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ABSTRACT 

The geology of the western Inner Piedmont of North Carolina, from knowle dge gained in 

an area called the Columbus Promontory, is characterized by a stack of crystalline thrust sheets. 

In this study the stratigraphic, structural, and metamorphic development of this crystalline thrust 

terrane was examined. 

The frthostratigraphic framework of the Columbus Promontory is divisible into four distinct 

and mappable rock units that inclu de the Hen derson Gneiss, Sugarloaf gneiss, Poor Mountain 

Formation, and the Mill Spring complex. This lithostratigraphic framework helps define three 

crystalline thrust sheets within the Columbus Promontory herein, calle d the Tumblebug Creek, 

Sugarloaf Mountain, an d Mill Spring thrust sheets. Rocks of the Poor Mountain Formation and 

Mill Spring complex are similar to lithostratigraphic units recognized elsewhere in the southern 

Appalachian eastern Blue Ridge and Inner Piedmont. Similarities in physical stratigraphy indicate 

that the Poor Mountain Formation and Mill Spring complex rocks are representatives of two 

regionally extensive ( Virginia to Alabama) lithostratigraphic sequences that record deep- to 

shallow-water deposition along the Laurentian margin an d inclu de: a lower sequence consisting 

of Lynchburg-Ashe-Tallulah Falls- Mill Spring- San dy Springs/New Georgia-type rocks, an d an 

upper sequence consisting of Evington-Alligator Back-Coweeta-Chauga River/Poor Mountain­

Jackson's Gap/Ropes Creek-type rocks. By analogy to these rocks, the Poor Mountain 

Formation and Mill Spring complex are also interpreted as part of the deep-water facies rocks 

deposited along the Laurentian margin. Including the rocks of the Columbus Promontory into 

this regionally correlative lithostratigraphy further supports previous interpretations ( Hatcher, 

1978a, 1989) that the same lithostratigraphy occurs in the eastern Blue Ridge and Inner 

Piedmont. In a ddition, this correlation also supports the interpretation ( Hatcher, 1978a, 1989) 

that the same rock units occur on both sides of the Brevard fault zone and suggests that this 
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feature, although recognized as a major structural discontinuity, does not represent a terrane 

boundary. 

Amphibolite comprises a significant component of the lithostratigraphy of the Columbus 

Promontory and is intercalated with other lithostratigraphic units of the Poor Mountain Formation 

and Mill Spring complex. Because relict igneous textures, sedimentary features, and contact 

relationships have been destroyed by high grade regional metamorphism and transposition, a 

whole-rock geochemical approach was undertaken to determine the protolith as well as 

fractionation trends, and possible paleotectonic settings. Niggli trends, AF M relationships, and 

normative mineralogy suggest an igneous protolith for amphibolite in both stratigraphic units, 

which was tholeiitic basalt. Covariation diagrams indicate that both suites are fractionated and that 

the trends can be explained by fractionation of olivine, plagioclase, clinopyroxene, garnet, and 

magnetite. This assemblage is similar to the low-pressure fractionation sequence commonly 

observed in mid-ocean ridg es and suggests the Columbus Promontory arnphibolites are MOA B. 

ZriNb, YINb ratios further define the suite as N-type MOA B, with a possible P-type MOA B 

component. Other tectonomagmatic discriminant diagrams employed in this study indicate a 

correlation of the Columbus Promontory suite primarily with ocean-floor basalts, but also indicate 

some island-arc influence. The possibility of mixed N-and P-type MOA B components 

suggests extrusion of these basalts along a mid4:1cean ridge adjacent to a mantle plume, 

whereas the combination of MOA B and island-arc character istics indicate a back-arc basin 

setting. In either case, an oceanic setting is indicated for the Columbus Promontory suite. 

These observations further support the interpretation that the Poor Mountain Formation, Mill 

Spring complex, and correlative rock units in the eastern Blue Ridge and Inner Piedmont were 

deposited, at least partly, on oceanic aust. 

The dominant structure of the western Inner Piedmont of North Carolina, South Carolina, 

and northeast Georgia is a stack of penetratively deformed ductile to semi-brittle crystalline thrust 

sheets. The structural development of this part of the Inner Piedmont is examined herein using 
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data from crystalline thrust sheets in the Columbus Promontory in North Carolina, and the 

Tamassee area in adjacent South Carolina and NE Georgia. Structural analysis in both areas 

reveals a regionally consistent, five-phase deformation history. Although the western Inner 

Piedmont is polydeformed (01 to Os). the 02 and Oa episodes were the most important and 

represent a deformation continuum. D2 was penetrative and syn chronous with the principal 

(Acadian?) metamorphic event in the western Inner Piedmont. 03 generally represents late-to 

post-peak final emplacement of thrust sheets as coherent masses. The emplacement history 

and internal deformation of this crystalline thrust complex involved coeval 02 - 1>.3 orogen-

parallel ( SW-directed) displacement within the westernmost Inner Piedmont and Brevard fault 

zone and orogen-oblique (W- directed) displacement in thrust sheets in the Inner Piedmont. 

Importantly, this geometry indicates that early (middle Paleozoic) Brevard fault zone motion was 

kinematically linked to the crystalline thrust sheets in the adjacent Inner Piedmont. It is proposed 

that these domin ant flow paths (W and SW directed) in the foreshortening crust were driven by 

large-scale transpression or oblique convergence during the amalgamation of the crystalline 

southern Appalachians. S2 mylonitic foliation is the most characteristic and kinematically 

Important structural element within the Inner Piedmont. 82 also strongly controlled development 

of other 02 - 1>.3 structural elements in the western Inner Piedmont. Internal deformation and 

variations in orientation, kinematics, and geometry of 02 - 03 structural features are interpreted 

to result from gradients of flow within S2. This resulted in a partitioned thrust-wrench tr ansport 

parallel to the plane of S2 mylonitic foliation driven by larger-scale tectonic processes. These 

observations indicate that 82 is a regionally extensive shear surface along which extensive D2 -

03 displacement occurred and suggests the Inner Piedmont represents a region of crustal-scale 

shear. 

The metamorphic history, and the relationship between metamorphism and deformation 

in the thrust sheets of the Columbus Promontory are best recorded by pelitic schist within the 

Sugarloaf Mountain thrust sheet. The Sugarloaf Mountain sheet thrust rocks of the Poor 
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Mountain Formation and upper Mill Spring complex over the Henderson Gneiss and other rocks 

of the western Inner Piedmont. Pelitic schist in the Sugarloaf Mountain thrust sheet contain a 

sillimanite-muscovite assemblage that is characteristic of thrust sheets throughout the western 

Inner Piedmont (e.g., Alto allochthon, Six Mile thrust sheet). Metamorphic textures and mineral 

zoning suggest sillimanite growth was the result of continuous reactions involving both garnet 

consumption and garnet growth following the metamorphic peak. These relationships also 

suggest that this sillimanite-muscovite assemblage is a post-peak rather than a prograde or peak 

metamorphic assemblage. Metamorphic textures and microstructural analysis indicate that growth 

of the sillimanite-muscovite was synkinematic with development of microstructures related to 

emplacement of the Sugarloaf Mountain thrust sheet. The implication of these observations is 

that emplacement of the Sugarloaf Mountain thrust sheet occurred along the retrograde portion 

of the P-T path followed by these rocks. Qualitative constraints on the nature of this retrograde 

P-T path, gained from field criteria, petrographic observations, mineral zoning and 

geothermobarometric estimates, indicate a general path of decompression and cooling, but with 

episodes of near isobaric cooling. 
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CHAPTER 

INTRODUCT ION 

The southern Appalachian orogen (Fig. 1-1) is sub divi de d  into several tectonic regions 

that inclu de from west to east the Valley an d Ridge, Blue Ri dge, Inner Piedmont, and Carolina 

Terrane (King, 1955; Hatcher, 1972, 1978a, 1987, 1989). The Inner Pie dmont represents the 

high grade migmatitic core of the orogen originally defined by King (1955) as the highly deformed 

an d metamorphosed terrane boun ded on the northwest by the Brevar d fault zone and on to the 

southeast by the Kings Mountain belt, later recognize d to contain the central Piedmont suture 

( Hatcher and Zeitz, 1980; Hatcher, 1989; Hatcher and others, 1990). King's definition 

encompasses both the Inner Piedmont and the Chauga belt ( Fig. 1-1), define d by Hatcher 

(1972) as a synclinorium within the western Inner Piedmont of South Carolina, which contains 

lower-gra de rocks at higher structural and stratigraphic levels than the a djacent Blue Ri dge an d 

Inner Piedmont. 

Inner Piedmont lithostratigraphy consists of an assemblage of high gra de ortho-an d 

paragneiss intru de d  by pre-, syn-, an d postkinematic plutons. The protoliths of the Inner 

Pie dmont rocks consisted presumably of immature quartzofel dspathic an d pelitic se diments, an d 

mafic volcanic rocks. Although no precise ages have been determine d, regional 

lithostratigraphic correlation (Rankin, 1970, 1975; Hatcher, 1978a; 1987, 1989; Hatcher an d 

Goldberg, 1990), and basement-cover relationships (Rankin 1975, Hatcher 1973, McConnell 

1988, Stieve 1989), indicate they are probably Late Proterozoic or early Paleozoic. Correlation 

of the lithostratigraphy of the Inner Piedmont with that of the eastern Blue Ridge is one of the 

most controversial issue in the crystalline southern Appalachians (e.g., comp are Hatcher, 1989; 

Hatcher an d others, 1990 ; versus Horton an d others, 1989; Rankin an d others, 1989). 



2 

Figure 1-1. Tectonic subdivisions of the sout hern Appalac hians s howing t he location of t he 

Columbus Promontory (C P). Also s hown is t he Tamassee area (T) in the Inner 

Piedmont of Sout h Carolina and NE Georgia discussed in C hapter IV. 
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The Inner Piedmont of South Carolina an d NE Georgia was subdivi de d  by Griffin (1967, 

1969, 1971a, 1974a, 1974b) into a stack of fold nappes inclu ding the Walhalla, Six Mile, an d 

An derson nappes. Accor ding to Griffin (1971a, 1974a), this nappe complex is characterized by 

kyanite-gra de NW an d SE flanks (ky anite-bearing) separated by a sillim anite-grade core. This 

nappe sequence was thought by Griffin (1971b) to be bor dere d to the west by a structurally 

higher and lower gra de assemblage (Chauga belt) comprising suprastructure an d 

abscherungzone (e.g., Haller, 1956) distinct from the higher grade infrastructure represente d by 

the nappe sequence. Hatcher an d Odom (1980) suggested a complex history of NW-<Iirecte d 

pre-, syn-, and postmetamorphic thrusting in the Inner Piedmont. Studies by Lemmon (1973), 

Nelson and others (1987), Gol dsmith and others (1988), Hopson an d Hatcher (1988), Higgins 

and others (1988), Horton and McConnell (1990), Davis and others (1989, 1990a), and Tabor 

and others (1990) in dicate the Inner Piedmont in the Carolinas an d northeast Georgia is in dee d 

composed of a crystalline thrust stack similar to the imbricate stacks of medium-to high-grade 

crystalline thrust sheets observed in Sc andinavia (Gee, 1978; Gee an d Sturt, 1983), in the 

Grenville province (Cutshaw an d others, 1988; Hanmer 1988), an d in the Himalayas ( Hubbar d, 

1989, Treolar and others, 1989). 

Inner Piedmont thrust sheets are boun de d  to the northwest by the Brevard fault zone 

(Rg. 1-1), traceable 600 lan from Alab ama to Virginia The Brevard fault zone separat es the Blue 

Ridge from the Inner Piedmont ( Reed an d Bryant 1964), an d has tong been recognized as a 

major crustal break (Jonas, 1932, King, 1955, Reed and Bryant, 1964; Butler , 1971; Bryant 

an d Reed, 1970; Bird an d Dewey, 1970; O dom and Fullagar, 1973; Horton, 1974, 1982; 

Horton an d Butter 1986; Hatcher, 1971b, 1972, 1978b, 1987, 1989). At least three major 

deformational events in the Brevard fault zone have been recognized:  early thrusting (Jonas, 

1932, Bentley and Neathery, 1970; Hatcher, 1971b, 1972; Stirewalt an d Dunn , 1973; Roper 

and Justus, 1973); dextral strike slip (Reed an d Bryant, 1964, Bobyarchik, 1984, E delman and 

others, 1987; Evans an d Mosher, 1986; an d Bobyarchik an d others, 1988); an d brittle thrusting 
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during the Rosman phase ( Horton 1974, 1982; Horton and Butler, 1986, Edelman and others, 

1987; Hatcher and others, 1989). Most studies have treated the structural development of the 

Brevard fault zone and the thrusting in the adjacent Inner Piedmont separately. 

Metamorphism in the Inner Piedmont is generally characterized as part of a Barrovian 

sequence that includes prograde middle-to upper amphibolite facies event followed by a 

retrograde episode. The central part of the Inner Piedmont is in the sillimanite + muscovite zone, 

flanked by lower grade rocks of Chauga belt (garnet-staurolite) and Kings Mountain belt ( Butler 

1990). The age of metamorphism in the Inner Piedmont is not fully understood. Glover and 

others (1983), Hatcher (1987), and Butler (1990) have speculated that both Taconi an and 

Acadi an metamorphic episodes may have affected much of the Inner Piedmont. 

Despite the general geologic understanding of the Inner Piedmont outlined above, this 

terrane remains one of the most poorly understood regions in the southern Appalachian orogen. 

This problem is not only the result of its complex geologic history, but also the result of the 

general Jack of widespread detailed geologic mapping that resolves lithostratigraphic, structural, 

and metamorphic relationships, and few geochronological (either fossil or radiometric) 

constraints. The purpose of this study is a detailed examination of the lithostratigraphic, 

structural, and metamorphic development of a crystalline thrust complex within the western Inner 

Piedmont of North Carolina from an area herein called the Columbus Promontory. This complex 

contains three crystalline thrust sheets that include the Tumblebug Creek, Sugarloaf Mountain, 

and Mill Spring thrust sheets (Fig. 1-2; Plates I, I I, Ill). Each thrust sheet contains a distinct 

lithostratigraphy, but records similar structural and metamorphic history. 

The Columbus Promontory is located in a high relief (7Q0- 1000 m) area of Blue Ridge 

topography within the Inner Piedmont that produces continuity of outcrop atypical of the Inner 

Piedmont (Figs 1-3) and thus is an outstanding area for study of the complex geologic history of 

crystalline thrust sheet development in the Inner Piedmont. The Columbus Promontory, as 

defined here, extends from the Brevard fault zone approximately 40 km into the Inner Piedmont 
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Fig. 1-2. Geologic map (a) and cross section (b) of the Columbus Promontory. Unpatterned­

Henderson Gneiss. cross hatch -438 Ma granitic gneiss. crosses - Sugarloaf gneiss. 

black - Poor Mountain Formation quartzite. dark gray - Poor Mountain amphibolite. 

light gray - Poor Mountain pelitic schist. horizontal li nes - Mi ll Spri ng complex 

migmatitic biotite gneiss - metagraywacke. vertical lines - Mi ll Spring complex 

migmatitic metagraywacke-amphibolite-amphibole gneiss. BFZ- Brevard fault zone; 

TCT- Tumblebug Creek thrust; SMT - Sugarloaf Mountain thrust; MST- Mi ll Spring 

thrust. Teethed lines are thrust faults (teeth on hanging wall) Map compi led from 

Lemmon 1973, unpublished data of Conley and Drummond (1975) and unpublished 

data of Davis (1987-1990), Tabor (1988-1990) and Yanagihara (1990-1992). 
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kilometer• 
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Ftgure 1-3. U.S. Geological Survey Eros Data Center radar mosaic (near range) of the southeast 

comer of the Knoxville 1 o x 2° sheet that shows the high relief of the Columbus 

Promontory. Diagram on the right outlines the area included in the Columbus 

Promontory. 
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BLUE RIDGE 
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(Rgs. 1-1 and 1-3). This area encompasses seven 7 �minute quadrangles including 

the Bat Cave, Cliffietd Mountain, Fruitland, Hendersonville, Lake Lure, Mill Spring, and Saluda 

quadrangles (Rg. 1-4). The study area incorporates geologic features of both the Chauga belt of 

Hatcher (1972) and the parts of the high grade Inner Piedmont (Rg 1-1 ). The majority of data 

used to examine the lithostratigraphic, structural and metamorphic history of the Columbus 

Promontory comes from the Bat Cave, Cliffield Mountain, Hendersonville, Lake Lure, Mill 

Spring, and Saluda quadrangles. Data form the Fruitland quadrangle (Lemmon and Dunn, 

1973b) was only used for the structural aspect of this study. 

This study represents an integrated field, petrographic, and analytical investigation of 

rocks within the crystalline complex of the Columbus Promontory. Consequently , this 

investigation has resulted in a considerable amount of new geologic data for the Inner Piedmont, 

but also includes the compilation and incorporation of a signHicant amount of previous work. The 

field portion of the study involved 1 :24,000 scale geologic mapping in the seven 7� minute 

quadrangles discussed above. The geologic mapping effort (shown in Plates I, II, and Ill) 

incorporates the results of my recent work, primarily in the Cliffield Mountain and Saluda 

quadrangles, with previous work of Lemmon (1973), and Lemmon and Dunn (1973a) in the Bat 

Cave, Fruitland (Lemmon and Dunn, 1973b) and Hendersonville (Lemmon, unpublished data) 

quadrangles, unpublished work of Conley and Drummond (1975) in Polk County, North Carolina, 

and the unpublished work of Tabor (1988-1990) in portions of the Mill Spring and Lake Lure 

quadrangles. Petrographic analysis involved examination of nearly two hundred thin sections 

from samples collected during the field portion of this study. These were used for modal 

estimations, microstructural analysis, quartz-c axis measurements, and determining 

metamorphic assemblages. Also included is this part of the study is the previous petrographic 

work (modal analysis) of Lemmon (1973). The analytical portion of the study included XRF 

analysis of amphibolite from the Poor Mountain Formation and the Mill Spring complex. Analytical 
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Agure 1-4. Index to topographic quadrangles Included as part of the Columbus Promontory. 
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analysis also included electron microprobe analysis of polished minerals (thin sections) from 

samples of pelitic schist from the Poor Mountain Formation and Mill Spring complex. 

In discussing the development of the crystalline thrust terrane present in the Columbus 

Promontory, this study is divided into four subject chapters ( II, Ill. IV, and V). The major 

conclusions of this study are summarized in Chapter V I. 

Chapter I I  addresses the lithostratigraphic framework within the crystalline thrusts sheets 

present in the Columbus Promontory. Also included in this chapter is a discussion of the regional 

correlation of rock units in the Columbus Promontory with other parts of the eastern Blue Ridge 

and the Inner Piedmont and the tectonic implications of these correlations. Chapter Ill continues 

with the stratigraphic theme, but focuses on the geochemical characteristics of the mafic rocks 

interleaved within the two domin ant lithostratigraphic units ( Poor Mountain Formation and Mill 

Spring complex) that are present in the study area. In this chapter I attempt to : 1) elucidate the 

protolith of the Poor Mountain and Mill Spring complex amphibolites; 2) determine fractionation 

trends, suggest possible plate tectonic settings from which the amphibolite were generated; 

and, 3) ex amine the regional relationships of mafic rocks in the crystalline southern Appalachians. 

The focus of Chapter IV is on the deformational history and kinematics of emplacement of 

the crystalline thrust sheets in the western Piedmont of the Carolinas and NE Georgia. This 

chapter incorporates the results of my work in the Columbus Promontory with that of an area to 

the southwest in South Carolina and NE Georgia referred to as the Tamassee area (Fig. 1-1 )  that 

has been studied by Dr. R. D., Hatcher, Jr., and former students for over twenty years. In this 

chapter evidence is presented indicating that early SW-directed Brevard fault zone movement 

was synchronous and coupled with W-directed thrust sheet emplacement in the adjacent Inner 

Piedmont. It is suggested that this linked displacement, between the Brevard fault zone and 

ductile crystalline thrust sheets of the western Inner Piedmont, is the result of one a pre­

Alleghanian orogeny transpressional or oblique convergence event in the crystalline southern 
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Appalachians. In addition, this chapter attempts to show the kinematic importance of the 

regionally extensive subhorizontal � mylonitic foliation, which is the most characteristic structural 

element in the western Inner Piedmont, on thrust sheet emplacement and development of 

associated micro-and mesoscopic structures in this part of the Inner Piedmont. 

Chapter V examines the metamorphic and microstructural development of sillimanite­

muscovite bearing pelitic schist in the Poor Mountain Formation and Mill Spring complex within 

the Sugarloaf Mountain thrust sheet. This chapters examines the petrogenetic development of 

this assemblage, attempts to document the synkinematic relationship between deformation and 

metamorphism during thrust sheet emplacement in this area, and presents qualitative constraints 

on the P-T path related to emplacement of the Sugarloaf Mountain thrust sheet. 



1 5  

CHAPTER II 

LITHOSTRATIGRAPHY OF THE COLUMBUS PROMONTORY, 

WESTERN INNER PIEDMONT, NORTH CAROLINA 

INTRODUCTION 

The lithostrat igraphy of the Inner Piedmont represents one of the most poorly 

understood aspects of the geology of the crystalline southern Appalachian orogen. 

Mapping in the Inner Piedmont by Griffin (1 969, 1 971a, 1 971b, 1 974a, 1 974b), Hatcher 

(1969, 1 970, 1 972, 1 978b, 1 987), Bentley and Neathery (1 970), Conley and Henika 

(1973), Rankin and others (1973), Heyn (1984), Goldsmith and others (1 988), Hatcher 

(1 988), Hopson and Hatcher (1988), McConnell (1 988), and Steltenpohl and others 

(1 990) have helped to elucidate many aspects of Inner Piedmont strat igraphy, however, 

many questions remain unanswered. The internal st ratigraphy of the Inner Piedmont has 

been resolved in detail in only a few areas including the Smith River allochthon (Conley and 

Henika, 1 973), the Alto allochthon (Hatcher, 1 978b; Hopson and Hatcher, 1 988), west of 

the Sauratown Mountains (Heyn, 1 984, 1988; Hatcher, 1988; McConnell, 1 988), the 

Chauga belt of South Carolina ( Hatcher, 1 969, 1 970; Hatcher and Acker, 1 984), and 

adjacent to the Brevard fault zone in Alabama (Bent ley and Neathery, 1 970; Steltenpohl 

and others, 1 990; Neilson and others, 1 990a, 1 990b). In the most general sense, Inner 

Piedmont strat igraphy consists of an assemblage of medium-to high-grade ortho- and 

paragneiss intruded by pre-, syn-, and postkinematic plutons. The protoliths of the Inner 

Piedmont rocks consisted predominant ly of immature quartzofeldspathic and pelitic 

sediments, and mafic lavas. 

The purpose of this chapter is to examine, in detail, Inner Piedmont lithostratigraphy 

exposed in the Columbus Promontory (Fig. 1-2; Plates I and Il l). In doing so, this chapter 
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has two primary objectives. The first object ive is to propose a l ithostratigraphic framework for 

the Columbus Promontory and describe t he field and petrographic characteristics of rock 

units within this lithostratigraphic framework. The second objective of t his chapter is to place 

the lithostratigraphic units of the Columbus Promontory into the regional (tectono-) 

l ithostratigraphic framework of the crystall ine southern Appalachians. The internal 

stratigraphy of the Columbus Promontory contains rock units and a l ithostratigraphic 

sequence similar to those described elsewhere in the Chauga Belt, Inner Piedmont, and 

eastern Blue Ridge (e.g., Sloan, 1 908; Shuffl ebarger, 1 961: Bentley and Neathery, 1 970; 

Hatcher, 1 969, 1 970, 1 97 1a, 1 97 1 b; Rankin 1970, 1 975; Conley and Henika, 1 973 

Hopson and Hatcher, 1 988; Higgins and McConnell , 1 978, and others). Consequently, 

t his chapter also addresses possible regional correlations of t he lithostratigraphy of the 

Col umbus Promontory with other parts of the eastern Blue Ridge and the Inner Piedmont, 

and the tectonic implications of these correlations. 

LITHOSTRATIGRAPHIC FRAMEWORK OF THE COLUMBUS PROMONTORY 

Previous Work 

Keith (1 905, 1 907), Reed and Bryant (1 964), Stuckey and Conrad (1 958), and 

Hadley and Nelson (1 97 1 )  al l ident ified the Henderson Granite (Keith, 1 907) or Henderson 

Gneiss (Reed and Bryant, 1 964) near the Columbus Promontory, but did not address the 

lithostratigraphy of the adjacent Inner Piedmont rocks. Hadley and Nelson (197 1 )  broadly 

defined the l ithostratigraphy of the Inner Piedmont east of t he outcrop beh of the 

Henderson Gneiss as being composed of a sequence of paragneiss, schists and migmatite. 

Lemmon (1 973, 1 982), Lemmon and Dunn (1 973a), and Conley and D rummond 

(unpubl ished, 1 975) made the first major contributions to resolut ion of the internal 
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stratigraphy of the Columbus Promontory. Lemmon (1973) defined two rock units within the 

Henderson Gneiss outcrop belt, and was able to subdivide the overlying Inner Piedmont 

rocks into three mappable units as part of sequence he termed the Sugarloaf Mountain 

group contained in an unnamed thrust sheet. Conley and Drummond (unpublished, 1975) 

working south of Lemmon's area in Polk County, North Carolina, described a similar 

stratigraphic package they informally called the Tryon formation for the town of Tryon, North 

Carolina (Plates I, II, and Ill). In their Tryon formation, Conley and Drummond recognized 

rock units similar to those in the Sugarloaf Mountain group, but also included a thick biotite 

gneiss unit. Lemmon also recognized a thick biotite gneiss unit beneath the garnet­

muscovite schist of his Sugarloaf Mountain group, but was unable to definitively determine 

the contact relationships between these two units. Conley and Drummond also defined a 

sequence of migmatitic granitic gneiss, amphibolite, and amphibole gneiss they informal ly 

termed the Mill Spring group for the town of Mil l  Spring, North Carolina (Plates I, II, and Ill). 

Proposed Lithostratigraphic Framework 

As noted above, Lemmon (1973) original ly defined rocks of the Columbus 

Promontory as part of a lithostratigraphic unit he defined as the Sugarloaf Mountain group, 

but he also noted a similarity of these rocks to the Poor Mountain Formation recognized to 

the southwest in South Carolina (Sloan, 1907; Shuff lebarger, 1 961 ; Hatcher, 1 969, 1 970). 

Field criteria and petrologic data gathered during this study suggest that rocks of the 

Sugarloaf Mountain group (Lemmon, 1 973) are similar or identical to those of the Poor 

Mountain Formation in South Carolina, and thus I prefer to designate rocks of the Sugarloaf 

Mountain group as correlatives of the Poor Mountain Formation. Lemmon (1 973) also 

incl uded a granitic gneiss at the top of Sugarloaf Mountain (Plate Ill) in his Sugarloaf 

Mountain group, however, because of its possible igneous origin, I prefer to designate this 
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granitic gneiss as distinct unit within the stratigraphy of the Columbus Promontory defined 

herein as the Sugarloaf gneiss. I include the thick biotite gneiss recognized by Lemmon 

(1 973) beneath his Sugarloaf Mountain group, and the migmatitic gneiss and interlayered 

amphibolite, and amphibole gneiss (Mill Spring group Conley and Drummond 

(unpublished)), into a stratigraphic assemblage herein termed the Mill Spring complex. As 

will be discussed in greater detail below, the Mill Spring complex is subdivided into two units 

based on the relative abundance of mafic rocks. Thus, as a result of detailed field and 

petrologic studies and integration of previous studies, I herein define a stratigraphic 

framework for the Columbus Promontory that consists of four distinct mappable sequences 

that includes the Henderson Gneiss (Keith, 1907; Reed and Bryant, 1 964), the Poor 

Mountain Formation (Sloan, 1 907; Shufflebarger, 1 961 ; Hatcher, 1 969,1 970) , the 

Sugarloaf gneiss, and the Mill Spring complex (Fig. 1-2; Plates I and Ill). 

Structural Significance 

The lithostratigraphic framework proposed above is partly consistent with the work 

of Lemmon (1 973) and the unpublished work of Conley and Drummond (1 975), but 

significant new discoveries and subsequent changes have had important bearing on the 

structural interpretation of the Columbus Promontory. Lithostratigraphic units discussed 

here define three crystalline thrust sheets within the Columbus Promontory herein called 

the Tumblebug Creek, Sugarloaf Mountain, and the Mill Spring thrust sheets (Fig. 1-2; 

Plates I and I ll). The structural and stratigraphic relationships between rock units of the 

Columbus Promontory are shown in Figures 1-2 and 2-1 . The Tumblebug Creek thrust 

sheet contains only the Henderson Gneiss and is correlative with the Stumphouse 

Mountain thrust sheet defined by Liu (1 991 ) to the southwest in South Carolina. 
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Rg ure 2-1 . Conceptual st rat ig raphic and structural model {cross sect ion ) for rock un its in 

t he Col umbus Promonto ry {Inner P iedmont ) and t he a djacent eastern Blue 

R idge. M S T  - M ill S pr ing th rust ; S M T  - suga rloa f Mounta in thrust ; T CT­

Tu mble bug Creek thrust ; BFZ- Brevard fa ult zone ; an d Hg- Hen derson 

Gne iss. 
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The Sugarloaf Mountain thrust sheet contains rocks of the Poor Mountain Formation and 

the upper Mill Spring complex. The Mill Spring thrust sheet contains rocks of the mafic-rich, 

lower Mill Spring complex. The Sugarloaf Mountain and Mill Spring thrust sheets maintain a 

similar structural position (Inner Piedmont rocks over Chauga belt rocks) as other thrust 

sheets observed elsewhere in the Inner Piedmont including the Smith River allochthon 

(Conley and Henika, 1973) in Virginia, the Alto allochthon (Hatcher, 1 978b; Hopson and 

Hatcher, 1 988) in NE Georgia, the Walhalla nappe (Griffin, 1 971a, 1 971 b, 1 974a, 1 974b) or 

Cedar Creek thrust sheet (Liu, 1991) in South Carolina, and the Six Mile thrust sheet 

(Griffin, 1971a, 1 971b 1 974a, 1974b), also in South Carolina. Thrust sheets containing 

rock units similar to those of the Mill Spring complex in the Inner Piedmont of South Carolina 

were also discussed by Nelson and others (1 987), and in the Inner Piedmont of North 

Carolina by Goldsmith and others (1988). The kinematics of emplacement and deformation 

of thrust sheets in the Columbus Promontory are discussed in Chapter IV. 

FIELD AND PETROGRAPHIC CHARACTERISTICS 

OF LITHOSTRATIGRAPHIC UNITS 

Henderson Gneiss 

Keith (1 905, 1 907) defined and delineated the Henderson Granite, with the type 

section located in Henderson County, North Carolina (Plate I l l). Reed and Bryant (1964) 

redefined the Henderson Gneiss and restricted the outcrop unit to southeast of the Brevard 

fault zone. Thus, as defined by Reed and Bryant (1 964), the Henderson Gneiss extends in 

the Piedmont from the South Carolina-Georgia border northeastward to the southeastern 

flank of the Grandfather Mountain window (Figs. 1-1 and 2-2). In the Columbus 

Promontory the most extensive exposures of the Henderson Gneiss occur in the 
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Figure 2-2. Outcrop belt of the Henderson Gneiss in the western Inner Piedmont of North 

and South Carolina. Structural analysis indicates Henderson Gneiss was thrust­

emplaced along the Stumphouse Mountain thrust (SPT) in South Carolina and 

the T�mblebug Creek thrust (TCT) in North Carolina. Modified from Liu (1991 ). 
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Fruitland, Bat Cave, Hendersonville, Lake Lure and the NW corner of the Cliffield Mountain 

quadrangles (Figs. 1-2 and 1-4; Plates I and I ll). The Henderson Gneiss was also mapped 

in the Mill Spring quadrangle through either a window, or a reentrant in the Sugarloaf 

Mountain thrust sheet (Figs. 1-2 and Plate Ill). 

In the Columbus Promontory, the composition of the Henderson Gneiss varies from 

that of granite to quartz monzonite (Table 2-1 and Fig. 2-3) and is composed of microcline, 

oligoclase, quartz, and biotite with accessory muscovite, garnet, allanite, zircon, sphene, 

and opaque minerals (Lemmon 1 973). One of the most distinctive characteristics of the 

Henderson Gneiss is the presence of distinct K-feldspar augen (Fig. 2-4). The augen are 

white microcline, ovoid to asymmetric in cross section and elongate within the foliation 

plane. The augen are commonly rimmed by quartz, plagioclase, and embayments of 

myrmekite (Fig. 2-4}. The Henderson Gneiss in the Columbus Promontory and throughout 

much of the outcrop length, contains a pronounced NE-5W-trending mineral lineation 

defined by quartz ribbons, elongated K-feldspar porphyroclasts, and flakes of biotite, and 

occasional muscovite (Fig. 2-4), and in places is an L tectonite. 

The Henderson Gneiss has been the focus of many geochronological studies, but, 

unfortunately, many discrepancies exist in the results. Odom and Fullagar {1973) reported a 

Rb-Sr whole-rock age of 535 Ma for the Henderson Gneiss with an initial s,.S7 /S,.S6 ratio of 

0.70309 and a U-Pb age of 538 Ma. They interpreted these to represent crystallization 

ages and the low initial Sr87ts,.S6 ratio indicative of an igneous lower crustal origin. Odom 

and Fullagar (1 973) also reported an age of 356 Ma for mylonitic Henderson Gneiss in the 

Brevard fault zone. Sinha and Glover {1 978) reported an U-Pb age of about 600 Ma based 

on a different common lead constant. Sinha and others (1989) reported a Rb-Sr age of 509 

Ma (recalculated from Odom and Fullagar, 1973), and Sinha and others (1 988) obtained a 

Rb-Sr age of 273 Ma from Henderson Gneiss ultramylonite in the Brevard fault zone. They 

attributed this young age to mylonitization, related to movement on the Brevard fault zone 



Table 2-1 . Modal analyses of Henderson Gneiss from the Columbus Promontory. Data From Lemmon (1973). 

L4-1 5 K8-1 1 E3-2 04-1 05-3 J1-4 J3-2 C8-6 F7-3 

Plagioclase 32.5 32 .8 29.2 27.6 30.1 34.5 41 .5 35 .5 33.3 

x=An 1 6  1 8  1 6  1 8  1 8  1 2  1 7  1 2  1 9  

Quartz 28.5 22.4 1 9 .7 21 .8 28.1 21 .0 1 2 .2 1 7.8 28.3 

K-feldspar 1 4.4 32.3 23.5 21 .3 38 .7 23.5 1 5 .6 32.2 22.8 

Biotite 1 9.5 1 0.2 1 9 .0 23.6 0.9 1 4.4 23.2 1 0.0 1 4.7 

Muscovite 2.8 0.6 5 .6 0 .9 1 .3 4.7 - 2.8 0 . 1  

Gamet - tr tr 

Epidote tr tr 2 . 1  3.0 0.3 1 . 1 5 .4 1 .2 0 .3 1\) 
(11 

Sphene 2.0 1 . 1  0.8 1 .4 tr 0.8 0.8 tr tr 

Opaques tr 0.6 tr tr 0.6 tr 0.2 0.4 0.4 

Accessory zir zir zir zir zir zir zir zir zir 

ap ap ap ap ap ap ap ap ap 

allan chi allan allan allan allan 
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Figure 2-3. Classification of igneous rocks from the Columbus Promontory based on modal 

compositions. Nomenclature of Streckheisen (1976). Data is from Lemmon 

(1973). 
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Figure 2-4 . Mosaic of field photographs of the Henderson Gneiss and Sugarloaf gneiss, 

and a photomicrograph of the Henderson Gneiss. A) Augen (A) texture of 

Henderson Gneiss enhanced by weathering. Hammer in foreground is 

approximately 40 em in length; B) Photomacrograph of Henderson Gneiss 

showing well developed K-feldspar nbbon(K). Section is cut perpendicular to 

S2 foliation and parallel to the pervasive NE-SW oriented lineation (L) 

characteristic of the Henderson Gneiss. Field of view 1 2mm. C) Exposure of 

Henderson Gneiss showing strong linear fabric (L) and local shear zone 

characteristic of this unit; D) Hand sample of Sugarloaf gneiss from the top of 

Sugarloaf Mountain in the Bat Cave quadrangle. Note well developed NE-SW 

trending mineral lineation (L). 
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during the late Paleozoic Alleghanian orogeny. 

Mapping by Lemmon (1 973} in the Columbus Promontory has shown that the 

Henderson Gneiss was intruded by a younger granite prior to the development of the 

metamorphic foliation (Fig. 1-2 and Plate Ill}. The contact between the Henderson and the 

granitic gneiss is now concordant and parallel to the regional southeast-dipping foliation. 

This unit is distinguished from the Henderson Gneiss by the lack of K-feldspar augen, less 

biotite, and generally lighter color. The composition of this granitoid gneiss varies from 

granite to granodiorite (Table 2-2 and Fig. 2-3}. Odom and Russell (1 975} reported a Rb­

Sr whole-rock age of 438 Ma, with an initial sr87 /s,.SB of 0. 7045 for the granitoid gneiss. 

The Henderson Gneiss represents one of the most enigmatic bodies within the 

western Inner Piedmont and the southern Appalachian orogen. Several aspects of this 

body including the origin, age, shape, and emplacement history are not fully understood. In 

the Carolinas, the Henderson Gneiss occurs in a distinct thrust sheet(s} including the 

Tumblebug Creek thrust sheet (Figs. 1-2, 2-2, and 2-5; Plates I and Ill} in the Columbus 

Promontory (Davis and others, 1 991a, 1 991 b) and the Stumphouse Mountain thrust sheet 

in South Carolina (Liu and others, 1 991 ; Liu, 1991 }. Contact relationships along the fault 

strongly suggest that the Henderson Gneiss was emplaced as single, large, intact mass, 

and did not intrude other Chauga belt rocks (Figs. 2-2 and 2-5}. Despite recognition of this 

structural relationship, its origin is still uncertain. Rast (in Hatcher, 1 989) noted that the age 

of the Henderson Gneiss is similar to the age of plutonic bodies in the Carolina terrane (see 

Dennis, 1 991 ) and speculated that the body may have originated there. More recently, 

Sinha and others (1 989) and Sinha and Guy (in Drake and others, 1 989) included the 

Henderson Gneiss as a member of a Late Cambrian-Early Ordovician (520-490 m.y.) 

plutonic belt that extends from Delaware to Alabama and interpreted this belt as the remnant 

of a continental margin magmatic arc. According to Sinha and others (1989) this belt is best 

exposed in the central Appalachians, where it includes the Port Deposit (U-Pb, 515 Ma) in 
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Table 2-2. Modal analyses of granitic gneiss within the Henderson Gneiss in the 
Columbus Promontory. Data From Lemmon (1 973). 

K2-1 L4-8 K4-3 G7-4 J5-1 2 

Plagioclase 37.2 38.5 39.9 1 9.4 29.1  

x=An 1 7  1 7  1 3  1 7  

Quartz 30.4 31 .7 30.9 35.2 27.5 

K·feldspar 21 .9  1 4 .7 7.4 38.7 28.1  

Biotite 8.4 9.9 1 5.8 2.9 7.6 

Muscovite 1 .2 4.7 3.8 3.2 5.8 

Gamet tr tr tr 

Epidote tr tr 1 .3 0.4 1 .3 

Sphene 0.8 0.4 tr tr tr 

Opaques tr tr tr tr 0.5 

Accessory zir zir al lan  zir 

ap ap 



3 2  

Figure 2-5. Mosaic of field photographs of the Tumblebug creek thrust, hand sample of the 

Poor Mountain amphibolite, and photomicrograph of the Poor Mountain 

amphibolite. A) Exposure of Tumblebug Creek thrust in the Cliffield Mountain 

quadrangle . Note truncation of folds in the Poor Mountain Formation 

amphibolite (Pm) by the overlying Henderson Gneiss (Hg). Hammer in 

foreground is approximately 40 em in length. B) Exposure of folded 

Tumblebug Creek fault approximately .25 km northwest of outcrop in A above. 

Outcrop also shows transposition of fault contact into the regional S2 foliation of 

the Inner Piedmont. Hammer in foreground is approximately 40 em in length. C) 

Tightly folded laminated (amphibole-quartzofeldspathic layers) Poor Mountain 

Formation amphibolite. D) Folded Poor Mountain amphibolite. Fold is defined 

by nematoblastic amphiboles. Field of view is 1 2  mm. 
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Maryland, the Occaquan (Rb-Sr, 494 Ma), Melrose (U-Pb, 515 Ma), and Leatherwood (U­

Pb, 516 Ma) granitoid plutons in Virginia, but they have extended this belt into the southern 

Appalachians to as far as Alabama through temporal and/or geochemical correlation with the 

Henderson Gneiss (Rb-Sr, 509 Ma) in the Carolinas, the Villa Rica gneiss in Georgia, and 

the Elkahatchee Quartz Diorite (U-Pb, 469±13 Ma and 509 Ma) in Alabama (Russell and 

others, 1 992). Modally these plutons are predominantly tonalitic to granodioritic with rare 

granites, a characteristic Sinha and others (1989) and Sinha and Guy (in Drake and others, 

1 989) have suggested is an indication of subduction-related magmatism along a 

continental margin. 

Sugarloaf Gneiss 

The Sugarloaf gneiss is confined to the top of Sugarloaf Mountain in the Bat Cave 

quadrangle (Fig. 1-2: Plate I l l). It represents the structurally highest unit in the Columbus 

Promontory contained in the Sugarloaf Mountain thrust sheet (Fig. 1-2; Plate I l l). This unit 

was originally included as part of the Sugarloaf Mountain group of by Lemmon (1 973) who, 

based on zircon morphology and scatter of Rb-Sr isotopic data, suggested that the 

Sugarloaf gneiss represents a recycled sedimentary rock. He was unable to definitively rule 

out an igneous protolith. New isotopic work in progress (P.O. Fullagar and S.A. Goldberg, 

University of North Carolina, Chapel Hill) should help elucidate the protolith history and age 

of this unit. As noted previously, because of the possibility of an igneous origin for this unit, 

I prefer to define it as a separate lithologic unit herein called the Sugarloaf gneiss. A nearfy 

identical group of unnamed gneiss bodies present in the Chauga belt of South Carolina 

have a Rb-Sr age of 423 Ma (Harper and Fullagar, 1981 ). Both rock units maintain a similar 

structural (stratigraphic ?) position above the Poor Mountain Formation. 
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Modally, the Sugarloaf gneiss is granitic to granodioritic in composition (Table 2-3 

and Fig. 2-3) and contains predominantly microcline, plagioclase, biotite, muscovite. 

(Lemmon, 1 973). Accessory minerals include zircon, sphene, apatite, allanite, chlorite, 

epidote, and garnet. The rock is light-gray to white, massive to well-foliated, and contains 

a pronounced NE-SW mineral lineation defined by oriented micas, and elongated ribbons of 

quartz and feldspar (Fig. 2-4). The contact relationship with the underlying amphibolite is 

concordant and parallel to the southeast-dipping foliation. Locally, the contact is folded. 

Poor Mountain Formation 

Sloan (1 907) named the Poor Mountain series from exposures on Poor Mountain, 

northwest of Walhalla, South Carolina. According to his original definition, the Poor 

Mountain sequence consists of low-rank amphibolite overlain by a marble-quartzite unit, 

succeeded by the Henderson Gneiss. Schufflebarger (1 961 ) suggested that the "Poor 

Mountain Group" and the "Chauga River Group" represented an unbroken stratigraphic 

sequence, between the Poor Mountain area and the Chauga River, preserved in a synclinal 

fold in the upper plate of an overthrust. From the crest of Poor Mountain, Schufflebarger 

described a stratigraphic succession of chlorite schist, white siliceous marble, quartz 

feldspar-mica schist, and quartz sericite schist. The Poor Mountain sequence was 

redefined as a formation by Hatcher (1 969, 1 970) and noted that the amphibolite unit 

grades downward into a lithology that is almost identical to the Brevard phyllite, except more 

quartzofeldspathic and containing fewer muscovite augen. According to Hatcher, the 

Brevard-Poor Mountain Transitional member, represents the lowest exposed portion of the 

Poor Mountain Formation and the lithologic changes between the Chauga River and Poor 

Mountain Formations are the result of facies changes. 



Table 2-3. Modal analyses of the Sugarloaf gneiss in the Columbus Promontory. Data from Lemmon {1973). 

N6-4 N7-1 N7-4 N7-6 N7-1 3 N7-14 M8-1 1 L8-6 

Plagioclase 28.5 1 7.7 37.1 37.2 1 7.2 28.0 1 5.8 27.4 

x=An 28 28 26 28 33 36 32 26 

Quartz 29.8 53.0 28.7 34.6 38.4 31 .9 35 .9 28.3 

K-feldspar 37.4 1 7.9 29.0 20.8 34.9 24.8 20.4 36.9 

Biotite 2.8 1 1 .4 2.0 4.1 0.9 1 . 1 24.0 3.7 

Muscovite 1 .6 tr 3 .1  3.3 8.4 1 4.1 3.4 1 .5 

Gamet tr 0.2 0 .1  tr 0.4 0.3 w 
- - 0) 

Epidote tr tr tr tr tr tr tr tr 

Sphene tr - - - - - tr 

Opaques tr tr tr tr tr tr tr 2.0 

Accessory Zir zir zir zir chi zir zir 

chi ap chi 

ap tour allan 

tour 
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In the Columbus Promontory, the Poor Mountain Formation (Rgs. 1-2; Plates I and I ll) 

consists of three mappable units, equivalent to the Poor Mountain amphibolite, Brevard­

Poor Mountain transitional member, and the quartzite member recognized in South Carolina 

by Shufflebarger (1 961 ) and Hatcher (1 969, 1970). In descending order these include: (1 ) 

laminated amphibolite and hornblende gneiss; (2) garnet-mica schist and quartzite; and (3) 

interlayered amphibolite and quartzite. Lemmon (1 973) also noted discontinuous lenses of 

marble interlayered within the mica schist in the Bat Cave quadrangle. 

In the Columbus Promontory, the Poor Mountain Formation crops out in two distinct 

thrust sheets structurally below and above the Henderson Gneiss (Fig. 1-2; Plates I and Ill). 

Structurally below the Henderson Gneiss, only Poor Mountain amphibolite has been 

observed in a window through the Henderson Gneiss along the Tumblebug Creek fault 

(Rgs. 1-2, 2-5; Plates I ,  Ill). Along Tumblebug Creek, the contact between the Poor 

Mountain amphibolite and the Henderson Gneiss is clearly a faulted contact (Fig 2-5): 

Henderson Gneiss in the hanging wall truncates folded quartzofeldspathic layers of the 

Poor Mountain Formation of the footwall (Rg. 2-5). This fault contact is folded and has also 

been transposed into the regional S2 foliation and interleaving of the Poor Mountain 

Formation and the Henderson Gneiss is quite evident in exposures along Tumblebug Creek 

(Rgs. 2-5). Edelman and others (1987) and Liu (1 991 ) have also recognized similar 

interleaving between the Poor Mountain Formation and the Henderson Gneiss in South 

Carolina. According to Lemmon (1 973), Tennessee Valley Authority drill--core data from 

Cane Creek in the Bat Cave quadrangle indicate that other units of the Poor Mountain 

Formation and Chauga River Formation are also be present beneath the Henderson Gneiss 

in this area. Lemmon (1973) and Dabbagh (1 975) also described rock units within the 

Brevard fault zone, northwest of the area discussed here identical to those of the Chauga 

River Formation recognized in South Carolina by Sloan (1907), Shufflebarger (1 961 ),  and 

Hatcher (1 969,1 970,1 972). 
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Structurally above the Henderson Gneiss, all units of the Poor Mountain Formation 

have been observed in the Sugarloaf Mountain thrust sheet (Figs. 1-2 and 2-6; Plates I and 

Il l). Stratigraphic and petrologic characteristics of the Poor Mountain Formation of the 

Columbus Promontory contained within the Sugar1oaf Mountain thrust sheet are described 

below. 

Amphibolite-hornblende gneiss. The amphibolite unit crops out beneath the Sugarloaf 

Gneiss and is present in the Cliffield Mountain, Saluda, Mill Spring, and Lake Lure 

quadrangles (Fig. 1-2; Plates I and Ill). The map unit is fine to medium grained, dark gray to 

black, and is commonly laminated with well-defined quartzofeldspathic layers. Where 

folded, this laminated amphibolite produces some of the most spectacular mesoscopic folds 

in the Columbus Promontory (Fig. 2-5). Mineralogically, the unit contains 22-70 percent 

dark-green pleochroic hornblende, 7-61 percent plagioclase (An 25-37), o-22 percent 

quartz, occasional diopside and small flakes of pleochroic biotite (Table 2-4). Other 

accessory minerals include garnet, sphene, tremolite, zircon, apatite, and opaque 

minerals. In hand-specimen, the amphiboles have a readily discernible nematoblastic shape 

and define a weak to strong linear fabric in the rock. Whole-rock geochemical data were 

gathered from a suite of 21 samples from this unit. A discussion of the resuhs of these 

analyses is the focus of Chapter I l l. 

Garnet-mica schist. The garnet-mica schist unit generally crops out below the 

amphibolite-hornblende gneiss unit (Rg. 1-2; Plates I and I l l), although in some areas 

these units are tightly folded together. In the northwestern part of the Columbus 

Promontory in the Bat Cave, Cliffield Mountain, and Lake Lure quadrangles, it rests directly 

on the Henderson Gneiss along the Sugarloaf Mountain thrust, forming one of the sharpest 

contacts in the entire study area (Figs. 1-2 and 2-6; Plates I and I ll). In many cases this unit 
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Figure 2-6. Mosaic of photographs showing field exposure and hand sample of the 

Sugarloaf Mountain thrust, photomicrograph of the Sugarloaf Mountian thrust, 

and photomicrograph of garnet-mica schist of the Poor Mountian Formation. A) 

Exposure of the Sugarloaf Mountain thrust (SMT) in the Cliffield Mountain 

quadrangle. Here the SMT placed sillimanite schist of the Poor Mountain 

Formation (Pm) over the Henderson Gneiss (Hg). Person in foreground is 

approximately 2 meters tall. B) Hand sample containing the SMT. Sample 

shows well developed mylonitic texture in both the Hg and Pm. Sense of shear 

is top-to-SW (left). C) Photomicrograph of the SMT. Section is cut 

perpendicular to S2 and parallel to the NE-SW trending mineral lineation. Note 

grain size reduction of both Hg and Pm. Field of view is 4mm. D) 

Photomicrograph of garnet-mica schist in the Pm. Section is cut parallel to NE­

SW mineral lineation and perpendicular to S2 defined by biotite and muscovite. 

Note variation in garnet morphology from euhedral growing across � and 

elongated within S2. Field of view is 4mm. 
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TABLE 2-4. Modal analyses of Poor Mountain schist from the Columbus PromontOIY. "Data from Lemmon ( 1973) 

"K9-1 2 "K8-2 "L7-4 "M5-1 1 "N6-1 4 126A CM677 CM81 CM551 CM501 

Muscovite 30.2 27.5 29. 1 24.3 27.7 1 .9 30.8 24. 1  37.7 27.3 

Biotite 30.4 39.4 32.8 30.0 33.2 2 1 .3 2 1 .0 39.6 28.0 29.4 

Quartz 25.7 22.0 29.5 30.9 32.5 49.6 38.7 33.2 29.2 27.0 

Plagioclase 1 0.0 5.5 6.9 8.1 4.9 1 8. 1  1 .7 1 9.0 1 .8 1 4.0 

X=An 1 7  - 1 7  24 1 8  

K-feldspar 1 .5 2.2 0.7 0.7 tr - - - - 0.6 

Chlorite 0.9 

Gamet tr 0.7 0.7 5.0 1 .2 2.2 6.1  0.2 3.3 0.9 

Opaques 1 .3 2.5 0.3 0.6 0.4 tr tr tr tr 0.6 

Sillimanite - - - - tr 1 3. 1  1 .7 tr tr 0.2 .l:ooo 
Accessory apatite zircon zircon apatite zircon 

.... 

sphene apatite apaUte sphene apatite 

sphene 
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occurs on the topographically highest areas capping the ridge tops. This rock is purplish­

red, to brown, to light gray, with the color being related to the amount of sillimanite, biotite, 

or muscovite in the rock and the degree of weathering. Modal analysis suggests that the 

protoflth was probably a clay-rich sandstone (metagraywacke) or shale (Fig. 2-7). The schist 

consists of folia of strongly aligned grains of biotite (21-40 percent), muscovite {2-38 

percent), fibrolitic sillimanite (0-13 percent) ahernating with ribbons or layers of recrystallized 

quartz (22-50 percent), and minor amounts of K-feldspar. Accessory minerals include 

zircon, apatite, magnetite, ilmenite, and graphite (Table 2-5). Garnets have several 

morphologies: some are elongated parallel to the dominant foliation; others (up to Smm) are 

anhedral to subhedral with inclusion-rich cores and clear rims, while others (1 -2mm) have 

sub- to euhedral outlines and lack inclusions. Commonly, a second foliation can be 

observed that is defined by asymmetric muscovite grains and sillimanite bundles, 

asymmetric quartz-feldspar pods, or shear bands that disrupt the dominant foliation (see 

Chapters IV and V for more detailed discussion). 

Lemmon (1973) also reported pods and discontinuous lenses of marble within the 

garnet-mica schist unit in the Columbus Promontory. A single chemical analysis of this 

marble (Lemmon, 1 973) shows the rock to be a high-calcium marble similar to the chemistry 

of the marble reported from Poor Mountain, South Carolina by Hatcher and others (1 973), 

further supporting the interpretation that these rocks in the Columbus Promontory are 

correlatives of the Poor Mountain Formation. 

Quartzite-amphibolite. The lowest unit of the Poor Mountain Formation in the Columbus 

Promontory is a discontinuous sequence of interlayered impure quartzite and amphibolite 

(Fig. 1-2; Plates I and Il l). The quartzite varies from light yellow or white to dark brown or 

black. Mineralogically it contains predominantly quartz, ahhough in some cases it does 

contain muscovite, sillimanite, amphibole, garnet, and other minor accessory minerals. 
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Figure 2-7. Quartz-feldspar-mica diagram comparing composition of metasedimentary 

rocks of the Columbus Promontory. Sandstone classification after Pettijohn 

(1 948). 
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TABLE 2-5. Modal analyses of Poor Mountain amphibolite from the Columbus Promontory. *Data from Bat Cave quadrangle (Lemmon 1 973) 

*L8-1 *M5-15 *M8-4 *N7-26 *N6-6 TCF CM499 CM361 CM255 BC1 

Hornblende 48. 2 56.4 68.4 22. 1 3 1 .8 53.5 6 1 .4 55.2 55.2 63. 1 

Plagioclase 28.2 40.4 30.5 60.6 24.9 21 .3 7.5 39.6 28.2 1 9.4 

x=An 34 32 26 25 37 34 27 32 

Quartz 1 .2 0.3 tr 9.3 tr 2 1 .5 1 .6 0.6 0.6 3 .8 

Diopside 1 4.2 - - - 1 1 .9 

Epidote 5.2 tr tr tr 3 1 .4 tr 2 1 .9 1 .6 1 6.0 8.4 

Tremolite - - - 2.3 

Sphene - 0.4 - tr tr tr tr 
Opaques 3 . 1  2.4 1 . 1 5.7 tr 3.7 2.0 2.4 - 0.6 � (11 

Gamet - - - - tr - tr 
Chlorite 

Biotite tr - - - - - - 0.6 tr 0.4 

Zircon tr tr tr - tr tr 5.6 - - 4.3 

Accessory apatite - - - sericite 
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The amphibolite unit is mineralogically and texturally identical to the main body of Poor 

Mountain amphibolite described above. This unit is discontinuous and is commonly found 

at the contact between the Poor Mountain Formation and the underlying rocks of the upper 

Mill Spring complex (Plates I and Ill). At some localities both rock types are present, while at 

others only one of the rock units is visible. The contact between the Poor Mountain 

Formation and the underlying Mill Spring complex is interpreted to be primarily stratigraphic, 

although this is not entirely clear. The best exposures of this contact occurs on Long Ridge 

in the Cliffield Mountain quadrangle and at Melrose Mountain in the Saluda quadrangle 

(Plates I and I l l). At these localities, however, a stratigraphic versus fault contact is difficult to 

discern. On Long Ridge (Plates I and Ill) the contact is sharp and the lowermost quartzite­

amphibolite unit of the Poor Mountain Formation has mylonitic characteristics and the 

amphibolite is occasionally intensely folded. On Melrose Mountain there is a stratigraphic 

interleaving of the biotite gneiss of the upper Mill Spring complex with the over1ying Poor 

Formation, although the contact could represent either a transposed stratigraphic or early(?) 

premetamorphic fault contact. 

Mill Spring Complex 

The Mill Spring complex (Figs. 1-2, 2-1 , and 2-8; Plates I and I ll) represents the 

areally most extensive rock unit in the Columbus Promontory. Detailed mapping suggests 

that the Mill Spring complex can be divided into upper and lower subunits based on the 

relative abundance of amphibolite. The upper Mill Spring complex is relatively amphibolite­

poor whereas the lower Mill Spring complex contains abundant amphibolite. The upper Mill 

Spring complex is the lowest unit within the Sugar1oaf Mountain thrust sheet; the lower Mill 

Spring complex comprises the Mill Spring thrust sheet ((Figs. 1-2 and 2-1 ; Plates I and Ill). 

Field and petrographic characteristics of the Mill Spring complex are outlined below. 
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Figure 2-8. Photomosaics of exposures of Mill Spring complex rocks along Interstate 26 

between the Green River and Columbus, North Carolina. A) lnterlayered 

biotite gneiss-metagraywacke (BG) and amphibolite (A) of the upper Mill 

Spring complex. Note the folding of the entire section, particularly in the 

intertayered amphibolite (dike?). Person in foreground is approximately 2 

meters tall. Photo facing north. B) Migmatitic amphibole gneiss-amphibolite 

of the lower Mill Spring complex. Note large asymmetric lozenge (horse block 

(H)) on the east (left) side of the photo mosaic. Photo facing south. 
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Upper Mill Spring Complex. The upper Mill Spring complex is dominantly a thick 

sequence of migmatitic biotite gneiss and metagraywacke (Fig. 1-2). It generally produces 

massive exposures (Fig. 2-8) and commonly forms the cliffs and balds in the study area. 

The mineralogy of the biotite gneiss-metagraywacke is quite variable, but on average 

contains 1 2-60 percent plagioclase (An 20·35). 12-56 percent quartz, D-25 percent 

muscovite, 2-1 9 percent biotite, with minor amounts of sillimanite, garnet, and sphene (Fig. 

2-9; Table 2-6). Accessory amounts of epidote, zircon, and opaque minerals are also 

present. Modal analysis indicates that the protolith of this unit included both arkosic 

sandstone to clay-rich sandstone (graywacke) (Fig. 2-7). The biotite gneiss­

metagraywacke is light to medium gray, equigranular, fine· to medium-grained, massive to 

slightly banded. Locally the grain size of the mica is quite large and the unit resembles mica 

schist. Foliation is produced by parallel oriented biotite flakes and by parallel elongated 

grains of quartz and feldspar and trains of garnet (Fig. 2-9). In many areas this unit appears 

very migmatitic with marked segregations of the felsic, more micaceous, and mafic-rich 

layers (Fig. 2-8). 

The biotite gneiss-metagraywacke contains pods and lenses of amphibolite parallel 

to the regional foliation (Fig. 2-8). These lenses commonly have a sill-like geometry and in 

most cases are parallel to the regional S2 foliation (Fig. 2-8). This unit also contains pods 

and lenses of pegmatitic material parallel to the dominant foliation. In the western part of the 

study area, along the Green River (Plates I and Ill), the biotite gneiss of the upper Mill Spring 

Formation is a porphyroclastic biotite gneiss (Fig. 2-9). These rocks (e.g., samples CM 379, 

CM 750, CM 330, CM 306 in Table 2-6) generally contain higher contents of K-feldspar and 

less biotite and muscovite (Fig. 2-9). The porphyroclastic gneiss has a matrix identical to the 

biotite gneiss, but contains gray to pink, carlsba�twinned microcline porphyroblasts. 
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Figure 2-9. Mosaic of photographs and photomicrographs of rocks of the Mill Spring 

complex. A) Biotite gneiss-metagraywacke of the upper Mill Spring complex. 

Sample composed primarily of quartz, biotite, plagioclase, fibrolitic and 

prismatic sillimanite, and accessory garnet. Section is cut perpendicular to S2 

and parallel to an E-W trending mineral lineation. Field of view is 4mm. B) 

Porphyroclastic gneiss of the upper Mill Spring complex from along the Green 

River in the Cliffield Mountain quadrangle. Porphyroclasts (arrow) are pink 

microcline (±1 em). C) Photomicrograph of porphyroclastic gneiss from the top 

of White Oak Mountain in the Mill Spring quadrangle. Porphyroclasts are white 

microcline (K). Field of view is 4mm. D) Photomicrographs of amphibole­

gneiss from the lower Mill Spring complex. Section cut parallel to E-W mineral 

lineation and perpendicular to S2. Amphibole (A); quartz and plagioclase (Of). 
Field of view is 4mm. 
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Table 2-6. Modal analyses of biotite gne•metagraywacke of the upper Mill Spring complex. • Data from Lemmon (1973). 

•N8-19 •N9-21 •os-1 •o9-2 CM152 CM183 CM427 CM54 CM379 CM750 CM330 CM306 CM723 

Plagioclase 42.5 1 2.2 47.7 45.9 48.5 1 9.2 1 5.7 58.7 42. 1 47.3 38.4 48.8 36.4 

x=-An 34 - 23 2 4  

Quartz 43.0 56.5 30.5 32.7 26.7 46.5 52.6 21 .5 30.2 32.3 31 .3 1 6. 9  39.6 

K·feldspar 0.9 - 8.0 6 . 1  3.6 0.2 - 0.2 1 3.0 7.3 22.8 25.4 6 .0 

Biotite 1 1 .3 10.1  1 1 .2 1 2.4 1 5.3 7.5 1 8.5 1 8.9 1 0.8 8.6 2.7 8.2 8.6 

Muscovite - 20.0 2.4 2.5 5.9 25.0 1 0.8 0.4 3.2 4.5 1 .7 2.7 2.7 

Gamet 1 .1 tr - - IT 0.3 2.4 tr - - lr 
Epidote 1 .1 - tr 0.3 IT tr - tr - tr 0.7 tr 2 . 1  (11 

Sphene tr - - - - - - - - - 0.5 tr - N 
Chlorite - - tr lr tr tr 1 .9 - 4.7 

Opaques tr 1 .1 0.2 tr tr 1 .3 IT 0.3 0.7 tr lr - tr 
Accessory ziT ap zlr zir - siD ser ser ser ser 

ap 
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Lower Mill Spring Complex. The lower Mill Spring Formation (Figs. 1-2 and 2-1 : Plate I 

and I l l) consists of a migmatitic sequence of biotite-granitic gneiss-metagraywacke, coarse 

amphibolite gneiss, and fine- to medium-grained amphibolite (Fig. 2-8). The complex 

interlayering of these rocks types makes it very to difficult to subdivide the individual units. 

Like the biotite gneiss-metagraywacke of the upper Mill Spring complex, the mineral 

composition of the biotite gneiss-metagraywacke in the lower Mill Spring complex is also 

quite variable. On average it consists of 1 o-45 percent plagioclase, 28-35 percent quartz, 

D-29 percent K-feldspar, 1 1-27 percent biotite, and 6-26 percent muscovite (Table 2-7). 

Zircon, apatite, sphene and opaque minerals are generally present in accessory amounts. 

Epidote occurs in veins and as fillings in late brittle fractures. This unit is generally a 

mesocratic, light-gray, segregation banded, inequigranular, biotite gneiss-metagraywacke. 

It is permeated by migmatites and concordant pegmatitic layers (Fig. 2-8). The protolith of 

biotite gneiss-metagraywacke of the lower Mill Spring complex was probably also an arkosic 

sandstone or graywacke (Fig. 2-7). This rock is part of the unit mapped as migmatite by 

Hadley and Nelson (1 971 ). 

On the top of White Oak Mountain (Plates I and Ill) the migmatitic granitic gneiss and 

amphibolite of the lower Mill Spring complex grades into a porphyroclastic biotite gneiss 

(e.g., see samples 1 2-2-4 in Table 2-7). The porphyroclasts are composed of white 

microcline (Fig. 2-9). This unit commonly contains abundant mica and in many cases is very 

schistose. Thin amphibolite stringers are rare but do occur in this unit. Towards the western 

boundary of the lower Mill Spring Formation in the Saluda quadrangle, migmatitic 

amphibolite and granitic gneiss grade into a more amphibolite poor biotite-gneiss similar to 

that in the upper Mill Spring Formation (Fig. 1-2; Plates I and Il l). Here the lower Mill Spring 

complex can be seen overlying the garnet-mica schist of the Poor Mountain Formation and 

the biotite gneiss - metagraywacke of the upper Mill Spring complex along the Mill Spring 

thrust. 
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Table 2-7. Modal analyses of porphyroclastic biotite gneiss-metagraywacke 
of the lower Mill Spring complex. 

1 2-2-4 1-1 9-3 1-8-2 wo 

Plagioclase 1 0.8 25.3 45.6 1 4. 1  

X=An 

Quartz 33.4 32.4 29.2 28.0 

K-feldspar 0.2 1 2. 1  8.2 28.6 

Biotite 26.7 22.4 1 1 .3 2 1 .0 

Muscovite 25.9 6.9 3.5 8.2 

Gamet 3.0 0.9 tr 

Epidote 2.0 0. 1 

Sphene 

Chlorite tr tr 

Opaques tr 0.2 tr 

Accessory ser ser 
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Amphibolite and amphibole gneiss in the lower Mill Spring complex occur as both 

large pods and tabular or sill-like stringers (Rg. 2-8). The large pods are commonly 

permeated with leucogranite or pegmatitic layers as in the biotite gneiss-metagraywacke 

units (Fig. 2-8). The foliation in the amphibolite and amphibole gneiss is defined by 

alternating mafic and felsic layers. The mineralogic makeup of the amphibolite in the lower 

Mill Spring complex is also variable (Table 2-8), but on average includes 35-60 percent 

dark-green pleochroic hornblende, 25-50 percent plagioclase (An 20-30). 2-20 percent 

quartz, 0-30 percent biotite, with minor amounts of epidote, garnet, and opaque minerals 

{Fig. 2-9). Zircon, sphene, and chlorite occur as accessory minerals. Amphibolite of the 

lower Mill Spring complex is generally more massive and coarser grained than the 

amphibolite of the Poor Mountain Formation, although this is not always the case. Individual 

amphibole minerals also have a readily observable nematoblastic shape and define a weak to 

strong linear fabric in the rocks. Twenty-eight amphibolite samples from the lower Mill 

Spring complex were selected for geochemical analysis and the data and results are also 

discussed in Chapter I ll .  

REGIONAL RELATIONSHIPS 

Correlation of Stratigraphic Units 

Regional lithostratigraphic correlations in the crystalline southern Appalachians have 

been made based on the similarities of physical stratigraphy, structural positions, 

compositional (modal), and geochemical similarities. This approach has resulted in important 

contributions toward the understanding of the regional lithostratigraphic correlations in the 

crystalline southern Appalachians and include the studies of Shufflebarger (1 961 ) , Hatcher 
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Table 2-8. Modal analyses of amphibolite of the lower Mill Spring oomplex. 

3-1 6-1 2 1-1 4-3 1 1 -1 6-1 1 -1 9-1 3-1 6-1 1 1 -1 7-2 

Hornblende 44.4 37.5 47.2 60.5 34.7 53.6 

Plagioclase 24.8 50.0 2 1 .2 36. 1 28.2 39.6 

x=An 

Quartz 1 9.6 2.8 3 1 .6 1 .8 3.2 4.8 

Diopside 

Epidote 2.6 5.5 tr tr 

Tremolite 

Sphene 

Opaques 4 .4 4 .0 tr 1 .6 

Gamet 2.4 

Chlorite tr 3 .4  

Biotite 1 .8 0.2 30.5 2 .0 

Zircon tr tr tr 

Accessory 



57 

(1 973,1 978a), Rankin (1 970, 1 975), Rankin and others (1 973), Hurst and Jones (1 973), 

McConnell and Abrams (1 984), Wehr and Glover (1985), Hatcher and Goldberg (1 990). The 

studies have shown that the eastern flank and central part of the Blue Ridge contains a major 

metasedimentary and metavolcanic unit that extends discontinuously from Virginia to Alabama 

(Hatcher and Goldberg, 1 990). Locally this unit is known by several different names including 

the Lynchburg Formation in Virginia (Espenshade, 1 954; Brown, 1958; Wehr and Glover, 

1985), the Ashe Formation in NW North Carolina (Rankin, 1970, 1 975), the Tallulah Falls 

Formation in NE Georgia and adjacent South Carolina (Hatcher, 1 971a, 1978, 1 989), and the 

Sandy Springs/New Georgia Groups near Atlanta, Georgia (McConnell and Abrams, 1 984) 

(Fig. 2-10). The details of the correlation of these units was most recently discussed by 

Hatcher and Goldberg (1 990). 

A characteristic of the Lynchburg-Ashe-Tallulah Falls-Sandy Springs/New Georgia 

Group sequence of rocks is the general separation of these units into a mafic and felsic sections. 

In several areas within the eastern Blue Ridge in the Carolinas and Georgia this unit displays a 

transition from a basal(?) section consisting of a thick sequence of biotite gneiss, metagraywacke, 

and schist with abundant mafic and ultramafic rocks that grade upward (?) into a similar sequence 

of gneiss, metagraywacke, and schist, but with fewer mafic and ultramafic rocks. These 

characteristics have been described in the eastern Blue Ridge by Rankin (1 970, 1 975) for the 

Ashe Formation in North Carolina, Hatcher (1971 a, 1 978a) for the Tallulah Falls Formation in NE 

Georgia, and McConnell and Abrams (1 984) for rocks of the Sandy Springs Group/ New Georgia 

Group near Atlanta, Georgia. Wehr and Glover {1985) similarly discussed a mafiC rich versus mafic 

poor stratigraphic subdivision in the Lynchburg Group, however, noted a reversed succession 

with the mafic rich units overlying the relatively mafic poor units that they suggested may be the 

result structural complexities (e.g. , thrust faults) within the Lynchburg Group. Despite this, 

they also interpreted the Lynchburg Group to be stratigraphically correlative with the Ashe 

Formation of Rankin {1 970, 1975). 
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Figure 2-1 0. Proposed regional stratigraphic correlation of metasedimentary rocks of the eastern 

Blue Ridge and Inner Piedmont, including rocks of the Poor Mountain Formation 

and Mill Spring complex of the Columbus Promontory. Diagram is modified from 

Hopson and Hatcher (1988) and Hatcher and Goldberg (1 990). 
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This lithostratigraphic pattern ( mafic rich vs. mafic poor section) has also been 

recognized in the Inner Piedmont rocks of South Carolina by Griffin (1 969, 1 971a, 1 974a) , in 

the Sauratown Mountains (Heyn, 1 984; Hatcher, 1 988; McConnell, 1 990) and in the Alto 

allochthon by Hopson and Hatcher (1988). In both the Alto allochthon and Sauratown 

Mountains window, detailed mapping has delineated a lithostratigraphic succession nearly 

identical to that of the Tallulah Falls Formation originally defined in eastern Blue Ridge of NE 

Georgia by Hatcher (1971b) in which he noted the presence of more mafic rocks near the base 

of the formation. Rock units described by Conley and Henika (1973) in the Smith River 

allochthon (Basset Formation overlain by Fork Mountain Formation) in the Inner Piedmont of 

NW North Carolina and adjacent Virginia also contain this stratigraphic succession. Conley 

(1978) has correlated rocks of the Smith River allochthon to the Lynchburg Group in the 

eastern Blue Ridge of SW Virginia. The geologic map of the Winston Salem 1 o x 2° sheet of 

Goldsmith and others (1 988) contains rock units that also display a similar stratigraphic pattern. 

The detailed mapping and petrographic analysis of this study supports the conclusion that this 

stratigraphic pattern is also recorded by rocks of the Mill Spring complex. Consequently, it is 

interpreted that the Mill Spring complex is equivalent to the Lynchburg -Ashe-Tallulah Falls 

Formation and correlative rock units recognized in both the eastern Blue Ridge and other 

areas in the Inner Piedmont. 

Throughout much of the eastern Blue Ridge and adjacent Inner Piedmont, rocks of 

the lower sequence described above (Lynchburg-Ashe-Tallulah Falls Formation and 

equivalents) are overlain by a sequence of rocks including the Evington Group in Virginia, the 

Alligator Back Formation in NW North Carolina , the Chauga River and Poor Mountain 

Formations in the Carolinas and Georgia (Fig. 2-10). Stratigraphically (and structurally), rocks 

of this sequence maintain a similar position above the Lynchburg-Ashe-Tallulah Falls 

Formation rocks and their equivalents throughout the eastern Blue Ridge and Inner 

Piedmont, and are commonly preserved in regional synclinoria. These include the James 
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River synclinorium in Virginia, the Ararat River synclinorium in North Carolina, and the Chauga 

belt in the Carolinas and Georgia. Contact relationships between the upper and lower 

sequences are generally considered conformable (Hatcher, 1 973; Rankin and others, 1 973; 

Rankin, 1 975; Wehr and Glover, 1 985; Hatcher and Goldberg, 1 990). Field observations 

indicate that this lithostratigraphic succession also is present in the Columbus Promontory 

between rocks of the Mill Spring complex and the overlying Poor Mountain Formation, 

consistent with regional lithostratigraphic patterns. 

In the Ararat River synclinorium in the North Carolina Blue Ridge, Rankin and others 

(1 973) recognized a stratigraphic sequence distinctly different from the typical layered gneiss 

and schist of the Ashe Formation that forms a mappable unit consisting of gneiss, pelite, and 

amphibolite with minor amounts of quartzite and marble they designated the Alligator Back 

Formation. Rankin and others (1973} suggested that the most obvious correlation of the 

Alligator Back Formation is with the Evington Group (Espenshade, 1 954; Brown, 1 958; 

Patterson, 1 989) of central Virginia because both are in synclinoria and overlie formations 

(Ashe and Lynchburg) considered to be correlative. Although a matter of considerable 

debate (e.g., Brown, 1 958; Patterson, 1 989) the stratigraphy of the Evington Group consists 

of a varied sequence of pelitic schist, some graphitic schist, considerable marble and 

quartzite, and metabasalt. This correlation was also suggested by the studies of Wehr and 

Glover (1 985) and more recently by Patterson (1989), both of which also suggested that the 

Evington Group may be the deep-water equivalent of the Chilhowee Group exposed in the 

western Blue Ridge of Virginia. 

Shufflebarger (1 961) was the first to suggest the possibility that rocks of the Poor 

Mountain Formation (series) in South Carolina were correlative with rocks of the Evington Group 

to the NE. The similarity of reoccurring rock sequences in the Brevard belt (Chauga River and 

Poor Mountain Formations) and Evington Group indicated to Shufflebarger (1 961 ) that they are at 

least partly correlative. Stirewalt and Dunn (1 973) also proposed that this region in South Carolina 
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is part of a regionally gently northeast-plunging synclinorium similar to the James River 

synclinorium in Virginia that contains rocks of the Evington Group that are at a higher structural 

level than the adjacent Blue Ridge and Inner Piedmont. The Chauga River Formation and Poor 

Mountain Formation extend from type localities in South Carolina (Sloan 1 908, Shufflebarger 

1 961 , Hatcher 1 969,1 970,1 971 b) to the southwest as far as Gainesville, Georgia (Hurst 1 973), 

and they extend from the type locality (in South Carolina) to the northeast into the present study 

area. Recent work by Yanagihara and others (1 992) indicates that Poor Mountain Formation rocks 

are also present immediately northeast of the area discussed in this paper, and probably 

continue as least as far NE as Morganton, North Carolina. These correlations indicate that the 

Chauga River and Poor Mountain Formation rocks extend for a considerable distance within the 

western Piedmont of the Carolinas and Georgia. 

Similarities in physical stratigraphy indicate that upper sequence rocks are also present 

adjacent to the Brevard fauh zone in the Inner Piedmont of Alabama. Rocks from this area include 

the Jackson's Gap Group and the Ropes Creek amphibolite. Rocks of the Jackson's Gap Group, 

which include sericite-quartz phyllite, graphitic schist and phyllite, metaquartzite, and local 

pebble conglomerate are similar to those described by Hatcher (1 969, 1 970) from the Chauga 

River Formation in South Carolina. Likewise, the Ropes Creek amphibolite is remarkably similar, 

both in hand sample and geochemically, to amphibolite of the Poor Mountain Formation. 

Bentley and Neathery (1 970) speculated on the stratigraphic and structural correlation between 

the Jackson Gap Formation and the Ropes Creek amphibolite with the Chauga River and Poor 

Mountain Formations. This correlation is again proposed here based on similarities in physical 

stratigraphy and structural positions. 

Thus based on the similarities in physical stratigraphy and structural positions, it is 

suggested that the Poor Mountain Formation and the Mill Spring complex of the Columbus 

Promontory, are correlative with other lithostratigraphic units in the eastern Blue Ridge and Inner 

Piedmont.(Fig. 2-10). Here it proposed that the Poor Mountain Formation and the Mill Spring 
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Formation are representatives of two regionally (VA to AL) persistent lithostratigraphic 

(structural?) successions present in the crystalline southern Appalachians. These include 1 )  a 

lower sequence consisting of Lynchburg-Ashe-Tallulah Falls-Mill Spring-Sandy Springs/New 

Georgia-type rocks, and 2) an upper sequence consisting of Evington-Alligator Back-Chauga 

River/Poor Mountain-Jackson's Gap/Ropes Creek type rocks (Fig. 2-10). Rocks of the lower 

sequence are generally considered to be Late Proterozoic to Early Cambrian, whereas those of 

the upper sequence younger Late Proterozoic or Early Cambrian ( Rankin, 1 970, 1 975; Rankin 

and others, 1 973; Hatcher, 1972, 1973, 1 987, 1 989). This suggests, based on the above 

correlations, that the Poor Mountain Formation and Mill Spring complex are also Late Proterozoic 

to Early Cambrian. 

Depositional Environment and Tectonic Implications 

It has been proposed by many southern Appalachian researchers (Thomas, 1 976, 1 977, 

1 983, 1991 ; Rankin, 1 975, 1976; Hatcher, 1978a, 1 987, 1 989; Hatcher and Odom, 1 980; Rast 

and Kohles, 1 986; Wehr and Glover, 1985) that the opening of the Iapetus and Theic-Rheic 

Oceans in the Late Proterozoic-Early Cambrian resulted in an irregular, Atlantic-type rifted North 

American margin. This irregular margin was outlined by promontories and embayments of 

continental crust along which depositional basins of various depths developed. The 

accumulation of Late Proterozoic-Early Cambrian sedimentary and volcanic rocks, discussed 

above and including the Poor Mountain Formation and the Mill Spring complex, is generally 

considered to have occurred within these fault-bounded basins along this irregular margin 

(Thomas, 1991 ). These rocks have been interpreted by Rankin (1 970, 1 975), Rankin and others 

(1 989), Hatcher (1 978a, 1 987, 1988), Wehr and Glover (1 985), Hatcher and others (1989), 

Thomas (1 991 ) as a sequence of North American dee� to shallow-water, rift-facies sandstone, 

shale, and mafic volcanic lava flows deposited along the Laurentian margin. By analogy (based 
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on physical similarities), lithostratigraphic units in the Columbus Promontory (Poor Mountain 

Formation and Mill Spring complex) are also interpreted to represent part of the deep-water rift 

facies rocks deposited along the Laurentian margin (Rg. 2-1 1 ). 

Rankin (1 970, 1975), Hatcher (1 973), Wehr and Glover {1 985), McConnell (1988), 

and Stieve (1989) have shown that in the eastern Blue Ridge this assemblage locally rests on 

Grenville basement (Rg. 2-1 1). Hatcher (1978a) and McConnell and Abrams (1 984) have also 

suggested that this sequence was also deposited, in part, on oceanic crust. As will be 

discussed in greater detail in Chapter I l l ,  the geochemistry of mafic rocks within the Poor 

Mountain Formation and the Mill Spring complex, suggest that these rocks were most likely 

deposited in an oceanic setting, possibly on oceanic crust, and therefore represent the 

offshore equivalents of those rocks (e.g. , parts of the Tallulah Falls-Ashe Formation) that 

were deposited on continental crust (Fig. 2-1 1). 

An important consequence of this proposed correlation relates to the tectonic 

relationship between the eastern Blue Ridge and the Inner Piedmont. As previously noted, 

Hatcher (1978a,1 987, 1 989) and Hatcher and others (1 990) suggested that stratigraphic 

sequences within the Inner Piedmont are equivalent to those in the eastern Blue Ridge. 

Alternatively, Horton and others (1 989), and Rankin and others (1989) suggested that the 

Inner Piedmont represents a separate tectonic entity from their Jefferson terrane (eastern 

Blue Ridge), with one or both terranes possibly exotic to the North America Laurentian margin 

sequence (e.g., western Blue Ridge). Higgins and others (1 984 and 1 988) visualized the 

entire crystalline terrane of Georgia and Alabama as consisting of a huge stack of crystalline 

thrust sheets with rocks of both North American and African affinity juxtaposed during a 

continuum of Paleozoic orogenesis. More recently, Dennis (1 991 )  speculated that the Inner 

Piedmont may represent the basement upon which the Carolina arc was built and 

subsequently exposed by a southeast-dipping, low-angle detachment fault similar to those 

in the western U.S. Cordillera (see Snoke and others, 1 984). 
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Figure 2-1 1 .  Schematic cross section of the laurentian margin showing the proposed 

depositional setting and regional relationship of stratigraphic units discussed in 

this chapter. 
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Based on the correlation of rocks in the Columbus Promontory with rocks of the eastern 

Blue and elsewhere in the Inner Piedmont presented here, this study further supports the 

interpretation of Hatcher (1 978, 1987, 1 989) and Hatcher and others (1990) that 

lithostratigraphic units in the eastern Blue Ridge and the Inner Piedmont are equivalent and 

record deposition along the ancient Laurentian margin during the Late Proterozoic or Earty 

Cambrian. An important corollary of this interpretation is that the Brevard fault zone, although 

recognized as a significant structural discontinuity, does not separate terranes of different 

tectonic affinity. This interpretation is also consistent with the previous interpretation of 

Hatcher (1 978a, 1 987, 1 989) and Hatcher and others (1 990). 
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CHAPTER Ill 

GEOCHEMISTRY OF AMPHIBOLITE 

FROM THE COLUMBUS PROMONTORY, 

WESTERN INNER PIEDMONT, NORTH CAROLINA 

INTRODUCTION 

Metamorphosed mafic and uhramafic rocks represent a significant component of the 

stratigraphy of the crystalline terrane of the southern Appalachian orogen intemides east of 

the Hayesville-Gossan Lead fauh (Hatcher and others, 1990). General characteristics of 

numerous bodies within the southern Appalachian orogen were most recently reviewed by 

Misra and Keller {1 978) and Misra and McSween {1984). Most detailed mafic rock 

geochemical studies in the southern Appalachians have concentrated on those bodies in 

the Blue Ridge (e.g., Bland, 1 978; Hatcher and others, 1984; McConnell and Abrams, 

1 984; Badger, 1 989; Gillon, 1 989, Hopson, 1 989; and Misra and Conte, 1 991},  whereas 

few mafic rock geochemical studies have been undertaken in the southern Appalachian 

Inner Piedmont; a fact consistent with the general lack of detailed study for many aspects of 

the geology in the Inner Piedmont terrane. Mafic rock geochemical studies in the Inner 

Piedmont include those of Conley {1 978) in the Inner Piedmont of southwestern Virginia, 

Achaibar {1 983) and Achaibar and Misra {1 984) in the Smith River allochthon, Stow and 

others (1 984), and Neilson and Stow (1986) in the Alabama Piedmont. The purpose of this 

chapter is to discuss the geochemistry of amphibolite within the Poor Mountain Formation 

and the Mill Spring complex in the Inner Piedmont of North Carolina. 
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Sampling and Analytical Techniques 

Amphibolites in the Columbus Promontory occur in two distinct stratigraphic 

sequences, the Poor Mountain Formation and the Mill Spring complex. The field and 

petrologic characteristics of these amphibolites were previously outlined in Chapter I I . Based 

on field relationships and petrographic criteria, 45 amphibolite samples from the Columbus 

Promontory were selected for geochemical analysis (Fig. 3-1). Samples were chosen based 

on their geographic distribution and lack of secondary alteration. As a result, 1 9  samples 

from the Poor Mountain Formation and 26 samples from the Mill Spring complex were 

selected for whole-rock XRF analysis (Fig. 3-1). Whole-rock XRF analysis was performed on 

an EG&G Ortec automated energy dispersive X-ray fluorescence spectrometer. Values for 

1 0 major and 8 minor and trace elements were obtained using an igneous rock protocol 

appropriate for amphibolites and metamorphic rocks with an igneous protolith. The 

spectrometer run conditions were as follows: 1 )  Rh anode with no filter for Na, Mg, AI, Si, P, 

K, Ca, and Mn; 2) W anode wah Cu filter for Ti, V, Cr, Fe, and Ni; and 3) W anode with In filter 

for Rb, Sr, Y, Zr, and Nb. The counting time for all analyses was 300 seconds. Results of 

these analyses are shown in Tables 3-1 and 3-2. 

Whole-Rock Approach and Limitations 

Because metamorphism, penetrative deformation, and transposition have obliterated 

any relict igneous textures and megascopic field criteria for determining the protolith history 

of the Columbus Promontory amphibolites, this study relies heavily on whole-rock 

geochemistry. This approach has been successful in many studies in the crystalline 

southern Appalachians (Hatcher and others, 1984; Stow and others, 1 984; Goldberg and 

others, 1 986; Misra and Conte, 1 991) and in other orogenic regions (Pearce 
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Figure 3-1 . Location of Columbus Promontory amphibolite samples selected for whole- · 

rock XRF analysis. Corresponding whole-rock geochemical data shown in 

Tables 3-1 and 3-2. 
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Table�!. XAF an&Jyses ClC P-Mounlaln FOIIIIdon IIJ1Ihlxlllte fnNn llle Coluii'Dla Promontoty. 

.m TD1431 TD1430 T03111A TD374B T03115 TD35SIF T04a TD103 TD2511 T0278 TD372 TD52 T0380 TD543 TD20 TD75 TD49G TD199 TD510 
oxide 
spz 50.54 50.05 40.01 48.82 55.07 50.10 54.00 40.41 47.55 51.20 •o.511 52.01 •o.110 45.70 48.40 40.110 48.22 50.87 85.37 
ll02 1 .85 1.12 1.24 0.07 1.33 1.70 1 .12 1.43 0.51 0.40 1.05 1.04 1.74 1.13 1.18 0.00 1.95 1.00 0.411 

Alz03 13.711 14.39 15.70 18.47 15.23 15.13 18.83 1 5.82 1 1 .811 ,._so 15.21 13.511 13.01 15.11 17.78 111.00 14.72 18.80 13.12 
lf�3 13.38 1 1.711 13.38 12.15 10.1 1 8.114 8.85 11.25 12.74 10.15 1 1.118 13.10 15.110 12.78 10.111 1 1 .02 1 3.00 13.13 4.99 

MnO 0.21 0.20 0.211 0.82 0.20 0.20 0.27 0.111 0.24 0.45 0.20 0.22 0.31 0.23 0.15 0.28 0.21 0.24 0.2. 
MgO 5.110 7.23 5.77 5.83 4.40 7.112 2.111 8.30 12.00 8.110 8.18 5.72 5.07 1 1 .99 8.35 8.73 7.94 3.47 4.17 
CeO 11.88 10.54 8.25 8.78 8.28 5.44 7.12 8.80 1 1.93 8.211 10.12 U8 8.44 10.51 1 1.34 11.44 1 4.43 8.02 7.17 
Nazo 2.93 3.88 3.80 4.81 1.81 5.01 3.87 1 .511 3.77 3.11 3.85 2.22 1.1111 2.115 3.41 2.02 3.40 2.55 4,48 
KZO 0.32 0.44 0.12 1.05 0.01 8.08 O.M 0.12 0.73 0.23 0.70 0.38 0.78 0.20 0.22 0.12 0.07 0.48 0.38 

PZOs 0.23 0.111 0.03 0.07 0.14 0.00 0.18 0.24 0.1 1 0.07 0.13 0.22 0.08 0.14 0.13 0.11 0.<42 0.03 0.31 
TOTAL 99.27 98.87 98.35 98.03 117.57 117.40 D&.40 1111.23 99.38 98.10 011.34 99.13 88.17 011.83 100.85 98.117 101.511 117.37 98.711 

- e�la (ppm} 
Cr 114.0 201.2 122.1 2011.5 18.2 327.1 25.0 2113.2 35<4.8 511.5 314.4 97.11 143.2 4110.1 2115.7 304.3 218.3 110.7 1.0 
Nb 5.2 2.5 2.3 0.5 4.11 211.0 13.7 11.3 0.5 3.1 2.8 7.8 7.7 2.1 2.2 2.3 3.2 2.2 22.4 
Nl 41.2 50.8 5<4.8 04.4 12.1 1411.7 0.0 128.8 04.1 1111.11 135.5 27.5 41.4 245.11 1511.2 100.2 85.4 23.8 11.2 
Rb 5.3 11.0 3.0 211.8 3.11 308.4 10.0 8.3 11.2 7.7 1&.1 7.8 14.1 11.11 7.4 5.2 20.7 11.2 11.0 
St 200.0 204.1 1113.0 277.8 23<4.4 1007.8 225.0 5111.11 De. II 112.2 151.4 215.1 1 33.2 131.11 174.4 220.7 204.8 147.1 97.1 
v 272.0 257.5 207.11 183.8 135.11 175.2 1113.11 213.5 282.0 139.7 238.3 238.0 252.11 251 .3 270.5 200.4 <485.9 218.0 8&.5 
y 47.8 28.5 23.0 15.11 40.8 1&.4 112.1 23.3 11.7 25.0 24.0 50.7 41.8 23.4 27.3 19.1 31.8 as 83.2 
Zr 125.2 81.7 112.2 59.11 111.4 387.11 144.11 148.2 •u 112.5 07.1 148.5 73.5 07.11 74.7 114.11 De.2 au 222.3 

...., N • nomtaiNe miMm/ogy 
1 TOial Fe 
• Calcula!Od assuming fe+3/ FeZ+ • o. 1 

Q 0.00 0.00 0.00 0.00 3.117 0.00 0.00 0.00 0.00 0.00 0.00 0.42 2111 0.00 0.00 0.00 0.00 0.83 27.811 
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Or 1 .93 2.811 0.73 0.73 0.08 37.10 3.27 0.72 4.39 1 .70 4.21 2.17 4.77 1 .811 1.30 0.72 3.94 2.83 2.28 
Ab 211.28 25.35 34.07 34.88 42.12 10.511 48114 31.112 13.70 32.80 25.21 31.54 111.42 111.20 23.110 211.47 10.011 30.70 21.05 
An 21.81 25.37 25.34 25.34 20.113 15.74 10.82 28.82 23.57 22.88 25.03 1 11.117 25.71 32.34 34.85 30.48 211.00 211 08 23.113 
Na 0.00 0.00 0.00 0.00 0.00 2.87 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.111 0.00 3.75 0.00 0.00 
01 21 .43 22.19 13.04 13.04 8.81 11.80 13.02 13.24 211.32 15.54 20.03 17.03 14.38 15.93 17.011 13.78 32.73 0.51 8.74 
Hy 15.47 12.01 7.02 7.02 20.21 0.00 11.30 8.17 3.40 10.42 0.00 22.30 27.32 3.12 0.00 10.40 0.00 22.52 13.33 
01 4.38 8.35 14.25 14.24 0.00 111.10 2.41 111.72 22.70 14.81 111.115 0.00 0.00 28.02 18.05 12.03 14.30 0.00 0.00 
Mt 1 .83 1 .44 1.115 1 .85 1.25 1 .1 1  1.011 1 .37 1 .55 1.25 1 .411 1.00 1.118 1 .55 1 .22 1.42 1.55 1.113 0.111 
IL 3.58 2.17 2.42 2.42 2.111 3.50 2.18 2.711 0.99 0.78 2.03 3.57 3.42 2.17 2.25 1.32 3.80 2.13 0.811 

Cm 0.02 0.03 0.02 0.03 0.00 0.05 0.00 0.04 0.00 0.08 0.04 0.02 0.02 0.07 0.04 0.05 0.03 0.02 0.00 
A(' 0.58 0.48 0.07 0.07 0.37 0.00 0.44 0.511 0.27 0.17 0.31 0.53 0.20 0.34 0.31 0.27 0.99 0.07 0.75 
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and Cann, 1 973; Miyashiro and Shido, 1975; Wood and others, 1 979; Shervais, 1 982, and 

Wilson, 1 989}. When attempting to use amphibolite compositions to indicate the nature of 

the protolith, partial melting and fractionation trends, and paleotectonic settings, the 

question of element mobility during post-crystallization modification must be addressed. 

The effects of subaerial weathering can generally be eliminated by selection of samples with 

no petrographic evidence for such alteration. Assessing the amount of element mobility 

associated with submarine alteration and regional metamorphism, however, is more difficult. 

There is general agreement by many workers (Pearce and Cann, 1 973; Shervais, 1982; 

Pearce, 1 975,1 980; Pearce and Rower, 1 9n; Pearce and Norry, 1 979; Wilson 1 989) that 

cations least mobile during alteration tend to be those cations that have small ionic radii and a 

high charge radius ratio or high field strength (e.g., Ti, Zr, P, Nb, Y). Because of this, these 

elements are not usually transported in aqueous fluids and tend to remain unaffected in 

rocks which have experienced alteration. This property, together with systematic variations 

of concentrations in unaltered lavas, allows these elements to be used to study 

metamorphosed and weathered basalts in which mineralogy has otherwise been too greatly 

altered for meaningful interpretation (Pearce and Norry, 1 979). Several studies (e.g., Pearce 

and Cann, 1 973; Wood and others, 1 979; Meschede, 1 986} have shown the utility of 

covariation and discriminant diagrams using these high field-strength elements or element 

ratios for elucidating the genesis of fresh basaltic magmas and subsequently as analogs for 

examining ancient mafic volcanic suites. Therefore, this study follows these approaches to 

determine the petrogenesis of the Columbus Promontory amphibolites. 

PROTOLITH - PARA VERSUS ORTHOA MPHIBOLITE 

In both Poor Mountain Formation and Mill Spring complex amphibolites, relict 

igneous textures are absent because of thorough recrystallization, and intrusive or 
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sedimentary contacts have been obliterated by penetrative deformation and transposition. 

Consequently, any interpretation based solely on petrographic or field criteria is tenuous, 

and therefore additional information from geochemical characteristics is needed. Leake 

(1964) suggested that a ternary plot of Niggli values �- (al-alk) provides a method for 

discriminating para-and orthoamphibolites by the nature of variation in trends in the 

concentrations of the elements, and their relation to known igneous and sedimentary 

trends. Leake's diagram (Rg. 3-2) shows that the line joining dolomite and typical pelite is at 

right angles to the trend of variation by a typical mafic igneous series (Rg. 3-2). Although he 

admitted that unusual combinations of dolomite and pelite could produce a similar trend, he 

suggested that it is difficult to see how any sedimentary rock could plot appreciably above 

the dolomite-pelite join, whereas many basic igneous rocks and amphibolites do plot above 

this line. The Niggli mg-o-(al-alk) diagram (Rg. 3-2) for amphibolite of the Poor Mountain 

Formation and the Mill Spring complex clearly reveals a trend of the data points at a high 

angle to the dolomite-pelite join, thus indicating an igneous parentage for both amphibolite 

suites. 

Other geochemical characteristics of the Columbus Promontory samples also 

suggest that they were derived from an igneous protolith(s). AFM relationships (Fig. 3-2) 

show that both suites show iron enrichment characteristic of tholeiitic basalts (Wilson, 1 989). 

Most samples from the from both suites are hypersthene normative, also a common 

characteristic observed in tholeiitic basalts (Tables 3-1 and 3-2). The tholeiitic nature of the 

Columbus Promontory amphibolites is further substantiated by the Y /Nb ratios (Pearce and 

Cann, 1973: Floyd and Winchester, 1 975). As shown in Tables 3-1 and 3-2, the Columbus 

Promontory amphibolites all have Y /Nb ratios greater than 1 ,  indicating a tholeiitic source. 

Thus, the data presented above strongly suggest that the Columbus Promontory 

amphibolites had an igneous origin and were probably tholeiitic basalts. 
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Figure 3-2. Niggli mg-c-(al-alk) and AFM plots for amphibolites of the Columbus 

Promontory. a) Niggli diagram clearly shows trend of data at high angle to 

sedimentary trend indicating an igneous protolith. b) AFM diagram displays 

iron- enrichment characteristics of tholeiitic basalts. Boundary between the 

tholeiitic (TH) and calcralkaline (CA) fields from Irvine and Baragar (1971 ). Niggli 

diagram modified after Leake (1 964). On both diagrams, open circles - Mill 

Spring complex; filled circles-Poor Mountain Formation. 
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FRACTIONATION TRENDS 

The compositional range of volcanic rocks is a consequence of at least two 

fundamental processes, partial mehing and fractional crystallization. Ahhough these are not 

the only processes, they are the dominant ones (Wilson, 1 989). The AFM diagram shown in 

Figure 3-2 indicates fractionation processes were important in the petrogenesis of the 

Columbus Promontory amphibolites. To further examine the degree of fractional 

crystallization and/or partial metting that has occurred, several covariation (Harker type) 

diagrams have been used (Figs. 3-3 , 3-4, and 3-5) . The standard Harker diagram plots a 

fractionation index as the abscissa versus various elements or oxides on the ordinate to 

demonstrate igneous variations as fractionation proceeds. Si02 is most commonly used as 

the fractionation index, but, because the range of silica contents in basahic rocks is so 

restricted, Si02 is not a useful as index of fractionation (Wilson, 1 989). Furthermore , in 

metamorphosed basahs, Si02 is considered to be highly mobile. Because of these 

restrictions, the incompatible trace element Zr has been used as the fractionation index in 

this study. Additional multi-element covariation diagrams using Ti, Mg* (100 (M9'Mg + Fe2+)) 

and P20s have also been used to help reveal fractionation trends. 

One of the most striking features shown in the covariation diagrams (Figs. 3-3, 3-4, 

and 3-5) is the similarity in the chemistry and chemical trends shown by the Poor Mountain 

and Mill Spring complex amphibolites. Figure 3-3 shows Mg*, Ni, and P20s plotted against 

Ti02. Ti02, considered to be relatively immobile and incompatible elements show a 

decrease with fractionation against Mg*, while the highly incompatible P20s shows an 

increase with fractionation versus Ti02. Ni, however, does not show a readily discernible 

trend. Misra and Conte (1 991) used this sequence of diagrams to subdivide amphibolites 

from the Ashe and Alligator Back Formations of the North Carolina Blue Ridge into three (low, 

intermediate, and high Ti) amphibolite groups unrelated to a single fractionation trend. 
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Figure 3-3. Harker-type covariation diagrams using Ti02 as index of fractionation. a) Ti02 

vs. Mg# (1 00 (mg + Fe2+ /mg)), b) Ti02 vs. Ni, and c) Ti02 vs. P205. Note the 

geochemical similarity between the Poor Mountain amphibolite and amphibolite 

of the Mill Spring complex. Open boxes-Mill Spring complex; filled circles-Poor 

Mountain Formation. Arrows indicate increasing fractionation. 



80 

a) 4 

3 
-
'#. 
!. 2 

N 
0 
i= 1 

0 10  20 30 40 50 60 
Mg* 

b) 4 . 

3 f-
-
'#. 

D cD D 

!. 2 f- e . 

• I dl d'D • 
N 

0 . a  D • 
• • D • 

·- • • 
1- 1 • D cf1 D • . 

D 
lfil • • D • D D 

ell D D e � D D • 
0 0 

I I I 

50 100 150 200 250 300 
Ni (ppm) 

c) 4 

3 
D D D 

� 
D 

D ! 2 D a 
• 

• a 1:1 
N D • c 

0 • c 
i= 1 • 

• 

0.0 0.1 0.2 0.3 0.4 0.5 
P2o5 (wrk) 



81 

Figure 3-4. Harker-type diagrams using Zr as fractionation index. a) Covariation diagram of 

Zr versus major and minor elements. b) Covariation diagram of Zr versus trace 

elements. Note the geochemical similarity between the Poor Mountain 

amphibolite and Mill Spring complex amphibolite. Open boxes -Mill Spring 

complex; filled circles - Poor Mountain Formation. 
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Rgure 3-5. Covariation diagram using immobile trace elements (Nb, Y, Zr, and Ti) and minor 

element Cr. Included on the diagram are the experimentally determined 

fractionation vectors of Pearce and Flowers (1977) and Pearce and Nony 

(1 979). Vectors correspond to specific fractionally crystallized phases: a) 

olivine, b) orthopyroxene, c) clinopyroxene, d) plagioclase, e) magnetite, f) 

zircon, g) garnet, h) olivine + 1 .2 spinel, and i) amphibole. Open boxes -Mill 

Spring complex; filled circles-Poor Mountain Formation. 
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Unlike their results, data (Tables 3-1 and 3-2; Fig. 3-3) gathered in this study suggest that 

the Columbus Promontory amphibolites compose a single compositional group with trends 

related to fractionation of a similar parental source. 

Examination of the Zr fractionation diagrams (Figs. 3-4 and 3-5) further attests to the 

compositional similarities of the Poor Mountain and Mill Spring complex amphibolites. These 

diagrams display weak to strong trends for many of the constituents versus Zr, further 

supporting the importance of fractional crystallization or partial melting during the genesis of 

these amphibolites. Against Zr, the high field-strength cations (li, Y, P, and Nb) have the 

most well-defined trends, all increasing with fractionation (Figs. 3-4 and 3-5). Of the major 

oxides CaO and MgO show the most discernible trends, decreasing with fractionation. The 

other major oxides AI203, K20, Si02, and the incompatible element Rb, all show 

considerable scatter versus Zr; probably a reflection of their post-crystallization mobility (Fig. 

3-4). Somewhat surprising, the incompatible element Sr displays a relatively well-defined 

trend that increases with fractionation, whereas the compatible elements Cr and Ni have 

weak to uninterpretable trends versus Zr (Fig. 3-4) 

Studies by Pearce and Norry (1 979), Bryan and others {1 976) and Schilling and 

others (1983), from experimental modeling and natural examples, have shown that genetic 

relationships between the element or oxide chemistry of volcanic suites and fractional 

crystallization of specific mineral phases can be established. Pearce and Norry (1 979) and 

Pearce and Aower (1 978) have experimentally established mineral-liquid distribution 

coefficients for the high field-strength elements Ti, Nb, Y, and Zr. They suggested that the 

variations in the Ti, Nb, Y and Zr content on magma, as it evolves from basic to acidic 

compositions, can be interpreted in terms of the nature and proportion of the crystallizing 

phases. Using these distribution coefficients, they have determined fractional crystallization 

vectors whose geometry and magnitudes are specific to the constituent elements (li, Nb, Zr 

and Crm) and directly related to crystallization of various mineral phases during fractional 
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crystallization processes. Figure 3-5 shows the Zr versus Ti, Y, Nb and Crm covariation 

diagrams, and for comparative purposes, it also contains the experimentally determined 

closed-system fractionation vectors of Pearce and Norry (1 979) and Pearce and Aower 

(1 978). Bryan and others (1976) discussed the importance of cotectic crystallization of 

olivine and plagioclase at low pressures in controlling the bulk rocks chemistry of mid-ocean 

ridge basalts (MOAB). This was also discussed by Schilling and others (1 983) who indicated 

that trends of variation of AI203 and Ti02 versus MgO for basalts from 29°N to 73°N along the 

mid-Atlantic Ridge can be explained in terms of olivine and plagioclase fractionation. 

The purpose of Figures 3-5 and 3-6 is to qualitatively assess what fractionally 

crystallized mineral phases may have contributed to the observed elemental variations 

observed in the Columbus Promontory amphibolites. On the Zr versus Ti, Nb, and Y 

diagrams (Fig. 3-5), the trend of the Columbus Promontory data is consistent with 

crystallization of olivine, clinopyroxene, plagioclase, magnetite, and gamet during fractional 

crystallization. The decrease in Ti with increasing Zr may also indicate crystallization of Fe - Ti 

oxides such as ilmenite. The Crm versus Ti diagram also suggests that gamet may have also 

been an important crystallizing phase. Comparison of Columbus Promontory data (Fig. 3-6) 
with the MgO versus AI203 and Ti02 trends of Schilling and others (1983), also supports 

the interpretation that olivine and plagioclase are important crystallizing phases controlling 

the fractionation trends observed in the Columbus Promontory samples, but that 

clinopyroxene was not an important crystallizing phase. 

This qualitative assessment suggests that the observed variations in the contents of 

Ti, Y, MgO, Cr, AI20a. CaO, Zr, and the Crm ratio can be explained by the fractionation of 

olivine, clinopyroxene, plagioclase, magnetite, and gamet. Overall the information 

presented by the AFM relationships (Fig. 3-2), the covariation diagrams (Figs 3-4, 3-5, and 

3-6) and the qualitative use of the fractionation vectors of Pearce and Norry (1979), Pearce 

and Flower {1 978), and the AI203 and Ti02 versus MgO trends support the interpretation 
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Figure 3-6. Covariation diagram of AI20:3 and li02 vs. MgO. Included are fractionation 

trends from Schilling and others (1 983) from 29° to 73° along the Mid-Atlantic 

Ridge. Diagram suggests trend of Columbus Promontory data can be explained 

by the fractionation of olivine and plagioclase. Open boxes -Mill Spring 

complex; filled circles-Poor Mountain Formation. 
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that Columbus Promontory amphibolites were derived from a strongly fractionated magma. It 

could alternatively be argued that the fractionation trends observed in the amphibolites 

could be the result of mixing between metasedimentary and volcanic rocks, or due to mixing 

of multiple basaltic flows. Such an interpretation must be considered, particularly in terranes 

like the Inner Piedmont where there has been extensive transposition and recrystallization 

during deformation and metamorphism. It is, however, argued that the total data set, 

including the trends shown on the AFM diagram and Niggli diagrams, and the similarity 

between fractionation trends of amphibolite from the Columbus Promontory and those of 

modem environments (e.g., Schilling and others (1 983); Basaltic Volcanism Project (1 981 )), 

is consistent with an interpretation that Columbus Promontory amphibolites were derived 

from a similar fractionated magma source. 

PALEOTECTONIC SETTING 

Constraints 

The chemical composition of basaltic rocks from different tectonic settings has been 

shown to vary significantly. During the past 15 to 20 years, several papers have appeared in 

which major, minor and trace element compositions of young basalts have been related to 

the tectonic environment in which the basalts were generated (e.g., Pearce and Cann, 

1 973; Miyashiro and Shido, 1975; Sun and Nesbitt; Shervais, 1 982; and Meschede, 1986). 

Importantly, this has led to the development of tectonomagmatic discrimination diagrams 

(Wilson, 1 989), which can be used as analogs to elucidate the tectonic affinity of ancient 

mafic volcanic suites. Generally, these tectonomagmatic discriminant diagrams have been 

devised to d istinguish between volcanic rocks from the major tectonic regimes related to 

plate tectonic motions including diverging plate margins (ocean floor basalts), converging 
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plate margins (volcanic arcs basalts), oceanic island basalts (within-plate oceanic basalts), 

and continental basahs (within-plate continental basahs). Because the majority of ancient 

basalts have undergone post crystallization alteration, these diagrams rely on the use of 

relatively immobile, high field-strength cations. To make some qualitative interpretations 

about the tectonic affinity of the Columbus Promontory amphibolites, a series of several 

tectonomagmatic discrimination diagrams using those elements considered to be immobile 

have been employed. 

In order to use tectonomagmatic discriminant diagrams, it is necessary to know the 

degree of fractionation that has occurred in the volcanic rocks being classified, as they are 

only strictly applicable to basic volcanic rocks (Wilson, 1989). The previous section of this 

chapter demonstrated that the amphibolite samples from the Columbus Promontory are from 

a strongly fractionated basaltic suite. Most of the tectonomagmatic discriminant diagrams are 

designed for use with non-cumulative mafic lavas, therefore, screening for possible 

cumulative phases must be employed. Pearce and Cann (1 973) indicated that a 

compositional limit of 12% < CaO + MgO < 20% can be used as an index of fractionation to 

eliminate mafic volcanic samples containing a significant proportion of cumulate phases. All 

of the Columbus Promontory samples were screened following the guidelines of Pearce and 

Cann (1 973). From this process, four samples from the Mill Spring complex and five samples 

from the Poor Mountain Formation were eliminated from further study, thus reducing the 

number of samples from each suite to 15 and 21 , respectively. 

Possible Paleotectonic Settings 

The fractionation sequence of olivine, clinopyroxene, plagioclase, magnetite, and 

garnet presented earlier in this chapter, is consistent with a low-pressure fractionation 

sequence characteristic of spreading-ridge basalts (Basaltic Volcanism Studies Project, 1 981 ) 
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and supports an interpretation that the Columbus Promontory amphibolites were generated at 

an oceanic spreading center. Furthermore, the similarities between the AI203 and Ti02 

versus MgO trends from the Columbus Promontory amphibolites, and those reported by 

Bryan and others (1976) and Schilling and others (1983), indicate these amphibolites have 

mid-ocean ridge basalt (MOAB) characteristics, similar to those reported from the Mid-Atlantic 

Ridge (MAR). 

Schilling (1 975) and Sun and others (1 979) have shown that various segments of mid­

ocean ridges have distinctive trace element geochemistry, and classified them into three types 

including normal (N-type), depleted in incompatible elements, plume (P-type), enriched in 

incompatible elements, and transitional (T-type), transitional between the depleted and 

enriched types. Erlank and Kable (1 976), and Meschede {1986) have noted that variations in 

the Nb content of MOAB cannot be ascribed to seawater interaction or to fractional 

crystallization processes, but are indicative of mantle differentiation processes and source 

heterogeneity. Consequently, Nb is potentially useful in discriminating different MOAB types. 

Based on this fact, Meschede {1986), devised a tectonomagmatic discriminant diagram using 

Nb, Y, and Zr, which he has shown effectively discriminates different MOAB types, and 

between N-type MOAB and continental tholeiite. This diagram was employed in this study 

(Fig. �7) and the results strongly suggest that the Columbus Promontory amphibolite suite is 

an N-type MOAB. This diagram displays a pronounced consistency for nearly all samples in 

the N-type MOAB field with little scatter into other fields (Fig. �7). 

Humphris and others (1985) and Wilson (1 989) indicated that Zr/Nb and Y/Nb ratios can 

also be used to demonstrate qualitatively the mixing of mantle sources. Humphris and others 

(1985) and Wilson (1 989), suggested that the high-valence cations (e.g., Zr, Nb, and Ti) 

behave incompatibly and tend to be concentrated in oceanicrisland basalts relative to MOAB. 

Consequently, the Zr/Nb ratio is characteristically low {<1 0) in oceanic-island basalts (P-type 

MOAB) and higher in N-type MOAB (>30). A covariation diagram of these ratios, 
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Figure 3-7. Tectonomagmatic discriminant diagrams showing MOAB character of the 

Columbus Promontory amphibolites. a) Nb-Zr-Y ternary tectonomagmatic 

discriminant diagram (Meschede, 1986). Open circles represent samples from the 

Mill Spring complex; filled circles from the Poor Mountain Formation. WPA-within­

plate alkalic basalts; WPT- within-plate tholeiitic basalts; VAS-volcanic arc basalts. 

b) Y/Nb vs. Zr/Nb ratios for the Columbus Promontory samples. Diagram also 

includes the average values for the Tristan da Cuhna mantle plume basalt (fitted 

box) and the Bouvet mantle plume basalt (filled circle). Also included are the 

trends of data from MOAB erupted along the Mid-Atlantic Ridge in the vicinity of 

Tristan da Cuhna (MAR) and Bouvet (AAR}. Compositional ranges of P(plume}-, T 

(transitional}-, and N normal depleted}- type MOAB are indicated by bars along 

axes of the diagram. (Modified from Wilson, 1 989}. Open boxes-Mill Spring 

complex; filled circles -Poor Mountain Formation. On both diagrams, only samples 

in the range of 12< MgO + CaO < 20 were used. 
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adapted from Wilson (1 989) is shown in Figure 3-7. Wilson (1 989) suggested that the scatter 

of these data (represented by the lines) can be explained by the mixing of depleted N-type 

MORB and enriched (P-type) MORB components. The Columbus Promontory data set, also 

shown on this diagram, has a similar trend as MAR and suggests that the Poor Mountain 

amphibolite and amphibolite from the Mill Spring complex could also record a similar mixing of 

depleted (N-type MOAB) and more enriched (P-type) components. This possibility was also 

suggested for the amphibolites in the Ashe Formation and Alligator Back Formations in the 

eastern Blue Ridge of North Carolina by Misra and Conte (1 991 ). 

Tectonomagmatic discriminant diagrams, employing other trace elements (Ti, V, Cr, Zr, 

and Y), reveal a consistent pattern of ocean-floor and volcanic arc characteristics for the 

Columbus Promontory samples. The Ti02-Zr relationship ( Pearce, 1 980) for the suite imply a 

strong correlation for all Columbus Promontory amphibolites with ocean floor basalts (OFB), 

although there is some scatter of the data into the arc field (Fig. 3-8). This pattern is also 

present in the Zr vs Zr/Y discriminant diagram (Fig. 3-8) of Pearce and Norry (1 979). The Cr 

versus Ti plot of Pearce (1975) for distinguishing OFB from low-K tholeiites of island arcs (Fig. 

3-9) and the Cr versus V of Miyashiro and Shido {1975) also show that most of the Columbus 

Promontory data plot in the OFB field with some scatter into the volcanic arc fields (Fig. 3-9). 

Shervais {1 982) discussed the utility of Ti and V ratios in resolving the tectonic setting of 

modem ophiolites. Shervais (1 982) indicated that modem island arcs have Ti I V ratios < 20, 

MOAB and continental tholeiites Ti I V ratios of 
·
20 to 50, and calc-alkaline rocks > 50. 

Shervais also suggested that back-arc basins have either MORB-Iike or arc ratios. The 

Tl/1 000 versus V plot of Shervais (1 982) using the Columbus Promontory samples (Fig. 3-

1 0), shows the majority of the data has Ti N  ratios of 20 to 30 and fall in the field of MORB and 

back-arc basin basalts with some scatter in the arc and oceanic islands fields similar to the 

patterns shown by the other tectonomagmatic discriminant diagrams used. The presence 
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Figure �. Tectonomagmatic discriminant diagrams showing ocean-floor basalt 

characteristics of the Columbus Promontory suite. a) Zr vs. Ti02 

tectonomagmatic discriminant diagram after (Pearce, 1 980), and b) Zr vs. Zr/Y 

tectonomagmatic discriminant diagram after (Pearce and Norry, 1 979). ARC, 

island arc tholeiites; OFB, ocean floor basalts; WPB, within-plate basalts. Open 

boxes-Mill Spring complex; filled circles -Poor Mountain Formation. On both 

diagrams, only samples in the range of 12< MgO + CaO < 20 were used. 
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Figure 3-9. Cr vs. Ti and Cr vs. V tectonomagmatic discriminant diagrams. Diagrams are used to 

distinguish ocean floor basalts (OFB) from low K-tholeiites (LKT) of island arcs. Cr vs. 

Ti after (Pearce, 1 975); Cr vs. V after Miyashiro and Shido (1975). Diagrams suggest 

primarily ocean-floor characteristics for the Columbus Promontory suite, but with 

some volcanic arc component. CA, cab-alkaline series; TH, tholeiitic series; OFB, 

ocean island basalts. Only samples in the range of 12< MgO + CaO < 20 were used. 

In both diagrams, open boxes represent samples from the Mill Spring complex; filled 

circles from the Poor Mountain Formation. On both diagrams, only samples in the 

range of 12< MgO + CaO < 20 were used. 
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Figure 3-1 o. Ti vs. V tectonomagmatic discriminant diagram. for the Columbus Promontory 

samples. This diagram suggests possibility of back-arc basin setting for the 

Columbus Promontory suite and may explain combination of ocean-floor and 

volcanic arc characteristics obseiVed in previous diagrams. Only samples in the 

range of 12< MgO + CaO < 20 were used. Open boxes-Mill Spring complex: filled 

circles -Poor Mountain Formation. Diagram from (SheiVais, 1 982) 
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of both mafic rocks with MOAB and volcanic-arc characteristics is common in many back-arc 

basins (e.g., Lau Basin in the western Pacific, Leg 135 Scientific Party, 1 992). Saunders and 

Tarney (1 984) also concluded that many back-arc basins are floored by basalts transitional 

between N-type MOAB and island-arc or calc-alkaline basalts; a characteristic also displayed 

by the Columbus Promontory suite. The possibility of a back-arc basin setting for the mafic 

rocks in other areas of the eastern Blue Ridge and Inner Piedmont was suggested by 

McConnell and Abrams (1 984), Gillon (1 989), and Misra and Conte (1991)  in the eastern Blue 

Ridge and by Stow and others (1984) and Neilson and Stow (1 986) in the Inner Piedmont of 

Alabama. These areas also contain a stratigraphic sequence and a structural history similar to 

that preserved in the Columbus Promontory, discussed previously in Chapter II . Therefore a 

similar tectonic affinity of the Columbus Promontory amphibolites is consistent with regional 

geologic patterns. 

Misra and Conte (1991) interpreted the Ashe and Alligator Back amphibolites to 

represent metamorphosed oceanic crust generated at a spreading center. They suggested 

that the juxtaposition of depleted, low-Ti basalts and MOAB-like basalts may record a back­

arc basin setting, as has been postulated for many ophiolites. Alternatively, they also 

proposed that this trend may be indicative of multistage melting of an upper-mantle source 

adjacent to a mantle plume in a mid-oceanic ridge environment. Gillon (1 989) noted that the 

amphibolites in the eastern Blue Ridge of NE Georgia have back-arc basin or island-arc 

geochemical signatures. Gillon (1989) similarly interpreted these mafic units to have been 

generated in a marginal back-arc spreading center within the tectonic influence of an island 

arc system. McConnell and Abrams (1984) also showed that the mafic rocks of the 

Pumpkinvine Creek Formation of the New Georgia Group to be chemically similar to abyssal 

tholeiites and chemically dissimilar to basalts found in intracratonic rifts. They suggested that 

these mafic rocks were derived in either an ocean-ridge or back-arc basin environment. Stow 

and others (1 984), and Neilson and Stow (1986), indicated that amphibolites in the Alabama 
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Piedmont including the Ropes Creek, Mitchell Dam, Ketchepedrakee, Beaver Dam , and 

Hudson Rapids amphibolites are geochemically similar. They also conclucled that the parental 

basalts of these amphibolites have an E-MORB (enriched) character and were generated in an 

oceanic rifting environment, possibly a back-arc basin. 

Although I cannot clearly define the tectonic environment from which the Columbus 

Promontory amphibolites were generated, I feel the most plausible interpretation that can be 

drawn from the entire data set is one involving mid-oceanic spreading. Fractionation trends 

strongly support MORB characteristics and along with the Y/Nb and Zr/Nb suggest the a mixing 

of a N-type and P-type MOAB components. Alternatively, the combination of MORB and a 

volcanic-arc characteristics suggest the possibility of a back-arc basin setting. Thus, the 

back-arc basin pattern suggested by the Ti I V  ratios (Rg. 3-1 0) may be the most diagnostic in 

tenns of the paleotectonic setting of the Columbus Promontory suite. In either case, I 

interpret these to be tholeiitic basalts generated in an oceanic rifting environment. None of the 

diagrams suggests any similarity of either of these two suites with continentally derived within­

plate basalts. The geochemical trends of amphibolites from the Poor Mountain and Mill Spring 

complex are very similar, suggesting that they may have been generated from a similar parental 

source that was active during the deposition of both stratigraphic sequences (Poor Mountain 

Formation and Mill Spring complex) in which these amphibolites are intercalated. 

Regional Considerations 

Excluding the later Mesozoic dikes (see Ragland and others, 1 983), the majority of the 

mafio-ultramafic rocks in the eastern Blue Ridge and the Inner Piedmont are part of the Late 

Proterozoic to early Paleozoic stratigraphy related to the development of the Laurentian margin, 

the Iapetus ocean, and related marginal basins. Chemically these rocks are very diverse and 

record different tectonomagmatic settings (Rg. 3-1 1 ). Mafic rocks with a continental affinity have 
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Figure 3-1 1 .  Regional variations of geochemical composition (Ti vs. Zr) and tectonic setting of 

amphibolites in the eastern Blue Ridge and Inner Piedmont. 
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been reported by Bland (1 978) from the Evington Group, Achaibar (1 983) from amphibolites in 

the Smith River allochthon, and Badger (1 989 and 1992}, Badger and Sinha (1 988, 1 991 ), and 

Aleinikoff and others (1991)  from the Catoctin Formation. Mafic rocks with an oceanic affinity, 

many of which are considered to be ophiolitic fragments, have been reported by Hatcher and 

others (1984), Shaw and Wasserburg (1 984), McSween and Hatcher (1985), Gillon (1989}, and 

Quinn {1990) from Tallulah Falls Formation rocks in the central Blue Ridge of North Carolina and 

Georgia, McConnell and Abrams (1 984) from the New Georgia Group, Misra and Conte (1 991 ) 

from the Ashe and Alligator Back Formations in eastern the Blue Ridge of North Carolina, and 

Stow and others (1984) from the Ropes Creek Amphibolite in the Alabama Inner Piedmont. 

Mafic rocks with volcanic arc characteristics include the Hillabee greenstone in Alabama (Tull and 

others (1978) and Tull and Stow (1 979)), the Kimsey Bald and Carroll Knob complexes in the 

central Blue Ridge of North Carolina (Eggers, 1 983; Walters, 1 990), the Doss Mountain and 

Slaughters suites from the Dadeville complex in the Alabama Inner Piedmont (Stow and others, 

1 984 and Neilson and Stow 1986) , and the Lake Burton mafic-ultramafic complex in the eastern 

Blue Ridge of Georgia (Hopson, 1 989) (Fig. 3-1 1 ) .  

The distribution and geochemical characteristics of the mafic rocks outlined above within 

the crystalline southern Appalachians provides important information towards our understanding 

of the development and destruction of the Laurentian margin. These rocks represent a diverse 

assemblage that records the developmental stages of continental rifting along the Laurentian 

margin, ocean or marginal basin development, and arc volcanism related to the destruction of the 

Laurentian margin (e.g., Fig. 2-1 1 ). The spatial and temporal diversity of these mafic units is 

consistent with an evolving continental margin and with the interpretation of Rodgers (1 970), 

Hatcher (1972, 1 978a, 1 987, 1 989}, Rankin (1 975 and 1 976), and Thomas {1 976, 1 977, 1983, 

and 1 991 ) for a diachronous history of rifting, deposition and destruction of the Laurentian 

margin. In the case of the Columbus Promontory, amphibolite of the Poor Mountain Formation 

and Mill Spring complex appear to reflect a period of ocean or marginal basin development. In 



1 07 

Chapter II, it was suggested that the Poor Mountain Formation and Mill Spring complex were 

members of the regionally extensive deep-water facies assemblage deposited along the ancient 

Laurentian margin. The geochemical characteristics of the intercalated mafic units in the Poor 

Mountain Formation and the Mill Spring complex, which suggest extrusion in an oceanic 

environment, further supports previous interpretations (e.g., Hatcher, 1 978a,1 987, 1 989) that 

the some members of the upper (Ashe-Tallulah Falls-Mill Spring-Sandy Springs/New Georgia) 

and lower (Evington-Alligator Back-Chauga River/Poor Mountain-Jackson's Gap/Ropes Creek) 

deep-to shallow water facies rocks, discussed in Chapter II , were deposited in an oceanic 

environment possibly, in part, on oceanic crust. 
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CHAPTER IV 

DEFORMATION HISTORY, KINEMATICS AND PARTITIONING OF COEVAL OROGEN­

OBLIQUE (E-W) AND OROGEN PARALLEL (NE-SW) DUCTILE DEFORMATION, 

WESTERN INNER PIEDMONT, CAROLINAS AND N E  GEORGIA 

INTRODUCTION 

The southern Appalachian Inner Piedmont (Fig. 1-1 )  is well known for its complex and 

protracted history of penetrative ductile deformation and metamorphism, and represents part of 

the intemides of an orogen where distinct changes in structural orientation and displacement 

direction occur. Both orogen-oblique to orogen-normal (W-to NW- directed) and orogen­

parallel (SW-directed) structures in the Inner Piedmont have long been recognized (e.g., Reed 

and Bryant, 1 964; Bryant and Reed, 1970; Hatcher, 1 972; Roper and Dunn , 1973; Stirewalt 

and Dunn, 1 973; Griffin, 1 9748; Bobyarchik and others, 1 988), but have been treated 

separately in the overall deformational history of the Inner Piedmont because some were clearly 

formed during the late Paleozoic Alleghanian events. The orogen-oblique (to-normal) 

structures, represented by west-northwest-vergent folds, thrusts, and thrust nappes such as 

the Six Mile thrust sheet and Walhalla nappe (Fig. 4-1) (Griffin, 1 967, 1 971a, 1 974a, and 

1 974b) are generally considered products of early-to middle Paleozoic (Taconian or Acadian) 

tectonothermal events synchronous with peak middle-to upper-amphibolite facies 

metamorphism. Some orogen-parallel structures, like the Brevard fault zone and central 

Piedmont suture (Figs. 1-1 , 1-2, and 4-1 ), formed and were reactivated during several 

orogenies under both high and low P-T conditions (Hatcher, 1 972; Stirewalt and Dunn , 1 973; 

Horton, 1 974; Sinha and Glover, 1 978; Bobyarchik and others, 1 988; Hatcher and Hooper, 
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Rgure 4-1 . Geologic map (a) and cross section (b) of the western Inner Piedmont in the 

Tamassee area. am - amphibolite, hornblende gneiss, and biotite gneiss. tf ­

Tallulah Falls Formation. ggn (dark screen}-Paleozoic granitoid (423 Ma, Harper 

and Fullagar 1 981 ). hg (light screen) - Henderson Gneiss. (medium screen)- Poor 

Mountain Formation. (lightest screen) - Chauga River Formation. (black) mylonite 

gneiss Six Mile thrust sheet and Alto allochthon are unpatterned. Teethed lines 

are thrust faults (teeth on hanging wall). BFZ - Brevard fault zone. OCT - Cedar 

Creek thrust. SPT - Stumphouse Mountain thrust. Map compiled from Griffin 

(1 967, 1 969, 1 971a, 1 974b), Hatcher 1 971 b, Hatcher and Acker (1 984), and 

unpublished data of Hatcher and Liu. Cross section from Hatcher and Hooper 

(1 991) .  
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1 988), and much of the recent work has concentrated on the retrograde movement history of 

the Brevard fault zone (Horton, 1 974; Edelman and others, 1 987; Bobyarchik and others, 

1 988; Hatcher and others, 1 989). 

In this chapter a hypothesis is presented suggesting that early (early- to middle 

Paleozoic) west-northwest directed displacement of thrust sheets in the Inner Piedmont were 

kinematically linked to early southwest- directed orogen-parallel displacement in the Chauga 

belt and Brevard fault zone. The basis for this hypothesis is the recent work of Davis and others 

(1 989a, 1 989b, 1 990a, 1 990b, 1 991 a, 1991 b), Tabor and others (1990), and Liu and others 

(1 991 ), in the western Inner Piedmont of the Carolinas and northeastern Georgia, which have 

documented that the linear fabric and kinematic indicators within the Chauga belt (principally 

Henderson Gneiss) are also pervasive in overlying Inner Piedmont thrust sheets where they 

formed in equmbrium with the upper amphibolite facies mineral assemblage in these rocks. 

Furthermore, this fabric occurs in distinct orientations: northeast-southwest in the western 

Inner Piedmont (mostly Chauga belt) and east-west in the more internal parts of the Inner 

Piedmont. It is suggested that this structural pattern is the result of a thrust-wrench partitioned 

deformation developed during D2 - Da deformational episodes in this polydeformed (D, to Ds) 

terrane between a primordial (?) Brevard fault zone and thrust sheets in the high-grade Inner 

Piedmont and manifestation of an early (middle Paleozoic) oblique convergence or 

transpressional deformation regime within the crystalline southern Appalachians. In addition, it 

is argued that the internal partitioning of deformation and development of related D2 and Da 

structures within this thrust-wrench complex was controlled by a pervasive S2 mylonitic foliation 

interpreted to represent a regionally extensive shear surface (C surface, Bertha and others, 

1 979). Consequently, the western Inner Piedmont may represent a crustal-scale shear zone. 

This chapter focuses on the relevant structures in two areas in the western Inner 

Piedmont: (1)  the Tamassee area in northwestern South Carolina and northeastern Georgia 

(Figs. 1-1 and 4-1); and (2) the Columbus Promontory area in western North Carolina (Figs. 1-1 



1 1 2  

and 1-2; Plates I, II, and Il l). The Tamassee area is located in the western Inner Piedmont of 

northwestern South Carolina and northeastern Georgia. It includes the Chauga belt (Hatcher, 

1 970 and 1 972) and parts of the higher-grade Inner Piedmont. As previously discussed in 

Chapter I ,  the Columbus Promontory (Figs. 1-1 and 1-2) is located in the western Inner 

Piedmont in North Carolina. This area extends from the Brevard fault zone 40 km to the 

southeast into the Inner Piedmont and sits astride the boundary between the Inner Piedmont 

and Chauga belt. 

The lithostratigraphy of the Tamassee area and Columbus Promontory area is nearly 

identical, consisting of the Tallulah Falls Fonnation overlain by rocks of the Chauga belt (Fig. 4-

1 ). The Tallulah Falls Formation (Hatcher 1971a, Hatcher 1 973) here consists of biotite gneiss­

metagraywacke, pelitic schist, quartzite, and amphibolite, is commonly migmatitic, and locally 

unconformably overlies North American Grenville basement in the Blue Ridge (Hatcher 1 977; 

Stieve, 1 989). In the Columbus Promontory, Tallulah Falls Formation equivalents are termed 

the Mill Spring complex (Fig. 1-2). Rocks of the Chauga belt include the Chauga River 

Formation, Poor Mountain Formation, and the Henderson Gneiss (Figs. 1 -1 ,  1-2, 4-1). The 

Chauga River Fonnation, occurring mostly in the Brevard fault zone, consists of graphitic 

phyllite, muscovite-chlorite phyllite, impure carbonate, and quartzite. The Poor Mountain 

Formation {Sloan, 1 908; Shufflebarger, 1 961 ; Hatcher, 1 969 1 970) consists of micaceous 

metasiltstone, laminated amphibolite, quartzite, and marble. Chauga River and Poor Mountain 

Fonnations occur both structurally beneath and above the by the 509 Ma Henderson Gneiss 

{Sinha and others, 1 989). The Henderson Gneiss is mostly coarse augen gneiss, and varies 

compositionally from granite to quartz monzonite to granodiorite (Lemmon 1 973). 

Wrthin the Columbus Promontory, Brevard fault zone rocks display a retrograde overprint 

(Lemmon, 1 973; Dabbagh, 1 975) while rocks southeast of the Brevard fault zone, including 

Chauga belt and Inner Piedmont, are in the upper amphibolite-facies sillimanite-muscovite 

zone. In the Tamassee area, Chauga belt rocks are in the lower to middle amphibolite facies, 
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garnet and staurolite zones (Hopson and Hatcher, 1 988; Liu 1 991 ) whereas the deeper Inner 

Piedmont is at the upper amphibolite facies; the Walhalla nappe contains kyanite and or 

sillimanite, and the Alto allochthon and Six Mile thrust sheets contain abundant sillimanite. 

DEFORMATION HISTORY 

The detailed structural analysis of two sizable areas ( -3000 km2 in the Tamassee area and 

1 500 km2 in the Columbus Promontory) and those of the several previous studies within the 

western Inner Piedmont (e.g., Griffin, 197 4a, Horton and McConnell ,1 990) strongly indicate a 

consistent regional pattern of temporally and spatially related structural features within the 

western Inner Piedmont of the Carolinas and NE Georgia. Both study areas contain evidence 

for a polyphase deformation history bracketed by the relationship to the last middle-to upper 

amphibolite facies metamorphism (M1)  that has affected these areas. This pattern is 

represented by pre-peak 01 deformation, pre-to syn- to late- peak 02 and Oa deformations, 

and post-peak 04 and Os deformations. 02 and Oa structures are the most pervasive and 

important to the hypothesis concerning the kinematics and partitioning of deformation between 

orogen-oblique and orogen-parallel deformation in the western Inner Piedmont. Although 

chronologically separated, these episodes probably represent a continuum of deformation. 

The age of 02 - Oa deformation is, at present time, bracketed by a 423 Ma granitoid (Harper and 

Fullagar 1 981 ) in the Tamassee area (Fig. 4-1) and a 438 Ma granitoid (Odorn and Russell 1 975) 

in the Columbus Promontory (Fig. 1-2). Both of these bodies were deformed by 02 and Oa. 

Oallmeyer (1988) indicates that hornblende closure within the Alto allochthon, a major Oa 

structure, occurred between 335 and 360 Ma and suggested this age closely approximates 

uplift and emplacement of the thrust sheet. These ages strongly suggest that 02 - Oa is a 

lower- to middle Paleozoic tectonothermal event. Although this discussion is concerned with 

the development of 02 and Oa structures, included below is a brief summary of the attributes of 
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the other deformational events in the study areas to enable the 02 and 03 structures to be 

related to the regional tectonic framework. 

D1 Deformation 

The earliest recognized deformation, here designated o, , occurred prior to the main 

phase of recrystallization affecting the westem Inner Piedmont and is not widespread. The 

oldest structures observed in both areas and are F1 folds. This generation of folding was also 

observed within the adjacent eastem Blue Ridge by Roper and Dunn (1973), Stirewalt and 

Dunn (1 973), Hatcher (1977), Hatcher and Butler (1979), and Hopson and Hatcher (1988). F, 

folds are preserved primarily as small rootless intrafolial folds and truncated folds within boudins. 

Hopson and Hatcher (1 988) indicated F, was accompanied by formation of a penetrative s, 

foliation axial planar to F, folds, and defined by alternating micaceous and quartzofeldspathic 

layers. In the Columbus Promontory early F, folds that compositional layering have been 

observed in Poor Mountain Formation rocks exposed in a small window through the Tumblebug 

Creek thrust sheet (TOT) (Figs. 1-2 and 4-2). 

D2 Deformation 

02 represents the most pervasive deformation in the study areas and is divided into two 

phases. 02a deformation includes a major episode of pre- (M, ) peak thrusting event that 

emplaced the Henderson Gneiss in both study areas. Thrust sheets containing the Henderson 

Gneiss are the Stumphouse Mountain thrust sheet (SPT) in the Tamassee area and the TOT in 

the Columbus Promontory (Figs. 1-2, 4-1 , and 4-2). D2b deformation was the most pervasive 

deformation within both study areas and throughout the entire western Inner Piedmont. 
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Figure 4-2. Outcrop photographs of 0�03 structures from the Columbus Promontory 

(a,b,e,and f) and Tamassee area ( c and d). a) Exposure of TCT showing truncation 

of F1 folds in Poor Mountain amphibolite (Pm) by Henderson Gneiss (Hg). View 

looking NW. Hammer is 40 em. b) folded TCT with thrust contact transposed into 

S2 foliation. Compass is 20 em. c) Reclined Fa folds in weathered amphibolite (dark 

layers) and granitoid gneiss in the Walhalla nappe along U.S. 76 at Chauga River in 

NW South Carolina. View looking N. Hammer is 40 em. d) closeup of (c) showing 

small thrust, drag folds, and pegmatite along limb of westernmost fold in (d). Note 

discor:'tinuous (dark) layers of amphibolite interpreted as sections of hinges of SW­

vergent sheath (?) folds. Hammer is 40 em. e) outcrop photo showing composite 

makeup of regional � foliation including compositional layering, boudinaged 

amphibolite layers, elongated quartzofeldspathic pods. View looking S. Hammer is 

40 em. f) Large-scale shear band (Bertha et al., 1 979) or extensional crenulation 

cleavage (Platt and Vissers 1980) marked by arrow. Shear sense is top-to-W 

(right). Hammer is 1 m. 
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Metamorphic textures indicate that 02b was coeval with upper amphibolite facies metamorphism 

(Fig. 4-3) in the western Piedmont. 02b deformation is characterized by extensive tight to 

isoclinal F2 folding (recumbent to reclined) and development of the regional foliation S2. A 

penetrative mineral lineation (l2 ) occurs within the S2 foliation. 02b deformation includes 

emplacement of large thrust sheets in both study areas and includes the Walhalla nappe and 

Cedar Creek (CCT) thrust sheet in the Tamassee area (Fig. 4-1), and the Sugarloaf Mountain 

(SMT) and Mill Spring (MST) thrust sheets in the Columbus Promontory (Fig. 1-2). Because of 

the importance of 02 structures to the thesis of this chapter, they are discussed in greater detail 

below. 

D3 Deformation 

03 deformation included late syn- to post metamorphic deformation that are common in both 

study areas, but not penetrative. 03 structures are considered to be post peak, but formed 

prior to complete cooling of the rocks (Hopson and Hatcher, 1 988). Importantly, 03 appears to 

generally represent late- to postpeak final emplacement of thrust sheets as coherent masses. 

In the Tamassee area this includes the emplacement of the Alto allochthon (AA) and Six Mile 

thrust sheet. More specific details about 03 folds and faults are also outlined below. 

D4 - Ds Deformation 

This deformation produced postmetamorphic, nonpenetrative folds in both study areas. In the 

Tamassee area, 04-05 deformation produced several map-scale folds and dome-and-basin 

interference pattems. F 4 folds are broad, open structures that refold earlier F1-F3 folds. 

Similar upright, open folds with steep axial planes that warp S2 are also present in the Columbus 

Promontory. Thrust sheets (MST and AA) within both the areas are preserved within broad F 4 
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Figure 4-3. Mosaic of photographs and photomicrographs of D2 lineations and microstructures 

from the Columbus Promontory. a) Sheared garnets (G) within S2 showing top-to­

SW (right) shear sense. Note smimanite (S) growth paralleling garnet boundaries 

suggesting synkinematic sillimanite growth during shearing. Field of view is 4 mm. 

Plane light. b) Quartz ribbons defining S2. Also note sillimanite parallel to quartz 

ribbon. Quartz craxis pattern for this sample (cp12-2-5) is shown in Figure 4-8. 

Field of view is 4 mm. Plane light. c) Type II s-c mylonite (S and C in photo) 

defined by highly strained quartz (Q) microfabric and asymmetric white-mica fish. 

Shear sense is top-to-W (right). Quartz c-axis pattern for this sample (cp593) is 

shown in Figure 4-8. Field of view is 4 mm. Plane light. d) NE-SW oriented mineral 

lineation (parallel to hammer) in interleaved Poor Mountain amphibolite and 

Henderson Gneiss. Hammer is 40 em. e) E-W oriented lineation from 

metagraywacke of Mill Spring complex in the MST. f) Sample containing two mineral 

stretching lineations, (a) oriented 1 8°/243°; (b) oriented 22°/272°. 



1 1 9  



1 20 

synfonns. In the Tamassee area Fs folds occur as upright, NW-trending open folds that refold 

the F 4 folds, producing broad dome-and-basin interference patterns. 

D2 AND 03 STRUCTURES 

D2 Structures 

Foliation. � generally strikes slightly oblique (N-NE) to the orogen and has a shallow (< 30°) 

southeast dip, although variations exist (Fig. 4-4). Near the Brevard fault zone, the strike of 

foliation parallels the fault zone and dips gently to moderately southeast. Within the Brevard 

fault zone, S2 foliation dips moderately (-40°), with steepening related to later Alleghanian 

defonnation. The shallow dip of foliation in the Inner Piedmont and Chauga belt, but with 

steepening along the Brevard fault zone, has also been clearly imaged in seismic reflection 

profiles (Cook and others, 1 979; Costain and others, 1 989). 

Components of the S2 foliation (Fig. 4-2), including compositional layering, schistosity, 

and gneissic banding, as well as intrafolial folds and boudinage, indicate that S2 is composite, 

in the usage of Tobisch and Paterson (1 988), and represents an end-product stage of a 

strongly transposed, evolved fabric. In most cases, compositional layering does not represent 

bedding (So) because the overall parallelism between the foliation, stratigraphic contacts, and 

major faults indicates that all earlier foliations were transposed into the S2 foliation (Fig. 4-2). 

This fabric is discussed in more detail in Chapter VI. 

Careful examination of both mesoscopic and microscopic attributes of the S2 fabric 

indicates this foliation is mylonitic (commonly annealed), or is an s-type banded structure of 

Cobbold (1 977). This fact is manifested by the strong planarity of the foliation, the presence of 

mineral stretching lineations on nearly all foliation surfaces, and the widespread occurrence of 

structures indicative of noncoaxial defonnation, such as composite-planar fabrics, asymmetric 
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Figure 4-4. Lower-hemisphere equal-area projections of structural data a) Tamassee area, 

and b) Columbus Promontory. In (a) SPT-Stumphouse Mountain thrust; COT­

Cedar Creek thrust; AA-Aito allochthon. In (b) TOT-Tumblebug Creek thrust; 

SMT -sugarloaf Mountain thrust; MST -Mill Spring thrust. Dashed great circles on 

equal-area projections of F2 folds represent plane normal to mean vector of poles 

to � mylonitic foliation; solid great circles are the best fit plane to F2 hinges. (fold­

hinge girdle). This shows the low angular discordance between S2 and the F2 fold­

hinge girdle common in contemporaneous mylonitic foliation and folds formed in 

ductile shear zone. Tamassee area data compiled from Hopson and Hatcher (1988) 

Hatcher 1 971 b, Hatcher and Acker {1 984), and unpublished data of Hatcher and 

Liu (1987-1 991 ). Columbus Promontory data compiled from Lemmon 1 973, and 

unpublished data of Davis (1 987-1990), and Tabor (1 988-1 990). 
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intrafolial folds, and a-type tails (Simpson, 1986; Simpson and Schmid, 1 983) on porphyroclasts 

and porphyroblasts (Figs. 4-3). In both areas middle-to upper amphibolite facies mineral 

assemblages help define 82 (Figs. 4-3). Depending on rock type, the foliation is defined by 

alignment of micas, quartz ribbons, sillimanite, amphiboles, and elongate garnets (Figs. 4-3). 
The extreme planar nature of 82 and the kinematic indicators within 52 (Figs. 4-2 and 

4-3) permit the interpretation that this foliation developed as a C surface (Bertha and others, 

1 979; Lister and Snoke, 1 984). The more schistose rocks commonly contain an oblique 

foliation defined by mica-fish (buttons) characteristic of Type II 5-C mylonite (Fig. 4-3), defined 

by Lister and Snoke (1984), and micro- and mesoscale shear bands or extensional crenulation 

cleavage dipping in the direction of flow (Fig. 4-2), defined by Platt and Vissers (1980). The 

preservation of asymmetric 5-C fabrics within 82 suggests that it may record a deformation path 

characterized by a boundary parallel noncoaxial laminar flow (Lister and Snoke, 1 984). If this 

interpretation is correct, the areal extent of 82 implies that it represents a regionally extensive 

shear surface. 

Folds. Recumbent F2 folds, with variably oriented hinges, are the dominant folds preserved 

throughout the western Inner Piedmont (Figs. 4-4 and 4-5). These folds are typically isoclinal, 

reclined to recumbent with thickened hinges and attenuated limbs (Fig. 4-5). F2 fold hinges 

commonly have long straight hinge lines with well-developed cylindricity parallel to L2 mineral 

lineations (Fig. 4-4). In most cases axial planes are defined by the 82 foliation, except in the 

hinges of the F2 folds. 

In the Tamassee area, F2 folds are northwest-vergent, northeast-trending reclined to 

recumbent isoclinal folds (Fig. 4-4). The trend of F2 folds dominates the outcrop pattern in this 

area (Hatcher, 1 978b; Hatcher and Butler, 1979). In the Columbus Promontory, F2 fold hinges 

exhibit a wide variation in orientation and most verge W, ahhough several exposures indicate 

NW and SW vergence. F2 also includes sheath folds observed in the SMT and the MST (Fig. 
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Rgure 4-5. Outcrop photographs of D2 fauhs and folds from the Columbus Promontory. a) 

Contact of SMT showing Poor Mountain schist overlying Henderson Gneiss. Knife 

is 1 0  em. b) NW-trending strike-slip in the MST. Note truncation of fold in on the 

east side (right) of the photograph. View is toward the SE. Hammer is 40 em. c) F2 

folds in Poor Mountain amphibolite. Pen is 15  em. d) F2 folds in Mill Spring 

complex. Hammer is 60 em. e) part of W-vergent sheath fold from SMT. View is 

facing E parallel to E-W trending L2 mineral stretching lineation. Knife is 1 0 em. f) 

reconstruction of sheath fold in (e). Arrow shows section of folds shown in (e) 
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4-5). These are recognized in outcrop by the characteristic eye, anvil, and arrowhead shapes, 

and small-scale folds with highly curvilinear hinges. Definitive sheath folds have been observed 

in the Columbus Promontory in areas where the east-west deformation is intense (Figs. 4-5). 
Folds with highly curvilinear hinges are also present in strongly layered rocks in the Tamassee 

area {Fig. 4-5) and may be sheath folds. Outcrop patterns in the Chauga belt {Figs. 1-2 and 4-

1 )  yield complex fold geometries and are also interpreted as large-scale sheath folds. 

Faults. In both study areas, major D2 thrust faults dip gently southeast, parallel to the S2 

mylonitic foliation and strike northeast roughly parallel to the orogen, although some local 

discordance is present {Figs. 1-2 and 4-1 ). D2a faulting involved emplacement of the SPT in 

the Tamassee area and the TCT in the Columbus Promontory; both thrust sheets contain only 

Henderson Gneiss {Figs. 1-2, 4-1 , 4-2, and 4-3). The along-strike continuity and contact 

relationships with underlying rock, suggest that the entire Henderson Gneiss body was 

emplaced as a coherent mass and not intruded into the Chauga belt. Several fundamental 

structural relationships have been observed along the SPT and the TCT: {1 ) footwall rocks and 

earlier F, isoclinal folds in the Poor Mountain Formation are sharply truncated by these faults 

{Fig. 4-2); {2) emplacement of the SPT and TCT occurred before the development of pervasive 

S2: and {3) the fault contact has been transposed into S2 (Fig. 4-2). 

Two distinct D2b thrust sheets (Fig. 4-1) have been recognized in the western part of 

the Tamassee area and include the Walhalla nappe and the Cedar Creek thrust sheet (CCT). 

The CCT is part of the larger-scale Walhalla nappe of Griffin (1 969, 1 971a, and 1 974a) and 

straddles the boundary between the Chauga belt and Inner Piedmont. This boundary, between 

the Chauga belt and Inner Piedmont, has been interpreted as tectonic { Griffin, 1 969, 1 971a, 

and 1 974a; Hatcher, 1 969; Nelson and others, 1 987; Liu 1 991 ) ,  a metamorphic gradient 

(Hatcher and Butler, 1 979) , or a metamorphic boundary locally faulted (Hatcher and Acker, 

1 984; Nelson and others, 1 987). The CCT placed Poor Mountain amphibolite and amphibolite-
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granitoid gneiss of the Inner Piedmont over Henderson Gneiss and other Chauga belt rocks. 

Liu (1 991 ) suggested that the frontal portion of the COT may be the overturned limb of the 

Walhalla nappe. Liu (1 991 ) also indicated that the COT is a major thrust fault (tectonic slide of 

Aeuty (1 964)) related to F2 folding (Fig. 4 -1 ). Hatcher and Hooper (1 991 ) interpreted this 

feature as a Type F thrust sheet related to fold-nappe style F2 folding and thrusting. The nature 

of this boundary in this area is still unresolved. 

Two D2b thrust sheets have been identified in the Columbus Promontory by Lemmon 

(1973) and Davis and others (1 989, 1 990a): the SMT and the MST (Fig. 3). The SMT, originally 

identified by Lemmon (1 973) , Lemmon and Dunn (1 973a), represents one of the most abrupt 

structural contacts in the Columbus Promontory (Figs. 1-2 and 4-5). This thrust emplaced 

sillimanit&-bearing pelitic schist, quartzite, and amphibolite of the Poor Mountain Formation and 

biotite gneiss of the upper Mill Spring complex over the Henderson Gneiss (Fig. 1 -2). Extreme 

grain-size reduction of the augen in the Henderson Gneiss occurs along this contact (Fig. 4-5). 

Everywhere this fault has been observed, the contact is knife sharp, subhorizontal, and does 

not appear to have been appreciably folded after emplacement. Abundant kinematic indicators 

within this thrust sheet indicate both top-to-SW and top-to-W shear sense: this transition 

occurs from NW to SE (respectively) within the thrust sheet. The SMT has stratigraphic and 

structural similarities to the AA and Six mile thrust sheet, but shear sense indicators defined by 

sillimanite indicates sillimanite growth was synkinematic with ductile thrusting and emplacement 

of the SMT, whereas sillimanite growth occurred before emplacement of AA and Six mile thrust 

sheet. The structurally highest MST (Fig. 1-2) placed migrnatitic biotite-granitic, amphibole 

gneiss, and amphibolite of the lower Mill Spring complex over rocks of the upper Mill Spring 

complex and Poor Mountain Formation. Shear-sense indicators and associated mineral 

lineations within this thrust sheet indicate a top-to-W displacement. Synkinematic sillimanite 

growth is also present in the MST. 
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Lineation. Penetrative subhorizontal mineral lineations (L2) lying in the plane of the S2 

mylonitic foliation are also widespread structural features in both study areas (Figs. 4-3, 4-4, 4-
6, and 4-7). In both study areas, L2 mineral lineations are commonly parallel to F2 fold hinges 

(Fig. 4-4). In the Tamassee area, Chauga belt lineations define a tightly restricted NE-sW 

concentration (Fig. 4-4). In the Henderson Gneiss, mineral lineations are defined by elongate 

and rodded quartz, micas, and feldspar; in schist by elongate micas and quartz rods; and in 

amphibolite by elongate amphiboles (Fig 4-3). This orientation is persistent into the Brevard 

fault zone. It is important to emphasize that this linear fabric formed under distinctly different P­

T conditions from the coaxial linear fabric related to late Paleozoic retrograde greenschist facies 

mylonitization in the Brevard fault zone discussed by Reed and Bryant (1964) Bryant and Reed 

(1 970), Hatcher (1969), Griffin (1 974), Bobyarchik and others (1 988), and Vauchez and 

Brunei, 1 988). Southeast of the Chauga belt, this northeast-southwest concentration is more 

scattered and east-west orientations become apparent in the highest-preserved Six Mile thrust 

sheet (Figs. 4-4 and 4-6 ). Here L2 lineations are defined by elongate micas, quartz rods, and 

sillimanite needles. Hatcher (1 970), Roper and Dunn (1 973), and Griffin {1 974a), related the 

northeast-southwest trending lineations to early isoclinal folding. Griffin (1974a) proposed that 

the lineations developed by preferential elongation growth synchronous with primary isoclinal 

folding and formed mimetic to the fold hinges. Roper and Dunn (1 973) interpreted the 

northeast-southwest trending mineral lineation in the Brevard fault zone to be associated with 

folding of the mylonitic rocks parallel to the direction of maximum extension within the plane of 

the mylonitic foliation, and that no fabric elements observed required southwest-directed 

transport along the fault. Kinematic indicators in the Chauga belt rocks, particularly in the 

Henderson Gneiss, clearly indicate that this is a stretching lineation related to southwest­

directed shear along the flat-lying foliation (Fig 4-2). 

Across the Columbus Promontory from northwest to southeast is a distinct change in the 

trend of mineral lineations from northeast-southwest to east-west, respectively (Figs. 4-4 and 
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Figure 4-6. Distribution and orientation of mineral stretching lineations from the Tamassee area. 

Each arrow represents one measurement. Geology is the same as shown in Fig. 4-

1 .  Data compiled from Griffin (1 967, 1969, 1 971a, 1 974b), Hatcher and Acker 

(1984), and unpublished data of Hatcher. 
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Figure 4-7. Distribution and orientation of mineral stretching lineations from the Columbus 

Promontory. Each arrow represents one measurement. Geology is the same as 

shown in Fig. 1-2. Data compiled from Lemmon 1 973, and unpublished data of 

Davis (1 987-1990), and Tabor (1 988-1 990) and Yanagihara (1 991-1 993). 
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4-7). Along the western margin of the Columbus Promontory (Chauga belt), mineral lineations 

also have a ubiquitous northeast-southwest orientation (Figs. 4-3, 4-4, and 4-7). In fact, this 

northeast-southwest linear fabric is so well developed in the Henderson Gneiss that it is 

commonly an L-tectonite. This lineation is defined by elongate K-feldspar porphyroclasts, 

commonly with recrystallized tails, quartz ribbons, and preferentially oriented biotite and 

muscovite. Asymmetric porphyroclasts, boudinaged feldspar grains, and s-c fabrics indicate a 

stretching origin related to southwest-directed shear (Fig. 4-2}. 

Southwest-directed mineral lineations are also present in the western part of the SMT 

(Figs. 4-4 and 4-7). Here the lineation, depending on rock type, is defined by recrystallized 

quartz ribbons, elongate amphibole and micas, and preferentially oriented sillimanite. Farther 

east in the SMT, however, a distinct change occurs in the orientation of the lineation to east­

west trends (Figs 4-3, 4-4, and 4-7). Shear sense indicators suggest both top-to-southwest 

and top-to-west displacement, respectively. Both lineation orientations have been observed 

in a few localities; here the curvilinear geometry of the lineations indicate a progressive change 

in orientation (Fig. 4-3}. In the structurally highest MST, nearly all lineations are oriented east­

west (Figs. 4-4 and 4-7). The east-west lineations, depending on rock type, are defined by 

quartz rods, elongate amphibole and micas, and preferentially oriented sillimanite. Abundant 

kinematic indicators including micro- and mesoscale shear bands, s-c fabrics, sheath folds, 

and boudinaged amphibolite layers indicate intense east-west stretching. 

Quartz c-axis fabrics. Quartz o-axes were measured in 1 2  samples from the Columbus 

Promontory by standard universal stage techniques (e.g., Turner and Weiss, 1963) from twelve 

polymineralic, quartz-rich (> 75%) samples in thin sections cut perpendicular to the mylonitic 

foliation and parallel to the mineral stretching lineation. The purpose here was to determine if a 

change in the quartz o-axis patterns occurs from the southeast comer of the study area, where 

mineral lineations (L2) trend east-west and other kinematic indicators suggest top-to-west 
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Figure 4-8. Contoured lower-hemisphere equal-area projections of quartz o-axis 

measurements from quartz-rich metagraywacke, quartz-rich pelitic schist, and quartzite in the 

Columbus Promontory. Arrows indicate shear sense determined by other independent 

kinematic criteria. N=200 for each sample. Orientations adjacent to diagrams are trend and 

plunge of mineral stretching lineation. 
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surface orientation. Y-maxima patterns are frequently observed in quartz-rich tectonics and 

have generally been attributed to the activity of prismatic {m} slip planes along the < a > slip 

direction during high temperature {>400° C). Models by Jessell and Lister {1990) have shown, 

however, that Y maxima can be produced during shear accompanied by high strain and high 

temperature by the concomitant activity of multiple slip systems and dynamic recrystallization. 

Therefore, Y maxima patterns cannot be uniquely assigned to the activity of a single slip system, 

but do appear to be indicative of shearing at high strain and temperature conditions. 

Da Structures 

Folds. Fa folds that deform S2 are common in the Tamassee area, but are not penetrative (Fig. 

4-2). These generally contain a weakly developed S3 axial planar foliation. Axial surfaces of F3 

folds vary from near vertical to gently inclined (Hopson and Hatcher, 1 988; Liu 1 991 ). Fa folds 

within the Columbus Promontory include outcrop-scale undulations to em-scale crenulations 

that locally produce a crenulation cleavage (Sa) in the rocks. In both study areas many Fa folds 

have a common limb, parallel to S2, that is sheared or faulted in a sense indicative of general 

westerly displacement parallel to the ductile thrusts. Hopson and Hatcher (1988) suggested 

that this shearing occurred at the time of emplacement of the AA and the Six Mile thrust sheet. 

Faults. The AA (Figs. 1 -1 and 4-1) is a late- to postmetamorphic peak Da crystalline thrust 

sheet recognized by Hatcher {1 978a), and descnbed in detail by Hopson and Hatcher (1 988). 

The Toccoa Falls-Shorts Mill thrust fault bounds the allochthon and separates overlying 

migmatitic sillimanite-bearing Tallulah Falls Formation rocks of the AA from the garnet-bearing 

nonmigmatitic Chauga River and Poor Mountain Formation rocks of the Chauga belt. 

Earlier F1 and F2 folds are truncated by the Toccoa Falls-Shorts Mill fault, along with 

juxtaposition of high- and medium-grade rocks, indicating postmetamorphic emplacement of 
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the allochthon. Two distinct episodes of mylonitization are recorded within the AA: (1 ) early 

high-temperature mylonitization along the Toccoa-shorts Mill fault, and (2) later retrograde 

mylonitization along the northwestern margin of the AA, associated with deformation in the 

Brevard fault zone (Hopson and Hatcher 1 988). Nelson (1 985) and Hopson and Hatcher 

(1 988), on the basis of stratigraphic, metamorphic, and deformational similarities, suggested 

that the AA may be a dismembered remnant of the Six Mile thrust sheet (Fig. 4-1). The Six Mile 

thrust (Griffin 1 967, 1 971a, and 1 974a) separates sillimanite-grade pelitic schist, gneiss, and 

deformed granitic plutons from underlying amphibolite and granitic gneiss of the northwestern 

flank of the Walhalla nappe (Rg. 4-1). 

Da faulting in the Columbus Promontory includes a northwest-trending, ductile strike­

slip fault (Rgs. 1-2 and 4-5) that cuts the MST. This fault is nearly vertical with a NW-5E 

horizontal mineral lineation, and deflection of wall-rock units into the fault indicates a sinistral 

displacement sense (Fig. 4-5). The areal extent of this structure has not been determined, 

despite detailed map coverage. Metamorphic textures indicate this feature also developed near 

the peak of M1 metamorphism, but after emplacement of the MST and development of 82 

mylonitic foliation and the F2 folds. 

DISCUSSION 

Kinematics of Orogen-Parallel and Orogen-Oblique Deformation 

An important observation from this investigation is the recognition of a change in 

orientation in the displacement direction within the western Inner Piedmont from east to west in 

the deeper Inner Piedmont to northeast to southwest in the Chauga belt and Brevard fault zone 

(Rgs. 4-6 and 4-7) during D2 and Da. Variation in trend of macro- and mesoscopic structural 

elements is a common attnbute of many orogenic belts (Ramsay, 1 958 and 1 967; Tobisch and 
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others, 1 970; Reed and Bryant, 1 964; Bell , 1978; Coward and Potts, 1 983; Ridley, 1 986; 

Ellis and Watkinson, 1 987; Oldow, 1990). These variations can result from noncoaxial 

polyphase deformation, partitioning of deformation during a single event (Lister and Williams, 

1 983; Williams, 1 970 and 1 985), or combinations of different deformation paths. At one time, it 

was argued (Tabor and others, 1990) that these patterns in the Columbus Promontory 

represented two distinct episodes of movement. The consistent and progressive change in 

orientation of lineations and kinematic indicators across both study areas, and similarities in 

metamorphic conditions for both kinematic directions, suggested by metamorphic assemblages 

and textures (Figs. 4-3), however, indicates these structures formed coevally at upper 

amphibolite facies metamorphic conditions. Because of these observations, it is argued that 

NE-8W and E-W structures resulted from partitioned southwest-directed, orogen-parallel 

displacement in the Brevard fault zone and Chauga belt, and orogen-oblique to orogen­

normal, west-northwest-directed ductile deformation in Inner Piedmont thrust sheets during 

D2 - 03 (Fig. 4-9). The implication of this interpretation is that early (synchronous with upper 

amphibolite facies metamorphism vs. retrograde) movement on a primordial (?) Brevard fault 

zone was kinematically linked to the emplacement crystalline thrust sheets in the Inner 

Piedmont. This possibility was, perhaps implied, by the earlier studies of Clarke {1 952), Bentley 

and Neathery (1 970), Griffin (1 971 b, 1 974a), Hatcher (1 969, 1 972, and 1 978a), Stirewalt and 

Dunn (1 973), and Edelman and others (1987), but lacked supporting kinematic data. The new 

data presented in this chapter appear to provide strong kinematic evidence for such a 

movement history. The interpretation shown in Figure 4-9 explains the juxtaposition of those 

Inner Piedmont thrust sheets farthest east, dominated by structures indicative of east-west 

displacements, to structures farther west, where there is a progressively greater amount of 

southwest-directed displacement. This configuration also suggests a linked decollement 

system between the Inner Piedmont thrust sheets and the Brevard fault zone (Fig. 4-9). The 
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Figure 4-9. Schematic configuration of the thrust stacking and deformational sequence 

envisioned for the western Inner Piedmont. Configuration shows dominance of W-directed 

(orogen-oblique) displacement in the deeper Inner Piedmont and stronger component of SW­

directed displacement (orogen-parallel) and stretching within the Chauga belt and Brevard fault 

zone. Configuration also shows linkage of the Brevard fault zone and western Inner Piedmont 

thrust sheets along common decollement system. 
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northeast-southwest ductile defonnation affecting the pre- (SPT and TCT}, syn- (SMT}, and 

late- to post metamorphic peak (AA) thrust sheets indicates this system was linked and active 

throughout the last upper amphibolite facies metamorphic event that affected this part of the 

western Inner Piedmont. 

Structural patterns similar to those observed in the Tamassee area and the Columbus 

Promontory have been described by Brun and Burg (1982), Coward and Potts (1 983), Lisle 

(1984), and LaGarde and Michard (1 986). Studies of finite strain in ductile thrust zones in the 

Scandinavian and British Caledonides (Lisle, 1984; Coward and Potts, 1 983), and in the 

Variscan beR (Brun and Burg, 1 982), reveal large areas with longitudinal mineral stretching 

lineations subparallel thrust fronts and nonnal to the regional thrust transport directions. Coward 

and Potts (1983), using the Moine thrust as an example, proposed that longitudinal strain may 

be explained by differential movement and are related to complex strain patterns developed at 

the frontal tips of thrust zones. LaGarde and Michard (1 986) interpreted similar longitudinal 

strain patterns, along frontal tip of the Central Meseta thrust in the Rehamna massif in the 

southwest Mor�n Meseta, to be the product of thrust-wrench shearing, combining ductile 

thrusting and wrenching during progressive synmetamorphic shortening. 

Oldow (1990) has shown displacement compatibility for coeval transcurrent and 

contractional faults requires that these fauRs share a common decollement system. Such a 

linked decollement system can produce a complex array of transport directions within a single 

orogen that include dip-slip and strike-slip motion despite being spatially separated in parts of 

the same displacement field. This model seems particularly significant to the observations in the 

western Inner Piedmont discussed in this chapter. Oldow (1 990) also pointed out that oblique 

convergence is, in many cases (e.g., North American Cordillera), the driving force for 

synchronous development of contractional and strike-slip systems. By analogy, it is suggested 

that oblique convergence or a transpressional regime, between one of several terranes (e.g., 

Blue Ridge, Inner Piedmont, and Carolina terrane in Fig. 1-1 )  during amalgamation of the 
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southern Appalachian orogen, may have been the large-scale tectonic mechanism that 

oriented the dominant flow paths (W and SW directed) in the foreshortening crust in the western 

Inner Piedmont. 

Transpressional models to explain the Alleghanian (retrograde) transcurrent 

displacement along the Brevard fault zone, the Brookneal shear zone, and faults of the eastern 

Piedmont fault system (Hatcher and others, 1 977) have been proposed by LeFort (1 984), 

Gates and others (1 986, 1 988), and Vauchez and others (1 987). These models generally 

discuss only the retrograde movement on the Brevard fault zone, and thus do not discuss the 

possible relationship between the Brevard fault zone and Inner Piedmont thrust sheets. The 

transpressional or oblique convergent model presented in this chapter is significantly different 

in that it suggests a kinematic connection between earlier deformation along the Brevard fault 

and the emplacement of thrust sheets in the western Inner Piedmont during the last (?) high 

grade tectonothermal event in the western Inner Piedmont. 

Vauchez (1 987) and Vauchez and Brunei (1 988) suggested that development of the 

linear fabric in the Henderson Gneiss discussed in this chapter formed during an earlier 

(Alleghanian) phase of dextral strike slip along the Brevard fault. In their interpretation, this fabric 

was produced during low amphibolite facies P-T conditions and forms a restricted domain near 

the Brevard fault zone. Vauchez and others (1 987, 1 989), furthermore suggested 

southwestward extrusion of the Inner Piedmont as a rigid block between the Brevard fault zone, 

the Kings Mountain shear zone, and related faults during the Carboniferous-Permian 

continent-continent collision between North America and Africa originally proposed more 

generally by LeFort (1 984). It is alternatively argued here, based on considerable amount of 

new structural and metamorphic data that, during development of this linear fabric in the 

Henderson Gneiss and in the overlying thrust sheets (SMT, AA, MST), the Inner Piedmont did 

not behave as an nondeforming rigid block, but was undergoing internal ductile deformation at 

middle- to upper amphibolite facies conditions. The fabric elements of ductile thrust sheets in 
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the western Inner Piedmont record changes in rheological behavior related to their 

emplacement history related to the peak metamorphic event that affected the western Inner 

Piedmont. The Inner Piedmont thrust sheets had to have cooled enough to have sufficient 

strength to remain coherent during transport, but were sufficiently ductile to become 

penetratively deformed. Penetrative ductile deformation occurred early accompanying 

formation of 02 structures that are pervasive throughout the western Inner Piedmont. This was 

followed by some cooling accompanying transport at which time individual thrust sheets crossed 

a rheological threshold that provided greater internal strength permitting them to move tens of 

kilometers westward as thin {<< 5km) coherent sheets during late 02 or Da (e.g., Alto 

allochthon). It is possible that the conclusion of this deformation episode is represented by the 

early retrograde shearing along the Brevard fault zone which overprints rocks on the northwest 

end of the Alto allochthon observed by Hopson and Hatcher (1 988). 

Development and Kinematic Importance of the S2 Mylonitic Foliation 

Ductile thrusting, that formed relatively thin crystalline thrust sheets has been 

recognized as the dominant map-scale deformation that affected the western Inner Piedmont 

by Griffin {1 967 1 969, 1 971 a, 1974a), Hatcher {1 969, 1 972, 1 978b, 1 987, 1 989), Goldsmith 

and others, 1 988) Nelson and others (1 987), Higgins and others (1988), Hopson and Hatcher 

{1 988), Horton and McConnell (1 990) and recent work in the study areas discussed in this 

chapter. The flat-lying 82 foliation, however, is the most pervasive structural element in the 

southern Appalachian Inner Piedmont. It is suggested here that the 82 mylonitic foliation 

strongly controlled the internal development of D2 - Oa structures in this thrust-wrench 

deformational environment within the western Inner Piedmont. Such an interpretation is 

consistent with observations in both study areas in the western Inner Piedmont that indicate a 

genetic relationship between the 82 mylonitic foliation and the orientation, geometry, and 
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kinematics of other D2 - Ds structures, especially D2 structures. As previously discussed, L2 

and associated kinematic indicators occur within 82, F2 folds are generally defined by the 82 

mylonitic foliation, D2 thrust faults dip gently southeast, parallel to the 82 mylonitic foliation, and 

many overturned Fs folds have a sheared or faulted common limb parallel to S2. 

The suggestion that S2 is a regionally extensive shear surface contrasts markedly with 

previous interpretations of this structural feature, including Griffin (1971 a, 1 974a), Hatcher 

(1 978b), Hopson and Hatcher (1 988), and Horton and McConnell (1990), who resolved the 

relative timing of development of this structure, but related it only to large-scale isoclinal, 

recumbent folding and formation by a flattening mechanism (parallel to XV plane of finite strain) 

(e.g., Ramsay, 1 967; Ramsay and Graham, 1970), an argument supported by the axial planar 

relationship between the S2 foliation and F2 folds. Although such an interpretation may be in 

part correct, it is alternatively argued here that these folds, defined by the S2 mylonitic foliation, 

developed as passive features and represent an artifact of high strains within the S2 mylonitic 

foliation. This interpretation is supported by the orientation and geometry of F2 folds and their 

relationship to the S2 mylonitic foliation within the western Inner Piedmont. A distinct 

characteristic of the F2 folds in both study areas is the planar distribution of F2 hinge lines and 

the development of fold-hinge girdles (Fig. 4-4). This pattern is particularly well developed in 

the Columbus Promontory area (Fig. 4-4). Fold-hinge girdle patterns are commonly 

recognized in ductile shear zones, and folds that display such girdle patterns are defined by the 

mylonitic foliation, are shear related, and are considered to be contemporary with the mylonitic 

foliation (Mies, 1 991 ). Figure 4-4 shows the low angular discordance between the girdle of F2 

hinges and the best-fit plane to the mean vector of S2 poles, which Mies (1 991 ) has shown to 

be consistent with folds formed within a mylonitic foliation. The fact that F2 folds within the 

western Inner Piedmont are defined by the S2 mylonitic foliation, and produce a fol�hinge 

girdle pattern, strongly suggests that these structures (S2 and F2) formed contemporaneously. 

This phenomenon has also been observed in the Moine thrust (Christie, 1 963), the Cap de 
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Creus shear zone (Carreras and others, 1 977), and shear zones at the base of the Blue Ridge 

thrust complex in northwestern North Carolina by Mies (1991 ), and by analogy, suggests that 

F2 folds in western Inner Piedmont formed in a similar manner during regional-scale ductile 

shearing within S2. 

This possibility of contemporaneous S2 and F2 is further supported by the observation 

in both study areas of the parallelism between L2 mineral stretching lineations and F2 fold 

hinges (Fig. 4-4). One possible interpretation for this, suggested by others for similarly 

deformed areas (Reed and Bryant, 1 964; Bell, 1 978; Evans and White, 1 984; Mies, 1991 ), is 

that the folds formed initially at high angles to the shear direction defined by the stretching 

lineation and where shear strains were large, the folds were progressively rotated into parallelism 

with the lineation. This study has not found evidence to support such an interpretation and 

alternatively it is argued that this phenomenon is better explained by variations in strain patterns 

within the S2 mylonitic foliation. Watkinson (1 975) has shown that, where the maximum stretch 

is within the·layering and the intermediate stretch is perpendicular, folds have a well-developed 

cylindricity parallel to maximum extension. These conclusions are consistent with observations 

made in both study areas and explains the parallelism of F2 fold hinges, L2 lineations, and the 

geometry of F2 folds in the western Inner Piedmont. This interpretation also explains the 

presence of sheath folds in both study areas. Studies by Hudleston (1 983}, and Cobbold and 

Quinquis (1980) have also shown that in areas of high strain where the finite stretch is at a low 

angle to the layering, folds will have relatively long straight hinge lines parallel to the stretching 

lineation and become accentuated in the high noncoaxial strain fields (e.g., ductile shear zones) 

in which sheath folds are generated. 

The quartz o-axis patterns, recorded by samples (Fig. 4-8} from the Columbus 

Promontory, do not appear to provide additional kinematic evidence related to displacement 

patterns within the Columbus Promontory. Similar Y-maxima distributions, however, have 

been recognized in quartzites from natural shear zones and reproduced in experimental and 
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theoretical studies (Eisbacher, 1 970; Starkey, 1 979; Burg and others, 1 981 ; Schmid and 

Casey, 1 986; Manktelow, 1 987; Law, 1 987; Jessen, 1 988b; Dell' Angelo and Tullis, 1 989; 

Jessen and Lister, 1 990). Computer simulations by Jessen (1 988a and 1 988b) and Jessen and 

Lister (1990) indicate that, with increasing strain and increasing temperature, CHlXis 

distributions contract to strongly developed Y-maxima. Thus the Y maxima patterns (Fig. 48) 

within S2, further suggest that D2 in the Columbus Promontory (and throughout much of the 

western Piedmont) involved regionally extensive high-temperature shearing along S2. 

Ridley (1 986) and Holdsworth (1 990) have proposed models whereby structures 

indicative of a partitioned thrust-wrench deformation can be explained by flow perturbations 

within the mylonitic foliation. Such perturbations lead to the development of velocity gradients, 

either perpendicular or parallel to the slip direction, within the mylonitic foliation surface and 

result in a heterogeneous strain field. Structural analysis in both the Tamassee area and the 

Columbus Promontory suggest that the orientations of finite strain ellipsoids within the regional 

S2 in the western Piedmont may be schematically represented (Fig. 4-1 0} in a manner 

analogous to those developed in the models of Ridley (1986) and Holdsworth (1990) and can 

explain the resulting structures observed in the western Inner Piedmont. Figure 4-10 attempts 

to show how perturbations normal to the flow direction could produce southwest-directed , 

orogen-parallel structures within the Brevard fault zone and Chauga belt. Alternatively, 

perturbations parallel to the flow direction result in compression and produced west-directed 

structures including overturned F2 and sheath folds, E-W mineral stretching lineations,and 

ductile thrusts and shear-parallel extension that produced the meso- and microscale c' (Bertha 

and others, 1 979} or extensional crenulation cleavage (Platt and Vissers, 1 980) observed in this 

study. Likewise, perturbations either normal or parallel to flow in S2 could account for the 

variation in the orientation of F2 hinges, sense of vergence, and geometry of folds (e.g., see 

hinge-girdle patterns in Fig. 4-4) observed in both study areas analogous to the development 

of the folds discussed by Ridley (1 986). 
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Rgure 4-1 0. Diagrammatic sketch of S2 mylonitic foliation plane modified after Ridley (1986) 

and Holdsworth (1 990). The arrows represent flow velocity within the plane of S2 

and illustrate how gradients in flow could account for the orientation, and kinematics 

of D2 structures observed in the western Inner Piedmont. 1 )  shear parallel 

shortening resulting in west-vergent folds, sheath folds; foliation - parallel thrust 

faults, and E-W mineral stretching lineations; 2) dextral wrench shear along the 

Brevard fault zone resulting in a NE-SW mineral stretching lineation, and NW and 

SE-vergent asymmetric folds with NE-SW hinges (locally sheaths); and 3) shear 

parallel extension resulting in micro- and mesoscale shear bands or extensional 

crenulation cleavages dipping in direction of shear. 
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Throughout this section of this chapter an attempt has been to document the important 

role of the S2 mylonitic foliation on the development of 02 and Oa structures in the western 

Inner Piedmont and as a regional shear surface along which 02 - Oa displacement occurred. 

Geometric relationships between various structural features including microscale kinematic 

indicators, lineations within the s2 foliation plane, parallelism between ductile thrust fault 

surfaces and S2. the orientation of fold hinges, and quartz o-axis, Y -maxima patterns within S2, 

strongly indicate participation in and control by S2 of the development of 02 and Oa structures 

throughout the western Inner Piedmont. Although the overall kinematics of deformation in this 

area were probably controlled by the large-scale oblique convergence or transpressional 

mechanism, the observations discussed in this section suggest that local changes in 

displacement direction and development of associated kinematic indicators in the western Inner 

Piedmont were also controlled partly by flow perturbations within regional shear planes 

represented by the � mylonitic foliation. The regionally pervasive nature of S2 and its control 

on other 02 - Oa structures throughout the western Inner Piedmont suggest the western Inner 

Piedmont is part of a region of extensive shear of crustal dimension, and possibly represents a 

remnant of a crustal-scale shear zone. In addition, it is suggested that the S2 mylonitic foliation 

was the common decollement that linked SW-directed transcurrent movement along the 

primordial Brevard fault zone with E-W contractional movement of Inner Piedmont thrust 

sheets. 
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CHAPTER V 

METAMORPHIC AND MICROSTRUCTURAL DEVELOPMENT OF SILLIMANITE-BEARING 

PELITIC SCHIST IN THE SUGARLOAF MOUNTAIN THRUST SHEET, COLUMBUS 

PROMONTORY, WESTERN INNER PIEDMONT, 

NORTH CAROLINA 

INTRODUCTION 

The Inner Piedmont represents the metamorphic crystalline core of the southern 

Appalachians (Figs. 1-1 and 5-1). In the Carolinas, the early to middle Paleozoic metamorphic 

pattern of the Inner Piedmont, as recorded by pelitic units, is characterized by an extensive high­

grade (sillimanite-muscovite) core, bounded on the NW by lower-grade (garnet to kyanite) rocks 

of the Chauga belt and the Brevard fault zone (Fig. 5-1 ). This pattern of decreasing metamorphic 

grade, from the deeper Inner Piedmont westward towards the Chauga belt, is considered to be the 

result of retrograde emplacement of higher-grade thrust sheets (e.g., Six MOe thrust sheet and 

Alto allochthons) and fold nappes (e.g. Walhalla and Anderson nappes) of the Inner Piedmont, over 

the lower-grade rocks of the Chauga belt and Brevard fault zone (Griffin, 1 969, 1 971 a, 1 971 b, 

1 974a, 1 974b; Hatcher, 1 972, 1 978a, 1987, 1989; Lemmon, 1 973, 1 982; Lemmon and Dunn, 

1 975; Roper and Dunn, 1 973; Nelson and others, 1 987; Hopson and Hatcher, 1 988; and Horton 

and McConnell, 1 990). 

The geology of the Columbus Promontory is characterized by the presence of three distinct 

ductile crystalline thrust sheets that include the Tumblebug Creek, Sugarloaf Mountain, and Mill 

Spring thrust sheets, each of which contain a distinct stratigraphy (Fig. 2, Plates I and II). Of these 

three, the Sugarloaf Mountain thrust sheet (SMT) is the only one that contains an appreciable 
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Figure 5-1 . Distribution of Paleozoic metamorphic isograds in the southern Appalachian orogen. 

Study area is shown by black box. Modified after Butler (1 990). k-kyanite; si-sillimanite; 

a-andalusite; st-staurolite; g-gamet; b-biotite; c-chlorite; u-unmetamorphosed; h­

hypersthene; and r-retrograde. 
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amount of pelitic rock and allows the relationship between metamorphism, penetrative deformation, 

and thrust sheet emplacement to be investigated. Similar to the thrust sheets cited above, the 

Sugarloaf Mountain thrust sheet emplaced sillimanite and muscovite-bearing pelites over rocks of 

the westernmost Inner Piedmont (Chauga belt). 

The focus of this chapter is on the petrogenetic development of this first-sillimanite zone 

assemblage and its relationship to the deformation and emplacement of the SMT. Metamorphic 

textures and mineral zoning indicate that sillimanite growth occurred as a result of continuous 

reactions. These continuous reactions include both garnet-<:onsuming and garnet-producing 

reactions that operated following the metamorphic peak. These observations support the 

interpretation that the sillimanite-muscovite zone assemblage, in the pelites of the SMT, 

represents a post thermal-peak rather than a prograde metamorphic assemblage as interpreted for 

other thrust sheets in the western Piedmont. Microstructural analysis indicates that this first­

sillimanite assemblage defines a pervasive S2 mylonitic foliation, L2 lineation, and associated shear­

sense indicators in the pelites which are related to penetrative deformation and emplacement of the 

SMT. These relationships strongly suggest that penetrative deformation and emplacement of the 

SMT occurred synchronously with development of the observed metamorphic assemblage along 

the retrograde portion of the P-T path followed by these rocks. 

GENERAL CHARACTERISTICS OF METAMORPHISM 

Mineral Assemblage 

Pelitic units represent a significant part of the stratigraphy of the SMT and occur within the 

Poor Mountain Formation and the upper part of the Mill Spring complex. Pelitic schist of the Poor 

Mountain Formation define a distinct mappable stratigraphic unit, whereas pelitic rocks of the upper 

Mill Spring complex occur throughout the thick sequence of biotite gneiss-metagraywacke that 
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crops out over a significant part of the study area (Fig. 1-2, Plates I and II). Pelitic rocks in both the 

Poor Mountain Formation and the upper Mill Spring complex, invariably contain a metamorphic 

assemblage consisting of the mineral phases 

gar + bio + mus + si + plag (An1� + qtz ± il 

This assemblage is characteristic of the first-sillimanite zone of regional metamorphism (Winkler, 

1 978; Yardley, 1 989) and is present in thrust sheets throughout much of the southern Appalachian 

Inner Piedmont (Conley and Henika, 1973; Nelson and others, 1 987; Goldsmith and others, 1 988; 

Hopson and Hatcher, 1 988; Butler, 1 990). A significant part of this chapter is devoted to the 

petrogenetic development of this assemblage in the SMT and will be discussed in greater detail 

below. 

Metamorphic Zones and lsograds 

Detailed field and petrologic data obtained during this study indicate that this first-sillimanite 

zone assemblage remains constant across the SMT, consequently no other isograds have been 

mapped. Hadley and Nelson (1 971 ) broadly included the Columbus Promontory area within the 

sillimanite zone and placed the sillimanite isograd at the boundary between the Henderson Gneiss 

and paragneiss and schist of the Inner Piedmont, coincident with the westernmost boundary of the 

SMT. Lemmon (1973) also placed the sillimanite isograd at the contact between the SMT and the 

Henderson Gneiss. These interpretations are shown on the recent isograd map of Butler (1990) 

(Fig. 5-1). Field and petrographic observations from the present study indicate that the position of 

the sillimanite isograd along this boundary is a function of rock type changes, pelites to granitoid, 

and does not represent a metamorphic break. Meso- and microstructural features (l2 and S2) in 

the SMT, which developed synchronous with mineral growth in assemblage A1 , can also be traced 



1 57 

across the thrust boundary into the Henderson Gneiss where they are defined by biotite, K­

feldspar, quartz, and occasional muscovite. 

The areal extent of the sillirnanitEHnuscovite zone across the area is consistent with the 

nature of regional metamorphism recognized throughout the western Inner Piedmont. Butler 

(1 990) noted that isogradic surfaces in the central Inner Piedmont of the Carolinas must be nearly 

horizontal, because over and area of more than 60 kilometers the metamorphic grade is constantly 

first sillimanite zone (sillimanitEHnuscovite) and does not increase to second sillimanite zone 

(silliman�e + K-feldspar) or drop to kyanite grade. In Chapter IV, it was noted that in the Columbus 

Promontory, stratigraphic contacts (transposed), foliation, and thrust surfaces are subhorizontal 

and parallel. The persistence of the sillimanite-muscovite assemblage across the Sugarloaf 

Mountain thrust sheet, suggests that isotherms also maintain a similar subhorizontal 

orientation, consistent with the interpretation of Butler (1 990) for other areas in the Inner Piedmont. 

Metamorphic Conditions 

The general metamorphic conditions attained by pelites of the SMT are constrained by 

several field and petrographic observations (Rg. 5-2). In all hand samples and thin-sections 

examined,sillimanite is the only aluminum silicate polymorph observed in the Poor Mountain 

Formation and upper Mill Spring complex pelitic rocks. Although recognized in many thrust sheets 

elsewhere in the western Piedmont, no kyanite was observed in any of the thin sections examined 

or during field mapping, thus qualitatively restricting the P-T conditions to occur below the 

kyanite-sillimanite boundary (Fig. 5-2). Although a few samples examined contained minor amonts 

of K-feldspar (Table 2-3), reaction textures indicative of second-sillimanite zone metamorphic 

conditions, generally characterized by the reaction 

(1) 
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Rgure 5--2. P-T grid showing inferred maximum metamorphic conditions for SMT pelites. P-T 

conditions shown in shaded area is based on field observations and petrographic 

analysis. Reaction (1) after Thompson and Algor (1978); Reaction (2) after Chatte�ee 

and Johannsen (1 974). AI2Si05 triple point after Holdaway (1 971 ) .  
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of (Chatterjee and Johannes, 1 974), were not observed. This suggests that peak metamorphic 

conditions occurred on the lower P-T side of this reaction (Fig. 5-2). Finally, in many areas within 

the Sugarloaf Mountain thrust sheet, rocks of the upper Mill Spring complex are migmatitic 

suggesting metamorphic conditions were, at least locally, higher than the minimum granite melting 

curve. Migmatitic textures are much more commonly observed in the interlayered biotite gneiss­

metagraywacke and schist of the upper Mill Spring complex than in the Poor Mountain Fonnation. 

This suggests that, at least locally, the minimum melting reaction for pelitic rocks (Thompson and 

Algor, 1 977) 

(2) 

may have been operative. These observations qualitatively suggest metamorphic conditions for 

these pelites are within the sillimanite stability field with near peak conditions possibly within the 

shaded area shown in Figure 5-2. 

MICROSTRUCTURE DEFINED BY ASSEMBLAGE A1 

Composite-Planar Fabric 

The dominant microstructure present in pelites in the SMT is a pervasive S2 mylonitic 

foliation. In Chapter IV, it was noted that s2 is mesoscopically composite. s2 is also composite on 

the microscopic scale, and can be subdivided into three component parts, designated S20, S28, 

and S28, based on their geometric and kinematic significance . These S2 foliation components are 

defined by parallel orientation of the minerals of assemblage A1 which impart an anastomosing 

microscopic texture to the pelites. Associated with the s2 foliation components is a well-developed 

mineral lineation (L2) also defined by biotite, muscovite, quartz ribbons, and fibrolitic sillimanite of 
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assemblage (A1 ). 

The S2 foliation components outline a series of microscopic-scale shear zones within the 

pelites (Figs 5-3, 5-4). S2c is the best developed foliation component in the pelites and defines 

the shear zone boundaries. S2c parallels the direction of shear and is analogous to C-surfaces of 

Bertha' and others (1 979). S2c is defined by quartz ribbons, muscovite, biotite, fibrolitic 

sillimanite, and elongate garnets (Figs. 5-3 and 5-4). 
S25 dips at angles between approximately 1 oo and 45° from s2c in a direction opposite to the 

overall direction of shear. S25 is most commonly defined by sigmoidal-shaped mica (buttons) or 

mica fish of Lister and Snoke (1984), fibrolitic sillimanite, asymmetric garnets, and quartz pods 

(Figs. 5-3 and 5-4). S25 is interpreted to represent a component of pure shear or flattening across 

the microscopic scale shear zones formed similar to that defined by Lister and Snoke (1984). The 

combination of S2c and S25 define an s-c fabric (Bertha' and others, 1 979; Simpson and Schmid, 

1 983; Lister and Snoke, 1 984) in the pelites of the SMT (Figs. 5-3 and 5-4). 
S28 also dips at angles between approximately 1 0° and 45° from S2c, but in the direction of 

overall shear (Figs. 5-3 and 5-4). S28 disrupts S2c and defines a set of extensional shear surfaces 

in the pelites. S28 is analogous to C' surfaces of Bertha' and others (1979), extensional crenulation 

cleavage (Platt and Vissers, 1 980), shear bands (White and others (1980 and Dell' Angelo and 

Tullis (1 989) and normal-slip crenulations (Dennis and Secor, 1 988). S28 is defined primarily by 

parallel alignment of biotite and muscovite and also fibrolitic sillimanite and quartz ribbons. 

Geometric and kinematic relationships indicate that s2 represents a composite foliation 

produced primarily by progressive simple shear, with both simple shear and flattening (pure shear} 

components. Thus it is suggested that the microstructure of Poor Mountain and Mill Spring 

complex pelites are analogous to the Type II s-c mylonites of Lister and Snoke (1984). The s2 

foliation components, L2, and the larger-scale structural features discussed in Chapter IV, record 

two coeval directions of displacement (W-NW and SW) within the SMT and other thrust sheets in 

the Columbus Promontory and western Inner Piedmont. The fact that s2 foliation components and 
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Figure 5-3. Schematic representation of the geometric and kinematic relationships between S2 

foliation components: a) S2c; b) S2s. and; c) S2e· 
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Figure 5-4. Photomicrographs of 82 foliation components. A and B) S2c component defined by 

quartz ribbons (arrow and line); C) S2c defined by quartz ribbons and fibrolitic 

sil l imanite (white outlined arrow and line) .  S2s defined by fibrolitic sil l imanite (black 

arrow and line) ; D) S2s mica-fish defined by biotite and muscovite (labled) and S2c 

(black arrow and line) ; E) S2e component defined primarily by biotite and muscovite 

(arrow and lines) ; F) All three foliation components, S2c (black arrrows and line) ; S2s 

(labled); S2e (white arrow and line) .  Field of view for A, B, C ,  D, and is 4mm; E is 1 2 mm. 
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L2 are defined by the A, mineral assemblage indicates that mineral growth was nearly synkinematic 

with deformation that produced these microstructural features. 

Garnet Porphyroblasts 

Gamet porphyroblasts represent another kinematically important microstructure in the pelitic 

rocks of the SMT. Garnets are morphologically very diverse (Fig. 5-5), with the diversity related to 

intense shearing of these rocks. Variations in garnet morphology include elongated garnets parallel 

to S2c, asymmetric garnets whose boundaries help define S2c and S26, and garnets stacked in an 

en echelon pattern that help define the s26 fabric (Fig. 5-5). Many garnet porphyroblasts have tails 

(Fig. 5-5 ), streaming in the direction of shear, defined by muscovite, biotite, fibrolitic sillimanite, 

and quartz ribbons. 

PETROGRAPHY AND CHEMISTRY OF 

MINERAL PHASES IN ASSEMBLAGE A1 

Sampling and Analytical Techniques 

During the course of detailed field study, 50 samples of pelitic rocks of the Poor Mountain 

Formation and the Mill Spring complex were selected for detailed petrologic, chemical, and 

microstructural analysis. From this suite, 7 pelitic samples from across the SMT were selected for 

detailed electron microprobe analysis. The locations of samples analyzed are shown in Figure 5-6. 

The mineral phases garnet, biotite, muscovite, and plagioclase were analyzed in polished thin 

sections for mineral composition and intragranular and intergranular compositional variations. A 

minimum of two grains for each phase were analyzed. Mineral compositions were measured on the 

four spectrometer Cameca SXSO electron microprobe at The University of Tennessee. Analyses 
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Figure 5-5. Photomicrographs showing the morphology, optical zoning patterns, and shear 

textures of garnets. A and C) examples of well-defined optical zoning in garnets. 

Inclusions in core and intermediate locations consists of very fine, biotite, and ilmenite. 

B). Elongated garnet parallel to the S2c foliation component. D) Porphyroblast with 

internal foliation defined primarily by ilmenite. Shear sense is top-to-SW (right) 

consistent with that defined by other matrix minerals. E and F) Sheared garnets. 

Sense of shear is top-to-W (right) consistent with the S2 composit�lanar fabric. 

F�eld of view for A, 8, D, E, and F is 4mm; C is 1 .5 mm. 
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Figure 5-6. Location of pelitic schist samples analyzed by electron microprobe techniques. 
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we.re perfonned using natural and synthetic standards, ZAF corrections, and an operating voltage 

of 15  KeV. For individual phases operating conditions were: for garnet, a beam current of 30 nA, 

and beam size of 5mm; for biotite, muscovite, and plagioclase, a beam current of 20 nA, and a 

defocused beam size of 1 0 mm. Microprobe data for the silicate phases were nonnalized following 

the recommendations of Papike (1 987, 1988). A complete listing of mineral analyses is contained 

in Appendix B. 

Mineral Phases 

Garnet Gamet occurs as subidioblastic to idioblastic porphyroblasts ranging in size from 0.1 mm to 

5 mm in diameter. Gamet porphyroblasts tend to have welkteveloped crystal faces, except where 

embayed by mats of fibrolitic sillimanite and quartz. Where adjacent to biotite and muscovite, the 

interfaces are generally sharp (Fig. 5-5). Gamet porphyroblasts possess several morphologies (Fig. 

5-5) and, as previously noted, are commonly aligned or elongated within the S2 foliation. Many 

garnet porphyroblasts have poikilitic cores and inclusion-free rims (Fig. 5-5 ). Inclusions within 

garnet are dominantly quartz and ilmenite, with minor plagioclase and biotite. The composition and 

zoning profiles of the garnet analyzed are discussed in greater detail below. 

Garnet Zoning. Gamet zoning was analyzed in five samples across the study area, producing 

profiles for almandine, pyrope, spessartine, and grossular components (Fig. 5-7). In general, for all 

porphyroblasts examined, cores have flat profiles for all components, whereas rims display strong 

compositional zoning for all components. Rim zoning profiles are generally symmetrical, ahhough 

there are exceptions. In all garnet porphyroblasts analyzed, core-tcrrim traverses display 

increases in almandine and Fe/(Fe + Mg) values, and decreases in the pyrope component (Fig. 5-

7). Spessartine and grossular contents, ahhough generally dilute (XMn 0.018 to 0.074 and Xca 
0.027 to 0.1 87, respectively), show varying zoning patterns at the garnet rim. Sample cm175 



1 72 

Figure 5-7. Compositional zoning profiles from garnets in pelitic schist of the Sugarloaf Mountain 

thrust sheet. Patterns are interpreted to be result of intracrystalline diffusion during 

garnet consumption. Note that all samples show core to rim increase in almandine 

content and decreases in pyrope content from core to rim. Also note the slight 

increases in grossular content near the rims in samples cm501 , 1 2-2-4, cml26, and em 

82 suggesting late-stage garnet growth. Filled triangles-almandine; open circles­

magnesium; filled squares-manganese; filled circles-grossular. See text for more 

detailed discussion of the zoning patterns. 
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( -1 mm in diameter) displays a spessartine profile that is relatively flat in the core and decreases at 

the rim. Similarly, the grossular profile is relatively flat in the core and intermediate locations, with 

some undulations, but displays a decrease at the rim. In sample cm501 , core-to-rim traverses 

were done on two garnet porphyroblasts. Traverse cm501a (-1 .3 mm in diameter), displays a 

spessartine profile that is flat in the core, decreases slightly at intermediate locations, then 

increases at the rim. The grossular profile in this porphyroblast is also relatively flat in the core, but 

shows a slight decrease at the garnet rim. Traverse cm501b (-0.7 mm in diameter) has a flat 

( -1 .3 mm in diameter) , the spessartine profile is relatively flat in the core, increases at intermediate 

locations, then decreases at the garnet rim. Similarly, the grossular profile is relatively flat in the 

core, but also increases sharply at the garnet rim. Porphyroblast cml26a ( -0.6 mm) displays an 

asymmetric spessartine profile that is flat in the core, decreasing at one rim, and increasing at the 

other rim. The grossular profile is symmetric with a flat profile in the core and an increase at the rim. 

Sample cm82 (-0.5 mm) also shows an asymmetric zoning profile. The grossular profile shows an 

increase from the core to rim on both ends of the traverse. Spessartine displays an increase on one 

rim relative to the core, and a decrease at the rim relative to the core at the other rim along the 

traverse. 

Biotite. Biotite, along with muscovite, is the predominant matrix phase that defines the pervasive 

S2 foliation in the Poor Mountain Formation and upper Mill Spring complex pelites (Fig. 5-4). Biotite 

occurs as idioblastic, dark brown to red brown pleochroic crystals. The size of the biotite idioblasts 

ranges from ± 1 em to very fine (< 0.2mm). Biotite composition for the entire sample suite exhibits a 

restricted compositional range (Fig. 5--8; Appendix B). For all grains analyzed, Fe/(Fe + Mg) values 

range from 0.5 to 0.65, and Ti contents (per 1 1  oxygens) range from 0.07 to 0.23 mole percent 

(Fig. 5-8). Individual samples show a much more restricted range of Fe/(Fe + Mg) values and Ti 

contents, and indicate there is no significant compositional zoning present in the biotite grains 

analyzed (Fig. 5-B: Appendix B). 
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Figure 5--8. XTi versus Fe/Fe + Mg in biotite analyzed for pelitic schists. Plot shows the restricted 

compositional range of biotite compositions in the pelitic schists of the 

Sugarloaf Mountain thrust sheet. Open squares-cml26; open ciroles-cm501 ; 

triangles-cm1 75; crosses-cm427; filled squares- cm677; diamonds- 3-16-15. 
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Plagioclase. Plagioclase occurs primarily as xenoblastic crystals varying in size up to 0.5 mm in 

diameter. Plagioclase occurs most commonly as a matrix phase and rarely as inclusions in garnet. 

Microprobe analyses indicate that plagioclase in the Poor Mountain and Mill Spring complex is 

primarily composed of anorthite and albite components (Appendix B), but with a minor orthoclase 

component. Albite and anorthite contents vary, with anorthite contents for the entire suite ranging 

from An13 to An38. Individual samples exhibit changes in An content from rim to core between 0.01 

to 0.06 mole percent, and show general trends of decreasing An content from core to rim (Fig. 5-9). 

Muscovite. Muscovite occurs in three distinct habits in the pelitic samples. The most dominant 

habit is subidioblastic laths (- 2 mm) or asymmetric mica fish that helps define the � foliation and 

shear textures within the samples (Figs. 5-3 and 5-4). This mode is commonly intergrown with or 

contains inclusions of fibrolitic sillimanite (Fig. 5-1 0). The second most dominant habit is fine­

grained flakes replacing fibrolitic sillimanite and plagioclase grains. The third mode is less common 

and occurs as large ( -5 mm) idioblasts that are truncated by the 52 foliation and commonly replaced 

by sillimanite and quartz (Fig. 5-10). The composition of the dominant mode of muscovite is very 

restricted (Appendix B), with large K contents (-0.9 mole percent), low values of Na (< 0.1 mole 

percent), and no Ca component (Table 5-1 and Appendix B). 

Sillimanite. The majority of sillimanite growth appears to have nucleated at the expense of other 

phases within the pelites (Figs 5-5 , 5-10 and 5-1 1). Sillimanite occurs in two distinct habits. The 

first habit, present in only a few samples (e.g., cml26a and 12-2-4), occurs as well-developed 

prismatic crystals. In cross section, prisms are as large as 0.2 mm in diameter, whereas in the long 

dimension grains are up to - 0. 7 mm. The second habit, much more commonly observed in thin 

section, occurs as acicular fibrolitic needles. Fibrolitic sillimanite most commonly occurs intertwined 

with matrix biotite and helps define the 52 foliation (Figs. 5-5, 5-1 0 and 5-1 1) .  Fibrolitic sillimanite 

also occurs in reaction rims around garnet porphyroblasts and muscovite idioblasts, and as an 



1 78 

Figure 5-9. Plot of plagioclase compositions. Values enclosed in square represent highest An 

contents from plagioclase cores, those in circles the lowest An values from 

plagioclase rims. Diagram shows the general trend of decreasing An content 

from core to rim in plagioclase grains analyzed. Scatter of points off the 

trend of the line reflect the orthoclase component in the samples. 
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Figure 5-10. Photomicrographs of textural relationships between sillimanite and muscovite. A and 

B) muscovite (M) idioblasts truncated and replaced by fibrolitic sillimanite and biotite 

(S&B) that defines S2c foliation component. C) Muscovite idioblast (M) with abundant 

fibrolitic sillimanite (S) inclusions; D) Close-up of muscovite (M) idioblast in C. In both 

D and C note the small fold that is defined by fibrolitic sillimanite (S) within the 

muscovite idioblasts. Reid of view for A, B is 4mm; C is 12  mm; D is 1 .5 mm. 
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Figure 5-1 1 .  Photomicrographs showing sillimanite morphology and textural relationship between 

fibrolitic sillimanite and garnet porphyroblasts. A) prismatic sillimanite (S) in sample 

cml26. Sillimanite defines S2 foliation. a -quartz . B) Rbrolitic sillimanite (5) defining 

52 foliation in sample 12-2-4. C) Fibrolitic sillimanite inclusion (5) in garnet (G) from 

sample em 501 . D) Microscale fold defined by fibrolitic sillimanite (5) in sample 12-2-

4. Q-quartz; E) Gamet (G) truncated by fibrolitic silfimanite and biotite (5 & B) that 

define 52 foliation in sample 12-2-4. Also note the microscale shear zone defined 

by fibrolitic sillimanite at the bottom of the photomicrograph. F) Gamet (G) rim showing 

replacement by fibrolitic sillimanite (5) in sample cm175. Field of view for A, B, C, D, E 

is 4mm; F is 1 .5 mm. 
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inclusion phase within muscovite and garnet (Figs. 5-5, 5-10 and 5-1 1 ). Textural information 

suggest that sillimanite was preferentially nucleated in these phases and was not included during 

garnet or muscovite growth (Figs. 5-5, 5-10 and 5-1 1) .  Sillimanite was not analyzed for chemical 

composition. 

Quartz. Pelitic rocks of the Poor Mountain Formation and Mill Spring complex are very quartz rich (± 

50 percent). Quartz occurs as varying habits from very fine (<0.1 mm) to large (>5 mm) xenoblastic 

matrix grains, to ribbons that traverse entire thin sections and help define the 82 foliation (Fig. 5-4). 
Quartz grains commonly contain subgrains and undulose extinction indicative of unrecovered 

strain, although samples with completely annealed grains are present. Quartz is the dominant 

inclusion phase within garnet porphyroblasts. Quartz also was not analyzed for chemical 

composition. 

Ilmenite. Ilmenite is present as a very minor accessory phase in most pelitic samples. Ilmenite 

occurs as very small ( < 0.1 mm) ellipsoidal shaped grains commonly observed within the matrix 

parallel to the 82 foliation, and as an inclusions within garnet. In a few cases, ilmenite defines an 

internal foliation within garnet porphyroblasts (Fig. 5-5). This phase was only analyzed by energy 

dispersive techniques for identification purposes in the samples. 

PETROGENESIS OF ASSEMBLAGE A1 

Reactions Relationships 

In a general sense, assemblage A1 can be portrayed on an AFM diagram that models 

reactions in the KFMASH system . Using the method of Thompson (1 957) and rim compositions 

of the ferromagnesian silicates, garnet and biotite analyzed from several samples in 
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in this study, assemblage A1 is projected onto the AI20:rFe�gO (AFM) plane through the 

composition of end-member muscovite and quartz (Fig. 5-1 2). Abundant inclusions of quartz and 

ilmenite, together with sparse inclusions of biotite, plagioclase, and muscovite in garnet, and the 

presence of these same mineral phases in the matrix, indicate that these phases were present 

throughout garnet growth, and probably throughout a significant part of the metamorphic history of 

these petites. Textural evidence (Figs. 5-5, 5-1 0, and 5-1 1 )  and mineral zoning (Figs. 5-7 and 5-

9), discussed below, however, clearly shows that sillimanite growth and development of 

assemblage A1 occurred as a resuh of continuous reactions that involved both the consumption of 

garnet and late-stage growth of garnet. This also resulted in additional growth of biotite, and quartz. 

No evidence for any discontinuous reactions were observed in any of the petite samples examined 

and supported by the absence of crossing tie-lines on the AFM diagrams in Figure 5-12. 

The determination of metamorphic reactions responsible for development of sillimanite in 

assemblage A1 is based on textural criteria (Figs. 5-S, 5-1 0 and 5-1 1 )  and chemical zonation 

patterns present in plagioclase and garnet porphyroblasts (Figs 5-8 and 5-9). Pelitic schists 

containing garnets embayed by intergrown fibrolitic sillimanite, biotite and quartz, and replacement 

of muscovite, also by fibrolitic sillimanite, biotite, and quartz (Figs. 5-S, 5-1 0 and 5-1 1 )  provide 

strong textural evidence that the general garnet consuming reaction 

(3) 

was operative during the metamorphic development of these petites. The compositional zoning 

observed in garnets analyzed in this study, and discussed previously, provide additional evidence 

that reaction (3) was operative in petites of the SMT. The compositional zoning profiles in the 

garnets analyzed in this study are interpreted to be primarily the result of intracrystalline diffusion 

during garnet consumption. Blackburn (1 969), Woodsworth (1 9n), Tracy (1982), and Spear 

{1 989), have shown that intracrystalline diffusion may affect garnets (and other zoned minerals) in 
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Rgure 5-12. AFM diagrams plotted using the method of Thompson (1 957) and the rim 

compositions of garnet-biotite pairs. Note the narrow compositional range of garnet­

biotite pairs suggesting possible reequilibration of the entire sample suite to similar 

garnet-biotite compositions during cooling. 
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two ways. The first way is for intracrystalline diffusion to modify preexisting growth zoning in the 

garnet. This occurs in cases where temperatures are sufficiently high such that the growth profile 

relaxes with time, resulting in a compositionally homogeneous garnet crystal. The second way is for 

the equilibrium rim composition of the garnet to change in the absence of garnet growth or during 

garnet consumption. In this case, the rim is out of equilibrium with the interior resulting in a diffusion 

zoning profile at the garnet rim. The latter appears to be the case in most of the garnets analyzed in 

this study. 

That the garnet rim zoning in this study is the result of intracrystalline diffusion during garnet 

consumption is supported by the textural criteria discussed above, and by observed zoning profiles 

in garnet. Since biotite and garnet are the only significant (+ rare ilmenite) ferromagnesian phases in 

the pelitic samples, all closed system garnet consuming reactions result in biotite fonnation. 

Furthermore, because biotite is lower in Mn and Fei(Fe + Mg) than garnet, and X �� >> X��· 

consumption of garnet results in the depletion of Mg at the garnet rim, and increases of Fe, Fe/(Fe 

+ Mg), and Mn at the garnet rim (Hollister 1966, Tracy 1982; Helms, 1990). The presence of these 

compositional patterns in the garnets analyzed in this study are consistent with selective resorption 

of garnet as indicated by reaction 3. 

The textural features (e.g., garnet embayed by sillimanite) and compositional zoning profiles 

at garnet rims (e.g., increasing almandine and Fe/Fe + Mg, decreasing pyrope) described above 

are consistent with garnet having reacted with the decreasing temperature from the peak 

metamorphic conditions. Reaction 3 has been observed in pelitic schist from several other orogenic 

belts and were recently discussed by Mohan and others (1 989) from pelites in the Himalaya, Spear 

and others (1990) from pelites in the high-grade terrane of western New Hampshire, and by Helms 

(1990) from pelitic units in the Black Hills of South Dakota. In these studies, the garnet-consuming 

and sillimanite-producing reaction (reaction 3) is interpreted to be the result of continuous reactions 

during retrograde metamorphic conditions. Tracy (1 982) discussed a similar garnet-consuming 

reaction from pelitic rocks of New England, but with K-feldspar and H20 in place of muscovite. 
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Similarly, Tracy {1982) indicated that this reaction also occurs during the initial stages of cooling 

following the metamorphic peak. These relationships suggests that assemblage A1 in the SMT also 

represents a retrograde metamorphic mineral assemblage. 

Zoning patterns of garnets (e.g., 501 , 12-2-4 in Rg. 5-7) showing increases in the 

grossular component and decreases in the spessartine component at the rim indicate a later stage 

period of garnet growth in the SMT pelites. A late stage of garnet growth is also supported by the 

euhedral shape of many of the porphyroblasts in the samples analyzed. Lemmon (1 973) 

suggested two periods of garnet growth in the pelitic rocks from this study area based on the 

occurrence of garnet porphyroblasts with poikilitic cores and clear rims. Lemmon interpreted the 

first stage to be recorded by the included garnet cores and the second stage by the inclusion-free 

garnet rims. Similar optical patterns were also obseJVed in the suite of rocks examined in this study 

(Rg. 5-5). In some cases (e.g., 501 , 12-2-4 in Rg. 5-7), this increase in grossular appears to 

correspond to the demarcation between the poikilitic cores and clear rims of garnet porphyroblasts. 

The increase in the grossular component is interpreted to be concomitant with the general 

decrease in An from core to rim in plagioclase xenoblasts analyzed {Rg. 5-9). Because grossular 

and anorthite are the only Ca-bearing phases in the pelites, garnet growth must be accompanied by 

a anorthite consumption (Spear and Peacock, 1 989; Spear and others 1 990), consistent with the 

Ca variations in observed in several of the samples analyzed (Rgs. 5-7 and 5-9). Such textural and 

compositional relationships suggest that some sillimanite growth in assemblage A1 was related to a 

late stage of garnet growth involving the reaction 

3 an= gross + 2 si+qtz (4) 

This reaction also accounts for the presence of sillimanite, along with quartz and plagioclase, in the 

matrix of several pelite samples {e.g. em l26a), which displays no textural relationship to garnet, 

biotite, and muscovite as suggested by reaction 3. 
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Lemmon (1 973) argued that these optical zoning patterns observed in garnets were the 

result of two periods of prograde metamorphism. It is alternatively argued here, based on the 

synkinernatic relationship between microstructural features and assemblage A, , that this late-stage 

garnet growth also occurred during post-peak metamorphic conditions contemporaneously with 

reactions 3 and does not represent a second prograde metamorphic event. Furthermore, the 

pelites in the Sugarloaf Mountain thrust sheet contain no other evidence, either in the form of other 

mineral growth or overprinting microstructures, to suggest an additional prograde episode. In a few 

samples (e.g. em 501 and em 175, cml26a) there is evidence for both garnet consumption and 

growth reaction relationships. For example, in sample cml26a there is textural evidence for garnet 

consumption, whereas zoning trends in grossular and anorthite suggest garnet growth (Figs. 5-7 

and 5-1 0). Spear (1989) and Spear and others (1990) discussed a similar pattern of concomitant 

garnet consumption (reaction 3) and garnet growth (reaction 4) from high-grade rocks in western 

New Hampshire and interpreted this to reflect changes in equilibrium conditions at the thin section 

scale. Spear (1 989) and Spear and others (1990) also recognized this to be part of the post peak 

(retrograde) P-T path followed by these rocks. Based on the interpretation that the mineral 

assemblage and reaction relationships in the pelites of the SMT formed as part of the same 

metamorphic episode, a similar argument is made that the observed reaction relationships also 

record changes in equilibrium conditions at a similar scale of observation as those discussed by 

Spear (1 989) and Spear and others (1 990). Interpreting this late-stage garnet growth as the result 

of changes in equilibrium conditions during retrogression is a more simple explanation consistent 

with the majority of petrographic, chemical, and microstructural features observed in these rocks 

and does not require a second prograde metamorphic event. These observations further support 

an interpretation that development of assemblage A1 is the result of a post thermal peak 

(retrograde) reaction history. 
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Geothermobarometry 

The use of geothermobarometric techniques to determine absolute peak temperatur�r 

pressure conditions attained by the Poor Mountain Formation and upper Mill Spring complex petites 

is problematic. Textural evidence and compositional zoning patterns in garnet suggest that phases 

in assemblage A1 were involved in a series of continuous reactions following the peak of 

metamorphism, therefore it is unlikely that rim and matrix mineral compositions reflect peak 

metamorphic compositions. In addition it is difficult to assess what the mineral assemblage may have 

been during peak metamorphic conditions. The garnets in the samples analyzed may have grown in 

the presence of a variety of mineral assemblages (e.g., kyanite versus sillimanite), therefore it is 

uncertain what equilibrium relationships to use. Furthermore, garnets generally lack inclusion pairs 

(e.g., biotite, plagioclase, muscovite) that could possibly allow peak temperaturtrpressures to be 

estimated. Alternatively, textural criteria, and compositional data (garnet zoning) indicate that the 

pressur�rtemperature information, preserved in the Poor Mountain Formation and upper Mill 

Spring complex pelites, is related to the retrograde portion of the P-T path followed by these rocks. 

Therefore, this section of the paper is focused on estimation of absolute pressur�rtemperature 

conditions during the retrograde portion of the metamorphic history of these pelites. 

Techniques. Based on the above observations, post peak temperaturtrpressure values were 

estimated using rim compositions of garnet and the compositions of matrix biotite, plagioclase, and 

muscovite (Table 5-1 ). Temperatures were estimated from the F�rMg exchange reaction between 

garnet and biotite based on the relationship 

MgsAI2Sis012 + KFe3AISis01 o = 

�2+�o(OI-92 (5) 
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Table 5-1. Mineral compositions and estimated temperature and pressures for pelitic schist of the 
Sugarloaf Mountain thrust sheet. 

em 175 em 501 cm l26 cm 677 cm 427 1 2-2-4 
Garnet 

XArm 0.771 0.778 0.673 0.853 0.721 0.642 
XPyr 0. 1 05 0. 1 04 0.1 1 9  0.1 00 0.084 0. 1 1 0  
Xsps 0.094 0.080 0.1 50 0.026 0.1 42 0.179 
XGro 0.030 0.039 0.060 0.020 0.052 0.069 

Biotite 
XAnn 0.567 0.563 0.601 0.576 0.595 0.51 4 
XPhl 0.433 0.437 0.399 0.424 0.404 0.486 

Plagioclase 
><An 0.1 85 0. 1 78 0.331 0. 1 1 7 0.303 0.320 

Muscovite 
><t< 0.798 0.850 0.838 0.759 0.854 0.902 
XNa 0. 1 09 0. 1 36 0.069 0.1 1 7  0.068 0.080 
XAIIV 0.938 0.930 0.917  0.948 0.927 0.923 

Temperature (°C) 
F & S (1978) 565 555 640 535 545 580 
G & S (1984) 580 560 670 545 590 6 10  
H & S (1982) 590 570 665 545 565 6 10  

Pressure (kbs) 
GASP-N & H (1981) 4.1 4.9 5.5 4.0 4.0 5.2 
GASP-H & S (1982) 3.8 4.5 5.2 3.5 4.0 5 . 1  
GPMB-G & S (1981) 3 .5 4. 1 4. , 3.6 4.1 4.0 
GPMB-H & C (1985) 4.5 5.0 7.2 4.2 4.2 5.2 
GRAIL - Bohlen and 6.2 6.2 5.5 7.0 5.0 4.1  
others �1 983}* 

Representative mineral compositions; XAim = (Fe/Fe+Mg+Mn+Ca), ){pyr = (Mg/Fe+Mg+Mn+Ca), 

Xsps = (Mn/Fe+Mg+Mn+Ca}, XGros = (Ca/Fe+Mg+Mn+Ca); XAnn = (Fe/Fe+Mg) Xphl = (Mg!Fe+Mg); 

XAn =Ca; XtQ= K, XNa=Na, XAIIV= AI IV; all Fe is assumed Fe2+; * Ilmenite assumed pure. 
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The experimental calibration of Ferry and Spear (1 978) and the empirical calibrations of Hodges and 

Spear (1 982) and Ganguly and Saxena (1984) were used to estimate temperatures. The 

refinement of Hodges and Spear (1 982), based on the experimental data of Ferry and Spear 

(1978), corrects for non-ideal mixing of Ca in garnets. The Ganguly and Saxena (1 984) model 

corrects for the effects of both Mn and Ca on Fe-Mg mixing in garnet. Both of these calibrations 

generally result in higher estimated temperatures than the Ferry and Spear calibration (Spear and 

Peacock, 1 989). 

Pressures were estimated using equilibrium relationships that involve net exchange 

reactions between the grossular component in gamet and the anorthite component in plagioclase. 

The techniques used include the gamet-plagioclase-sillimanite-quartz (GASP) barometer of 

Ghent and Stout (1 981 ) which is based on the reaction 

3CaAI�= 2� +�2 +� (6) 

For this barometer, the calibrations of Newton and Haselton (1981 ) and Hodges and Spear (1982) 

were used. For comparative purposes, pressures were also estimated using the garnet­

plagioclase-muscovite-biotite (GPMB) barometer which is based on the reaction 

FeaAI2Si3012 + C83AI2Si3012 + KAI3Si301o(OH)2 = 

3CaAI2StA+�o<Q-i)2 m 

For this relationship the calibrations of Ghent and Stout (1981 ) and Hodges and Crowley (1985) 

were used. Reactions 8 and 9 are potentially powerful barometers because of the large volume 

changes that accompany the net exchange of Ca between gamet and plagioclase, with grossular 

being favored at higher pressure and anorthite at lower pressure. Furthermore, reactions based on 

this relationship between the Ca component in garnet and plagioclase are relatively insensitive to 
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temperature (Essene, 1 989). 

Although no rutile was observed in any of the petite samples examined, the GRAIL barometer 

of Bohlen and others (1983) was used in an atlempt to obtain an upper limit of pressures atlained by 

petites of the SMT. This barometer is based on the reaction 

(8) 

In using this barometer, ilmenite composition was assumed to be pure because this phase was 

analyzed by EDS techniques during electron microprobe analysis. 

Results. The results of geotherrnobarometric estimates suggest post peak temperatures in the 

range of 535 to 690 oc and pressures in the range of 3 to 6 kbs (Table 5-1 ). These P-T estimates 

fall within the sillimanite stability field, consistent with the observation of sillimanite being the only 

AI2SiOs polymorph present in any of the samples analyzed. Synkinematic relationships observed 

in these samples suggests that these values record minimum P-T conditions for emplacement of 

the SMT. 

For individual samples, temperatures estimated by the different calibrations of the F�g 

exchange display differences of less than 35°C. The Ferry and Spear (1 978) calibration consistently 

yielded the lowest temperatures. Temperatures estimated using the Hodges and Spear (1 982) and 

Ganguly and Saxena (1984) calibrations yielded temperatures generally between 20° to 30° C 

higher than the Ferry and Spear (1 978) calibration. 

The clustering of temperature values, (with the exception of sample em 126) in the 

temperature range of 535-565° C (Table 5-1), suggests that these values may reflect terminal 

temperatures (closure) of the garnet-biotite exchange reaction. Spear and Peacock {1 989) noted 

that rim analysis of garnet-biotite pairs, even from high-grade terranes where reequilibration occurs 

during cooling, commonly record temperatures in the range of 525-600°0 and reflect termination 
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of the garnet-biotite exchange reaction. The possibility that these temperatures obtained here may 

reflect closure temperatures is also suggested by the limited compositional range of the garnet­

biotite pairs shown in the AFM diagram in Figure 5-12. 

The highest temperatures are recorded by sample cml26a, consistent with other petrologic 

and compositional evidence indicating that this sample may have attained the highest temperature 

of the sample suite. Sample cml26a contains the best-developed prismatic sillimanite. In a review 

of the AI2SiOs polymorphs, Kerrick (1 986), suggested that the presence of fibrolitic versus 

prismatic sillimanite in pelitic rocks may be a function of P-T conditions: prismatic sillimanite being 

favored at higher temperatures and pressures. Furthermore, biotite in cml26 contained the 

highest Ti contents (Rg. 5-8) of all samples analyzed. Studies by Guidotti (1984) and Spear and 

others (1 990) have suggested that Ti content in minerals such as biotite and amphibole increases 

with increasing metamorphic grade. Sample cml26a was collected from a locality immediately 

adjacent to the contact between the Sugarloaf Mountain thrust sheet and the overlying Mill Spring 

thrust sheet (Rgs 1-2; Plates I and Ill). Therefore the consistently higher pressure-temperature 

values for this sample may reflect a response to the emplacement of the Mill Spring thrust sheet. 

Pressures calculated using the GASP barometer indicate values for the entire sample suite 

ranging from 3 to 5 kbs (Table 5-1). Pressures estimated using the calibration of Newton and 

Haselton (1 981 )  are generally 0.5 to 1 kb higher than those calculated using the calibrations of 

Hodges and Spear (1982). Pressures estimated by the empirically derived GPMB barometer using 

the calibrations of Ghent and Stout (1981) and Hodges and Crowley (1985) yielded values generally 

consistent with pressures determined by GASP. Values determined by the Ghent and Stout (1 981) 

calibration range from 3 to 4 kbs, those using the Hodges and Crowley (1985) are about a kilobar 

higher ranging from 4 to 5 kbs. As with the temperature values, sample cml26a recorded the 

highest pressure values, again interpreted to reflect a response to the overlying Mill Spring thrust 

sheet. 

Results obtained using the GRAIL barometer of Bohlen and others (1 983) indicate an 
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upper pressure limit of approximately 5.5 to 6 kbs for the pelite samples analyzed. Estimated 

pressure values for samples cm427, cml26a, and cm12-2-4 are 5.0, 5.5, and 4.1 kbs respectively. 

These values fall within the sillimanite stability field. Alternatively, samples cm1 75, em 501 , and 

cm677 recorded pressures of 6.2, 6.2, and 7 kbs which were out of the sillimanite stability field. 

QUALITATIVE CONSTRAINTS ON THE P-T PATH 

DURING EMPLACEMENT OF THE SUGARLOAF MOUNTAIN THRUST SHEET 

Unfortunately, neither the absolute peak pressur&-temperature conditions, nor the 

prograde part of the P-T path followed by pelites of the SMT can be determined at this time. It is 

likely that these relationships will never be uniquely defined because of the restricted mineral 

assemblage, lack of appropriate inclusions and prograde mineral zoning in the garnets, and 

because post metamorphic peak continuous reactions have been operative thus resulting in 

mineral compositions that are not indicative of peak or prograde metamorphic conditions. The field 

and petrographic observations, reaction textures, mineral zoning, and the geothermobarometric 

estimates discussed in this chapter do, however, permit the retrograde portion of the P-T path to 

be qualitatively assessed. Importantly, based on the metamorphic and structural relationships 

discussed herein and in Chapter IV, this portion of the P-T path is, perhaps, the most important to 

the understanding of the metamorphic conditions during emplacement of the SMT. 

Field and petrographic observations indicate that the highest P-T conditions recorded by 

the pelitic rocks of the SMT are at least qualitatively constrained within the shaded area shown on 

the petrogenetic grid in Figure 5-2. In the most simple scenario, the use of the P-T values in this 

shaded area (highest P-T conditions) and the results of the geothermobarometric estimates (Table 

5-1), suggests the general retrograde P-T path as shown in Figure 5-13 for pelites in the 

Sugarloaf Mountain thrust sheet. Although such a path may be generally valid, additional 

constraints are provided by the metamorphic textures and zoning profiles discussed in this chapter. 
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Rgure 5-1 3. Petrogenetic grids showing possible retrograde P-T paths for pelites in the SMT. a) 

General retrograde P-T path for pelites in the Sugarloaf Mountain thrust sheet 

determined using the resuhs of geothermobarometric estimates (Table 5-1 ) and the 

conditions of metamorphism, determined from field and petrographic observations 

and shown in Rgure 5-2. b). P-T grid showing a proposed retrograde P-T path for 

the Sugarloaf Mountain thrust sheet based on the metamorphic textures, and mineral 

composition of garnet and plagioclase. Diagram also contains garnet-biotite isopleths 

(after Helms, 1 990), and grossular isopleths (after Spear and others, 1 989) for the 

KFMASH assemblage of garnet + biotite + sillimanite + muscovite + quartz. AI2Si05 

triple point after Holdaway (1971 ). 
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Reaction relationships, based on these textural criteria and mineral zoning, require that any 

proposed path must account for periods of both garnet consumption (reactions 3 ) and garnet 

growth (reaction 4) in these pelitic rocks. 

Helms (1990) has shown that isopleths of garnet and biotite composition (reaction 3) in the 

KFMASH assemblage garnet + biotite + sillimanite + muscovite + quartz have a negative slope in P­

T space (Fig. 5-1 3 ). According to Helms (1990) because garnet is on the high P-T side of the 

isopleths, the greatest amount of garnet consumption occurs with decompression and cooling. 

Alternatively, Spear (1 989) and Spear and others (1 989) indicate that garnet growth by reaction 4 

in the KFMASH assemblage garnet + biotite + sillimanite + muscovite + quartz precludes a path that 

involves significant decompression and cooling because grossular isopleths (reaction 4) have a 

positive slope in P-T space (Fig. 5-1 3 ). 

Using these constraints, it is proposed that the retrograde portion of the P-T path followed 

by pelites in the SMT varied between a path of decompression and cooling parallel to the grossular 

isopleths, and a path that may have approached isobaric cooling (Fig. 5-13). Samples that contain 

evidence for garnet consumption, but lack Ca enrichment at the garnet rim suggest a path of 

decompression and cooling that paralleled the grossular isopleths. Alternatively, samples 

containing both textural evidence for garnet consumption by reaction 3 and Ca enrichment at garnet 

rims consistent with garnet growth by reaction 4, indicate a P-T path less steep than the grossular 

isopleths that could approach conditions of isobaric cooling. Spear and others (1 989) and Spear 

(1990) indicated that garnet growth by reaction 6 is common in metamorphic terranes that have 

experienced isobaric cooling. Such a path is consistent with the interpretation that the textural and 

compositional variations observed in the SMT pelites record changes in equilibrium conditions (e.g., 

garnet growth versus garnet consumption) along the retrograde portion of the P-T path discussed 

earlier. In addition, this proposed path suggests that the textural (e.g., variations in garnet 

morphology) and mineral composition variations observed in these pelites can be explained by a 

single metamorphic episode and does not require two prograde metamorphic episodes as 
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suggested by Lemmon (1973). 

The Sugarloaf Mountain thrust sheet maintains a similar structural position (e.g., Inner 

Piedmont rocks over Chauga belt rocks), and contains a sillimanite-muscovite assemblage similar to 

thrust sheets elsewhere in the western Piedmont including the Six Mile thrust sheet in South 

Carolina (Griffin, 1 974a), the Alto allochthon in southwestern South Carolina and northeast Georgia 

(Hopson and Hatcher, 1 988), and the Smith River allochthon in southwestern Virginia (Conley and 

Henika, 1 973). Like the Sugarloaf Mountain thrust sheet, pelites in these thrust sheets also 

contain a sillimanite-muscovite metamorphic assemblage, but which has generally been 

interpreted to represent a prograde or peak metamorphic assemblage. Emplacement of these 

thrust sheets is interpreted to have occurred subsequent to development of this peak metamorphic 

assemblage. Comparison of the Sugarloaf Mountain thrust sheet with the structurally and 

metamorphically similar thrust sheets, mentioned above, indicates that the relationship between 

the development of the sillimanite-muscovite assemblage and crystalline ductile thrusting in the 

western Inner Piedmont may have been diachronous (e.g., retrograde and synkinernatic in the 

SMT; prograde and prekinematic in the Alto allochthon). These observations may also suggest that 

previous interpretations indicating that the sillimanite-muscovite assemblage in these thrust sheets 

is a peak or prograde assemblage may need to be reassessed. 

The timing of this tectonothermal activity in the Columbus Promontory is best constrained 

by the observations of Lemmon (1973, and 1982). An important contribution was the recognition 

that the 535 Ma Henderson Gneiss and the 438 Ma granitic intrusion within the Henderson Gneiss 

are strongly foliated, isoclinally folded, and metamorphosed, leading him to suggest that an 

Acadian tectonothermal event (post 438 Ma) is recorded in this part of the southern Appalachian 

Inner Piedmont. Pending the results of ongoing geochronological work, it is also concluded that 

the emplacement of the SMT sheet along the retrograde P-T path proposed here occurred during 

an Acadian tectonothermal episode in the western Inner Piedmont. 



201 

CHAPTER VI 

CONCLUSIONS 

The Columbus Promontory, as defined in this study, represents a unique area along the 

Blue Ridge physiographic front in North Carolina where geologic features characteristic of the 

southern Appalachian Inner Piedmont are very well preserved and exposed. Because of the 

outstanding exposure of rock units, atypical of most of the Inner Piedmont, this area has 

provided an outstanding opportunity to examine the geologic history of the western Inner 

Piedmont. This investigation represents a multidisciplinary study that has attempted to integrate 

the stratigraphic, structural and metamorphic to gain a complete understanding of the geologic 

development of this terrane. It was also the intent of this study to place the geologic feature 

features observed in the Columbus Promontory into the regional framework of the southern 

Appalachian orogen. As a result of the approach taken, this investigation has resulted in the 

generation of a significant amount of new data and several new hypotheses about the 

stratigraphy, internal deformation, and emplacement conditions of crystalline thrust sheets the 

western Inner Piedmont. Important results and conclusions from this multidisciplinary 

examination of the western Inner Piedmont from the area defined as the Columbus Promontory 

are summarized below. 

The lithostratigraphy of the Columbus Promontory consists of four mappable units that 

include the Henderson Gneiss, the Sugarloaf gneiss, the Poor Mountain Formation, and the Mill 

Spring Complex. These units are contained within three distinct thrust sheets that characterize 

the map-scale geology of the crystalline thrust terrane exposed in the Columbus Promontory 
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and include the Tumblebug Creek thrust sheet, Sugarloaf Mountain, and Mill Spring thrust 

sheets. The Turnblebug Creek contains only the Henderson Gneiss; the Sugarloaf Mountain 

thrust sheet contains rocks of the Poor Mountain Formation, the Sugarloaf gneiss, and 

amphibolite-poor upper Mill Spring complex; the Mill Spring thrust sheet contains rocks of the 

amphibolite-rich lower Mill Spring complex. 

Lithostratigraphic units defined in the Columbus Promontory are similar to stratigraphic 

units recognized elsewhere in the eastern Blue Ridge and Inner Piedmont. Similarities in 

physical stratigraphy between the Mill Spring complex and Poor Mountain Formation and other 

rock units in the eastern Blue Ridge and Inner Piedmont further supports the interpretation that 

the crystalline southern Appalachians contains two distinct lithostratigraphic suites that include: 

1 )  a lower sequence consisting of Lynchburg-Ashe-Tallulah Falls-Mill Spring-Sandy 

Springs/New Georgia -type rocks, and 2) an upper sequence consisting of Evington-Alligator 

Back-Chauga River/Poor Mountain-Jackson's Gap/Ropes Creek -type rocks. As with these 

correlative units , rocks of the Mill Spring complex and the Poor Mountain Formation are 

interpreted to be part of the deep-water facies rocks deposited along the Laurentian margin in 

Late Proterozoic to early Paleozoic time. The addition of the rocks of the Columbus Promontory 

to this regional stratigraphy further supports the argument that stratigraphic sequences in the 

eastern Blue Ridge and Inner Piedmont are equivalent. Furthermore, this correlation indicates 

that the Brevard fault zone, although recognized as a major structural discontinuity between the 

eastern Blue Ridge and Inner Piedmont, does not separate terranes of different tectonic affinity. 

Amphibolite represents a significant rock unit within the Poor Mountain Formation and the 

upper Mill Spring complex and was the subject of geochemical analysis. Geochemical trends 

shown on AFM and Niggli diagrams, and fractionation trends observed in several covariation 

diagrams support an interpretation that protoliths of amphibolite in the Poor Mountain Formation 
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and Mill Spring complex were tholeiitic basahs. The covariation diagrams used in this study also 

indicate the Columbus Promontory suite was fractionated with trends explained by fractionation 

of olivine, plagioclase, clinopyroxene, garnet, and magnetite. This assemblage is similar to the 

low-pressure fractionation sequence observed in mid-ocean ridges and indicated a MOAB 

character for the Columbus Promontory suite. Zr/Nb, and Y/Nb ratios further define the MOAB 

character to be N-type MOAB, but also suggest some P-type component. 

Tectonomagmatic discriminant diagrams also suggest an ocean- floor setting, but also 

indicate a volcanic-arc component. These observations suggest two possible paleotectonic 

interpretations for the origin of the amphibolite of the Poor Mountain Formation and the Mill 

Spring complex that include: 1) a mid-oceanic ridge setting adjacent to a mantle plume, and 2) a 

back-arc basin setting. Regardless of the interpretation, the total data set supports an oceanic 

origin for the Columbus Promontory suite. The oceanic character of these amphibolites also 

supports the interpretation that the Poor Mountain Formation and the Mill Spring complex, and 

correlative units in the eastern Blue Ridge and Inner Piedmont, were deposited, at least partly, 

on oceanic crust. 

The internal deformation and emplacement history of ductile crystalline thrust sheets in the 

western Inner Piedmont of the Carolinas and NE Georgia was investigated by detailed mapping 

and meso- and microstructural analysis of rocks in the Columbus Promontory and the Tamassee 

area in NE Georgia and adjacent South Carolina. The large-scale structure of the western Inner 

Piedmont in these areas consists of a stack of thin penetratively deformed ductile crystalline 

thrust sheets. Although this part of the western Inner Piedmont is polydeformed (01 to Os). the 

02 and Oa episodes were the most important and represent a deformation continuum. 02 was 

the most penetrative and synchronous with the latest upper amphibolite facies (Taconian­

Acadian?) metamorphism in the western Inner Piedmont. Da generally represents late- to 
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postpeak final emplacement of thrust sheets as coherent masses prior to complete cooling of the 

thrust stack. The emplacement history and internal deformation of thrust sheets in the Tamassee 

area and the Columbus Promontory is complex and involves coeval W and SW orogen oblique­

to-normal and orogen-parallel displacements The NE -SW and E -W structures developed 

coevally and are not the result of discrete deformation or metamorphic events. The major 

implication of this observation is that a primordial (?) Brevard fault zone and the Inner Piedmont 

thrust sheets were part of a linked decollement system. It is proposed that this deformation was 

the result of an early (pre-Alleghanian orogeny) oblique convergent or transpressional tectonic 

event in the crystalline southern Appalachians. 

The most characteristic structural element of the Inner Piedmont is the regional mylonitic 

(�) foliation. Meso- and microscopic scale kinematic criteria indicate that S2 is dominated by C 

surfaces and, suggests that much of the Inner Piedmont can be considered a regional of 

crustal-scale shear. S2 was also a major controlling factor in the development of other micro­

and mesoscale 02-03 structures within the western Inner Piedmont. A hypothesis is presented 

suggesting that internal deformation within the thrust sheets was the result of flow perturbations 

within the S2 mylonitic foliation caused by the transpressional or oblique convergence event. 

This resulted in enhanced partitioning of deformation into thrust and wrench components 

recognized as orogen-oblique-to-normal displacement of crystalline thrust sheets in the 

deeper Inner Piedmont and orogen-parallel movement within the Brevard fault zone and 

Chauga belt. The recognition of the linked displacement between the primordial Brevard fault 

zone and the thrust sheets in the Inner Piedmont, and recognition of S2 as a regional C surface 

are important aspects that distinguish this work from previous studies 

The metamorphic history of the Columbus Promontory was examined in pelitic schist 

contained in the Sugarloaf Mountain thrust sheet. Pelitic schist in the Sugarloaf Mountain thrust 
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sheet contain a sillimanite -muscovite metamorphic assemblage (A1 )  consisting of the mineral 

phases 

gar + bio + sill + plag (An13-3s) + qtz ± il 

Textural relationships and compositional zoning in garnet and plagioclase indicate that A1 

was produced by a series of continuous reactions involving both garnet consumption and garnet 

growth. These reactions are interpreted to have operated subsequent to the metamorphic peak, 

and therefore A1 is interpreted to represent a post metamorphic peak assemblage. The textural 

observations strongly suggest that development of the sillimanite-muscovite zone assemblage 

(A1 )  was synkinematic with development of microstructural features related to emplacement of the 

Sugarloaf Mountain thrust sheet. 

The interpretation that the sillimanite-muscovite assemblage (A1 ) represents a post-peak 

assemblage, and the synkinematic relationships support an interpretation that the SMT was 

emplaced along the retrograde portion of the P-T path followed by these rocks. Textural 

relationships and mineral zoning patterns in garnet and plagioclase suggest a retrograde P-T path 

characterized by general decompression and cooling, but with periods of isobaric cooling. 

Geotherrnobarometric estimates, using rim compositions of mineral phases in A1 . were made 

using the garnet-biotite thermometer and GASP and GPMB barometers. Results indicate 

temperatures of 535° C to 670° C and pressures of 3 to 5 kbs for final equilibration of mineral 

phases in A1 . Synkinematic relationships indicate that these values approximate minimum P-T 

conditions during emplacement of the Sugarloaf Mountain thrust sheet. This path is interpreted to 

represent an Acadian (post 438 Ma) tectonothermal event. 



206 

The interpretation that the sillimanite-muscovite assemblage in the SMT is post thermal 

peak assemblage contrasts with previous interpretations for the same assemblage in structurally 

similar thrust sheets elsewhere in the western Inner Piedmont (e.g., Abo allochthon, Smith River 

allochthon). This suggests that the relationship between development of this regionally 

extensive sillimanite-muscovite assemblage and ductile thrusting was diachronous in the 

western Inner Piedmont. Alternatively, this could also indicate that previous interpretations of 

this metamorphic assemblage may need to be reevaluated. 
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