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ABSTRACT 

Exercise is important for individuals with knee osteoarthritis (OA) but certain activities 

can be painful and discourage participation. Cycling is commonly prescribed for OA but 

practically no previous literature exists. Due to their altered knee kinematics, OA patients may be 

at greater risk of OA progression or other knee injuries during cycling. The purpose of Study 

One was to investigate the effects of lateral wedges on knee joint biomechanics and pain in 

patients with medial compartment knee OA. The purpose of Study Two was to investigate the 

effects of toe-in foot progression angles on the same variables. Thirteen OA subjects and 11 

healthy subjects participated. A motion analysis system and custom instrumented pedal was used 

to collect 5 pedal cycles of kinematics and kinetics during 2 minutes of cycling in one neutral 

and two lateral wedge conditions (5° and 10°) for Study One and 2 toe-in conditions (5° and 10°) 

for Study Two. Subjects pedaled at 60 RPM and 80 watts and rated their knee pain on a visual 

analog scale.  

Study One: There was a 22% decrease in the knee abduction moment with the 10° wedge. 

This finding was not accompanied by a decrease in knee adduction angle or pain. Additionally, 

there was an increase in vertical and horizontal PRF which may negate the advantages of the 

decreased KAM. 

Study Two: For the OA subjects, there was a 61% (2.7°) and a 73% (3.2°) decrease in 

peak knee adduction angle compared to neutral. This finding was not accompanied by a decrease 

in pain or KAM because of high inter-subject variability. A simple linear regression showed a 

positive correlation between Kelgren-Lawrence (K/L) score and both peak knee adduction angle 

and KAM.  
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For OA patients, cycling with a 10° lateral wedge or a decreased foot progression angle 

may be beneficial in slowing the progression of OA or minimizing other knee injuries. Patients 

with a higher K/L score may have greater risk of injury. More research is needed to investigate 

the joint contact forces as well as long term effects of riding with wedges or toe-in foot angles. 
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DEFINITION OF TERMS  

1. Crank cycle: one revolution of the bicycle crank arm beginning and ending at top dead 

center. 

2. Top dead center (TDC): when the bicycle pedal is in the highest position. 

3. Bottom dead center (BDC): when the bicycle pedal is in the lowest position. 

4. Power phase: phase of the crank cycle between TDC and BDC when the pedal is being 

pushed to propel the bicycle forward. 

5. Recovery phase: phase of the crank cycle between BDC and TDC when the pedal is not 

being pushed to propel the bicycle forward. 

6. Peak medial PRF: peak medial component of the resultant pedal reaction force during the 

power phase of the crank cycle 

7. Peak posterior PRF: peak posterior component of the resultant pedal reaction force 

during the power phase of the crank cycle 

8. Peak vertical PRF: peak vertical component of the resultant pedal reaction force during 

the power phase of the crank cycle 

9. Ankle inversion: frontal plane angular deviation of the foot toward the midline of the 

body with respect to the tibia. 

10. Ankle eversion: frontal plane angular deviation of the foot away from the midline of the 

body with respect to the tibia. 

11. Foot progression angle: angular deviation of the long axis of the foot with respect to 

horizontal in the transverse plane. 

12. Peak ankle plantarflexion angle: sagittal plane peak angular deviation of the foot away 

from the midline of the body with respect to the tibia. 
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13. Peak ankle eversion angle: frontal plane peak angular deviation of the foot away from the 

midline of the body with respect to the tibia. 

14. Peak ankle internal rotation angle: transverse plane peak angular deviation of the foot 

toward the midline of the body with respect to the tibia. 

15. Peak knee flexion angle: sagittal plane peak angular deviation of the tibia with respect to 

the femur. 

16. Peak knee adduction angle: frontal plane peak angular deviation of the tibia towards the 

midline of the body relative to the femur around 90° of the power phase of the crank 

cycle. 

17. Peak knee external rotation angle: transverse plane peak angular deviation of the tibia 

away from the midline of the body with respect to the femur. 

18. Peak internal knee extensor moment: sagittal plane peak moment produced concentrically 

by the knee extensor muscles and ligaments to push the pedals around 90° of the power 

phase of the crank cycle. 

19. Peak internal knee abduction moment (KAM): frontal plane peak moment produced by 

the knee abductor muscles and lateral ligaments around 90° of the power phase of the 

crank cycle. 

20. Peak knee internal rotation moment: transverse plane peak moment produced by the knee 

internal rotator muscles and ligaments around 90° of the power phase of the crank cycle. 

21. Abduction: the frontal plane angular deviation of the tibia away from the midline of the 

body relative to the femur (same as knee valgus) 



xv 

 

22. Adduction: the frontal plane angular deviation of the tibia toward the midline of the body 

relative to the femur (same as knee varus) 

23. Knee varus: the frontal plane angular deviation of the tibia toward the midline of the 

body relative to the femur (same as knee adduction) 

24. Knee valgus: the frontal plane angular deviation of the tibia away from the midline of the 

body relative to the femur (same as knee abduction) 
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CHAPTER I 

INTRODUCTION 

BACKGROUND 

Osteoarthritis (OA) can have an incapacitating effect on people affected. The disease is 

prevalent in nearly 27 million people in USA alone (Lawrence et al., 2008) and joints that are 

commonly affected are the weight bearing joints of the lower extremities, namely the knees and 

hips (Lawrence et al., 2008). Exercise such as cycling is commonly prescribed by health 

professionals to reduce the loads placed on the joints and are effective for exercise in populations 

with knee injuries. However, it is not known if people with knee OA have different cycling 

patterns than healthy populations. Or perhaps, those with unilateral knee OA may experience 

asymmetrical patterns within their own limbs. If in fact persons with knee OA cycle differently, 

abnormal kinematics and kinetics may lead to further progression of the disease or increased pain 

experienced by the rider. If abnormal cycling kinematics and kinetics are present, it is possible 

that corrective conservative measures can be taken to encourage normal riding patterns and 

promote exercise in knee OA populations. 

It is clear that cycling reduces loading on the knee joint by placing the majority of the 

rider’s body weight on their seat during seated cycling (Burke, 2003). However, cycling 

produces a great demand on the muscles of the lower limbs, especially the knee extensors, as 

they are the driving force in propelling the bicycle forward. The increased muscle contraction in 

turn produces increased loading to the knee joint. Thus, knee injuries are still the leading 

complaint in cycling which has strong indication for an overuse injury mechanism (Dettori and 
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Norvell, 2006; Kennedy et al., 2007). For example, a common overuse injury during cycling, 

patellofemoral pain syndrome, is thought to occur because of an internal knee abduction moment 

during the downward pedal stroke (Boyd et al., 1997; Wolchok et al., 1998). Thus, proper 

alignment of the lower limbs that aid in reducing the internal knee abduction moment during 

cycling is an important factor for reducing overuse injuries experienced by the rider (Bailey et 

al., 2003; Gregersen et al., 2006a; Ruby and Hull, 1993). Additionally, compressive joint loads 

in cycling (about 1 to 2 body weights) have been estimated to be similar or slightly less than 

normal walking (about 2 to 2.5 body weights) (D'Lima et al., 2008; Ericson and Nisell, 1986a). 

However, due to the potentially large loads placed on the knee as a result of muscular 

contractions and the fact that there is a lack of information on knee osteoarthritis joint loads 

during cycling, it should be necessary to estimate the forces on the knee. This is important 

because a person with improper knee joint alignment during cycling has a greater potential for 

excessive knee joint loading which could have a negative impact on the knee over time. 

 During cycling of healthy population, frontal plane knee angles range from about 2 to 4 

degrees of abduction to 1 to 6 degrees of adduction during the crank cycle (Bailey et al., 2003; 

Umberger and Martin, 2001). This small range of motion in the frontal plane indicates that there 

is not a large amount of abduction/adduction and the knee remains fairly neutral. A current 

ongoing study in our laboratory showed that participants with medial knee OA do not cycle with 

the normal frontal plane knee kinematics seen in healthy subjects in previous studies. Out of the 

6 initial participants, 6 knees are continuously adducted throughout the crank cycle, 2 knees are 

continuously abducted, and 4 knees appear to have a normal range of motion. . With regard to 

the continuously adducted knees, the pattern seen is similar to that during gait in which patients 
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with medial compartment OA walk with the knee in an adducted position (Cerejo et al., 2002). 

Bailey et al. (2003) found in their study that riders with a history of overuse knee pain had 

increased knee adduction/abduction angles when compared to the healthy controls. As discussed 

earlier, malalignment of the knee during cycling is a concern because it may exacerbate an 

existing condition such as knee OA or cause other problems such as overuse injuries with long 

term riding. Two possible solutions to knee malalignment during cycling could be borrowed 

from solutions used during gait, such as using lateral shoe wedges or a toe-in foot progression 

angle. 

The internal knee abduction moment (KAM) during gait has been shown to be an 

important factor associated with knee OA (Baliunas et al., 2002; Cerejo et al., 2002). The KAM 

is a surrogate measure for loading to the medial compartment of the knee which is created as a 

response to an external adduction moment resulting from the ground reaction force (Schipplein 

and Andriacchi, 1991). The external adduction moment is defined as the product of the length of 

the moment arm from the knee joint center and the ground reaction force (GRF) vector in the 

frontal plane of the knee during walking (Hunt et al., 2006). This moment acts to adduct the knee 

during stance into a bow-legged or knee varus position (Cerejo et al., 2002); a condition that 

opens the lateral joint space while closing the medial joint space of the knee, resulting in 

increased stress on the medial compartment. Several studies have found a relationship between 

the magnitude of the adduction moment and the severity of knee OA (Cerejo et al., 2002; 

Mundermann et al., 2005; Sharma et al., 1998; Wada et al., 2001). Mundermann et al. (2005) 

found that people with more severe knee OA have a larger varus alignment (5.7°) than those with 
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a less severe disease (0.3°). Additionally, malalignment in the knee has also been shown to be 

associated with the progression of knee OA (Cerejo et al., 2002). 

 Two possible mechanisms for reducing the KAM during walking, which have been 

verified by previous studies, is by placing a laterally posted orthotic in patients’ shoes (Butler et 

al., 2009; Butler et al., 2007; Hinman et al., 2009; Kerrigan et al., 2002) or by using variable 

stiffness walking shoes (Erhart et al., 2008, 2010b) which are shoes that have different stiffness 

on the medial side compared to the lateral side. The majority of people with knee OA have 

medial compartment knee OA. Thus a laterally posted orthotic would be used to place the ankle 

into a more everted position which pulls the knee more medial; effectively opening up the medial 

compartment. This causes a shift in the orientation of the ground reaction force vector so that the 

vector lies closer to the knee joint center, and thus decreases the GRF moment arm.  Butler et al. 

(2009) showed that an average of 10 degree lateral wedge significantly reduced the peak internal 

knee abduction moment by 10% compared to a no wedge control condition. Erhart et al. (2010a) 

showed that by wearing variable stiffness walking shoes, participants were able to reduce the 

knee abduction moment by 6.6% and reduced pain compared to the subjects’ personal shoes. It is 

logical to assume that this method for reducing the KAM may be transferred to cycling. 

However, it is unknown if these modifications in cycling would produce similar results. 

 Other possible methods for reducing the KAM during walking are through simple gait 

modification strategies as demonstrated by several researchers (Fregly et al., 2007; Guo et al., 

2007; Mundermann et al., 2008; Shull et al., 2012). Guo et al. (2007) attempted to reduce the 

KAM by requiring their participants to walk in an increased toe-out (foot progression) angle 

during walking and ascent/descent tasks. The results of the study showed that the participants 
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were able to reduce their second peak KAM during the walking (40%) and stair ascent (11%) in 

a 15 degree increased foot progression angle compared to their self-selected foot progression 

angle. However, no beneficial changes were noted in the first peak KAM which is a measure that 

is more closely related to the severity and progression of medial knee OA. Thus, a toe-out 

method of gait change may not provide the desired load reductions in this population. Shull et al. 

(2012) attempted to reduce the KAM by having their participants walk in a toe-in foot 

progression angle (0.75 degree shank angle increase from baseline). They found that this method 

of walking reduced the first peak knee adduction moment by about 11% but the second peak 

KAM remained unchanged. This study provides promising results for a simple method to 

effectively reduce the KAM during walking, and may be a potential solution for realignining 

malaligned lower limb joints during cycling in the medial knee OA population. 

STATEMENT OF THE PROBLEM 

 To our knowledge, no studies have explored the effects of limb alignment alterations on 

the internal knee abduction moment of knee OA patients during cycling. Changes in lower 

extremity alignment using lateral wedges and a toe-in foot progression angle could alter the 

frontal plane kinematics by placing the knee in a more medial position. This alignment change 

would decrease the length of the moment arm of the pedal reaction force to the knee joint center, 

thus, decreasing the KAM.  

Therefore, the purpose of study one was to investigate the effects of lateral shoe wedges 

on peak knee adduction angle, peak internal knee abduction moment, and knee pain in healthy 

subjects, and subjects with medial compartment knee OA during moderate intensity stationary 

cycling.  
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The purpose of study two was to investigate the effects of a toe-in foot progression angle 

on peak knee adduction angle, peak internal knee abduction moment, and knee pain in healthy 

subjects and subjects with medial compartment knee OA during moderate intensity stationary 

cycling.  

RESEARCH HYPOTHESES 

Study One 

1. It was hypothesized that lateral shoe wedges would reduce the peak adduction angle and 

the peak internal knee abduction moment in both healthy subjects and medial compartment knee 

OA patients during stationary cycling compared to a neutral control condition with no wedge. 

2. In addition, for the OA subjects, due to the hypothesized decrease in knee adduction 

angles and adduction moments, it was expected that there would also be a decrease in knee pain 

with lateral wedges compared to a neutral foot position. 

Study Two 

1. It was hypothesized that toe-in foot progression angles would reduce the peak knee 

adduction angle and the peak internal knee abduction moment in both healthy subjects and 

medial compartment knee OA patients during stationary cycling compared to a neutral control 

condition. 

2. In addition, for the OA subjects, due to the hypothesized decrease in knee adduction 

angles and adduction moments, it was expected that there would also be a decrease in knee pain 

with increased toe-in foot progression angles compared to a neutral foot position. 
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DELIMITATIONS 

The exclusion criteria for the OA subjects included: 

 Other osteoarthritis symptoms at the ankle or hip joint. 

 Any lower extremity joint replacement. 

 Any lower extremity joint arthroscopic surgery or intra-articular injection within past 3 

months. 

 Systemic inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis). 

 BMI greater than 35. 

 Inability to ride a stationary cycle ergometer without assistance. 

 Neurologic disease (e.g. Parkinson's disease, stroke patients). 

 Lower back pain referred to the lower limbs. 

 Unable to see, hear, or follow instructions. 

 Women who are pregnant or nursing. 

 Any cardiovascular disease or primary risk factor which precludes participation in 

aerobic exercise. 

The inclusion criteria for the OA subjects included: 

 Men and women between the ages of 35 and 65. 

 Radiographically diagnosed with medial compartment knee osteoarthritis in one or both 

knees, with or without patella-femoral knee osteoarthritis, by a rheumatologist with a grade 1 to 

4 on the Kellgren-Lawrence scale. 

The exclusion criteria for the healthy subjects included: 
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 Knee pain for at least 6 months during daily activities. 

 Diagnosed with any type of lower extremity joint osteoarthritis. 

 Any lower extremity joint replacement 

 Any lower extremity joint arthroscopic surgery or intra-articular injection within past 3 

months. 

 Systemic inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis). 

 BMI greater than 35. 

 Inability to ride a stationary cycle ergometer without assistance. 

 Neurologic disease (e.g. Parkinson's disease, stroke patients). 

 Lower back pain referred to the lower limbs. 

 Unable to see, hear, or follow instructions. 

 Women who are pregnant or nursing. 

 Any cardiovascular disease or primary risk factor which precludes participation in 

aerobic exercise. 

The inclusion criteria for the healthy subjects included: 

 Men and women between the ages of 35 and 65. 

 

LIMITATIONS 

1. All tests were conducted in a laboratory setting. 

2. Skin marker placement in obese participants may not reflect accurate bony landmark 

locations. 
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3. Reflective markers used to track the feet during motion trials were placed on the shoe. 

Thus, foot motions within the shoe may not have been accurately captured. 

4. No X-rays were performed on the healthy subjects. Thus, it was assumed that the healthy 

subjects did not have OA. 
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CHAPTER II 

LITERATURE REVIEW 

The purpose of study one was to investigate the effects of shoe wedges on knee 

biomechanics in healthy subjects and subjects with  with medial compartment knee OA during 

moderate intensity stationary cycling. The purpose of study two was to investigate the effects of 

toe-in foot progression angles on knee biomechanics and pain in healthy subjects and subjects 

with medial compartment knee OA during moderate intensity stationary cycling. Additionally, 

each study will investigate the effects of the interventions on knee pain. Finally, each study will 

explore individual knee muscle forces and knee contact forces in patients with medial 

compartment knee OA during moderate intensity stationary cycling using a musculoskeletal 

modeling approach. 

The focus of this chapter is to review existing literature on the biomechanics of cycling 

and knee osteoarthritis gait variables that may lead to the development and progression of OA. 

This work will attempt to make links between knee OA and cycling specifically for the 

management of knee osteoarthritis related symptoms.  

BACKGROUND 

Osteoarthritis (OA) can have an incapacitating effect on those afflicted by it. The disease 

is prevalent in nearly 27 million people in America alone (Lawrence et al., 2008) and joints that 

are commonly affected are the weight bearing joints of the lower extremities, namely the knees 

and hips (Lawrence et al., 2008). The cause of osteoarthritis is not completely understood but 

there are various known risk factors including age (Felson, 1990; Felson et al., 2000; Felson and 
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Zhang, 1998), female gender (Nevitt and Felson, 1996; Srikanth et al., 2005; Theis et al., 2007), 

muscle weakness (Baker et al., 2004; Slemenda et al., 1997; Slemenda et al., 1998), genetics 

(Evangelou et al., 2011; Felson et al., 1998), injury (Lohmander et al., 2004), overuse (Coggon et 

al., 2000; Felson et al., 1991), and obesity (Felson et al., 2000). 

Obesity is the single most modifiable risk factor in the development and progression of 

OA and weight loss has been shown to reduce the debilitating symptoms that OA patients 

commonly encounter (Focht et al., 2005; Messier et al., 2005b; Messier et al., 2004). A study 

conducted by Messier et al. (2005b) demonstrated that for every 1 pound in body mass a person 

loses, the compressive load across the knee joints is reduced by 4 pounds. Other researchers have 

noted that weight loss by means of diet and exercise resulted in improvements in function and 

pain (Focht et al., 2005; Messier et al., 2004).  

Additional support by the Osteoarthritis Research Society International (OARSI) has 

made 25 recommendations for the treatment of patients with OA of the hip or knee (Zhang et al., 

2008). These recommendations are evidence based and expert advised treatments which have 

been shown to improve the symptoms of OA. Two of the highly recommended non-

pharmacological treatments are regular aerobic and muscle strengthening exercise, and weight 

loss with maintenance of a healthy weight for overweight individuals (Zhang et al., 2008). 

Based on existing evidence, it is important for people to maintain a healthy weight and if 

obese or overweight, it is crucial to their health that they lose weight. Additionally, the American 

College of Sports Medicine position stance recommends that most adults engage in moderate or 

vigorous intensity cardiorespiratory exercise (Garber et al., 2011). Current recommendations at 

the time of this writing are for greater than or equal to 30 min per day for greater than or equal to 
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5 days per week for moderate intensity, or greater than or equal to 20 min per day for greater 

than or equal to 3 days per week for vigorous intensity exercise. Alternatively, the exercise can 

be some combination of the two producing a total energy expenditure of greater than or equal to 

500-1000 MET min per week (Garber et al., 2011).  

Diet and exercise continues to prove to be the healthiest and most effective form of 

weight loss. Unfortunately, weight loss can be a complex process that has difficulties of its own. 

One of those problems, specifically for overweight and osteoarthritic populations, is that excess 

load from the increased body mass increases the load on the knee joints (Messier et al., 2005b). 

This makes it very difficult, even painful for a person with arthritis to participate in load bearing 

exercises such as walking, jogging, or running, which are the most common and widely 

prescribed forms of exercise. 

Other forms of exercise such as cycling are commonly prescribed by health professionals 

to reduce the loads placed on the joints and are effective for exercise in populations with knee 

injuries. Bicycling allows a person to get a good workout during exercise without inducing large 

impact loads to the lower extremity joints, as most of the body weight is carried by the seat, 

essentially relieving the lower extremities of bearing the load. Very few published studies exist 

for studying bicycling in osteoarthritic populations. However, it can be assumed that the non-

weight bearing nature of cycling will reduce the knee joint loads of osteoarthritis sufferers. 

What has not been answered in previous literature is the question of whether people with 

knee OA have different cycling patterns than healthy populations. Or perhaps, those with 

unilateral knee OA may experience asymmetrical patterns within their own limbs. If in fact 

persons with knee OA cycle differently, abnormal kinematics and kinetics may lead to further 
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progression of the disease or increased pain experienced by the rider. This may discourage 

individuals from getting adequate exercise. If abnormal cycling kinematics and kinetics are 

present, it is possible that corrective conservative measures can be taken to encourage normal 

riding patterns and promote exercise in knee OA populations. 

GAIT CHARACTERISTICS OF KNEE OSTEOARTHRITIS 

It is important to understand the gait characteristics of knee OA because it is possible that 

the changes that patients experience with osteoarthritic gait may translate into cycling. 

Additionally, virtually no studies at the time of this writing have reported biomechanical 

variables of people with knee OA during cycling. Generally, individuals with knee OA have 

slower walking speed, less knee flexion angle at heel strike, less total knee range of motion 

(ROM), and increased knee internal abduction moment (KAM) compared to healthy subjects 

(Baliunas et al., 2002; Gok et al., 2002; Hurwitz et al., 2002; Kaufman et al., 2001; Mundermann 

et al., 2005).  

Kinematics 

During normal healthy walking, the sagittal plane knee angle typically ranges between 8 

and 64 degrees of flexion throughout the gait cycle (Ounpuu, 1994). When only the stance phase 

is considered, the knee joint angle peaks at approximately 20 – 25 degrees around mid-stance 

(Hamill and Knutzen, 2009). In the frontal plane, typical knee joint angles in normal healthy 

walking range between approximately 2 degrees of abduction and 5 degrees of adduction (Boyer 

et al., 2012; Salsich and Long-Rossi, 2010).  

The sagittal plane knee joint angle in people with osteoarthritis has been shown to be 

much less than healthy subjects. Zeni and Higginson (2009) showed that at self-selected and fast 
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walking speeds, people with osteoarthritis experienced less knee flexion than their healthy 

counterparts. In fact, those with severe knee OA (KL score = 4) demonstrated about 10-12 

degrees of knee joint excursion while those with moderate OA (KL score = 2 – 3) experienced 

excursions of approximately 13 to 17 degrees. The normal healthy controls experienced 

excursions of about 18 to 22 degrees depending on the walking speed. These results clearly 

indicate different characteristics of disease severity. 

 Astephen et al. (2008) performed a gait analysis comparing two knee OA groups 

(moderate and severe) with a control group. The subjects that were designated for joint 

replacement were placed in the severe group while those who were not were placed in the 

moderate group. These groups were verified with the Kellgren Lawrence Scale (KL). The 

patients in the severe group showed KL grades of 3-4 while those in the moderate group had KL 

grades of 1-4 (median of 2). The results of the study showed a relationship between OA severity 

and the peak knee flexion angle during stance. More specifically, the severe OA group saw the 

least amount of flexion (8 degrees), followed by the moderate OA group (14 degrees), and lastly 

by the asymptomatic group (~19 degrees). Additionally, the peak flexion angle during swing was 

decreased in the severe OA group compared to the other two groups. The angle for the severe 

group peaked at about 46 degrees while the moderate OA and asymptomatic groups experienced 

angles of about 6 degrees1 and 64 degrees respectively. Consequently, the severe OA group 

experienced a 16 - 18 degree reduction in knee angle range of motion compared to the other two 

groups. 

While studying inter-limb differences in people with moderate unilateral knee OA, Briem 

and Snyder-Mackler (2009) found that when comparing the involved limb with the uninvolved 
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limb the peak flexion angle of the involved knee was about 4.4 degrees less during the stance 

phase of walking. Interestingly, they also found a relationship between the sagittal plane knee 

flexion angle and the frontal plane varus angle. Specifically, those individuals with more knee 

varus were more likely to have less knee flexion. This relationship was evident in both involved 

and uninvolved knees but was only significant in the involved side. 

It is clear from the presented studies that knee OA populations have less sagittal plane 

knee flexion during walking (i.e. they walk stiffer). It is not completely clear if these differences 

are a result of the OA or if they initially had a decrease in flexion angle which led to knee OA. 

Evidence from previous research would lead one to believe the stiff knee gait experienced by OA 

populations is a result of the progressive nature of the disease. It would seem counterintuitive 

that someone would walk more stiffly in order to decrease painful gait if indeed that is what they 

are trying to do. More than likely, the stiffer gait is a result of the stiffness within the knee due to 

joint damage, inflammation, and pain. More research is necessary in long term kinematic and 

kinetic changes in OA to understand the underlying mechanisms behind the disease progression. 

Compressive Forces 

Peak vertical impact ground reaction forces during healthy gait have been shown to range 

from about 1 to 1.2 times body weight (Hamill and Knutzen, 2009) during the stance phase of 

walking. However, the resultant knee joint compressive force during walking may be as high as 

4 times body weight (Messier et al., 2005b).With this information in mind, it is clear that the 

knee joint has the potential to be severely impacted by high aberrant forces during walking. Knee 

joint forces for OA populations have been shown to be about 3 to 3.7 times body weight 

(Messier et al., 2005b; Schipplein and Andriacchi, 1991). Messier et al. (2005a) studied the knee 
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joint loading of 10 older adults with varying degrees and locations of knee OA (i.e. severity 

ranges from mild to severe, and OA locations of medial, lateral, and patellofemoral 

compartments). The OA participants were matched with 10 healthy controls of similar age, sex, 

and body mass. All subjects walked at a self-selected walking pace while kinematic and kinetic 

data were recorded. The results of the study showed that the knee OA group experienced about a 

25% decrease in compressive force across the knee, however, they also walked slower than the 

healthy controls. In fact, after statistically adjusting for walking speed by including walking 

speed as a covariate, the compressive knee joint load was nearly identical in both groups (3.67 

BW in the OA group and 3.40 BW in the control group; p = 0.49). While the results of this study 

showed no differences in joint loads between the OA and control groups, they may have been 

influenced by the small study sample size and the lack of OA location and grade specificity. 

Another study reported that medial compartment OA patients encountered 4% higher knee joint 

reaction forces during walking compared to their healthy counterparts (Mundermann et al., 

2005). While the differences reported appear to be small, the results suggest a relationship may 

exist between medial compartment OA and compressive knee joint loads.  

Decisive evidence has not yet appeared in the literature about the relationship between 

knee OA and compressive forces. It is tempting to assume that an increase in compressive joint 

load has a detrimental effect on the knee joint structure. However, studies have shown that 

increased loading is actually beneficial to the health of the knee joint as indicated by an increase 

in knee cartilage volume with exercise (Kiviranta et al., 1988). Additionally, others studies have 

found that people with knee OA have been successful at lowering the loads on the affected limb 

in an attempt to reduce the pain during gait (Miyazaki et al., 2002; Mundermann et al., 2005). 
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Finally, a study by Chakravarty et al. (2008) showed that middle and older age long distance 

runners did not have an increase in OA progression compared to healthy non-runner controls 

studied over an 18 year period. The combination of these findings suggests that the response to 

joint loading may be dependent on the health of the knee cartilage. It can be argued that chronic 

compressive loads on the knee joint (such as in running) are not necessarily responsible for the 

development of knee OA, but rather have a large influence on the progression of OA once the 

disease has been acquired. This hypothesis is further supported as shown in a few studies where 

patients with knee OA who had higher loads at the knee during walking had an increased rate of 

cartilage breakdown compared to knee OA patients with lower knee loads (Miyazaki et al., 2002; 

Turner et al., 1985). However, true to the ambiguous nature of OA, other studies have shown that 

altered joint loading can lead to progressive degeneration of the articular surface in animal 

experiments (Buckwalter, 1995). Other research has shown that obesity is highly associated with 

incident OA of the hand, hip, and knee (Oliveria et al., 1999), suggesting that either the increased 

weight, or some other factor associated with obesity, has a degenerative influence on diarthrodial 

joints. 

Internal Abduction Moment, Joint Laxity, and Malalignment 

The internal knee abduction moment (KAM) during gait has been shown to be an 

important factor associated with knee OA (Cerejo et al., 2002; Mundermann et al., 2005; Sharma 

et al., 1998; Wada et al., 2001). The majority of the compressive load on the medial 

compartment of the knee is created by the external adduction moment which is countered by an 

internal KAM (Schipplein and Andriacchi, 1991). The external adduction moment is defined as 

the product of the length of the moment arm from the knee joint center and the ground reaction 
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force (GRF) vector in the frontal plane of the knee during walking (Hunt et al., 2006). This 

moment acts to adduct the knee during stance into a bow-legged or knee varus position (Cerejo 

et al., 2002); a condition that opens the lateral joint space while closing the medial joint space of 

the knee, resulting in medial compartment joint space narrowing. Under a valgus stress, the 

medial joint space is increased under normal conditions and is described as medial joint laxity 

(Lewek et al., 2004). One study showed that in knee OA patients, a valgus stress at the knee 

resulted in a larger joint space opening when compared to healthy controls (Lewek et al., 2004). 

During gait, this mechanical abnormality redistributes the previously even load on the knee to a 

more medially directed load which may lead to increased joint space narrowing. In walking, 

there are typically two peaks present in the KAM. The first peak, which is associated with weight 

acceptance during stance, appears to have the largest influence on knee OA (Miyazaki et al., 

2002). 

An increase in KAM has been shown to affect the distribution of bone mineral content 

across the tibial plateaus (Hurwitz et al., 1998). This is important because osteophyte formation 

can occur with excessive or abnormal forces within a joint, which is a major component of 

osteoarthritis. In this study, the distribution of bone was examined between the medial and lateral 

sides of the tibia in 26 healthy males and females using dual energy X-ray absorptiometry. The 

subjects then participated in gait analysis in which kinematics and kinetics were recorded and an 

inverse dynamics analysis was used to calculate the internal KAM. The authors found significant 

differences in distribution of tibial plateau bone mineral density among the participants. They 

also found that the KAM was the single best predictor of the bone mineral distribution 

differences and established a linear relationship between the variables. Specifically, there was an 
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increase in bone formation on the medial plateau when compared to the lateral plateau as the 

KAM was increased. The KAM accounted for 31% of the variation in bone mineral content 

redistribution and increased to 58% when body weight was accounted for (Hurwitz et al., 1998). 

Other studies have found a relationship between the magnitude of KAM and the severity 

of knee OA (Chakravarty et al., 2008; Mundermann et al., 2005; Wada et al., 2001). For 

example, Mundermann et al. (2005) performed a gait analysis on 42 patients with bilateral 

medial compartment knee OA and 42 sex, age, height, and mass matched controls. The severity 

of the knee OA patients ranged from 1 to 4 on the Kellgren/Lawrence scale. The participants 

walked in their own shoes at a self-selected pace. The results of the study showed that the 

patients with more severe knee OA (KL grade of 3 or 4) demonstrated about 11% larger first 

peak KAM compared to their controls and about 28% greater than the less severe patients (KL 

grade 1 or 2). The authors also reported that even though the walking speeds were self-selected, 

the speeds were not different between groups, so the differences seen in the KAM cannot be 

attributed to walking speed. 

As previously mentioned, the KAM has been associated with knee malalignment, 

particularly a knee varus position. According to Hurwitz et al. (2002), knee varus alignment is 

the best predictor of the first and second peak KAM in knee OA patients, accounting for 55% of 

first peak KAM variance and 56% of second peak variance. Additionally, the previously 

mentioned study by Mundermann et al. (2005) found that people with more severe knee OA have 

a larger varus alignment (5.7 degrees) than those with a less severe disease (0.3 degrees). 

Malalignment in the knee has also been shown to be associated with the progression of 

knee OA. Cerejo et al. (2002) studied the knees of 230 OA patients who had varying degrees of 
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OA (KL grades 0 through 3). A KL grade of 4 was not included because it is the end stage of OA 

and disease progression is limited past this stage. OA progression odds ratios were determined 

from baseline to 18 month follow up. Knee varus or valgus alignments were measured statically 

using a full limb radiograph. The results of this study showed that in knees with mild OA (KL 

grade 2), the odds of medial compartment OA progression after 18 months was increased 4-fold 

by a varus alignment at baseline. In the same KL grade, the likelihood of lateral OA progression 

was increased 2-fold by a valgus alignment at baseline. For the moderate OA individuals (KL 

grade 3), the risk of progression of OA was increased 10-fold in both varus and valgus 

alignments. 

One possible mechanism for reducing the KAM during walking is by placing a lateral 

wedge in patients’ shoes. The majority of people with knee OA have medial compartment knee 

OA, and thus a laterally posted orthotic would be used. The orthotic causes a shift in the 

orientation of the leg (placing the knee closer to the bicycle frame) which ultimately alters the 

position of ground reaction force vector so that the vector is closer to the knee joint center. This 

decreases the distance between the GRF vector and the knee joint center (i.e. moment arm). 

Previous studies have in fact confirmed that wedges reduced the first peak KAM (Butler et al., 

2009; Butler et al., 2007; Hinman et al., 2009; Kerrigan et al., 2002), by using wedges ranging 

from about 5 to 12 degrees. However, to date, the use of wedges has not been shown to be 

effective in slowing the progression of OA (Pham et al., 2004). For example, Pham et al. (2004) 

performed a 24 month intervention on 156 subjects (41 male, 115 female) to determine the long 

term effect of wedged insoles on knee pain and the rate of disease progression. They found that 

at the end of the 24 month period there was no difference in knee pain and function as measured 
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by the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), although 

they wedged insole group did have less NSAIDs intake over the two year period. They also 

found no difference in the rate of joint space narrowing between the two groups. While joint 

space narrowing is not the sole indicator of knee OA, the results may suggest there was no 

difference in disease progression.  

Additionally, the reduction in KAM has not been strongly correlated with a reduction of 

pain in these studies. For example, Baker et al. (2007) performed a study with a cross-over 

design in which they had half of their participants wear a 5 degree lateral wedged insole for 6 

weeks, and the other half wore a neutral insole. After a 4 week washout period, the groups 

switched. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was 

used to assess the knee pain and function. At the end of the study, there were no statistical 

differences found between the two groups. However, this may be a result of a small amount of 

posting used in the intervention (Baker et al., 2007). Several researchers suggest that the location 

and angle of the wedge is subject specific, and not all patients have a positive response to the 

treatment (Butler et al., 2007). 

Other possible methods for reducing the KAM during walking are through simple gait 

modification as demonstrated by several researchers (Fregly et al., 2007; Guo et al., 2007; 

Mundermann et al., 2008; Shull et al., 2012). Guo et al. (2007) attempted to reduce the KAM by 

requiring their participants to walk in an increased toe-out (foot progression) angle during 

walking and ascent/descent tasks. Ten participants with medial compartment OA (grade 1-4) 

walked in a self-selected and 15 degrees beyond self-selected foot progression angles. The 

results of the study showed that the participants were able to reduce their second peak KAM 
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during the walking (40% decrease) and stair ascent (11% decrease) tasks in an increased foot 

progression angle compared to their self-selected foot progression angle. A potential downside to 

ascending stairs using a toe-out method is an increase in the first peak KAM. As mentioned 

previously, the 1
st
 peak KAM appears to be more closely related to OA, and thus, a toe out 

method of gait change may not provide the desired load reductions in this population. 

Fregly et al. (2007) also showed a promising gait modification for reducing the KAM 

during walking by training the participant to walk in a “medial thrusting” gait pattern. The 

modified gait pattern was prescribed for one patient with knee OA using an inverse dynamic 

optimization approach that reduced both first and second peak knee adduction moment peaks at 

the same time. Essentially, the cost function was to minimize the KAM with constraints that 

limited the how much the model could deviate from the patients specific gait pattern. The 

optimizer predicted a medial thrusting gait pattern. The optimization predicted a 32% reduction 

in the first peak KAM and a 56% reduction in the second peak KAM. Interestingly, after 9 

months of gait retraining, the subject achieved a 37% and 55% reduction in first and second peak 

KAM, respectively. The biggest limitation of this study was the fact that only one participant 

was included. While these results seem very promising, the researchers also reported an increase 

in the external knee flexion moment during the medial thrusting gait which may actually cancel 

out the effects of the reduced KAM on the medial compartment force (Walter et al., 2010). 

Building on the two previously mentioned studies, Shull et al. (Shull et al., 2012) 

attempted to reduce the KAM by having their participants walk in a toe-in foot progression 

angle. They had 12 subjects in their study (7 male and 5 female) with a mean age of 60 years 

who had radiographic evidence of medial compartment knee OA. This was an interesting gait 
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retraining study in which they mounted a small vibrating device on the subject’s shank. The 

subjects walked on an instrumented treadmill at a self selected pace in a normal walking pattern 

and then a toe-in pattern. During the toe-in trials, the patient must have maintained a shank angle 

of at least 0.75 degrees less than their baseline value otherwise the vibrating device would 

provide them with feeback and promt for increased toe-in angle. The authors found that this 

method of walking reduced the first peak knee adduction moment by about 11% but the second 

peak KAM and the knee flexion moment remained unchanged. This study provides promising 

results for a simple method to effectively reduce the KAM during walking, and may be a 

potential solution for alignining malaligned lower limb joints during future cycling studies. 

In summary, existing literature supports the interconnected relationship of knee 

alignment with the internal knee abduction moment (Lewek et al., 2004; Wada et al., 2001). 

These factors have also been shown to be related to the severity and progression of knee OA 

(Cerejo et al., 2002; Chakravarty et al., 2008; Mundermann et al., 2005; Wada et al., 2001). 

However, the onset of knee OA is still unclear. On the one hand, it is possible that factors 

leading to joint space narrowing such as articular cartilage loss and meniscus degeneration are 

prerequisites for joint malalignment and laxity and lead to an increased KAM. On the other hand 

an increased KAM could lead to joint laxity and malalignment which may lead to increased 

loading and ultimately cartilage loss and meniscus degeneration. In other words, it is still unclear 

if joint laxity and malalignment lead to increased KAM or if the reverse is true. To make matters 

more confusing, we know that previous injuries such as a torn anterior cruciate ligament in the 

knee can lead to future development of OA. It is not clear if the OA develops because of a 

structural change in the knee joint, or by some other mechanism. More research is needed to 
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clarify these questions, particularly longitudinal studies that may help to address the “chicken or 

the egg” conundrum. Additionally, promising gait retraining strategies have become apparent 

recently that may provide a reduction in the KAM. This could be very important considering the 

KAM seems to be so closely related to the severity and progression of knee OA. 

Obesity and Associated Gait Changes 

Obesity has been shown to be strongly associated with knee OA (Coggon et al., 2001; 

Felson et al., 1997; Leach et al., 1973; Manninen et al., 1996). Felson et al. (1997) performed 

analysis on data from a longitudinal study of the Framingham Cohort to determine possible risk 

factors associated with knee OA. Radiographs were originally taken on subjects between the 

years of 1983-1985, of whom, 979 subjects were free of OA. Approximately 10 years later 

(1992-1993), radiographs were taken in the same manner on 598 of the original subjects. Several 

risk factors were found for developing OA including being overweight at baseline. Additionally, 

it was found that for every 10 lbs. of weight gained during the time period studied, the risk of 

developing OA was increased by 40%. Coggon et al. (2001) performed a study in England in 

which 525 men and women were scheduled for surgery because of knee OA. The patients were 

matched by age, sex, and family practitioner with a control group. The results of the study 

showed that a BMI was significantly correlated to developing knee OA. For those individuals 

with a BMI less than 20 kg/m
2
, the odds ratio was only 0.1 (95% CI: 0.0 – 0.5). However, for 

those who had a BMI greater than 30 kg/m
2
, the odds ratio increased to 6.8 (95% CI: 4.4 – 10.5). 

Together these studies show strong evidence for a link between obesity and the development of 

knee OA. 
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Even though a link has been established between obesity and OA, it is not completely 

clear why obesity increases the risk of OA. Past studies have revealed that obese people clearly 

have increased vertical GRF and plantar pressures compared to normal weight populations 

(Browning and Kram, 2007; Hills et al., 2001; Messier et al., 1996; Mickle et al., 2006; Wearing 

et al., 2006a, b). However, running studies have shown high peak ground reaction forces too 

(actually higher forces than seen in obesity), and no relationship has been established between 

running and OA (Paty, 1994). In fact, a study in the early 80’s has shown that compressive forces 

improve the health of the knee joint through an increase in cartilage synthesis (Palmoski et al., 

1980). While a direct link between increased ground reaction forces and OA has not been made, 

it has been shown that increased GRF (by means of an increase in weight) may have an indirect 

effect on the progression of OA because of altered gait mechanics (Browning and Kram, 2007; 

Messier, 1994; Messier et al., 2005b; Schipplein and Andriacchi, 1991). Browning and Kram 

(2007)  compared the gait of 10 obese individuals with 10 normal weight controls and found that 

obese individuals had greater absolute vertical GRF, sagittal plane knee moments, and step 

width. They also found that the obese individuals were able to reduce the GRF by simply 

walking slower than their healthy counterparts. Additionally, Messier (1994) found increased 

eversion rearfoot motion  and an increased forefoot abduction (in relation to the rearfoot) in 

obese individuals. A change in alignment at the ankle may propagate up through the kinetic 

chain of the lower limb to have a negative effect on the knee. For example, if one were to have a 

more everted foot (similar to a collapsed arch), the knee would be forced into a more abducted 

position (knee valgus), which may compromise the ability of the knee joint to evenly distribute 

loads. 
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A factor likely more important to link OA and obesity is the compressive force across the 

knee joint. Messier et al. (2005b) studied the effects of weight loss on the knee joint compressive 

force in 116 patients with knee OA. After a 6 – 18 month follow-up, it was found that weight 

loss was associated with a reduction in compressive knee joint force. Specifically, for every 1 kg 

of weight loss, the average knee joint compressive force was decreased by about 40 Newtons 

(N). They also found a significant decrease in the knee internal abduction moment - which has 

been found to be associated with the progression of knee OA (Baliunas et al., 2002; Chakravarty 

et al., 2008) as previously mentioned. 

While the link between obesity and OA is not completely understood, evidence clearly 

suggests a meaningful association. A reasonable explanation is that secondary gait changes are 

likely responsible for OA development, while the increased GRF (leading to increased 

compressive force across the knee joint) may play a more important role in the disease 

progression. As shown previously, when the knee experiences increased internal abduction 

moments, there is potential for a redistribution of bone across the tibial plateau. This may lead to 

break down of the cartilage and meniscus, followed by osteophyte formation. 

CYCLING IN HEALTHY SUBJECTS AND IMPLICATIONS FOR 

OSTEOARTHRITIS 

In cycling, terminology and bicycle part names can be overwhelming. To help make it 

less overwhelming, refer to the bicycle diagram in figure 1 that identifies the bicycle parts 

relevant to this review. Also, refer to figure 2 which depicts the pedaling/crank cycle typically 

seen in cycling. During pedaling, the top most position of the crank and pedal is referred as top 
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dead center, while the bottom most position is bottom dead center. These positions correspond to 

0 and 360 degrees for top dead center and 180 degrees for bottom dead center.  

Typical Kinematics, Kinetics, and Muscle Activation 

Cycling kinematics, kinetics, and muscle activation can be influenced by many bicycle 

and rider manipulations, as will be shown in the following literature review. However, before 

discussing the influences of these manipulations, it is important to provide the reader with some 

background information about typical kinematics, kinetics, and muscle activity during cycling.   

 

Figure 1: Diagram with labels of key components of the bicycle 
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Figure 2: Diagram of the crank/pedaling cycle
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Kinematics 

 

Many authors have reported on the lower extremity joint kinematics during cycling, 

(Bailey et al., 2003; Bini et al., 2010; Carpes et al., 2009; Damiano et al., 2011; Edeline et al., 

2001; Edeline et al., 2004; Ercison et al., 1988; Ericson et al., 1986a; Ericson et al., 1985a; 

Faghri and Trumbower, 2005; Gregersen and Hull, 2003; Hamley and Thomas, 1967; Heil et al., 

1997; Heil et al., 1995; Mileva and Turner, 2003; Nordeensnyder, 1977; Peveler and Green, 

2011; Price and Donne, 1997; Reiser et al., 2002; Reiser et al., 2001; Sanderson et al., 2006; 

Savelberg et al., 2003; Tamborindeguy and Rico Bini, 2011; Too and Landwer, 2000; Umberger 

and Martin, 2001) while general joint motions are similar due to the cyclical nature of the 

bicycle, differences exist depending on the seating arrangement and specific manipulation in 

each paper. 

To give the reader an idea of typical joint motions seen in cycling, Ercison et al. (1988) 

showed that during normal cycling, defined as 120 Watt workload, 60 rpm pedal cadence, a seat 

height of 113% of the distance between the ischial tuberosity and the medial malleolus, and an 

anterior foot position, the mean hip, knee, and ankle ranges of motion were 38 degrees (32-70 

degrees), 66 degrees (46-112 degrees), and 24 degrees (2 degrees plantarflexion to 22 degrees 

dorsiflexion) respectively. They also showed that the peak hip extension occurred right at bottom 

dead center during the pedal cycle, while the knee flexion peaked just before, and the ankle 

dorsiflexion peaked just after. Nearly 22 years later Bini et al. (2010) discussed kinematic 

changes with several different variable manipulations. In their reference position (seat height at 

100% of greater trochanter height), typical joint ranges of motion were about 55, 65, and 25 

degrees for the hip, knee, and ankle respectively. The differences in the hip angle between the 
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two studies may be a result of trunk lean or joint convention, but it can be seen that joint range of 

motion during cycling remains similar even over a large span of time.  

Most of the articles on joint kinetics have reported two dimensional joint angle 

calculations in the sagittal plane. However, it has been suggested that movements important to 

joint safety occur in all three planes of motion as discussed by Francis from (Burke, 1986). Thus, 

it is necessary to analyze joint motions in the frontal and transverse planes, not just in the sagittal 

plane. Umberger and Martin showed that using a 2D analysis of the cycling motions, resulted in 

large deviations from the 3D analysis (hip angle difference of 34 degrees) and therefore, care 

should be taken when interpreting 2D analysis of motions and 3D analysis should be used when 

possible (Umberger and Martin, 2001). Previous research showed that during normal bicycling 

with healthy subjects, frontal plane knee angles ranged from about 2 to 4 degrees of abduction to 

1 to 6 degrees of adduction during the crank cycle (Bailey et al., 2003; Umberger and Martin, 

2001). The maximum abduction angle occurred at about 90 to 200 degrees during the crank 

cycle, and the maximum adduction angle occurred at about 300 to 360 degrees during the crank 

cycle (Bailey et al., 2003). The small range of motion in the frontal plane indicates that during 

normal healthy cycling, there is not a large amount of abduction/adduction and the knee remains 

fairly neutral.  

Establishing a proper seating arrangement for people with osteoarthritis to improve pain 

and function in the joint is essential for successful treatment of the OA symptoms. Analysis of 

joint kinematics in different seating arrangements may provide a good starting point to discover 

the proper configuration for pain reduction and functional improvement. 

Kinetics 
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Like kinematics, kinetics in cycling has been studied by many researchers (Bini et al., 

2010; Boyd et al., 1996; Boyd et al., 1997; Ericson, 1986; Ericson, 1988a; Ericson et al., 1986a; 

Ericson et al., 1986b; Ericson et al., 1985a; Gregersen and Hull, 2003; Gregersen et al., 2006a, b; 

Gregor et al., 1985; Kautz et al., 1994; Kautz and Neptune, 2002; Marsh et al., 2000; Neptune 

and Herzog, 1999; Neptune and Hull, 1995, 1998; Neptune and Kautz, 2000; Prilutsky and 

Gregory, 2000; Redfield and Hull, 1986; Reiser et al., 2002; Reiser et al., 2004; Ruby and Hull, 

1993; Too and Landwer, 2000; Wolchok et al., 1998). Using Broker from (Burke, 2003) as a 

representative example, it is apparent that ankle, knee, and hip joints mainly demonstrate 

extensor moments during the down stroke phase of the pedaling cycle (0 to 180 degrees), while 

the knee extensor moment peaks at approximately 90 degrees. The hip, knee, and ankle joints 

reached maximum extension moments of 30, 40, and 40 Nm respectively (workload of 250 W 

and pedal cadence of 90 rpm). Around 125 degrees into the pedaling cycle, the knee switches 

from an extensor moment to a flexor moment even before the leg is fully extended. During the 

upstroke of the pedaling cycle (180 to 360 degrees), hip moments are initially extensor but 

become flexor near top dead center. The knee initially has a flexor moment but switches to 

extensor near the 270 degree mark during the pedal cycle. The ankle joint exhibits mostly 

plantarflexion moments throughout the cycle but experiences brief dorsiflexion moments around 

the upper most 30 degrees (approximately).  

A study by Gregersen and Hull (2003) is one of the very few studies that analyzed the 

kinetics of the frontal and transverse planes in cycling (although only the knee joint was 

considered). They found large variations in joint moments between subjects when pedaling at a 

90 rpm cadence and a 225 W workload. Overall, subjects mainly experienced muscular 
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resistance of varus and internal rotation moments during the power phase (defined here as the 

phase when the knee experienced an extension moment) and valgus and external rotation 

moments during the recovery phase (when the knee experienced flexor moments). On average, 

subjects experienced peak adduction moments of 6 Nm, peak abduction moments of 7 Nm, peak 

internal rotation moments of 1 Nm, and external rotation moments of 2 Nm. The moments across 

the joints during cycling can be influenced by several factors. Knowledge of joint moments may 

help to establish proper riding configurations for reducing stress in the joints. On the whole, 

individuals with osteoarthritis may largely benefit from cycling if an optimized position and 

workload can be established which elicits small joint moments, particularly at the knee joint. 

Muscle Activation 

 

The measurement of muscular activity through the use of electromyography (EMG) 

during cycling has been studied by several researchers (Baum and Li, 2003; Chapman et al., 

2008a; Chapman et al., 2008b; Chapman et al., 2006; Cruz and Bankoff, 2001; Dagnese et al., 

2011; Dorel et al., 2008; Duc et al., 2008; Eisner et al., 1999; Ericson, 1988b; Ericson et al., 

1985b; Gregersen et al., 2006b; Jorge and Hull, 1986; MacIntosh et al., 2000; Marsh and Martin, 

1995; Neptune et al., 1997; Neptune et al., 2000; Prilutsky and Gregory, 2000; Raasch et al., 

1997; Rouffet and Hautier, 2008; Ryan and Gregor, 1992; Sanderson et al., 2006; Sarre et al., 

2003; Savelberg et al., 2003). Ericson et al. (1985b) did an EMG study on the activity of 11 

different muscles in the lower extremities while manipulating several different factors including 

work load, pedal rate, seat height, foot position, and use/disuse of toe clips. The muscles 

analyzed were gluteus maximus and medius, rectus femoris, vastus lateralis and medialis, biceps 

femoris, medial hamstring, medial and lateral gastrocnemius, soleus, and tibialis anterior. They 
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found that the three most active muscles during cycling were the vastus medialis, vastus lateralis, 

and soleus, accounting for 54, 50, and 37% of their isometric maximum voluntary contraction 

(MVC) respectively using an integrated EMG value (iEMG). There was low muscular activity 

found in the gluteus maximus (7% MVC), gluteus medius (11% MVC), rectus femoris (12% 

MVC), biceps femoris (12% MVC), medial hamstrings (10% MVC), and tibialis anterior (9% 

MVC). It was also found that the medial and lateral gastrocnemius were moderately active with 

values of 19 and 32% MVC respectively. These values indicate that during cycling, 

monoarticular muscles (vastus medialis, vastus lateralis, and soleus) are much more active than 

the biarticular muscles. Most muscle activity during this study had maximum values between 90 

and 180 degrees during the crank cycle. 

 Ryan and Gregor (1992) showed the activity of 8 lower extremity muscles throughout the 

crank cycle when cycling at 250 W and 90 rpms. The gluteus maximus was active from top dead 

center until about 130 degrees.  The biceps femoris and semitendinosis followed similar patterns 

and were active for much of the cycle likely due to the biarticular nature of the muscles. There 

was a small region of inactivity for the two muscles from approximately 270 degrees until top 

dead center during the upstroke. The rectus femoris muscle was active from about 90 degrees 

before top dead center until approximately 90 degrees after top dead center; likely active during 

hip flexion in the upstroke and knee extension during the down stroke. The vastus lateralis, a 

powerful knee extensor, was active from about 45 degrees before top dead center until about 90 

degrees after top dead center. The gastrocnemius was active from top dead center until about 270 

degrees; however, the bulk of its activity was from 45 to 180 degrees. The majority of the soleus 

activity was during the first 135 degrees of the down stroke, while the tibialis anterior was active 
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during the last 90 degrees of the upstroke. As expected, the majority of the muscles were highly 

active during the propulsion phase of the crank cycle. This may be an indication that peak 

loading to the knee occurs during this phase of cycling.  

When compared to walking, Ericson et al. (1985b) showed that muscular activity in 

cycling is about the same or much less in most muscles of the lower extremity. The two muscles 

that had much greater activity in cycling were the vastus medialis and lateralis. The authors state 

that the large amount of activity in these two muscles supports the general opinion that cycling is 

a good mode of exercise for strengthening the quadriceps muscles. However, it is possible that 

the high activity of these two muscles may also play a role in the common knee injuries seen in 

cycling. 

Positioning and Workload 

Researchers have shown that manipulations such as frame geometry (namely the seat 

tube angle), seat (also referred as “saddle”) height, crank arm length, foot position, pedaling 

cadence, and workload can all impact the cyclist. How these manipulations relate to variables 

such as kinematics, kinetics, muscle activation, metabolic efficiency, and power output during 

cycling will be discussed in the proceeding review. 

Seat Tube Angle 

 

The seat tube angle is the angle formed between the rear of the seat tube and level 

ground. The angle of the seat tube dictates how far forward or rearward relative to the bottom 

bracket a rider will sit (assuming no changes in fore and aft position of the seat). The typical 

range of seat tube angles on road bicycles is between 70 and 76 degrees (Ricard et al., 2006). 

Changes in seat tube angle have been shown to have an effect on power output (Price and Donne, 
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1997; Rankin and Neptune, 2010; Ricard et al., 2006; Umberger et al., 1998), cardiorespiratory 

response (Heil et al., 1997; Heil et al., 1995; Price and Donne, 1997), kinematics (Heil et al., 

1997; Heil et al., 1995; Price and Donne, 1997; Umberger et al., 1998), and muscle activity 

(Rankin and Neptune, 2010; Ricard et al., 2006). 

 Heil et al. (1995) investigated the effect of seat tube angle on cardio respiratory responses 

in 25 trained triathletes and cyclists. They analyzed 4 seat tube angles (69, 76, 83, and 90 

degrees) and their effects on oxygen consumption, heart rate, ventilation, and rating of perceived 

exertion during a 10 minute submaximal cycling test. They found that oxygen consumption, 

heart rate, and ratings of perceived exertion were all lower in the in the steeper seat tube angles 

(83 and 90 degrees) when compared to the 69 degree seat tube angle. They also reported on 

kinematic variables and noted that there was greater hip extension and ankle plantar flexion 

when the seat tube angle was increased. The authors concluded that the 69 degree seat tube angle 

was the only condition that was detrimental to performance based on cardiorespiratory 

responses. In a later article, Heil et al. (1997) found that cyclists optimized their oxygen 

consumption at frame geometries similar to the setup of their personal bicycles. This finding 

suggests a training effect may exist for experienced cyclists. 

 Price and Donne (1997) studied the effects of changing the seat tube angle as well as the 

seat height on the cardiorespiratory response and the lower extremity kinematics. They analyzed 

14 experienced male cyclists riding at a constant workload of 200 watts at three seat tube angles 

(68, 74, and 80 degrees) and three seat heights (96, 100, and 104% of greater trochanter height). 

The investigators found that at all seat heights, VO2 was significantly lower and power and 

efficiency significantly higher at a seat tube angle of 80 degrees compared to the other two seat 
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tube angles, and at 74 degrees compared to 68 degrees. In terms of kinematics, no changes were 

observed in ankle or knee angles with respect to changing seat tube angles. However, for the hip, 

both the minimum and maximum angles increased significantly at the 68 degree seat tube angle 

compared to the 80 degree angle at all seat heights. There was approximately a 10 degree 

difference for maximum angle and an 8 degree difference for minimum angle. Additionally, the 

maximum and minimum hip angles in the 68 degree condition were significantly larger than the 

74 degree seat tube angle at 96 and 104% trochanter height conditions only. 

 Umberger et al. (1998) studied seat tube angle on peak power, mean power, and fatigue 

during short term anaerobic performance (15 seconds of maximal effort). The seat tube angles 

analyzed were 69, 76, 83, and 90 degrees. They also reported kinematics of the trunk, hip, knee, 

and ankle during their test of 12 healthy active participants. They found that peak power was 

significantly higher in the 69 degree seat tube angle when compared to the 90 degree angle, and 

the mean power was significantly higher in the 69, 76, and 83 degree angles when compared to 

the 90 degree seat tube angle. In terms of kinematics, mean hip angles increased as seat tube 

angle increased (range between 88 and 107 degrees) with no differences found in range of 

motion. The mean knee angle was greater at the 90 degree seat tube angle compared to all other 

seat tube positions (119 degrees compared to approximately 115 degrees) but the range of 

motion remained unchanged. The ankle range of motion was greater in the 83 and 90 degree 

conditions compared to the 69 and 76 degree conditions (41 compared to 35 degrees). The 

authors conclude that maximum short term power is greater in shallower seat tube angles which 

are accompanied by decreased mean hip angle which could affect the muscle lengths and 

moment arms of the hip extensors. 
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Ricard et al. (2006) studied the effect of seat tube angle (72 and 82 degrees) on muscle 

activation and anaerobic power during a Wingate test. The investigators analyzed 4 muscles of 

the lower extremity including vastus lateralis and medialis, semimembranosus, and the biceps 

femoris of 12 experienced cyclists. They found that variation in seat tube angle had no effect on 

the power output during the Wingate test. However, they did find that in all muscles analyzed, 

muscle activation was lower in the 82 degree seat tube angle. Although, only the biceps femoris 

was found significant and showed an approximately 32% decrease in muscle activation 

compared to the 72 degree condition. An increased seat tube angle places the rider in a more 

forward position, which allows the rider to produce greater hip extension torque with lower 

levels of biceps femoris activation. The authors conclude that an increased seat tube angle may 

reduce muscular fatigue without affecting maximal power production. 

 Rankin and Neptune (2010) performed a muscle actuated forward dynamics simulation of 

pedaling to determine the optimal seat height, pelvic orientation, and seat tube angle for 

maximum power output. They studied a range of seat tube angles from 65 to 110 degrees and 

found that a seat height at 102% of greater trochanter height, and a seat tube angle of 85.1 

degrees, produced the most power. They attributed their findings to the lower extremity 

kinematics in which their optimal position placed the major power producing muscles in the 

most favorable region of the force-length-velocity curves. The authors did note however, that 

power differences in changes in seat tube angles varied at most by 1%, which the authors believe 

to be the result of similar lower extremity joint kinematics for each position studied.  

To summarize the findings from manipulating seat tube angle, previous literature 

indicates that seat tube angles greater than 76 degrees improve cardiorespiratory efficiency (Heil 
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et al., 1995) and decrease muscle activation (Ricard et al., 2006), but has an ambiguous effect on 

overall power. Some research suggests increased power at a seat angle less than 70 degrees 

(Umberger et al., 1998), others claim increased power at angles greater than 80 degrees (Price 

and Donne, 1997; Rankin and Neptune, 2010), and still others claim no difference in power 

output with changing seat tube angle (Ricard et al., 2006). An increase in seat tube angle places 

the rider in a more forward position relative to the crank, which increases hip extension but not 

hip ROM, and has relatively little effect on the knee and increases the ankle ROM (Heil et al., 

1995; Price and Donne, 1997; Umberger et al., 1998). 

The effect of changing seat tube angles on knee osteoarthritis may not be easily deducted 

from the existing literature. There may be good reason to suggest that increasing the seat tube 

angle would alleviate symptoms of knee OA based on muscle activation findings from (Ricard et 

al., 2006) but no research exists to accept or refute this claim. Additionally, to our knowledge, 

there are no studies that investigate the effect of seat tube angle on joint kinetics, which would be 

an important research topic for finding the optimal configuration for reduced joint loading. 

Crank Arm Length 

 

The length of the crank arm has been studied by a few investigators as it relates to 

cycling performance (Hull and Gonzalez, 1988; Inbar et al., 1983; Macdermid and Edwards, 

2010; Martin and Spirduso, 2001; Morris and Londeree, 1997; Too and Landwer, 2000; 

Yoshihuku and Herzog, 1996) as well as lower extremity kinematics (Barratt et al., 2011; Too 

and Landwer, 2000) and kinetics (Barratt et al., 2011). The crank arm is the part of the bicycle 

that the pedal attaches to. Its distance is measured from the center of the axis of rotation of the 

pedal to the center of the axis of rotation of the crank (bottom bracket). The crank arm is not 
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adjustable on a bicycle but can be replaced with other cranks of varying lengths. Generally 

speaking, longer crank arms allow the rider to sustain a given work rate with less force 

production because of the extended moment arm of the lever. However, a longer crank arm will 

also increase the range of motion (ROM) that the lower leg moves through. Thus the crank arm 

length may be a variable of interest when fitting bicycles for diseased populations such as in 

knee osteoarthritis.  

 Inbar et al. (1983) studied the effect of crank arm length on power output in the Wingate 

anaerobic cycle test. They analyzed crank lengths of 125 – 225 mm and found that there was an 

8% difference in cycling power between the two most extreme crank lengths and that crank 

length was highly correlated to leg length. This would indicate that crank length selection has a 

large impact on power output. However, since this publication, other researchers have noted that 

the Wingate test does not elicit maximum short term cycling power (Dotan and Baror, 1983; 

Martin and Spirduso, 2001), and that Inbar et al. (1983) did not account for pedaling rate (Martin 

and Spirduso, 2001), which would likely diminish the large correlation between crank length and 

power output. 

In 1990, Yoshihuku and Herzog (1996) performed a maximum muscular power output 

simulation, comparing two different optimal muscle length assumptions to identify the optimal 

riding configuration. They attempted to optimize crank length, pedaling rate, pelvic inclination, 

and seat height, and found that large changes in any one parameter elicits relatively small 

changes in the total power output. Additionally, they noted that the optimization of a single 

variable is simultaneously dependent on all other variables involved. They concluded that 
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maximum power output varies 0-10% for crank lengths between 130 and 210 mm depending on 

how the optimal muscle length is defined. 

 Morris and Londeree (1997) tested the long term effects of VO2 with 3 different crank 

arm lengths (165, 170, and 175 mm). They allowed their subjects to get used to each crank arm 

length prior to testing by requiring 2 weeks of riding at 225 km per week before each test 

session. They had each subject ride for 105 minutes and found that oxygen consumption changed 

between crank arm lengths, but when correlated with leg lengths, no significant correlations were 

found. They also noted that taking 2 weeks to adapt to crank lengths was unnecessary which was 

in agreement with a later article by Neptune and Herzog (2000) who showed that muscular 

coordination adaptations occur within the first 10-20 cycles of an unfamiliar task. 

 Martin and Spirduso (2001) tested the maximal power output at 5 different crank lengths 

(120, 145, 170, 195, and 220 mm) for 16 cyclists while accounting for pedal rate and pedal 

speed. They found that the 145 and 170 mm cranks produced a significantly larger amount of 

power than the 120 and 220 mm cranks, but only by 4%. They also found that the optimal 

pedaling rate decreased with crank length, but the optimal pedaling speed increased with crank 

length. Additionally, they found that optimum crank length was significantly correlated to the leg 

and tibia length (20% of leg length or 41% of tibia length) however, these values accounted for 

20.5 and 21.5% of variability in maximum power output respectively when pedal speed and 

pedal rate were controlled.  

A more recent article by Macdermid and Edwards (2010) studied the effect of three 

different commonly used crank lengths (170, 172.5, 175 mm) on supramaximal and isokinetic 

power output, and maximal aerobic capacity in 7 female cross country cyclists of similar stature. 
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Contrary to previous literature (Inbar et al., 1983; Martin and Spirduso, 2001), the authors found 

that a small change in crank arm length (170 mm to 175 mm) elicited a significant response to 

performance. They showed that the amount of time it takes to achieve peak power output during 

supramaximal exertion is reduced with the 170 mm crank length when compared to the 175 mm 

crank length. No other differences were found which may indicate that shorter crank arms are 

beneficial for short duration bursts of power and are not detrimental to long term aerobic 

capacity suggesting an advantage in race situations. 

Barratt et al. (2011) studied the effects of crank length on joint specific power using 

inverse dynamics in 15 experienced cyclists. They wanted to know how crank length changes 

would affect the relative lower extremity joint powers during maximum cycling effort when 1: 

pedal rate was optimized for maximum power for each specific crank length and 2: when pedal 

rate was constant at 120 rpm. They analyzed 5 different crank lengths (150, 165, 170, 175, 190 

mm) and found that joint specific powers did not differ across the crank lengths when pedal rate 

was optimized for maximum power. However, they did find that when pedal rate was held 

constant at 120 rpm, the 150 mm cranks resulted in a greater knee power and smaller hip power 

compared to the 190 mm cranks. Additionally, the authors found that increasing crank length 

resulted in an increase in angular velocities of the lower extremity joints due to the larger joint 

excursions. This may suggest that the joint specific powers in the lower extremity are directed by 

the shortening velocities of the muscles spanning the joints. The results of this study indicate that 

joint specific power is reliant on pedaling rate. When pedaling rate is optimal for maximum 

power, changes in crank length do not affect joint specific powers or lower extremity joint 

powers. 
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To summarize findings from crank length changes, the literature suggests that optimal 

crank length for peak power to be anywhere between 145 and 180 mm. It was also noted that 

when pedal rate and pedal speed are optimized for maximum power output, minimal changes in 

overall power and joint specific power are identified with crank length changes. However, if 

pedaling rate is held constant, smaller crank lengths are likely to result in less knee flexion power 

and more hip extension power. Shorter crank arm lengths may provide an advantage in short 

duration bursts of power as in a race scenario. It can also be seen that changes in crank arm 

length have relatively little effect on long duration aerobic capacity. 

The effect of crank length changes on knee osteoarthritis is still unclear. It can be 

theorized from Barratt et al. (2011) that longer crank lengths may benefit the knee in terms of 

reducing muscular power. However, Barratt et al. (2011) also showed that increasing crank arm 

length increases knee and hip joint excursion, and in turn, angular velocities. It is unclear if a 

person with osteoarthritis would benefit from larger or smaller joint ranges of motion while 

cycling. 

Seat Height 

 

Probably the most influential factor in cycling performance is the seat height. A study by 

Hamley and Thomas (1967) was conducted to determine the optimal seat height for maximum 

anaerobic power output in a cycle ergometer test. Subjects were to achieve a predetermined 

power output of 500 kg*m/min as quickly as they could at various seat heights. The trials that 

achieved the shortest time to the predetermined power output resulted in the optimal seat height. 

The results suggested that the optimal seat position was located at 109% of the pubic symphysis 



43 

 

height (the distance from the floor to the pubic symphysis usually measured with cycling shoes 

on).  

Over the years, other methods of determining proper seat height have been developed. 

Some authors have determined the optimal seat height by measuring from the floor to the bony 

prominence of the greater trochanter. Nordeensnyder (1977) found that the optimal seat position 

for the most efficient oxygen consumption was at 100% of trochanter height when compared 

with oxygen consumption of 95% and 105% of trochanter height. Price and Donne (1997) 

performed a similar test of different seat heights at different seat tube angles. They tested seat 

heights of 96%, 100%, and 104% of trochanter height and found that the 104% height resulted in 

the largest oxygen consumption and increased participants’ heart rate. They did not find 

differences between the 100% and 96% heights, suggesting a range of optimal seat heights 

between 96 and 100% of trochanteric height. 

Greg Lemond, a three time Tour de France winner, has also recommended a method to 

determine optimal seat height. His method uses the pubic symphysis height multiplied by 88.3% 

to determine the seat height from the center of the bottom bracket to the top of the saddle (Burke, 

2003). While this method is similar to the method developed by Hamley and Thomas, it does not 

account for the length of the crank arm (the arm the pedal is attached to). The crank arm length 

on a bicycle is not one set length and therefore this seat height method may result in different 

seat heights for different bikes and riders.  

Another method to determine seat height relates to the protection of the knee joint during 

cycling. This method, proposed by Holmes et al. (1994) recommends positioning the seat height 

so that the angle of the knee, when the foot is in the lowest crank position (bottom dead center), 



44 

 

is at 25 – 35 degrees. The authors note that if the seat height is too low, there will be pain 

associated with the posterior knee, and if too high the pain will likely be in the anterior knee. The 

authors attribute the reasoning behind this specific range of knee angle to several potential knee 

injuries during cycling: chondromalatia, patellar tendinitis, quadriceps tendinitis, medial patella 

femoral ligament irritation/medial patella femoral plica, iliotibial band syndrome, and biceps 

tendonitis. The first four mentioned conditions are related to the anterior knee and are likely to 

occur if the saddle is too low or too far forward. The authors recommend a knee angle of 25 

degrees for each of these conditions. Iliotibial band syndrome is commonly seen when the band 

actively crosses the lateral femoral condyle at a knee angle of approximately 30 degrees and is 

usually accompanied by internal tibial rotation. The authors recommend a knee angle between 30 

and 35 degrees for this condition. Biceps tendonitis may occur if the saddle height is too high. 

This position necessitates increased knee extension which may stress the posterior knee. For this 

condition, the authors recommend a knee angle between 30 and 35 degrees (Holmes et al., 1994). 

 Peveler and Green (2011) compared the economy and anaerobic power between the 

Holmes’s method and the Hamley and Thomas method to determine how closely each relates to 

one another. They showed that the use of the Hamley and Thomas method of a saddle height set 

at 109% of pubic symphysis height resulted in different saddle heights than the Holmes method 

and fell out of the 25-35 degree knee angle range 73% of the time. Furthermore, the 25 degree 

knee angle position resulted in significantly better economy than both the 35 degree condition 

and the 109% pubic symphysis height condition (44.77 ml kg min vs. 45.22 and 45.98 ml kg min 

respectively). The 25 degree knee angle condition also resulted in a greater mean power output 

than the 35 degree condition (672.37 W vs. 654.71 W), and the mean power of the 109% pubic 
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symphysis height condition (662.86 W) was also greater than the 35 degree condition. Peveler 

and Green (Peveler and Green, 2011) concluded that the use of the 25 degree knee angle method 

resulted in the best performance while keeping the knee within the desired range for injury 

prevention. 

Vrints et al. (2011) studied the saddle position on the moment generating capacity of the 

lower extremity joints during maximum effort cycling for 5 seconds. The seat heights chosen 

were 109% of inner leg length plus or minus 2 cm. Their results show that a decrease in seat 

height results in a decrease in maximum power output accompanied with a decrease in moment 

generating capacity of the rectus femoris, biceps femoris, and vastus intermedius at the knee. No 

changes were found in the hip and ankle joints suggesting lower saddle positions mainly affect 

the knee joint kinematics which in-turn affect the moment generating capacities of the muscles 

surround the joint. 

Perhaps more relevant to the osteoarthritic population is the effect of seat height changes 

on joint loading. Ericson and Nisell (1987) studied the effect of three different seat heights 

(among other manipulations) on 2-dimensional, patellofemoral joint forces in the sagittal plane. 

They used a kinetic model in combination with previously collected joint moments to calculate 

the estimated joint forces. The three seat heights were 102, 113, and 120% of the distance 

between the ischial tuberosity and medial malleolus. They found an inverse relationship between 

saddle height and patellofemoral joint forces. They showed that as the seat height was decreased, 

the knee load moment and knee joint angle increased, which caused an increase in patellofemoral 

joint forces. 
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 Ericson and Nisell (1986b) also reported on the tibiofemoral joint forces during cycling  

over the same seat heights as mentioned in the preceding paragraph. Similar to the 

patellofemoral joint results, they found that as the seat height was decreased from the high to low 

position, the tibiofemoral compressive forces increased. Force magnitudes were reported at 

approximately 1.3 times body weight in the low seat position and 0.8 times body weight in the 

high seat position. However, no significant changes in joint force occurred in the anterior 

direction (average forces of about 0.05 times body weight). 

A more recent article (Tamborindeguy and Rico Bini, 2011) discussed the sagittal plane 

compression and shear forces across the tibiofemoral joint with small variations in seat heights 

(97, 100, and 103% of greater trochanter height). They tested nine cyclists at a low workload and 

found no differences in either shear or compressive forces across the knee joint. The authors 

were in agreement with many other studies that suggest knee loading is more affected by work 

load than other cycling parameters.  

Cadence and Workload 

 

A major topic studied by many researchers is the effect of cycling cadence and workload 

on performance (Ericson and Nisell, 1988; Martin and Spirduso, 2001; Sanderson et al., 2000) as 

well as kinematics (Bini et al., 2010; Edeline et al., 2004; Hull and Gonzalez, 1988), kinetics 

(Bini et al., 2010; Ericson et al., 1986b; Ericson et al., 1985a; Ericson and Nisell, 1986b, 1988; 

Neptune and Herzog, 1999; Neptune et al., 1999; Redfield and Hull, 1986; Sanderson et al., 

2000), and muscle activation (Baum and Li, 2003; Ericson, 1988a; Ericson et al., 1985b; Jorge 

and Hull, 1986; MacIntosh et al., 2000; Marsh and Martin, 1995; Neptune et al., 1997; 

Sanderson et al., 2006; Sarre et al., 2003).  
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A study by Bini et al. (2010) analyzed the lower extremity joint kinematics and kinetics 

of 9 untrained male cyclists. They found that increases in pedal cadence from 40 to 70 rpm and 

increases in workload from 0 to 10 N had no effect on hip or knee joint kinematics but mean 

ankle angle did increase and ROM decreased with an increase in pedal rate. They also found that 

while pedal cadence had no effect on the mechanical work of the joints, an increase in workload 

did result in an increase in mechanical work for each of the lower extremity joints.  

In other studies, Ericson et al. (1985b) found that increasing the cycle workload increased 

the activation of all muscles studied, and increasing pedal rate increased all muscular activity 

except for rectus femoris and biceps femoris. Neptune et al. (1999) showed that as pedal rate 

increased in their study, bilateral asymmetries typically seen in cycling tended to diminish. 

Redfield and Hull found that increasing pedal rate increased ankle, knee, and hip moments, but 

decreased the torque at the crank (likely due to the force velocity relationship). However, when 

compared to Ericson et al. (1986) notable differences were seen at the knee joint. For example, 

Ericson et al. (1986b) discovered that hip moments were significantly impacted by both pedal 

rate and workload, however, the knee moment was only influenced by the workload. The 

differences seen may be due to differences in pedal rates tested. 

To summarize, even though cadence and workload have little effect on the lower 

extremity joint kinematics, noteworthy differences are seen in the joint kinetics and muscle 

activation. In most studies reviewed, as workload increased, the ankle, knee, and hip joint 

moments increased as well. Typically, an increase in joint moments were seen with increasing 

pedal cadence, but wasn’t always the case. Muscle activation was most influenced by workload 

even though pedal cadence did impact most muscles. These results indicates that workload has a 



48 

 

much larger impact on joint kinetics and muscle activation and should be highly considered 

when planning cycling interventions for individuals with knee injuries such as osteoarthritis. It is 

important if the patient is using a bicycle with gears that they do not use too hard of a gear, for 

fear of increasing joint loads and perhaps increasing joint pain. 

Lower Limb Alignment and the Effects of Shoe Wedges and Foot Progression Angles 

Alignment 

 

To this point in the review it is clear that cycling reduces loading on the knee joint by 

placing the majority of the rider’s body weight on their seat during seated cycling. However, 

cycling produces a great demand on the muscles and joints of the lower limbs, as they are the 

driving force in propelling the bicycle forward. Thus, knee injuries are still the leading complaint 

in cycling which has strong indication for an overuse injury mechanism. For example, a common 

overuse injury during cycling, patellofemoral pain syndrome, is thought to occur because of an 

adduction (varus) knee moment during the downward pedal stroke (Boyd et al., 1997; Wolchok 

et al., 1998). Thus, proper alignment of the lower limbs during cycling is an important factor for 

reducing overuse injuries experienced by the rider (Bailey et al., 2003; Gregersen et al., 2006a; 

Ruby and Hull, 1993).  

 Bailey et al. (2003) studied the frontal plane motions of 24 experienced male cyclists. 

The cyclists were either classified as injury free or had a history of knee overuse injuries. The 

researchers found that the cyclists with a history of injury exhibited 1.9 degrees greater peak 

shank adduction angle and 4.9 degrees greater ankle dorsiflexion angle compared to the injury 

free group. Additionally, the shank angle of the healthy subjects hovered around a neutral 

position (range of -2.5 degrees abduction to 1 degrees adduction) while the shank angle of the 
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injured group remained in an abducted position throughout the crank cycle (range of -4 to -2 

degrees). The average differences between the injured and injury free group was about 2.5 

degrees throughout the crank cycle. The authors concluded that the results support the potential 

for a possible mechanism for overuse knee injuries during cycling.  

While proper lower limb alignment is important, Ruby and Hull (1993) also showed that 

too much cleat restriction in the cycling shoe may be unfavorable to knee loading. They studied 

the adduction/abduction (varus/valgus) and inversion/eversion knee moments of cyclists while 

using four different pedal platforms. One pedal did not allow any movements between the 

cycling shoe and the pedal, while the other three allowed for either medial/lateral translation, 

adduction/abduction rotation, or inversion/eversion rotation. The authors found no differences in 

knee loading between the fixed platform and the pedal that allowed for medial/lateral translation. 

However, they did find that the pedal that allowed for inversion/eversion movements 

significantly reduced the varus/valgus knee moments, while the pedals that allowed for 

abduction/adduction movements significantly reduced both the internal/external and 

abduction/adduction knee moments. 

Shoe Wedging 

 

There are situations in healthy cycling in which the rider may have excessive knee 

abduction (i.e. they have a more medially placed knee position throughout the crank cycle). This 

has been associated with potential for development of overuse injury (Burke, 1986). To counter 

this misalignment, it is common for cyclists to use a wedge between their shoe and the pedal, or 

a medially wedged (posted) in-shoe orthotic. Only few scientific publications are available 

addressing the effectiveness of these types of devices. One such study by Sanderson et al. (1994) 



50 

 

filmed the frontal plane movements of 28 experienced cyclists using 16 mm film. The 

researchers placed markers on the tibial tuberosity of each leg and measured the distance from 

the marker to the frame of the bicycle. They studied the effect of a 10 degree varus and 10 degree 

valgus wedge placed between the shoe and pedal and compared this to a neutral foot alignment. 

They found that the distance between the marker and the frame in the neutral position ranged 

from 7.5 to 10.5 cm. For the valgus wedge the distance ranged from 7 to 12 cm, and for the varus 

wedge the distance ranged from 7.5 to 10 cm. There was not a statistical difference between the 

neutral condition and either of the wedge conditions, but there was a significant difference 

between the two wedge conditions.  

A more recent study by Gregersen et al. (2006a) analyzed the frontal and transverse plane 

knee moments in 15 competitive cyclists without history of knee overuse injury. Additionally, 

they studied the muscle activation from the vastus lateralis (VL), vastus medialis (VM), and 

tensor fascia latae (TFL) muscles during the pedal cycle. In this study, the cyclists pedaled in 5 

inversion/eversion angles (5 and 10 degrees of inversion and eversion, and a neutral position). 

The main overall findings showed that both the peak KAM and the average value of the KAM 

was significantly decreased from neutral when the foot was everted and significantly increased 

when the foot was inverted (p < 0.0001). More specifically, the 10 degree everted condition 

reduced the peak moment by 4.29 Nm (55% decrease from neutral), and the 10 degree inverted 

condition increased the peak moment by 3.69 Nm (47% increase from neutral). They also found 

that when the foot was everted, the peak VM activation increased relative to that of the VL and 

the TFL muscle activity was decreased. The authors concluded that everting the foot during 

cycling could reduce the potential for overuse knee injuries such as patellofemoral pain 
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syndrome. This reduced injury potential was made possible by potentially reducing lateral 

patellar tracking by reducing the KAM, increasing the VM activation with respect to the VL, and 

by decreasing the TFL activation. The patterns found in this study may be a good implication for 

diseased populations such as in patients with medial knee osteoarthritis. 

Foot Progression Angle 

 

Very little literature exists on the effects of foot progression angles on cycling 

biomechanics. Similar studies by Ruby and Hull (1993) and Boyd et al. (1997) analyzed the 

three dimensional intersegmental knee loads in healthy subjects (11 subjects in Ruby and Hull, 

and 10 subjects in Boyd et al.). The subjects in the Ruby and Hull study pedaled with a pedal 

platform that allowed freedom of foot movements in medial/lateral translation, 

adduction/abduction, and in inversion/eversion rotation separately.  The subjects in Boyd et al.’s 

study pedaled in similar conditions but also in a condition that allowed freedom of movement in 

adduction/abduction and inversion/eversion simultaneously. The pedals had the option of being 

fixed in a neutral position as well, which was used as the control condition. In the study by Ruby 

and Hull (1993) the freedom of rotational movement in the adduction/abduction directions 

significantly reduced the adduction and abduction knee moments when compared to a fixed cleat 

condition. This finding was not consistent in the study by Boyd et al. (1997) which found no 

difference in adduction/abduction moments compared to a fixed cleat condition. The 

dissimilarity between the two studies can possibly be explained by the inherent differences in 

pedaling mechanics between the subjects in the two studies. Boyd et al. (1997) noted that in the 

transverse plane, the knee moment exhibited a pattern where an internal axial moment occurred 

in the down stroke of the pedal cycle in 5 of the 10 subjects. The rest of the subjects exhibited no 



52 

 

consistent pattern. In the Ruby and Hull study, only 3 of the 11 subjects exhibited an internal 

axial moment during the down stroke of the pedal cycle.  

Alignment in Preliminary Research 

A preliminary study in our laboratory showed that participants with knee OA do not cycle 

with the normal frontal plane knee kinematics seen by previous studies. Out of the 6 initial 

participants, 6 knees are continuously adducted throughout the crank cycle, 2 knees are 

continuously abducted (valgus), and 4 knees appear to have a normal range of motion that begin 

the crank cycle in knee adduction and end in abduction. With regard to the continuously 

adducted knees, the pattern seen is similar to that during gait in which patients with medial 

compartment OA walk with the knee in an adducted (varus) position. Some possible solutions to 

the malalignment seen during cycling could possibly be borrowed from those seen in gait, such 

as using lateral shoe wedges or increasing the toe-in foot progression angle during the cycling 

bouts. More research is needed to determine the optimal riding patterns for people with knee OA. 

Cycling Summary 

While research suggests that cycling may be beneficial for knee injuries, it is also 

important to note that knee injuries are the most common injuries in cycling (Asplund and St 

Pierre, 2004; Dettori and Norvell, 2006; Kennedy et al., 2007). Some studies have pursued the 

cycling benefits for injuries, but most of the research has focused on optimizing performance. 

Thus, more research is needed for optimizing cycling for chronic injuries such as osteoarthritis, 

and determining ways to reduce joint loading and pain while improving overall joint function.  

While cycling can be a very taxing aerobic and muscular exercise, it appears that 

clinicians may be justified in their decision to prescribe it as exercise for patients with knee 
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injuries or OA because cycling induces small pedal reaction forces which may result in small 

joint reaction forces at the knee. This is thought to be beneficial for individuals with 

osteoarthritis, since compressive loading has been shown to influence the progression of OA. 

This is almost entirely due to the fact that the majority of the rider’s body weight is supported by 

the bicycle seat and not their legs as in gait (that is unless they stand to pedal). Additionally, due 

to the closed chain nature of the exercise, cycling also results in small frontal plane knee joint 

moments in healthy populations. However, it is not clear if similar moments would be found in 

persons with knee OA who may have large potential for poor knee alignment while cycling. If in 

fact people with knee OA have poor alignment while cycling, there is potential for increased 

loading on the individual compartments of the knee (depending on how the knee is aligned). 

Furthermore, cycling induces a high demand of the lower extremity musculature. While the 

GRF’s due to body weight are reduced in cycling, the muscles surrounding the knee joint are 

highly active because they are the major contributors to propelling the bicycle forward. Thus, 

increased knee joint forces due to muscle contractions may occur.  

Questions arise in the use of cycling exercise related to joint moments and muscular 

activity. Cycling has been shown to increase joint moments and in most cases resulted in 

increased muscle activation (especially around the knee). However, increased ranges of motion 

during cycling may impact joint pain or function in osteoarthritic populations. Is it better or 

worse to increase the joint range of motion during exercise for osteoarthritic populations? While 

previous research has shown that the knee OA population walks in a stiffer gait, a question that 

arises is ‘should we focus on recuperating the lost range of motion or should we accommodate 

it?’ In cycling, many manipulations can be made to the bicycle that can increase or decrease joint 
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ranges of motion and an ideal position has not been identified for osteoarthritis. This is likely a 

much more complex issue than it seems and will more than likely result in seating configurations 

that are different for each person. 

Proper frontal plane joint alignment in cycling appears to be an important factor in 

preventing injuries in healthy populations. Frontal plane alignment is also important during gait 

for both healthy and knee OA populations. Therefore, it can be hypothesized that proper frontal 

plane alignment would be important for OA populations during cycling. As of now, it is unclear 

if correcting a frontal plane malalignment would produce clinically meaningful results during 

cycling and thus is a suggested topic for future research. One possible option is to test the effect 

of wedged shoe insoles on the knee alignment during cycling in an attempt to decrease joint 

loading. 

LITERATURE REVIEW SUMMARY 

This chapter reviewed relevant previous literature on knee osteoarthritis and related 

variables associated with gait. Additionally, it discussed the comprehensive effects of cycling on 

the benefits and potential pitfalls associated with osteoarthritis. Much research has been done on 

knee OA, yet it still remains a global issue which currently is incurable. Despite the fact that 

knee OA does not have a cure, there are well known risk factors associated with the disease 

development and progression. While some of the factors associated with knee OA are out of the 

control of the individual (age, sex, genetics, and previous injury), it is worth noting that many 

other important factors are still modifiable such as obesity, nutrition, and muscle weakness. 

Thus, while OA is not completely understood, and to date there is no cure for OA, there is hope 
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that progression and symptoms of the disease can be lessened through various methods including 

exercise. 

Exercise in OA is somewhat of a “double edged sword.” While exercise is beneficial for 

decreasing the rate of progression, large impacts during exercise may exacerbate the disease. 

Physicians commonly prescribe low impact exercises for people with OA including treadmill 

walking and cycling. These activities are beneficial in providing individuals with OA good 

modes of exercise while reducing the vertical compressive load to the knee joint. Cycling 

appears to be a good choice for knee OA, as it produces small amounts of compressive loads on 

the knee joints. However, as this review has suggested, the bicycle still has the potential to 

exacerbate knee problems for the rider. Thus, simply riding a bicycle will likely not be the best 

solution for people with knee OA. More often than not, knee OA patients will require a 

customized cycling intervention for their specific needs. Not only is it important to configure a 

bicycle specifically for the rider, it is also important to ensure that there is no malalignment of 

the lower extremity joints while riding. This is especially true of patients with OA since they 

typically have poor alignment associated with their disease. More research is needed on the 

effects of cycling for exercise in people with knee osteoarthritis.  
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CHAPTER III 

METHODS 

PARTICIPANTS 

Healthy Subjects 

 

 Eleven healthy male and female participants (age: 50.0 ± 9.7 yrs., height: 1.75 ± 0.12 m, 

weight: 80.17 ± 23.13 kg, BMI: 25.9 ± 5.4 kg/m
2
) between the ages of 35 and 65 volunteered for 

participation in this study (age, height, weight). The subjects were pain free in their lower 

extremities for at least 6 months prior to the study. They were not diagnosed with any type of 

lower extremity osteoarthritis, never had a joint replacement, and did not have arthroscopic 

surgery or intra-articular injection within three months prior to the study. Additionally, the 

subjects must not have a neurological disease, low back pain referred to the legs, women who 

were pregnant or nursing, or cardiovascular risk factors that would preclude them from 

participation in aerobic exercise. The participants must have had a BMI of no more than 35 

kg/m
2
, and they must have been able to walk and ride a stationary cycle without aid. Prior to 

testing, each subject read and signed the informed consent that was approved by the University 

of Tennessee Institutional Review Board.  

OA Subjects 

 

 Thirteen participants (age: 56.8 ± 5.2 yrs., height: 1.80 ± 0.14 m, weight: 83.2 ± 22.3 kg, 

BMI: 26.6 ± 3.6 kg/m
2
) with knee osteoarthritis between the ages of 35 and 65 volunteered for 

participation in this study (age, height, weight). Each participant with OA had medial 

compartment tibiofemoral osteoarthritis in either one or both of their knees. To be included in the 

study, the OA participants must have had at least a grade 1 on the Kellgren-Lawrence score 
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which was verified with radiographs and a diagnosis by a rheumatologist. While the requirement 

for medial compartment OA was strictly enforced, the participants were not excluded from the 

study if they had additional OA in the lateral compartment of their knee(s). Additionally, they 

were not excluded if their tibiofemoral OA was accompanied by patellofemoral OA. In addition, 

subjects were excluded from the study if they had OA in the hip or ankle joints, had previously 

had a lower extremity joint replacement, had knee joint arthroscopic surgery or intra-articular 

injections within 3 months prior to testing, had systemic inflammatory arthritis such as 

rheumatoid or psoriatic arthritis, had lower back pain that referred to the lower limbs, had a BMI 

greater than or equal to 35 kg/m
2
, women who were pregnant or nursing, or those who had 

cardiovascular disease or other risk factor which precluded participation in aerobic exercise. All 

OA subjects must have been experiencing pain the majority of the days of the week, for at least 

the previous 6 months. If subjects were taking any type of medication for their pain, they were 

asked to cease its use 2 days prior to the study. 

 Before taking the x rays, each subject read and signed the study informed consent which 

was approved by the University of Tennessee and Medical Center’s Institutional Review Boards. 

For the X-rays, the subjects performed bilateral standing while anterior/posterior radiographs 

were taken of both knees in the frontal plane. Additionally, a sagittal plane radiograph of each 

knee was collected while the subject was in a bent knee stance.  

INSTRUMENTATION 

3D High-Speed Motion Capture: A nine-camera motion analysis system (240 Hz, Vicon Motion 

Analysis Inc., UK) was used to acquire three-dimensional (3D) kinematics of the trunk, pelvis, 

and bilateral thighs, shanks, and feet of the subjects. The subjects wore tight fitting workout 
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clothing such as that used for cycling (i.e. spandex). If the subjects did not own this type of 

clothing, spandex laboratory shorts were supplied. Reflective anatomical markers were used to 

identify segment joint centers and were placed bilaterally on the subject’s 1
st
 and 5

th
 metatarsals, 

medial and lateral malleoli, medial and lateral epicondyles, greater trochanter, left and right iliac 

crests, and left and right acromion processes. Non-collinear tracking markers were attached to 

rigid thermoplastic shells and then attached to the trunk, pelvis, thighs, and shanks using hook 

and loop wraps. For the feet, three markers were placed on the outer surface of the shoe at the 

superior, inferior, and lateral heel.  

Cycle Ergometer: A Lode Excalibur Sport cycle ergometer (Lode, Groningen, Netherlands) was 

used for the cycle testing. The ergometer was electro-mechanically braked which allowed for a 

precise workload setting that was independent of the pedal cadence. Additionally, the ergometer 

had removable pedals, and had the capability of adjusting the seat and handlebar to fit each rider. 

Customized Instrumented Pedals: A customized instrumented bike pedal was used on the Lode 

cycle ergometer, which allows recordings of three dimensional forces and moments (Figure 3). 

The assembly contained two 3D force sensors (Type 9027C, Kistler, Switzerland) coupled with 

two industrial charge amplifiers (Type 5073A, Kistler, Switzerland). The coordinate system for 

the pedal is shown in Figure 4. The charge amplifiers were necessary to convert the charge 

measured by the force sensors to a voltage value used by the Nexus software. The sensors could 

be placed in either the left or right pedal depending on the desired limb to be analyzed. A dummy 

pedal of the same mass and design was used on the opposite limb to minimize asymmetries 

during the testing. The kinetics from the instrumented pedals and 3D kinematics were recorded 

through the Vicon Nexus system simultaneously. Prior to using the pedal assembly in the current 
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research project, extensive calibration testing was done to ensure the pedal measurements were 

accurate. 

 

 
Figure 3: Photo of the instrumented pedal assembly 
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Figure 4: Coordinate system for the right pedal assembly. Note: the top plate has been removed 

to show the force sensors. 

 

Visual 3D: Visual 3D (C-Motion Inc.), a 3D biomechanical analysis software suite was used for 

signal processing and computing 3D kinematics and kinetics. 

Knee Pain and Function Assessment: The Knee Injury and Osteoarthritis Outcome Score 

(KOOS) was used to assess each subject’s knee pain and function during the week prior to the 

testing session. 

Visual Analog Scale for Pain: A 0 to 10 cm VAS numeric pain intensity scale was used to assess 

each participant’s knee pain during the cycling protocol with 0 being no pain and 10 being worst 

pain possible. Subjects did could choose any real number between 0 and 10 (Figure 5). 
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Figure 5: 0 to 10 cm numeric pain intensity scale 

 

Customized Computer Programs: Customized computer programs (VB_V3D and VB_Table) 

were used to determine critical events of the 3D kinematic and kinetic variables of interest from 

the output of Visual3D, and were also used to compute additional parameters and organize the 

variables for statistical analyses. 

EXPERIMENTAL PROTOCOL 

 Upon arrival to the biomechanics laboratory each subject filled out the KOOS survey for 

each of their knees (OA subjects only). Additionally, height and weight were recorded at this 

time. Subjects then did a walking warm up on a treadmill for 3 minutes to get a baseline pain 

measurement (using the VAS) in their knees. Reflective markers were then placed on the 

individual’s body segments as described in the instrumentation section above. A static 

calibration trial was recorded and then the anatomical markers were removed. The subjects were 

asked to warm up on the cycle ergometer for 3 minutes. 

 The seat height on the cycle ergometer was set so that the angle of the subject’s knee was 

at 30 degrees when the crank was at bottom dead center (BDC). This seat height was determined 

from preliminary work that revealed the least amount of knee pain within this range. This 
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method has also been shown to minimize the risk of outside sources of knee pain such as 

patellofemoral pain syndrome (PFPS) and iliotibial band syndrome (ITBS) (Holmes et al., 1994). 

The horizontal seat depth was set so that the knee was in line with the pedal spindle when the 

crank was in the forward horizontal position (90°) (Burke, 2003). Each subjects’ trunk angle was 

also controlled by placing the handlebars in a position that created a 90° angle between the trunk 

and the thigh. 

 The subjects pedaled in 5 cycling conditions for this study. There were two conditions in 

which a wedge was placed between the shoe and the pedal (5 and 10 degrees) on the lateral side 

of the foot (Figure 6). The wedge was simply a block of wood that was cut at the specified angle 

and then attached securely to the pedal. In the third and fourth conditions, subjects cycled with 

an increased (toe-in) foot progression angle. The foot progression angles were increased to 5 and 

10 degrees relative to the antero-posterior axis of the pedal. The toe-in effect was created with a 

wedge that was placed between the anterior surface of the pedal body and the pedal toe-cage 

(Figure 7). This effectively increased the angle of the toe-cage which restricted the subject’s foot 

to the desired toe-in angle. The fifth cycling condition was the control condition. The subjects 

pedaled in a neutral foot position which was established with a neutrally oriented pedal toe-cage.  
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Figure 6: Photo of how the wedge condition was created on the pedal 

 

 

 
Figure 7: Photo of how the toe-in condition was created on the pedal 
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The subjects cycled for 2 minutes in each of the conditions at a pedal cadence of 60 RPM 

and a workload of 80 Watts. This workload was used to meet exercise recommendations by the 

American College of Sports Medicine (ACSM) (Garber et al., 2011) if the subject were to 

continue riding at this level for about 30 minutes. For example, subjects weighing between 70 

and 100 kg who cycle at an 80 W workload would be working at an equivalent of about 4.5 to 

5.5 metabolic equivalents (METS). The following equations were used to calculate the MET 

levels. 

                               

                    

Where VO2 is the energy expenditure in ml/kg/min, Watts is the workload set on the cycle 

ergometer, Body Mass is in kilograms, and MET is metabolic equivalents. This criterion was 

chosen in an effort to approximate the level of exercise a person might engage in if they were 

cycling on their own accord. If the subjects continued to work at this level for 30 minutes, they 

would burn about 200 to 235 calories. Continuing this level of exercise for 5 days each week 

would result in a weekly energy expenditure of about 1015 to 1170 calories/week, which would 

meet current ACSM weekly energy expenditure recommendations (Garber et al., 2011).  

The cycling conditions were randomized ahead of time to minimize any order and 

learning effect. Simultaneous recordings of kinematic (240 Hz) and kinetic (1200 HZ) data were 

performed on 5 consecutive pedaling cycles for each condition which began during the last 30 

seconds of each trial. For the OA subjects, an enlarged numeric pain intensity scale was 

presented to the subjects during this time, and they rated the pain they felt, if any, in both of their 

knees. Subjects were given at least 2 minutes of rest between conditions. 
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DATA ANALYSIS AND STATISTICAL PROCEDURES 

Data Analysis 

 

 The signals from the two pedal sensors in the x direction were summed to form a single 

Fx signal before entering the amplifier. The y and z signals were not combined across the two 

sensors before entering the amplifier so that the moments about the y (My) and z (Mz) axes 

could be calculated. Thus, the center of pressure (COP) was free to move in the medial lateral 

direction (x) along the pedal spindle, but was constrained by the pedal spindle. Forces, moments 

of force, and COP were calculated as follows: 

 

Right Pedal 

              Medio-lateral force 

              Anterior-posterior force 

              Vertical Force 

              Moment of X-axis about the top of the pedal 

                         Moment of Y-axis about the top of the pedal 

                    Moment of Z-axis about the top of the pedal 

              COP in the X-direction 

              COP in the Y-direction 

Left Pedal 

                  Medio-lateral force 

              Anterior-posterior force 

              Vertical Force 
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              Moment of X-axis about the top of the pedal 

                          Moment of Y-axis about the top of the pedal 

                    Moment of Z-axis about the top of the pedal 

              COP in the X-direction 

              COP in the Y-direction 

 

Where fx1, fy1, and fz1 are the forces measured by sensor 1 in the x, y, and z direction 

respectively, fx2, fy2, and fz2 are the forces measured by sensor 2 in the x, y, and z direction 

respectively, a is the distance between the two sensors, and Az0 is the distance from the sensors 

to the top of the pedal. 

 Within Vicon Nexus, the 5 consecutive pedal cycles were separated to obtain 5 individual 

trials from top dead center (TDC, 0°) to TDC (360°). Visual 3D was used to obtain the 3D 

kinematic and kinetic computations for the lower extremity joints. A right hand rule was used to 

determine the polarity of the joint angles and moments and an X-Y-Z Cardan rotation sequence 

was used to compute joint angles. Marker and pedal reaction force data were each filtered using 

a zero lag, 4
th

 order, digital Butterworth filter at 6 Hz (Gregersen et al., 2006a). Peak ankle, knee, 

and hip joint angle and moment data were identified and extracted using custom written 

programs (VB_V3D, VB_Table). For the kinematic and kinetic data, peaks were chosen at 

approximately 90° during the power phase of the crank cycle. This is the approximate time in 

the crank cycle when the rider is able to produce the most effort, which would have the 

greatest muscular impact on their joints. It should be noted that the moment variables were 

not normalized to any anthropometric feature (i.e. weight or height). In cycling we believe it is 
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important not to normalize as the majority of the subject’s weight is carried by the cycle 

ergometer seat and handlebars. Thus, by not normalizing, we are able to get a better 

understanding of the actual moment value across the knee joint. 

Statistical Procedures  

 

 Independent samples t-tests were used to determine if KOOS scores for each subcategory 

were different between the two groups. A 2 x 3 (group x condition) mixed design analysis of 

variance (ANOVA) was used to detect differences between the cycling conditions and 

participant groups for pain and other selected variables (IBM SPSS Statistics 20, Chicago, IL). 

When an interaction was present, a pairwise t-test was performed in the post hoc analysis with 

Bonferroni adjustments to determine the location of the statistical differences. An alpha level of 

0.05 was set a priori. Additionally, for study 2, a simple linear regression was performed for the 

OA patients to analyze the relationship between K/L score and the peak knee adduction angle 

and peak KAM. An alpha level of 0.05 was set a priori.  
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CHAPTER IV 

THE EFFECTS OF LATERAL SHOE WEDGES ON JOINT 

BIOMECHANICS OF PATIENTS WITH MEDIAL COMPARTMENT 

KNEE OSTEOARTHRITIS DURING STATIONARY CYCLING 

ABSTRACT 

 Cycling is commonly prescribed for individuals with knee osteoarthritis (OA) but 

practically no biomechanical literature exists on the topic. Individuals with OA may be at greater 

risk of OA progression or other knee injuries because of their altered knee kinematics. This study 

investigated the effects of lateral wedges on knee joint biomechanics and pain in patients with 

medial compartment knee OA. Thirteen OA subjects and 11 healthy subjects participated in this 

study. A motion analysis system was used to collect 5 pedal cycles of kinematics during 2 

minutes of cycling in 1 neutral and 2 wedge (5° and 10°) conditions. Subjects pedaled at 60 RPM 

and 80 watts while a custom instrumented pedal was used to collect pedal reaction forces. 

Participants rated their knee pain on a visual analog scale each minute of each condition. There 

was a 22% decrease in the knee abduction moment with the 10° wedge. However, this finding 

was not accompanied by a decrease in knee adduction angle or subjective pain. Additionally, 

there was an increase in vertical and horizontal PRF which may negate the advantages of the 

decreased KAM. For medial knee OA patients, cycling with 10° lateral wedges may be a 

possible method to slow OA progression or minimize other knee injuries. More research is 

needed to investigate the joint contact forces as well as long term effects of lateral wedges. 

Key Words: knee osteoarthritis, lateral wedges, knee moment, cycling, kinetics, kinematics 
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Running Title: Effects of wedges on knee OA during cycling 
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INTRODUCTION 

Osteoarthritis (OA) can have an incapacitating effect on people affected. The disease is 

prevalent in nearly 27 million people in USA alone (Lawrence et al., 2008) and the knee joint is 

one of the most commonly affected joints (Lawrence et al., 2008). Exercise such as cycling is 

commonly prescribed by health professionals to reduce the body weight loads placed on the 

knees. However, knee injuries are still the leading complaint in cycling (Dettori and Norvell, 

2006; Kennedy et al., 2007) and very little research has been done justify cycling for knee OA 

beyond the fact that the body weight load is reduced. It is unclear if people with knee OA have 

different cycling patterns than healthy populations. If in fact persons with knee OA cycle 

differently, abnormal kinematics and kinetics may lead to increased knee load and/or pain at the 

very least, and possibly further the development or progression of the disease. It is possible that 

corrective conservative measures can be borrowed from gait interventions to encourage normal 

riding patterns and promote exercise in knee OA populations. 

During gait, the internal knee abduction moment (KAM) has been shown to be an 

important factor associated with knee OA (Andriacchi et al., 2000; Baliunas et al., 2002; Cerejo 

et al., 2002; Mundermann et al., 2005). The KAM is a surrogate measure for loading to the 

medial compartment of the knee which is created as a response to an external adduction moment 

resulting from the ground reaction force (Schipplein and Andriacchi, 1991). This moment acts to 

adduct the knee during stance into a bow-legged or knee varus position (Cerejo et al., 2002); a 

condition that opens the lateral joint space while closing the medial joint space of the knee, 

resulting in increased stress on the medial compartment. Several studies have found a 

relationship between the magnitude of the adduction moment and the severity of knee OA 
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(Cerejo et al., 2002; Mundermann et al., 2005; Sharma et al., 1998; Wada et al., 2001). 

Mundermann et al. (2005) found that people with more severe knee OA have a larger knee varus 

alignment (5.7°) than those with a less severe disease (0.3°). This malalignment in the knee has 

been shown to be associated with the progression of knee OA (Cerejo et al., 2002). 

Possible mechanisms for reducing the KAM during walking, which have been verified by 

previous studies, is by placing a laterally posted orthotic in patients’ shoes (Bennell et al., 2013; 

Butler et al., 2009; Butler et al., 2007; Hinman et al., 2009; Hinman et al., 2012; Kerrigan et al., 

2002) or by using variable stiffness walking shoes (Erhart et al., 2008, 2010b). The application 

of a laterally posted orthotics or variable stiffness walking shoes are used to place the ankle into 

a more everted position which pulls the knee medially; effectively opening up the medial 

compartment joint space. It is logical to assume that this method for reducing the KAM may be 

transferred to cycling. Gregersen et al. (2006a) showed that increasing the ankle eversion angle 

in healthy, experienced cyclists, decreased the KAM by 55% and concluded that everting the 

foot may be beneficial towards preventing or decreasing patellofemoral pain syndrome in 

cycling. However, it is unknown if these modifications in OA patients during cycling would 

produce similar results. 

Cycling reduces loading on the knee joint by placing the majority of the rider’s body 

weight on their seat during seated cycling (Burke, 2003). However, cycling produces a great 

demand on the muscles of the lower limbs, especially the knee extensors, as they are the driving 

force in pushing the pedals to propel the bicycle forward. The increased muscle contraction in 

turn produces increased loading to the knee joint. Thus, knee injuries are still the leading 

complaint in cycling which has strong indication for an overuse injury mechanism (Dettori and 
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Norvell, 2006; Kennedy et al., 2007). For example, a common overuse injury during cycling, 

patellofemoral pain syndrome, is thought to occur because of abnormal non-driving knee 

moments (frontal and transverse planes) during the downward pedal stroke (Boyd et al., 1997; 

Wolchok et al., 1998). Thus, proper alignment of the lower limbs that aid in reducing the internal 

knee abduction moment during cycling is an important factor for reducing overuse injuries 

experienced by the rider (Bailey et al., 2003; Gregersen et al., 2006a; Ruby and Hull, 1993). 

 During cycling of healthy populations, frontal plane knee angles range from about 2 to 4 

degrees of abduction to 1 to 6 degrees of adduction during the crank cycle (Bailey et al., 2003; 

Umberger and Martin, 2001). This small range of motion in the frontal plane indicates that the 

knee remains in a fairly neutral position throughout the crank cycle. However, results of a 

preliminary study in our laboratory showed that participants with medial knee OA do not cycle 

with the normal frontal plane knee kinematics that are typically seen in healthy participants of 

previous studies. Out of the 6 initial participants, 6 knees were continuously adducted throughout 

the crank cycle. The pattern seen is similar to that during gait in which patients with medial 

compartment OA walk with the knee in an adducted position (Cerejo et al., 2002). Bailey et al. 

(2003) found that riders with a history of overuse knee pain had increased knee abduction angles 

when compared to the healthy controls. As discussed earlier, malalignment of the knee during 

cycling is a concern because it may exacerbate an existing condition such as knee OA or cause 

other problems such as overuse injuries with long term riding.  

 To our knowledge, no studies have explored the effects of limb alignment alterations on 

the internal knee abduction moment and angle of knee OA patients during cycling. Changes in 

lower extremity alignment using lateral wedges could alter the frontal plane kinematics by 
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placing the knee in a more medial position and decrease the length of the moment arm of the 

pedal reaction force to the knee joint center in the frontal-plane, thus, decreasing the KAM. 

Previous literature has also suggested that the sagittal plane (Walter et al., 2010) and transverse 

plane (Boyd et al., 1997; Ruby and Hull, 1993) knee moments may be important variables for 

discussing knee injuries. Therefore, kinematic and kinetic knee variables in all three planes of 

motion were analyzed in this study. Additionally, since we were directly manipulating the ankle 

joint by use of wedges, ankle kinematics in all three planes of motion were analyzed. Finally, 

PRF data were also analyzed in this study due to their direct influence on joint moments. 

Therefore, the primary purpose of this study was to investigate the effects of lateral shoe wedges 

on peak knee adduction angle and peak internal KAM in participants with medial compartment 

knee OA during stationary cycling. It was hypothesized that lateral shoe wedges would reduce 

the peak knee adduction angle and the peak KAM in participants with medial compartment knee 

OA during stationary cycling compared to a neutral control condition. 

METHODS 

Participants 

Eleven healthy male and female participants (age: 50.0 ± 9.7 yrs., height: 1.75 ± 0.12 m, 

weight: 80.17 ± 23.13 kg, BMI: 25.9 ± 5.4 kg/m
2
) and thirteen participants with knee OA (age: 

56.8 ± 5.2 yrs., height: 1.80 ± 0.14 m, weight: 83.2 ± 22.3 kg, BMI: 26.6 ± 3.6 kg/m
2
) between 

the ages of 35 and 65 volunteered for participation in this study. Each participant with OA had 

medial compartment tibiofemoral OA in either one or both of their knees. To be included in the 

study, the OA participants must have had at least a grade 1 on the Kellgren-Lawrence score 

(Kellgren and Lawrence, 1957) (Grade 1: N=5, Grade 2: N=3, Grade 3: N=3, Grade 4: N=2) 
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which was diagnosed and verified with radiographs by a rheumatologist. The participants were 

not excluded from the study if they had additional patellofemoral OA or OA in the lateral 

compartment of their knee(s). In addition, participants were excluded from the study if they had 

OA in the hip or ankle joints, had previously had a lower extremity joint replacement, had knee 

joint arthroscopic surgery or intra-articular injections within 3 months prior to testing, had 

systemic inflammatory arthritis such as rheumatoid or psoriatic arthritis, had lower back pain that 

referred to the lower limbs. All OA subjects must have been experiencing pain the majority of 

the days of the week, for at least the previous 6 months. If subjects were taking any type of 

medication for their pain, they were asked to cease its use 2 days prior to the study. The healthy 

participants were pain free in their lower extremities for at least 6 months prior to the study and 

were not diagnosed with any type of lower extremity OA. All participants must have had a BMI 

of no more than 35 kg/m
2
, and must have been able to walk and ride a stationary bike without 

aid. Each participant read and signed the informed consent that was approved by the Institutional 

Review Board.  

 For the X-rays, the OA participants performed bilateral standing in a semi flexed knee 

while anterior/posterior radiographs were taken of both knees in the frontal plane (Buckland-

Wright et al., 2004). Additionally, a sagittal plane radiograph of each knee was collected while 

the participant stood in a semi flexed knee to determine the presence of patellofemoral OA. 

Instrumentation 

A nine-camera motion analysis system (240 Hz, Vicon Motion Analysis Inc., UK) was 

used to acquire three-dimensional (3D) kinematics during the cycling test. The participants wore 

tight fitting spandex shorts and a t-shirt. To identify joint centers, anatomical markers were 
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placed bilaterally on the 1
st
 and 5

th
 metatarsals, medial and lateral malleoli, medial and lateral 

epicondyles, left and right greater trochanters, left and right iliac crests, and left and right 

acromion processes. Four non-collinear tracking markers affixed to a semi-rigid thermoplastic 

shell was attached to the trunk, pelvis, thighs, and shanks using hook and loop wraps. For the 

feet, three markers were placed on the posterior and lateral side of heel counter of standard lab 

shoes (Noveto, Addidas).  

 A cycle ergometer (Excalibur Sport, Lode, Groningen, Netherlands) was used during 

testing. The ergometer was electro-mechanically braked which allowed for a precise workload 

setting that was independent of the pedal cadence. Additionally, the ergometer had removable 

pedals, and had the capability of adjusting the seat and handlebar to fit each rider. 

 A customized instrumented bike pedal was used on the Lode cycle ergometer, which 

allowed recordings of three dimensional forces and moments (Figure 1). The assembly contained 

two 3D force sensors (Type 9027C, Kistler, Switzerland) connected with two charge amplifiers 

(Type 5073A and 5072A, Kistler, Switzerland). The sensors could be placed in either the left or 

right pedal depending on the desired limb to be analyzed. A dummy pedal with the same mass 

and design was used on the opposite side. The pedal reaction forces and 3D kinematics were 

recorded through the Vicon Nexus system simultaneously. 

Experimental Protocol 

 

 Upon arrival to the laboratory each participant filled out a KOOS (Knee Osteoarthritis 

Outcome Score) survey for each of their knees to assess knee pain and function during the week 

prior to the testing session. Participants then performed 3 minutes of treadmill walking at a self-

selected pace which served as a warm-up and as a way to get a baseline VAS pain in their knees 
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(one measurement before and one after the warm-up). Reflective markers were then placed on 

the individual’s body segments for testing. 

 The seat height on the cycle ergometer was set so that the angle of the participant’s knee 

was 30 degrees when the crank was at bottom dead center (Holmes et al., 1994). The horizontal 

seat depth was set so that the knee was in line with the pedal spindle when the crank was in the 

forward horizontal position (90°) (Burke, 2003). Each participant’s trunk angle was also 

controlled by placing the handlebars in a position that created a 90° angle between the trunk and 

the thigh when the crank angle was at 90°. The participants were asked to warm up on the cycle 

ergometer for 3 minutes where knee pain levels were again recorded, one before and one after 

the warm-up. 

 The participants pedaled in 3 cycling conditions. The two wedge conditions included 5 

and 10 degree wedges placed between the shoe and the pedal on the lateral side of the foot. The 

third was the control condition in which the participants pedaled with a neutral foot position 

established with a neutrally oriented pedal toe-cage. The testing conditions were randomized. 

The cycling was performed for 2 minutes in each of the three conditions at a pedal 

cadence of 60 RPM and a workload of 80 Watts. Data were collected on 5 consecutive pedaling 

cycles from top dead center (TDC, 0°) to TDC (360°) for each condition, which began during the 

last 30 seconds of each trial. For the OA participants, an enlarged 0 to 10 numeric pain intensity 

scale was presented to the participants during this time, and they rated the pain in both of their 

knees (0 being no pain and 10 being worst pain possible). Participants could choose any real 

number between 0 and 10. Pain measurements for each knee were recorded at minutes 0, 1, and 2 

during the cycling. Participants were given at least 2 minutes of rest between conditions. 
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Data and Statistical Analyses  

 

 Visual 3D (C-Motion Inc.), a 3D biomechanical analysis software suite, was used for 

signal processing and to obtain the 3D kinematic and kinetic computations for the lower 

extremity joints. A right hand rule was used to determine the polarity of the joint angles and 

moments and an X-Y-Z Cardan rotation sequence was used to compute joint angles. Both marker 

and pedal reaction force data were filtered using a zero lag, 4
th

 order, digital Butterworth filter at 

6 Hz. Customized computer programs (VB_V3D and VB_Table) were used to determine critical 

events of the 3D kinematic and kinetic variables of interest from the output of Visual3D. For the 

kinematic and kinetic data, peaks were chosen at approximately 90° during the power phase of 

the crank cycle. This is the approximate time in the crank cycle when the rider is able to 

produce the most effort, which would have the greatest muscular impact on their joints. It 

should be noted that the moment variables were not normalized to any anthropometric feature 

(i.e. weight or height). In cycling we believe it is important not to normalize as the majority of 

the subject’s weight is carried by the cycle ergometer seat and handlebars. Thus, by not 

normalizing, we are able to get a better understanding of the actual moment value across the 

knee joint. 

 Independent samples t-tests were used to determine if KOOS scores for each subcategory 

were different between the two groups. A 2 x 3 (group x condition) mixed design analysis of 

variance (ANOVA) was used to detect differences between the cycling conditions and 

participant groups for pain and other selected variables (IBM SPSS Statistics 20, Chicago, IL). 

When an interaction was present, a pairwise t-test was performed in the post hoc analysis with 
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Bonferroni adjustments to determine the location of the statistical differences. An alpha level of 

0.05 was set a priori. 

RESULTS 

KOOS and VAS Knee Pain 

 

All subscales of KOOS were (pain, symptoms, activities of daily living, sports, and 

quality of life) lower in the OA group when compared to the healthy group (all p-values <0.001, 

Table 1). During treadmill walking, the VAS pain scores were 0.00 ± 0.00 for the healthy group 

and 1.19 ± 1.48 for the OA group. The VAS pain scores during cycling were 0.03 ± 0.08 cm, 

0.00 ± 0.00 cm, and 0.00 ± 0.00 cm for the healthy group and 1.15 ± 1.10 cm, 1.05 ± 0.89 cm, 

and 1.12 ± 0.79 cm for the OA group for the neutral, 5° wedge, and 10° wedge conditions 

respectively. The ANOVA revealed no interaction (p=0.743) or condition (p=0.425) effects. 

There was a group main effect found with the OA group experiencing more pain than the healthy 

group (p<0.001). 

 

Pedal Reaction Forces 

 

 None of the PRF variables revealed a significant group or interaction effect. The peak 

vertical PRF was significantly greater in both 5° wedge (p=0.006) and 10° wedge (p=0.039) 

conditions compared to neutral (Table 2). Additionally, the peak medial PRF for the 10° wedge 

approached significance with the ANOVA revealing a statistically significant condition main 

effect (p=0.043) but the post hoc test revealing a borderline, but insignificant result (p=0.050). 

For this particular variable, a post hoc analysis without a Bonferroni adjustment was also 
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performed (using LSD Procedure) and the results revealed that the peak medial PRF in the 10° 

wedge condition was significantly greater than the neutral condition (p=0.017). 

 

Ankle Joint Angles 

 

 None of the ankle joint variables revealed a significant group or interaction effect. The 

post hoc comparisons confirmed that the peak eversion angle was increased in the 5° wedge 

(p<0.001) and the 10° wedge (p<0.001) when compared to the neutral condition (Figure 8). The 

eversion angle was also significantly different between the two wedged conditions (p=0.002). 

Additionally, the peak internal rotation angle was significantly decreased in both the 5° wedge 

(p=0.005) and 10° wedge (p<0.001) conditions when compared to neutral (Table 3). 

 

Knee Joint Angles 

 

 Figure 9 shows representative knee adduction angles across conditions for one subject. 

None of the knee angle variables revealed a significant group or interaction effect. The peak knee 

flexion angle was significantly greater in the 5° (p<0.001) and 10° (p<0.001) wedge conditions 

compared to neutral (Table 4). There was also a significant difference found in the peak flexion 

angle between the two wedge conditions (p<0.001). 

 

Knee Joint Moments 

 

 Figure 10 shows representative knee abduction moments across conditions for one 

subject. None of the knee moment variables revealed a significant group or interaction effect. 

The peak abduction moment was significantly decreased in the 10° wedge condition compared to 

neutral (p=0.033, Table 5). 
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DISCUSSION 

 The purpose of this study was to examine the effects of lateral wedges on knee joint 

biomechanics and pain in patients with medial compartment knee OA during stationary cycling. 

The primary hypothesis of this study was that increasing the eversion ankle angle by way of 

wedges would decrease the knee adduction angle, internal knee abduction moment, and knee 

joint pain during cycling. Our hypothesis was partially supported with the 10° wedge condition 

resulting in a 22% reduction of peak KAM for the OA subjects compared to neutral. However, 

this finding was not accompanied by a reduction in knee adduction angle or knee pain when 

compared to neutral.  

The pain values in this study were on the low end of the VAS pain scale which may be a 

good indicator that cycling is an effective mode of exercise to help reduce pain. It may also mean 

that the OA subjects used in this study did not have a significant amount of pain to begin with. 

There was very little difference in pain in the OA subjects during cycling compared to treadmill 

walking. In all conditions, pain was lower in cycling compared to walking. However, these 

differences were very small (largest difference of 0.14 cm in the 5° wedge), so it is unclear if the 

cycling was actually effective in reducing pain compared to walking, or if these particular 

subjects simply did not experience much pain on the day of testing. Five of the thirteen OA 

subjects had K/L grades of 1 which is considered mild OA. This is further supported by the 

KOOS scores which out of the 5 subscales the OA subjects scored highest on Activities of Daily 

Living, and Pain. This suggests that the OA subjects cope well with their disease and were less 

affected compared to the other KOOS subscales. However, our subjects scored similar (in some 

cases worse) than the comparison group of the OA data for which the KOOS was partially 
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developed. Interestingly, the participants in that study were required to have a KL score ≥ 2. 

Nevertheless, it is possible that OA patients with more severe knee pain would show greater 

reductions in pain when the wedges were introduced during cycling.  

For the ankle, both the 5° and 10° wedges were effective in increasing the eversion angle, 

however, not to the extent of the actual slope of the wedge. On average across both groups, the 

5° wedge increased the ankle eversion angle by about 3.2°, while the 10° wedge increased the 

angle by 5°. There are several reasons this could be the case, including shoe sole flexibility and 

movement of the foot inside the shoe. However, the most obvious reason is that when the foot 

was everted, the shank angle did not remain vertical, but leaned more medially. This of course 

would mean the knees were pulled closer to a more desirable, neutral position. Nonetheless, the 

interventions did not induce a statistically significant reduction in peak knee adduction angle as 

we expected.  

For the knee, we did see a marginal main effect (p = 0.054) and a decreasing trend in the 

adduction angle across wedge angles. But it is clear from Table 4 that between subject variability 

was very high. Even though there was a lot of variability in the knee adduction angle, the largest 

mean difference from the neutral condition in the OA group was in the 5° wedge and was only 

0.6°. Though the main effect was nearly significant, this small difference in adduction angle is 

more than likely not a clinically meaningful result. It is unclear why the wedges did not decrease 

the peak adduction angle as hypothesized. It is possible that some subjects did not like how the 

wedges felt, so they pulled their knees back laterally in an attempt to emulate their typical riding 

style (i.e. more like the neutral condition). However, this is purely speculation and we did not 

collect subject perception data to substantiate this theory. Furthermore, the standard deviations 
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for the neutral condition, not just the wedge conditions, were also very high. Additionally, the 

sample size of this study was relatively small considering the high variability of OA studies. The 

more obvious explanation is that since the knee adduction angle is less restricted in cycling than 

other variables (such as hip and ankle angles), there is more room left for greater inter-subject 

variability. 

An interesting observation we made in collecting preliminary data was that there was a 

clear difference in knee adduction angle in OA subjects when compared to healthy subjects of 

previous cycling literature. Specifically, healthy subjects of previous studies exhibited frontal 

plane knee angles that hovered around zero (Bailey et al., 2003; Umberger and Martin, 2001). 

For example, Bailey et al. (2003) showed frontal plane knee angles in healthy subjects ranging 

from -2.5° abduction to 1° adduction. However, our preliminary data showed that most OA 

subjects’ frontal plane knee angles remained adducted for the entire crank cycle. This suggests 

that there is a clear malalignment issue in OA subjects during cycling. This malalignment may 

contribute to the progression of knee OA or may even contribute to overuse knee injuries which 

are already a big concern in cycling. Qualitatively, the OA group in our study did show a larger 

adduction angle during cycling when compared to the healthy group (Table 4). Quantitatively, 

there was about a 41% difference between the two groups (2.4°), however, a statistical difference 

was not found because of the high variability. Surprisingly, the healthy group did not have a 

neutral frontal plane knee angle (12.5° to 1.7° adduction) as seen in previous studies. It is 

possible that the difference between our study and previous studies is due to several factors. 

First, the kinematic collection procedure was different between our study and Bailey’s. For the 

frontal plane, Bailey et al. used a 2 dimensional technique by placing two markers on the anterior 
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shank and measuring the angle between these markers and the right horizontal. Secondly, there 

was a clear difference in the cycling experience of the subjects. Bailey’s subjects had an average 

of 7.6 years of regular cycling experience, while our subjects had no prior cycling requirements. 

Lastly, it is possible that the age of the subjects could play a role since the average age of 

subjects in Bailey’s study was 28 years. While clear methodological differences exist between 

the studies, it is unknown if these differences contribute to the study findings. 

For knee osteoarthritis patients, the KAM has been adopted as the surrogate measure for 

medial compartment knee joint loading (Schipplein and Andriacchi, 1991). In gait studies, 

importance has been placed on reducing the KAM with the overarching goal of lessening the 

severity and/or progression of OA. As mentioned previously, our hypothesis on this primary 

variable was partially supported by the results that the 10° wedge condition introduced a 

significant reduction of the peak KAM by 1.73 Nm (22.4%) for the OA group and by 0.87 Nm 

(9.7%) for the healthy group. This result certainly appears promising for reducing medial 

compartment knee joint loading during cycling. However, the question remains how these loads 

relate to those seen during daily walking. Butler et al. (2007) showed a 10° lateral wedge reduced 

the KAM by 10% compared to neutral. Hinman et al. (2012) showed that a 5° lateral wedge 

reduced the KAM by 5.8%. A more recent study by Bennell et al. (2013) showed that by wearing 

a modified shoe with a 4 - 6° lateral wedge insole, OA patients reduced their KAM by 7.2%. Our 

OA subject cycling results with the 10° wedge appear to reduce the KAM by a greater 

percentage (22%) than during walking. We did see a 28% reduction in the KAM for the OA 

group in the 5° wedge condition, however, the result was not significant. It is difficult to 

conjecture the implications of the larger percent decrease in KAM for OA subjects in cycling 
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compared to walking. The magnitude of the KAM and the loading to the knee joint is greater 

during gait. During walking, however, the KAM is typically normalized (usually by body weight 

and height). The normalized KAM for OA subjects during normal over-ground walking is about 

3.8 % Body Weight * Height (Baliunas et al., 2002; Bennell et al., 2013; Hinman et al., 2012). 

This is equivalent to 17.2 Nm un-normalized for a 1.8 m tall adult weighing 83.2 kg; the 

averages of the OA subjects for our study. With a peak 7.7 Nm KAM in the neutral cycling 

condition in the current study, OA subjects can expect about 2 times less peak absolute KAM 

than when compared to walking, and even more when cycling with wedges.. So, while there is 

clearly a greater percent reduction of KAM in cycling compared to gait when using wedges, it is 

not completely clear how clinically meaningful this percent change is when the absolute KAM is 

initially much less than gait. It is clear from a multitude of studies that much emphasis is placed 

on reducing the KAM for individuals with OA. Based on the results of this study, clinicians are 

justified in prescribing cycling for OA as it is clear that cycling reduces the KAM by as much as 

half during normal cycling. For those requiring an even greater reduction in KAM, a 10° wedge 

may be a good option. Prospective studies would be beneficial to help determine the clinical 

importance. We believe it is important not to normalize the moments for cycling because the 

majority of the body weight is supported by the bicycle seat and not by the legs during seated 

cycling. Thus, the KAM experienced during cycling is due to the muscular effort required to 

push the pedals, rather than due to the loading of body weight during in gait.  

We could only find one published study that tested the effects of wedges during cycling 

(Gregersen et al., 2006a). This group studied the effects of 5 and 10 degree wedges in 15 

competitive cyclists between the ages of 18 and 30 years. The KAM reached by the OA subjects 
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in our study are nearly identical to the subjects in Gregersen’s study in the neutral condition 

(difference of 0.12 Nm) but their percentage change in the 10° wedge was much greater (55%). It 

is not completely clear why our subjects did not realize a similar size of change in the KAM, but 

it is likely that the difference is a result of the age, cycling experience level, riding style, and 

injury status of the subjects. Gregersen et al. (2006a) concluded that everting the foot may be 

beneficial in either preventing or lessening patellofemoral pain syndrome. This conclusion may 

also hold true for the knee OA patients in our study who experienced similar, albeit less drastic 

changes. An interesting result of this study is that even though the KAM was decreased in the 

10° wedge, there was an increase in the peak medial and vertical PRF compared to neutral (Table 

2). Since the KAM is a result of a combination of the frontal plane PRF and the frontal plane 

moment arm from the PRF to the knee joint center, the reduction in the KAM must have come 

from a relatively greater reduction of the moment arm. Additional work to calculate the length of 

the PRF moment arm would be needed to verify this deduction. 

One concern with the wedges is that it is possible that attempting to reduce the KAM 

with wedges may inadvertently increase the knee extensor moment. Previous gait literature 

suggests that even if a reduction is seen in the KAM, an increase in the knee extensor moment 

may negate any beneficial effects (Walter et al., 2010). While we did not find a difference in the 

peak knee extensor moment among conditions, we did find an increasing trend that approached 

significance (p=0.056, Table 5). Additionally, there was a significant increase in the vertical PRF 

which may indicate that the subjects had to push harder when using the wedges in order to keep 

the pedals moving at a consistent 60 RPM. Considering these two variables together, it appears 

that using the wedges may require the subjects to put forth greater muscular effort. This may in 
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fact result in an increase in compression across the knee joint. Future examination on knee joint 

load and muscle forces using a musculoskeletal modeling approach is warranted to verify this 

finding. 

One unexpected finding from this study was that the peak knee flexion angle increased 

with the wedged conditions compared to neutral. This was initially surprising to us because the 

manipulation in the testing conditions was to increase the ankle eversion angle. However, further 

consideration suggested that the knee flexion angle would be increased at the bottom of the crank 

cycle because the wedges essentially lifted the foot slightly off of the pedal. This would be 

similar to riding with a shortened crank arm without adjusting the seat height to compensate. We 

did not change the height of the seat with different wedge conditions, thus, it is unclear if a small 

seat height adjustment would produce different results in either of the groups. We suggest that in 

future studies, it may be necessary to adjust the seat height to accommodate any changes to the 

pedal height. 

It is worth noting that while there was decrease in the KAM with the 10° wedge 

condition, we did not see a decrease in KAM in the 5° wedge condition compared to neutral. 

This presents the question about how many degrees of wedging are sufficient to produce the 

desired result. The current cycling market has in-shoe wedges as well as wedges for cycling 

cleats that are available for correcting excessive knee abduction (these wedges would be placed 

on the medial side of the shoe or cleat). It is interesting to note that these wedges come in very 

small degree increments (typically 1.5°). It is unclear if the individuals requiring these types of 

wedges only need a very small correction, or if it takes a less severely angled wedge to correct an 

abducted knee angle compared to an adducted knee angle. It is possible that we did not see the 
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desired changes because of the stiffness of our laboratory shoes. Those who cycle with cleats 

typically have very stiff soled cycling shoes which may increase the chances of achieving the 

desired result. It is unclear if the changes we made to our pedals would have a different result on 

the knee joint biomechanics if a stiff soled shoe was used instead of our lab shoes. 

The observed changes in this study appear to be minimal, however, it is important to note 

that this study only reported on the acute effects of the use of wedges during cycling as the 

cycling was only performed for 2 minutes. It is unknown if the acute effects would diminish over 

a longer period of time or if they would persist. Due to the repetitive nature of cycling, and 

considering that knee injuries are repetitive overuse injuries, we suggest that these small changes 

may compound and have a large impact over time. This is potentially beneficial for the OA 

sufferer who finds himself struggling with getting adequate exercise while minimizing harmful 

effects to his knees. The workload (80 Watts) and RPM (60 RPM) were fairly mild for the 

majority of our subjects. This workload was used to meet exercise recommendations by the 

American College of Sports Medicine (Garber et al., 2011) for exercising at this level for 30 

minutes per day for 5 days each week. For example, subjects weighing between 70 and 100 kg 

who cycle at an 80 W workload would be working at an equivalent of about 4.5 to 5.5 metabolic 

equivalents (METs). Many people tend to exercise above this MET level, thus, different results 

in KAM and other critical variables may exist with differing workloads. However, a study by 

D'Lima et al. (2008) showed that the peak tibial contact force in an instrumented knee 

replacement of 3 older adults did not change with an increase in cadence from 60 to 90 RPM. 

They also showed that the peak tibial contact force was not different when resistance levels were 

increased from level 2 to 3 on their cycle ergometer. While it is not clear how resistance levels of 
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2 and 3 compare to wattage values in our study, it appears at least in older, knee replacement 

individuals, that compressive forces across the knee may not increase with small increases in 

workload. Additionally, we included OA subjects with a K/L score of 1 which is technically 

considered a diseased joint, but generally a K/L of 1 represents a mild stage of OA. While these 

participants still met our criteria for experiencing pain on a regular basis, it is unknown if our 

results would have been different if only patients with a minimum K/L of 2 were included.  

CONCLUSION 

 The findings of this study indicate that cycling can reduce the KAM by as much as half 

when compared to previous walking studies. The use of a 10° lateral wedge during seated 

cycling was effective in reducing the KAM in healthy and knee OA subjects when compared to a 

neutral condition. However, this finding was not accompanied by a decrease in knee adduction 

angle, or subjective knee pain. Furthermore, even though a decrease in KAM was observed, there 

was a notable increase in the vertical PRF which may be an indicator of increased knee joint 

loading. It is important to remember that these results were due to an acute bout of cycling, and it 

is possible that the relatively small findings may add up and prove to be significant over time. 

This is the first study to report changes in knee joint biomechanical variables with the use of 

wedges in knee OA patients during stationary cycling. Further work is warranted to examine the 

knee joint loading and muscle forces using musculoskeletal modeling, as well as the long term 

effects of using wedges during cycling. 
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90 

 

Tables 

Table 1: KOOS subscale normalized scores 

Subscale Group Mean SD p value 

Pain 
Healthy 95.73 8.27 

<0.001 
OA 70.38 11.93 

Symptom 
Healthy 93.09 10.00 

<0.001 
OA 56.85 11.86 

ADL 
Healthy 96.55 7.16 

<0.001 
OA 72.92 15.71 

Sports 
Healthy 91.36 15.51 

<0.001 
OA 53.69 24.03 

QOL 
Healthy 91.00 16.58 

<0.001 
OA 51.62 13.06 

ADL: Activities of daily living; QOL: Quality of life 

 

 

Table 2: Peak PRF during the downward phase of the crank cycle (mean ± SD). 

  Healthy OA P value (ANOVA) 

Variable Neutral 5° Wedge 10° Wedge Neutral 5° Wedge 10° Wedge Grp Cond Int 

Peak Medial PRF (N) -30.70±11.83 -34.98±10.99 -35.64±9.40 -28.59±8.87 -27.42±14.16 -30.95±8.57 0.242 0.043 0.155 

Peak Posterior PRF (N) -64.69±19.98 -74.11±24.18 -68.54±25.82 -80.46±17.67 -78.59±24.71 -75.10±28.49 0.333 0.306 0.088 

Peak Vertical PRF (N)  236.35±46.60 251.33±46.30# 250.21±51.44# 234.49±34.24 244.96±30.64# 244.17±37.00# 0.772 0.007 0.82 
#: Significantly different than neutral; Grp: Group; Cond: Condition; Int: Group x condition interaction.  
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Table 3: Peak Ankle Joint Angles (mean ± SD). 

  Healthy OA P value (ANOVA) 

Variable Neutral 5° Wedge 10° Wedge Neutral 5° Wedge 10° Wedge Grp Cond Int 

Peak Plantarflexion Angle (°) -8.9±10.7 -7.8±11.6 -8.0±11.3 -6.0±8.5 -6.8±9.8 -8.1±12.8 0.767 0.806 0.595 

Peak Internal Rotation Angle (°) 9.2±7.6 7.1±8.5# 5.8±8.0# 8.1±7.1 6.8±6.9# 5.9±7.7# 0.892 <0.001 0.431 
#: Significantly different than neutral; &: Significantly different than 5° wedge. Plantarflexion and external rotation are negative; Grp: Group; Cond: Condition; 

Int: Group x condition interaction. 
 

 

Table 4: Peak knee joint angles during the downward phase of the crank cycle (mean ± SD). 

  Healthy OA P value (ANOVA) 

Variable Neutral 5° Wedge 10° Wedge Neutral 5° Wedge 10° Wedge Grp Cond Int 

Peak Flexion Angle (°) -44.9±7.8 -47.2±7.1# -48.8±7.7#& -39.8±8.1 -45.0±7.3# -48.1±7.5#& 0.383 <0.001 0.095 

1st Peak Adduction Angle (°) 2.2±5.3 1.6±5.8 1.2±5.5 4.4±5.6 3.8±6.1 4.1±7.1 0.32 0.054 0.707 

Peak External Rotation Angle (°) -5.0±5.2 -4.3±4.3 -4.6±5.0 -2.9±5.4 -2.9±4.8 -3.1±5.0 0.41 0.469 0.528 
#: Significantly different than neutral; &: Significantly different than 5° wedge. Flexion, abduction, and external rotation are negative; Grp: Group; Cond: 

Condition; Int: Group x condition interaction. 

 

 

Table 5: Peak knee joint moments during the downward phase of the crank cycle (mean ± SD). 

  Healthy OA P value (ANOVA) 

Variable Neutral 5° Wedge 10° Wedge Neutral 5° Wedge 10° Wedge Grp Cond Int 

Peak Extensor Moment (Nm) 26.27±9.60 30.35±9.97 29.07±8.94 27.97±7.42 28.88±10.30 28.46±10.62 0.972 0.056 0.271 

Peak Abduction Moment (Nm) -9.00±4.74 -8.98±5.31 -8.13±4.19# -7.72±4.76 -5.53±3.34 -5.99±3.66# 0.191 0.034 0.131 

Peak Internal Rotation Moment (Nm) 7.98±4.29 8.08±4.22 8.47±3.46 6.58±3.32 5.64±4.05 6.02±3.97 0.169 0.705 0.446 
#: Significantly different than neutral. Extensor, abduction, and external rotation moments are negative; Grp: Group; Cond: Condition; Int: Group x condition 

interaction. 
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Figures 

 

 
Figure 8: Peak ankle eversion angles. #: Significantly different than neutral; &: Significantly 

different than 5° Wedge. 
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Figure 9: Representative knee adduction angle from one subject. 

 

 

 

 
Figure 10: Representative knee abduction moment from one subject.  
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CHAPTER V 

THE EFFECTS OF TOE-IN FOOT PROGRESSION ANGLES ON JOINT 

BIOMECHANICS OF PATIENTS WITH MEDIAL COMPARTMENT 

KNEE OSTEOARTHRITIS DURING STATIONARY CYCLING 

ABSTRACT 

 Exercise is important for individuals with knee osteoarthritis (OA) but certain activities 

can be painful and discourage participation. Cycling is commonly prescribed for knee OA but 

practically no previous literature exists on the topic. Due to their altered knee kinematics, OA 

patients may be at greater risk of OA progression or other knee injuries during cycling. This 

study investigated the effects of reduced foot progression angles (i.e. toe-in) on knee joint 

biomechanics and pain in subjects with medial compartment knee OA. Thirteen OA subjects and 

11 healthy subjects participated in this study. A motion analysis system and custom instrumented 

pedal was used to collect 5 pedal cycles of kinematics and kinetics during 2 minutes of cycling in 

1 neutral and 2 toe-in conditions (5° and 10°). Subjects pedaled at 60 RPM and 80 watts and 

rated their knee pain on a visual analog scale for each condition. For the OA subjects, there was a 

61% (2.7°) and a 73% (3.2°) decrease in peak knee adduction angle compared to neutral. This 

finding was not accompanied by a decrease in pain or peak knee abduction moment (KAM) 

because of high inter-subject variability. A simple linear regression showed a positive correlation 

between Kelgren-Lawrence (K/L) score and both peak knee adduction angle and KAM. For 

medial knee OA patients, cycling with a decreased foot progression angle may be beneficial in 

slowing the progression of OA or minimizing other knee injuries. Patients with a higher K/L 



95 

 

score may have greater potential for beneficial results. More research is needed to investigate the 

joint contact forces as well as long term effects of riding with toe-in foot angles. 

Key Words: knee osteoarthritis, toe-in, foot progression angle, knee moment, cycling, kinetics, 

kinematics 

Running Title: Effects of toe-in on knee OA during cycling 
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INTRODUCTION 

It has been estimated that nearly 27 million people in the USA suffered from 

osteoarthritis (OA) (Lawrence et al., 2008). While several treatments have been suggested to 

cope with the disease, there is, unfortunately, no cure for OA at this time. The medial 

compartment of the knee is the most common joint affected by OA (Lawrence et al., 2008) and 

has garnished much attention for treatment and symptom alleviation. While seemingly 

counterintuitive, exercise is one of the best treatment options for OA (Hochberg et al., 2012; 

Jordan et al., 2003; Zhang et al., 2008). The problem with exercise in OA sufferers is that certain 

activities can increase joint loading, be painful, and ultimately discourage continued exercise. 

Thus, to remedy the situation, exercises that reduce the joint loading such as cycling are 

commonly recommended by health professionals (Mangione et al., 1999). Unfortunately, beyond 

the fact that cycling reduces the body weight loading on the knees, there is practically no 

previous literature to suggest that cycling is beneficial for knee OA sufferers. In fact, knee 

injuries are the leading complaint in cycling (Dettori and Norvell, 2006; Kennedy et al., 2007). 

Due to the lack of literature regarding cycling with OA, it is unclear if people with knee 

OA present the same cycling patterns as healthy individuals. In gait, it has been well established 

that people with OA do not present the same kinematics and kinetics as healthy individuals. 

Specifically, OA individuals show increased knee varus alignment and increased peak internal 

knee abduction moments (KAM) compared to healthy controls (Baliunas et al., 2002; Cerejo et 

al., 2002; Mundermann et al., 2005). Therefore, it is possible that differences in kinematics and 

kinetics between healthy and OA individuals may also exist in cycling as well. In experienced 

cyclists, Bailey et al. (2003) found that riders with a history of overuse knee pain had increased 



97 

 

knee abduction angles when compared to the healthy controls. Thus, knee joint malalignment 

during cycling may be a concern for individuals with medial knee OA because it may exacerbate 

their OA symptoms or lead to other problems such as overuse injuries. If abnormal cycling 

kinematics and kinetics are present, it is possible that corrective measures can be taken to 

encourage normal riding patterns and reduce the chances of increased knee injuries while 

cycling. 

During gait, the internal knee abduction moment (KAM), a surrogate measure for loading 

to the medial compartment of the knee (Schipplein and Andriacchi, 1991), has been shown to be 

an important factor associated with knee OA (Baliunas et al., 2002; Cerejo et al., 2002). Several 

researchers have shown it is possible to reduce the KAM through simple gait modification 

strategies (Fregly et al., 2007; Guo et al., 2007; Mundermann et al., 2008; Shull et al., 2013). 

Guo et al. (2007) attempted to reduce the KAM by requiring their participants to walk in an 

increased toe-out (foot progression) angle during walking. The results showed that participants 

were able to reduce their second peak KAM by 40% with a 15 degree increase of foot 

progression angle. However, no changes were noted for the first peak KAM which is a measure 

that is more closely related to loading response during gait and severity and progression of 

medial knee OA. Shull et al. (2013) attempted to reduce the KAM by having their participants 

walk in a toe-in foot progression angle (0.75 degree shank angle increase from baseline). They 

found that this method of walking reduced the first peak knee adduction moment by about 11% 

but the second peak KAM remained unchanged. The result provides a promising yet simple 

method to effectively reduce the KAM during walking, and may be a potential solution for 

reducing the KAM during cycling in the medial knee OA population. 
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 To our knowledge, no studies have explored the effects of limb alignment alterations on 

the internal knee abduction moment of medial knee OA patients during cycling. Changes in 

lower extremity alignment using an increased toe-in foot progression angle could alter the frontal 

plane kinematics by placing the knee in a more medial position (Shull et al., 2013). This 

alignment change would decrease the length of the frontal plane moment arm of the pedal 

reaction force to the knee joint center, thus, decreasing the KAM. Previous literature has also 

suggested that the sagittal plane (Walter et al., 2010) and transverse plane (Boyd et al., 1997; 

Ruby and Hull, 1993) knee moments may be important variables for knee injuries. Therefore, 

kinematic and kinetic knee variables in all three planes of motion were analyzed in this study. 

Additionally, since we were directly manipulating the ankle joint by use of wedges, ankle 

kinematics in all three planes of motion were analyzed. Finally, PRF data were also analyzed in 

this study due to their direct influence on joint moments.Therefore, the primary purpose of this 

study was to investigate the effects of changes in toe-in foot progression angles on peak knee 

adduction angle and peak KAM in subjects with medial compartment knee OA during stationary 

cycling. It was hypothesized that toe-in foot progression angles would reduce the peak knee 

adduction angle and the peak KAM in subjects with medial compartment knee OA during 

stationary cycling compared to a neutral foot position. 

METHODS 

Participants 

Eleven healthy male and female participants (age: 50.0 ± 9.7 yrs., height: 1.75 ± 0.12 m, 

weight: 80.17 ± 23.13 kg, BMI: 25.9 ± 5.4 kg/m
2
) and thirteen participants with knee OA (age: 

56.8 ± 5.2 yrs., height: 1.80 ± 0.14 m, weight: 83.2 ± 22.3 kg, BMI: 26.6 ± 3.6 kg/m
2
) between 
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the ages of 35 and 65 volunteered for participation in this study. Each participant with OA had 

medial compartment tibiofemoral OA in either one or both of their knees. To be included in the 

study, the OA participants must have had at least a grade 1 on the Kellgren-Lawrence score 

(Kellgren and Lawrence, 1957) (Grade 1: N=5, Grade 2: N=3, Grade 3: N=3, Grade 4: N=2) 

which was diagnosed and verified with radiographs by a rheumatologist. Participants were 

excluded from the study if they had OA in the hip or ankle joints, had previously had a lower 

extremity joint replacement, had knee joint arthroscopic surgery or intra-articular injections 

within 3 months prior to testing, had systemic inflammatory arthritis such as rheumatoid or 

psoriatic arthritis, had lower back pain that referred to the lower limbs. The participants were not 

excluded from the study if they had additional patellofemoral OA or OA in the lateral 

compartment of their knee (s). All OA subjects must have been experiencing pain the majority of 

the days of the week, for at least the previous 6 months. If subjects were taking any type of 

medication for their pain, they were asked to cease its use 2 days prior to the study. The healthy 

participants were pain free in their lower extremities for at least 6 months prior to the study and 

were not diagnosed with any type of lower extremity OA. All participants must have had a BMI 

of no more than 35 kg/m
2
, and must have been able to walk and ride a stationary bike without 

aid. Each participant gave their informed consent which was approved by the Institutional 

Review Board.  

 For the X-rays, the OA participants performed bilateral standing in a semi flexed knee 

while anterior/posterior radiographs were taken of both knees in the frontal plane (Buckland-

Wright et al., 2004). Additionally, a sagittal plane radiograph of each knee was collected while 

the participant stood in a semi flexed knee to determine the presence of patellofemoral OA. 
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Instrumentation 

A nine-camera motion analysis system (240 Hz, Vicon Motion Analysis Inc., UK) was 

used to acquire three-dimensional (3D) kinematics during the cycling test. The participants wore 

tight fitting spandex shorts and a t-shirt. To identify joint centers, anatomical markers were 

placed bilaterally on the 1
st
 and 5

th
 metatarsals, medial and lateral malleoli, medial and lateral 

epicondyles, left and right greater trochanters, left and right iliac crests, and left and right 

acromion processes. Four non-collinear tracking markers affixed to a semi-rigid thermoplastic 

shell was attached to the trunk, pelvis, thighs, and shanks using hook and loop wraps. For the 

feet, three markers were placed on the posterior and lateral side of heel counter of standard lab 

shoes (Noveto, Addidas).  

 A cycle ergometer (Excalibur Sport, Lode, Groningen, Netherlands) was used during 

testing. The ergometer was electro-mechanically braked which allowed for a precise workload 

setting that was independent of the pedal cadence. Additionally, the ergometer had removable 

pedals, and had the capability of adjusting the seat and handlebar to fit each rider. 

 A customized instrumented bike pedal was used on the Lode cycle ergometer, which 

allowed recordings of three dimensional forces and moments (Figure 3). The assembly contained 

two 3D force sensors (Type 9027C, Kistler, Switzerland) connected with two charge amplifiers 

(Type 5073A and 5072A, Kistler, Switzerland). The sensors could be placed in either the left or 

right pedal depending on the desired limb to be analyzed. A dummy pedal with the same mass 

and design was used on the opposite side. The pedal reaction forces and 3D kinematics were 

recorded through the Vicon Nexus system simultaneously. 
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Experimental Protocol 

 

 Upon arrival to the laboratory each participant filled out a KOOS (Knee Osteoarthritis 

Outcome Score) survey for each of their knees to assess knee pain and function during the week 

prior to the testing session. Participants then performed 3 minutes of treadmill walking at a self-

selected pace which served as a warm-up and as a way to get a baseline VAS pain in their knees 

(one measurement before and one after the warm-up). Reflective markers were then placed on 

the individual’s body segments for testing. 

 The seat height on the cycle ergometer was set so that the angle of the participant’s knee 

was 30 degrees when the crank was at bottom dead center (Holmes et al., 1994). The horizontal 

seat depth was set so that the knee was in line with the pedal spindle when the crank was in the 

forward horizontal position (90°) (Burke, 2003). Each participant’s trunk angle was also 

controlled by placing the handlebars in a position that created a 90° angle between the trunk and 

the thigh when the crank angle was at 90°. The participants were asked to warm up on the cycle 

ergometer for 3 minutes where knee pain levels were again recorded, one before and one after 

the warm-up. 

 The participants pedaled in 3 cycling conditions. The two toe-in conditions included 5 

and 10 degree wedges placed between the pedal body and toe cage. The third was the control 

condition in which the participants pedaled with a neutral foot position established with a 

neutrally oriented pedal toe-cage. The testing conditions were randomized. 

The cycling was performed for 2 minutes in each of the three conditions at a pedal 

cadence of 60 RPM and a workload of 80 Watts. Data were collected on 5 consecutive pedaling 

cycles from top dead center (TDC, 0°) to TDC (360°) for each condition, which began during the 
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last 30 seconds of each trial. For the OA participants, an enlarged 0 to 10 numeric pain intensity 

scale was presented to the participants during this time, and they rated the pain in both of their 

knees (0 being no pain and 10 being worst pain possible). Participants could choose any real 

number between 0 and 10. Pain measurements for each knee were recorded at minutes 0, 1, and 2 

during the cycling. Participants were given at least 2 minutes of rest between conditions. 

Data and Statistical Analyses  

 

 Visual 3D (C-Motion Inc.), a 3D biomechanical analysis software suite, was used for 

signal processing and to obtain the 3D kinematic and kinetic computations for the lower 

extremity joints. A right hand rule was used to determine the polarity of the joint angles and 

moments and an X-Y-Z Cardan rotation sequence was used to compute joint angles. Both marker 

and pedal reaction force data were filtered using a zero lag, 4
th

 order, digital Butterworth filter at 

6 Hz (Gregersen et al., 2006a). Customized computer programs (VB_V3D and VB_Table) were 

used to determine critical events of the 3D kinematic and kinetic variables of interest from the 

output of Visual3D. For the kinematic and kinetic data, peaks were chosen at approximately 90° 

during the power phase of the crank cycle. This is the approximate time in the crank cycle when 

the rider is able to produce the most effort, which would have the greatest muscular impact on 

their joints. It should be noted that the moment variables were not normalized to any 

anthropometric feature (i.e. weight or height). In cycling we believe it is important not to 

normalize as the majority of the subject’s weight is carried by the cycle ergometer seat and 

handlebars. Thus, by not normalizing, we are able to get a better understanding of the actual 

moment value across the knee joint. 
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 Independent samples t-tests were used to determine if KOOS scores for each subcategory 

were different between the two groups. A 2 x 3 (group x condition) mixed design analysis of 

variance (ANOVA) was used to detect differences between the cycling conditions and 

participant groups for pain and other selected biomechanical variables (IBM SPSS Statistics 20, 

Chicago, IL). When an interaction was present, a pairwise t-test was performed in post hoc 

analysis with Bonferroni adjustments to determine location of the statistical differences. An 

alpha level of 0.05 was set a priori. Additionally, a simple linear regression was performed for 

the OA patients to analyze the relationship between K/L score and the peak knee adduction 

angles and peak KAM. An alpha level of 0.05 was set a priori. 

RESULTS 

KOOS and VAS Knee Pain 

 All KOOS subscales  (pain, symptoms, activities of daily living, sports, and quality of 

life) were lower in the OA group when compared to the healthy group (all p-values <0.001, 

Table 6). During treadmill walking, the VAS pain scores were 0.00 ± 0.00 for the healthy group 

and 1.19 ± 1.48 for the OA group. The VAS pain scores during cycling were 0.035 ± 0.08 cm, 

0.046 ± 0.15 cm, and 0.11 ± 0.38 cm for the healthy group and 1.15 ± 1.10 cm, 1.25 ± 1.19 cm, 

and 0.96 ± 0.97 cm for the OA group for the neutral, 5° toe-in, and 10° toe-in conditions, 

respectively. The ANOVA revealed no interaction (p=0.095) or condition (p=0.417) effects. 

There was a group main effect found with the OA group experiencing more pain than the healthy 

group (p=0.003). 
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Pedal Reaction Forces 

 None of the PRF variables revealed a significant group or interaction effect. The peak 

vertical PRF was greater in the 5° toe-in condition compared to neutral (p=0.028, Table 7). 

Ankle Joint Angles 

 The post hoc comparisons confirmed that the peak internal rotation angle was increased 

in the 5° (p=0.003) and 10° toe-in (p<0.001) conditions compared to the neutral condition 

(Figure 11). The ANOVA revealed a significant interaction for the peak plantarflexion angle 

(p=0.044). However, when the post hoc analysis was performed, no significant results were 

found. The peak eversion angle was increased in 10° toe-in condition compared to neutral 

(p=0.023), and overall the OA group presented less eversion than the healthy group (Table 8). 

Knee Joint Angles 

 None of the knee angle variables revealed a significant group or interaction effect. The 

peak knee flexion angle was reduced in the 5° (p=0.023) and 10° (p<0.001) toe-in conditions 

compared to neutral (Table 9). There was also a significant reduction found in the 10° toe-in 

peak knee flexion angle compared to the 5° toe-in condition (p=0.011). Figure 12 shows 

representative curves for the knee adduction angle for one subject. Table 11 shows knee 

adduction angles for individual subjects as well as K/L scores for the OA subjects. The peak 

minimum knee adduction angle was decreased in the 5° (p<0.001) and 10° (p<0.001) toe-in 

conditions compared to neutral (Table 9). The results of the regression analysis revealed that the 

K/L score was a significant predictor for the peak knee adduction angle in all conditions (r=0.810 

(p<0.001), r=0.865 (p<0.001), r=0.847 (p<0.001) for neutral, 5° toe-in, and 10° toe-in, 
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respectively). Scatterplots of the relationship between K/L and peak minimum knee adduction 

angle are shown in Figure14. 

Knee Joint Moments 

 None of the knee moment variables revealed a significant group or interaction effect. 

Figure 13 shows representative curves for the knee adduction moment for one subject. The peak 

internal rotation moment was reduced in the 10° toe-in condition compared to neutral (p=0.002, 

Table 10). The results of the regression analysis revealed that K/L score was a significant 

predictor of peak KAM in all conditions (r = -0.728 (p=0.002), r=-0.630 (p=0.011), and r=-0.812 

(p<0.001) for neutral, 5° toe-in, and 10° toe-in, respectively). Scatterplots of the relationship 

between K/L and KAM are shown in Figure 15. 

DISCUSSION 

 The purpose of this study was to examine the effects of 5 and 10 degrees of toe-in foot 

progression angles on knee joint biomechanics and pain in patients with medial compartment 

knee OA during stationary cycling. The primary hypothesis of this study was that decreasing the 

foot progression angle would decrease the knee adduction angle, internal knee abduction 

moment, and knee joint pain during cycling. Our hypothesis was partially supported with a 

significant decrease in the peak knee adduction angle for both the 5° and 10° toe-in conditions 

when compared to neutral. However, the noted changes in knee adduction angle were not 

accompanied by a decrease in KAM or pain when compared to the neutral condition. 

 There was very little difference in pain in the OA subjects during cycling compared to the 

treadmill walking warm-up. In the neutral and 10° toe-in conditions it appeared that pain 
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decreased compared to walking (0.04 and 0.23 cm respectively). In the 5° toe-in condition, the 

pain appeared to increase (0.06 cm). However, these differences were very small, so it is unclear 

if the changes in pain level were actually a result of differences between walking and cycling, or 

if these particular subjects simply did not initially have much pain on the day of testing. 

In the current study, the designed interventions through angled toe-cages did significantly 

increase the ankle internal rotation angle in both the 5° and 10° conditions (Figure 11). However, 

the change in ankle internal rotation angle from neutral was less than the actual change in toe-

cage angle. While the toe-cage has straps to help constrict foot motion, there is still some 

flexibility for the rider to move their foot. Previous literature has shown the importance of 

allowing some freedom of movement between the foot and pedal; helping to reduce joint 

moments, and concomitantly, over-use knee injuries (Boyd et al., 1997; Ruby and Hull, 1993). 

Interestingly, we also found a significant decrease in peak ankle eversion angle in the 10° toe-in 

condition compared to neutral. This appears to be a result of the natural anatomy of the ankle 

joint since the ankle does not have joint axis that are perfectly perpendicular to the foot and 

shank segments (Lundberg et al., 1989). Due to the off-axis rotations, and because ankle 

movements occur in both the talocrural and subtalar joints, it is reasonable that increased internal 

rotation would be coupled with increased inversion (or reduced eversion). Another interesting 

result is that the peak eversion angle was greater for the healthy group than for the OA group. It 

is difficult to speculate why the eversion ankles of the two groups would be different. It is 

possible that the OA subjects’ knees were closer to the cycle ergometer, thus, the frontal plane 

angle between the shank and the foot would be reduced in the OA subjects. However, we did not 
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measure the distance between the knee and cycle ergometer and there were no group differences 

found in the peak knee adduction angle. 

When the ankle was internally rotated in the toe-in conditions, we did find that the peak 

knee adduction angle also decreased in both the 5° and 10° toe-in conditions when compared to 

neutral. On average across all OA subjects, we found a 61.4% (2.7°), and 72.7% (3.2°) reduction 

in the peak adduction angle for the 5° and 10° toe-in conditions respectively. This is a potentially 

substantial result when considering a study by Bailey et al. (2003) that showed a 2.5° difference 

in knee abduction angle between asymptomatic and previously injured cyclists. We would like to 

note that in the neutral condition, the OA group in our study did have greater average peak knee 

adduction angle than the healthy group by 2.2°. However, a statistical difference was not found 

between the groups because of high variability (Table 9) and it is not clear if a 2° difference in 

adduction angle is clinically meaningful for knee OA subjects. The results from Bailey et al. 

(2003) suggest that subjects with large shifts in adduction angle from a more neutral position (i.e. 

hovering around zero) may be at increased risk of OA progression or other overuse knee injuries 

during cycling. Due to the large variations in frontal plane angle across subjects, we are cautious 

in making this claim, and suggest more research be done to examine the reasons for high frontal 

plane knee angle variability. We did include OA patients with all K/L grades in this study, and 5 

of our OA participants had a K/L score of 1. Our subject’s KOOS scores were similar to the 

KOOS’s reference data which did not include a K/L of 1 (Roos et al., 1999). As suggested 

earlier, however, knee adduction angle increases with medial knee OA severity (Mundermann et 

al., 2005). Individual OA subject data from Table 11 supports this claim, with the participants 

with higher K/L scores producing larger adduction angles on average than those with lower K/L 
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scores. The regression analysis revealed that the K/L score was significantly correlated with the 

peak knee adduction angles. There were strong and positive correlations between K/L score and 

peak knee adduction angle, with the K/L score explaining 65%, 75%, and 72% of variation in 

knee adduction angle for the neutral, 5° toe-in and 10° toe-in conditions respectively (Figure 14). 

Therefore, it is possible that a patient sample with a more severe medial knee OA would have 

greater adduction angles and would result in a greater deviation from the healthy group; perhaps 

making them more susceptible to OA progression or other injury. It is worth noting that in 

previous cycling studies of healthy subjects, the frontal plane knee angle hovered around zero, 

ranging between 2-4° of abduction to 1-6° of adduction (Bailey et al., 2003; Umberger and 

Martin, 2001). The average (but not for every individual) frontal plane angle of our healthy 

subjects remained adducted throughout the crank cycle, ranging between 2° and 13° of adduction 

(Table 11). The differences in healthy subjects between previous studies and our study could be 

due to the experience of the participants (previous studies used experienced cyclists), the age of 

the participants (previous studies age was about 28 years), or the fact that previous studies used 

clipless pedals while we used toe-cages. Additionally, the previous studies used a 2D analysis, 

while we used 3D.  

 During gait, the KAM has been found to be a surrogate measure for loading to the medial 

compartment of the knee (Schipplein and Andriacchi, 1991). Previous studies have found that an 

increase in the KAM is associated with an increased risk of OA severity and/or progression 

(Chakravarty et al., 2008; Miyazaki et al., 2002; Mundermann et al., 2005; Wada et al., 2001). 

Much emphasis has been placed on reducing the KAM for OA patients with the intent of 

reducing the risk of accelerated progression of OA and OA severity. Shull et al. (2013) showed 
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promising results during gait with a 13% reduction in KAM by using a foot progression angle 

that was 5° less (toe-in) than the subject’s baseline value. During cycling, previous literature has 

suggested a potential for a decreased risk of overuse knee injuries with a decrease in KAM when 

some amount of movement is allowed between the foot and the pedal (Boyd et al., 1997; Ruby 

and Hull, 1993) and when the cyclists adapts a more everted foot position (Gregersen et al., 

2006a). The magnitude of our KAM during neutral cycling was similar to that of previous 

literature (Boyd et al., 1997; Gregersen and Hull, 2003; Gregersen et al., 2006a), however, we 

did not see a significant reduction in KAM in the toe-in conditions compared to neutral.  

Consistent with previous literature (Boyd et al., 1997; Gregersen and Hull, 2003), we did see 

large variability in the KAM which may be the reason why we did not find a significant decrease 

in KAM in the toe-in conditions compared to neutral. Even though sagittal plane cycling 

kinematics are relatively controlled by seat height, crank length, and bike frame geometry, there 

is much less restriction in the frontal plane, especially for the knee joint. Therefore, some 

individuals in this study might have benefited from a toe-in intervention while others showed no 

relative change. For example, similar to the peak minimum knee adduction angle, Table 11 

suggests that individuals with higher K/L grades may have higher KAM. This observation was 

further confirmed by the moderate and positive linear relationships between KAM and K/L score 

(Figure 15). The results of the regression analysis for KAM suggest that differences in K/L score 

explain 53%, 40%, and 66% of the variation in the peak KAM for the neutral, 5° toe-in, and 10° 

toe-in conditions respectively. However, due to the large variability within OA subjects, we 

suggest that future cycling interventions be designed on individual basis. In addition to the 

KAM, we found a significant decrease in the peak internal rotation moment in the 10° toe-in 
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condition compared to neutral. While the internal rotation moment has been less studied in bike 

related research, it is nonetheless an important variable as past work has shown that a decrease in 

non-driving intersegmental moments has potential to reduce overuse knee injuries (Boyd et al., 

1997; Ruby and Hull, 1993). These researchers also found that a decrease in internal rotation and 

knee adduction moments occurs when a rider is free to internally/externally rotate their foot on 

the pedal when compared a condition in which the foot is fixed to the pedal (i.e. no rotations). 

Due to the lack of absolute restriction in our toe-cage, our toe-cage on the pedal did allow some 

transverse-plane rotations of foot. 

 It is important to remember that knee injuries are the leading complaint in cycling. Thus, 

while decreasing the KAM appears important, we should also be cognizant of the influence of 

interventions on other variables. In the current study, the peak vertical PRF was indeed increased 

in the 5° toe-in condition compared to neutral, but not the 10° condition, although the 10° 

condition was close to being significant (p=0.058). Previous gait literature has suggested that an 

increase in the knee extensor moment may negate the effects of a decreased KAM (Walter et al., 

2010). We did not see an increase in the peak knee extensor moment in this study. Thus, our 

results imply that the increase in vertical PRF did not influence the net effort of the knee 

extensors to keep the cycle moving at the desired pace and workload. A musculoskeletal 

modeling analysis would be required to verify this finding.  

 There are a few limitations of this study. Due to the high variability in frontal plane 

variables, it is necessary to increase the sample size to get a better understanding of the true 

differences between OA and healthy subjects during cycling. Additionally, the pain levels in our 

OA subjects were relatively low. Thus, the effect of the intervention on the OA subjects may 
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have been different if baseline pain values were higher. Also, we included OA subjects with a 

minimum K/L score of 1. This is technically considered a diseased joint, but generally a K/L of 1 

represents a mild stage of OA. It is not clear if excluding subjects with a K/L of 1 would reveal 

different results. Similarly, we did not perform x-rays on the healthy subjects. Thus, while the 

healthy subjects reported no knee problems, we did not have radiographic support of no OA. 

Finally, since we included subjects with a BMI up to 35, difficulty in marker placement due to 

excess soft tissue may have introduced errors in calculating knee and hip joint centers. However, 

the same researcher placed markers on all subjects to ensure that marker placements were 

consistent across subjects.  

CONCLUSION 

 The findings of this study indicate that the use of both 5° and 10° toe-in foot progression 

angles during seated cycling was effective in reducing knee adduction angles in medial 

compartment knee OA and healthy subjects. However, these interventions were not effective in 

reducing peak KAM or subjective knee pain. It is not known if the decrease in knee adduction 

angle has potential to influence the progression of OA. However, previous literature suggests 

small variations from a neutral knee joint during cycling have the potential to increase the risk of 

overuse knee injuries, and our results suggest that individuals with higher K/L scores have an 

increased knee adduction angle and KAM. . Additionally, even though there was a decrease in 

the knee adduction angle, there was also an increase in the vertical PRF which may be an 

indicator of increased joint loading. This is the first study to report changes in knee joint 

biomechanical variables with the use of toe-in interventions in knee OA patients during cycling. 

Further work is warranted to examine muscle forces and knee joint loading, why frontal plane 
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knee joint variables are so variable, and the long term effects of toe-in foot progression angles 

during cycling.  
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114 

 

Tables 

 

Table 6: KOOS subscale normalized scores. 

Subscale Group Mean SD p value 

Pain 
Healthy 95.73 8.27 

<0.001 
OA 70.38 11.93 

Symptom 
Healthy 93.09 10.00 

<0.001 
OA 56.85 11.86 

ADL 
Healthy 96.55 7.16 

<0.001 
OA 72.92 15.71 

Sports 
Healthy 91.36 15.51 

<0.001 
OA 53.69 24.03 

QOL 
Healthy 91.00 16.58 

<0.001 
OA 51.62 13.06 

ADL: Activities of daily living; QOL: Quality of life 

 

 

Table 7: Peak PRF during the downward phase of the crank cycle (mean ± SD). 

  Healthy OA P value (ANOVA) 

Variable Neutral 5° Toe-in 10° Toe-in Neutral 5° Toe-in 10° Toe-in Grp Cond Int 

Peak Medial PRF (N) -30.70±11.83 -33.60±9.27 -31.95±11.38 -28.59±8.87 -28.94±12.94 -25.55±11.07 0.275 0.193 0.653 

Peak Posterior PRF (N) -64.69±19.98 -71.58±24.23 -67.81±26.43 -80.46±17.67 -78.41±21.79 -75.61±24.54 0.258 0.361 0.204 

Peak Vertical PRF (N) 236.35±46.60 246.16±44.87# 250.38±50.21 234.49±34.24 249.21±34.27# 242.97±26.62 0.896 0.034 0.245 
#: Significantly different than neutral; Grp: Group; Cond: Condition; Int: Group x condition interaction. 
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Table 8: Peak Ankle Joint Angles (mean ± SD). 

  Healthy OA P value (ANOVA) 

Variable Neutral 5° Toe-in 10° Toe-in Neutral 5° Toe-in 10° Toe-in Grp Cond Int 

Peak Plantarflexion Angle (°) -8.9±10.7 -8.2±10.3 -9.3±10.2 -6.0±8.5 -11.0±8.6 -11.7±8.2 0.834 0.152 0.044 

Peak Eversion Angle (°) -13.2±8.4 -11.8±7.0 -12.0±6.8# -6.8±6.6 -5.2±6.4 -3.9±5.8# 0.015 0.031 0.383 
#: Significantly different than neutral; Plantarflexion and eversion are negative; Grp: Group; Cond: Condition; Int: Group x condition interaction. 

 

 

Table 9: Peak knee joint angles during the downward phase of the crank cycle (mean ± SD). 

  Healthy OA P value (ANOVA) 

Variable Neutral 5° Toe-in 10° Toe-in Neutral 5° Toe-in 10° Toe-in Grp Cond Int 

Peak Flexion Angle (°) -44.9±7.8 -43.0±8.3# -41.6±7.9#& -39.8±8.1 -38.4±8.9# -35.5±8.8#& 0.129 < 0.001 0.586 

Peak Adduction Angle (°) 2.2±5.3 0.5±4.8# -0.2±4.5# 4.4±5.6 1.7±6.5# 1.2±6.7# 0.494 < 0.001 0.573 

Peak External Rotation Angle (°) -5.0±5.2 -3.9±4.9 -3.8±4.5 -2.9±5.4 -1.4±4.9 -1.8±5.5 0.281 0.166 0.796 
#: Significantly different than neutral; &: Significantly different than 5° wedge. Flexion, abduction, and external rotation are negative; Grp: Group; Cond: 

Condition; Int: Group x condition interaction. 

 

 

Table 10: Peak knee joint moments during the downward phase of the crank cycle (mean ± SD). 

  Healthy OA P value (ANOVA) 

Variable Neutral 5° Toe-in 10° Toe-in Neutral 5° Toe-in 10° Toe-in Grp Cond Int 

Peak Extensor Moment (Nm) 26.27±9.60 27.54±10.11 27.75±9.97 27.97±7.42 28.33±9.66 26.70±9.64 0.899 0.587 0.190 

Peak Abduction Moment (Nm) -9.00±4.74 -9.54±4.92 -9.12±4.74 -7.72±4.76 -6.93±3.66 -6.69±4.18 0.242 0.562 0.484 

Peak Internal Rotation Moment (Nm) 7.98±4.29 6.96±2.99 6.10±3.92# 6.58±3.32 4.88±4.40 2.92±3.88# 0.127 0.004 0.465 
#: Significantly different than neutral. Extensor, abduction, and external rotation moments are negative; Grp: Group; Cond: Condition; Int: Group x condition 

interaction. 
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Table 11: Individual subject K/L scores, overall knee joint position during the neutral condition, and peak maximum and minimum 

knee adduction angles.  

 

OA Subject 

  Neutral 5° Toe-in 10° Toe-in 

K/L Score Joint Pos Peak (+) Peak (-) KAM (Nm) Peak (+) Peak (-) KAM Peak (+) Peak (-) KAM 

1 1 Neutral 8.1 -5.9 -2.76 3.2 -7.7 -4.06 4.2 -6.4 -3.12 

2 4 ADD 14.1 9.5 -12.39 9.4 5.8 -13.50 10.1 5.7 -14.90 

3 3 ADD 21.3 10.2 -6.24 17.7 6.0 -7.50 24.5 6.9 -8.47 

4 2 ADD 11.5 4.8 -1.92 8.2 3.5 -3.71 6.9 0.4 -2.16 

5 1 ADD 11.8 4.9 -4.03 6.2 -2.4 -2.95 10.1 0.1 -2.80 

6 2 ADD 16.8 8.2 -14.38 16.9 6.4 -11.41 13.9 5.5 -7.16 

7 1 Neutral 8.2 -1.6 -5.02 3.7 -5.3 -9.02 -0.1 -8.9 -7.92 

8 1 ADD 8.1 3.0 -2.58 2.5 -2.4 -3.08 0.9 -3.7 -2.96 

9 1 Neutral 10.1 -1.8 -6.83 5.6 -4.0 -4.19 3.4 -4.0 -2.87 

10 3 ADD 9.4 5.7 -14.10 8.3 4.1 -10.29 7.6 2.1 -11.29 

11 2 Neutral 5.7 -0.3 -5.69 5.6 -3.7 -3.26 3.5 -4.1 -2.88 

12 3 ADD 13.9 7.4 -9.91 11.1 6.7 -10.23 10.2 6.2 -10.69 

13 4 ADD 19.4 13.7 -14.57 23.4 15.5 -6.87 21.5 15.4 -9.69 

    Mean 12.2 4.4 -7.72 9.4 1.7 -6.93 9.0 1.2 -6.68 

    STD 4.7 5.6 4.75 6.3 6.5 3.66 7.5 6.7 4.18 

            
Healthy subject K/L Score Joint Pos Peak (+) Peak (-) KAM Peak (+) Peak (-) KAM Peak (+) Peak (-) KAM 

1 - ADD 15.4 7.4 -13.69 15.3 5.4 -16.33 10.6 2.3 -17.90 

2 - Neutral 7.6 -4.2 -8.29 4.5 -6.4 -7.45 5.9 -7.0 -8.69 

3 - Neutral 11.2 -1.2 -9.15 12.5 -0.4 -7.76 14.1 0.4 -7.42 

4 - ADD 17.3 6.9 -17.34 18.2 6.7 -18.70 16.9 5.4 -15.29 

5 - Neutral 4.5 -1.6 -6.10 1.8 -4.0 -4.54 3.4 -3.7 -4.15 

6 - ADD 12.9 1.0 -7.54 9.9 2.3 -7.62 8.5 -0.2 -7.84 

7 - ADD 23.6 10.7 -14.74 21.9 6.7 -12.83 23.3 7.5 -13.43 

8 - ADD 10.8 3.3 -3.75 5.9 -2.8 -5.31 11.0 -1.2 -5.86 

9 - Neutral 5.3 -6.0 -1.43 6.2 -4.3 -2.98 5.3 -5.7 -2.06 

  



117 

 

Table 11 Continued 

Healthy subject K/L Score Joint Pos Peak (+) Peak (-) KAM Peak (+) Peak (-) KAM Peak (+) Peak (-) KAM 

10 - ADD 14.4 1.5 -7.12 13.5 -2.2 -11.42 12.4 -2.2 -9.65 

11 - ADD 18.1 6.6 -9.80 18.0 4.7 -10.00 16.8 2.6 -8.07 

    Mean 12.8 2.2 -9.00 11.6 0.5 -9.54 11.6 -0.2 -9.12 

    STD 5.8 5.3 4.74 6.5 4.8 4.92 5.9 4.5 4.74 

Joint Pos: The overall position of the knee joint during the neutral condition. If the peak positive and peak negative joint angles 

surrounded zero, then the joint position was designated as Neutral. If the peak positive and negative values were both greater than 0, 

then the joint position was designated as continuously adducted (ADD). Peak (+): Peak maximum knee adduction angle (°); Peak (-): 

Peak minimum knee adduction angle (°); KAM: Peak knee abduction moment (Nm).
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Figures 

 
Figure 11: Peak ankle internal rotation angles. #: Significantly different than neutral; &: 

Significantly different than 5° Toe-in  
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Figure 12: Representative knee adduction angles from one subject. 

 

 

 
Figure 13: Representative knee abduction moments from one subject. 
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Figure 14: Scatterplots and linear trend lines for the relationship between minimum peak knee 

adduction angle and K/L score for individual OA patients across conditions. R
2 
values are 0.66, 

0.75, and 0.72 for neutral, 5° toe-in, and 10° toe-in, respectively.  
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Figure 15: Scatterplots and linear trend lines for the relationship between peak KAM and K/L 

score for individual OA patients across conditions. R
2 
values are 0.53, 0.40, and 0.66 for neutral, 

5° toe-in, and 10° toe-in, respectively. 

  

-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

0 1 2 3 4

M
o
m

en
t 

(N
m

) 

K/L Score 

Neutral

5 deg Toe-in

10 deg Toe-in

Linear (Neutral)

Linear (5 deg Toe-in)

Linear (10 deg Toe-in)



122 

 

LIST OF REFERENCES 

  



123 

 

Andriacchi, T.P., Lang, P.L., Alexander, E.J., Hurwitz, D.E., 2000. Methods for evaluating the 

progression of osteoarthritis. J Rehabil Res Dev 37, 163-170. 

 

Asplund, C., St Pierre, P., 2004. Knee pain and bicycling - Fitting concepts for clinicians. 

Physician Sportsmed 32, 23-30. 

 

Astephen, J.L., Deluzio, K.J., Caldwell, G.E., Dunbar, M.J., 2008. Biomechanical changes at the 

hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity. J Orthop 

Res 26, 332-341. 

 

Bailey, M.P., Maillardet, F.J., Messenger, N., 2003. Kinematics of cycling in relation to anterior 

knee pain and patellar tendinitis. J Sport Sci 21, 649-657. 

 

Baker, K., Goggins, J., Xie, H., et al., 2007. A randomized crossover trial of a wedged insole for 

treatment of knee osteoarthritis. Arthritis Rheum 56, 1198-1203. 

 

Baker, K.R., Xu, L., Zhang, Y., et al., 2004. Quadriceps weakness and its relationship to 

tibiofemoral and patellofemoral knee osteoarthritis in Chinese: the Beijing osteoarthritis study. 

Arthritis Rheum 50, 1815-1821. 

 

Baliunas, A.J., Hurwitz, D.E., Ryals, A.B., et al., 2002. Increased knee joint loads during 

walking are present in subjects with knee osteoarthritis. Osteoarthr Cartilage 10, 573-579. 

 

Barratt, P.R., Korff, T., Elmer, S.J., Martin, J.C., 2011. Effect of Crank Length on Joint-Specific 

Power during Maximal Cycling. Med Sci Sport Exer 43, 1689-1697. 

 

Baum, B.S., Li, L., 2003. Lower extremity muscle activities during cycling are influenced by 

load and frequency. J Electromyogr Kinesiol 13, 181-190. 

 

Bennell, K.L., Kean, C.O., Wrigley, T.V., Hinman, R.S., 2013. Effects of a modified shoe on 

knee load in people with and those without knee osteoarthritis. Arthritis Rheum 65, 701-709. 

 

Bini, R.R., Tamborindeguy, A.C., Mota, C.B., 2010. Effects of Saddle Height, Pedaling 

Cadence, and Workload on Joint Kinetics and Kinematics During Cycling. J Sport Rehabil 19, 

301-314. 

 

Boyd, T., Hull, M.L., Wootten, D., 1996. An improved accuracy six-load component pedal 

dynamometer for cycling. J Biomech 29, 1105-1110. 

 

Boyd, T.F., Neptune, R.R., Hull, M.L., 1997. Pedal and knee loads using a multi-degree-of-

freedom pedal platform in cycling. J Biomech 30, 505-511. 

 

Boyer, K.A., Federolf, P., Lin, C., Nigg, B.M., Andriacchi, T.P., 2012. Kinematic adaptations to 

a variable stiffness shoe: Mechanisms for reducing joint loading. J Biomech 45, 1619-1624. 



124 

 

 

Briem, K., Snyder-Mackler, L., 2009. Proximal gait adaptations in medial knee OA. J Orthop 

Res 27, 78-83. 

 

Browning, R.C., Kram, R., 2007. Effects of obesity on the biomechanics of walking at different 

speeds. Med Sci Sport Exer 39, 1632-1641. 

 

Buckland-Wright, J.C., Ward, R.J., Peterfy, C., Mojcik, C.F., Leff, R.L., 2004. Reproducibility 

of the semiflexed (metatarsophalangeal) radiographic knee position and automated 

measurements of medial tibiofemoral joint space width in a multicenter clinical trial of knee 

osteoarthritis. J Rheumatol 31, 1588-1597. 

 

Buckwalter, J.A., 1995. Osteoarthritis and Articular-Cartilage Use, Disuse, and Abuse - 

Experimental Studies. J Rheumatol 22, 13-15. 

 

Burke, E., 1986. Science of cycling. Human Kinetics Publishers, Champaign, Ill. 

 

Burke, E., 2003. High-tech cycling, 2nd ed. Human Kinetics, Champaign, Ill. 

 

Butler, R.J., Barrios, J.A., Royer, T., Davis, I.S., 2009. Effect of laterally wedged foot orthoses 

on rearfoot and hip mechanics in patients with medial knee osteoarthritis. Prosthetics and 

Orthotics International 33, 107-116. 

 

Butler, R.J., Marchesi, S., Royer, T., Davis, I.S., 2007. The effect of a subject-specific amount of 

lateral wedge on knee mechanics in patients with medial knee Osteoarthritis. J Orthopaed Res 

25, 1121-1127. 

 

Carpes, F.P., Dagnese, F., Mota, C.B., Stefanyshyn, D.J., 2009. Cycling with noncircular 

chainring system changes the three-dimensional kinematics of the lower limbs. Sport Biomech 8, 

275-283. 

 

Cerejo, R., Dunlop, D.D., Cahue, S., et al., 2002. The influence of alignment on risk of knee 

osteoarthritis progression according to baseline stage of disease. Arthritis Rheum 46, 2632-2636. 

 

Chakravarty, E.F., Hubert, H.B., Lingala, V.B., Zatarain, E., Fries, J.F., 2008. Long distance 

running and knee osteoarthritis - A prospective study. Am J Prev Med 35, 133-138. 

 

Chapman, A.R., Vicenzino, B., Blanch, P., Hodges, P.W., 2008a. Patterns of leg muscle 

recruitment vary between novice and highly trained cyclists. J Electromyogr Kinesiol 18, 359-

371. 

 

Chapman, A.R., Vicenzino, B., Blanch, P., et al., 2008b. The influence of body position on leg 

kinematics and muscle recruitment during cycling. J Sci Med Sport 11, 519-526. 

 



125 

 

Chapman, A.R., Vicenzino, B., Blanch, P., Knox, J.J., Hodges, P.W., 2006. Leg muscle 

recruitment in highly trained cyclists. J Sport Sci 24, 115-124. 

 

Coggon, D., Croft, P., Kellingray, S., et al., 2000. Occupational physical activities and 

osteoarthritis of the knee. Arthritis Rheum 43, 1443-1449. 

 

Coggon, D., Reading, I., Croft, P., et al., 2001. Knee osteoarthritis and obesity. Int J Obesity 25, 

622-627. 

 

Cruz, C.F., Bankoff, A.D., 2001. Electromyography in cycling: difference between clipless pedal 

and toe clip pedal. Electromyogr Clin Neurophysiol 41, 247-252. 

 

D'Lima, D.D., Steklov, N., Patil, S., Colwell, C.W., Jr., 2008. The Mark Coventry Award: in 

vivo knee forces during recreation and exercise after knee arthroplasty. Clin Orthop Relat Res 

466, 2605-2611. 

 

Dagnese, F., Carpes, F.P., Martins, E.D., Stefanyshyn, D., Mota, C.B., 2011. Effects of a 

noncircular chainring system on muscle activation during cycling. J Electromyogr Kines 21, 13-

17. 

 

Damiano, D.L., Norman, T., Stanley, C.J., Park, H.S., 2011. Comparison of elliptical training, 

stationary cycling, treadmill walking and overground walking. Gait Posture 34, 260-264. 

 

Dettori, N.J., Norvell, D.C., 2006. Non-traumatic bicycle injuries - A review of the literature. 

Sports Medicine 36, 7-18. 

 

Dorel, S., Couturier, A., Hug, F., 2008. Intra-session repeatability of lower limb muscles 

activation pattern during pedaling. J Electromyogr Kinesiol 18, 857-865. 

 

Dotan, R., Baror, O., 1983. Load Optimization for the Wingate Anaerobic Test. Eur J Appl 

Physiol O 51, 409-417. 

 

Duc, S., Bertucci, W., Pernin, J.N., Grappe, F., 2008. Muscular activity during uphill cycling: 

effect of slope, posture, hand grip position and constrained bicycle lateral sways. J Electromyogr 

Kinesiol 18, 116-127. 

 

Edeline, O., Dreano, E., Bertoldi, I., Weber, J., 2001. Optoelectronic study of the lower limbs 

and pelvis kinematics in cycling at 250 Watts. Comparison between standard saddle and 

ergonomic saddle. Sci Sport 16, 88-91. 

 

Edeline, O., Polin, D., Tourny-Chollet, C., Weber, J., 2004. Effect of workload on bilateral 

pedaling kinematics in non-trained cyclists. J Hum Movement Stud 46, 493-517. 

 



126 

 

Eisner, W.D., Bode, S.D., Nyland, J., Caborn, D.N., 1999. Electromyographic timing analysis of 

forward and backward cycling. Med Sci Sports Exerc 31, 449-455. 

 

Ercison, M.O., Nisell, R., Nemeth, G., 1988. Joint Motions of the Lower Limb during Ergometer 

Cycling. J Orthop Sports Phys Ther 9, 273-278. 

 

Erhart, J.C., Dyrby, C.O., D'Lima, D.D., Colwell, C.W., Andriacchi, T.P., 2010a. Changes in In 

Vivo Knee Loading with a Variable-Stiffness Intervention Shoe Correlate with Changes in the 

Knee Adduction Moment. J Orthopaed Res 28, 1548-1553. 

 

Erhart, J.C., Mundermann, A., Elspas, B., Giori, N.J., Andriacchi, T.P., 2008. Variable-stiffness 

shoe lowers the knee adduction moment in subjects with symptoms of medial compartment knee 

osteoarthritis. J Biomech 41, 2720-2725. 

 

Erhart, J.C., Mundermann, A., Elspas, B., Giori, N.J., Andriacchi, T.P., 2010b. Changes in Knee 

Adduction Moment, Pain, and Functionality with a Variable-Stiffness Walking Shoe after 6 

Months. J Orthopaed Res 28, 873-879. 

 

Ericson, M., 1986. On the biomechanics of cycling. A study of joint and muscle load during 

exercise on the bicycle ergometer. Scand J Rehabil Med Suppl 16, 1-43. 

 

Ericson, M.O., 1988a. Mechanical muscular power output and work during ergometer cycling at 

different work loads and speeds. Eur J Appl Physiol Occup Physiol 57, 382-387. 

 

Ericson, M.O., 1988b. Muscular function during ergometer cycling. Scand J Rehabil Med 20, 35-

41. 

 

Ericson, M.O., Bratt, A., Nisell, R., Arborelius, U.P., Ekholm, J., 1986a. Power output and work 

in different muscle groups during ergometer cycling. Eur J Appl Physiol Occup Physiol 55, 229-

235. 

 

Ericson, M.O., Bratt, A., Nisell, R., Nemeth, G., Ekholm, J., 1986b. Load Moments About the 

Hip and Knee Joints during Ergometer Cycling. Scand J Rehabil Med 18, 165-172. 

 

Ericson, M.O., Ekholm, J., Svensson, O., Nisell, R., 1985a. The forces of ankle joint structures 

during ergometer cycling. Foot Ankle 6, 135-142. 

 

Ericson, M.O., Nisell, R., 1986a. Tibiofemoral Joint Forces during Ergometer Cycling. Am J 

Sport Med 14, 285-290. 

 

Ericson, M.O., Nisell, R., 1986b. Tibiofemoral joint forces during ergometer cycling. Am J 

Sports Med 14, 285-290. 

 



127 

 

Ericson, M.O., Nisell, R., 1987. Patellofemoral Joint Forces during Ergometric Cycling. Phys 

Ther 67, 1365-1369. 

 

Ericson, M.O., Nisell, R., 1988. Efficiency of pedal forces during ergometer cycling. Int J Sports 

Med 9, 118-122. 

 

Ericson, M.O., Nisell, R., Arborelius, U.P., Ekholm, J., 1985b. Muscular-Activity during 

Ergometer Cycling. Scand J Rehabil Med 17, 53-61. 

 

Evangelou, E., Valdes, A.M., Kerkhof, H.J., et al., 2011. Meta-analysis of genome-wide 

association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. 

Ann Rheum Dis 70, 349-355. 

 

Faghri, P.D., Trumbower, R.D., 2005. Kinematic analyses of semireclined leg cycling in able-

bodied and spinal cord injured individuals. Spinal Cord 43, 543-549. 

 

Felson, D.T., 1990. The Epidemiology of Knee Osteoarthritis - Results from the Framingham 

Osteoarthritis Study. Semin Arthritis Rheu 20, 42-50. 

 

Felson, D.T., Couropmitree, N.N., Chaisson, C.E., et al., 1998. Evidence for a Mendelian gene in 

a segregation analysis of generalized radiographic osteoarthritis: the Framingham Study. 

Arthritis Rheum 41, 1064-1071. 

 

Felson, D.T., Hannan, M.T., Naimark, A., et al., 1991. Occupational physical demands, knee 

bending, and knee osteoarthritis: results from the Framingham Study. J Rheumatol 18, 1587-

1592. 

 

Felson, D.T., Lawrence, R.C., Dieppe, P.A., et al., 2000. Osteoarthritis: new insights. Part 1: the 

disease and its risk factors. Ann Intern Med 133, 635-646. 

 

Felson, D.T., Zhang, Y.Q., 1998. An update on the epidemiology of knee and hip osteoarthritis 

with a view to prevention. Arthritis Rheum 41, 1343-1355. 

 

Felson, D.T., Zhang, Y.Q., Hannan, M.T., et al., 1997. Risk factors for incident radiographic 

knee osteoarthritis in the elderly - The Framingham Study. Arthritis Rheum 40, 728-733. 

 

Focht, B.C., Rejeski, W.J., Ambrosius, W.T., Katula, J.A., Messier, S.P., 2005. Exercise, self-

efficacy, and mobility performance in overweight and obese older adults with knee osteoarthritis. 

Arthritis Rheum 53, 659-665. 

 

Fregly, B.J., Reinbolt, J.A., Rooney, K.L., Mitchell, K.H., Chmielewski, T.L., 2007. Design of 

patient-specific gait modifications for knee osteoarthritis rehabilitation. Ieee T Bio-Med Eng 54, 

1687-1695. 

 



128 

 

Garber, C.E., Blissmer, B., Deschenes, M.R., et al., 2011. Quantity and Quality of Exercise for 

Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in 

Apparently Healthy Adults: Guidance for Prescribing Exercise. Med Sci Sport Exer 43, 1334-

1359. 

 

Gok, H., Ergin, S., Yavuzer, G., 2002. Kinetic and kinematic characteristics of gait in patients 

with medial knee arthrosis. Acta Orthop Scand 73, 647-652. 

 

Gregersen, C.S., Hull, M.L., 2003. Non-driving intersegmental knee moments in cycling 

computed using a model that includes three-dimensional kinematics of the shank/foot and the 

effect of simplifying assumptions. J Biomech 36, 803-813. 

 

Gregersen, C.S., Hull, M.L., Hakansson, N.A., 2006a. How changing the inversion/eversion foot 

angle affects the nondriving intersegmental knee moments and the relative activation of the vastii 

muscles in cycling. J Biomech Eng 128, 391-398. 

 

Gregersen, C.S., Hull, M.L., Hakansson, N.A., 2006b. How changing the nnversion/eversion foot 

angle affects the nondriving intersegmental knee moments and the relative activation of the vastii 

muscles in cycling. J Biomech Eng-T Asme 128, 391-398. 

 

Gregor, R.J., Cavanagh, P.R., Lafortune, M., 1985. Knee Flexor Moments during Propulsion in 

Cycling - a Creative Solution to Lombard Paradox. J Biomech 18, 307-&. 

 

Guo, M., Axe, M.J., Manal, K., 2007. The influence of foot progression angle on the knee 

adduction moment during walking and stair climbing in pain free individuals with knee 

osteoarthritis. Gait Posture 26, 436-441. 

 

Hamill, J., Knutzen, K., 2009. Biomechanical basis of human movement, 3rd ed. Wolters Kluwer 

Health/Lippincott Williams and Wilkins, Philadelphia. 

 

Hamley, E.J., Thomas, V., 1967. Physiological and Postural Factors in Calibration of Bicycle 

Ergometer. J Physiol-London 191, P55-&. 

 

Heil, D.P., Derrick, T.R., Whittlesey, S., 1997. The relationship between preferred and optimal 

positioning during submaximal cycle ergometry. Eur J Appl Physiol O 75, 160-165. 

 

Heil, D.P., Wilcox, A.R., Quinn, C.M., 1995. Cardiorespiratory Responses to Seat-Tube Angle 

Variation during Steady-State Cycling. Med Sci Sport Exer 27, 730-735. 

 

Hills, A.P., Hennig, E.M., McDonald, M., Bar-Or, O., 2001. Plantar pressure differences 

between obese and non-obese adults: A biomechanical analysis. Int J Obesity 25, 1674-1679. 

 



129 

 

Hinman, R.S., Bowles, K.A., Bennell, K.L., 2009. Laterally wedged insoles in knee 

osteoarthritis: do biomechanical effects decline after one month of wear? Bmc Musculoskel Dis 

10. 

 

Hinman, R.S., Bowles, K.A., Metcalf, B., Wrigley, T.V., Bennell, K.L., 2012. Lateral wedge 

insoles for medial knee osteoarthritis: Effects on lower limb frontal plane biomechanics. Clin 

Biomech 27, 27-33. 

 

Hochberg, M.C., Altman, R.D., April, K.T., et al., 2012. American College of Rheumatology 

2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in 

osteoarthritis of the hand, hip, and knee. Arthritis Care & Research 64, 465-474. 

 

Holmes, J.C., Pruitt, A.L., Whalen, N.J., 1994. Lower-Extremity Overuse in Bicycling. Clin 

Sport Med 13, 187-&. 

 

Hull, M.L., Gonzalez, H., 1988. Bivariate Optimization of Pedalling Rate and Crank Arm Length 

in Cycling. J Biomech 21, 839-849. 

 

Hunt, M.A., Birmingham, T.B., Giffin, J.R., Jenkyn, T.R., 2006. Associations among knee 

adduction moment, frontal plane ground reaction force, and lever arm during walking in patients 

with knee osteoarthritis. J Biomech 39, 2213-2220. 

 

Hurwitz, D.E., Ryals, A.B., Case, J.P., Block, J.A., Andriacchi, T.P., 2002. The knee adduction 

moment during gait in subjects with knee osteoarthritis is more closely correlated with static 

alignment than radiographic disease severity, toe out angle and pain. J Orthopaed Res 20, 101-

107. 

 

Hurwitz, D.E., Sumner, D.R., Andriacchi, T.P., Sugar, D.A., 1998. Dynamic knee loads during 

gait predict proximal tibial bone distribution. J Biomech 31, 423-430. 

 

Inbar, O., Dotan, R., Trousil, T., Dvir, Z., 1983. The Effect of Bicycle Crank-Length Variation 

Upon Power Performance. Ergonomics 26, 1139-1146. 

 

Jordan, K.M., Arden, N.K., Doherty, M., et al., 2003. EULAR Recommendations 2003: an 

evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the 

Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). 

Ann Rheum Dis 62, 1145-1155. 

 

Jorge, M., Hull, M.L., 1986. Analysis of EMG measurements during bicycle pedalling. J 

Biomech 19, 683-694. 

 

Kaufman, K.R., Hughes, C., Morrey, B.F., Morrey, M., An, K.N., 2001. Gait characteristics of 

patients with knee osteoarthritis. J Biomech 34, 907-915. 

 



130 

 

Kautz, S.A., Hull, M.L., Neptune, R.R., 1994. A Comparison of Muscular Mechanical Energy-

Expenditure and Internal Work in Cycling. J Biomech 27, 1459-1467. 

 

Kautz, S.A., Neptune, R.R., 2002. Biomechanical determinants of pedaling energetics: Internal 

and external work are not independent. Exerc Sport Sci Rev 30, 159-165. 

 

Kellgren, J.H., Lawrence, J.S., 1957. Radiological Assessment of Osteo-Arthrosis. Ann Rheum 

Dis 16, 494-502. 

 

Kennedy, J.G., Wanich, T., Hodgkins, C., Columbier, J.A., Muraski, E., 2007. Cycling injuries 

of the lower extremity. J Am Acad Orthop Sur 15, 748-756. 

 

Kerrigan, D.C., Lelas, J.L., Goggins, J., et al., 2002. Effectiveness of a lateral-wedge insole on 

knee varus torque in patients with knee osteoarthritis. Arch Phys Med Rehab 83, 889-893. 

 

Kiviranta, I., Tammi, M., Jurvelin, J., Saamanen, A.M., Helminen, H.J., 1988. Moderate 

Running Exercise Augments Glycosaminoglycans and Thickness of Articular-Cartilage in the 

Knee-Joint of Young Beagle Dogs. J Orthopaed Res 6, 188-195. 

 

Lawrence, R.C., Felson, D.T., Helmick, C.G., et al., 2008. Estimates of the prevalence of 

arthritis and other rheumatic conditions in the United States. Arthritis Rheum 58, 26-35. 

 

Leach, R.E., Baumgard, S., Broom, J., 1973. Obesity - Its Relationship to Osteoarthritis of Knee. 

Clin Orthop Relat R, 271-273. 

 

Lewek, M.D., Rudolph, K.S., Snyder-Mackler, L., 2004. Control of frontal plane knee laxity 

during gait in patients with medial compartment knee osteoarthritis. Osteoarthr Cartilage 12, 

745-751. 

 

Lohmander, L.S., Ostenberg, A., Englund, M., Roos, H., 2004. High prevalence of knee 

osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior 

cruciate ligament injury. Arthritis Rheum 50, 3145-3152. 

 

Lundberg, A., Svensson, O.K., Nemeth, G., Selvik, G., 1989. The Axis of Rotation of the Ankle 

Joint. J Bone Joint Surg Br 71, 94-99. 

 

Macdermid, P.W., Edwards, A.M., 2010. Influence of crank length on cycle ergometry 

performance of well-trained female cross-country mountain bike athletes. Eur J Appl Physiol 

108, 177-182. 

 

MacIntosh, B.R., Neptune, R.R., Horton, J.F., 2000. Cadence, power, and muscle activation in 

cycle ergometry. Med Sci Sports Exerc 32, 1281-1287. 

 



131 

 

Mangione, K.K., McCully, K., Gloviak, A., et al., 1999. The effects of high-intensity and low-

intensity cycle ergometry in older adults with knee osteoarthritis. J Gerontol A Biol Sci Med Sci 

54, M184-190. 

 

Manninen, P., Riihimaki, H., Heliovaara, M., Makela, P., 1996. Overweight, gender and knee 

osteoarthritis. Int J Obesity 20, 595-597. 

 

Marsh, A.P., Martin, P.E., 1995. The relationship between cadence and lower extremity EMG in 

cyclists and noncyclists. Med Sci Sports Exerc 27, 217-225. 

 

Marsh, A.P., Martin, P.E., Sanderson, D.J., 2000. Is a joint moment-based cost function 

associated with preferred cycling cadence? J Biomech 33, 173-180. 

 

Martin, J.C., Spirduso, W.W., 2001. Determinants of maximal cycling power: crank length, 

pedaling rate and pedal speed. Eur J Appl Physiol 84, 413-418. 

 

Messier, S.P., 1994. Osteoarthritis of the knee and associated factors of age and obesity: effects 

on gait. Med Sci Sports Exerc 26, 1446-1452. 

 

Messier, S.P., DeVita, P., Cowan, R.E., et al., 2005a. Do older adults with knee osteoarthritis 

place greater loads on the knee during gait? A preliminary study. Archives of Physical Medicine 

and Rehabilitation 86, 703-709. 

 

Messier, S.P., Ettinger, W.H., Doyle, T.E., et al., 1996. Obesity: Effects on gait in an 

osteoarthritic population. J Appl Biomech 12, 161-172. 

 

Messier, S.P., Gutekunst, D.J., Davis, C., DeVita, P., 2005b. Weight loss reduces knee-joint 

loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum 52, 2026-

2032. 

 

Messier, S.P., Loeser, R.F., Miller, G.D., et al., 2004. Exercise and dietary weight loss in 

overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet, and Activity 

Promotion Trial. Arthritis Rheum 50, 1501-1510. 

 

Mickle, K.J., Steele, J.R., Munro, B.J., 2006. Does excess mass affect plantar pressure in young 

children? Int J Pediatr Obes 1, 183-188. 

 

Mileva, K., Turner, D., 2003. Neuromuscular and biomechanical coupling in human cycling - 

Adaptations to changes in crank length. Experimental Brain Research 152, 393-403. 

 

Miyazaki, T., Wada, M., Kawahara, H., et al., 2002. Dynamic load at baseline can predict 

radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61, 

617-622. 

 



132 

 

Morris, D.M., Londeree, B.R., 1997. The effects of bicycle crank arm length on oxygen 

consumption. Can J Appl Physiol 22, 429-438. 

 

Mundermann, A., Asay, J.L., Mundermann, L., Andriacchi, T.P., 2008. Implications of increased 

medio-lateral trunk sway for ambulatory mechanics. J Biomech 41, 165-170. 

 

Mundermann, A., Dyrby, C.O., Andriacchi, T.P., 2005. Secondary gait changes in patients with 

medial compartment knee osteoarthritis - Increased load at the ankle, knee, and hip during 

walking. Arthritis Rheum 52, 2835-2844. 

 

Neptune, R.R., Herzog, W., 1999. The association between negative muscle work and pedaling 

rate. J Biomech 32, 1021-1026. 

 

Neptune, R.R., Herzog, W., 2000. Adaptation of muscle coordination to altered task mechanics 

during steady-state cycling. J Biomech 33, 165-172. 

 

Neptune, R.R., Hull, M.L., 1995. Accuracy assessment of methods for determining hip 

movement in seated cycling. J Biomech 28, 423-437. 

 

Neptune, R.R., Hull, M.L., 1998. Evaluation of performance criteria for simulation of 

submaximal steady-state cycling using a forward dynamic model. J Biomech Eng-T Asme 120, 

334-341. 

 

Neptune, R.R., Kautz, S.A., 2000. Knee joint loading in forward versus backward pedaling: 

implications for rehabilitation strategies. Clin Biomech 15, 528-535. 

 

Neptune, R.R., Kautz, S.A., Hull, M.L., 1997. The effect of pedaling rate on coordination in 

cycling. J Biomech 30, 1051-1058. 

 

Neptune, R.R., Kautz, S.A., Zajac, F.E., 2000. Muscle contributions to specific biomechanical 

functions do not change in forward versus backward pedaling. J Biomech 33, 155-164. 

 

Neptune, R.R., Smak, W., Hull, M.L., 1999. The influence of pedaling rate on bilateral 

asymmetry in cycling. J Biomech 32, 899-906. 

 

Nevitt, M.C., Felson, D.T., 1996. Sex hormones and the risk of osteoarthritis in women: 

Epidemiological evidence. Ann Rheum Dis 55, 673-676. 

 

Nordeensnyder, K.S., 1977. Effect of Bicycle Seat Height Variation Upon Oxygen-Consumption 

and Lower-Limb Kinematics. Med Sci Sport Exer 9, 113-117. 

 

Oliveria, S.A., Felson, D.T., Cirillo, P.A., Reed, J.I., Walker, A.M., 1999. Body weight, body 

mass index, and incident symptomatic osteoarthritis of the hand, hip, and knee. Epidemiology 

10, 161-166. 



133 

 

 

Ounpuu, S., 1994. The Biomechanics of Walking and Running. Clin Sport Med 13, 843-863. 

 

Palmoski, M.J., Colyer, R.A., Brandt, K.D., 1980. Joint motion in the absence of normal loading 

does not maintain normal articular cartilage. Arthritis Rheum 23, 325-334. 

 

Paty, J.G., Jr., 1994. Running injuries. Curr Opin Rheumatol 6, 203-209. 

 

Peveler, W.W., Green, J.M., 2011. Effects of Saddle Height on Economy and Anaerobic Power 

in Well-Trained Cyclists. J Strength Cond Res 25, 629-633. 

 

Pham, T., Maillefert, J.F., Hudry, C., et al., 2004. Laterally elevated wedged insoles in the 

treatment of medial knee osteoarthritis - A two-year prospective randomized controlled study. 

Osteoarthr Cartilage 12, 46-55. 

 

Price, D., Donne, B., 1997. Effect of variation in seat tube angle at different seat heights on 

submaximal cycling performance in man. J Sport Sci 15, 395-402. 

 

Prilutsky, B.I., Gregory, R.J., 2000. Analysis of muscle coordination strategies in cycling. IEEE 

Trans Rehabil Eng 8, 362-370. 

 

Raasch, C.C., Zajac, F.E., Ma, B., Levine, W.S., 1997. Muscle coordination of maximum-speed 

pedaling. J Biomech 30, 595-602. 

 

Rankin, J.W., Neptune, R.R., 2010. The Influence of Seat Configuration on Maximal Average 

Crank Power During Pedaling: A Simulation Study. J Appl Biomech 26, 493-500. 

 

Redfield, R., Hull, M.L., 1986. On the relation between joint moments and pedalling rates at 

constant power in bicycling. J Biomech 19, 317-329. 

 

Reiser, R.E., Peterson, M.L., Broker, J.P., 2002. Influence of hip orientation on wingate power 

output and cycling technique. J Strength Cond Res 16, 556-560. 

 

Reiser, R.F., 2nd, Broker, J.P., Peterson, M.L., 2004. Knee loads in the standard and recumbent 

cycling positions. Biomed Sci Instrum 40, 36-42. 

 

Reiser, R.F., Peterson, M.L., Broker, J.P., 2001. Anaerobic cycling power output with variations 

in recumbent body configuration. J Appl Biomech 17, 204-216. 

 

Ricard, M.D., Hills-Meyer, P., Miller, M.G., Michael, T.J., 2006. The effects of bicycle frame 

geometry on muscle activation and power during a Wingate anaerobic test. J Sport Sci Med 5, 

25-32. 

 



134 

 

Roos, E.M., Roos, H.P., Lohmander, L.S., 1999. WOMAC Osteoarthritis Index - additional 

dimensions for use in subjects with post-traumatic osteoarthritis of the knee. Osteoarthr Cartilage 

7, 216-221. 

 

Rouffet, D.M., Hautier, C.A., 2008. EMG normalization to study muscle activation in cycling. J 

Electromyogr Kinesiol 18, 866-878. 

 

Ruby, P., Hull, M.L., 1993. Response of Intersegmental Knee Loads to Foot/Pedal Platform 

Degrees of Freedom in Cycling. J Biomech 26, 1327-1340. 

 

Ryan, M.M., Gregor, R.J., 1992. EMG profiles of lower extremity muscles during cycling at 

constant workload and cadence. J Electromyogr Kinesiol 2, 69-80. 

 

Salsich, G.B., Long-Rossi, F., 2010. Do females with patellofemoral pain have abnormal hip and 

knee kinematics during gait? Physiotherapy theory and practice 26, 150-159. 

 

Sanderson, D.J., Black, A.H., Montgomery, J., 1994. The effect of varus and valgus wedges on 

coronal plane knee motion during steady-rate cycling. Clin J Sport Med 4, 120-124. 

 

Sanderson, D.J., Hennig, E.M., Black, A.H., 2000. The influence of cadence and power output 

on force application and in-shoe pressure distribution during cycling by competitive and 

recreational cyclists. J Sports Sci 18, 173-181. 

 

Sanderson, D.J., Martin, P.E., Honeyman, G., Keefer, J., 2006. Gastrocnemius and soleus muscle 

length, velocity, and EMG responses to changes in pedalling cadence. J Electromyogr Kinesiol 

16, 642-649. 

 

Sarre, G., Lepers, R., Maffiuletti, N., Millet, G., Martin, A., 2003. Influence of cycling cadence 

on neuromuscular activity of the knee extensors in humans. Eur J Appl Physiol 88, 476-479. 

 

Savelberg, H.H.C.M., Van de Port, I.G.L., Willems, P.J.B., 2003. Body configuration in cycling 

affects muscle recruitment and movement pattern. J Appl Biomech 19, 310-324. 

 

Schipplein, O.D., Andriacchi, T.P., 1991. Interaction between Active and Passive Knee 

Stabilizers during Levelwalking. J Orthopaed Res 9, 113-119. 

 

Sharma, L., Hurwitz, D.E., Thonar, E.J.M.A., et al., 1998. Knee adduction moment, serum 

hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum 41, 

1233-1240. 

 

Shull, P.B., Shultz, R., Silder, A., et al., 2012. Toe-in gait reduces the first peak in the knee 

adduction moment during walking in knee osteoarthritis patients. American Society of 

Biomechanics Supplement, 267-268. 

 



135 

 

Shull, P.B., Shultz, R., Slider, A., et al., 2013. Toe-in gait reduces the first peak knee adduction 

moment in patients with medial compartment knee osteoarthritis. J Biomech 46, 122-128. 

 

Slemenda, C., Brandt, K.D., Heilman, D.K., et al., 1997. Quadriceps weakness and osteoarthritis 

of the knee. Ann Intern Med 127, 97-104. 

 

Slemenda, C., Heilman, D.K., Brandt, K.D., et al., 1998. Reduced quadriceps strength relative to 

body weight: a risk factor for knee osteoarthritis in women? Arthritis Rheum 41, 1951-1959. 

 

Srikanth, V.K., Fryer, J.L., Zhai, G., et al., 2005. A meta-analysis of sex differences prevalence, 

incidence and severity of osteoarthritis. Osteoarthritis Cartilage 13, 769-781. 

 

Tamborindeguy, A.C., Rico Bini, R., 2011. Does saddle height affect patellofemoral and 

tibiofemoral forces during bicycling for rehabilitation? J Bodyw Mov Ther 15, 186-191. 

 

Theis, K.A., Helmick, C.G., Hootman, J.M., 2007. Arthritis burden and impact are greater 

among U.S. women than men: intervention opportunities. J Womens Health (Larchmt) 16, 441-

453. 

 

Too, D., Landwer, G.E., 2000. The effect of pedal crank arm length on joint angle and power 

production in upright cycle ergometry. J Sport Sci 18, 153-161. 

 

Turner, D.A., Prodromos, C.C., Petasnick, J.P., Clark, J.W., 1985. Acute Injury of the Ligaments 

of the Knee - Magnetic-Resonance Evaluation. Radiology 154, 717-722. 

 

Umberger, B.R., Martin, P.E., 2001. Testing the planar assumption during ergometer cycling. J 

Appl Biomech 17, 55-62. 

 

Umberger, B.R., Scheuchenzuber, H.J., Manos, T.M., 1998. Differences in power output during 

cycling at different seat tube angles. J Hum Movement Stud 35, 21-36. 

 

Vrints, J., Koninckx, E., Van Leemputte, M., Jonkers, I., 2011. The effect of saddle position on 

maximal power output and moment generating capacity of lower limb muscles during isokinetic 

cycling. J Appl Biomech 27, 1-7. 

 

Wada, M., Maezawa, Y., Baba, H., et al., 2001. Relationships among bone mineral densities, 

static alignment and dynamic load in patients with medial compartment knee osteoarthritis. 

Rheumatology 40, 499-505. 

 

Walter, J.P., D'Lima, D.D., Colwell, C.W., Fregly, B.J., 2010. Decreased Knee Adduction 

Moment Does Not Guarantee Decreased Medial Contact Force during Gait. J Orthopaed Res 28, 

1348-1354. 

 



136 

 

Wearing, S.C., Hennig, E.M., Byrne, N.M., Steele, J.R., Hills, A.P., 2006a. The biomechanics of 

restricted movement in adult obesity. Obes Rev 7, 13-24. 

 

Wearing, S.C., Hennig, E.M., Byrne, N.M., Steele, J.R., Hills, A.P., 2006b. Musculoskeletal 

disorders associated with obesity: a biomechanical perspective. Obes Rev 7, 239-250. 

 

Wolchok, J.C., Hull, M.L., Howell, S.M., 1998. The effect of intersegmental knee moments on 

patellofemoral contact mechanics in cycling. J Biomech 31, 677-683. 

 

Yoshihuku, Y., Herzog, W., 1996. Maximal muscle power output in cycling: A modelling 

approach. J Sport Sci 14, 139-157. 

 

Zeni, J.A., Higginson, J.S., 2009. Differences in gait parameters between healthy subjects and 

persons with moderate and severe knee osteoarthritis: A result of altered walking speed? (vol 24, 

pg 372, 2009). Clin Biomech 24, 532-532. 

 

Zhang, W., Moskowitz, R.W., Nuki, G., et al., 2008. OARSI recommendations for the 

management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus 

guidelines. Osteoarthr Cartilage 16, 137-162. 

 

 

 

  



137 

 

APPENDICES 

  



138 

 

APPENDIX A: Individual Subject Characteristics 

Table 12: Individual healthy subject characteristics 

Subject # Gender 
Age 

(years) 

Height 

(m) 

Mass   

(kg) 

BMI 

(kg/m2) 

1 Male 35 1.83 104.54 31.2 

2 Male 45 1.86 91.36 26.6 

3 Male 42 1.69 68.41 24.0 

7 Male 65 1.88 78.25 22.2 

9 Female 49 1.64 57.27 21.4 

15 Female 37 1.70 56.60 19.6 

16 Female 55 1.66 87.73 32.0 

17 Female 51 1.55 52.95 22.0 

18 Female 54 1.70 93.18 32.2 

19 Male 54 1.79 64.55 20.1 

20 Male 63 1.95 127.05 33.4 

Mean - 50.0 1.75 80.17 25.9 
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Table 13: Individual OA subject characteristics 

Subject # Gender 
Age 

(years) 

Height 

(m) 

Mass   

(kg) 

BMI 

(kg/m2) 

5 Female 58 1.80 99.55 30.7 

6 Male 65 1.85 102.06 29.7 

8 Female 63 1.57 52.95 21.5 

10 Female 57 1.70 66.00 22.8 

11 Female 59 1.69 58.18 20.5 

12 Male 54 2.05 130.91 31.2 

13 Female 55 1.69 85.00 29.8 

14 Male 46 1.84 97.68 28.9 

21 Male 54 1.79 91.82 28.8 

22 Male 63 1.88 87.50 24.9 

23 Female 59 1.57 61.59 25.0 

24 Female 55 1.59 61.59 24.4 

25 Male 51 1.78 87.27 27.6 

Mean - 56.8 1.8 83.2 26.6 
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APPENDIX B: Informed Consent Forms 

Informed Consent Form for Healthy Subjects 

 

INFORMED CONSENT FORM  

 
Effects of Lateral Shoe Wedges and Toe-in Foot Progression Angles on the Biomechanics of Knee 

Osteoarthritis during Stationary Cycling 
 

Principal Investigator: Jacob Gardner    Faculty Advisor: Songning Zhang, 

Ph.D.  

Address:               136 HPER                          Address:      340 HPER 

                             1914 Andy Holt Avenue                       1914 Andy Holt 

Avenue 

                             Knoxville, TN 37996                             Knoxville, TN 

37996 

                             Phone: (865) 974-2091                          Phone: (865) 974-

4716 

 

Co-Investigator:  Gary Klipple, MD 

Address:     1924 Alcoa Highway Box U-114 

    Knoxville, TN 37920  

    Phone: (865) 305-9340     

 
Introduction 

You are invited to participate in this research study because you are a healthy adult aged between 35 and 

65 years old. The purpose of this study is to investigate the effects of changes in bicycle pedal wedge 

angles and toe-in angles on the motions and pain in the knee for individuals with knee osteoarthritis (OA) 

and compare them to healthy people. Please ask the study staff to explain any words or information that 

you do not clearly understand. Before agreeing to be a participant in this study, it is important that you 

read and understand the following explanation of the procedures, risks, and benefits.  

 

Testing Protocol  

Before testing, you will be asked to fill out a Physical Activity Readiness Questionnaire which 

assesses your readiness to participate in physical activity. If you answer “yes” to any question in the Par-

Q, you will be asked to obtain written consent from your doctor that you are healthy enough to participate 

in this study. A physician permission form will be sent to your physician by the principal investigator to 

obtain the written consent. We will also measure your height and weight. If you qualify, you will be asked 

to attend one biomechanical test session (i.e. recording your joint movements) in the Biomechanics/Sports 

Medicine Lab on the UT campus that will take approximately 1 to 1.5 hours. Parking at the campus will 

be free to you. For the testing session, you will be asked to wear clothing appropriate for cycling exercise 

which includes spandex shorts. If you do not have this type of clothing, paper laboratory shorts will be 

provided.  

Prior to data collection, you will warm up on the treadmill and on the stationary cycle for 3 

minutes each to allow your joints and muscles to get ready for the cycling exercise. After the warm up, 

reflective markers will be placed on both sides of your feet, ankles, legs, knees, thighs, pelvis and trunk in 
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order to capture your movements during cycling. Upon completion of all marker placement you will 

perform two minutes of cycling at an 80 Watt workload and a 60 RPM pedal cadence for each condition 

in the testing session. There are five conditions in the testing session so you will cycle up to 20 minutes 

including your warm up. You will be given at least a two minute rest in between conditions. You can end 

any condition early and are under no obligation to complete the test. 

During the testing, biomechanics instruments such as reflective markers and motion capture 

cameras will be used to obtain measurements. The reflective markers will be placed on your body using 

double stick medical tape and hook and loop wraps. None of the instruments will impede your ability to 

engage in normal and effective motions during the test. The cameras will not record pictures of you. If 

you have any further questions, interests or concerns about any equipment, please feel free to ask the 

investigator  

 

Potential Risks 

Risks associated with this study are minimal. You will be required to pedal a stationary cycle up 

to 20 minutes including a warm up and cool down. If you are not used to regular cycling exercise, you 

may experience delayed onset muscle soreness (DOMS) in which the muscles are sore for a day or two 

following the exercise session. However, these conditions are normal for any person who is not 

accustomed to regular physical activity. Additionally, due to the demands of physical activity, there is risk 

for a cardiovascular event to occur (i.e. dizziness, shortness of breath, heart attack, or stroke). However, 

prior to the test you will fill out a Physical Activity Readiness Questionnaire that indicates you are ready 

for physical activity. Should any injury occur during the course of testing, standard first aid procedures 

will be administered as necessary. At least one researcher with a basic knowledge of first aid procedures 

will be present at each test session. All tests will be conducted and the equipment will be handled by 

qualified research personnel in the Biomechanics/Sports Medicine Laboratory.  In the unlikely event a 

physical injury is suffered as a result of participation in this study (during the warm up and testing 

session), the University of Tennessee does not automatically provide reimbursement for medical care or 

other compensation and you will be responsible for any medical expenses. If physical injury is suffered in 

the course of research, or for more information, please notify Jake Gardner (974-2091).  

 

Benefits of Participation 

Results from the proposed study will help establish appropriate exercise protocols for people with 

knee OA in order to reduce pain while cycling. The findings may directly help you if you suffer from 

knee osteoarthritis, and may help you learn how to exercise in a way to avoid knee pain. 

 

Compensation 

You will be compensated $10.00 for completing this study. No partial compensation will be given for 

only completing part of the study. You will be eligible for payment once the cycling portion of the testing 

begins. 

 

Voluntary Participation and Withdrawal 

Your participation is entirely voluntary and your refusal to participate will involve no penalty or 

loss of benefits to which you are otherwise entitled. You may withdraw from the study at any time 

without penalty. It is your obligation to ask questions regarding any aspect of this study that you do not 

understand. You acknowledge that you have been offered the opportunity to have any questions 

answered. Your participation in this study may be stopped if you fail to follow the study procedures or if 

the investigators feel that it is in your best interest to stop participation.  

 

Confidentiality 
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Your identity will be held in strict confidence through the use of a coded subject number during 

data collection, data analysis, and in all references made to the data, both during and after the study, and 

in the reporting of the results. The results will be disseminated in the form of presentations at conferences, 

and publications in journals. The consent form containing your identity information will be destroyed 

three years after the completion of the study. If you decide to withdraw from the study, your information 

sheet and consent form with your identity and injury history will be destroyed.  

 

Contact Information 

If you have any questions about the study at any time or if you experience adverse effects as a 

result of participating in this study you can contact Jacob Gardner at 1914 Andy Holt Ave. 136 HPER 

Bldg., The University of Tennessee (974-2091). Questions about your rights as a participant can be 

addressed to Compliance Officer in the Office of Research at the University of Tennessee at (865) 974-

3466.  

 

Consent Statement 

 The study has been explained fully to my satisfaction and I agree to participate as described.  I 

have been given the opportunity to discuss all aspects of this study and to ask questions. Answers to such 

questions, if any, were satisfactory. I am eighteen years of age or older, in good health, am qualified for 

the study and freely give my informed consent to serve as a subject in this study. I have received a copy 

of this form. 

   

 

 

Subject’s Name: ___________________ Subject’s Signature: ________________________  Date: 

_________            

Investigator’s Signature: ____________________________   Date: __________             Subject # ______ 
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Informed Consent Form for OA Subjects 

 

INFORMED CONSENT FORM  

 
Effects of Lateral Shoe Wedges and Toe-in Foot Progression Angles on the Biomechanics of Knee 

Osteoarthritis during Stationary Cycling 
 

Principal Investigator: Jacob Gardner    Faculty Advisor: Songning Zhang, 

Ph.D.  

Address:               136 HPER                          Address:      340 HPER 

                             1914 Andy Holt Avenue                       1914 Andy Holt 

Avenue 

                             Knoxville, TN 37996                             Knoxville, TN 

37996 

                             Phone: (865) 974-2091                          Phone: (865) 974-

4716 

Co-Investigator:  Gary Klipple, MD 

Address:     1924 Alcoa Highway Box U-114 

    Knoxville, TN 37920  

    Phone: (865) 305-9340     
Introduction 

You are invited to participate in this research study because you are an adult with knee 

osteoarthritis aged between 35 and 65 years old. The purpose of this study is to investigate the effects of 

changes in bicycle pedal wedge angles and toe-in angles on the motions and pain in the knee for 

individuals with knee osteoarthritis (OA). Please ask the study staff to explain any words or information 

that you do not clearly understand. Before agreeing to be a participant in this study, it is important that 

you read and understand the following explanation of the procedures, risks, and benefits.  

 

Testing Protocol  

If you qualify for the study based on the initial phone screening, you will be asked to attend one 

session at the Rheumatology division at the UT medical center where you will be assessed for BMI, and 

physical activity readiness. If you qualify based on these items, you will then be evaluated by a 

rheumatologist for knee OA and asked to have your knees X-rayed. The X-rays will be used to diagnose 

and confirm if you have knee OA and to assess OA severity. If you were previously evaluated for our 

recent cycling study, you will not be required to have X-rays taken or be evaluated again. If you qualify 

for the study based on your X-rays, you will be asked to attend one biomechanical test session (i.e. testing 

your joint movements) in the Biomechanics/Sports Medicine Lab on the UT campus that will take 

approximately 1 to 1.5 hours. Parking at the UT Medical Center and main campus will be free to you. 

You will also be asked to fill out the Knee injury and Osteoarthritis Outcome Score (KOOS) survey to 

assess your knee pain and function, and associated problems during common daily activities on both of 

your knees. For the testing session, you will be asked to wear clothing appropriate for cycling exercise 

which includes spandex shorts. If you do not have this type of clothing, paper laboratory shorts will be 

provided. Before testing, you will be asked to fill out a Physical Activity Readiness Questionnaire which 

assesses your readiness to participate in physical activity. If you answer “yes” to any question in the Par-

Q, you will be asked to obtain written consent from your doctor that you are healthy enough to participate 

in this study. A physician permission form will be sent to your physician by the principal investigator to 

obtain the written consent.  
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Prior to data collection, you will be asked to warm up on the treadmill and on the stationary cycle 

for 3 minutes each to allow your joints and muscles to get ready for the cycling exercise. You will also be 

asked to rate your knee pain at several points during the warm-up and testing session. After the warm up, 

reflective markers will be placed on both sides of your feet, ankles, legs, knees, thighs, pelvis and trunk in 

order to capture your movements during cycling.   

Upon completion of all marker placement you will perform two minutes of cycling at an 80 Watt 

workload and a 60 RPM pedal cadence for each condition in the testing session. There are five conditions 

in the testing session so you will cycle up to 20 minutes including your warm up. Several times 

throughout the experimental tests you will rate your knee pain level on a visual scale. You will be given at 

least a two minute rest in between conditions. You can end any condition early and are under no 

obligation to complete the test. 

During the testing, biomechanics instruments such as reflective markers and motion capture 

cameras will be used to obtain measurements. The reflective markers will be placed on your body using 

double stick medical tape and hook and loop wraps. None of the instruments will impede your ability to 

engage in normal and effective motions during the test. The cameras will not record pictures of you. If 

you have any further questions, interests or concerns about any equipment, please feel free to ask the 

investigator  

 

Potential Risks 

Risks associated with this study are minimal. The radiation exposure of the X-rays you will 

receive is 0.003 milliSieverts, which is equivalent to three days of exposure to natural background 

radiation. You will be required to pedal a stationary cycle up to 20 minutes including a warm up and cool 

down. If you are not used to regular cycling exercise, you may experience swelling, tenderness, stiffness, 

or pain in your knees for a few days after the test. Additionally, you may experience delayed onset muscle 

soreness (DOMS) in which the muscles are sore for a day or two following the exercise session. 

However, these conditions are normal for any person who is not accustomed to regular physical activity. 

Additionally, due to the demands of physical activity, there is risk for a cardiovascular event to occur (i.e. 

dizziness, shortness of breath, heart attack, or stroke. However, prior to the test you will fill out a Physical 

Activity Readiness Questionnaire that indicates you are ready for physical activity. Should any injury 

occur during the course of testing, standard first aid procedures will be administered as necessary. At least 

one researcher with a basic knowledge of first aid procedures will be present at each test session. All tests 

will be conducted and the equipment will be handled by qualified research personnel in the 

Biomechanics/Sports Medicine Laboratory.  In the unlikely event a physical injury is suffered as a result 

of participation in this study (during the warm up and testing session), the University of Tennessee does 

not automatically provide reimbursement for medical care or other compensation and you will be 

responsible for any medical expenses. If physical injury is suffered in the course of research, or for more 

information, please notify Jake Gardner (974-2091).  

Benefits of Participation 

Results from the proposed study will help establish appropriate exercise protocols for people with 

knee OA in order to reduce pain while cycling. The findings may directly help you if you suffer from 

knee osteoarthritis, and may help you learn how to exercise in a way to avoid knee pain. 

Compensation 

 You will be compensated $10.00 for this study. No partial compensation will be given for only 

completing part of the study. You will be eligible for payment once the cycling portion of the testing 

begins.  

Voluntary Participation and Withdrawal 

Your participation is entirely voluntary and your refusal to participate will involve no penalty or 

loss of benefits to which you are otherwise entitled. You may withdraw from the study at any time 

without penalty. It is your obligation to ask questions regarding any aspect of this study that you do not 
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understand. You acknowledge that you have been offered the opportunity to have any questions 

answered. Your participation in this study may be stopped if you fail to follow the study procedures or if 

the investigators feel that it is in your best interest to stop participation.  

 

Confidentiality 

Your identity will be held in strict confidence through the use of a coded subject number during 

data collection, data analysis, and in all references made to the data, both during and after the study, and 

in the reporting of the results. The results will be disseminated in the form of presentations at conferences, 

and publications in journals. The consent form containing your identity information will be destroyed 

three years after the completion of the study. If you decide to withdraw from the study, your information 

sheet and consent form with your identity and injury history will be destroyed. 

Contact Information 

If you have any questions about the study at any time or if you experience adverse effects as a 

result of participating in this study you can contact Jacob Gardner at 1914 Andy Holt Ave. 136 HPER 

Bldg., The University of Tennessee (974-2091). Questions about your rights as a participant can be 

addressed to Compliance Officer in the Office of Research at the University of Tennessee at (865) 974-

3466.  

Consent Statement 

 The study has been explained fully to my satisfaction and I agree to participate as described.  I 

have been given the opportunity to discuss all aspects of this study and to ask questions. Answers to such 

questions, if any, were satisfactory. I am eighteen years of age or older, in good health, am qualified for 

the study and freely give my informed consent to serve as a subject in this study. I have received a copy 

of this form. 

   

 

 

Subject’s Name: ___________________ Subject’s Signature: ________________________  Date: 

_________            

Investigator’s Signature: ____________________________   Date: __________             Subject # ______ 
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APPENDIX C: Flyer 
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APPENDIX D: Physical Activity Readiness Questionnaire (PAR-Q) 

Par Q 

1. Has your doctor ever said that you have a heart condition and that you should only do 

physical activity recommended by a doctor?      Yes or No 

2. Do you feel pain in your chest when you do physical activity?      Yes or No 

3. In the past month, have you had chest pain when you were not doing physical activity?      

Yes or No 

4. Do you lose your balance because of dizziness or do you ever lose consciousness?      Yes 

or No 

5. Do you have a bone or joint problem (for example, back, knee, or hip) that could be made 

worse by a change in your physical activity?      Yes or No 

6. Is your doctor currently prescribing drugs (for example, water pills) for your blood 

pressure or heart condition?      Yes or No 

7. Do you know of any other reason why you should not do physical activity?      Yes or No  
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APPENDIX E: Knee Osteoarthritis Outcome Score (KOOS) 
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APPENDIX F: VAS Pain Scale 
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APPENDIX G: Individual Results for Select Variables 
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Table 14: Peak medial pedal reaction force 

Peak Medial PRF (N) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy -27.150±12.002 -35.757±8.360 -35.132±4.240 -38.346±12.533 -46.385±10.867 

2 Healthy -30.893±2.747 -32.432±2.253 -47.741±6.815 -36.587±2.188 -34.673±8.585 

3 Healthy -44.112±3.177 -46.376±4.102 -45.770±2.709 -42.145±4.323 -52.134±9.773 

7 Healthy -42.222±6.087 -45.880±13.090 -35.822±9.609 -36.726±5.862 -31.907±4.533 

9 Healthy -35.321±3.631 -37.509±6.583 -40.180±9.497 -38.341±5.896 -32.409±5.164 

15 Healthy -26.766±2.467 -33.580±3.917 -32.191±4.513 -22.829±4.775 -28.349±13.271 

16 Healthy -48.069±4.131 -46.507±1.970 -40.563±3.352 -37.811±3.085 -24.080±1.166 

17 Healthy -6.416±1.638 -12.559±6.481 -14.709±4.982 -11.108±2.660 -10.172±3.337 

18 Healthy -19.036±7.127 -18.038±4.052 -24.342±4.971 -28.348±3.826 -22.729±7.493 

19 Healthy -27.860±3.652 -39.287±2.110 -38.660±5.741 -39.985±5.987 -37.996±2.875 

20 Healthy -29.850±17.065 -36.813±6.003 -36.975±1.219 -37.344±14.116 -30.665±7.055 

5 OA -28.274±8.035 -28.314±4.573 -38.095±3.447 -47.341±2.920 -42.539±3.215 

6 OA -26.544±3.045 -32.651±1.874 -41.427±2.344 -28.266±2.581 -29.916±2.437 

8 OA -37.922±2.339 -42.823±2.489 -26.873±4.908 -36.360±7.636 -26.065±3.990 

10 OA -18.044±4.314 -22.997±2.501 -28.342±2.569 -22.511±3.236 -22.994±3.976 

11 OA -32.778±1.811 -35.319±2.515 -33.447±3.472 -37.283±6.356 -30.866±2.372 

12 OA -20.310±4.919 -9.598±4.416 -21.835±4.020 -18.515±7.554 -14.143±2.205 

13 OA -31.261±6.725 -30.807±4.419 -30.080±5.730 -47.907±7.379 -41.352±6.587 

14 OA -17.769±1.496 -28.799±4.792 -19.363±3.333 -25.410±3.476 -26.551±4.293 

21 OA -39.854±2.775 -42.489±4.479 -41.016±2.053 -33.901±4.552 -19.186±1.746 

22 OA -30.728±3.590 -40.642±1.745 -41.126±3.750 -31.978±1.755 -38.275±3.437 

23 OA -28.405±3.028 -32.386±2.897 -34.889±5.565 -23.276±5.112 -14.337±4.536 

24 OA -29.601±2.651 -28.071±3.137 -26.898±5.823 -25.234±4.435 -20.062±12.610 

25 OA -29.688±2.689 -7.559±2.891 -18.972±9.975 -15.796±1.984 -5.844±5.875 

Mean±SD Healthy -30.696±11.825 -34.976±10.994 -35.644±9.395 -33.597±9.267 -31.954±11.383 

Mean±SD OA -28.586±8.871 -27.420±14.158 -30.951±8.108 -28.937±12.943 -25.549±11.069 
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Table 15: Peak posterior pedal reaction force 

Peak Poster Pedal Reaction Force (N) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy -66.619±16.794 -94.970±20.124 -78.499±15.389 -94.779±28.601 -96.119±21.720 

2 Healthy -82.081±4.985 -71.315±4.002 -77.660±17.920 -76.972±5.957 -81.265±14.546 

3 Healthy -87.904±10.290 -99.387±4.489 -94.450±9.043 -89.263±2.467 -85.511±12.413 

7 Healthy -87.564±62.012 -118.447±9.019 -108.575±18.001 -114.675±9.347 -108.543±8.416 

9 Healthy -57.262±3.379 -64.064±12.240 -62.824±16.125 -61.392±9.462 -55.029±12.550 

15 Healthy -60.286±6.834 -68.878±3.269 -61.998±3.376 -52.368±5.996 -57.656±18.844 

16 Healthy -52.065±6.337 -65.301±4.511 -27.559±3.534 -56.946±6.263 -19.666±3.700 

17 Healthy -18.960±2.778 -28.375±3.256 -24.681±3.845 -26.975±4.199 -30.940±7.952 

18 Healthy -79.188±10.436 -70.692±4.210 -85.122±6.423 -85.127±7.496 -76.717±5.390 

19 Healthy -64.419±8.533 -80.711±2.856 -77.409±4.489 -73.637±3.632 -69.079±3.964 

20 Healthy -55.268±6.966 -53.028±4.925 -55.204±15.686 -55.204±15.686 -65.423±19.970 

5 OA -83.926±11.250 -93.662±6.503 -99.954±8.500 -102.183±3.648 -103.704±6.063 

6 OA -99.906±2.700 -105.987±3.270 -108.155±3.959 -109.427±2.419 -105.609±1.430 

8 OA -73.262±4.393 -80.444±8.203 -42.228±8.177 -64.295±16.246 -68.645±5.794 

10 OA -60.508±12.946 -45.160±6.654 -55.186±7.433 -60.902±4.478 -44.230±9.889 

11 OA -98.621±5.264 -100.557±6.528 -97.737±11.123 -94.956±17.357 -94.483±4.592 

12 OA -89.402±5.223 -63.584±4.444 -74.950±11.026 -63.697±3.901 -75.775±7.737 

13 OA -117.029±18.804 -128.200±12.053 -125.771±14.114 -122.430±9.345 -109.802±11.549 

14 OA -59.553±6.145 -60.034±3.491 -51.752±6.791 -56.846±4.827 -47.646±5.615 

21 OA -78.050±1.130 -75.432±6.790 -23.374±5.951 -61.192±7.606 -64.149±3.527 

22 OA -85.999±6.369 -94.644±4.530 -87.251±6.572 -82.057±2.762 -86.423±8.640 

23 OA -60.786±6.357 -59.792±7.446 -65.955±7.099 -62.318±9.288 -31.770±6.979 

24 OA -64.143±9.043 -48.019±3.013 -70.493±4.771 -74.227±9.363 -78.785±10.508 

25 OA -74.787±18.363 -66.085±7.305 -73.514±7.982 -64.839±7.401 -71.843±9.582 

Mean±SD Healthy -64.692±19.981 -74.106±24.176 -68.544±25.820 -71.576±24.228 -67.813±26.430 

Mean±SD OA -80.459±17.669 -78.585±24.705 -75.102±28.494 -78.413±21.787 -75.605±24.536 
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Table 16: Peak vertical pedal reaction force 

Peak Vertical PRF (N) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy 203.679±22.286 244.550±27.841 229.615±17.655 240.523±41.617 263.434±32.160 

2 Healthy 268.140±9.726 249.287±10.676 301.020±47.607 258.073±11.341 286.511±34.349 

3 Healthy 267.351±22.301 281.677±7.068 286.326±10.043 272.540±9.344 269.757±29.750 

7 Healthy 192.569±61.511 201.662±13.886 194.591±30.994 196.513±16.132 200.224±14.319 

9 Healthy 216.074±6.107 215.469±17.579 202.650±23.292 223.540±18.060 207.802±15.924 

15 Healthy 218.667±16.729 248.115±11.845 214.690±6.840 219.038±14.275 234.366±31.966 

16 Healthy 276.790±24.657 279.452±7.016 275.970±20.162 269.994±18.634 270.367±20.689 

17 Healthy 190.790±9.466 200.070±24.536 193.434±20.915 188.297±25.580 186.102±29.629 

18 Healthy 235.307±20.298 251.070±26.352 280.382±11.495 264.315±17.415 252.581±3.380 

19 Healthy 192.245±13.039 228.904±8.224 223.354±13.911 224.578±15.037 217.794±9.838 

20 Healthy 338.240±13.525 364.369±7.188 350.290±10.319 350.290±10.319 365.183±12.389 

5 OA 219.741±29.146 255.606±18.593 264.423±10.958 285.271±12.550 280.154±11.738 

6 OA 215.530±54.255 259.549±5.958 268.752±9.120 250.492±6.161 246.692±6.542 

8 OA 201.781±8.928 235.449±11.944 211.939±15.738 251.015±15.893 224.736±12.557 

10 OA 257.295±28.958 253.578±8.525 249.700±16.456 266.870±10.255 243.212±22.759 

11 OA 191.539±12.296 190.088±14.549 182.067±17.693 214.560±9.508 199.054±15.253 

12 OA 317.790±22.758 311.591±6.332 300.211±27.487 319.525±16.783 291.278±12.224 

13 OA 254.405±18.264 263.810±22.212 271.807±31.495 277.024±16.617 268.423±13.080 

14 OA 196.965±6.742 217.883±6.416 198.804±28.198 208.695±11.457 227.824±19.089 

21 OA 244.060±16.438 240.070±15.112 241.621±21.685 231.501±17.172 235.490±10.392 

22 OA 240.167±13.564 240.001±10.353 253.554±6.811 225.213±3.867 229.169±9.221 

23 OA 209.851±17.581 207.026±23.104 210.210±19.715 200.954±9.894 211.584±14.693 

24 OA 241.701±10.852 238.311±12.818 223.535±16.769 236.371±11.963 238.399±3.002 

25 OA 257.587±27.431 271.489±22.159 297.587±17.574 272.225±20.015 262.530±31.355 

Mean±SD Healthy 236.350±46.603 251.330±46.297 250.211±51.441 246.155±44.874 250.375±50.214 

Mean±SD OA 234.493±34.244 244.958±30.640 244.170±37.002 249.209±34.266 242.965±26.620 
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Table 17: Maximum sagittal plane knee angle 

Maximum Sagittal Plane Knee Angle (°) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy -46.159±0.389 -51.392±0.427 -54.511±0.575 -44.482±0.426 -42.717±0.750 

2 Healthy -42.365±1.313 -45.725±0.878 -47.039±1.164 -42.229±0.418 -37.616±0.790 

3 Healthy -44.898±1.069 -41.631±0.699 -39.322±0.812 -46.056±1.326 -53.018±0.794 

7 Healthy -38.483±0.768 -42.329±0.915 -47.211±1.053 -35.558±0.322 -33.904±0.916 

9 Healthy -37.340±1.146 -43.301±1.205 -45.715±1.594 -32.584±1.394 -31.860±0.554 

15 Healthy -56.108±0.677 -56.442±1.381 -59.175±0.464 -55.785±1.276 -53.795±2.284 

16 Healthy -52.511±0.673 -55.998±0.096 -58.066±0.590 -51.713±0.464 -48.060±0.652 

17 Healthy -56.527±0.714 -56.712±1.123 -59.449±0.883 -52.551±1.076 -45.502±1.452 

18 Healthy -38.478±1.196 -38.906±4.023 -42.232±0.545 -34.977±1.075 -36.557±0.545 

19 Healthy -33.422±0.669 -37.607±0.214 -39.330±0.426 -32.245±0.557 -32.094±3.155 

20 Healthy -47.464±0.524 -49.069±0.171 -45.218±0.205 -45.218±0.205 -42.238±0.410 

5 OA -45.881±0.909 -50.420±0.482 -50.774±1.004 -44.857±0.390 -43.274±0.613 

6 OA -41.827±0.440 -45.679±0.338 -51.663±0.575 -42.004±0.412 -41.826±0.316 

8 OA -31.038±2.164 -46.980±3.405 -54.010±0.766 -37.603±1.847 -26.898±2.100 

10 OA -45.361±0.781 -51.100±0.796 -50.171±0.215 -45.057±0.439 -42.209±1.162 

11 OA -29.468±0.828 -35.025±0.764 -39.360±1.083 -25.294±0.889 -27.221±0.488 

12 OA -43.345±0.474 -49.166±0.142 -51.444±0.910 -43.354±0.331 -40.521±1.235 

13 OA -39.927±1.973 -43.297±1.385 -45.912±1.949 -35.945±0.988 -31.429±0.548 

14 OA -59.597±0.517 -61.849±0.484 -66.736±0.521 -57.798±0.523 -54.768±1.286 

21 OA -39.362±0.715 -44.697±0.537 -46.610±0.834 -40.926±0.463 -36.481±0.607 

22 OA -34.332±0.733 -37.626±0.914 -41.915±0.143 -31.963±0.452 -30.901±0.469 

23 OA -30.720±0.665 -36.587±1.161 -39.700±0.979 -24.603±0.933 -21.838±0.724 

24 OA -40.160±0.382 -43.899±0.330 -46.331±0.456 -35.925±0.593 -34.442±0.211 

25 OA -36.326±1.517 -39.127±0.651 -40.585±1.647 -34.244±0.500 -30.316±1.173 

Mean±SD Healthy -44.887±7.776 -47.192±7.122 -48.843±7.682 -43.036±8.316 -41.578±7.896 

Mean±SD OA -39.796±8.087 -45.035±7.278 -48.093±7.468 -38.429±8.850 -35.548±8.840 
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Table 18: Minimum sagittal plane knee angle 

Minimum Sagittal Plane Knee Angle (°) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy -111.512±1.351 -115.801±0.985 -116.627±0.939 -111.718±0.759 -109.702±1.096 

2 Healthy -112.385±0.331 -113.325±0.263 -114.043±0.354 -111.968±0.306 -110.513±0.201 

3 Healthy -122.620±0.522 -121.178±0.287 -119.029±0.217 -122.733±0.483 -125.694±0.409 

7 Healthy -103.108±31.860 -118.783±0.180 -120.337±0.195 -115.959±0.309 -115.540±0.177 

9 Healthy -115.457±0.374 -117.741±0.562 -118.594±0.430 -112.961±0.443 -111.659±0.782 

15 Healthy -120.666±0.474 -120.570±0.277 -122.105±0.316 -120.763±0.400 -119.169±0.200 

16 Healthy -122.730±0.300 -122.920±0.612 -121.256±0.384 -120.776±0.248 -117.353±0.851 

17 Healthy -121.909±0.513 -123.595±1.028 -123.416±0.803 -118.924±0.595 -115.614±0.809 

18 Healthy -109.776±2.786 -111.742±0.851 -111.511±0.511 -108.816±0.421 -107.879±0.646 

19 Healthy -107.522±0.103 -109.713±0.068 -110.819±0.321 -107.032±0.283 -104.516±2.120 

20 Healthy -107.494±0.589 -110.428±0.593 -107.364±0.187 -107.364±0.187 -105.626±0.199 

5 OA -114.697±0.413 -117.794±0.426 -117.224±0.300 -114.264±0.531 -111.038±0.511 

6 OA -117.955±0.196 -119.183±0.110 -120.697±0.250 -116.916±0.122 -116.407±0.225 

8 OA -127.702±0.607 -130.771±1.980 -127.871±0.536 -121.806±2.053 -114.593±1.848 

10 OA -112.832±1.015 -114.384±0.440 -111.076±0.801 -110.507±0.657 -108.324±1.261 

11 OA -113.355±0.165 -113.835±0.453 -114.956±0.158 -109.537±0.155 -109.603±0.334 

12 OA -105.566±0.110 -108.178±0.091 -110.057±0.102 -104.979±0.202 -101.941±0.892 

13 OA -116.487±0.636 -118.579±0.447 -119.204±0.470 -110.799±0.597 -107.869±0.908 

14 OA -125.110±0.472 -124.628±0.950 -126.838±0.687 -122.783±0.203 -121.130±0.337 

21 OA -110.638±0.441 -112.461±0.169 -109.934±0.544 -109.491±0.145 -106.238±0.130 

22 OA -108.732±0.165 -111.444±0.460 -112.310±0.146 -107.424±0.181 -106.468±0.132 

23 OA -105.200±0.620 -107.062±0.821 -109.269±0.652 -102.002±0.592 -102.340±0.388 

24 OA -110.471±0.294 -113.922±0.419 -115.458±0.317 -108.317±0.352 -107.778±0.361 

25 OA -109.465±0.457 -108.178±0.656 -110.716±0.687 -106.604±0.327 -107.770±0.254 

Mean±SD Healthy -114.107±6.993 -116.891±5.012 -116.827±5.224 -114.456±5.689 -113.024±6.347 

Mean±SD OA -113.708±6.800 -115.417±6.803 -115.816±6.300 -111.187±6.205 -109.346±5.394 
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Table 19: Maximum frontal plane knee angle 

Maximum Frontal Plane Knee Angle (°) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy 15.365±0.945 15.989±0.233 16.320±0.341 15.279±1.008 10.609±1.183 

2 Healthy 7.638±0.457 5.389±0.615 6.508±0.415 4.467±0.546 5.876±1.133 

3 Healthy 11.160±0.465 9.286±0.448 10.824±0.175 12.480±0.674 14.083±0.946 

7 Healthy 17.310±0.510 18.474±1.230 16.637±0.596 18.153±0.427 16.858±0.281 

9 Healthy 4.459±0.211 4.246±1.220 4.019±2.407 1.821±0.758 3.369±0.676 

15 Healthy 12.923±0.773 12.700±0.849 11.946±0.806 9.928±0.454 8.450±0.617 

16 Healthy 23.572±0.344 24.418±0.699 26.067±0.671 21.907±0.282 23.262±0.418 

17 Healthy 10.819±0.665 11.079±0.604 11.908±0.733 5.948±1.334 10.973±1.243 

18 Healthy 5.264±0.506 5.723±0.845 8.500±0.881 6.247±0.275 5.316±0.540 

19 Healthy 14.398±0.251 13.779±0.333 12.900±0.313 13.512±0.565 12.443±0.566 

20 Healthy 18.121±0.326 19.046±0.655 17.889±0.398 17.955±0.365 16.790±0.609 

5 OA 8.133±0.452 7.165±0.811 8.675±0.392 3.242±0.277 4.155±0.920 

6 OA 14.058±0.333 14.340±0.298 12.500±0.382 9.388±0.627 10.141±0.282 

8 OA 21.329±0.657 18.280±0.344 20.134±0.947 17.698±0.494 24.489±1.113 

10 OA 11.543±0.468 10.450±0.419 8.367±0.508 8.205±0.413 6.948±2.168 

11 OA 11.804±0.172 11.973±0.162 11.766±0.426 6.239±0.732 10.093±0.949 

12 OA 16.765±0.964 17.122±0.471 17.812±0.326 16.927±0.418 13.923±0.353 

13 OA 8.169±0.701 7.720±0.789 8.860±0.751 3.720±0.861 -0.144±0.621 

14 OA 8.065±0.701 6.511±0.702 7.540±0.437 2.541±0.744 0.871±0.701 

21 OA 10.051±0.979 8.013±0.477 13.333±0.815 5.586±0.716 3.385±0.400 

22 OA 9.399±0.348 8.851±0.722 7.969±0.351 8.262±0.221 7.620±0.216 

23 OA 5.748±1.599 5.502±0.525 5.931±0.963 5.641±0.552 3.472±0.677 

24 OA 13.949±0.639 14.709±0.722 15.356±0.361 11.113±0.975 10.171±0.462 

25 OA 19.446±0.432 24.224±0.359 27.326±0.702 23.393±1.253 21.542±0.618 

Mean±SD Healthy 12.821±5.775 12.739±6.409 13.047±6.074 11.609±6.461 11.639±5.906 

Mean±SD OA 12.189±4.724 11.912±5.553 12.736±6.112 9.381±6.343 8.974±7.454 
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Table 20: Minimum frontal plane knee angle 

Minimum Frontal Plane Knee Angle (°) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy 7.413±1.069 7.803±0.440 7.258±0.355 5.361±0.941 2.268±0.488 

2 Healthy -4.235±0.635 -6.971±0.901 -7.455±0.649 -6.388±0.376 -7.040±0.540 

3 Healthy -1.184±0.260 -1.837±0.331 -0.811±0.538 -0.362±0.288 0.421±1.080 

7 Healthy 6.894±0.436 6.877±0.436 7.008±0.287 6.683±0.305 5.401±0.186 

9 Healthy -1.581±0.999 -2.507±0.922 -2.539±1.359 -3.988±1.480 -3.663±0.338 

15 Healthy 0.975±0.469 0.167±1.385 -0.888±1.209 2.293±0.786 -0.222±0.821 

16 Healthy 10.671±0.343 10.442±0.326 9.189±0.617 6.675±0.267 7.546±0.577 

17 Healthy 3.297±1.788 1.386±0.697 2.768±1.100 -2.828±0.371 -1.171±1.155 

18 Healthy -5.992±1.397 -6.511±0.452 -6.231±0.859 -4.335±0.738 -5.690±0.823 

19 Healthy 1.534±0.277 2.294±0.231 0.319±1.787 -2.159±0.463 -2.162±1.556 

20 Healthy 6.562±0.882 6.056±0.616 4.748±0.355 4.748±0.355 2.578±0.525 

5 OA -5.941±0.538 -5.966±1.245 -5.319±0.478 -7.727±0.618 -6.397±0.743 

6 OA 9.515±0.196 9.732±0.232 7.399±0.447 5.753±0.451 5.679±0.236 

8 OA 10.208±0.904 8.802±0.640 13.336±0.119 6.001±0.783 6.870±1.385 

10 OA 4.809±0.395 3.800±0.816 1.366±0.354 3.513±0.405 0.357±0.566 

11 OA 4.855±0.620 2.913±0.725 2.485±0.791 -2.401±1.162 0.113±0.305 

12 OA 8.160±0.777 8.826±0.247 9.467±0.399 6.377±1.193 5.473±0.915 

13 OA -1.610±0.604 -2.566±0.268 -2.743±1.089 -5.342±0.331 -8.904±0.333 

14 OA 3.012±0.722 -0.723±0.612 2.142±1.064 -2.350±0.554 -3.671±0.487 

21 OA -1.794±0.162 -3.042±0.676 -5.559±0.994 -4.016±0.599 -3.952±0.372 

22 OA 5.707±0.338 5.296±0.220 5.246±0.356 4.053±0.691 2.124±0.501 

23 OA -0.336±1.086 -0.239±0.707 -1.528±2.410 -3.667±0.616 -4.088±0.328 

24 OA 7.406±0.667 8.533±0.665 9.050±0.658 6.690±0.574 6.230±0.466 

25 OA 13.714±0.498 14.612±0.879 17.718±0.736 15.502±0.533 15.370±0.794 

Mean±SD Healthy 2.214±5.267 1.563±5.787 1.215±5.501 0.518±4.807 -0.158±4.464 

Mean±SD OA 4.439±5.610 3.844±6.105 4.082±7.134 1.722±6.546 1.169±6.692 
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Table 21: Maximum transverse plane knee angle 

Maximum Transverse Plane Knee Angle (°) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy 5.066±0.404 8.597±0.487 8.647±0.763 5.904±1.073 6.040±1.297 

2 Healthy 1.945±0.600 0.474±0.604 1.470±0.566 -0.224±0.166 1.217±0.778 

3 Healthy 3.285±0.644 4.874±0.062 4.844±0.416 4.919±0.341 3.706±1.607 

7 Healthy 12.785±5.784 14.724±0.804 13.847±0.425 16.293±0.621 16.395±0.294 

9 Healthy 2.026±2.212 1.458±1.902 2.549±1.214 1.215±0.543 3.332±0.498 

15 Healthy 6.680±0.578 9.565±1.252 8.697±0.826 5.570±0.350 3.923±1.423 

16 Healthy 12.517±0.553 13.264±0.967 12.427±0.765 12.336±0.517 12.519±0.858 

17 Healthy 5.835±0.761 10.865±0.722 10.373±0.527 7.351±1.065 12.948±1.240 

18 Healthy -9.703±1.395 -5.419±1.856 -8.881±1.527 -9.199±1.332 -12.600±1.545 

19 Healthy 1.691±0.545 3.171±0.379 4.960±0.302 4.915±1.166 4.573±2.046 

20 Healthy 2.093±0.616 6.210±0.579 2.519±0.194 2.519±0.194 3.249±0.797 

5 OA -3.166±0.753 -1.923±0.753 -1.972±0.466 -3.209±0.728 -4.483±0.655 

6 OA 10.847±0.234 11.188±0.549 10.156±0.120 8.256±0.488 8.425±0.456 

8 OA 7.974±1.623 7.489±0.845 5.922±0.802 6.104±1.375 5.851±1.597 

10 OA -1.143±0.534 -1.764±0.268 -2.918±0.265 -1.118±0.333 -0.903±1.065 

11 OA 0.804±0.371 -0.557±1.020 -0.487±0.550 -0.021±0.481 1.853±0.657 

12 OA 6.849±0.859 7.664±0.436 10.216±0.593 6.739±0.683 2.738±1.040 

13 OA 1.429±1.208 1.849±1.203 3.403±1.758 0.174±1.088 -0.484±0.665 

14 OA 11.101±1.233 9.587±0.565 11.121±0.667 10.141±0.972 9.555±0.370 

21 OA 4.910±0.352 4.493±0.345 4.674±0.487 4.283±0.162 4.546±0.618 

22 OA 2.998±0.345 3.572±0.332 3.372±0.348 4.091±0.321 4.899±0.221 

23 OA 8.338±0.527 8.016±0.854 9.154±0.688 8.444±1.557 8.145±1.260 

24 OA 12.022±0.288 13.221±0.454 14.784±0.481 11.952±0.424 11.149±0.518 

25 OA 21.903±0.405 21.188±0.296 23.335±0.743 20.785±0.120 22.004±0.428 

Mean±SD Healthy 4.020±6.056 6.162±6.021 5.587±6.347 4.691±6.606 5.028±7.639 

Mean±SD OA 6.528±6.698 6.463±6.585 6.981±7.285 5.894±6.422 5.638±6.676 
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Table 22: Minimum transverse plane knee angle 

Minimum Transverse Plane Knee Angle (°) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy -12.096±1.049 -9.950±0.441 -9.690±0.505 -8.978±2.522 -5.453±0.955 

2 Healthy -1.576±0.401 -3.558±0.513 -3.719±0.473 -2.877±0.775 -2.335±1.096 

3 Healthy -3.059±0.539 -1.094±1.409 -0.286±0.866 -2.519±1.232 -4.453±0.927 

7 Healthy 3.380±2.546 2.075±2.504 0.653±1.768 0.628±0.385 -0.107±0.446 

9 Healthy -3.117±0.376 -1.037±0.740 -0.015±0.533 0.265±0.739 0.563±0.672 

15 Healthy -0.613±1.437 -1.050±0.203 -1.419±1.978 3.062±0.655 1.927±1.533 

16 Healthy -7.919±0.792 -6.772±1.289 -7.004±0.246 -5.256±0.751 -5.958±0.419 

17 Healthy -0.001±0.868 -0.120±0.727 -0.231±0.551 0.162±0.606 -0.306±0.966 

18 Healthy -11.373±1.822 -9.113±1.057 -14.180±0.672 -12.240±1.471 -13.151±1.326 

19 Healthy -8.025±0.337 -7.125±0.106 -5.042±0.475 -5.132±0.278 -3.807±0.297 

20 Healthy -10.357±0.580 -9.053±0.570 -9.869±0.271 -9.869±0.271 -9.140±0.438 

5 OA -7.628±0.402 -7.650±0.553 -9.558±0.504 -7.276±0.705 -8.154±1.005 

6 OA -6.341±0.496 -7.051±0.400 -3.451±0.351 -4.716±0.327 -3.582±0.292 

8 OA -10.628±1.484 -7.540±0.900 -8.045±0.519 -4.894±0.814 -11.125±0.911 

10 OA -3.626±0.347 -4.665±1.082 -4.861±0.238 -3.553±0.308 -3.301±0.235 

11 OA -7.474±0.932 -7.793±0.368 -6.875±0.555 -3.826±0.572 -5.294±0.374 

12 OA -0.318±0.342 0.565±0.369 -0.299±0.497 -0.377±0.692 0.119±0.368 

13 OA -10.766±0.620 -9.661±1.145 -7.482±3.246 -2.007±1.629 -2.368±1.547 

14 OA 5.215±0.709 4.609±0.773 5.325±0.835 6.030±1.093 5.796±0.491 

21 OA -1.471±1.049 -2.147±1.228 -4.327±0.967 -0.417±0.574 0.669±1.116 

22 OA -3.230±1.916 -1.827±0.792 -6.560±0.397 -8.645±0.312 -7.421±0.306 

23 OA 2.773±0.371 3.307±1.159 4.584±1.902 5.888±1.411 5.639±1.179 

24 OA 2.588±0.700 2.578±0.701 3.622±0.430 6.357±0.825 6.178±0.596 

25 OA 3.298±0.552 -0.424±0.900 -1.945±0.671 -0.664±0.407 -0.879±0.709 

Mean±SD Healthy -4.978±5.204 -4.254±4.265 -4.618±4.986 -3.887±4.900 -3.838±4.512 

Mean±SD OA -2.893±5.421 -2.900±4.821 -3.067±5.006 -1.392±4.934 -1.825±5.509 
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Table 23: Peak Extensor Knee Moment 

Peak Extensor Knee Moment (Nm) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy 28.634±5.450 39.250±9.339 33.346±7.871 36.550±10.670 39.465±6.847 

2 Healthy 31.699±4.041 27.236±1.862 33.673±11.428 31.202±3.252 33.236±8.733 

3 Healthy 33.690±4.884 36.885±2.987 34.167±3.794 31.684±1.595 32.567±4.848 

7 Healthy 49.217±8.353 52.409±3.952 49.482±9.589 51.438±5.071 48.966±5.402 

9 Healthy 21.289±1.223 26.977±5.447 27.513±6.897 24.202±4.003 22.251±4.679 

15 Healthy 22.175±3.034 28.253±2.150 26.316±2.045 17.803±2.231 21.806±5.842 

16 Healthy 25.197±2.319 30.191±2.322 22.020±0.469 24.755±1.629 23.142±0.563 

17 Healthy 15.441±4.515 18.671±2.330 18.671±1.211 18.582±2.135 15.528±3.380 

18 Healthy 22.940±2.353 22.576±2.918 24.544±2.544 23.345±2.135 24.914±3.239 

19 Healthy 23.663±4.334 33.429±2.030 31.937±2.670 27.124±1.974 25.811±2.195 

20 Healthy 15.019±3.546 17.978±2.551 18.075±1.564 16.256±3.777 17.535±7.268 

5 OA 27.938±3.905 34.931±1.172 37.869±3.444 38.553±2.229 37.472±1.756 

6 OA 34.566±1.519 39.037±1.283 42.872±1.904 40.640±1.516 38.747±1.593 

8 OA 26.692±1.362 35.287±1.447 24.112±3.775 29.563±3.801 24.632±1.501 

10 OA 22.971±5.945 21.099±3.068 25.892±3.713 27.301±2.197 18.327±4.570 

11 OA 38.954±2.422 40.752±2.451 40.781±4.136 34.923±3.606 35.372±2.280 

12 OA 24.133±1.858 13.287±1.537 22.431±3.728 11.786±2.527 15.809±4.295 

13 OA 41.864±8.628 44.290±5.895 43.923±6.873 45.494±5.010 41.514±4.709 

14 OA 22.606±2.390 26.081±0.716 21.773±4.417 22.805±2.235 19.830±4.018 

21 OA 28.621±0.832 30.385±4.367 9.570±0.486 26.688±1.953 23.986±1.094 

22 OA 33.973±0.996 35.447±3.340 34.174±3.248 27.682±1.242 33.285±3.154 

23 OA 18.031±2.458 21.518±3.080 24.250±3.492 20.747±3.552 14.442±2.474 

24 OA 24.445±2.924 18.047±2.309 25.940±1.815 26.185±3.304 27.793±3.868 

25 OA 18.737±5.497 15.226±1.156 16.386±2.788 15.946±2.552 15.849±2.966 

Mean±SD Healthy 26.269±9.598 30.350±9.967 29.068±8.942 27.540±10.109 27.747±9.965 

Mean±SD OA 27.964±7.418 28.876±10.304 28.459±10.619 28.332±9.659 26.697±9.643 
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Table 24: Peak abduction knee moment 

Peak Abduction Knee Moment (Nm) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy -13.692±4.182 -15.664±2.593 -13.345±2.278 -16.334±5.042 -17.898±4.252 

2 Healthy -8.293±1.244 -7.847±1.886 -8.805±1.663 -7.446±0.777 -8.690±3.231 

3 Healthy -9.146±1.061 -8.818±0.876 -10.189±0.397 -7.765±0.802 -7.419±0.944 

7 Healthy -17.336±3.135 -18.189±2.814 -13.281±2.827 -18.702±2.143 -15.286±1.800 

9 Healthy -6.099±1.344 -2.442±1.281 -2.816±1.775 -4.541±1.489 -4.154±2.250 

15 Healthy -7.540±0.488 -7.695±0.866 -6.509±0.515 -7.622±1.173 -7.843±3.360 

16 Healthy -14.738±1.498 -14.094±0.813 -7.951±0.878 -12.827±0.299 -13.427±0.396 

17 Healthy -3.745±0.801 -4.204±0.185 -4.527±0.279 -5.310±0.768 -5.863±0.835 

18 Healthy -1.429±0.720 -1.487±0.754 -0.763±0.283 -2.984±1.104 -2.059±0.946 

19 Healthy -7.124±1.232 -9.952±0.731 -8.827±0.826 -11.416±2.249 -9.652±0.679 

20 Healthy -9.804±2.634 -8.341±1.044 -12.413±1.486 -10.001±3.842 -8.075±1.777 

5 OA -2.760±1.001 -2.250±0.503 -2.320±0.350 -4.061±0.890 -3.116±0.872 

6 OA -12.391±0.979 -12.676±0.703 -12.213±0.712 -13.498±0.908 -14.897±0.235 

8 OA -6.242±0.452 -4.319±0.469 -5.046±0.817 -7.504±2.019 -8.467±0.758 

10 OA -1.915±0.354 -2.528±0.219 -2.493±0.564 -3.708±0.903 -2.155±0.151 

11 OA -4.030±0.569 -3.081±0.845 -2.577±0.308 -2.947±0.443 -2.799±0.222 

12 OA -14.378±2.411 -5.389±0.865 -10.047±2.573 -11.407±3.110 -7.159±1.114 

13 OA -5.016±1.408 -2.497±0.824 -2.851±1.129 -9.024±1.188 -7.918±0.807 

14 OA -2.579±0.220 -2.643±0.180 -2.503±0.362 -3.082±0.218 -2.960±0.116 

21 OA -6.833±1.083 -5.886±1.121 -4.863±0.826 -4.193±0.602 -2.869±0.235 

22 OA -14.095±1.156 -10.717±0.766 -9.836±1.945 -10.290±0.960 -11.293±1.613 

23 OA -5.686±1.666 -4.582±0.860 -4.061±0.793 -3.260±0.341 -2.882±0.243 

24 OA -9.910±0.713 -8.474±0.462 -9.277±1.277 -10.232±1.042 -10.688±1.235 

25 OA -14.570±2.775 -6.841±1.216 -9.805±0.635 -6.875±1.358 -9.694±3.236 

Mean±SD Healthy -8.995±4.739 -8.976±5.307 -8.130±4.188 -9.541±4.917 -9.124±4.742 

Mean±SD OA -7.723±4.755 -5.530±3.344 -5.992±3.658 -6.929±3.655 -6.685±4.183 
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Table 25: Peak internal rotation knee moment 

Peak Internal Rotation Knee Moment (Nm) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy 10.160±2.954 12.202±2.350 12.269±1.878 11.689±4.021 12.500±2.529 

2 Healthy 5.955±0.406 6.713±0.496 11.772±2.037 7.804±1.197 5.820±2.038 

3 Healthy 11.154±1.216 9.447±1.083 9.687±0.758 9.195±0.989 12.273±2.507 

7 Healthy 10.060±0.519 12.014±4.830 7.838±2.381 9.440±1.649 7.302±1.646 

9 Healthy 6.294±0.863 5.879±1.751 6.355±1.848 3.646±0.932 3.934±1.767 

15 Healthy 8.987±0.920 10.597±0.999 9.050±1.069 6.401±0.952 6.601±3.105 

16 Healthy 16.459±1.550 14.925±0.683 13.182±1.272 8.289±0.928 6.142±0.437 

17 Healthy -0.159±0.313 1.520±1.242 2.119±0.784 0.918±0.469 -0.746±0.124 

18 Healthy 4.261±1.824 2.230±1.199 4.219±1.167 4.653±0.546 5.838±1.348 

19 Healthy 5.813±0.568 7.683±0.543 6.523±1.133 7.415±1.748 5.978±0.734 

20 Healthy 8.752±3.621 5.618±1.551 10.178±0.499 7.137±3.672 1.473±1.169 

5 OA 8.231±1.697 5.158±1.278 8.674±1.106 9.823±1.187 9.336±0.975 

6 OA 8.522±1.325 10.170±0.735 12.949±1.087 9.521±1.060 9.223±0.581 

8 OA 6.184±0.598 6.112±0.658 2.134±0.918 1.453±2.349 0.980±0.673 

10 OA 0.186±0.957 -3.583±1.847 0.641±0.612 0.306±1.216 -1.097±0.282 

11 OA 2.897±0.412 5.540±1.053 3.383±1.229 0.780±1.694 1.203±0.754 

12 OA 9.174±2.122 4.535±1.755 8.881±1.772 9.231±3.486 2.398±0.308 

13 OA 8.162±3.418 6.868±0.868 5.191±1.388 11.719±1.419 6.903±2.804 

14 OA 2.922±0.420 0.927±1.967 0.909±0.509 -0.043±0.870 -1.203±0.580 

21 OA 10.038±1.681 12.436±4.949 8.507±2.009 8.682±1.102 -0.192±1.319 

22 OA 11.659±0.511 9.117±1.022 11.654±3.098 5.626±1.088 7.049±0.955 

23 OA 4.170±1.408 6.661±0.616 6.806±1.881 1.569±1.259 0.193±1.340 

24 OA 5.088±1.114 6.120±0.625 2.967±1.661 0.386±0.332 -0.099±1.053 

25 OA 8.347±2.794 3.221±1.130 5.614±1.293 4.364±0.765 3.265±1.228 

Mean±SD Healthy 7.976±4.294 8.075±4.215 8.472±3.455 6.963±2.989 6.101±3.923 

Mean±SD OA 6.583±3.324 5.637±4.045 6.024±3.969 4.878±4.395 2.920±3.876 
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Table 26: Peak ankle plantarflexion angle 

Peak Ankle Plantarflexion Angle (°) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy -28.789±1.946 -19.780±2.376 -24.417±1.744 -21.089±2.310 -21.134±2.343 

2 Healthy -10.491±0.884 -6.909±1.204 -6.135±2.022 -10.175±1.076 -10.633±1.796 

3 Healthy -2.822±0.809 1.803±1.615 -2.282±0.478 2.082±1.658 0.210±2.011 

7 Healthy -5.467±1.549 -3.820±0.695 -4.163±2.123 -6.430±0.766 -3.903±1.344 

9 Healthy -21.928±4.528 -18.808±3.113 -14.919±2.594 -23.452±4.581 -23.036±1.781 

15 Healthy 5.601±0.936 9.187±1.824 11.856±0.846 6.623±0.653 4.611±1.331 

16 Healthy -6.026±0.531 -9.989±1.125 -18.478±1.068 -4.391±0.915 -8.917±0.563 

17 Healthy -8.376±3.228 -23.089±2.646 -19.225±1.591 -13.391±2.086 -17.643±2.109 

18 Healthy 7.011±2.636 11.889±9.334 8.144±0.919 4.765±3.010 5.147±2.655 

19 Healthy -16.764±0.516 -15.283±0.369 -12.530±0.725 -18.484±0.924 -19.925±1.002 

20 Healthy -10.235±0.849 -10.713±0.585 -5.921±1.154 -5.921±1.154 -7.295±0.548 

5 OA -5.141±1.297 -5.367±0.735 -2.278±3.005 -7.491±0.911 -8.580±1.955 

6 OA -0.076±0.891 2.867±0.170 3.958±0.702 0.635±0.804 -0.151±0.411 

8 OA 9.412±0.376 8.511±4.965 -5.956±1.107 -5.822±10.483 -20.147±1.703 

10 OA -16.919±3.306 -26.814±1.082 -33.626±2.255 -28.496±1.719 -24.376±1.854 

11 OA 0.813±1.762 -5.912±1.469 -2.232±1.179 -16.874±1.529 -13.283±1.520 

12 OA -0.865±1.162 1.335±0.445 2.200±0.534 -1.939±1.178 0.878±1.568 

13 OA 4.695±4.456 4.899±0.992 7.808±2.848 -3.788±3.957 -9.185±2.936 

14 OA -8.213±0.735 -9.444±2.156 -4.589±0.548 -5.097±0.605 -4.398±1.418 

21 OA -17.702±1.107 -15.941±0.781 -30.496±2.005 -20.178±1.188 -23.350±0.680 

22 OA -13.248±1.074 -10.289±1.214 -11.940±1.029 -17.000±1.241 -17.400±1.493 

23 OA -5.546±1.546 -6.394±1.062 -1.609±1.000 -5.931±1.690 -5.799±2.119 

24 OA -13.011±1.238 -8.010±0.715 -6.534±2.470 -13.222±0.368 -12.665±1.204 

25 OA -12.211±1.979 -17.843±0.556 -20.454±3.961 -17.730±0.744 -13.919±0.986 

Mean±SD Healthy -8.935±10.734 -7.774±11.631 -8.006±11.330 -8.169±10.255 -9.320±10.193 

Mean±SD OA -6.001±8.476 -6.800±9.834 -8.135±12.764 -10.995±8.565 -11.721±8.187 
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Table 27: Peak ankle eversion angle 

Peak Ankle Eversion Angle (°) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy -1.902±1.570 -4.180±0.553 -3.985±0.665 0.292±0.693 -0.419±1.175 

2 Healthy -2.061±0.857 -3.046±1.185 -4.361±0.461 1.105±0.358 -2.657±0.535 

3 Healthy -10.792±0.854 -8.563±0.406 -7.644±0.465 -14.059±0.187 -12.738±2.221 

7 Healthy -12.106±0.537 -14.435±0.406 -16.734±0.493 -13.818±0.215 -14.390±0.258 

9 Healthy -19.447±0.950 -21.493±1.321 -21.266±0.954 -15.722±0.858 -18.545±1.350 

15 Healthy -7.136±0.350 -14.842±0.608 -17.119±0.847 -15.014±1.298 -9.713±0.935 

16 Healthy -19.446±0.533 -24.423±0.074 -24.570±0.433 -15.166±0.440 -16.667±0.253 

17 Healthy -27.485±1.033 -34.365±1.533 -35.290±2.010 -15.417±1.028 -18.398±1.933 

18 Healthy -22.219±1.947 -28.174±0.809 -30.838±0.680 -19.316±1.369 -19.831±1.359 

19 Healthy -15.939±0.428 -21.252±0.445 -23.904±0.306 -16.911±0.252 -14.567±0.574 

20 Healthy -6.453±1.269 -9.754±1.109 -6.149±0.741 -6.149±0.741 -4.476±0.562 

5 OA -4.607±0.452 -8.220±0.715 -12.469±0.122 -1.662±0.787 -4.262±1.083 

6 OA -2.395±0.571 -5.338±0.312 -4.446±0.557 -2.856±0.168 -2.251±0.719 

8 OA -8.786±1.240 -9.247±1.157 -14.146±1.124 -6.668±2.560 -4.553±0.677 

10 OA -13.500±1.051 -16.123±0.625 -17.938±0.737 -14.096±1.471 -13.178±0.571 

11 OA -13.502±0.675 -16.509±0.502 -18.873±0.984 -6.345±0.695 -14.099±0.522 

12 OA -1.380±1.122 -2.267±0.574 -3.323±0.662 -0.384±0.393 3.965±0.172 

13 OA -15.193±1.348 -21.722±2.152 -25.025±1.011 -17.915±5.275 -9.253±1.253 

14 OA -14.025±1.078 -15.475±0.646 -19.660±0.355 -11.670±0.362 -4.929±0.642 

21 OA 4.787±1.736 3.910±0.937 0.121±0.910 6.432±1.245 5.902±0.837 

22 OA 0.395±0.234 -4.475±0.537 -5.954±0.279 -0.220±0.495 -1.549±0.218 

23 OA -12.058±0.735 -17.124±1.164 -24.030±0.550 -6.549±0.894 -4.332±0.735 

24 OA -7.351±1.013 -8.616±0.393 -13.570±0.259 -2.866±0.494 -2.388±0.848 

25 OA -1.243±0.319 -5.791±0.669 -4.736±2.745 -3.371±1.052 0.080±1.325 

Mean±SD Healthy -13.181±8.437 -16.775±10.066 -17.442±10.870 -11.834±6.976 -12.037±6.804 

Mean±SD OA -6.835±6.550 -9.769±7.224 -12.619±8.299 -5.244±6.442 -3.911±5.809 
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Table 28: Peak ankle internal rotation angle 

Peak Ankle Internal Rotation Angle (°) 

Subject Group Healthy 5 deg Wedge 10 deg Wedge 5 deg Toe-in 10 deg Toe-in 

1 Healthy 6.071±1.469 3.041±0.565 1.021±0.681 5.401±0.551 7.142±0.371 

2 Healthy 8.557±0.337 5.104±0.716 4.419±0.961 8.016±0.229 7.356±0.672 

3 Healthy 12.003±0.236 11.914±0.336 11.498±0.049 12.323±0.707 13.966±0.733 

7 Healthy 3.384±2.079 6.082±0.417 3.664±0.580 5.397±0.274 2.775±0.282 

9 Healthy 12.314±2.328 11.482±1.451 10.746±1.553 12.311±1.611 12.790±1.514 

15 Healthy 7.608±1.056 1.703±0.605 0.583±0.756 7.310±1.465 7.265±0.461 

16 Healthy 21.552±0.350 19.813±0.165 14.188±0.425 18.644±0.330 20.924±0.130 

17 Healthy -4.775±0.517 -9.773±1.217 -7.318±0.428 4.391±0.751 4.939±1.047 

18 Healthy 9.017±2.313 11.795±0.396 5.018±0.638 13.888±1.249 17.737±1.196 

19 Healthy 4.349±0.499 -0.495±0.436 -0.715±0.550 10.800±0.172 11.442±0.262 

20 Healthy 21.336±0.606 16.957±0.295 21.214±0.427 21.214±0.427 23.484±0.347 

5 OA 15.063±0.717 13.628±1.277 15.837±0.587 17.444±0.623 18.344±1.116 

6 OA -6.376±0.383 -7.177±0.371 -9.351±0.813 -3.507±0.172 -3.134±0.144 

8 OA 17.878±1.575 13.658±0.405 17.848±0.959 19.302±3.079 20.263±1.626 

10 OA 7.206±1.404 8.506±0.796 6.715±0.269 9.245±0.461 11.791±0.156 

11 OA 6.083±0.686 5.041±1.469 7.095±0.881 13.358±0.939 11.207±0.555 

12 OA 9.570±0.367 6.949±0.568 5.913±0.671 10.390±0.725 14.871±1.265 

13 OA 12.534±3.500 14.829±3.272 8.577±2.623 18.892±1.352 22.982±1.857 

14 OA 7.390±0.302 6.343±1.207 4.307±0.290 7.472±0.264 11.905±0.304 

21 OA 19.029±0.588 16.266±3.273 14.194±0.332 19.128±0.679 18.650±0.162 

22 OA 6.356±0.285 4.070±0.264 2.859±0.742 11.253±0.375 13.331±0.609 

23 OA 5.717±1.575 3.989±0.892 3.180±0.587 14.793±0.358 16.729±0.981 

24 OA -2.063±0.662 -3.101±0.857 -6.253±0.714 6.405±0.359 8.103±1.977 

25 OA 7.301±0.602 5.573±0.953 6.079±1.263 8.057±0.612 11.636±0.189 

Mean±SD Healthy 9.220±7.634 7.057±8.463 5.847±7.978 10.881±5.508 11.802±6.718 

Mean±SD OA 8.130±7.147 6.813±6.857 5.923±7.741 11.710±6.509 13.591±6.569 
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