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Abstract

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling

plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma

propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave

interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model

or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes

and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At

present, major challenges are imposed on solving these physical models both analytically and numerically.

This dissertation alleviates these challenges by investigating new frameworks that facilitate efficient mod-

eling of plasmas beyond the MHD description. Two investigations are performed: first, an isomorphism is

constructed between the two-fluid plasma model and the Maxwell equations. This permits a set of unified

Maxwell equations for both the electrodynamic and hydrodynamic behavior, but introduces an analogous

notion of charge and current density for a fluid, which must be modeled to solve the new equations. We

examine the homogeneous case (where these sources vanish), and then discuss iterative approaches and em-

pirical modeling of the sources. We calculate some simple source models for fluid problems, including Blasius

boundary layer flow. We demonstrate solution approaches using Green’s functions methods and the method

of images, for which a closed-form solution to Blasius boundary layer flow is achieved.

The second investigation recasts the single-fluid model into a strong conservative form. This permits the

coupled Navier-Stokes and full Maxwell equations to be written exactly, but with no source terms present,

which tend to cause numerical instability during simulation. The removal of the source terms is shown to

improve the stability and robustness of the equations, but at the cost of introducing a significantly more

complicated eigenstructure; we present the new eigenstructure for this system of equations and demonstrate

an effective Riemann solver and flux splitting approach. Validation tests including magnetohydrodynamic

problems, radio wave propagation tests and plasma instabilities and turbulence are presented.

vi
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Chapter 1

Introduction and Motivation

“They say great science is built on the shoulders of giants. Not here. At

Aperture, we do all our science from scratch. No hand holding.”

Cave Johnson [1]

1.1 Prologue

Key technologies, including hypersonic flight, advanced propulsion and fusion energy, rely on the construction

of a sound physical model to characterize the plasma physics these technologies possess. Major strides have

been taken in both the development of new engineering devices based on these technologies, and our capability

to understand, model and predict them. However, lack of a complete understanding of the underlying physics,

and major challenges that beset our capability to accurately and efficiently model them with only modest

computational effort, requires new advances to our knowledge.

If a plasma is subjected to forces consistent with a fluid treatment, then a minimal physical model may

be fashioned by the union of the electromagnetic equations (Maxwell’s equations1) and the fluid dynamic

equations (Navier-Stokes equations2). Coupling between these two models must additionally be prescribed,

which will be discussed in detail later. More complex models must be supplemented for other significant

phenomena (such as radiation transport, surface wall chemistry, nonequilibrium processes, laser/plasma in-

teractions, ablation, etc.) Our capability to model these is challenged by three major factors: the appearance

1Maxwell’s equations, as popularized in vector form by Heaviside [2,3], include the Gauss laws for the electric and magnetic

field, Faraday’s law, and the Ampere-Maxwell law. Maxwell assembled these equations with his displacement current correction

to Ampere’s law in 1865 [4,5]. When we use the term Maxwell’s equations, we will always imply the inclusion of the displacement

current.
2The Navier-Stokes equations are comprised of the mass, momentum and energy conservation laws for viscous compressible

flows. [6] The Navier-Stokes equations were independently derived five different times: by Navier in 1821, by Cauchy in 1823,

by Poisson in 1829, by Saint-Venent in 1837, and by Stokes in 1845. [7]
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of multiple and highly disparate frequencies in the system, numerical stability and stiffness issues incurred

in the solution procedure by the presence of large and rapidly varying source terms, and the appearance of

both wave and diffusion transport behavior in the same domain of interest.

The inclusion of all of the relevant frequencies belabors any computational approach to solving the

system. If, for simplicity, only the electromagnetic and inviscid gasdynamic equations are considered, then

the speeds involved in characterizing the system behavior are velocity, sonic velocity, and the speed of light.

If we consider a Mach 20 flow in the upper atmosphere, then our fluid and sonic velocities will be on the order

of ∼ 7, 000m/s, which is still five orders of magnitude smaller than the speed of light, c0 = 2.9979× 108m/s.

Since explicit numerical schemes are typically limited to time scales based on the fastest speed in the system,

we will be forced to spend an excessive amount of computational effort to resolve even modest problems,

in order to see responses that occur on the fluid time scale while resolving transients in the electrodynamic

behavior [8].

In a plasma, the electromagnetic and fluid behaviors are coupled. When writing the equations, the most

frequent way of expressing this coupling is by adding explicit source terms to the equations. The Lorentz

body force and Ohmic dissipation terms are added to the fluid momentum and energy equations, and the

current density, which now depends on the fluid velocity, is added to the Maxwell equations. Physically,

this is a perfectly valid formulation of the coupling. Numerically, however, these source terms can grow very

large and very stiff, which can drive the maximum stable timestep even lower than the time scale of the

speed of light. This presents a significant difficulty to our capability to resolve a numerical solution to these

equations.

Finally, the electromagnetic and fluid dynamic equations are, in their full time dependent form, hyper-

bolic partial differential equations, characterized by wave transport of information. But when the electrical

conductivity becomes very high (high-conductivity plasmas are ubiquitous to many plasmas of engineering

interest) the equations often reach a parabolic limit, characterized by diffusive transport of information. If

we are to solve these equations and resolve their full behavior, then we are compelled to use hyperbolic

methods. But if the conductivity becomes large, and the parabolic limit is reached, the equations become

stiff and sometimes even numerically ill-posed for hyperbolic techniques.

One approach to dealing with the difficulties described above is to make an appropriate approximation

to the coupled system. For example, since high conductivities appear very frequently in plasmas of en-

gineering interest, and since in the high-conductivity limit the magnetic field behaves parabolically (i.e.,

diffusively), we could simply take the parabolic limit of the magnetic field. This conveniently assumes that

the propagation speed of the electromagnetics (the speed of light) is infinite, so we lose the vast disparity

in speeds. Since we’ve taken the parabolic limit, we expect no hyperbolic behavior to result. This approx-

imation is called the magnetohydrodynamic (MHD) approximation, and the resulting simplified system is

called the magnetohydrodynamic (MHD) model. Credit for the development of this model is usually given

to Swedish physicist Hannes Olof Gösta Alfvén, who in 1970 was awarded the Nobel prize in physics “for
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fundamental work and discoveries in magnetohydrodynamics with fruitful applications in different parts of

plasma physics.” [9] Indeed, the MHD model has successfully predicted the existence of a series of waves

(called magnetohydrodynamic waves) that have found applicaton throughout plasma physics, even including

general relativistic astrophysical phenomena.

The MHD model has become the incumbent approach for modeling and predicting the behavior of

macroscopic plasmas. However, there are some significant drawbacks that limit the validity of this model.

When the conductivity is not high, the MHD approximation cannot be valid, and a wave description of the

magnetic field must be included. Instabilities that are driven by waves and modes not permitted in the MHD

model due to its limiting assumptions cannot be predicted or studied using this framework. The missing

physics, often collectively referred to as two-fluid effects, manifest themselves as singular perturbations in the

MHD system, since they have been neglected in this model. Furthermore, any study of the electromagnetic

wave interaction with the plasma is simply not permitted, since we have restricted ourselves by assumption

only to parabolic phenomena, and excluded any hyperbolic electromagnetic behavior.

In the cases where the MHD model is of questionable validity, particle and kinetic approaches can be

used instead. Particle techniques, such as particle-in-cell (PIC) schemes and related methods, retain the

full ensemble of particles composing the plasma (or, more frequently, some representative superparticles

approximating smaller ensembles). Kinetic methods seek to construct a solution to Boltzmann’s equation

[10], which will determine the equilibrium distribution function of the particles in the plasma. In either case,

a knowledge of the collective particles allows for a prediction of the behavior of the plasma. However, PIC

and kinetic methods are usually cumbersome when the plasma is sufficiently high-density enough that an

excessive number of particles are needed. When large numbers of particles are required, PIC and kinetic

methods become intractable to solve on modern hardware, and even in the cases where they can be calculated,

the computational time required is excessive. Fluid models are more economical for higher-density problems,

but again, we are restricted either by the approximations to the physical system (as in the case of the MHD

model) or by the challenges imposed on solving the complete system, as aforementioned.

This dissertation improves upon our capabilities to model plasmas by constructing a method by which

we can more efficiently model dense plasmas including the underlying physics mising in the MHD theory.

Two particular models are of interest: the two-fluid plasma model, sometimes called the multi-fluid plasma

model, which consists of a set of moment equations per species (usually two suffices), coupled to the full

Maxwell equations. The second model is less general, but still retains much of the missing effects discarded

in the MHD model; since the electron mass is typically several orders of magnitude smaller than the ion

mass, we discard the electron fluid and introduce a bulk single-fluid model coupling a single set of moment

equations to the full Maxwell equations. This model permits charge separation effects, electromagnetic

wave propagation, and low-conductivity resolution where the MHD framework fails. The two-fluid model

additionally adds multiple species effects and intrinsically captures Hall effects. We present two approaches

explored to improve our capabilities for modeling plasmas described by these more general frameworks.
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The first approach is a more creative exploration that constructs an isomorphism between the two-fluid

plasma model and the Maxwell equations of classical electrodynamics. Doing so reveals a set of Maxwell

equations for the plasma in new, generalized fields that unite the electrodynamic and hydrodynamic character

of the plasma. This extends previous efforts for formulating the Maxwell equations for fluids to the case

of a plasma. The challenge in utilizing the new framework is the presence of new generalized charge and

current densities, which are superpositions of the normal electric charge and current densities, and new

fluid charge and current densities. Either iterative approaches or empirical modeling must be used for

solving the isomorphic field equations for the fields and the sources (charge and current densities). This

investigation revealed that, at present, iterative approaches are not advantageous, and so instead empirical

modeling of the source terms was attempted. Since the electric charge and current densities are already

understood, most of the challenge lies in determining the properties and behavior of the fluid charge and

current densities. Furthermore, it is of benefit to construct simple models, since these simple models may be

used as fundamental building blocks for constructing sources for more complicated phenomena. In order to

examine some of these simple models, we first take an analytical approach to examining steady, incompressible

charge and current densities for some simple flows. To examine more difficult flows, we resort to numerical

simulation to reveal qualitatively the nature of the fluid charge and current. We show that typical methods

from electromagnetism are sufficient for solving these problems, given a form for the fluid sources. The

ultimate challenge with this framework is a deficit of available data to harvest source terms; this led to the

second approach, which proved much more successful in directly meeting our stated objective.

The second approach examines a finite volume numerical solution approach, wherein the equations of

motion are cast into a strong conservative form. The coupling between the fluid dynamic and electrodynamic

systems in this framework is typically accomplished by adding source terms to these equations which depend

on the other respective system. In this investigation, we examine a new way of recasting the equations

into a strong conservative form that does not have explicit source terms, even though the system is exactly

coupled to the full Maxwell equations. This is accomplished by introducing the conservation equations

of electrodynamics and posing the coupling in terms of the Poynting propagation vector, Maxwell stress

tensor and electromagnetic energy density. By rewriting the coupling in this manner, the Lorentz body

force and Ohmic dissipation terms appear as derivatives of the new electromagnetic quantities, and may be

united directly in the solution and flux vectors. This removes the appearance of explicit source terms in

the system, which is shown to significantly stabilize the equations numerically. The new strong conservative

form is implemented in an implicit finite volume solver, and validations for several problems are presented

using both the Roe [11] and Advected Upstream Splitting Method (AUSM3) [12] flux schemes. The strong

conservative form is benchmarked against the traditional source-coupled approach, and improvements in both

accuracy and computational speed are seen in the new method for finite conductivities. It is further shown

that the two-fluid plasma system cannot directly enjoy this approach without either some approximation,

3Pronounced ‘awesome’
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fortuitous mass ratio between the different species, or reformulation of the equations.

1.2 An Overview of Plasma Physics

At low temperatures, gases and fluids are typically electrically inert, and the microscopic processes governing

their bulk behavior is best given by elastic collisions (for gases) and Van der Waals forces (for liquids).

Applied electromagnetic fields typically cause little effect here. As heat is added and the temperature of

the gas or fluid is raised, the molecules dissociate, and at even higher temperatures, the addition of heat

will eventually ionize neutral constituents by providing sufficient ionization energies to the bound electrons.

The freed electrons and resulting ions provide a net microscopic charge within a Debye length of the fluid

(defined below); it is well known that charges respond very well to applied fields. Therefore, at higher

temperatures, gases and fluids possess new dominant behaviors introduced when electromagnetic fields are

applied, due to the presence of free microscopic charge. We refer to any such fluid that responds well to

applied electromagnetic fields as a plasma.4

Plasmas possess a very diverse and complicated underlying structure, due to the interaction between the

fluid and electrodynamic fields. The presence of microscopic charge, multiple species and multiple frequencies

constitute an abundance of phenomena that may result. The dominant physical mechanisms that govern

the bulk behavior of a plasma depend strongly on the state of the plasma. The conventional approach to

describe this mixture of behavior is to identify a small number of plasma parameters that govern the overall

plasma. These plasma parameters form a phase space within which different competing physical mechanisms

dominate in different parts of the phase space. This leads to a diverse landscape of possible phenomena,

which is most directly amenable to a zoological approach of classification [13].

It is sensible to define and quantify some of these parameters before continuing our discussion regarding

them.

1.2.1 Plasma Parameters

All plasmas are endowed with some characteristic length scale, L, usually associated with the scale of the

apparatus or the phenomenon of interest, a collection of temperatures, Tα, for each species α in the plasma,

an electron number density, ne, and a characteristic magnetic induction field strength, B. Below, we briefly

introduce some of the other significant parameters of interest. A more complete presentation can be found

in [10,14–16]. These parameters characterize the different length and time scales present in a plasma.

4Dispensing with the single process of ionization identified (i.e., heat transfer), we will extend this term to include fluids that

respond to electromagnetic fields due to any process of ionization, such as photoionization or chemiionization.
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1.2.1.1 Debye Length, λD

The Debye shielding length is a length scale over which charge non-neutralities are detectable and significant.

A charged test particle may detect and influence other charged particles that are present within the a Debye

length; particles beyond the Debye length essentially cannot be felt or influenced by the test particle.

Suppose we have a collection of N species. The charges and number concentrations of each species, k,

are given by qk and nk, k ∈ (1, ..., N). A static arrangement of these particles will form a net charge, and

hence, a net electrostatic field, φ(x), given by Poisson’s equation,

∇2φ (x) = − 1

ε0

N∑
k=1

qknk (x) (1.1)

We can usually additionally assume that the collection of particles is in thermodynamic equilibrium, which

implies that the number density of species k is given by the Maxwell-Boltzmann equilibrium solution,

nk (x) = n0k exp

(
−qkφ (x)
kBT

)
(1.2)

where kB is the Boltzmann constant, n0k is the mean number density of species k, and T is the temperature.

Substitution of this for the instantaneous field leads to a Poisson-Boltzmann equation describing the net

electrostatic field generated,

∇2φ (x) = − 1

ε0

N∑
k=1

qkn0k exp

(
−qkφ (x)

kBT

)
(1.3)

This is a nonlinear equation, for which solutions may be determined for some simple cases; however, if we

consider the system weakly coupled and the thermal energy, kBT , to be much larger than the electric energy,

qkφ, then we can expand the exponential to first order, and we additionally assume the system was initially

electrically neutral,
∑N

k=1 qkn0k = 0; our equation becomes the Debye-Hückel equation for high-temperature

systems,

∇2φ (x)−

(∑N
k=1 q

2
kn0k

ε0kBT

)
φ (x) ≡ ∇2φ (x)− 1

λ2D
φ (x) = 0 (1.4)

which is a Helmholtz equation for the electrostatic potential, φ (x). The solution takes the form of a Yukawa

potential,

φ (x) =
qT

4πε0r
exp (−r/λD) (1.5)

The characteristic length scale, λD, determines the distance over which the charge is effectively screened

by surrounding charges. Therefore, in a qualitative sense, charges may only detect or ‘sense’ other charges

within their Debye sphere; outside of the Debye sphere, the potential generated by a charge falls off and
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effectively cannot be sensed. This phenomenon is collectively referred to as Debye screening or shielding.

Typically, the ion contribution to the term λD can safely be neglected, and we arrive at the accepted form

for the Debye length in a plasma,

λD ≡
√
ε0kBT

e2ne
(1.6)

where ne is the electron number density and e is the fundamental charge of the electron.

1.2.1.2 Plasma Parameter, Λ

Moving charged particles will experience Coulombic collisions as they pass. These long-range collisions

compete with gasdynamic elastic collisions. Weakly and strongly ionized gases can be quantitatively char-

acterized by comparing the relaxation times of the electron-neutral and electron-ion collisions. In order to

establish the ratio of these relaxation times, some quantity representative of the character of the Coulombic

collisions must be developed. Most developments [10, 14–17] solve the Rutherford scattering problem to

determine an effective cross-section for cumulative ‘grazing’ (long-range) collisions and close-range impacts.

Developing a ratio for the grazing-to-long-range collisions will introduce this parameter directly.

Alternately, we could simply define the plasma parameter directly as

Λ =
4

3
πneλ

3
D (1.7)

This value represents the number of electrons within a sphere of Debye radius. The logarithm of this

parameter can be shown to be proportional to the ratio of long-range and close-range Coulombic interactions,

τ90
τD

' σD
σ90

' ln (Λ) (1.8)

Here τ indicates a relaxation time, σ indicates a cross-section, and subscripts 90 and D indicate close-range

and cumulative grazing effects, respectively. The close-range effects exhibit a complete loss of the initial

momentum associated with their initial velocity (i.e., a 90-degree collision).

The plasma parameter, Λ is particularly effective in determining whether the plasma is weakly or strongly

ionized. The electron-ion relaxation time is inversely proportional to ln (Λ), which means that as ln (Λ)

increases, the Coulombic collisions play a more and more important role (generally meaning the plasma is

more strongly ionized). The plasma parameter tends to increase with increasing temperature and decrease

with increasing electron number density. The typical range of lnΛ is between 1 and 10.

1.2.1.3 Larmor Radius, rL

Charged particles immersed in a magnetic field tend to gyrate. The radius of gyration (called the Lamor

or cyclotronic radius) can be computed directly by equating the Lorentz force law with the centripetal
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acceleration of the particle. This yields the Larmor length for a particle,

rL =
mv⊥
qB

(1.9)

where v is the velocity vector, B is the magnetic field, v⊥ is the component of velocity perpendicular to B,

and m and q are the mass and charge of the particle, respectively.

1.2.1.4 Cyclotron Frequency, ωc

The frequency of orbits gyrated by a particle is given by the cyclotron frequency, ωc, given by

ωc =
qB

m
(1.10)

The cyclotron frequency and radius are hence related as

rL =
v⊥
ωc

(1.11)

where v⊥ is the component of velocity perpendicular to the magnetic field.

1.2.1.5 Plasma (Langmuir) Frequency, ωp

Consider a plasma in which the electrons are uniformly displaced some distance from the ions. Associated

with the subsequent motion, there is a natural harmonic oscillation established between the ions and elec-

trons. Since the ions are much more massive than the electrons, assume that they are fixed. The electronic

motion in one dimension may be given succinctly by a force equation,

d2x

dt2
= − nee

2

meε0
x ≡ −ω2

px (1.12)

which implies that

ω2
p =

nee
2

meε0
(1.13)

where ne is the electron number density, me is the electron mass, and e is the fundamental electron charge. A

distribution of electrons undergoing an oscillation with this frequency is called a Langmuir wave. In solid state

plasmas, an effective semiclassical mass, m∗
e, may be determined to replace the me in the above expression,

representing the plasma frequency associated with solid state devices; typically, the plasma frequency in a

solid state plasma is much higher than a gaseous plasma, due to a much higher number density, ne [18].

In practice, the plasma frequency, ωp, establishes several other very important characteristics of the

plasma. A particularly striking example is the propagation of a radio wave into a plasma. If the plasma

frequency is higher than the frequency of the electromagnetic wave, then the charges within the plasma are
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capable of rearranging fast enough to counter the wave and cancel it out. In this case, electromagnetic waves

cannot penetrate a plasma with a higher plasma frequency. An obvious point of experimental demonstration

of this fact is the reflection of short-wave radio off of the ionosphere. This behavior poses a problem for

radio communications to vehicles re-entering the earth’s atmosphere, as a plasma sheath with a high plasma

frequency will tend to envelope such craft.

1.2.1.6 Skin Depth, lc

When electromagnetic radiation impinges on a material, there will be a reflected and transmitted component.

The transmitted component may propagate into the material, or die off very quickly. The depth to which the

radiation travels before falling to 1/e of its surface (or ‘skin’) value is a meaningful length scale to associate

with a plasma. This can be a particularly important quantity in dealing with plasma waves. This distance

is called the penetration depth or skin depth5. In a plasma, the Langmuir frequency, ωp, usually determines

the frequency of behavior, and so a meaningful plasma length scale (also termed the skin depth) is

lc =
c

ωp
(1.14)

where ωp is the Langmuir frequency of the plasma.

1.2.1.7 Collision Frequency, ναβ

The frequency of collisions between two species, α and β, is usually denoted ναβ and is typically strongly

tied to the cross section of the collision of the two species. In weakly ionized plasmas, generally the electrons

will collide most frequently with neutral atoms and molecules; hence, the electron-neutral collision frequency,

νEN , will dominate over the electron-ion collision frequency, νEI . Since the plasma parameter, lnΛ, depends

as the inverse of the relaxation times between these two different classes of collision, generally a weakly

ionized plasma requires only a moderate value of Λ (usually about 10). Larger Λ will tend to indicate that

the Coulombic collision frequency, νIE , is not insignificant relative to the neutral collision frequency.

For elastic collisions, we may take the cross section of the particles to be Qn = πd20, where d0 is the

effective radius of the neutral particle. Typically this cross section is of the order ∼ 10−19m2. From this, the

collision frequency will be νEN = Qnnn〈ve〉, where nn is the number density of the neutral collision partners

and 〈ve〉 is the average speed of the colliding electrons.

If the plasma is highly ionized and the Coulombic collisions dominate, then most of the collisions are

small-angle scattering collisions between all particles in a Debye sphere. In this case, the electron-ion collision

frequency governs most of the character of the collisionality in the plasma, νEI = neQc〈ve〉, where Qc is

the Coulombic cross section. Calculating this cross section can be very involved, but typically an effective

5In the literature, different definitions prevail. Sometimes there is a factor of 2 difference between these two quantities.

Sometimes there is not.
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impact parameter is taken as

dc ∼
e2

4πε0me〈ve〉2
(1.15)

and thus the Coulombic cross section is given by

Qc = πd2c ∼ e4

16πε20m
2
e〈ve〉4

(1.16)

and thus the Coulombic collision frequency is rough proportional to

νEI = neQc〈ve〉 ∼
nee

4

16πε20m
2
e〈ve〉3

(1.17)

If we assume that the plasma is in thermal equilibrium, then the following ratio scaling applies:

νEE ∼ νEI (1.18)

νII ∼
√
me/miνEE (1.19)

νIE ∼ (me/mi) νEE (1.20)

1.2.1.8 Mean Free Path, λmfp

The mean free path is a length scale representing the distance that a particle is most likely to travel before

a collision is expected. In terms of the collision frequency, the mean free path is most directly defined as

λmfp =
〈v〉
ν

=
1

Qn
(1.21)

where 〈v〉 is the average speed of the species of interest, and ν is the collision frequency of interest. Q is

the cross section corresponding to the collision frequency, and n is the number density of the corresponding

colliding species. There exists a mean free path for each permutation of collision possible, although generally

the dominant mean free path is that determined by the most dominant collision to be expected (in weakly

ionized plasmas, the electron-neutral collision frequency).

For a fully-ionized plasma, the dominant collision is the Coulombic long-range scattering, which is char-

acterized by νEI . We can show that

λmfp ∼ 〈ve〉
νEI

∼ 64πλD
Λ

ln (Λ)
(1.22)

and since lnΛ ≥ ∼ 10, the mean free path is enormous compared to the Debye length.
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1.2.1.9 Hall Parameter, βH

As aforementioned, a particle immersed in a magnetic field tends to gyrate about the field lines. The current

in a plasma of particles subjected to a background magnetic field tends to be proportional to the effective

electric field. However, we can imagine that, if the magnetic field is strong enough to cause sufficient gyration,

there will be a transverse component of current introduced due to the curved motion of the particles between

collision impacts.

This tranverse current is realized in a plasma with a sufficiently strong magnetic field that causes strong

gyration relative to the longitudinal current. The new transverse component is the Hall current, analogous

to a similar effect seen in conductive solids and liquids. To quantify the influence of the Hall current, we

introduce the Hall parameter, which measures the ratio of the gyration frequency, ωc, relative to the collision

frequency,

βH =
ωc

νEα
=

eB

meνEα
=
λmfp

rL
(1.23)

where α here denotes the heavy particles. If the Hall parameter is sufficiently large, then the transverse

component of current is significant and must be included. When the Hall parameter is much lower than

unity, the Hall current behaves in a linear sense (with no significant trajectory introduced by gyration in

the magnetic field), and Hall effects are negligible. The Hall parameter is proportional to the magnetic field

strength. The form of the Hall current will be discussed in Section 2.5.

1.2.1.10 Plasma Electrical Conductivity, σ

The electrical conductivity, σ, of a plasma is a macroscopic measure of how easily current may flow across it.

In many plasmas, the conductivity is usually very high, such that one may frequently neglect terms propor-

tional to the inverse of conductivity (this leads to the ideal MHD model). The classical scalar conductivity

of a plasma is usually given as

σ =
nee

2

meνEα
(1.24)

where α can denote either the ions or neutrals, whichever dominates. For macroscopic models, Ohm’s law

is a constitutive relation that fashions a quantitative form of the current density. The form of the current

density based on Ohm’s law will be discussed in detail in Section 2.5; if we neglect Hall and other transverse

currents, we can simplify Ohm’s law to a very simple vector form,

je = σE+ σu×B (1.25)
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Table 1.1: Typical plasma parameters for various plasmas. [10, 15]

n T L λD rL ln (Λ) ωp ωc

(m−3) (eV) (m) (m) (m) (Hz) (Hz)
Gas Discharge 1016 1 1 10−4 — 10 1010 —
Magnetic Fusion (Tokamak) 1020 104 10 10−4 10−5 20 1012 1012

Inertial Fusion 1031 104 10−5 10−10 — 8 1018 —
Ionosphere 1011 0.1 105 10−2 10−1 14 108 106

Solar Wind 107 10 1011 10 104 25 105 102

Magnetosphere 104 10 108 102 104 28 105 103

Here E+u×B is an effective electric field due to the motion of the plasma. The magnitude of the conductivity,

σ, is given in its simplest form by equation 1.24; however, the conductivity is more generally tensorial and

cannot be expressed by a scalar value. In this case, transverse currents (often due to the Hall effect) must

be accounted for as well. In the case of a solid state plasma, the conductivity is typically larger, due to a

higher electron mobility.

1.2.2 Typical Values for the Plasma Parameters

The scales spanned by these parameters are immense. We can refer to the same governing behavior of the

magnetic field in a bead of liquid metal, or the molten interior of the earth’s core. We can examine similar

shock structures formed from a laboratory plasma in a shock tube spanning microns, or an astrophysical

dusty plasma covering astronomical units. Of course, not all of the behavior of the plasma will be preserved

with all scale changes; a plasma could be as dense as a near vacuum, or as dense as the interior of a star. It

could possess energies we experience on an everyday basis to energies that demand a relativistic treatment.

It is therefore unlikely that we should expect a single physical model to adequately address all possible

phenomena with equal validity across all ranges of these parameters. In many cases, certain behaviors of

the plasma are essentially completely suppressed, and in other cases they are so important that they cannot

be discarded. We are posed with the challenge of constructing physical models that accurately include all of

the necessary phenomena, but ignore the unnecessary, for the range of parameters of interest.

Figure 1.1 shows a typical schematic that maps some of the various regimes of plasma physics, as a log

plot of number density and temperature. The disparate scales over which these parameters vary are clear;

furthermore, examination of the graph shows several important plasmas of engineering interest scattered

across these regimes. The development of a single model that describes all of these different cases is clearly

beyond us. To supplement the overall picture of the vastness of these scales, some common parameters

describing plasma behavior is given in Table 1.1.
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Figure 1.1: A diagram of plasma in the known universe, plotted by electron number density versus temper-
ature. [10, 15]

1.2.3 Definition of a Plasma

It is impossible to give a comprehensive definition of a plasma, even in terms of the plasma parameters listed

above. However, it is fruitful to consider the distinction between the different models via the parameters. A

typical definition for a plasma often offers the following two conditions [10,15,16,19]:

• The number of charge carriers must be sufficiently large that particles interact with several other

particles within their Debye sphere. This provides the collective behavior observed in most plasmas.

Since Λ = (4/3)πnλ2D represents the number of particles within a Debye sphere, this may most readily
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be written as

Λ � 1 (1.26)

Most common plasmas can be approximated well by assuming ln (Λ) ' 10.

• The Debye length is assumed to be much smaller than the apparatus length,

λD � L (1.27)

This means that, while on the microscopic scale we acknowledge that charges are present, on the

macroscopic scale there is no significant charge separation, which implies that the plasma is quasineutral

(does not possess a macroscopic electric charge on the overall length scale, L). Plasmas not satisfying

this condition are somewhat awkwardly referred to as non-neutral plasmas.

Plasmas that do not satisfy these conditions are often relegated to a peripheral role in engineering, but

occur frequently in many very important applications. For example, plasma sheaths are intrinsically non-

neutral, and occur along any boundary surface in contact with the plasma. Therefore, many plasmas of

engineering interest will experience non-neutral sheaths at boundaries, and their role in engineering cannot

be understated. Some plasma devices, such as the single barrier dielectric discharge plasma actuator, involve

the application of an electric body force to accelerate the plasma flow; in this case, the plasma must possess

a net electric charge, since the electric body force is proportional to the net charge. We will discuss other

applications that violate these conditions in more detail shortly.

Further distinctions between plasmas can be made. Another characteristic quantity in determining the

nature of the plasma is the Knudsen number, denoted Kn, defined as

Kn =
λmfp

L
(1.28)

The Knudsen number is typically used to distinguish between low-density and high-density plasmas. When

the Knudsen number is large, this implies that the mean free path is large compared to the overall length

scale of interest. This means collisionality does not play a significant role in the plasma, and sometimes a

collisionless model is even appropriate (free-molecular flow). Conversely, when the Knudsen number is very

small, this implies that collisionality is strongly present in the plasma, and cannot generally be ignored.

When the Knudsen number is of order unity, this region is referred to as the transitional region, and often

is not well characterized by either low- or high-density assumptions. When the Knudsen number is small,

continuum models are appropriate and more economical then kinetic or microscopic modeling approaches;

when the Knudsen number is high, tensorial behavior may sustain anisotropies that cannot be handled using

continuum models, and usually a kinetic or particle approach taking advantage of a microscopic description

of the plasma is necessary. In this dissertation, we will focus on dense plasmas, such that the Knudsen
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number will always be considered low enough that a continuum approximation is valid.

The characteristic frequency of interest and its comparisons to the other dominant frequencies in the sys-

tem permit different assumptions of the behavior of the plasma. For example, if the characteristic frequency

is much lower than the plasma frequency, ωp, then we may neglect the charge rearrangement timescale;

since charges rearrange on the timescale of 1/ωp, the charges may be approximated well by an electrostatic

assumption. Similar arguments can be made for the cyclotron and collision frequencies as well. An example

that will be presented later is the Hall effect thruster, in which the electron cyclotron and electron collision

frequencies are very comparable, whereas the ion cyclotron and ion collision frequencies are very different.

This means the electrons experience a strong Hall effect, whereas the ions perceive the plasma essentially in

an electrostatic way.

It is apparent that an abundance of different possibilities, as roughly sketched in Figure 1.1 and Table 1.1,

are possible. As such, no definition comprehensively captures all effects in the diverse landscape formed by

the plasma parameters. We will focus on cases where some of the above conditions that are often taken

for granted may not be assumed, such as cases where quasineutrality may be violated and characteristic

frequencies exceed the plasma frequency.

1.3 Limitations to the Magnetohydrodynamic Framework

We discussed that a minimal coupled model for a dense plasma with a sufficiently small Knudsen number

would involve a coupled system of the Navier-Stokes and Maxwell equations. Coupling is provided in the

form of a Lorentz body force and Ohmic dissipation acting on the fluid, and a current density that depends

on the fluid properties. As pointed out, the time scales of the systems involved are highly disparate, and

this poses a unique challenge for solving the coupled systems of equations.

The incumbent approach for simplifying this minimal model is to reduce the system of equations to a single

species with only a single characteristic time scale. The resulting model is the magnetohydrodynamic (MHD)

model. The MHD model imposes two primary assumptions on the plasma: (i) the plasma is quasineutral,

(ii) the displacement current in the Ampere-Maxwell equation, describing the time variation of the electric

field, is sufficiently small as to be negligible.

Let us examine these two conditions more carefully. The former requires that no clumps of electric charge

are visible on the scale of the apparatus. The collective of charged particles arranges itself such that a charge

at some point cannot be detected some distance, λD, away. This happens on a timescale much faster than

the fluid scale; thus, the net potential a certain sufficient distance away will not look substantial. This effect

is known as Debye shielding, and the Debye length, λD, represents the distance over which the potential, φ,

introduced by the test charge is sufficiently small. Within the Debye length, the microscopic test charge may

be ‘felt’, whereas outside the Debye length the charge’s influence is effectively screened by the surrounding

attracted and repelled charges. Hence, this first condition amounts to insisting that the Debye length be
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much smaller than the scale of the apparatus, λD � L.

The latter condition imposed in the MHD theory requires that the displacement current, 1/c20∂E/∂t, be

discarded from the Ampere-Maxwell equation. This reduces the hyperbolic system to a diffusive system,

frequently called the magnetic diffusion approximation. The telegrapher equation reveals the full nature of

the magnetic field,

1

c20

∂2B

∂t2
+ µ0σ

∂B

∂t
−∇2B = 0 (1.29)

where B is the magnetic induction field, c0 is the speed of light in vacuum, µ0 is the permeability of free

space, and σ is the electrical conductivity. It is evident from equation 1.29 that two limits in the time-varying

nature of the magnetic field may be realized. In the first case, we may have the first term dominate the

second; if the second term is sufficiently small, we may neglect it, and a pure wave equation in B results,

1

c20

∂2B

∂t2
−∇2B = 0 (1.30)

However, in the opposite limit, the second term may dominate over the first. In this case, the first term may

be small enough to discard, in which case

∂B

∂t
− 1

µ0σ
∇2B = 0 (1.31)

Clearly, this is a diffusion equation for the magnetic field. The first term in equation 1.29 is contributed

by the displacement current, so neglecting the displacement current renders equation 1.29 into the form

of equation 1.31. Applying a scale analysis between the first and second terms in equation 1.29 reveals

that these limits depend strongly on the electrical conductivity. For high-conductivity plasma, the magnetic

diffusion approximation becomes very appropriate for describing the plasma behavior; however, in the low-

conductivity limit (for example, vacuum) the wave nature of the magnetic field cannot be ignored. Since the

MHD framework assumes that the displacement current is negligible, this description tends to be valid for

high-conductivity plasma.

Three significant results of the MHD theory are worth observing. First, the assumption of no net

macroscopic charge means that the electric body force plays an insignificant role on the fluid, since the

electric force varies linearly with the net charge. Second, the discarding of the displacement current renders

the Maxwell equations diffusive as an approximation to their true hyperbolic nature. This means that

electromagnetic waves are no longer permitted to propagate in an MHD plasma. Finally, the magnetic

diffusion approximation possesses a very different character for its current distribution. The charge continuity

equation, which expresses the conservation of electric charge, may be derived from the Maxwell equations;
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its form is

∂%e
∂t

+∇ · je = 0 (1.32)

where %e is the net charge density and je is the current density. But since, by quasineutrality, %e = 0, the

current density becomes solenoidal. An ad hoc constitutive relationship must be fashioned for je, which can

be given by a form of Ohm’s law.

1.4 A Picture of the Problem

The study of plasmas has far-reaching effects for the development of modern technologies, particularly in

aerospace and energy applications. A major impetus for further understanding and modeling the interac-

tion between fluids and electrodynamics has involved an ongoing drive to control and improve fluid flow

applications with the presence of electromagnetic fields. However, in many of these applications, the under-

lying physics of the plasma is not fully understood, and for several of these applications, these underlying

processes are often neglected in modeling. It can be shown that these processes can potentially dictate the

long-term behavior of the device, and lifetime, degradation and performance issues can result. Further-

more, they usually indicate the onset of instabilities in the plasma, and are therefore critical for examining

long-term behaviors of plasmas. Below, we examine more closely some specific examples of applications in

aerospace and energy where the underlying effects not captured by the MHD model become significant and

non-negligible.

• Electromagnetic flow control. The use of electromagnetic fields in aerospace applications to control and

improve flow situations is a very popular topic of current interest [20]. Plasma actuators based on the

asymmetric configuration of the single dielectric barrier discharge (SDBD) have received significant

attention in the last decade, due to their very simple construction and operation and wide design

space that allows flow separation control [21–26], viscous drag reduction [27–29] and possibly shock

control and mitigation applications [26, 30–34]. Despite numerous experimental and computational

investigations, the detailed physics of the actuator operation are still not fully understood [35–41].

The modeling of plasma actuators is particularly different from typical applications of EM fields for

aerospace applications because the flow is electrohydrodynamic [21, 22], and draws on an electric field

to shape the flow, rather than a magnetic field. The application of an electric body force to the flow

requires some charge separation to be present, since the electric body force is proportional to the net

charge density. The interactions of multiple species and the highly transient nature of the device make

accurate prediction of the plasma actuator a very difficult task; presently, most fluid simulations utilize

phenomenological models for the electric body force [21,23,24,42–44].

• Hypersonic flight and propulsion. The application of magnetic and electric fields have been suggested

for several applications of hypersonic flight. The presence of a strong imposed magnetic field from a
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vehicle nosetip is known to push the blunt-body shock away from the vehicle front [45–48], which can

potentially reduce the temperature on the nose. It has been shown that self-induced fields created

behind the shock due to the interaction of high-conductivity flow and applied fields, Hall effect and

ion slip can be significant [46–48]. The prediction of a strong shock in hypersonic flow has been shown

to possess charge separation effects that cannot be predicted using the MHD theory. [49, 50] The

application of an energy bypass arrangement for improving scramjet performance by using magnetic

fields is currently being explored [51–55]

• Radio communications and blackout. The communications blackout effect is a direct result of the

formation of a plasma sheath around a vehicle in the upper atmosphere; the sheath is non-neutral and

possesses a plasma frequency. Radio waves impinging on the plasma must have a frequency higher

than the plasma frequency in order to penetrate the plasma, or they are reflected. Waves that are

transmitted into the plasma attenuate rapidly due to the strong conductivity. Although the mitigation

of electron number density has been investigated using the magnetohydrodynamic model and kinetic

approaches [56,57], the actual propagation of the wave into the sheath cannot be properly investigated

using the magnetohydrodynamic framework.

• Space plasma propulsion. The exhaust of a plasma thruster involves a transition from a high-conductivity

plasma into a low-conductivity domain. In the low-conductivity (vacuum) region, the wave nature of

the magnetic field dominates, and must be correctly capturing propagating at the speed of light. In

cases involving plasmas generated by capacitive discharges, such as the pulsed plasma thruster [58],

transient modeling should include a displacement current across the rails as the thruster is initi-

ated [59–64]. Previous work that has sought to model plasma thrusters using the existing magneto-

hydrodynamic framework have injected a massless, conductive ‘ether’ field in the vacuum region to

circumvent this problem [62, 63]. More recent simulation work has begun investigating the inclusion

of this displacement current and vacuum behavior while still resolving the high-conductivity plasma

during operation [59–61].

• Plasma stability. The onset of instabilities in high-energy-density plasmas are often caused by plasma

oscillations that are not permitted in the MHD theory. These oscillations appear as singular per-

turbations in the MHD equations. In Hall effect thrusters, for example, it has been shown that the

appearance of evanescent waves can degrade performance and stability; this causes a significant drop in

the specific impulse of the thruster [65–69]. The operation of Hall thrusters due to anomalous electron

mobility is also not well understood [70, 71]. Devices such as the Z-pinch and field-reversed config-

uration [72], which offer major potential advantages for energy and propulsion, necessarily require

stability models that supercede the magnetohydrodynamic model.

The above applications motivate the migration to a more physically correct palsma model, if we wish to

model these phenomena. Several different models are available, but of particular interest in this dissertation

is the multifluid plasma model. This dense plasma model uses a set of moment equations to describe the
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fluid behavior of each species (usually only two species, hydrogenic ions and electrons, are considered, hence

the frequent name two-fluid plasma model), coupled to the full Maxwell equations. We will also examine this

model’s limit to a single species, in which the electron inertia is neglected. This single-fluid model will involve

a coupled system of the Navier-Stokes and full Maxwell equations, including the displacement and convective

currents. While the single-fluid model is more limited than the two-fluid model in that inter-species effects

and electron inertia have been neglected, this model still retains strong generality over the MHD model, and

permits explorations of electromagnetic wave propagation, charge separation effects and low-conductivity

limits that are not permitted in the MHD model.

1.5 Going Beyond the MHD Framework

Although the MHD theory has been applied to a great deal of plasmas, there can be cases in which the

assumptions made are invalid. Particularly, in cases where charge separation effects, multiple species effects,

electromagnetic wave propagation, and long-term equilibrium behavior for instabilities are important, the

full physics must be included.

With the limitations detailed in the last section, a migration to more accurate physical models to study

these problems is expected. Investigations in plasma stability and equilibria for plasma and fusion devices

have focused on utilizing the two-fluid plasma model [72–82] while recent work centered on the applications

of electromagnetic fields for hypersonic flight have explored the application of the single-fluid model [8, 46–

50, 59, 61, 62, 64, 83–98]. The former have emphasized the need to include multiple species effects, electron

inertia effects and higher-frequency plasma oscillations to study the behavior of relaxation in fusion devices

and stability behavior in devices such as the Z-pinch; the latter have investigated the inclusion of charge

separation effects and induced magnetic field behavior for hypersonic sheath development and propulsion

operation. The behavior of electromagnetic wave propagation through hypersonic sheaths has also been the

focus of much investigation to mitigate the communications blackout effect [56,57]. Since the blackout effect

is predominantly determined by the plasma frequency and involves studying the propagation of radio waves,

the MHD model is incapable of resolving the detailed behavior of this problem.

Several of the investigations mentioned above have explored the construction of analytical and numerical

solutions to the two-fluid and single-fluid models presented; however, the equations admit analytical solutions

only in very limited cases, and the capability to numerically solve these coupled systems is complicated

by the presence of multiple and highly disparate frequencies that characterize both systems [49, 59, 73,

74, 99]. In the simplest case of the single-species bulk model, a disparity between the characteristic fluid

speeds and the speed of light must be resolved; recall the Mach 20 flow in the upper atmosphere where

the fluid characteristic speed is about 7, 000m/s, which is still five orders of magnitude smaller than the

characteristic electromagnetic speed, the speed of light. This problem requires considerable attention for

modeling efficiently with only modest effort. This problem is exacerbated by the presence of numerical
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stability issues due to the form of the coupling expressed in the above systems; the presence of the Lorentz

body force and Ohmic dissipation terms are conventionally incorporated as explicit source terms to the

Navier-Stokes equations, which introduce significant numerical stability constraints on the solution of these

equations that cannot typically be circumvented in a straightforward manner. Thus, while the two-fluid and

single-fluid systems permit the full physical treatment of plasmas that may otherwise not be investigated

properly with the MHD framework, our capabilities to analytically and numerically model these two systems

are limited.

It is our broad objective, then, to discover new tools for mathematically modeling these two systems

with only modest effort. Achieving new ways to model these systems will permit predictions of the above

problems. Our major challenges lie in the coupling between different species, the nonlinear nature of the

equations, the presence of highly disparate frequencies and numerical stability issues introduced by the

presence of the source terms.

1.6 Contributions to the State of the Art

While a detailed discussion of the state-of-the-art is relegated to sections 3.1 and 5.1, a summary of the

state-of-the-art and the contributions of this dissertation is presented here.

In this dissertation, we address the problem of modeling the fully-coupled single-fluid and two-fluid models

in two ways. Our initial approach involved the construction of an isomorphism between the two-fluid plasma

equations and the Maxwell equations of electrodynamics, but this framework was limited by the availability

of data. Our original goal was to take advantage of this new set of isomorphic Maxwell equations for the

plasma, and to solve the system and reconstruct the primitive data from the generalized fields. However, the

new Maxwell equations have added source terms, analogous to the electric charge and current density, and

some representative model for these sources must be known before solving for the generalized fields. The

issue of finding source term models imposed a signficant limitation on our capabilities to utilize this model

for plasmas. We describe source term data that could be acquired, primarily by examining simple analytical

solutions and postprocessing numerical solutions to determine the form and behavior of the source terms for

this model.

During the process of investigating the source terms, an efficient numerical scheme was required to

catalyze the data collection process. This led to a separate investigation in which a new numerical formulation

suggested in [59] was explored in an effort to improve the simulation of single-fluid and two-fluid plasmas.

The new method poses the governing fluid equations in a strong conservative form, in which no explicit

source terms are present, although the equations are still exactly coupled to the full Maxwell equations.

This is possible by using the Poynting propagation vector, Maxwell stress tensor and electromagnetic energy

density; the conservation form of Maxwell’s equations permits the Lorentz body force and Ohmic heating

terms to be recast into derivatives of these quantities, uniting them with the solution and flux vectors.
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Unfortunately, it is shown that this approach cannot work for the two-fluid plasma model, since, in their

general form, the equations cannot take advantage of the conservation form of Maxwell’s equations; however,

in the case that the electron inertia is neglected, the single-fluid model coupled to the full Maxwell equations

can be solved much more efficiently using this approach. A comparison of the traditional source-coupled

formulation and this new strong conservative form are explored, and validation simulations are performed

that demonstrate the feasibility of applying this approach for efficient simulation of plasmas including charge

separation effects, electromagnetic wave propagation and higher-frequency effects.

For the isomorphism, we specifically perform the following:

• Starting in Chapter 3, we present the Maxwell equations for a two-fluid plasma, which poses a set

of Gauss laws, Faraday law and an Ampere-Maxwell law for the generalized vorticity and generalized

Lamb vector in a two-fluid plasma. The convolved form of these equations are discussed as well.

• The ramifications of constructing this isomorphism is explored as well. Specifically, we show the

reduction to the previous fluid dynamic work, and the new framework introduced in this dissertation

unites the efforts of three different veins of literature that have explored isomorphic field equations for

fluids and plasmas.

• The new feature in this exploration is the presence of source terms for the plasma, analogous charge

and current densities in classical electrodynamics. The analytical forms are derived, which present the

generation mechanisms that give rise to the generalized fields.

• In Chapter 4, we discuss different methodologies for solving the two-fluid Maxwell equations. It

is shown that the most significant aspect of these methodologies is the means by which the new

source terms are treated. Three approaches are explored: the homogeneous case (in which the source

terms naturally vanish), iterative approaches (which ultimately did not produce accurate results), and

empirical modeling (which, at present, is the most promising approach).

• For empirical modeling, it is desirable to build up a collection of foundational source terms that can

be used as building blocks for constructing flow patterns in larger problems later. To this end, we

investigation three simple cases of steady, incompressible fluid flow, and demonstrate the feasibility of

applying numerical reconstructive schemes and Green’s function approaches to these problems.

For the strong conservative numerical formulation, we specifically perform the following:

• Beginning in Chapter 5, we present the traditional (source-coupled) formulation, and introduce the

new strong conservative form. This new form has been noted in the literature previously, but has

not been investigated or validated. The new formulation is demonstrated to significantly improve the

stability and robustness of the numerical scheme.

• We present the details for constructing accurate finite volume numerical schemes for the new equations

using the Roe approximate Riemann solver approach and the Advected Upstream Splitting Method

(AUSM) approach. A preconditioned implicit scheme was used to improve convergence and speed.

The solver works on structured and fully unstructured meshes.
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• In Chapter 6, we present validation test cases for the strong conservative form in one and two di-

mensions. We investigate Riemann problems that involve shocks, steep gradients and discontinuities,

and show that the solver is very capable of resolving these solutions accurately. Turbulence and in-

stability problems are also explored to demonstrate agreement between the new solver and accepted

solutions. To demonstrate capabilities that cannot be captured in the MHD framework, we explore

the propagation of electromagnetic waves into plasmas and low-conductivity limits of the plasma.

• Comparisons are made between the strong conservative and source-coupled form to verify the improve-

ment in efficiency over the source term formulation. Significant improvements in both the accuracy

and speed were realized.

• Comparisons between the Roe and AUSM flux schemes are presented; using these two independent

approaches, we validate the new mathematical formulation introduced for the Riemann solver approach,

including the new jacobian matrices and eigenvectors, which are required for the construction of a Roe

solver.

1.7 Outline of the Dissertation

To disclose more fully the models of interest, we devote Chapter 2 to describing the overall models of interest.

Our discussion begins with a brief description of Maxwell’s equations in Section 2.1; this is necessary both

because the models of interest are fully coupled to Maxwell’s equations, and because the isomorphic approach

will rely on a knowledge of these equations. We briefly discuss kinetic approach in Section 2.2, and from

the kinetic description we outline the derivation of the two-fluid model in Section 2.3. In Section 2.4, we

take the limiting case of negligible electron inertia to reduce the two-fluid model to the single-fluid model.

We describe the development of Ohm’s law for this model in Section 2.5. In Section 2.6, we further reduce

the single-fluid model to the typical magnetohydrodynamic model, and finally in Section 2.7, we summarize

these different models of interest.

Our discussion of the isomorphic approach begins in Chapter 3; in Sections 3.1 and 3.2 we discuss the state

of the art and the objective of this investigation, respectively. In Section 3.3, we introduce the isomorphic field

equations, although the finer details of the derivation have been relegated to Appendix A.1. Following our

presentation of the new isomorphic field equations, which mathematically are identical to Maxwell’s equations

of classical electrodynamics, we spend Section 3.5 exploring some of the ramifications and consequences of

this isomorphism. We do not provide an exhaustive account, since this is neither necessary nor useful,

but we elaborate on five important points of interest: (a) the reduction of the equations to a Maxwell

system for fluid dynamics in Section 3.5.1, which agrees with previous work, (b) potential theory and gauge

transformations in Section 3.5.2, (c) appropriate boundary conditions in Section 3.5.3, (d) a Lagrangian

formalism in Section 3.5.4, and (d) an analogous drift relation constructed by vector identity that permits

an inverse transformation from the dynamical fields to the velocity, shown in Section 3.5.5. Finally, in
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Section 3.6, we summarize the theory we have presented by means of introducing the isomorphism.

Chapter 4 presents our attempts in this investigation to solve the isomorphic field equations in lieu of the

traditional formulation. We outline in Section 4.1 the major difficulty encountered here, which is a scarcity

of source term data. If more source term data were available, this approach would be much more likely

to succeed. However, the deficit in available source term data makes solving the equations difficult. Three

approaches were explored to circumvent this issue: in Section 4.2, we explore the mathematically convenient

case that the plasma is homogeneous, such that no source terms are present; we show that the typical MHD

waves can be recovered using this approach. In Section 4.3, we discuss the possibility of constructing iterative

approaches, wherein the source terms are calculated from the primitive variables, the field equations are

then solved using the source data, and the primitive variables are then reconstructed, leading to an iterative

scheme not unlike the particle-in-cell (PIC) method, except including the fluid character as well as the

electrodynamic behavior. However, in this investigation, we never found a feasible means of constructing an

efficient iterative scheme. Finally, in Section 4.4, we resort to empirically modeling the source terms, which

proved the most successful, although still limited, approach. The easiest method to determine empirical

models for the source term data was to start with a known analytical solution for a simple problem (steady,

incompressible fluid flow is examined); this led to general source term models that could be used to construct

more complicated flow patterns, permitting a solution of the field equations for more difficult flows. The fluid

problems were used as a test bed for constructing numerical and closed-form solutions using the isomorphic

approach; when the flow is non-vortical (or when the plasma has no generalized vorticity), the equations

break down since the drift relation cannot be used. However, we show that using a potential approach can

circumvent this issue, leading us to successful numerical simulations of fluid flow, including a closed-form

solution to Blasius boundary layer flow. To further explicate the source term data for non-simple cases of

compressible flow and plasmas, we postprocess numerical simulations for compressible flows and plasmas to

reveal the nature of the source terms.

Our investigation of the source terms by postprocessing numerical simulations led to a separate inves-

tigation to improve the efficiency of solving the plasma equations, which itself succeeded in improving the

efficiency of plasma modeling and surpassed our capabilities using the isomorphic approach. This second

approach is discussed in Chapter 5, where we present the strong conservative formulation used to improve

the stability of the equations. In Sections 5.1 and 5.2, we present the state of the art and our specific ob-

jective for utilizing this new numerical approach. In Section 5.3, we present the traditional (source-coupled)

formulation; we construct some identities in Section 5.4 for the conservation form of Maxwell’s equations,

and apply them in Section 5.5 to derive the new strong conservative form of the equations. Sections 5.6

through 5.14 are devoted to providing a detailed exposition of the numerical scheme implemented for this

investigation.

Having introduced the approach in Chapter 5, we present validation results of the new approach in

Chapter 6. In Sections 6.1 and 6.2, we consider classic Riemann problems from plasma physics, and provide
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a comparison between the strong conservative and traditional source-coupled formulations. We present in

Section 6.3 a radio wave propagation test that demonstrates the capabilities of capturing both the low-

and high-conductivity limits of the electromagnetics. Section 6.4 investigates our capabilities of capturing

the onset of instability of plasmas by examining the Kelvin-Helmholtz magnetohydrodynamic instability.

In Section 6.5, we further confirm this capability by presenting validation tests of a magnetohydrodynamic

vortex problem that demonstrates plasma turbulence modeling capabilities. The approach demonstrates the

capabilities to capture the charge separation effects at the electrodes.

Finally, in Chapter 7, we present our conclusions from this work; in Section 7.1 we review our stated

objective, and Section 7.2 outlines the findings for the isomorphic approach and the strong conservative

approach, respectively. In Section 7.3, we specifically point out the contributions presented in this dissertation

that push the state of the art. Section 7.4 points out the potential future applications and directions to follow

from this work, and in Section 7.5, we provide some concluding remarks about these investigations.
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Chapter 2

Mathematical Models for Single-fluid

and Two-fluid Plasmas

“Your test assignment will vary, depending on the manner in which you have

bent the world to your will.”

Cave Johnson [1]

Plasma modeling may essentially be divided into microscopic and macroscopic approaches. Microscopic

models are concerned with describing the constituent particles that comprise the plasma; macroscopic models

apply continuum principles and formulate equations for the statistical averages of the constituents, in order

to simplify the number of variables needed. Microscopic approaches are physically more accurate, and can

capture anisotropies and tensorial behaviors much more straightforwardly, but, in some cases, can be more

demanding of computational resources than continuum approaches.

Two primary forms of microscopic modeling are individual particle tracking and kinetic modeling. The

former leads to particle-in-cell (PIC) simulations, where forces and collisions are applied iteratively in con-

junction with updating the particle’s position, momentum, and contribution to the electromagnetic sources;

the latter insists on solving a Boltzmann equation for a distribution function (or one for each species) which

encapsulates all information about that species. Microscopic approaches require some form of collisional mod-

eling to be incorporated; in the case of PIC approaches, collisions are often modeled using direct-simulation

Monte Carlo (DSMC) techniques [100], while kinetic modeling [10, 14] usually requires the calculation of a

collision integral that accurately describes the collisional behavior of the plasma. In both cases, the appro-

priate modeling of the collisionality of the plasma is an open question with no trivial answer. Furthermore,

the nature of the outcome of collisional terms depends strongly on the plasma under study.

The number of particles required to resolve the plasma behavior using microscopic approaches generally

increases with decreasing Knudsen number. When the necessary number of particles becomes very large,

or when the collisional nature is either unknown or extremely complicated, solutions using microscopic
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approaches become intractable even on modern hardware due to speed and memory limitations. It then

becomes more economical to apply a continuum approach and consider only the bulk motion of the plasma.

This can be done by statistically averaging over the microscopic equations describing the evolution of the

constituent particles. The averaging permits a much simpler treatment of the collision terms, but at the cost

of removing the individual nature of the particle motion; by averaging over the microscopic equations, we

lose the spread of different possible behaviors of separate particles and retain only the bulk behavior of each

species. Thus, anisotropies can be very challenging to correctly capture in continuum approaches.

Our effort is aimed at improving modeling of dense plasmas using continuum assumptions. Within the

realm of continuum models, there is a diverse resumé of different choices available for modeling the fluid and

electromagnetic behavior. As we have discussed in Chapter 1, the magnetohydrodynamic approximation

represents the incumbent approach for modeling dense plasmas, but, as already mentioned, this approach

leaves out some significant details that we are motivated to capture. Therefore, some intermediate fluid

model must be derived and applied for the problems of interest. We will investigate the two-fluid and single-

fluid plasma models, each of which arrests a more physically complete picture for the applications outlined

in Chapter 1. In this chapter, we discuss the derivation of these models from the kinetic theory of plasmas,

and also detail the comparison between these models and the magnetohydrodynamic framework. We finally

provide a set of tables that clearly delineate the equations of interest for later chapters.

2.1 Maxwell’s Equations

Maxwell’s equations play a pivotal role in this dissertation not only because they are coupled to both

plasma models of interest, but also because, in Chapter 3, we draw an analogy between the two-fluid

generalized fields and the electromagnetic fields, which reveals an isomorphism between the two systems. To

facilitate understanding the isomorphism, this section will also serve as a reference guide for our discussion

in Chapter 3. References [5, 101] provide much more detail.

2.1.1 Maxwell’s Equations

The electromagnetic fields in a plasma are solutions to Maxwell’s celebrated equations. In the vector form

popularized by Oliver Heaviside [2,3], these equations are comprised of the Gauss law divergence constraints

for magnetic and electric fields, Faraday’s law, and the Ampere-Maxwell law, given in order as

∇ ·B = 0 (2.1)

∇ ·D = %efree (2.2)
∂B

∂t
+∇×E = 0 (2.3)

∂D

∂t
+ jefree = ∇×H (2.4)
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Table 2.1: Physical units of electromagnetic quantities, using base dimensions of length [l], time [t], mass [m],
and charge [q], and derived units of voltage [V ] = [ml2t−2q−1], current [I] = [qt−1], magnetic flux [Φ] = [V t],
capacitance [C] = [qV −1], inductance [L] = [ΦI−1], and conductance [G] = [IV −1].

Notation Units Name
E [V l−1] Electric field
H [Il−1] Magnetic field
D [ql−2] Electric displacement field
B [Φl−2] Magnetic induction field
%e [ql−3] Electric charge density
je [Il−2] Electric current density
ε [Cl−1] Permittivity tensor
µ [Ll−1] Permeability tensor
σ [Gl−1] Conductivity tensor
η [G−1l] Resistivity tensor

Here %efree and jefree are the free1 charge and current densities, the fields E and H are the electric and

magnetic field intensities proper, and D and B are the electric displacement and magnetic induction fields.

The fields D and H are sometimes called the auxiliary fields. These equations constitute a system of eight

scalar (two scalar plus two vector) representing a first-order system of partial differential equations. The

physical units associated with each field are shown in Table 2.1. The auxiliary fields are generally very

complicated functions of all of the other fields as well as the medium. However, often a simple dependence

may be constructed by the following approximations,

D = ε ·E+P (2.5)

H = µ
−1 ·B+M (2.6)

where P and M are polarization and magnetization vectors, respectively, representing bound charges and

currents. We will assume that these fields are zero. We will further assume that the medium is sufficiently

isotropic, such that the permittivity tensor, ε, and permeability tensor, µ, reduce to scalars, ε and µ. These

values frequently can be taken as their vacuum values, ε0 = 8.854× 10−12F/m and µ0 = 1.257× 10−6H/m.

They are connected through the Weber relation,

ε0µ0 =
1

c20
(2.7)

1this excludes bound charges, which may be contributed by the medium.
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where c20 is the square of the speed of light. In vacuum, c0 = 2.9979 × 108m/s. Thus, Maxwell’s equations

in linear, isotropic media are written as

∇ ·B = 0 (2.8)

∇ ·E = %e/ε0 (2.9)
∂B

∂t
+∇×E = 0 (2.10)

1

c20

∂E

∂t
+ µ0je = ∇×B (2.11)

Equations 2.8 through 2.11 are what we will refer to as Maxwell’s equations.

2.1.2 Charge Continuity

A significant result from Maxwell’s equations is the charge continuity equation. We can arrive at this equation

by taking the divergence of Ampere’s law, equation 2.11, and using equation 2.9, to get

∂%e
∂t

+∇ · je = 0 (2.12)

This equation states that the amount of current leaving through an arbitrary surface is equal to the decreasing

rate of charge per time, which equates the idea of charges moving with current.

2.1.3 Electromagnetic Waves

The first-order form of equations 2.10 and 2.11 may be rewritten in second-order form. We take the curl of

equation 2.10 and the time derivative of equation 2.11 and eliminate the common term to arrive at a wave

equation for the electric field, E. Similarly, we may exchange the operations on the same equations and once

again eliminate the common term to derive a wave equation for the magnetic induction field, B (henceforth

simply referred to as the magnetic field). Assuming that the medium is vacuum and has no charge or current

density present, then we have

∂2B

∂t2
− c20∇2B = −���2B = 0 (2.13)

∂2E

∂t2
− c20∇2E = −���2E = 0 (2.14)

where we have introduced the D’Alembertian (or wave) operator, −���2 = (∂2/∂t2 − ∇2). Thus, in the

absence of charge and current, the fields propagate as waves moving at speed c0.
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2.1.4 Vector and Scalar Potentials

Examining the form of equation 2.8, and noting the vector identity ∇ · ∇ × A = 0, we may posit that a

vector potential, A, could be defined that allows the magnetic field to be defined as

B = ∇×A (2.15)

This definition automatically satisfies equation 2.8 by identity. If we substitute this into Faraday’s law, then

we have

∇×
{
∂A

∂t
+E

}
= 0 (2.16)

Noting the vector identity ∇×∇φ = 0 for any scalar φ, this implies that

∂A

∂t
+E = −∇φ (2.17)

and, rearranging, we have

E = −∇φ− ∂A

∂t
(2.18)

Thus, if we use A and φ (the vector potential and scalar potential, respectively) as our primary unknowns,

we have reduced the eight first-order equations 2.8 through 2.11 to four second-order equations,

1

c20

∂2φ

∂t2
−∇2φ = −���2φ =

%e
ε0

+
∂

∂t

{
∇ ·A+

1

c20

∂φ

∂t

}
(2.19)

1

c20

∂2A

∂t2
−∇2A = −���2A = µ0je −∇

{
∇ ·A+

1

c20

∂φ

∂t

}
(2.20)

One of the appealing aspects of this approach is the notion of gauge transformation. Since the quantity

∇·A is physically meaningless (only the curl of the vector potential represents a physical quantity), we are

at liberty to take this value to be anything that is mathematically convenient. In our case, two particular

choices are of significant interest.

2.1.4.1 Lorentz Gauge

The easiest approach to simplify equations 2.19 and 2.20 would be to completely eliminate the last term in

brackets entirely. To do so, we could choose

∇ ·A = − 1

c20

∂φ

∂t
(2.21)
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which is the Lorentz gauge.2 Choosing this gauge will simplify equations 2.19 and 2.20 to inhomogeneous

wave equations,

−���2φ =
%e
ε0

(2.22)

−���2A = µ0je (2.23)

2.1.4.2 Coulomb Gauge

An alternate gauge that is sometimes also very convenient would be to simply take ∇ ·A = 0. In this case,

equation 2.19 reduces to a Poisson equation in φ and equation 2.20 reduces to a wave equation that depends

on the potential as a source term,

−∇2φ =
%e
ε0

(2.24)

−���2A = µ0je −
1

c20
∇∂φ

∂t
(2.25)

2.1.5 Divergence Constraints

A simple count of unknowns and equations will reveal that Maxwell’s equations are overconstrained (eight

equations for six unknowns, E and B). The Gauss laws, equations 2.8 and 2.9, are considered divergence

constraints in this respect; that is, physical solutions of the Faraday and Ampere-Maxwell equations must

further satisfy the divergence constraints. Candidate solutions that satisfy the Faraday and Ampere-Maxwell

equations and do not satisfy the divergence conditions are considered unphysical and are not permitted.

Analytically, if we pose a Cauchy problem with some initial conditions, then if the initial conditions satisfy

these divergence constraints, the solution will always satisfy these constraints. However, numerically, this is

not generally true. The discretization of the equations 2.10 and 2.11 permits numerical error to accumulate

unchecked in the divergences of the fields. These numerical monopoles sabotage the simulation, since the

resulting solution to the Faraday and Ampere-Maxwell laws are no longer eligible to be physical solutions.

Boundary conditions can exacerbate this problem as well. Therefore, care must be taken when constructing

a numerical solution to the Maxwell equations. In one spatial dimension, the divergence constraints can be

met exactly by a clever choice of initial conditions and coordinate system. However, in two or more spatial

dimensions, we must generally perform some kind of process (usually referred to as divergence cleaning)

in order to force the divergence constraints to be met. Neglecting this, divergence cleaning can lead to

significant numerical catastrophies (see, for example, the discussions in References [5, 101, 103], and the

example of results without divergence cleaning in References [47, 103]). Note that, if one is solving the

potential formulation (equations 2.19 and 2.20) instead, then the divergence constraints are automatically

met; however, we will prefer to solve the equations in their first-order form since this will lend directly to

2This is also commonly known as the Lorenz-Lorentz gauge or sometimes the Lorenz gauge [102].
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the finite volume method later. In Chapter 5, when we address the numerical schemes implemented, we will

discuss the approaches taken to enforce these divergence constraints.

2.2 Kinetic Description of the Fluid

This section details the kinetic description of a plasma and is taken largely from [10, 14]. The kinetic

description assumes that all information or data describing the state of each species α in the plasma are

encapsulated in a function called the distribution function, fα, which is defined to be the number of particles

at a specific point x with a specific velocity v at a specific time t for a species α. The distribution function

spans a phase space that is a union of the configuration (spatial) and velocity (or alternately momentum)

space. If we can construct an equation that determines the evolution of fα, then we can solve it to advance

this function in time, which permits a knowledge of how the plasma behaves. All significant information

about the plasma’s behavior can be derived from the distribution function, fα.

Just such an equation is provided by the Boltzmann equation. This equation is constructed by considering

the conservation of number of particles between two times in a Taylor expansion of the distribution function.

The Boltzmann equation’s form is

∂fα
∂t

+
∂

∂xk
(vkfα) +

∂

∂vk
(akfα) =

∑
λ

Cαλ (fα) (2.26)

Here, vk is the velocity and ak the acceleration, and Cαλ is a collision operator between two species α and

λ. Determining the form of the collision operator is usually an extremely complicated problem with no easy

answer, and depends significantly on the frequency and nature of the different collisions occurring in the

plasma. For classical gases, Boltzmann’s Stosszahl ansantz [14] approach is valid, which assumes only elastic

binary collisions occur, and that the colliding particles are uncorrelated prior to the collision. This approach

can also work for weakly ionized plasmas, if the Coulombic collisions can be neglected. When Coulombic

collisions are significant, the Fokker-Planck approach [14] can be taken, which assumes that the collision

integral can be approximated by a series of weak binary collisions; this approach leads to the Fokker-Planck

equation [14], which is valid for strongly ionized plasmas.

Due to the presence of the collision operator, the distribution function may not be well behaved. It can

have perceived discontinuities where particles ‘jump’ across the phase space due to interactions. However,

this equation can be solved directly to reveal the evolution of the plasma. There are some advantages to

doing this. The kinetic description maintains a higher level of information regarding the separate particles

than macroscopic models; therefore, high-frequency effects and anisotropies can be captured well using this

approach. However, this model (as well as the particle-in-cell method) becomes excessively expensive and

infeasible with modern computer hardware when the Knudsen number, Kn, is sufficiently small (usually

around order unity), which reduces the statistical bases for the function fα, at which point Monte Carlo
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methods are more fruitful [104]

In the case that the Knudsen number becomes small, macroscopic models become superior. The kinetic

description serves as a starting point on the microscopic level to construct macroscopic models. These can be

constructed by taking moments of the Boltzmann equation for each species. This process involves multiplying

equation 2.26 through by some species-specific property (called the moment), φα, and integrating over the

velocity space,

∫
φα

{
∂fα
∂t

+
∂

∂xk
(vkfα) +

∂

∂vk
(akfα)

}
dvk =

∑
λ

∫
φαCαλ (fα) dvk (2.27)

This removes the velocity dependence by integrating it out. Also, because some key identities can be

developed about the nature of collisions with respect to the bulk plasma, the collision operator also disappears

by doing this. The remaining integrations are taken as definitions of an average of some bulk property of the

flow, which is taken as the new unknown in the macroscopic model. Thus, after integration over the velocity

space (and often, some clever applications of vector identities and teasing out the physical meaning of large

tensorial quantities), we can arrive at a series of statements about the bulk averages for each equation.

Note that taking a moment will always introduce a higher-order moment, so this leads to an indefinite

process that requires some form of closure to cut off the moment-taking. This can be accomplished with

additional assumptions regarding the nature of heat transfer (adiabatic or isothermal assumptions), or, if

higher moments are desired, assumptions placed on the third- or fourth-order moment terms.

The following identities will assist in the integration of the collision integral term:

• Collisions are not permitted to change the total number of particles at a location in the phase space,

∫
Cαλ (fα) dvk = 0 (2.28)

• Collisions between members of the same species is not allowed to change the overall momentum of the

species,

∫
mαvkCαα (fα) dvk = 0 (2.29)

Additionally, collisions between different species must conserve the total momentum of both species,

∫
mαvkCαλ (fα) dvk +

∫
mλvkCλα (fλ) dvk = 0 (2.30)

• Collisions between different members of the same species are not permitted to change the total energy

of that species,

∫
mαvkvkCαα (fα) dvk = 0 (2.31)
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Furthermore, collisions between different species must conserve the total energy of both species to-

gether,

∫
mαvkvkCαλ (fα) dvk +

∫
mαvkvkCλα (fλ) dvk = 0 (2.32)

where vkvk is assumed as an index form of v · v = v2.

We will spare the reader most of the details of the development of this process. Details can be found

readily in several texts [10,14].

2.3 Two-fluid Description

The multi-fluid plasma model is a continuum approach that assumes the constituent species of the plasma

may be described as separate fluids. Often, this is reduced to the case of only hydrogenic ions and electrons,

hence the term two-fluid. In the case of weakly ionized plasmas, we may add the neutrals as an additional

separate fluid, or as separate fluids per neutral species.

In order to derive these equations, we take the moments φα to be mα, mαvk, and (1/2)mαvkvk. For the

first case, we have φα = mα, which becomes

∫
mα

{
∂fα
∂t

+
∂

∂xk
(vkfα) +

∂

∂vk
(akfα)

}
dvk =

∑
λ

∫
mαCαλ (fα) dvk (2.33)

We can drop the summation on the right-hand term if we imply that λ must be the opposite of α for

the two possible species. Recalling equation 2.28, the right-hand side vanishes. We can readily exchange

differentiation and integration, since xk, vk and t are all independent in the phase space. Thus, we have

mα
∂

∂t

∫
fαdvk +mα

∂

∂xk

∫
vkfαdvk +mα

∂

∂vk

∫
akfαdvk = 0 (2.34)

The third term equates to a surface integral in velocity space by Gauss’s divergence theorem. However, since

the integration is over all velocity space, and we assume that the distribution function fα → 0 as vk → ∞

(that is, no particle has an infinite velocity), this term vanishes. Thus, we are left with

mα
∂

∂t

∫
fαdvk +mα

∂

∂xk

∫
vkfαdvk = 0 (2.35)

If we introduce the number density as

〈nα〉 =
∫
fαdvk (2.36)
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where 〈〉 denotes the average over velocity space, and the mean species velocity, uα, as

〈uα,k〉 =
∫
vkfαdvk
nα

(2.37)

and defining the mass density to be

%α = 〈mαnα〉 = mα〈nα〉 (2.38)

then our equation becomes

∂%α
∂t

+
∂

∂xk
(%αuα,k) = 0 (2.39)

which is simply a statement of species mass continuity.

Deriving the momentum and energy equations is far more involved and will not be shown in detail

(see [10, 14] for the details). Before presenting their form, a major point of caution must be addressed

regarding the pressure tensor, which is defined as

Pα,ik = mα

∫
(vi − uα,i) (vk − uα,k) fαdvk (2.40)

We will assume that the pressure is isotropic, so that it can be reduced to

pα = Pα,kk = mα

∫
(vk − uα,k) (vk − uα,k) fαd (vl − uα,l)

= mα

∫
(v − uα) · (v − uα) fαd (v − uα) (2.41)

It is important to realize that plasmas can frequently possess distribution functions that are anisotropic,

and hence this assumption of isotropy may not always be valid. The nature of the isotropy of the distri-

bution function is determined by competing effects in the microscopic level; collisions, which are essentially

randomized, drive the distribution function towards an isotropic nature, while organized effects, such as

a strong background magnetic field, drive it towards directional preference and anisotropy. It is possible

to include the full pressure tensor in this derivation, which leads to the ten-moment and twenty-moment

two-fluid models. This approach will not be pursued in this dissertation; more information on this approach

can be found in References [105].

Applying the moment φα = mαvk and integrating over the velocity space reveals the species momentum

equations,

∂

∂t
(%αuα,k) +

∂

∂xk
(%αuα,kuα,r − pαδkr) =

eα
mα

%α [Ek + εklmuα,lBm]−Rαλ,k (2.42)

where %α is once again the mean species mass density, uα is the mean species velocity, pα is the mean species
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static pressure, eα/mα is the charge-to-mass ratio of the species α, Ek is the electric field, Bm is the magnetic

field, εklm is the Levi-Civita tensor, and Rαλ,k is the species friction (or drag). The species friction is given

as

Rαλ,k = ναλmαmλ (uα,k − uλ,k) (2.43)

where ναλ is the collision frequency between the two species. Note that Rαα,k = 0, since a species cannot

dissipate its own momentum, and
∑

α

∑
λRαλ = 0, since the plasma cannot decrease its own momentum

internally.

Finally, an energy equation may be obtained by taking the momentum φα = (1/2)mαvkvk. We will

assume for closure that the system is internally adiabatic, in which case the next-higher moment, the heat

tensor, vanishes, and we can cease taking moments. This leads to the following energy equation:

∂Eα
∂t

+
∂

∂xk
([pα + Eα]uα,k) =

eα
mα

%αuα,kEk +Rαλ,kuα,k − ẆE
αλ +

∂Qik

∂xk
(2.44)

Here Eα is the species total energy density, ẆE
αλ is an additional heat source and Qik is the higher-moment

heat flux tensor, which we will assume is negligible.

In summary, our equations for the two-fluid plasma model may be collected as

∂%α
∂t

+
∂

∂xk
(%αuα,k) = 0 (2.45)

∂

∂t
(%αuα,k) +

∂

∂xk
(%αuα,kuα,r − pαδkr) =

eα
mα

%α [Ek + εklmuα,lBm]−Rαλ,k (2.46)

∂Eα
∂t

+
∂

∂xk
([pα + Eα]uα,k) =

∂Qik

∂xk
+

eα
mα

%αuα,kEk (2.47)

where

%α = 〈mαnα〉 = mα

∫
fαdvk (2.48)

uα,k =

∫
vkfαdvk
〈nα〉

(2.49)

pα =
mα

3

∫
(vk − uα,k) (vl − uα,l) fα d (vm − uα,m) (2.50)

Eα =
mα

2

∫
vkvkfα dvl (2.51)

Rαλ,k = ναλ%α (uα,k − uλ,k) (2.52)

We call %α the mass density, uα,k the species velocity, pα the scalar species pressure, Eα the total energy of

the species, and Rαλ,k the friction.

If the gas of species α is calorically and thermally perfect, then it is customary to assume that the species
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total gasdynamic energy, Eα, can be written as the sum of the total internal energy and kinetic energy,

Eα = %αeα +
1

2
%α (uα · uα) (2.53)

where the internal energy for a calorically and thermally perfect gas is

e =
pα

%α (γα − 1)
(2.54)

For higher temperatures, the assumption of a calorically and thermally perfect gas may not be accurate;

in these cases, we must include the dependence of the fluid properties with temperature and pressure. We

can always use more complicated models to capture the correct behavior for higher-temperature systems by

resorting to interpolations from chemical calculations or by using tabular data.

Using equations 2.50 and 2.51, we can show that the total energy and pressure in the plasma are related

as

Eα =
3

2
pα +

1

2
%αuα,kuα,k (2.55)

Examining the form of equation 2.53 and 2.55, we can take the species gas to be calorically and thermally

perfect if we take the ratio of specific heats to be γα = 5/3 for each species.

Our equations for a two-fluid plasma can thus be taken as

∂%α
∂t

+∇ · (%αuα) = 0 (2.56)
∂

∂t
(%αuα) +∇ ·

(
%αuαuα + Îpα

)
= %e,αE+ jα ×B−Rαλ (2.57)

∂Eα
∂t

+∇ · ([Eα + pα]uα) = jα ·E (2.58)

where

%e,α =
eα
mα

%α (2.59)

jα = %e,αuα =
eα
mα

%αuα (2.60)

The total charge and current densities are taken as

%e =
∑
α

%e,α =
∑
α

eα
mα

%α (2.61)

je =
∑
α

jα =
∑
α

%e,αuα (2.62)

The system of equations 2.56 through 2.58 represents a set of moment equations for a single species,

α, in the plasma. Every species possesses its own set of moment equations. Since there are five moment
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equations, and Ns species, there will be 5Ns equations for the fluid system, plus the Faraday and Ampere

laws from Maxwell’s equations. This means the total two-fluid system that we are dealing with constitutes

5Ns+6 equations. For the typical two-species assumption, this amounts to 16 separate equations that must

be solved simultaneously.

2.4 Single-fluid Description

The two-fluid model retains separate fluid models for each species in the plasma. However, if we compare

the ratio of the ion mass to the electron mass (1830 : 1), it is easy to imagine that the electron inertia may

be insignificant. Conversely, due to the high mobility the electrons possess, it is also reasonable to assume

that the electrical transport in the plasma (electrical conductivity) is largely due to the electrons, and the

ions play a negligible role. Identifying these key behaviors and further applying them as assumptions to the

two-fluid model, the system of equations may be reduced to only a single set of moment equations for the

bulk fluid (this will usually coincide with the ion fluid equations). The conductivity is then given by Ohm’s

law, which is derived from the electron momentum equation. Doing so removes the need for solving electron

equations, while still retaining several key features that are absent from the MHD theory.

We take moments in a very similar fashion to constructing the two-fluid model, using zeroth, first and

second order moments of φα = mα, φα = mαvk, and (1/2)mαvkvk respectively, except that we also sum

over all species α,

∑
α

∫
φα

{
∂fα
∂t

+
∂

∂xk
(vkfα) +

∂

∂vk
(akfα)

}
dvk =

∑
α

∑
λ

∫
φαCαλ (fα) dvk (2.63)

The collision integral term can now enjoy the identities provided in equations 2.29 through 2.32, which will

effectively remove them from appearing in the single-fluid description. We also take me → 0, which eliminates

the electron equations, although we will see in the next section that it is useful to consider manipulating

the electron momentum equation differently in order to establish a constitutive relation for the net current

density.

Performing the moment procedure is essentially the same as in the two-fluid case, except that iden-

tities 2.29 through 2.32 play an important role here to eliminate the collision integral, and, because of

summation, the drag terms drop out because
∑

αRαλ = 0 and will reward us with the following bulk-flow

equations,

∂%

∂t
+∇ · (%u) = 0 (2.64)

∂

∂t
(%u) +∇ ·

(
%uu+ Îp

)
= %eE+ je ×B (2.65)

∂E
∂t

+∇ · ([E + p]u) = je ·E (2.66)
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We have dropped the subscript α to denote that the quantity is now a bulk-flow quantity. Since the ions and

neutrals tend to be much heavier than the electrons, the bulk-flow quantities will essentially be the combined

heavy-species flow fields. Here % is the bulk mass density, u is the barycentric velocity field, E and B are

the electric and magnetic field, %e and je are the electric charge and current densities, and E is the total

gasdynamic energy. For an ideal and calorically perfect gas, the total gasdynamic energy is related to the

pressure as

E = %e+
1

2
%u · u =

p

γ − 1
+

1

2
%u · u (2.67)

where γ is the ratio of specific heats.

The same guarded comments about the assumption of an isotropic pressure are still in order for collision-

dominated plasmas. This assumption can be very limiting for a certain class of plasmas in which strong

anisotropies may exist.

2.5 Constitutive Relation for Current Density: Ohm’s Law

In the two-fluid model, we primarily rely on the velocities of the electrons and ions, ue and ui, as our

unknowns for the momentum. The current density is a simple linear function of these. However, in the

single-fluid model, we have eliminated the moment equations for the electrons, and we cannot use the

convective form of the current anymore. Therefore, we must construct a model for the current density for

the single-fluid model. To construct such a model, we take the two momentum equations for the ions and

electrons (from the two-fluid model, equation 2.57), divide each equation by the mass of each species and

multiply by the charge, and then add the two equations together. This gives us

∂

∂t
e (niui − neue) +∇ · e (niuiui − neueue) =

e2
[(

ni
mi

+
ne
me

)
E+

(
niui

mi
+
neue

me

)
×B

]
− e

mi
∇pi +

e

me
∇pe

−e (νIEniui − νEIneue) (2.68)

Since mi � me, we dismiss the terms of order m−1
i . We take the net current density in the plasma to be

the difference in convected currents, je = e (niui − neue) in this equation, and we assume the ion velocity is

approximately the bulk velocity, u ≈ ui. Recall from our discussion in Chapter 1 (specifically, equation 1.20)

that the ion-electron collision frequency, νIE , scales with νEI as me/mi; therefore, to be consistent with our

assumption of the ion mass, we assume that νIE → 0 as well. We have

∂je
∂t

+∇ · (jeu+ uje) =
nee

2

me
(E+ u×B) +

e

me
je ×B+

e

me
∇pe − νEIje (2.69)
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The left-hand terms are referred to as the inertial terms. Generally, the time variation of the current is larger

than the spatial variation, so we approximate the inertia terms by dropping the divergence term. The je×B

term on the right-hand side is called the Hall term. Usually the pressure gradient term will not contribute

much, so we further approximate this system by dropping it. The final term on the right-hand side is the

resistive term.

It is customary to rearrange this equation and multiply through by me/nee
2,

E+ u×B =
1

nee
je ×B+

me

nee2
∂je
∂t

+
meνEI

nee2
je (2.70)

This is the generalized form of Ohm’s law. Note that meν/nee
2 = 1/σ. We are now in a position to perform

a scale analysis on the final terms of equation 2.70. We will assume that the left-hand side scales as

|E+ u×B| ∼ LB

τ
(2.71)

where B is the characteristic field strength and L and τ are characteristic length and time scales. Notice

that this scale corresponds to a scaling of the Lorentz force law, and since in a plasma the Lorentz force is

generally significant, these scales must be of interest. The scales of the right-hand side terms can be derived

by substituting in the Ampere law for the current density,

LB

τ
∼ 1

nee

1

µ0

B2

L
+

me

nee2
B

µ0τL
+
meνEI

nee2
1

µ0

B

L
(2.72)

Substituting out µ0 in favor of ε0 via the Weber relation (equation 2.7) in all but the last term, and

introducing the plasma and cyclotron frequencies (ω2
p = nee

2/meε0 and ωc = eB/me), we have

LB

τ
∼ meε0c

2

nee2
eB2

me
+
meε0c

2

nee2
B

τL
+
meνEI

nee2µ0

B

L
(2.73)

L2 ∼ c2

ω2
p

ωcτ +
c2

ω2
p

+
1

µ0σ
(2.74)

where we have introduced the substitution σ = nee
2/meνEI . Recall that the term c/ωp is referred to as the

skin depth of the plasma, and has units of length. The scaling requirements are now exposed in order to

neglect different terms in the generalized Ohm’s law. Comparing the left-hand side of equation 2.70 to each

term on the right, we can make the following conclusions:

• Comparison of the characteristic length scale and product of the skin depth and cyclotron frequency,

L2

τ
∼ c2

ω2
p

ωc (2.75)

determines if the Hall term is negligible. This corresponds to a physical situation where the length

scale of variation is greater than the skin depth, and the time scale of variation is greater than the
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cyclotron frequency. Note that this implies that the Hall term is constrained by both length and time

scales.

• A comparison of the length scale and skin depth for the inertia term,

L2 ∼ c2

ω2
p

(2.76)

indicates that if the length scale of variation is much larger than the skin depth, then the inertial term

is insignificant. Conversely, the inertia term must be considered when a large gradient occurs on the

order of the skin depth in the plasma.

• The resistive term scales as the characteristic speed,

L

τ
∼ U ∼ 1

µ0σL
(2.77)

where σ = nee
2/meνEI is defined to be the scalar electrical conductivity in the single-fluid model. A

fascinating analogy follows from equation 2.77. Suppose that, for a moment, we introduce a substitu-

tion, ν = 1/µ0σ. Then the scale of interest governing the last term in equation 2.70 is

UL

ν
(2.78)

which looks identical in form to the Reynolds number in classical fluid dynamics. Thus, this ‘viscous

ratio’ represents a scaling of the inertia terms to the magnetic diffusivity, ν. This quantity is in fact

named the magnetic Reynolds number, denoted Rem,

Rem = µ0σUL (2.79)

and, just as the Reynolds number does for classical fluid theory, the magnetic Reynolds number

represents a ratio of the advective and diffusive limits of the equation. In the case that the electrical

conductivity is high, the advective behavior dominates and the diffusion can be neglected. In the

opposite case, the magnetic diffusion dominates over the advective nature.

2.6 Magnetohydrodynamic Description

At length, we have derived equations for the two-fluid description, and we simplified the system to a single-

fluid system by assuming the electron mass was negligible. This led to a second, simpler system that consists

of the coupled Navier-Stokes and full Maxwell equations after neglecting the electron inertia. The current

must now be fashioned by Ohm’s law, and a convective component can be added if a net charge density

is present in the plasma. This system can still support charge separation effects, electromagnetic wave

propagation and higher-frequency behavior, even if it does not capture as many frequencies as the two-
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fluid model. Furthermore, the Hall effect can be added to Ohm’s law if the cyclotron frequencies become

significant. We can further simplify the single-fluid system to the typical magnetohydrodynamic model by

making additional assumptions in the Maxwell equations.

The MHD theory is founded on two principle assumptions:

• The plasma is quasineutral, so that there is no net charge density anywhere

• The displacement current term is negligible

The first assumption here requires that %e = 0 everywhere in the plasma. The definition of a plasma is

usually posed with this assumption in mind, when the assertion that the characteristic length scale is much

larger than a Debye length, L� λD, is made. Quasineutrality leads to some significant results. First, recall

that the electric body force term acting on the fluid is %eE; if the plasma is quasineutral, then we expect the

electric body force term to be very small. This does not restrict us from including an applied electric field,

but an applied field may only affect the current in this model, and cannot directly induce a body force on

the plasma anymore.

A second result of quasineutrality is that it changes the nature of the continuity equation of charge,

equation 2.12. If %e = 0, then

∂%e
∂t

+∇ · je = 0 → ∇ · je = 0 (2.80)

So a quasineutral plasma can only possess a solenoidal current density. Physically, we may interpret this

statement as an indication that the rearrangement of charge in the plasma occurs on a time scale much faster

than the smallest time scale of significance. Since the motion of the electrons is characterized by the plasma

frequency, ωp, then this assumption can be valid for cases where the plasma frequency is significantly larger

than the largest frequency of interest.

The second assumption typically invokes a scale analysis to neglect the displacement current term in the

Ampere-Maxwell equation. Let us assume the current is given by Ohm’s law, with negligible Hall effect

and inertia terms. Then je = σE + σu × B ∼ E + UB, and let the electric field scale according to the

moving-frame transformation, E ∼ UB, which means that the scale of the current is just je ∼ UB (we omit

the factor of two). The Ampere-Maxwell equation, equation 2.11, can be shown to scale as [15]

µ0σUB ∼ 1

c2
E

τ
+
B

L
(2.81)

µ0σULB ∼ U

c2
L

τ
B +B (2.82)

Rem ∼ µ0σUL ∼ U2

c2
+ 1 (2.83)

Thus, the curl of the magnetic field will contribute a factor approximately on the order of the magnetic

Reynolds number, while the displacement current term will contribute a factor of U2/c2 to correct this.

To construct a numerical example, let’s suppose we are examining a plasma propulsion system capable of
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producing an extremely large specific impulse of 10, 000s. That roughly corresponds to an exhaust velocity

of ∼ 100, 000m/s. The scales for the terms of the Ampere law reveal that the displacement current term

will offer a contribution on the order of 0.00001% of the curl term. Thus, we could simply discard the

displacement current, which would give us the Ampere law in its pre-Maxwell form,

µ0je = ∇×B (2.84)

This scale analysis is amost always the justification made for neglecting the displacement current. However,

cases can arise where the displacement current is not negligible. Of particular importance are cases where

the mathematical nature of the electromagnetics is sacrificed by this approximation. As a counterexample,

let us recite Feynman’s example [106] of a case where the displacement current is critical to resolving the

behavior of the magnetic field.

Consider a spherically symmetric radial distribution of current, as shown in Figure 2.1. Some source of

current is at the center of this distribution. We want to calculate the magnetic field, B, produced by the

currents in this situation. The current can be calculated via the charge continuity equation,

∂Q(R)

∂t
= −4πr2j(R) (2.85)

where Q(R) is the charge enclosed in a sphere of radius R. Now, we turn our attention to the magnetic

field. We start by drawing an Amperian loop, denoted Γ, on some surface of radius R in Figure 2.1, and use

the right-hand rule to determine the direction of the magnetic field.

However, we are already at an impasse. A different choice of the Amperian loop Γ would give us a

different magnetic field. This is confusing, since the current distribution is spherically symmetric, but yet it

seems that the magnetic field depends on the direction. However, it quickly becomes absurd – we can choose

yet a different Amperian loop that tells us that the magnetic field should be in exactly the opposite direction

as the first loop gave. So how can there be any circulation of the magnetic field around the currents at all?

This problem is completely solved by the displacement current term. We are reminded that the circulation

of B depends not only on the total current through the Amperian loop Γ, but also on the time rate of change

of the electric flux through it (the displacement current). The electric field is radial, and at radius R is

ER =
1

4πε0

Q(R)

r2
(2.86)

The time rate of change of this field is

∂E

∂t
=

1

4πε0r2
∂Q(R)

∂t
(2.87)

By substitution of equation 2.85 for the current and equation 2.87 for the displacement current, Ampere’s
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Figure 2.1: A diagram of Feynman’s example of displacement current [106]. Spherically symmetric radial
distribution of current and electric field. What is the magnetic field around an Amperian loop?
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law is

c2∇×B =
j

ε0
+
∂E

∂t
= − 1

4πε0r2
∂Q(R)

∂t
+

1

4πε0r2
∂Q(R)

∂t
= 0 (2.88)

i.e., the contributions from the real and displacement currents exactly cancel. With an additional boundary

condition, we can easily show that this proves that the magnetic field is in fact zero everywhere on the surface

of the sphere, which solves the directional problem associated with the construction of our Amperian loop.

Feynman’s example makes it clear that we cannot always dispense with displacement current, even when

the magnitude is small; there are cases where the nature of the equations change form with its disappearance.

Furthermore, the charge continuity equation is only exactly satisfied when the displacement current is taken

into account. The applications outlined in the introduction represent several problems where we cannot

neglect this term, even for engineering problems. Particularly poignant are examples such as that given

in [59], during the initial transient startup of a pulsed plasma thruster. Because the thruster operates

principally using a capacitive discharge across a forming arc plasma, there is a strong appearance of charge

in the plasma, and a displacement current occurs in the surrounding vacuum regions to complete the circuit.

Another approach that reveals the full behavior of the magnetic field and shows clearly how the MHD

theory treats the displacement current is to consider again the derivation of the wave equation for the

magnetic field, equation 2.13. When we showed this result, we mentioned that it was valid when no charge

or current was present (the medium is vacuum). If we instead retain a net current density, we arrive at a

more general equation,

∂2B

∂t2
− c20B = −���2B = − 1

ε0
∇× je (2.89)

Here, the presence of current density acts to dampen the wave behavior of the magnetic field. For simplicity,

assume Ohm’s law here may be written as je ∼ σE, where σ is the plasma electrical conductivity. Substitution

into the right-hand side and application of Faraday’s law to exchange ∇×E for −∂B/∂t gives us

1

c20

∂2B

∂t2
+ µ0σ

∂B

∂t
−∇2B = 0 (2.90)

Equation 2.90 is the celebrated telegrapher’s equation for the magnetic field [5]. As presented in Section 1.3,

if we ignore the spatial behavior temporarily, two limits of the temporal evolution of the magnetic field

become clear. In the first case, the conductivity could be very large, and in the limit that σ → ∞, the

second term dominates the first term,

µ0σ
∂B

∂t
� 1

c20

∂2B

∂t2
(2.91)

This is identical to the case of the magnetic Reynolds number being very large. In this case, we may neglect
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the displacement current, and we are left with a diffusion equation for the magnetic field,

∂B

∂t
− 1

µ0σ
∇2B = 0 (2.92)

This is the essential result enforced by the assumption that the displacement current is negligible. It is only

applicable when equation 2.91 is true. In the converse limit, if the conductivity is very small, we could have

µ0σ
∂B

∂t
� 1

c20

∂2B

∂t2
(2.93)

In which case the damping term is negligible, and we are rewarded with a pure wave in the magnetic field,

1

c20

∂2B

∂t2
−∇2B = −���2B = 0 (2.94)

This is a well-known result for vacuum, where the conductivity is classically zero. We could further have an

intermediate case, where the two terms are on order to one another,

µ0σ
∂B

∂t
∼ 1

c20

∂2B

∂t2
(2.95)

In this case, the equation is still hyperbolic, but the damping term cannot be neglected. This corresponds

to the physical case of mixed wave and diffusion behavior occuring the magnetic field.

The MHD theory is again only applicable in the limit when equation 2.91 is realized. If this is true, the

magnetic field approaches its diffusive limit, and the wave nature of the field is small enough to be ignored.

However, in general, the behavior of the magnetic field is truly hyperbolic, and it is only in the case of a

large conductivity that we may apply the MHD model.

If we neglect the displacement current and proceed with the pre-Maxwell form of the Ampere law (∇×

B = µ0je), we have effectively removed the speed of light from Maxwell’s equations, and the Ampere-

Maxwell equation is no longer hyperbolic, but parabolic. This assumption is called the magnetic diffusion

approximation, and is one of the fundamental tenets of the MHD theory. Equation 2.84 fashions an equation

for the current density that may be substituted into the Lorentz force expression in equation 2.65,

∂

∂t
(%u) +∇ ·

(
%uu+ Îp

)
= (∇×B)×B (2.96)

An equation for the evolution of the the magnetic field itself can be found by substituting the generalized

Ohm’s law into Faraday’s law, equation 2.10, to eliminate the electric field. Continuing to use our simplified
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form of the Ohm’s law, je = σE+ σu×B, this yields

∂B

∂t
+∇×

{
je − σu×B

σ

}
= 0 (2.97)

∂B

∂t
−∇× (u×B) +

1

σ
∇× je = 0 (2.98)

and substituting equation 2.84 in for the current in equation 2.98,

∂B

∂t
−∇× (u×B) +

1

σµ0
∇× (∇×B) = 0 (2.99)

Applying the vector identity ∇×∇×B = ∇ (∇ ·B)−∇2B = −∇2B, this can be simplified to

∂B

∂t
−∇× (u×B) +

1

σµ0
∇2B = 0 (2.100)

If this equation were nondimensionalized, the magnetic diffusivity appearing in front of the diffusion term

∇2B would become the magnetic Reynolds number, Rem. Here we finally see the meaning of the magnetic

Reynolds number in terms of the limiting cases for the magnetic field; if Rem → ∞ is assumed (leading

to ideal magnetohydrodynamics), then the advective term ∇ × (u×B) is dominant, and the diffusion of

the magnetic field is negligible. However, if the magnetic Reynolds number is finite (a more difficult model

called the resistive magnetohydrodynamic model), the magnetic field behaves in a diffusive fashion, with

competing processes of advection and diffusion evolving the field. Finally, if the magnetic Reynolds number

tends to zero, then the advective processes dominate over the diffusion, and the equation once again becomes

first-order.

2.7 Summary of Models

Collecting our results in this chapter, we present the basic plasma models of interest. The full two-fluid

plasmadynamic equations are shown in Table 2.2. Here, we again stress that α represents the species; in

the case of the usual two-fluid model, this often consists of hydrogenic ions and electrons, α ∈ {e, i}. If

Ns represents the number of species, then we have 5Ns + 8 equations, plus additional constitutive relations

employed to close the system. These equations represent the statistical average of the bulk motion in the

plasma from the kinetic model. In Table 2.3, we show the full system of the single-fluid model; this model

assumes that the electron inertia is negligible in the two-fluid model, and formulates a different constitutive

relation (Ohm’s law) for the current density. Finally, the reduction of the Maxwell equations to a diffusive

approximation by discarding the displacement current and insisting on electrical quasineutrality yields the

usual magnetohydrodynamic approximation. The MHD equations may either be resistive or ideal, depending

on if the conductivity is taken to be finite or infinite, respectively. The resistive and ideal MHD equations are

presented for comparison purposes in Tables 2.4 and 2.5, respectively. Our investigations for the remainder
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Table 2.2: Two-fluid plasmadynamic equations.

Fluid equations (α ∈ {e, i, . . . }):

∂%α
∂t

+∇ · (%αuα) = 0 (2.101)
∂

∂t
(%αuα) +∇ ·

(
%αuαuα + Îpα

)
= %e,αE+ jα ×B (2.102)

∂Eα
∂t

+∇ · ([Eα + pα]uα) = jα ·E (2.103)

Maxwell equations:

∂B

∂t
+∇×E = 0 (2.104)

1

c20

∂E

∂t
+ µ0je = ∇×B (2.105)

Constraints:

∇ ·E = %e/ε0 (2.106)
∇ ·B = 0 (2.107)

Total charge and current:

%e =
∑
α

%α =
∑
α

eα
mα

%α (2.108)

je =
∑
α

jα =
∑
α

eα
mα

%αuα (2.109)

Equation of state:
Perfect gas, pα = %αRαTα
Calorically perfect gas, Eα = pα

γ−1 + 1
2%αuα · uα

Approximations used:
Strongly collisional, λmfp � L
Nonrelativistic, u� c0

of this dissertation will pursue the solution of the single-fluid and two-fluid plasma models retaining the full

Maxwell equations, as presented in Tables 2.3 and 2.2, respectively.
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Table 2.3: Single-fluid plasmadynamic equations, including full Maxwell equations.

Fluid equations:

∂%

∂t
+∇ · (%u) = 0 (2.110)

∂

∂t
(%u) +∇ ·

(
%uu+ Îp

)
= %eE+ j×B (2.111)

∂E
∂t

+∇ · ([E + p]u) = j ·E (2.112)

Maxwell’s equations:

∂B

∂t
+∇×E = 0 (2.113)

1

c20

∂E

∂t
+ µ0je = ∇×B (2.114)

Constraints:

∇ ·E = %e/ε0 (2.115)
∇ ·B = 0 (2.116)

Total charge and current density:

∂%e
∂t

+∇ · je = 0 (2.117)
je = σ ·E+ σu×B+ %eu (2.118)

Equation of state:
Perfect gas, p = %RgasT
Calorically perfect gas, E = p

γ−1 + 1
2%u · u

Approximations used:
Strongly collisional, λmfp � L
Nonrelativistic, u� c0
Small Larmor radius, rL � L
Scalar plasma conductivity, |ωc| � ν
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Table 2.4: Resistive magnetohydrodynamic (MHD) equations. [16]

Fluid equations:

∂%

∂t
+∇ · (%u) = 0 (2.119)

∂

∂t
(%u) +∇ ·

(
%uu+ Îp

)
= (∇×B)×B (2.120)

∂E
∂t

+ ([E + p]u) =
(∇×B)

2

µ2
0σ

(2.121)

Magnetic diffusion:

∂B

∂t
= ∇× (u×B)− 1

σµ0
∇2B (2.122)

Current density:

je = σE+ σu×B (2.123)

Constraints:

∇ ·B = 0 (2.124)

Equation of state:
Perfect gas, p = %RgasT
Calorically perfect gas, E = p

γ−1 + 1
2%u · u

Approximations used:
Strongly collisional, λmfp � L
Nonrelativistic, u� c0
Quasineutrality, λD � L
Small Larmor radius, rL � L
Scalar plasma conductivity, |ωc| � ν
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Table 2.5: Ideal magnetohydrodynamic (MHD) equations. [16]

Fluid equations:

∂%

∂t
+∇ · (%u) = 0 (2.125)

∂

∂t
(%u) +∇ ·

(
%uu+ Îp

)
= (∇×B)×B (2.126)

∂E
∂t

+ ([E + p]u) =
(∇×B)

2

µ2
0σ

(2.127)

Magnetic field advection:

∂B

∂t
−∇× (u×B) = 0 (2.128)

Current density:

je = σE+ σu×B (2.129)

Constraints:

∇ ·B = 0 (2.130)

Equation of state:
Perfect gas, p = %RgasT
Calorically perfect gas, E = p

γ−1 + 1
2%u · u

Approximations used:
Strongly collisional, λmfp � L
Nonrelativistic, u� c0
Quasineutrality, λD � L
Small Larmor radius, rL � L
Scalar plasma conductivity, |ωc| � ν
Large magnetic Reynolds number, Rem → ∞
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Chapter 3

An Isomorphism Between Two-fluid

Plasmas and Classical

Electrodynamics

“Just a heads up. We’re gonna have a superconductor turned up full blast and

pointed at you for the duration of this next test. I’ll be honest, we’re throwing

science at the walls here to see what sticks. No idea what it’ll do.”

Cave Johnson [1]

3.1 Motivation and State of the Art

Our initial investigation examines an analytical approach to modeling two-fluid plasmas. The approach taken

here is to construct an isomorphism between the equations for each species and another, well-understood

system of equations (in our case, the Maxwell equations). Then the theorems and techniques of classical

electrodynamics can be shown to hold with equal mathematical validity for the two-fluid equations.

Although the remarkable mathematical similarity that often exists between two completely separate

physical theories has undergone many names, we have borrowed the language of Towne [107] to call such a

relationship an isomorphism. The essential utility in constructing such a relationship is that the theorems

and techniques of one well-developed physical theory may be enjoyed by another. Careful attention must

be paid to the construction of these analogies, since certain conditions can often damage the nature of this

relationship.

A student of physics commonly confronts examples of the utility in drawing these connections between

different fields of study. A straightforward example is the mathematical analogy that is evident in a discussion
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of linear and angular kinematics. After one understands linear kinematics, it becomes obvious that angular

kinematics proceeds in the same fashion, only with angular quantities transplanting the linear quantities.

Although this is born out of a genuine physical connection between the two fields, this need not be the case.

The study of electrical circuits and signals is often introduced through analogy, appealing to the idea that a

voltage difference is analogous to a pressure difference or temperature difference. In the study of ideal flow,

a Poisson equation for a velocity potential is presented, which forms an identical mathematical framework as

electrostatics. As Towne points out [107], the formulation of these analogies is not unique between different

fields. For example, one may take the form of the continuity equation for an incompressible flow, ∇·u = 0,

and the Gauss law for the magnetic field, ∇ · B = 0, as the basis for forming an analogy between fluid

dynamics and electrodynamics. However, as has been observed previously [108–110] and is used as a basis

for our development, we could equally take the Coulomb gauge, ∇·A = 0, to be analogous to the form of the

continuity equation for incompressible flow. It is only necessary that the construction of the isomorphism

identify fields that behave in an analogous mathematical fashion; with sufficient manipulation, this should

reveal an identical set of equations for both systems.

The similarity between fluid dynamics and classical electrodynamics has long been recognized. Whittaker

[111], Spiegel [112], Wise [113] and Nersessian [114] all provide fascinating accounts of its important role

in the infancy of classical electrodynamics. Faraday’s suggestion of a connection between the magnetic

induction vector with the velocity of an incompressible fluid impressed Maxwell during his earlier endeavors

to establish a theory of electromagnetism. Maxwell himself realized the value of this connection, as he wrote in

1855 [4] that “of the laws of elastic solids, and of the motions of viscous fluids, I hope to discover a method

of forming a mechanical conception of this electrotonic state adapted to general reasoning.” Helmholtz’s

work [115] on vortex motion strengthened this analogy between magnetism and the incompressible fluid,

whereby many theorems of hydrodynamics were correlated to electromagnetism. With such an intimate

place in the early development of classical electrodynamics, it is somewhat remarkable that the equations

describing the behavior of electric and magnetic fields were not written directly as fluid equations.

More recently, the converse recognition of this analogy has been exploited to rewrite the equations of

motion for a fluid into the form of Maxwell’s equations. During the 1960’s, work produced a set of Maxwell

equations for specific fluid problems in which a set of analogous field equations were solved in lieu of the

fluid equations [116, 117]. More recently, Marmanis [108, 109] provided a novel reformulation of the Navier-

Stokes equations into a set of Maxwell equations that were exploited to study turbulent flow. The work

identified the notion of fluid charge and current, for which some empirical model must be known in order

for the incompressible Maxwell equations to be solved. This concept of a fluid set of Maxwell equations was

generalized by Kambe [110] to compressible flow.

Presently, only one approach in the literature seems to have attempted to extend this idea to the two-fluid

plasma framework, in addition to the author’s work [118–120]; this is work of Mahajan [121], followed by

later work by Mahajan, et al. [122–124], who have shown that the two-fluid equations may be rewritten
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in a compact form as a set of unified Maxwell equations. However, the work seems to only identify the

homogeneous Maxwell equations (the inhomogeneous equations are not mentioned [121]), and a different

resulting system of equations is arrived at and solved for specific cases. This differs from the present

work since we consider a full isomorphism in which both homogeneous and inhomogeneous equations are

constructed. The difference in these approaches can be seen in the Chapter 4, where some different solution

approaches are considered in light of the presence of the new source terms.

It will be seen that the inclusion of the inhomogeneous equations substantially reposes the problem. The

notion of generalized charge and current density will need to be addressed, and the process whereby this

issue is dealt with changes the nature of how the isomorphism may be exploited. A further advantage of

extending the isomorphism for the two-fluid plasma system is that it unites the efforts of Marmanis [108,109],

Kambe [110] and Mahajan [121] into a common framework wherein the subtle differences of definitions

are revealed. Others have sought to explicate a physical meaning from the relationship between the fluid

equations and electrodynamics [125]; this is also connected to the ramifications that we will shortly see in

Section 3.5.

It is known that the generalized vorticity of a plasma is an important quantity. The generalized vorticity

and canonical momentum can be used to formulate the self-helicity of the plasma, a generalization of the

magnetic helicity from magnetohydrodynamics, which is a rugged invariant of the plasma [80, 81]. The

generalized vorticity and self-helicity offer a different description of the plasma in which the evolution to

equilibrium states can be determined by a set of evolution equations [78–81,126]. The isomorphism presented

here thus directly connects to the active work in formulating an analytical framework that describes the

generalized behavior of the plasma without resorting to just describing the primitive variables. This could

also provide an alternate variational description of the plasma in its generalized quantities, since these

approaches could be used to construct means of calculation of the plasma evolution [127].

Another vein of literature that should be mentioned in connection with this work is the Lighthill anal-

ogy [128,129]. This work was introduced in 1952 by Lighthill [128], addressing the problem of noise generation

in fluid dynamics; the resulting approach proposed by Lighthill birthed the field of aeroacoustics. In this

approach, the fluid dynamic equations are rearranged into the form of an inhomogeneous wave equation

with a quadrupole source term. If the velocity field can be solved, or is already known, then the source

term is explicitly given. The inhomogeneous wave equation may then be solved for the acoustic field in-

duced by the source. This has led to numerical simulation approaches [130–133] wherein the fluid dynamic

behavior is calculated first for the velocity field, the source term is then considered to be fully known,

and the far-field acoustic radiation is calculated given the source term. This approach has shown great

success in quantitatively predicting acoustic noise generated by aerodynamic flows. Although the applica-

tion is entirely different and the approach is slightly different, the core notion that the rearrangement of a

set of equations can reveal a different approach to solving the problem is common to the approach taken here.
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3.2 Objective

Our objective in this chapter is to formulate a set of Maxwell equations for new generalized fields that

determine the combined electrodynamic and hydrodynamic behavior of the plasma. The formulation of the

equations is described; the details of the derivation are lengthy, and are deferred to Appendix A.1. After

the identification of the new isomorphic Maxwell equations and the new generalized fields for a two-fluid

plasma, we explore some of the immediate consequences. Particularly, the recognition of a vector and scalar

potential form may be realized, with analogies between gauge transformations and the continuity equation.

We also briefly examine the concept of a Lagrangian function being constructed using the isomorphism.

One of the more interesting elements of the new equations is the concept of the source terms, which are

analogues to the charge and current densities of classical electrodynamics. The analytical form of the source

terms as functions of the primitive variables is easy to determine, which reveals the generation mechanisms

of the generalized fields. Due to the nature of Maxwell’s equations, we must possess some knowledge of these

source terms to solve the system for the fields. A large part of our investigation addresses the treatment

of the source term. The simplest approach is to consider the homogeneous case in which the source terms

vanish, which may be solved in a straightforward manner.

In the case of an inhomogeneous plasma where sources are nonzero, however, some other approach must

be used and the problem is nontrivial. Two approaches were considered in this investigation; first, the idea

of iteratively calculating the source terms and fields was scrutinized. This would give rise to an algorithm

similar to that used in particle-in-cell simulations to calculate the sources first, solve for the fields, and

update the sources. However, some major limitations were encountered that makes this approach unrealistic.

Second, the idea of empirically modeling the source terms was considered. This approach leads to solution

techniques that are successful, given some empirical form of the source terms for the problem at hand. It

is proposed that the source terms for simple problems be collected and formed into a library, similar to

previous approaches exploring isomorphic systems in fluid dynamics. More difficult problems could then be

posed using an understanding of the simpler source models as building blocks.

As an illustration of the empirical modeling approach, three classic fluid problems are reconsidered: the

case of Couette flow, duct flow, and Blasius boundary layer flow. Although these problems are simple,

they permit analytical models for the source terms to be constructed, and the solution approaches of using

reconstructive techniques and classic electrostatic methods such as Green’s functions or method of images

can be applied and demonstrated to work correctly. Furthermore, they appear ubiquitously in fluids and

plasmas, and hence are prime candidates for simple empirical models that may be applied to predict more

difficult problems. Unfortunately, more complicated problems require an excessive analysis to discover an

analytical model for the source terms, so we also illustrate the approach of using numerical simulation and
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postprocessing to qualitatively demonstrate some key features of the source terms for compressible fluids

and plasmas.

3.3 An Isomorphism Between Multifluid Plasmas and Maxwell’s

Equations

To construct our analogy, we begin by considering the equations for an isentropic plasma1,

Dα%α
Dt

+ %α∇ · uα = 0 (3.1)

%α
Dαuα

Dt
= −∇pα +

eα
mα

%α {E+ uα ×B} (3.2)

Equation 3.1 and 3.2 are just the species continuity and species momentum equations for each species α,

respectively. By our isentropic assumption, the following thermodynamic relations hold,

Tαdsα = 0 = dhα − dpα/%α (3.3)

dhα =
dpα
%α

=
1

%α

dpα
d%α

d%α =
a2α
%α

d%α (3.4)

where Tα is the species temperature, sα is the species entropy, hα is the species enthalpy, pα is the species

pressure, %α is the species mass density, and aα = dpα/d%α|s=const is the species sonic speed. This allows us

to rewrite equation 3.1 and 3.2 in favor of the species enthalpy hα,

∂hα
∂t

+ uα ·∇hα + a2α∇ · uα =
Dαhα
Dt

+ a2α∇ · uα = 0 (3.5)
∂uα

∂t
+ uα ·∇uα = −∇hα +

eα
mα

{E+ uα ×B} (3.6)

We can introduce the vector and scalar potential fields into equation 3.6 if we apply equations 2.15 and 2.18,

∂uα

∂t
+ uα ·∇uα = −∇hα +

eα
mα

{
−∇φ− ∂A

∂t
+ uα × (∇×A)

}
(3.7)

After some rearrangement, this becomes

∂

∂t

{
uα +

eα
mα

A

}
+ uα ·∇uα = −∇

{
hα +

eα
mα

φ

}
+ uα × (∇×A) (3.8)

1viscous and entropic terms are gracefully handled in this formulation, as we have presented in [118, 119], but will not be

discussed here. These additional terms will essentially add new contributions to the source terms of the equations. A starting

point for seeing this is by taking the divergence of Crocco’s equation, which provides a more general form of equation 3.29

below.
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The advective term, uα ·∇uα, is known to be equivalently stated as a vector identity,

uα ·∇uα = ωα × uα +∇
(
1

2
uα · uα

)
(3.9)

where ωα = ∇× uα is the fluid vorticity. The quantity ωα × uα is the Lamb vector, a quantity that seems

to receive relatively little attention depsite its importance in understanding complicated flows. Substitution

of this identity for the advective term and some manipulation allows equation 3.8 to be rewritten as

∂

∂t

{
uα +

eα
mα

A

}
+

{
ωα +

eα
mα

B

}
× uα = −∇

{
hα +

1

2
uα · uα +

eα
mα

φ

}
(3.10)

We now introduce the following mass-specific definitions:

• The species specific canonical momentum is defined as

Pα = uα +
eα
mα

A (3.11)

• The generalized vorticity, which is the curl of the canonical momentum, is defined as

Ωα = ∇×Pα = ∇×
{
uα +

eα
mα

A

}
= ωα +

eα
mα

B (3.12)

• The generalized Lamb vector is defined as

ζα = Ωα × uα =

{
ωα +

eα
mα

B

}
× uα (3.13)

• The specific total energy is defined as

ET
α = hα +

1

2
uα · uα +

eα
mα

φ = Hα +
eα
mα

φ (3.14)

where Hα = hα + (1/2)uα · uα is the species stagnation enthalpy.

Rewriting equation 3.10 in terms of these definitions, we are finally rewarded with a very compact result,

∂Pα

∂t
+ ζα = −∇ET

α (3.15)

Equation 3.15 is identical to equation 8 in [80], except that a vector identity has been applied to break up

the advective term. This relates the present work to considerations of evolution equations for the generalized

invariants describing the plasma [80,81].
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In order to see an analogy emerge, we can first rewrite equation 3.15 by solving algebraically for the

generalized Lamb vector, ζα,

ζα = −∂Pα

∂t
−∇ET

α (3.16)

This form is mathematically identical to equation 2.18, which defines a relationship between the electric

field and the vector and scalar potentials of electrodynamics. Here, ζα can be perceived as an electric field,

and Pα and ET
α play the role of the vector and scalar potential. This analogy is further encouraged by the

relationship between the generalized vorticity and the canonical momentum,

Ωα = ∇×Pα (3.17)

which is reflective of equation 2.15, the definition of the magnetic field in terms of the vector potential.

Hence, we expect there to be a correspondence in the following form:

ζα → E, Ωα → B, P → A, ET
α → φ (3.18)

In the analogy just realized, the quantities ζα and Ωα play roles as electric and magnetic fields for the

two-fluid plasma. We would therefore expect that a set of Maxwell equations could be derived to govern

the behavior of these fields, which we will shortly show. However, there are some other interesting features

about the idea of solving for these new dynamical quantities. Notice that since ζα was born from a vector

identity concerning the nonlinear advective term, we are in part taking the nonlinear term now to be our

unknown (there is still another contribution of the nonlinear term buried in the energy term ET
α , but we

won’t be solving for this quantity). In a sense, this means that the new Maxwell equations are (at least,

explicitly) linear. Also, since the coupling between species is buried inside Ωα (as the magnetic field, B)

and Pα (as the vector potential, A) and in the energy term, ET
α (as the scalar potential, φ), our system of

equations will be explicitly decoupled between different species.

To derive the Maxwell equations, we consider the derivatives (divergence, curl and time derivative) of

equation 3.15. The actual calculations are deferred to Appendix A.1, since they are tedious and involve

repeated applications of vector identities and manipulation. The divergence and curl of equation 3.15 are

straightforward, while the time derivative of equation 3.15 is much more complicated. However, these three

calculations yield Gauss, Faraday and Ampere-Maxwell laws, respectively, for the generalized Lamb vector

and generalized vorticity. To complete this set, we take the divergence of the vorticity (which must, by

vector identity, be zero), ∇ ·Ωα = ∇ ·∇×Pα, as our final Gauss law. Collecting our results we have the
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following equations,

∇ ·Ωα = 0 (3.19)

∇ · ζα = %α (3.20)
∂Ωα

∂t
+∇× ζα = 0 (3.21)

∂ζα

∂t
+ jα = a2α∇× ωα + c20∇×

(
eα
mα

B

)
(3.22)

where we have introduced the substitutions

%α = − ∂

∂t
(∇ · uα)−∇2Hα +

eα
mα

%e
ε0

(3.23)

jα = ∇∂kα
∂t

+

(
∂2uα

∂t2
− a2α∇2uα

)
−∇ (uα ·∇hα) +

eα
mα

je
ε0

(3.24)

where we have introduced the specific kinetic energy kα = (1/2)uα · uα and the stagnation enthalpy, Hα =

hα + kα. The quantities %α and jα are source terms to the equations 3.19 through 3.22. This system of

equations is remarkably similar to the Maxwell equations, except for right-hand side of equation 3.22, where

we have two components of the generalized vorticity, Ωα, but they are weighted according to their separate

wave speeds. In one sense, this is encouraging, since it verifies that the two distinct wave speeds remain intact

through the derivation; however, it hinders our original goal of formulating an exact analogy to the Maxwell

system. To proceed, we move the terms on the right-hand side of equation 3.22 to the left-hand side, and

add the quantity v2α∇×Ωα to both sides. On the left, we then include the a2α∇×ωα and c20∇× (eα/αB)

terms and the vα∇ × Ωα on the left-hand side in the definition of jα, which will later be assumed given.

This gives us a complete form of the Maxwell equations

∇ ·Ωα = 0 (3.25)

∇ · ζα = %α (3.26)
∂Ωα

∂t
+∇× ζα = 0 (3.27)

∂ζα

∂t
+ jα = v2α∇×Ωα (3.28)

where we have introduced the substitutions

%α = − ∂

∂t
(∇ · uα)−∇2Hα +

eα
mα

%e
ε0

(3.29)

jα = ∇∂kα
∂t

+

(
∂2uα

∂t2
− a2α∇2uα

)
−∇ (uα ·∇hα) +

eα
mα

je
ε0
+[

v2α − a2α
]
∇× ωα +

eα
mα

[
v2α − c20

]
∇×B

(3.30)
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where now %α and jα are the new source terms (we have included the terms that did not match the Maxwell

set within these quantities), and the new speed vα is an arbitrary speed, as long as this speed is chosen

identically for equations 3.28 and 3.30.

It is clear that equations 3.25 through 3.28 are mathematically identical to the Maxwell equations of

classical electrodynamics. In this isomorphism, the generalized fields Ωα and ζα play the role of the magnetic

and electric fields, respectively. The terms %α and jα are analogous to the charge and current densities of

electrodynamics. The generalized quantities Ωα, ζα, %α and jα unify the hydrodynamic and electrodynamic

character of the plasma into a single isomorphic framework. Since the Maxwell equations have well-known

solution techniques and approaches, we may apply these approaches to the two-fluid system by considering

them in the form of the equations given. Note that there exists a separate Maxwell system for each species

α in the plasma.

Since vα is arbitrary, we are free to choose the speed vα in equations 3.28 and 3.30 as long as the choice

is consistent. Three candidate choices should be immediately obvious: the local sonic speed, aα, the speed

of light, c0, and the local fluid velocity, |uα|. The first two have the benefit of alleviating the form of

equation 3.30 by cancelling terms. However, the fluid velocity is the most consistent choice, since in the

most limiting case of an incompressible fluid neither of the first two choices are sensible. Hence, the choice

of vα = |uα| will always be available, whereas the other choices will depend on the nature of the problem.

In addition, since we will seek to model the form of jα empirically, it behooves us to choose the speed

vα = |uα|, since choosing one of the other choices will require different empirical models for different classes

of problems. Note that, in the limit that we take the electromagnetics to vanish, we have a fluid problem

with possible speed choices of aα and uα. In the case that the flow is incompressible and we take vα = |uα|,

our Maxwell equations reduce to those discovered previously for incompressible flow [108,109]; if we instead

have a compressible flow and take vα = |uα|, our system reduces to the compressible fluid Maxwell equations

presented in previous work [110].

If we take the local fluid velocity as the speed in equations 3.28 and 3.30, vα = |uα|, then we may derive

equation 3.30 using vector identities. This is presented in Appendix A.1. We can show that the form of jα
for vα = uα is alternately given as

jα = %αuα − ζα∇ · uα + 2ζα ·∇uα + ζα ×Ωα −Ωα × ∂uα

∂t
+

∇× [(uα ·Ωα)uα]−∇
(
u2
α

)
×Ωα

(3.31)

This is an extension of the previous incompressible model [108,109] to the case of compressible flows with elec-

tromagnetic body forces. Furthermore, this relates the previous incompressible [108, 109] and compressible

work [110] to each other in form.
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3.4 Convolutions of the Field Equations

Equations 3.25 through 3.28 correspond to the microscopic Maxwell equations, in the sense that small

perturbations to the primitive variables will inevitably induce rapidly fluctuating sources and fields. In most

respects, it is neither necessary nor desirable to capture these small-scale fluctuations. It would instead be

preferable to determine the macroscopic, overall behavior of the fields and sources.

A similar perspective is faced in classical electrodynamics. In a microscopic world composed of electrons

and nuclei, the charges and currents are in incessant motion, and introduce extremely rapidly fluctuating

microscopic fields on the order of 10−10m and between 10−13s to 10−17s. Since macroscopic measuring

devices average over much larger intervals in space and time, these microscopic fluctuations are averaged

out, and only the relatively smooth, macroscopic quantities are of interest.

In order to average out the small-scale fluctuations in the sources and fields, we follow a similar line of

thought as that presented by Jackson [5], Russakoff [134], and Marmanis [108, 109]. We introduce a spatial

average of some function F (x, t) as

〈F (x, t)〉 =
∫
f (x′)F (x− x′, t) dx′ (3.32)

where we take f(x) to be some real, nonzero, isotropic function. We further insist that the function f(x)

and its derivative be smooth, since discontinuities in either f(x) or its derivative can introduce jitter to the

sources and fields. A typical function that meets these requirements is

f (x) =
(
πR2

)−3/2
exp

(
−r2/R2

)
(3.33)

where r2 = x · x and some averaging distance, R, must be selected; R must be large compared to the small-

scale behavior. The major goal in introducing f(x) is to permit a rapidly converging Taylor series expansion

of f(x) over small-scale dimensions. It is straightforward to show that ∂/∂xi〈F (x, t)〉 = 〈∂F (x, t)/∂xi〉 and

∂/∂t〈F (x, t)〉 = 〈∂F (x, t)/∂t〉. We can take the average of equations 3.25 through 3.28 to arrive at

∇ · 〈Ωα〉 = 0 (3.34)

∇ · 〈ζα〉 = 〈%α〉 (3.35)
∂〈Ωα〉
∂t

+∇× 〈ζα〉 = 0 (3.36)
∂〈ζα〉
∂t

+ 〈jα〉 = 〈v2α∇×Ωα〉 (3.37)

A mathematical difficulty presents itself here. The equations are not closed, since in the last term in

equation 3.37 there is a convolution of the square of the speed and the curl of the generalized vorticity.
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Previously, in the fluid dynamic work, this problem was avoided by assuming the following,

〈v2α∇×Ωα〉 ≈ 〈v2α〉∇× 〈Ωα〉 (3.38)

This assumption may be true if the square of the speed v2α is sufficiently constant within R such that we can

pull it out of the integration in equation 3.32; we then choose this speed as v2α = 〈u2α〉. We cannot provide

a proof that this will be the case, and it may not always be, but we can resort to numerical simulations of

plasmas in order to explore the justification for this assumption.

As a simple demonstration that justifies our approximation in a representative problem, we examine a

simulation of a pulsed plasma thruster operating in an ablative mode, one of the several applications we

are interested in. The results of this simulation were presented in [135, 136], and the details of the plasma

thruster operation are contained there as well. In the plasma plume expansion that emerged from the

thruster, a region was chosen and postprocessed to calculate the gradient of the average velocity, ∇〈v2〉,

using equation 3.32 to average the velocity; this calculation is presented in Figure 3.1 [118]. Since this value

is very small, the value of 〈u2α〉 is relatively smooth, and our approximation in equation 3.38 is reasonable

for this case.

Correspondingly, convolutions of the source terms are necessary as well. Convolving equations 3.29

and 3.31, we have

〈%α〉 = − ∂

∂t
(∇ · 〈uα〉)−∇2〈Hα〉+

eα
mα

〈%e〉
ε0

(3.39)

〈jα〉 = 〈%αuα〉 − 〈ζα∇ · uα〉+ 〈2ζα ·∇uα〉+ 〈ζα × ωα〉 − 〈Ωα × ∂uα

∂t
〉+

〈∇× [(uα ·Ωα)uα]〉 − 〈∇
(
u2
α

)
×Ωα〉

(3.40)

Furthermore, we can show that a continuity equation exists for the source terms. This can be done by taking

the divergence of equation 3.37, the time derivative of equation 3.35, and eliminating the common term. Our

result is

∂〈%α〉
∂t

+∇ · 〈jα〉 = 0 (3.41)

For the remainder of our investigation, we will drop the brackets and use the quantities Ωα, ζα, %α,

and jα to denote the convolved averages. We will consider equations 3.34 through 3.37 to be the isomorphic

Maxwell equations for a macroscopic description of two-fluid plasmas. We have summarized the isomorphism

in Table 3.1.

One of the most welcome properties of equations 3.34 through 3.37 is that, strictly speaking, they

are mathematically linear. This reduction to a linear system was also seen in the Maxwell equations for

incompressible [108,109] and compressible [110] flow. We should initially be skeptical of such a simplification.

However, recall that we split the nonlinear advective term, uα ·∇uα, into two components. We have now
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Figure 3.1: A two-dimensional axisymmetric contour plot of the percent gradient in a plasma thruster plume
[118,135,136]. The variation was typically less than 1% for an averaging length of R = 10µm = 0.10λD,max.
This suggests that the relative difference between 〈u2∇×Ω〉 and 〈u2〉∇× 〈Ω〉 can be expected to be small
in such a plasma.
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Table 3.1: The relationships between the species-specific quantities in a multifluid plasma and their analogues
in classical electrodynamics.

Plasma Quantity Electrodynamic
Quantity

Species canonical momenta, Pα Vector potential, A
Species total energy, Eα Scalar potential, φ
Species generalized vorticity, Ωα Magnetic field, B
Species generalized Lamb vector, ζα = Ωα × uα =

(
ωα + eα

mα
B
)
× uα Electric field, E

Species generalized plasma charge, %α Electric charge, %e
Species generalized plasma current, jα Electric current, je
Equation 3.34 No magnetic charge
Equation 3.35 Gauss law for E
Equation 3.36 Faraday law
Equation 3.37 Ampere-Maxwell law

cleverly chosen one part as our unknown quantity (the Lamb vector, ζα), while the other part has been

buried within the source term. If source models can be constructed that depend on known parameters of the

system (such as nondimensional fluid parameters), then the source term is considered given at the outset of

solving equations 3.34 through 3.37 for the fields, and the equations themselves are linear.

3.5 Immediate Consequences and Ramifications of the Isomor-

phism

Now that we have introduced the two-fluid (α = {i, e}) Maxwell equations, some observations are immediately

available by implication of the isomorphism. Of course, we could attempt to exhaust the analogy and find

every possible implication based on the relationship we have established, but we will be content to only

briefly outline some of the more significant results before moving on to determine solutions.

3.5.1 Reduction to Fluid Dynamics

We may directly show that, taking the electromagnetic contributions to vanish, equations 3.34 through 3.37

reduce to the compressible and incompressible Maxwell systems derived previously [108–110]. It will be

useful later to know this form of the equations, and it supports the validity of the plasma system if we can

show this reduction.
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If we choose vα → a, and assume only a single species in the compressible gas, we have

∇ · ω = 0 (3.42)

∇ · ζ = %F (3.43)
∂ω

∂t
+∇× ζ = 0 (3.44)

∂ζ

∂t
+ jF = a2∇× ω (3.45)

where

%F = − ∂

∂t
(∇ · u)−∇2h−∇2k (3.46)

jF = ∇∂k

∂t
+

(
∂2u

∂t2
− a2∇2u

)
−∇ (u ·∇h) (3.47)

Here ω and ζ are the fluid vorticity and Lamb vector, respectively, and %F and jF are the fluid source terms.

We could also instead elect to choose ζ = u · ∇u directly, in which case we delegate the entire advective

nonlinear term to become an unknown quantity; this would remove the kinetic energy contribution, k, in

equations 3.46 and 3.47.

If the fluid is incompressible, then choosing vα → |u| and once again taking only a single species in the

fluid, we arrive at the incompressible equations derived by Marmanis [108,109],

∇ · ω = 0 (3.48)

∇ · ζ = %F (3.49)
∂ω

∂t
+∇× ζ = 0 (3.50)

∂ζ

∂t
+ jF = u2∇× ω (3.51)

where

%F = −∇2

{
p

%
+

1

2
u · u

}
(3.52)

jF = %αu+ 2ζ ·∇u+ ζ × ω − ω × ∂uα

∂t
+∇× [(u · ω)u]−∇

(
u2
)
× ω (3.53)

Here we have assumed that ∇ · u = 0, and u2 should be taken to be the average of u · u.

3.5.2 Potentials, Gauge Transformations and Gauge Analogies

The derivation of the isomorphism is based principally on the similarity bewteen φ and Eα and A and Pα.

The plasma quantities Eα and Pα hence behave as scalar and vector potentials, respectively, for the two-fluid

Maxwell equations. We may leverage the isomorphism to produce direct equations for these potentials in

64



terms of the sources %α and jα,

1

v2α

∂2Eα
∂t2

−∇2Eα = %α +
∂

∂t

{
1

v2α

∂Eα
∂t

+∇ ·Pα

}
(3.54)

∂Pα

∂t
− v2α∇2Eα = jα −∇

{
∂Eα
∂t

+ v2α∇ ·Pα

}
(3.55)

These equations reflect the well known potential equations of classical electrodynamics, which would

typically be written as

1

c20

∂2φ

∂t2
−∇2φ =

%e
ε0

+
∂

∂t

{
1

c20

∂φ

∂t
+∇ ·A

}
(3.56)

1

c20

∂2A

∂t2
−∇2A = µ0je −∇

{
∇ ·A+

1

c20

∂φ

∂t

}
(3.57)

Since ∇·A is not significant (only ∇×A represents a physical quantity), we are free to choose it arbitrarily;

it is called a gauge in the electrodynamic system. Choosing a form for ∇ · A that simplifies the above

electrodynamic potential equations is known as applying a gauge transformation. In the above equations,

two classic gauges are immediately obvious. First, we may choose the Lorentz gauge2,

∇ ·A = − 1

c20

∂φ

∂t
(3.58)

in which case the terms in brackets on the right-hand side of equations 3.56 and 3.57 vanish, and we are

awarded with two decoupled inhomogeneous wave equations for φ and A. A second choice would be the

Coulomb gauge, where

∇ ·A = 0 (3.59)

The second time derivative of φ then drops out of equation 3.56, and it reduces to a Poisson equation for

the scalar potential, identical to the electrostatic case. Equation 3.57 is still coupled to φ, and depends on

the solution of equation 3.56.

In our analogy, the same form of the electrodynamic potential equations is present in equations 3.54

and 3.55. However, unlike the case in electrodynamics, the term ∇ · Pα does not truly represent a gauge,

since we do not have the freedom to choose its form to be whatever we wish. To understand this more

clearly, consider the case where no electromagnetics are present. Then equations 3.54 and 3.55 reduce to a

compressible flow; take a single species and vα → a to get

1

a2
∂2Hα

∂t2
−∇2Hα = %F +

∂

∂t

{
1

a2
∂H

∂t
+∇ · u

}
(3.60)

∂2u

∂t2
− a2∇2u = jF −∇

{
∂H

∂t
+ a2∇ · u

}
(3.61)

2This is also referred to as the Lorenz gauge or sometimes as the Lorentz-Lorenz gauge. [102]
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Here, the quantity ∇·u behaves as the gauge. But we are not permitted to simply choose the form of ∇·u;

it is a reflection of the form of the continuity equation.

If the fluid is compressible, the term ∇ · u can be solved for algebraically in the continuity equation.

Using the form of equation 3.5, where the continuity equation has been cast in terms of the enthalpy, h,

∇ · u = − 1

a2
Dh

Dt
(3.62)

This form of the continuity equation is analogous to the Lorentz gauge of electrodynamics, equation 3.58.

Similarly, if the fluid were incompressible, then the continuity equation reduces to its typical form

∇ · u = 0 (3.63)

which is reflective of the Coulomb gauge in electrodynamics, equation 3.59.

Since the divergence of the velocity appears in ∇ ·P, the physical significance of the continuity of mass

is inherited in this term. Therefore, ∇ ·P is not truly a gauge, since it is not permitted the same freedom

of choice. Notice further that, even with an analogous Lorentz gauge form of the divergence of velocity (the

compressible case given in equation 3.62), equations 3.60 and 3.61 still do not fully uncouple since there is

a remaining term of u ·∇h.

3.5.3 Boundary Conditions

In electromagnetic theory, across a material interface the fields can jump discontinuously. Knowledge of the

boundary conditions for the fields is important in most applications. We can construct an analogous set of

boundary conditions for the new field equations.

A schematic of our approach is shown in Figure 3.2. Typically, we are interested in boundaries across

which the dynamical quantities ζα and Ωα vanish (such as solid boundaries). To calculate the boundary

conditions, we consider a Gaussian pillbox staggered across an interface that divides two regions of different

field strengths for ζα and Ωα, and an Amperian loop across the surface. Allowing for the surface to have

some specified charge and current density, denoted %surf and jsurf , respectively, and taking the limit as δ → 0,

then our boundary conditions may be posed as

(
ζ(1)
α − ζ(2)

α

)
· n = %surf (3.64)

n×
(
ζ(1)
α − ζ(2)

α

)
= 0 (3.65)(

Ω(1)
α −Ω(2)

α

)
· n = 0 (3.66)

n×
(
Ω(1)

α −Ω(2)
α

)
= jsurf (3.67)

where superscripts (1) and (2) denote the different sides of the interface, as depicted in Figure 3.2. These
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n

1
2

ρsurf, jsurf

ζ1, Ω1

ζ2, Ω2

δ

δ

Figure 3.2: A diagram of the Gaussian pillbox and rectangular contour used for deriving the boundary
conditions across an interface surface of charge density %surf and current density jsurf .

conditions imply that there is a discontinuous jump in the normal component of ζα and in the tangential

component of Ωα proportional to the charge and current on the surface, but the tangential component of

ζα and the normal component of Ωα are preserved across the interface.

3.5.4 Lagrangian Formalism for Two-fluid Plasmas

We can further profit from the connection realized between the two-fluid equations the electromagnetic theory

by following the usual construction of a Lagrangian for the fields. This has the particularly interesting effect

of unifying the Lagrangian for the fluid and electrodynamic fields into a single, compact framework. The

resulting unified Lagrangian formalism for the plasma has significant potential applications for variational

schemes describing the evolution of the generalized fields. Exploring this Lagrangian framework also makes

clear the connection between the work introduced in this dissertation and previous efforts examining analogies

in two-fluid plasmas [121]. We can facilitate the discussion by introducing plasma four-vectors and four-

tensors analogous to those in classical electrodynamics. Following the usual convention [5,101], we express the

vectors and tensor in index form, and choose greek indices for spanning the spacetime range, µ, ν ∈ {0, 1, 2, 3}

(to avoid confusion, we drop the species index α, and the equations are simply understood to be on a per-
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species basis) and latin indices for spanning the spatial range, k ∈ {1, 2, 3}, where the zeroth index represents

time. The plasma four-current, jµ, is analogous to the electrodynamic four-current [5],

jµ = (v%, j) (3.68)

The analogous Faraday tensor for the two-fluid plasma becomes

Fµν =


0 −ζx −ζy −ζz
ζx 0 −Ωz Ωy

ζy Ωz 0 −Ωx

ζz −Ωy Ωx 0

 (3.69)

and the corresponding covariant tensor can be built by lowering the indices using the metric tensor,

Fµν = gµαF
αβgβν =


0 ζx ζy ζz

−ζx 0 −Ωz Ωy

−ζy Ωz 0 −Ωx

−ζz −Ωy Ωx 0

 (3.70)

i.e., we effectively have let ζα → −ζα.

The dual tensor can also be defined analogous to that of electrodynamics,

Fµν =
1

2
εαβγδFγδ =


0 −Ωx −Ωy −Ωz

Ωx 0 ζz −ζy
Ωy −ζz 0 ζx

Ωz ζy −ζx 0

 (3.71)

which can be effectively constructed from the Faraday tensor, Fµν , by taking ζ → Ω and Ω → ζ.

Per the discussions of Lagrangian dynamics for continuum mechanics [137], we introduce the Lagrangian,

L, as an integration of a Lagrangian density, L,

L =

∫
L (φk, ∂

αφk) dx (3.72)

where φk represents the continuum fields (analogous to the generalized coordinates in discrete mechanics).

The appropriate choice of the Lagrangian density is analogous to that of classical electrodynamics, which

involves a free Lagrangian and an interaction Lagrangian due to the presence of a continuous source term,

jµ,

L = −1

4
FµνF

µν − jµA
µ (3.73)
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Given this form of the Lagrangian, the continuum form of the Euler-Lagrange equations are

∂µ
∂L

∂ (∂µφk)
=

∂L
∂φk

(3.74)

Taking φk = Aµ, we can construct the inhomogeneous Maxwell equations (Gauss and Ampere-Maxwell laws)

by noting that

∂L
∂ (∂µAν)

= −Fµν (3.75)

∂L
∂Aµ

= −1

v
jµ (3.76)

and thus the inhomogeneous Maxwell equation is

∂µFµν = jν (3.77)

The homogeneous Maxwell equations are already satisfied by the definition of Aµ; however, we may write it

explicitly as

∂µF
µν = 0 (3.78)

An appropriate question of transformation surfaces here. Recall from our initial assumptions that the fluid

equations were written in a Galilean-invariant form, whereas the Maxwell equations are Lorentz-invariant.

Thus, the framework presented here is not truly complete in a physical sense, and the fluid and electrodynamic

behavior is not fully unified yet, because transformation of the equations still requires breaking up the

fluid and electrodynamic parts and transforming each separately. The above framework succeeds only in a

mathematical sense; a true unification requires that the equations transform identically, and thus may be

evaluated without separation between the fluid and electrodynamic parts. If the fluid dynamic equations

were cast into their relativistic form, then we would expect that the transformation would be complete.

The previous work by Mahajan [121] has shown that this unification is possible, although the framework

introduced there differs from the present formalism. Specifically, the Lagrangian given in equation 3.73

includes an interaction Lagrangian that did not appear in the previous work, due to differences of definition

and exploitation of the isomorphism. It does not make either framework less valuable, just different in their

approaches, and the present discussion can be seen as an effort to unify the pre-existing literature and the

present investigation. In our framework, the introduction of source terms potentially allows for a solution

approach identical to that in electrodynamics, but at the cost of requiring that the source terms be somehow

provided, if the fields are to be solved. We will see in Chapter 4 that the issue of constructing models for

the source terms is not a trivial issue.
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3.5.5 Inverse Transformation: An Analogous Drift Relation

A final ramification of the isomorphism is a vector identity for the fluid velocity that is analogous to the

drift velocity of a charged particle in electromagnetic fields; we will use this identity later as an inverse

transformation to calculate the velocity field given the generalized fields. Any successful calculation of the

plasma using the generalized fields will require a means of reconstructing the primitive data from the fields;

this drift relation permits such a connection. We can introduce this drift relation simply by the application

of the vector identity a× (b× c) = (a · c)b− (a · b)c. This yields

ζα ×Ωα = (Ωα × uα)×Ωα = −Ωα × (Ωα × uα) = − (Ωα · uα)Ωα + (Ωα ·Ωα)uα (3.79)

Rearranging this, we have

ζα ×Ωα

|Ωα|2
= uα −

(
Ω̂α · uα

)
Ω̂α (3.80)

where Ω̂α = Ωα/|Ωα| is a unit vector. In Chapter 4, we will refer to equation 3.80 as the drift relation. In

many cases, the second term on the right-hand side can vanish, which reduces to an exact analogy of the

drift velocity in a crossed electromagnetic field,

ζα ×Ωα

|Ωα|2
= uα (3.81)

An important limitation of the isomorphism can be seen clearly here, and will be seen even more clearly

later. In the case that there is no generalized vorticity, Ωα → 0, we end up with an indeterminant form for

the velocity vector. This is because the isomorphism breaks down in regions where Ωα → 0. For the case of

fluids, Remember that the analogy we have posed relates the Lamb vector, which acts as an electric field,

as ζα = Ωα × uα. In the case where Ωα → 0, the Lamb vector and generalized vorticity both vanish. This

problem echoes the discussion given by Nobel laureate Julian Schwinger in his lecture notes on the inference

of Faraday’s law, [138]

This shows that the desired differential equation will hold if

E = −v

c
×B

But this cannot be a completely correct statement, since then v → 0 would require E → 0.

No electrostatics! However, all that is really necessary is that the curl of this tentative

identification be valid:

∇×E = −∇×
(v
c
×B

)
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or, if we use [∂B/∂t = ∇× (v ×B)],

∇×E = −1

c

∂B

∂t

Although this comment arises from a very different context, a similar degeneracy is observed; if the general-

ized vorticity vanishes, we must resort to some other method to determine the velocity. In Chapter 4, when

considering the reconstruction of the velocity field using this approach, l’Hôpital’s rule can be used for simple

problems; during numerical simulations, either controlling the division-by-zero by use of a max() function

or special case consideration must be applied to circumvent this issue. It will be particularly disastrous for

some solution approaches considered in Section 4.4.3, where the solution fails in the freestream region of a

boundary layer; other methods utilizing Green’s functions will prove more successful.

3.6 Summary of the Isomorphic Framework

This chapter has focused on introducing the isomorphic field equations, given in their microscopic form in

equations 3.25 through 3.28; the associated form of the generalized charge density is presented in equa-

tion 3.29, and the generalized current density is presented in equation 3.30 and in an alternative form for

the speed vα = |uα| in equation 3.31. The convolved form of the equations are given in equations 3.34

through 3.37, which relies on the assumption provided in equation 3.38, and the associated convolved source

terms are shown in equations 3.39 and 3.40. A conservation equation for the source terms may also be

formulated, as shown in equation 3.41. It is particularly interesting that the convolved equations are strictly

linear for the generalized fields, since we have relegated the nonlinearities in part to the unknown Lamb

vector, ζα, and to the source terms, %F and jα.

The new framework discards the familiar primitive variables in the plasma in favor of the new dynamical

quantities Ωα and ζα, which represent the generalized vorticity and generalized Lamb vector for a species

α in the plasma. If we exchange the primitive variables for these generalized quantities, the Maxwell set

of equations derived above governs the evolution of these fields. These generalized quantities unite the

hydrodynamic and electrodynamic behavior of the plasma. Although we have already expanded on previous

work in fluid dynamics [108–110] and plasmas [121] that take advantage of analogous formulations, our intent

in this dissertation was to go beyond this and exploit these new field equations for numerical simulations

to improve the efficiency for solving the two-fluid equations. The next chapter is devoted entirely to this

subject. The issue of determining the source terms still overshadows this approach; however, and we will see

that the framework is challenged by the lack of available source term data. We succeed in demonstrating

some solution approaches, however, given adequate models of the source term data.
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Chapter 4

Source Modeling and Solution

Approaches Using the Isomorphic

Framework

“Well done. Here are the test results: You are a horrible person. I’m serious.

That’s what it says. A horrible person. We weren’t even testing for that. Don’t

let that horrible-person thing discourage you. It’s just a data point.”

GLaDOS [1]

4.1 Introduction

Having discussed the new framework of solving the system via the new dynamical quantities ζα and Ωα,

and having posed some of the ramifications of the isomorphism in Chapter 3, we now turn our attention to

the issue of solving the equations for specific problems. At this point, it is inevitable to avoid a philosophical

discussion regarding the nature of solutions to Maxwell’s equations. The basic problem is eloquently outlined

by Jackson [5],

“. . . the problems of electrodynamics have been divided into two classes: one in which the sources

of charge and current are specified and the resulting electromagnetic fields are calculated,

and the other in which the external electromagnetic fields are specified and the motions

of charged particles or currents are calculated. Waveguides, cavities, and radiation from

prescribed multipole sources are examples of the first type of problem, while motion of charges

in electric and magnetic fields and energy-loss phenomena are examples of the second type.

Ocassionally, as in the discussion of bremsstrahlung, the two problems are combined. But the

72



treatment is a stepwise one – first the motion of the charged particle in an external field is

determined, neglecting the emission of radiation; then the radiation is calculated from the

trajectory as a given source distribution. It is evident that this manner of handling problems

in electrodynamics can be of only approximate validity.”

In the above generalized Maxwell equations that we have derived, we inherit the same behavior. Generally,

we would prefer that the fields were the unknowns, since the velocity and thermodynamic data could be

calculated from these fields, but, as Jackson points out, this requires that we know source term data. During

the early history of classical electrodynamics, the accumulation of experimental data had been ongoing

well before Maxwell’s involvement (see, for example, Faraday’s published experimental research [139], which

Maxwell drew from [112]), and this access to a wealth of information propelled the development of Maxwell’s

theory. In contrast to Maxwell’s setting in the 1860’s, there was very little data available to the author

regarding two-fluid plasmas during the development of this dissertation. Therefore, the most significant

present challenge that belabors the utility of solving the isomorphic framework discussed in Chapter 3 is a

lack of available source term data.

This challenge is common to all approaches using Maxwell’s equations for solving problems, including

electrodynamics itself. There is a major impetus in the study of plasma actuators to characterize the spatial

and temporal behavior of charges around the electrodes, since the charge largely determines the body force

exerted on the surrounding fluid; a similar effort is being made in the characterization of plasma sheaths

for the same reason that the electric charge determines the overall behavior. Having a phenomenological

knowledge of the source terms allows for a direct attempt at solving Maxwell’s equations, whereas not knowing

it usually necessitates the approximate effort discussed by Jackson, to iteratively resolve both the fields and

sources. In the previous fluid dynamic work, Marmanis [108, 109], Kambe [110] and Logan [116, 117] all

derive elegant theories based on the solution of Maxwell’s equations, but the resounding silence that follows

these publications in terms of their application testifies to the difficulty in determining adequate source term

information for fluid problems. Likewise, we anticipate that compressible flow and plasmadynamics will

encounter a similar problem.

Faced with this deficit of source term information, we must actually first reverse our interest, and examine

problems in which the fields are known, and the sources are unknown. Given simple problems where perhaps

only a single salient feature is present, we may determine the form of the source term for each of these cases,

which in turn supplies us with a library of very fundamental source term models for each salient feature.

Recalling that the source terms superpose, this collection permits us to construct superposed models for

more complicated flows in which we desire the fields. To build up our collection of source models, problems

in which analytical solutions exist are of interest, since the full flow field data is fully available to harvest

source terms for these problems, and with relatively modest effort; for more complicated problems, we resort

to numerical simulation to explicate the nature of the source terms. If more resources had been available

during this investigation, experimental approaches could have been utilized as well; in fact, experimental
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determinations of fluid dynamic charge for Marmanis’ model have actually been performed [140].

In addition to collecting some simple source term data, we also aim to illustrate the utility of the

isomorphism by borrowing techniques from classical electrodynamics and applying them to problems for

which we can derive the source terms to show that numerical and closed-form solutions using these techniques

are feasible. We openly admit that this becomes a chicken and egg problem: first, we must assume the fields

are known in order to derive the source terms (requirement of the fields essentially insists on knowing the

solution beforehand), and then, we reverse these conditions, assuming the source terms were somehow given,

and solve for the fields. Again, we reiterate that this is a necessary step to start collecting these simple

models. More complicated phenomena would involve superposing these simple sources to gain an overall

source for the new problem, but collected from known previous source data, thus permitting the fields for the

more complicated problems to be solved directly without needing their own source data to be determined

first.

An obvious question arises: why not just follow Jackson’s suggestion, and iteratively converge both the

sources and fields? Such an approach would yield something akin to a particle-in-cell numerical scheme, but

for both the electrodynamic and fluid dynamic fields. At the outset of this dissertation, this was surmised

to be the ultimate goal of this investigation. Due to a number of complicating factors that will be discussed

in detail in Section 4.3, this was not feasible, and, at present, is not considered to be a promising avenue of

research. The major complicating factors can be summarized by pointing out that, generally, source term

data is noisy for finite volume simulations (as more completely discussed in Chapter 5), the approximations

necessary for the full system of two-fluid equations to be solved in Maxwell form require an excessively small

timestep, and the approach explored in this investigation revealed that solving the equations did not capture

the contact discontinuity wave present in most simple shock tube simulations.

4.2 Homogeneous Solutions

The most straightforward case we can envision is the situation where the source terms vanish, %α = 0

and jα = 0. In such cases, the primitive variables must be consistent with the sources reducing to zero.

Despite their intimidating forms, there may be physical cases in which this happens. For example, if we

consider a quasineutral, incompressible plasma away from any bounding solid walls, then a homogeneous

solution is sensible. Furthermore, in the previous work examining the Maxwell equations for incompressible

turbulent flow, the turbulent nature of the flow sufficiently averaged out the source contributions to a small

result away from the walls, despite the form of equation 3.53. Viscous conditions near the walls, energy

sources and shocks all tend to introduce sources that require some inhomogeneous treatment. However,

since plasmas may become fully turbulent even in inviscid cases [141,142], problems can be expected where

the homogeneous form of the solution can be of value.
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When %α = 0 and jα = 0, we can write the isomorphic field equations as

∇ ·Ωα = 0 (4.1)

∇ · ζα = 0 (4.2)
∂Ωα

∂t
= −∇× ζα (4.3)

∂ζα

∂t
= v2α∇×Ωα (4.4)

We will consider the Cauchy problem for Ωα and ζα in an infinite spatial domain, since boundaries tend to

induce source contributions, and show the development of homogeneous wave equations. Then, we will show

that the resulting wave equations still retain the usual variety of MHD waves, as expected.

4.2.1 Homogeneous Wave Equations

If we take the spatial domain to be infinite, we may consider the unsteady evolution of equations 4.3

and 4.4 for some initial conditions Ωα (x, t = 0) = Ω0
α and ζα (x, t = 0) = ζ0

α that are assumed to satisfy

equations 4.1 and 4.2. For the sake of completeness, let us assume that equations 4.1 through 4.4 are in their

microscopic form, such that they are not convolved. This is permissible since no source terms are included,

so no averaging is immediately necessary to filter small-scale phenomena. In fact, by using the microscopic

form in this section, we may examine the effects of perturbing the system only slightly; this could be of great

advantage in the study of plasma turbulence. We may take the time derivative of equation 4.3 and the curl

of equation 4.4 and eliminate the common term to achieve a wave equation in Ωα; similarly, reversing the

operations on the same equations, and again eliminating the common term, we can arrive at a wave equation

in ζα. These equations are

∂2Ωα

∂t2
− v2α∇2Ωα = −���2Ωα = −∇

(
v2α
)
× (∇×Ωα) (4.5)

∂2ζα

∂t2
− v2α∇2ζα = −���2ζα =

∂

∂t

(
v2α
)
∇×Ωα (4.6)

Here, vα is one of the candidate speeds discussed earlier in Section 3.3. These wave equations govern the

evolution of the generalized fields for problems in which no source terms influence the evolution.

4.2.2 Recovering Magnetohydrodynamic Waves

As an example of examining the homogeneous case, we can show that the typical variety of MHD waves

exists as a subset of the waves in the generalized vorticity and Lamb vector. To do so, we consider a

magnetohydrodynamic plasma; it has only a single species, it is quasineutral (which implies that the electric

body force has insignificant effect on it, so the Lorentz force is dominated by the je×B term) and we neglect

the displacement current. We also assume that the current is given by Ohm’s law, so that je = σE+σu×B.
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The evolution of the magnetic field can now be given by Faraday’s law with Ohm’s law substituted in,

∂B

∂t
= −∇×E = ∇×

(
je − σu×B

σ

)
= ∇× (u×B)− 1

σ
∇× je (4.7)

Substituting in the Ampere-Maxwell equation for je (and again remembering that we dropped the displace-

ment current), this becomes

∂B

∂t
= ∇× (u×B)− 1

σµ0
∇×∇×B (4.8)

This is the traditional magnetic induction equation of the MHD theory. We will now further assume that

the plasma is an ideal MHD plasma, in the sense that the conductivity is large enough to be considered

infinite. If this is true, the second term on the right-hand side becomes negligible (if we retained it, it would

not change our results), and we retain only the advective limit of the magnetic field,

∂B

∂t
= ∇× (u×B) (4.9)

The Lorentz body force acting on the plasma is now composed entirely of the je ×B term,

FB = − 1

%µ0
B× (∇×B) (4.10)

Now, we introduce a perturbation expansion. The flow is assumed to be initially unperturbed, such that the

mean flow is zero. We have

B = B0 +B1 (4.11)

% = %0 + %1 (4.12)

u = u0 + u1 = u1 (4.13)

Quantities with subscript zero are assumed to be constant with respect to time and space. Substituting

these expansions to first order into our wave equations, equations 4.5 and 4.6, then we have

∂2u

∂t2
− a2∇2u = −∇

(
a2∇ · u+

∂2h

∂t2

)
− 1

%µ0

∂

∂t
(B× (∇×B)) (4.14)

∂2u1

∂t2
+ a2∇ (∇ · u1)−

1

%µ0

∂

∂t
(B0 × (∇×B1)) = 0 (4.15)

Since the derivative of B0 is zero, the body force term can be rewritten as

∂

∂t
[B0 × (∇×B1)] =B0 ×

(
∇× ∂B1

∂t

)
(4.16)
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We can now substitute equation 4.9 under the assumed perturbation expansion, ∂B1/∂t = ∇× (u1 ×B0),

here,

∂

∂t
[B0 × (∇×B1)] = B0 × (∇×∇× (u1 ×B0)) (4.17)

and finally substituting this into equation 4.15, we have

∂2u1

∂t2
− a2∇ (∇ · u1) +

1

%µ0
[B0 ×∇×∇× (u1 ×B0)] = 0 (4.18)

where we have used thermodynamic manipulations to recast the a2∇ (∇ · u) term. This exact equation

appears in Jackson’s discussion [5] of MHD waves. We can distribute a factor of 1/
√
%µ0 to each of the

B0 terms, which introduces the Alfvén velocity, vA = B0/
√
%µ0, in the equation. If we assumed that the

velocity was a plane-wave form, u1 = A exp (ik · x− iωt), then three classes of waves result: longitudinal

magnetosonic waves with a phase velocity
√
a2 + v2A, another longitudinal mode with a phase velocity equal

to the sonic speed a, and a third transverse wave with a phase velocity equal to the Alfvén velocity, vA.

Thus, the usual variety of MHD waves are apparent within the waves of the generalized vorticity.

4.3 Inhomogeneous Solutions

While the homogeneous form involves solving only a ‘vacuum’ set of Maxwell equations with no sources, many

interesting phenomena we wish to study are relegated to the source terms. Furthermore, it becomes apparent

that the sources often are associated with boundary effects, which represent important considerations in the

modeling of plasmas for engineering applications.

The concept of electric charge is rather familiar. The notion of fluid charge, however, is more foreign.

Prerequisite to solving the Maxwell equations for the fields, we must have some mathematical form for these

sources in the full equations, if we wish to include source term effects.

There are two essential approaches that could be taken. The first is to model the source term using

iterative modeling. In this approach, the source terms are calculated given primitive data (u, %, E, B, etc.),

the Maxwell equations are solved for the source terms, and finally the primitive data is reconstructed from the

generalized fields. This allows an iterative approach that may be used to construct approximate solutions

to the Maxwell equations. This echoes Jackson’s comment about an approximate, iterative approach for

electrodynamics, wherein the sources are calculated, the fields are solved given the new sources, and the

sources are updated.

The second approach is to model the source term using empirical modeling. In this approach, we begin

by separately investigating the form of the source terms given the fields (remember that this is a valid case

wherein the Maxwell equations may be solved, where now the source terms are considered the unknowns).

This could be done using experimental, numerical or analytical approaches, as long as the fields, ζα and Ωα,
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were known. Once a knowledge of the source terms were built up, they could be superimposed for different

problems. It is clear that considering very simple problems is profitable here, since they may be readily

extended to more complicated problems by utilizing the superposition of charge and current density.

In the remainder of this chapter, we investigate approaches to solving inhomogeneous problems. Since

calculating the forms of the source terms for different cases resembles a zoological approach of identification,

it can continue indefinitely. Therefore, it was deemed beyond the scope of a single dissertation to explore

the form of the source terms for every possible condition. Instead, only a few specific cases of interest are

explored.

We begin by discussing the iterative modeling approach. While this seems an intuitive and appealing

approach for numerically constructing solutions to the equations, it seems at present to offer no advantages

of improving efficiency of numerical simulation of two-fluid plasmas. A more difficult aspect of the problem is

the reconstructive nature of recalculating the primitive data from the generalized fields; it will turn out that

this is only valid in regions where generalized vorticity is present. Instead, the empirical modeling approach

seems much more promising, and so our attention will primarily be centered on developing some empirical

models in order to show the basic process, reveal the nature of the source terms, and illustrate different

solution approaches using these models.

Our investigation of empirical modeling is divided into two approaches. The first examines simple fluid

problems for analytical forms of the sources, and illustrates some basic solution approaches that may be

applied to solve the isomorphic equations. There are two motivations for focusing here on simple fluid

problems. First, since the form of the source terms is cumbersome, some simplifying assumptions are

necessary to construct any kind of analytical expression. Second, by studying and formulating analytical

models of the source terms for simple problems, more complicated problems may be contructed by using

these models as building blocks. Since the source terms superpose, fluid source terms will be directly

applicable for plasmas. Furthermore, since the three problems studied are ubiquitous to fluid and plasma

problems, it is fruitful to focus on such problems. The second approach will resort to numerical simulation

and postprocessing to reveal the forms of the source terms for a few more complicated cases, including shocks

in compressible flow and plasmas of engineering interest.

4.3.1 Inhomogeneous Wave Equations

A first approach at determining solutions for inhomogeneous plasmas may consider the development and

solution of wave equations. Similar to the homogeneous section (equations 4.5 and 4.6), we start by con-

sidering the microscopic field equations; we will introduce a linearization to the equations that will reduce

them to a more amenable form instead.

The inhomogeneous wave equations for the microscopic system may be written by considering the same

78



derivation as in the homogeneous case, except including the source terms. We have

∂2Ωα

∂t2
− v2α∇2Ωα = −���2Ωα = ∇× jα −∇

(
v2α
)
× (∇×Ωα) (4.19)

∂2ζα

∂t2
− v2α∇2ζα = −���2ζα = −∂jα

∂t
− u2α∇%α +

∂

∂t

(
v2α
)
∇×Ωα (4.20)

We may linearize these equations in the following fashion. Consider an expansion of the fields for each species

in the form

u (x, t) = u0 + u1 (x, t) + . . . , (4.21)

ω (x, t) = ω0 + ω1 (x, t) + . . . , (4.22)

% (x, t) = %0 + %1 (x, t) =
eα
mα

%e
ε0

+ %1 (x, t) + . . . , (4.23)

Ω (x, t) = Ω0 +Ω1 (x, t) + · · · = Ω1 (x, t) + . . . , (4.24)

ζ (x, t) = ζ0 + ζ1 (x, t) + · · · = ζ1 (x, t) = Ω0 × u1 +Ω1 × u0 = Ω1 × u0 (4.25)

We have dropped the species index α, although these equations and expansions should be understood to

apply to each species. Any quantity with a 0 index is a constant with respect to x and t; first-order terms

are denoted with subscript 1. For simplicity, we retain only first-order terms, so any products that yield

higher-order terms are neglected. Here u0 is taken to indicate a non-zero mean flow. Since the the derivative

of a zero-order term is zero, the terms ω, Ω and ζ reduce to first-order terms only. Notice also that %0
reduces only to the net electric charge density, since the derivatives of the zero-order terms vanish.

Retaining only first-order terms, we can effectively eliminate most of the contributions in the sources.

The only contributions that survive in the current density are the convective term %0u1 + %1u0 and a curl

term ∇× [(u0 ·Ω1)u0]. This latter term vanishes for all derivatives in equations 4.19 and 4.20 except for

the time derivative of jα appearing in the wave equation for ζα. For mathematical simplicity, we consider

the case where this term also vanishes. By substituting the expanded fields (equations 4.21 through 4.25)

into the source terms given in equations 3.29 and 3.30, we may arrive at the following approximate form for

the wave equations,

∂2Ω1

∂t2
− u20∇2Ω1 = ∇× (%0u1 + %1u0) (4.26)

∂2ζ1

∂t2
− u20∇2ζ1 = − ∂

∂t

(
%0u1 + %1u)

)
− u20∇%1 (4.27)

Typical solution techniques could be applied at this point to solve these equations for specific problems.

Another very interesting approach is to consider that, since ζ1 = Ω1 × u0, we could rewrite the left-hand

side of equation 4.27 as

∂2

∂t2
(Ω1 × u0)− u20∇2 (Ω1 × u0) =

{
∂2Ω1

∂t2
− u20∇2Ω1

}
× u0 (4.28)
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But equation A.32 may be substituted into the brackets, and thus we have the following identity,

∂

∂t
(%0u1 + %1u0) + [∇× (%0u1 + %1u0)]× u0 = −u20∇%1 (4.29)

This equation resembles a momentum equation of the form ∂u/∂t+ ω × u = −a2∇%. Furthermore, in the

expanded variables, the charge conservation equation 3.41 holds, so

∂%1
∂t

+∇ · (%0u1 + %1u0) = 0 (4.30)

Thus, equations 4.30 and 4.29 constitute a similar form to the continuity and momentum equations, respec-

tively. These equations can be considered evolution equations that describe the change in the generalized

convective current %0u1+%1u0. Here the plasma charge density %0 and %1 still includes both electrodynamic

and hydrodynamic contributions, so the evolution of the two equations above will determine the generalized

behavior in the plasma.

4.3.2 Iterative Source Modeling

Inspired by Jackson’s comment regarding iteratively converging both the fields and sources, a very simple

numerical approach was identified at the outset of this investigation, much akin to the particle-in-cell (PIC)

solution procedure for low-density plasmas. If such an approach could be implemented for solving the iso-

morphic Maxwell equations, we could envision a PIC scheme that resolves both the fluid and electrodynamic

character of the plasma simultaneously.

The simplified PIC approach can be briefly sketched as four primary steps (depicted graphically in

Figure 4.1)

1. Given a distribution of charged particles, each of which possesses a position, xi, and a velocity, vi,

we can calculate the overall net charge and current density,
∑

i qi and
∑

i qivi, respectively.

2. Given the charge and current density, we may compute the solution to Maxwell’s equations for the

electric and magnetic fields, E and B.

3. Equipped with a knowledge of the fields, we may compute the Lorentz force acting on each particle

everywhere in the domain, F = qE+ qv ×B.

4. Once the Lorentz force is known, the effective acceleration of the particle is known within a small

amount of time. By integrating the equations of motion, we may determine the subsequent changes

in velocity and position of each particle, and return to step (1).

This procedure can be progressed using a small timestep to study the evolution of the constituents in the

plasma over time.

Guided by the simplicity and success of this computational model, we can construct a similar approach

for the isomorphic field equations. Such an analogous algorithm may be posed as follows:
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1. Given the primitive data in the plasma (velocity, thermodynamic data and electromagnetic fields),

we may calculate the form of the source terms at the current timestep by utilizing direct substitution

of the primitive data into equations of the form 3.29 and 3.31.

2. With the source terms in hand, we may calculate the change in the generalized fields via the isomorphic

Maxwell equations (equations 3.34 through 3.37). This could take advantage of any of a number of

numerical schemes for calculating the new fields a small timestep later. Akin to the discussion offered

in Section 2.1.5, divergence cleaning would be necessary to guarantee that the divergence constraints

were met.

3. Given the new generalized fields, Ωα and ζα, we would need to apply an inverse transformation to

reconstruct the primitive variable data from these fields. This could theoretically be done via the drift

ρ(x,t), j(x,t)
from
xi and vi

E(x,t), B(x,t)
from
ρ(x,t), j(x,t)

Fi=qiE+qivixB
Fi=miai

xi and vi

from
mi and ai

Δt

Algorithm for Particle-in-Cell (PIC)

1

2

3

4

Figure 4.1: A diagram of the particle in cell algorithm. Each timestep requires four substeps: (1) Starting
with position, xi, and velocity, vi, data for each particle i, we sum each particle’s contribution to the total
charge and current density, %(x, t) and j(x, t), respectively. (2) With the charge and current density, solve
the Maxwell equations for the electromagnetic fields. (3) With the electromagnetic fields in hand, use the
Lorentz force and Newton’s law to determine the acceleration acting on each particle, ai. (4) Integrate the
acceleration to calculate the new velocity, vi, and integrate again to determine the new position, xi, for the
next timestep.
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relation, equation 3.80, to determine the velocity vector; the selection of an appropriate analogous

gauge transformation would allow for using the new velocity vector to update the thermodynamic

data.

This imaginative approach would allow for a straightforward resolution of both the fields and sources,

without recourse to modeling the source terms at all. This algorithm was developed for the compressible

fluid dynamic Maxwell equations discussed in Section 3.5.1 and the full plasma equations; the solution of

the Maxwell equations was implemented via an upwinded Roe method [11, 143] and a first-order upwind

differenced method [103]. Other approaches could have been applied as well. These approaches were tested

for Maxwell’s equations of electrodynamics (using a fixed speed of light) and the typical solutions for elec-

tromagnetic wave propagation were confirmed to be resolved correctly. Then, the solver was adapted using

the algorithm discussed above. The source terms were calculated from the primitive variable data via equa-

tions 3.29 and 3.31, and the drift relation given in equation 3.80 was used to solve the velocity field after the

generalized fields were obtained from the Maxwell solver. The thermodynamic data was calculated by differ-

encing the analogous Lorentz gauge in time, and updating the thermodynamic variables using the divergence

of the updated velocity field. The solver was applied to the Sod shock tube problem [144] for compressible

flow, and the Brio and Wu [75,145] problem for two-fluid plasmas. Ultimately, all of the solution approaches

described here failed, and no solution was constructed successfully.

While we provided an extensive discussion in Chapter 1 that motivated the use of implicit schemes for

plasmas, the intimidating forms of equations 3.29 and 3.31 make the calculation of jacobian matrices for

implicit schemes very difficult. Therefore, a second-order Runge-Kutta explicit scheme was used instead.

Although this approach is clearly more expensive for plasmas, the author [118] has shown that the Brio and

Wu problem can be successfully resolved using an explicit approach. For compressible flows, this is not a

problem, since there is only a single timescale of interest. Other methods, such as the Adams-Moulten or

Adams-Bashforth methods [146], could also be used to improve this scheme.

In the case of the Sod shock tube simulation using the compressible solver, the assumption of a one-

dimensional domain is questionable within the framework of the isomorphism, since no vorticity is permitted

in just one dimension. This problem was circumvented by rewriting the compressible flow Maxwell equations

to match the definitions given in [110], where we instead define the analogous electric field to be the entire

advective term, ζ = u·∇u; this is different from the equations presented in Chapter 3 by retaining the kinetic

energy term, k on the left-hand side as part of the unknown; this allows one-dimensional simulation of the

compressible flow equations, although a different reconstructive equation must be used (the drift relation,

equation 3.80, is no longer valid and a differenced form of the definition of ζ was used). The two-fluid

plasma Maxwell equations have no such problem in one dimension, since, due to the presence of a tangential

magnetic field, the flow will always have a three-dimensional generalized vorticity.

The simplest summary that can be given for these approaches is, despite our efforts, all approaches to

utilize the iterative algorithm given above failed. Both solvers were plagued by numerical instabilities, despite
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providing accurate solutions for electrodynamic test problems; however, some important observations were

permitted which may be credited with the difficulties encountered:

• The implementation of highly nonlinear, complicated, discontinuous source terms given in equa-

tions 3.29 and 3.31 caused significant instability in the equations. This could have potentially been

relaxed by migrating to a fully implicit scheme, but, as discussed, the cumbersome forms of the sources

made the calculations of jacobian matrices for implicit methods difficult. The enormous source terms

encountered in the test problems required excessively small timesteps to be needed for numerical stabil-

ity, which made long-duration simulations impractical. The application of the convolving approaches

discussed in Section 3.4 helped mitigate the source term issue (essentially by smearing the sources

slightly, in a very similar manner to the application of numerical dissipation across shocks), but this

ultimately did not improve the quality or longevity of the simulation.

• One major cause for concern is found by examining the velocity reconstruction approach more closely.

Note that, in the limit when no generalized vorticity is encountered, equation 3.80 becomes indeter-

minant. When this happens, the velocity vector cannot straightforwardly be reconstructed from the

generalized fields by using the drift relation. This indicates a breakdown of the isomorphism in irrota-

tional regions; for example, when Ω = 0, the Lamb vector also vanishes by definition, ζ = Ω× u = 0.

Thus, in regions where the generalized vorticity vanishes, we cannot actually reconstruct the velocity

vector very efficiently. This is a major limitation of the simple algorithm introduced above. We will

later see that a similar problem is seen when empirically modeling the source terms as well.

• Although not responsible for the failure of the simulation, another significant observation was that both

solvers were incapable of capturing the contact discontinuity wave. This is a problem that has arisen

before for several time-marching numerical schemes [147], and this is perceived as a major deficiency

of the proposed algorithm.

• Another point of interest was that the CPU time required to calculate a single cycle of the algorithm

described above was significantly larger than traditional approaches, implying that this algorithm is

actually less efficient than traditional approaches. This is due to the complicated nature of the source

terms that must be updated every iteration (several different derivatives must be calculated). The

solution of an additional equation for the thermodynamic data further hinders the efficiency of such an

algorithm. Even with a number of simplifying assumptions, the calculation of the primitive data from

the generalized fields cannot be performed in a reasonably efficient way. Cases where these assumptions

cannot be applied further exacerbate this problem and make the algorithm even more inefficient.

Given all of the above difficulties, it was concluded that, at present, iterative schemes are simply beyond

the scope of our investigation. We hope that future work may realize methods or algorithms that were not

envisioned during this investigation that could take advantage of not needing source data for the calculation

of the fields. We will instead turn our attention to approaches that empirically model the source term;

although this requires some source data, we will see that the solution approaches utilizing this form of
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modeling permit excellent results.

4.4 Empirical Source Modeling, Reconstructive and Green’s Func-

tion Approaches for Fluids

The most promising approach for dealing with the source terms is to construct empirical models representing

simple problems. Once a basic understanding of the plasma charge and current is known and the rudimentary

models have been collected, they may be used as building blocks for understanding more complicated plasmas.

The real challenge here is focused on understanding the notion of the fluid charge and current, %F and jF .

Since the electric sources are understood, we really seek a knowledge of how the more complicated fluid

sources behave for specific cases. Once this understanding has been laid down, we may apply models for

simpler cases to more complicated problems.

Since the fluid source terms represent what we do not understand in the generalized sources, and since

it is of more benefit to examine simple problems to construct basic building block charges and currents,

we will first focus on three cases of steady, incompressible fluid flow. Although these problems are simple,

they represent very basic phenomena we expect to encounter in plasma flows, and they are thus fruitful to

consider. Furthermore, since the electromagnetic source terms superpose, we may always add electromagnetic

contributions to the sources. The process for solving a complicated problem then becomes a process of adding

a new source term for each phenomenon of interest.

In the following, we will re-examine Couette flow, duct flow, and Blasius boundary layer flow over a flat

plate. The form of the fields and sources are discussed, and we illustrate different approaches to solving these

basic problems using the isomorphic equations. Particularly, we explore the application of a reconstructive

scheme that iteratively corrects the source terms until some convergence is reached, and then we explore the

use of Green’s functions and the method of images to calculate the solution directly using an interpolated

model of the fluid charge and current.

Following our analytical analysis, we will further investigate some classic cases that arise in compressible

flow and plasmas using numerical simulation and postprocessing to reveal the nature of the source terms

qualitatively.

4.4.1 Couette Flow Solution

The classic two-dimensional Couette flow problem is sketched in Figure 4.2. A viscous fluid is trapped

between two plates; the upper plate is moving at some velocity U . For a Newtonian fluid, a linear velocity

profile results. The viscous contribution behaves as a source term in this case.

If we assume the flow is steady, laminar and incompressible, and that no pressure gradient is present, and

if the temperature gradient is small such that the coefficient of viscosity is a constant, then the well known
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u=U

u=0

x

y
u=u(y)

2b

Figure 4.2: A diagram of the usual configuration for Couette flow. Coordinate system is shown in green.
The velocity vanishes at the lower plate, u(−b) = 0, and matches the velocity U of the upper plate at y = b,
u(b) = U . [7]

solution [7] is given as a linear profile,

u (y) =
U

2b
(y + b) , −b ≤ y ≤ +b (4.31)

where the coordinate system is taken as that shown in Figure 4.2. The Maxwell equations in this case will

reduce to

∇ · ω = 0 (4.32)

∇ · ζ = %F (4.33)

∇× ζ = 0 (4.34)

u2∇× ω = jF (4.35)

The viscous term is included in the sources. The vorticity, ω = ωzẑ, and Lamb vector, ζ = ω × u = ζyŷ,
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may be calculated directly knowing this result,

ωz = −du
dy

= −U

2b
(4.36)

and

ζy = ωzu = −U2

4b2
(y + b) (4.37)

Once the fields are known, the sources may be calculated,

%F = ∇ · ζ =
dζy
dy

= −U2

4b2
(4.38)

and

jF = 0 (4.39)

since the vorticity is constant everywhere. Hence, the charge is a constant throughout the domain, and the

current density is zero.

To construct a solution approach to Couette flow using the Maxwell equations, we would consider a case

in which we have a knowledge of the charge and current density, %F and jF . As noted, in this case the

charge is a constant, and the current density is zero in the interior of the flow. To solve this problem, we

may simply integrate over the Gauss law for ζy,

ζy =

∫
%Fdy (4.40)

An equivalent approach may be taken to determine the vorticity; the Ampere-Maxwell equation will reveal

that the derivative of the vorticity is zero, in which case the vorticity is a constant. From a knowledge of

this, we may reconstruct the velocity field using the drift relation, u = (ζ × ω) /|ω|2. In the x direction, we

will have

u =
ζy
ωz

(4.41)

And applying this to our particular problem, we have

u =
U2/

(
4b2
)

U/ (2b)
(y + b) =

U

2b
(y + b) (4.42)

Although this is an extremely simple problem, it emphasizes the basic process of how the fluid is deter-
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u=0

u=0

x

y u=u(y)

2b

Figure 4.3: A diagram of the usual configuration for fully developed duct flow. The coodinate system is
shown in green. The diameter of the duct is 2b. At both solid surfaces, the no slip boundary condition is
applied, u(b) = u(−b) = 0. A parabolic velocity profile results. [6, 7]

mined by its fields. Furthermore, it reveals that the form of the source terms for the case of a relative motion

between the solid boundaries in a simple geometry consists of a constant charge.

4.4.2 Duct Flow Solution

A second example of inhomogeneous incompressible flow is two-dimensional duct flow. Figure 4.3 shows the

usual setup for the duct flow problem. We assume the flow is steady, incompressible, viscous and laminar. A

constant pressure gradient is assumed to drive the flow, P = dp/dx = const. The traditional solution, using

the geometry in Figure 4.3, reveals a parabolic velocity profile for the fully-developed case,

u = A
(
b2 − y2

)
, −b ≤ y ≤ +b (4.43)

where A = P/ (2µ), where µ is the coefficient of viscosity. The velocity profile is sketched in Figure 4.3.

With the solution in hand, we may construct the fields, ω = ωzẑ and ζ = ζyŷ,

ωz = −du
dy

= 2Ay (4.44)

87



and

ζy = ωzu = 2A2y
(
b2 − y2

)
(4.45)

And we may show that the velocity field may be reconstructed using the drift relation given in equation 4.41,

u =
ζy
ωz

=
2A2y

(
b2 − y2

)
2Ay

= A
(
b2 − y2

)
(4.46)

A point of concern surfaces here: along the line y = 0, the vorticity vanishes, and hence the drift relation

becomes indeterminant along this line; thus, equation 4.46 is only technically valid when y 6= 0. The

application of l’Hôpital’s rule circumvents this issue and allows the calculation of the correct velocity at

y = 0. The sources %F and jF are presented in Figure 4.4. From the fields, the fluid source terms may be

directly calculated,

%F = ∇ · ζ =
dζy
dy

= 2A2
(
b2 − 3y2

)
(4.47)

and

jF = u2∇× ω = u2
dωz

dy
x̂ = 2A3

[
b2 − y2

]2
x̂ (4.48)

The form of these source terms are presented in Figure 4.5.

Next, we consider some numerical solution approaches to solving the fluid velocity equipped only with

a knowledge of the sources given in equations 4.47 and 4.48. While Couette flow presented only a simple

problem, duct flow permits us to practice some more advanced solution approaches. We specifically attempt

the following solution approaches to arrive at a fluid velocity:

• Solution Approach A. This approach is a check on the drift velocity, and is not truly a solution approach;

instead, the exact form of the vorticity is taken as that given in equation 4.44 (it is assumed known,

and is not solved for in this approach). The Lamb vector is calculated by directly integrating over

the Gauss law, using the form of equation 4.40 and the form of %F given in equation 4.47, which is

considered given. Once ζy is known, the velocity is reconstructed using the drift relation given in

equation 4.41.

• Solution Approach B. Reconstructive iteration for velocity u. In this approach, we first solve the Gauss

law using the interpolated form of the charge, as in Solution Approach A. Then we iteratively solve

the Ampere-Maxwell law for the vorticity using the current density expression in equation 4.48 and
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Figure 4.4: A plot of the Lamb vector, ζy, and vorticity, ωz, for duct flow.

the average square of the velocity,

〈u2〉dωz

dy
= jF (4.49)

The velocity is then reconstructed from the Lamb vector, ζy, and the vorticity, ωz, using the drift

relation, as given in equation 4.41. Finally, the average velocity square, 〈u2〉, is recalculated from the

updated velocity field. When the average square of the velocity across the whole domain converges to

within some tolerance (10−5 was typically used), the convergence is considered complete.

• Solution Approach C. Bounded-domain Green’s function solution. The use of Green’s functions is

pervasive throughout electrostatics. Since our problem lends itself directly to such a framework, we

may explore a solution approach utilizing the same method. Since the curl of the Lamb vector must be

zero for a steady problem, ∇×ζ = 0, this implies that the Lamb vector may be expressed as a gradient
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Figure 4.5: A plot of the nondimensional fluid charge and current density for the duct flow problem. The
analytical form of the velocity, as given in equation 4.43, is shown for comparison. Only half of the domain
is shown; here the solid wall is at y = −1 and the centerline is at y = 0.

of a scalar potential function, −∇ψ. Substitution into the Gauss law yields a Poisson equation,

−∇2ψ = −d
2ψ

dy2
= %F (y) (4.50)

We use the form of %F given in equation 4.47 here. To solve this inhomogeneous problem, we construct

a Green’s function. We consider the domain of the duct to be a bounded one-dimensional domain,

−b ≤ y ≤ b, with boundary conditions u(b) = u(−b) = 0. The Green’s function, G (y; y′) is defined to

satisfy the corresponding problem with only a point source,

−d
2G

dy2
= δ (y − y′) (4.51)

subject to the boundary conditions G(0; y′) = 0 and G(L; y′) = 0, and where δ (y − y′) is the Dirac
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delta distribution. Applying Green’s identity,

∫ b

−b

{
ψ (y)

d2G

dy2
−G (y; y′)

d2ψ

dy2

}
dy′ =

[
ψ (y)

dG

dy
−G (y; y′)

dψ

dy

]b
−b

(4.52)

By direct substitution of equations 4.50 and 4.51 into equation 4.52, and extinguishing all terms on

the right-hand side by application of the boundary conditions for ψ and G, we have

∫ b

−b

{ψ (y) δ (y − y′)} dy′ =
∫ b

−b

G (y; y′) %F dy
′ (4.53)

Integrating over the Dirac delta distribution, we have
∫
ψ (y′) δ (y − y′) dy′ = ψ (y) by the integration

property of the Dirac delta. Rearranging for ψ (y), we have

ψ (y) =

∫ b

−b

G (y; y′) %F dy
′ (4.54)

To determine the specific form of G (y; y′) for this bounded-domain problem, we must first solve equa-

tion 4.51 at all points except where y = y′; this special case may be treated using the jump conditions

of the Green’s function, G (y′−; y′) = G (y′+; y′) and dG/dy|y′+ − dG/dy|y′− =
∫
δ (y − y′) dy′ = 1.

Applying these conditions, the form of the Green’s function for this problem is

G (y; y′) =


y
2b (2b− y′) , y < y′

y′

2b (2b− y) , y > y′
(4.55)

As expected, the Green’s function displays the usual property of symmetry between y and y′. With the

Green’s function known and the form of the source term %F given by its form in equation 4.47, we may

directly construct the potential ψ (y) via equation 4.54. In our numerical solution, Gauss-Legendre

quadrature was used to integrate the kernel over the domain. Once this potential is known, we must

know what it represents to reconstruct the velocity. In this case, ψ represents the kinetic energy of the

flow, since the pressure gradient is constant. So, we may calculate the velocity as u (y) =
√
2ψ (y).

Notice that this approach circumvents the use of equation 4.41 to reconstruct the velocity; this will

prove important when we discuss the results.

• Solution Approach D. Method of images. As a final approach to solve the duct flow system, we

attempt to approximate it using the method of images for electrostatics. The method of images takes

advantage of the uniqueness of a solution to pose an equivalent but easier problem with an identical

solution, typically by adding fictitious charge in regions where the solution is not desired, to force the

boundary conditions to be true. We select a slightly different choice of coordinate system extending

over y > 0, where the solid wall is located at y = 0. It suffices to consider the domain to the

centerline, since we anticipate that the solution will be symmetric. We construct an equivalent but

simpler problem with the same boundary conditions by insisting on the presence of a fictitious charge
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positioned a distance y∗ = −y away on the opposite side of the solid wall. To calculate the solution,

we construct a Green’s function, but including the fictitious charge contributions in addition to the

ones in the domain of interest. We can once again formulate our problem as a Poisson equation as in

equation 4.50; however, the auxiliary equation for the Green’s function will contain both the real and

fictitious charge contributions,

−∇2G (y; y′) = −δ (y − y′) + δ (y − y∗) (4.56)

and our solution ψ (y) can be calculated in a similar manner to the method discussed in Solution

Approach C. The major difference in this approach is that equation 4.56 implies a different Green’s

function for the solution integral. Our new Green’s function for the method of images will be [101]

(following a similar approach to that described for Solution Approach C)

G (y; y′) = −1

2
|y − y′|+ 1

2
|y − y∗| (4.57)

Notice that this choice of the Green’s function correctly satisfies the boundary condition at the wall,

since here G(0; y′) = −(1/2)(y′ − y∗). Since y′ = −y∗, this vanishes at y = 0. Since G (y; y′) is now

known, and the charge is given by equation 4.47, we may integrate both in equation 4.54 to get ψ, and

once again calculate the velocity u from ψ in the same way as Solution Approach C.

These solution approaches were implemented in a simple Python simulation using the expressions for

the source terms given in equations 4.47 and 4.48. The equations were solved in a nondimensional form,

such that b = 1 and A = 1. The one-dimensional domain was discretized into 100 nodes for the calculation.

The solutions determined using these approaches are presented in Figure 4.6. Due to symmetry, only half

of the domain is shown, with the wall at y = −1 and the centerline at y = 0. We can see that the solution

approaches generally agree. Observe that the solution approaches A and B fail near the centerline; this is

expected, given their reliance on the drift relation, equation 4.41. Since the centerline y = 0 is technically

irrotational and ωz = 0 along it, the velocity cannot be reconstructed at this point. This problem was not

encountered in the Couette flow case, because Couette flow is fully vortical. This exposes a possible serious

limitation to reconstructive schemes using the drift relation; regions of irrotationality are questionable for

the validity of reconstructing the velocity vector in this region using equation 4.41; however, in this case,

l’Hôpital’s rule allows us to successfully circumvent this problem, and the correct velocity may be calculated

along y = 0. Notice that solution methods C and D do not seem to have any such issue; in fact, the maximum

error for both Green’s function approaches is within 0.1%. Therefore, the bounded domain Green’s function

approach and the method of images provide excellent accuracy to resolving the correct solution. The solution

approaches using reconstructive methods are very reasonable in the vortical regions of the duct (Solution

Methods A and B achieved an error of 0.2% and 0.9%, respectively, in the vortical region) but near the

centerline, where the vorticity goes to zero, the error increases due to their reliance on the drift relation
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(Solution Methods A and B achieve an error of 2% and 100%, respectively, at the centerline). Although

Solution Method A achieves a reasonable amount of error for the duct flow problem, the results are generally

unpredictable and depend on the problem.

4.4.3 Blasius Boundary Layer Flow Solution

We now endeavor to study a problem that is much more complicated than the previous examples. The

problem of viscous, laminar boundary layer evolution of an incompressible fluid across a flat plate is a well

known problem with a theoretical solution [148] that matches very well to experimental data. The study

of incompressible boundary layer flow also leads directly to the theory and study of compressible boundary

layer flow. Here we study the incompressible form; we construct some source models from the known exact

solution, and illustrate some solution procedures for this example.

If the flow is steady, incompressible, and laminar, and if the temperature gradient is small such that

the transport properties may be assumed to be constant, then the continuity and momentum equations

describing the flow may be written as

∇ · u =
∂u

∂x
+
∂v

∂y
= 0 (4.58)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(4.59)

where ν = µ/% is the kinematic coefficient of viscosity. Since the temperature gradient is small, the flow

is considered isothermal. A simple scaling argument may be constructed to show that the thickness of the

boundary layer, δ(x), scales as

δ (x) ∼
√

νx

U∞
(4.60)

Here U∞ is the freestream velocity. Since there is no characteristic length scale in the x direction, the

equations permit a similarity solution by transforming into the similarity plane, as sketched in Figure 4.7.

We introduce the similarity variable η = y/δ(x) = y
√

(U∞x) /ν. By transforming into the similar plane,

we may solve the equations in just η, and the resulting solution is a two-dimensional solution in x and

y after inverse-transforming back to physical space. A generalized streamfunction may be constructed,

f(η), which automatically satisfies the continuity equation 4.58; the normalized velocity will be defined

as u/U∞ = f ′(η) = df/dη, where we use the prime notation to denote differentiation with respect to

the similarity variable. This approach was historically introduced by Blasius [148]; by substituting these

quantities and transformations into the momentum equation, we are rewarded with the celebrated Blasius

equation,

f ′′′ +
1

2
ff ′′ = 0 (4.61)
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Figure 4.6: Plot of the different solution methods described in the text compared to the analytical duct
velocity profile. Only half of the domain is shown for clarity, with the solid wall at y = −1 and the centerline
at y = 0; the solution is symmetric across y = 0. Solution Methods A and B are reconstructive, using
equation 4.41 to calculate the velocity, whereas Solution Methods C and D use Green’s function approaches
to solve for the potential. Solution Methods A and B achieve errors of 0.2% and 0.9% in the vortical region
(y < −0.1), but reach errors of 2% and 100% in the center, since the vorticity vanishes and equation 4.41
becomes indeterminant. l’Hôpital’s rule may be applied here to calculate the correct values of the velocity
at the centerline. Solution Methods C and D achieve very low error (less than hundreds of a percent) across
the entire domain.
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Figure 4.7: Diagram of the Blasius boundary layer flow problem. In the physical plane, the flow is two-
dimensional, but the problem admits a similarity solution in the similarity plane. The quantity δ(x) denotes
the boundary layer thickness. [6]

with boundary conditions f(0) = f ′(0) = 0 and f ′ → 1 as η → ∞. This is a nonlinear, third-order

ordinary differential equation that may be numerically solved using straightforward techniques. The solution

has been recalculated using the shooting method in a simple Python script, and the results are shown in

Figure 4.8. From this similarity solution, the appropriate velocity profile anywhere in the physical domain

can be determined by transformation to the physical plane.

The fields may be calculated knowing that u/U∞ = f ′. The vorticity, ω = ωzẑ, is

ωz =−du
dy

= −U∞

(
dη

dy

)
d

dη

(
u

U∞

)
(4.62)

= −U∞

√
U∞x

ν

d

dη
(f ′) (4.63)

= −U∞

√
U∞x

ν
f ′′ (4.64)
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The Lamb vector, ζ = ζyŷ, will be

ζy =ωzu =

(
−U∞

√
U∞x

ν
f ′′

)
(U∞f

′) (4.65)

= −U2
∞

√
U∞x

ν
f ′f ′′ (4.66)

From these, the form of the charge and current density may be calculated,

∇ · ζ = %F =
dζy
dy

= −U2
∞

√
U∞x

ν

(
dη

dy

)
d

dη
(f ′f ′′) (4.67)

%F = −U2
∞

(
U∞x

ν

)(
(f ′′)

2
+ f ′f ′′′

)
(4.68)

and

jF = u2∇× ω = u2
(
dωz

dy

)
(4.69)

=(U∞f
′)
2
(
dη

dy

)
d

dη

(
−U∞

√
U∞x

ν
f ′′

)
(4.70)

= −U2
∞

(
U∞x

ν

)(
(f ′)

2
f ′′′
)

(4.71)

The fields, ζy and ωz, are shown in Figure 4.9. The fields were calculated both directly from equations 4.62

and 4.65 and differenced from the velocity vector; both approaches agreed. The analytical expressions for the

source terms, given in equations 4.67 and 4.69 are shown in Figure 4.10, along with a tenth-order polynomial

fit1 to these expressions. The coefficients for the polynomial fit are presented in Table 4.1. In the solution

approaches explored below, the polynomial fit to the source terms was used.

With a knowledge of the source terms, we may broach the question of how to calculate numerical solutions

for Blasius boundary layer flow by leveraging the isomorphic equations instead. The same solution approaches

(analogous to those applied for duct flow) are utilized here:

• Solution approach A. This once again was not a true solution approach; the vorticity was taken as given

from equation 4.62. The Lamb vector, ζy, was calculated by directly integrating the Gauss law, given

the interpolated form of the charge density. The velocity was calculated using the drift relation given

in equation 4.41. This permitted a check on the drift relation, although the vorticity was assumed to

be known in this case.

• Solution approach B. Reconstructive iteration approach. In this approach, the Lamb vector was first

calculated by integrating the Gauss law given the form of the interpolated charge density. Next, the

vorticity was calculated using an iterative scheme identical to that for duct flow, where the Ampere-

1Tenth-order polynomials were chosen because any less order tended to show some disagreement at the wall, which could

introduce violations to the no-slip condition when applying the solution methods discussed below.
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Table 4.1: Coefficients for a tenth-order polynomial fit for the Blasius charge distribution.

k αk

0 0.109661
1 0.0129543
2 -0.0573069
3 0.0853625
4 -0.0879662
5 0.0408102
6 -0.00915218
7 0.000930392
8 -0.00001244
9 -4.83213e-6
10 2.68597e-7
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Figure 4.9: The calculated Lamb vector, ζy, and vorticity, ωz, for the Blasius solution. Differencing the
solution directly and using the expressions given in equations 4.65 and 4.62 give identical results.

98



0 1 2 3 4 5 6 7
Similarity Variable, η

0.10

0.05

0.00

0.05

0.10

N
on

di
m

en
si

on
al

iz
ed

 V
el

oc
ity

, u
/U

∞

Fluid Charge Density, %f
Fluid Current Density, jf
Interpolated Charge Density
Interpolated Current Density

Comparison of Boundary Layer Solutions Using Isomorphism
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Maxwell equation was solved for vorticity, the drift relation was used to update the velocity field,

and the average velocity was recalculated using the new field. The iteration was terminated once the

average velocity converged; a tolerance of 10−5 was used for determining convergence.

• Solution approach C. Bounded-domain Green’s function. This approach followed the same bounded-

domain approach used for duct flow; we take advantage of the fact that ∇ × ζ = 0 to formulate a

Poisson equation for a potential,

−∇2ψ (η) = %F (4.72)

We may solve this equation by constructing a Green’s function that satisfies the auxiliary equation,

−∇2G (η; η′) = δ (η − η′) (4.73)

where we wish to solve the equation in the semi-infinite domain η > 0. The application of a bounded-

domain approach to solve a semi-infinite problem is questionable, but as long as the domain is consid-

ered larger than the boundary layer itself (i.e., if we have some upper-limit estimate, L, that exceeds

the boundary layer thickness, L > δ(x)) then we should still resolve the solution within this region.

The wall is placed at η = 0. Application of Green’s identity yields

∫ L

0

{
ψ (η)∇2G (η; η′)−G (η; η′)∇2ψ (η′)

}
dη′ =

[
ψ (η)

dG

dη
−G (η; η′)

dψ

dη

]L
0

(4.74)

Here the appropriate boundary conditions are ψ(0) = 0, ψ(L) = 1/2 (which assumes that the velocity

has reached the freestream value at L), and corresponding homogeneous conditions for the Green’s

function, G(0) = 0 and G(L) = 0. Applying these, we have

∫ L

0

{
ψ (η)∇2G (η; η′)−G (η; η′)∇2ψ (η′)

}
dη′ =

1

2

dG

dη

∣∣∣∣
L

(4.75)

Direct substitution of equations 4.72 and 4.73 into equation 4.75 gives

−
∫ L

0

ψ (η) δ (η − η′) dη′ +

∫ L

0

G (η; η′) %F (η′) dη′ =
1

2

dG

dη

∣∣∣∣
L

(4.76)

Again integrating over the Dirac delta distribution,
∫ L

0
ψ(η)δ(η − η′)dη′ = ψ(η), and rearranging to

solve for ψ(η), we have

ψ (η) =

∫ L

0

G (η; η′) %F (η′) dη′ − 1

2

dG

dη

∣∣∣∣
L

(4.77)

We must calculate the Green’s function by solving equation 4.73; we once again take advantage of the
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jump conditions as discussed in the duct flow section, and our Green’s function is

G (η; η′) =


η
L (L− η′) , η < η′

η′

L (L− η) , η > η′
(4.78)

Using the symmetry property of the Green’s function, the derivative term dG/dη|L in equation 4.77

will be

dG

dη

∣∣∣∣
η=L

=
dG

dη′

∣∣∣∣
η′=L

=
d

dη′

[ η
L
(L− η′)

]
= − η

L
(4.79)

and substitution of this into equation 4.77 yields

ψ (η) =

∫ L

0

G (η; η′) %F (η′) dη′ +
η

2L
(4.80)

Equipped with a knowledge of the Green’s function (equation 4.78), the integral form of the solution

(equation 4.80), and the interpolated polynomial form of the charge density, %F , we may numerically

integrate the solution over the bounded domain 0 < η < L. For this investigation, we took L = 7, which

includes the entire boundary layer within it. The integration was performed numerically using Gauss-

Legendre quadrature. In Section 4.4.4, we also examine the construction of a closed-form solution

using this approach.

• Solution approach D. Method of images. As discussed earlier, the application of the method of image

charges can often be exploited for electrostatic problems with great success. In this case, we demon-

strate the application of this technique to Blasius boundary layer flow. We place a fictitious charge on

the other side of the solid wall (which is positioned at η = 0), a distance η∗ = −η away from the point

η of consideration. The sum of the charges ensures that the boundary condition is met at the wall.

The auxiliary equation for the Green’s function now possesses the contribution from both the real and

fictitious charges,

−∇2G (η; η′) = δ (η − η′)− δ (η − η∗) (4.81)

Solving this equation for the Green’s function [101], we have

G (η; η′) = −1

2
|η − η′|+ 1

2
|η − η∗| (4.82)

Following a similar analysis as that provided above, our solution may be written as

ψ (η) =

∫ ∞

0

G (η; η′) %F (η′) dη′ (4.83)

where the Green’s function is provided in equation 4.82 and the charge density, %F , is given by its
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interpolated polynomial expression. We integrated up to η = 7, which includes the entire boundary

layer and at which point the charge density has fallen to zero.

These solution approaches were applied to the Blasius boundary layer problem; the results are shown

in Figure 4.11. At first glance, one immediately notes that the solution approaches A and B failed in the

freestream region. This is expected, since the drift relation becomes indeterminant in this region; hence, we

again see limitations surface in using reconstructive schemes that calculate the velocity field using the drift

relation, since it is only strictly valid in vortical region (approximately η < 5). Solution approaches C and

D achieved remarkable accuracy, less than 0.1% from the accepted Blasius solution. The bounded-domain

solution actually turned out to be slightly better than the method of images approach, although the domain

was treated as a bounded domain.

4.4.4 Closed-form Blasius Solution Using a Bounded-Domain Green’s Function
Approach

It is worth pointing out that, while the method of images and bounded-domain approaches were performed

numerically, the equations permit a closed-form solution that may be accomplished using rather straight-

forward mathematics. Suppose the specific form of the charge density takes the form as a tenth-order

polynomial (the same used in the interpolations above),

%F =

10∑
k=0

αkη
k (4.84)

with the coefficients, αk, presented in Table 4.1. The integral form of the solution ψ(η) is given by equa-

tion 4.80. Substituting equation 4.84 in for the charge density, %F (η′), we have

ψ (η) =

∫ L

0

G (η; η′)
10∑
k=0

αkη
′kdη′ +

η

2L
(4.85)

We now directly substitute the Green’s function in equation 4.78 into our integration; since the treatment

near η = η′ requires care, we may split the integration up at this point,

ψ (η) =

∫ η

0

η′

L
(L− η)

10∑
k=0

αkη
′kdη′ +

∫ L

η

η

L
(L− η′)

10∑
k=0

αkη
′kdη′ +

η

2L
(4.86)

Distributing the integration, we have

ψ (η) =

∫ η

0

η′
10∑
k=0

αkη
′kdη′ − η

L

∫ η

0

10∑
k=0

αkη
′kdη′+

η

∫ L

η

10∑
k=0

αkη
′kdη′ − η

L

∫ L

η

η′
10∑
k=0

αkη
′kdη′ +

η

2L
(4.87)
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Figure 4.11: Blasius solution calculated using the isomorphic equations with a given charge distribution.
Four different solution methods were attempted: (A) a check on the drift relation, (B) an iterative scheme
that reconstructs the velocity by solving for Lamb vector and vorticity and using the drift relation, (C) a
bounded-domain Green’s function approach for calculating the kinetic energy, and (D) a method of images
approach. The reconstructive schemes failed in the irrotational region, since the drift relation becomes
indeterminant as ω → 0. Methods (C) and (D) matched remarkably well, with error much less than 1%.
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We are further permitted to exchange the integration with the summation, which yields

ψ (η) =
10∑
k=0

αk

{∫ η

0

η′
k+1

dη′ − η

L

∫ η

0

η′
k+1

dη′ + η

∫ L

η

η′
k
dη′ − η

L

∫ L

η

η′
k+1

dη′

}
+

η

2L
(4.88)

While this expression is cumbersome, the integrations involve only polynomials, and so are rather straight-

forward. Integrating yields

ψ (η) =
10∑
k=0

αk

{
L− η

L

(
ηk+2

k + 2

)
+ η

(
Lk+1

k + 1
− ηk+1

k + 1

)
− η

L

(
Lk+2

k + 2
− ηk+2

k + 2

)}
+

η

2L
(4.89)

Some manipulation reveals

ψ (η) =
10∑
k=0

αk

{(
ηLk+1 − ηk+2

)( 1

k + 1
− 1

k + 2

)}
+

η

2L
(4.90)

Since ψ(η) represents the kinetic energy per unit mass, ψ(η) = u2/2, we may solve for the velocity vector as

u (η) =

√√√√ η

L
+ 2

10∑
k=0

αk (ηLk+1 − ηk+2)

(
1

k + 1
− 1

k + 2

)
(4.91)

This closed form expression for the velocity is plotted against the numerical solution (from Solution Method

C in Figure 4.11) in Figure 4.12. If we choose η = L, we see that the solution given in equation 4.91 becomes

exactly u(η) = 1. Hence, equipped with source term information, the field equations permit closed-form

solutions in much the same way as classical electrodynamics. Other more exotic techniques could also be

employed, such as multipole expansions or similar numerical approaches, such as Yee’s algorithm.

Although Blasius boundary layer flow represents a problem that already has a solution, these approaches

demonstrate the feasibility of applying approaches borrowed from classical electrodynamic to solve such flows

in a very similar manner to the treatment of electric and magnetic fields. Also, through our investigation of

Couette, duct and Blasius flow, we have collected three simple source terms for fluids that may be superposed

with other fluid or electric charge to construct more complicated flows for fluids or plasmas.

4.4.5 Gasdynamic and Magnetohydrodynamic Charge from Numerical Simula-
tions

For cases when analytic expressions are not available for constructing simple source models, we may resort to

numerical simulation and postprocessing. A particularly interesting case to investigate is the source behavior

of shock waves. Although we will not perform an in-depth quantitative investigation, we will build to our

intuition of the sources by examining the behavior of the charge for an oblique shock.

Consider inviscid, supersonic flow impinging upon a wedge at some fixed angle; this will establish an

oblique shock wave. The incoming freestream Mach number, wedge angle and shock angle are all related. To
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Figure 4.12: Comparison of the accepted Blasius velocity profile (computed numerically using the shooting
method), and the numerical and closed-form (equation 4.91) solutions obtained using the bounded-domain
Green’s function approach. This approach requires some estimated upper limit that bounds the boundary
layer, L. It is not necessary that L be the boundary layer thickness, δ(x), simply that δ(x) < L. Here,
L = 7.

visually depict the form of the gasdynamic charge, we calculated a numerical solution to this problem for an

incoming flow of air at Mach number M = 2.5, to a wedge of angle of θ = 15◦. The domain was rectangular,

[0, 1.7] × [0, 0.8] respectively, and was populated with a fully unstructured triangular mesh consisting of

36, 389 triangular control volumes, as shown in Figure 4.13. The same numerical procedure described later

in Chapter 5 was used, except with no electromagnetics present.

The solution was evolved unsteadily until a steady-state condition was reached. The final solution is

shown in Figure 4.14. Behind the shock, the expected Mach number should be 1.87, and the shock angle is

predicted to be 36.9◦ [149]. In the solution presented in Figure 4.14, the smallest Mach number behind the

shock is 1.85 (this was the largest observed deviation from the theoretical value), and the shock angle was

measured visually to be 36.5◦; this is within 1.4% and 1.2% of the theoretical values, respectively.
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Figure 4.13: Unstructured mesh used for calculating the oblique shock. The mesh is composed of 36, 389
elements.

Once the solution was calculated, the gasdynamic charge was postprocessed in its microscopic form. The

result is shown in Figure 4.15. The shock itself possesses a characteristic structure of microscopic charge in

its vicinity. In Figure 4.16, a convolving average was performed using the test function given in equation 3.33

and an averaging radius of R = 5∆x = 0.158m.

The convolved form of the gasdynamic charge shows that the shock could be approximated by representing

it as a surface of charge. This is analogous to an interface between materials in electrodynamics, where

the material properties cause a discontinuous jump in the normal component of the electric field and the

tangential component of the magnetic field. We derived similar boundary conditions in Section 3.5.3, where

we showed that the same conditions apply at boundary interfaces for ζα and Ωα.

An effort was also made to qualitatively explore the form of the source terms for plasmas of interest.

Particularly, we examined the postprocessing of source data from the Orzsag-Tang magnetohydrodynamic

vortex problem [142] and the hydrodynamic Kelvin-Helmholtz problem [150]. These problems represent
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Figure 4.14: Mach number of the oblique shock solution after a steady-state condition was reached. The
Mach number left of the shock is 2.5, while the Mach number behind the shock reaches a minimum of 1.848
along the lower boundary (a slight dip in the solution occurs here), while the oblique shock relations yield
a downstream Mach number of 1.874; this is within 1.4% of the theoretical value. The angle of the oblique
shock was measured visually to be 36.5◦, while the predicted shock angle is 36.9◦; this is within 1.2%.

unsteady inviscid, compressible plasma evolution with instabilities and turbulence. The postprocessed data

is at least representative of what we can expect the plasma source term data to resemble.

The Orszag-Tang and Kelvin-Helmholtz problems are described in much more detail in Sections 6.5

and 6.4. Both were performed using structured grids. The initial conditions and simulation parameters

for the postprocessed source terms were identical to those presented in these two respective sections. The

numerical formulation used for simulation was that described in Chapter 5. In Figure 4.17, we see an

abundance of charge structures propagating through the domain. These structures arise due to the time-

varying compressive nature of the medium, propagating shocks, and spatial arrangement of the enthalpy.

A convolved average of this data is presented in Figure 4.18, where we see that the propagating shocks

contribute significant charges, while most of the small-scale charge has been averaged out. However, several
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Figure 4.15: The microscopic gasdynamic charge for the oblique shock problem.

of the significant flow structures are associated with the small-scale charge structures, and empirical models

of this problem would require predicting the time evolution of these small-scale charges.

The Kelvin-Helmholtz instability reveals an expected charge distribution near sharp gradients in density

(see Figure 4.19). There is little microscopic charge that is filtered out by the convolving average (see

Figure 4.20). The simulations of the Orzsag-Tang and Kelvin-Helmholtz flows reveal that time-dependent

phenomena would be difficult to construct accurate source models for simulation, since the charge must evolve

correctly over time. For time-varying simulations using empirical data, one would need a charge model that

would reflect the evolving behavior of the charge data. Since this involves significant data collection and

modeling, it was not attempted here and remains to examined in future work. It is also clear that time-

evolving plasmas will demand more detailed empirical models; whereas in the oblique shock case, we seek

a steady-state solution and therefore the time-dependent contributions to the charge do not appear in the

final solution, we must include these contributions accurately in a time-dependent problem. This represents
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Figure 4.16: A convolved macroscopic gasdynamic charge distribution for the oblique shock problem. The
averaging length here was R = 5∆x ∼ 0.158m. The region of charge near the shock is thinner and more
uniform than the microscopic charge presented in Figure 4.15. This investigation implies that the charge at
a shock could potentially be treated as a surface of charge, similar to an interface with a discontinuous jump
in classical electrodynamics.

a significant challenge to modeling plasmas using empirical formulations of the source terms, since the time

dependency would have to be somehow anticipated within the source model. Steady-state solutions are

much more readily constructable, since no time-dependence of the source behavior is required. This is a

realm of modeling that would enjoy superior improvement using iterative or reconstructive approaches, if

the reconstruction were successful.

4.5 Summary of Solution Approaches

The homogeneous approach is direct and mathematically convenient; there may be physical cases where

this assumption is valid. When it is, the source terms vanish, and a set of ‘vacuum’ equations may be
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Figure 4.17: The microscopic form of the generalized charge for the Orzsag-Tang MHD vortex problem. The
charge is intrinsically time-dependent, and so is changing each timestep.

solved instead. A homogeneous set of wave equations result that predict the evolution of waves in the

generalized fields. We were able to show using the homogeneous approximation that the usual collection of

magnetohydrodynamic waves are included in these generalized waves.

Inhomogeneous wave equations exist, but require more investigation.

For incompressible fluids, we examined three cases with known analytical solutions, and predicted the

quantitative form of the source terms for these cases. These represent valuable starting points for future

work in which these source terms may be superposed to study more complicated flow. Notice that, in the

cases studied, we needed the solution to the problem beforehand, to determine the form of the source terms.

Once the source terms were discovered and assumed to be known, we illustrated several creative approaches

to solving these fluid problems by considering techniques from classical electrodynamics, including iterative

schemes, Green’s function approaches, and the method of images. It is anticipated that a library of these

source terms could serve as building blocks for more complicated flows; the superposition of these charges

110



Figure 4.18: The macroscopic, convolved charge distribution for the Orzsag-Tang MHD vortex problem.
The averaging length here was R = 3∆x ∼ 0.194m. Notice that the small-scale noise and ripples have been
averaged out; only the surface charge due to shocks remain, similar to that seen in the oblique shock source
data.

and currents would then allow for determining numerical and closed-form solutions to more complicated

problems without requiring that we solve the problem first to discover the form of the sources. If efficient

iterative schemes were discovered, this would also significantly help, as the source terms could be solved in

tandem with the fields as they were converged to physically correct values for complicated fluid and plasma

problems.

We also successfully demonstrated that both numerical and closed-form solution approaches can be

applied. It is anticipated that these approaches would be much more successful if efficient iterative methods

were discovered that could be exploited to solve fluid and plasma problems without requiring an accretion of

empirical building-block models. However, at present, the approach of accumulating fundamental empirical

models that may be reused to construct solutions to more complicated flow problems represents a more
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Figure 4.19: The microscopic charge distribution from a Kelvin-Helmholtz hydrodynamic instability.

promising methodology for utilizing the isomorphism.

For the more relevant problems of compressible fluids and plasmas, more source data is needed before

the empirical modeling approach will become sustainable for efficiently calculating solutions. The difficulty

in constructing these source models can easily be perceived by the silence in the literature for addressing

these issues, even after several repeated attempts to exploit the Maxwell form of fluid dynamic equations for

several different investigations. Marmanis’ work was perhaps the most successful of these endeavors, as it

did in fact lay out source data for turbulent flow, and this was used to demonstrate remarkable accuracy in

predicting turbulent mean flow solutions; however, compressible and plasma approaches [110, 119, 121, 135]

have not yet shown such models and have only presented theories of how this approach could be utilized. The

results in this chapter represent an advance in our understanding and utilization of these source models, and

the Blasius solution predicted qualitatively agrees with data that Marmanis presents, although the two have

been examined for different cases. One can easily see from the examples presented above how the gathering
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Figure 4.20: The convolved charge distribution for a Kelvin-Helmholtz hydrodynamic instability. The con-
volved form is not much different in structure from the microscopic form. The charge appears along the
boundary between the high- and low-density fluids. The averaging length used here was R = 0.077m.

of these source models could be a daunting process; however, once these simple models were obtained, it

would make the solution of more complicated models much more feasible.
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Chapter 5

A Strong Conservative Finite Volume

Framework for Plasma Simulations

“The average human male is about sixty percent water. Far as we’re concerned,

that’s a little extravagant. So if you feel a bit dehydrated in this next test,

that’s normal. We’re gonna hit you with some jet engines and see if we can’t get

you down to twenty or thirty percent.”

Cave Johnson [1]

5.1 Motivation and State of the Art

Numerical simulation for gasdynamics and electromagnetics has a very rich history that cannot be covered

in an in-depth fashion here. For brevity, we will not address this significantly, but the interested reader

is referred to LeVeque [151, 152], Toro [153], Wesseling [154], Hirsch [155], Anderson [156], Ferziger and

Peric [157] and Fletcher [158, 159] for comprehensive discussions of numerical approaches for compressible

and incompressible flows, and to Jackson [5], Sadiku [160], Landau, Paez and Bordeianu [100], Taflove [161],

and Van Reinen [162] for reviews of electrodynamic simulations. Most pertinent to our review here is

the seminal work by Godunov in 1959 [163], which birthed the Godunov class of solvers, also referred

to as Riemann solvers. Godunov’s scheme proposed discretizing the computational domain into a series of

Riemann problems (discussed below) to solve gasdynamic problems with discontinuities and shocks. Although

Godunov’s original method is more of a museum piece compared to modern Riemann solver approaches, it

attracted interest towards the field of shock-capturing numerical schemes, and a series of subsequent variants

appeared that improved upon the idea, including van Leer’s HLL solver [164], Toro’s contact-corrected HLLC

solver [165], and Roe’s method [11], taking advantage of an approximate form of the Riemann problem.

The application of these approaches quickly propagated into the numerical simulation of plasmas. Zachary
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and Collelaz [166], Brio and Wu [145], Dai and Woodward [167], and Cargo and Gallice [168] developed Roe-

type finite volume solvers for magnetohydrodynamics. Brio and Wu’s success in demonstrating the superior

efficiency and accuracy of the Roe scheme for MHD over other typical finite volume approaches (such as

the Lax-Friedrichs method) set a timbre for the community of MHD numerical simulation that continues

to this day. Other Riemann solver approaches have been implemented with great success as well; Honkkila

and Janhunen [169], Janhunen [170], Gurski [171], and Li [172] have explored Harten-Lax-van Leer (HLL)

schemes for MHD. Flux vector splitting is not directly applicable to the MHD equations, since they are not

homogeneous of degree one with respect to the state vector; however, MacCormack [46, 48] and Jiang and

Wu [142] found successful ways of circumventing this problem. In more recent work, flux splitting schemes

such as the Advected Upstream Splitting Method (AUSM) and the related Energy-Convective Upwind and

Split Pressure (E-CUSP) methods have been applied to magnetohydrodynamics as well [173–176].

Godunov schemes have also been applied to Maxwell’s equations with great success. Shang and Fithen

[143], Shang and Gaitonde [177], Munz, Schneider and Voß [178], Munz, Ommes and Schneider [103], and

Shankar, et al. [179, 180], Weber [181], and Vinokur and Yarrow [182] have produced a wealth of informa-

tion surrounding how to apply these finite volume methods for the solution of Maxwell’s equations. This

foundation has proved valuable for the development of plasmadynamic solvers, which have taken advantage

of these approaches [59,73–76].

By comparison to the vast amount of literature surrounding the MHD model, the fully coupled models

introduced in Chapter 2 have received relatively little attention until the last decade or so. Early attempts

to solve the fully coupled systems examined their utility for aerospace applications. MacCormack, et. al’s

work [47–49,84,85,87,89] has explored solving the fully coupled single-fluid system with displacement current.

This work has applied Steger-Warming flux vector splitting to investigate MHD augmentation in scramjet

performance and electromagnetic mitigation of blunt-body shocks during re-entry. Originally, this work

discovered electromagnetic effects that could lead to unstarts of the MHD-augmented scramjet system that

were not seen using the MHD model [84], but ultimately the cause was found to be an issue in the divergence

cleaning [84]. Eventually, MacCormack migrated to using a potential formulation for the electrodynamic

equations, coupled to the fluid equations. [49] D’Ambrosio and Giordano [8] worked on comparisons of

the MHD system (called in their work the simplified magnetofluiddynamic model, SMFD) to the fully

coupled single-fluid system (what they refer to as the full magnetofluiddynamic system, FMFD). Their work

also introduced coupling to finite rate chemical kinetics for the purpose of simulating strong hypersonic

shocks [49, 50, 93]. Their work identified some of major problems in resolving the disparity between the

different speeds of the system [8,93].

A separate vein of recent literature parallels the work by MacCormack, D’Ambrosio, and Giordano. Li, et

al [59,60,64,95,96], Merkle, et al. [97,183] and Moeller, et al. [61,62,98,184] introduced a means of resolving

the displacement current in the GEMS code, which was originally produced at the University of Tennessee

Space Institute [185]. This allowed the single-fluid model in Table 2.3 to be calculated with chemical reaction,
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turbulence modeling and zonal parallelization [59,60]. The approach was applied to simulate an arc heater at

the Arnold Engineering Development Center [95], but suffered stiffness and stability problems due to the large

currents involved. Subsequent numerical simulations of the early transient startup period of pulsed plasma

thrusters, which involves the formation of current across a capacitor (inherently involving the appearance of

a displacement current) proved successful [59–61, 98], but once again, large currents caused stability issues

for long-term simulations of the evolution of the pulsed plasma thruster.

The application of Riemann solvers to the full two-fluid plasma model has been explored by Hakim, et

al. [76,77], Shumlak, et al. [74,75], Srinivasan, et al. [186], and Loverich, et al. [73,187]. These investigations

have explored the application of finite volume methods using the Roe scheme and discontinuous Galerkin

methods for solving the two-fluid system, and have specifically investigated lower-hybrid drift instabilities

[77], magnetic reconnection rates in the geospace environment [75, 76], and high-energy-density simulations

[73,76,77,187]. All of this work reported stiffness and stability problems encountered in resolving the behavior

of the plasma, particularly due to the fact that the two-fluid model intrinsically captures the Hall effect;

therefore, it is necessary to resolve the light speed time scale. When large conductivities are encountered and

long durations are required, enormous stiffness can occur, and stability constraints push the maximum stable

timestep much lower than either the physical timesteps or the Courant timestep. Since large conductivities

are ubiquitous to plasmas of engineering interest, this represents a potential limitation of the two-fluid model.

The application of two-fluid solvers including chemical reaction, viscosity, and heat transfer have also been

investigated by Miura and Groth [188] and Lonkar, et al. [83] for applications in electric propulsion and

plasma actuator modeling.

At present, then, the numerical solution of the single-fluid model is characterized by solution approaches

that incorporate chemical reaction, viscous and heat transfer effects for hypersonic flight and propulsion, and

focus on capturing charge separation effects, displacement current and electromagnetic waves for applications

in hypersonic flight and propulsion and for re-entry modeling. The two-fluid model is characterized by both

finite volume and discontinuous Galerkin schemes, and some success has been seen in implementing chemical

reaction, viscosity and heat transfer in the two-fluid model. From the perspective of applications, most groups

have tended to cite either aerospace applications for electric propulsion, hypersonic flight and propulsion,

or high-energy-density plasma instabilities and oscillations as the motivating factor for migrating to these

models. In the case of electric propulsion, the presence of high-conductivity plasma exhausting to vacuum

represents a wide range of conductivities involved; as pointed out by Li, et al. [59], the pulsed plasma

thruster and many such propulsion systems involve capacitive-driven plasmas, which, during early transient

periods, can only complete the circuit via a displacement current that is otherwise not permitted to exist

in the MHD model. Another place where the full Maxwell system would be valuable is in the study of

the communications blackout; the propagation of an electromagnetic wave into a non-neutral plasma sheath

requires a more physically correct model to capture the behavior of such a process than MHD allows. In

the case of instabilities and oscillations, these small-scale oscillations can influence or determine the overall
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stability and long-term instability behavior of high-energy-density plasmas, and therefore must be captured

correctly if the long-term solution is desired.

One common problem that has been encountered by all of this work for solving the single-fluid and

two-fluid systems is the disparity encountered between the timescales involved. Highly disparate speeds

indicate a very high condition number for matrix problems, and thus frequently become ill-conditioned for

numerical solution. Exacerbating this problem for both systems is the presence of enormous source terms,

which threaten the stability of the simulation. The previous work has indicated that the maximum stable

timestep can be much, much lower than the minimum required timestep needed to resolve the smallest speed.

Therefore, the stiffness is compounded not only by the presence of the disparity in eigenvalues, but also due

to numerical stability requirements, which may not have any physical significance. As pointed out by all

groups working on these systems, they represent computationally intense problems. [48,59,75]

5.2 Objective

Having established the state of the art, it is clear that, while the single-fluid and two-fluid models capture

more detailed physics that may be essential to resolving the correct evolution of the plasma, stiffness and

stability issues plague the approach when conductivities become large and when long durations (usually

associated with resolving fluid reactions) are required. Due to the applications of interest, we may frequently

encounter either of these two conditions that cause the systems to become stiff and unstable. Therefore, it

behooves us to find a means of improving the stability and stiffness of the equations without compromising

the quality of the physics captured by these systems.

This next investigation explores such an improvement for modeling plasmas. The objective here is to

introduce a reformulation of the coupled fluid system into a strong conservative, or flux-coupled, form, where

the exact coupling to the Maxwell equations is now concealed in the solution and flux vectors. Such a

formulation was recognized by several authors [59, 92, 94, 189, 190], but no implementation or investigation

for comparison has yet been endeavored. By doing so, we eliminate the appearance of explicit source terms

to the fluid equations, which strain the numerical solution considerably.

The new strong conservative approach takes advantage of the conservation form of Maxwell’s equations

in order to remove the explicit appearance of the Lorentz force and Ohmic dissipation term in favor of

derivatives of the Poynting propagation vector, Maxwell stress tensor and electromagnetic energy. This

allows these quantities to be united in the solution and flux terms. The disadvantage to doing this is that it

significantly alters the eigenstructure of the equations, which is prerequisite for several trusted finite volume

flux schemes.

In this investigation, we specifically performed the following:

• The new Jacobians and corresponding eigenstructure for the strong conservative approach were derived,

and are presented in Appendix A.5. This development builds off of the uncoupled eigenstructure for
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the Navier-Stokes and Maxwell equations (presented in Appendices A.2 and A.3, but contributes a

new coupling term. The new eigenvalues and eigenvectors were checked to fully diagonalize the strong

conservative system.

• An approximate Riemann solver approach based on Roe’s method was constructed. This approach

depends on the new eigenvectors of the strong conservative system. To validate both the eigenvectors

and Riemann solver approach, a different approach was also tested using the Advected Upstream

Splitting Method (AUSM), which does not require a knowledge of the eigenvectors. Both approaches

were executed on validation test problems. The results show very good agreement, with only expected

differences.

• The source-coupled and strong conservative systems were both executed on some validation problems

with known solutions. Both of these approaches are capable of capturing the low- and high-conductivity

limits of the electromagnetic fields, due to the inclusion of the time-varying electric field, and charge

separation effects due to the inclusion of a net macroscopic charge. The strong conservative form is

significantly more stable when intermediate to high conductivities appear in the computational domain,

and also demonstrates better accuracy in the validation tests explored.

• Finally, as posed in the introduction, the original intent of this study was to improve the two-fluid

plasma system. It is shown that the strong conservative reformulation of the equations is not possible

for the two-fluid equations without some modification or simplifying assumption.

5.3 Single-fluid Source-coupled Form

We presented the form of the single-fluid model coupling the Navier-Stokes and full Maxwell equations in

Table 2.3. This model assumes the flow is of an inviscid, calorically and thermally perfect gas. The electrical

conductivity has been assumed to take the form of a scalar; a more advanced conductivity model, viscosity

and heat transfer can always be implemented with appropriate modification to these equations. For clarity,

we repeat the form of the fluid equations solved in this framework here,

∂%

∂t
+∇ · (%u) = 0 (5.1)

∂

∂t
(%u) +∇ ·

(
%uu+ Îp

)
= %eE+ je ×B (5.2)

∂E
∂t

+∇ · ([E + p]u) = je ·E (5.3)

This assumes a coupling to the Maxwell equations through the presence of a Lorentz body force term and

Ohmic heating term. We may write these equations coupled to the Maxwell equations in the following form,

∂U

∂t
+∇ · F = H (5.4)
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where

U =



%

%u

E

B

E


, F =



%u

%uu+ Îp

[E + p]u

ˆcurl (E)

−c20 ˆcurl (B)


, H =



0

%eE+ je ×B

je ·E

0

−je/ε0 − %eu


(5.5)

Here Î = δik is the identity matrix. Our notation ∇ · ( ˆcurl(E)) = ∇ ·
(
Î×E

)
should be taken to mean

∂lεijkδjlEk = εijk∂jEk, where ∂l is the index form of ∇ and εijk is the Levi-Civita tensor.

Equations 5.4 and 5.5 represents the customary form of the coupled system. Observe that the coupling

is entirely mitigated to the source vector, H; we will hence refer to this formulation as the source-coupled

formulation to distinguish it from the new formulation we will be testing. If we examine the source vector

for each system, it is clear that the source terms for the fluid system threaten the stability of our numerical

simulation; the dependency on the electromagnetic variables indicates that the sources will vary on the time

scale of the electromagnetics, which is much faster than the fluid time scales; thus, the sources will appear as

an extremely rapid fluctuation to the fluid equations. When the conductivity becomes large, the magnitude

of these rapid fluctuations strain the equations, and an excessively small timestep is necessary to avoid

numerical instabilities. Often, the maximum stable timestep is much lower than the Courant timestep, and

simulations incur very large performance drawbacks and excessive computational times needed to resolve

the solution accurately.

5.4 Conservation Form of Maxwell’s Equations

In the source-coupled formulation in equations 5.4 and 5.5, it would be preferable to recast the source terms

into derivatives that could be united on the left-hand side. Such a strongly conservative formulation could

potentially enjoy much more robustness and stability. In order to do so, we must cast the Lorentz body force

and Ohmic dissipation terms into a form amenable to the left-hand side of the equations. Details of this

approach have been noted by Giordano [190], D’Amobrosio and Giordano [92,94], Kulikovskii [189], and Li,

et al. [59], but this approach has not actually been investigated or validated.

We begin by transforming the Lorentz force term into a conservation form. Substituting Ampere’s law

(equation 2.11) in for the total current density je in the je×B term, and substituting Gauss’ law (equation 2.9)

in for the total charge density %e, we have

%eE+ je ×B = ε0E (∇ ·E) +
1

µ0

{
− 1

c20

∂E

∂t
+∇×B

}
×B (5.6)
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Applying the product rule to ∂E/∂t and adding the divergence of B (since ∇ ·B = 0), we have

%eE+ je ×B =
1

µ0

{
− 1

c20

∂

∂t
(E×B) +

1

c20
(E∇ ·E−E×∇×E) +B∇ ·B−B×∇×B

}
(5.7)

Now, we turn our attention to the Ohmic dissipation. If we again substitute Ampere’s law in for the

total current density, we have

je ·E = E · 1

µ0

[
− 1

c20

∂E

∂t
+∇×B

]
(5.8)

Applying the vector identity ∇ · (A×B) = B ·∇×A−A ·∇×B,

je ·E = − 1

µ0

{
1

c20

∂E

∂t
·E+

∂B

∂t
·B+∇ · (E×B)

}
(5.9)

We now introduce the following electromagnetic quantities:

1. The Poynting propagation vector,

SEM =
1

µ0
E×B (5.10)

2. The electromagnetic energy density,

EEM =
1

2µ0

{
E ·E
c20

+B ·B
}

(5.11)

3. The Maxwell stress tensor,

Σ̂
EM

= ΣEM
µν =

1

µ0

{
EµEν

c20
+BµBν

}
− δµνEEM (5.12)

and, after some manipulation, equations 5.7 and 5.9 reduce to the following identities:

%eE+ je ×B = − 1

c20

∂SEM

∂t
+∇ · Σ̂

EM
(5.13)

je ·E = −∂E
EM

∂t
−∇ · SEM (5.14)
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5.5 Single-fluid Strong Conservative Form

Having derived the identities in equations 5.13 and 5.14, we can now apply them to equations 5.2 and 5.3 in

order to reduce the fluid equations to a set of strongly conservative, or flux-coupled, equations free of explicit

source terms. This application yields the following set of strongly conservative fluid equations,

∂%

∂t
+∇ · (%u) = 0 (5.15)

∂

∂t

(
%u+

1

c20
SEM

)
+∇ ·

(
%uu+ Îp− Σ̂

EM
)
= 0 (5.16)

∂

∂t

(
E + EEM

)
+∇ ·

(
[E + p]u+ SEM

)
= 0 (5.17)

which are the continuity, total momentum, and total energy equations, respectively. Now, the conservative

form for the flux-coupled system can be expressed by writing

∂UF

∂t
+∇ · FF = HF (5.18)

with

UF =



%

%u+ SEM/c20

E + EEM

B

E


, FF =



%u

%uu+ Îp−ΣEM

[E + p]u+ SEM

ˆcurl (E)

−c20 ˆcurl (B)


, HF =



0

0

0

0

−je/ε0 − %eu


(5.19)

Observe that the coupling is now entirely contained in the solution vector, U, and the flux vector, F. The

system is now homogeneous for the fluid equations. It is our proposal that this system is numerically more

stable than the source-coupled system of equations; hence, we should be able to achieve a higher maximum

stable timestep using equations 5.18 and 5.19 than using equations 5.4 and 5.5.

5.6 Overview of the Numerical Formulation

Our system of equations for any of the above models may generically be written as

∂U

∂t
+∇ · F = H (5.20)
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where the solution, flux and source vectors, U, F, and H, respectively, are given by either equation 5.5

or 5.19, depending on the system of interest. Our goal is to discretize this equation and solve it numerically.

The first-order form of equation 5.20 is amenable to the finite volume approach, in which a volume

integration is used to cast the equation in to integral form. The advantage here lies within the application

of Gauss’ divergence theorem to the volume integral of the flux term; the flux across the surface can then be

treated as a surface integral instead. By constructing a numerical flux scheme, we may predict the flux across

each interface adjoining the control volumes that comprise the mesh and capture shocks, discontinuities and

steep gradients.

We will consider two approaches to discretizing the systems; in the first, we construct a Riemann solver

approach that implements the Roe scheme to calculate the numerical flux across the faces of each adjoining

volume. Despite the sucesses of the Roe scheme, it requires a detailed understanding of the eigenstructure

of the governing equations; this can be seen as a drawback, since often complicated systems of equations

may have a very large and complicated eigenstructure. To implement this approach, we derived the new

eigenstructure for the flux-coupled strong conservative system (presented in Appendix A.5), which is shown

to be much more complicated than the source-coupled form. To validate the Roe method and the new

eigenstructure, we also explored the application of the Advected Upstream Splitting Method (AUSM), which

does not require a knowledge of the eigenstructure. Both approaches were implemented in an implicit scheme

that permits larger timesteps and enjoys better stability for the disparity in the eigenvalues.

In Section 5.7, we first cover the basic groundwork of systems of conservation laws; this section is provided

for those unfamiliar with the foundation of the finite volume and Riemann solver approaches, and borrows

heavily from [151, 153]. In Section 5.8, we discuss the finite volume method itself in general, and then

we specifically investigate its formulation in this investigation in Section 5.9, where we detail the implicit

scheme. We address divergence cleaning for multiple dimensions in Section 5.10. Following this, in Sec-

tions 5.11 and 5.12, we discuss the Roe approximate Riemann solver and AUSM flux schemes, respectively;

finally, in Section 5.14, we present details regarding the solver algorithm employed. In Appendix ??, Sec-

tions A.2, A.3, A.4 and A.5 have been provided to supplement the remainder of this chapter; they present

the mathematical details of the Navier-Stokes, Maxwell, source-coupled and strong conservative coupled

formulations, respectively, which are required in the discussion below.

5.7 Systems of Hyperbolic Conservation Laws

Generally, we refer to a conservation law as a first-order partial differential equation that may be written in

the form

∂U

∂t
+∇ · F (U) = 0 (5.21)
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which represents a four-divergence in spacetime. Here, U is a scalar quantity of interest, and F(U) ∈ RD

is the associated flux of U in D spatial dimensions. By integrating over a volume and applying Gauss’ law

to the divergence term, this equation physically couples the change of the quantity U within the volume

to the rate of flux of the quantity, F(U), through the surface bounding the volume. The finite volume

method takes advantage of this continuity form of the equations to develop a discretization that preserves

the conservative variable, U , across the a control surface that bounds two adjoining control volumes. If

the domain is discretized into a mesh of control volumes, the conservative variable may be updated in each

control volume by considering the flux moving in and out across each bounding face.

When m different equations are present, we can rewrite equation 5.21 into a system of conservation laws.

Furthermore, when a source term, or forcing function, H, is present on the right-hand side, our equations

more correctly become balance equations, and a system of m generic balance equations may be written as

∂U

∂t
+∇ · F (U) = H (U) (5.22)

where U ∈ Rm is the solution vector, F ∈ Rm×D is the flux vector, and H ∈ Rm is the source vector

for a problem in D spatial dimensions. The flux and source vectors are considered known functions of the

solution vector. We consider the solution vector U as our unknown, and wish to solve equation 5.22. Before

explaining the numerical procedure, we will need at least a rudimentary understanding of the mathematical

character of equation 5.22, upon which we will briefly elaborate.

5.7.1 Quasilinear Form, Jacobian, Eigenstructure

It is more revealing to pose equation 5.22 into a quasilinear form, which exposes the underlying structure of

the system of equations. Applying the chain rule of calculus, we may rewrite the divergence of the flux term

as

∇ · F =
∂F

∂xk
=
∂F

∂U

∂U

∂xk
= Â∇ ·U (5.23)

where Â = ∂F/∂U ∈ Rm×m is the Jacobian of equation 5.22. The associated form of equation 5.22 with the

Jacobian matrix is the quasilinear form,

∂U

∂t
+ Â

∂U

∂xk
= H (U) (5.24)

The Jacobian matrix has a set of eigenvalues, denoted λ(p), p ∈ {1, . . . ,m}, associated with it, which satisfy

the characteristic polynomial,

det
(
Â− λÎ

)
= 0 (5.25)
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where Î ∈ Rm×m is the identity matrix and det is the matrix determinant. The Jacobian is also charac-

terized by a set of eigenvectors, which may be distinguished between left and right eigenvectors. The right

eigenvectors of Â, denoted K(p), p ∈ {1, . . . ,m}, are a set of m column vectors that satisfy the relationship

ÂK(p) = λ(p)K(p) (5.26)

The left eigenvectors, denoted L(p) ∈ Rm, p ∈ {1, . . . ,m}, are a set of m row vectors that satisfy the

relationship

L(p)T Â = λ(p)L(p)T (5.27)

Recall that eigenvectors are only specified up to an arbitrary multiplicative constant. For the remainder

of the dissertation, whenever we simply say eigenvectors, we will imply right eigenvectors, unless otherwise

noted.

We may introduce the definition of a left and right eigenmatrix1 for equation 5.22, which is composed of

rows of left eigenvectors (columns of right eigenvectors),

K̂ =
{
K(p)

}
, p ∈ {1, . . . ,m} (5.28)

L̂ =
{
L(p)

}
, p ∈ {1, . . . ,m} (5.29)

The left and right eigenmatrices can generally be chosen such that

K̂ = L̂
−1

(5.30)

and, of course, the converse,

L̂ = K̂
−1

(5.31)

This requires that the eigenvectors form linearly independent sets in the eigenmatrices.

The diagonal matrix of eigenvalues, denoted, Λ̂, can be written as

Λ̂ = Diag
{
Λ(p)

}
, p ∈ {1, . . . ,m} =



Λ(1) 0 · · · 0 0

0 Λ(2) · · · 0 0
...

... . . . ...
...

0 0 · · · Λ(m−1) 0

0 0 · · · 0 Λ(m)


(5.32)

1. . . for lack of a better term. There seems to be no consistent name or notation for this matrix, despite its consistent

appearance and importance.
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and the following relationships hold,

ÂK̂ = K̂Λ̂ (5.33)

L̂Â = Λ̂L̂ (5.34)

We are now in a position to introduce the notion of diagonalization, which exposes the characteristic

structure of equation 5.22. The Jacobian, Â, is said to be diagonalizable if there exists some matrix X̂ such

that

X̂
−1

ÂX̂ = Λ̂ (5.35)

If the Jacobian matrix Â is diagonalizable, and the eigenvalues contained in Λ̂ are all real such that Λ̂ ∈

Rm×m, then equation 5.22 is said to be hyperbolic, and the matrix X̂ here must be the right eigenmatrix, K̂,

to satisfy relations 5.33 and 5.34. Thus, for a hyperbolic set of conservation laws,

K̂
−1

ÂK̂ = L̂ÂK̂ = Λ̂ (5.36)

We may also project the left and right eigenvectors on this expression in order to obtain

K̂Λ̂K̂
−1

= K̂Λ̂L̂ = Â (5.37)

5.7.2 The Scalar Linear Advective Wave Equation

One of the simplest forms of equation 5.22 is a scalar, constant-coefficient assumption of the form

∂w

∂t
+ λ

∂w

∂x
= 0 (5.38)

Here w is our scalar unknown, and λ is an associated speed. This equation has a single eigenvalue, λ; as

discussed in the previous section, this equation is hyperbolic if λ ∈ R. Suppose it is supplied with some

initial condition, w(x, t = 0) = w0(x), which is some initial spatial profile of w. To solve this problem, we

consider an initial point in space, x0, and the value of w at that point. If we follow a path through time, x(t),

from x0, and if we now consider our unknown function to be a function only of time, i.e., w(x, t) = w(x(t), t),

then we can reduce this partial differential equation to an ordinary differential equation. Along the path

x(t), the rate of change of the scalar solution w will be (via the total differential)

dw

dt
=
∂w

∂t
+
∂w

∂x

dx

dt
(5.39)
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But the speed dx/dt is just the speed of propagation, dx/dt = λ. Thus, the rate of change of w along x(t) is

dw

dt
=
∂w

∂t
+ λ

∂w

∂x
= 0 (5.40)

Hence, the solution w is constant along x(t). Since the eigenvalue λ is constant everywhere, the initial condi-

tion profile, w0(x), just translates along x with speed λ, so at any given time t the solution to equation 5.38

will be

w (x, t) = w (x− λt, 0) = w0 (x− λt) (5.41)

5.7.3 Characteristics and the General Solution of the Linear Cauchy Problem

With the solution of the linear advective equation in hand, we may consider the general Cauchy problem for

a quasilinear hyperbolic problem. Suppose that we are faced with the task of solving the following problem,

∂U

∂t
+ Â

∂U

∂x
= 0,

U (x, t = 0) = U0 (x) , −∞ < x <∞, t ≥ 0

(5.42)

To solve equation 5.42, consider projecting the left eigenmatrix, K̂
−1

, onto the equation,

∂

∂t

(
K̂

−1
U
)
+ K̂

−1
Â
∂U

∂x
= 0 (5.43)

But since, by equation 5.37, we know K̂
−1

Â = K̂
−1

K̂Λ̂K̂
−1

= Λ̂K̂
−1

, we have

∂

∂t

(
K̂

−1
U
)
+ Λ̂

∂

∂x

(
K̂

−1
U
)
= 0 (5.44)

If we take our unknown now to be the new projected solution vector, W = K̂
−1

U, then we have effectively

transformed our solution into a new problem,

∂W

∂t
+ Λ̂

∂W

∂x
= 0 (5.45)

If we write this in an indexed form,

∂W (p)

∂t
+ λ(p)

∂W (p)

∂x
= 0 (5.46)

where p ∈ {1, . . . ,m}. This reveals that equation 5.45 is just a system of decoupled scalar linear advective

equations, each propagating at its own speed, λ(p). Since we have already determined the solution to a single
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linear advective wave equation (cf. equation 5.41), each equation may be solved in the same manner,

W (p) (x, t) =W (p)
(
x− λ(p)t, t = 0

)
=W

(p)
0

(
x− λ(p)t

)
(5.47)

where p ∈ {1, . . . ,m}. The quantities W are the characteristics of equation 5.42. Having computed all

components of W, the final solution U may be calculated by transforming back,

U = K̂W (x, t) =

m∑
p=1

W (p) (x, t)K(p) (5.48)

where K(p) is the pth column right eigenvector. Equation 5.48 is an eigenvector expansion of the conservative

variables, U; given the characteristics, W (p), which represent the coefficients of the expansion, we have

effectively constructed an exact solution to the quasilinear Cauchy problem posed in equations 5.42.

While classical solutions of differential equations usually insist that the data be sufficiently smooth

and differentiable, an intriguing aspect of equation 5.48 is that it applies even in cases where the data is

discontinuous. In the next section, we take advantage of this property to construct the solution to the

Riemann problem, which includes an intrinsic discontinuity in the initial condition.

5.7.4 The Riemann Problem

Anticipating the development of a Riemann solver, we discuss the Riemann problem, which represents a

fundamental special case of equation 5.22. This problem reminiscent of the behavior of piecewise-constant

data in a mesh, particularly between two different control volumes; it therefore becomes an integral part of

the solver development later for the Roe flux scheme. The Riemann problem is generally posed as a Cauchy

problem for a given system of equations in the form of equation 5.22, where a discontinuity is established in

the initial conditions,

∂U

∂t
+ Â

∂U

∂x
= 0,

U (x, t = 0) = U0 (x) =

 UL, x < 0

UR, x > 0

−∞ < x <∞, t ≥ 0

(5.49)

The initial conditions for a scalar system and the propagation of waves for a system of m equations and the

structure of the solution are sketched in Figure 5.1, and a more detailed visualization of the construction of

the solution is presented in Figure 5.2. The solution admits a series of m waves, each possessing an eigenvalue

λ(p). We expect that the solution on the left of the left-most wave must be the UL, and correspondingly,

the solution to the right of the right-most wave must be UR. As per our discussion for solving the general

Cauchy problem, we may write the left and right state vectors as eigenfunction expansions,
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(a) t = 0 x

U

x

t

(b)

UL

UR

x = 0 x = 0

λ (1)t
λ (2)t

λ (3)t

λ(4
) t

λ(
5) t

Figure 5.1: Schematic of the classic Riemann problem. (a) The initial condition for a scalar system; there
is a discontinuity at x = 0. The initial data is UL for x < 0 and UR for x > 0. (b) The propagation of the
waves for a system of m conservation laws; m different waves result. In this figure, m = 5; the black lines
trace the m characteristic lines, x = λ(p)t.

UL =
m∑

p=1

W
(p)
L K(p), UR =

m∑
p=1

W
(p)
R K(p) (5.50)

where W (p)
L and W

(p)
R represent the characteristics of the initial conditions, and p ∈ {1, . . . ,m}. For any

point in the domain, (x, t), the quantity x/t will fall between two eigenvalues λH and λH+1, such that

λH < x/t < λH+1. Then the superposed solution to the Riemann problem may be written as

U (x, t) =

m∑
p=H+1

W
(p)
L K(p) +

H∑
p=1

W
(p)
R K(p) (5.51)

which simply means that crossing the pth characteristic implies a jump in the solution’s characteristic, W (p),

from the left state, W (p)
L , to the right state, W (p)

R (see Figure 5.2). This can be more clearly understood by

rewriting equation 5.51 in terms of the difference in the characteristics,

(
W

(p)
R −W

(p)
L

)
K(p) = α(p)K(p) (5.52)
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x

t

0

UL

UL* UR*

UR

x=λ(1)t x=λ(2)t x=λ(3)t

(x,t)

x-λ(3)t x-λ(2)t x-λ(1)t

Figure 5.2: An example of constructing the solution to the Riemann problem for m = 3. Tracing back along
the characteristics, we determine W (p) from the initial conditions. The solution U is constant in each sector.
The general solution is U(x, t) =

∑m
p=H+1W

(p)
L K(p) +

∑H
p=1W

(p)
R K(p), where λH < x/t < λH+1. The

left-most and right-most sectors are known (given in the initial conditions); they are UL =
∑m

p=1W
(p)
L K(p)

and UR =
∑m

p=1W
(p)
R K(p), respectively. In the sector U∗

L, the p = 1 characteristic has been crossed, but
not the second two, so H = 1, and the solution is U∗

L = W
(1)
R K(1) +W

(2)
L K(2) +W

(3)
L K(3). In Sector U∗

R,
the first two characteristics have been crossed, but not the third; here, H = 2, and the solution in this region
is U∗

R =W
(1)
R K(1) +W

(2)
R K(2) +W

(3)
L K(3). [151]

where we have introduced the decomposition coefficient, α(p) =W
(p)
R −W

(p)
L . Equation 5.52 is known as the

Rankine-Hugoniot jump condition. In this sense, the full solution is given as

∆U = UR −UL =
m∑

p=1

α(p)K(p) (5.53)

Here, the Riemann data ∆U is known given the initial conditions, and it is expected that the eigenvectors

are known from the Jacobian matrix Â given the system of equations in equation 5.49. The solution of

the Riemann problem is now equivalent to determining the decomposition coefficients, α(p), p ∈ {1, . . . ,m}.

Equation 5.53 may be viewed as a linear system of equations that can be solved to determine these coefficients.

In summary, we see from equation 5.53 that, for the quasilinear case, solving the Riemann problem involves

decomposing the jump ∆U into eigenvectors of the Jacobian matrix.
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All of the above discussion has been preparatory to our explanation of the numerical scheme applied for

this investigation. Equipped with a rudimentary understanding of the character of equation 5.22 based on

a knowledge of its eigenvalues and eigenmatrices, we can construct a numerical scheme that will solve the

systems as identified above.

5.8 The Finite Volume Method

Finite volume numerical schemes are attractive to scientists and engineers due to their exceptional ability

to conserve physical quantities and to correctly capture shocks, discontinuities and steep gradients. This

method takes advantage of the mathematical structure of systems of hyperbolic conservation laws; we have

provided a more detailed discussion of the general theory of systems of conservation laws and their structure

in the previous section. In the following, it will be presumed that the reader has some familiarity with these

mathematics. More detailed information is available in the classic references [151,153].

The primary ingredients in formulating a finite volume numerical scheme is

• Application of the divergence theorem to the flux term in the governing equations,

• Development of a semi-discretized equation,

• Implementation of a numerical flux approximation, and

• Application of a time integration scheme to discretize and evolve the governing equations

The finite volume approach takes advantage of the integral formulation of equation 5.22. We begin by

integrating over an arbitrary domain, Ω. The divergence theorem may be applied to the integral of the flux

divergence, which produces a surface integral, which leads to the weak form [151]

∫
Ω

∂U

∂t
dΩ +

∮
∂Ω

F · ndA =

∫
Ω

HdΩ (5.54)

where ∂Ω and dA are understood to be the associated bounding surface and infinitesimal boundary area of

the volume, Ω. Since the mesh is not moving, the integration and differentiation may be exchanged in the

first term,
∫
Ω
∂/∂t (·) dΩD = d/dt

∫
Ω
(·) dΩD.

Let us suppose that the domain Ω represents a very small control volume bounded by a finite set of

boundary faces denoted F , as shown in Figure 5.3. We may approximate the solution vector, U, as being

roughly constant within this control volume, if it is sufficiently smaller than the length scale of interest.

In this case, we may perform the integration for the solution vector and source term vector trivially, since∫
Ω
UdΩ ≈ U

∫
Ω
dΩ = U · V , where we adopt the notation V to denote the volume contained within the

domain Ω. If there are a finite number of faces contained in F , then the surface integration becomes a

summation, and equation 5.54 now becomes

dU

dt
+

1

V

∑
j∈F

Fj (Uj) · njAj = H (5.55)
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Figure 5.3: A sample two-dimensional control volume bounded by four sides. If faces were indexed by an
integer j, then all four faces could be specified as j ∈ {1, . . . , 4}; the corresponding faces bounding the
volume would be F = {1, 2, 3, 4}. The nj represents the normal unit vectors for j ∈ {1, 2, 3, 4}.

Here, the index j is used to denote that the quantity is calculated at the face j. Again, the set F is understood

to contain faces that bound the domain Ω. We introduce the notion of residual, which is defined as

R (U) = H (U)− 1

V

∑
j∈F

Fj (Uj) · njAj (5.56)

and we may now pose equation 5.55 in the semi-discretized form,

dU

dt
= R (U) (5.57)

We can envision that a large domain ΩD could be discretized into a mesh of such approximate control volumes,

Ωk, where the index k is used to denote a set of several such small control volumes; if we have NΩ different

control volumes in the domain, then k ∈ {1, . . . , NΩ}. Then equation 5.57 must be temporally discretized

and solved at each of these control volumes to gather a set of solution vectors Uk, k ∈ {1, . . . , NΩ} on each

control volume. Our numerical solution is then comprised of the collection of solution vectors available in

each control volume, Uk.
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Two further details remain for us to fully specify the numerical scheme: first, a means of integrating

equation 5.57 in time is needed to time-march the solution vector U; second, the value of the flux at the

bounding face, Fj (Uj), must be given a prescription, particularly since we do not technically have solution

data Uj available at the face (we are only keeping track of the solutions Uk in the volumes).

5.9 Dual-time Implicit Scheme

To advance the solution vector U in time, we need to numerically integrate the semi-discretized equation,

equation 5.57. This could be done in any number of fashions. A simple forward-difference scheme, or

more advanced explicit methods taking advantage of Runge-Kutta integration schemes or predictor-corrector

methods such as the MacCormack or Adams-Bashforth methods [146] could be implemented with simplicity.

Instead of choosing an explicit approach, an implicit method is much more appropriate. Our moti-

vation is particularly based on the large disparity expected in the eigenvalues, and furthermore, implicit

schemes generally tend to stabilize stiff source terms. Implicit schemes can also frequently be shown to

be unconditionally stable, in which case large timesteps are available, since they are not restricted to the

Courant-Friedrichs-Lewis condition. This permits us to solve the equations in a much more efficient manner

for most problems of interest.

In this investigation, the dual-time technique2 was selected for the plasmadynamic solvers. This technique

has been used to great success for a number of fluid problems. There are also numerous advantages to using

this technique that will be discussed shortly.

To introduce the dual-time approach, we start again from our system of m conservation laws, as posed

in equation 5.22; before performing the volume integration over a domain Ω, however, we first add a new

time derivative of a vector Q in a fictitious time scale, τ ,

∂Q

∂τ
+
∂U

∂t
+∇ · F = H (5.58)

where Q is a state vector that we will specify momentarily. It is clear that equation 5.58 is exactly equal to

equation 5.22 when the vector Q reaches a steady-state equilibrium in the pseudotime,

∂Q

∂τ
= 0 (5.59)

We place the following constraints on our choice of the vector Q:

• We must be able to update the physical (solution, flux, and source) vectors by iterating Q in τ ; that

is, we must be able to write the solution, flux and source vectors as functions of this vector, and

• We would ideally like to choose the Q that converges fastest with the least amount of error in the

physical vectors.

2also known as the fictitious time method or pseudo-time method
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In this approach, we start with equation 5.58, and we want the solution to equation 5.22. This will only ever

happen when the condition 5.59 is true. We solve equation 5.58 for the vector Q evolving in the new time

scale τ , and each iteration we update the solution, flux and source vectors, U (Q), F (Q), and H (Q). When

we reach a steady-state in τ , the derivative ∂Q/∂τ no longer contributes to equation 5.58, so the solution

vector we have iterated to in the dual-time now satisfies equation 5.22 exactly. Numerically, we must settle

for forcing the change in Q to fall below some specified tolerance, but this error tends to be much smaller

than the error introduced by our approximation for F(Q) and H(Q).

After integrating over the kth control volume Ωk and introducing the residual in the same way as in the

previous subsection, our new semi-discretized equation for the dual-time form is

dQk

dτ
= Rk (Qk)−

dUk

dt
(5.60)

where k once again is an index indicating the control volume Ωk being the kth volume in the mesh. The

residual Rk is identical to that given in the last subsection in equation 5.56. Once the condition 5.59 is met,

our semi-discretized equation is identical to equation 5.57.

To discretize the physical time derivative, we apply a second-order-accurate three-point difference. The

solution vectors for the previous two physical timesteps are indicated as U′
k and U′′

k , respectively. The

discretization of the pseudotime derivative is performed using an Euler implicit discretization. Introducing

the physical timestep as ∆t and the pseudo-timestep as ∆τ , and using the superscript n to indicate the

iteration in the pseudotime, we have

Qn+1
k −Qn

k

∆τ
= Rn+1

k −
(
3
2U

n+1
k − 2U′

k + 1
2U

′′
k

)
∆t

(5.61)

where Rn+1
k = Rk

(
Qn+1

)
. We must now collect the n+1 terms in order to develop a matrix equation that

can be solved at each kth volume. To do so, we introduce the following linearizations,

Qn+1
k = Qn

k +∆Qn
k (5.62)

Un+1
k = Un

k +
∂Un

k

∂Qm
k

∆Qn
k (5.63)

Rn+1
k = Rn

k +
∂Rn

k

∂Qn
k

∆Qm
k (5.64)

and equation 5.61 now becomes, after collecting the unknown update vector ∆Qn
k ,

{
1

∆τ
Γ̂+

3

2

1

∆t

∂Un
k (Q

n
k )

∂Qn
k

− ∂Rn
k (Q

n
k )

∂Qn
k

}
∆Qn

k = Rn
k (Q

n
k )−

(
3
2U

n
k − 2U′

k + 1
2U

′′
k

)
∆t

(5.65)
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where we have introduced the Jacobian matrices Γ̂ ∈ Rm×m, ∂U (Q) /∂Q ∈ Rm×m and ∂R (Q) /∂Q ∈

Rm×m. These depend on the system of equations, and we have given their full form in Appendices A.4.4

and A.5.4 for the source-coupled and strong conservative systems, respectively. Equation 5.65 has the form

âx = b, and is solved using a Gauss-Seidel matrix inverter for the update vector ∆Qn
k . The vectors Qn+1

k ,

Un+1
k (Q) and Rn+1

k (Q) are then updated via equations 5.62 through 5.64. This process is iterated until the

vector ∆Qn
k falls below some specified tolerance, at which point the steady-state solution has been reached

in τ , and the term ∂Q/∂τ drops out of equation 5.58. Tolerances between 10−4 and 10−9 were tested, and

showed good convergence and agreement.

There are several advantages to be gained by solving equation 5.22 in this fashion:

• Even if equation 5.22 approaches diffusive or steady-state limits, equation 5.58 is always hyperbolic in

τ ; we can thus solve problems for all cases using a unified hyperbolic approach.

• Since Q will not add anything to the final solution in the steady-state limit in τ , we may choose Q to

be whatever is convenient; they need not be conservative variables like U.

• Choosing the primitive variables or some other convenient choice of Q significantly alleviates the form

of the Jacobian matrices Γ̂, ∂U(Q)/∂Q, and ∂R(Q)/∂Q.

• The physical time derivative can be shown to always behave as a sink (it will never act as a source) [59];

this tends to stabilize the equations numerically and accelerates the convergence.

• In the limit that ∆τ → ∞, equation 5.65 is identical to the Newton’s method for systems of equations

[75]. However, the Newton iteration method can be very sensitive to initial conditions; adding the

fictitious time derivative allows for a higher-order method of resolving the nonlinear convergence regime

before linear convergence is reached.

• In the simplest case, Γ̂ = ∂U/∂Q. But again taking advantage of the irrelevance of Q in the limit of

the dual-time steady-state, we need not retain this form of Γ̂. Instead, changing this matrix may act

to precondition the system, allowing faster convergence in τ . Wesseling [154] gives examples of this

approach for weakly compressible systems, where the eigenvalues are highly disparate. Li, et al. [59]

offers a preconditioning scheme for the coupled Maxwell and Navier-Stokes equations, which introduces

a preconditioning parameter, β. In the dual-time, τ , the eigenvalue of Ampere’s law becomes βc0. The

parameter β is chosen depending on the local electrical conductivity; if the conductivity is low, the

correct eigenvalue must be used, so β = 1. When the electrical conductivity is large, however, the

diffusive limit is effectively reached, and virtually no wave contributions are provided; in this case, we

may choose a value of β that modifies the eigenvalue to a lower value, which considerably accelerates

the convergence with little loss in accuracy [59]. In this way, the correct eigenvalue is used in the

low-conductivity limit, whereas a smaller value is chosen when the wave contributions are very small.

Note that the correct eigenvalue is always used in the physical derivatives and source vector, as well
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as the other equations in the dual-time. We follow [59] to choose this parameter as

β =

{
1

µ0σc0L

}n

(5.66)

where σ is the local electrical conductivity, L is an appropriate length scale and n is a power, typically

between 0.5 to 2.

In this investigation, the vector Q was chosen as the primitive variable vectors,

Q =
(
% u p B E

)
(5.67)

We will take Q now to always refer to the primitive vector. Since the solution and primitive vectors are

related via a one-to-one transformation, any dependency on U can be exchanged now for Q and vice versa.

Thus, we will use U and Q interchangeably for the remainder of this chapter, since one can always be

determined from the other. The matrix Γ̂ was taken as a one-parameter preconditioning matrix as given by

Li, et al. [59]. Test cases were run and showed an improved rate of convergence for both the source-coupled

and strong conservative approaches using this preconditioning scheme.

5.10 Divergence Cleaning

Recall from Section 2.1.5 that the Gauss laws for the electric and magnetic fields represent divergence

constraints. Only solutions to the equations that obey these constraints may be admitted as physical

solutions. Discretization of the Maxwell equations in multiple dimensions tends to allow error to accumulate

in the divergences unless action is taken to prevent this; this buildup of error allows unphysical solutions

to the Maxwell equations to develop. Two different approaches were explored for divergence cleaning, as

outlined below.

5.10.1 Brackbill-Barnes Divergence Cleaning

The first approach utilized is the common Brackbill-Barnes approach [191], which requires the solution of a

Poisson equation. After the solution update for a single timestep, an iterative process is started, wherein we

first calculate the numerical monopole field, M(x),

M (x) = ∇ ·B (5.68)

A Poisson equation is solved for a correction potential, Ψ(x), with the monopoles acting as the source,

−∇2Ψ(x) = M (x) (5.69)
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Once the correction potential has been determined, the magnetic field may be corrected by subtracting the

gradient of the correction potential,

B → B−∇Ψ(x) (5.70)

This approach has been frequently used in magnetohydrodynamic simulations to constrain the divergence of

the magnetic field. An equivalent approach can also be applied for the electric field, except that the source

term must be careful to exclude the contributions of the charge density that is physically present. This

iterative procedure is performed until the maximum divergences in the domain, |∇ ·B| and |∇ ·E− %e/ε0|,

were less than some set tolerance. Tolerances between 10−2 and 10−4 were used and showed good agreement.

5.10.2 Lagrange Multiplier Approach (Perfectly Hyperbolic Maxwell Equations)
Divergence Cleaning Approach

The second approach explored is the perfectly hyperbolic Maxwell equations, or sometimes called the Lagrange

multiplier approach, in which two extra fields, ΨB and ΨE , are introduced to Maxwell equations [103]. The

divergence constraints are rewritten in hyperbolic form with time derivatives of these fields, and they are

coupled to the Faraday and Ampere-Maxwell laws via gradients that are added. Once this is performed, the

Maxwell equations are effectively rewritten in the form

∂B

∂t
+∇×E+ ξ∇ΨB = 0 (5.71)

∂E

∂t
− c20∇×B+ c20χ∇ΨE = −je/ε0 (5.72)

1

ξc20

∂ΨB

∂τ
+∇ ·B = 0 (5.73)

1

χ

∂ΨE

∂τ
+∇ ·E = %e/ε0 (5.74)

Here ξ and χ are dimensionless parameters that effectively represent the strength of the cleaning. Notice

that the time derivative of the new divergence fields, ΨB and ΨE , have been relegated to the dual-time

only. This provides an iterative solution procedure that is updated during the dual-time implicit iteration to

relax the full solution to the next timestep while retaining a clean divergence. In this approach, the Maxwell

equations now become a system of eight equations (Faraday, Ampere-Maxwell, and the two hyperbolized

advective equations 5.73 and 5.74) with eight unknowns (E, B, ΨB and ΨE). Equations 5.73 and 5.74 are

now hyperbolic equations that can be easily incorporated into our solution approach. The new hyperbolic

equations effectively propagate the numerical error accumulation out of the domain at some speed that is

specified via the strengths χ and ξ. Whereas the Brackbill-Barnes approach fixes the divergence error below a

tolerance, this approach relies on the specification of the speed; larger speeds will result in cleaner divergence,

but since the speed now appears in the eigenvalues, high speeds can slow the simulation down, since the new
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waves in ΨB and ΨE must be resolved. Thus, enforcing a stronger constraint costs more simulation time.

5.11 Roe Approximate Riemann Solver Flux Scheme

A prescription for calculating the flux at a face, Fj , remains to be identified in our formulation. In terms of

our original equation, equation 5.22, the flux vector is really a known function of the solution vector, F(Q),

but since we only have solution data availabe in the control volumes, we do not know the formulation for

Qj at the face j. The Courant-Friedrich-Lewis condition guarantees that, in a small amount of time, the

waves have only propagated a small distance away, so we antipicate calculating an approximation to Fj as

a function of the left and right state vectors, Fj ≈ Fj(QL,QR). The obvious temptation is to calculate an

arithmetic average for the flux based on the two state vectors in the volumes that share face j,

Fj =
1

2
(FL + FR) =

1

2
(F (QL) + F (QR)) (5.75)

where L and R denote the left and right volumes (the two volumes adjoined to the face j). We always define

L and R in the sense that the normal vector on the face points from L to R. This näıve approach is elegantly

simple, but does not work. As best summarized by LeVeque [151], “Unfortunately, this method is generally

unstable for hyperbolic problems and cannot be used, even if the time step is small enough that the CFL

condition is satisfied.” Equation 5.75 tends to introduce numerical instabilities that quickly sabotage the

solution approach. A simple solution for this problem, therefore, is unlikely to work.

Godunov’s scheme, which historically serves as the basis of all Riemann solver approaches, suggested

the novel idea of considering the numerical solution to be equivalent to a piecewise constant set of data,

where the solution is a constant value, Uk, in each control volume. Regarding the solution in this manner

allows us to examine the local region around a face j and its surrounding left and right adjoining volumes; it

becomes apparent that the region there resembles a Riemann problem (see Figure 5.4) in the local vicinity

of the face j, where the left and right state vectors, QL and QR, serve as the initial left and right data

for equation 5.49. Godunov’s proposal was to solve the problem as a series of Riemann problems, one at

each face, and calculate the updated solution in each volume as the average of the new contributed waves

propagated into the volume from each bounding face.

The original Godunov scheme proposed solving the Riemann problem exactly; for nonlinear problems such

as those encountered in fluid dynamics, this can be difficult. While a closed-form solution to the Riemann

problem for a nonlinear problem does not exist, an iterative approach can be constructed that permits an

arbitrary level of precision to be achieved. However, this manner of computing the Riemann solution is

computationally expensive, and the solution turns out to only be necessary for adding sufficient diffusion to

the unstable flux scheme in equation 5.75. A variety of alternative proposals that followed Godunov’s idea

but improve upon the accuracy and efficiency of the solution method have been introduced; this body of

work is collectively termed Godunov methods, or Riemann solvers.
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Figure 5.4: Godunov methods treat the discretized mesh of solution vectors Uk as a series of Riemann
problems. (a) In a one-dimensional mesh, considering the solution vector Uk to be piecewise constant across
the mesh (constant in each separate volume k), we see that the face adjoining two volumes (face j in the
figure) may be regarded as a Riemann problem, where the solution data in the two volumes represents the
left and right data, UL and UR, respectively. (b) The extrapolation of this scheme to multiple dimensions
holds as well. In this two-dimensional example, the quadrilateral mesh of piecewise constant data Uk forms
a Riemann problem in the direction normal to a given face j.

In 1981, Roe [11] proposed a much faster approach that has enjoyed popularity from its inception to the

present. It suggests that the governing system of equations, given in equation 5.22, be approximated locally

at each face as a constant-coefficient quasilinear problem,

∂U

∂t
+ Â

∂U

∂xk
= 0 (5.76)

Here Â is a constant Jacobian matrix (referred to as the Roe matrix) that approximates the local value of

the exact Jacobian, Â(Q). Since equation 5.76 is a constant-coefficient problem, the eigenvector expansion
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for the Riemann solution presented in equation 5.53 is valid, and thus we calculate an exact solution to

an approximate (linearized) Riemann problem. This tends to alleviate the expense required for calculating

the Riemann solution without sacrificing much accuracy. At each face in the computational mesh, Â is

recalculated as a function of some appropriate average of the left and right state vectors, Â = Â(Q), where

Q = Q(QL,QR) is an average that will be discussed momentarily. Once the approximate form of the matrix

is known, Roe suggested calculating the flux at the face using a modification of equation 5.75,

Fj (QL,QR) =
1

2
(FL + FR)−

1

2

m∑
p=1

α(p)|λ(p)|K(p) (5.77)

where p ∈ {1, . . . ,m}. Here the underbar indicates that the quantity is derived from the Roe matrix, Â(Q),

and thus will depend on Q. The quantities λ(p) and K(p) are the eigenvalues and eigenvectors of the Roe

matrix Â, respectively, and α(p) are the solutions to the linearized Riemann problem,

∆U = UR −UL =

m∑
p=1

α(p)K(p) (5.78)

This is just the application of the results from equation 5.53 to the approximate problem in equation 5.76

with initial data UL and UR provided by the state vectors in the left and right volumes. This is shown

diagrammatically in Figure 5.4.

For the Roe flux given in equation 5.77, we therefore need the eigenvalues, λ(p), eigenvectors, K(p), and

decomposition coefficients, α(p), with p ∈ {1, . . . ,m}. Notice that the approximate Jacobian itself, Â, is not

explicitly required. Often, it suffices to construct a Roe-averaged set of values, denoted Q = Q(QL,QR),

from which the eigenvalues, eigenvectors and decomposition coefficients may be calculated directly. The

derivation of the correct form of Q is not trivial; in a stroke of brilliance, Roe suggested the construction

of a parameter vector to determine a sufficient averaging scheme, which will not be discussed here; details

of this approach are provided in [11]. Such an approach was given by Roe for the equations of inviscid

gasdynamics, and other examples have followed in the literature. If the system of equations is linear (such as

the Maxwell equations), then the Roe-averaged quantities can reduce to arithmetically averaged quantities;

for nonlinear problems, the average usually involves a more complicated construction. In practice, once the

form of the Roe-averaged values Q are known, the eigenvalues, eigenvectors and decomposition coefficients

are often determined analytically from the Roe-averaged state vector, Q.

With this information, the basic algorithm for calculating the Roe flux can be summarized as follows,

given the left and right state vectors, QL and QR:

1. Calculate the Roe-averaged values from the left and right states, Q.

2. Calculate the averaged eigenvalues, λ(p), p ∈ {1, . . . ,m}, given the Roe-averaged values, Q.

3. Calculate the averaged right eigenvectors, K(p), p ∈ {1, . . . ,m}, given the Roe-averaged values, Q.

4. Calculate the decomposition coefficients, α(p), p ∈ {1, . . . ,m}, that satisfy equation 5.78.
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5. Use λ(p), K(p), α(p), QL and QR to calculate Fj , as per equation 5.77.

In the following, we discuss the development of each of these steps for the source-coupled and strong

conservative systems. The large forms of the matrices involved precludes their appearance directly in the

dissertation text, but each system’s full Jacobians, eigenvalues, and eigenvectors have been included in the

appendix. In Appendix A.2, we present this information for the uncoupled Navier-Stokes equations, and

in Appendix A.3, we present the same information for the Maxwell equations. Appendix A.5 shows the

corresponding form for the strong conservative form. Below, we address these by using a block matrix

representation of the coupled systems.

5.11.1 Jacobian Matrix

To implement the Roe scheme, the exact form of the Jacobian matrix, Â, must first be determined. Roe

scheme approaches have already been developed for the uncoupled, independent systems of the three-

dimensional, inviscid Navier-Stokes equations and full Maxwell equations; the information for each of these

uncoupled systems is presented in Appendices A.2 and A.3, respectively. In the case that the system is

coupled, we anticipate that a block system can be composed that includes both contributes. We will assume

that the matrix can be written as

Â =

 Âf Âc

0̂ Âm

 (5.79)

where Âf and Âm are the usual normal-projected Jacobian matrices for the fluid and Maxwell systems,

respectively; here Âc is a coupling term that is either zero (in the case of the source-coupled form), or very

complicated (in the case of the strong conservative form). For the strong conservative form, the term Âc

serves as the point of coupling in the fluid equations to the Maxwell system. In the source-coupled form, the

coupling is fashioned in the source terms, so no coupling matrices are necessary. Notice that if the system is

source-coupled, the block matrix allows treatment of the flux calculation in an uncoupled fashion, since the

coupling will be provided in the time integration update through the residual, R. The coupling matrix, Âc,

was calculated for the strong conservative form using symbolic manipulation software. Its size precludes its

appearance directly in the text, but has been included in the Appendix A.5.1.

5.11.2 Eigenvalues

The source-coupled and strong conservative forms enjoy identical eigenvalues, since the presence of the

coupling matrix in the strong conservative form, Âc, only affects off-diagonal terms and does not contribute

to the characteristic polynomial. For both systems, the diagonal matrix of eigenvalues can be expressed as

Λ̂ =

 Λ̂f 0̂

0̂ Λ̂m

 (5.80)
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where Λ̂f and Λ̂m are the fluid and Maxwell eigenvalues, given in equations A.57 and A.80, respectively.

5.11.3 Eigenvectors

An analysis of the eigenvectors for the source-coupled and strong conservative forms reveal a similar block

structure,

K̂ =

 K̂f K̂c

0̂ K̂m

 (5.81)

where K̂f and K̂m are the usual fluid and Maxwell eigenvectors, given in equations A.61 and A.85, respec-

tively, and K̂c is a new set of coupling eigenvectors. For the source-coupled system, this new coupling matrix

is zero, K̂c → 0̂, and the flux calculation can be treated as a block system; for the strong conservative

form, the matrix K̂c is nonzero, and can be very complicated. The eigenvectors were also derived using the

symbolic manipulation software Mathematica [192], and verified to fully diagonalize the system of equations;

their full form is shown in Appendix A.5.3.

5.11.4 Solutions to the Riemann Problem

The decomposition coefficients, α, must be calculated for the source-coupled and strong conservative forms

for the Roe flux scheme by solving equation 5.78 for each respective system. For the source-coupled form, the

Riemann problem is still represented in a block system, and equation 5.78 can be solved straightforwardly,

as the Riemann problem itself is not coupled (once again, the coupling enters through the residual during

the pseudo-time integration). In this case, we get the typical decomposition coefficients for each respective

system, as presented in Appendices A.2.4 and A.3.4 for the fluid and Maxwell systems, respectively.

Calculating the decomposition coefficients for the strong conservative form is much more difficult. Due

to the presence of the new coupling eigenvectors, the system of equations represented in equation 5.78 is a

nontrivial system of equations. We confirmed that an analytical solution exists, per symbolic manipulation

software, but were unable to convert the solution into a form feasible for implementation; furthermore, the

size of the solution would have considerably slowed down the execution of the solver with the number of extra

terms added. To circumvent this difficulty, we approximated the decomposition coefficients by using the same

set for the source-coupled form. Although this is an approximation, we confirmed that the additional terms

in the correct form for the strong conservative decomposition coefficients were of order 1/c20 and 1/c30; it is

expected that these terms will contribute little to the actual value of the decomposition coefficients while

severely complicating both the implementation and execution time. Therefore, the same set of decomposition

coefficients were used in both the source-coupled and strong conservative forms. The validation test results,

presented in Chapter 6, indicate that this assumption is reasonable.
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5.12 Advected Upstream Splitting Method (AUSM) Flux Scheme

The Roe scheme described in the previous section involves a lot of complicated calculations and detailed

information. To validate the new eigenstructure for the strong conservative form, the approximations of

the decomposition coefficients, and the new Roe method itself, we also constructed a flux scheme using

the AUSM technique described by Liou and Steffan [12, 193, 194]. This approach does not require the

Jacobian matrices or eigenstructure, and so can be used to verify the Roe scheme results for the strong

conservative approach. Furthermore, the AUSM family of schemes offers several potential advantages over

Riemann solver approaches: it guarantees entropy conservation and positivity preservation, is carbuncle-free,

is relatively easy to implement, and requires much less execution time per cycle for calculation than the Roe

method [12]. Alternative flux-splitting methods related to AUSM, such as the Energy-Convective Upwind

and Split Pressure (E-CUSP) method, could also be applied. Our goal is still the same here: to develop an

approximation for Fj at face j as a function of the left and right state vectors, QL and QR.

The AUSM scheme has been reviewed elsewhere [12, 147]; although the presentation of the definitions

used in the algorithm usually resembles the unstacking of Russian matryoshka dolls, we repeat the basic

algorithm here, primarily following [147]. As an example, we begin by considering the three-dimensional

equations of inviscid gasdynamics. The essence of the method is captured in the assumption that the flux

may fundamentally be split in to the advective and pressure (or sometimes the linear and nonlinear) terms,

F (Q) = F(A) (Q) + F(P ) (Q) (5.82)

where F(A) and F(P ) are the advective and pressure fluxes, respectively. The flux vector for the three-

dimensional inviscid Navier-Stokes equations can be written relative to face j’s normal vector, nj , as

F =



%u · nj

%uu · nj + pnx

%vu · nj + pny

%wu · nj + pnz

%Hu · nj


= u · nj



%

%u

%v

%w

%H


+ p



0

nx

ny

nz

0


=M



%a

%au

%av

%aw

%aH


+ p



0

nx

ny

nz

0


(5.83)

Here, we have split the flux into the advective and pressure fluxes, each containing those respective terms;

we have also recast the advective flux in terms of the Mach number, M = u ·nj/a, where a is the local speed

of sound; nx, ny, and nz should be understood to be components of the normal vector, nj . The AUSM

scheme proposes approximating the flux at face j as

Fj = F̂
(A)

+ F̂
(P )

(5.84)

142



where the F̂
(A)

and F̂
(P )

are the upwinded advective and pressure fluxes; they may be defined as

F̂
(A)

= M̂





%a

%au

%av

%aw

%aH


L

, M̂ ≥ 0



%a

%au

%av

%aw

%aH


R

, M̂ < 0

(5.85)

and where

F̂
(P )

= p̂
(

0 nx ny nz 0
)T

(5.86)

In these expressions, we impose the following definitions:

M̂ =M+
L +M−

R (5.87)

and

p̂ = p+L + p−R (5.88)

The expressions M± and p± can take many different forms. In this work, we use the following definitions,

M± =M±
4 =

 M±
1 (M) , |M | ≥ 1

M±
2 (M)

(
1∓ 2M∓

2 (M)
)
, else

(5.89)

p± = p±5 =

 (1/M)M±
1 (M) , |M | ≥ 1

M±
2 (M)

[
(±2−M)∓ 3MM∓

2 (M)
]
, else

(5.90)

with

M±
1 =

1

2
(M ± |M |) (5.91)

M±
2 = ±1

4
(M ± 1)

2 (5.92)

Given the forms of M± and p±, the values M̂ and p̂ can be calculated, and these are used to construct the
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upwinded advective and pressure fluxes, F̂
(A)

and F̂
(P )

. Finally, the flux approximation Fj is assembled

by summing these two contributions. With reference to our previous discussion regarding the unstable flux

average in equation 5.75, we note that the AUSM flux can be written in the form

Fj =
1

2
M̂


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
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0

nx
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nz

0


(5.93)

This is clearly not a simple modification of equation 5.75, but rather the left and right flux averages are

weighted by the Mach number [195]; the additional terms serve as a numerical dissipation to counter the

instabilities in the flux average.

So far, we have only considered the uncoupled Navier-Stokes equations. In the case of the source-coupled

formulation, this discussion suffices for the AUSM method, since the coupling is relegated to the sources.

However, for the strong conservative form, the appearance of new terms in the flux vectors complicate the

scheme slightly. There are actually several approaches that could be used for incorporating the new flux

terms. For example, the Maxwell stress tensor could be considered a pressure term (in the magnetohydro-

dynamic limit, the stress tensor reduces to the magnetic pressure), and thus could be split into the pressure

term, while the remaining terms are included in the advective term. An alternative approach might be to

consider a separate, new flux term added to the advective and pressure split fluxes, which contains the elec-

tromagnetic flux terms. For this investigation, several variations of these methods were explored, but it was

discovered that more detailed and complicated splitting schemes did not significantly improve the accuracy

or speed; therefore, the simplest approach was taken. In this approach, we split the new strong conservative

flux terms into a new vector. This means that the Navier-Stokes flux is now written as in equation 5.83, but

with an additional flux vector containing the new coupling contributions,

F =



%u · nj

%uu · nj + pnx − ΣEM
xx nx − ΣEM

xy ny − ΣEM
xz nz

%vu · nj + pny − ΣEM
xy nx − ΣEM

yy ny − ΣEM
yz nz

%wu · nj + pnz − ΣEM
xz nx − ΣEM

yz ny − ΣEM
zz nz

%Hu · nj + SEM
x nx + SEM

y ny + SEM
z nz



=M


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
+ p


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ΣEM
xx nx +ΣEM

xy ny +ΣEM
xz nz

ΣEM
xy nx +ΣEM
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ΣEM
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−
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
(5.94)
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where we have added a new vector on the right containing the coupling terms (Σ̂
EM

and SEM are again the

Maxwell stress tensor and Poynting vector, respectively) for the strong conservative form. While upwinding

this new flux vector was attempted, it did not significantly improve the accuracy or speed over simply using

the previous timestep’s calculations for the electromagnetic fields, E and B. Therefore, for the investigations

presented, simply calculating the new term from the most recent field calculations was used and added to

couple the Navier-Stokes system to the Maxwell equations.

Since the Maxwell equations do not change form between the source-coupled and strong conservative

systems, it is neither necessary nor helpful to modify the Maxwell solver scheme. The Maxwell equations

were solved using the Roe scheme when the AUSM scheme was applied to the strong conservative form.

5.13 Boundary Conditions

For the validation test cases presented in Chapter 6, simple boundary conditions were needed for simula-

tion. For the fluid system, either periodic, inflow, outflow or inviscid slip boundary conditions could be

applied. For the Maxwell equations, either periodic, transmissive or perfectly conducting boundary condi-

tions were available. The boundary conditions were treated by constructing ghost volumes interfacing to

the boundaries of the computational mesh. If a control volume k possesses a face j that lies on the surface

of the computational domain, a ghost volume labelled m is assigned as the right volume to the face j, such

that Vj = {L,R} = {k,m}. The state vector for the ghost volume, Qm, was determined by the choice of

boundary condition. The calculation of the flux across the face, Fj , and subsequent change to the boundary

volume residual, Rk, was calculated in the same way as interior volumes. The inflow condition prescribed

a fixed Qm for the ghost volume (it could be changed during simulation to ramp the inflow). The different

boundary conditions are detailed in the following subsections.

5.13.1 Periodic Boundary Conditions

Periodic conditions are useful for exploring problems in instability and turbulence [151]. These conditions

will be applied in Chapter 6 for the magnetohydrodynamic Kelvin-Helmholtz instability and Orszag-Tang

turbulence problems. In this case, the domain is considered topologically connected, such that information

leaving one side of the computational domain is taken as an inflow from the opposite side. In this case, the

ghost volume m is identical to the topologically connected opposite volume, and Qm = QR is taken as the

state vector in this connected volume.

5.13.2 Transmissive Outflow and Inviscid Wall Boundary Conditions

Transmissive outflow of waves out of the computational domain is significant, since it permits a smaller

computational domain than the full physical setup to be modeled [151]; however, successful transmission of

waves out of the domain without numerical reflection is an active research problem [196], particularly for
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Maxwell’s equations. Typically, perfectly-matched layers (PMLs) or absorbing boundary conditions (ABCs)

can be applied to minimize the numerical reflections as electromagnetic waves exit the domain, but these

conditions are not perfect. For the investigations here, simple transmissive (Neumann) conditions sufficed,

and any reflected numerical waves were small. In the future, more advanced transmissive conditions are

planned for study. The condition used for the validations insists that the gradient of Q across the face j is

zero, which means that the ghost volume state vector is Qm = QR = QL. For the fluid, the outflow was

assumed to be supersonic. Inviscid wall conditions could further be applied by first assuming the boundary

was transmissive, and then subtracting the residual in the boundary cell, Rk, associated with the normal

velocity, u · nj . This subtraction is after the residual accumulation (which uses the transmissive condition

for the boundary), and before the time integration to the next timestep.

5.14 Putting It All Together: Meshing, Interpolation, Gradient

Reconstruction and Solver Algorithm

Now that the essential ingredients for the finite volume solver have all been discussed, we may lay out the

finer details of unstructured meshing, the application of interpolation and gradient reconstruction, and the

overall algorithm.

We can extend our notation introduced so far to discuss data structures representing arbitrary geometries.

We consider the computational domain, ΩD, to be discretized into a set of nodes, faces, and volumes. Nodes

represent single points in the geometry; faces are represented as collections of points to form a bounding

surface between two control volumes, and the volumes are defined by closed sets of bounding faces. We keep

our present indexing, using j to represent some face and k to represent some control volume, and introduce

an index i for nodes. Thus, i ∈ {1, . . . , NN}, j ∈ {1, . . . , NF }, and k ∈ {1, . . . , NΩ}, where NN , NF , and NΩ

represents the maximum number of nodes, faces, and volumes, respectively, that comprise the mesh. The

index will now always dictate what data structure a quantity belongs to, so, for example, Fj belongs on face

j, Uk belongs on volume k, etc. Each data structure possesses a position vector, r, pointing to its physical

position (for faces and volumes, it points to the centroid). Vectors between two elements may be denoted

using two indices; for example, the distance from face j to its L volume may be written rLj = rL − rj . We

must further introduce the notion of connectivity sets; a connectivity set is denoted using the calligraphic

letters N , F , V, and B, for connected nodes, faces, volumes and neighboring structures of the same type,

respectively. Thus, any node i has a set of mother volumes, Vi, and mother faces, Fi, and neighbor nodes,

Bi, which are connected via faces that share node i. Similarly, a control volume k has a set of daughter

nodes, Nk, daughter faces, Fk, and a set of neighboring control volumes that share a common face, Bk.

Faces contain a set of daughter nodes, Nj , and a list of volumes adjoined to the face, Vj = {L,R}. Only two

volumes, L and R, are ever permitted to be attached to any face j. The volumes L and R are chosen such

that the normal vector on the face, nj , points from L to R. For boundary faces, the associated adjoining
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volumes will be a singleton, Vj = {L}, and the normal vector is redefined consistently with this. The volume

in any control volume k is denoted Vk, and the area of any face j is denoted Aj . We will further make use of

the notation |N | to indicate the size of the set N . To assist the reader, Figure 5.5 and Table 5.1 have been

provided, which diagram the associated data and their nomenclature for each data structure.

The solution update procedure proceeds as follows. The state vector, Qk, is known from the last timestep

(or initial conditions), and has the form

Q =
(
% u p B E ΨB ΨE

)T
(5.95)

where ΨB and ΨE are the divergence fields for the Lagrange multiplier approach to cleaning the divergence.

To disable divergence cleaning, the associated speeds may be set to zero. The residual on the first dual-time

iteration, Rn=0
k , is zeroed, and the old solutions from the previous two timesteps are recorded, U′

k and U′′
k .

Boundary faces are assigned ghost volume data for their right volume, R, depending on their associated

boundary condition. We traverse the faces j, j ∈ {1, . . . , NF }, and on each determine the left and right state

vectors, QjL and QjR, to be used for the flux scheme (either Roe or AUSM). The left and right state vectors

are interpolated from the values of QL and QR using the method discussed below to achieve higher accuracy.

Once the flux scheme has been used to determine the flux at the face j, Fj , we subtract this flux contribution

from the residual in the left volume, Rn
L, and we add the same amount to the right volume, Rn

R. In this way,

the flux is conserved across the face. We then traverse the control volumes k, k ∈ {1, . . . , NΩ}, and solve the

matrix equation 5.65 at each volume k. The dual-time iteration involves the process described in Section 5.9,

wherein the Jacobian matrices are calculated, the state vector is updated in the dual-time, the solution and

source terms (and also possibly the flux terms) are updated as functions of the state vector Q using the

linearization in equations 5.62 through 5.64. We tried both updating the flux vector, Fn
j , throughout the

dual-time iteration, and also explicitly computing it before the dual-time iteration; a difference in accuracy

was not found in the validation test problems, and the execution time required was lower if the flux was

computed explicitly beforehand. The dual-time process is iterated until the dual-time derivative drops out

of equation 5.58, which occurs when the update vector, ∆Qk, falls below a tolerance. Tolerances in the

range of 10−4 to 10−9 were tested and showed good agreement. If the Brackbill-Barnes approach is used for

divergence cleaning, the speeds for the Lagrange equations are set to zero, and the Poisson solve is performed

after the solution update at the end of the timestep.

In order to improve the spatial accuracy of the solver, a high-order spatial reconstruction scheme was

implemented. This consisted of an interpolation scheme for weighting the volume data, Uk, to the nodes,

Ui, and faces, Uj . The interpolation occurred before the solution update procedure each timestep. Once

the solution data was interpolated to the nodes and faces, the gradient data in each volume, ∇Qk, could

be computed using a Green-Gauss gradient reconstruction method. The volume gradient data would be

necessary for the calculation of diffusive fluxes, such as viscous terms in the Navier-Stokes equations. Fur-
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Figure 5.5: A diagrammetic sketch of connectivity within the mesh. An example two-dimensional mesh is
shown on the left, composed of triangles (shown in solid lines). Elements are indicated for nodes as red indices
in circles, for faces as blue indices in squares, and for volumes as green indices in triangles. Connectivity
between the different elements are shown via dashed lines. Elements are not restricted to triangular in shape;
each element can carry as many constituent edges and nodes as memory permits.

thermore, after the volume gradient data, ∇Qk, was available, the gradient data on each face, ∇Qj could

be determined in a face j by applying flux limiting schemes to the volume gradient data in the left and right

adjoining volumes, ∇QL and ∇QR. With the limited face gradient data, a MUSCL-based interpolation

scheme [197] could be applied at each face j to improve the accuracy of the left and right state vectors. The

new, interpolated vectors are denoted QjL and QjR, and are interpolated from the raw left and right state

data, ∇QL and ∇QR.

To interpolate the solution data to the nodes and faces, the solution Q was interpolated to each node i

based on the solution data for its mother volumes, Qk, k ∈ Vi. A weighted-area interpolation scheme was

used, which involves the construction of the precomputed geometric matrices

rik = ri − rk (5.96)

Ĝik =
(rik − ri) (rik − ri)

[max (rik − ri)]
2 (5.97)

cik = Ĝ
−1

ik rik (5.98)

for k ∈ Vi. These matrices can be precomputed and stored on each node i. The actual weight for any node

i and volume k ∈ Vi, is then given by

wik = 1− cik · rik (5.99)
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Table 5.1: Nomenclature of mesh data structures.

Data structure Notation Associated Data
Notation Description

Nodes Ni ri position vector
Ui solution vector at node
Vi set of associated mother volumes
Fi set of associated mother faces
Bi set of neighboring nodes

Faces Fj rj centroid position vector
Uj solution vector as face
∇Uj gradient of solution vector at face
Vj adjoining volumes connected to this face (only two)
Nj set of associated daughter nodes
rjk set of vectors from face centroid to

adjoining volumes (only two)
Aj area of face
nj normal vector of face

Volumes Ωk rk centroid position vector
Uk solution vector at volume centroid
∇Uk gradient of solution vector at centroid
Rk residual at centroid
Nk set of associated daughter nodes
Fk set of associated daughter faces
Bk set of neighboring control volumes
Vk volume of control volume

and the solution vector on the node i is then given as

Qi =

∑
k∈Vi

wikQk∑
k∈Vi

wik
(5.100)

The value Qj can be computed for this algorithm using the arithmetic average of the solution data Qi for

the associated nodes, Nj ,

Qj =
1

|Nj |
∑
i∈Nj

Qi (5.101)

Once the solution data Qi is known, an explicit Green-Gauss integration for ∇Qk is constructed using

the integral of the gradient,

∫
Ωk

∇QkdΩk =

∫
Ωk

∇ ·
(
Qk Î

)
dΩk =

∮
∂Ωk

Qj Î · ndA ≈
∑
j∈Fk

QjSj (5.102)
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such that

∇Qk =
1

Vk

∑
j∈Fk

QkSj (5.103)

where Sj = Aj Î ·nj is a geometric vector that may be computed and stored on each face j before simulation.

With the volume gradient data, ∇Qk, the gradient at the face j, ∇Qj , may be calculated by applying a

flux-limiting scheme to the left and right volume gradients, ∇Qj = limiter(∇Qk), k ∈ Vj . Flux limiting

ensures that shocks and discontinuities are resolved without dispersive error. Here, the minmod [198] and

van Albeda [199] flux limiters were implemented; either may be applied during simulation, depending on

the user’s choice. Once the limited form of ∇Qj is known, the left and right state vectors at the face j are

interpolated, QjL = QL +∇Qj · rLj and QjR = QR +∇Qj · rRj , are passed to the flux scheme (either Roe

or AUSM) to calculate the flux, Fj , at the face j. This permits at least second-order spatial accuracy of the

solution approach; more detailed or iterative variants can also be introduced with this framework.
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Chapter 6

Validation Tests for the Strong

Conservative Formulation

“All these science spheres are made of asbestos, by the way. Keeps out the rats.

Let us know if you feel a shortness of breath, a persistent dry cough or your

heart stopping. Because that’s not part of the test. That’s asbestos.”

Cave Johnson [1]

In this section, we present the validation tests run for the strong conservative and source-coupled systems.

Our primary interest is to compare the performance and accuracy and performance of the source-coupled

and strong conservative approaches, and to compare the accuracy of the Roe and AUSM formulations for

the strong conservative solver. For consistency, only structured meshes were used for the results presented,

although fully unstructured meshes were also explored.

6.1 Brio and Wu Plasma Shock Riemann Problem

The Brio and Wu plasma shock problem [145] has become a classic benchmark for validating high-conductivity

plasma simulations. The problem is analogous to the Sod gasdynamic shock tube problem, except that an

additional discontinuity is applied in the magnetic field. When the conductivity is high, the plasma should

demonstrate the typical variety of waves expected in magnetohydrodynamic plasmas. Both the Roe and

AUSM methods were applied to this test problem; the Roe results are presented here.

The same nondimensional initial conditions and simulation parameters are used here that appears in the

literature, so that a direct comparison between the approaches may be made. The computational domain is

a one-dimensional region of nondimensional unit length, x ∈ [0, 1], divided into 1, 600 elements. The initial
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conditions are taken as

Q(x, t = 0) =

 Qleft, x < 0.5

Qright, x ≥ 0.5
(6.1)

where

Qleft =



% = 1

u = 0

p = 1

B = (0.75, 1, 0)

E = 0

,Qright =



% = 0.125

u = 0

p = 0.1

B = (0.75,−1, 0)

E = 0

(6.2)

The specific heat ratio is assumed to be a constant and is chosen as γ = 2. Although this is an unrealistic

choice for the specific heat ratio, it was historically chosen because it permitted an analytical form for the

Roe averaging for the MHD equations [145]; it is still commonly chosen for benchmarking against Brio and

Wu’s solution [145]. Following the literature [75], we choose c0 = 100, µ0 = 1, and by the Weber relation, we

have ε0 = 10−4. In order to test a physically correct scenario, values of c0 = 103, 104, 105 and 106 were also

tested; c0 = 106 corresponds to a realistic disparity between the fluid and light speeds, and showed identical

results to c0 = 100.

The solution is dependent on assigned scalar conductivity, σ. In the limit that the conductivity becomes

infinitely large, the magnetic field becomes diffusive, and our solution should agree with the MHD solution.

However, when the conductivity is small, the solution should approach the wave limit for the magnetic field.

The wave phenomena is not captured by the MHD model, but is captured by the single-fluid model we are

considering.

To begin, the conductivity was first set to zero everywhere in the domain. This results in pure, uncoupled

wave propagation in the fluid and electromagnetics. The result is depicted in Figure 6.1, where the fluid

exhibits the Sod shock tube solution (the initial hydrodynamic data is identical to the Sod shock tube

problem), and the magnetic field propagates purely as a wave. In Figure 6.1, due to their large propagation

speed, the electromagnetic waves have already propagated out of the domain, which is why the magnetic

field is zero. In Figure 6.2, we show the electromagnetic wave propagation at early simulation times.

The MHD limit of the solution for high conductivity could be reached with a conductivity of σ = 106.

The solution is considered after ten light transit times, which is a nondimensional time of t = 0.10. This is

the same time for which the classic solution is presented in [145], which allows for a direct comparison. The

solution at this time using the source-coupled and strong conservative form is shown in Figure 6.3. Both

solutions clearly converge to the MHD solution, but the source-coupled solution possesses several source-

induced oscillations, whereas the strong conservative solution achieves remarkable accuracy to the expected

solution. It should be noted that, although both solutions were assigned the same criteria for convergence,
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Table 6.1: A comparison of the performance of the souce-coupled and strong conservative formulations for
the Brio and Wu problem.

Formulation Total Execution Avg. Time Spent Avg. Number of
Time (s) per Timestep (s) Dual-time iterations

Source-coupled 1,650 0.031 17.4
Strong conservative 331.6 0.0062 3.0

the strong conservative approach achieved this solution in approximately 20% of the time required for the

source-coupled solution. A detailed comparison of the performance times on identical machines is presented

in Table 6.1. The strong conservative solver could also be applied at a larger CFL number before experiencing

stability difficulties; a CFL = 0.5 based on the speed of light could be achieved, while a CFL of only 0.2

could be stably used for the source-coupled scheme. The typical variety of magnetohydrodynamic waves are

present, depicted in Figure 6.3; note, however, that the correct speeds are resolved using the fully coupled

model, even though the Alfvénic speeds were not used as eigenvalues in this simulation (only the fluid

eigenvalues and the speed of light were used). This demonstrates fidelity to the expected MHD solution

using the full equations.

When the conductivity is increased, mixed wave and diffusion behavior results. For low conductivities,

this introduces damping to the electromagnetic waves that would otherwise exhibit pure propagation. This

effect can be clearly seen in Figure 6.4, where the tangential magnetic field is plotted for different conduc-

tivities in four early timesteps. A comparison of the magnetic field at the same final time with different

conductivities is shown in Figure 6.5; here, in the vacuum case, the magnetic field behaves as a wave, and

has already propagated out of the computational domain before this final time.

6.2 Jiang and Wu Plasma Shock Riemann Problem

The second test problem is a hypersonic magnetohydrodynamic problem investigated by Jiang and Wu [142].

This problem is similar to the Brio and Wu problem, except that a large pressure ratio is established, such

that a compressive shock moving at Mach 15.5 is produced. The Roe strong conservative and source-coupled

solvers were selected for this test problem. The problem has an analytical solution calculated by Brio and

Wu [145] and Jiang and Wu [142]. The computational domain is once again a one-dimensional region of unit

nondimensional length, x ∈ [0, 1], this time divided into 200 elements. The initial conditions are given as

Q(x, t = 0) =

 Qleft, x < x0

Qright, x ≥ x0
(6.3)
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Figure 6.1: Solution to the one-dimensional Brio and Wu problem [145] using the source-coupled and strong
conservative flux-coupled solutions at t = 0.10. The system was uncoupled here (σ = 0). The solutions lie
on top of each other. No magnetic field is visible because it has already propagated out of the domain (see
Figure 6.2 for visualizations of the early wave motion.)
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Figure 6.2: Wave propagation of the tangential fields at 200∆t, 400∆t, 600∆t and 800∆t for the Brio and
Wu problem [145]. The electric field has been scaled down by 1/c0 to fit.
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Figure 6.3: Solution to the one-dimensional Brio and Wu problem [145] using the source-coupled and strong
conservative flux-coupled solutions. The accepted magnetohydrodynamic solution is also shown. The waves
are denoted in the density plot: two fast rarefaction waves (FR), a slow compound wave (SC), a contact
discontinuity (CD), and a slow shock wave (SS). The MHD solution (gray solid line) is almost exactly
underneath the strong conservative solution (blue points).
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Figure 6.4: Early wave/diffusion behavior for different conductivities in the Brio and Wu problem [145].
Redder curves indicate a higher conductivity.

where

Qleft =



% = 1

u = 0

p = 1000

B = (0, 1, 0)

E = 0

,Qright =



% = 0.125

u = 0

p = 0.1

B = (0,−1, 0)

E = 0

(6.4)

For this problem, we used both the source-coupled and strong conservative form. The computational

domain was taken as Ω = [−1, 1] with 200 control volumes. The initial discontinuity was set up in the middle

of the computational domain, at x0 = 0. The simulation is run until a nondimensional time of t = 0.012.

The speed of light was again taken as c = 100 following the literature [75], although the speed of light was
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Figure 6.5: The tangential magnetic field at the final simulation time t = 0.10 for different conductivities in
the Brio and Wu problem [145]. Redder curves indicate a higher conductivity. In the σ = 0 case, the waves
have already propagated out of the domain by this late in the simulation.

also tested for the same range described for the Brio and Wu problem, up to 106, and showed identical

results.

The solution to this Riemann problem was calculated very accurate by both the strong conservative

and source-coupled forms (see Figure 6.6). There are small oscillations present in the source-coupled form,

presumably due to the source terms. The strong conservative form suffered no such oscillations, and falls

almost exactly on top of the accepted solution [142]. However, while the accuracy was agreeable between the

two approaches, the difference in the amount of time required to resolve these solutions at identical solutions

is surprising. A comparison of the time required to calculate each solution is presented in Table 6.2, which

shows that the strong conservative form offered an improvement of almost two orders of magnitude over

the execution time required for the source-coupled formulation. Note that the maximum stable CFL of the

strong conservative form was not used here; both simulations were limited to the same number of cycles

at the same CFL, chosen to match a stable CFL for the source-coupled form. The maximum CFL for the
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Table 6.2: A comparison of the performance of the souce-coupled and strong conservative formulations for
the Jiang and Wu problem.

Formulation Total Execution Avg. Time Spent Avg. Number of
Time (s) per Timestep (s) Dual-time iterations

Source-coupled 116.7 0.09774 571
Strong conservative 1.42 0.00119 6

strong conservative form based on the speed of light was approximately 0.5. The source-coupled form was

tested to be stable for a CFL as large as 0.2.

6.3 Mixed Wave/Diffusion Test: Radio Wave Propagation in Plasma

The coupled Navier-Stokes and Maxwell equations permit a higher-fidelity investigation of low-conductivity

plasmas and gases. The interaction of electromagnetic waves and plasmas is of significant interest, as

discussed in Chapter 1. In this section, we further explore the capabilities of the new solution approach for

resolving electromagnetic wave propagation in the vacuum limit, MHD limit and the mixed case of both

wave and diffusion phenomena occurring.

Li, et al. [59] provide a one-dimensional test case based on the telegrapher’s equation that demonstrates

the capabilities to capture both the wave and diffusion limits of the electromagnetics. This test was performed

using SI units for the dimensions, instead of using nondimensional data. The one-dimensional domain is one

meter in length, x ∈ [0, 1]m, divided into 1, 000 elements, with a constant plasma electrical conductivity, σ,

chosen to be a specific value; three values are presented here: a vacuum case (σ = 0mho/m), 10−2mho/m,

and 10−1mho/m. For initial conditions, the electromagnetic fields are set to zero everywhere. At t = 0,

a step magnetic field is imposed on the left boundary (x = 0m). This condition is enforced for all time.

Depending on the conductivity in the one-meter region, different effects are expected to be seen. If the

conductivity is zero (vacuum case), then we expect the step magnetic field to propagate as a wave traveling

at the physically correct speed of light. If the conductivity is increased slightly, then we expect to see some

mixture of wave and diffusion behavior occur in the low-conductivity domain. If we continue to increase the

conductivity, we eventually expect to see agreement with the MHD theory.

For the same one-dimensional case, we may calculate an MHD analytical solution by assuming that the

field may only diffuse. This solution is [59]

Bz = B0

{
1− erf

(
x

2

√
µ0σ

t

)}
(6.5)

where B0 is the magnitude of the boundary step (taken as unity here), x is the position, and t is the current
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Figure 6.6: Solutions to the Jiang and Wu hypersonic MHD problem [142, 145], using the source-coupled
formulation and the strong conservative formulation, and a comparison to the analytical MHD solution.
Both source-coupled and strong conservative solutions are on top of the analytical solution.
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time. This solution provides the instantaneous profile of the magnetic field for the magnetic diffusion

approximation.

In Figure 6.7, we present solutions as calculated using the new strong conservative formulation. In

Figure 6.7a, the conductivity of the one-meter domain is zero, and we see complete propagation of the step

magnetic field into the domain, depicted by plotting the magnetic field in the domain for five times. By

3.33ns, the wave impinges on the far right of the one-meter domain, which is expected according to the

speed of light. In Figure 6.7b, the simulation with σ = 10−2mho/m is presented for the same times. For a

comparison, the MHD solution according to equation 6.5 is presented as dashed lines for the same times. It is

evident that the two calculations do not agree for low electrical conductivity. This is because of the inclusion

of the displacement current in the strong conservative calculation. The displacement current introduces a

wave contribution to the solution that propagates as a front; however, unlike the vacuum case, there is now

damping due to the diffusion contribution. Clearly, the MHD solution is not valid for this conductivity; it

does not correctly capture the wave contribution of the magnetic field. Finally, in Figure 6.7c, we present

the case of σ = 10−1mho/m; the plots are shown for the same times as the other graphs. We still see some

small wave contribution present in the first depicted time, t = 0.66ns, but the diffusion has severely damped

this wave. The maximum difference in this first time is 0.04T between the numerical solution including the

wave behavior and the MHD analytical solution in equation 6.5. For all later times, the calculated solution

agrees with the MHD analytical solution to within 1.5% error. For larger conductivities, we expect the

magnetic field to more closely match the MHD behavior, with virtually no wave contributions present. For

the lower-conductivity tests, the MHD solution fails to correctly resolve the true nature of the magnetic field,

but the numerical solution approach has demonstrated agreement to the correct physical nature of both the

wave and diffusion limits.

Further qualitative assessments were also pursued to verify that both low-conductivity and high-conductivity

behavior could be resolved in the same computational domain. While these tests have no direct comparison

to justify their accuracy, we clearly expect the physical limits to be correctly observed as a the electrical

conductivity ranges from zero to very large. For these tests, a one-dimensional domain of meter length,

x ∈ [0, 1]m, was divided into a vacuum region for x < 0.5m, and a plasma slab of finite, nonzero electrical

conductivity for x > 0.5m. A 1GHz sinusoidal pulse in Ez of amplitude 105V/m was launched into the

vacuum region from the left boundary (x = 0m). The results of the radio wave impinging on the plasma

depended on the value of the conductivity assigned to the plasma region, x > 0.5m. In Figure 6.8, we present

waterfall plots of three different tested plasma conductivities: in column (a), the plasma region was actually

also set to vacuum (σ = 0mho/m), so we expect pure propagation without any interaction. In column

(b), the conductivity was σ = 10−1mho/m, and we see mixed wave and diffusion behavior of the magnetic

field in the plasma region; a reflected wave propagates back towards the left boundary. In column (c), the

conductivity was σ = 1mho/m, and much stronger diffusion is encountered in the plasma region. Higher

conductivities were also tested, and showed the development of a skin effect on the plasma slab region.
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Figure 6.7: One-dimensional simulation where Bz = 1.0 is imposed on the left boundary (x = 0m) for all
time. (a) The vacuum (σ = 0mho/m) test. The wave impinges on the right of the domain (x = 1m) at
t = 3.33ns, indicating pure wave propagation. (b) The σ = 10−2mho/m test. Mixed wave and diffusion
behavior of the magnetic field results. For comparison, the one-dimensional analytical solution for the pure
diffusion (MHD) magnetic field is shown for identical times. Here, the MHD solution is suspect, because
the displacement current is significant. (c) The σ = 10−1mho/m test. The magnetic field exhibits more
diffusion than wave behavior. At t = 0.66ns, some wave contribution is present, but is severely damped by
the diffusion. The remaining four times agree very closely with the expected MHD solution.

While this is a qualitative assessment of the interaction of an electromagnetic wave and a finite-conductivity

plasma region, it demonstrates that both low- and high-conductivity regions can be simulated within the

same computational domain.
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Figure 6.8: Radio wave propagation through vacuum region (x < 0.5m) impinging on a plasma slab of
finite conductivity (x > 0.5m, depicted in gray). The conductivity is (a) vacuum (σ = 0mho/m), (b)
σ = 10−1mho/m, (c) σ = 1mho/m. Times (starting with top and ending with bottom plot) are 1.67ns,
2.00ns, 2.33ns, 2.67ns, and 3.00ns, respectively.
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6.4 Kelvin-Helmholtz Instability with Applied Magnetic Field

In addition to plasma turbulence, it is desirable to explore plasma instability with this strong conservative

approach, since it permits the inclusion of a greater deal of physics that could play an important role in

the long-term behavior of a plasma. An example of an application where this is important is the Hall

effect thruster, which is known to degrade in performance due to the presence of plasma oscillations. These

oscillations generally cannot be captured via the existing MHD framework.

While a detailed investigation of plasma stability for Hall effect thrusters is postponed to future work,

it suffices to consider a simple example of instabilities arising in a plasma. In this case, we examine the

Kelvin-Helmholtz instability for a compressible, inviscid medium, with and without a magnetic field present.

Without the magnetic field, the simulation is purely hydrodynamic, which gives rise to a chaotic flow. The

presence of the magnetic field tends to suppress the short-wavelength instabilities, and a much less chaotic

structure emerges.

For this simulation, we only use the AUSM flux scheme on a 256 × 256 mesh grid. The domain is

[0, 1]× [0, 1], with periodic boundaries. The middle region (between y > 0.25 and y < 0.75) is comprised of

a high-density (% = 2) fluid, while the remainder of the domain is a low-density (% = 1) fluid. The pressure

everywhere was set to p = 2.5. The higher-density flow is set to move to the right with speed u = 1, and

the low-density flow is set to move at a speed of u = −1, establishing a relative velocity between the two

flows. The flow direction is a small perturbation in the x and y velocities was initialized on the surface

interfaces between the two fluids, with a magnitude scale of 0.01. The same perturbation was used in both

the hydrodynamic and magnetohydrodynamic cases.

In Figure 6.9, the density calculations in the domain are presented. The left column presents the hydro-

dynamic simulation; the right column presents results at the same times immersed in a weak magnetic field

(initially a uniform field of Bx = 0.35), which stabilizes the flow. It is clear that two different structures

emerge in the long-term behavior of these two simulations, due to the presence of the magnetic field.

6.5 Orszag-Tang Plasma Turbulence Problem

Plasma turbulence plays an important role in several engineering cases. Oscillations and micro-instabilities

in many applications can quickly lead to turbulence. In plasmas, turbulence can arise in inviscid situations,

due to compressions of the magnetic field influencing the flow.

The Orszag-Tang magnetohydrodynamic problem was initially conceived of as a direct-simulation test

problem for incompressible MHD flows [200]; it was later extended to the compressible domain to validate

compressible solvers [142]. It remains a standard turbulence problem for plasma solvers today [176]. The

problem involves a periodic two-dimensional square domain, [0, 2π]× [0, 2π], discretized typically on a 192×

192 quadrilateral mesh. In this investigation, different mesh sizes of 64 × 64, 128 × 128, 192 × 192 and
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Figure 6.9: A visual depiction of the evolution of the Kelvin-Helmholtz instability without (left column) and
with (right column) a weak applied magnetic field (initially uniform Bx = 0.3). Times (from top to bottom)
are approximately t = 1.5, 3.0, 5.8. The presence of the magnetic field suppresses the small-wavelength
instabilities and tends to stabilize the flow.
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256× 256 were simulated using both the Roe and AUSM strong conservative schemes. The values are once

again treated in a nondimensional fashion to facilitate comparison to existing literature; the initial conditions

are set up with a vortex condition as specified in [142,176],

Q (x, y, t = 0) =



% = γ2

p = γ

u = (− sin (y) , sin(x), 0)

B = (− sin(y), sin(2x), 0)

E = 0

(6.6)

The specific heat ratio is taken as a constant γ = 5/3. The final nondimensional simulation time is typically

taken as t = 3.0. The simulation was performed using a CFL = 0.7, CFL = 0.7, CFL = 0.5, and

CFL = 0.3, for the 64× 64, 128× 128, 192× 192 and 256× 256 grids, respectively.

A typical result that agrees very well with the accepted solution is shown in Figure 6.10, which used the

256× 256 grid; spatial contour plots of density and pressure are shown, and vector plots of the velocity and

magnetic field are depicted. For clarity, only every ninth vector was plotted. The initial vortex interacts

with the magnetic field and causes a series of shocks and discontinuities to result [142], which demonstrates

the formation of a turbulent plasma flow. A visual comparison of the density and pressure MHD calculations

from [142] and the new density and pressure calculations using the Roe strong conservative solver on the

256× 256 grid is presented in Figure 6.11. An example of the time evolution of the turbulent flow for longer

simulation times is presented in Figure 6.12.

Grid resolution tests demonstrate the convergence of the solution as the grid size is improved. The

192×192 and 256×256 grids tend to agree very well with each other for both the AUSM and Roe methods; the

Roe method provided a more consistent calculation across the four different grid sizes tested (see Figure 6.13)

while the AUSM method had much less consistent results; particularly, the solution suffered terrible accuracy

on the 64× 64 grid size (see Figure 6.14).

6.6 Magnetohydrodynamic Rotor Problem

The MHD rotor problem suggested by Brackbill [201] and Balsara and Spicer [202] tests the solver’s capabil-

ities for capturing strong torsional Alfvén waves propagating within the domain. A rapidly spinning dense

fluid is immersed in a light surrounding fluid and an ambient, initially uniform magnetic field, and both

fluids are assigned the same electrical conductivity. The presence of the magnetic field permits a medium

for angular momentum to be delivered to the ambient fluid from the rotating dense fluid through Alfvénic

propagation [202]. The strong conservative Roe method was applied to this problem. The computational

domain is [−1/2, 1/2]× [−1/2, 1/2], and was discretized on grid meshes of size 64× 64, 128× 128, 192× 192,

and 256× 256. Boundary conditions were all transmissive. The nondimensional initial conditions are taken
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Figure 6.10: Two-dimensional spatial contour plots of (a) density, and (b) pressure, and two-dimensional
vector plots of (c) velocity field, and (d) magnetic field for the Orszag-Tang problem [142] calculated at the
final time t = 3.0. The vector plots present only every ninth vector, to make the plot more visible. This
solution was calculated on the 256 × 256 grid, and agrees well with the accepted magnetohydrodynamic
solution [142].
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Figure 6.11: A visual comparison of the strong conservative Roe solution on 256× 256 grid (left column) to
the MHD solution on comparable grid size (right column). The top comparison shows density contour plots;
the middle comparison shows vector plots of the velocity field; the bottom comparison shows vector plots of
the magnetic field. Contour levels and vector densities were not matched to the MHD solution, although the
minimum and maximum contour levels were the same as those used in MHD solutions. The MHD density
plot is reprinted from [176] with permission from Elsevier; the MHD vector plots are reprinted from [142]
with permission from Elsevier.
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Figure 6.12: This simulation was run using the AUSM strong conservative scheme on the 256 × 256 grid,
but was run for much longer to see the long-term development of turbulence. Times are t = (a) 0.5, (b) 1.0,
(c) 2.0, (d) 3.0, (e) 4.0, (f) 5.0, (g) 6.0, (h) 7.0.
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Figure 6.13: Two-dimensional contour plot of the density for the Orszag-Tang vortex solution [142] calculated
at time t = 3.0 for different grid meshes. (a) 64× 64. (b) 128× 128. (c) 192× 192. (d) 256× 256.
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Figure 6.14: Two-dimensional contour plot of the density for the Orszag-Tang vortex solution [142] calculated
at time t = 3.0 for different grid meshes. (a) 64× 64. (b) 128× 128. (c) 192× 192. (d) 256× 256.
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as

Q (x, y, t = 0) =



% = 1 + 9f(r)

p = 1

u =

 −2f(r)y/0.1, r < 0.1

−2f(r)y/r, r ≥ 0.1

v =

 2f(r)x/0.1, r < 0.1

2f(r)x/r, r ≥ 0.1

w = 0

B =
(
5/
√
4π, 0, 0

)
E = 0

(6.7)

where

f(r) =


1, r < 0.1

(200/3) (0.115− r) , 0.1 ≤ r ≤ 0.115

0, r > 0.115

(6.8)

Here r2 = x2 + y2; the dense fluid is contained within r < 0.1, and the ambient fluid is in the region

r > 0.115. The intermediate region between the two is given a tapered linear interpolation to smooth the

data [176]. The specific heat ratio was taken as γ = 5/3. The final nondimensional simulation time was

taken as t = 0.15.

Contour spatial plots of the density and pressure and vector plots of the velocity and magnetic fields

are presented in Figure 6.15. Only every eighteenth vector is shown, to improve clarity. The presence of

angular momentum transmitted through the Alfvenic torsional waves and imparted to the ambient fluid

as angular momentum is visible, and the solution matches well to the accepted magnetohydrodynamic

solutions [201, 202]; a visual comparison of the density calculations using the MHD theory in [176] and the

new strong conservative approach are shown in Figure 6.16. A comparison of the pressures for the different

grid sizes (Figure 6.17) shows that the solution has not fully converged on the lower-resolution meshes. In

the higher-resolution cases (192× 192 and 256× 256), the solution is almost identical, and agrees very well

to the accepted solutions.

The rotor problem was repeated using different conductivities, to confirm that the solution approach

resolves both the low- and high-conductivity limits of the magnetic field. With an uncoupled case of no

conductivity (σ = 0), no Alfvén waves resulted, and the magnetic field remained its initial uniform value for

the entirety of the simulation. The dense fluid rotating within the ambient fluid caused a Kelvin-Helmholtz

instability to develop, as expected. It is well known that the presence of a magnetic field tends to suppress

such instabilities, which is why no such instability develops in the conductive case of the rotor problem.

Raising the conductivity allowed the magnetic field to respond to the fluid, and tended to stabilize it.
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Figure 6.15: Spatial contour plots of the (a) density and (b) pressure, and vector plots of the (c) velocity field
and (d) magnetic field at the final solution time of t = 0.15 using the 256× 256 grid. The solution matches
very well to the accepted MHD solutions [176,202]. Torsional Alfvén waves transmit the angular momentum
of the dense rotor to the ambient fluid. Only every eighteenth vector is shown to improve visibility.
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Figure 6.16: A visual comparison of (left) the pressure calculated using the MHD theory [176] and (right)
the pressure calculated by the new fully coupled strong conservative Roe solver. Left image is reprinted
from [176], with permission from Elsevier.

6.7 Comparisons Between Source-coupled and Strong Conserva-

tive Schemes

To compare the source-coupled and strong conservative formulation, the Riemann problems discussed in

Sections 6.1 and 6.2 were run side by side using each formulation. Both formulations were run using the

same Courant number, which was taken as the lower of the maximum stable Courant numbers for the strong

conservative and source-coupled forms. Simulation attempts for two-dimensional problems using the source-

coupled method were also attempted, but could not be converged in a reasonable amount of time for this

investigation.

A comparison of the strong conservative and source-coupled formulations reveals a significant improve-

ment in both accuracy and performance using the new strong conservative approach for the test cases

explored. For the Rieman problems explored, convergence of the source-coupled form required far more

(sometimes an order of magnitude more) iterations in the dual-time formulation than the strong conserva-

tive form. The average time per cycle increases with the number of dual-time iterations required to converge

the values. Particularly in the Brio and Wu problem, and less so but still present in the Jiang and Wu prob-

lem, it is clear that the strong conservative form achieved a more accurate solution. In both problems, the

source-coupled form reveals strong oscillations in the converged solution; it is known that these oscillations

can be induced by the presence of unstable source terms.

Furthermore, the maximum stable Courant limit for the strong conservative form is much higher than the

source-coupled form, since the strong conservative form enjoys better stability. This permits a much faster

simulation without compromising accuracy in the converged solution. The Riemann problems discussed in
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Figure 6.17: A comparison of the pressure calculated for the MHD rotor solution using grid size (a) 64× 64,
(b) 128×128, (c) 192×192, and (d) 256×256. The lower-resolution solutions show several regions where the
solution depends on the grid size. The higher-resolution meshes show consistent agreement of the solution.
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Sections 6.1 and 6.2 were executed using the same Courant number for both formulations, but the strong

conservative form was also run at higher Courant numbers, and identical results were obtained. Coupled

with less time spent per cycle, this indicates that the strong conservative form provides a much more efficient

approach for resolving the same equations as the source-coupled formulation.

6.8 Comparisons Between Roe and AUSM Flux Schemes

The two flux scheme implementations for the strong conservative form facilitates a validation of the ap-

proaches against each other; we expect that both implementations should resolve the same results, since the

system of equations and initial and boundary conditions are the same. We will primarily compare the results

for the the Orszag-Tang magnetohydrodynamic vortex problem in Section 6.5.

Image differences were performed between contour plots printed at the same size, levels, data, and at the

same time. The image differences are presented in Figure 6.18 for the Orszag-Tang vortex problem. All grid

sizes tested (64×64, 128×128, 192×192, and 256×256) are presented. From Figure 6.18, we can tell that the

Roe and AUSM schemes exhibited more difference on the smallest grid. The AUSM solution looks noticeably

different from the accepted solution at the smallest grid, while the smallest grid Roe solution looks much

more similar. Thus, more disagreement is seen between the Roe and AUSM methods for the coarse mesh.

The gray ‘X’ in the 64 × 64 grid represents a noticeable departure in calculated wave speeds between the

Roe and AUSM schemes. However, as the grid resolution is increased, we see markedly better comparison

between the two solutions. There is still a small difference in the positions of the shocks; this is presumably

due to the higher diffusion added by the AUSM scheme, which tends to be slightly less accurate than the

Roe method [12]. However, the AUSM scheme was noted to perform much faster than the Roe method as

well. The AUSM scheme achieved a maximum stable CFL for the Orzsag-Tang problem of CFL = 0.5,

while the Roe method could only be executed using CFL = 0.3 under identical conditions. Not only is the

CFL different, but a single Roe cycle literally takes more execution time than an AUSM cycle, due to the

need to calculate the eigenvalues, eigenvectors and decomposition coefficients; the elegance of the AUSM

scheme requires less time to compute a similar solution. Therefore, the AUSM method provides a faster

method than Roe with at least comparable accuracy to the Roe method at higher grid resolutions, while the

Roe method suffices well for lower grid resolutions, but takes longer, especially at higher grid resolutions.

6.9 A Strong Conservative Form for the Two-fluid Plasma Model

Initially, the strong conservative form was explored to find benefit for the two-fluid plasma model. It was

hoped at the outset of this exploration that we could take advantage of the strong conservative reformulation

for the two-fluid plasma equations, since previous investigations have shown that severe stability problems

can be encountered for the numerical solution of the two-fluid plasma equations. Furthermore, the presence

176



(a) 64× 64 (b) 128× 128

(c) 192× 192 (d) 256× 256

Figure 6.18: Image differences of the Roe and AUSM schemes for the Orszag-Tang magnetohydrodynamic
vortex problem, as discussed in Section 6.5. The images were produced as 1024×1024-pixel contour plots at
identical levels, color map, time, and figure placement. The images were subtracted in grayscale color space.
Subfigures here show different grid resolutions: (a) 64× 64, (b) 128× 128, (c) 192× 192, and (d) 256× 256.
It is clear from subfigure (a) that, at low grid resolutions, the Roe and AUSM approaches differ. In these
low-res cases, the Roe method proved much more accurate to the expected grid-independent solution. As
the grid resolution is increased, the Roe and AUSM methods agree more and more closely, although the
execution time for the Roe method becomes excessive compared to the AUSM scheme. In the highest grid
resolution tested in subfigure (d), we see that there is a slight discrepancy in the locations of the shocks. This
is suspected to be a diffusion issue with the AUSM scheme, since the AUSM method adds more diffusion
across shocks than the Roe method.

of strong oscillations in numerical solutions of the two-fluid plasma equations has been observed [75–77],

but it is not fully understood whether these oscillations are the result of numerical (artificial) or physical
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phenomena.

Unfortunately, the strong conservative approach cannot directly be applied to eliminate the presence of

source terms in the two-fluid model. This is due to the definition of the Lorentz body force and Ohmic

heating terms in each moment set; recalling from Table 2.2 the form of the Lorentz body force and Ohmic

heating terms, the quantities (eα/mα)(%αE + %αu × B) and (eα/mα)u · E represent the explicit sources.

However, the conservative form of the Maxwell equations, identified in equations 5.13 and 5.14, only apply

to the total current and charge, and therefore cannot be equated to these expressions. It is possible to

substitute the total current and charge into these two-fluid sources by recognizing equations 2.108 and 2.109

in Table 2.2, but these introduce new quantities that must be left as explicit source terms while part of the

coupling is mitigated to the flux and solution vectors. Recasting the two-fluid equations in this way could

potentially allow for some moment sets to be written in terms of quantities that are less stiff (we could,

for example, recast the electron equations with ion source terms; since the ion quantities change slowly,

these would represent less stiff sources for the electron equations) but generally this involves introducing the

reverse effect in at least one set of moment equations.

A further possibility is that the mass ratio happens to be fortuitous. If this is the case, then the charge-to-

mass ratios of the different species may be convenient to express as multiples of the total current. For example,

in a positron-electron plasma, where the mass ratio is unity, a factor of two emerges in equations 2.108

and 2.109. This might allow for the application of the identities 5.13 and 5.14 in equations 2.102 for the

two-fluid case, but this is a limiting special case of the equations with a very convenient mass ratio. Since

the identities could not generally be applied to the equations, we instead decided to focus on the single-fluid

model, which certainly allows for the reformulation into a strong conservative set of equations. It is hoped

that future work might find a means of implementing such a flux-coupled scheme for the two-fluid system;

this could potentially allow a significant speedup in solving the equations for stiff systems.
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Chapter 7

Discussion, Conclusions, Future

Directions

“Cake, and grief counseling, will be available at the conclusion of the test.”

GLaDOS [1]

In this chapter, a review of our objective and a demonstration that we have in fact met this objective,

and a summary of the findings from both investigations will be presented.

7.1 Review of the Objective

The objective that we posed at the beginning of this dissertation was to advance the state of the art in

our capabilities to model plasmas. The advance here was twofold; first, we insisted on using models that

capture more of the underlying physics of the plasma that are not permitted in MHD simulations (due

to the magnetic diffusion approximation), which allows us to address the issues discussed in Chapter 1,

and to improve the efficiency with which these solutions may be constructed. Currently, simulations of the

single-fluid and two-fluid fully-coupled models discussed in Chapter 2 incurs major stiffness and stability

constraints, and this limits our capabilities to solve these equations with only modest effort.

To improve our situation, in Chapter 3, we investigated an approach that takes advantage of a mathemat-

ical relationship between the two-fluid equations and the Maxwell equations of electrodynamics. We showed

that this results in a set of isomorphic field equations, which are mathematically identical to Maxwell’s

equations, but with intrinsically different physical source terms. If source term data were more readily avail-

able, we showed in Chapter 4 that the equations can be solved using classic techniques from electromagnetic

theory. However, the deficit of available overshadows this approach, and more source term data needs to

be harvested. Acquiring more source term models beyond what was provided in Chapter 4 was not seen as

feasible for this dissertation project. Other possibilities, such as an iterative solution, also exist, but were not
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rewarding avenues of research in this investigation due to their increased execution time and poor efficiency

of constructing the solution.

To deal with the lack of source term data, in Chapter 5, we constructed a numerical solver to attempt

performing simulations of known plasma problems so that the data may be postprocessed. This led to

a separate investigation in which we reposed the Navier-Stokes equations in a strong conservative form to

improve the stability of the equations, and it was shown in Chapter 6 that this method was very successful for

the fully-coupled single-fluid model, and that it is intractable for to the two-fluid model. The computed test

cases and their results for the strong conservative single-fluid model coupled to the full Maxwell equations

showed a significant improvement in performance and accuracy against the comparable solutions using the

traditional source-coupled formulation. Derivations of the new eigenstructure were presented, which allowed

for the construction of a Roe-based Riemann solver approach. This was validated against the Advected

Upstream Splitting Method, which does not require a knowledge of the new eigenvectors.

Although the isomorphic approach succeeds in our demonstrations of solving the new field equations,

it is limited by data availability and, in some cases, ill-posed reconstructive schemes for transforming the

generalized fields back into the primitive variable set. The drift relation breaks down in non-vortical parts

of the plasma. Using a potential formulation for the equations instead and constructing Green’s function

solutions succeeded in circumventing this problem, but requires a different means of reconstructing the

primitive data. We introduced some simple source models which could be used as building blocks for more

complicated problems. The strong conservative solver was used to qualitatively explore the form of the source

terms, but ultimately, the strong conservative approach independently succeeded in our stated objective,

which was to develop an analysis method for predicting general plasma fluid-electrodynamic interactions, in

a much more straightforward way than the isomorphic approach.

Below, we review our findings and contributions to the state-of-the-art in both of these investigations.

We then discuss future directions that this work is expected to take.

7.2 Summary of Findings

We summarize our findings for our two investigations as follows:

7.2.1 Findings for the Two-fluid Isomorphism

The investigation exploring the two-fluid isomorphism may be summarized as follows:

• There exists an equivalent set of equations for a two-fluid plasma in the form of Maxwell’s equations

for classical electrodynamics. The electric and magnetic fields are supplanted by the generalized Lamb

vector, ζα, and the generalized vorticity, Ωα, respectively, which become the new central dynamical

variables in this framework.
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• The isomorphism introduces an analogous set of source terms for the two-fluid plasma, the generalized

charge density, %α, and the generalized current density, jα, which include both electric charge and

current density contributions as well as new fluid charge and current densities. Although the form

of the generalized source terms is achieved analytically, due to the nature of Maxwell’s equations, we

must either know the fields and solve for the sources or know the sources and solve for the fields.

Iterative approaches for solving the equations, at present, do not seem promising.

• Of these two stated problem types for the Maxwell equations, we considered the latter to be more

representative of attempting to solve a given flow field problem. However, a knowledge of the sources

must be possessed. We would ideally like to construct empirical models to simple forms of the source

terms, which can then be used as building blocks for more complicated problems. To discover the

form of the sources, we examined three simple steady, incompressible fluid problems and determined

the form of the source terms for these cases; we illustrated some solution approaches taking advantage

of the isomorphism. We also demonstrated some qualitative postprocessing of the source terms for

compressible fluids and plasmas to show the general nature of the sources for these cases.

• From the solution approaches tested, numerical reconstructive schemes that rely on the drift relation

are limited to vortical regions of the flow that possess some generalized vorticity. The Green’s function

approach and method of images, which were borrowed from electrostatics, were applied with remarkable

accuracy to solve the problems.

• Homogeneous solutions, where the source terms vanish, result in wave equations in the generalized

fields. We showed that the typical variety of magnetohydrodynamic waves can be recovered.

7.2.2 Findings for Comparison of Strong Conservative and Source-coupled Forms

• A strong conservative formulation is possible for the single-fluid equations of motion. These equations

retain the exact coupling to the Maxwell system in the solution and flux vectors, rather than appearing

as explicit source terms.

• The fully-coupled model was validated against several problems. Low-conductivity and electromagnetic

wave propagation tests as well as high-conductivity magnetic diffusion limit tests were solved by

discretizing and numerically simulating these equations.

• This strong conservative flux-coupled approach provided a more stable simulation than the tradi-

tional source-coupled approach in the validation test cases explored. Since a higher maximum stable

timestep can be achieved, the simulation performance was substantially increased. Accuracy was also

improved, since source-induced oscillations vanished. The most significant improvement occurs in cases

where large currents are expected, since the magnitude of the source terms increase with increasing

conductivity; cases where essentially magnetohydrodynamic behavior may occur somewhere within

the computational domain typically strain the source-coupled formulation, but can be resolved with

modest effort using the strong conservative formulation.

181



• Both the AUSM and Roe approximate Riemann solver approaches compared increasingly well with

increasing grid density. For the most refined grids explored, the most prominent distinction was in

slight differences in shock location. This is presumed to be due to the addition of more diffusion by

the AUSM flux than the Roe flux.

• We were originally interested in applying this technique to the two-fluid plasma model to relieve the

form of the source terms; however, this is not generally possible without either additional assumptions,

simplification in the mass ratio, or an alternate form of the equations. This is due to the definition of

the coupling terms in the Lorentz force and Ohmic dissipation for each species. As an example of this,

we were able to present a numerical solution to the Brio and Wu problem [145] for a positron-electron

plasma, where the mass ratio is unity; however, in the general case, this approach will not work.

7.3 Contributions to the State-of-the-Art

The above results present a set of isomorphic field equations that extend the previous work of Marmanis

[108,109], Kambe [110], Mahajan [121] and others to explore the utility for constructing solutions to two-fluid

plasmas. The new isomorphism permits a full set of Maxwell equations describing the plasma flow, although,

to solve for the fields, source term information must also be provided. This unites different threads of

literature that have examined this approach for fluid dynamics [108–110,116,117] and plasmas [118,119,121].

Furthermore, we have explored the nature of the source terms for simplified fluid flow problems, which has

fashioned simple models that may be superposed in the cases of more complicated flow patterns. We showed

that this could be used to calculate reconstructive solutions (in regions where the drift relation, equation 3.80,

does not fail) and Green’s function solutions. Also, if sufficient models for the source terms are known, then

closed-form solutions can also be calculated; we presented a closed-form solution for Blasius boundary layer

flow that demonstrates the utility of the approach. The drawback, as discussed in Chapter 4, is the lack of

source term data available with which to calculate the generalized fields from the Maxwell equations. The

exploration for more source term models is relegated as future work, since the framework and demonstration

of the feasibility of the approach have been presented.

Our second approach extended the numerical capabilities for solving plasma models that include the full

Maxwell equations. We started with the intent to apply this strong conservative approach to the two-fluid

equations, which could substantially alleviate the computationally intense calculation, but we showed that

this method is not directly applicable to the two-fluid equations. Instead, we applied it to the single-fluid

reduction of the two-fluid equations, retaining the full Maxwell equations, and, for the validation test cases

explored, a substantial improvement in execution time and accuracy was observed for problems where the

current became large. The failure of the source-coupled form to adequately handle large currents agrees

with previous investigations [59–61, 95, 98], but is handled gracefully and with only modest effort by the

new strong conservative form presented and explored in this dissertation. This permits us to explore the
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applications discussed in Chapter 1 using a framework that requires less effort and execution time than the

state-of-the-art approaches.

7.4 Future Directions

The construction of the isomorphism, explication of some of its ramifications, and unification between the

present and previous work has been accomplished here; however, this topic is unbounded, and several very

impressive ideas may be readily drawn from it for future investigations.

Clearly, the gathering and classification of source term models for the field equations is necessary for the

real utility in this framework to emerge. Source term data could be gathered analytically or by numerical

simulation, as shown, or also by experiment. We focused on simple models in this work because a collection of

simple models provides a foundation for constructing more complicated models. Introduction of a sufficient

number of models would allow engineers to superpose these models in domains of interest, and calculate the

resulting fields from the equations.

However, several more imaginative approaches could also be envisioned. If source term models for the

Riemann problem were constructed, an alternative approach to solve the fluid equations could be developed

by considering faces between volumes to radiate charges and currents. This would permit a Maxwell solution,

given a knowledge of how much charge and current was emitted at each face and each timestep. This would

provide an alternative approach to the Riemann solver approach, albeit a similar conceptual idea. However,

the solution of the Maxwell equations would be much simpler to implement, and less expensive to update,

given sufficient models for the Riemann charge and current.

Any development of an iterative scheme for the isomorphic field equations would represent a significant

step forward. The biggest advantage of an iterative scheme is that empirical models may not be necessary

for the source terms; the sources are instead treated as part of the unknown set in this approach, and both

sources and fields are converged in an approximate manner. Our investigation did not yield any fruitful

results in this pursuit, which motivated our focus on empirical modeling instead.

Another road to exploiting the isomorphism may be to give up on finite volume simulations altogether.

Variational schemes that take advantage of the Lagrangian formulation could potentially offer another avenue

of development that might provide a superior approach for determining the evolution of the plasma. One

could attempt to solve the equations purely using Galerkin spectral methods or with perturbation expansions.

One can see that several different paths are possible for continuing this work in an effort to improve the

expense associated with a numerical simulation of the two-fluid system.

The second part of this dissertation focused on the development of a strong conservative numerical solution

procedure and solver for predicting plasma fluid-electrodynamic field interactions, and the demonstration of

this technique over the traditional approach was presented. The most disappointing facet of this work was

that this method was not obviously or directly applicable to the two-fluid system. While the demonstration
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of this technique for the single-fluid model represents a significant improvement in our capabilities to model

plasmas, a significant expansion of this work would be to show a way of furthering the mileage of the two-

fluid model by a similar means of eliminating source terms while retaining coupling. This does not seem

immediately possible due to the formulation of the model in terms of species charge and current densities,

while the identities presented in section 5.4 holds for the total charge and current densities.

The solver developed during this dissertation also has a broad future for its expansion and utility. We

have focused primarily on the numerical scheme in this dissertation; the application of the solver for varying

problems such as our motivating examples in Chapter 1 represents a near-term effort that will be contin-

ued. Although validation of the solver has been presented here that clearly demonstrates its capabilities,

verification cases that compare the predicted solutions to experimental data require further investigation.

Current ongoing efforts will apply the method to pulsed plasma thrusters and scramjet propulsion models

with magnetohydrodynamic augmentation.

7.5 Concluding Remarks

The formation and exploitation of analogies and isomorphisms has played a significant role in the progression

of our understanding. This dissertation has participated in this advance by constructing such an analogy in

the field structure of fluid dynamics and electrodynamics. In addition to introducing the extended formalism

for a plasma, this has also found an intersection in the previous work investigating analogies in fluid dynamics,

plasmas, and electrodynamics. The exploitation of this isomorphism depends on the availability of data, but

allows a very different perspective of fluids and plasmas from the perception of classical electrodynamics. As

Maxwell observed, “it is a good thing to have two ways of looking at a subject, and to admit that there are

two ways of looking at it.” The benefit of the isomorphism ultimately may not lie in its utility as much as

its valuable departure from the classic approach of thinking about fluids and plasmas.

The value of the strong conservative approach succeeded more acutely in what we had set out to ac-

complish, and has more direct utility for our motivating problems of interest. It has long been argued that

a conservative equation is numerically superior to a non-conservative expression [156], and this work has

provided valuable evidence that this may be true.

It is sincerely hoped that the problems discussed in Chapter 1 are ultimately realized. It is truly hoped

that when they are, this dissertation is perceived as nothing more than a humble step forward in this collective

endeavor, a small bastion that buttresses our incipient tower of knowledge.
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Birkhäuser Verlag AG, 1992.

[153] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduc-

tion. Springer-Verlag Berlin Heidelberg, 2009.

[154] P. Wesseling, Principles of Computational Fluid Dynamics. Springer Series in Computational

Mathematics, Springer, 2009.

[155] C. Hirsch, Numerical Computation of Internal and External Flows: The Fundamentals of Com-

putational Fluid Dynamics. No. v. 1, Elsevier Science, 2007.

[156] J. D. Anderson, Computational Fluid Dynamics: The Basics With Applications. McGraw-Hill

Series in Aeronautical and Aerospace Engineering, McGraw-Hill Education, 1995.
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A.1 Derivation of the Two-fluid Maxwell Equations

This section presents the mathematical details for transforming the two-fluid plasmadynamic equations into

a Maxwell form. We start with equation 3.15, in Section 3.3, and calculate the divergence, curl and time

derivative of this equation to produce the Gauss, Faraday and Ampere-Maxwell equations, respectively. The

final equation, analogous to a statement of no magnetic monopoles, is satisfied by vector identity.

A.1.1 Gauss Laws

The divergence of equation 3.15 is straightforward. We will introduce a new quantity %P,α here; our moti-

vation for doing so will be revealed shortly.

∇ · ζα = ∇ ·
{
−∂P
∂t

−∇ET
α

}
(A.1)

= − ∂

∂t
∇ ·Pα −∇2ET

α (A.2)

= − ∂

∂t
∇ ·

(
uα +

eα
mα

A

)
−∇2

(
Hα +

eα
mα

φ

)
(A.3)

=− ∂

∂t
(∇ · uα)−∇2 (Hα) +

eα
mα

∇ ·
{
−∂A
∂t

−∇φ

}
(A.4)

= − ∂

∂t
(∇ · uα)−∇2 (Hα) +

eα
mα

∇ ·E (A.5)

∇ · ζα = − ∂

∂t
(∇ · uα)−∇2 (Hα) +

eα
mα

%e
ε0

(A.6)

∇ · ζα = %P,α (A.7)

where we have introduced the simplification

%P,α = − ∂

∂t
(∇ · uα)−∇2Hα +

eα
mα

%e
ε0

(A.8)

The Gauss law for the generalized vorticity may be realized by simple vector identity,

∇ ·Ωα = ∇ ·∇×Pα = 0 (A.9)

A.1.2 Faraday Law

The curl of equation 3.15 is also not a complicated matter. We have

∇× ζα = ∇×
{
−∂Pα

∂t
−∇ET

α

}
(A.10)

=− ∂

∂t
∇×Pα −∇×∇ET

α (A.11)

∇× ζα = −∂Ωα

∂t
(A.12)
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A.1.3 First Ampere-Maxwell Law

The time derivative of equation 3.15 is unfortunately a very tedious calculation. We start by determining it

directly, and then manipulate it into the form we seek by continued application of vector identities. Starting

by directly differentiating the general Euler equation given by equation 3.15, we have

∂ζα

∂t
=

∂

∂t

{
−∂Pα

∂t
−∇ET

α

}
(A.13)

= −∂
2P

∂t2
−∇∂ET

α

∂t
(A.14)

= −∂
2uα

∂t2
− eα
mα

∂2A

∂t2
−∇∂hα

∂t
−∇ ∂

∂t
((1/2)uα · uα)−

eα
mα

∇φ (A.15)

=−∂
2uα

∂t2
+
∂

∂t

[
eα
mα

(
−∂A
∂t

−∇φ

)]
−∇∂hα

∂t
−∇ ∂

∂t
((1/2)uα · uα) (A.16)

= −∂
2uα

∂t2
+

eα
mα

∂E

∂t
−∇∂hα

∂t
−∇ ∂

∂t
((1/2)uα · uα) (A.17)

Now we take the gradient of the continuity equation in terms of enthalpy, equation 3.5, and substitute the

result in for the third term on the right-hand side,

=−∂
2uα

∂t2
+

eα
mα

∂E

∂t
+∇ (uα ·∇hα) +∇

(
a2α∇ · u

)
−∇ ∂

∂t
((1/2)uα · uα) (A.18)

We insert the Ampere-Maxwell equation in for the ∂E/∂t term,

= −
∂2uα

∂t2
+

eα

mα

{
−

je
ε0

+ c20∇×B

}
+∇ (uα ·∇hα) +∇

(
a2α∇ · uα

)
−∇

∂

∂t
((1/2)uα · uα) (A.19)

=−
∂2uα

∂t2
−

eα

mα

je
ε0

+
eα

mα
c20∇×∇×A+∇ (uα ·∇hα) +∇

(
a2α∇ · uα

)
−∇

∂

∂t
((1/2)uα · uα) (A.20)

Now we can split up the term ∇
(
a2α∇ · uα

)
,

∇
(
a2α∇ · uα

)
=(∇ · uα)∇a2α + a2α∇ (∇ · uα) (A.21)

We can apply the vector identity

a2α∇ (∇ · uα) = a2α∇×∇× uα + a2α∇2uα = a2α∇× ωα + a2α∇2uα (A.22)

to the second term on the right-hand side, which gives us a final form of equation A.20 as

= −∂
2uα

∂t2
− eα
mα

je
ε0

+
eα
mα

c20∇×∇×A+∇ (uα ·∇hα)

+ (∇ · uα)∇a2α + a2α∇× ωα + a2α∇2uα −∇ ∂

∂t
((1/2)uα · uα) (A.23)
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We can rewrite this in a simplified form as

∂ζα

∂t
= −jα + a2α∇× ωα + c20∇×

(
eα
mα

B

)
(A.24)

where we have introduced the substitution

−jα = −
∂2uα

∂t2
−

eα

mα

je
ε0

+∇ (uα ·∇hα) + (∇ · uα)∇a2α + a2α∇2uα −∇
∂

∂t
((1/2)uα · uα) (A.25)

Equation A.24 is still not quite in the form we wish, so we add a term v2α∇×Ωα, where vα is some speed

that we will choose shortly. Adding this to both sides of equation A.24, we have

∂ζα

∂t
+ jα = v2α∇×Ωα (A.26)

where now we have modified our substitution,

jα =
∂2uα

∂t2
− a2α∇2uα +

eα
mα

je
ε0

−∇ (uα ·∇hα)− (∇ · uα)∇a2α

+∇ ∂

∂t
((1/2)uα · uα) +

(
v2α − a2α

)
∇× ωα +

(
v2α − c20

)
∇×B (A.27)

A.1.4 Second Ampere-Maxwell Law

Although it may initially seem unnecessary, we can derive equation A.26 in a very different fashion. This

approach unites the generalized form with the previous incompressible work. We start by taking the time

derivative of the generalized Lamb vector, ζα,

∂ζα

∂t
=
∂

∂t
(Ωα × uα) =

∂Ωα

∂t
× uα +Ωα × ∂uα

∂t
(A.28)

= uα × [∇× (Ωα × uα)] +Ωα × ∂uα

∂t
(A.29)

We can now apply the following vector identity,

uα × (∇× ζα) = −uα · ζα − ζα ·∇uα − ζα × (∇× uα) +∇ (uα · ζα) (A.30)

The curl in the third term on the right-hand side is just the fluid vorticity, ∇ × uα = ωα. Since uα and

ζα = Ωα × uα are perpendicular, the last term on the right-hand side vanishes. By further recognizing the

vector identity

∇× (ζα × uα) = ζα∇ · uα − uα · ζα + uα ·∇ζα − ζα ·∇uα (A.31)
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and substituting this into equation A.30 to eliminate the term −uα ·∇ζα, equation A.30 now becomes

uα × (∇× ζα) = ∇× (uα × ζα)− uα∇ · ζα + ζα∇ · uα − 2ζα ·∇uα − ζα × ωα (A.32)

Substitution of equation A.32 into equation A.29 yields

∂ζα

∂t
= ∇× (uα × ζα)− uα∇ · ζα + ζα∇ · uα − 2ζα ·∇uα − ζα × ωα +Ωα × ∂uα

∂t
(A.33)

Now the first term on the right-hand side introduces the curl of the generalized vorticity. To see how, we

rewrite uα × ζα = uα × (Ωα × uα) and apply the vector identity

uα × (Ωα × uα) = (uα · uα)Ωα − (uα ·Ωα)uα (A.34)

Thus, the first term on the right-hand side becomes

∇× (uα × ζα) = ∇×
[
u2αΩα − (uα ·Ωα)uα

]
(A.35)

=u2α∇×Ωα +∇
(
u2α
)
×Ωα −∇× [(uα ·Ωα)uα] (A.36)

Substituting this identity into equation A.33, and substituting ∇ · ζα = %α via equation A.7, we have

∂ζα

∂t
+

{
%αuα − ζα∇ · uα + 2ζα ·∇uα + ζα ×Ωα −Ωα × ∂uα

∂t
+∇× [(uα ·Ωα)uα]

}
= u2α∇×Ωα

(A.37)

or, making a substitution j′α, we have

∂ζα

∂t
+ j′α = u2α∇×Ωα (A.38)

with

j′α = %αuα − ζα∇ · uα + 2ζα ·∇uα + ζα ×Ωα −Ωα × ∂uα

∂t
+∇× [(uα ·Ωα)uα] (A.39)

Clearly, equation A.38 is in the same form as equation A.26, except that the speed vα has been chosen as

the local fluid velocity, uα.

We are finally in a position to state the Maxwell equations for the two-fluid dynamical variables, ζα

and Ωα. Collecting our results in equations A.7, A.12 and A.26, and identifying by vector identity that the

207



divergence of the generalized vorticity must always be zero, ∇ ·Ωα = ∇ ·∇×Pα ≡ 0, we have

∇ ·Ωα = 0 (A.40)

∇ · ζα = %α (A.41)
∂Ωα

∂t
+∇× ζα = 0 (A.42)

∂ζα

∂t
+ jα = v2α∇×Ωα (A.43)

where %α is given by the right-hand side of equation A.7, jα is given by equation A.27, and vα is some speed

that we may select. In the case of choosing vα = uα, we have an alternate form of the current given by

equation A.39.

A.2 Jacobians and Eigenstructure of the Navier-Stokes Equations

This section is devoted to providing mathematical details regarding the uncoupled inviscid Navier-Stokes

equations. Excellent reviews of these equations and the information covered here is presented in [11, 151,

153,156]. Here we consider the equations in the form

∂%

∂t
+∇ · (%u) = 0 (A.44)

∂

∂t
(%u) +∇ ·

(
%uu+ Îp

)
= 0 (A.45)

∂E
∂t

+∇ · ([E + p]u) = 0 (A.46)

which represent the conservation of mass, momentum and energy in the fluid. Here %, u, E , p, and Î are the

mass density, velocity vector, total energy, pressure, and identity matrix, respectively. The equation of state

is supplied by assuming an ideal gas, p = %RgasT . The total energy is taken as

E = %e+
1

2
%u · u (A.47)

where e is the internal energy. We assume the gas is calorically perfect, such that

e =
p

% (γ − 1)
(A.48)

We may recast these equations into a system of first-order conservation laws,

∂Uf

∂t
+∇ · Ff = 0 (A.49)
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where

Uf =


%

%u

E

 , Ff =


%u

%uu+ Îp

[E + p]u

 (A.50)

The subscript f is used to denote that this is the fluid set of equations.

A.2.1 Jacobian Matrix

There are three jacobian matrices for the Navier-Stokes equations (one for each spatial dimension). They

are explicitly exposed if we write the system of equations as

∂Uf

∂t
+
∂Ff,x

∂x
+
∂Ff,y

∂y
+
∂Ff,z

∂z
= 0 (A.51)

Recasting this equation into the quasilinear form as discussed in Section 5.7, we have

∂Uf

∂t
+ Âf,x

∂Uf

∂x
+ Âf,y

∂Uf

∂y
+ Âf,z

∂Uf

∂z
= 0 (A.52)

where Âf,x = ∂Ff,x/∂Uf , Âf,y = ∂Ff,y/∂Uf , and Âf,z = ∂Ff,z/∂Uf are the jacobian matrices. They may

be written analytically as

Âf,x =



0 1 0 0 0

γ̂H − u2 − a2 (3− γ)u −γ̂v −γ̂w γ̂

−uv v u 0 0

−uw w 0 u 0

u
(

γ̂
2
V 2 −H

)
H − γ̂u2 −γ̂uv −γ̂uw γu


(A.53)

Âf,y =



0 0 1 0 0

−uv v u 0 0

γ̂H − v2 − a2 −γ̂u (3− γ) v −γ̂w γ̂

−vw 0 w v 0

v
(

γ̂
2
V 2 −H

)
−γ̂uv H − γ̂v2 −γ̂vw γv


(A.54)

Âf,z =



0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0

γ̂H − w2 − a2 −γ̂u −γ̂v (3− γ)w γ̂

w
(

γ̂
2
V 2 −H

)
−γ̂uw −γ̂vw H − γ̂w2 γw


(A.55)

where u = (u, v, w), γ̂ = γ − 1, V 2 = u2 + v2 + w2, and H is the total enthalpy, H = (E + p)/%.
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We can also express the jacobian matrix for the direction of interest, indicated by the face normal vector,

n, as a normal-projected matrix. This compact representation can be written

Âf =


0 n 0

γ̂
2V

2n− qu un− γ̂nu+ Îq γ̂n

q
(
γ̂V 2 −H

)
Hn− γ̂qu γq

 (A.56)

where n = (nx, ny, nz) represents the normal projection and q is the projection of the velocity onto the

normal, q = u · n = unx + vny + wnz.

A.2.2 Eigenvalues

The eigenvalues of Âf can be determined analytically as

Λ̂f = Diag {q − a, q, q, q, q + a} =



q − a 0 0 0 0

0 q 0 0 0

0 0 q 0 0

0 0 0 q 0

0 0 0 0 q + a


(A.57)

where q = u · n = unx + vny + wnz and a is the sonic speed, a2 = γp/%.

A.2.3 Eigenvectors

The eigenvectors of Âf can be computed from the jacobian matrices. The eigenmatrix, K̂f , is a matrix

composed of column right eigenvectors. There is one eigenmatrix per each dimension. If the Navier-Stokes

equations are written with explicit flux terms per each dimension, as in equation A.51, then the three jacobian

matrices Âf,x, Âf,y, and Âf,z will have corresponding eigenmatrices K̂f,x, K̂f,y, and K̂f,z, which are

K̂f,x =



1 1 0 0 1

u− a u 0 0 u+ a

v v 1 0 v

w w 0 1 w

H − ua 1
2V

2 v w H + ua


(A.58)
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K̂f,y =



1 0 1 0 1

u 1 u 0 u

v − a 0 v 0 v + a

w 0 w 1 w

H − va u 1
2V

2 w H + va


(A.59)

K̂f,z =



1 0 0 1 1

u 1 0 u u

v 0 1 v v

w − a 0 0 w w + a

H − aw u v 1
2V

2 H + aw


(A.60)

If the surface for the flux is on an arbitrary face with associated normal vector n, then a compact form of

the eigenvectors may be written as

K̂f =


1 n 1

u− an a′iu+ bi u+ an

H − qa 1
2V

2a′i + bi · u H + qa

 (A.61)

where a′i = n · ai and bi = n × ai, where ai are arbitrary spatial basis vectors (in our case, cartesian unit

vectors).

A.2.4 Solution to the Linearized Riemann Problem

The Roe scheme requires a form of the decomposition coefficients, α(p), for the linearized Riemann problem.

If the initial Riemann data consists of a piecewise discontinuous jump centered at x = 0,

U (x, t = 0) =

 UL, x < 0

UR, x > 0
(A.62)

where UL and UR are known constant state vectors, then the solution, per the discussion in Section 5.7,

can be written as an eigenvector expansion,

∆U = UR −UL =
m∑

p=1

α(p)K(p) (A.63)

where p ∈ {1, . . . ,m} spans the set of m equations, α represents the decomposition coefficients, and K(p)

are the column right eigenvectors. Equation A.63 must be solved for its decomposition coefficients. For the

Navier-Stokes equations, the solution may be determined analytically for each dimension. This gives in the
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x-direction:

α
(3)
f,x = ∆U3 −∆U1v

α
(4)
f,x = ∆U4 −∆U1w

α
(2)
f,x = 2∆U1 −

∆U5 +∆U1H − (∆U2u+∆U3v +∆U4w)

H − 1
2V

2

α
(1)
f,x, α

(5)
f,x =

± (u∓ a)∆U1 +∆U2

2a
+∆U1 −

αx,2

2

(A.64)

In the y direction,

α
(2)
f,y = ∆U2 −∆U1u

α
(4)
f,y = ∆U4 −∆U1w

α
(3)
f,y = 2∆U1 −

∆U5 +∆U1H − (∆U2u+∆U3v +∆U4w)

H + 1
2V

2

α
(1)
f,y, α

(5)
f,y =

(±v ∓ a)∆U1 +∆U3

2a
+∆U1 −

αy,3

2

(A.65)

In the z direction,

α
(2)
f,z = ∆U2 −∆U1u

α
(3)
f,z = ∆U3 −∆U1v

α
(4)
f,z = 2∆U1 −

∆U5 +∆U1H − (∆U2u+∆U3v +∆U4w)

H − 1
2V

2

α
(1)
f,z, α

(5)
f,z =

(±w ∓ a)∆U1 +∆U4

2a
+∆U1 −

αz,3

2

(A.66)

where u, v, w, H, a, and V 2 = u2 + v2 +w2 are the Roe-averaged velocity components, total enthalpy, sonic

speed, and magnitude of the velocity, which are functions of UL and UR. The appropriate Roe averaging

for the inviscid equations is given in [11], and is repeated here:

u =

√
%LuL +

√
%RuR√

%L +
√
%R

v =

√
%LvL +

√
%RvR√

%L +
√
%R

w =

√
%LwL +

√
%RwR√

%L +
√
%R

H =

√
%LHL +

√
%RHR√

%L +
√
%R

a =

[
(γ − 1)

(
H − 1

2
V 2

)]1/2
(A.67)

where √
% is understood to be a square root of the mass density.

The eigenvalue and eigenvector matrices presented in equations A.57 and A.61, respectively, were checked
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to fully diagonalize the Navier-Stokes system using symbolic mathematical software.

A.3 Jacobians and Eigenstructure of the Maxwell Equations

This section provides mathematical details for the Maxwell equations. Much more complete information is

available in [143,151,178]. Here, we consider the form of the perfectly hyperbolic Maxwell equations, which

includes the numerical fields used for divergence cleaning [178]. One may recover the pure Maxwell set by

setting the associated cleaning speeds, χ and γ, to zero, and removing the last two equations. The general

equations may be written

∂B

∂t
+∇×E+ ξ∇ΨB = 0 (A.68)

∂E

∂t
− c20∇×B+ c20χ∇ΨE = −je/ε0 (A.69)

1

ξc20

∂ΨB

∂τ
+∇ ·B = 0 (A.70)

1

χ

∂ΨE

∂τ
+∇ ·E = %e/ε0 (A.71)

Here E and B are the electric and magnetic induction fields, c0 is the vacuum speed of light, je and %e are the

current and charge density, respectively, and ΨB and ΨE are the divergence fields, with associated speeds

ξ and χ. Notice that the variation of the divergence fields is only permitted in the dual-time; this allows

full convergence of equations A.70 and A.71 in the dual-time iteration between timesteps, and restricts the

divergence fields from appearing in the physical derivatives.

The equations may be posed in the form of a system of conservation laws as

∂Um

∂t
+∇ · Fm = Hm (A.72)

where

Um =



B

E

ΨE

ΨB


, Fm =



ˆcurl (E) + ξΨB Î

−c20 ˆcurl (B) + χc20ΨE Î

χE

ξc20B


, Hm =

1

ε0



0

je

%e

0


(A.73)

where we have rewritten ∇ × A into divergence form via a curl operator, ∇ · ˆcurl(A) = ∇ · (̂I × A) =

∂lεijkδjlEk = εijk∂jEk. The subscript m is used to denote that this is the Maxwell system, to differentiate

it from the fluid system.
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A.3.1 Jacobian Matrix

There are three jacobian matrices for the Maxwell equations (one for each dimension). If we write the system

of equations as

∂Um

∂t
+
∂Fm,x

∂x
+
∂Fm,y

∂y
+
∂Fm,z

∂z
= Hm (A.74)

Rewriting equation A.74 into quasilinear form as discussed in Section 5.7, we have

∂Um

∂t
+ Âm,x

∂Um

∂x
+ Âm,y

∂Um

∂y
+ Âm,z

∂Um

∂z
= 0 (A.75)

where Âm,x = ∂Fm,x/∂Um, Âm,y = ∂Fm,y/∂Um, and Âm,z = ∂Fm,z/∂Um, are given in the form of

Âm,x =



0 0 0 0 0 0 0 ξ

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 c2χ 0

0 0 c2 0 0 0 0 0

0 −c2 0 0 0 0 0 0

0 0 0 χ 0 0 0 0

c2ξ 0 0 0 0 0 0 0



(A.76)

Âm,y =



0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 ξ

0 0 0 −1 0 0 0 0

0 0 −c2 0 0 0 0 0

0 0 0 0 0 0 c2χ 0

c2 0 0 0 0 0 0 0

0 0 0 0 χ 0 0 0

0 c2ξ 0 0 0 0 0 0



(A.77)

Âm,z =



0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 ξ

0 c2 0 0 0 0 0 0

−c2 0 0 0 0 0 0 0

0 0 0 0 0 0 c2χ 0

0 0 0 0 0 χ 0 0

0 0 c2ξ 0 0 0 0 0



(A.78)
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These results may be collected into the compact, normal-projected form as

Âm =



0̂ − ˆcurl (n) 0 ξn

c20
ˆcurl (n) 0̂ c20χn 0

0 χn 0 0

ξc20n 0 0 0


(A.79)

Here, n is a normal vector associated with the surface of interest that flux is transported across. It is

clear that the normal-projected matrix, Âm, is a constant geometric matrix. Since the Maxwell equations

(including the divergence fields) constitute a linear system, the Roe matrix is identical to the jacobian matrix

presented in equation A.79, and the appropriate Roe average used is the arithmetic average of the fields,

Um = (UL +UR)/2.

A.3.2 Eigenvalues

The eigenvalues of Âm can be determined analytically as

Λ̂m = Diag {−c,−c, c, c,−cχ, cχ,−cξ, cξ} =



−c 0 0 0 0 0 0 0

0 −c 0 0 0 0 0 0

0 0 c 0 0 0 0 0

0 0 0 c 0 0 0 0

0 0 0 0 −cχ 0 0 0

0 0 0 0 0 cχ 0 0

0 0 0 0 0 0 −cξ 0

0 0 0 0 0 0 0 cξ



(A.80)

In the case where the divergence fields are excluded, the typical Maxwell set reduces to six eigenvalues, and

the last two equations for the divergence fields are no longer needed,

Λ̂m = Diag {−c,−c, c, c, 0, 0} =



−c 0 0 0 0 0

0 −c 0 0 0 0

0 0 c 0 0 0

0 0 0 c 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(A.81)
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A.3.3 Eigenvectors

Since multiplicities are present in the eigenvalues, the eigenvectors are not unique; however, linearly inde-

pendent eigenvectors may still be constructed by insisting on consistency (the eigenvectors are selected such

that similar diagonalized matrices degenerate to the same form as in the cartesian frame [143]). For the

cartesian plane, the jacobian matrices Âm,x, Âm,y, and Âm,z have corresponding eigenmatrices K̂m,x, K̂m,y,

and K̂m,z given in the form of

K̂m,x =



0 0 0 0 0 0 − 1
c0

1
c0

1
c0

0 − 1
c0

0 0 0 0 0

0 − 1
c0

0 1
c0

0 0 0 0

0 0 0 0 −c0 c0 0 0

0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1



(A.82)

K̂m,y =



− 1
c0

0 1
c0

0 0 0 0 0

0 0 0 0 0 0 − 1
c0

1
c0

0 1
c0

0 − 1
c0

0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 −c0 c0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1



(A.83)

K̂m,z =



1
c0

0 − 1
c0

0 0 0 0 0

0 − 1
c0

0 1
c0

0 0 0 0

0 0 0 0 0 0 − 1
c0

1
c0

0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 −c0 c0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1



(A.84)
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These eigenvectors may be expressed in a more compact, general normal-projected form as

K̂m =



−ny

c0
nz

c0

ny

c0
−nz

c0
0 0 −nx

c0
nx

c0

nx
2+nz

2

c0nx

nynz

c0nx
−nx

2+nz
2

c0nx
−nynz

c0nx
0 0 −ny

c0

ny

c0

−nynz

c0nx
−nx

2+ny
2

c0nx

nynz

c0nx

nx
2+ny

2

c0nx
0 0 −nz

c0
nz

c0

−nz

nx
−ny

nx
−nz

nx
−ny

nx
−c0nx c0nx 0 0

0 1 0 1 −c0ny c0ny 0 0

1 0 1 0 −c0nz c0nz 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1



(A.85)

This general eigenmatrix, K̂m, has been checked to fully diagonalize the 8 × 8 Maxwell system with the

divergence fields. In the case that the divergence fields are not included, the Maxwell system reduces to a

6 × 6 form, and the divergence fields ΨE and ΨB and their associated equations are not included in the

calculation.

A.3.4 Solution to the Riemann Problem

The solution to the linearized Riemann problem is required for the Roe scheme. The Riemann problem is

assumed to have piecewise constant initial data in the form

U (x, t = 0) =

 UL, x < 0

UR, x > 0
(A.86)

where UL and UR are known constant state vectors, then the solution, per the discussion in Section 5.7,

can be written as an eigenvector expansion,

∆U = UR −UL =
m∑

p=1

α(p)K(p) (A.87)

where p ∈ {1, . . . ,m} spans the set of m equations, α represents the decomposition coefficients, and K(p)

are the column right eigenvectors. Equation A.87 must be solved for its decomposition coefficients. A set

of decomposition coefficients will exist in each direction. For the x direction, using K̂m,x, the decomposition
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coefficients are

α(1),(3)
m,x =

1

2
(±c0∆U2 +∆U6) (A.88)

α(4),(2)
m,x =

1

2
(±c0∆U3 +∆U5) (A.89)

α(6),(5)
m,x =

1

2

(
±∆U4

c0
+∆U7

)
(A.90)

α(8),(7)
m,x =

1

2
(±c0∆U1 +∆U8) (A.91)

In the y direction, using K̂m,y, the decomposition coefficients are

α(3),(1)
m,y =

1

2
(±c0∆U1 +∆U6) (A.92)

α(2),(4)
m,y =

1

2
(±c0∆U3 +∆U4) (A.93)

α(6),(5)
m,y =

1

2

(
±∆U5

c0
+∆U7

)
(A.94)

α(8),(7)
m,y =

1

2
(±c0∆U2 +∆U8) (A.95)

A.4 Jacobians and Eigenstructure of the Source-coupled Navier-

Stokes and Maxwell Equations

In this section, we present the usual form of the jacobians, eigenvalues and eigenvectors for the source-coupled

form, which has been explored by [8,47,59] and, for the two-fluid system, in [75,76,187]. The equations are

∂U

∂t
+∇ · F = H (A.96)

where

U =



%

%u

E

B

E

ΨE

ΨB


, F =



%u

%uu+ Îp

[E + p]u

ˆcurl (E) + ξ∇ΨB

−c20 ˆcurl (B) + χc20ΨE

χE

ξc20B


, H =



0

%eE+ je ×B

je ·E

0

−je/ε0 − %eu

%e/ε0

0


(A.97)

Notice that the coupling between the two systems is restricted entirely to the source vector, H. This means

that the eigenstructure of the equations are fully uncoupled, and coupling occurs only during evaluation of

the source term. This permits the jacobians and eigenstructure of this system to be written in a convenient
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block matrix form. The divergence cleaning equations have been included; they can be removed by setting

χ = ξ = 0 everywhere in the following equations.

A.4.1 Jacobian Matrix

The jacobian matrix is simply a block matrix containing the separate Navier-Stokes and Maxwell jacobians.

The jacobian is uncoupled, since the coupling is relegated to the source vector.

Â =

 Âf 0̂

0̂ Âm

 (A.98)

where Âf and Âm are the fluid and Maxwell jacobian matrices, given in equations A.56 and A.79, respectively.

A.4.2 Eigenvalues

The eigenvalues of the source-coupled equations will be a block matrix comprised of the separate eigenvalues

of the Navier-Stokes and Maxwell equations.

Λ̂ =

 Λ̂f 0̂

0̂ Λ̂m

 (A.99)

where Λ̂f and Λ̂m are the fluid and Maxwell diagonal eigenvalue matrices, given by equations A.57 and A.80,

respectively.

A.4.3 Eigenvectors

The eigenvectors of the source-coupled formulation is a block matrix comprised of the separate eigenmatrices

of the Navier-Stokes and Maxwell equations. The eigenvectors are not coupled, since the coupling is relegated

to the source vector.

K̂ =

 K̂f 0̂

0̂ K̂m

 (A.100)

where K̂f and K̂m are the fluid and Maxwell eigenmatrices, given by equations A.61 and A.85, respectively.

A.4.4 Jacobian Matrices for Implicit Scheme

The implicit scheme described in Section 5.9 outlines a procedure for updating the plasmadynamic equations,

but requires the calculation of the matrices Γ̂, ∂U/∂Q and ∂R/∂Q. For simplicity of presentation, we assume

that the flux vector, F, is only updated explicitly every timestep, such that the residual Jacobian becomes

∂R/∂Q = ∂H/∂Q. Below, we present the forms of these matrices used in the investigations detailed in
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Chapters 5 and 6.

Γ̂ =



1 0 0 0 0 0 0 0 0 0 0 0 0

u % 0 0 0 0 0 0 0 0 0 0 0

v 0 % 0 0 0 0 0 0 0 0 0 0

w 0 0 % 0 0 0 0 0 0 0 0 0

V 2/2 %u %v %w 1/γ̂ 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 β−2 0 0 0 0

0 0 0 0 0 0 0 0 0 β−2 0 0 0

0 0 0 0 0 0 0 0 0 0 β−2 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1



(A.101)

where V 2 = u2 + v2 + w2, γ̂ = γ − 1, and β is the preconditioning parameter.

The jacobian matrix ∂U/∂Q is

∂U

∂Q
=



1 0 0 0 0 0 0 0 0 0 0 0 0

u % 0 0 0 0 0 0 0 0 0 0 0

v 0 % 0 0 0 0 0 0 0 0 0 0

w 0 0 % 0 0 0 0 0 0 0 0 0

V 2/2 %u %v %w 1/γ̂ 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0



(A.102)
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The source jacobian matrix, ∂H/∂Q, is

∂H

∂Q
= σ



0 0 0 0 0

0 −By
2 −Bz

2 BxBy BxBz 0

0 BxBy −Bx
2 −Bz

2 ByBz 0

0 BxBz ByBz −Bx
2 −By

2 0

0 −BzEy +ByEz BzEx −BxEz −ByEx +BxEy 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −%e −Bz
ε0

By

ε0
0

0 Bz
ε0

−%e −Bx
ε0

0

0 −By

ε0

Bx
ε0

−%e 0

0 0 0 0 0

0 0 0 0 0

. . .

. . .

0 0 0

Byv +Bzw −Ez −Byu− (Byu−Bxv) Ey −Bzu+ (−Bzu+Bxw)

Ez −Bxv + (Byu−Bxv) Bxu+Bzw −Ex −Bzv − (Bzv −Byw)

−Ey −Bxw − (−Bzu+Bxw) Ex −Byw + (Bzv −Byw) Bxu+Byv

−Ezv + Eyw Ezu− Exw −Eyu+ Exv

0 0 0

0 0 0

0 0 0

0 w
ε0

− v
ε0

− w
ε0

0 u
ε0

v
ε0

− u
ε0

0

0 0 0

0 0 0

. . .

. . .

0 0 0 0 0

%e Bz −By 0 0

−Bz %e Bx 0 0

By −Bx %e 0 0

2Ex + (Bzv −Byw) 2Ey + (−Bzu+Bxw) 2Ez + (Byu−Bxv) 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−ε0−1 0 0 0 0

0 −ε0−1 0 0 0

0 0 −ε0−1 0 0

0 0 0 0 0

0 0 0 0 0



(A.103)

where V 2 = u2 + v2 + w2, γ̂ = γ − 1, E = E/(c20µ0) and B = B/(c20µ0).
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A.5 Jacobians, Eigenvalues, and Eigenvectors of the Strong Con-

servative Navier-Stokes and Maxwell Equations

In this section, we present the form of the jacobians, eigenvalues, and eigenvectors for the strong conservative

form. This formulation involves a new coupling matrix in the jacobian and eigenvectors, denoted by subscript

c. The strong conservative equations are

∂U

∂t
+∇ · F = H (A.104)

where

UF =



%

%u+ SEM/c20

E + EEM

B

E

ΨE

ΨB



, FF =



%u

%uu+ Îp−ΣEM

[E + p]u+ SEM

ˆcurl (E) + ξ∇ΨB

−c20
ˆcurl (B) + χc20ΨE

χE

ξc20B



, HF =



0

0

0

0

−je/ε0 − %eu

%e/ε0

0



(A.105)

A.5.1 Jacobian Matrix

If we recast equation A.104 into the quasilinear form discussed in Section 5.7, it can be expressed as

∂U

∂t
+ Âx

∂U

∂x
+ Ây

∂U

∂y
+ Âz

∂U

∂z
= H (A.106)

or, in normal-projected form, as

∂U

∂t
+ Â

∂U

∂xk
= H (A.107)

where Â is the jacobian matrix. The normal-projected form of the jacobian matrix for equations A.104

and A.105 is

Â =

 Âf Âc

0̂ Âm

 (A.108)

where Âf and Âm are the fluid and Maxwell normal-projected jacobians, given by equations A.56 and A.79,

respectively. The coupling jacobian, Âc, is the new term added in the strong conservative form to couple

the Navier-Stokes and Maxwell equations; it is a zero matrix in the source-coupled formulation. There will

be a matrix Âc for each direction in the cartesian form (equation A.106) for equation A.107; these may be
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written

Âc,x =



0 Dz

−γHx + γ̂ (Dzv −Dyw) −Hy (γ − 2)−Dz (γ − 3)u+ γ̂Dxw

−Hy −Dzu −Hx +Dzv

−Hz +Dyu −Dxu+Dzw

u [−γHx + γ̂ (Dzv −Dyw)] u (−γHy + γ̂Dxw)− Ez
µ0

+Dz
(
H − γ̂u2

)
. . .

. . .

−Dy 0

−Hz (γ − 2) +Dy (γ − 3)u− γ̂Dxv −γDx + γ̂ε0 (Bzv −Byw)

Dxu−Dyv −Dy + ε0Bzu

−Hx −Dyw −Dz + ε0Byu

u (−γHz − γ̂Dxv) +
Ey

µ0
−Dy

(
H − γ̂u2

)
−u (Dx + γ̂ε0 (Bzv −Byw))

. . .

. . .

−ε0Bz ε0By

−Dy (γ − 2) + ε0Bz (γ − 3)− ε0γ̂Bxw −Dz (γ − 2)− ε0By (γ − 3)u+ ε0γ̂Bxv

−Dx − ε0Bzv ε0 (−Bxu+Byv)

ε0 (Bxu−Bzw) −Dx + ε0Byw

u (γDy − γ̂ε0Bxw) + Bz
µ0

− ε0Bz
(
H − γ̂u2

)
u (γDz + γ̂ε0Bxv)−

By

µ0
+ ε0By

(
H − γ̂u2

)
. . .

. . .

0 0

0 0

0 0

0 0

0 0



(A.109)

Âc,y =



−Dz 0

−Hy −Dzu −Hx +Dzv

−Hx (γ − 2) +Dz (γ − 3) v −Dy γ̂w −γHy + γ̂ (Dzu−Dxw)

Dyv −Dzw −Dxv

v (−γHx −Dy γ̂w) + Ez
µ0

−Dx
(
H − γ̂v2

)
v (−γ̂Hy − γ̂ (Dzu−Dxw))

. . .

. . .

Dx ε0Bz

Dxu−Dyv −Dy + ε0Bzu

−Hz (γ − 2) + γ̂Dyu−Dx (γ − 3) v Dx (γ − 2)− ε0Bz (γ − 3) v + ε0γ̂Byw

Dxw ε0 (−Byv +Bzw)

v (−γHz +Dy γ̂u)− Ex
µ0

+Dx
(
H − γ̂u2

)
v (−γDx + ε0γ̂Byw)−Hz + ε0Bz

(
H − γ̂u2

)
. . .

. . .

0 −ε0Bx

−Dx − ε0Bzv ε0 (−Bxu+Byv)

−γDy + ε0γ̂ (Bzu−Bxw) −Dx (γ − 2)− ε0γ̂Byu− ε0Bx (γ − 3) v

ε0Bxv −ε0Bxw

v (−γDy − ε0γ̂ (Bzu−Bxw)) v (−γDz − ε0By γ̂u) +H − x− ε0Bx
(
H − γ̂u2

)
. . .

. . .

0 0

0 0

0 0

0 0

0 0



(A.110)
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Âc,z =



Dy −Dx

−Hz +Dyu −Dxu+Dzw

Dyv −Dzw −Hz −Dxv

−Hx (γ − 2) +Dz γ̂v −Dy (γ − 3)w −Hy (γ − 2)−Dz γ̂u+Dx (γ − 3)w

w (−γHx +Dxγ̂v)−
Ey

µ0
+Dy

(
H − γ̂u2

)
w (−γHy −Dz γ̂uw) + Ex

µ0
−Dx

(
H − γ̂u2

)
. . .

. . .

0 −ε0By

−Hx −Dyw −Dz − ε0Byu

−Hy +Dxw ε0 (−Byv +Bzw)

−Hzγ + γ̂ (Dyu−Dxv) −Dx (γ − 2)− ε0γ̂Bxv + ε0By (γ − 3)w

− (γHz + γ̂ (Dyu−Dxv))w w (−γDx − ε0γ̂Bzv) +
By

µ0
− ε0By

(
H − γ̂u2

)
. . .

. . .

ε0Bx 0

ε0 (B − xu−Bzw) −Dx + ε0Byw

−Dz + ε0Bxv −Dy + ε0Bxw

−Dy (γ − 2) + ε0γ̂Bzu− ε0Bx (γ − 3)w −γDz − ε0γ̂ (Byu−Bxv)

w (−γDy + ε0γ̂u)− Bx
µ0

+ ε0Bx
(
H − γ̂u2

)
− (γDz + ε0γ̂ (Byu−Bxv))w

. . .

. . .

0 0

0 0

0 0

0 0

0 0



(A.111)

A.5.2 Eigenvalues

The eigenvalues for the strong conservative form are identical to those for the source-coupled form. They

are given in block matrix form as

Λ̂ =

 Λ̂f 0̂

0̂ Λ̂m

 (A.112)

where Λ̂f and Λ̂m are the diagonal matrices of eigenvalues for the fluid and Maxwell systems, given in

equations A.57 and A.80, respectively.

A.5.3 Eigenvectors

The eigenvectors for the strong conservative form may be written in block matrix form as

K̂ =

 K̂f K̂c

0̂ K̂m

 (A.113)

where K̂f and K̂m are the fluid and Maxwell normal-projected eigenvectors, given in equations A.61 and A.85,

respectively. The coupling eigenmatrix, K̂c, has a complicated form for the strong conservative system; it is
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zero for the source-coupled system.

K(1)
c,x =



0

−ε0 (By + Ez/c0)

ε0Bx

ε0Ex/c0

ε0 (Byc0 + Ez)


(A.114)

K(2)
c,x =



0

ε0 (Bz − Ey/c0)

ε0Ex/c0

−ε0Bx

ε0 (−Bxc0 + Ey)


(A.115)

K(3)
c,x =



0

ε0 (By + Ez/c0)

ε0Bx

−ε0Ex/c0

ε0 (By + Ez/c0)


(A.116)

K(4)
c,x =



0

ε0 (Bz + Ey/c0)

−ε0Ex/c0

−ε0Bx

ε0 (Bzc0 + Ey)


(A.117)

K
(5)
c,x =



%(Exγu+γ̂(Eyv+Ezw)+cχ(Exγ+γ̂(Bzv−Byw)))

cµ0(cχ+u)(−γp+%(cχ+u)2)

−χ%(Exγu+γ̂(Eyv+Ezw)+cχ(Exγ+γ̂(Bzv−Byw)))

µ0(cχ+u)(−γp+%(cχ+u)2)
Bzu(−γp+%(cχ+u)2)+Bzcχγ̂%v2+Ey(−%(cχ+u)2−%v2+γ(p+%v2))+%v(Exγ(cχ+u)−(Bycχ−Ez)γ̂w)

cµ0(cχ+u)(−γp+%(cχ+u)2)
−(Ez+Byu)(−γp+%(cχ+u)2)+%(Exγ(cχ+u)+(Bzcχ+Ey)γ̂v)w+(−Bycχ+Ez)γ̂%w

2

cµ0(cχ+u)(−γp+%(cχ+u)2)

− (Exγu+γ̂(Eyv+Ezw)+cχ(Exγ+γ̂(Bzv−Byw)))(%(−u(2cχ+u)+v2+w2)−γ(2p+%(−u(2cχ+u)+v2+w2)))
2cγ̂µ0(cχ+u)(−γp+%(cχ+u)2)


(A.118)

225



K
(6)
c,x =



%(Exγu+γ̂(Eyv+Ezw)−cχ(Exγ+γ̂(Bzv−Byw)))

cµ0(cχ−u)(−γp+%(−cχ+u)2)
χ%(Exγu+γ̂(Eyv+Ezw)−cχ(Exγ+γ̂(Bzv−Byw)))

µ0(cχ−u)(−γp+%(−cχ+u)2)
Bzu(−γp+%(−cχ+u)2)−Bzcχγ̂%v2+Ey(−%(−cχ+u)2−%v2+γ(p+%v2))+%v(Exγ(−cχ+u)+(Bycχ+Ez)γ̂w)

cµ0(cχ−u)(−γp+%(−cχ+u)2)
(Ez+Byu)(γp−%(−cχ+u)2)+%(Exγ(−cχ+u)+(−Bzcχ+Ey)γ̂v)w+(Bycχ+Ez)γ̂%w

2

cµ0(cχ−u)(−γp+%(−cχ+u)2)

− (−Exγu−γ̂(Eyv+Ezw)+cχ(Exγ+γ̂(Bzv−Byw)))(−%(2cχu−u2+v2+w2)+γ(2p+%(2cχu−u2+v2+w2)))
2cγ̂µ0(cχ−u)(−γp+%(−cχ+u)2)


(A.119)

K
(7)
c,x =



%(Bxcγ(cξ+u)+γ̂(Bycv−ξEzv+Bzcw+ξEyw))

c2µ0(cξ+u)(−γp+%(cξ+u)2)

− ξ%(Bxcγ(cξ+u)+γ̂(Bycv−ξEzv+Bzcw+ξEyw))

cµ0(cξ+u)(−γp+%(cξ+u)2)

−Ezu(−γp+%(cξ+u)2)+cξEz γ̂%v
2+Byc

2(%((cξ+u)2+v2)−γ(p+%v2))−c%v(Bxcγ(cξ+u)+(Bzc+ξEy)γ̂w)

c3µ0(cξ+u)(−γp+%(cξ+u)2)
−(Bzc

2−Eyu)(−γp+%(cξ+u)2)+c%(Bxcγ(cξ+u)+(Byc−ξEz)γ̂v)w+c(Bzc+ξEy)γ̂%w
2

c3µ0(cξ+u)(−γp+%(cξ+u)2)

− (Bxcγ(cξ+u)+γ̂(Bycv−ξEzv+Bzcw+ξEyw))(%(−u(2cξ+u)+v2+w2)−γ(2p+%(−u(2cξ+u)+v2+w2)))
2c2γ̂µ0(cξ+u)(−γp+%(cξ+u)2)


(A.120)

K
(8)
c,x =



%(Bxcγ(−cξ+u)+γ̂(Bycv+ξEzv+Bzcw−ξEyw))

c2µ0(cξ−u)(−γp+%(−cξ+u)2)
ξ%(Bxcγ(−cξ+u)+γ̂(Bycv+ξEzv+Bzcw−ξEyw))

cµ0(cξ−u)(−γp+%(−cξ+u)2)
Ezu(γp−%(−cξ+u)2)+cξEz γ̂%v

2+Byc
2(−%(−cξ+u)2−%v2+γ(p+%v2))+c%v(Bxcγ(−cξ+u)+(Bzc−ξEy)γ̂w)

c3µ0(cξ−u)(−γp+%(−cξ+u)2)
−(Bzc

2−Eyu)(−γp+%(−cξ+u)2)+c%(Bxcγ(−cξ+u)+(Byc+ξEz)γ̂v)w+c(Bzc−ξEy)γ̂%w
2

c3µ0(cξ−u)(−γp+%(−cξ+u)2)

− (Bxcγ(cξ−u)−γ̂(Bycv+ξEzv+Bzcw−ξEyw))(−%(2cξu−u2+v2+w2)+γ(2p+%(2cξu−u2+v2+w2)))
2c2γ̂µ0(cξ−u)(−γp+%(−cξ+u)2)


(A.121)

K
(1)
c,y =



Ey γ̂%w

c2µ0(c+v)(−γp+%(c+v)2)
−By+

Eyγ̂%uw

(c+v)(−γp+%(c+v)2)
c2µ0

−Ez+c

(
Bx− cEyγ̂%w

(c+v)(−γp+%(c+v)2)

)
c3µ0

Eyv(−γp+%(c+v)2)+cEy γ̂%w
2

c3µ0(c+v)(−γp+%(c+v)2)
−2(Bxc−Ez)(c+v)(−γp+%(c+v)2)+Ey(−%u2+%v(2c+v)+γ(2p+%(u2−v(2c+v))))w+Ey γ̂%w

3

2c2µ0(c+v)(−γp+%(c+v)2)


(A.122)

K
(2)
c,y =



By γ̂%w

cµ0(c+v)(−γp+%(c+v)2)

Ey+
Byc2γ̂%uw

(c+v)(−γp+%(c+v)2)
c3µ0

−
Bzc+Ex

c3
+

Byγ̂%w

(c+v)(−γp+%(c+v)2)
µ0

Byv(−γp+%(c+v)2)+Bycγ̂%w
2

c2µ0(c+v)(−γp+%(c+v)2)
2(Bzc+Ex)(c+v)(−γp+%(c+v)2)+Byc(−%u2+%v(2c+v)+γ(2p+%(u2−v(2c+v))))w+Bycγ̂%w

3

2c2µ0(c+v)(−γp+%(c+v)2)


(A.123)
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K
(3)
c,y =



− Ey γ̂%w

c2µ0(−γp+%(c−v)2)(c−v)

−
By+

Eyγ̂%uw

(−γp+%(c−v)2)(c−v)

c2µ0

Ez+c

(
Bx− cEyγ̂%w

(−γp+%(c−v)2)(c−v)

)
c3µ0

Ey(−γp+%(c−v)2)v−cEy γ̂%w
2

c3µ0(−γp+%(c−v)2)(c−v)

2(Bxc+Ez)(−γp+%(c−v)2)(c−v)+Ey(−2γp+%u2−γ%u2−2cγ̂%v+γ̂%v2)w−Ey γ̂%w
3

2c2µ0(−γp+%(c−v)2)(c−v)


(A.124)

K
(4)
c,y =



By γ̂%w

cµ0(−γp+%(c−v)2)(c−v)

−Ey+
Byc2γ̂%uw

(−γp+%(c−v)2)(c−v)

c3µ0
−Bzc+Ex

c3
+

Byγ̂%w

(−γp+%(c−v)2)(c−v)

µ0
By(γp−%(c−v)2)v+Bycγ̂%w

2

c2µ0(−γp+%(c−v)2)(c−v)

−2(Bzc−Ex)(−γp+%(c−v)2)(c−v)+Byc(2γp−%u2+γ%u2+2cγ̂%v−γ̂%v2)w+Bycγ̂%w
3

2c2µ0(−γp+%(c−v)2)(c−v)


(A.125)

K
(5)
c,y =



%(Exγ̂u+Eyγv+cχ(Eyγ−γ̂(Bzu−Bxw)))

cµ0(cχ+v)(−γp+%(cχ+v)2)
−Bzc2χ2%v+v

(
Bzγp+Eyγ%u−Bz%v2

)
+Ex

(
γ
(
p+%u2

)
−%
(
u2+(cχ+v)2

))
+cχ%

(
Eyγu+Bz

(
u2−γu2−2v2

)
+Bxγ̂uw

)
cµ0(cχ+v)(−γp+%(cχ+v)2)

−χ%(Exγ̂u+Eyγv+cχ(Eyγ−γ̂(Bzu−Bxw)))

µ0(cχ+v)(−γp+%(cχ+v)2)
Bxv

(
−γp+%(cχ+v)2

)
+%(Exγ̂u+cχ(Eyγ+Bzu−Bzγu)+Eyγv)w+Bxcχγ̂%w2

cµ0(cχ+v)(−γp+%(cχ+v)2)

−
(Exγ̂u+Eyγv+cχ(Eyγ−γ̂(Bzu−Bxw)))

(
%
(
u2−v(2cχ+v)+w2

)
−γ

(
2p+%

(
u2−v(2cχ+v)+w2

)))
2cγ̂µ0(cχ+v)(−γp+%(cχ+v)2)


(A.126)

K
(6)
c,y =



%(Exγ̂u+Eyγv−cχ(Eyγ−γ̂(Bzu−Bxw)))

cµ0(cχ−v)(−γp+%(−cχ+v)2)
−Bzc2χ2%v+v

(
Bzγp+Eyγ%u−Bz%v2

)
+Ex

(
γ
(
p+%u2

)
−%
(
u2+(−cχ+v)2

))
+cχ%

(
−Eyγu+Bzγ̂u2+2Bzv2−Bxγ̂uw

)
cµ0(cχ−v)(−γp+%(−cχ+v)2)

χ%(Exγ̂u+Eyγv−cχ(Eyγ−γ̂(Bzu−Bxw)))

µ0(cχ−v)(−γp+%(−cχ+v)2)
Bxv

(
−γp+%(−cχ+v)2

)
+%(Exγ̂u+cχ(−Eyγ+Bzγ̂u)+Eyγv)w−Bxcχγ̂%w2

cµ0(cχ−v)(−γp+%(−cχ+v)2)
(Exγ̂u+Eyγv−cχ(Eyγ−γ̂(Bzu−Bxw)))

(
−%
(
u2+2cχv−v2+w2

)
+γ

(
2p+%

(
u2+2cχv−v2+w2

)))
2cγ̂µ0(cχ−v)(−γp+%(−cχ+v)2)


(A.127)

K
(7)
c,y =



%(Bycγ(cξ+v)+γ̂(Bxcu+ξEzu−ξExw))

c2µ0(cξ+v)(−γp+%(cξ+v)2)
Byc

2γ%u(cξ+v)+Ez(−γpv+c2ξ2%v+%v3+cξ%(γ̂u2+2v2))−Bxc2(−γ(p+%u2)+%(u2+(cξ+v)2))−cξExγ̂%uw

c3µ0(cξ+v)(−γp+%(cξ+v)2)

− ξ%(Bycγ(cξ+v)+γ̂(Bxcu+ξEzu−ξExw))

cµ0(cξ+v)(−γp+%(cξ+v)2)
−Exv(−γp+%(cξ+v)2)+c%((Bxc+ξEz)γ̂u+Bycγ(cξ+v))w−cξExγ̂%w2

c3µ0(cξ+v)(−γp+%(cξ+v)2)

− (Bycγ(cξ+v)+γ̂(Bxcu+ξEzu−ξExw))(%(u2−v(2cξ+v)+w2)−γ(2p+%(u2−v(2cξ+v)+w2)))
2c2γ̂µ0(cξ+v)(−γp+%(cξ+v)2)


(A.128)
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K
(8)
c,y =



%(Bycγ(−cξ+v)+γ̂(Bxcu−ξEzu+ξExw))

c2µ0(cξ−v)(−γp+%(−cξ+v)2)
Byc2γ%u(−cξ+v)+Ez

(
−γpv+c2ξ2%v+%v3+cξ%

(
u2−γu2−2v2

))
+Bxc2

(
γ
(
p+%u2

)
−%
(
u2+(−cξ+v)2

))
+cξExγ̂%uw

c3µ0(cξ−v)(−γp+%(−cξ+v)2)
ξ%(Bycγ(−cξ+v)+γ̂(Bxcu−ξEzu+ξExw))

cµ0(cξ−v)(−γp+%(−cξ+v)2)
Exv

(
γp−%(−cξ+v)2

)
+c%((Bxc−ξEz)γ̂u+Bycγ(−cξ+v))w+cξExγ̂%w2

c3µ0(cξ−v)(−γp+%(−cξ+v)2)

−
(Bycγ(cξ−v)−γ̂(Bxcu−ξEzu+ξExw))

(
−%
(
u2+2cξv−v2+w2

)
+γ

(
2p+%

(
u2+2cξv−v2+w2

)))
2c2γ̂µ0(cξ−v)(−γp+%(−cξ+v)2)


(A.129)

K(1)
c,z =



0

Bz

c2µ0

Ez

c3µ0

−Bxc+Ey

c3µ0

Bxc+Ey

c2µ0


(A.130)

K(2)
c,z =



0

Ez

c3µ0

− Bz

c2µ0

Byc−Ex

c3µ0

−Byc+Ex

c2µ0


(A.131)

K(3)
c,z =



0

Bz

c2µ0

− Ez

c3µ0

−Bxc+Ey

c3µ0

−Bxc+Ey

c2µ0


(A.132)

K(4)
c,z =



0

− Ez

c3µ0

− Bz

c2µ0

Byc+Ex

c3µ0

Byc+Ex

c2µ0


(A.133)
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K
(5)
c,z =



%(γ̂(Exu+Eyv)+cχ(Ezγ+γ̂(Byu−Bxv))+Ezγw)

cµ0(cχ+w)(−γp+%(cχ+w)2)
%u(cχ(Ezγ+Byγ̂u)+(−Bxcχ+Ey)γ̂v)+

(
−Byγp+Byc2χ2%+Ezγ%u

)
w+2Bycχ%w2+By%w3+Ex

(
γ
(
p+%u2

)
−%
(
u2+(cχ+w)2

))
cµ0(cχ+w)(−γp+%(cχ+w)2)

%v(Exγ̂u+cχ(Ezγ+γ̂(Byu−Bxv)))+
(
Bxγp−Bxc2χ2%+Ezγ%v

)
w−2Bxcχ%w2−Bx%w3+Ey

(
γ
(
p+%v2

)
−%
(
v2+(cχ+w)2

))
cµ0(cχ+w)(−γp+%(cχ+w)2)

−χ%(γ̂(Exu+Eyv)+cχ(Ezγ+γ̂(Byu−Bxv))+Ezγw)

µ0(cχ+w)(−γp+%(cχ+w)2)

−
(γ̂(Exu+Eyv)+cχ(Ezγ+γ̂(Byu−Bxv))+Ezγw)

(
%
(
u2+v2−w(2cχ+w)

)
−γ

(
2p+%

(
u2+v2−w(2cχ+w)

)))
2cγ̂µ0(cχ+w)(−γp+%(cχ+w)2)


(A.134)

K
(6)
c,z =



%(γ̂(Exu+Eyv)−cχ(Ezγ+γ̂(Byu−Bxv))+Ezγw)

cµ0(cχ−w)(−γp+%(−cχ+w)2)
%u(−cχ(Ezγ+Byγ̂u)+(Bxcχ+Ey)γ̂v)+

(
−Byγp+Byc2χ2%+Ezγ%u

)
w−2Bycχ%w2+By%w3+Ex

(
γ
(
p+%u2

)
−%
(
u2+(−cχ+w)2

))
cµ0(cχ−w)(−γp+%(−cχ+w)2)

%v(Exγ̂u−cχ(Ezγ+γ̂(Byu−Bxv)))+
(
Bxγp−Bxc2χ2%+Ezγ%v

)
w+2Bxcχ%w2−Bx%w3+Ey

(
γ
(
p+%v2

)
−%
(
v2+(−cχ+w)2

))
cµ0(cχ−w)(−γp+%(−cχ+w)2)

χ%(γ̂(Exu+Eyv)−cχ(Ezγ+γ̂(Byu−Bxv))+Ezγw)

µ0(cχ−w)(−γp+%(−cχ+w)2)

−
(−γ̂(Exu+Eyv)+cχ(Ezγ+γ̂(Byu−Bxv))−Ezγw)

(
−%
(
u2+v2+2cχw−w2

)
+γ

(
2p+%

(
u2+v2+2cχw−w2

)))
2cγ̂µ0(cχ−w)(−γp+%(−cχ+w)2)


(A.135)

K
(7)
c,z =



%(γ̂(Bxcu−ξEyu+Bycv+ξExv)+Bzcγ(cξ+w))

c2µ0(cξ+w)(−γp+%(cξ+w)2)
cγ̂%u(−ξEyu+Bycv+ξExv)+Ey

(
γp−c2ξ2%

)
w−2cξEy%w2−Ey%w3+Bzc2γ%u(cξ+w)−Bxc2

(
−γ

(
p+%u2

)
+%
(
u2+(cξ+w)2

))
c3µ0(cξ+w)(−γp+%(cξ+w)2)

cγ̂%v(Bxcu−ξEyu+ξExv)+Ex

(
−γp+c2ξ2%

)
w+2cξEx%w2+Ex%w3+Bzc2γ%v(cξ+w)−Byc2

(
−γ

(
p+%v2

)
+%
(
v2+(cξ+w)2

))
c3µ0(cξ+w)(−γp+%(cξ+w)2)

− ξ%(γ̂(Bxcu−ξEyu+Bycv+ξExv)+Bzcγ(cξ+w))

cµ0(cξ+w)(−γp+%(cξ+w)2)

−
(γ̂(Bxcu−ξEyu+Bycv+ξExv)+Bzcγ(cξ+w))

(
%
(
u2+v2−w(2cξ+w)

)
−γ

(
2p+%

(
u2+v2−w(2cξ+w)

)))
2c2γ̂µ0(cξ+w)(−γp+%(cξ+w)2)


(A.136)

K
(8)
c,z =



%(γ̂(Bxcu+ξEyu+Bycv−ξExv)+Bzcγ(−cξ+w))

c2µ0(cξ−w)(−γp+%(−cξ+w)2)
cγ̂%u(ξEyu+Bycv−ξExv)+Ey

(
γp−c2ξ2%

)
w+2cξEy%w2−Ey%w3+Bzc2γ%u(−cξ+w)+Bxc2

(
γ
(
p+%u2

)
−%
(
u2+(−cξ+w)2

))
c3µ0(cξ−w)(−γp+%(−cξ+w)2)

cγ̂%v(Bxcu+ξEyu−ξExv)+Ex

(
−γp+c2ξ2%

)
w−2cξEx%w2+Ex%w3+Bzc2γ%v(−cξ+w)+Byc2

(
γ
(
p+%v2

)
−%
(
v2+(−cξ+w)2

))
c3µ0(cξ−w)(−γp+%(−cξ+w)2)

ξ%(γ̂(Bxcu+ξEyu+Bycv−ξExv)+Bzcγ(−cξ+w))

cµ0(cξ−w)(−γp+%(−cξ+w)2)

−
(−γ̂(Bxcu+ξEyu+Bycv−ξExv)+Bzcγ(cξ−w))

(
−%
(
u2+v2+2cξw−w2

)
+γ

(
2p+%

(
u2+v2+2cξw−w2

)))
2c2γ̂µ0(cξ−w)(−γp+%(−cξ+w)2)


(A.137)

The matrices K̂x, K̂y and K̂z comprised of the above column eigenvectors, along with its inverse matrix

and the diagonal matrix given in equation A.112 (where q becomes u, v or w depending on the direction)

can be shown to fully diagonalize the jacobian matrix presented in equation A.108.

A.5.4 Jacobian Matrices for Implicit Scheme

The implicit scheme described in Section 5.9 outlines a procedure for updating the plasmadynamic equations,

but requires the calculation of the matrices Γ̂, ∂U/∂Q and ∂R/∂Q. For simplicity of presentation, we assume

that the flux vector, F, is only updated explicitly every timestep, such that the residual Jacobian becomes

∂R/∂Q = ∂H/∂Q. Below, we present the forms of these matrices used in the investigations detailed in
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Chapters 5 and 6.

Γ̂ =



1 0 0 0 0 0 0 0 0 0 0 0 0

u % 0 0 0 0 −Ez Ey 0 Bz −By 0 0

v 0 % 0 0 Ez 0 −Ex −Bz 0 Bx 0 0

w 0 0 % 0 −Ey Ex 0 By −Bx 0 0 0

V 2/2 %u %v %w 1/γ̂ Bx/µ0 By/µ0 Bz/µ0 Ex Ey Ez 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 β−2 0 0 0 0

0 0 0 0 0 0 0 0 0 β−2 0 0 0

0 0 0 0 0 0 0 0 0 0 β−2 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1



(A.138)

where V 2 = u2 + v2 +w2, γ̂ = γ− 1, E = E/(c20µ0), B = B/(c20µ0), and β is the preconditioning parameter.

The jacobian matrix ∂U/∂Q is

∂U

∂Q
=



1 0 0 0 0 0 0 0 0 0 0 0 0

u % 0 0 0 0 −Ez Ey 0 Bz −By 0 0

v 0 % 0 0 Ez 0 −Ex −Bz 0 Bx 0 0

w 0 0 % 0 −Ey Ex 0 By −Bx 0 0 0

V 2/2 %u %v %w 1/γ̂ Bx/µ0 By/µ0 Bz/µ0 Ex Ey Ez 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0



(A.139)

where V 2 = u2+v2+w2, γ̂ = γ−1, E = E/(c20µ0) and B = B/(c20µ0). The source jacobian matrix, ∂H/∂Q,
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is

∂H

∂Q
=

σ

ε0



0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −Bz By 0 0 w −v −1 0 0 0 0

0 Bz 0 −Bx 0 −w 0 u 0 −1 0 0 0

0 −By Bx 0 0 v −u 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0



(A.140)
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