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Abstract

The core-collapse supernova (CCSN) phenomenon, one of the most explosive events

in the Universe, presents a challenge to theoretical astrophysics. Stellar matter

in supernovae, experiencing most extreme pressure and temperature, undergoes

transformations that cannot be simulated in terrestrial laboratories. Construction

of astrophysical models is the only way towards comprehension of CCSN. The key

microscopic input into CCSN models is the Equation of State (EoS), connecting

the pressure of stellar matter to the energy density and temperature, dependent

upon its composition. Of the large variety of forms of CCSN matter, we focus

on the transitional region between homogeneous and inhomogeneous phases. Here

the nuclear structures undergo a series of changes in shape from spherical to exotic

deformed forms: rods, slabs, cylindrical holes and bubbles, termed “nuclear pasta”.

We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock + BCS

(3D-SHF) study of the inhomogeneous nuclear matter, where we calculate self-

consistently the nuclear pasta phase and determine the phase transition between

pasta and uniform matter and its character. As the nuclear matter properties

depend on the effective nucleon-nucleon interaction in the 3D-SHF model, we employ

four different parametrizations of the Skyrme interaction, SkM∗, SLy4, NRAPR and

SQMC700. For each of these interactions we calculate free energy, pressure, entropy

and chemical potentials in the space of particle number densities, temperatures and

proton fractions, expected to cover the pasta region. The available data analysed are

for particle number densities 0.02 - 0.12 fm−3 [reciprocal of cubic fermi], temperatures
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0 - 10 MeV and a proton fraction equal to 0.3. The data indicate a distinct

discontinuity in the first derivatives of the free energy, which can be interpreted as

a fingerprint of the first order transition between inhomogeneous and homogeneous

supernova matter. This transition occurs naturally in our model, without a need

for thermodynamic constructions. However, the transitions between distinct pasta

formations are much less pronounced and hard to detect with certainty.
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Chapter 1

Introduction

The complex structure of nuclear matter in the density region approaching ρs ∼
0.16 fm−3 (central density of heavy nuclei) at finite temperature (T < 20 MeV)

critically affects many astrophysical and nuclear physics phenomena. These include

the physics of neutron stars, the mechanism of core-collapse supernovae (CCSN)

and the nucleosynthesis of heavy chemical elements in the Universe. Some nuclear

physics properties of nuclear matter can be studied in terrestrial laboratories with

new neutron-rich radioactive beams, and in relativistic heavy-ion collisions, in which

similar densities and temperatures can be produced, but many aspects have to rely

on theoretical models.

A major scientific effort is being carried out at an international level to study

the properties of asymmetric nuclear systems experimentally and probe the behavior

of the symmetry energy close to and above saturation density (Li et al., 2008).

Astrophysical observations of compact objects also provide a window into both the

bulk and the microscopic properties of nuclear matter at extreme isospin asymmetries

(Steiner et al., 2005). Measurements coming from both laboratory and astrophysical

observations are expected to put constraints on the acceptable properties of the

Equation of State (EoS) of asymmetric nuclear matter (Lattimer and Prakash, 2007;

Baran et al., 2005).
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Correlations between different quantities in bulk matter and finite nuclei have

been established. Examples are the correlation between the slope of the pressure of

neutron matter at ρ = 0.1 fm−3 and the neutron skin thickness of 208Pb (Brown,

2000; Typel and Brown, 2001) and the correlation between the crust-core transition

density and the neutron skin thickness of 208Pb (Horowitz and Piekarewicz, 2001).

Both Skyrme forces and relativistic mean-field (RMF) models have been used to

describe these correlations. Vidaña et al. (2009) analysed the correlation between

the slope L and the curvature Ksym of the symmetry energy with the neutron skin

thickness and the crust-core transition density in compact stars. It was shown that

the parameters characterizing the microscopic Brueckner-Hartree-Fock (BHF) EoS

of isospin asymmetric nuclear matter fall within the trends predicted by several

Skyrme and relativistic effective models (Vidaña et al., 2009). These models are

compatible with recent constraints coming from heavy-ion collisions (Li et al., 2008),

giant monopole resonances (Garg et al., 2007), isobaric analogue states (Danielewicz

and Lee, 2009) or meson production [pions (Li et al., 2005), kaons (Fuchs, 2006)] in

heavy ion collisions.

Recently, Dutra et al. (2012) tested the capabilities of 240 Skyrme interaction

parameter sets to provide good neutron-star properties. It was found that only 5

of these forces satisfied a series of criteria derived from macroscopic properties of

nuclear matter in the vicinity of nuclear saturation density at zero temperature and

their density dependence, from the liquid-drop model, in experiments with giant

resonances and heavy-ion collisions, and from additional microscopic constraints on

the density dependence of the neutron and proton effective mass β-equilibrium matter,

from the Landau parameters of symmetric and pure neutron nuclear matter, and from

observational data on high- and low-mass cold neutron stars (Dutra et al., 2012).

Tsang et al. (2012) have summarized the current status of experimental constraints

on the symmetry energy below saturation density, its slope at the saturation density

and on the neutron skin thickness of 208Pb. They compared results from diverse

experiments and claim there is a promising consensus from various experiments
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using different experimental probes that shows the acceptable range of values of

the symmetry energy and its slope to be centered around (S0, L) ∼ 32.5, 70 MeV.

The current constraints are applicable to subnormal density, (0.3ρ0 ≤ ρ ≤ ρ0) only

and are somewhat dependent on the theoretical models used in the analysis of the

experiments (Tsang et al., 2012).

The exploration of the Quantum Chromodynamics (QCD) phase diagram is not

only a task for heavy-ion physics as there are strong relations to astrophysics of

extremely dense matter and even to cosmology. The conditions in the early universe

are similar to those probed by heavy-ion collisions at the Relativistic Heavy Ion

Collider (RHIC) and the Large Hadron Collider (LHC); high temperatures and low

net baryon densities. Supernova matter and neutron star matter are located in the

QCD phase diagram at moderate temperatures and high net baryon densities. In

this region of the QCD phase diagram, one expects to have a strong first-order phase

transition which is related to the restoration of chiral symmetry (Sagert et al., 2009).

The GSI Facility for Antiproton and Ion Research (FAIR) at Darmstadt will soon

allow more constraints for the high-density behavior of nuclear matter. A dedicated

experiment for the investigation of the phase transition from hadronic matter to the

quark-gluon plasma (QGP) in compressed baryon matter shall be hosted, which will

study the phenomena of chiral symmetry restoration and quark (gluon) deconfinement

accompanying the transition to the QGP (Klähn et al., 2006).

In this work we concentrate on CCSN, one of the most intriguing phenomena

in the Universe. It includes a large variety of physics, from gravity to microscopic

properties of atomic and subatomic particles. The key microscopic input into CCSN

model simulations is the EoS, connecting the pressure of stellar matter to its energy

density and temperature, which are, in turn, determined by its composition and

modelling of interactions between its components. The composition of CCSN matter

changes with increasing density and temperature. At low densities, an inhomogeneous

phase exists, made up of discrete heavy nuclei immersed in a sea of single nucleons

(predominantly neutrons), light nuclei (deuterium, tritium, helions, α-particles) and

3



electrons and potentially a degenerate gas of trapped neutrinos. At higher density

and temperature, a homogeneous phase evolves, consisting of nucleons, leptons, heavy

baryons, mesons and possibly quarks.

1.1 Core Collapse Supernovae

The most famous old supernova is that of 1054, recorded by the Chinese and Japanese

and also mentioned in an Arab document, but not reported anywhere in Europe. Its

remnant is the Crab Nebula, a tangle of brilliant filaments easily visible. At the center

of the Crab, there is a neutron star, a pulsar, which emits electromagnetic radiation

of all frequencies at regular intervals, about 30 pulses per second (Bethe, 1990).

Microscopically, core collapse supernovae result when the iron core of a massive

star becomes unstable through a combination of electron capture and iron dissocia-

tion. Stars that have masses M ≥ 8M⊙ will eventually become super red giants. In

the central region, the nuclear reactions will burn the composition to the 56Fe end

point (where fusion ceases to be exothermic), though the nuclear burning continues in

the outer shells of Si, O, etc., causing the iron core to continue to grow. The gravity

will crush the core to densities so high that the electrons will become relativistic

and the stellar core will reach a limiting mass, the so-called Chandrasekhar mass :

the maximum mass of an object supported by the pressure of the ultrarelativistic

electrons (Chandrasekhar, 1931). The core pressure is initially dominated by electron

degeneracy pressure. Once the Chandrasekhar mass is exceeded, the core begins to

collapse, and inverse β-decay (e− capture: e−+p −→ νe+n) accelerates the collapse.

Once the density is larger than ∼ 1011 gm/cm3 (∼ 6.02 × 10−5 fm−3), the emitted

neutrinos become trapped, because the time scale of the collapse is less than the

diffusion time of the neutrinos. The inner part of the core, collapsing subsonically,

transitions to bulk nuclear matter and becomes incompressible, substantially raising

its pressure. The supersonically infalling material in the outer core rebounds from

this stiffened inner core, sending an outward shock wave (Arnett, 1996). The shock
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stalls before it can drive off the envelope of the star (see, e.g., Burrows and Lattimer

(1985)). It is just at the final stage of the collapse, prior to the uniform nuclear

matter, that the pasta phase, which is the focus of this Thesis, will appear. At the

time the shock stalls, the core consists of an inner neutrinosphere radiating neutrinos

and antineutrinos. The failure of this “prompt” supernova mechanism sets the stage

for a delayed mechanism, wherein the intense neutrino flux, which is carrying off the

1053 erg binding energy of the newly formed proto-neutron star (PNS), heats matter

above the neutrinospheres and reenergizes the shock (Wilson, 1985; Bethe and Wilson,

1985). Under this neutrino reheating paradigm, the shock remains an accretion shock

until sufficiently reenergized to overcome the gravity of the PNS and the ram pressure

of the infalling matter, whereupon it propagates outward, heating and transmuting

the overlying layers and ejecting the envelope. The released binding energy (1053

ergs) of the newly formed PNS heats the matter to temperatures up to T ∼ 50 MeV

(Burrows and Lattimer, 1986). This star will cool essentially by neutrino emission.

Revival of the stalled shock above the neutrinosphere is mediated by the absorption of

electron neutrinos and antineutrinos emerging from the radiating PNS. This heating

depends sensitively on the neutrino luminosities, spectra and distribution in the region

behind the shock. Ultimately, this supernova shock wave must propagate out of the

iron core and through the star’s outer layers to disrupt the star in a core collapse

supernova explosion (Mezzacappa and Bruenn, 2000; Mezzacappa and Messer, 1999).

The process going on in the extremely dense and hot core of the exploding star

is accessible to direct measurements only through neutrinos or gravitational waves

(Janka et al., 2001).

There is no doubt that the supernova phenomenon exists in nature and is

accompanied by an explosion. Models have frequently failed to reproduce this

explosion in a credible way. Spherically symmetric models for the neutrino reheating

paradigm have generally failed to produce explosions because they do not deliver

sufficient energy to the envelope as a result of the stratification imposed by spherical

symmetry (see, e.g., Bruenn (1985); Wilson and Mayle (1993); Bruenn et al. (2001)).
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Because the neutrino energy deposition behind the shock depends sensitively not

only on the neutrino luminosities (Burrows and Goshy, 1993; Janka, 2001) and

spectra (Swesty, 1998), but also on the neutrino angular distributions, spherically

symmetric simulations implementing spectral Boltzmann neutrino transport were

developed (Mezzacappa and Messer, 1999; Liebendörfer et al., 2004). Despite this

improvement, these models also fail to explode (Liebendörfer et al., 2001; Rampp

and Janka, 2002; Thompson et al., 2003).

Models that break the assumption of spherical symmetry have achieved greater

success, either by enhancement of the neutrino luminosity due to fluid instabilities

within the PNS (Wilson and Mayle, 1993; Keil et al., 1996), or by enhanced efficiency

of the neutrino heating due to large scale convection behind the shock (see, e.g.,

Herant et al. (1994); Burrows et al. (1995)). PNS instabilities are driven by lepton

and entropy gradients, while convection behind the shock originates from gradients in

entropy that are born from the stalling of the shock and grow as the matter is heated

from below. While some 2D gray transport models, where average neutrino energies

are used for computing the transport, do produce explosions (including Herant

et al. (1994) and Burrows et al. (1995)), even with such convective enhancements,

explosions are not guaranteed (Janka and Müller, 1996; Mezzacappa et al., 1998a,b).

Fryer and Warren (2002, 2004) have demonstrated that three-dimensional models

exhibit large scale convective behavior similar to these two-dimensional models, a

surprising result likely explained by the nature of the hydrodynamic instability of

the stalled accretion shock, termed the SASI (Blondin et al., 2003; Blondin and

Mezzacappa, 2006). This instability to non-radial perturbations favor low order

modes, ultimately leading to gross distortions of the shock. Recent simulations

using spectral neutrino transport, including Bruenn et al. (2006, 2009), Marek and

Janka (2009) and Mueller et al. (2012), exhibit successful neutrino-driven explosions

in 2D for a range of progenitors. The essential difference between the current

exploding models (Bruenn et al., 2009; Marek and Janka, 2009) and similar models

of earlier in the decade (e.g. Buras et al. (2003, 2006)), which produced at best weak
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explosions for low mass progenitors, is the opening of the computational domain from

90◦ in latitude to 180◦, allowing the SASI to excite the lowest order modes which

work to push the shock outward gradually over several hundred milliseconds. This

allows increased neutrino heating to ultimately re-invigorate the shock and drive an

explosion. In contrast, Burrows et al. (2006, 2007) have reported successful explosions

in which the shock is revived not by neutrino re-heating, which is insufficient in

their simulations, but by acoustic waves excited by the SASI-induced aspherical

accretion stream onto the PNS. The existence of competing core-collapse supernova

mechanisms highlights the need for deeper investigation and ultimately comparison

with observations. However, one common feature of all of these recent models is a

several hundred millisecond delay between core bounce and explosion, which directly

impacts the nucleosynthesis and other observables (Hix, 2013; Janka, 2012).

Lentz et al. (2012) have conducted a series of numerical experiments using

spherically symmetric, general relativistic, neutrino radiation hydrodynamics with

the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on

the development of supernova simulations. They tested the effects of opacities by

removing opacities or by undoing opacity improvements for individual opacities and

groups of opacities and they found that improvements to electron capture (EC) on

nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models

rather than the simpler independent-particle approximation (IPA) for EC on a mean

nucleus, plays the most important role during core collapse of all tested neutrino

opacities.

Another possible solution to the CCSN problem may lay in the improvement of the

EoS, since the EoS at subnuclear densities controls the rate of collapse, the amount of

de-leptonization and thus the size of the collapsing core and the bounce density. Also,

any phase transition of the collapsing matter will absorb heat, disrupt the homology,

and so weaken the subsequent shock (Williams and Koonin, 1985). It is therefore

very important to determine the EoS as accurately as possible.
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During the supernova collapse and the birth of a PNS, modern simulations indicate

that matter can reach temperatures up to 20 MeV and the density at bounce of the

collapsing core goes up to 1.5−2.0ρ0. The timescale for supernova collapse is believed

to be of order of seconds and matter does not have enough time to reach β-equilibrium

throughout the rapid changes (Stone and Reinhard, 2007). Thus the calculation of

the EoS has to be performed for a range in ratio of neutrons and protons, usually

yp ∼ 0.3, for densities where nuclear matter forms (Mezzacappa, 2005).

1.2 The Pasta Phase

One of the most intriguing phases of CCSN matter is the transitional region between

the inhomogeneous and homogeneous phases. In addition to its intrinsic interest,

this sub-saturation density regime exists briefly in a collapsing stellar core during

the formation of a core-collapse supernova (Brown et al., 1982; Bethe et al., 1980,

1979), and the strength — or even existence — of the subsequent shock wave

depends sensitively upon the EoS (Williams and Koonin, 1985). As the density and

temperature increase, heavy quasi-nuclei structures are formed which undergo a series

of changes from spherical to exotic forms: rods, slabs, cylindrical holes and bubbles,

termed “nuclear pasta” (Ravenhall et al., 1983) (see Fig 1.1). This is an extension of

the trend toward heavier, more neutron-rich nuclei that occurs during earlier phases

of core collapse. This process is mainly caused by the competition between surface

tension and the Coulomb repulsion of closely spaced heavy nuclei and occurs not

only in CCSN matter but, for example, also at the transitional region between the

crust and core of neutron stars (Ravenhall et al., 1983; Horowitz et al., 2004b, 2005;

Maruyama et al., 2005; Watanabe et al., 2005; Sonoda et al., 2008, 2010).

The pasta phase appears at densities of the order of 0.001 − 0.1 fm−3 (Sonoda

et al., 2008, 2010; Avancini et al., 2008). The ground-state configuration is the one

that minimizes the free energy, i.e., the pasta phase is the ground-state configuration
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Figure 1.1: Nuclear Pasta: (a) spherical (gnocchi); (b) rod (spaghetti);(c) slab
(lasagna); (d) tube (penne); (e) bubble (swiss cheese?) → uniform matter.

if its free energy per particle is lower than the one corresponding to the homogeneous

phase at the same density (Avancini et al., 2010).

The pasta phase of matter has been studied under different assumptions in order to

more precisely describe the physics involved in this phenomenon. There is currently

considerable interest in searching for a better description of nuclear matter under

exotic conditions (namely of density, temperature and asymmetry). Both spherical

(1D) and asymmetric (3D) models were developed to study the pasta phase in hot

CCSN and cold neutron star matter.

The basic properties of the pasta phase were first computed by Ravenhall et al.

(1983) using semiclassical liquid drop models or Thomas-Fermi methods and later

by Lamb et al. (1983); Lattimer and Swesty (1991); Lassaut et al. (1987). The

energetically preferred pasta formation was obtained by calculating the energy

densities of the separate formations (including that of uniform matter) across the

whole density and temperature regime in which pasta was expected to exist, selecting

the formation that gave the lowest energy density at a given baryon number density.

This required that the nuclear shapes expected to appear had to be specified a priori

(Newton and Stone, 2009).
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Fully microscopic 1D Hartree-Fock (HF) calculations of supernova matter were

carried out by Bonche and Vautherin (1981, 1982). They used the spherical Wigner-

Seitz (WS) approximation, in which the generally nonspherical unit cell is replaced

by a spherical one with the same volume. The WS approximation is good as long

as the nuclear structures that form the lattice points are sufficiently widely spaced.

This condition is satisfied everywhere except close to the transition density, when

their spacing becomes comparable with their individual physical extent (Newton and

Stone, 2009). To treat the transition to uniform matter correctly, 3D models are

necessary which go beyond the WS approximation and use cubic (or higher order

symmetry) unit cells.

The 3D Skyrme-Hartree-Fock (3D-SHF) method in a cubic box with the SLy4

Skyrme parametrization was applied to neutron star matter by Magierski and Heenen

(2002) at zero temperature and, using RMF models, by Gögelein et al. (2008) at finite

temperature.

Both 3D studies to date calculated nuclear configurations at a limited number

of values of densities and number of nucleons in the unit cell, and only for proton

fractions expected to be found in neutron star crustal matter. Only Gögelein and

Müther performed calculations at finite temperature. To self-consistently probe the

energy of various pasta shapes, both independent quadrupole moments (q20 and

q22) of the nucleon distribution in the unit cell should be constrained. The study

of Magierski and Heenen imposed a constraint only on the q20 component of the

proton quadrupole moment, whereas Gögelein and Müther performed unconstrained

calculations (Newton and Stone, 2009).

For completeness, we mention the work of Avancini et al. (2008, 2009, 2010) who

explored the creation and forms of the pasta structures in the framework of the non-

linear Walecka model with a variety of effective Lagrangians. The calculation was

done at zero and finite temperature using the Thomas-Fermi approximation. They

found some dependence of the onset of pasta on the choice of the Lagrangian and
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details of the models used. Although these results depend on the use of the Thomas-

Fermi approximation, it will be interesting to compare them to our findings.

We also mention the work of Williams and Koonin (1985), who took the energy

per nucleon to be the Thomas-Fermi approximation to the Skyrme III functional and

include the Coulomb energy to study the zero-temperature EoS of isospin-symmetric

(yp = 0.5) nuclear matter below saturation density by minimizing the energy of the

nucleons in a periodic cubic cell at each mean density. They found several phase

transitions between different topologies of matter, going from spheres to rods to slabs

to tubes to bubbles with increasing density, and discussed their implications in a

CCSN framework (Williams and Koonin, 1985).

To date, in the EoS used in CCSN simulations (Lattimer and Swesty, 1991; Shen

et al., 1998), the transition to homogeneous matter has been treated empirically, as

the homogeneous and inhomogeneous phases have been described by two different

parametrizations of the EoS. The pasta phase is schematically included in the

Lattimer-Swesty EoS (Lattimer and Swesty, 1991) and the EoS for CCSN simulations

(Shen et al., 2010a,b, 2011a,b) based on RMF models and the virial EoS does not

include the pasta phase fully in 3D, even though according to some estimates, it may

form up to 20% of the supernova matter at bounce (Sonoda et al., 2007).

An alternative approach to modelling the pasta regime is the techniques of

quantum molecular dynamics (QMD) and related methods (Maruyama et al., 1998).

This semiclassical microscopic treatment, in which a large number of nucleons is

dynamically evolved in a large cubic box with periodic boundary conditions without

assumptions on the quasi-nuclear structure produced, offers a computationally

manageable model, but lacks important theoretical details of nuclear structure

physics. For computationally efficiency, the effective nucleon-nucleon interaction

is very schematic and, among other simplifications, the important shell effects are

missing. The pasta shapes themselves and their sequence have been studied in detail

using QMD at zero and finite temperature (Watanabe et al., 2001; Watanabe and

Sonoda, 2005). The dynamical response of the pasta to a neutrino flux through the
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matter has also been investigated in this framework (Horowitz et al., 2004b,a), and

significant strength at low energies from excitations of the internal degrees of freedom

of the pasta has been found.

Dorso et al. (2012) used the classical molecular dynamics (CMD) technique based

on the work of Pandharipande (Vicentini et al., 1985; Lenk and Pandharipande, 1986;

Lenk et al., 1990), where they found a plethora of nuclear shapes. CMD treats

nucleons as classical particles interacting through a two-body potential and solves the

coupled equations of motion of the many-body system to obtain the time evolution

of all particles. Since the (r,p) information is known for all particles at all times, it

is possible to know the structure of the nuclear medium from a microscopic point of

view (Dorso et al., 2012).

In addition to pasta formation, other processes, such as development of light

clusters in the vicinity of the phase transition and dynamical instabilities of matter in

the region were studied both in the non-relativistic (Chomaz et al., 2004; Kolomietz

and Shlomo, 2004) and relativistic (Providência et al., 2006a; Brito et al., 2006)

framework. It has been suggested that the existence of an inhomogeneous pasta

phase is intrinsically related to the appearance of collective unstable modes in the

matter (Providência et al., 2006b).

This work follows the one by Newton and Stone (Newton and Stone, 2009; Newton,

2008), where the pasta phase at the density region below ρs, and its transition to the

liquid uniform phase has been studied in the framework of the first fully self-consistent,

non-relativistic 3D-SHF model of “pasta” phase at finite temperature, allowing for a

wide variety of possible nuclear formations, calculated self-consistently without a need

for pre-determination of the shape as input. Another advantage of our model is the

self-consistent calculation of the transition between inhomogeneous and homogeneous

matter without a need for two separate EoS.

The main goals of this work are the self-consistent calculation of the nuclear

pasta phase and the determination of the phase transition between pasta and uniform

matter and its character. We use a finite temperature 3D-Hartree-Fock method with
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several models for the effective density-dependent Skyrme interaction at an extended

grid of ρ, T and yp = 0.3 to cover the model space where the pasta phase is expected

to appear. The dependence of the outcome of the 3D-SHF model on the choice of the

effective nucleon-nucleon interaction has not been studied as yet in 3D-SHF models.

We selected four different interactions, SkM* (Bartel et al., 1982), SLy4 (Chabanat

et al., 1998), NRAPR (Steiner et al., 2005) and SQMC700 (Guichon et al., 2006),

based on their overall performance in modelling of a wide variety of nuclear matter

properties (Dutra et al., 2012), to examine the sensitivity of the pasta formation and,

in particular, the conditions and nature of the phase transition.

A key interest in the pasta phase in CCSN is that the neutrino opacity, which plays

the central role in the development of a shock wave during the supernova collapse, is

affected by its presence (Sonoda et al., 2007). Horowitz et al. (2004b,a) studied these

effects using the QMD technique but did not get a conclusive answer because they

did not reproduce all the classical pasta shapes in their model. Sonoda et al. (2007)

showed how pasta phases affect the neutrino transport cross section via weak neutral

current using several nuclear models. They calculated neutrino opacity of the phases

with rod-like and slab-like nuclei taking into account finite temperature effects, using

the QMD approach. They found that pasta phases affect the energy-dependent cross

sections for coherent scattering of neutrinos in collapsing cores. Once our study of the

shapes and range of occurrence of nuclear pasta is complete, we plan to investigate

the impacts of our pasta on neutrino opacities.

1.3 The phase transition

The equilibrium state of a homogeneous body is determined by specifying any two

thermodynamic quantities, for example the volume V and the energy E. There is,

however, no reason to suppose that for every given pair of values of V and E, the state

of the body corresponding to thermal equilibrium will be homogeneous. It may be that

for a given volume and energy in thermal equilibrium the body is not homogeneous,
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but separates into two homogeneous parts in contact that are in different states. Such

states of matter that can exist simultaneously in equilibrium with one another and

in contact are described as different phases (Landau and Lifshitz, 1980). Let us write

down the conditions for equilibrium between two phases. First of all, as for any bodies

in equilibrium, the temperatures T1 and T2 of the two phases must be equal:

T1 = T2.

The pressures in the two phases must also be equal:

P1 = P2,

since the forces exerted by the two phases on each other at their surface of contact

must be equal and opposite. Finally, the chemical potentials of the two phases must

be equal:

µ1 = µ2.

If the potentials are expressed as functions of pressure and temperature, and the

common temperature and pressure are denoted by T and P , we have

µ1(P, T ) = µ2(P, T ).

Thus two phases can not be in equilibrium with each other at all pressures and

temperatures; when one of these is given, the other is completely determined (Landau

and Lifshitz, 1980). These thermal, mechanical and chemical equilibrium relations

are called the Gibbs conditions. This occurs, for example, in equilibrium between a

gas and the liquid, where we have a first order phase transition. It is remarkable that

neither the density of the liquid (given by Nl/Vl) nor the density of the gas (given by

Ng/Vg) changes during this phase transition (Greiner et al., 1997).
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1.3.1 First and second order phase transitions

Phase transitions which are connected with an entropy discontinuity are called

discontinuous or phase transitions of first order. On the other hand, phase transitions

where the entropy is continuous are called continuous or of second or higher order.

For a first-order phase transition, at least one of the first derivatives of the free

energy with respect to one of its variables is discontinuous (Greiner et al., 1997):

S = −∂F
∂T

|N,V,... P = −∂F
∂V

|N,T,... This discontinuity produces a divergence in the higher

derivatives like the specific heat CV = T ∂S
∂T

|V = −T ∂2F
∂2T

|V , or the incompressibility

K(ρ0) = 9ρ20
∂2ESNM (ρ)

∂2ρ
|ρ=ρ0, where ESNM is the energy per particle of symmetric

nuclear matter (Vidaña et al., 2009).

For a phase transition of second (or nth order), the first derivatives of the

free energy are continuous; however, second (or nth order) derivatives, like the

specific heat or the susceptibility, are discontinuous or divergent. The transition

to superconductivity without an external magnetic field is an example of phase

transitions of this kind (Greiner et al., 1997).

First-order phase transitions in single-component systems are characterized by

discontinuities in certain physical quantities. This occurs because quantities like the

density and the entropy are different in the two distinct phases, but the pressure and

chemical potential remain constant. This behavior does not occur in a binary system,

because the constraints of charge conservation and Gibbs’ criteria force the density

(and pressure) in each individual phase to change throughout the transition. We

might therefore expect the transition in the binary system to be smoother (Müller

and Serot, 1995).

Müller and Serot (1995) analysed the liquid-gas phase transition in a system with

two conserved charges (baryon number and isospin) using the stability conditions on

the free energy, the conservation laws, and Gibbs criteria for phase equilibrium in the

framework of a RMF model of nuclear matter with arbitrary proton fraction at finite

temperature. They concluded that in general, the pressure, temperature, density, and

15



concentration of both the gas and liquid phase can vary throughout the transition.

Moreover, both the Gibbs free energy and entropy are continuous throughout the

transition, showing that it is second order rather than first-order, as in familiar one-

component systems. They then applied their model to the liquid-gas phase transition

that may occur in the warm, dilute matter produced in energetic heavy-ion collisions

and, if such a phase transition actually occurs, then generically it should be smoother

than a first-order phase transition.

Raduta and Gulminelli (2010) developed a phenomenological statistical model

for dilute star matter, in which free nucleons are treated within a mean-field

approximation and nuclei are considered to form a loosely interacting cluster gas,

with T = 1−20 MeV, yp = 0−0.5 and ρ > 108 g/cm3 (ρ >∼ 6.02×−8 fm −3), making

it appropriate for CCSN and PNS description. They found that, contrary to the

common belief, the crust-core transition is not first order, and for all subsaturation

densities matter can be viewed as a continuous fluid mixture between free nucleons

and massive nuclei. As a consequence, the equations of state and the associated

observables do not present any discontinuity over the whole thermodynamic range.

Our study reveals a discontinuity in the pressure, chemical potential and entropy

(see chapter 4), making the phase transition in our system a first-order one.

1.3.2 The critical point

The phase equilibrium curve (in the PT -plane) may terminate at a certain point,

called the critical point; the corresponding temperature and pressure are the critical

temperature (Tc) and the critical pressure (Pc). At temperatures above Tc and

pressures higher than Pc, no difference of phases exists, the substance is always

homogeneous, and we can say that at the critical point the two phases become

identical (Landau and Lifshitz, 1980; Müller and Serot, 1995). For a binary system

with two phases, the phase-separation boundary, is called binodal. Therefore the

critical points form a line that divides the binodal surface into different regions
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describing either a high density (liquid) or a low density (gas) phase (Müller and

Serot, 1995).

1.3.3 Order parameter

To describe quantitatively the change in the structure of the body when it passes

through the phase transition point, we can define the order parameter (η) in such a

way that it takes non-zero (positive or negative) values in the unsymmetrical phase

and is zero in the symmetrical phase (Landau and Lifshitz, 1980). For instance, in

transitions where the atoms are displaced from their positions in the symmetrical

phase, η may be taken as the amount of this displacement. For transitions with

a change in the ordering of the crystal (e.g. in the CuZn alloy), the parameter

η may be defined as η = (ωCu − ωZn)/(ωCu + ωZn), where ωCu and ωZn are the

probabilities of finding a copper atom and a zinc atom respectively at any given lattice

site (Landau and Lifshitz, 1980). It must again be emphasised that the symmetry of

the body is changed only when η becomes exactly zero. Any non-zero value of the

order parameter, however small, brings about a lowering of the symmetry. A passage

through a phase transition point of the second kind has a continuous change of η to

zero. The absence of any discontinuous change of state at a phase transition point of

the second kind has the result that the thermodynamic functions of the state of the

body (its entropy, energy, volume, etc.) vary continuously as the transition point is

passed (Landau and Lifshitz, 1980).

This order parameter should represent the main qualitative difference between

the various phases. This means in particular that it should vanish for the liquid-gas

phase transition at the critical point, since then a distinction between these phases is

no longer possible. In this case, the density difference δρ = ρl − ρg ≡ η would be a

suitable order parameter, as well as (for fixed particle number) the volume difference
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Vg−Vl or the entropy difference. It is often difficult to find a suitable order parameter

for a certain phase transition (Greiner et al., 1997).

In Chapter 2, we briefly describe the formalism used and in Chapter 3, the

numerical method is explained. In Chapter 4, we present and discuss the results

obtained and, finally, in Chapter 5, some conclusions are drawn.
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Chapter 2

Nuclear Forces

The force that binds protons and neutrons together in the nucleus, despite the

electrical repulsion of the protons, is an example of the strong interaction. In the

context of nuclear structure, this interaction is called the nuclear force. It does not

depend on charge: neutrons, as well as protons, are bound, and the binding is the

same for both. It has short range, of the order of nuclear dimensions — that is,

10−15m. But within its range, the nuclear force is much stronger than electrical

forces; otherwise, the nucleus could never be stable. It would be nice if we could

write a simple equation like Newton’s law of gravitation or Coulomb’s law for this

force, but physicists have yet to fully determine its dependence on the separation

r. The nearly constant density of nuclear matter and the nearly constant binding

energy per nucleon of larger nuclides show that a particular nucleon cannot interact

simultaneously with all the other nucleons in a nucleus, but only with those few in its

immediate vicinity. This is different from electrical forces; every proton in the nucleus

repels every other one. This limited number of interactions is called saturation; it

is analogous to covalent bonding in molecules and solids. Finally, the nuclear force

favours binding of pairs of protons or neutrons with opposite spins. Hence the α

particle (two protons and two neutrons) is an exceptionally stable nucleus for its

mass number (Young and Freedman, 2008).
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The lack of exact knowledge of the nuclear force makes modelling of properties

of infinite nuclear matter and finite nuclei difficult. One of the main challenges is to

correctly describe the modification of the bare two-body nucleon-nucleon interaction,

extracted from nucleon-nucleon scattering experiments and the properties of the

deuteron in nuclear medium. The nuclear many-body problem cannot be solved

exactly at present and approximative approaches are needed.

2.1 Microscopic Models

Microscopic models are models that describe the structure of the nucleus in terms of

the degrees of freedom of its microscopic constituents — the nucleons. To do this a

microscopic Hamiltonian H is needed, which contains some suitable form of nucleon-

nucleon interaction. Most of these models start from a nonrelativistic Hamiltonian

containing only two-body interactions (Greiner and Maruhn, 1996).

The most natural selection for the degrees of freedom to use in the wave functions

is, of course, the nucleonic ones, i.e., the sets of positions ri, spins si, and isospins τi,

for a nucleus with A nucleons. The wave function then takes the general form

ψ(r1, s1, τ1, r2, s2, τ2, ..., rA, sA, τA), (2.1)

while for the Hamiltonian we would try the natural expression

Ĥ = −
A
∑

i=1

~
2

2m
∇2 +

1

2

∑

i,j

V (i, j). (2.2)

Here V (i, j) is the nucleon-nucleon interaction, which may depend on all the degrees

of freedom of a pair of nucleons. It is impractical, even with modern computers,

to solve the many-particle Schrödinger equation directly for A larger than of order

ten, so that the search for suitable approximations is the overriding concern in this

type of model. It is one of the important features of nuclear theory that there is
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no a priori theory for V (i, j). Instead, various parametrizations are employed that

are good for different purposes — one may be adapted for describing nucleon-nucleon

scattering while another may be suitable for Hartree-Fock calculations of heavy nuclei.

It is not even clear how important three-body forces not included in the Hamiltonian

of equation (2.2) might be. Until the nucleon-nucleon interaction can be derived

from a more fundamental theory such as quantum chromodynamics, we will have to

tolerate this situation. Contrast this with the situation in atomic physics, where the

fundamental interaction theory —QED— is very well known and it is only a matter of

approximation methods to find solutions to the problem. A typical microscopic model

depends on a nucleon-nucleon interaction which necessarily contains parameters fitted

to reproduce some experimental data. This justifies the name model even for the

microscopic approaches: the absence of knowledge about the fundamental interaction

is replaced by the proposal of a reasonable functional form with a limited number

of parameters, which cannot be determined from an underlying theory (Greiner and

Maruhn, 1996).

All microscopic models of the nucleus are based on some model of the basic

interactions between nucleons. Attempts to derive the nucleon-nucleon interaction

from the quark model are not sufficiently mature to be used in nuclear models, so

that there is still a plethora of model interactions that are used for various purposes

(Greiner and Maruhn, 1996).

It seems that in nuclei the interaction is modified by complicated many-body

effects to such an extent that it becomes more profitable to employ effective

interactions, which do not describe nucleon-nucleon scattering well but are thought to

include many of the effects of many-body correlations and should strictly be used only

in Hartree-Fock and similar nuclear structure calculations, not for nucleon-nucleon

scattering. In principle they may be valid only inside a certain space of shell-model

states. Often the functional form of such an interaction is selected with a view to

ease of computation (Greiner and Maruhn, 1996).
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Bare nuclear forces are not suited for direct use in the nuclear medium, mainly

because they are not density-dependent. They show strong repulsion at short

distances (hard core). Taking these bare nucleon-nucleon (NN) interactions as

input into many-body formalism such as relativistic Dirac-Bruckner-Hartree-Fock

approximation (ter Haar and Malfliet, 1987; van Dalen et al., 2004; de Jong and

Lenske, 1998) and its non-relativistic counterpart BHF (Cugnon et al., 1987; Zuo

et al., 2002; Bombaci and Lombardo, 1991; Day and Wiringa, 1985; Baldo et al.,

2000; Vidaña et al., 2000), variational method (Akmal et al., 1998; Mukherjee and

Pandharipande, 2007), Correlated Basis Function (Fabricioni and Fantoni, 1993;

Bisconti et al., 2006), Self-Consistent Greens Fuction models (SCGF) (Dewulf et al.,

2003; Frick and Müther, 2003), Quantum Monte Carlo techniques (Pudliner et al.,

1997; Schmidt and Fantoni, 1999; Carlson et al., 2003; Gandolfi et al., 2007, 2008,

2009), and Chiral Effective Field Theory (Hebeler and Schwenk, 2010; Hebeler et al.,

2010), an effective NN interaction is derived, which includes the effect of the medium,

and the many-body problem approximately solved (Dutra et al., 2012).

2.2 Phenomenological Effective Interactions

To avoid problems with modification of the bare nucleon-nucleon interaction in the

nuclear medium, another approach may be advantageous. It is possible to define an

effective density-dependent nucleon-nucleon interaction, fit its parameters to ground

state observables of finite nuclei and saturation properties of symmetric nuclear matter

and use it directly in Hartree-Fock or related techniques to find an approximate

solution of the nuclear many-body problem, at least for ground states. The pioneering

models of Köhler (1965a,b), Brink and Boeker (1967), Moszkowski (1970), Skyrme

(1956), further developed by Vautherin and Brink (1972) (and references therein) and

Decharge and Gogny (1980) initiated this approach, which is used today. The basic

idea is to parametrize the 2- and 3-body interactions by zero range (Skyrme model),

short finite range (Gogny model) and indefinitive range (Separable Monopole model
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(SMO) (Stevenson et al., 2001; Stone et al., 2002)) density-dependent functionals

to describe the ground state properties of finite nuclei and nuclear matter. In this

scenario, the microscopic details of 2- and 3-body forces, such as meson exchange, are

not explicitly considered and all the physically relevant information is carried by the

parameters of the density-dependent phenomenological forces which include the spin,

orbital angular momentum and isospin couplings. The drawback of this approach is

that the parametrization of such forces is not unique and there exist, in principle,

an infinite number of parameter sets, fitted to ground state properties of (doubly- or

semi-magic) stable nuclei, fission barriers, energies of giant resonances and symmetric

and asymmetric nuclear matter (Dutra et al., 2012). The most wide-used examples

of such effective interactions are the Skyrme and Gogny forces. The Skyrme force has

been adopted in this work and will be described in detail below.

2.2.1 The Skyrme Interaction

In 1956 Skyrme (Skyrme, 1956) proposed an effective interaction with a three-body

term:

V =
∑

i<j

V (i, j) +
∑

i<j<k

V (i, j, k). (2.3)

To simplify the calculations, he used a short-range expansion for the two-body part:

V (1, 2) = t0(1 + x0P
σ)δ(r1 − r2) (2.4)

+
1

2
t1[δ(r1 − r2)k

2 + k2δ(r1 − r2)] + t2kδ(r1 − r2)k

+ iW0(σ
(1) + σ(2))k× δ(r1 − r2)k,

where k = (1/~)p is the operator of the relative momentum

k =
1

2i
(∇1 −∇2). (2.5)
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For the three-body force, Skyrme also assumed a zero range force of the form:

V (1, 2, 3) = t3δ(r1 − r2)δ(r2 − r3). (2.6)

The six constants, t0, t1, t2, t3, x0 and W0 were adjusted to the experimental binding

energies and radii of closed shell nuclei. The parameter t0 describes a pure δ-force with

a spin-exchange, t1 and t2 simulate an effective range, and t3 the density-dependent

term. The W0 term in (2.4) represents a two-body spin orbit interaction. For spin

saturated even-even nuclei, the three-body term (2.6) turns out to be equivalent to a

density-dependent two-body interaction:

Vn(1, 2) =
1

6
t3(1 + P σ)δ(r1 − r2)n(

1

2
(r1 + r2)). (2.7)

Such a density-dependent term can also be regarded as the phenomenological

representation of the n-dependence of the microscopic effective interaction (Ring and

Schuck, 1980). Therefore, the Skyrme interaction takes the form of an effective two-

body potential between particles i and j. Its form is based on an expansion of the

matrix elements of a two-body potential in momentum space up to second order and

we can rewrite it as:

v̂skyrme(ri, rj) = t0(1 + x0Pσ)δ(ri − rj) (2.8)

+
1

2
t1(1 + x1Pσ)[k

2
ijδ(ri − rj) + δ(ri − rj)k

2
ij]

+ t2(1 + x2Pσ)kij .δ(ri − rj)kij

+
1

6
t3(1 + x3Pσ)n

α(r̄)δ(ri − rj)

+ it4kijδ(ri − rj)(σ̂i + σ̂j)× kij ,

where n is the matter density, kij ≡ −1
2
i(∇i − ∇j) is the relative wavevector, Pσ =

1
2
(1 + σ̂i.σ̂j) is the spin exchange operator, σ̂ is the vector of Pauli spin matrices and

r̄ = (ri+rj)/2. This form of the Skyrme potential is an example of a parametrization
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through t0, t1, t2, t3, t4, x0, x1, x2, x3 and α, introduced to describe nuclear properties

more accurately.

The term t0(1 + x0Pσ)δ(ri − rj) represents a s-wave (zero relative angular

momentum) interaction. The x0 term additionally exchanges the spin of the particles.

The second term 1
2
t1(1 + x1Pσ)[k

2
ijδ(ri − rj) + δ(ri − rj)k

2
ij ] is also a s-wave, but

this interaction includes a dependence on the relative linear momentum of the

particles. The third term t2(1 + x2Pσ)kij .δ(ri − rj)kij is a p-wave (unit relative

angular momentum) interaction, including spin exchange as in the first term. The

fourth term 1
6
t3(1+x3Pσ)n

α(r̄)δ(ri−rj) is a density-dependent interaction: this term

can be thought of as the three-body force with one of the coordinates integrated

out. The parameter α is added to this term to soften the density-dependence

which could otherwise lead to too high a compressibility for nuclear matter. Finally,

it4kijδ(ri − rj)(σ̂i + σ̂j)× kij is the spin-orbit force (Newton, 2008).

There are essentially three reasons why this force has gained so much importance

over the years. First, Vautherin and Brink (1972) were able to reproduce the nuclear

binding energies over the whole periodic table with a reasonable set of parameters

and, at the same time, the nuclear radii. Second, Negele and Vautherin (1973) gave

the connection between this force and the more fundamental G-matrix (Brueckner,

1955; Day, 1967). Finally, the mathematical form of the force is extremely simple.

The δ-functions simplify all types of calculations enormously (Ring and Schuck, 1980).

The Skyrme potential may be rewritten as an energy-density functional ǫSkyrme

as follows (Chabanat et al., 1997)

εSkyrme[Φ] =< Φ|(T̂ + V̂Skyrme)|Φ >=

∫

d3rǫSkyrme, (2.9)

where T̂ =
∑N

i=1 t̂i(ri) is the total kinetic energy operator, summed over the single

particle kinetic energy operators ti, and V̂Skyrme = 1
2

∑N
i 6=j=1 v̂Skyrme(ri, rj) is the

total potential energy operator obtained by summing the two-body potential energy

operator v̂Skyrme over all pairs of particles. ǫSkyrme breaks down to the following
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contributions:

ǫSkyrme = ǫkin + ǫ0 + ǫfin + ǫ3 + ǫeff + ǫso + ǫsg, (2.10)

with

ǫkin =
~
2

2m
τ (2.11)

ǫ0 =
1

4
t0[(2 + x0)ρ

2 − (2x0 + 1)(ρ2p + ρ2n)] (2.12)

ǫfin =
1

32
[3t1(2 + x1)− t2(2 + x2)](∇ρ)2 (2.13)

− 1

32
[3t1(2x1 + 1)− t2(2x2 + 1)][(∇ρp)2 + (∇ρn)2]

ǫ3 =
1

24
t3ρ

α[(2 + x3)ρ
2 − (2x3 + 1)(ρ2p + ρ2n)] (2.14)

ǫeff =
1

8
[3t1(2 + x1)− t2(2 + x2)]τρ (2.15)

− 1

8
[3t1(2x1 + 1)− t2(2x2 + 1)](τpρp + τnρn)

ǫso =
1

2
t4[J.∇ρ+ Jp.∇ρp + Jn.∇ρn] (2.16)

ǫsg = − 1

16
(t1x1 + t2x2)J

2 +
1

16
(t1 − t2)[J

2
p + J2

n]. (2.17)

The number density ρq, kinetic energy density τq and spin density Jq for a particular

isospin state q are given in terms of the single particle wavefunctions φi,q by:

ρq(r) =
∑

i∈q,s

ωiφ
∗
i,q(r, s)φi,q(r, s) (2.18)

τq(r) =
∑

i∈q,s

ωi∇φ∗
i,q(r, s).∇φi,q(r, s) (2.19)

Jq(r) =
∑

i∈q,s

ωi[φ
∗
i,q(r, s

′)∇φ∗
i,q(r, s)× 〈s′|~σ|s〉, (2.20)

where ωi is the occupation probability of each single-particle state, s labels the spin

components of the wavefunctions and an absence of indices indicates a sum over

q = p, n, e.g. ρ = ρp + ρn.
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The Skyrme energy-density functional in this form is suitable for use in the

Hartree-Fock method of the solution of the nuclear many-body problem in the mean

field as described in the following sections.

2.2.2 Mean field approximation

In a mean field approximation, two- or more-body interactions are averaged over the

whole system, producing an average field in which all the particles move, in order

to aid computational tractability (Newton, 2008). A two-body Hamiltonian for N

particles may generally be written

Ĥ =

N
∑

i=1

t̂i(ri) +
1

2

N
∑

i 6=j=1

v̂i(ri, rj). (2.21)

Supposing we have found a mean field potential û which encodes much of the physics

of the two-body potential v̂, we can then write equation (2.21) in the form

Ĥ =
N
∑

i=1

{

t̂i(ri) + ûi(ri)
}

+
{1

2

N
∑

i 6=j=1

v̂i(ri, rj)−
N
∑

i=1

û(ri)
}

= Ĥ0 + Ĥ1. (2.22)

Here Ĥ0 is the mean field Hamiltonian and Ĥ1 a residual (perturbative) two-body

Hamiltonian that contains any information left out in the process of going from the

two-body interaction to the one-body interaction. The mean field basis thus acts

as the natural basis from which to conduct perturbation theory. There are many

procedures that derive û from v̂. We use the Hartree-Fock approximation, originally

developed for modelling electron motions in atoms but later successfully adopted for

calculation of ground state properties of atomic nuclei (Hartree, 1928; Fock, 1930).
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2.2.3 The Slater determinant

The Slater determinant (Slater, 1929) is defined as the anti-symmetrised product of

the one-particle wavefunctions, written in the occupation number representation as

|n1, n2, ...〉 = â†1â
†
2...|0〉, (2.23)

where â†i creates a particle in state i, |0〉 is the vacuum state and ni is the number of

particles in state i. An eigenstate of a non-interacting (ideal) Fermi gas is given by a

single Slater determinant – for example, the ground state will see all the states up to

the Fermi surface occupied
∑

i≤iFermi
â†i |0 >. For the strongly interacting system of

nucleons, scatterings continually remove nucleons from certain states and fill others,

so the occupation numbers are not well defined. Then the eigenstates of such a system

are given by sums of all possible Slater determinants (with the particles occupying

the available states in all possible combinations). The number of ways of arranging

the particles amongst all the single particle states is enormous, and such a sum is

generally intractable, and we must therefore find an appropriate approximation to

reduce the numerical task at hand (Newton, 2008). The approximation made is that

the ground eigenstate is given by a single Slater determinant as in the free Fermi gas

case. This is called the Hartree-Fock approximation.

2.2.4 The Hartree-Fock Method

In the Hartree-Fock method (Hartree, 1928; Fock, 1930), we approximate the ground

state wavefunction by the Slater determinant

|Φ〉 = |n1, n2, ...〉 = â†1â
†
2...|0〉. (2.24)

We proceed via the variational principle, which states that the best approximation to

the ground state for the Hamiltonian Ĥ is obtained for that wave function Φ whose

energy expectation value is minimal (Greiner and Maruhn, 1996). Mathematically,
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we write

δεSkyrme[Φ] = δ〈Φ|Ĥ|Φ〉 = 0. (2.25)

Carrying out this minimization with respect to the single-particle wavefunctions and

Hamiltonian (2.22) yields a set of non-linear single particle Schrödinger equations

with the one-body Hartree-Fock potentials:

{

−∇ ~
2

2m∗
q

∇+ uq(r) + u(so),q(r)
(∇× σ̂)

i

}

φi,q(r) = ǫi,qφi,q(r). (2.26)

Here q = p, n labels the isospin states, i the single particle states, u(so),q is the

spin-orbit potential, uq is the single particle potential, and m is the effective mass.

This set has to be solved self-consistently for the set of single particle wavefunctions

which best describe the ground state of the system.

The Hartree-Fock approximation is one realisation of the Landau quasi-particle

approximation, in which the ’bare’ particle plus the potential energy it possesses, as

a result of moving in the mean field, is treated as a quasi-particle, and the occupation

numbers are now quasi-particle occupation numbers (Newton, 2008).

The action of the single particle potential upon the single particle wavefunction

can be written explicitly in terms of the general two-body potential v̂ in coordinate

space:

uq(r)φi,q(r) =
[

∫

d3r′ρq(r
′)v̂(r, r′)

]

φi,q(r)−
∫

d3r′ρq(r, r
′)v̂(r, r′)φi,q(r

′). (2.27)

The first term is the Hartree term and is local. The second term is the Fock (exchange)

term and is non-local, in that it depends on the wavefunction being operated on at all

points in space. However, the presence of the δ functions in each term of the Skyrme

effective potentials, v̂Skyrme, will reduce the Fock term to a local term, facilitating

calculations (Greiner and Maruhn, 1996).

Using the Skyrme interaction in equation (2.27) we obtain the one-body potentials

(derived in a variety of texts, e.g., Greiner and Maruhn (1996), Vautherin and Brink
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(1972)):

uq = t0(1 +
1

2
x0)ρ− t0(

1

2
+ x0)ρq (2.28)

+
1

12
t3ρ

α
[

(2 + α)(1 +
1

2
x3)ρ− 2(

1

2
+ x3)ρq − α(

1

2
+ x3)

ρ2p + ρ2n
ρ

+
1

4
[t1(1 +

1

2
x1) + t2(1 +

1

2
x2)]τ −

1

4
[t1(

1

2
+ x1)− t2(

1

2
+ x2)]τq

− 1

8
[3t1(1 +

1

2
x1)− t2(1 +

1

2
x2)]∇2ρ+−1

8
[3t1(

1

2
+ x1) + t2(

1

2
+ x2)]∇2ρq

− 1

2
t4(∇.J +∇.Jq),

u(so),q =
1

2
t4(∇ρ+∇ρq) +

1

8
(t1 − t2)Jq, (2.29)

and the effective mass is

~
2

2m∗
q

=
~
2

2mq
+

1

4
[t1(1 +

1

2
x1) + t2(1 +

1

2
x2)]ρ−

1

4
[t1(

1

2
+ x1)− t2(

1

2
+ x2)]ρq. (2.30)

In the single-particle potential derived above, the pairing force, acting in open shell

nuclei, is not included. We adopt the BCS method (Bardeen et al., 1957). The

equations are derived in detail in Greiner and Maruhn (1996).

BCS theory introduces correlations between particles into the ground state wave

function. It is based upon the ansatz that the ground state wave function including

pairing correlations can be written, in the language of second quantisation, as

|BCS〉 =
∑

k>0

(uk + vkâ
†
kâ

†

k̄
)|0〉, (2.31)

where the states |k〉 and |k̄〉 refer to angular momentum states |ljm〉 and |lj − m〉,
with m > 0, and the state |0〉 is the mean field state, in this work taken to be

the Hartree-Fock ground state |HF 〉. This ansatz describes the state (k, k̄) as being

occupied with a fractional probability v2k and unoccupied with a probability u2k, such

that u2k + v2k = 1. The pairing occupations can be written in terms of the single
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particle occupations ωk by v2k = ωk and u2k = 1 − ωk (note, though, that the pairing

states are occupied by two particles).

To find the pairing energy of the system we use the BCS wavefunction to calculate

the matrix elements of the pairing Hamiltonian which consists of a two-body pairing

interaction V̂pair =
1
2

∑N
i 6=j=1 v̂pair(ri, rj) We define the pairing energy functional as

εpair = 〈BCS|V̂pair|BCS〉 = 0. (2.32)

We implement a simple BCS pairing scheme at zero temperature (Bender et al., 2000;

Stone and Reinhard, 2007). The pairing force is approximated as a zero range two-

body force between the ith and jth particles (which, in general, is isospin-dependent):

v̂pair,q(ri, rj) = v0,qδ(ri − rj). (2.33)

With this force, the pairing energy functional can be written

εpair =
1

4

∑

q

v0,q

∫

d3rχ2
q, (2.34)

where χq is the local pair density

χq(r) = −2
∑

k∈q

ukvk|φk,q(r)|2. (2.35)

Since the single particle wavefunctions are normalised, the energy functional reduces

to

εpair =
1

4

∑

q

v0,q

[

∑

k∈q

ukvk

]2

. (2.36)

The occupation probabilities uk and vk are calculated by varying the pairing energy-

density functional with respect to them

δ[εpair[vk]− λ〈BCS|N̂ |BCS〉] = 0, (2.37)
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where the second term constrains the particle number to the desired value since

particle number is not conserved in the BCS scheme. N̂ is the particle number

operator and λ is the Lagrange multiplier which is equivalent to the Fermi energy of

the particles λ ≡ ǫF . This variational procedure results in the following expression

for occupation probabilities:

ωpair
k ≡ v2k =

1

2

(

1− ǫk − ǫF,q
√

(ǫk − ǫF,q)2 +∆2
q

)

, (2.38)

where the quantity ∆q is called the pairing gap and is given by the equation

∆q = v0,q
∑

k∈q

ukvk. (2.39)

We have the requirement that

Aq =
∑

k∈q

v2k, (2.40)

where Ap = Z and An = N . These equations need to be solved self-consistently. We

adopt the simplest approach, the constant gap approach, in which the gap is directly

parametrized so that equation (2.39) does not need to be solved. The parametrization

taken is (Langanke et al., 1991):

∆ ≡ ∆q = (11.2MeV/
√
A). (2.41)

We note that the BCS method is not self-consistent with the basic mean field

approach. The variation with respect to the occupation probabilities is performed

only for the pairing energy functional and not the whole mean field energy functional.

Conversely, the variation with respect to the single particle wavefunctions is performed

only for the basic mean field energy functional, excluding the pairing energy functional

(Newton, 2008). The self-consistent approach is called Hartree-Fock-Bogoliubov

(Bogoliubov, 1959; Baranger, 1963).
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2.2.5 Skyrme models used in this work

The models of the Skyrme force are fitted to reproduce a certain set of observable

properties of nuclei in an optimal way.

There are many different sets of the Skyrme parametrization resulting from

different fits by various authors (Dutra et al., 2012). We chose two traditional forces,

SkM* and SLy4, and two forces, NRAPR and SQMC700, which successfully satisfied

up-to-date experimental and observational constraints on properties of nuclear matter

(Dutra et al., 2012). Their parameters are given in table 2.1.

Table 2.1: The four Skyrme parametrizations used in this Thesis.

Parameter SkM* SLy4 NRAPR SQMC700
t0 [MeVfm3] -2645.0 -2488.9 -2719.7 -2429.1323
t1 [MeVfm5] 410.0 486.8 417.64 370.9804
t2 [MeVfm5] -135.0 -546.4 -66.687 -96.6917

t3 [MeVfm3+3α] 15595.0 13777.0 15042.0 13773.6340
x0 0.09 0.83 0.16154 0.100
x1 0.0 -0.34 -0.047986 0.0
x2 0.0 -1.0 0.027170 0.0
x3 0.0 1.35 0.13611 0.0
α 0.16667 0.16667 0.14416 0.16667
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Chapter 3

Computational method

As stated in chapter 1, we use a 3D-SHF approximation with a phenomenological

Skyrme model for the nuclear force with BCS pairing. In the calculation, it is assumed

that, at a given density and temperature, matter is arranged in a periodic structure

throughout a sufficiently large region of space for a unit cell to be identified. This

single unit cell needs to be calculated to obtain the bulk and microscopic properties

of the matter. The calculation is performed in cubic cells with periodic boundary

conditions and assuming reflection symmetry across the three Cartesian axes. Only

shapes with cubic symmetry are allowed. The required reflection symmetry allows

us to get solutions only in one octant of the unit cell, which reduces significantly the

computer time. The only effect of confining ourselves to 1/8 of the cell is that we can

only consider triaxial shapes. If we would consider the whole cell, we would get the

same results, with additional asymmetric shapes, which we are currently omitting.

It is expected that the absolute minimum of the free energy of a cell containing A

nucleons is not going to be particularly pronounced and there will be a host of local

minima separated by relatively small energy differences. In order to systematically

survey the “shape space” of all nuclear configurations of interest, the quadrupole

moment of the neutron density distributions has been parametrized, and those
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parameters constrained. It is expected that the proton distribution follows closely

that of the neutrons.

The minimum of the free energy in a cell at a given particle number density,

temperature and a proton fraction is sought as a function of 3 free parameters, the

number of particles in the cell (determining the cell size) and the parameters of

the quadrupole moment of the neutron distribution β, γ. Each minimization takes

approximately 12 hours on a single CPU core in computers like the National Center for

Computational Sciences (NCCS) Cray XT5/XK6 machine at ORNL and is performed

in a trivially parallel mode, typically using 45,000 processors in one run to perform

separate minimizations over a range of densities 0.02−0.12 fm−3, temperatures 0−10

MeV and a fixed proton fraction of yp = 0.3, where we have spent approximately

2.3×106 CPU hours. We also performed calculations over a range of proton fractions

yp = 0.01 − 0.35, though that results are not presented in this Thesis. The total

amount of CPU time spent was then ∼ 23× 106 hours.

This chapter provides a description of the essential physics which forms the basis

of the numerical method used to obtain the results presented in this Thesis. The main

sources are Ring and Schuck (1980), Greiner and Maruhn (1996) and Newton (2008).

The Oxford DPhil Thesis by William Newton (Newton, 2008), who developed the

3DHFEOS code, used in this Thesis, contains details of the numerical background

and basic implementation of the code for calculation of the pasta phase of supernova

matter. The code had to be adapted for efficient use on the ORNL supercomputer.

3.1 The Uniform Matter EoS

In this section we include the physical basis for the construction of an EoS of uniform

nuclear matter. This approach follows the development in Bonche and Vautherin

(1981) and Pandharipande and Ravenhall (1989).

The system is described by a quantum mechanical Hamiltonian Ĥ , with eigen-

states |ΦI〉 (where I labels the many body states; those states made up of different
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permutations of the constituent particles in the available single particle energy levels)

and an energy spectrum EI given by

Ĥ|ΦI〉 = EI |ΦI〉. (3.1)

Operating in the grand canonical ensemble, in which the average energy and average

particle number of the system are fixed, the probability of finding a particle in a state

|ΦI〉 at temperature T is given by

PI =
1

Z e
−β(EI−NIµ), (3.2)

where NI is the number of particles in state I, µ is the chemical potential of a particle,

β = 1/kBT , kB is the Boltzmann’s constant and the grand partition function Z is

defined

Z =
∑

I

e−β(EI−NIµ). (3.3)

From equation (3.2) we can define all the necessary thermodynamic quantities: the

average value of an observable represented by the operator Ô is given by

〈Ô〉 =
∑

I

PI〈ΦI |Ô|ΦI〉. (3.4)

The grand potential ΩG and entropy S can be defined

ΩG = −kBT lnZ (3.5)

S = −kB
∑

I

PI lnPI = −∂ΩG

∂T

∣

∣

∣

V,µ
, (3.6)

such that the expression for the average energy of the system U is given by

U = 〈Ĥ〉 =
∑

I

PIEI =
T 2

Z
∂ΩG

∂T

∣

∣

∣

V,µ
= −T 2 ∂

∂T

(ΩG

T

)

V,µ
= ΩG + TS, (3.7)
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and finally the pressure is given by

P = −∂U
∂V

∣

∣

∣

S,NI

= −∂ΩG

∂V

∣

∣

∣

T,µ
. (3.8)

The system of nucleons is uniform and isotropic so the single particle states can be

represented by plane waves.

In the Hartree-Fock approximation, the eigenstates of the many body Hamiltonian

are written as

|ΦI〉 = |n1(I), n2(I), ...〉. (3.9)

The sums over the many body states I in the partition function can then be replaced

by sums over the single particle states ni(I) and we can write the partition function

as

Z =
∑

ni(I)=0,1

exp
{

− β
[

∑

i

ni(ei − µ)
]}

=
∏

(1 + e−βni(ei−µ)). (3.10)

Then, from equation (3.4), the average occupation of a state i (the occupation

probability) at a temperature T is given by

〈ni〉 =
1

Z
∑

ni(I)=0,1

ni(I) exp
{

− β
[

∑

j

nj(ej − µ)
]

/kBT
}

= (1 + e−β(ei−µ))−1 ≡ ωFD
i , (3.11)

which is the Fermi-Dirac distribution function.

Since each Fermion state is characterised by a wavenumber k and has a spin

degeneracy g = 2, we have the following expressions for the number, entropy and
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energy densities:

ρ =
〈N〉
V

=
g

h3

∫

d3pω(p) =
g

(2π)3

∫

d3kω(k) (3.12)

s =
S

V
= −kB

g

(2π)3

∫

d3k[ω(k) lnω(k) + (1− ω(k)) ln(1− ω(k))] (3.13)

e =
U

V
=

g

(2π)3

∫

d3ke(k)ω(k). (3.14)

Here the volume of an element of quantum mechanical phase space is given by h3 and

we have written ωi → gω(k), ei → e(k), i.e. the states are distinguished (up to the

spin quantum number) by their momentum p = ~k.

For uniform, isotropic, nuclear matter, the wavefunctions of particles must be

translationally invariant, and hence take the form of plane waves. In addition, a spin

1/2 and isospin 1/2 eigenstate (represented by the spinors χ
(1/2)
s and χ

(1/2)
t ) must be

included. We thus have, in a volume of space V ,

φi(r) = φkst(r) =
1

V 1/2
ei
~k.~rχ1/2

s χ
1/2
t . (3.15)

The densities and currents are constant throughout uniform matter, so their

derivatives disappear. Writing the single particle potential and effective masses (2.28),

(2.29), (2.30) in terms of the baryon number density ρ and the proton and neutron

fractions yp = ρp/ρ, yn = ρn/ρ, we get

uq = t0ρ[(1 +
1

2
x0)− (

1

2
+ x0)yq]

+
1

12
t3ρ

α+1[(2 + α)(1 +
1

2
x3)− 2(

1

2
+ x3)yq − α(

1

2
+ x3)(y

2
p + y2n)]

+
1

4
[t1(1 +

1

2
x1) + t2(1 +

1

2
x2)]τ −

1

4
[t1(

1

2
+ x1)− t2(

1

2
+ x2)]τq, (3.16)

~
2

2m∗
q

=
~
2

2mq
+ ρ

1

4
[t1(1 +

1

2
x1) + t2(1 +

1

2
x2)]− ρ

1

4
[t1(

1

2
+ x1)− t2(

1

2
+ x2)]yq. (3.17)
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The kinetic energy of a single particle state is given by

eKE = 〈φkst

∣

∣

∣

(

− ~∇2

2m∗

)∣

∣

∣
φkst〉 = − ~k2

2m∗
, (3.18)

where the effective mass, m∗, is constant in uniform matter at a given density. We

are now in a position to write down the single particle energies of all particle species

present. The nucleon and lepton single particle energies are given by:

eq =
~
2k2

2m∗
q

+ uq +mqc
2 (3.19)

ei = (~2k2c2 +m2
i c

4)1/2, (3.20)

where q = p, n labels the nucleon species and i = e−/+, µ, ν, the lepton species

(electrons, positrons, muons and neutrinos). We have used the fully relativistic

expression for the single particle energies of leptons, assumed to be free particles.

Note that we include the rest masses of the particles. The single particle potential

energies must be included. We neglect contributions to the energies from the Coulomb

potential; the direct term in this energy is zero because of the charge neutrality of

the matter, and at densities above nuclear saturation the exchange term is negligible

(Shapiro and Teukolsky, 1986).

Inserting the single particle energies into the integrals (3.12),(3.13),(3.14) we can

obtain expressions for the chemical potentials µ, number densities ρ, total kinetic

energy densities τ and entropy densities s of each particle species, as we shall see

next.

3.1.1 The finite temperature EoS

To derive the number, kinetic energy and entropy densities for all particle species

present in matter, we need the Fermi-Dirac integrals, which are written as

Gk(η) =

∫ ∞

0

xkdk

e(x−η) + 1
, (3.21)
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for integer k > −1 and

Fk(η;λ) =

∫ ∞

0

xk(1 + λx/2)1/2dx

e(x−η) + 1
, (3.22)

for half-integer k > −1.

In the limit λ→ ∞, the above two integrals are related by

Fk(η;λ) =

√

λ

2
Gk+1/2(η). (3.23)

To produce an accurate EoS, the Fermi-Dirac integrals must be evaluated as precisely

as possible. We use the program developed in Miralles and Riper (1996), in which

the integrals are evaluated using expansions in the limits of degeneracy and relativity,

and direct numerical integration for intermediate regions.

Full derivations of the main quantities involved in the finite temperature EoS have

been derived in Newton (2008), so we give only final expressions here.

We write the single particle energies of the nucleons, including their rest mass, as

eq =
~
2k2

2m∗
q

+ uq +mqc
2, (3.24)

where q = n, p and uq is the single particle potential defined in equation (2.28).

The number and kinetic energy densities are given by

ρq =
1

2π2

(2m∗
q

β~2

)3/2

F1/2(ηq; 0) (3.25)

and

τq =
1

2π2

(2m∗
q

β~2

)5/2

F3/2(ηq; 0), (3.26)

where we have included the spin degeneracy factor g = 2, and integrated over the

angular part assuming the matter to be isotropic. ηq = β(µq − uq − mqc
2) is the

degeneracy parameter.

For the entropy density, we get
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sq
kB

=
1

2π2

(2mqkBT

~2

)3/2[5

3
F3/2(ηq; 0)− ηqF1/2(ηq; 0)

]

. (3.27)

For the leptons, i = e, µ, we use the fully relativistic expression for the single

particle energies:

ei(k) = mic
2[
√

1 + (~k/mc2)2 − 1], (3.28)

excluding the rest mass.

For the number density, we introduce the relativity parameter λi = kBT/mic
2,

the degeneracy parameter ηi = (µ−mic
2)/kBT , and we can write

ρi = 1
π2

(

mic
~

)3

λ
3/2
i

√
2[F1/2(ηi;λi) + λF3/2(ηi;λi)]. (3.29)

Similarly, the energy density is given by

ǫi = 1
π2

(

(mic)4

~3

)3

λ
5/2
i

√
2[F3/2(ηi;λi) + λF5/2(ηi;λi)] + nimic

2, (3.30)

and the entropy density is given by

si
kB

=
1

π2

(mic

~

)3

λ
3/2
i 21/2

[5

3
F3/2(ηi;λi) +

4

3
λiF5/2(ηi;λi)

− ηiF1/2(ηi;λi)− ηiλiF3/2(ηi;λi)
]

. (3.31)

Neutrinos are treated as a massless ultra-relativistic Fermi gas with single particle

energies:

eν = ~kc. (3.32)

The number and energy densities are given by
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ρν =
1

β3~3c3π2
G2(η) (3.33)

eν =
1

β4~3c3π2
G3(η), (3.34)

and the entropy density is given by

sν
kB

= − 1

β3~3π2
[ηG2(η)−G3(η)]. (3.35)

For an ideal photon gas at temperature T , we use the standard expressions for

the energy density ǫγ and entropy density sγ:

ǫγ =
3π2(kBT )

4

45~3c3
(3.36)

sγ =
4ǫγ
3kBT

. (3.37)

3.2 Non-Uniform Matter

In this section we outline the main features of the 3DHFEOS. Detailed description

can be again found in Newton (2008).

3.2.1 Implementation of the 3DHFEOS Code

For infinite uniform matter, the Hartree-Fock equations have an analytic solution

since the eigenfunctions are plane waves and the energy spectrum is continuous.

However, for inhomogeneous matter, we do not know a priori what the eigenfunctions

will be — other than that they will not be pure plane waves. Thus the Hartree-

Fock equations must be solved with the added complication that the terms in the

Hamiltonian that depend on the derivatives of the wavefunctions will not be zero.

Since the eigenfunctions we are solving for also form the densities and currents in the
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one-body potential, this is a self-consistency problem. In order to solve the Hartree-

Fock equations, first the initial wavefunctions are guessed, then the densities, currents

and potentials are calculated, and then new wavefunctions are formed by operating

on the old ones with the Hamiltonian. The process is iterated until a measure of

the discrepancy between old and new wavefunctions becomes sufficiently small. This

algorithm can be either performed in a coordinate space, in which all functions and

operations are represented on a spatial grid, or in some basis space, in which the

wavefunctions are expanded in terms of a set of basis functions (for example in terms

of harmonic oscillator functions) and their expansion coefficients determined from the

resulting matrix equation. We choose the former of these two representations, since

a single basis is insufficient for describing all the states that make up the matter

we are interested in. Some nucleons will occupy bound states, in which case their

wavefunctions can be related to a harmonic oscillator basis, and some will occupy

continuum states, in which case their wavefunctions will look similar to plane waves.

3.2.2 The computational domain and grid

In three-dimensions, the simplest periodic cell is a rectangular one. We will take such

a cell to be our computational domain and use Cartesian coordinates. Let us denote

the coordinates by xα, 1 ≤ α ≤ 3, such that x1 ≡ x, x2 ≡ y, x3 ≡ z. We take the

origin to be the centre of the cell, and each coordinate to run over −lα ≤ xα ≤ lα

so that the length of the cell in each direction is 2lα. Note that the exact choice of

Cartesian axes is arbitrary; there is as yet no external constraint on the orientation of

the cell. Our computational domain is discretised to form a grid of collocation points

xα (the points in space at which we assign values to our functions) with even spacings

in each direction δxα. Reflection symmetry implies that we can either arrange the

grid so that the origin is a collocation point:

xα = iδxα, i = −iα,−iα + 1, ..., iα − 1, iα, (3.38)
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or we can arrange the grid so that each collocation point is placed halfway between

those points in equation (3.38):

xα = (i+
1

2
)δxα, i = −iα,−iα + 1, ..., iα − 1, iα. (3.39)

Here iα = lα/δxα is the number of positive grid points (including the origin).

Since we want our computational domain to represent one cell in an effectively

infinite periodic array, choosing the second option guarantees that each point is unique

to our cell. Then a function at a given collocation point {i, j, k} is denoted by

f(x, y, z) ⇒ f(xi, yj, zk) ≡ fijk. (3.40)

The discretisation in coordinate space corresponds to a truncation in momentum

state in the sense that the maximum momentum that can be represented on a grid of

spacing δx corresponds to a maximum wavenumber kmax = 1/δx. We must make sure,

therefore that our choice of δx allows us to represent the full momentum spectrum of

states.

In order to reduce the numerical task, we assume that parity in all three Cartesian

directions is a good quantum number. For a given direction x, the parity operator in

that direction P̂ and a function on the grid f(x) must hence satisfy

P̂ f(x) = f(−x) = pf(x), (3.41)

where p = ±1 is the parity quantum number in that direction. Imposing parity

conservation means that we only need to compute functions in the positive octant of

the grid x, y, z ≥ 0, and, like this, we are only considering triaxial shapes.

3.2.3 Boundary conditions

At a given temperature and density, matter is arranged locally in a periodic structure.
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Bloch’s theorem states that the most general form of any solution to the

Schrödinger equation in a periodic potential must obey the relation:

Ψk,q(r+T) = eiK.TΨk,q(r), (3.42)

where T is the translation from the position r to the equivalent positions in the

adjacent cells, and K is the Bloch momentum covector. This implies that the

wavefunctions must be of the form

Ψk,q(r) = eiK.rφk,q(r), (3.43)

where φk,q obeys the simple periodic condition

φk,q(r+T) = φk,q(r). (3.44)

We will be working in terms of the wavefunctions φk,q(r) so it is the simple periodic

boundary conditions that we must enforce. In this Thesis we take a Bloch wavevector

K = 0 with the understanding that we can move to full Bloch boundary conditions

within the same framework.

3.2.4 Wavefunctions

In three dimensions, the wavefunctions take the form

φnx,ny,nz
(x, y, z) = unx

(x)uny
(y)unz

(z)× χs,ms
, (3.45)

where χs,ms
is a spinor for a spin state labelled by spin quantum numbers s,ms. As

we explain in the next section, we omit the spin-orbit force from the Hartree-Fock

Hamiltonian, so that the spinor part of the wavefunction will be neglected from now

on. We are left with three quantum numbers associated with the three spatial degrees

of freedom nα ≡ nx, ny, nz. Before we begin to solve the Hartree-Fock equations,
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we must choose the initial wavefunctions. We have two options: Gaussian times

polynomial (GP),

unα
= NPnα

(xα)e
−(xα/ωα)2 , (3.46)

or Fermi-Dirac (plane wave) (FD)

unα,pα = N cos(kαxα + πpα/2), (3.47)

where N is a normalisation constant, Pn(x) is an nth order polynomial in x which

contains only terms of parity (1)nα , and pα the parity of the state in the direction α

and the wavevector kα = nαπ/(2lα) (where 2lα is the length of the grid).

The wavefunctions are initially ordered according to their quantum numbers nx,

ny and nz (see Table 3.1).

Table 3.1: Quantum numbers nx, ny and nz for the first few single particle states;
lowest energy is at the top.

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1
2 0 0
0 2 0
0 0 2

For the GP wavefunctions, the parity is given by pα = (1)nα and for the FD

wavefunctions, the three parities are additional independent quantum numbers.

Therefore, for the FD wavefunctions, there are eight possible combinations of the

parity quantum numbers in three dimensions for each value of nx, ny and nz.

It is important to note that the total number of wavefunctions available to us is

limited by the number of grid points. The quantum numbers nx, ny and nz can only
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take values up to the number of grid points plus one in the given direction, since

that is the total number of wavefunction nodes that our grid can accommodate when

the collocation points are placed half way in between the grid points. Thus the total

number of GP wavefunctions available is equal to the total number of grid points. For

FD wavefunctions, the number available is a factor of 8 greater. For these reasons, we

use the GP wavefunctions. FD wavefunctions have been previously tested (Newton,

2008) and give the same results when one does constrained calculations.

To reduce further the computational time, we take advantage of the fact that,

under the action of time reversal,

r → r;p → −p; t→ −t, (3.48)

single particle states with opposite values of total angular momentum projection are

degenerate. This is called the Kramers Degeneracy (Greiner and Maruhn, 1996). We

can use this, provided we have an even number of nucleons in our system, to associate

two nucleons with each single particle state, thus cutting the computational workload.

We enforce this degeneracy in the code but we note that we are restricted to systems

of even N and Z (Newton, 2008). We note that it would be unlikely for the lowest

ground state to be a neighboring odd Z, N sate due to pairing, which tends to lower

the energy of even-even nuclear shapes.

47



3.2.5 The Hartree-Fock equations

The Hartree-Fock equations in Cartesian coordinates are written as:

− ~
2

2m∗
q

(x, y, z)
[ d2

dx2
d2

dy2
d2

dz2

]

φ(nx,ny,nz),q(x, y, z) (3.49)

−
( d

dx

~
2

2m∗
q

(x, y, z)
)( d

dx
φ(nx,ny,nz),q(x, y, z)

)

−
( d

dy

~
2

2m∗
q

(x, y, z)
)( d

dy
φ(nx,ny,nz),q(x, y, z)

)

−
( d

dz

~
2

2m∗
q

(x, y, z)
)( d

dz
φ(nx,ny,nz),q(x, y, z)

)

+ uq(x, y, z))φ(nx,ny,nz),q(x, y, z) = ǫnx,ny,nz
φ(nx,ny,nz),q(x, y, z).

The densities are given by

ρq(x, y, z) =
∑

(nx,ny,nz)∈q

ωnx,ny,nz
φ2
(nx,ny,nz),q(x, y, z) (3.50)

τq(x, y, z) =
∑

nx,ny,nz

ωnx,ny,nz
(∇φ(nx,ny,nz),q(x, y, z))

2, (3.51)

where uq(x, y, z) is the single particle Hartree-Fock potential given by (2.28).

The Hartree-Fock equations form a self-consistent problem in the sense that the

wave functions determine the mean field, while the mean field in turn determines the

wave functions. In practice this leads to iterative solutions in which one starts from

an initial guess for the wavefunctions, such as those for the harmonic-oscillator and

determines the mean field from them. Solving the Schrödinger equations then yields

a new set of wave functions, and this process is repeated until, hopefully, convergence

is achieved (Greiner and Maruhn, 1996).

We note that in order to reduce the computational task further, we leave out the

whole spin-orbit part of the Hartree-Fock Hamiltonian: this allows us to omit the

spinor part of the wavefunction, thus cutting the computation time by roughly two.
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It also allows us to use purely real wavefunctions, which reduces the computation

time by another factor of roughly two (Newton, 2008).

The spin-orbit interaction is an important factor in determining the correct shell

energy. It has been shown by Negele and Vautherin (1973) that in matter nearing

homogeneity, the spin-orbit force for neutrons does not play a large role. The proton

density will be less homogeneous, so the spin-orbit interaction will be important in

determining the correct level ordering for them.

Also, matter in supernova configurations is very much less homogeneous than for

neutron star configurations (the density of the external neutron gas is much smaller),

and so the spin-orbit interaction will be important there. However, we feel that it

is more important to obtain the results which contain the bulk properties of the

supernova matter. We also note that the spin-orbit force will not be important for

the overall energy and pressure of the cell, as it will not significantly change the

ground-state, and will not alter the ordering of shapes. It will, though, have a big

effect on the single particle spectrum, which might be important when calculating,

for example, neutrino cross-sections, which goes beyond the purpose of this Thesis.

3.2.6 Iterations

The principle of an iterative solution to the Hartree-Fock equations is to start with

an initial guess of the wavefunctions (single particle states) and construct a successive

set of wavefunctions through an operation on the previous set, with the single

particle Hartree-Fock Hamiltonian ĥHF . Repeating this process, the wavefunctions

will converge to a solution of the Hartree-Fock equations. However, since we are

interested in the ground state, we need to guarantee that our choice of the iterative

process will converge to that. For example, if one takes the prescription that the

wavefunctions of the (n+ 1)th iteration are formed from those of the nth by

φ
(n+1)
i = ĥHFφ

(n)
i , (3.52)
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then the wavefunctions will converge to the highest eigenvalue of ĥHF (Reinhard and

Cusson, 1982).

Instead, we choose a set of trial wavefunctions φi, which may be expanded in the

basis of the Hartree-Fock states which we are trying to find:

φi =
∑

j

ajiφHF,j. (3.53)

Then, if we operate on these wavefunctions with the operator e−λ(ĥHF−ǫi), we obtain

e−λ(ĥHF−ǫi)
∑

j

ajiφHF,j =
∑

j

ajie
−λ(ǫj−ǫi)φHF,j. (3.54)

Then those states with large energies will be removed from the trial wavefunction,

because of the exponential operator, leaving the lowest energy states. As the iteration

proceeds, the energy of the trial wavefunction will converge to ǫj .

We employ two different criteria to determine if a solution has converged at

any given iteration: the difference in energy in consecutive iteration steps and the

variances.

The current difference in energy at the nth iteration is given by

δE = En −En−1. (3.55)

When this falls below a certain value, we can consider that the wavefunctions have

converged, and we impose δE < 10−10 MeV.

The total variance of the proton or neutron single particle energies at iteration n

is given by

〈δh2〉q =
∑

i

ωi,q

{

〈φi,q|(hnHF )
2|φi,q〉 − (〈φi,q|hnHF |φi,q〉)2

}

, (3.56)
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where the sum is over all occupied states. Again, once both the proton and neutron

total variances drop below a certain value, we can consider that the calculation

converged, and we impose 〈δh2〉q < 1.0 MeV2.

The variances provide a more robust indication that the iteration has converged.

When the criterion given above for the variance is fulfilled, we find that the energy

difference criterion is automatically fulfilled.

3.2.7 Zero temperature occupation probabilities

At zero temperature, we employ the pairing scheme set out in section 2.2.4. We

shall denote the pairing occupation probabilities by ωpair
k which are related to the

standard pairing notation for occupation (vk) and non-occupation (uk) probabilities

by v2k = ωpair
k and u2k = 1− ωpair

k .

The basic pairing equations to be solved in the constant gap approach are those

for the occupation probabilities, equation (2.38), under the constraint (2.40) with the

gap parameter ∆ given by equation (2.41).

One problem with using a zero range pairing interaction is that it tends to over-

estimate the coupling to high-energy (continuum) states. To simulate the effect

of finite range forces and inhibit the high-energy coupling, Bender et al. (2000)

introduced smooth energy dependent cutoff weights

fk,q =
1

1 + exp[(ǫk,q − ǫF,q − δEq)/ωǫ,q]
, (3.57)

where ǫF,q is the Fermi energy of isospin state q. This acts to confine the active pairing

space to the vicinity of the Fermi surface. The quantity δEq, which determines the

range of energy around the Fermi energy that pairing is active, is determined from

the condition

Aq + 1.65A2/3
q =

∑

k∈q

fk,q, (3.58)
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which is chosen such that the sum of the cutoff weights includes approximately one

additional shell of single particle states above the Fermi surface (which contains

approximately 1.65A
2/3
q states). For zero temperature, the quantity ωǫ,q is taken

to be 10 MeV to give acceptable results in finite nuclei (Bonche et al., 1985).

With this addition, we make the change ∆ → fk,q∆ in the gap and occupation

number equations, resulting in

ωpair
k,q =

1

2

(

1− ǫk,q − ǫF,q
√

(ǫk,q − ǫF,q)2 + f 2
k,q∆

2
q

)

(3.59)

Aq =
∑

k∈q

ωpair
k,q . (3.60)

The scheme with which we calculate the above quantities at any given iteration follows

the one in Bender et al. (2000).

3.2.8 Finite temperature occupation probabilities

At finite temperatures, the occupation probabilities are given by the FD distribution

ωFD
k,q =

1

1 + e−(ǫk,q−µq)/kBT
, (3.61)

where the chemical potential µq is again given by the particle number requirement

(3.59). To solve for this distribution at a given iteration, we evolve the single

particle wavefunctions according to our iterative scheme. With the new single particle

wavefunctions φ
(n)
k,q , we calculate the new Hamiltonian ĥ(n), using the occupation

probabilities ω
FD,(n−1)
k,q and the new single particle energies ǫ

(n)
k,q . We obtain the new

Fermi energy ǫ
F,(n)
q of the particles, by solving equation (3.59) with the occupation

probabilities ω
(n−1)
k,q , using a secant iteration (Press et al., 2007). Finally, the new

occupation probabilities ω
FD,(n)
k,q are formed from equation (3.61).
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3.2.9 The quadrupole constraint

The basic Hartree-Fock iteration converges to a final configuration whose shape

depends on the initial configuration, which itself depends on the number of nucleons

in the cell, and hence the cell size.

In order to control the deformation of our nuclear configuration, we need to impose

a constraint on the nuclear shape. This will allow us to systematically search over

the deformation space (the energy surface with respect to the shape of the nuclear

configuration) by performing calculations at relevant values of the parameters we

choose to describe the deformation. In this way, we will be able to self-consistently

find all the local minima in the energy, as a function of the deformation, that result

from different nuclear shapes.

Since we have imposed reflection symmetry across the three Cartesian axes, there

will be no asymmetric deformations such as dipole or octupole. We thus impose a

constraint on the quadrupole moment of the proton and neutron densities, neglecting

the next order of deformation consistent with our boundary conditions, hexadecapole,

since it is expected to give energy variations at least an order of magnitude smaller

than that of the quadrupole deformation (Newton, 2008).

In Cartesian coordinates, the quadrupole operator is given by

Q̂ = {Qab} =











2x2 − y2 − z2 3xy 3xz

3xy 2y2 − z2 − x2 3yz

3xz 3yz 2z2 − x2 − y2











(3.62)

and the matrix elements of the operator and its square are defined as

qab = 〈Q̂ab〉 =
N
∑

i=1

〈φi|Qab|φi〉 =
∫

ρQabdV (3.63)

q2ab = 〈Q̂2
ab〉 =

N
∑

i=1

〈φi|Q2
ab|φi〉 =

∫

ρQ2
abdV, (3.64)

53



The matrix elements of a triaxial shape may be put in diagonal form: qab = 0 for

a 6= b, qab = qa for a ∈ x, y, z. The quadrupole operator itself can then be taken to be

diagonal. The three non-zero quadrupole moments must also fulfil qx + qy + qz = 0,

so only two of them are independent.

The nuclear shape R(x, y, z) is usually parametrized by the dimensionless

quadrupole moments αa defined by qa = R0αa such that

R(x, y, z) = R0(1 + αxξ
2 + αyη

2 + αzζ
2), (3.65)

where ξ = x/R0, η = y/R0, ζ = z/R0 and R0 is the root mean square nuclear radius.

One can also write equation (3.65) in spherical polar coordinates:

R(x, y, z) = R0(1 + α20Y20(θ, φ) + α22Y22(θ, φ) + α2−2Y2−2(θ, φ)), (3.66)

which defines the dimensionless spherical polar quadrupole moments. We can relate

them to their Cartesian counterparts via

α2±2 =

√

2π

15
(αx − αy) ≡ α2 (3.67)

α20 =

√

8π

90
(2αz − αx − αy) ≡ α0, (3.68)

where α0 is the relative stretch along the z axis of the nucleus with respect to the x

and y axes and α2 is the relative difference in length between the x and y axes.

We are using an alternative parametrization, that involves the parameters β and

γ (Greiner and Maruhn, 1996):

α0 = β cos γ α2 =
1√
2
β sin γ, (3.69)
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that are analogous to the polar coordinates parameters. β represents the deformation

of the configuration, and γ the direction of the deformation: γ = 0◦ gives prolate

deformations and γ = 60◦ gives oblate deformations.

In order to constrain the nuclear configuration to particular values of the

quadrupole moments, we add to the Hartree-Fock Hamiltonian a constraining force:

ĥHF → ĥHF + λc.Q̂, (3.70)

where Q̂ is the quadrupole operator given in equation (3.62) and λc is the strength

of the constraining force. When the quadrupole matrix is diagonal, Q = {Qa}, then
the strength is a vector with three components λc = {λc,a} for each component.

We specify our desired quadrupole moments through the polar coordinates α, β

given in equation (3.69). These are then turned into the moments qa through

equations (3.67), the requirement that αx+αy+αz = 0 and the definition qa = R0αa.

The force strength needs to be updated iteration by iteration as it drives the

quadrupole moments towards the desired values. This is implemented via the scheme

presented in Cusson et al. (1985).

We apply the constraint only to the neutrons. Since matter is neutron rich, the

proton distribution will follow the neutron distribution to a good degree of accuracy.

3.2.10 The Coulomb interaction

The Coulomb potential arising from the electrostatic interaction between protons and

electrons comprises a direct term and an exchange term. The direct term is obtained

from Poisson’s equation

∇2Φ = 4π̺p, (3.71)

where ̺p is the charge density of protons, which we approximate as the charge times

the spatial density of the species eρp, which neglects the finite size of the particles.

This is a good approximation on the distance scales of the size of the cell considered.
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One can solve it by writing the electrostatic potential as a Fourier series:

Φ(x, y, z) =

∞
∑

l,m,n=0

Φ̃(kx, ky, kz) cos
( lπx

lx
+ ϕx

)

cos
(mπy

ly
+ ϕy

)

cos
(nπz

lz
+ ϕz

)

.

(3.72)

Substituting in equation (3.71), we get

Φ̃(kx, ky, kz) = 4π̺p

( l2π2

l2x
+
m2π2

l2y
+
n2π2

l2z

)−1

. (3.73)

An inverse Fourier transform recovers Φ(x, y, z). The Coulomb solver is implemented

using the FFTW software package (Frigo and Johnson, 2005).

The exchange term is evaluated via the Slater approximation (Slater, 1951) which

gives the expression:

Φexch = −
( 3

π

)1/3

ρ1/3p . (3.74)

3.2.11 Center of mass correction

The mean field localises the nucleus and breaks translational invariance. The result is

a spurious oscillation of the nucleus in the mean field, and a corresponding addition

to the total energy. A simple way of correcting for this is to subtract the zero point

energy of harmonic oscillations about the centre of mass:

Ecm =
P 2
cm

2Am
, (3.75)

where Pcm =
∑A

i=1 p̂i is the total momentum operator, A is the nucleon number and

m the average nucleon mass. An approximate treatment takes P 2
cm ≈ ∑A

i=1 p̂
2
i and

the energy correction becomes a correction in the nucleon mass:

h2

2m
→ h2

2m
(1− 1/A), (3.76)

making this correction very small for large number of nucleons.
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3.3 Composition of matter in CCSN

In the situation relevant to the core-collapse stage of a supernova and shortly after

in the hot PNS, we expect the following species of particles to be present at densities

around nuclear saturation: nucleons n, p, electrons e, positrons e+, electron neutrinos

νe, anti-electron neutrinos ν̄e and photons γ.

Baryon conservation requires

yp + yn = 1. (3.77)

Charge conservation requires

yp = ye− + ye+ . (3.78)

Chemical equilibrium with respect to the weak interaction is achieved through the

following interactions:

e− + p↔ n+ νe (3.79)

e+ + n↔ p+ ν̄e, (3.80)

which results in the following relation between the chemical potentials µ of the

participating species:

µe− + µp = µn + µνe (3.81)

µe+ + µn = µp + µν̄e. (3.82)

Combining the two relations above, we obtain

µn − µp = µe− − µνe = µν̄e − µe+. (3.83)
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Finally, the chemical potential of a particle is the symmetric of its anti-particle, and

so we have the relations

µe+ = −µe− (3.84)

µνe = −µν̄e. (3.85)

If neutrinos are trapped, the electron flavour fraction Ye defined by

Ye = ye− − ye+ + yνe − yν̄e (3.86)

is conserved. Combined with equation (3.78), we get the relation

Ye = yp + yνe − yν̄e. (3.87)

At a given temperature T and density ρ, we wish to solve the above equations for a

given fixed electron-lepton fraction Ye. We employ a secant algorithm based on that

given in Press et al. (2007).

3.3.1 Construction of the EoS

Having found the composition of the matter, one can now calculate the energy density

and pressure. The kinetic energy densities and the entropy densities of the various

particle species are derived in section 3.1.1. The total energy density for the baryon

part is then written as

ǫb =
~
2(τp + τn)

2mq
+ ρmqc

2 + ǫSkyrme, (3.88)

58



where ǫSkyrme is the total energy density of matter from the nuclear interaction and is

given by equation (2.10). Then, the total energy density of the system can be written:

ǫ(ρp, ρn, ρe−, ρe+ , ρµ, ρνe, nρν̄e , ǫγ) = ǫb(ρp, ρn) + ρnmnc
2 + ρpmpc

2

+ ǫe−(ρe−) + ρe−me−c
2 + ǫe+(ρe+) + ρe+me+c

2 + ǫµ(ρµ) + ρµmµc
2

+ ǫνe(ρνe) + ǫν̄e(ρν̄e) + ǫγ . (3.89)

The total entropy density can then be calculated:

s(ρp, ρn, ρe−, ρe+ , ρµ, ρνe, ρν̄e, sγ) = sp(ρp) + sn(ρn)

+ se−(ρe−) + se+(ρe+) + sµ(ρµ) + sνe(ρνe) + sν̄e(ρν̄e) + sγ, (3.90)

and the Helmholtz free energy density, which is the total energy of the system available

to be converted into mechanical work at a constant temperature, is then given by

f = ǫ− Ts. (3.91)

The pressure P is finally computed using the thermodynamic relation for the total

internal energy

E = TS − PV +
∑

i

Niµi, (3.92)

which, on dividing through by volume and rearranging, gives

P = −f + µpρp + µnρn + µe−ρe− + µe+ρe+ + µµρµ + µνeρνe + µν̄eρν̄e. (3.93)

By calculating the pressure P in this way, at each value of density ρ and temperature

T , the EoS is built.
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For uniform matter, the gradient terms in ǫSkyrme are zero and (2.10) becomes

ǫSkyrme =
1

4
t0ρ

2[(2 + x0)− (2x0 + 1)(y2p + y2n)]

+
1

24
t3ρ

α+2[(2 + x3)− (2x3 + 1)(y2p + y2n)]

+
1

8
[t1(2 + x1) + t2(2 + x2)]τρ+

1

8
[t2(2x2 + 1)− t1(2x1 + 1)]ρ(τpyp + τnyn). (3.94)

For the non-uniform matter case, the total energy of the nuclear configuration

including the contribution to the Coulomb force from the electrons and protons is

given by (Langanke et al., 1991):

εskyrme+ εcoul =
1

2

(

εkin+
∑

β

ωβǫβ

)

+ εrearr+ εquad+ εpair + εrearr,coul+ εe,coul+ εlattice.

(3.95)

The kinetic energy is given by

εkin =
∑

q

∫

V

~
2

2mq
τqdx dy dz. (3.96)

The rearrangement energy, which results from the density dependent term (∝ t3)

in the Skyrme interaction, is given by

εrearr = −
∫

V

α

24
t3ρ

α{(1 + 1

2
x3)ρ

2 − (
1

2
+ x3)(ρ

2
p + ρ2n)}dx dy dz. (3.97)

The quadrupole constraint has an associated artificial energy that must be

subtracted off from the total energy. It is given by

εquad = −
∑

α∈x,y,z

∫

V

λc,aρqQadx dy dz. (3.98)

The energy due to the pairing interaction is given by
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εpair = −
∑

q

v0,q

{

∑

k∈q

∆qfk
√

ωk(1− ωk)
}2

. (3.99)

The Coulomb rearrangement energy, which comes from the Slater term in the

Coulomb potential, is given by

εrearr,coul = −3

4

(3

π

)1/3
∫

V

ρ4/3p dx dy dz. (3.100)

We will have an energy due to the Coulomb interaction of the protons with

electrons. This is referred as the lattice energy:

εlattice = e

∫

V

ρpΦedx dy dz. (3.101)

and the contribution to the electron energy from the interaction of the electrons with

the protons and with themselves is given by:

εe,coul = e

∫

V

ρe

(1

2
Φe + Φp

)

dx dy dz. (3.102)

For the nucleon entropy density, sq, we can no longer use (3.27), since we have

a discrete energy spectrum of the nucleons in non-uniform matter. The expression

then becomes

V sq = −2kB
∑

i

{ωi,q lnωi,q − (1− ωi,q) ln(1− ωi,q)}, (3.103)

where the factor 2 comes from the Kramers degeneracy and V is the volume of the

computational cell.

There will also be non-nucleonic components to the matter. For this study, we

shall assume that electrons are the only other charged particles present (i.e. the only

particles whose interactions with nucleons we have to take into account) and have a

uniform density. Other particles present are treated exactly as they are in the uniform

matter case. The electrons will generate their own Coulomb potential, Φe, which is
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solved in the same way as for the proton Coulomb potential. We need to take this into

account now because the protons are not distributed homogeneously in the electron

gas.

The expressions for the energy and entropy of the electrons are the same as those in

section 3.1.1, equations (3.30) and (3.31), except that in the inhomogeneous medium,

we must take into account the electrostatic interaction between the electrons and the

inhomogeneous proton distribution. This is done by adding to the single particle

kinetic energies of the electrons an electrostatic potential term, Φ:

ee = (~2k2c2 +m2
i c

4)1/2 + eCoul, (3.104)

where

eCoul =
e

Z

∫

V

(1

2
Φeρe + Φpρp

)

dx dy dz. (3.105)

3.4 Running of the 3DHFEOS code

Each run of 3DHFEOS, at a given temperature T , contains a specified number of

neutrons N and protons Z, with total nucleon number A = N + Z. The proton

fraction is fixed at yp = Z/A. Given the volume of the computational cell, V , the

baryon number density is fixed at ρ = A/V . One can adjust the nucleon number and

the box size so that the baryon number density stays the same. Thus, a calculation

at a given value of ρ does not correspond to a unique value of A. One must perform

calculations over many values of A to obtain all possible configurations at a given

density. A, or equivalently the cell size, is thus a free parameter over which we must

search.

The other free parameters are β and γ, the neutron quadrupole moments

deformation parameters. Once again, we must search over the deformation space

to see how the energy varies with the nuclear shape. We note that we can have

physically identical shape configurations, that will have the same energy, but are
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characterized by different β, γ values. It is therefore difficult to use the neutron

quadrupole moments parameters to track changes in shape.

The above constitute three free parameters. One must perform one calculation

for each point in the three-dimensional phase space at each EoS point, or, in other

words, at each triplet of density, temperature and proton fraction in which we are

interested. Then we need to minimize the free energy density with respect to these

free parameters in order to find the minimum energy configuration state. In this

Thesis, we cover the range of densities 0.02 − 0.12 fm−3 and temperatures 0 − 10

MeV.
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Chapter 4

Numerical results

We have fully described the physical basis of the 3D-SHF model and the numerical

techniques implemented in the 3DHFEOS code used to obtain part of the results in

this Thesis in Pais and Stone (2012). The results concerning the pasta-uniform phase

transition will be submitted for publication.

4.1 The pasta phase

We present here the evolution of the pasta formation from its onset to its dissolution

into uniform matter, obtained fully self-consistently, without any preconceptions.

Possible shapes were limited by technical constraints on the calculation, as we

assumed parity conservation (reflection symmetry) and a cubic shape of the unit

cell. All classical pasta formations, starting from spherical droplets through rods,

slabs, tubes (cylindrical holes) and bubbles (spherical holes) were observed for all

Skyrme force models. The shapes are illustrated in Fig. 4.1 for the SMC700 Skyrme

force as an example at threshold densities for each shape.

We show the 3D image in the top row and the yx, xz and yz projections in the

2nd, 3rd and 4th rows, respectively. In the tube and bubble regions we found the

cylindrical (spherical) holes appearing exactly in the edges (corners) of the unit cell

and not in the center as expected in the bcc or fcc symmetries, which are in principle
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ρ [fm−3]
0.020 0.032(2) 0.042(2) 0.052(2) 0.090(2) 0.108(2) 0.114(1)

Figure 4.1: First row: Pasta phases calculated using the SQMC700 Skyrme
interaction, T = 2 MeV and yp = 0.3. Rows 2, 3, 4: 2D projection of the pasta phases
on the (y,x), (x,z) and (y,z) planes, respectively. The neutron density distribution
is shown at the density corresponding to the onset of each phase, known with the
uncertainty given in brackets. Blue (red) color indicates the bottom (top) of the
density scale: 0.001 (dark blue) - 0.02475 (light blue) - 0.0485 (green) - 0.07225 (light
orange) - 0.095 (red) fm−3. The pasta formation shown here appears for all the
Skyrme models, but the threshold density changes somewhat, see Fig. 4.4.
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allowed in a cubic box. The reason for this effect is likely to be that in our model we

calculate the density distribution only in one octant of the cell and assemble the whole

cell using reflection symmetry. This procedure reduces the higher order bcc and fcc

symmetries to a simple cubic symmetry. The use of reflection symmetry makes the

3DHFEOS code manageable. Removal of that symmetry would increase the demand

on computational time by a factor of 8 which is not realistic at this time.

It is well known that the pasta formation is not only density dependent but also

changes with temperature. A typical global picture of the development of pasta

formations as a function of increasing number density is shown in Figures 4.2 and

4.3, for all the interactions and temperatures of 2 and 10 MeV. We find that the

range of densities for which the pasta phase is fully developed is rather wide (0.04 -

0.11 fm−3) at low temperatures and gets narrower with increasing temperature (0.04

- 0.07 fm−3), as expected. Interestingly, the lower density transition remains the

same for all temperatures. Avancini et al. (2012) obtained a similar result with the

TF approximation — the transition to the rods phase does not seem to depend on

temperature. Also, in Sonoda et al. (2008), within a QMD calculation, it is seen that

the onset of the pasta, i.e., the rodlike nuclei, occurs at ∼ 0.2ρ0 for T < 4 MeV.

4.1.1 Transition densities between pasta formations

In addition to the qualitative studies of the pasta shapes as a function of number

density and temperature, we were able to obtain quantitative information on

transition densities between individual phases as shown in Fig. 4.4.

For comparison, we give the results for QMD model 2 (QMD2) (Sonoda et al.,

2008) in the figure caption. Our transitions appear to be rather sharp and occur

within 0.002 fm−3 or less density change without any obvious intermediate regions.

However, we observe a stable shape, occurring for all four Skyrme models, between the

rods and slabs (a cross-rod) in the low density region between 0.03 - 0.05 fm−3. This

formation may be akin to the “spongelike” intermediate phase reported in Sonoda
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Model ρ
(fm−3)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

NRAPR

SQMC700

SkM*

SLy4

Figure 4.2: Evolution of the neutron density distribution ρN for yp = 0.3 and T = 2 MeV with increasing total particle
number density ρ for all the Skyrme interactions. Blue indicates low densities and red the high densities.

67



Model ρ
(fm−3)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

NRAPR

SQMC700

SkM*

SLy4

Figure 4.3: Evolution of the neutron density distribution ρN for yp = 0.3 and T = 10 MeV with increasing total particle
number density ρ for all the Skyrme interactions. Blue indicates low densities and red the high densities.
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et al. (2008) and denoted (C,S). We, however, do not have an equivalent to their

(S,CH) structure between slabs and cylindrical holes.

Williams and Koonin (1985) also found a shape between rods and slabs (they

called it “cross”) that might be quite similar to our cross-rod shape, although their

calculations were performed at yp = 0.5 and T = 0 MeV.

Comparison with the most recent work of Avancini et al. (2012) who used TF and

CP approximations to RMF with NL3 and TW Lagrangians reveals more similarities

in the phase diagrams, although the cross-rod formation has not been reported in

Avancini et al. (2012). Unfortunately detailed comparison of threshold densities for

individual pasta phases cannot be made as we do not have results at temperatures

used in Avancini et al. (2012).

As can be seen from these results, the change in particle number density between

individual formations is of the order 0.002 fm−3 or smaller. This corresponds to a quite

fast reorganization of matter. Similar effect was observed by Ravenhall et al. (1983).

Comparison with other calculations does not allow one to draw further conclusions:

either the formalism is too restrictive (Avancini et al., 2012) or the calculation was

not performed with the same precision (Sonoda et al., 2008).

In the TF calculations done (Avancini et al., 2010, 2012), the transition between

configurations is not continuous and occurs when the free energy density of one of

the configurations is smaller than the free energy density of the other configurations.
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0.02

0.04

0.06

0.08

0.1

0.12

ρ  [
fm

−3
]

NRAPR SLy4 SQMC700 SkM*

Figure 4.4: Comparison of phase diagrams at T = 2 MeV and yp = 0.3 as calculated
for the four Skyrme interactions used in the 3DHFEOS model. The sequence of
phases from bottom to top is spherical droplets (magenta) - no pasta, rods (yellow),
cross-rods (blue), slabs (red), cylindrical holes (tubes) (orange) and spherical holes
(bubbles) (green). The white gaps between colored boxes represent transition regions
in which calculation is not available. The onset densities of each phase can be
compared with results of Sonoda et al. (2008), who found the following regions of
densities (all in fm−3 rounded to 3 decimal places): 0.017 - 0.029 (spherical droplets),
0.034 (rods), 0.059 - 0.063 (slabs), 0.080 - 0.084 (cylindrical holes) and 0.088 - 0.109
(spherical holes).
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4.2 Transition between the pasta phase and

uniform matter

The transition between the pasta phase and uniform matter has been a focus of

attention for some time. It was usually determined by a comparison of the density

dependence of some observable (free energy density, pressure or entropy), as calculated

for uniform matter and, as in a separate calculation, for inhomogeneous matter

including the pasta phase (Newton and Stone, 2009; Bonche and Vautherin, 1981;

Negele and Vautherin, 1973).

Previously, when the EoS of supernova matter has been assembled which included

both the inhomogeneous and homogeneous phase, the Maxwell or Gibbs construction

would need to be employed to connect the two phases in a thermodynamically

consistent way. We illustrate this technique in Fig. 4.5 where the density dependence

of pressure at T = 2 MeV is plotted as derived from the Lattimer and Swesty (1991)

model in comparison with the EoS calculated in the 3DHFEOS model for the NRAPR

interaction, where no connection is needed to make the transition. Since the Lattimer-

Swesty model employs a Maxwell construction, they obtain a range of densities where

the pressure is constant, removing, as a result, the first order phase transition. In

our model, we see a jump in the pressure, indicating the first order phase transition.

Since these are two different models, we should not expect an exact match for the

uniform part.

Figs. 4.1, 4.2 and 4.3 in the previous section have demonstrated the transition

between pasta and homogeneous matter in a general way. In Figure 4.6, we show in

more detail the accuracy with which the graphical analysis revealed this transition

for all four Skyrme parametrizations.

In Table 4.1 we compare our results for the temperature dependence of the onset

density of homogeneous matter with those obtained by Sonoda et al. (2008) and

Avancini et al. (2012). Our model and that of Avancini et al. (2012) predict a slower
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Figure 4.5: Pressure versus density for the NRAPR interaction and the Lattimer-
Swesty EoS. The transition to uniform matter happens at different densities since
they are two different models.

NRAPR SQMC700

ρ=0.109 fm−3 ρ=0.110 fm−3 ρ=0.113 fm−3 ρ=0.114 fm−3

SkM* SLy4

ρ=0.108 fm−3 ρ=0.109 fm−3 ρ=0.110 fm−3 ρ=0.111 fm−3

Figure 4.6: Neutron density distributions for T = 2 MeV at the transition from
non-uniform to uniform matter for all interactions.
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decrease of the threshold density with temperature in comparison with Sonoda et al.

(2008), who do not observe pasta phase at all at T = 10 MeV.

This is illustrated in Fig. 4.7 where the average for the four Skyrme interactions,

the TF and CP approximations for NL3 and TW interactions and the QMD2 model

results are plotted against temperature.

It has been suggested on the basis of QMD models (Sonoda et al., 2008; Watanabe

et al., 2009) that the slope L(ρ0) = 3ρ0
∂Esym(ρ)

∂ρ
|ρ=ρ0 of the symmetry energy

Esym, calculated at nuclear saturation density ρ0, is inversely related to the critical

temperature Tc at which pasta disappears, i.e., the higher the value of L, the lower

would be the critical temperature. However, as seen in Table 4.2, the NL3 model has

a significantly higher value of L than the QMD2 and yet, both it, and the present

calculation, which have the lowest L values, predict Tc well above that of QMD2.

Thus the proposed relation between L and Tc does not appear to hold universally.

However, Tc could be influenced by other quantities such as the incompressibility

(Avancini et al., 2006).

4.2.1 First order character of the phase transition

The first order nature of the transition to uniform nuclear matter has been predicted

in the past (Lamb et al., 1983; Williams and Koonin, 1985). We are in a unique

position to determine the nature of the transition between the inhomogeneous and

homogeneous phase of the supernova matter, self-consistently. As demonstrated in

Fig. 4.5, the 3DHFEOS model allows one to move through the transition naturally,

without any need for a thermodynamic construction. Thus we can explore the

fingerprints of the transition.

We start by showing in Fig. 4.8 the baryonic free energy density as a function

of the density for the NRAPR model and we can see that it smoothly decreases as

expected. The curvature is slightly negative, which indicates a region of instability
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Table 4.1: Total particle number onset densities of homogeneous matter for the interactions and temperatures studied.
Results of a QMD calculation (model 2) (Sonoda et al., 2008) (only a range can be given in this case) and of TF and
CP approximations to RMF with NL3 and TW Lagrangians (Avancini et al., 2012) are added for comparison. For more
discussion see text.

Model NRAPR SQMC700 SkM* SLy4 QMD2 NL3(TF) NL3(CP) TW(TF) TW(CP)
T [MeV] ρ[fm−3]

0 0.108 0.112 0.107 0.109 0.118-0.122 0.099 0.097 0.109 0.100
1 >0.118
2 0.110 0.114 0.109 0.111 0.109-0.113
3 0.101-0.105
4 0.108 0.113 0.107 0.110 0.092-0.097
5 0.084-0.088 0.092 0.091 0.103 0.094
6 0.100 0.105 0.100 0.102 0.080-0.084
7 0.063-0.067 0.084 0.084 0.096 0.087
8 0.091 0.099 0.089 0.094 0.050-0.055 0.078 0.079 0.091 0.082
9 0.034-0.038
10 0.075 0.079 0.074 0.077
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Figure 4.7: Temperature dependence on the onset density of homogeneous matter, as predicted by the Skyrme, RMF
(NL3, TW) and QMD2 models. Values for QMD2 model are given as a range; the arrow shows that the entry is a lower
limit. The lines are added to guide the eye. For more details see text.
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Table 4.2: Symmetric nuclear matter properties at saturation density ρ0 (energy
per particle B/A, incompressibility K, symmetry energy Esym and symmetry energy
slope L) for the models shown in Tab. 4.1. All the quantities are in MeV, except for
ρ0, given in fm−3.

Model ρ0 B/A K Esym L
NRAPR 0.16 -15.85 226 33 60
SQMC700 0.17 -15.49 222 33 59
SkM* 0.16 -15.77 217 30 46
SLy4 0.16 -15.97 230 32 46
QMD2 0.17 -16 280 33 80
NL3 0.15 -16.3 272 37 118
TW 0.15 -16.3 240 33 55

below ∼ 0.11 fm−3, i.e., where the pasta appears (Müller and Serot, 1995). The other

interactions follow the same trend.

To determine the phase transition and the densities at which it occurs, let us

employ a Gibbs construction to illustrate the method. We start by considering

the pressure as a function of the baryonic chemical potential, and we show that

construction for a RMF model, NL3 (Lalazissis et al., 1997), for homogeneous matter

(see top panel of Fig. 4.9) as well. For a constant temperature, and according to the

Gibbs conditions, the transition occurs when P1(µb1) = P2(µb2).

For NL3, the chemical potential at which the transition occurs corresponds to the

crossing of the dashed line and full line at ∼ 1836 MeV. For the NRAPR Skyrme

interaction, we show our pasta calculations and conclude that the critical chemical

potential is probably close to minimum for µb = 1831.82 MeV. We should recall

that contrary to the phase transition built from the homogeneous EOS, with a first

order phase transition between a low density gas and a high density liquid, the pasta

calculation takes into account both finite effects and the Coulomb interaction. It is

seen that negative baryonic pressures are obtained. However, when the total pressure,

including the electron contribution, is considered there are no negative pressures (see

Fig. 4.12). Similar conclusions have been discussed in Tatsumi et al. (2011), however

for a calculation done for symmetric matter within a TF calculation.
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To determine the densities at which the transition occurs, we plot the baryonic

chemical potential as a function of the density — see lower panel of Fig. 4.9. The

horizontal lines shown indicate the baryonic chemical potential at which the transition

occurs, limiting a region of densities where an instability phase appears (for the NL3

model), and a point where the transition happens, for the NRAPR model. For this

model, the pasta phase region of densities corresponds to the left branch, and for

the NL3 model it should occur within the transition density, in the µb(ρ) plot. For

NRAPR, the right branch corresponds to the uniform matter phase.

We illustrate this discontinuity for the NRAPR Skyrme interaction in Figs. 4.10,

4.11, 4.12 and 4.13 for the baryonic chemical potential and in Figs. 4.15, 4.17, 4.16

and 4.18 for the baryonic entropy density. The same pattern is seen for all the other

three Skyrme models.

In Figs. 4.10 and 4.11, we show the baryonic pressure and the baryonic free energy

density as a function of the baryonic chemical potential for the other temperatures,

T = 0, 2, 4 and 6 MeV. The baryonic chemical potential for the transition to uniform

matter corresponds to the minimum (local maximum) of the Pb (Fb) curves.

In Figs. 4.12 and 4.13, we plot the total pressure and free energy density as a

function of the baryonic chemical potential. The transition is once more shown, this

time corresponding to the minimum of both curves.

We can see in Figures 4.12 and 4.13 that both the total pressure and free energy

density increase with µB in the uniform matter phase, whereas for the pasta phase

the opposite happens. When we compare with the baryonic pressure and free energy

density (see Figures 4.10 and 4.11), we find that Pb also increases after the transition,

but for the pasta phase, Pb increases with µb as well. Fb decreases in the uniform

matter and increases in the pasta phase. These are all expected results for stable

matter (positive incompressibility, or positive derivative of P with respect to ρ): for

uniform matter at high densities, P should increase with the density. In a similar way,

for the pasta phase (lower densities), P should decrease with decreasing densities, as

it can be seen in Fig. 4.14. A comment on the difference between Pb and Pt should
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Figure 4.10: Baryon pressure as a function of baryon chemical potential for the NRAPR Skyrme interaction and (a)
T = 0, (b) T = 2, (c) T = 4, and (d) T = 6 MeV. Left branch: uniform matter; Right branch: pasta phase.
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also be made: electrons are much more incompressible, which explains the difference

in behaviour in the pasta phase: Pt decreases and Pb increases.

In Fig. 4.14, we plot the total pressure as a function of the density. The transition

to uniform matter is marked by the discontinuity in the density, as we saw before in

Fig. 4.5.

In Figures 4.15 and 4.17, Pt and Ft increase with Sb, in both phases, whereas

for Pb and Fb the opposite happens: they both decrease with increasing Sb, as we

can observe in Figs. 4.16 and 4.18. This behaviour is also expected as the entropy

increases with increasing density and temperature.

In Fig 4.19, 4.20, 4.21 and 4.22 we plot the baryonic chemical potential and in Figs.

4.23, 4.24, 4.25 and 4.26, we plot the baryonic entropy density as a function of the

density, where the transition densities for all the interactions and temperatures are

clearly shown. We are using the same procedure as above and the transition densities

correspond to the minimum (local maximum) of the chemical potential (entropy)

curves.

In Figs. 4.27, 4.28, 4.29, and 4.30, this discontinuity is again seen when we plot

the baryonic entropy density as a function of the baryonic chemical potential, for all

the interactions and temperatures considered.

We see that there is a prominent discontinuity in pressure, chemical potential and

entropy, indicating unambiguously that the transition between the pasta phase and

homogeneous (uniform) matter is a first order phase transition.

Williams and Koonin (1985) also found first-order phase transitions between

shapes and to uniform matter marked by discontinuities in the pressure and chemical

potential. In our model, the discontinuities in the first derivatives of the free energy

density at lower densities are too small to be identified and probably go beyond the

numerical capability of the code, not allowing us to clearly identify the character

of the transition between shapes. Lamb et al. (1983) also found a first-order phase

transition to uniform matter but they note that if the Coulomb energy would be

turned off, the transition would be second order.
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Figure 4.23: Baryonic entropy density as a function of number density for the
NRAPR Skyrme interaction and (a) T = 2, (b) T = 4, and (c) T = 6 MeV. Left
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Figure 4.24: Baryonic entropy density as a function of number density for the SLy4
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Figure 4.25: Baryonic entropy density as a function of number density for the QMC
Skyrme interaction and (a) T = 2, (b) T = 4, and (c) T = 6 MeV. Left branch: pasta
phase; Right branch: uniform matter.
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Figure 4.26: Baryonic entropy density as a function of number density for the SkM*
Skyrme interaction and (a) T = 2, (b) T = 4, and (c) T = 6 MeV. Left branch: pasta
phase; Right branch: uniform matter.
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Figure 4.27: Baryonic entropy density as a function of baryonic chemical potential
for the NRAPR Skyrme interaction and (a) T = 2, (b) T = 4, and (c) T = 6 MeV.
Left branch: uniform matter; Right branch: pasta phase.
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Figure 4.28: Baryonic entropy density as a function of baryonic chemical potential
for the SLy4 Skyrme interaction and (a) T = 2, (b) T = 4, and (c) T = 6 MeV. Left
branch: uniform matter; Right branch: pasta phase.
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Figure 4.29: Baryonic entropy density as a function of baryonic chemical potential
for the QMC Skyrme interaction and (a) T = 2, (b) T = 4, and (c) T = 6 MeV. Left
branch: uniform matter; Right branch: pasta phase.
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Figure 4.30: Baryonic entropy density as a function of baryonic chemical potential
for the SkM* Skyrme interaction and (a) T = 2, (b) T = 4, and (c) T = 6 MeV. Left
branch: uniform matter; Right branch: pasta phase.
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The discontinuities shown in the first derivatives of the free energy, indicating a

phase transition of first order at a specific temperature, coincide with the transitions

to uniform matter in the neutron density distributions graphical analysis (see e.g.

Fig. 4.6).
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Chapter 5

Conclusions

We have proven, for the first time, that pasta is not just an empirical construction

but arises naturally from a self-consistent model. We were able to localize all classical

pasta formations in fully self-consistent calculations that lacked any preconceptions

of the shape as input to the calculation. Possible shapes were somewhat limited by

technical constraints on the calculation, as we assumed parity conservation (reflection

symmetry) and a cubic shape of the unit cell, issues whose effect will be examined in

the future.

Results of our analysis show some intriguing features, especially concerning the

phase transition from the pasta phase to homogeneous matter (Maruyama and

Tatsumi, 2010). First, we see a clear indication for the presence of the transition,

manifesting itself at densities and temperatures in different observables, such as

pressure, entropy and chemical potentials. We were able to identify jumps (of the

order of µb = 1 MeV) in all the first derivatives of the free energy, indicating the

presence of a first-order phase transition to uniform matter. The inclusion of the

pasta phase in our model hence does not remove the first order phase transition

to uniform matter. Any discontinuities in the first derivatives of the free energy

density at lower densities are too small to be identified and probably are at the limit

of our numerical accuracy, preventing us from clearly identifying the character of
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these smaller transitions between shapes. However we can observe that they happen

gradually, with increasing density.

Second, we observe that for temperatures higher than 2 MeV, the transition

density decreases with increasing temperature. Finally, we also find, for the first time,

that the choice of the Skyrme interaction does not greatly affect the appearance and

structure of the pasta phase of CCSN matter.

In conclusion, we have identified, fully self-consistently, the onset of the pasta

phase in inhomogeneous CCSN matter consisting of neutron-rich heavy nuclei and

a free neutron and electron gas and its dissolution to homogeneous neutron, proton

and electron liquid. The density range of the pasta phase is temperature dependent;

it decreases with increasing temperature. On the currently used density/temperature

grid, all accepted shapes have been identified with one new cross-rod shape. The

slab phase is found over the widest density range. Although this is true for all four

interactions used, the particular widths of the various pasta phases show interesting

variation. Consistent with the Avancini et al. (2012) result, we find that, for

temperatures higher than 2 MeV, the transition density from the pasta phase to

homogeneous matter decreases far more slowly with increasing temperature than the

QMD result. A self-consistent calculation including the Coulomb field and finite size

effects and allowing a large freedom for the pasta formation has been performed and

we have obtained a first order pasta-uniform matter phase transition.

5.1 Future Work

The results of this work, extended to relevant temperatures and proton/neutron

ratios, can be used to construct four EoS for supernova simulation models, augmented

by 1D calculation at densities below and above the pasta region, where this

approximation is valid. Neutron and proton density distributions in the unit cell,

obtained in this work, can also be employed in the modelling of neutrino transport

through the pasta formations, making such a calculation, where, for the first time,
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a continuous particle density distribution rather than individual particles, is used.

Another interesting analysis would be to identify the critical temperature at which

the pasta phase disappears, in the range of proton fractions considered. On the

technical side, it would be interesting to apply the Bloch boundary conditions and to

remove the reflection symmetry to see if additional pasta shapes are possible.
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