.2 718
0.96 0.21 0.16 692
0.97 0.14 0.13 668
0.98 0.1 0.1 642
0.99 0.14 631

1 0.14 0.38 625
1.01 0.54 0.5 0.11 666
1.02 0.76 0.62 0.36 734
1.03 0.34 0.8 0.77 0.29 835
1.04 0.47 0.8 0.8 0.35 0.18 956
1.05 0.58 0.8 0.8 0.44 0.21 0.35 1110
1.06 0.64 0.8 0.8 0.54 0.38 0.45 1273
1.07 0.7 0.8 0.8 0.64 0.49 0.52 1445
1.08 0.72 0.8 0.8 0.71 0.58 0.56 1612
1.09 0.75 0.8 0.8 0.76 0.65 0.59 0.14 1786
1.1 0.74 0.8 0.8 0.79 0.69 0.62 0.2 1939
1.12 0.64 0.8 0.8 0.8 0.76 0.68 0.35 2163
1.14 0.25 0.8 0.8 0.8 0.8 0.73 0.43 2258
1.15 0.14 0.8 0.8 0.8 0.8 0.77 0.46 2372
1.16 0.8 0.8 0.8 0.8 0.8 0.51 2508
1.18 0.8 0.8 0.8 0.8 0.8 0.72 2787
1.19 0.8 0.8 0.8 0.8 0.8 0.74 2969
1.2 0.8 0.8 0.8 0.8 0.8 0.8 3137
1.21 0.8 0.8 0.8 0.77 0.8 0.8 0.14 0.46 3376
1.22 0.8 0.8 0.8 0.8 0.8 0.8 0.18 0.58 0.08 3564
1.23 0.8 0.8 0.8 0.78 0.8 0.8 0.28 0.71 0.31 3794
1.24 0.8 0.8 0.8 0.8 0.8 0.8 0.19 0.77 0.41 3985
1.25 0.74 0.8 0.8 0.8 0.8 0.8 0.6 0.8 0.74 4475
1.26 0.8 0.8 0.8 0.8 0.8 0.8 0.66 0.8 0.63 4411
1.27 0.8 0.8 0.8 0.8 0.8 0.8 0.66 0.8 0.7 4600
1.28 0.31 0.8 0.8 0.8 0.8 0.8 0.8 0.75 0.8 0.8 4718
1.29 0.76 0.8 0.8 0.8 0.8 0.8 0.79 0.8 0.8 4760
1.3 0.76 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 4837
1.32 0.8 0.78 0.8 0.8 0.8 0.8 0.8 0.8 0.8 5013
1.33 0.8 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 5104
1.34 0.72 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 5200
1.35 0.71 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 5306
1.36 0.2 0.8 0.15 0.8 0.8 0.8 0.8 0.8 0.8 6598
1.37 0.37 0.8 0.8 0.56 0.8 0.48 6576
1.38 0.33 0.8 0.8 0.54 0.8 0.47 6533
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Table A.6: Effect of Variation of the Initial conditions on the optimal control. Empty

space means a value of zero for the control.

N0 Z0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.001 0.01 0.633 0.8 0.8 0.540 0.377 0.448 1271
0.001 0.1 0.629 0.8 0.8 0.539 0.377 0.447 1270
0.001 1 0.590 0.8 0.8 0.535 0.373 0.445 1259
0.001 10 0.612 0.8 0.8 0.538 0.375 0.446 1265
0.001 100 0.602 0.8 0.8 0.537 0.374 0.446 1263
0.001 1000 0.629 0.8 0.8 0.539 0.377 0.447 1270
0.001 10000 0.659 0.8 0.8 0.542 0.379 0.449 1278
0.01 0.01 0.625 0.8 0.8 0.539 0.376 0.447 1269
0.01 0.1 0.616 0.8 0.8 0.538 0.375 0.446 1266
0.01 1 0.584 0.8 0.8 0.535 0.372 0.444 1258
0.01 10 0.644 0.8 0.8 0.541 0.378 0.448 1274
0.01 100 0.618 0.8 0.8 0.538 0.375 0.447 1267
0.01 1000 0.619 0.8 0.8 0.538 0.376 0.447 1267
0.01 10000 0.629 0.8 0.8 0.539 0.376 0.447 1270
0.1 0.01 0.626 0.8 0.8 0.539 0.376 0.447 1269
0.1 0.1 0.614 0.8 0.8 0.538 0.375 0.446 1266
0.1 1 0.604 0.8 0.8 0.537 0.374 0.446 1263
0.1 10 0.621 0.8 0.8 0.538 0.376 0.447 1268
0.1 100 0.628 0.8 0.8 0.539 0.376 0.447 1269
0.1 1000 0.645 0.8 0.8 0.541 0.378 0.448 1274
0.1 10000 0.615 0.8 0.8 0.538 0.375 0.446 1266
1 0.01 0.646 0.8 0.8 0.541 0.378 0.448 1274
1 0.1 0.588 0.8 0.8 0.535 0.372 0.445 1259
1 1 0.590 0.8 0.8 0.535 0.373 0.445 1259
1 10 0.605 0.8 0.8 0.537 0.374 0.446 1263
1 100 0.588 0.8 0.8 0.535 0.372 0.445 1259
1 1000 0.618 0.8 0.8 0.538 0.375 0.447 1267
1 10000 0.629 0.8 0.8 0.539 0.377 0.447 1270
10 0.01 0.627 0.8 0.8 0.539 0.376 0.447 1269
10 0.1 0.632 0.8 0.8 0.540 0.377 0.448 1271
10 1 0.632 0.8 0.8 0.540 0.377 0.448 1271
10 10 0.641 0.8 0.8 0.540 0.378 0.448 1273
10 100 0.611 0.8 0.8 0.538 0.375 0.446 1265
10 1000 0.603 0.8 0.8 0.537 0.374 0.446 1263
10 10000 0.656 0.8 0.8 0.542 0.379 0.449 1277
100 0.01 0.612 0.8 0.8 0.538 0.375 0.446 1265
100 0.1 0.612 0.8 0.8 0.538 0.375 0.446 1265
100 1 0.615 0.8 0.8 0.538 0.375 0.446 1266
100 10 0.643 0.8 0.8 0.541 0.378 0.448 1273
100 100 0.645 0.8 0.8 0.541 0.378 0.448 1274
100 1000 0.627 0.8 0.8 0.539 0.376 0.447 1269
100 10000 0.638 0.8 0.8 0.540 0.377 0.448 1272
500 0.01 0.633 0.8 0.8 0.540 0.377 0.448 1271
500 0.1 0.633 0.8 0.8 0.540 0.377 0.448 1271
500 1 0.633 0.8 0.8 0.540 0.377 0.448 1271
500 10 0.637 0.8 0.8 0.540 0.377 0.448 1272
500 100 0.640 0.8 0.8 0.540 0.378 0.448 1273
500 1000 0.614 0.8 0.8 0.538 0.375 0.446 1266
500 10000 0.588 0.8 0.8 0.535 0.372 0.445 1259
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A.5 Windows for the control
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Figure A.4: Impact in the gypsy moth densities by variation in γ. a. γ = 40. b. γ = 75.

c. γ = 110
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Figure A.5: Impact in the gypsy moth densities by variation in φ. a. φ = 70. b. φ = 100.

c. φ = 140
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A.6 Statistical results for the factorial experiment

In this section we use 1
C2 = q
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Figure A.6: Statistics for the factorial experiment with the objective functional as a

response variable
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Figure A.7: Statistical analysis for the factorial experiment with the sum of controls over

a period of 20 years as a response variable
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A.7 Box plots for the host-pathogen model at differ-

ent starting conditions

In the box plots the central mark is the median, the edges of the box are the 25th and

75th percentiles, the whiskers extend to the most extreme data points not considered

outliers, and outliers are plotted individually. In some years, we have a box with edges

at 0 and 0.8. This happened because in those years most of the data are 0 or 0.8, and

therefore the 25th and 75th percentile are the same as the minimum and the maximum.

If we analyze the median in Figure 2.13(a), we can observe that the median is at zero for

years 0 and 1, and at 0.8 for years 2 and 3. From this pattern we deduce that we do not

need to take immediate control action. In general the box plots provide the same patterns

observed in Figure 2.13: for low densities we do not need to take immediate action, for

high densities we need to take immediate action. Populations at medium densities have

an average between the scenarios of low and high densities.
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Figure A.10: Box plots for the optimal control for the host-pathogen model. a. Starting

conditions for the control at low densities. b. Medium densities. c. High densities. With

parameters in Table 2.1
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A.8 Statistical results for host-pathogen model
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Figure A.11: Statistical analysis of the objective functional for different starting densities

in the host-pathogen model
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Figure A.12: Statistical analysis of the sum of the controls for different starting densities

in the host-pathogen model
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Figure A.13: Statistical analysis of the time of the maximum control for different starting

densities in the host-pathogen model
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A.9 Box plots for the model with predation at

different starting conditions
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Figure A.14: Summary statistics for the optimal control for the model with predation.

On each box, the central mark is the median, the edges of the box are the 25th and

75th percentiles, the whiskers extend to the most extreme data points not considered

outliers, and outliers are plotted individually . a. With 100 different starting conditions.

b. Starting conditions for the control at low densities. c. Medium densities. d. High

densities. With parameters in Table 2.1
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A.10 Statistical results for the model with predation
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Figure A.15: Statistical analysis of the objective functional for different starting densities

in the model with predation
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Figure A.16: Statistical analysis of the sum of the controls for different starting densities

in the model with predation
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Figure A.17: Statistical analysis of the time of the maximum control for different starting

densities in the model with predation
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A.11 Optimal control results for model with preda-

tion
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Figure A.18: Time intervals to control in the model with predation. The lower graphic

presents the windows to control. Initial conditions are N0 = 10 and Z0 = 1, with other

parameters in Table 2.3
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Figure A.19: Results for the model with predation. The three windows correspond to the

time interval selection in the long term dynamics in Figure A.18. a. Dynamics without

control. b. Dynamics with control. Initial conditions are N0 = 10 and Z0 = 1, with other

parameters in Table 2.3
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Figure A.20: Time intervals to control in the model with predation. The lower graphic

presents the windows to control. Initial conditions are N0 = 1000 and Z0 = 1, with other

parameters in Table 2.3
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Figure A.21: Results for the model with predation. The three windows correspond to the

time interval selection in the long term dynamics in Figure A.20. a. Dynamics without

control. b. Dynamics with control. Initial conditions are N0 = 1000 and Z0 = 1, with

other parameters in Table 2.3
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Figure A.22: Variation for starting point, low, medium and high densities of gypsy moth

in the model with predation. a. Dynamics without control. b. Dynamics with control.

With parameters in Table 2.3
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Appendix B

B.1 Accuracy results for the trapezoidal rule

The error of the trapezoidal rules is the difference between the values of the integral and

the numerical result:

error =

∫ b

a

f(x)dx−
b− a

n

[
f(a) + f(b)

2
+

n−1∑

k=1

f

(
a+ k

b− a

n

)]
(B.1)

There exist a number ξ between a and b, such that:

error = −
(b− a)3

12n2
f ′′(ξ) (B.2)

In our case the difference a = 0, b = 1 and n = 100, therefore

error = −
1

120000
f ′′(ξ) (B.3)

= −0.000008333f ′′(ξ) (B.4)
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B.2 Spatial initial conditions

a b

c
Figure B.1: Effect of the optimal control over a period of 15 years with aggregate spatial

initial conditions in Figure 3.3(a). a. Dynamics without control. b. Dynamics with

control. c. Different view of the control display in b
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Figure B.2: Effect of the optimal control over a period of 15 years with aggregate spatial

initial conditions in Figure 3.3(c). a. Dynamics without control. b. Dynamics with

control. c. Different view of the control display in b
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Figure B.3: Effect of the optimal control over a period of 15 years with shifted spatial

initial conditions in Figure 3.4(a). a. Dynamics without control. b. Dynamics with

control. c. Different view of the control display in b
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Figure B.4: Effect of the optimal control over a period of 15 years with shifted spatial

initial conditions in Figure 3.4(b). a. Dynamics without control. b. Dynamics with

control. c. Different view of the control display in b
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Figure B.5: Effect of the optimal control over a period of 15 years with shifted spatial

initial conditions in Figure 3.4(c). a. Dynamics without control. b. Dynamics with

control. c. Different view of the control display in b
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