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ABSTRACT 
 

 

Transgenic Bt crops expressing Cry and Vip toxins from Bacillus thuringiensis 

(Bt) have been increasingly planted to manage insect pest damage on agricultural crops.  

The high adoption of Bt-based insecticidal technologies suggests an increase selection 

pressure for the evolution of resistance in insect populations.  So far, nine insect species 

have developed field evolved resistance to Bt crops, yet the mechanisms involved in field 

evolved resistance are unknown.  In the present study, the resistance mechanism in field 

evolved resistance to maize producing Cry1Fa in Spodoptera frugiperda collected in 

fields from Puerto Rico was characterized.  High levels of resistance to Cry1Fa have been 

observed in S. frugiperda with recessive and autosomal mode inheritance.  Binding 

experiments showed the reduced binding of Cry1Fa toxin to brush border membranes of 

resistant (456) larvae compared to susceptible (Benzon) larvae.  The same binding 

reduction was observed for Cry1A toxins, but not for Cry1Ca toxin.  This reduced 

binding signifies the modification of a common Cry1Fa-Cry1A toxin binding site.  

Comparison of receptor protein levels revealed reduced alkaline phosphatase (ALP) 

levels in resistant compared to susceptible larvae.  This reduced expression of ALP 

phenotype was linked to Cry1Fa resistance in S. frugiperda.   

In cross-resistance studies using bioassays, reduced susceptibility to Cry1Ab and 

Cry1Ac toxins was detected and no differences in susceptibility to purified Cry1Bb, 

Cry1Ca, and Cry1Da toxins or Xentari WG and Dipel ES pesticidal formulations 

compared to susceptible larvae was detected.  The cross-resistance patterns observed in 

these bioassays are in agreement with data from competition experiments indicating an 



vii 
 

altered binding site for Cry1A and Cry1Fa toxins in 456 larvae.  The only difference 

detected in fitness cost studies was a significant increase in the larval developmental time 

in resistant insects, which could result in emergence asynchrony between susceptible and 

resistant moths.  The lack of fitness costs was also supported by stable resistance after 12 

generations of rearing in the absence of a selective (transgenic maize) agent. This work is 

the first study on field level resistance to a Bt crop.  Results from this study will help to 

understand resistance mechanisms responsible for field-level resistance and formulate 

improved resistance management practices.         
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1.1. Abstract 

Bacillus thuringiensis (Bt) is a valuable source of insecticidal proteins used to 

control many economically important crop pests.  Currently pesticides based on Bt are 

the most widely used biopesticide worldwide, and genes encoding the Cry and Vip Bt 

toxins have been successfully bioengineered into crop plants (Bt crops) for insect pest 

control.  The high levels of use and adoption of Bt-based insecticidal technologies 

suggest an increase selection pressure for the evolution of resistance in insect 

populations.  So far, nine insect species have developed field-evolved resistance to Bt 

crops.  While the mechanisms involved in this resistance are yet unknown, studies on 

laboratory selected insects suggest alteration or modification of toxin binding to midgut 

receptors as the most common mechanism of resistance to Bt toxins.  Furthermore, 

alteration of a common binding site has also been found to result in high levels of cross-

resistance.  In consequence, current resistance management strategies rely on sequential 

or simultaneous use of Bt toxins is not sharing common binding sites in target pests.  The 

most widely reported method of predicting cross-resistance among Bt toxins the 

development of binding site models from toxin binding competition data.  Hence the 

present chapter aims to review the literature on binding site models for Bt toxins in 

economically-important lepidopteran larvae.   
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1.2. Introduction 

Bacillus thuringiensis (Bt) is an aerobic, gram-positive, facultative, ubiquitous 

soil bacterium.  This bacterium produces insecticidal toxins during the vegetative and the 

sporulation phase of growth that are classified into different families based on amino acid 

sequence similarity.  The most studied Bt toxins are the crystalline (Cry) proteins, a 

family currently containing 229 described halotypes (Crickmore, 2012).  Diverse Cry 

toxins are active against a number of species in the orders Lepidoptera, Coleoptera, 

Diptera, Hymenoptera, Hemiptera, and Blattaria (van Frankenhuyzen, 2009). Pesticides 

based on Bt toxins and spores, or transgenic crops expressing Bt toxins are highly toxic to 

certain groups of insects and are considered environmentally safe due to their high 

specificity and unique mode of action (Lambert and Peferoen, 1992).   

1.3. Bt toxin mode of action   

Insecticidal Cry toxins from Bt target the insect midgut cells to compromise the 

gut epithelium barrier and facilitate the onset of septicemia (Raymond et al., 2010). 

Advancements in the description of this multistage process have been recently reviewed 

(Aronson and Shai, 2001; Faust et al., 1974; Gill et al., 1992; Ibrahim et al., 2010; Jurat-

Fuentes and Adang, 2006; Louloudes and Heimpel, 1969; Pardo-Lopez et al., 2013; 

Rajamohan et al., 1998; Soberon et al., 2010; Tojo, 1986; Vachon et al., 2012; Whalon 

and Wingerd, 2003).  Briefly, after ingestion of the crystalline inclusions by insect larvae 

they solubilized to release Cry protoxins in the insect gut fluids.  These Cry protoxins are 

then cleaved by insect midgut proteinases to form protease-stable active Cry toxins 

(Bravo et al., 2002; Choma and Kaplan, 1990).  The activated Cry protein then binds to 
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specific receptors at the midgut epithelium (Pigott and Ellar, 2007).  It is proposed that 

the cadherin, aminopeptidase N (APN), and alkaline phosphatase (ALP) proteins are 

involved in Bt toxin binding by interacting sequentially with different toxin structures.  

The monomeric toxin form first binds to a primary receptor, cadherin-like protein, to 

induce further proteolytic processing and the formation of Cry oligomers (Gomez et al., 

2002).  Oligomeric structures then bind to secondary receptors APN or ALP concentrated 

in membrane microdomains, resulting in insertion of the oligomers and pore formation 

(Arenas et al., 2010; Bravo et al., 2004).  These pores induce osmotic imbalance leading 

to cell death, disruption of the insetinal epithelium, septicemia and ultimately the death of 

the insect (Knowles and Dow, 1993).  An alternative model suggests that monomer 

binding to cadherin is sufficient to trigger an intracellular signal transduction pathway 

that leads to cell death without the involvement of the oligomeric form (Zhang et al., 

2006).  However, the construction of modified Cry toxins able to oligomerize 

independently of interacting with cadherin has demonstrated that monomer binding to 

cadherin is not sufficient for toxicity (Soberon et al., 2007). 

1.4. Insect resistance to Bt  

The extensive exposure to Bt pesticidal formulations and widespread planting of 

transgenic Bt crops place a strong selection pressure on pest populations.  Therefore, 

observed evolution of resistance by target pests has jeopardized the continued success of 

Bt crops (Bravo and Soberon, 2008; Ferre and Van Rie, 2002; Gould, 1998; Tabashnik, 

1994).  Laboratory-selected resistance to Bt toxins has been detected in several insects, 

such as the Indianmeal moth, Plodia interpunctella (McGaughey, 1985), tobacco 
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budworm, Heliothis virescens, (Gould et al., 1992), diamondback moth, Plutella 

xylostella (Tabashnik et al., 1994a), beet armyworm, Spodoptera exigua (Moar et al., 

1995), European corn borer, Ostrinia nubilalis (Huang et al., 1999; Siqueira et al., 2004), 

pink bollworm, Pectinophora gossypiella (Tabashnik et al., 2004), corn earworm, 

Helicoverpa zea (Anilkumar et al., 2008) and cotton bollworm, Helicoverpa armigera 

(Akhurst et al., 2003; Gunning et al., 2005).   

Three lepidopteran insect pests have developed resistance to formulated Bt 

microbial insecticide sprays in greenhouse conditions, P. interpunctella (McGaughey, 

1985), P. xylostella (Tabashnik, 1994), and the cabbage looper, Trichoplusia  ni (Janmaat 

and Myers, 2003).  More importantly, field-evolved resistance to commercial transgenic 

Bt crops resulting in field control failures or reduced efficacy has been documented for 

the fall armyworm, Spodoptera frugiperda resistant to Cry1F corn in Puerto Rico (Storer 

et al., 2010), the African stem borer, Busseola fusca resistant to Cry1Ab corn in South 

Africa (van Rensburg, 2007), and P. gossypiella resistance to Cry1Ac cotton in India 

(Dhurua and Gujar, 2011). 

Theoretically, any changes in insect gut physiology and/or biochemistry that 

affect one or more steps in the mode of action of Bt toxins could interfere with toxicity 

and confer resistance.  Alteration of midgut proteases, which are critically involved in 

solubilization and proteolytic processing of Cry proteins in the insect midgut, has been 

found in several Bt-resistant insect strains generated by laboratory selections (Li et al., 

2004; Oppert et al., 1997).  Modification of midgut binding sites for Cry toxins resulting 

in reduced toxin binding has been reported as the mechanism responsible for the highest 
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levels of resistance to Cry toxins (Estada and Ferre, 1994; Ferre et al., 1991a; Ferre and 

Van Rie, 2002; Tabashnik et al., 1994a).  Alternative resistance mechanisms have been 

proposed, including retention of the Cry toxin by the midgut peritrophic matrix 

(Hayakawa et al., 2004), aggregation of Cry toxin proteins by midgut esterases (Gunning 

et al., 2005b), elevated melanization activity of the hemolymph and midgut cells (Ma et 

al., 2005; Rahman et al., 2004), increased rate of repair or replacement of affected 

epithelial cells (Martinez-Ramirez et al., 1999), and possibly increased antioxidation 

activities in Bt resistant insects (Candas et al., 2003).  It is possible that mechanisms for 

Bt resistance in insects may be multifaceted.  

Data from resistance studies suggest that binding of Cry toxins to the receptors 

present in the midgut brush border membrane is a critical step in the Cry toxin mode of 

action (Ferre and Van Rie, 2002).  Alterations in the proposed Cry receptors has been 

shown to be linked or associated with resistance, including cadherin-like proteins (Gahan 

et al., 2001; Morin et al., 2003), APN (Tiewsiri and Wang, 2011), and ALP (Jurat-

Fuentes et al., 2011).  Furthermore, alteration of a common toxin binding site has been 

found in cases where insects evolved cross-resistance to toxins not present in the 

selection environment.  Resistance management strategies rely on sequential or 

simultaneous use of toxins that recognize different binding sites.  The most used method 

of predicting cross-resistance among Cry toxins involves determining if they share a 

common binding site in a given insect.   
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1.5. Cry toxin binding experiments  

Analyses of Cry toxin binding to brush border membrane vesicles (BBMV) from 

target insects have been performed with different methods, including binding assays with 

radiolabeled toxin, surface plasmon resonance (SPR), binding assays with antisera or 

biotinylated Cry toxins in blots (Bravo et al., 1992; Gouffon et al., 2011; Hernandez and 

Ferre, 2005; Herrero and Ferre, 2001a; Jurat-Fuentes and Adang, 2001; Jurat-Fuentes et 

al., 2002; Karim et al., 2000; Sayyed et al., 2000).  The non-radioactive methods are safe 

to use but limited to only qualitative detection of Cry toxin binding, whereas, methods 

with radiolabeled toxins are sensitive and can be used to measure qualitative and 

quantitative binding of Cry toxins.  Radiolabeling of Cry toxins is achieved by 

incorporation of iodine-125 isotope into tyrosine residues of the toxin through oxidation 

(Hofmann et al., 1988).  The most commonly used labeling method involves chloramine-

T as oxidizing agent, which in some cases has been proposed to affect biological function 

of Cry toxins (Luo et al., 1999).  The use of an increased ratio of
 
 toxin to iodine has been 

proposed to overcome potential effects of chloramine-T labeling (Hernandez-Rodriguez 

et al., 2012).  Alternatively, Cry toxins can also be radiolabeled using weaker oxidizing 

conditions, such as in the case of iodo-beads (Pierce). 

Non-radiolabeling methods that have been used to detect the binding of Cry 

toxins include the use of antisera or biotinylated Cry toxins in blots, and SPR.  Surface 

plasmon resonance (SPR) detects changes in polarized light as reflected from the surface 

of a sensor chip on which the toxin or BBMV are attached.  Since the amine coupling 

used to attach the toxin to the chip can affect toxin function, attachment of BBMV 
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proteins has been suggested as a preferred strategy (Luo et al., 1997).  Attachment of the 

BBMV to the sensor also allows for the performance of binding competition experiments 

(Hua et al., 2001a; Li et al., 2004; Masson et al., 1996).  Biotinylated Cry toxins have 

been used to perform binding assays by detection with streptavidin.  This method cannot 

be used for quantitative measurement of Cry toxin binding to BBMV.  Blotting methods 

with antisera or biotinylated toxins have also been used for qualitative estimation of Cry 

toxin binding to BBMV proteins and to identify the BBMV proteins interacting with  Cry 

toxins (Garczynski, 1991; Karim et al., 2000; Knowles et al., 1991; Lee et al., 2006).    

1.6. Procedures for review 

The Agriculture Databases through Web of Knowledge and PubMed were 

searched for literature presenting data relevant to Bt toxins binding to BBMV from 

selected lepidopteran insect pests based on their economic importance.  In the preparation 

of the present review, published papers on Bt toxins and BBMV binding experiments 

conducted with radiolabeled or non-radiolabeled toxins to study binding patterns, 

including homologous and heterologous binding competition assays to develop binding 

site models in BBMV of the target insect were considered.  Nearly 50 papers fulfilled 

these requirements, of which 75% presented data from experiments using radiolabeled 

toxins.  The other 25% of the publications presented data using biotinylated toxins, 

immunoblotting, or SPR to conduct binding studies.  The models proposed in this review 

are derived from synthesizing the information presented in these publications.  All the 

published competition assays was examined and elaborate on potential binding site 

models, although binding sites detected when using high concentrations of competitor 
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need to be taken cautiously due to the possibility of artifacts related to high toxin 

concentrations.   

1.7. Binding site model in Heliothinae group 

The Heliothinae subfamily of Lepidoptera contains some of the most crop- 

damaging insect pests worldwide, including H. virescens, H. zea, H. armigera, and 

Helicoverpa punctigera.  Many reports identified Cry1A, Cry1F, Cry1J, Cry2A, and 

vegetative insecticidal proteins (Vip) as effective insecticidal toxins to control this group 

of insects (Chakrabarti et al., 1998; Lambert et al., 1996; Liao et al., 2002).   Cry1A 

toxins display high affinity saturable binding, while Cry1Fa, Cry1Ja and Cry2A toxins 

bound saturably with a lower affinity, resulting in differences in  bio efficacy these toxins  

against  Heliothinae insects (Caccia et al., 2010; Karim et al., 2000).   

Homologous competition assays using Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, 

Cry2Aa, Cry2Ab, Cry2Ae and Vip3A toxins revealed that these toxins bind specifically 

to BBMV from larvae of H. virescens, H. zea, and H. armigera (Caccia et al., 2010; 

Hernandez and Ferre, 2005; Jurat-Fuentes and Adang, 2001).  In these assays, Cry2Aa 

toxins displayed less specific binding compared to Cry1A or Cry1Fa toxin,  (Hernandez-

Rodriguez et al., 2008).  Within the Cry1A toxins, the affinity constant (Kd) value for 

Cry1Ac was the lowest, evidence of tighter binding of this toxin, which is the most active 

against Heliothine larvae.  

Heterologous competition experiments using Cry1A toxins revealed that while 

Cry1Aa binds to a unique site shared with Cry1Ab and Cry1Ac, Cry1Ab and Cry1Ac 

share an additional site and Cry1Ac also has a unique site (Estela et al., 2004; Vanrie et 
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al., 1989).  Competition assays between Cry1A and Cry1Fa toxins suggest the existence 

of shared Cry1A-Cry1Fa sites and also the presence of sites not recognized by Cry1Fa 

(Gouffon et al., 2011; Hernandez and Ferre, 2005; Jurat-Fuentes and Adang, 2001).  The 

Cry1Ja toxin also shares a binding site with Cry1Ab and Cry1Ac (Hernandez and Ferre, 

2005; Karim et al., 2000), while Cry2A (Gouffon et al., 2011; Jurat-Fuentes et al., 2003) 

and Vip3A toxins (Lee et al., 2006) bind to unique sites.  Toxins in the Cry2A family, 

including Cry2Aa, Cry2Ab and Cry2Ae, have been shown to share binding site in 

heliothine BBMV (Hernandez-Rodriguez et al., 2008).  According to the proposed model 

from these data (Fig. 1) there are six of binding sites (receptors A, B, C, D, E, and F, 

respectively) for Cry1, Cry2A and Vip toxins.  Receptor A binds the Cry1Aa, Cry1Ab, 

Cry1Ac, Cry1Fa, and Cry1Ja toxins; receptor B binds Cry1Ab and Cry1Ac; receptor C 

binds only Cry1Ac; receptor D binds only Cry1Fa; receptor E binds only Cry2A 

(Cry2Aa, Cry2Ab and Cry2Ae) toxins, and receptor-F binds only the Vip3A toxin.   

Ligand blot analyses using Cry1A toxins and H. virescens BBMV revealed that 

receptor A could be composed of the cadherin (210-kDa protein) and N-aminopeptidases 

(APNs) (170, 130, and 110 kDa) proteins (Banks, 2001; Luo et al., 1997; Oltean et al., 

1999).  Cry1A toxins bind to H. virescens cadherin repeats 7, 11, (Fabrick and 

Tabashnik, 2007; Gomez et al., 2001; Hua et al., 2004; Xie et al., 2005) and 12, and to 

repeats 10 and 11 of H. armigera cadherin (Wang et al., 2005).  A 130-kDa protein 

binding both Cry1Ab and Cry1Ac was proposed to constitute receptor B, while several 

proteins of less than 100-kDa in size specific for Cry1Ac have been suggested to 

constitute receptor C (Jurat-Fuentes and Adang, 2001).  In this regard, alkaline 
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phosphatase (63-kDa glycoprotein) would be a candidate for receptor C based on its 

affinity for Cry1Ac (Jurat-Fuentes et al., 2002).  An unidentified 49-kDa protein binding 

to Cry2Ab has been proposed to constitute receptor D (Caccia et al., 2010; Gouffon et al., 

2011) and 80 and 100-kDa proteins binding to Vip3A could be proposed to represent 

receptor E (Lee et al., 2006).  

Reports are available on Cry1Ac binding to BBMV being inhibited by N-Acetyl-

galactosamine (GalNAc) (Knowles et al., 1991; Luo et al., 1997); in contrast, Cry1Ab 

binding has been found not to be inhibited by this sugar (Luo et al., 1997).  This same 

pattern of inhibition was also found with sialic acid, indicating that Cry1Ac, but not 

Cry1Ab, requires sugar residues to bind to BBMV in H. virescens (Luo et al., 1997).  The 

fact that, Cry1Ab and Cry1Ac share binding sites in competition experiments seems to be 

in contradiction to the binding inhibition results with sugars.  Furthermore, results from 

ligand blots have generally shown that, under denaturing conditions, Cry1Ac and Cry1Ab 

bind to different BBMV proteins (Jurat-Fuentes and Adang, 2001; Oddou, 1993).  This 

paradox could be explained by proposing that binding sites in BBMV may be oligomeric 

complexes of glycosylated membrane proteins (Knowles et al., 1991; Luo et al., 1997).  

Binding of Cry1Ac and Cry1Ab could take place through different epitopes of multimeric 

receptor and at the same time hinder binding of the heterologous toxin by impeding 

access to a nearby site.  This hindering does not exclude the possibility that both toxins 

could also share identical epitopes, but in this case full binding might require anchorage 

of the Cry protein to both the shared and the non-shared epitopes (Sayyed et al., 2000). 
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Cry1Ja Vip3ACry2AeCry2Aa

Cry2Ab

Cry1Aa Cry1Ab Cry1Ac Cry1Fa

 

Fig.1. Model proposed for binding of B. thuringiensis toxins to sites on the larval midgut 

membrane in considered members of the Heliothinae group.   

 

1.8.  Binding site model in Pectinophora gossypiella  

The pink bollworm, P. gossypiella, is the most destructive pest, after the 

Heliothinae group, of cotton worldwide.  Previous studies demonstrated that Cry1Aa, 

Cry1Ab, Cry1Ac, Cry1Da, Cry1Ea, Cry1Ja, Cry2Aa, and Cry9Ca were highly toxic, 

while Cry1Bb and Cry1Ca were somewhat less toxic to larvae of P. gossypiella 

(Tabashnik et al., 2000).  The same pattern of specificity is also confirmed using binding 

of these toxins in BBMV of P. gossypiella (Gonzalez-Cabrera et al., 2003;Herrero et al., 

2001;Karim et al., 2000).  Saturation binding assays with P. gossypiella BBMV 

suggested saturable and high affinity binding of Cry1Ab and Cry1Ac, while Cry1Aa and 

Cry2A toxins bound to BBMV with much lower affinity (Karim et al., 2000).  

Competitive heterologous binding assays with Cry1Aa toxin demonstrated that Cry1Ab 

and Cry1Ac recognize all the binding sites for Cry1Aa in P. gossypiella BBMV (Karim 

et al., 2000).  When using labeled Cry1Ab, only Cry1Ac was able to compete for all the 
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Cry1Ab binding sites, suggesting the existence of a shared binding site for all Cry1A 

toxins and a second site only recognized by Cry1Ab and Cry1Ac.  Furthermore, lack of 

full competition of labeled Cry1Ac binding by Cry1Ab, supported a third binding site 

unique for Cry1Ac (Karim et al., 2000).  Qualitative competition tests with biotinylated 

Cry1Ac and unlabeled Cry1Ja competitor suggested that Cry1Ja shares binding sites with 

Cry1Ac (Herrero et al., 2001b).  Heterologous competition assays in an alternative P. 

gossypiella strain supported the existence of shared Cry1A-Cry1Ja binding sites, 

although the low specific binding in these experiments prevented detection of binding to 

the Cry1Ac unique binding site (Gonzalez-Cabrera et al., 2003).  Competition 

experiments with labeled Cry1Ab or Cry1Ac toxins showed they did not share binding 

sites with Cry1Ba, Cry1Ca, Cry2Aa, or Cry9Ca (Gonzalez-Cabrera et al., 2003).  Ligand 

blot data showed that Cry1Ab binds to a cadherin (210-kDa) protein and Cry1Ac binds to 

an APN (120-kDa) protein in P. gossypiella BBMV (Morin et al., 2003). Based on 

available data a binding site model can be proposed with five binding sites (receptors A, 

B, C, D, and E, respectively) in BBMV from P. gossypiella interacting with Cry toxins 

(Fig. 2.)  Receptor A binds the Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa and Cry1Ja toxins; 

receptor B binds Cry1Ab and Cry1Ac; receptor C binds only Cry1Ac; and receptor D 

binds only Cry2A (Cry2Aa, Cry2Ab andCry2Ae) toxins.   
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Fig. 2. Model proposed for binding of B. thuringiensis toxins to sites in the larvae midgut 

membranes of P. gossypiella.   

 

1.9. Binding site model in Spodoptera species 

The Spodoptera genus contains species that are worldwide pests of many 

economical important crops, and their highly polyphagous feeding behavior also makes 

them damaging secondary pests on alternative plant hosts.  Relevant species include 

Spodoptera frugiperda, S. exigua, S. littoralis, and S. litura.  Data from bioassays 

demonstrated that Cry1Bb, Cry1Ca, Cry1Da, Cry1Fa, and Vip3A toxins are highly 

active, while Cry1Ja and Cry2A are marginally active and Cry1A and Cry1E toxins are 

reported to be not effective against larvae of Spodoptera spp. (Bai et al., 1993; Luo et al., 

1999; van Frankenhuyzen, 2009).  Based on this information, transgenic crops producing 

Cry1Fa toxin were commercialized to control Spodoptera species.  Effects of 

radiolabeling on Cry1Fa toxin prevented the use of this method to examine Cry1Fa 

binding to BBMV (Luo et al., 1999) until recent modifications of the iodination protocol 

were demonstrated to allow detection of specific Cry1F binding to BBMV (Hernandez-

Rodriguez et al., 2012).   

Cry1Fa Cry2AbCry2AaCry1Aa Cry1Ab Cry1Ac

Cry1Ja
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Homologous competition assays demonstrated that Cry1Fa binds with high 

affinity to S. frugiperda BBMV (Hernandez-Rodriguez et al., 2012).  Heterologous 

competition assays using radiolabeled Cry1Ac toxin demonstrated that Cry1Fa 

recognizes all the Cry1Ac binding sites in S. frugiperda and S. exigua BBMV (Luo et al., 

1999).  Sharing of Cry1Fa and Cry1Ac binding sites was also confirmed using 

biotinylated Cry1Fa toxin and S. exigua BBMV (Hernandez and Ferre, 2005).  This 

observation contradicts the toxicity of these proteins towards these insects, as Cry1Ac 

displays marginal activity against Spodoptera larvae.  A plausible explanation for this 

observation may be that binding of Cry1Ac to a non-functional receptor creates steric 

hindrance and prevents binding of Cry1Fa to its receptor (Luo et al., 1999). 

Both Cry1Ca and Cry1Bb toxin bound with high affinity to S. frugiperda and S. 

exigua BBMV (Luo et al., 1999; Rang et al., 2004).  In heterologous competition assays 

with BBMV from the same insects both Cry1Ca and Cry1Fa competed radiolabeled 

Cry1Bb binding, although a unique population of binding sites for Cry1Bb was also 

detected.  This population of binding sites is only detected when using high 

concentrations of competitor, suggesting that it is a low affinity site for Cry1Bb binding.  

In case of Cry1Ca, all its binding sites were recognized by Cry1Fa, while Cry1Bb was 

unable to compete Cry1Ca binding to a site observed when using high competitor 

concentrations, indicative of low affinity (Luo et al., 1999; Rang et al., 2004) .  Reports 

using iodinated or biotinylated toxins have demonstrated lack of competition between 

Cry1Ca and Cry1A toxins in Spodoptera BBMV (Rang et al., 2004) or midgut sections 

(Aranda et al., 1996).   
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Binding experiments using radiolabeled Cry1Ab and BBMV from S. exigua 

revealed the existence of specific high affinity binding sites (Sena et al., 2009).  In 

contrast, binding experiments using biotinylated Cry1Ab and midgut sections of S. 

frugiperda larvae suggested that binding of this toxin is non-specific (Aranda et al., 

1996).  Binding of Cry1Ac to Spodoptera BBMV has also been reported to be of high 

affinity (Garczynski, 1991;Hernandez and Ferre, 2005; Luo et al., 1999), although this 

toxin displays marginal toxicity towards these insects.  Heterologous competition studies 

with 
125

I-Cry1Ab and unlabeled Cry1Aa and Cry1Ac showed that all three toxins share a 

common binding site, and that Cry1Ac recognized all the Cry1Ab binding sites in S. 

exigua BBMV (Escriche et al., 1997).  Heterologous competition between labeled 

Cry1Ac and unlabeled Cry1Ab suggests the potential existence of a small population of 

low affinity binding sites unique for Cry1Ac toxin (Rang et al., 2004).  In contrast, lack 

of full competition of Cry1Ab binding by Cry1Aa suggests the existence of a population 

of Cry1Ab-Cry1Ac binding sites that is not recognized by Cry1Aa, although additional 

competition assays with labeled Cry1Aa toxin are needed to confirm this hypothesis.  

Data from heterologous competition with unlabeled Cry1Fa or Cry1Ja support that, these 

toxins bind to all the Cry1Ab binding sites in Spodoptera spp. (Hernandez and Ferre, 

2005; Luo et al., 1999), although activities of these toxins against Spodoptera larvae are 

drastically different.   

Binding interactions between biotinylated Cry1D toxin and histological midgut 

sections from S. frugiperda larvae revealed the specific binding of Cry1Da (Aranda et al., 

1996).  Although this toxin is very active against Spodoptera larvae, no information from 
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heterologous competition binding studies is available to place this toxin in the current 

binding site model.  Competition binding experiments conducted with BBMV from S. 

frugiperda using radiolabeled Cry1Ea and unlabeled Cry1Ac, Cry1Ba, Cry1Ca, and 

Cry1Ea revealed that Cry1Ea toxin binds specifically to a unique binding site which is 

not shared with any of the other tested toxins.  (Rang et al., 2004).   

Data for binding of Vip3A toxin to BBMV from Spodoptera spp. is available 

from indirect binding competition tests.  Competition binding assays using biotinylated 

Cry1Fa or radiolabeled Cry1Ab revealed that Vip3Aa and Vip3Af toxins do not share 

binding sites with Cry1Fa or Cry1Ab on S. frugiperda BBMV (Sena et al., 2009).  In the 

same work, Vip3Aa and Vip3Af toxins were shown to bind specifically to the S. 

frugiperda BBMV and share binding sites. 

Based on the available data, a binding site model can be proposed consisting of 

six different binding sites in BBMV from Spodoptera spp. larvae (Fig. 3).  The first site 

(site A) would bind Cry1A (Cry1Aa, Cry1Ab, Cry1Ac), Cry1Fa and Cry1Ja toxins, while 

Cry1Aa has a unique binding site B not shared with other Cry1 toxins.  Cry1Bb and 

Cry1Ca share binding site C, and Cry1Bb has an additional binding site D not shared 

with any of the tested toxins.  In contrast to this model, a report from Luo et al., (1999) 

suggested that Cry1Fa shared binding sites with Cry1Ca, although this sharing has not 

been observed by alternative multiple authors (Aranda et al., 1996; Rang et al., 2004), 

suggesting that the results from Luo et al., (1999) may be artifactual.  In our model 

Cry1Ea binds to site E and Vip3Aa and Vip3Af toxins share population of binding sites 

F, which is exclusive for Vip3A toxins.  
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Ligand blot analyses of Cry toxin binding to BBMV proteins from Spodoptera 

spp revealed proteins of 200-kDa and 180-kDa that bound Cry1Aa and Cry1Ab in S. 

exigua BBMV, while the same toxins recognized a 150-kDa protein in BBMV from S. 

litura (Oddou, 1993).  In contrast, Cry1Ac bound to 130-kDa and 115-kDa proteins in 

BBMV of S. frugiperda and to a 125-kDa protein in BBMV from S. littura larvae.  Using 

radiolabeled Cry1Ac, Garczynski et al. (1991) reported binding of Cry1Ac to a 148-kDa 

protein in BBMV from S. frugiperda.  According to our model these unidentified proteins 

would represent binding site A, although no common protein bands were observed for all 

three Cry1A toxins.  This inconsistency between results from BBMV binding assays and 

ligand blots have been reported previously (Daniel et al., 2002) and are probably due to 

the denaturing conditions of ligand blots.   

A fragment encompassing the membrane proximal region of a cadherin from 

midgut membranes of S. frugiperda was reported to bind Cry1Fa toxin (Abdullah et al., 

2009).  A similar fragment from a homologous cadherin from S. exigua was shown to 

enhance toxicity of Cry1C and Cry1B toxins (Lu et al., 2012), although no binding data 

was provided.  The Cry1Ca toxin has also been reported to bind to a protein of low 

molecular mass (40-44 kDa) in BBMV from S. littoralis (Sanchis and Ellar, 1993).  The 

only Cry1Ca receptor with published functional data is a 108-kDa aminopeptidase (APN) 

from S. litura (Agrawal et al., 2002), since silencing expression of this APN resulted in 

reduced susceptibility to Cry1Ca (Rajagopal et al., 2002).  This protein is a candidate for 

binding site C, although binding of Cry1B or Cry1Fa has not been tested to date.   
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Although no binding competition assays have been reported using Cry1Da toxin, 

this toxin was reported to bind to an unidentified 65-kDa protein in S. littoralis midgut 

(BenFarhat-Touzri et al., 2013).  Two BBMV proteins of 55 and 100-kDa from S. 

littoralis were shown to bind biotinylated Vip3Aa16 toxin (Abdelkefi-Mesrati et al., 

2011), suggesting that they may represent binding site F.   

 

 Fig. 3. Model proposed for binding of B. thuringiensis toxins to sites in the larvae 

midgut membranes of Spodoptera spp. larvae midgut membrane. Binding proteins 

correlated with specific sites are listed. Dashed arrows indicate contradiction among 

authors. 

 

1.10. Binding site model in Plutella xylostella 

Diamondback moth is a major pest of crucifer crops worldwide and is reported to 

develop resistance to many groups of insecticides, including Bt pesticides (Ferre et al., 

1991;Sayyed et al., 2000; Tabashnik et al., 1997b).  Several Cry toxins (Cry1Aa, 

Cry1Ab, Cry1Ac, Cry1B, Cry1Ca, Cry1Fa and Cry1Ja) from Bt have been reported to 

kill larvae of P. xylostella with high efficacy (Ballester et al., 1994;Mohan and Gujar, 

2002; Sayyed et al., 2008).  
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Binding assays of Cry toxins with BBMV from P. xylostella confirmed the 

existence of specific binding for Cry1A, Cry1Fa, Cry1Ja, Cry1B, and Cry1Ca toxins 

(Ballester et al., 1999;Ferre et al.,1991;Higuchi et al., 2007;Sayyed et al., 2008).  Binding 

patterns of Cry1Aa toxins revealed that this toxin binds to a high-affinity and a low 

affinity binding site in BBMV of P. xylostella.  Heterologous competition observed 

among Cry1A toxins revealed that Cry1Ab and Cry1Ac compete binding of labeled 

Cry1Aa, although binding to Cry1Aa-specific binding sites is also detected.  The results 

obtained in the reciprocal binding of 
125

I-Cry1Ab and 
125

I- Cry1Ac indicated that these 

toxins bind to one of two Cry1Aa binding sites (Ballester et al., 1999).  Heterologous 

competition of 
125

I-Cry1Ab and 
125

I-Cry1Ca binding revealed that Cry1Fa shared binding 

sites with Cry1Ab but not with Cry1Ca (Granero et al., 1996).  Further binding 

competition assays with radiolabeled Cry1Aa, Cry1Ab, and Cry1Ac confirmed that 

Cry1F shares Cry1A binding site and that Cry1B and Cry1Ca recognized alternative 

binding sites (Ballester et al., 1999).  Lack of shared binding sites between Cry1Ba and 

Cry1Ca was reported from heterologous competition assays with radiolabeled Cry1Ca 

(Ferre et al., 1991).   

An integrative model for the Cry toxin binding sites in P. xylostella developed 

from the published data is shown in Fig. 4.  According to this model, P. xylostella 

contains at least four binding sites involved in binding of Cry1 toxins.   Cry1Aa, Cry1Ab, 

Cry1Ac toxins, Cry1Fa and Cry1Ja compete for binding to a common binding site A, 

while Cry1Aa binds with low affinity to this shared site and with high affinity to a 

Cry1Aa-specific binding site B.  Both Cry1B and Cry1C each bind to specific binding 
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sites C and D, respectively, which are not shared with other toxins.  This model is 

supported by the fitting of the homologous competition data for Cry1Aa to a two-site 

model, whereas the homologous competition data for Cry1Ab, Cry1Ac, and Cry1C, 

Cry1B fits a one-site model (Ballester et al., 1999).  Ligand blot experiments showed that 

Cry1Aa, Cry1Ab, and Cry1Ac bound to 105-kDa and 52-kDa proteins in P. xylostella 

BBMV, while Cry1Aa recognized a 117-kDa protein and both Cry1Ab and Cry1Ac 

bound to a 97-kDa protein (Higuchi et al., 2007).  Western blotting with specific antisera 

identified the 105-kDa protein as an APN, suggesting that this protein may represent 

binding site A in the model.  Antisera against cadherin and a midgut membrane protein 

(P252) were shown to reduce Cry1Ac, but not Cry1Aa or Cry1Ab, binding to P. 

xylostella BBMV, which would suggest the potential existence of Cry1Ac-specific 

binding sites not supported by competition binding assays. 
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Fig. 4. Model proposed for binding of B. thuringiensis toxins to sites in the larval midgut 

membrane at P. xylostella.  

 

1.11. Binding site model in Ostrinia nubilalis  

The European corn borer is one of the most important damaging pests in corn.  A 

number of Cry toxins from Bt, namely Cry1Ab, Cry1Ac, Cry1B, Cry1Fa, Cry9C, and 

Cry9E, were reported to kill larvae of O. nubilalis (van Frankenhuyzen, 2009).  Binding 

experiments using radiolabeled Cry1Ab and Cry1Ac confirmed that these toxins bind 

specifically to O. nubilalis BBMV (Denolf et al., 1993).  Results from heterologous 

binding suggested the existence of a shared Cry1Ab-Cry1Ac binding site for which 

higher binding affinity for Cry1Ab correlates with higher activity of this toxin to larvae 

of O. nubilalis (Denolf et al., 1993; Li et al., 2004).  Competition experiments performed 

using histological midgut sections and biotinylated Cry1Ab demonstrated that this toxin 

does not share binding sites with Cry1B (Denolf et al., 1993).  Homologous binding 

competition assays with radiolabeled Cry1Ab revealed specific and saturable binding of 

Cry1Fa Cry1Aa Cry1CCry1Ab Cry1Ac Cry1B

Cry1Ja
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this toxin to O. nubilalis BBMV (Hua et al., 2001).  Heterologous competition 

experiments confirmed that Cry1Ab and Cry1Ac bind to common sites, and that part of 

these sites are recognized by Cry1Aa (Crespo et al., 2011).  In contrast, Cry1B could not 

compete with Cry1Ab toxin binding, supporting the observations from the histological 

sections (Denolf et al., 1993).  In binding assays using Cry1Fa and Cry1Ab against 

BBMV from O. nubilalis, competition was only observed when using high 

concentrations of Cry1Fa, suggesting that the Cry1Ab sites are low affinity binding sites 

for Cry1Fa.  In support of this hypothesis, binding competition analysis using SPR 

revealed the existence of a high and a low affinity binding site for Cry1Fa in O. nubilalis 

BBMV (Hua et al., 2001).  In a field-derived strain of O. nubilalis resistant to Cry1Ab 

only Cry1Aa binding was reduced, while binding of Cry1Ab and Cry1Ac, or Cry1Fa 

toxins were unchanged (Crespo et al., 2011).  These results suggest the existence of a 

population of binding sites shared by Cry1A toxins that are not relevant to Cry1Fa 

toxicity.  Competition assays between Cry1Aa and Cry1Fa would be needed to test 

whether these toxins share binding sites.  Lack of significant competition between 

radiolabeled Cry1Ab and Cry9 toxins suggests that these toxins have independent 

binding sites in O. nubilalis BBMV (Hua et al., 2001). 

Based on the available Cry toxin binding data a five binding site model can be 

proposed for BBMV of O. nubilalis (Fig. 5).  A population of binding sites is shared 

between all Cry1A (Cry1Aa, Cry1Ab and Cry1Ac) toxins (site A), while Cry1Ab and 

Cry1Ac also share a second population of binding sites (site B) that is probably 

recognized as a low affinity binding site for Cry1Fa.  A high affinity binding site for 
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Cry1Fa would represent site C.  A fourth group of binding sites (site D) binds to Cry1Ba, 

and the fifth group of binding sites (site E) is recognized by Cry9C and Cry9E toxins.  

Ligand blotting analyses to identify Cry binding proteins in BBMV of O. 

nubilalis revealed that Cry1Ab, Cry1Ac and Cry1Fa bind to proteins of approximately 

154-kDa and 220-kDa identified through immunoblots as aminopeptidase N and 

cadherin, respectively (Hua et al., 2001; Pereira et al., 2010).  In addition, Cry1Ab also 

recognized 145-kDa and 167-kDa proteins identified as APNs by immunoblotting.  In an 

alternative report, cadherin protein bands of 220-, 170-, and 160-kDa were identified to 

bind Cry1Ab toxin in ligand blots with O. nubilalis BBMV (Flannagan et al., 2005).  The 

cadherin and APN receptors recognized by Cry1Fa and Cry1Ab/Cry1Ac could be 

considered as part of binding site B in proposed model.   

Cry9ECry9CCry1BaCry1Aa Cry1Ab Cry1Ac Cry1Fa

 

                                    

Fig. 5. Model proposed for binding of B. thuringiensis toxins to sites in thelarval midgut 

membranes of O. nubilalis.  
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1.12. Conclusions 

B. thuringiensis (Bt) is the most widely used biological insecticide and produces 

diverse insecticidal toxins during its development.  These toxins are highly toxic to some 

insects, and harmless to most other organisms.  Binding of Bt toxins to specific receptor 

sites on the epithelial membrane is a key step in toxin specificity to kill target insects.  A 

common feature in binding specificity in Lepidoptera is sharing of a binding site between 

Cry1Aa, Cry1Ab, and Cry1Ac toxins.  In most cases, at least some of these binding sites 

are also shared with Cry1Fa and Cry1Ja toxins.  These observations suggest that these 

toxins should not be combined in transgenic crops due to increased risk of cross-

resistance.  Although there is a report on the contrary sharing binding of Cry1Ca and 

Cry1A in Spodoptera spp., in all insects examined Cry1A and Cry1Ca toxins do not share 

binding sites.  At least in Spodoptera spp. Cry1Ba and Cry1Ca share some binding sites, 

although this phenomenon has not been observed in other species.  Unique Cry2A and 

Vip3A toxins are commonly described.  These conclusions have important implications 

for resistance management.  Since alteration of binding sites is the most common 

mechanism resulting in high levels of resistance, data on Cry toxin binding site models 

are critical to determine toxins that are safe for use in combination in transgenic crops 

(pyramiding).  These pyramiding crops can control insect pests very effectively and delay 

resistance for an extended period.  Based on the binding site models developed in this 

review combinations of toxins may be suggested for effective control and to delay 

resistance in target pests (Table 1).  These combinations of toxins expressed in crops 
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could also be used to control the insects that had already developed resistance to Cry 

toxins. 

Table 1. Combinations of two Cry toxins proposed for gene pyramiding in novel 

transgenic crops, based on binding site models proposed in this review. 

 

Target insect species  Combination of Cry toxins 

Heliothinae 

Cry1Ac+Cry2A 

Cry1Ac+ Vip3A 

Cry2Ab+Vip3Aa 

P. gossypiella Cry1Ac+Cry2A 

Spodoptera spp. 

Cry1Fa+Cry1C/Cry1B 

Cry1C/Cry1B+Cry1Ab 

Cry1Fa +Vip3A 

P. xylostella 
Cry1Ac+Cry1B 

Cry1Ac+Cry1Ca 

O. nubilalis 

Cry1Fa+Cry1B 

Cry1Ab+Cry1B 

Cry1Fa+Cry9 
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CHAPTER II 

 

Reduced Cry1Fa toxin binding to midgut alkaline phosphatase is the 

mechanism for field-evolved resistance to Bt maize in the fall   

armyworm, Spodoptera frugiperda (J. E. Smith). 
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2.1.  Abstract 

Transgenic Bt crops expressing Cry and Vip toxins from B. thuringiensis have 

been increasingly planted to manage insect pest damage on agricultural crops.  However, 

augmented adoption of Bt crops has resulted in field-evolved resistance in at least nine 

insect species to Bt maize and Bt cotton, indicating the long-term use of Bt technology is 

in jeopardy.  Diversified resistance mechanisms have been reported in laboratory selected 

insects with varied methods of selection, but resistance mechanisms in field-evolved 

insects remains unclear due to unavailability of field-evolved resistant insects.  In the 

present study the resistance mechanism in Spodoptera frugiperda (J. E. Smith) with field-

evolved resistance to maize producing Cry1Fa toxin was characterized.  Resistance in 

strain 456 S. frugiperda was continued to be recessive and autosomal trait.  Binding 

experiments showed the reduced binding of Cry1Fa toxin to brush border membranes 

from resistant compared to susceptible larvae.  The same binding reduction was observed 

for Cry1A toxins, but not for Cry1Ca toxin, suggesting modification of a common 

Cry1Fa-Cry1A toxin binding site.  Comparison of protein levels among putative 

aminopeptidase (APN) and alkaline phosphatase (ALP) receptors revealed highly 

reduced ALP levels but not changes in APN levels comparing resistant and susceptible 

larvae.  The present work represents the first characterization of a field-evolved 

resistance mechanism to Bt toxins in target insects, and it illustrates a direct association 

between resistance and reduced Cry1Fa toxin binding due to reduction of ALP protein 

levels controlled at the transcriptional level.  
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2.2. Introduction 

Bacillus thuringiensis (Bt) is a gram positive bacterium that produces crystalline 

inclusions composed of insecticidal Cry and Vip proteins.  These Cry proteins are 

selectively insecticidal to larvae from various insect orders (Pigott and Ellar, 2007).   

Currently, more than 220 Cry proteins have been described based on their amino acid 

sequence similarities from the various Bt strains collected across the world (Crickmore, 

2012).  Several Bt strains have been used as biological insecticides to manage some 

economic pests on agricultural crops and public health (Gould, 1998).  The mode of 

action of Cry toxins in target insects starts by the ingestion and solubilization of the 

crystalline inclusions to release as protoxins in larval gut.  Then protoxins are cleaved by 

the action of insect enzymes to produce active toxin in alkaline midgut conditions.  

Activated toxin travels through the peritrophic matrix and binds to receptors on the brush 

border membrane of the insect midgut epithelium (Bravo et al., 2007).  It was proposed 

that the cadherin-like, (APN) and (ALP) proteins are involved in toxin binding by 

interacting sequentially with different toxin structures (Pigott and Ellar, 2007).  The 

monomeric toxin form binds to the cadherin-like proteins (primary receptors) to induce 

further proteolytic processing and formation of oligomeric toxin (Gomez et al., 2002). 

The oligomeric toxins then bind to APN or ALP (Arenas et al., 2010; Pardo-Lopez et al., 

2006) that drive the proteins into the membrane microdomains to cause pore formation 

(Bravo et al., 2004).  The formation of the insertion pores results in osmotic imbalance of 

the membrane epithelium leading to osmotic cell lysis, swelling of the intestine cells and 
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death of the gut cells (Knowles and Dow, 1993).  After enterocyte death, bacteria in the 

gut lumen are able to invade the insect hemocoel, causing septicemia and ultimately 

insect death (Broderick et al., 2006). 

Transgenic Bt crops expressing one or multiple Bt toxins to manage a wide range 

of insect pests have been commercialized since 1996.  These transgenic Bt crops provide 

efficient management of target insects without harming non-target organisms and the 

environment (Betz et al., 2000).  The increased Bt crops usage represents an elevated 

selection pressure on target insects, which has recently resulted in field evolved 

resistance in P. gossypiella to Cry1Ac cotton from India (Dhurua and Gujar, 2011),        

S. frugiperda to Cry1Fa maize in Puerto Rico (Storer et al., 2010b), B. fusca to Cry1Ab 

maize in South Africa (van Rensburg, 2007) and D. v. virgifera  to Cry3Bb1 maize in the 

U.S. (Gassmann et al., 2011).   

Any alterations in insect midgut physiology and/or biochemistry that affect one or 

more steps in the mode of action of Bt toxins may confer resistance.  While some clues 

on the different possible resistance mechanisms have been obtained using laboratory 

selected insect strains (Ferre et al., 1991b; Gahan et al., 2010; Gunning et al., 2005; 

Hayakawa et al., 2004; Li et al., 2004; Rahman et al., 2004), the resistance mechanism 

resulting under field conditions is not known.  The most reported resistance mechanism 

in laboratory-generated strains is the alteration of Cry toxin binding to the receptors 

present in brush border membrane (Ferre and Van Rie, 2002).  Modification or loss of the 

proposed membrane receptors, including cadherin-like proteins (Gahan et al., 2001; 

Morin et al., 2003), APN (Tiewsiri and Wang, 2011), and ALP (Jurat-Fuentes et al., 
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2011) has been associated with resistance to Bt toxins.   However, numerous factors 

including continuous selection with high Cry toxin levels, production of activated Cry 

toxins in plants, and plant secondary metabolites and Cry toxin interactions may 

contribute to differences in resistance mechanisms selected under laboratory and field 

conditions.   

The present study was aimed to identify the field-evolved resistance mechanism 

in a strain of S. frugiperda (strain 456) associated with transgenic maize expressing 

Cry1Fa toxin (event TC1507) in Puerto Rico (Blanco et al., 2010).  Resistance to TC1507 

in this S. frugiperda strain was characterized using Cry1Fa toxin efficacy assays, Cry 

toxin binding, receptor expression assays and linkage analysis.  High levels of resistance 

to Cry1Fa and Cry1Ab toxins were found but not to Dipel or Cry1Ca in larvae from the 

456 strain.  Resistance was transmitted as a recessive autosomal trait.  Results from 

binding experiments showed reduced binding of Cry1Fa and Cry1A toxins correlated 

with resistance.  Furthermore, reduced Cry1Fa toxin binding levels were associated with 

reduced levels of ALP, and phenotypic linkage between reduced ALP levels and 

resistance to transgenic Bt maize was confirm.  These data represent the first 

characterization of a mechanism responsible for field-evolved resistance to a transgenic 

Bt crop.   

2.3. Materials and Methods 

2.3.1. Plant culture  

Transgenic Bt event TC 1507 expressing Cry1Fa and isogenic non Bt event maize 

seed were supplied by Dow AgroSciences (Indianapolis, IN).  Transgenic Bt maize Mon 

810 expressing Cry1Ab and its isogenic line were provided by Dr. Blanco (Southern 
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Insect Management Research Unit, USDA-ARS-MSA, Stoneville, MS 38776, USA).  

These Bt and non Bt plants were grown in the greenhouse at 16:8 (L:D) photoperiod,    

24± 2 °C  and 50% RH conditions.  Three to four seeds from each event were sowed in a 

20 cm diameter pot containing garden soil and maintained in a greenhouse under 26 ± 

2°C, 65 ± 5% RH and 16:8 (L:D) photoperiod.   

2.3.2. Insect strains 

For the present study a resistant (456), susceptible (Benzon) and two F1 

heterozygote strains of S. frugiperda were used to characterize the resistance mechanism.  

The susceptible strain (Benzon) was generated using egg masses purchased from Benzon 

Research (Carlisle, PA), and it was maintained by rearing the neonates on non Bt 

isogenic TC1507 maize (provided by Dow AgroSciences, Indianapolis, IN) V6-V7 leaf 

tissue until third instar  and then transferred to meridic diet (BioServ) until larval stage 

completion.  The resistant S. frugiperda strain was received from Dr. Blanco laboratory 

(Southern Insect Management Research Unit, USDA-ARS-MSA, Stoneville, MS 38776, 

USA).  This strain was developed from egg masses collected in maize fields from the 

Isabela region in Puerto Rico.  This resistant S. frugiperda strain displayed more than 

7,500 fold resistance to Cry1Fa toxin compared to susceptible strains (Blanco et al., 

2010).  Neonates from strain 456 eggs were reared on V6-V7 stage TC1507 maize leaf 

tissue until third instar, and then transferred to meridic diet until completion of larval 

stage.  Two F1 heterozygote strains were created by crossing reciprocally between 

resistant and susceptible S. frugiperda adults.  These hybrids strains were named as 456M 

(456♂XBenzon♀) and 456F (456♀X Benzon♂).  All the four strains were maintained in 

a incubator with 26±2 ºC temperature, 65%± 5% RH and 16:8 (L:D) photoperiod.  
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2.3.3. Toxin production and purification 

Two strains Bt strain HD-73 producing Cry1Ac obtained from Bacillus Genetic 

Stock Center (Colmbus, OH, USA), and a Bt strain producing Cry1Ab toxin (kindly 

provided by Dr. Luke Masson), were used to produce toxins used in the present study.  

Purified Cry1Fa and Cry1Ca toxins were provided by Dow AgroSciences (Indianapolis, 

IN).  Production and purification of all four toxins were done according to protocols 

described elsewhere (Herrero et al., 2004; Jurat-Fuentes and Adang, 2001b).  Briefly, 

crystals were solubilized in 50 mM carbonate buffer pH 10 containing 0.1 % 2-

βmercaptoethanol.  Solubilized protoxin was activated by incubation with midgut fluids 

(1% v/v) obtained from dissected fourth instar S. frugiperda larvae.  Activated toxins 

were loaded on a HiTrap HP Q anion exchange column (GE Healthcare) pre-equilibrated 

with Buffer A (50 mM Na2CO3 pH 9.8).  Purified toxins were eluted from the column 

using a linear gradient of 1M NaCl.  Toxin containing fractions were verified by SDS-

10% PAGE electrophoresis, and toxin concentration was determined using the method of 

Bradford (Bradford, 1976) with BSA as standard.  Toxin samples were stored at –80°C 

until used. 

2.3.4. Labeling of Cry toxins 

Purified Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Fa toxins were radio-labeled with 

iodine-125 using the chloramine-T method as described previously (Van Rie et al., 1989).  

For Cry1Ab, Cry1Ac, and Cry1Ca radio-labeling 1µg of pure toxins were incubated with 

0.5 mCi of iodine-125 (PerkinElmer), whereas pure toxin of Cry1Fa 20 µg was used to 

avoid reduced Cry1Fa biological activity due to iodination (Hernandez-Rodriguez et al., 

2012).  In a typical labeling reaction, 0.5 mCi of iodine-125 was added to the above 
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mentioned toxin concentrations in presence of 18 mM chloramine T (1/3 v ) in PBS pH 

7.5 and incubated for 60 seconds.  The reaction was stopped by adding 23 mM potassium 

metabisulfite (1/4 v) in water and added 1M NaI (1/4 v) to quench the reaction.  The 

mixture was loaded onto a PD-10 column (GE Life Sciences) equilibrated with buffer 

column (20 mM Tris-HCl pH 8.65, 150 mM NaCl, 0.1% BSA) and eluted in twenty 0.5 

ml fractions.  Fractions containing radiolabeled toxin were detected by measuring 

radioactivity in aliquots (5 μl) from each eluted fraction in a Wizard-2 automatic gamma 

meter (Perkin Elmer).  The presence of radiolabeled toxin was confirmed by separating 

proteins in elution fractions by SDS-10%PAGE gel and exposing the dried 

electrophoresis gels to photographic film at -80°C for diverse times until bands were 

detected in the developed photographic film (Gouffon et al., 2011).  The specific 

activities of Cry toxins were calculated based on the input toxin and the total sample 

radioactivity.  Specific activities were 3.49 mCi/pmol for Cry1Ab, 2.02 mCi/pmol for 

Cry1Ac, 0.36 mCi/pmol for Cry1Ca and 0.036 mCi/pmol for Cry1Fa.  

2.3.5. Biotinylation of Cry toxins 

Biotinylation of Cry1Fa and Cry1Ca toxins was performed using EZ-Link NHS-

LC-Biotin (Pierce) as described elsewhere (Jurat-Fuentes and Adang, 2001a).  After 

labeling, free biotin was eliminated from the toxin sample by extensive dialysis and 

samples quantified as for purified toxins.  Biotinylation was then evaluated (data not 

shown) using Western blots probed with streptavidin conjugated to horseradish 

peroxidase (HRP). 

 

 



35 
 

2.3.6. Brush border membrane vesicle (BBMV) preparation  

Midguts were dissected from fourth instar larvae to prepare BBMV by the 

differential magnesium precipitation method (Wolfersberger et al., 1987), but substituting 

mannose for sucrose in all solutions (Jurat-Fuentes et al., 2002).  Briefly, midguts 

homogenized in SET buffer (250 mM sucrose, 17 mM Tris [pH 7.5], 5 mM EGTA), 

containing a protease inhibitor cocktail (Complete, Roche).  An equal volume of MgCl2 

buffer (24 mM MgCl2 +250 mM sucrose) was added to homogenates and incubated on 

ice for 15 min.  The mixture was centrifuged at 2,500 x g for 15 min and the supernatant 

was collected and centrifuged at 27,000 x g for 30 min.  The resulting pellet was 

suspended in one and half the original volume of SET buffer and MgCl2 buffer and then 

the centrifugation cycle repeated.  The final BBMV pellet was re-suspended in ice-cold 

PBS buffer (135 mM NaCl, 2 mM KCl, 10 mM Na2HPO4, 1.7 mM KH2PO4, pH 7.5) 

and the protein concentration determined using the Bradford assay (Bradford, 1976).  

Purity of BBMV preparations was determined by estimating the specific activities of 

APN or/and ALP in initial midgut tissue homogenates and final BBMV (Jurat-Fuentes 

and Adang, 2004).  Specific activities of APN and ALP were measured using leucine p-

nitroanilide, and p-nitrophenyl phosphate disodium (pNPP) as substrates, respectively 

(Terra and Ferreira, 1994).  Specific activities for APN and ALP were enriched 6-8 and 

4-6 fold, respectively, in the BBMV preparations compared to those in initial midguts 

homogenates. 

2.3.7. Plant based bioassays 

Survival of larvae from strains 456, Benzon and F1 hybrids was compared in 

bioassays with maize leaf tissues.  Bioassays were performed using V6-V7 leaves from 
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transgenic maize plants producing Cry1Fa or Cry1Ab toxins and non-transgenic isolines.  

A leaf section of 2.5L x 1.5W cm was placed in a 29.57 mL plastic cup containing 1% 

agar to prevent desiccation of leaf tissues.  A single larva from each strain was released 

into the bioassay cup and kept in an incubator with 24±2°C, 50% RH, and 18:6 (L: D), 

and new leaf tissue was added as needed.  Larval mortalities were recorded seven days 

after larval release.  Thirty-two larvae per treatment were used from each strain and each 

treatment was replicated twice.  Data from bioassays calculated as percent mortalities and 

mean larval and percent pupal growth inhibition were analyzed using analysis of variance 

(ANOVA).  Means were separated at α = 0.05 by using Fisher's protected least square 

difference and Tukey’s multiple comparison tests were used to determine significance at 

p<0.05 (SPSS 21). 

2.3.8. Western blotting and qualitative binding assays 

The different levels of ALP protein in BBMV from resistant, susceptible and 

larvae from F1 hybrids were analyzed using immunoblotting.  BBMV proteins (25 µg) 

were solubilized in SDS-PAGE sample buffer (Laemmli, 1970) and heat denatured 

before separation through SDS-10%PAGE electrophoresis.  Proteins were then 

transferred overnight at 4°C to a polyvinylidene difluoride (PVDF) filter in transfer 

buffer (25 mM Tris, 192 mM glycine, 0.1% SDS and 20% methanol) using constant 

current (20 mVolts).  After transfer, filters were blocked in PBS containing 01% Tween-

20 and 3% BSA for 1 h at room temperature, and then they were probed for 1 h with 

primary antibody (1:10,000 dilution) prepared against the membrane-bound form of ALP 

from Anopheles gambiae (from Dr. Gang Hua and Dr. Mike Adang, University of 

Georgia, USA).  Filters were washed six times for 10 min each with washing buffer 
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(PBS, 0.1% Tween-20 and 0.1% BSA) and then probed with secondary antibody (goat 

anti-rabbit conjugated to HRP, 1:30,000 dilution) for 1 h at room temperature.  After 

washing as before, blots were developed using enhanced chemiluminescence 

(SuperSignal West Pico, Pierce) following manufacturer’s instructions.   

For qualitative evaluation of toxin binding, binding assay using BBMV proteins 

(25 µg) and Cry1Fa or biotinylated Cry1Ca (1 µg) was performed.  Binding reactions 

(100 µl final volume) were performed as for radiolabeled toxins.  After washing, 

resulting BBMV pellets were used for SDS-10%PAGE electrophoresis as described 

above.  Proteins were transferred to PVDF filters and blocked as above, and then probed 

for 1 h with anti-Cry1Fa antisera (1:10,000 dilution) or streptavidin-HRP conjugate 

(1:25,000 dilution).  After washing Cry1Fa blots were probed for 1 h with goat anti-

rabbit-HRP conjugate (1:30,000 dilution).  Blots were developed as described above. 

2.3.9. Saturation binding of 
125

I-Cry toxins to BBMV 

Specific binding of Cry toxins to BBMV was tested using saturation binding 

assays.  A constant amount (0.22 nM for Cry1Ab and Cry1Ac, 0.57 nM for Cry1Ca, and 

4.5 nM for Cry1Fa) of radiolabeled toxins was incubated with increasing amounts of 

receptor (BBMV) in a final reaction volume of 0.1 ml of binding buffer (PBS pH 7.5 plus 

0.1% BSA) for 1h at room temperature.  An excess (300 fold) of unlabeled Cry1 toxin 

was used to calculate non-specific binding. After incubation for 1h at room temperature, 

binding reactions were stopped by centrifugation (16,000 x g for 10 min) and pellets 

containing BBMV and bound toxins were washed twice with 0.5 ml of ice-cold binding 

buffer.  The radioactivity in final pellets was measured in a Wizard-2 gamma detector.  

Specific toxin binding was determined by subtracting non-specific from total binding.  
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Data shown are the mean values calculated from at least two independent experiments 

performed in duplicate with their corresponding standard errors. 

2.3.10. Quantification of alkaline phosphatase (ALP) and aminopeptidase-N (APN) 

activities 

Specific ALP and APN enzymatic activities in BBMV (1 µg) were measured as 

described elsewhere (Jurat-Fuentes and Adang, 2004) using ρ-nitrophenyl phosphate 

disodium (ρNPP) in ALP buffer (100 mM Tris/HCl, pH 9.5, 100 mM NaCl, 5 mM 

MgCl2) or leucine-ρ-nitroanilide (Sigma, St. Louis, MO, USA) in sodium phosphate 

buffer (10 mM Na2HPO4, pH 7.5, 135 mM NaCl, 2 mM KCl) as substrates for ALP and 

APN, respectively.  Enzymatic activities were monitored for 5 minutes as changes in OD 

at 405 nm wavelength at room temperature in a microplate reader (BioTek), and the 

maximum initial velocity (Vmax) was calculated using the associated KC4 Data Analysis 

Software.  One enzymatic unit was defined as the amount of enzyme that would 

hydrolyze 1.0 µmole of substrate to chromogenic product per minute at the specific 

reaction pH and temperature.  Data shown are the mean specific activities obtained from 

at least three independent BBMV batches for each strain measured at least in triplicate 

(n=9).  Statistical significance for differences in activity was determined through analysis 

of variance (ANOVA) using the Holm-Sidak multiple pairwise comparison test (overall 

significance level = 0.01), using the SigmaPlot v.11.0 software (Systat Software Inc., San 

Jose, CA, USA).  Since APN activity data failed an equal variance test, in this case used 

ANOVA on ranks (Kruskal-Wallis test, overall significance level = 0.01) to determine 

statistical significance. 

 



39 
 

2.3.11. Linkage analysis of 456 resistance and ALP expression 

We tested linkage between the reduced ALP phenotype and resistance by 

detecting levels of ALP protein in BBMV from larvae of a hybrid strain after exposure to 

non-transgenic maize or Cry1Fa-producing maize leaf tissue.  The hybrid strains was 

originated by crossing mtohs of the 456 and Benzon strains and then sib-mating the 

resulting F1 generation to obtain an F2 generation containing all three potential resistance 

genotypes (ss, sr, and rr).  Neonate larvae from eggs of the F2 generation were reared 

until third instar on either fresh maize leaf tissue from plants expressing Cry1Fa toxin 

(n=96) or the corresponding non-transgenic isoline (n=32).  Larvae surviving these 

treatments were then moved to artificial diet until fourth instar, when their midgut was 

dissected and individually used to prepare BBMV as previously described (Jurat-Fuentes 

and Adang, 2004).  Levels of ALP in BBMV were detected using immunoblots as 

described above. 

 

2.4. Results 

 

2.4.1. Resistance of strain 456 to Bt maize 

 

 Larvae from the 456 strain was previously reported to display > 7,500-fold 

resistance to Cry1Fa toxin compared to susceptible larvae from laboratory and field 

populations (Blanco et al., 2010).  This resistant strain has been under continuous 

selection for 15 generations on TC1507 maize.  Leaf tissue bioassays showed 94% 

survival of larvae from the 456 strain on TC1507 maize leaf tissues, while no survivors 

were detected in the Benzon strain (Fig. 6A).  In hybrid (Benzonx456) strains marginal 

survival (between 5-7%) independently of the sex of the resistance parent in the cross, 
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supporting autosomal recessive inheritance of resistance was detected.  Less than 10% 

mortality was observed for all strains in bioassays with leaf tissue from isogenic line 

(data were not shown).   

 Although transgenic maize expressing Cry1Ab toxin (event MON810) does not 

effectively control S. frugiperda (Abel and Adamczyk, 2004; Lynch et al., 1999), I was 

interested in testing for cross-resistance to this maize variety in larvae from the 456 

strain.  A significant differences in mortality between larvae from the Ben (15.6% 

mortality) compared to larvae from the 456 (9.4% mortality) strain detected in bioassays 

with fresh maize leaf tissue of event MON810 (Fig. 6A).  These differences were also 

observed when comparing the weight of the surviving larvae from each strain (Fig. 6B).  

While larvae of the Ben strain (fourth instar) had significantly reduced weight when fed 

MON810 compared to non-transgenic maize leaf tissue, no significant differences were 

detected for larvae of the 456 strain.   

 Considering that Cry1Fa and Cry1A toxins share binding sites in BBMV from 

S. frugiperda larvae, and that Cry1Ca and Cry1Fa share a second binding site not 

recognized by Cry1A toxins, were interested in testing susceptibility to Cry1Ca in larvae 

of the 456 strain.  Bioassays with purified Cry1Ca toxin revealed no significant 

differences in susceptibility to Cry1Ca when comparing neonate larvae from the Ben and 

456 strains (Fig. 6C).  The LC50s calculated from corrected mortality data were 20 

ng/cm
2
 and 22.5 ng/cm

2
 for larvae from the Ben and 456 strains, respectively. 
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Fig. 6. Bioassays with fresh maize leaf tissue or artificial diet against neonate S. 

frugiperda larvae from Benzon (bar 1 in green), 456 (bar 2 in red), 456♀ x Ben♂ (bar 3 

in violet) and Ben♀ x 456♂ (bar 4 in blue).  A) Larval mortalities on leaf tissue of 

Cry1Fa Bt maize (TC1507) or Cry1Ab maize (MON810). B) Weight of larvae from the 

Benzon and 456 strains after feeding on leaf tissue Bt maize event MON810 or non-Bt 

isoline.  C) Susceptibility of Benzon and 456 larvae to purified and activated Cry1Ca 

toxin. 
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2.4.2. Specific binding of Cry1A, Cry1Fa, and Cry1Ca toxins to BBMV 

Results from binding assays with BBMV and radiolabeled Cry1Fa toxin revealed 

reduced toxin binding in strain 456 compared to Benzon, while no significant reduction 

was observed when comparing Benzon to F1 hybrids (Fig7A).  Similar results were 

obtained for radiolabeled Cry1Ac and Cry1Ab toxins (Fig 7B and 7C).  In contrast, no 

significant binding reduction was observed when using radiolabeled Cry1Ca and BBMV 

of strain 456 compared to Benzon (Fig 7D).  The same reductions in Cry1Fa but not 

Cry1Ca binding in BBMV from 456 compared to Benzon or F1 hybrid larvae were also 

detected using immunoblotting (Fig. 7E and 7F).   
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Fig. 7. Binding of radiolabeled Cry1Fa (A), Cry1Ab (B), Cry1Ac (C) or Cry1Ca (D) 

purified activated toxins to BBMV from midguts of larvae from the Benzon (green) or 

456 (red) strains was tested in binding assays.  Specific Cry1Fa toxin binding to BBMV 

from larvae of crosses 456M (violet) and 456F (blue) are also shown in (A).    Binding of 

biotinylated Cry1Ca (E) or Cry1Fa (F) to BBMV from Benzon (lane 1), 456 (lane 2), 

456M (lane 3) and 456F (lane 4) detected using Western blotting (E) or immunoblotting 

(F).   
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 2.4.3. Reduced Cry1Fa toxin binding associated to reduced expression of ALP 

Since Cry toxins bind to APN and ALP in target insect midguts, and reduced 

Cry1Fa toxin binding in larvae from the 456 strain was detected, APN and ALP protein 

levels using specific enzyme activity of APN and ALP proteins in BBMV of strain 456, 

Benzon and F1 hybrids were compared to test the effect of these proteins levels on 

Cry1Fa binding.  The specific activity of ALP (Fig. 8A) in midguts of larvae from strain 

456 was reduced 75% compared to activity in Benzon and F1 hybrids (df=3, F=0.066, 

P=<0.0001), whereas the APN specific activity (Fig. 8B) was not significantly different 

between the strains (df=3, F=4804.667, P=<0.975).   

Western blots used to further test the variation in ALP protein levels in BBMV 

from 456 compared to Benzon strain.  To detect the APN and ALP proteins antisera 

against the M. sexta APN and A. gambiae ALP, respectively were used.  For blots with 

antisera to APN a ~110 kDa protein was detected, while a ~ 68-kDa protein was detected 

with antisera against ALP.  In agreement with the specific activity assays, highly reduced 

levels of ALP protein in BBMV from 456 compared to Benzon were observed (Fig. 9A).  

Moreover, ALP levels in larvae from crosses between Benzon and 456 moths displayed 

levels of ALP intermediate between the susceptible and resistant parents.  In contrast, we 

did not observed differences in the intensity of APN protein bands in Western blots 

(Fig.9B) in BBMV from all strains.   
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   Fig. 8. Reduced ALP but not APN activity levels in BBMV from resistant S. frugiperda 

larvae.  BBMV proteins from susceptible (Ben), F1 reciprocal crosses and resistant (456) 

strains of S. frugiperda were used in specific activity experiments.  ALP (A) or APN (B) 

BBMV proteins with Benzon (bar 1in green), 456 strain (bar 2 in red color), 456F (bar 3 

in blue) and 456M (bar 4 in violet).  

 
A

  

 
B

 

Figure 9.- Reduced ALP but not APN protein levels in BBMV from resistant S. 

frugiperda larvae.  ALP and APN protein levels in BBMV from susceptible (Ben), F1 

hybrids and resistant (456) strains of S. frugiperda were detected using antisera against 

the M. sexta APN and A. gambiae ALP, respectively.  ALP (A) or APN (B) BBMV 

proteins with strain Benzon (line 1), 456F (line 2), 456M (line 3) and 456 strain (line 4).  
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2.4.4. Reduced ALP protein expression phenotype is genetically linkage to Cry1Fa 

resistance  
 

Linkage experiment was conducted to test for linkage between the reduced ALP 

protein level phenotype and resistance to Cry1Fa-producing maize.  For this experiment 

an F2 strains containing all potential resistance genotypes were used, which were 

exposed to non-transgenic maize or maize expressing the Cry1Fa toxin.  Then levels of 

ALP in larvae that survived exposure to the Cry1Fa maize compared to larvae from the 

control treatment were tested.  When neonate larvae of this strain were exposed to 

TC1507 leaf tissue we detected 77 % mortality, while only 5% mortality was detected in 

larvae exposed to non-transgenic maize.  These mortality results suggest a potential 1:2:1 

proportion of (ss:sr:rr) genotypes in this strain.  There were no significant differences in 

the weight of the surviving larvae from both treatments (data not shown).  Using Western 

blots and BBMV prepared from individual midguts, three ALP phenotypes (high, 

intermediate, and low levels) according to the strength of the chemiluminescence signal 

in the Western blots were detected (Fig. 10A).  Within the subgroup analyzed (31 larvae) 

8 larvae with high, 14 with intermediate, and nine with low ALP levels were detected, 

which approximate the putative 1:2:1 genotype ratio observed in the mortality assays.  In 

contrast, all the larvae surviving exposure to TC1507 maize displayed low levels of ALP 
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protein (Fig.10B).  
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Fig. 10. Reduced ALP protein levels are linked to resistance against TC1507 maize.  

Neonates from this strain were exposed to fresh leaf tissue from non-transgenic (A) or 

TC1507 corn (B) until thirds instar.  Individual larvae were classified as S (high), X 

(intermediate) and R (low) ALP levels based on comparison with ALP levels in strain 

Benzon (S), F1 hybrids (X) and 456 (R) as shown in (C) using antisera against A. 

gambiae mALP.   

 

2.5. Discussion 
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The use of transgenic crops expressing insecticidal proteins from Bt has 

revolutionized insect pest management.  While evolution of resistance in field pest 

populations is one of the main threats to the future utility of this technology, there is no 

available data on field-selected resistance mechanisms to these Bt crops.  Field evolved 

resistance to Bt crops has been reported in S. frugiperda (Storer et al., 2010), P. 

gossypiella (Dhurua and Gujar, 2011), B. fusca (van Rensburg, 2007) and D. v. virgifera 

(Gassmann et al., 2011).  Field evolved resistance in S. frugiperda from Puerto Rico to 

TC1507 maize producing Cry 1Fa toxin was characterized in the present study.  In 

agreement with previous reports of resistance in S. frugiperda from Puerto Rico (Storer et 

al., 2010), the strain 456 displayed high levels of resistance to TC1507 maize with an 

autosomal and recessive mode of inheritance.  In contrast, field-evolved resistance in D. 

v. virgifera was reported to be transmitted as a non-recessive trait (Gassmann et al., 

2011).   The genetics of resistance transmission in other cases of field-evolved resistance 

has not been addressed to date.  In agreement with previous reports (Storer et a1., 2010), 

larvae from the 456 strain were also found to be cross-resistant to maize producing 

Cry1Ab toxin, a toxin sharing binding sites with Cry1Fa in S. frugiperda (Escriche et al., 

1997), while no cross-resistance was observed to purified Cry1Ca toxin.  While a 

common binding site for Cry1Ca and Cry1Fa was reported by Luo et al (1999), present 

binding data are in agreement with the rest of published reports (Van Rie et al., 1990b; 

Herrero et al., 2001; Lee et al., 1995; MacIntosh et al., 1991; Tabashnik et al., 1994; 

Ballester et al., 1999; Ferre et al., 1991; Masson etal., 1995) supporting the existence of a 

shared Cry1A-Cry1Fa binding site that is not recognized by Cry1Ca.  This lack of cross-
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resistance to toxins not sharing binding sites with the selective toxin was also observed in 

field resistant P. gossypiella (not cross-resistant to Cry2Ab) and D. v. virgifera (not 

cross-resistant to Cry34/35Ab).  Although speculative, this observation may suggest that 

altered binding sites may be involved in resistance in those cases.  Reports of laboratory-

selected resistant strains suggest that high levels of resistance to Cry toxins are associated 

with altered toxin binding (Ferre and Van Rie, 2002). 

As expected from the high levels of resistance to Cry1Fa and the cross-resistance 

pattern observed in strain 456, highly reduced Cry1Fa and Cry1A toxin binding to 

BBMV when compared to BBMV from susceptible larvae was detected.  This pattern of 

resistance and cross-resistance indicates that a common binding site shared between 

Cry1Fa, Cry1Ab and Cry1Ac is altered in midguts of larvae from strain 456.  Studies on 

Cry toxin interactions with cadherin, APN and ALP in target insect midguts identified 

these proteins as functional receptors (Piggott and Ellar, 2007).  Reduced binding of 

Cry1A toxins in resistant insects was previously genetically linked to mutations in 

cadherin proteins in H. virescens (Gahan et al., 2001), P. gossypiella (Morin et al., 2003), 

S. frugiperda (Rahman et al., 2012) and P. xylostell (Baxter et al., 2008).  Alterations in 

expression of APN genes have been reported to be linked with resistance to Cry1Ac in 

Trichoplusia ni (Wang et al., 2010).  In S. exigua resistance to Cry1Ca was reported to be 

due to reduced expression of an APN Cry1Ca (Agrawal, et al., 2002).  In agreement with 

this observation, knockdown of APN expression in S. littoralis larvae resulted in reduced 

susceptibility (Rajagopal et al., 2002).  While protein bands representing APN and 

cadherin proteins from Spodoptera spp. have been reported to bind Cry1A or Cry1Fa 
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toxins (Rahman et al., 2012),  there are no available data on functional receptors for 

Cry1A or Cry1Fa toxins in Spodoptera spp.  Previous reports demonstrated an 

association between reduced ALP expression and resistance to Cry1Ac and Cry1Fa 

toxins in H. virescens, H. armigera and S. frugiperda larvae (Juan Luis et al., 2004).  

Increased release of ALP from the midgut epithelium into the gut fluids has been 

proposed as a mechanism of resistance against Cry1Ac in a laboratory-selected strain of 

H. zea (Caccia et al., 2012)  The potential role of ALP as functional receptor has been 

reported for Cry1Ab in M. sexta (Arenas et al., 2010), Cry1Ac in H. armigera (Ning et 

al., 2010), mosquitocidal Cry toxins in mosquito larvae (Martins et al., 2010; Dechklar et 

al., 2011; Fernandez et al., 2006; Hua et al., 2009) and Cry3Aa in Tenebrio molitor 

(Zuniga-Navarrete et al., 2012).  This array of reports supports a role for ALP as binding 

site for Cry toxins in diverse taxonomic insect orders.  In present study a significant 

reduction of ALP protein levels in midguts from larvae of strain 456 compared to the 

Benzon strain was observed.  When including hybrid larvae in specific activities analyses  

the reduced ALP levels were directly associated with reduced Cry1Fa-Cry1A toxin 

binding and resistance to TC1507 and MON810.  Furthermore, present study able to 

demonstrate phenotypic linkage between reduced ALP expression and resistance to maize 

event TC1507.  Further research is needed to understand the molecular level receptor role 

of ALP to Cry1Fa toxin in S. frugiperda. 

The present study is the first report focused on characterization of mechanisms 

responsible for field-evolved resistance to a Bt crop.  The results from this study provide 

an opportunity to update the current resistance management practices to delay and control 
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episodes of resistance for sustainability of Bt crop technology.  The use of multiple 

combinations of Cry toxins with no common binding sites in pyramided crops could 

delay the resistance development and provide effective control of resistant insects.  

Pyramided maize expressing Cry1Fa, Cry1A.105, and Cry2Ab2 (SmartStax) was shown 

to effectively control resistant S. frugiperda from Puerto Rico.  Based on present results, 

it would be expected that the mortality induced by SmartStax maize is due to Cry2Ab2 

toxin, since both Cry1Fa and Cry1A.105 would be expected to share binding sites in S. 

frugiperda.  However, Cry2Ab2 is not considered highly effective against S. frugiperda 

(Hernández-Martínez et al., 2008).  Although further work would be needed to 

understand this seemingly contradictory observation, potential explanations include 

increased susceptibility to Cry2Ab2 in Cry1Fa-resistant larvae, and formation of 

heteroligomers (Cry1-Cry2) resulting in increased susceptibility.  According to present 

data Cry1Ca is a toxin amenable for use in pyramided crops to delay resistance evolution 

in S. frugiperda.  Further research is needed to identify molecular mechanism responsible 

for ALP down-regulation resulting in resistance.  This will advance the use of genomic 

methods to develop DNA-based biomarkers for detecting Bt resistance in the field.  

Present study conclude that the high survival of S. frugiperda resistant larvae on 

TC1507 leaf tissue is a result of reductions in Cry1Fa binding associated with decreased 

expression of ALP  Disruption of Cry toxin binding to membrane receptors is the best 

characterized and most frequently reported mechanism responsible for high levels of 

resistance in laboratory selected insects (Ferre and Van Rie, 2002).  Since this 

mechanism was also described in field and greenhouse populations selected with 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hern%C3%A1ndez-Mart%C3%ADnez%20P%5BAuthor%5D&cauthor=true&cauthor_uid=18082763
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commercial Bt pesticides (Wang et al., 2007), my findings support the importance of 

reduced toxin binding for high levels of resistance regardless of the Bt technology used 

(Bt sprays or transgenic crops).   
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CHAPTER III 

 

Testing for cross-resistance in Spodoptera frugiperda (J. E. Smith) with 

field-evolved resistance to Bt maize 
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3.1. Abstract 

The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: 

Noctuidae), is an important sporadic insect pest on various agricultural crops in U.S.A. 

and across the world.  Transgenic corn producing Cry1Fa or Cry1Ab toxins from Bacillus 

thuringiensis (Bt) have been used to control larvae of S. frugiperda.  Evolution of 

resistance by insect pests is the greatest threat to the continued success of transgenic 

crops producing Bt toxins.  Previous studies showed that S. frugiperda developed 

resistance to Cry1Fa expressing corn event TC1507 in Puerto Rico.  However, the 

existence of cross-resistance to alternative Cry toxins in these insects has not been 

reported to date.  A resistant strain of S. frugiperda originally established from field-

collected insects from Puerto Rico to study potential cross-resistance patterns was used.  

As expected, larvae of the resistant S. frugiperda strain (456) exhibited dramatically 

reduced susceptibility to purified Cry1Fa toxin compared to a susceptible strain.  

Similarly, reduced susceptibility to Cry1Ab, and Cry1Ac toxins in larvae from the 456 

compared to control strains was detected.  In contrast, no differences in susceptibility 

were detected in bioassays with purified Cry1Bb or Cry1Da purified toxins, or with 

Xentari WG or Dipel ES pesticidal formulations.  The cross-resistance patterns observed 

in present bioassays are in agreement with data from competition experiments indicating 

an altered binding site for Cry1A and Cry1Fa toxins in 456 larvae.  These data support 

the use of Cry1Bb, Cry1Ca, or Cry1Da to control S. frugiperda resistant to Cry1Fa, and 

the use of these toxins in pyramiding efforts for effective management of S. frugiperda. 
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3.2. Introduction 

The fall armyworm, Spodoptera frugiperda (J. E. Smith) has been one of the most 

common insect pests on many plant species and recently evolved as a sporadic pest on 

corn, cotton and soybean crops (Buntin et al., 2004).  This pest has developed resistance 

to most conventional insecticides and has caused economic damage on corn crops during 

migration across the southern U. S. A.  The first generation Bt maize and cotton hybrids 

expressing Cry toxins from Bacillus thuringiensis (Bt) were used to control lepidopteran 

insect pests, including secondary targets like S. frugiperda.  The mode of action of these 

Cry toxins involves binding to specific receptors on the midgut brush border membrane 

followed by insertion into the membrane, leading to cell lysis by osmotic shock and death 

of the insect by septicemia (Bravo et al., 2011).  The efficacy of Bt crops to control  

target insect pest depends on the specificity of the Cry toxins expressed in that crop (van 

Frankenhuyzen, 2009).  The first commercialized Bt maize expressing Cry1Ab toxin was 

highly efficacious to control corn stalk-boring insect pests such as O. nubilalis, but was 

less effective in suppressing Helicoverpa zea and S. frugiperda (Buntin, 2008).  The 

TC1507 corn event expressing the Cry1Fa toxin is highly active against both stalk borers 

and S. frugiperda, but is still not effective in controlling H. zea (Siebert et al., 2008).  

High levels of adoption representing high selection pressure on S. frugiperda coupled 

with unique climatic and geographic isolation conditions and year-round cultivation, 

resulted in development of field-evolved resistance to event TC1507 in S. frugiperda 

populations from Puerto Rico (Storer et al., 2010).  
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Previous reports demonstrate in many instances development of Bt resistance in 

target insects results from altered or reduced binding of Cry toxins to their binding sites 

(Ferre and Van Rie, 2002).  Furthermore, alteration of a common binding site has been 

responsible for development of cross-resistance to Cry toxins not present in the selection 

environment (Lee et al., 1995;Sayyed et al., 2000; Tabashnik et al., 1997b).  Based on 

this information, current insect resistance management strategies support the sequential 

or simultaneous use of different Bt toxins binding to alternative sites to reduce the 

probability of resistance evolution.  In this strategy, insects would need to evolve 

simultaneous alterations in diverse binding sites to become cross-resistant to both toxins.  

The best method of predicting the risk of cross-resistance among Bt toxins is by 

determining their binding patterns and identifying common binding sites in a given target 

insect.  Sharing of common binding sites has been reported for diverse Cry toxins in 

several insect species, including Plodia interpunctella (Ferre et al., 1991; Vanrie et al., 

1990)), P. xylostella (Ferre et al., 1991; Granero et al., 1996; Tabashnik et al., 1994a; 

Tabashnik et al., 1997a), H. virescens (Lee et al., 1995), Leptinotarsa decemlineata 

(Loseva et al., 2002), P. gossypiella (Gonzalez-Cabrera et al., 2003a; Tabashnik et al., 

2000), H. armigera (Estela et al., 2004; Luo et al., 2007), O. nubilalis (Crespo et al., 

2011), and S. exigua (Hernandez-Martinez et al., 2009).  

An alternative approach to estimate cross-resistance patterns is by testing efficacy 

of Bt toxins against resistant strains of the target insect.  Diverse patterns of cross-

resistance have been reported for Cry toxins in different insects, but commonalities are 

clear in some cases.  For instance, “Mode 1” resistance involves resistance to a Cry1A 
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toxin associated with reduced toxin binding and cross-resistance to other Cry1A toxins, 

Cry1Fa, and Cry1Ja, but not to Cry1Ca or Cry2 toxins.  This pattern of cross-resistance is 

explained by the lack of shared binding sites among Cry1A, Cry1Ca, and Cry2 toxins, 

while Cry1A, Cry1Fa, and Cry1Ja share binding sites in multiple species (Ballester et al., 

1999; Escriche et al., 1997; Escriche et al., 1994; Estela et al., 2004; Karim et al., 2000).  

Examples of this pattern of cross-resistance has been described for strains of P. xylostella 

(Tabashnik et al., 1994c), H. virescens (Lee et al., 1995) , Diatraea saccharalis (Wu et 

al., 2009), and P. gossypiella (Zhao et al., 2001).  In contrast, there are also reports of 

Cry1Ca-resistant strains with cross-resistance to Cry1A, Cry1Fa, and Cry1J toxins in P. 

xylostella (Tabashnik et al., 2000), cross-resistance between Cry2Ab and Cry1Ac in H. 

armigera (Mahon et al., 2007), lack of cross-resistance to  Cry1Fa in Cry1Ab-resistant O. 

nubilalis (Siqueira et al., 2004), and cross-resistance to Cry1Ca and Cry1Da in Cry1Ab-

resistant S. exigua (Hernandez-Martinez et al., 2009).  These cases of cross-resistance 

suggest that in Bt resistance may not be related to alterations in toxin binding (Anilkumar 

et al., 2008;Hernandez-Martinez et al., 2009).  In above cases, cross-resistance patterns 

can only be identified using bioassays. 

In previous study, I characterized the mechanism in S. frugiperda resistant to 

TC1507 maize expressing Cry1Fa toxin as a modification in Cry1Fa toxin binding sites 

on the brush border membranes of midgut cells.  The study of cross-resistance patterns in 

S. frugiperda to Bt toxins is essential for development of effective resistance management 

strategies.  Despite the high levels of field evolved resistance to Cry1Fa documented in S. 

frugiperda from Puerto Rico, there are no reports of cross-resistance patterns in these 
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insects.  To address this knowledge gap, the objective of this study was to identify cross-

resistance patterns in a S. frugiperda strain originated from Puerto Rico displaying high 

levels of resistance to TC1507 corn.  First used toxin binding assays to determine the 

pattern of shared binding sites among Cry1Ab, Cry1Fa and Cry1Ca toxins, and then 

performed bioassays to confirm that cross-resistance was associated with shared binding 

sites.  To examine potential cross-resistance in Bt maize-resistant S. frugiperda to Bt 

pesticides, compared susceptibility of Benzon and 456 strains against Xentari WG and 

Dipel ES formulations.  In an attempt to identify effective Cry toxins active against 

Cry1Fa-resistant S. frugiperda also performed bioassays with purified Cry1Bb, Cry1Da, 

and Cry1Ea toxins.  Present study goal was to assess the risk of cross-resistance to Bt 

pesticides and individual toxins in S. frugiperda larvae resistant to Bt maize.  The data 

obtained helped identify effective Cry toxins for gene pyramiding and control of Cry1Fa-

resistant S. frugiperda.   

3.3. Materials and Methods 

3.3.1. Insect strains                                                                                                                                                           

Two S. frugiperda strains were used in this study.  Eggs of the susceptible Benzon 

strain were purchased from Benzon Research (Benzon Research Inc., Carlisle, PA).  The 

resistant strain (456) was originated from egg masses collected in maize fields in Puerto 

Rico in 2010, and displayed >7,500-fold resistance to Cry1Fa toxin in laboratory 

bioassays compared to the Benzon strain (Blanco et al., 2010).  Neonates of the 456 strain 

have been kept under continuous selection until 3
rd

 instar on leaf tissue (the V5-V7 stage) 

from TC1507 corn plants, while larvae of the Benzon strain have been maintained on 
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similar material from the isogenic line.  Larval development from the 3
rd

 instar stage until 

pupation was continued on artificial diet (fall armyworm diet, BioServ).  These two 

strains were separately maintained in two incubators with 25 ± 2°C and 65 ± 5% RH 

under  L:D 16:8 h.   

3.3.2. Bt toxins and formulations  

For the present study purified toxins (Cry1Ab, Cry1Ac, Cry1Da, Cry1Ea and 

Cry1Fa) as well as commercial-grade formulations Di-Pel ES (32,000 IU mg−1, Abbott 

Laboratories, Chicago, IL) and Xentari WG (35,000 diamondback moth U mg−1, Valent 

Biosciences, Libertyville, IL) was used to test the cross-resistance in strain 456.  Cry1Ab 

and Cry1Ac produced from Bt strains and Cry1Bb (EG5847), Cry1Da,(ECE129) and 

Cry1Ea (ECE127) expressing recombinant Escharichia coli strains were obtained from 

Bacillus Genetic Stock Collection, Columbus, OH).  A recombinant Bt strain producing 

Cry1Ca toxin (Rang et al., 2004)) was kindly provided by Dr. Jean Louis Schwartz 

(University of Montreal, Canada), while a Bt strain producing Cry1Fa was kindly 

supplied by Dr. Chenxi Liu (Chinese Academy of Agricultural Sciences, Beijing, China).    

3.3.3. Toxin preparation   

Production and purification of Cry1Da and Cry1Ea were as described by Sayyed 

et al., (2005).  Cry1Ca and Cry1Fa toxins were produced and purified as described in 

Perera et al., (2009).  Protoxins were activated by treatment with 0.1% (v/v) of midgut 

fluids obtained from actively feeding 4
th 

instar S. frugiperda larvae for 1 h at room 

temperature.  After clearing samples by centrifugation at 10,000 g x min, the activated 

toxins in the supernatant were loaded on a HiTrap HP Q 5 ml anion exchange column 
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(GE Life Sciences) equilibrated in 50 mM sodium carbonate buffer (pH 9.8), and eluted 

with a linear gradient of 1M NaCl.  The purity of the activated toxins was monitored by 

SDS-10% PAGE.  Fractions containing purified toxin were pooled and samples 

maintained at –80°C until used. 

3.3.4. Competition experiments 

Brush border membrane vesicles (BBMV) were dissected from fourth instar S. 

frugiperda larvae and used to prepare BBMV by the differential magnesium precipitation 

method (Wolfersberger, 1987), as modified byJurat-Fuentes et al., (2002).  The final 

BBMV preparations were kept at −80°C until used.  Purified Cry1Ab, Cry1Ac, and 

Cry1Ca toxins (1 µg) were radio-labeled with 0.5 mCi of iodine-125 (Perkin Elmer) 

using the chloramine T method as described elsewhere (Van Rie et al., 1989).  In the case 

of Cry1Fa toxin, 20 µg were labeled to detect specific binding as reported elsewhere 

(Hernandez-Rodriguez et al., 2012).  Purity of labeled toxin preparations was monitored 

by SDS-10%PAGE electrophoresis and autoradiography.   

Competition experiments were performed by incubating 40 μg/ml of S. frugiperda 

BBMV with 0.22 nM (
125

ICry1Fa and 
125

I-Cry1Ab) or 0.57 nM (
125

I-Cry1Ca) toxins for 1 

hour at room temperature in the presence of increasing concentrations of unlabeled 

competitor.  After incubation, samples were washed twice with 0.5 ml of ice-cold binding 

buffer (20 mM Bis-Tris, pH 6.0, 100 mM KCl, supplemented with 0.1% BSA), and 

radioactivity in the final pellets measured in a Wizard-2 detector (Perkin Elmer).  The 

percentage of labeled toxin bound with increasing competitor concentrations was 

determined relative to amount of toxin bound in the absence of competitor (considered 



62 
 

100% binding).  Data presented are the mean percentages from at least two independent 

experiments performed in duplicate. 

3.3.5. Assessing cross-resistance  

Seven concentrations for each toxin in PBS buffer (135 mM NaCl, 2 mM KCl, 10 

mM Na2HPO4, 1. 7 mM KH2PO4, pH 7.5) and formulation were tested in the bioassays.  

Controls included PBS buffer.  Bioassays were conducted by the surface contamination 

method using 128-well bioassay trays (C-D international, Pitman, NJ)  A volume of 50 

µL test solution was added to the top of solid meridic diet (fall armyworm diet, BioServ) 

previously poured in each well, spread evenly on the surface and allowed to dry in a 

laminar flow hood.  Bioassays with XenTari WG and Di-Pel ES were conducted by the 

diet incorporation method, dispensing 2 ml of diet containing the pesticide per well.  Six 

concentrations of XenTari WG and Di-Pel ES were tested.  After drying, one neonate was 

transferred to each well using a fine camel’s-hair paintbrush, then the well-sealed with an 

adhesive bioassay tray lid.  Bioassays trays were maintained in an incubator at 25 ± 2°C 

and 65% RH under 16:8 L: D. Neonates (n=32) from each S. frugiperda strain were 

tested on each dose, and each bioassay replicated twice. Mortalities were recorded seven 

days after neonate inoculation.  Lethal concentrations killing 50% of the insects (LC50) 

values were estimated from mortality data by probit analysis using the Polo-Plus v.2.1 

program (LeOra software, Petaluma, CA.).  
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3.4. Results  

3.4.1. Binding competition assays 

As previously demonstrated in chapter-II, specific binding of 
125

I-Cry1Fa, 
125

I-

Cry1Ab, and 
125

I-Cry1Ca toxins to BBMV proteins from both resistant and susceptible S. 

frugiperda larvae.  Results from homologous competition experiments with labeled 

Cry1Fa, Cry1Ab, or Cry1Ca confirmed specific high affinity binding of the three toxins 

to BBMV from larvae of the Benzon strain (Fig. 11).  As expected from our previous 

work, only Cry1Ca was able to bind specifically to BBMV from larvae of the 456 strain 

(Fig. 11C).  Heterologous competition assays showed that for BBMV from the Benzon 

strain, Cry1Fa shared all its binding sites with Cry1Ab, but not with Cry1Ca (Fig. 11A).  

This common Cry1Ab-Cry1Fa site was confirmed when using radiolabeled Cry1Ab and 

unlabeled Cry1Fa as competitor (Fig.11B).  In contrast, Cry1Ca bound uniquely and not 

shared its binding sites with Cry1Ab or Cry1Fa on BBMV from the Benzon strain.  In 

case of BBMV from strain 456, did not observe competition between Cry1Fa and 

Cry1Ab, but homologous competition was observed for Cry1Ca (Fig. 11C).  These 

differences between the binding patterns of the strains support alteration of a shared 

Cry1A-Cry1Fa binding site, while Cry1Ca binding was unaltered. 
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Fig. 11. Binding competition between 
125

I-Cry1Fa or 
125

I-Cry1Ab or 
125

I-Cry1Ca with 

increasing concentrations of unlabeled Cry1Ab, Cry1Fa, or Cry1Ca to BBMV from 

Benzon and 456 strains of S. frugiperda associated with TC1507 maize producing 

Cry1Fa. In figures showed the competitions among Cry1Fa with Benzon (green circles), 

Cry1Fa with 456 (red circles); Cry1Ab with Benzon (green triangles), Cry1Ab with 456 

(red triangles); and Cry1Ca with Benzon (green circles), Cry1Ca with 456 (red circles).  
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3.4.2. Bioassays with Cry1Fa, Cry1Ab, and Cry1Ac toxins 

To test susceptibility to Cry1Fa in strain 456 larvae, a diet contaminated bioassays 

were conducted with purified Cry1Fa toxin against larvae from the Benzon and 456 

strains.  In these bioassays the calculated LC50 value for the Benzon strain was 194.75 

ng/cm
2 

 whereas no LC50 value could be calculated for strain 456 due to marginal (6.25 

%) mortality detected at the highest concentration tested (10,000 ng/cm
2
) (Table 2.).   

To test the cross-resistance pattern in strain 456, bioassays with purified Cry1Ab 

and Cry1Ac toxins was also performed.  The LC50 value obtained for Benzon larvae was 

865 ng/cm
2
 diet for Cry1Ab and >2,000 ng/cm

2
 diet for Cry1Ac toxin (Table 2).  In 

contrast, only observed <5% mortality of larvae from the 456 strain after treatment with 

the highest tested Cry1Ab and Cry1Ac toxin concentrations, respectively.  No larval 

mortality was detected in any of the controls for both strains. Given the low activity of 

Cry1Ac against S. frugiperda, and to better examine potential cross-resistance to Cry1Ac, 

we studied growth of larvae from each strain during treatment with 2,000 ng/cm
2 

of 

Cry1Ac.  Comparisons of growth between the 456 and Benzon strains showed a mass 

increase of 16.5% for larvae of the 456 compared to Benzon strain (Fig. 12).  This 

difference was not detected when the insects were grown on meridic diet with PBS 

buffer.   

3.4.3. Susceptibility of Bt maize-resistant S. frugiperda to Bt pesticides 

Since larvae from the 456 strain were cross-resistant to Cry1A toxins, 

susceptibility of these larvae to commercial Bt pesticides containing combinations of 

multiple Cry toxins was tested.  Bioassays with Xentari WG and DiPel ES formulations 
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were performed as they are based on the Bt vars. aizawai and kurstaki, respectively.  The 

LC50 values for both formulations are presented in Table 2, and they support lack of 

cross-resistance to both pesticides in 456 larvae.  Based on percentage of the pesticide 

volume used, both strains were slightly more susceptible to Xentari WG (LC50 0.38-

0.4%v/v) than to DiPel ES (1-1.15%v/v).  

3.4.4. Bioassays with Cry1Da, Cry1Bb, and Cry1Ea 

To identify effective Cry toxins to control larvae of the 456 strain, bio-efficacy of 

toxins with previously reported toxicity against S. frugiperda: Cry1Bb and Cry1Da were 

tested.  In addition, Cry1Ea was included in present tests as a toxin with activity similar 

to Cry1A toxins.  The LC50 values for Cry1Bb and Cry1Da for both strains 456 and 

Benzon are presented in Table 1.  Both toxins were able to control larvae from the 456 

and Benzon strains at similar concentrations.  In case of the Cry1Ea toxin, it was not able 

show any activity against larvae from the 456 or Benzon strains, even at the highest 

tested concentration.  Similarly to Cry1Ac, in present study I performed growth inhibition 

comparisons between Benzon and 456 larvae after treatment with 2,000 ng/cm
2
 of 

Cry1Ea toxin.  In contrast to results with Cry1Ac, Cry1Ea did not detect significant 

differences between larvae from each strain after treatment with Cry1Ea for 7 days (Fig. 

12).   

 

 

 



67 
 

Table 2. Median lethal concentrations (LC50) and 95% fiducial limits based on larval 

mortality of susceptible (Benzon) and resistant (456) strains of S. frugiperda associated 

with TC1507 maize expressing Cry1Fa toxin to six purified Cry toxins and two Bt 

formulations. 

Toxin Strain Slope±SE 
LC50 

(ng/cm
2
) 

95% Fiducial 

limits 

(ng/cm
2
) 

χ2 

Cry1Ab 
Benzon 0.652±0.075 813.99 490.45 -1581.1 2.564 

456 0.807±0.12 9842.20 4361.5-40891 3.091 

Cry1Ac 
Benzon 1.018±0.01 >2000 1745.92-4115.32 3.654 

456 2.205±0.83 NA NA 1.749 

Cry1Bb 

Benzon 0.695±0.08 344.63 223.2-583.06 3.663 

456 0.773±0.07 369.545 247.61-596.59 4.131 

Cry1Da 

Benzon 1.089±0.80 81.95 63.96-104.92 
     1.463 

 

456 1.09±0.087 89.82 66.87-120.75 
1.686 

 

Cry1Ea 

Benzon 0.859±0.02 >2000 
2456.74 -

6523.44 
3.248 

456 1.023±0.43 NA NA 
4.612 

 

Cry1Fa 

Benzon 0.984±0.35 194.75 89.52-389.46 
1.86 

 

456 2.154±0.41 NA NA 
4.56 

 

Xentari WG 

Benzon 1.583±0.21 0.383 0.23-1.24 
2.657 

 

456 2.521±.008 0.425 0.324-1.869 
3.424 

 

DiPel ES 

Benzon 1.86±0.14 1.199* 0.63-2.49 
5.522 

 

456 1.84±0.14 1.201 0.608-2.651 
4.086 

 

*Concentration is %v/v 
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Fig. 12. Larval growth inhibition (% means ± SEM) of Benzon (bar 1 in green) and 456 

(bar 2 in red) strains of S. frugiperda associated with TC1507 maize expressing Cry1Fa 

toxin when exposed to a diet treated with purified Cry1Ac, or Cry1Ea  toxins at 7th day 

after inoculation of neonates.  
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3.5. Discussion 

Populations of S. frugiperda in Puerto Rico developed high levels of resistance to 

corn event TC1507 producing Cry1Fa toxin, and this resistance has remained stable even 

long after removal of TC1507 maize from the local markets (Storer et al., 2012).  This 

was the first documented example of field-evolved resistance to a Bt crops in U.S. 

territory.  Availability of a strain generated from S. frugiperda egg masses from Puerto 

Rico, allows for characterization of field-evolved resistance to Bt maize.  In this study 

provide data on cross-resistance patterns in S. frugiperda with field-evolved resistance to 

Bt maize.  This information is important to identify efficacious toxins to manage resistant 

S. frugiperda through cry gene staking or pyramiding efforts.  Data clearly support that 

resistance to Cry1Fa in 456 larvae is through alteration of toxin binding and that these 

larvae display cross-resistance to toxins that share this binding site with Cry1Fa. 

As previously reported (Hernandez and Ferre, 2005; Luo et al., 1999), and present 

binding competition experiments support the existence of a shared binding site between 

Cry1Fa and Cry1A toxins, which is lacking or modified in larvae from the 456 strain.  

This common binding site is not shared by Cry1Ca toxin, which has alternative binding 

sites on S. frugiperda BBMV.  Previous reports demonstrate the development of Bt 

resistance and cross-resistance by alteration or modification of a shared binding site on 

brush border membranes (Ferre and Van Rie, 2002).  Based on our binding competition 

data, a population of binding sites A is recognized by Cry1Fa, Cry1Ab, and Cry1Ac, 

while a second sites B is recognized by Cry1Ca.  Alteration of site A in 456 larvae is 

responsible for resistance to Cry1Fa and Bt maize event TC1507 (chapter-II) (Fig. 13).   
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 Fig. 13. Model proposed for binding of Cry1A, Cry1Fa and Cry1Ca to binding sites in S. 

frugiperda mid-gut membrane from susceptible (A) and resistant; (B) strains. Dashed 

arrow indicates that the modified or altered binding site A, which resulted in reduced or 

loss of binding of Cry1Fa, Cry1Ac and Cry1Ab to site A.  

 

The proposed binding model is further supported by our bioassay data in which 

we detected cross-resistance with Cry1Ab but not with Cry1Ca.  While present study was 

unable to detect significant mortality using Cry1Ac, growth inhibition assays 

demonstrated reduced toxin effects on larvae from the 456 compared to Benzon strain.  

However, binding site model proposed based on present study is in contrast to previous 

reports suggesting that Cry1Fa and Cry1Ca share a common binding site in S. frugiperda 
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BBMV (Luo et al., 1999).  All other published binding studies in lepidopteran species 

support independent binding sites for Cry1Fa/Cry1A and Cry1Ca toxins (Ballester et al., 

1999; Banks et al., 2001; Gonzalez-Cabrera et al., 2003b; Granero et al., 1996b; Luo et 

al., 1999).  In addition, strains of  S. frugiperda, and S. littoralis resistant to 

Cry1A/Cry1Fa not shown cross-resistance to Cry1Ca toxin (MullerCohn et al., 1996)  

While there are examples of cross-resistance between Cry1A and Cry1C toxins in S. 

exigua (Hernandez-Martinez et al., 2009; Moar et al., 1995), it has been attributed to 

protease-mediated mechanisms (Anilkumar et al., 2008; Candas et al., 2003; Li et al., 

2004; Oppert et al., 1997).  Based on this information, and while I do not know the 

reason for our discrepancy in binding results with the data of Luo et al (1999) present 

study conclude that Cry1Fa and Cry1Ca do not share binding sites in S. frugiperda. 

Larvae from strain 456 were not cross-resistant to Xentari WG or DiPel ES 

pesticidal formulations.  In the case of DiPel ES, this product is composed of spores and 

toxins produced by Bt var. kurstaki, which include Cry1Aa, Cry1Ab, Cry1Ac, and Cry2A 

and Cry2B (Mohan, 2001).  Based on this composition, activity of DiPel ES towards 

larvae of the 456 strain of S. frugiperda would be due to Cry2A and Cry2B toxins.  

However, these toxins are not considered highly active towards S. frugiperda (van 

Frankenhuyzen, 2009).  One possibility explaining activity of DiPel ES against 456 

larvae is insecticidal activity of the Bt spores in the product.  In support of this 

hypothesis, S. exigua larvae resistant to Cry1C suggest that use of formulations 

containing multiple Cry proteins and spores could delay the development of resistance in 

field populations than only Cry toxins used. Furthermore, development of resistance to a 
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spore-crystal mixture could not be achieved in target insects. Mechanisms other than 

binding will be required to develop resistance in target insects.  Susceptibility of larvae 

from strain 456 to Xentari WG may be easily explained by the Cry1Ca and Cry1Da 

toxins produced by B. thuringiensis var. aizawai (Moar et al., 1995).   

Present study also tested susceptibility of 456 larvae to Cry1Bb and Cry1Da, 

which are reportedly very active against S. frugiperda, and Cry1Ea, which displays levels 

of activity similar to Cry1Ac.  The rationale for testing Cry1Ea was to test for the 

possibility that resistance to Cry1Fa could result in increased susceptibility to another 

toxin.  In these bioassays, larvae from strain 456 were highly susceptible to Cry1Bb and 

Cry1Da, while Cry1Ea was not effective.  The same results were observed with larvae 

from the susceptible strain.  In contrast to results with Cry1Ac, present study did not 

detect differences in growth inhibition between susceptible and 456 larvae after exposure 

to Cry1Ea.  These data support that alteration of the Cry1A-Cry1Fa binding site in 456 

larvae does not affect binding of Cry1Bb or Cry1Da.  In support of altered binding, the 

existing of two separate high affinity Cry1 binding sites in S. exigua and S. frugiperda 

was reported.  One of these two binding sites bind to Cry1Ac, and the other site is for 

Cry1Bb and Cry1Ca toxins independently (Luo et al., 1999). Although I do not know the 

reason for the low activity of Cry1Ea against S. frugiperda, present study data may 

suggest that alterations in the Cry1A-Cry1Fa binding site do not affect binding of this 

toxin.  

The results of this study provide evidence that field-evolved resistance to Cry1Fa 

in S. frugiperda is related to alteration of binding sites shared with Cry1A toxins.  Based 
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on this information, new Bt maize hybrids producing multiple toxins not sharing binding 

sites with Cry1Fa should effectively control resistant S. frugiperda.  Thus, Cry1Fa-

resistant S. frugiperda from Puerto Rico are highly susceptible to SmartStax® and 

PowerCore® maize variety combined with Cry1F, Cry1A.105 and Cry2Ab2 toxins 

(Storer et al., 2012).  New maize hybrids expressing Cry1Bb or Cry1Ca or Cry1Da toxins 

would also be able to overcome Cry1Fa-resistant S. frugiperda larvae.  The absence of 

cross-resistance to Xentari WG and Di-Pel in strain 456 has important practical 

implications for rotation of maize hybrids with these pesticides as a potential approach to 

manage Bt resistance.   
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CHAPTER IV  

 

Fitness costs in Spodoptera frugiperda with field-evolved resistance        

to Bt maize
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4.1. Abstract  

Increasing adoption of transgenic crops expressing cry and vip toxin genes from 

Bacillus thuringiensis (Bt) crops represents an augmented risk for development of insect 

resistance.  This risk would be greatly influenced by the existence of fitness costs 

associated with resistance alleles.  Most available data on fitness costs in resistance to Bt 

toxins available to date have been derived from laboratory-selected insect strains.  In this 

work, fitness costs associated with high levels of field-evolved resistance to Bt maize 

event TC1507 was determined in a strain of the fall armyworm, S. frugiperda (J. E. 

Smith) originated from Puerto Rico.  The present study compared fitness parameters in 

susceptible (Benzon), resistant (456) and hybrid individuals when reared on meridic diet, 

maize or soybean leaf tissue, and cotton reproductive tissues.  Measured fitness 

parameters included larval survival, larval and pupal weights, developmental time of 

larval, pupal and adult stages, reproductive traits, and sex ratio.  The only difference 

detected in resistant compared to susceptible insects was a significant increase in their 

larval developmental time, which could result in emergence asynchrony between 

susceptible and resistant adults.  The present study detected increased fitness of hybrids 

(heterosis), probably due to the diverse genetic backgrounds of the susceptible and 

resistant strains used.  To further test the importance of the detected fitness costs in 

resistance, present study monitored stability of resistance through several generations of 

rearing in the absence of selective pressure.  Data from present study demonstrate the 

lack of fitness costs relevant to the stability of field-evolved resistance in S. frugiperda. 
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4.2. Introduction 

The fall armyworm, Spodoptera frugiperda (J. E. Smith), is an economically 

important pest of maize, cotton, soybean, and many grasses in the Southern U.S.A. 

(Sparks, 1986).  Larvae of this insect cause economic damage by feeding on the maize 

whorl and reproductive parts of cotton and soybean plants (Barros et al., 2010).  Due to 

seasonal migration from Caribbean islands and Central America through Florida and 

Texas, respectively (Nagoshi et al., 2008), S. frugiperda can cause sporadic damage even 

in maize-growing regions where the insect does not overwinter.  The biological 

characteristics of S. frugiperda, coupled with suboptimal control and widespread 

resistance to many insecticidal groups, make control difficult.   

Transgenic crops that express insecticidal cry and/or vip protein genes from the 

bacterium Bacillus thuringiensis (Bt) provide the opportunity to control insect pests that 

are difficult to manage with synthetic insecticides, maximize crop yields, and conserve 

beneficial arthropods (Shelton et al., 2002).  Hence, transgenic Bt maize event TC1507 

expressing the cry1Fa toxin gene was developed to control stalk borers and secondary 

insect pests, including S. frugiperda (Siebert et al., 2008).  Widespread and continuous 

planting of Bt maize coupled to geographic isolation and unique climatic conditions were 

hypothesized to favor development of field-evolved S. frugiperda resistance to event 

TC1507 in Puerto Rico.  This resistance has remained stable in maize-growing areas of 

Puerto Rico, even six years after removal of event TC1507 from the regional market 

(Storer et al., 2012).  
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The development of resistance to insecticides is usually associated with relevant 

fitness costs, defined as adverse effects on the ability to survive and/or reproduce in the 

absence of selection pressure.  These fitness costs can greatly influence evolution of 

insect resistance to Bt crops in field populations by affecting viability of homozygous 

resistant and/or heterozygous insects (Carriere and Tabashnik, 2001).  Current resistance 

management for Bt crops is based on recessive resistance and the high dose/refuge 

strategy (Gould, 1998), which involves planting of suitable non-Bt host crops to maintain 

large numbers of susceptible individuals and minimize matings between homozygous 

resistant adults emerging from Bt fields.  The heterozygous individuals generated by this 

approach are expected to be controlled by the high dose toxin levels produced by Bt 

crops.   

In this scenario, recessive fitness costs affecting the duration of developmental 

periods may contribute to asynchronous (non-random) matings of resistant and 

susceptible adults in the refuge (Gould, 1998; Tabashnik et al., 1994b), thus decreasing 

the efficiency of the strategy.  In contrast, non-recessive fitness costs affecting 

heterozygous individuals would decrease their viability and contribute to decrease the 

frequency of resistance alleles in the population.  In other cases, fitness costs associated 

with Bt resistance can interact with host plant (Bird and Akhurst, 2007; Carriere et al., 

2005; Janmaat and Myers, 2006; Raymond et al., 2007b), secondary chemicals (Carriere 

et al., 2004), insect pathogens, and natural enemies (Gassmann et al., 2006; Raymond et 

al., 2007a).  If fitness costs are high on alternative host plants and also non-recessive, 

then increasing the abundance of these plants would help delay the evolution of 



78 
 

resistance (Tabashnik et al., 2003).  These observations demonstrate that characterization 

of fitness costs associated with field-evolved resistance to Bt crops is highly important to 

the development of effective resistance management practices.   

Diverse results on the existence of fitness costs have been reported from studies 

using laboratory-selected insect strains.  In these reports, the existence of fitness costs 

was evaluated by comparing life cycle traits (survival, mass parameters, developmental 

periods and fertility parameters) between susceptible and resistant insects, or by 

monitoring the stability of Bt resistance in hybrid strains containing susceptible and 

resistant alleles (reviewed by Gassmann et al., 2009).  Fitness costs, such as reduced 

survival (Groeters et al., 1994), lower larval growth rate (Liu et al., 1999), and reduced 

fecundity and mating success (Groeters et al., 1993), usually render resistance to Bt 

unstable.  However, in other cases, such as Cry1Ac-resistant H. virescens, no fitness costs 

were detected (Gould and Anderson, 1991).  Stability of resistance to Bt pesticides was 

also reported in field-selected P. xylostella (Sayyed and Wright, 2001;Tabashnik et al., 

1995; Tang et al., 1997).   

The present study was aimed to estimate fitness costs in a field-evolved Bt maize-

resistant S. frugiperda strain.  Here I report results of life-cycle trait comparisons 

(weights, developmental times and reproductive parameters) among resistant, susceptible 

and heterozygous insects, and the stability of Bt resistance in a hybrid strain containing a 

mixture of all susceptible and resistant genotypes. 
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4.3. Material and Methods  

4.3.1. Insect strains  

A susceptible S. frugiperda strain (Benzon) was started from purchased egg 

masses (Benzon Research, Carlisle, PA).  This strain was maintained on leaf tissue from 

non-transgenic isolines to TC1507 maize.  The S. frugiperda strain 456 resistant to Bt 

maize event TC1507 was developed from egg masses collected in maize fields around the 

Juana Diaz area (Puerto Rico), and initially displayed high levels of resistance to Cry1Fa 

toxin (Blanco et, al., 2010).  Resistance in the 456 strain is transmitted as an autosomal 

recessive trait (Chapter-II).  Neonates of strain 456 were selected to third instar with fresh 

TC1507 maize leaf tissue of the V6-V8 leaf stage for 20 generations in the laboratory.  

Heterozygous strains were generated by sexing pupae from the Benzon and 456 strains 

and crossing 100 emerging adults of the opposite sex from each strain.  The strains were 

named according to the sex of the resistant adults in the cross as 456M (males were from 

strain 456) or 456F (females from strain 456).  All strains were reared in an incubator 

(Percival) at 25 ± 2°C and 65% RH under L:D 16:8.   

4.3.2. Host plants  

Non-Bt maize seed (2T780 isogenic to event TC1507) was supplied by Dow 

AgroSciences (Indianapolis, IN), while conventional (AG 430) soybean and cotton 

(phytogen 315) were supplied by Dr. Scott D. Stewart (West Tennessee Research and 

Education Center, Jackson, TN).  Plants were grown in 20 cm pots containing a 

commercial garden soil and maintained in a greenhouse under 26 ± 2°C, 65 ± 5% RH and 
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L:D 16:8.  Staggered sowings of all three types of host plants were used to get 

synchronized development so that plant parts would be available for experiments.   

4.3.3. Life trait comparisons 

Various fitness cost parameters of individuals from the Benzon, 456, and hybrid 

strains were estimated during feeding on meridic diet (BioServ, Frenchtown, NJ), non-Bt 

maize, soybean, and cotton plant tissues.  Based on S. frugiperda larval feeding 

preference (Ali et al., 1990), different plant tissues from maize (leaves of V6-V8 stage), 

soybean (leaves), and cotton (squares, flowers and bolls) were used in the experiments.  

Individual neonate larvae (32 per treatment, replicated twice) from each of the four S. 

frugiperda strains were placed in 29.57 ml plastic cups containing the specific food 

source, and reared in an incubator at 25 ± 2°C, 65%± 5 RH, and LD 16:8 photoperiod.  

For experiments with plant tissues, 1% agar plugs were included in the plastic cups to 

preserve humidity, and plant material was replaced when necessary.  Larvae in the cups 

were checked daily until they reached the pupal stage.  Percent survival was estimated by 

counting the number of larvae of each strain that developed into pupae in comparison to 

the initial larval population.  Fourth-instar larvae and 4-day old pupae were weighed 

using a balance.   

Pupae were sexed and equal numbers of male and female pupae (16 each) from 

each strain and treatment were combined in 1 L plastic jars.  After emergence, adults 

were fed a 10% sucrose solution and ovipositional jars were covered with paper towels to 

prevent escape and as an egg-laying substrate.  The daily number of egg masses laid in 

each jar was recorded until the end of the oviposition period, and the egg masses were 
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transferred daily to individual plastic bags (10x8 inches) for hatching.  The number of 

egg masses with hatching neonates was counted daily to assess reproductively (hereafter 

referred as fertility).  Total duration (in days) of the larval, pupal, and adult stages as well 

as number of egg masses and hatched egg masses were recorded.  To determine the sex 

ratios after feeding on the different food sources, neonates from the eggs collected in the 

experimental procedures above were reared to pupation in the specific food source and 

then the number of male and female pupae recorded.   

4.3.4. Stability of resistance 

A colony containing a mix of all susceptible, heterozygous, and resistant 

genotypes was generated from sib mating of heterozygous colonies to assess stability of 

resistance.  Heterozygous colonies (456M and 456F) were generated as described above 

(these represented generation 1).  Moths (100 males and 100 females) from each 

heterozygous colony were placed in a 60 x 60 cm
2
 styrofoam container for mating and 

egg laying.  Neonates (n=350) hatched from the eggs laid were reared on meridic diet 

(these represented generation 2).  This procedure was continued for a total of 12 

generations. 

To test the level of resistance in 456 strain larvae in the absence of TC1507 

selection reared up to 12 generations, the present study used bioassays with a 

discriminatory Cry1Fa dose were used.  Based on bioassays with Benzon, 456, and 

heterozygous neonates and purified Cry1Fa toxin, the LC95 dose (3.8µg/cm
2
) as the 

discriminatory dose that would kill 95% of the homozygous susceptible and heterozygous 

larvae was selected, while only inducing marginal mortality among 456 larvae (~5%).  
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The stability of resistance in the generated strain was tested by comparing percentage 

mortality observed in bioassays of neonates from parental (Benzon), F1, F2, F5, F10, and 

F12 generations using the discriminatory Cry1Fa dose.  

4.3.5. Statistical analysis  

Differences in percent larval survival, weight gained by larval and pupal stages, 

developmental time, egg mass laid, and egg mass hatch parameter means for each strain 

and crosses were analyzed by analysis of variance (ANOVA) using SAS release 9.2 (SAS 

Institute, Cary, NC).  PROC MIXED (PROC UNIVARATE and PROC GPLOT) was 

used to ensure the assumptions of homogeneity of variance and normality.  

Developmental times, fecundity and fertility data were log transformed to normalize 

variances and for equal distribution.  The means were separated at α = 0.05 by Fisher's 

protected least square difference (LSD; PROC MIXED) using SPSS Base 21.0 for 

Windows (SPSS Inc., Chicago, IL).  Sex ratios were analyzed by Chi-square-of-fit to a 

1:1 (female/male) ratio.  Host and fitness parameter interactions for each strain were 

analyzed by using two-way analysis of variance (SPSS-12).  The discriminatory (LC95) 

dose of Cry1Fa was calculated using the Polo-Plus v.2.1 program (LeOra software, 

Petaluma, CA.). The two-way ANOVA details of fitness costs parameters were presented 

in the appendix.   

4.4. Results  

4.4.1. Larval survival 

Survivorship of four strains of neonate larvae was tested in bioassays with four 

food sources (Fig. 14).  No significant difference was detected (df=3, F=0.359, P=0.784) 
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among the S. frugiperda strains (Benzon, 456, 456M, and 456F).  However, a significant 

difference (df=3, F=4.009, P=0.046) in larval survivorship was observed among food 

sources.  The interaction of S. frugiperda strain and food source showed no significantly 

different (df=9, 32, F=0.129, P=0997).  In the strains, the percentage of larval survival on 

cotton reproductive tissues (flowers>squares>bolls) was significantly greater than when 

larvae were fed cotton leaf tissue (data not shown).  Based on this observation cotton 

reproductive tissues were chosen for further studies. 
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Figure 14. Mean (± SEM) percent larval survival of Benzon (bar 1 in green), 456 (bar 2 

in red), 456F (bar 3 in violet) and 456M (bar 4 in blue) strains of S. frugiperda on four 

tested four food sources in absence of Cry1Fa toxin, (n=32/replication; two replications 

of each strain on four food sources). Data analyzed α = 0.05 by using Fisher's protected 

least square difference (LSD; PROC MIXED) (SAS Institute 2002).  

4.4.2. Larval and pupal weights  

The weight gained during development by larvae and pupae of strains Benzon, 

456, 456M, and 456F after feeding on meridic diet, maize, soybean or cotton is shown in 

javascript:void(0);
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Figures 2A and 2B, respectively.   No significant differences in larval or pupal weight 

when comparing individuals were detected from the Benzon and 456 strains (Fig. 15A 

and 15B).  Statistical analysis confirmed significantly increased weight gain in 456M and 

456F larvae (df=3, F=39.23, P=0.0001) and pupae (df=3, F=35.618, P=0.0001) compared 

to larvae from the Benzon and 456 strains, suggesting the existence of heterosis.  This 

heterosis was observed among all four tested food sources in larvae (df=3, F=1087.29, 

P=0.0001) and pupae (df=3, F=3213.45, P=0.0001).  The weight in 4
th

 instar larvae was 

8-9% higher in 456M and 456F compared to Benzon and 456 larvae (Fig. 15A).  

Statistical analyses of strain and food interactions indicated that the larval (df=9, 1024, 

F=1.746, P=0.294) and pupal weights (df=9, 1024, F=2.646, P=0.071) followed a similar 

hybrid vigor trend in all food sources.     
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Figure 15. Mean (+ SEM) larval (A) and pupal (B) weights of Benzon (bar 1in green), 

456 (bar 2 in red), 456F (bar 3 in violet) and 456M (bar 4 in blue) strains of S. frugiperda 

on four food sources in absence of Cry1Fa toxin.  
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4.4.3. Developmental times 

Comparison of the duration of larval, pupal and adult life stages among all strains on the 

four food sources only showed a significant difference in length of the larval period. 

Larval developmental times were significantly different among strains (df=3, F=529.38, 

P=0.0001) and food sources (df=3, F=10309.58, P=0.0001).  The shortest larval 

developmental time (13-15 days) was monitored for all tested strains when meridic diet 

was used as food source.  When compared to meridic diet, the maximum delay in larval 

stage development was observed when larvae fed on cotton plant reproductive tissues, 

followed by maize and soybean leaf tissues.  Larvae from the 456 strain required 

significantly longer developmental periods compared to the other three strains in all food 

sources.  The interaction between larval stage duration and food source confirmed a 

significant delay in development of larvae from the 456 strain (df=9, 1002, F=7.866, 

P=0.511) (Table 3).   

When comparing the number of days required to complete development for each 

larva using meridic diet as a food source, the majority/higher percentage of larvae from 

strains 456 (59.38%) and 456M (71.88%) required 15 days to complete development, 

while the majority of larvae in Benzon (59.38%)and 456F (46.88%) required 14 days.  

The remaining percentage of larvae in each strain displayed similar developmental times.  

In the case of maize leaf tissue the majority of larvae from strain 456 (57.81%) required 

17 days to complete development, one day longer than the majority of larvae from strains 

456F (42.19%) and 456M (54.69%), and two days longer than the majority of larvae in 

strain Benzon (46.88%).  When using soybean leaf tissue, a higher percentage of larvae 



88 
 

from strains 456 (54.69%) and 456M (48.44%) required 21 days to complete 

development, compared to 19 days in the majority of larvae (64.06%) from Benzon and 

20 days in the majority of larvae (48.43%) from strain 456F.  Lastly, when reproductive 

cotton tissues were used as food source, a 2-day delay in larval development was 

observed when comparing the majority of larvae in strain 456 (65.63%) and 456M 

(68.75%) to larvae in the Benzon (46.88%) and 456F (53.13%) strains (Table 3). 

No significant differences among the four tested strains in pupal (df=3, F=32.028, 

P=0.687) or adult development (df=3,1002, F=4.784, P=0.063) was not detected.  

However, a significant difference among the tested four food sources for the length of 

pupal (df=3, F=565.070, P=0.001) and adult development (df=3, F=222.33, P=0.001) 

time was detected.  The longest pupal developmental time was observed when larvae 

were fed on cotton tissues, followed by soybean, maize, and meridic diet.  Longer pupal 

development time generally corresponded with shorter adult lifespan.  The interaction 

between strain and food was not significantly different between the four strains on all 

tested food sources for pupal (df=9, 1002, F=2.152, P=0.897) and adult (df=9, 1002, 

F=1.513, P=0.138) development (Table 4).                                                         
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Table 3. Mean (+ SEM) durations of larval, pupal and adult development periods (in days) for the Benzon, 456, 456M, and 456F 

strains of S. frugiperda depending on the food source.   

 

Life cycle developmental time* (days) 

 

Strain  

Larval Pupal Adult 

  Diet
+
  Maize

+
 Soybean

+
 Cotton

+
 

    

Diet
+
  Maize

+
 Soybean

+
 Cotton

+
 

   

Diet
+ 

 

 Maize
+
 Soybean

+
 

 

Cotton
+
 

 

 

Benzon 

 

 

13.80± 

0.08
a
 

 

14.92± 

0.08
a
 

 

19.36± 

0.06
a
 

 

20.94± 

0.09
a
 

 

8.14± 

0.07
a
 

 

8.42± 

0.21
a
 

 

9.20± 

0.10
a
 

 

9.63± 

0.31
a
 

 

15.3± 

0.30
a
 

 

13.28± 

0.36
a
 

 

13.03± 

0.48
a
 

 

12.38± 

0.19
a
 

456 15.03± 

0.08
c
 

17.08± 

0.08
d
 

21.45± 

0.06
d
 

22.97± 

0.07
c
 

8.31± 

0.16
a
 

8.61± 

0.20
a
 

9.70± 

0.35
a
 

9.89± 

0.45
a
 

15.6± 

0.18
a
 

13.38± 

0.31
a
 

13.02± 

0.49
a
 

12.38± 

0.19
a
 

456F 14.16± 

0.09
b
 

15.77± 

0.09
b
 

19.83± 

0.09
b
 

21.47± 

0.06
b
 

8.72± 

0.36
a
 

8.48± 

0.24
a
 

9.36± 

0.18
a
 

9.77± 

0.38
a
 

15.1± 

0.41
a
 

13.22± 

0.39
a
 

12.63± 

0.69
a
 

12.28± 

0.14
a
 

456M 14.23± 

0.12
b
 

16.50± 

0.07
c
 

21.05± 

0.09
c
 

22.75± 

0.06
c
 

8.44 ± 

0.22
a
 

8.53± 

0.23
a
 

9.50± 

0.25
a
 

9.83± 

0.41
a
 

15.6± 

0.16
a
 

13.27± 

0.37
a
 

12.81± 

0.59
a
 

12.38± 

0.19
a 

 

 

* Developmental time data was analyzed (P = 0.05) by using Fisher's protected least square difference (LSD; PROC MIXED)  

+
Food data within a column followed by the same latter are not significantly different and different letters are significantly different 

(developmental times were log transformed to normalize variances).  



90 
 

Table 4. Mean percent larval development periods distribution (in days) recorded for the 

Benzon, 456, 456M, and 456F strains of S. frugiperda depending on the food source*.   

 

 Food source  Day  Benzon   456   456F   456M 

 

Meridic diet 

 

13 

 

29.69±0.23 

 

0.000±0.00 

 

18.75±0.44 

 

32.81±0.58 

14 59.38±0.31 18.75±0.56 46.88±0.20 28.13±0.72 

15 10.94±0.24 59.38±0.82 34.38±0.55 71.88±0.64 

16 0.000±0.00 21.88±0.72 0.000±0.00 0.000±0.00 

 

Maize 

 

14 

 

34.38±0.38 

 

0.000±0.00 

 

0.000±0.00 

 

0.000±0.00 

15 46.88±0.41 0.000±0.00 40.63±0.46 0.000±0.00 

16 18.75±0.54 17.19±0.75 42.19±0.15 54.69±0.55 

17 0.000±0.00 57.81±0.33 17.19±0.82 40.63±0.12 

18 0.000±0.00 25.00±0.40 0.000±0.00 0.000±0.00 

 

Soybean 

 

19 

 

64.06±0.11 

 

0.000±0.00 

 

34.38±0.76 

 

0.000±0.00 

20 35.94±0.53 0.000±0.00 48.44±0.40 23.44±0.41 

21 0.000±0.00 54.69±0.00 17.19±0.85 48.44±0.10 

22 0.000±0.00 45.31±0.00 0.000±0.00 28.13±0.34 

Cotton 

 

20 

 

29.69±0.45 

 

0.000±0.00 

 

0.000±0.00 

 

0.000±0.00 

21 46.88±0.56 0.000±0.00 53.13±0.32 0.000±0.00 

22 23.44±0.83 18.75±0.92 46.88±0.65 28.13±1.02 

23 0.000±0.00 65.63±0.45 0.000±0.00 68.75±0.84 

24 0.000±0.00 15.63±0.84 0.000±0.00   3.13±0.55 

 

 

* Frequency distribution of percent larval developmental periods data were analyzed          

   (P = 0.05) by using Fisher's protected least square difference (LSD; PROC MIXED). 
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4.4.4. Adult emergence  

 The observed delayed larval development greatly influenced the time of adult 

emergence.  Thus, adults from the 456 strain were 2-3 days delayed in emergence 

compared to adult moths from the Benzon strain.  A higher percentage of the adult 

emergence in strain 456 coincided with adult emergence in the heterozygous strains 

compared to Benzon (Fig. 16).   
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Figure 16. Percent adult’s emergence recorded for each strain (Benzon (green circle), 

456M (blue downward triangle), 456F (violet upward triangle) and 456 (red diamond) 
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fed with meridic diet (A), maize leaf tissue (B), soybean leaf and pod tissues (C) and 

cotton reproductive tissues (D).     

4.4.5. Average number of egg masses laid and egg mass hatchability  

 The mating period for all tested strains lasted for 7 days after adult emergence.  

Active participation in mating behavior was observed during the first three days of 

emergence, with much lower mating frequency observed in the remaining four days.  The 

number of egg masses laid were not significantly different among the strains (df=3, 2537 

F=0.464, P=0.708), although the average number of egg masses was significantly 

different among food sources (df=3, 2537, F=27.964, P=0.001).  The non significant 

interaction (df=9, 2537, F=0.037, P=1.0) between the strains and food sources supported 

similar fecundity trends in all strains with every tested food source.  A higher percent of 

egg mass hatch (fecundity) was recorded for all strains when fed on meridic diet, 

followed by soybean, maize, and with cotton, which had the lowest fecundity (Fig. 17A).   

Statistical analysis of the number of egg masses hatched per number of egg 

masses laid demonstrated no significant differences among the four strains (df=3, 2535, 

F=0.282, P=0.839).  However, hatchability differed significantly among the four food 

sources (df=3, 2535, F=24.869, P=0.001).  Higher hatchability was observed when larvae 

were fed on soybean, followed by maize and diet, and cotton resulting in the lowest 

percent of hatchability (df=3,9, F=8.099, P=0.006).  Statistical analysis of interactions 

between strain and food source indicated no significant differences in percent egg mass 

hatchability (df=9, 32, F=1.682, P=0.225) (Fig. 17B and 17C). 
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Figure 17. Mean (+ SEM) number of egg masses laid (A), hatched (B) and percent hatch  

(C) by Benzon (bar 1 in green), 456 (bar 2 in red), 456F (bar 3 in violet) and 456M (bar 4 

in blue) strains of S. frugiperda when fed tested four food sources in absence of Cry1Fa 

toxin.  
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4.4.6. Sex ratio 

The male to female sex ratio was estimated by sexing pupae from larvae of a 

second generation reared on a specific food source.  Chi-square analyses showed that the 

sex ratio was not significantly different from the expected 1:1 ratio in any of the 

treatments (Table 5).  A two-way ANOVA showed no significant difference in sex ratio 

among the four stains (df=3, 9, F=0.326, P=0.807) or among the different food sources 

(df=3, 9, F=1.495, P=0.281).  There is no significant interaction (df=9, 32, F=1.838, 

P=0.189) between strain and food and sex ratio patterns were similar among the four 

strains on all tested food sources.   
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Table 5. Sex ratio estimated among adult strains of Benzon, 456, 456M and 456F 

emerged from after fed with meridic diet, maize and, soybean leaf tissue and cotton 

reproductive tissues in absence of Cry1Fa toxin.  

 

  
 A

rt
if

ic
ia

l 
d
ie

t 

Strain 

Observed 

frequency 

Expected 

frequency 
     χ

2
 

P val 

 

Male/Female  

Female 

 

 

Male 

 

 

Female 

 

 

Male 

 

  

(df=1) 

 

Benzon 94 92 93 93 0.022 0.883 0.9787 

456 80 85 82.5 82.5 0.520 0.697 1.0625 

456F 82 74 78 78 0.412 0.528 0.9024 

456M 76 75 75.5 75.5 0.007 0.935 0.9868 

M
ai

ze
 

Benzon 88 84 86 86 0.093 0.760 0.9545 

456 76 79 77.5 77.5 0.058 0.809 1.0395 

456F 92 99 95.5 95.5 0.257 0.612 1.0761 

456M 95 93 94 94 0.021 0.884 0.9789 

S
o
y
b
ea

n
 

Benzon 82 86 84 84 0.095 0.758 1.0488 

456 81 83 82 82 0.024 0.876 1.0247 

456F 79 87 83 83 0.386 0.535 1.1013 

456M 95 95 95 95 0.000 1.000 1.0000 

C
o
tt

o
n
 

Benzon 80 85 82.5 82.5 0.152 0.687 1.0625 

456 81 79 80 80 0.025 0.874 0.9753 

456F 77 80 78.5 78.5 0.057 0.811 1.0390 

456M 80 84 82 82 0.098 0.757 1.0500 

 

 



98 
 

4.4.7. Stability of resistance 

To test the existence of fitness costs in individuals from the 456 (resistant) 

compared to Benzon (susceptible) and hybrid strains, an experiment was performed to 

test stability of resistance in a strain (Benx456) containing all possible genotypes for 

resistance to Cry1Fa according to Mendelian inheritance. The Cry1Fa LC95 concentration 

(3.88 µg/cm
2
) using generation 1 (heterozygous) larvae in diet surface contamination 

assays was determined (Fig. 18A).  This toxin concentration was chosen as a 

discriminatory dose to detect the presence of resistant individuals in a generation, as it 

resulted in >95% mortality of homozygous (Benzon) and heterozygous (from Benzon x 

456 crosses) larvae but induced marginal (<5%) mortality among 456 larvae.  Using this 

discriminatory dose, susceptibility in the Ben456 strain during sequential sib mating and 

rearing in meridic diet was tested for 12 generations.  Bioassays with the discriminatory 

Cry1Fa dose against neonate larvae did not detect significant differences (df=3,7,  

F=2.121, P=0.24) in susceptibility among larvae from the 2, 5, 10, and 12 generations.  

The 70-74% larval mortality detected in these generations supported the stability in the 

absence of a selective regime of the predicted proportion of homozygous resistant 

individuals in the populations considering Mendelian inheritance of resistance (Fig. 18B).   
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Figure 18. Stability of resistance to the Cry1Fa toxin in the S. frugiperda population 

associated with Tc-1507 Bt maize was tested by rearing stability population on meridic 

diet in the absence of Cry1Fa selection pressure. Cry1Fa LC95 dose discrimination value 

(3.85µg/cm
2
) was calculated for heterozygous population in generation 1 using surface 

diet contamination bioassays (Fig. A). The larval populations from generation 2, 5, 10 

and 12 were tested for their mortalities using the Cry1Fa LC95 concentrations (Fig. B).   

4.5. Discussion 

Results of life cycle trait comparisons and resistance stability studies support the 

absence of relevant fitness costs in S. frugiperda larvae with field- evolved resistance to 

Bt maize producing Cry1Fa toxin.  All the considered fitness parameters (survival, 

weight, developmental times, fecundity, and fertility) tested on diverse food sources 

(meridic diet, and leaf tissue of maize and soybean, and reproductive tissues of cotton) 

were similar among the susceptible and Bt maize-resistant strains, with the exception of a 

prolonged larval developmental period in resistant insects.  The fitness data obtained 

support that the suitability of the food source to S. frugiperda strains varied in the order 

of meridic diet>maize=soybean>cotton.  Similar data obtained with two alternative 
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hybrid strains support the lack of sex-linked fitness costs in resistance to Bt maize.  Data 

from resistance stability experiments revealed that resistance was stable within the tested 

12 generations on meridic diet, further supporting the lack of significant fitness costs 

associated with resistance. 

Previous studies have shown that reproductive capacity of many lepidopteran 

species is proportional to the nutrient reserves acquired during larval stages, and is 

correlated with larval and pupal mass gain (Leahy and Andow, 1994).  In the present 

study, no significant difference in larval and pupal weight between resistant and 

susceptible strains was observed, but a comparatively increased weight in hybrid larvae 

and pupae was detected.  A number of reports suggest that this increased weight gain in 

heterozygotes is due to crosses between strains of different genetic background (Carriere 

et al., 2006; Gassmann et al., 2008).  This increased weight gain in heterozygotes was 

concomitant with increased number of egg masses laid in the first day compared to 456 

and Benzon strains, although these egg masses were sterile.  Previous reports suggested 

that increased fecundity in heterozygotes is due to heterosis (Carriere et al., 2001a;Gahan 

et al., 2005; Sayyed and Wright, 2001).  However, in subsequent egg-laying periods no 

significant fecundity differences among all four strains were detected.  No differences in 

fertility were detected.  

 The success of current high dose/refuge strategies for Bt crops to hinder the 

development of Bt resistance in target insects relies on synchronized adult emergence 

among resistant and susceptible populations (Liu et al., 1999).  The lengthening of the 

larval period detected for the 456 strain would directly affect the random mating 
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assumption of current insecticide resistance management (IRM) models.  According to 

present data, susceptible adults would emerge 2-3 days before resistant adults, so that 

older susceptible moths would mate with the emerging naive resistant adults, increasing 

the probability of unsuccessful matings.  In experiments with Bt-resistant P. gossypiella, 

80% random mating occurred within 3 days of adult emergence.  An average delay of 5.7 

days in emergence of resistant compared to susceptible moths resulted in their 

asynchronous mating, although synchronous mating was observed between heterozygotes 

and susceptible adults.  In S. frugiperda the average mating period is three days after 

adult emergence (Simmons and Marti, 1992), and after three days there is a reduction in 

the male capacity to inseminate females, resulting in reduced laid egg numbers 

(fecundity) and reduced egg viability (Murua et al., 2008; Rogers and Marti, 1994).  

Considering this information, it is possible that unsuccessful matings may occur between 

resistant and susceptible S. frugiperda in the non-Bt maize refuge, as suggested by 

present developmental data with strains 456 and Benzon.  Furthermore, a higher 

percentage of adult emergence was synchronized between the 456 and heterozygote 

populations, which would favor matings between moths carrying at least one copy of the 

resistance allelle.  These scenarios would facilitate an increase in the frequency of the 

resistance allele in the population.   

Stable resistance to Bt var. kurstaki in a strain of P. xylostella was reported by 

Tang et al. (1997).  This strain remained ~ 300 fold resistant for 10 generations in the 

absence of selection in the laboratory.  In contrast, unstable resistance was documented 

for strains of P. xylostella resistant to Cry1C (Liu et al., 2001) and Trichoplusia ni 
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resistant to Bt var. kurstaki (Di-pel) (Janmaat and Myers, 2003).  The existence of fitness 

costs, especially when transmitted as a dominant trait, would favor resistance unstability.  

On the other hand, resistance stability could be a result of inherently fixed resistance 

alleles (Tabashnik et al., 1994b).  A S. frugiperda strain containing a mixture of 

susceptible, heterozygous and resistant genotypes was developed to monitor stability of 

resistance and asses the existence of significant fitness costs, when the resistance allele is 

not fixed in the population.  Stability of resistance in this strain supports that under tested 

conditions field-evolved resistance to Bt maize is not associated with significant fitness 

costs. 

Various physiological mechanisms associated with the steps in the mode of action 

of Bt toxin could be altered in resistant insects (Ferre and Van Rie, 2002; Taylor and 

Feyereisen, 1996).  In the 456 strain a reduction of Cry1Fa toxin binding to the midgut 

brush border membrane was identified as mechanism responsible for resistance.  This 

binding reduction is due to reduced expression of at least two alkaline phosphatase (ALP) 

genes in the midgut of 456 larvae (Chapter II).  Altered target sites could induce 

deleterious effects due to the disruption of physiological processes (Uyenoyama, 1990).  

Mutations in cadherin, APN, or ALP can cause fitness costs by alteration of cell 

recognition/signaling/communication, maintenance of cell structure, morphogenesis, 

angiogenesis, and phosphorylation function in proteolysis, active absorption of 

metabolites and transport processes in which these proteins are involved (Macintosh et 

al., 1991). Alternatively, Roush and McKenzie (1987), described as  pleiotropic effects or  

modifier genes could ameliorate fitness costs and stabilize resistance in the absence of 
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selection pressure in insect strains developed resistance to synthetic pesticides.  Thus, 

reduced expression of selected ALP genes may be compensated by the alternative ALP 

genes, resulting in normal ALP enzymatic function in 456 larvae.   

In field conditions, the magnitude and dominance of fitness costs in Bt-resistant 

insects can be affected by the suitability of crop hosts used in the refuge.  Suitability of 

host crops to susceptible populations is also relevant, as a less suitable host crop can 

result in fitness costs and can promote increased frequency of resistance (Carriere and 

Tabashnik, 2001b).  Thus, knowledge of the interaction between host plants and fitness 

costs associated with resistance to Bt crops could be helpful in guiding the choice of 

refuge cultivars.  Janmaat and Myers (2005) reported that in T. ni the magnitude of 

fitness costs associated with Bt resistance increased with declining host plant suitability.  

Bird and Akhurst (2007) reported that fitness of H. armigera heterozygotes from crosses 

between susceptible and Cry1Ac-resistant moths was reduced when reared on sorghum 

compared to cotton or pigeon pea.  In present assays a detrimental effect of any of the 

tested food sources in fitness of larvae from susceptible, resistant, or hybrid strains was 

not detected.  However, better overall performance of all the tested strains in soybean and 

maize compared to cotton was detected.  Based on these observations, the choice of 

refuge host would not be relevant in prevention of S. frugiperda resistance to Bt maize. 

 Resistance to Bt maize (TC1507) in S. frugiperda populations from Puerto Rico 

was transmitted as a recessive autosomal trait (Storer et al., 2010).  Based on this 

observation, one would predict that removal of the selective agent (event TC1507) would 

result in reduced resistance frequency if resistance-linked fitness costs exist.   However, 
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resistance to Cry1Fa in 2012 was still detected at similar levels compared to 2006, when 

the Cry1Fa maize was removed from the regional market (Storer et al., 2012).  Factors 

that may affect resistance stability, apart from fitness costs, include the presence of 

similar mode of action proteins (Cry1Ab and Cry1Ac) in transgenic maize and cotton, 

use of Bt-based formulations, geographic isolation of populations, and non-random 

mating between susceptible and resistant adults.  Data from present research suggest 

stability of Cry1Fa resistance in S. frugiperda after rearing for 12 generations in the 

absence of selection.  This stability may be due to observed lack of fitness costs in the 

456 strain.  In this regard, the slightly delayed adult emergence in the 456 strain could 

contribute to asynchronous mating and stabilize resistance.  While speculative at this 

point, this aspect may also be contributing to stability of resistance in field populations 

from Puerto Rico.   

The study of fitness costs and resistance stability in S. frugiperda resistant to 

Cry1Fa-producing maize provides a better understanding of effectiveness of resistance 

management practices at the field level.  Knowledge acquired from these studies provides 

an important opportunity to assess current resistance management practices.  These data 

support the potential importance of diverse factors that are not considered in the current 

high dose/refuge IRM strategy for Bt crops in determining stability of field-evolved 

resistance, including potential non-random mating, lack of relevant fitness costs, and low 

influx of susceptible alleles in resistant populations.  These factors may help explain the 

reported stability of resistance to event TC1507 in Puerto Rico.  Alternative transgenic 

maize crops expressing multiple genes with diverse mode of action (pyramiding) are 
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expected to effectively control S. frugiperda resistant populations (Storer et al., 2012).  

Present data emphasize that lack of fitness costs and stability of resistance in field- 

evolved Cry1Fa resistant S. frugiperda need to be considered in assessment of effective 

insect resistance management regulatory framework.   
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6. SUMMARY AND CONCLUSIONS 
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The use of Bt cotton and Bt maize expressing insecticidal protein genes from 

Baciilus thuringiensis has revolutionized insect pest management by killing only target 

pests without affecting other non-target insect species.  Field-evolved resistance 

development in target pest populations has become the major threat to the future utility of 

Bt crops.  So far few species have been identified for their field-evolved resistance to Bt 

maize or Bt cotton, but there is no available data on resistance mechanisms associated 

with field level resistance.  The present study provides the first characterization of a 

mechanism responsible for field-evolved resistance to Bt maize expressing the Cry1Fa 

toxin in Spodoptera frugiperda. 

Leaf tissues and diet contamination bioassays indicated that larvae from S. 

frugiperda strain 456 are highly resistant to maize producing the Cry1Fa toxin with 

recessive and autosomal mode of inheritance.  Binding and blotting experiments showed 

the reduced binding of Cry1Fa toxin to brush border membranes of resistant larvae 

compared to susceptible larvae.  The binding reduction was also observed for Cry1A 

toxins but not for Cry1Ca toxin.  This binding pattern is explained by shared binding sites 

for the Cry1A-Cry1Fa toxins that are not recognized by Cry1Ca toxin.  Immunoblot 

detection of Cry1Fa binding receptors and specific activity assays revealed reduced levels 

of alkaline phosphatase (ALP) and no significant reduction in protein levels of 

aminopeptidase (APN) in resistant compared to susceptible larvae.  The positive 

correlation between survival in maize producing Cry1Fa toxin and reduced ALP protein 

levels in resistant larvae was confirmed using a phenotypic linkage analysis.  Further 
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research is needed to understand the role of ALP as a functional Cry1Fa-Cry1A receptor 

in S. frugiperda.  Identification of interacting regions in Cry1Fa with receptors in BBMV 

from S. frugiperda will allow recognition of potential cross-resistance patterns with 

alternative available active toxins.  Once the genomic differences responsible for reduced 

ALP expression in resistant S. frugiperda are identified they may be used to develop 

DNA-based biomarkers for detecting resistance in field S. frugiperda populations.   

Larvae from the 456 strain exhibited cross-resistance to Cry1Ab-expressing maize 

and purified Cry1Ac toxin, but not to purified Cry1Bb, Cry1Ca, and Cry1Da toxins, or 

Xentari WG or Dipel ES pesticidal formulations.  These bioassay results agree with the 

existence of a shared Cry1Fa-Cry1A binding site in S. frugiperda.  The reduced 

expression of ALP in the resistant strain could cause potential fitness costs in the absence 

of Cry1Fa selection.  Present study only able to detect delayed larval development in the 

resistant compared to susceptible strain.  This delay resulted in asynchronous adult 

emergence between susceptible and resistant moths.  Stable resistance allele frequency 

was observed after rearing in the absence of Cry1Fa toxin for 12 generations.  

The long-term success of Bt crops expressing Cry insecticidal proteins will 

depend on the development of resistance in target insects.  Considering binding patterns 

and bio-efficacy detected in our work, the development of cross-resistance in S. 

frugiperda will be rare among Cry1F and Cry1Ca, and Cry1Fa and Cry1Da toxins, and 

thus the strategy of combining these Cry toxins in pyramided crops is advisable.  

The lack of fitness costs and cross-resistance patterns in S. frugiperda need to be 

considered in formulating effective resistance management methods.  A combination of 
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other insect pest control methods along with pyramided crops expressing multiple Bt 

toxins have to be included in regulatory framework for delaying or avoiding development 

of resistance in target insects to transgenic Bt technology.  
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Two-way ANOVA for larval survival.  

 

Source 

 

Type III Sum of 

Squares 

Df 

 

Mean Square 

 

F 

 

Sig. 

 

Strain 31.738 3 10.579 0.359 0.784 

Food 354.004 3 118.001 4.009 0.046 

Replication 30.518 1 30.518 1.037 0.335 

Food * strain 34.180 9 3.798 0.129 0.997 

Strain * Rep 79.346 3 26.449 0.899 0.479 

Food * Rep 84.229 3 28.076 0.954 0.455 

Error 264.893 9 29.433   

Total 282128.906 32    

 

R Squared = 0. 70 (Adjusted R Squared = -0.04) 

 

 

Two-way ANOVA for larval weight.  

 

Source 

Type III Sum of 

Squares Df Mean Square F Sig. 

Strain 200450.293 3 66816.764 39.227 0.000 

Food 5555983.887 3 1851994.629 1087.287 0.000 

Replication 10829.004 1 10829.004 6.358 0.057 

Strain * Food 26771.973 9 2974.664 1.746 0.294 

Strain * Rep 10568.262 3 3522.754 2.068 0.233 

Food * Rep 15536.230 3 5178.743 3.040 0.123 

Error 1705021.191 1002 1703.318   

Total 81705700.000 1024    

 

R Squared = 0. 99 (Adjusted R Squared = 0.99) 
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Two-way ANOVA for pupal weight.   

 

Source 

 

Type III Sum of 

Squares 

Df 

 

Mean Square 

 

F 

 

Sig. 

 

Strain 40694.168 3 13564.723 35.618 0.0001 

Food 3671433.543 3 1223811.181 3213.447 0.0001 

Rep 1392.223 1 1392.223 3.656 0.056 

Strain * Food 9068.129 9 1007.570 2.646 0.065 

Strain * Rep 350.730 3 116.910 .307 0.820 

Food * Rep 7456.043 3 2485.348 6.526 0.071 

Error 381221.441 1002 380.841   

Total 33199436.000 1024    

R Squared = 0.91 (Adjusted R Squared = 0.91) 

 

 

Two-way ANOVA for larval developmental time.  

 

Source 

 

Type III Sum of 

Squares 

Df 

 

Mean Square 

 

F 

 

Sig. 

 

Strain 0.305 3 0.102 529.377 0.0001 

Food 5.935 3 1.978 10309.579 0.0001 

Replication 0.002 1 0.002 7.866 0.511 

Food * Strain 0.025 9 0.003 14.690 0.605 

Strain * Rep 0.007 3 0.002 12.538 0.581 

Food * Rep 0.058 3 0.019 100.382 0.018 

Error 0.190 1002 0.000   

Total 1614.092 1024    

 

R Squared = 0. 995(Adjusted R Squared = 0.984) 

Data were log10 transformed. 
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Two-way ANOVA for pupal developmental time.  

 

Source 

 

Type III Sum of 

Squares 

Df 

 

Mean Square 

 

F 

 

Sig. 

 

Strain 0.047 3 0.016 32.028 0.687 

Food 0.829 3 0.276 565.070 0.001 

replication 0.006 1 0.006 12.399 0.224 

Strain * Food 0.009 9 0.001 2.152 0.897 

Strain * rep 0.001 3 0.000 0.434 0.920 

Food * rep 0.000 3 0.000 0.266 0.869 

Error 0.490 1002 0.000   

Total 934.920 1024    

 

R Squared = 0.72 (Adjusted R Squared = 0.72) 

Data were log10 transformed. 

 

 

Two-way ANOVA for adult longevity.  

 

Source 

 

Type III Sum of 

Squares 

Df 

 

Mean Square 

 

F 

 

Sig. 

 

Strain 0.027 3 0.009 4.784 0.063 

Food 1.271 3 0.424 222.326 0.000 

Rep 0.003 1 0.003 1.318 0.251 

Food * Strain 0.026 9 0.003 1.513 0.138 

Strain * Rep 0.002 3 0.001 0.291 0.832 

Food * Rep 0.004 3 0.001 0.737 0.530 

Error 1.909 1002 0.002   

Total 1304.732 1024    

R Squared = 0.65 (Adjusted R Squared = 0.64) 

Data were log10 transformed. 
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Two-way ANOVA for adult emergence (total larval and pupal developmental time).  

 

Source 

 

Type III Sum of 

Squares 

df 

 

Mean Square 

 

F 

 

Sig. 

 

Strain 0.196 3 0.065 391.293 0.0001 

Food 3.667 3 1.222 7330.923 0.0001 

Rep 8.820E-6 1 8.820E-6 0.053 0.818 

Food * Strain 0.009 9 0.001 6.217 0.0001 

Strain * Rep 0.004 3 0.001 7.602 0.0001 

Food * Rep 0.023 3 0.008 45.119 0.0001 

Error 0.167 1001 0.000   

Total 2099.953 1024    

R Squared = 0.96(Adjusted R Squared = 0.96) 

Data were log10 transformed. 

 

 

Two-way ANOVA for average number of egg masses laid.  

 

Source 

 

Type III Sum of 

Squares 

df 

 

Mean Square 

 

F 

 

Sig. 

 

Strain 0.983 3 0.328 0.464 0.708 

Food 59.258 3 19.753 27.964 0.0001 

Rep 0.625 1 0.625 0.885 0.347 

Food * Strain 0.233 9 0.026 0.037 1.000 

Strain * Rep 0.097 3 0.032 0.046 0.987 

Food * Rep 3.416 3 1.139 1.612 0.185 

Error 1792.062 2537 0.706   

Total 3086.000 2560    

R Squared = 0.35(Adjusted R Squared = 0.26) 

Data were log10 transformed. 
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Two-way ANOVA for average number of egg masses hatched. 

 

 

Source 

 

Type III Sum of 

Squares 

df 

 Mean Square 

F 

 

Sig. 

 

Strain 0.505 3 0.168 0.282 0.839 

Food 44.569 3 14.856 24.869 0.000 

Rep 0.075 1 0.075 0.125 0.724 

Food * Strain 0.628 9 0.070 0.117 0.999 

Strain * Rep 0.632 3 0.211 0.353 0.787 

Food * Rep 2.951 3 0.984 1.647 0.177 

Error 1514.380 2535 0.597   

Total 2305.000 2558    

R Squared = 0.32(Adjusted R Squared = 0.23) 

Data were log10 transformed. 

 

 

Two-way ANOVA for percent average egg masses hatch. 

 

Source 

 

Type III Sum of 

Squares 

df 

 

Mean Square 

 

F 

 

Sig. 

 

Strain 176.309 3 58.770 2.047 0.178 

Food 697.602 3 232.534 8.099 0.006 

Rep 0.043 1 0.043 0.002 0.970 

Food * Strain 434.652 9 48.295 1.682 0.225 

Strain * Rep 26.574 3 8.858 0.309 0.819 

Food * Rep 0.126 3 0.042 0.001 1.000 

Error 258.415 9 28.713   

Total 184750.594 32    

 

R Squared = 0.838(Adjusted R Squared = 0.441) 
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Two-way ANOVA for sex ratio.  

 

Source 

 

Type III Sum of 

Squares 

df 

 

Mean Square 

 

F 

 

Sig. 

 

Strain 0.004 3 0.001 0.326 0.807 

Food 0.016 3 0.005 1.495 0.281 

Rep 0.000 1 0.000 0.037 0.852 

Food * Strain 0.059 9 0.007 1.838 0.189 

Strain * Rep 0.014 3 0.005 1.328 0.325 

Food * Rep 0.022 3 0.007 2.066 0.175 

Error 0.032 9 0.004   

Total 33.340 32    

 

R Squared = 0.782 (Adjusted R Squared = 0.248) 
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