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ABSTRACT 

Lacunarity is a technique developed for multiscale analysis of spatial data and can quantify 

scale-dependent heterogeneity in a dataset. The present research is based on 

characterizing fracture data of various types by invoking lacunarity as a concept that can 

not only be applied to both fractal and non-fractal binary data but can also be extended to 

analyzing non-binary data sets comprising a spectrum of values between 0 and 1. 

Lacunarity has been variously modified in characterizing fracture data from maps and 

scanlines in tackling five different problems. In Chapter 2, it is shown that normalized 

lacunarity curves can differentiate between maps (2-dimensional binary data) belonging to 

the same fractal-fracture system and that clustering increases with decreasing spatial scale. 

Chapter 4 analyzes spacing data from scanlines (1-dimensional binary data) and employs 

log-transformed lacunarity curves along with their 1st derivatives in identifying the 

presence of fracture clusters and their spatial organization. This technique is extended to 

1-dimensional non-binary data in chapter 5 where spacing is integrated with aperture 

values and a lacunarity ratio is invoked in addressing the question of whether large 

fractures occur within clusters. Finally, it is investigated in chapter 6 if lacunarity can find 

differences in clustering along various directions of a fracture network thus identifying 

differentially-clustered fracture sets. In addition to fracture data, chapter 3 employs 

lacunarity in identifying clustering and multifractal behavior in synthetic and natural 2-

dimensional non-binary patterns in the form of soil thin sections. Future avenues for 

research include estimation of 2-dimensional clustering from 1-dimensional samples (e.g., 

scanlines and well-data), forward modeling of fracture networks using lacunarity, and the 

possible application of lacunarity in delineating shapes of other geologic patterns such as 

channel beds. 
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  Fractures are developed by brittle failure and are defined as discrete breaks within 

a rock mass across which cohesion is lost. They have important impact on rock strength 

and the flow properties of aquifers and reservoirs. Not surprisingly, there have been 

numerous studies on the scaling properties of fracture data from well-bores, scanlines and 

maps. Such research is key to understanding fracture geometry and serves as a preliminary 

step towards stochastic modeling. Characterization techniques have ranged from 

geostatistical analyses (LaPointe and Hudson, 1985; Chiles, 1988) and other standard 

statistical approaches like finding cumulative frequencies of fracture length (deJossineau 

and Aydin, 2007) and aperture (Marrett at al., 1999) to fractal descriptors (Berkowitz and 

Hadad, 1997; Roy et al., 2007).   

Since the heterogeneity of fractures exists over a wide range of scales, from microns 

(in thin sections) to hundreds of kilometers (as in transform faults), fractal modeling has 

become a popular tool in studying fracture patterns (Bonnet et al., 2001; Roy et al., 2007; 

Kruhl, 2013). These models however, can be applied for characterizing self-similar 

behavior only in binary patterns i.e. patterns that are made up of only two values (0 and 1). 

While this isn’t a problem for fracture networks or scanline data with spacing values, it may 

be limited in its application to say, fracture intensity maps and scanline data that record 

fracture aperture and/or length along with spacing values. Multifractal analysis is a more 

general tool that may be applied for quantifying scale-independent behavior in non-binary 

patterns that comprise a spectrum of values between zero and one. This technique has 

been applied to fractures by Belfield (1994), Chen (1999), and Cowie et al. (1995). 

However, these approaches are applicable only to a limited number of fracture data sets 

that are strictly fractal or multifractal.  

Lacunarity as a concept was initially developed for studying clustering in fractal 

patterns (Mandelbrot, 1983). This approach is based on a multi-scale analysis of spatial 

dispersion (Plotnick, 1996) and can quantify scale-dependent heterogeneity in a dataset. In 

simple terms, lacunarity characterizes the distribution of spaces or gaps in a pattern as a 

function of scale. The biggest advantage of this technique is that not only is it applicable to 

both fractal and non-fractal binary data alike but can also be extended to analyze 

multifractals and other non-binary datasets. This dissertation is an attempt to capture the 
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scale-dependent heterogeneity of fracture data in the form of networks (2-dimensional 

binary data), scanline spacing values (1-dimensional binary data) and scanline aperture 

values along with spacing (1-dimensional non-binary).  Chapter 3 is slightly different from 

the rest of this dissertation in that it essentially deals with 2-dimensional non-binary 

synthetic data and briefly attempts to identify multifractal behavior in soil thin-sections 

using lacunarity.  

A concept takes root if the user is able to customize it to the ever changing needs of 

his projects (Journel, 1989). Therefore, in an endeavor to best capture the essence of 

lacunarity as a concept it has been variously “customized” in the different chapters of this 

dissertation each of which addresses a separate problem. Chapter 2 is modified from Roy et 

al. (2010) and deals with the clustering of fractures in 2-dimensional networks. Since 

lacunarity values are influenced by the overall fracture intensity of a network, a 

normalization scheme for the lacunarity parameter was devised to remove this effect. It 

was proved that not only fracture networks with same fractal dimension have different 

clustering but also, at larger scales fractures tend to become less clustered. Chapter 3 is 

modified from a manuscript in review that empirically tests the theory of Allain and Cloitre 

(1991) on the relationship between lacunarity and correlation dimension in multifractals. 

It demonstrates how lacunarity can be employed to identify the multifractal nature of 

grayscale patterns. For this purpose, lacunarity values were log-transformed and plotted 

against the log-transformed scale values.  

Chapters 4 through 6 deal with lacunarity analyses of 1-dimensional scanline data. 

Chapter 4 builds on the concept that distinct breaks in the slope of lacunarity curves in log-

log space correspond to distinct scales within a pattern (Plotnick et al., 1996). In order to 

better identify these “breaks” the 1st derivative of the lacunarity curves was plotted against 

the scale. It was demonstrated that such plots can pick up “patterns within patterns” in that 

they could identify both the inter-cluster distance and the organization of fractures within 

the clusters. Chapter 5 is based on devising a test that finds if large fractures statistically 

occur within clusters, or if they are mostly found within the inter-cluster regions. For this 

purpose, the ratio of lacunarity of a dataset to the lacunarity of its random counterpart was 

plotted against the scale. Chapter 6 focusses on the anisotropy of fracture clustering and 
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thus has a directional aspect to it. It simply analyzes scanlines that are taken at different 

orientations from a fracture network. In order to offset the differences in length and 

fracture intensity (number of fractures per unit length) of the scanline samples, the scale 

was normalized. Finally, for finding a single clustering parameter at each orientation, a 

weighted mean of the log-transformed lacunarity values was calculated, the weights being 

determined by the log-transformed normalized scale. 
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ABSTRACT 

Previous studies on fracture networks have shown that fractures contained within distinct 

mechanical units (“stratabound”) are regularly spaced while those that terminate within 

the rock mass are clustered (“non-stratabound”). Lacunarity is a parameter which can 

quantify the distribution of spaces between rock fractures. When normalized to account for 

differences in fracture abundance, lacunarity characterizes the distribution of spaces as the 

degree of clustering in the fracture network. Normalized lacunarity curves, L*(r), computed 

using the gliding-box algorithm and plotted as a function of box-size, r, were constructed 

for natural fracture patterns from Telpyn Point, Wales and the Hornelen Basin, Norway. 

The results from analysis of the Telpyn Point fractures indicate that such curves are 

sensitive to differences in the clustering of different fracture sets at the same scale. For 

fracture networks mapped at different scales from the Hornelen basin, our analysis shows 

that clustering increases with decreasing spatial scale. This trend is attributed to the 

transition from a “stratabound” system at the scale of sedimentary cycles (100-200m) that 

act as distinct mechanical units to a “non-stratabound” fracture system geometry at the 

finer 10’s of meters thick bedding scale. 
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1. INTRODUCTION 

Fractures control or influence important behaviors in geological systems such as 

fluid storage, contaminant transport, seismicity, and rock strength.  In the context of joints, 

a key attribute that influences these characteristics is the geometry of the fracture network. 

To better understand joint geometry it is necessary to consider fractures from the 

perspective of mechanical stratigraphy. Joints in sedimentary rocks fall in two categories, 

those that terminate randomly within the rock mass and those that terminate at distinct 

mechanical layer boundaries (Gross et al., 1995).  Lithologic contacts, as well as pre-

existing fractures, can serve as mechanical layer boundaries, thereby dividing the rock 

mass into discreet mechanical units (Gross, 1993). For our study, only lithologic contacts 

are considered as mechanical layer boundaries. Fractures that that terminate at lithologic 

contacts are termed as “stratabound” while the ones that randomly terminate within the 

rock mass are “non-stratabound” (Odling et al., 1999; Gillespie et al., 1999). The former 

often display a log-normal distribution for length (Narr and Suppe, 1991) or other non-

power law type distribution and appear to be regularly spaced as seen in the siliceous 

layers of the Monterey Formation (Gross et al., 1995). The “non-stratabound” fractures, 

however, have a wide range of length distribution (e.g. joint patterns at the Oliana anticline, 

Schakleton et al., 2005), sometimes yielding a power-law, and are typically clustered 

(Odling et al., 1999; Gillespie et al., 1999).  

Interface strength and the contrast between the rheology of layers control the 

ability of joints to propagate through lithologic contacts. Analog and numerical 

experiments suggest that weak interfaces inhibit joint propagation by sliding or opening, 

and similarly cracks terminate at contacts with soft and ductile layers (Schakleton et al., 

2005 and references therein). In this case, the joints developed are “stratabound” and their 

spacing is proportional to the bed thickness (Narr and Suppe, 1991; Wu and Pollard, 1995 

and references therein; Gross et al., 1995; Gillespie et al., 1999; Odling et al., 1999; Cooke et 

al., 2006). The driving condition for such joint formation is the result of either remote 

extension or possibly thermal relaxation (Hobbs, 1967; Engelder & Fischer, 1996; Bai & 

Pollard, 2000).  In contrast, for stratabound joints the driving condition for fracture 
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formation relates to fluid pressure (Gillespie et al., 1999; Odling et al., 1999, Engelder and 

Fischer, 1996).   

Joint spacing distributions can be measured from 1D scanlines (LaPointe & Hudson, 

1985). Semi-variograms constructed from such measurements have been independently 

employed by LaPointe and Hudson (1985) and Chiles (1988) for quantifying the spatial 

heterogeneity of fracture networks. The ratio of the standard deviation to the mean of the 

spaces along a scanline has also been used by Gillespie et al. (1999) to discern between 

clustered and anticlustered veins. Given that rock properties can vary with direction, if 

possible it is more useful, although certainly more time consuming, to characterize joint 

spacing distribution in two dimensions using an area or map approach (Wu & Pollard, 

1995; Rohrbaugh et al., 2002).  In this paper, we present a technique modified from 

Plotnick et al. (1996) for analyzing clustering of joint populations in a 2-dimensional 

representation.  

To quantify the clustering of fractures, we use the concept of lacunarity 

(Mandelbrot, 1983). This approach is based on a multiscale analysis of spatial or temporal 

dispersion (Plotnick et al., 1996).  Stated simply, lacunarity characterizes the distribution of 

spaces or gaps in a pattern as a function of scale.  For a fracture pattern, therefore, it can be 

employed to quantify the degree of fracture clustering at a given spatial resolution. To 

implement lacunarity as a tool for our purpose, we have introduced a new normalization of 

this parameter. It is distinct from that of Plotnick et al. (1996) and completely removes the 

effect of fracture abundance on the lacunarity values. We use a set of three maps from 

Wales, U.K (Rohrbaugh et al., 2002) to demonstrate the usefulness of our normalized 

lacunarity measure over that proposed by Plotnick  et al. (1996) and show its effectiveness 

in discerning between different sets of fractures within the same network. We then use 

normalized lacunarity to analyze a set of four maps from the Devonian sandstones of 

Hornelen basin, Norway (Odling, 1997) to investigate clustering of fractures at different 

scales. Finally, we interpret our observations from this sedimentary package in terms of 

mechanical stratigraphy as a function of scale.  
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2. LACUNARITY AND ITS QUANTIFICATION  

A useful conceptual perspective for understanding lacunarity is to evoke the idea of 

translational invariance. Consider a uniform sequence of alternating 0’s and 1’s like 

101010101... and so on. This sequence will map onto itself if a copy is made and moved 

over by two digits so that the original cannot be distinguished from the translated copy. 

This property is called translational invariance. In terms of lacunarity, a translationally-

invariant pattern exhibits no clustering, because all of the gap sizes (denoted by zeroes in 

our example) are the same.  This behavior is not observed in the case of a slightly more 

heterogeneous sequence, such as 101000101... where the gaps have a range of sizes, 

including a cluster of three gaps in the middle. The greater the degree of gap clustering, the 

greater the lacunarity.  Lacunarity is a scale dependent parameter because sets that are 

uniform at a coarse scale might be heterogeneous at a finer scale, and vice-versa.  

Lacunarity can thus be considered a scale-dependent measure of textural heterogeneity 

(Allan and Cloitre, 1991; Plotnick et al., 1993). 

Quantifying lacunarity as a function of scale can be achieved by using the gliding-box 

algorithm (Allan and Cloitre, 1991; Plotnick et al., 1996).  This algorithm slides a window or 

box of a given length, r, translated in increments of a chosen unit length across the pattern. 

In the case of all our analyses, this unit length is chosen to be at the pixel scale (size of the 

smallest dot that can be drawn on a computer screen). The box-size, r, is generally a 

multiple of this assigned unit length. The interrogator box searches for occupied sites in the 

pattern at each step and counts them as s(r). The total number of steps, N(r), required to 

cover the entire pattern is given by: 

N(r) = (rt – r + 1)E……………………………………………………………………..…………...………………...……(1) 

Here, E is the Euclidean dimension of the pattern (for fracture maps, E = 2) and rt is the 

total length of the set. The first and second moments of the distribution of the number of 

occupied sites at each step, Z1(r), and Z2(r) respectively, are given by (Plotnick et al., 1996): 

Z1(r) = s(r)………….........…………………………..……..………………....................................................………..(2a) 

Z2(r) = ss2(r) + [s(r)] 2……………………...................................…………………..………….............……….…..(2b) 
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Here s(r) and ss2(r) are the arithmetic mean and variance of s(r), respectively.  The 

lacunarity is then defined as a function of box-size, L(r), by (Allan and Cloitre, 1991): 

L(r) ≡ Z2(r)/[ Z1(r)]2…………………………………………….…………….…...…..………………………………(3) 

In terms of the mean and variance of s(r) the lacunarity can also be expressed as: 

L(r) = ss2(r)/ [s(r)] 2 + 1………………….………………………………..……………...……………………………(4) 

Lacunarity is thus the dimensionless ratio of the dispersion (variance) to the square of the 

central tendency (mean) at a given scale, r (Plotnick et al., 1996). An alternative derivation 

of lacunarity may be found in Turcotte (1997). 

Typically, lacunarity, L(r), is calculated for a range of box-sizes r, and is plotted as a 

“lacunarity curve.” For any given pattern, this curve will have upper and lower bounding 

values. Let  be the fraction of sites that are occupied. It may then be proved that for r = 1, 

Z1(1) =  and Z2(1) =  in all cases (Plotnick et al., 1996). As a result, the lacunarity L(1) = 

Z2(1)/[ Z1(1)]2 =   For r = rt, there is only one box that covers the entire pattern 

and hence there the distribution of occupied sites, s(rt) consists of just one value. This 

implies that the variance, ss2(rt) = 0. The lacunarity therefore is L(rt) = 1. To summarize, the 

upper and lower bounds of the lacunarity curve are Lmax = L(1) = 1/and Lmin = L(rt) = 1, 

respectively. The upper bound indicates that differences in  will result in different values 

of Lmax, and thus different lacunarity curves, even in the case of fracture patterns with 

similar clustering characteristics. The lacunarity parameter therefore needs to be 

normalized in order to overcome this effect.                                      

 

3.  NORMALIZATION OF LACUNARITY: THE TELPYN POINT FRACTURES  

The fracture network at Telpyn Point, UK, (Rohrbaugh et al.; 2002) is comprised 

primarily of two orthogonal sets of vein-filled joints (striking 200° (NS-trending) and 290° 

(EW-trending)) that occur in Carboniferous sandstone (Dunne and North, 1990, Rohrbaugh 

et al., 2002) (Fig. 2.1a). The pattern was sampled over an area of 247.6m2. The NS-trending 
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joints occur mainly in clusters (Fig. 2.1b), while the EW-trending set consists of somewhat 

clustered, large joints (Fig. 2.1c).  

The original fracture map from Rohrbaugh et al. (2002) was converted into three 

different maps (Fig. 2.1) each being a 545 X 578 pixels bitmap. The gliding-box technique, 

as outlined in section 2, was applied to each map using a Matlab program (Roy, 2006) to 

generate the lacunarity curves (Fig. 2.2a). As seen in Fig. 2.2a, the EW fracture set yields 

much greater lacunarity values as compared to the NS set. This result is quite contrary to 

what is expected because visual inspection of the NS fractures (Fig. 2.1a) clearly indicates 

they are more clustered than the EW set (Fig. 2.1b). This apparent discrepancy arises 

because the lacunarity values are controlled both by clustering and by the  value, which 

correlates to the fracture abundance.  Thus, patterns with a small fracture abundance (i.e. 

low value) and therefore a high Lmax, will tend to have a greater lacunarity as the size of 

the gliding box (r) goes to smaller values close to the size of a pixel. Clearly, the NS 

fractures (Fig. 2.1c) are more abundant than the EW fractures (Fig. 2.1b).  Since the EW 

pattern has a value that is seven times smaller than the NS pattern, the effect of the 

value overrides the effect of clustering in the calculation of the lacunarity values. 

In an attempt to eliminate the abundance effect, Plotnick et al. (1996) used the 

quotient of the log-transformed values of L(r) and Lmax to normalize the lacunarity function.  

We implemented their normalization approach for the Telpyn Point fracture maps and the 

results are plotted as log[L(r)]/log[Lmax] versus r in Fig. 2.2b.  It can be seen that while this 

approach reduces the overall discrepancy, it does not eliminate it altogether; the EW 

fracture set still has the higher curve, again suggesting greater clustering. Therefore, we 

propose an alternative approach, widely used in the physical sciences, for normalizing the 

lacunarity parameter as: 

1/1

1
)(*













L(r)

LL

LL(r)
rL

minmax

min

…………………...…………..…………………………………………...…………(5) 

where L*(r) is the normalized lacunarity. This normalization has two advantages. Firstly, 

the lacunarity does not need to be log-transformed because its values now range between 
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unity at r = 1 to zero at r = rt. Secondly, it completely removes the effect of the value since 

the normalized lacunarity values reflect the effects of clustering alone rather than both 

clustering and fracture abundance.  Compared to the curves for lacunarity in Figs. 2.2a and 

2b, the curves for normalized lacunarity in Fig. 2.2c do show that the more clustered NS set 

has much higher normalized lacunarity values as compared to the sparsely-spaced EW set. 

Figure 2.2 also includes lacunarity results for the NS and EW sets combined into a 

single network.  Regardless of the technique employed, it is obvious that the lacunarity of 

the combined set is always dominated by the contribution of the NS set.  In the case of our 

newly proposed normalization, the L*(r) curve for both sets combined is only slightly less 

than that for the single NS set. This result is because the NS fractures are very tightly 

clustered and, when combined with the sparsely-spaced EW set, the character of the entire 

pattern is essentially controlled by the NS set. 

 

4. SCALE-DEPENDENT CLUSTERING: HORNELEN BASIN FRACTURES, NORWAY 

4.1 Normalized Lacunarity Results  

The Hornelen Basin fractures of Odling (1997) were chosen to delineate clustering 

within a fracture network at different scales. The four maps (Fig. 2.3) from this data set 

share two characteristics. They are all based on imagery gathered with a helicopter and 

they are a nested set of data where the sampling resolution changed with the change in 

map scale by varying the height of the helicopter.  This approach is quite unlike collecting 

all data at one scale and then segmenting them to create maps at different scales.  As a 

result, this pattern can be considered at a variety of scales in terms of the resolution of data 

at each scale, which is not the usual situation for the analysis of natural fracture patterns. 

The maps cover areas of sizes 90m x 90 m (Map 4), 180m x 180m (Map 5), 360m x 360m 

(Map6) and 720m x 720m (Map 7). Each map is a window on the fracture system and 

contains a range of fracture lengths, the shortest being dictated by the resolution of the 

image and the longest by the area mapped. When analyzed as fractal networks (Roy et al., 
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2007), the box-counting fractal dimensions, Db, for each map were not statistically different 

(Table 2.1).   

For lacunarity analysis, the original fracture maps of Odling (1997) were converted 

to 1042 x 1042 pixel bitmaps. Normalized lacunarity curves were computed for each of the 

four maps for five different r-values (Fig. 2.4). The lacunarity values for box-sizes of 10 and 

500 pixels along with the -values of each map are documented in Table 2.1. Paired (two-

tailed) t-tests performed between the L*(r) values of maps 4 and 5, 5 and 6, and 6 and 7 

respectively, indicated that, when considered over all scales, the normalized lacunarities 

were significantly different at the 95% confidence level in each case.  The trend revealed is: 

the greater the resolution (the smaller the map scale), the greater the lacunarity. This 

result implies that fractures are more clustered at small scales and more uniformly 

distributed at large scales.  

4.2 Geologic Interpretation 

To geologically interpret the above results we need to return to a consideration of 

the differences between stratabound and non-stratabound joint networks. The former are 

ones that terminate at lithologic contacts while the latter terminate randomly within the 

rock mass and their geometries are not controlled by mechanical layer boundaries. Odling 

et al. (1999) cite the Hornelen fracture system as a good example of a “non-stratabound” 

fracture system, displaying joints with a power-law length distribution and qualitatively 

observed clustered fractures with a lack of regular spacing. Our L*(r) curves quantitatively 

show that the Hornelen fracture system has evidence of decreasing clustering with 

increasing scale (Fig. 2.4). Each map represents a subset of the fracture system with respect 

to fracture length, implying that the fractures become less clustered with respect to each 

other as their length increases. This relationship suggests that the Hornelen fracture 

system tends towards a more “stratabound” type system as fractures approach the scale of 

the entire basin. Visual inspection of an aerial photograph of the Hornelen Basin, with long 

fractures (400m – 1500m) and regular spacing (50m -100m), supports the tendency 

toward less clustering at larger scales (Fig. 2.5).  
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As discussed earlier, interface strength and the contrast between rheology of layers 

control the ability of joints to propagate through lithologic contacts. So, if the fracture 

system of the Hornelen Basin trends towards a smaller lacunarity (i.e. more “stratabound” 

system type), as scale increases and resolution decreases, the question of the nature of the 

layering that would control the fracture system at this greater scale arises.  For map sizes 

of 90m x 90m to 720m x 720 m, Odling (1997), Odling et al. (1999) and our results show 

that the fracture system is clustered. This condition implies that at these scales, the 

fractures are likely not stratabound and during formation likely propagated across bedding 

surfaces that had cohesion and lacked sufficient differences in mechanical properties 

between beds. Therefore, at the scale of bedding (10’s of metres or less), the layers do not 

constitute distinct mechanical units which results in “non-stratabound” systems and 

noticeable lacunarity.  

However, at the scale of sedimentary cycles, the lithological packages of the 

Hornelen Basin do have characteristic changes at the scale of 100 m-200 m of sequence. 

These packages are characterized by finer-grained material at their base (Steel, 1976), 

which results in a high rigidity contrast between the cycles. Therefore, as opposed to the 

bedding-scale layering, these cycles can be considered as distinct mechanical units that can 

house “stratabound” fractures. The cycles exert a strong control on the topography of the 

area which is clearly seen in the aerial photograph image (Fig. 2.5). From the aerial 

photograph, it seems that composite fractures large enough to penetrate the thickness of 

an individual cycle (lengths of 400-1,500 m), tend to develop a more “stratabound” fracture 

system geometry with regular spacings of 50 to 100 m. The natural fracture patterns 

analyzed here (maps 4 to 7) were mapped from the well exposed surface of one of these 

cycles. The smallest map of 90 m x 90 m (map 4) shows a fracture length mode of around 

1.7 m and a range of fracture lengths from 0.15 to 52 m. The majority of fractures in this 

map therefore have lengths comparable with the thickness of individual beds. Because the 

beds do not act as distinct mechanical units, this map shows a greater degree of clustering 

with a corresponding large lacunarity value.  In the 720 by 720 m map (map 7), the fracture 

length mode is 11.7 m with a length range from 1.4 to 281 m. Thus, only the very largest 

fractures imaged by this map will penetrate an entire cycle which, as opposed to a single 
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bed (10’s of m’s), acts as a distinct mechanical unit. The progressive decrease in lacunarity 

as the scale increases (from map 4 to map 7), may therefore reflect an increasing influence 

of cycle thickness on the fracture system geometry.  As the fracture lengths in the observed 

subset of the fracture system increase, the influence of cycle thickness (distinct mechanical 

unit) on fracture system geometry increases and the fracture system evolves from a “non-

stratabound” type toward a more “stratabound” system. This change corresponds to a 

progressive reduction in lacunarity reflecting the transition from a clustered (“non-

stratabound”) to a more regularly-spaced (“stratabound”) fracture system. 

 

5. CONCLUSIONS 

Plotnick et al. (1996) have shown that lacunarity is an effective means of 

characterizing spatial dispersion.  Our present study shows that lacunarity can be used to 

quantify clustering in two dimensional fracture networks.  Procedurally, it refines the 

normalization technique of Plotnick et al. (1996) to account for differences in the fraction 

of occupied sites in fracture maps with varying fracture abundance.   

Separate analyses of two different sets of fractures within the same network 

(Telpyn Point), as well as that for the combined sets, show that normalized lacunarity is 

more sensitive to clustering than either the non-normalized lacunarity or Plotnick et al’s 

(1996) previous normalization. We also demonstrated that the normalized lacunarity can 

quantify the degree of clustering so as to reveal that the most tightly clustered set controls 

the lacunarity curve of the pattern as a whole.  

The normalized lacunarity for the complex, multi-generational pattern of Hornelen 

basin fractures clearly indicates that fractures become more clustered (like “non-

stratabound” type) as the spatial scale of observation is decreased. Additional observations 

at the aerial-photograph scale show that fractures, which possibly penetrate the entire 

thickness of major sedimentary cycles (100m to 200m), are regularly spaced at 50m to 

100m like “stratabound” fractures. This observation implies that these cycles behave like 

distinct mechanical units as opposed to the beds (10’s of meters thick) that are contained 
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within them. It is argued that this trend reflects a gradual evolution from a “non-

stratabound” fracture network, with greater clustering at the bed scale, towards a more 

“stratabound” system, with lesser clustering as fracture size perpendicular to bedding 

approaches the thickness of major sedimentary cycles.  

Since fracture patterns can generally only be examined over a limited range of 

scales, such as with seismic reflection data, our results could be economically important for 

the mining and petroleum industries.  Any scale-dependency in the clustering of fractures 

will also likely have significant implications for rock strength and flow processes that 

depend upon fracture connectivity.  Thus, in terms of potential consequences, the nature of 

the relationship between lacunarity and fracture connectivity deserves to be elucidated in 

future studies. 
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APPENDIX I-A: TABLES 
 

Table 2.1. Areas, scales, box-counting fractal dimensions, Db, from Roy et al. (2007), 

fraction of sites occupied by fractures (), and non-normalized lacunarities L (10) 

and L (500) for Odling’s (1997) fracture maps 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Map no. Area (m2) Scale Db  L(10) L(500) 

4 8,100 1:511 1.81±0.05 7.95 2.023 1.021 
5 32,400 1:1023 1.82±0.04 7.93 1.936 1.015 
6 129,600 1:2045 1.84±0.04 10.09 1.641 1.006 
7 518,400 1:4091 1.84±0.04 9.84 1.608 1.004 
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Appendix I-B: FIGURES 

(a)                                                         (b) 
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Figure 2. 1. Telpyn Point, Wales, fracture maps (Rohrbaug et al., 2002): (a) NS trending 

fractures (b) EW trending fractures (c) both EW and NS trending fracture sets 
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Figure 2.2. (a) Non-normalized lacunarity curves for Telpyn Point fractures (b) same set of 

curves using Plotnick’s (1996) normalization of lacunarity (c) same set of curves using new 

normalization, L*  
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map 7 map 6 map 5 map 4 

 

Figure 2.3. Hornelen basin fracture network mapped from a helicopter (Odling 1997): map 
7 (720m x 720m), map 6 (360m x 360m), map 5 (180m x 180m) and map 4 (90m x 90m) 

 

  

 

Figure 2.4. Normalized lacunarity curves for Hornelen basin fracture maps 4,5,6 and 7 

depicting scale dependent clustering 
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Figure 2.5. Section of an aerial photograph from Hornelen showing typical regularly 

spaced fractures with lengths of 400-1500m 
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ABSTRACT 

Lacunarity is a parameter that can distinguish between spatiotemporal patterns, fractal, 

multifractal or otherwise, for differences in texture. Previous studies have theoretically 

established that lacunarity analysis can delineate multifractal behavior in grayscale 

patterns. A set of multifractal grayscale patterns was generated with known correlation 

dimensions, D2, and analyzed for lacunarity by employing the gliding-box algorithm. The 

log-transformed values thus obtained, log L(r), were plotted as a function of the log-

transformed box-size, log r. The slopes of these linear relations, estimated using regression 

analysis, were then used to calculate D2. The calculated D2 values gave approximately a1:1 

relationship with the known D2 values thus empirically demonstrating the usefulness of 

lacunarity analysis in establishing multifractal behavior. This approach was further used to 

evaluate the multifractal nature of natural grayscale images in the form of soil thin sections 

that had been previously classified as multifractals based on the more standard box 

counting (BC) analysis. Our results indicate that lacunarity analysis is a more sensitive 

indicator of multifractal behavior in natural grayscale patterns than the BC approach. A 

weighted mean of the log-transformed lacunarity values at different scales was also 

employed in differentiating between grayscale patterns with various degrees of scale-

dependent clustering attributes. This new lacunarity measure, which expresses the 

lacunarity versus box size curve as a single number, should be useful to researchers who 

want to explore the correlative influence of texture on, for instance, flow and transport 

parameters.  
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1. INTRODUCTION 

Lacunarity is a parameter that characterizes the distribution of spaces or gaps in a 

pattern as a function of scale. Originally proposed for distinguishing between patterns 

having the same fractal dimension but different textures (Mandelbrot, 1983) lacunarity has 

since been used for analyzing textures of various other fractal and non-fractal data. 

Examples include natural fracture networks (Roy et al., 2010), binary ecological data 

(Plotnick et al., 1996) and natural non-binary (grayscale) data (Mynt & Lam, 2005; Du & 

Yeo, 2009 and Manikka-Baudge & Dougherty, 2009). The gliding-box algorithm is generally 

used for measuring lacunarity at various scales (or box-sizes) and the resulting values, L(r), 

are plotted against the box-size, r. It has been theoretically established that when log-

transformed values of L(r) and r are plotted, both fractals and multifractals result in  

straight lines such that the slope plus the known embedding dimension equals the box or 

correlation dimension, respectively (Allain & Cloitre, 1991).  

Although there have been a few studies on lacunarity of both synthetic and natural 

multifractal patterns (Plotnick et al., 1996 and Chen, 1997) there is not enough evidence to 

unequivocally establish that lacunarity analysis can delineate multifractal behavior of non-

binary data, and that the true correlation dimension, D2 of a multifractal can be found by 

employing this technique. In the present paper, we test the theory of Allain and Cloitre 

(1991) on multifractal grayscale patterns with known correlation dimensions. We also 

propose a novel technique for expressing lacunarity as a single number that takes into 

account the clustering of elements in a pattern at different scales thus differentiating it 

from other patterns having the same correlation dimension but different textures. We 

finally use natural grayscale images in the form of soil thin sections that have been 

previously analyzed as multifractals using the standard box counting method, BC by Zhou 

et al. (2011) and show that lacunarity analysis is a more reliable technique for establishing 

multifractal behavior.   
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2. LACUNARITY AS AN INDICATOR OF MULTIFRACTAL BEHAVIOR 

2.1. Multifractal Grayscale Patterns  

A set of 2-dimensional multifractal grayscale patterns were constructed following 

the steps outlined in Perfect et al. (2006) and subsequently employed by other researchers 

(Koirala et al., 2008 and Zhou et al., 2010).  The process is akin to generating a Sierpinski 

carpet, only the zeros and ones in the pattern are replaced with fractional values. The 

algorithm involves normalizing mass-fractions calculated from the truncated binomial 

distribution for an average probability, p, of retaining a cell in the generator with a scale 

factor, b, in successive iterations. As described in Koirala et al. (2008) the locations of the 

normalized mass fractions can be spatially randomized so as to create a random 

multifractal grayscale pattern (Fig. 3.1). Eight different patterns were created from a 

generator with a scale factor of b = 3 and probability values corresponding to p = 1/9, 2/9, 

3/9, 4/9, 5/9, 6/9, 7/9, and 8/9 by iterating the system 5 times to produce grayscale fields 

of size 35×35 pixels. For each of the 8 models (as seen in Fig. 1 in Koirala at al., 2010), 3 

random realizations were constructed amounting to a total of 24 random multifractal 

patterns. These were named using the following scheme: p # r ## where # corresponds to 

the numerator of the p-value (1-8) and ## to the realization (r) number (1-3). For example, 

a pattern from the model p = 3/9 and random realization 2 will be named p3r2. Figure 3.1 

corresponds to the pattern p8r3. 

2.2. Lacunarity of Grayscale Patterns 

Lacunarity is a scale-dependent measure of textural heterogeneity that can be 

quantified by employing the gliding-box algorithm (Allain & Cloitre, 1991; Plotnick et al., 

1993). Essentially, this method involves sliding a window or an interrogator box of a given 

length, r, translated in increments of a chosen unit length (usually that of a pixel) across the 

whole pattern such that the total number of steps is given by (rt – r + 1)2, rt being the length 

of the entire pattern. The details of this technique employed in analyzing binary patterns 

can be found in Roy et al. (2010). In the case of grayscale patterns, the mass of all pixels, 

s(r), contained within the interrogator box at each step is calculated and a distribution of 

this mass at the scale r is obtained by gliding the box through all the steps. Finally, the 
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mean, s(r), and variance, ss2(r) of this distribution are used in calculating the lacunarity, 

L(r), at the scale r as: 

L(r) = ss2(r)/ [s(r)] 2 + 1………………………………….…….………………………...……………………………(1) 

Typically, L(r) is calculated for a range of box-sizes, and for any given pattern, this curve 

will have upper and lower bounding values. It can be easily perceived that at r = 1, the 

interrogator box contains only 1 pixel and it moves rt2 steps equal to the total number of 

pixels (each associated with a mass number) in the pattern. It then follows that L(1) is the 

same for patterns with the same set of mass numbers but distributed differently in space. 

In other words, all random realizations of a model corresponding to a specific p-value will 

have the same maximum lacunarity, L(1). At r = rt, there is only one box that covers the 

entire pattern and hence the distribution of masses, s(rt) consists of just one value. This 

implies that the variance, ss2(rt) = 0 such that the lacunarity is L(rt) = 1. It may be noted that 

uniform patterns have no variance and hence they furnish, L(r) = 1 for all r values. 

2.3. Lacunarity and the Correlation Dimension  

It has been theoretically demonstrated by Allain & Cloitre (1991) that in the case of 

multifractals, lacunarity, L(r) is related to the size of the interrogator box, r by a power-law 

such that the power-term equals D2 – E, where D2 is the correlation dimension and E the 

Euclidean embedding dimension. Based on this result, it is expected that the log-

transformed lacunarity functions for the 2-dimensional multifractal patterns described in 

section IA can be fitted with a straight line of the form, y = mx + c, such that the slope is: 

m = D2 – 2……………………………………………………….……………………………………………………………(2)  

For each of the 24 multifractal patterns, the log L(r) vs. log r values were calculated 

and a subset of the array of points thus obtained was fitted with a straight line. Figure 3.2a 

shows one such plot for the pattern p8r3. Figure 3.2b shows the local slope of the log L(r) 

vs. log r curve calculated at each r with the dashed line describing the slope of the fitted line 

from Fig. 3.2a. In order to meet the condition of multifractality in Allain and Cloitre (1991), 

and to estimate the proper correlation dimension for the pattern, only the relatively “flat” 

segment of the curve in Fig. 3.2b was considered for fitting a linear model to the points in 
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Fig. 3.2a. Also, it is important to realize here that patterns that do not furnish such “flat” 

segments are thus not multifractals. We’ll come back to a detailed discussion on this in a 

later section. For large r values it is seen from Fig. 3.2b that the local slope starts to 

fluctuate and increases abruptly. Therefore, the points corresponding to box-sizes r > rt /2 

were not included in the fitting. For smaller r values, the coefficient of determination, R2, of 

the fit improved when points were sequentially excluded from the left in Fig. 3.2a. 

However, it is the first point at r = 1 that mostly influences the change in slope such that 

there was a difference of ~4% in the estimated slope if this point was excluded from the fit. 

If two or more additional points were excluded from the fitting there was no more than 

~1% difference.  This is mainly because the first few points on the left hand side of the log 

L(r) vs. log r plot were always sparsely distributed. Therefore from the lower end, only the 

first point in the plot was excluded from the fitting. The points thus excluded from both 

ends are shown in grey in Fig 3.2. 

Correlation dimensions for all 24 patterns were calculated from their log L(r) vs. log 

r plots by employing the above protocol. An average estimated D2 value from all three 

realizations of each model corresponding to a particular p-value was computed and 

compared to the theoretical D2 value (Perfect et al., 2006).  The results are graphed in Fig. 

3.3. The 95% confidence intervals in the computed D2 values arising from the 3 random 

realizations for each model are shown as vertical bars. As can be seen from the figure, the 

computed D2 values overlap the 1:1 line (45˚ slope) and are thus are statistically equal to 

their theoretical counterparts. This analysis demonstrates empirically that an almost exact 

value of the correlation dimension for multifractals can be found from lacunarity analysis. 

It may therefore be concluded that lacunarity analysis can detect if a grayscale pattern 

exhibits multifractal behavior (on the basis of log-log linearity) and, if it does, provide an 

accurate estimate its correlation dimension (from the slope of this relation).  

 

3.   LACUNARITY AS A MEASURE OF CLUSTERING IN MULTIFRACTALS  

Lacunarity analysis has been used as a measure of clustering in monofractals and 

other binary patterns. Examples include those of simulated landscape maps (Plotnick et al., 
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1993) and fracture networks (Roy et al., 2010). Lacunarity has also been used for textural 

analysis of grayscale patterns (Du & Yeo, 2009 and Manikka-Baudge & Dougherty, 2009). 

This section extends the previous research by implementing lacunarity as a measure of 

clustering in multifractal grayscale patterns. 

A set of three deterministic (Fig. 3.4 A-C) and one random (Fig. 3.4 D) multifractal 

grayscale patterns of size 343×343 pixels were constructed using the following 

parameters: b = 7, p = 40/49, and 3 iterations. These patterns will henceforth be referred to 

as models A, B, C and D, respectively. The random multifractal grayscale pattern D was 

generated using exactly the same approach as described in section 2.1. The deterministic 

patterns (A-C) were generated by placing nine of the largest mass-fractions obtained from 

the truncated binomial distribution (Perfect et al., 2006) in different predetermined 

locations within the generator and the rest of the 40 mass-fraction numbers in random 

locations around them, and then iterating the system 3 times. Of these four patterns, A and 

C are the least and most clustered, respectively, and may be thought of as multifractal 

counterparts of Figures 3-7(B) and 3-7(A) respectively in Perfect & Sukop (2001).  Patterns 

B and D are intermediately clustered. A fifth model, designated E (Fig. 3.4 E), was 

constructed by completely randomizing the spatial locations of the mass fractions 

produced by the b = 7, p = 40/49, and 3 iterations multifractal model; it is thus a true 

random grayscale pattern. As such, it should have minimal clustering, and negligible 

lacunarity.  

Models A through E were analyzed for their lacunarity using the gliding box method 

and the resulting log L(r) versus log r values plotted as before (Fig. 3.5). All of the 

multifractal models produced a straight line trend that was very different from that of 

model E, which is not a multifractal. Being a truly random pattern, the lacunarity values for 

model E follow a non-linear curve and quickly converge to a value of zero which shows that 

at larger scales (r > 30) it behaves like a uniform pattern with  L(r) = 1 (since log L(r) = 0) 

at all r values.  Despite some kinks in the linearity of the log-log plots for the three 

deterministic multifractal grayscale patterns, created by the non-random geometric 

arrangement of the generator mass fractions, regression analysis still yielded estimates of 

D2 (Table 3.1) that were within 1% of the theoretical value of 1.914. As expected, the 
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random multifractal grayscale pattern D produced the most linear relationship between log 

L(r) and log r resulting in the best estimate of D2 (within 0.5% of theoretical value).   

Amongst the multifractals, model A always had the lowest lacunarity values while 

model C had the highest (Fig. 3.5). Models B and D had intermediate lacunarity values at all 

scales. These results are consistent with the different degrees of clustering imposed on the 

patterns by the choice of the locations of mass fractions in the different generators (Fig. 

3.4). For purposes of comparison between patterns with different clustering, it can be 

advantageous to report lacunarity as a single number rather than a log L(r) vs. log r plot. In 

such plots, L(r) is high at small values of r, while for large values of r, L(r) is low and, as 

seen in Fig. 3.5, the differences in lacunarity between variously clustered grayscale 

multifractals are most pronounced in the middle order r values. A log-weighted mean of the 

log-transformed values of lacunarity, <L>, will best describe these differences while taking 

into account the variability in L(r) with r. This weighted mean can be calculated with the 

following equation: 

[log ( )][log ]

log

L r r
L

r
 


 …………………………………………………………………………………………………(3) 

The values of <L> for models A through E are given in Table 3.1. It may be noted that the 

different patterns rank as E << A < D ~ B < C in terms of <L> as expected from visual 

inspection of the different degrees of clustering in Fig. 3.4.  

 

4. LACUNARITY ANALYSIS OF NATURAL GRAYSCALE IMAGES 

In this final section we apply the lacunarity technique developed above to a set of 

natural grayscale patterns that have been previously characterized as multifractals based 

on the box counting method (BC) by Zhou et al. (2011). These patterns comprise a set of 

three soil thin sections photographed in plane polarized light with a Nikon DS-Fi1 digital 

camera at an 8-bit depth resolution (Fig. 3.6).  Each image is 1024×1024 pixels, the length 

of a pixel being 1.9 µm. As described in Zhou et al. (2011), Soil 1 (Fig. 3.6a) has a relatively 

homogenous structure, soil 2 (Fig. 3.6b) has medium-sized aggregates with evenly 
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distributed pores, while soil 3 (Fig. 3.6c) has well-developed aggregates with large pores. 

Visual inspection of these patterns suggests that soil 1 is comparable to model E from the 

previous section, while soil 3 compares to most closely to models B or D.  

The log L(r) vs. log r plots for these soils are shown in Figure 3.7. The inset shows 

the local slopes of the log L(r) vs. log r curves calculated at each r and denoted by d(log 

L)/d(log r). It is clearly seen from this figure that only soil 3 behaves like the multifractal 

pattern p8r3 in Fig. 3.2b and displays somewhat of a “flat segment” in the d(log L)/d(log r) 

vs. log r plot. It therefore meets the condition of multifractality as stated in Allain & Cloitre 

(1991) over the corresponding range of r values and can thus be classified as a true 

multifractal pattern. Soil 2 clearly does not have any “flat segments” and is therefore not a 

multifractal. Soil 1 reaches a constant L(r) of one (i.e., log L(r) = 0) around r = 100. 

Therefore at larger scales, soil 1 behaves like the pure random pattern, model E, which is 

expected due to its “relatively homogenous structure.”  

Based on standard box counting analyses, it was concluded that all three soil thin 

section images were multifractal (Zhou, et al., 2011). It is evident from the above results, 

however, that only soil 3 can be considered truly multifractal in nature, with a linear L(r) 

vs. log r plot covering ~2 orders of magnitude. Thus, compared to the BC method, 

lacunarity analysis is more reliable when it comes to establishing multifractal behavior of 

natural grayscale patterns. A similar conclusion was arrived at by Grau et al. (2006) when 

comparing the BC and gliding box approaches for conducting full multifractal analyses. The 

gliding box algorithm, which forms the basis of lacunarity analysis, produces more 

continuous coverage with a large number of r values as compared to BC, which relies on 

fewer discrete step increments.    

The weighted mean log-transformed lacunarities, <L>, of the three soils, along with 

the correlation dimension, D2, for soil 3 as computed from the log L(r) vs. log r plot, are 

reported in Table 3.2. This D2 value is within ~ 2% of the value reported in Zhou et al. 

(2011) based on BC. The <L>  values show that soil 3 is the most clustered amongst the 

three thin sections and this is no surprise since it has was previously reported as having 
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“relatively well developed aggregates with large pores.” Also, the <L> value for soil 3 

compares favorably with that of models B and D in Table 3.1.  

 

5. CONCLUSIONS 

The results from our research on lacunarity analysis of natural and multifractal 

grayscale patterns bring forth two main points. First, it empirically tests the equation of 

Allain and Cloitre (1991) that relates lacunarity to the correlation dimension in grayscale 

patterns. Thus, it demonstrates that by running a lacunarity analysis on grayscale patterns 

one can check for possible multifractal behavior and hence find the correlation dimension. 

Second, it shows that lacunarity analysis can delineate clustering in synthetic and natural 

grayscale images regardless of their multifractal nature. More importantly, this work 

introduces the novel concept of expressing lacunarity as a single number which takes into 

account the clustering in a pattern at different scales. This is particularly helpful when 

comparing different grayscale patterns or images for their clustering attributes. This new 

lacunarity parameter will likely prove useful in future research exploring the influence of 

texture on flow and transport processes within greyscale fields.  
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APPENDIX II-A: TABLES 
 

Table 3.1. Correlation dimensions (D2), associated coefficients of determination (R2), and 

weighted mean log-transformed lacunarities, <L>, for the five synthetic grayscale 

fields illustrated in Fig. 4 

Model D2 R2 <L>† 

A 1.932 0.947 6.1 
B 1.928 0.996 12.6 
C 1.928 0.915 25.7 

D 1.922 0.995 11.1 
E n.a. n.a. 0.1 

 

† <L> values reported as × 103 
n.a. = not applicable (log L(r) vs. log r plot not linear) 

 

Table 3.2. Correlation dimensions (D2), associated coefficients of determination (R2), and 

weighted mean log-transformed lacunarities, <L>, for the three natural grayscale 

fields illustrated in Fig. 6 

Soil D2 R2 <L>† 

1 n.a. n.a. 1.2 
2 n.a. n.a. 8.4 
3 1.924 0.999 15.5 

 

† <L> values reported as × 103 
n.a. = not applicable (log L(r) vs. log r plot not linear) 
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APPENDIX II-B: FIGURES 

 

 

 

 

 

 

Figure 3.1. A grayscale random multifractal pattern: p8r3. Lighter phases have higher 

mass fractions 

 

(a) 

 

 

 

 

(b) 

 

 

 

 

 

Figure 3.2. (a) log L(r) vs. log r plot for pattern p8r3: points not included in the linear fit 

are shown in grey. (b) Local slope of (a) plotted as d[log L(r)]/d[log r] against log r: dashed 

line shows slope of linear fit from (a), the “flat segment” used for fitting the linear model is 

shown in black 
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Figure 3.3. Correlation dimension, D2, estimated from lacunarity analysis compared to 

theoretical D2   values for random multifractal fields with scaling factor b=2, and probability 

of occupied cells, p = 1/9 to 8/9 (three realizations for each of the eight fields); average 

values of 3 realizations with bars corresponding to the 95% confidence intervals 
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Figure 3.4. Grayscale multifractal models with b=7 and p = 40/49, and 3 iterations; models 

A, B, C: deterministic multifractals showing low, medium and high clustering, respectively; 

model D: random multifractal; model E: non-multifractal random grayscale pattern with 

same mass fractions as the others models 

 

 

 

 

 

 

 

 

 

Figure 3.5. log L(r) vs. log r plots for models A-E. Note curvilinear behavior of model E 

(random), as compared to the other (multifractal) models 

 

 



45 
 

Figure 3.6. Natural grayscale images of soil thin sections from Zhou et. al. (2011); note: soil 

1 compares to model E in Fig. 4, while soil 3 compares to models B or D 

 

 

 

  
Figure 3.7. log L(r) vs. log r plots for natural grayscale images. Note: soil 3 exhibits straight 

line behavior over ~2 orders of magnitude (multifractal); soil 1 compares to the L(r) vs. log 

r plot for model E (random) in Fig. 5; soil 2 is intermediate. Figure in inset shows the local 

slopes plotted as d[log L(r)]/d[log r] vs. log r 
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ABSTRACT 

 Data on fracture spacing along scanlines have been widely analyzed for the purposes of 

characterization. Most of these studies however, either consider the cumulative frequency 

of spacing data without regard to the actual sequence of the spacing values or compute an 

average spacing that may not work for clustered fractures. The coefficient of variation 

parameter is used to differentiate between clustered, random and anticlustered fractures 

in a scanline but does not address the issue of scale-dependent variations in spacing. 

Lacunarity is a parameter that has been previously used for delineating scale-dependent 

clustering in fracture networks with similar fractal dimensions. This technique has the 

further capability of identifying scales at which different patterns emerge within the same 

dataset. Lacunarity can also delineate possible fractal behavior. This paper tests the 

capability of lacunarity to find patterns (fractal/uniform/random) within synthetic and 

natural fracture clusters. A set of four model scanlines: uniformly-spaced fractures, 

periodically-spaced fracture clusters, fractal fracture clusters, and random fractures were 

considered. The 1st derivative of the lacunarity curves of these models was used to find the 

inter-cluster distance and organization of fractures within the clusters. The same technique 

was then applied to a set of two natural fracture scanline data, one with fracture clusters 

with fractal organization within, and the other with randomly spaced fractures. It was 

found that this technique can discriminate the random pattern from the clustered one, find 

the intercluster distance, and identify the organization within the clusters. 
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1. INTRODUCTION 

Quantifying fracture spacing is the key to understanding the spatial organization of 

fracture networks and serves as a preliminary step towards stochastic modeling. Previous 

researchers have employed various parameters for studying fracture spacing that include 

the coefficient of variation (Gillespie et. al., 1999) and fracture spacing index (Narr and 

Suppe, 1991). However, these descriptors fail to capture the entire range of heterogeneity 

mainly because they look at data sets only at a single scale. For example, the coefficient of 

variation determines whether fractures are clustered on the entire length scale of a 

scanline while the fracture spacing index focuses on the average fracture spacing. Many 

naturally occurring fractures however, display heterogeneity such that not only do they 

occur as clusters but may have a different organization (e.g. random or fractal) within the 

clusters. Therefore, while a simple parameter like average spacing is sufficient for 

predicting the presence of evenly-spaced fractures in a well-bore it will not work where 

fractures are present in clusters. Also, while a single-scale clustering index may help 

determine if a fracture set is clustered it cannot quantify the inter-cluster distance or find 

the organization within such clusters.  

Semivariograms (LaPointe and Hudson, 1985; Chiles, 1988) and, more recently, 

Lacunarity (Roy et al., 2010) and the correlation dimension and Lyapunov exponent (Riley, 

et al., 2011), have been introduced as mathematically rigorous parameters that can 

determine the heterogeneity of fracture data sets at different scales. The focus of the 

present study is on the quantification of scale-dependent clustering in scanline data using 

lacunarity.  Lacunarity is a parameter developed for multiscale analysis of spatial data and 

allows for the determination of scale-dependent changes in spatial structure. Stated simply, 

lacunarity characterizes the distribution of spaces or gaps in a pattern as a function of scale 

and can thus quantify scale-dependent clustering in a dataset. It has been demonstrated by 

Plotnick et al. (1996) that lacunarity versus scale curves of one-dimensional sets will have 

distinct breaks in slope corresponding to distinct scales within the sets. This technique is 

therefore well suited for capturing the entire range of heterogeneity in fracture spacing 

data that may be clustered at one scale while random or even fractal at another.  
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Our present research focusses on the application of this technique in revealing 

changes in scale-dependent patterns in 1-d fracture spacing data. We consider four model 

scanlines with differences in scale-dependent patterns and generate their lacunarity curves 

in log-log space to test if the curves can delineate the differences. We further introduce the 

concept of the 1st derivative of the log-transformed lacunarity and demonstrate that this 

function can determine the inter-cluster spacing and find possible fractal behavior over 

certain scales. Finally, we test the technique on a set of two natural scanlines, one that 

comprises fractures occurring in regularly-spaced fractal clusters and another that has 

randomly-spaced fractures. 

 

2. METHOD DEVELOPMENT 

2.1 Synthetic Scanlines 

Four synthetic scanlines with spacing data (fig 4.1and, table 4.1) were constructed 

representing different types of heterogeneities encountered in nature. Model A is a set of 

fractures spaced equally at 22 length units and representing a homogeneous distribution in 

space which is typical of “stratabound” fractures found in mechanically-layered rock units 

(Odling et al., 1999; Riley et al., 2011). Model B is set of five 73 unit-wide fracture clusters 

spaced at 162 units with fractures within each cluster spaced at 8 units. The NS trending 

fractures in the map from Telphyn Point, Wales, (Rohrbaugh et al., 2002) and subsequently 

analyzed by Roy et al (2010) display similar regularly-spaced clusters with somewhat 

uniformly-spaced fractures within the clusters. Model C is also a set of five 81 unit-wide 

fracture clusters with inter-cluster spacings of 172, 142, 182 and 152 units (average inter-

cluster spacing 162 units). The fractures within each cluster however, are modeled by a 

randomized Cantor-bar, a fractal model with theoretical fractal dimension of 0.63. Cantor 

bars have been used in modeling fractures by numerous researchers including Velde et al. 

(1990), Gillespie et al. (1993), Barton (1995), Chiles (1998) and Kruhl (2013). Model C was 

created by integrating properties of this fractal and that of model B and serves as an 

example of a scanline with “clusters of fractures within clusters” (Boadu and Long, 1994). 

Finally, model D is a set of fractures whose spacing values were picked at random from a 
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uniform distribution and represents a set of random fractures. Models B, C and D are 

typically found in mechanically non-layered rocks and are examples of non-stratabound 

fractures (Gillespie et al., 1999). 

 Gillespie et al. (1999, 2001) studied the spacings of veins and used the coefficient of 

variation, Cv, for detecting clustering. This parameter is defined as the ratio of the standard 

deviation to the mean value of the spaces such that Cv = 0 for perfectly periodic fractures, Cv 

= 1 for a random distribution, Cv > 1 for clustered fractures, and Cv < 1 for anticlustered 

fractures. Models A and D which are periodic and random patterns yielded Cv values of 0 

and 1.2, respectively. Models B and C have Cv values of 2.04 and 2.43 respectively, which 

are consistent with clustered fractures, however the exact form of the clustering is not 

revealed by these values.   

2.2 Lacunarity and its 1st Derivative 

A useful conceptual perspective for understanding lacunarity is to evoke the idea of 

homogeneity. Consider a uniform sequence of alternating 0’s and 1’s like 101010101... and 

so on. This sequence will map onto itself if a copy is made and moved over by two digits so 

that the original cannot be distinguished from the translated copy. Another pattern like 

1000100010001….and so on, will similarly map onto itself if its copy is moved over by four 

digits. Such homogenous sequences have minimal values in terms of lacunarity because all 

of the gap sizes (denoted by zeroes in our example) are the same.  This behavior is not 

observed in the case of a slightly more heterogeneous sequence, such as 101000101... 

where the gaps have a range of sizes including a cluster of three gaps in the middle.  

Lacunarity quantifies this deviation of a pattern from homogeneity. It is a scale-dependent 

parameter because sets that are uniform at a coarse scale might be heterogeneous at a finer 

scale, and vice-versa.  Lacunarity can thus be considered a scale dependent measure of 

textural heterogeneity (Allan and Cloitre, 1991; Plotnick et al., 1993). 

Quantifying lacunarity as a function of scale can be achieved by using the gliding-box 

algorithm (Allan and Cloitre, 1991; Plotnick et al., 1996). For a 1-dimensional sequence of 

0’s and 1’s, this algorithm slides a ruler of a given length, r, translated in increments of a 

unit length such that the total number of steps is given by (rt – r + 1), rt being the length of 



51 
 

the entire sequence. The number of occupied sites, s(r), denoted by 1’s and contained 

within the interrogator box at each step is calculated and a distribution of this parameter at 

the scale r is obtained by sliding the ruler through all the steps. Finally, the mean, s(r), and 

variance, ss2(r) of this distribution are used for calculating the lacunarity, L(r), at scale, r as: 

L(r) = ss2(r)/ [s(r)]2 + 1………………….………………………………………..……………………………………(1) 

Log-transformed values of lacunarity, log L(r) plotted against log-transformed 

values of the scale, log r yields a curve that is characteristic of the heterogeneity of the 

sequence under investigation. If is the fracture intensity, defined by number of fractures 

per unit length of a scanline (Ortega et al., 2006), it may easily be proved that L (1) = 

1/and L (rt) = 1, such that scanlines with different fracture intensities will have different 

L (1) values. A uniform sequence like 101010…and so on will have L(r) = 1 at all r values. 

As pointed out by Plotnick et al. (1996), distinct breaks in the slope of this curve 

correspond to distinct scale-dependent changes within the sequence. Since fractal patterns 

are scale-independent, they appear to have the same pattern at all scales they produce 

straight-lines in the log L(r) vs. log r space.  

Plotnick et al. (1995, 1996) cited the example of a sequence of randomly-spaced 

clusters and how changes in the slope of the lacunarity curve corresponded to changes in 

the pattern with scale. A visual inspection of the lacunarity curve however, is not sufficient 

for identifying these breaks in scale. In this paper, we therefore, introduce the concept of 

the 1st derivative of the lacunarity curve. At each point i, the local slope of the log L(r) vs. 

log r curve is found by:  

       (  )                
     (    )      (    ) 

                 
………………………………………..…………………....(2) 

This value plotted against log r yields a curve that is easier to interpret because breaks in 

the slope of the log L(r) vs. log r curve appear as distinct peaks and troughs along a line 

parallel to the x-axis.  
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From the equation established by Allain and Cloitre (1991) it can be shown that the 

lacunarity L(r) at a scale, r and fractal dimension, D of a 1-dimensional fractal sequence are 

related as: 

 ( )   ( )    ………………………………………………………………………………………………………….(3a) 

Here k is any constant. Taking the logs of both sides, Eq. (3a) can be transformed to: 

    ( )       (   )    ( ) ……………………………………………………………………………....(3b) 

Finally, differentiating Eq. (3b) as in equation (2) will yield: 

       ( ) 

        
    ……………………………………………………………………………………………………….(3c) 

For a fractal sequence therefore, the local slope in equation (3c) when plotted against log r 

will yield a straight line parallel to the x-axis with a constant value of D – 1. Figure 3.2 in 

chapter III illustrates a similar example for the case of a 2-dimenisonal multifractal pattern. 

A uniform pattern on the other hand, like 101010…and so on, will also plot as a straight line 

along x-axis but with slope equal to zero, such that D is actually the embedding Euclidean 

dimension in this case.   

 

3.  APPLICATION TO MODEL SCANLINES 

Figure 4.2 shows the lacunarity curves for models A-D. The lacunarity curve of 

model A drops to zero at log r ~ 1.35, i.e. r ~ 22 and continues along the x-axis thereafter. 

This behavior is indicative of the fact that the fractures in model A are uniformly-spaced at 

22 units. Model B follows model A up to r ~ 8 units and then diverges and follows the 

lacunarity curve of model C. This is happens because at that scale model B behaves as a 

uniform sequence (like model A) with a constant fracture spacing of 8 units while at a 

larger scale it appears somewhat similar to model C with its uniformly-spaced fracture 

clusters as seen in fig 4.1. Model C is linear within the range of the fractal clusters (i.e., 

between 1 and 81 units), Fitting Eq. (3b) to the lacunarity data over this range of r values 

using linear regression yielded an estimate of D = 0.6 with an R-square = 0.99. The curve 
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for model D (random sequence) divides the x-y space into two regions: clustered sequences 

plot above it while anti-clustered ones plot below. For example, while the curve for model 

A (uniformly-spaced fractures) lie below that of model D models B and C (evenly-spaced 

fracture clusters) lie above it. 

While the lacunarity curves as described above can delineate overall differences 

between the models, the subtle breaks in these curves that potentially correspond to major 

breaks within the sequences are not easy to locate.  Hence, it is important to consider their 

1st order derivatives that amplify such breaks and can identify finer details of the scale-

dependent patterns in the scanlines (Fig. 4.3). The 1st order derivative curve for the 

uniform model A (fig. 4.3a) breaks at r = 22 units that exactly matches the constant fracture 

spacing value and thereafter, oscillates about the homogenous line (slope = 0) denoting 

that the sequence is a uniform one throughout its entire length. The curve for model B has 

two main slope breaks: the first abrupt jump at r = 8, and the largest trough at r = 161 (Fig. 

4.3b). The 1st break is equal to the fracture spacing within the clusters while the 2nd break 

closely approximates the inter-cluster spacing of 162 units.  

Model C breaks at r = 171 which is a large trough as seen in fig. 4.3c. This value 

matches with the 1st intercluster spacing which is 172 units. To the left of this trough the 

curve is sub-parallel to the x-axis with only minor peaks and troughs about a line that 

represents the known fractal dimension of 0.63 for the Cantor-bars used in modeling the 

clusters. At scales larger than r = 171, the sequence oscillates about the homogenous line 

(slope ~ 0) like in model B indicating that at these scales (larger than the inter-cluster 

distance) the sequence is a uniform one. This happens because the fractal clusters are 

spaced-evenly along the scanline. Model D being random, does not show any specific trend 

(fig. 4.3d).  It can therefore be concluded from our models that lacunarity curves and their 

slopes can delineate scale-dependent pattern changes within the same scanline as well as 

the scales at which these changes take place. Patterns that appear clustered at one scale 

and fractal or uniform over another can be identified. All of the fracture organization 

parameters extracted from the lacunarity analyses of the synthetic scanlines are 

summarized in Table 4.1. 
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4. APPLICATION TO NATURAL DATA 

The lacunarity derivative curve for detecting changes in spatial clustering with scale 

as developed in the last section was applied to two scanline datasets collected from the 

Monterrey salient, Sierra Madre Oriental, NE Mexico by Gomez (2007). These fracture data 

constitute veins in carbonate layers of the Lower Cretaceous Cupido Formation. The data 

were obtained from layers 11 and 13 in the Palmas canyon and are henceforth referred to 

as P11 and P13 respectively (fig. 4.4a and b). The former is a 21m long scanline with 

fourteen 220mm wide fractal clusters spaced at about 1.1m. The clusters have a fractal 

dimension of 0.42 (Gomez, 2007; table 7.2 therein). P13 is a 5.5m long scanline with 

randomly arranged fractures (Gomez, 2007). The data were discretized on the millimeter 

scale following the scheme of Priest and Hudson (1976).  A unit length is 1mm such that 

1mm spacing is represented by a 0 and a fracture by 1 thus yielding a sequence of zeros 

and ones, essentially, a 1-dimensional binary data set. The coefficient of variation 

parameter (Gillespie et al., 1999) yielded a value of Cv = 1.7 for P11 which indicates a 

clustered sequence. For P13, Cv = 0.9 indicating a near random arrangement.    

Figure 4.5 shows the lacunarity curves of P11 and P13. The former has 257 

recorded fractures along a 21m line (fracture intensity, = 0.012) while the latter has 459 

fractures along a 5.5m line (= 0.083). This difference in fracture intensities (which is 

clearly apparent visually in fig. 4.4) leads to the offset in L-values at r = 1 given by 1/, such 

that log L (1) of P11 is 1.92 and that of P13 is 1.08. The straight line segment of the P11 

lacunarity curve indicates a constant slope and as seen from equation (3b). This behavior 

implies a fractal organization over the scale of the segment in question. This is comparable 

to model C (fig. 4.2) which is comprised of fracture clusters with fractal organization 

within. It may be noted here that the coefficient of variation parameter for P11 (Cv = 1.7) 

and model C (Cv = 2.43) are very different and fails to recognize this similarity. P13 has a 

concave-up lacunarity curve similar to that for the random population of fractures in model 

D (fig. 4). This is consistent with the findings of Gomez (2007) that P13 is populated by 

randomly distributed fractures. 
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Fig. 4.6a is the 1st order derivative of the lacunarity curve of P11 and is comparable 

to that of model C in the previous section. Between scales of   r ~ 25 mm and 740 mm (i.e., 

log r ~ 1.4 and 2.87) the pattern shows a relatively flat line thus indicating a fractal 

organization. These bounds are similar to the bounds of 12 mm and 664 mm found by 

Gomez (2007). The fractal dimension, D of fractures within the clusters was found from 

fitting a linear model to this segment between r ~ 25mm and 740mm in the log L(r) vs. log 

r curve that yielded an R2 = 0.99 and applying equation (3b).  The resulting value of D ~ 

0.52 is slightly higher than the value of D = 0.44 found by Gomez (2007).  Beyond r ~ 740 

mm the sequence starts to approach uniform behavior indicating that the clusters 

themselves are spaced at regular intervals just as in model C. A major difference being that 

P11 has fractures in the inter-cluster regions. This is the reason that the transition from 

fractal to uniform behavior is more continuous and there is no distinct trough as seen in fig. 

4.3c.  The different fracture organization parameters extracted by lacunarity analyses of 

the P11 scanline data are summarized in Table 4.1. 

Fig. 4.6b is the 1st order derivative of the lacunarity curve of P13 and is very unlike 

those of models A, B or C in fig 4.3.  Also, it has no sharp breaks in its slope indicating that it 

behaves the same way at all scales. Although there seems to be some differences between 

P13 and random model D in terms of their lacunarity derivative curves, their lacunarity 

curves look similar as discussed in the last paragraph and it may therefore be concluded 

that P13 is indistinguishable from a random distribution at all scales.  

 

5. DISCUSSION 

The 1st order derivative of lacunarity curves can be used to detect breaks in the 

slope of the lacunarity curve in order to find scales at which a pattern changes its spatial 

distribution. For clustered populations, plotting the slope against the scale can reveal the 

inter-cluster spacing and possible fractal or random organization within the clusters. 

Further, where fractures within a cluster are periodically spaced, the spacing at that scale 

can also be found as with model B.  This kind of analysis is important where wells in a 

fractured formation need to be perforated to target fractures that conduct flow. For 
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example, model B (uniform clusters) has an average fracture spacing of 22 units, the same 

as that of model A, but the former has an inter-cluster spacing of 162 units. Likewise, 

natural scanline P11 has an average fracture spacing of 78 mm but  the fracture actually 

present in clusters that are uniformly spaced when observed at scales larger than r = 740 

mm. It can be clearly seen that information on the spacing of clusters and their spatial 

organization obtained from lacunarity analysis will prove to be more useful than data on 

the average spacing and Cv parameter when drilling exploration/production wells in 

formations that house clusters of fractures. 

Consequently, the use of lacunarity derivative curves can find changes in spatial 

distributions at different length scales within the same scanline, including the type of 

cluster (fractal vs. uniform vs. random). Our technique, like most others, considers only 

fracture spacing in determining scale-dependent heterogeneity. As such, fracture clusters 

and intercluster distances may be determined for situations such as perforating well-

casings the technique does not include a consideration of the individual fractures in terms 

of parameters such as aperture and length. It would be useful to be able to add fracture 

aperture to the analysis because it is the widest fractures that contribute to most of the 

flow within a system. Additionally, wide fractures are important because they account for 

most of the strain accommodated. Therefore, a further improvement to this new technique 

would be to include data about fracture widths together with spacing in order to test if 

large fractures occur inside clusters. This topic is discussed in the next chapter of this 

dissertation. 
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APPENDIX IIIA: TABLES  

 Table 4.1. Model and estimated (from lacunarity analyses) fracture organization 

parameters: fracture spacing, intercluster spacing, spacing within clusters, and fractal 

dimension (D) 

 

Scanline Organization Parameter (model) Parameter (estimated) 

model A periodic fractures fracture spacing = 22 fracture spacing = 22 

model B 
periodic clusters 

(periodic within) 

intercluster spacing = 162 

spacing within clusters = 8 

intercluster spacing = 161 

spacing within clusters = 8 

model C 
periodic clusters 

(fractal within) 

intercluster spacing  = 162 

D of clusters = 0.63 

periodic @ scale > 170 

D of clusters = 0.60 

model D random fractures n/a - 

data P11 
periodic clusters 

(fractal within) 
n/a 

periodic @ scale > 0.74m 

D of clusters = 0.52 

data P13 random fractures n/a - 

n/a: not applicable  
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APPENDIX IIIB: FIGURES  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Model scanlines, x-axis denotes positions of fractures along a line (a) model  A: 

uniformly spaced fractures, spacing = 22 units. (b) model B: equally spaced uniform 

(spacing = 8 units) clusters spaced at 162 units, cluster width = 73 units. (c) model C: 

regularly spaced fractal (cantor-bar, D = 0.63) clusters, avg. spacing = 162 units.  (d) model 

D: randomly spaced fractures with avg. spacing = 21 units. y-axis = 0 for no fracture, 1 for a 

fracture.  
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Figure 4.2. Lacunarity curves for model scanlines A, B, C and D. Note the range of scale 

over which model B coincides with model A showing that B is uniform over that range 
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Figure 4.3. Lacunarity slopes for models A, B, C and D. Breaks in slope correspond to 

spacings at given scales e.g. model B, breaks at log r ~ 0.9 (r = 8 ) and log r ~ 1.35 (r = 22) 

denotes spacing within clusters and spacing between clusters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

 

4.3 (a) 

 

 

 

 

 

 

 

 

 

 

4.3 (b) 
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4.3 (c) 

 

 

 

 

 

 

 

 

 

4.3 (d) 
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(a) 

(b) 

Figure 4.4. Natural scanlines from Gomez (2007) where fractures are shown by lines: (a) 

P11: fractal clusters and (b) P13: random fractures. Note differences in fracture intensity 

().  x-axis denotes positions of fractures. y-axis = 0 for no fracture, 1 for a fracture. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Lacunarity curves for natural scanlines P11 and P13. The two are offset 

because P11 has a lower intensity, hence higher lacunarity than P13. 
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                  (a) 
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Figure 4.6. Lacunarity slopes for natural data. (a) P11 showing fractal (D = 0.52) and 

uniform behavior at different scales (b) P13 indistinguishable from random. 
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ABSTRACT 

 Scanline data about fracture spacing and size attributes such as aperture/length are 

mostly considered in separate studies that compute the cumulative frequency of these 

attributes without regard to their actual spatial sequence. In a previous study, we showed 

that spacing data can be analyzed using lacunarity to identify whether fractures occur in 

clusters. However, to determine if such clusters also contain the largest fractures in terms 

of a size attribute such as aperture, it is imperative that data about the size dimension be 

integrated with information about fracture spacing. While for example, some researchers 

have considered aperture in conjunction with spacing, their analyses were either 

applicable only to a specific type of data (e.g. multifractal) or failed to characterize the data 

at different scales. Lacunarity is a technique for analyzing multi-scale non-binary data and 

is ideally-suited for characterizing scanline data with spacing and aperture/length values. 

We present a technique that can statistically delineate the relationship between size 

attributes and spatial clustering. We begin by building a model scanline that has complete 

partitioning of fractures with small and large apertures between the intercluster regions 

and clusters. We demonstrate that the ratio of lacunarity for this model to that of its 

counterpart for a completely randomized sequence of apertures can be used to determine 

whether large-aperture fractures preferentially occur next to each other. The technique is 

then applied to two natural fracture scanline datasets, one with most of the large apertures 

occurring in fracture clusters, and the other with more randomly-spaced fractures, without 

any specific ordering of aperture values. The lacunarity ratio clearly discriminates between 

these two datasets and, in the case of the first example, it is also able to identify the range of 

scales over which the widest fractures are clustered. The technique thus developed can 

help in identifying the spatial distribution of fractures in terms of a size attribute such as 

aperture or length. 
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1. INTRODUCTION 

Quantifying fracture spacing and attributes such as aperture, displacement and 

length is important for better understanding the geometric arrangement of fractures and 

their genesis. Research in this area has focused on the use of cumulative frequency plots 

(Gillespie et al., 1993; Manning, 1994) and parameters like the coefficient of variation 

(Gillespie et. al., 1999) and fracture spacing index (Narr and Suppe, 1991). Cumulative 

frequency analyses have also been independently reported for other fracture/fault 

attributes such as aperture, displacement, and length (Ouillon et al., 1996; Marrett et al., 

1999; Gillespie et al., 2001; deJossineau and Aydin, 2007).  

The applicability of the above approaches, however, is limited in two ways. First, 

cumulative frequency plots and parameters such as the coefficient of variation consider 

fractures at only the scale of the entire population. They do not provide any information 

about the spatial distribution of fractures. As a result, geostatistical and fractal analyses 

have been applied to quantify the heterogeneity of fracture networks with respect to these 

characteristics over various ranges of spatial scales. Semivariograms have been used to 

determine the spatial dependence of the variance in fracture density and frequency 

(LaPointe and Hudson, 1985; Chiles, 1988). Fractal analysis (La Pointe, 1988; Berkowitz 

and Hadad, 1997; Roy et al., 2007), on the other hand, has mostly focused on finding 

power-law behavior, i.e. it is strictly applicable to limited set of scale-invariant features. 

The second limitation is that, although cumulative frequency studies of fracture 

length or aperture are helpful for determining their size-distributions, they do not tell us 

anything about their covariance. To address this issue, Belfield (1994) integrated fracture 

spacing along horizontal wellbores with their aperture values and showed that the data 

display multifractal behavior. However, it is unlikely that this approach will have general 

applicability, since all such data may or may not scale as a multifractal.  More recently, Tran 

(2004) applied the cross-variogram from geostatistics to characterize the spatial 

relationship between fracture size and orientation.  

 Lacunarity analysis, which is a technique developed for multiscale analysis of spatial 

data, may also be employed for overcoming the limitations discussed above. The goal of 
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this paper is to develop and evaluate an alternative statistical characterization for the 

spatial co-variance of fracture attributes based on lacunarity. Lacunarity can be used to 

overcome the first limitation referred to above, and has been previously employed for 

characterizing clustering in binary fracture maps (Roy et al., 2010) and scanline data (Roy 

et al., 2013).  Since lacunarity is applicable to both binary and non-binary data sets, we also 

apply the technique to overcome the second limitation by analyzing fracture spacing data 

that are integrated with their corresponding normalized aperture values, thus yielding a 

dataset comprised of zeros and fractions. In this research, we use the term non-binary to 

denote such data.  The advantage of this approach is that both spacing and aperture values 

can be analyzed simultaneously. 

 We start by building a model scanline where fractures with large apertures are 

restricted to clusters and small apertures are present only in the inter-cluster regions. We 

then introduce the concept of the lacunarity ratio for demonstrating that this technique can 

statistically identify the spatial distribution of large fractures with respect to fracture 

clusters. It is worth noting that the technique developed here is applicable to data sets 

where spacing has been integrated with any other fracture attributes. Thus, it can analyze 

spatial variation in length, aperture or displacement in the case of faults. We test this 

technique on a set of two natural scanlines with spacing and aperture data, one that 

comprises fractures occurring in regularly-spaced clusters and another that has more 

randomly- spaced fractures with no particular organization of apertures. 

 

2. METHOD DEVELOPMENT 

2.1 Generation of Model Scanlines 

Roy et al. (2013) document four synthetic scanlines comprised of only fracture 

spacing values of which model A is a set of fractures spaced equally at 22  length units and 

model C a set of five 81-unit wide fracture clusters with an average inter-cluster spacing of 

162 units. Similar models were previously employed by Velde et al. (1990), Gillespie et al. 

(1993) and Chiles (1998) for analyzing fracture spacing. For the present study, two new 
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model scanlines, A1 and C1 (fig. 5.1), were constructed from models A and C respectively, 

by adding apertures drawn from a uniform distribution. The apertures were then 

normalized to sum to unity so that different datasets covering various aperture scales can 

be analyzed. Finally, a new model E (fig. 5.2a) was generated by populating the inter-

cluster spaces of model C1 with model A1 after reducing the apertures of the latter by an 

order of magnitude. Model E thus represents an extreme case of large (wide) fractures 

occurring preferentially within clusters and small fractures present at regular intervals 

only in the inter-cluster spaces. Random versions of model E, denoted by E*, were also 

generated in which the sequence of aperture values was randomized while keeping the 

spaces between fractures unaltered. This was done so that the clustering in E arising from 

two different effects, the spatial distribution of fractures and presence of large aperture 

values next to each other, can be separated. One such random realization of E is illustrated 

in fig. 5.2b. 

2.2 Lacunarity and its Quantification 

Lacunarity is a parameter that characterizes the distribution of spaces or gaps in a 

binary pattern as a function of scale and quantifies the degree of clustering at a given 

spatial resolution. It is applicable to both binary (e.g., fracture spacing) and non-binary data 

(e.g., fracture spacing with aperture).  We begin by considering binary data first. A uniform 

sequence of alternating 0’s and 1’s like 1001001001001... and so on, will map onto itself if a 

copy is made and moved over by three places so that the original cannot be distinguished 

from the translated copy because the gap sizes are same. This behavior is not observed in 

the case of a slightly more heterogeneous sequence, such as 101000101... where the gaps 

have a range of sizes, including a cluster of three gaps in the middle; the greater the degree 

of gap clustering, the greater the lacunarity. In the case of a non-binary pattern like (1/25) 

0 0 (1/3) 0 0 (1/7)… where the ones are replaced by fractional values, there will still be 

some lacunarity. Even though the gap sizes in this case are same as in the first binary 

example, the non-zero values have a distribution such that the pattern will not map onto 

itself if a copy is made and moved over by three places as before. The pattern is therefore, 

heterogenous. In essence, lacunarity is a scale-dependent measure of this heterogeneity 

(Allan and Cloitre, 1991; Plotnick et al., 1993).  
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Quantifying lacunarity as a function of scale can be achieved by using the gliding-box 

algorithm (Allan and Cloitre, 1991; Plotnick et al., 1996). For a 1-dimensional sequence, 

this algorithm slides a ruler of a given length, r, translated in increments of a unit length 

such that the total number of steps is given by (rt – r + 1), where rt is the length of the entire 

sequence. The total mass (i.e., the sum of the normalized aperture values in our case) 

contained within the interrogator box at each step, s(r), is calculated and a distribution of 

this parameter at the scale r is obtained by sliding the ruler through all the steps. Finally, 

the mean,  ̅(r), and variance, s2(r) of this distribution are used in calculating the lacunarity, 

L(r), at scale, r as: 

L(r) = [s2(r) / { ̅(r)}2] + 1………………………………………………………….….………………………………(1) 

Log-transformed values of the lacunarity, log L(r), plotted against log-transformed 

values of the scale, log r, yield a curve that is characteristic of the heterogeneity of the 

sequence under investigation. It can easily be shown that sequences with the same set of 

aperture values, but with different spatial distributions, will have the same maximum 

lacunarity, L(1),  where L(1) is the lacunarity evaluated at r = 1 (Roy et al., 2010).  In other 

words, all random realizations of a scanline will have equal L(1) values. Also, at r = rt, 

where rt is the total length of the scanline, the lacunarity is L(rt) = 1 (Roy et al, 2010). As 

pointed out by Plotnick et al (1996), distinct breaks in the slope of the log L(r) curve that 

occur between these limiting values correspond to distinct scale-dependent changes within 

the sequence.  

2.3. The Lacunarity Ratio 

To delineate the degree of scale-dependent clustering in a sequence of γ-ray peaks 

(binary data) from a well-log Plotnick et al (1996) analyzed its lacunarity and compared it 

with the lacunarity of a randomized version of the same data. Plotted in log-log space, 

greater scale-dependent lacunarity values of the dataset compared to its randomized 

counterpart implied greater clustering. In the case of non-binary data, higher lacunarity 

with respect to a randomized sequence can arise because of clustering in two different 

aspects of the data set. For the specific example of model E, these two aspects are fracture 

spacing and fracture aperture values. Even in a uniformly-spaced fracture sequence, wide 
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fractures occurring preferentially next to each other will generate greater lacunarity 

values. Examples of other non-binary sequences where such compound clustering may 

arise from two different aspects of the data can be found in various fields of science that 

investigate spatially- or temporally-distributed data like, for example, changes in the pH of 

precipitation with time.   

Clustering arising from the spacing of such sequences may be identified by simply 

ignoring the values at each data point (i.e., the apertures in model E). Considering only the 

spacing values and finding the lacunarity of the binary sequence thus generated can help 

identify spatial (or temporal) clustering of the points (i.e., the fractures in model E). 

However, simply analyzing the values at each data point and ignoring the spacing in 

between would not help in delineating if large values are found in clusters next to each 

other in space or time.  Therefore, to identify clustering arising from the ordering of the 

apertures in model E, the lacunarity should be compared to random sequences where the 

spacing’s are left unaltered but the sequence of aperture values is randomized (e.g., model 

E* in Fig. 2b).  

To better visualize this type of clustering, we compute the scale-dependent 

lacunarity ratio, LR(r), of a dataset with respect to the average its randomized 

counterparts, 〈 ( )〉, such that at any given scale, r, the ratio is given by: 

  ( )   
 ( )                 

〈 ( )〉                   
………………………………………..…………………………………………(2)  

Based on this definition, a random aperture data set compared to itself will plot as a 

horizontal line with LR(r) = 1 at all scales or values of r, where log r is plotted along the x- 

axis of the graph. Therefore, for comparing the clustering of the apertures in model E (Fig. 

5.2a) to their random counterparts, such as model E* (Fig. 5.2b), we generated 10 random 

realizations of E and computed the scale-dependent lacunarity curves of each. An average 

random lacunarity curve 〈 ( )〉  was found by computing the arithmetic mean of all 10 

random lacunarity curves and is plotted along with the upper and lower 95% confidence 

intervals in Fig. 5.3a.  When compared to the lacunarity values as a function of log r for 

model E, the  〈 ( )〉  curve for the randomized scanlines has smaller values of lacunarity at 
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all scales.  This result demonstrates that the spatial clustering of fractures with respect to 

aperture values in model E can be identified using lacunarity. The narrow range between 

the upper and lower 95% confidence intervals around 〈 ( )〉 indicates that 10 random 

realizations can be safely assumed to be sufficient for our purpose.  

The lacunarity-ratio for model E was determined by comparing its L(r) curve to that 

of the 〈 ( )〉 curve for the random realizations (equation 2). The upper and lower 95% 

confidence intervals and their corresponding lacunarity ratios were also computed by 

comparing their L(r) curves to that of the 〈 ( )〉 curve. Plotted as a function of scale, the 

lacunarity ratio for model E shows a broad peak substantially higher than the upper 95% 

curve and spanning the entire range of scales (fig. 5.3b). It is thus statistically more 

clustered (at the 95% confidence level) than the average curve generated from model E by 

randomizing the sequence of apertures. This clearly demonstrates that at all scales of 

observation, model E has large apertures that are present in clusters. This happens because 

large and small apertures are completely partitioned between the clusters and the inter-

cluster regions respectively, along the scanline. 

The broad peak in the curve as described above drops off to a local minima at r = 

237 (log r ~ 2.38). This value is approximately equal to the sum of the cluster width and 

average inter-cluster distance, 81 and 162 units respectively, totaling to 243 units. In other 

words, the LR(r) curve also provides information about the fracture spacing that was not 

evident from the raw lacunarity curves.   

 

3.  APPLICATION TO NATURAL DATA 

The lacunarity-ratio technique described above was applied to natural data from 

two scanlines, each consisting of spacing and aperture values, collected from the Monterrey 

salient, Sierra Madre Oriental, NE Mexico (Gomez, 2007). These fracture data are from 

veins in carbonate layers of the Lower Cretaceous Cupido Formation. The scanlines were 

obtained from layers 11 and 13 in the Palmas canyon and are henceforth referred to as P11 

and P13 respectively (fig. 4a and b). The former is a 21 m long scanline with 257 recorded 
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fractures of apertures larger than 0.95 mm in fourteen 22cm wide clusters spaced at about 

110 cm. P13 is a 5.5 m long scanline with 459 randomly-arranged fractures of apertures 

greater than 0.5 mm.  

 The first part of this research used only the spacing values from these data sets for 

identifying presence of fracture clusters (Roy et al., 2013). For our present analyses we 

include both spacing and aperture values. The data were discretized on the millimeter scale 

following the scheme of Priest and Hudson (1976), where 1 mm spacing is represented by 

a 0 and a fracture by 1. Given that the data contain a unique value for each aperture, the 

fracture was represented by its normalized aperture value, i.e. its aperture width divided 

by the sum of all aperture widths for that scanline (Belfield, 1994). Since the normalized 

aperture is a fraction, the discretization yields a sequence of zeros and fractions, i.e., a 1-

dimensional non-binary data set. Our discretization scheme is thus a combination of the 

approaches of Priest and Hudson (1976) and Belfield (1994).  

 Figure 5.5a shows the lacunarity-ratio, LR(r), curve of P11 generated by comparing 

its L(r) curves to that of the averaged random L(r) curve as was done for model E in the 

previous section. Again 10 random realizations were used to construct 〈 ( )〉. The results 

may be considered as somewhat of a variation of model E. The major difference being that 

large and small fractures aren’t completely partitioned between the clusters and inter-

cluster spaces, such that large and small apertures can be found both within the clusters 

and in the inter-cluster regions, as may be expected with a natural example. Therefore, the 

degree of clustering of the apertures is less, producing a peak at a value of LR = 1.09 as 

compared to LR = 1.71 for model E. This means that compared to their respective averaged 

random counterparts P11 is 9% more clustered whereas model E is 71% more clustered at 

its maximum.  

Furthermore, as opposed to model E, for P11 the scale of observation over which 

the clustering is statistically significant is quite limited. This is defined by the points where 

the P11 LR-curve crosses the upper 95% confidence interval curve. These are log r ~ 2.37 

and 3.03 i.e. r ~ 23cm and 107 cm (fig. 5.5a). As seen from the analysis of Gomez (2007), 

these values are very close to that of the average values of the cluster width and inter-
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cluster distance, respectively. This means that at scales of observation less than the cluster 

width it is difficult to ascertain if the observed fractures are part of a cluster, or if they 

populate the entire scanline. On the other hand, if the window of observation coincides 

with an inter-cluster region, which may happen if r is equal to the average inter-cluster 

width, it will not be possible to determine if there are clusters with large fractures present 

in other regions of the scanline. In other words, the presence of large fractures occurring 

next to each other can be best observed between scales corresponding to the cluster width 

and inter-cluster distance, respectively, since large fractures are statistically found within 

the clusters.   

 At scales greater than log r ~ 3.6, i.e. r ~ 4m, the LR-curve crosses the lower 95% 

confidence bound. This is so because the clusters in which these large apertures occur are 

regularly-spaced themselves (Roy et al., 2013), such that at an observation window larger 

than 4-m wide, fractures will appear to be anti-clustered. Finally, just as in model E, the 

peak in this curve is followed by a minimum at log r ~ 3.1 (r ~ 126cm). This value is almost 

equal to the sum of the average cluster width and the average inter-cluster distance, 23 cm 

and 107 cm respectively (totaling to 130 cm), reported previously by Gomez (2007).  

 Fig. 5.5b is the lacunarity-ratio curve for P13. For most scales this curve lies within 

the upper and lower 95% confidence intervals. The LR-curve never crosses the upper 95% 

confidence interval indicating that there is no clustering of apertures i.e., large fractures are 

not statistically found to be occurring next to each other. Therefore P13 is a sequence of 

randomly-spaced fractures (Roy et al., 2013) with no preferential arrangement of fracture 

apertures. Our technique therefore yields results in agreement with Gomez (2007) that P11 

has fracture clusters with large apertures preferentially occurring within such clusters, and 

that P13 is a sequence of randomly-arranged fracture apertures.  

 

4. DISCUSSION AND CONCLUSIONS 

There are a number of techniques available for characterizing fracture spacing and 

attributes like aperture or length. While most of these techniques consider aperture and 
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spacing data separately, Gillespie et al (1999) plotted the cumulative aperture against 

spacing, known as “staircase plots”, for differentiating between stratabound and non-

stratabound fractures. Tran (2004) used the cross-variogram to relate two independent 

fracture attributes as a function of scale. Belfield (1994) integrated fracture spacing and 

aperture by treating the dataset as a multifractal. Gomez (2007) documents a method 

based on the technique developed by Belfield (1997) that creates subsets of the data by 

placing artificial thresholds on fracture aperture. This method then determines the 

clustering of fractures in these subsets pertaining to various aperture size ranges and finds 

whether large ones are more clustered than smaller ones. It is however, always desirable 

that there should be minimum alteration of data while running any statistical analysis.  

We have devised a new technique for characterizing the clustering of fractures in 

terms of spacing and one other attribute at different spatial scales based on lacunarity. Our 

approach involves finding the lacunarity-ratio, LR of a 1-dimensional sequence of apertures 

and spacing values to that of its average random counterpart created by randomizing the 

ordering of the aperture values while maintaining the original fracture spacing’s. This 

approach is equally applicable to any data set that contains values of a single parameter 

that is either spatially or temporally distributed. In fracture analysis, spatially-distributed 

aperture values may be replaced by length or orientation data and it may be determined if 

long fractures or fractures along any specific direction are statistically found next to each 

other. In the case of time series such as, for example, rainfall data, this technique could be 

used to delineate trends in pH within individual precipitation events.  

The technique developed here has been used to essentially address the question: 

“do large fractures occur statistically within clusters?” It has been demonstrated in this 

research that the technique returns similar results when compared to that of Gomez 

(2007), the advantage being that it does not require taking artificial subsets of the original 

data. In addition, this technique can identify the cluster width and the intercluster distance 

in a scanline. Therefore, it is seen that adding a size attribute to spacing values, thus 

creating a non-binary data set, and analyzing it for lacunarity represents a significant 

advance with respect to our earlier research (Roy et al, 2013) that calculated the lacunarity 
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of spacing-only (binary) data. As stressed throughout this document, not only can this 

technique identify fracture clusters in a scanline but it can also statistically evaluate if the 

larger fractures occur preferentially within those clusters. 
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APPENDIX IV: FIGURES 

(a) 

 

  

 

(b) 

 

 

Figure 5.1. Model non-binary scanlines with uniformly-distributed apertures, where the x-

axis denotes positions of fractures along a line, and the y-axis denotes normalized aperture: 

(a) model A1: uniformly spaced fractures, spacing = 22 units, and (b) model C1: regularly-

spaced clusters, avg. spacing = 162 units 

 

(a) 

 

 

 

(b) 

 

 

Figure 5.2. (a). Model non-binary scanline E generated by combining models A1 and C1 in 

fig 1 and scaling down the apertures in A1 by 1 order of magnitude, (b) one realization of 

the randomized model, E*, with random ordering of apertures but unaltered spacing 
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 (a) (b) 

  

 

 

 

 

 

 

Figure 5.3. (a) Lacunarity curves for model E and its counterpart with random ordering of 

apertures (average of 10 realizations), (b) Lacunarity-ratios for model E with respect to the 

average of its random counterparts showing extreme clustering of large apertures.  

 

 

(a) 

(b) 

 

Figure 5.4. Natural non-binary scanline data: (a) P11: 20 m scanline with fracture clusters: 

note larger fractures occur within clusters, (b) P13: 5.5 m scanline with random fractures. 

In both cases, spacing units are in mm, while normalized fracture aperture has no units 
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               (b) 

 

 

 

 

 

 

 

 

 

Figure 5.5. (a) Lacunarity-ratio of P11 with respect to its counterpart with random 

ordering of apertures (avg. of 10 realizations). Large apertures occur within clusters 

between scales of r = 234mm [log r ~ 2.37] and r = 1072mm [log r ~ 3.03].  (b) Same plot 

as (a) for P13 data. Large apertures do not occur next to each other 
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ABSTRACT 

 The quantification of anisotropy is important in fracture networks because it controls 

directionality of fluid flow. Although the use of rose diagrams is common, they do not fully 

capture directional variations in fracture clustering. Consequently, it becomes difficult to 

predict connectivity and preferential flow paths within a network. Quantifying anisotropy 

in fracture clustering is a possible solution because clustering leads to connectivity that 

creates flow paths in networks. Lacunarity, L, is a parameter that has been used to quantify 

scale (r) dependent clustering, thus identifying heterogeneities in fracture patterns. Here 

we apply lacunarity to investigate the clustering anisotropy of fracture maps by rotating 

scanlines incrementally and computing the lacunarity at each orientation. This rotation 

changes the length of the scanline and so the scale was normalized to r* with respect to the 

total scanline length and a weighted mean, <L>* was computed from the log-transformed 

lacunarity values, log L, the weights being the log-transformed normalized scale, log r*.  For 

any given map, the computed <L>* values are plotted along the radius of a circle, in this 

case every 5°, to delineate the clustering anisotropy. This technique was applied to two 

natural fracture maps at the scales of 18 m and 720 m from the Devonian Sandstone, 

Hornelen Basin, Norway. The results showed that <L>* plots can delineate fracture sets 

that are more clustered than others, thus identifying potential preferential flow pathways. 

They also indicate that clustering anisotropy decreases at larger scales suggesting that 

smaller scale fracture networks are more anisotropic.  

 

 

 

 

 

 



88 
 

1. INTRODUCTION 

Considerable research in the last 25 years has focused on quantifying the 

heterogeneity of fracture networks. Various techniques, ranging from semi-variograms 

(LaPointe and Hudson, 1985; Chiles, 1988) to fractal descriptors (La Pointe, 1988; 

Berkowitz and Hadad, 1997; Roy et al., 2007), have been applied to this problem. Since 

fractures result from deformation processes that are inherently directional (Kruhl, 2013), 

it is to be expected that, in addition, to being heterogeneous, fracture networks will also 

display some form of anisotropy.  

 Although the use of rose-diagrams to identify fracture sets with different 

orientations within a network is common practice (Ouillon et al., 1996; Eyal et al., 2001; 

Dunne et al., 2003) only a limited number of studies have focused on delineating the 

anisotropy of heterogeneity in fracture patterns. These studies all employed the technique 

of finding the fractal anisotropy of fracture networks as documented in Volland and Kruhl 

(2004) and Perez-Lopez and Paredes (2006). This was done by taking scanline samples 

from maps at different orientations and determining the fractal dimension of each sample 

line. A limitation of this approach is that it is strictly applicable to only those networks that 

are fractals.  

 Lacunarity is a technique that is based on a multiscale analysis of spatial dispersion 

and is applicable to all kinds of patterns, fractals or otherwise (Plotnick et al., 1996).  Stated 

simply, lacunarity characterizes the distribution of spaces or gaps in a pattern as a function 

of scale.  For a fracture pattern therefore, it can be employed to quantify the degree of 

fracture clustering at a given spatial resolution. In a previous study, we focused on 

analyzing the overall clustering of fractures in a 2-dimensional network by using a 

modified lacunarity parameter (Roy et al., 2010). In the present chapter, this technique is 

extended to directional variations in clustering based on lacunarity evaluated in different 

directions, thus testing a fracture network for its clustering anisotropy. Since clustering of 

fractures somewhat controls connectivity (Manzocchi, 2002), quantifying clustering 

anisotropy can potentially help in predicting anisotropy in the flow properties of a fracture 

network.  
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2. QUANTIFYING CLUSTERING ANISOTROPY 

2.1 The Rotating Scanline  

Lacunarity is considered a scale-dependent measure of textural heterogeneity and 

can be quantified by employing the gliding-box algorithm (Allan and Cloitre, 1991; Plotnick 

et al., 1996). The details of the notion of lacunarity and the gliding-box algorithm as applied 

to a 1-dimentional sequence of 0’s and 1’s can be found in Roy et al. (2010) and in chapter 3 

of this dissertation, respectively. Roy et al. (2012) documented a simple technique for 

finding clustering anisotropy by laying a series of scanlines every 10 pixels along x and y 

axes of a fracture map and computing the average lacunarity in each direction.  The present 

research is based on a more robust sampling technique where a scanline passing through 

the center of a square map is rotated every 5° (fig. 6.1).  Each such sample scanline 

produces a sequence of 0’s (spacing) and 1’s (fractures) and the lacunarity at every 

orientation is calculated using the gliding-box technique.  

Comparing the lacunarity of scanlines at different orientations involves 3 

parameters – log L(r), log r, and the scanline orientation, θ. For creating simple 2-

dimensional plots, it is therefore important to collapse the log L vs. log r curve into a single 

number.  Chapter 3 describes a method of taking the weighted mean of log L values as: 


 


r

rL
L

log

loglog
……………………………….……..……………………………………………………………(1) 

Rotating the scanline however, changes its length (fig. 6.1). While this method works for 

comparing lacunarities of sequences of equal length, e.g. in case of a circular sampling area, 

it however, does not work for sequences that are unequal in length.  

2.2 Comparing Lacunarity of Sequences with Varying Lengths  

Figure 6.2a is a series of Cantor-bars that are scale-independent fractal sequences. 

These are generated by iterating the same sequence i.e. 1 0 1 0 0 0 1 0 1 (here 0’s represent 

spacing and 1’s are fractures) over different scales such that they have the same clustering 

attribute, hence equal lacunarity irrespective of the length of the sequence. Figure 2b 
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shows the log-transformed lacunarity curves of cantor-bars at iteration levels i = 3, 5 and 7. 

Table 6.1 and fig. 6.2b demonstrates that differences in the lengths and intensity (no. of 

elements per unit length) influence the lacunarity curves and that <L> values calculated 

from equation (1) are thus different for Cantor-bars at various iteration levels.  

Normalizing the scale, r, with respect to the total length of a given scanline, rmax, as 

in equation 2, eliminates differences in the lacunarity curves due to variations in scanline 

length / intensity (fig. 6.2c). A new weighted mean, <L>* can then be calculated based on 

the r*-values (i.e., equation 3): 

max

*
r

r
r  ……………………………………………………………………………………………………………….……(2) 


 


*log

*loglog
*

r

rL
L ……………………………………………………………………………………………..(3) 

It is clear from Table 6.1 that all three Cantor-bars with different lengths and intensities 

now have the same <L>* value as is expected. 

2.3 Clustering Anisotropy of Fracture Maps  

Odling (1997) documented a nested set of seven maps from the Devonian sandstone 

of Hornelen Basin, Norway. They are based on imagery collected from different heights 

where the sampling resolution changed with the map scale by varying the height of the 

camera. The maps range from a size of 18m x 18 m (map 1) to 720m x 720m (map 7). Each 

map represents a scale window on the fracture system and contains a range of fracture 

lengths, the shortest being dictated by the resolution of the image and the longest by the 

area mapped. When analyzed as fractals, the fractal dimensions for each map were 

statistically similar (Bour et al., 2002; Roy et al, 2007). However, 2-dimensional lacunarity 

analyses showed that these maps have different clustering attributes. Maps at larger scales 

were less clustered than maps at smaller scales (Roy et al., 2010). The technique developed 

in the present research was applied to the smallest and largest of Odling’s (1997) maps, i.e. 

map 1 and map 7 (fig 6.3a & c). 



91 
 

For this analysis the original fracture maps of Odling (1997) were converted to 

1042 x 1042 pixel bitmaps. The <L>* values for maps 1 and 7 were then calculated from 

scanlines oriented at 5° intervals using eq. 3 as shown in figures 6.3b & d. The scanline 

orientations are plotted in degrees around the circumference while the <L>* values are 

along the radius of the circular graph. It may be noted that since the sampling algorithm 

implemented here changes the length of the scanline we have used normalized scales for 

calculating the <L>* values. Any other sampling technique where the scanline length 

remains unaltered upon rotation, e.g. a circular window instead of a square map, may use 

non-normalized scales and calculate values for the <L> parameter from equation (1). 

The results bring forth two important observations. A visual comparison of figures 

6.3a & b shows that while there are three main fracture sets in map1, E-W, NE-SW and NW-

SE (Odling, 1997), there is a distinctly long “spike” in the <L>*  plot approximately in the 

NW-SE direction and another much smaller (but still distinct from the others) spike in the 

E-W direction. This may be interpreted as the NW-SE spike reflecting the highly clustered 

NE-SW set while the E-W spike may be related to the NW-SE set which is almost periodic, 

hence the lower <L>*  values. Secondly, it is also seen that in going from map 1 to map 7, i.e. 

with increasing scale the “spikes” become less distinct as the anisotropy decreases.  The 

anisotropy of map 1, as quantified by the ratio of the largest and smallest <L>* values, was 

2.44, while that of map 7 was 2.07. This suggests that large-scale fracture networks are less 

anisotropic with respect to clustering. This outcome is expected because these fractures 

tend to become more random at larger scales.  

It should also be noted that map 7 has <L>* values that are generally smaller than 

those for map 1 (Fig. 6.3). A paired t-test between the 1-D <L>* values for the two maps 

indicated that they were significantly different at the 95% confidence level. This difference 

is because map7 is less clustered than Map1 in 2-D, as was discussed in Roy et al. (2010) 
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3. DISCUSSION & CONCLUSIONS 

Determining clustering anisotropy using lacunarity can delineate fracture sets that 

are more clustered than others. For the specific examples of maps at different scales as 

used here, this technique can additionally identify changes in clustering of entire fracture 

populations and anisotropy with scale. Clustering anisotropy appears to decrease at larger 

scales suggesting that large-scale fracture networks are more isotropic. This outcome is 

because fractures become more randomized at these scales. 

It is seen from map 1 that the NE-SW fractures are tightly clustered whereas the 

NW-SE fractures are almost regularly spaced. The <L>* plot is sensitive to this trend as 

reflected in the NW-SE spike that is caused by the clustering of the NE-SW trending 

fractures. On the other hand, the near periodic distribution of the NW-SE fractures is 

manifested in the smaller E-W spike in the <L>* plot. The NE-SW fractures might 

potentially provide a preferential flow pathway as compared to the other sets. Since the 

<L>* plot picks up this trend, this technique may be valuable for delineating possible flow 

paths in fracture networks. Therefore, comparing such <L>* plots to permeability 

anisotropy plots similar to those in Odling and Webman (1991) may help resolve questions 

about the nature of the relationship between fracture clustering and equivalent 

permeabilities.    
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APPENDIX V-A: TABLES 

Table 6.1. Weighted mean lacunarity values <L> compared to weighted mean normalized 

lacunarity values <L>* for Cantor-bar models (fractal dimension = 0.631 and 

scale factor = 3) at three iterations, I = 3, 5 and 7 with variable sequence lengths 

and intensities 

 

i length intensity <L>  <L>* 

3 27 0.30 0.04 0.18 

5 243 0.13 0.05 0.18 

7 2187 0.06 0.06 0.18 
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APPENDIX V-B: FIGURES 

 

 

 

 

 

 

Figure 6.1. 1-D samples are obtained from a 2-D network by systematically rotating a 

scanline every 5°; for clarity only 4 out of the 36 scanlines analyzed are shown. 

 

 

 

(a) 

(b)                                                                                         (c)  

Figure 6.2. (a) Cantor-bars at iterations i = 2, 3 and 4 with differences in length and 

number of elements between models; (b) log L vs. log r curves for cantor-bars at iterations i 

= 3, 5 and 7 – curves are offset showing that lacunarities are unequal for different 

iterations; (c) log L vs. log r* curves for same cantor-bars as in (b) where r* is normalized r  
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(a) (b) 

 

 

 

 

 

 

 

 

(c) (d) 

 

 

 

Figure 6.3. (a) Map 1, (b) plot for <L>* values for map 1, (c) map 7, and (d) plot of <L>* 

values for map 7. Comparison between <L>* plots for maps 1 and 7 shows that the “spikes” 

become less pronounced with increasing scale, and that the absolute clustering also 

becomes smaller. 
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 This dissertation essentially builds around the concept of lacunarity which has been 

shown to be a versatile tool for analyzing different data types. Various kinds of fracture 

data have been used in all of the chapters except for chapter 3 which deals with grayscale 

soil images. Most fracture patterns are created from superimposition of two or more 

deformational episodes that introduce heterogeneity and anisotropy in the rock structure. 

Lacunarity, being essentially a measure of heterogeneity, is an ideal tool that has been 

demonstrated to capture the complexity of fracture patterns. It can characterize fracture 

geometry at different scales within the same dataset thereby delineating fracture clusters 

and organization within them such as possible fractal or random behavior and can even 

identify anisotropy in clustering of fractures from 2-dimensional networks. 

 There are a number of possible research avenues that can follow from this research. 

Three examples of such future research possibilities are discussed in the rest of this 

section. These pertain to estimating the clustering of fractures in maps from analyzing 1-

dimensional samples, forward modeling of fracture networks, and using lacunarity as a tool 

for delineating shapes of geologic features other than fractures.  

The research in chapters 2 and 6 may be combined to test if the clustering (<L>* 

value) of a fracture network computed from 2-dimensional lacunarity analysis can be 

estimated from the <L>* values of 1-dimensional scanline samples from the same map. This 

may be achieved by laying scanlines at random orientations and positions and averaging 

the resulting <L>* values. The best form of averaging (i.e., arithmetic, geometric, harmonic) 

will need to be investigated empirically. It is hypothesized that increasing the number of 

sample scanlines will give a closer average estimate of the <L>* value computed from the 2-

dimensional lacunarity analysis.   

 It has been shown in the present research that lacunarity can delineate scale-

dependent trends in patterns and the range of scales over which a pattern displays fractal, 

multifractal (for non-binary data) and uniform or random behavior. This information can 

be used to build forward models honoring the scale-dependent distribution of natural 

fractures. For example, a model can be built that is random over a certain range of scales 

and fractal (or multifractal) over another range based on the lacunarity values for those 
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scales. In creating a model with a given fractal dimension, a number realizations can be 

built stochastically with the one that most closely matches the observed lacunarity 

distribution being considered ideal. Since lacunarity is simply a linear function of the mean 

and variance of the data at a given scale, it is possible to create a spatial distribution of 

fracture elements at that scale from the lacunarity curve of a natural dataset. Models at 

different resolutions (scales) based on the distributions of elements can thus be created 

that will have similar clustering attributes as the original dataset. Finally, 2-dimensional 

(and possibly, 3-dimensional) realizations can be built if data from wells drilled in different 

directions are integrated. Such realizations can help populate geocellular grids in building 

synthetic fracture models. 

 Notwithstanding the fact that this dissertation has focused on delineating the 

heterogeneity of fracture patterns, lacunarity is a tool that can also be potentially used to 

quantify shapes of other geo-patterns. The sinuosity of a river channel for example can be 

quantified by running the gliding-box algorithm both in two and three dimensions. Shapes 

of other types of geo-patterns (e.g. tidal bars) may be characterized in 3-dimensions by 

modifying the shape and/or orientation of the “gliding-box” in space. 
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CODE #1: Compute lacunarity of 2-dimensional data 
 

%   Lacunarity (2-Dimension) 

%   evalculate clustering of either 0's or 1's or fractions 

%   OUTPUT: *.out file containing box-size & lacunarity 

%   INPUT mat: *.dat file, original image (binary/non-binary), map etc 

%   written and updated by Roy (2011) 

   

matnew=dlmread('b7n9_a_trumulti_i4.dat') 

%matnew=imread('hornsd_red.bmp') 

 

% to turn 0's to 1's / invert colors of an image/matrix 

  

disp('****************************************'); 

orz = input('turn zeros to ones etc [y/n]? ', 's'); 

if isempty(orz) 

    orz = 'n'; 

end 

if orz ~= 'y' && orz ~= 'n' 

     disp('!!!!! you need to make a choice between y and n !!!!!'); 

     return 

end 

  

 if orz == 'y' 

[br bc] = size(matnew); 

A =rand(br, bc); 

    for i=1:br 

      for j=1:bc 

           A(i,j)= 1-matnew(i,j); 

      end 

    end 

 elseif orz == 'n' 

     A=matnew; 

 end 

  

tic;  

%N is total no. of window sizes used - for best results N = ncol/2 

[nrow, ncol] = size(A); 

N=ncol 

lac=rand(N,1);box_size=(1:N)'; 

for wind = 1:N 

    imax = nrow-wind+1; 

    jmax = ncol-wind+1; 

    tot = imax*jmax; 

    mom1 = 0;mom2 = 0;v=0; 

    s = rand(imax,jmax); 

    for i = 1:imax 

    for j = 1:jmax 

        s(i,j) = sum(sum(A(i:i+wind-1,j:j+wind-1))); 

    end 

    end 

mom1 = mean(s(:)); 

v=var(s(:),1); 

mom2 = mom1^2+v; 

  

lac(wind) = mom2/(mom1^2); 

end 

toc 

  

L = [box_size,lac] 

dlmwrite('lacunarity.out',L); 
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CODE #2: Plot lacunarity and its slope 
 

% plot log-log lac and its slope:  

% written by Roy (2011-12) 

 
A=dlmread('lacu_soil1_flip.out'); l=length(A) 
r=A(1:l,1); L=A(1:l,2); 
logR=log(r);logL=log(L);figure 
plot(logR,logL,'m.'); title('lacunarity curve'); xlabel('log r'); ylabel('log 

L'); 
c=0; 
w=input('averaging window...') 
for i=w+1:w:l 
    c=c+1; 
end 
delL=rand(c,1); 
for i=w+1:w:l 
    delL(i)=(logL(i)-logL(i-w))/(logR(i)-logR(i-w)); 
end 
delL; 
figure 
plot(logR(w+1:w:l),delL(w+1:w:l),'r-'); title('lacunarity slope'); 

xlabel('log r'); ylabel('d(logL)/d(logr)'); 
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CODE #3: Generate 2-dimensional multifractals based on truncated binomial distribution 
 

 

%   random and deterministic multifractals 

%   Based on truncated binomial distribution (Perfect et al.,2006) 

%   modified by Roy (Feb,2012) 

%   INPUT: scale factor, iterations, probability 

%          ‘mass-fractions map’ for creating generator (determisitic) 
%   OUTPUT: image and *.dat file of generated multifractal  

  
clear all; 

  
disp(' '); 
disp('****************************************'); 
b = input('Scale factor (default = 3) [Integer] ... '); 
maxit = input('Iteration number (default = 5) [Integer] ... '); 
pb = input('Numerator of probability (default = 8)  [Integer] ... '); 

  
if isempty(b) == 1 
    b = 3; 
end 
if isempty(maxit) == 1 
    maxit = 5; 
end 
if isempty(pb) == 1 
    pb = 8; 
end 

  
n = b^2;    % total number 
p = pb/n;   % probability 

  
%   binomial distribution 
for k = 1:n 
    bidi(k) = binopdf(n-k+1,n,p); 
end 

  
%   truncated binomial distribution 
tbidi = bidi/sum(bidi); 

  
%   average mass fraction in multifractal 
f(1) = tbidi(1)/n; 
for k = 2:n 
    f(k) = f(k-1)+tbidi(k)/(n-k+1); 
end 

 
% flipping f to match Dr Perfect's excel sheets 
ff=fliplr(f) 

 
%   deterministic or random 
disp(' '); 
disp('****************************************'); 
disp('1. Random multifractal (default)'); 
disp('2. Deterministic multifractal'); 
dor = input('Choose type of generator ... '); 
if isempty(dor) == 1 
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    dor = 1; 
elseif dor ~= 1 & dor ~= 2 
    disp('!!!!! Wrong selection ...  Try it again ... !!!!!'); 
    return 
end 

  
if dor == 2    %   deterministic location (using progression) 
       disp('input a matrix that maps the ff-values onto a generator e.g:'); 
       genn = input('[9 8 6; 7 5 3; 4 2 1] where 1 maps the max ff and 9 the 

min...'); 
    if isempty(genn) == 1 
        for i = 1:b 
            for j = 1:b 
                lgen(b-i+1,j) = (1+(i-1)*(i+2)/2) + (j+(i-1)*2)*(j-1)/2; 
                ugen(i,b-j+1) = (b^2-(i-1)*(i+2)/2) - (j+(i-1)*2)*(j-1)/2; 
            end 
        end 
        genn = tril(lgen,-1)+triu(ugen); 
    elseif size(genn) ~= [b b] 
        disp('!!!!! Wrong Generator Input ...  Try it again ... !!!!!'); 
        return 
    end 
    % it may be important to look at gen: so if, remove ";" in line71 
    for i = 1:b 
        for j = 1:b 
            gen(i,j) = ff(genn(i,j)); 
        end 
    end 
end 

  
%   multifractal 
matold = 1; 
for it = 1:maxit 

     
    [nrow ncol] = size(matold); 
    matnew = zeros(nrow,ncol); 
    for i = 1:nrow 
        for j = 1:ncol 

             
            if dor == 1       %   random location; NOTE: NOT changing f to 

ff; original code not tampered with! 
                rndf = randperm(n); 
                for ii = 1:b 
                    for jj = 1:b 
                        gen(ii,jj) = f(rndf((ii-1)*b+jj)); 
                    end 
                end 
            end 

             
            matnew((i-1)*b+1:i*b,(j-1)*b+1:j*b) = matold(i,j)*gen; 
        end 
    end 
    matold = matnew; 
end 
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%   normalize 

 
mat = (matold - min(min(matold))*ones(size(matold))) ... 
    / (max(max(matold)) - min(min(matold))); 

 
%   data file output 

 
    save multifractal.dat mat -ascii; 

 
%   visualization 

 
figure 
imagesc(mat); 
set(gca,'XTick',[],'YTick',[]) 
set(gca,'Box','on','Position',[0 0 1 1]); 
set(gcf, 'NumberTitle','off','Name','Multifractal','pos',[200 100 500 500]); 
colormap; 
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CODE #4: Generate fractal-fracture scanlines and their non-binary counterparts 
 

 

%   generates cantor bars like 1 1 0 1 1 0 0 1 1 & their non-binary cousins 
%   OUTPUT: *.dat file 
%   INPUTS: maxit = maximum iteration number 
%    b     = scale factor 
%     pb    = probability (cells to be taken out) 

%   calls function randht for generating random number from a power-law dist 
%   modified by Roy (2012) from a fractal-fracture map generator by Kim(2005) 

  
clear 

  
b = input('scale factor b ') 
maxit = input('no. of iterations ')  
pb = input('no. of element removed n ') 
if maxit ~= abs(fix(maxit)) | b ~= abs(fix(b)) | pb ~= abs(fix(pb)) 
    disp('!!!!! Wrong Input...  Try it again... !!!!!'); 
    return; 
    end 
matold = 0; 
for it = 1:maxit 
    nrow  = length(matold); 
    matnew = ones(1,b^it); 
    for i = 1:nrow 

        
            if matold(i) == 0 
                odr = zeros(1,b); 
                rnd = randperm(b); 
                for k = 1:b 
                    if rnd(k) <= pb 
                        odr(k) = 1; 
                    else 
                        odr(k) = 0; 
                    end 
                end 
                matnew((i-1)*b+1:i*b) = odr; 
            end 

         
    end 
    matold = matnew; 
end 
matnew; 

  
l=length(matnew); ERAN=[];MRAN=[]; 
for i = 1:l 
 

% generating a random number between 1 and 10 from a power-law distribution 

    

 randomnum=randht(1,'xmin',1,'powerlaw',0.3); 
    while randomnum < 10 
        r=randomnum; break 
    end 
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if matnew(i)==0  
        ERAN(i)=r; MRAN(i)=1; 
        else ERAN(i)=0;MRAN(i)=0; 
        end 
end 

 
sumERAN=sum(ERAN);  

 
for i = 1:l 
    ERAN2(i) = ERAN(i)/sumERAN; 
end 
     

dlmwrite('multi.dat',ERAN2); dlmwrite('mono.dat',MRAN);ERAN2 
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CODE #5: Digitize scanline data from *.xls files with spacing and aperture/length values 
 

 

% digitize scanline data 
% OUTPUT: *.dat files SCAN(all lengths or apertures = 1), SCANM 
% written and updated by Roy (2012) 

 

clear; 
X=xlsread('p13_alt2.xls','Sheet2','A3:c454') 
S=X(:,1); A=X(:,3); 
n=length(S); 
Z=[]; ZNA=[];SCAN=[];ZA=[];SCANM=[];  
for i=1:n 
 Z = zeros (1,S(i)); 
 ZNA = [Z,1]; ZA = [Z,A(i)]; 
 SCAN = [SCAN, ZNA]; 
 SCANM = [SCANM, ZA]; 
end 

  
SCANM' 
save p13_bin.dat SCAN -ascii; 
save p13_gr.dat SCANM -ascii; 
disp('done with digitizing scanline') 
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CODE #6: Generate model E in chapter V 
 

% generates a model with large fractures in 5 clusters                        

% uniformly spaced small ones in inter-cluster regions                        

% written by Roy (2013) 

A1=load('multi1.dat'); 
A2=load('multi2.dat'); 
A3=load('multi3.dat'); 
A4=load('multi4.dat'); 
A5=load('multi5.dat'); 
Araw=[A1,zeros(1,172),A2,zeros(1,142),A3,zeros(1,182),A4,zeros(1,152),A5]; 
ap=Araw(Araw~=0); 
ap_small = []; 
for i = 1:36 
    ap_small(i)= unifrnd(0.1,1); 
end 

  
c=0; 
for i = (81+17):17:(81+172-17) 
    c=c+1; Araw(i)= ap_small(c); 
end 
for i = (81+172+81+14):14:(81+172+81+142-14) 
    c=c+1; Araw(i)= ap_small(c); 
end 
for i = (81+172+81+142+81+18):18:(172+81+81+142+81+182-18) 
    c=c+1; Araw(i)= ap_small(c); 
end 
for i = (172+81+81+142+81+182+81+15):15:(172+81+81+142+81+182+81+152-18) 
    c=c+1; Araw(i)= ap_small(c); 
end 
A=[]; 
for i = 1:length(Araw) 
    A(i) = Araw(i)/sum(Araw); 
end 
A 
     dlmwrite('largeapclsts_n_smallap.dat',A); 
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CODE #7: Compute average spacing and coefficient of variation (Gillespie et al., 1999) 
 

 

% find spacings, avg. sp. and coefficient of variation of a binary scanline 

% written by Roy (2013) 

 
A=load('clusters5.dat');  
A(1)=1; 
A(length(A))=1; 
dsig=diff(A); 
startindex=find(dsig<0); 
endindex=find(dsig>0); 
spacings=endindex-startindex; n = length(spacings); 
spacings(n)=spacings(n)+1 
mean_spacings = mean(spacings) 
stdv_spacings = std(spacings) 
gillespie_cv = stdv_spacings/mean_spacings 
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CODE #8: Randomize scanline data with respect to aperture/length values 
 

%original data to original spacing +random aperture/length 
% written by Roy (2013) 

 

S=load('p13_gr.dat') 
l = length(S); 

 
AP=S(S~=0) 
lap=length(AP) 

  
c2=0; 
APran=AP(randperm(lap)); 
for i = 1:l 
if S(i)~=0 c2=c2+1; 
S(i)=APran(c2); 
end 
end 
dlmwrite('p13gr_ranap##.dat',S); 
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CODE #9: Compute and plot lacunarity ratio 
 

%compute and plot lacunarity ratios from *.out lacunarity files 
% written by Roy (2013) 

clear; 

 
data=load('lac_p11_gr.out'); 
random=load('lac_p11gr_ranap_avg.out'); 
random_u=load('lac_p11gr_ranap_upper.out'); 
random_l=load('lac_p11gr_ranap_lower.out'); 

 
Ld=data(:,2);Lr=random(:,2); 
Lru=random_u(:,2);Lrl=random_l(:,2); 
Ldiv=Ld./Lr; 
Ldiff=Ld-Lr; 

 
for i = 1:length(Ldiff) 
        if Lr(i)==0 Ldiv(i)=0; 
    end 
end 

 
hold on; %figure; 
plot(log10(data(:,1)),Ldiv,'b-') 
xlabel('log r(mm)'); ylabel('Ldata / Lran');title('normalized clustering 

scanline-#: wrt ##') 
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CODE #10: Lay scanlines every 5 degrees on a map and find <L>* 
 
%   lacunarity of 1D scanline through fracture map: rotate map every 5 deg  
%   OUTPUT: separate *.out files of lacunarity and box-size for each scanline 

%           *.out file for <L>* and orientation values   
%   INPUT: image 
%   matnew=matnew1(1:1042,1:1042) used for map5 - last row & col = zeros 

%   calls the function deg2rad for changing degrees to radians 
%   written and updated by Roy (2013) 

  
clear; matnew=imread('hornsa_red.bmp'); %matnew=matnew1(1:1042,1:1042);  

 
% to turn 0's to 1's / invert colors of an image/matrix 

 
disp('****************************************'); 
orz = input('turn zeros to ones etc [y/n]? ', 's'); 
if isempty(orz) 
    orz = 'n'; 
end 
if orz ~= 'y' && orz ~= 'n' 
     disp('!!!!! you need to make a choice between y and n !!!!!'); 
     return 
end 

  
 if orz == 'y' 
[br bc] = size(matnew); 
A =rand(br, bc); 
    for i=1:br 
      for j=1:bc 
           A(i,j)= 1-matnew(i,j); 
      end 
    end 
 elseif orz == 'n' 
     A=matnew; [br bc] = size(A); 
 end 
 t1=tic; 
if rem(length(A),2)==0 
    Atrim=A(1:br-1, 1:bc-1); 
else Atrim = A; 
end 
    [row, com] = size(Atrim); 
datapts=length(0:5:180-5) 
a=(row+1)/2 
count_r=0;circ_lac=rand(datapts,1); 
for r=0:5:180-5 
count_r=count_r+1; 
AA=imrotate(Atrim,r); aa=floor((length(AA)+1)/2); 

  
if (r>45)&&(r<90)rr=90-r; 
else if (r>=90)&&(r<135)rr=r-90; 
    else if (r>=135)&&(r<180)rr=180-r; 
        else rr=r; 
        end 
    end 
end 
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radius=floor(a/cos(deg2rad(rr))); 
A1D=AA(aa,aa-(radius-1):aa+(radius-1));ncol = length(A1D); 

     
str = ['laying scanline #', num2str(count_r), ' along ', num2str(180-r) , ' 

degrees']; disp(str) 

  
por=length(find(A1D==1))/length(A1D); 

  
lacunarity=rand(ncol,5); 
for wind=1:ncol 
    mom1=0; v=0; mom2=0; 
jmax = ncol-wind+1; 

  
sA1D=rand(1,jmax); 
    for j = 1:jmax 
                      sA1D(1,j) = sum(sum(A1D(j:j+wind-1))); 
    end 

     
mom1A1D = mean(sA1D); 
vA1D=var(sA1D,1); 
mom2A1D = mom1A1D^2+vA1D;  
lacA1D = mom2A1D/(mom1A1D^2);  

  
rn=wind/ncol;logrn=log10(rn); 
logL=log10(lacA1D);  
product = logL.*logrn; 

  
lacunarity(wind,:)= [wind lacA1D logrn logL product]; 
end 
lacufile = sprintf('lac-log_m1_05deg_%d.out', 180-r); 
dlmwrite(lacufile,lacunarity); 
wmlnl=sum(lacunarity(:,5))/sum(lacunarity(:,3)); 
circ_lac (count_r,1)=180-r;circ_lac(count_r,2)=wmlnl; 
end 
disp('****************************************'); 
toc(t1)  
circ_lac    
dlmwrite('map4_05deg_circwmlnl.out',circ_lac); 
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CODE #11: Create a circular plot for <L>* values  
 
%   plot weighted mean lacunarity around a circle 
%   written by Roy (2013) 
 

circ_lac=load('map1_05deg_circwmlnl.out') 
circ_lac_whole1 = [circ_lac(:,1); 180+circ_lac(:,1)]; 
circ_lac_whole2 = [circ_lac(:,2);circ_lac(:,2)]; 
circ_lac_whole = [circ_lac_whole1, circ_lac_whole2]; 
figure; 
polar(0,0.3,'-k') 
hold on 
polar(deg2rad(circ_lac_whole(:,1)), circ_lac_whole(:,2),'-b'); 
hold off 
anisotropy = max(circ_lac(:,2))/min(circ_lac(:,2)) 
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